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Preface to ”Stability Problems for Stochastic Models”

The aim of this Special Issue of Mathematics is to commemorate the outstanding Russian

mathematician Vladimir Zolotarev whose 90th birthday will be celebrated on February 27th, 2021.

Through his mathematical maturation, Zolotarev took much from distinguished mathematicians

E. B. Dynkin and A.N. Kolmogorov, who were his direct teachers during his studies at Lomonosov

Moscow State University, in addition to B.V. Gnedenko and Yu. V. Linnik during his graduate

studies. In 1958, he defended his candidate (Ph.D.) thesis “Analytic Properties of Infinitely Divisible

Distribution Laws” prepared under the supervision of academician Andrey Kolmogorov. In 1966,

Vladimir Zolotarev defended his second thesis “Distribution of Sums of Independent Random

Variables and Stochastic Processes with Independent Increments” and obtained the degree of Doctor

of Sciences. One of his main interests was study of the properties of stable distributions. Zolotarev

extended the concept of stable law to the schemes of maximum and multiplication of random

variables. Zolotarev’s studies on stable laws were summarized in the book “One-Dimensional Stable

Distributions” published in 1983, which was soon translated into English (1985) and quickly gained

widespread recognition. As this book saw the light, concepts such as Zolotarev’s theorem, Zolotarev’s

formula, and the Zolotarev transformation became quite conventional. Contemporaneously with the

study of stable laws, Zolotarev began to work in the field of limit theorems for sums of independent

random variables. He made a substantial contribution to the so-called nonclassical theory of

summation. The cornerstone of this scheme was the break of the habitual approach, in which an

individual summand does not have an effect on the form of the limit distribution (in nonclassical

summation theory, an individual summand may play a prominent role). It is fair to say that Vladimir

Zolotarev is one of the fathers of this direction in probability theory. He generalized the results of

his predecessors, P. Lévy and Yu. V. Linnik who, on the heuristic level, pointed out the possibility

of a new approach to limit theorems for sums of independent random variables. The key point of

this approach is that limit theorems of probability theory are treated as special stability theorems.

Zolotarev created the theoretical foundation of the key method used within this approach, the

theory of probability metrics. This approach assumes that statements establishing convergence must

be accompanied by statements establishing the convergence rate. Zolotarev called the conditions

of convergence that simultaneously serve as convergence rate estimates “natural”, In the 1970s,

the annual International Seminar on Stability Problems for Stochastic Models were launched, with

wide participation of mathematicians from many countries. Today, this seminar is internationally

recognized for the originality and relevance of the considered problems and presented results. The

seminar formed and developed a breakthrough approach to limit theorems of probability theory as

stability theorems. Below is the complete list of the sessions of the International Seminar on Stability

Problems for Stochastic Models:

I: May 1974, Leningrad (now St. Petersburg), USSR

II: November 1974, Vilnius, Lithuanian SSR

III: 5–9 December 1977, Moscow, USSR

IV: 11–16 April 1979, Palanga, Lithuanian SSR

V: 17–22 November 1980, Panevezys, Lithuanian SSR

VI: 19–27 April 1982, Moscow, USSR

VII: 18–24 June 1984, Saratov, USSR

VIII: 23–29 September 1984, Uzhgorod, Ukrainian SSR

ix



IX: 13–19 May 1985, Varna, Bulgaria

X: October 1986, Kuybyshev (now Samara), USSR

XI: 4–11 October 1987, Sukhumi, Abkhasian ASSR

XII: October 1988, Kharkov, Ukrainian SSR

XIII: October 1989, Kirillov, Vologda Region, USSR

XIV: 27 January–2 February 1991, Suzdal, USSR

XV: 1–6 June 1992, Perm, Russia

XVI: 29 August–3 September 1994, Eger, Hungary

XVII: 19–26 June 1995, Kazan’, Russia

XVIII: 26 January–1 February 1997, Hajdúszoboszló, Hungary

XIX: 6–12 September 1998, Vologda, Russia

XX: 5–11 September 1999, Nałeczów, Poland

XXI: 28 January–3 February 2001, Eger, Hungary

XXII: 25–31 May 2002, Varna, Bulgaria

XXIII: 12–17 May 2003, Pamplona, Spain

XXIV: 10–17 September 2004, Majori (Jurmala), Latvia

XXV: 20–24 September 2005, Maiori (Salerno), Italy

XXVI: 27 August–2 September 2006, Sovata-Bai, Romania

XXVII: 22–26 October 2007, Nahariya, Israel

XXVIII: 31 May–5 June 2009, Zakopane, Poland

XXIX: 10–16 October 2011, Svetlogorsk, Russia

XXX: 24–30 September 2012, Svetlogorsk, Russia

XXXI: 23–27 April 2013, Moscow, Russia

XXXII: 15–21 June 2014, Trondheim, Norway

XXXIII: 13–18 June 2016, Svetlogorsk, Russia

XXXIV: 24–28 August 2017, Debrecen, Hungary

XXXV: 24–28 September 2018, Perm, Russia

XXXVI: 22–26 June 2020, Petrozavodsk, Russia (online session), 21–25 June 2021, Petrozavodsk,

Russia (offline session).

Devoting his heart and soul to science, he had always demanded the same from his colleagues

and numerous students. Vladimir Zolotarev had to spend the last years of his life away from Russia

in California (USA), where the local equable climate helped him overcome the consequences of a

stroke suffered in 1995. On November 7, 2019, the outstanding mathematician Vladimir Mikhailovich

Zolotarev passed away.

The present Special Issue contains a collection of new papers by the colleagues and followers

of Vladimir Zolotarev, who were participants in sessions of the International Seminar on Stability

Problems for Stochastic Models.

Alexander Zeifman, Victor Korolev, Alexander Sipin

Editors

x
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A Generalized Equilibrium Transform with
Application to Error Bounds in the Rényi Theorem
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Abstract: We introduce a generalized stationary renewal distribution (also called the equilibrium
transform) for arbitrary distributions with finite nonzero first moment and study its properties.
In particular, we prove an optimal moment-type inequality for the Kantorovich distance between
a distribution and its equilibrium transform. Using the introduced transform and Stein’s method,
we investigate the rate of convergence in the Rényi theorem for the distributions of geometric sums
of independent random variables with identical nonzero means and finite second moments without
any constraints on their supports. We derive an upper bound for the Kantorovich distance between
the normalized geometric random sum and the exponential distribution which has exact order
of smallness as the expectation of the geometric number of summands tends to infinity. Moreover,
we introduce the so-called asymptotically best constant and present its lower bound yielding the one
for the Kantorovich distance under consideration. As a concluding remark, we provide an extension
of the obtained estimates of the accuracy of the exponential approximation to non-geometric random
sums of independent random variables with non-identical nonzero means.

Keywords: Rényi theorem; Kantorovich distance; zeta-metrics; Stein’s method; stationary renewal
distribution; equilibrium transform; geometric random sum; characteristic function

1. Introduction

Let X1, X2, . . . be a sequence of independent and, for simplicity in this Introduction,
identically distributed (i.i.d.) random variables (r.v.s) with a := EX1 �= 0. Let N be a random
variable independent of {X1, X2, . . .} and having the geometric distribution Geom(p) with parameter
p ∈ (0, 1), i.e., P(N = n) = p(1− p)n−1 for n ∈ N. Denote also N0 := N − 1 the shifted geometric
r.v. Let Sn := ∑n

k=1 Xk, n ∈ N, S0 := 0. The well-known Rényi theorem states that the distribution
of a properly normalized geometric random sum SN converges weakly to the exponential law as p
tends to zero. More precisely,

W :=
SN

ESN

d−→ E as p ↓ 0, where E ∼ Exp(1) and ESN = EN EX1 = a/p. (1)

Here, the notation Exp(λ) stands for the exponential distribution with density λe−λx
(0,∞)(x),

λ > 0. Originally, Rényi proved Equation (1) under the additional assumption of nonnegativeness of

Mathematics 2020, 8, 577; doi:10.3390/math8040577 www.mdpi.com/journal/mathematics1
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{Xn}. However, it can be made sure that Equation (1) holds also: (i) for alternating {Xn} (by alternating
r.v. we mean a r.v. that may take values of both signs); and (ii) for

W0 :=
SN0

ESN0

=
pSN0

a(1− p)
,

in place of W (still without any support assumptions on the distribution of {Xk}). This can be done,
for example, by showing that the characteristic function (ch.f.) of W (and also of W0) converges
pointwisely to that of the exponential distribution.

The importance of every limit theorem only increases if it is accompanied by the corresponding
estimates of the rate of convergence. There are several bounds on the accuracy of approximation in
Equation (1), mainly w.r.t. the Kolmogorov (uniform) and ζ-metrics, which are cited below. All of
them assume additional conditions on the distribution of random summands including the finiteness
of higher-order moments.

Recall that both the Kolmogorov and ζs-metrics are defined as simple probability metrics with
ζ-structure (see Section 2 of [1]) between probability distributions (d.f.s F, G) of r.v.s X, Y:

ζH (F, G) ≡ ζH
(
L (X) , L (Y)

)
≡ ζH (X, Y) := sup

h∈H

∣∣∣∣∫
R

h dF−
∫
R

h dG
∣∣∣∣ (2)

for specific classes H of real Borel functions on R (to simplify the notation, here and in what
follows, we use r.v.s as well as their distributions and d.f.s in the arguments of simple probability
metrics interchangeably; this should not cause any misunderstanding). The Kolmogorov metric ρ is
obtained withH =

{
(−∞,a)(x) | a ∈ R

}
, the class of indicators of all open intervals with unbounded

left endpoint:
ρ(F, G) := sup

x∈R
|F(x)− G(x)| ,

while ζ-metric of order s > 0, originally introduced by Zolotarev [2] (see also [3]) as an example
of an ideal metric with ζ-structure, is defined as ζH withH = F∞

s , where

F∞
s :=

{
h ∈ Fs : h is bounded

}
,

Fs :=
{

h : R→ R :
∣∣∣h(m)(x)− h(m)(y)

∣∣∣ ≤ |x− y|s−m ∀x, y ∈ R with m := 
s− 1� ∈ N0

}
, s > 0,

that is,

ζs (F, G) := sup
h∈F∞

s

∣∣∣∣∫
R

h dF−
∫
R

h dG
∣∣∣∣ . (3)

Observe that h ∈ Fs iff h′ ∈ Fs−1, s > 1. If E|X|s < ∞ and E|Y|s < ∞, then ζs(F, G) < ∞ and
the least upper bound w.r.t. to h ∈ F∞

s in Equation (3) may be replaced with that over a wider class Fs.
For further properties of ζs-metrics, we refer to the works in [3,4] and Section 4 of [5].

In the present paper, we focus mostly on ζ1-metrics between distributions with finite first moments;
under this assumption, the definition of ζ1-metric can be rewritten as

ζ1 (F, G) = sup
h∈Lip1

∣∣∣∣∫
R

h dF−
∫
R

h dG
∣∣∣∣ , (4)

where
Lipc :=

{
h : R→ R

∣∣∣ |h(x)− h(y)| ≤ c |x− y| ∀x, y ∈ R
}

, c > 0,

so that Lip1 = F1. It is worth noting that ζ1 has several alternative representations.
The Kantorovich–Rubinstein theorem states that ζ1(X, Y) is minimal with respect to the compound
metric E|X−Y|, while the results in [6] imply that the optimal coupling is attained at the comonotonic

2
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pair (that is, with (X, Y) = (F−1(U), G−1(U)), U having the uniform distribution on (0, 1), F−1, G−1

being generalized inverse d.f.s):

ζ1 (F, G) = min
L (X′ ,Y′) : X′ d

=X, Y′ d
=Y

E|X′ −Y′| =
∫ 1

0

∣∣∣F−1(u)− G−1(u)
∣∣∣ du =

∫ ∞

−∞
|F(x)− G(x)| dx. (5)

The rightmost representation in Equation (5), as the mean metric between the d.f.s F and G,
follows from the geometrical interpretation. The metric ζ1 is also called the Kantorovich, or the
Wasserstein distance.

Thus, coming back to the convergence rate estimates in Equation (1), we first mention the paper
by Solovyev [7], which gives the following uniform bound for nonnegative {Xk}, as pointed out in [8]:

ρ(W0, E ) ≤ 24p
γr

r− 2
, 2 < r ≤ 3, (6)

where γr =
(
EXr

1/ar)1/(r−1).
Kalashnikov and Vsekhsvyatskii [9] proved a uniform upper bound for nonnegative summands

in terms of their moments of order s ∈ (1, 2]:

ρ(W, E ) ≤ Cps−1 EXs
1

as , (7)

where C is an absolute constant.
Kruglov and Korolev [10] gave the following nonuniform bound of the accuracy of the exponential

approximation to the normalized geometric distribution (i.e., for degenerate {Xn}):

∣∣P(pN < x)− (1− e−x)
∣∣ ≤ x {x<p} +

(
e−x − e−Q(p)x

)
{x≥p} ≤

≤ x
[
{x<p} +

p
2(1− p)

e−x
{x≥p}

]
, (8)

where Q(p) = (1− p/2)/(1− p).
Brown [8] proved an asymptotically exact (as p→ 0) upper bound for nonnegative summands,

which does not require moments of order greater than two:

ρ(W0, E ) ≤ p
EX2

1
a2 max

(
1,

1
2(1− p)

)
. (9)

Brown also showed that Equation (9) is tighter than Equation (6) for all 2 < r ≤ 3 and p ∈ (0, 0.5].
Moreover, Equation (9) can be treated as a specification of Equation (7) for s = 2 with a concrete value
of C.

Sugakova [11] presented some bounds for the d.f. FSN0
(t) for t > 1 using the characteristics

of the renewal process built on top of independent and not necessary identically distributed alternating
{Xn} with identical means.

Kalashnikov [12] provided estimates of the rate of convergence in the Rényi theorem for i.i.d.
alternating {Xn} w.r.t. ζs-metrics of order s ∈ [1, 2] and the uniform metric (the latter is done under
the additional assumption of bounded density), in particular, for any s ∈ (1, 2],

ζs(W, E ) ≤ ps−1 ζs(X1, E ), (10)

ζ1(W, E ) ≤ p ζ1(X1, E ) + 2(1− p)ps−1 ζs(X1, E ), (11)

provided that EX1 = 1.

3
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Among other valuable things, Peköz and Röllin [13] exploited Stein’s method and equilibrium
(stationary renewal) distributions (see Section 3) to estimate the Kantorovich distance between
the exponential distribution and that of a normalized geometric random sum W of square integrable
independent and not necessary identically distributed nonnegative random summands {Xn} with
identical positive means under the technical assumption EXk = 1:

ζ1(W, E ) ≤ 2p
∞

∑
n=1

P(N = n) ζ1(Xn, Xe
n), (12)

where Xe
n has an equilibrium distribution w.r.t. Xn, n ∈ N. Using the trivial bound ζ1(X, Y) ≤

E|X|+ E|Y| that follows from representation (5) and holds true for arbitrary r.v.s X, Y with finite first
moments, the inequality in Equation (12) can be naturally extended to

ζ1(W, E ) ≤ 2p sup
n

ζ1(Xn, Xe
n) ≤ p sup

n

(
EX2

n + 2
)

, (13)

as done in [14].
Equation (22) of Hung [15] gives the following bound for the Trotter distance between W and E

in the case of i.i.d. nonnegative summands {Xn} with EX1 = 1:

dT(W, E ; h) := sup
t∈R
|Eh(W + t)− Eh(E + t)| ≤ ps−1

(
EX2

1 + 3
)

, h ∈ F∞
s , s ∈ (1, 2]. (14)

Given that ζs(W, E ) = suph∈F∞
s

dT(W, E ; h), the estimate in Equation (14) may be rewritten as

ζs(W, E ) ≤ ps−1
(

EX2
1 + 3

)
for s ∈ (1, 2]. (15)

To compare Equation (15) with Kalashnikov’s bound in Equation (10), observe that, by
Theorem 1(i,c) below, the dual representation of ζs(X, Y)-metric as the minimal w.r.t. the compound
metric E|X − Y|s for s ∈ (0, 1] (see, e.g., Corollary 5.2.2 of [4]), and, finally, Theorem 1(g) below, for
s ∈ (1, 2], we have

ζs(X1, E ) = ζs−1(Xe
1, E e) = ζs−1(Xe

1, E ) = inf
L (X,Y) : X d

=Xe
1, Y d

=E

E |X−Y|s−1 ≤

≤ E |Xe
1 − E |+ 1 ≤ EXe

1 + E E + 1 = EX2
1/2 + 2 < EX2

1 + 3,

hence, Kalashnikov’s bound in Equation (10) is tighter than Equation (15).
Thus, most existing estimates of the rate of convergence in the Rényi theorem were obtained

under the additional assumption of nonnegativeness of random summands {Xn}. However, there
are many applications where geometric random sums appear with alternating random summands,
for example, as profit-or-losses in financial mathematics, risk theory, queuing theory, etc. Hence,
extensions of such sharp and natural estimates as Equations (9), (12), and (13), say, to the alternating
random summands, would not only represent a theoretical interest, but can also be in great demand
by various applications of probability theory.

In the present paper, we focus on ζ1-estimates, in particular, we extend bounds in Equations (12)
and (13) to the alternating case. More precisely, in Theorem 4 below, we prove that, for square

4
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integrable independent and not necessarily identically distributed random summands {Xn} with
identical nonzero means (for simplicity, equal to one), the following estimates hold:

ζ1(W, E ) ≤ 2p
∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
≤ p

(
EX2

N − 2 P(XN ≤ 0)
)

, (16)

ζ1(W0, E ) ≤ 2p
1− p

ζ1
(
δ0, L e(XN)

)
=

p
1− p

EX2
N , (17)

where δ0 is the Dirac measure concentrated in zero and L e(Xn) is the equilibrium transform of
L (Xn), which is a generalization of the equilibrium distribution introduced in Section 3 below and,
generally speaking, is no more a probability measure (therefore, we write L e(Xn) instead of L (Xe

n)),
but allows eliminating the support constraints on the distribution of Xn. The notion of the ζ1-metric
between signed measures is introduced in Section 2 below and coincides with that of the ordinary
ζ1-metric in case of probability measures. Thus, the intermediate estimate in Equation (16) coincides
with estimate (12), but now also holds true for alternating random summands {Xn}. Furthermore, it
can easily be seen that the right-hand side of Equation (16) does not exceed

p sup
n

(
EX2

n − 2 P(Xn ≤ 0)
)

and, hence, is tighter than estimate (13) and does not require that {Xn}’s take only positive values.
The comparison of estimates (16) and Kalashnikov’s bound in Equation (11) with s = 2

ζ1(W, E ) ≤ p ζ1(X1, E ) + 2p(1− p) ζ2(X1, E ) = (18)

= p ζ1(X1, E ) + 2p(1− p) ζ1
(
L e(X1) , Exp(1)

)
(for the equality here, see Theorem 1(i) below) is complicated in the general case, since, due to
Theorem 3 below, the rightmost expression does not exceed

2p(2− p) ζ1
(
L (X1) , L e(X1)

)
,

which is asymptotically twice greater than the intermediate expression in Equation (16), while the
intermediate estimate in Equation (16), by the triangle inequality, yields the bound

ζ1(W, E ) ≤ 2p ζ1(X1, E ) + 2p ζ1
(
L e(X1) , Exp(1)

)
with the first term twice larger than that in Equation (18).

We use the same techniques and recipes as in [13]. First, we bound the left-hand side of
Equation (16) from above with ζ1

(
L (W) , L e(W)

)
using Stein’s method (see Theorem 3 in Section 4).

Second, we estimate ζ1
(
L (W) , L e(W)

)
by the ζ1-distances between Xn and their equilibrium

transforms L e(Xn), n ∈ N. Third, we construct an optimal upper bound for ζ1
(
L (Xn) , L e(Xn)

)
in terms of the second moments of Xn and P(Xn ≤ 0), n ∈ N (see Theorem 2 in Section 3). The
resulting upper bounds for ζ1(W, E ) and ζ1(W0, E ) are given in Theorem 4 of Section 5. Furthermore,
we provide asymptotic lower bounds for ζ1(W, E ) and ζ1(W0, E ) (see Theorem 5 in Section 5) in
terms of the so-called asymptotically best constants introduced in Section 5. The constructed lower
bounds turn out to be asymptotically four times smaller than the upper ones. Finally, we extend the
obtained estimates of the accuracy of the exponential approximation to non-geometric random sums
of independent random variables with non-identical nonzero means of identical signs (see Theorem 6
in Section 5).
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2. The Kantorovich Distance between Signed Measures

In the next sections, we need to calculate the Kantorovich (or ζ1-) distance between measures
on (R,B) that are no longer probabilities, but still have unit mass on R. Denote byM1 the linear
space of signed measures on (R,B) with finite total variations and finite first moments, and byM1

0
the subspace of measures σ ∈ M1 with σ(R) = 0.

The Kantorovich norm onM1
0 is defined as (see Section 3.2 of [16])

‖σ‖K := sup
f∈Lip1

∣∣∣∣∫
R

f dσ

∣∣∣∣ .

Now let μ, ν ∈ M1 and μ(R) = ν(R), so that μ− ν ∈ M1
0. The induced Kantorovich distance ζ1

between μ and ν is

ζ1(μ, ν) := ‖μ− ν‖K = sup
f∈Lip1

∣∣∣∣∫
R

f dμ−
∫
R

f dν

∣∣∣∣ . (19)

It is easy to see that in the case of probability measures μ and ν Equation (19) coincides with
the definition of ζ1-distance given in Equation (4).

Using the Jordan decompositions μ = μ+ − μ− and ν = ν+ − ν−, as well as the alternative
representation in Equation (5) of the ζ1-distance between nonnegative measures λ = μ+ + ν− and
π = ν+ + μ− with λ(R) = π(R) in terms of their d.f.s, after a proper normalization, one can rewrite
Equation (19) as

ζ1(μ, ν) = ζ1(λ, π) =
∫
R
|Fλ(x)− Fπ(x)| dx =

∫
R

∣∣Fμ(x)− Fν(x)
∣∣ dx, (20)

where Fμ(x) = μ
(
(−∞, x)

)
, Fν(x) = ν

(
(−∞, x)

)
, x ∈ R, are the d.f.s of the signed measures μ and ν,

respectively. In other words, the alternative representation of Zolotarev’s ζ1-distance in terms of d.f.s
in Equation (5) is preserved for signed measures with identical masses of R.

We also use the convolution of signed measures μ ∗ λ, which is defined word-for-word as that of
probability distributions. The uniqueness and multiplication theorems (see, e.g., Chapter 6 of [17] or
Section 3.8 of [18]) state that the characteristic function of μ (the Fourier–Stieltjes transform of Fμ)

μ̂(t) :=
∫
R

eitxμ(dx) =
∫
R

eitxdFμ(x), t ∈ R,

defines the signed measure μ as well as its d.f. Fμ uniquely and

μ̂ ∗ ν = μ̂ · ν̂.

The following lemma, which is a simple corollary to representation (20), shows that the
well-known properties of homogeneity and regularity of the Kantorovich distance between probability
distributions are preserved for signed measures, but with a slight correction.

Lemma 1. The Kantorovich distance ζ1 on the spaceM1
D of finite signed Borel measures on the real line with

the masses of R equal to D ∈ R and finite first moments possesses the following properties:

(a) Homogeneity of order 1. For every μ, ν ∈ M1
D and c �= 0, with μc(B) := μ(cB), νc(B) := ν(cB)

and cB :=
{

cx | x ∈ B
}

, B ∈ B, we have

ζ1(μc, νc) =
1
|c| ζ1(μ, ν).

6
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(b) Regularity. For all μ, ν ∈ M1
D and λ ∈ M1, we have

ζ1(μ ∗ λ, ν ∗ λ) ≤ |λ|(R) · ζ1(μ, ν),

where |λ| := λ+ + λ− is the total variation of λ.

To avoid abusing the notation, in what follows, we also use ζ1(F, G) for the Kantorovich distance
between (signed) measures uniquely restored (Section 3.5, Theorem 3.29 of [19]) from distribution
functions F and G.

3. The Equilibrium Transform of Probability Distributions

The notion of equilibrium distribution w.r.t. nonnegative r.v.s with finite positive means originally
arises in the renewal theory as the distribution of the initial delay of a renewal process which
makes its renewal rate constant (Chapter 11, § 4 of [20]) and, more generally, the renewal process
stationary (Chapter 5, § 4 of [21]), which is why it is also called the stationary renewal distribution.
Equilibrium distribution appears also as the limit distribution of the residual waiting times, or hitting
probabilities (Chapter 11, § 4 of [20]) and in the celebrated Pollaczek–Khinchin–Beekman formula
which expresses the ruin probability in the classical risk process in terms of geometric random sum
of i.i.d. r.v.s whose common distribution is the equilibrium transform of the distributions of claims.
Due to the definition given in a more general form in Equation (21) below, equilibrium distribution is
also called the integrated tail one ([12], p. 37, [22]). Concerning the equilibrium transform, we would
also like to mention the work of Harkness and Shantaram [23] who considered the iterated equilibrium
transform for d.f.s with nonnegative support and investigated limit theorems for normalized iterations,
the description of limit laws being given in [24]. In particular, the authors of [23] calculated the ch.f.
of the equilibrium transform that can be used as the definition of the equilibrium transform in the
general case and hence, with the inverse formula, can give a hint to definition in Equation (21) of the
equilibrium d.f. with no support constraints.

We introduce an extension of the equilibrium distribution that is applicable for alternating random
variables with finite nonzero first moments, but leads out of the class of probability distributions.

Let P be a probability measure with the d.f. F(x) = P((−∞, x)), x ∈ R, ch.f. f (t) =
∫

eitxP(dx) =∫
R eitxdF(x), t ∈ R, and a finite first moment a :=

∫
xP(dx) =

∫
R xdF(x). If a r.v. X (on some

probability space (Ω, Σ, P)) has the distribution P, we also write P = L (X), f (t) = EeitX =: fX(t),
F(x) = P(X < x) =: FX(x), a = EX.

Definition 1. The equilibrium d.f. (distribution) w.r.t. the d.f. F (probability distribution P / law L (X)) with
a �= 0 is a function of bounded variation (a (signed) measure Pe / L e(X) on B(R) with the d.f.)

Fe(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

a

∫ x

−∞
F(y) dy, if x ≤ 0,

−EX−

a
+

1
a

∫ x

0
(1− F(y)) dy, if x > 0,

(21)

=
1
a

(
x+ −

∫ x

−∞
F(y) dy

)
, x ∈ R. (22)

In Theorem 1(a) below, it is proved that Fe, indeed, has bounded variation and some useful
properties of the equilibrium transform are stated as well.

We call Fe/Pe/L e(X) the equilibrium transform (d.f./distribution) w.r.t. F/P/L (X)/X
correspondingly, although it may not be a probability d.f./distribution at all. At the same time,
it can be easily seen that L e(X) is a probability measure if and only if X does not change sign (that
is, if and only if P is concentrated either on (−∞, 0] or on [0, ∞)), in which case one might construct

7
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a random variable Xe with the distribution L (Xe) = L e(X) and such that X and Xe are either both
nonnegative or both nonpositive.

In what follows, to indicate the r.v. whose equilibrium transform is considered, we use the
corresponding lower index and write Fe

X and f e
X for (FX)

e and ( fX)
e, respectively.

Theorem 1. Let X be a r.v. with the d.f. F and a �= 0, and Fe be the equilibrium d.f. w.r.t. F defined in
Equation (21). Then:

(a) Absolute continuity. The function Fe has bounded variation on R with

|L e(X)|(R) = E|X|/|EX|, Fe(−∞) = 0, Fe(+∞) = 1,

and, hence, L e(X) is a Borel measure with unit on R; moreover, Fe is a.c. with the Lebesgue derivative

pe(x) =

{
− 1

a F(x), if x ≤ 0,
1
a (1− F(x)), if x > 0,

(23)

and supp L e(X) coincides with the convex hull of supp L (X).
(b) Characteristic function. The ch.f. (Fourier–Stieltjes transform) of Fe has the form

f e(t) :=
∫
R

eitxdFe(x) =
f (t)− 1
t f ′(0)

=
f (t)− 1

ita
, if t �= 0, and f e(0) = 1. (24)

(c) Fixed points. L e(X) = L (X) iff X ∼ Exp(1/a), that is, if and only if F(x) = (1 −
e−x/a) (0,∞)(x) for some a > 0.

(d) Test functions. Fe is the equilibrium d.f. w.r.t. X if and only if

Eg(X)− g(0) = EX ·
∫
R

g′(x) dFe(x) (25)

for all Lipschitz functions g : R→ R.
(e) Mixture preservation. For arbitrary d.f.s F1, F2, . . . with identical nonzero expectations and a discrete

probability distribution pn ≥ 0, n ∈ N, ∑∞
n=1 pn = 1, we have( ∞

∑
n=1

pnFn

)e

=
∞

∑
n=1

pnFe
n. (26)

(f) Homogeneity. For all c ∈ R \ {0}, we have

(FcX)
e(x) = Fe

X(x/c), x ∈ R, (27)

or, in terms of (constant-sign) r.v.s, (cX)e d
= cXe, c ∈ R \ {0}. In other words, equilibrium transform

respects scaling.
(g) Moments. If E|X|r+1 < ∞ for some r > 0, then for all k ∈ N∩ [1, r] we have

∫
R

xk dFe(x) =
EXk+1

(k + 1)EX
,

∫
R
|x|r dFe(x) =

EX|X|r
(r + 1)EX

, (28)

∫
R

xk |dFe|(x) =
E|X|Xk

(k + 1)|EX| ,
∫
R
|x|r |dFe|(x) =

E|X|r+1

(k + 1)|EX| . (29)

8
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(h) Single summand property. Let N, X1, X2, . . . be independent r.v.s, such that an := EXn ∈ (0, ∞),

n ∈ N, P(N ∈ N0) = 1, SN := X1 + . . . + XN, S0 := 0, A := ESN =
∞
∑

n=1
anP(N ≥ n) be finite,

and M be a N-valued r.v. with the distribution

P(M = m) =
am

A
P(N ≥ m), m ∈ N.

Then,

L e(SN) =
∞

∑
m=1

P(M = m) L (Sm−1) ∗L e(Xm), (30)

where ∗ denotes the convolution of two Borel measures, or, in terms of (constant-sign) r.v.s,

Se
N

d
= SM−1 + Xe

M,

where all the r.v.s are independent. In particular, if N ∼ Geom(p) and all Xk’s have identical nonzero

expectations, then M d
= N and

L e(SN) = L e(SN−1) =
∞

∑
n=1

p(1− p)n−1L (Sn−1) ∗L e(Xn), (31)

which can be also rewritten, in the case of i.i.d. {Xk}, in the form

L e(SN) = L e(SN−1) = L (SN−1) ∗L e(X1).

(i) Relation between ζ-distances. For arbitrary d.f.s F and G with finite moments of order s > 1 and
identical expectations a �= 0, we have

ζs(F, G) = |a| ζs−1(Fe, Ge). (32)

Theorem 2 below provides also an optimal upper bound for ζ1(F, Fe) given F(0+) and the
second-order moment of F.

Remark 1. Theorem 1(h) shows that the equilibrium transform of the geometric random sum of independent
r.v.s with identical nonzero means does not depend on whether or not one takes the geometric distribution starting
from zero.

Let us make several historical remarks. Some of the properties of the equilibrium distribution
stated in Theorem 1 were known for a nonnegative r.v. X. Thus, the characteristic function of Xe given
in Equation (24) was found in [23], Equation (25) was taken as the definition of (the distribution of) Xe

in [13,14]. In Theorem 2.1 of [13], it was proved that the exponential distribution is the only fixed
point of the equilibrium transform; this fact is proved directly also in Lemma 5.2 of [14]. In [14]

(p. 268), it is observed that (cX)e d
= cXe for c > 0. Some moment calculations were given in [22]. Single

summand property for SN was demonstrated in the proof of Theorem 3.1 of [13] for nonnegative, but
not necessarily independent {Xk}. The fact that L e(SN) = L e(SN−1) for i.i.d. nonnegative {Xk} was
observed in [8] (p. 1394). The equality in Equation (32) for F(0) = G(0) = 0 and s = 2 was stated
in [12] (p. 37).

To prove Theorem 1, we require the following auxiliary statement.

9
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Lemma 2. For every n ∈ N and z1, . . . , zn ∈ C, we have

n

∏
k=1

zk − 1 =
n

∑
k=1

(zk − 1)
k−1

∏
j=1

zj =
n

∑
k=1

(zk − 1)
n

∏
j=k+1

zj, (33)

where ∏b
j=a(·) := 1 for b < a.

Proof. We use the induction w.r.t. n. For n = 1 Equation (33) is trivial. Let Equation (33) hold for
n = 1, . . . , m− 1; let us prove it for n = m. Using the inductive transition in the second equality below,
we get

m

∏
k=1

zk − 1 = (zm − 1)
m−1

∏
k=1

zk +
m−1

∏
k=1

zk − 1 = (zm − 1)
m−1

∏
k=1

zk +
m−1

∑
k=1

(zk − 1)
k−1

∏
j=1

zj =
m

∑
k=1

(zk − 1)
k−1

∏
j=1

zj.

The second equality in Equation (33) can be deduced from the first one just by the re-numeration
of {zk}n

k=1 : zk ← zn−k+1, k = 1, . . . , n.

Proof of Theorem 1. (a) It follows immediately from the definition in Equation (21) of Fe that Fe is a.c.
with the density given in Equation (23). In turn, Equation (23) implies that supp L e(X) is the convex
hull of supp L (X) and, accounting for |L e(X)| (R) =

∫
|pe(x)|dx = E|X|/|EX| < ∞, also that Fe has

bounded variation. The limiting values Fe(±∞) can be found directly using the definition of Fe.
(b) Using the density of Fe (see Equation (23)) and integrating by parts, we have

f e(t) =
1
a

∫
R

eitx pe(x) dx =
1
a

∫
R

eitx(
(0,∞)(x)− F(x)

)
dx =

1
ita

∫
R

(
(0,∞)(x)− F(x)

)
deitx =

=
1

ita

[
− eitxF(x)

∣∣∣0
−∞

+ eitx(1− F(x)
)∣∣∣∞

0
+

∫
R

eitx dF(x)
]
=

f (t)− 1
ita

,

which coincides with Equation (24).
(c) This statement follows immediately due to the uniqueness of the solution to the linear equation

f e(t) ≡ f (t)− 1
ita

= f (t) ⇔ f (t) =
1

1− ita
∼ Exp(1/a) .

(d)–(g) These statements follow from the definition and integration by parts for (d) and (g) or the
linearity of the Lebesgue–Stieltjes integral for (e).

(h) Let us denote f0(t) ≡ 1, fk(t) = EeitXk , k ∈ N, t ∈ R. Using the fact that

fSN (t) =
∞

∑
n=0

P(N = n)EeitSn =
∞

∑
n=0

P(N = n)
n

∏
k=0

fk(t),

together with the equation for the equilibrium ch.f. in Equations (24) and (33), we get

f e
SN

(t) =
fSN (t)− 1
t f ′SN

(0)
=

1
itA

∞

∑
n=1

P(N = n)
( n

∏
k=1

fk(t)− 1
)
=

=
∞

∑
n=1

P(N = n)
n

∑
k=1

fk(t)− 1
itA

k−1

∏
j=1

f j(t) =

=
∞

∑
n=1

P(N = n)
n

∑
k=1

ak
A

f e
k (t) fSk−1(t).

10
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Changing the order of summation, which is possible by virtue of the absolute convergence of the
above series, and recalling the definition of L (M), we obtain

f e
SN

(t) =
∞

∑
k=1

f e
k (t) fSk−1(t) ·

ak
A

∞

∑
n=k

P(N = n) =
∞

∑
k=1

f e
k (t) fSk−1(t) P(M = k),

which is equivalent to Equation (30) by virtue of the uniqueness theorem.
If now N ∼ Geom(p) and a1 = a2 = . . . = a, then A = aEN = a/p, P(M = k) = p(1− p)k−1 =

P(N = k), k ∈ N. Denoting by M0 a r.v. corresponding to N0 := N − 1 with the distribution

P(M0 = k) := akP(N0 ≥ k)
/ ∞

∑
k=1

akP(N0 ≥ k) = P(N0 ≥ k)/EN0 = p(1− p)k−1, k ∈ N,

we observe that M0
d
= N d

= M. This proves Equation (31).
(i) This statement follows from Theorem 4.2(a), Equation (4.20) of [5]. It can also be proved

independently, namely, by virtue of (d) we have

ζs(F, G) = sup
h∈Fs

∣∣∣∣∫
R

h dF−
∫
R

h dG
∣∣∣∣ = |a| sup

h∈Fs

∣∣∣∣∫
R

h′ dFe −
∫
R

h′ dGe
∣∣∣∣ =

= |a| sup
h∈Fs−1

∣∣∣∣∫
R

h dFe −
∫
R

h dGe
∣∣∣∣ = |a| ζs−1(F, G).

To conclude this section, we construct an optimal upper bound for the Kantorovich distance
between an arbitrary probability distribution with nonzero mean and its equilibrium transform given
its second moment and the mass of nonpositive axis. Before formulating the corresponding result, we
have to note that Cantelli’s (one-sided Chebyshev’s) inequality yields P(X ≤ 0) ≤ 1− 1/EX2 for an
arbitrary r.v. X with 0 < EX2 < ∞, and, hence,

EX2 ≥ 1
1− P(X ≤ 0)

.

This remark explains the choice of the domain of parameters q and b in the following Theorem 2.

Theorem 2. Take any q ∈ [0, 1) and b ≥ 1√
1−q

and let X be a square integrable r.v. with EX = 1, EX2 = b2,

and P(X ≤ 0) = q. Then,

ζ1
(
L (X) , L e(X)

)
≤ b2

2
− q, (34)

where L e(X) is the equilibrium transform of L (X). The equality in Equation (34) is attained for every
q ∈ (0, 1) and b ≥ 1√

1−q
on the two-point distribution L (X) = qδu + (1− q)δv with

u = 1−
√

1− q
q

(b2 − 1), v = 1 +
√

q
1− q

(b2 − 1), (35)

and for q = 0 and b = 1 on the degenerate distribution L (X) = δ1.

Remark 2. With the account of Theorem 1(f) and Lemma 1(a), for arbitrary EX �= 0, Equation (34) takes
the form

ζ1
(
L (X) , L e(X)

)
≤ 1

2
· EX2

|EX| − |EX| · P(X≤0).

11
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Proof of Theorem 2. Let F be the d.f. of X and Fe be its equilibrium transform. Consider the following
functional on the space F of probability d.f.s with unit mean and finite second moment:

J(F) = ζ1(F, Fe)− 1
2

∫
R

x2 dF(x) + F(0+), F ∈ F. (36)

Then, Equation (34) would follow from

sup
F∈F

J(F) ≤ 0. (37)

Let us prove Equation (37).
Since h ∈ Lip1 if and only if (−h) ∈ Lip1, the modulus sign in the definition of ζ1(F, Fe) (see

Equation (19)) may be omitted. Hence, we can rewrite

J(F) = sup
h∈Lip1

J1(F, h), where J1(F, h) =
∫
R

h dF−
∫
R

h dFe − 1
2

∫
R

x2 dF(x) + F(+0), F ∈ F.

Note that J1(F, h) is linear w.r.t. F ∈ F for every h ∈ Lip1, by definition. According to Theorems 2
and 3 of [25], for any fixed h ∈ Lip1, the least upper bound supF∈F J1(F, h) w.r.t. probability d.f F
satisfying two linear conditions (we can also fix the value b2 ≥ 1 of the second moment and then take
the least upper bound w.r.t. all b ≥ 1) coincides with that over the set of three-point distributions
from F. Since every three-point distribution has finite moments of all orders, the condition of finiteness
of the second-order moments may be eliminated, so that

sup
F∈F

J(F) = sup
h∈Lip1

sup
F∈F3

J1(F, h),

where F3 is the space of all discrete probability d.f.s with at most three jumps and unit first moment.
Furthermore, according to Hoeffding [26], the least upper bound supF∈F3

J1(F, h) w.r.t. discrete
probability d.f.s F with finite number of jumps and satisfying one moment condition is attained on
two-point distributions, hence,

sup
F∈F

J(F) = sup
h∈Lip1

sup
F∈F2

J1(F, h) = sup
F∈F2

J(F),

where F2 is the space of all discrete probability d.f.s with at most two jumps and unit first moment.
Therefore, to prove Equation (37), it suffices to show that J(F) ≤ 0 for every F ∈ F2

Let F correspond to a two-point distribution p δu + (1 − p) δv with u < v and p ∈ [0, 1).
The condition

∫
R x dF(x) = 1 yields u < 1 ≤ v and v = (1− pu)/(1− p), so that there are only

three possibilities:

Case 1: u ≤ 0 < 1 ≤ v and p ∈ [0, 1). Then,

q = P(X ≤ 0) = p, b2 = EX2 =
pu2 − 2pu + 1

1− p
, (38)

and, by definition of Fe given in Equation (21), we have

Fe(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, for x ≤ u,

pu− px, for u < x ≤ 0,

pu + (1− p)x, for 0 < x ≤ v,

1, for x > v.

12
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Observing that the difference F(x)− Fe(x) has exactly one sign change at x = p(1− u)/(1− p) =
v− 1 ∈ [0, v) and using Equation (20), after some elementary calculations, we get

ζ1 (F, Fe) =
1
2

u2 p− up +
1
2
(1− u)2 p2

1− p
+

1
2
(1− p) · 1,

and, hence,

J(F) = ζ1 (F, Fe)− pu2 − 2pu + 1
2(1− p)

+ p = 0,

which means that J(F) = 0 for arbitrary two-point probability distribution with unit first moment and
a nonpositive atom. Expressing u and v in terms of q and b2 (see Equation (38)), we get Equation (35).

Case 2: 0 < u < 1 ≤ v and p ∈ [0, u]. Then, q = P(X ≤ 0) = 0,

Fe(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, for x ≤ 0,

x, for 0 < x ≤ u,

u + (1− p)(x− u), for u < x ≤ v,

1, for x > v,

and by Fe(x) − F(x) ≥ 0 for all x ∈ R, we get ζ1(F, Fe) = 1
2 u2 + 1

2 (v− u)(u + 1− 2p) =

1− 1
2 EX2. Hence,

J(F) = ζ1 (F, Fe)− 1
2

EX2 + q = 1− EX2 ≤ 0,

since EX2 ≥ (EX)2 = 1 by Jensen’s inequality. The equality here and, hence, in Equation (34) is
attained in the case of degenerate distribution δ1.

Case 3: 0 < u < 1 < v and p ∈ (u, 1). Then, q = 0 and Fe has the same form as in the previous case,
but the function Fe(x)− F(x) now has exactly one sign change at x = p(1− u)/(1− p) = v− 1 ∈ (u, v),
and, hence, ζ1 (F, Fe) = 1

2 u2 + 1
2 (p− u)2 1

1−p + 1
2 (1− p) · 1. Thus,

J(F) = ζ1 (F, Fe)− 1
2

EX2 + q = u2 − p < 0,

since u2 < u < p in this case, and the equality in Equation (37) (and, hence, in Equation (34)) is
not attained.

Remark 3. Analyzing the proof, one can make sure that Equation (34) admits a slight improvement:

ζ1
(
L (X) , L e(X)

)
≤ EX2

2
− P(X ≤ 0)− E(1− X)2

(0,1](X)

for any r.v. X with EX = 1 and finite second moment. The proof differs only by the appearance (subtraction)
of an additional term

∫
(0,1](1− x)2 dF(x) in definition in Equation (36) of J(F), which is still linear w.r.t. F,

and, hence, does not change the logic. One has only to check that the new J(F) is nonpositive for two-point
distributions. In Case 1, J(F) is retained. In Cases 2 and 3, the additional term is of the form p(1− u)2 and it
can be made sure that this term does not affect the sign of J(F).

4. Stein’s Method

Stein’s method, first introduced in [27] for normal approximation, is a powerful technique that
allows to estimate distances with ζ-structure (see Equation (2)) between probability distributions and
a fixed target distribution (of a r.v.) Z. A complete survey on Stein’s method may be found, e.g., in [14].
Suppose that the distance ζH is of the form given in Equation (2) for a specific classH of real-valued

13
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functions. As mentioned in the Introduction, this is the case for both uniform (Kolmogorov) and
Kantorovich distances withH =

{
(−∞,a)(·) | a ∈ R

}
andH = Lip1, respectively.

The first step of Stein’s method is to construct the so-called Stein operator A in some space F
of real functions, such that

EA f (Z) = 0 ∀ f ∈ F . (39)

The second step is to find the solution fh to the Stein equation

A fh(x) = h(x)− Eh(Z) (40)

for every h ∈ H. Once the solution is found, it becomes possible to estimate the distance between
the distributions of X and Z as

ζH(X, Z) = sup
h∈H

∣∣∣∣∫
R

h dFX −
∫
R

h dFZ

∣∣∣∣ = sup
h∈H

∣∣∣∣∫
R

h dFX − Eh(Z)
∣∣∣∣ =

= sup
h∈H

∣∣∣∣∫
R

(
h− Eh(Z)

)
dFX

∣∣∣∣ = sup
h∈H

∣∣∣∣∫
R
A fh dFX

∣∣∣∣ = sup
h∈H

∣∣EA fh(X)
∣∣ . (41)

The final estimate for ζH(X, Z) is usually derived by bounding the latest expression in
Equation (41) from above using the properties of the Stein operator A and those of the solutions
fh to the Stein Equation (40).

It can be made sure that for Z d
= E ∼ Exp(1) the following operator satisfies Equation (39)

on the space F of absolutely continuous functions with E| f ′(E )| < +∞ and thus appears to be the
Stein operator:

A f (x) = f ′(x)− f (x) + f (0). (42)

Peköz and Röllin [13] found an explicit solution to Stein Equation (40) in this case:

fh(x) = −ex
∫ +∞

x
h̃(t)e−t dt, where h̃(t) = h(t)− Eh(E ), (43)

for every h with E|h(E )| < ∞. Note that fh(0) = 0.
The following theorem extends results of Peköz and Röllin [13] in Theorem 2.1 to distributions

with no support constraints and provides estimates of the accuracy of the exponential approximation
in terms of the Kantorovich distance characterizing the proximity to the equilibrium transform.

Theorem 3. Let X be a square integrable r.v. with EX = 1 and E ∼ Exp(1). Then,

ζ1(X, E ) ≤ 2 ζ1
(
L (X) , L e(X)

)
,

ζ1
(
L e(X) , Exp(1)

)
≤ ζ1

(
L (X) , L e(X)

)
,

where L e(X) is the equilibrium transform of L (X).

Proof. Let fh be defined by Equation (43). Then, by Equations (41), (42), and (25), we have

ζ1(X, E ) = sup
h∈Lip1

∣∣∣EA fh(X)
∣∣∣ = sup

h∈Lip1

∣∣∣E f ′h(X)− E fh(X)
∣∣∣ = sup

h∈Lip1

∣∣∣∫
R

f ′h dFX −
∫
R

f ′h dFe
X

∣∣∣

14
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and

ζ1
(
L e(X) , Exp(1)

)
= sup

h∈Lip1

∣∣∣∣∫
R

h(x) dFe
X(x)− Eh(E )

∣∣∣∣ = sup
h∈Lip1

∣∣∣∣∫
R

h̃(x) dFe
X(x)

∣∣∣∣ =
= sup

h∈Lip1

∣∣∣∣∫
R
A fh(x) dFe

X(x)
∣∣∣∣ = sup

h∈Lip1

∣∣∣∣∫
R

f ′h(x) dFe
X(x)−

∫
R

fh(x) dFe
X(x)

∣∣∣∣ =
= sup

h∈Lip1

∣∣∣∣∫
R

fh(x) dFX(x)−
∫
R

fh(x) dFe
X(x)

∣∣∣∣ .

In Lemma 4.1 of [13] (see also Lemma 5.3 of [14]), it is proved that fh ∈ Lip1 and f ′h ∈ Lip2 for
h ∈ Lip1. This remark together with the observation that L (X) and L e(X) have finite first moments
immediately leads to the statement of the theorem.

Less formally, Theorem 3 states that, if L (X) and L e(X) are close, then so are L (X) and Exp(1),
and, hence, may be regarded as the continuity theorem to the fixed-point property stated in
Theorem 1(c).

5. Main Results

Theorem 4. Let X1, X2, . . . be a sequence of independent square integrable random variables with EXn = a �= 0
and Sn := ∑n

i=1 Xi for n ∈ N, S0 := 0. Let p ∈ (0, 1), N ∼ Geom(p) , be independent of all {Xn},
N0 := N − 1, and W := SN/ESN = pSN/a, W0 := SN0 /ESN0 = pSN0 /(a(1 − p)) be normalized
geometric random sums, E ∼ Exp(1). Then,

ζ1(W, E ) ≤ 2p
|a|

∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
≤ p

(
EX2

N
a2 − 2 P(XN ≤ 0)

)
, (44)

ζ1(W0, E ) ≤ p
1− p

· EX2
N

a2 . (45)

Before proceeding to the proof, we need the following auxiliary statement.

Lemma 3. Under the conditions of Theorem 4, we have

ζ1
(
L (SN) , L e(SN)

)
≤

∞

∑
n=1

p(1− p)n−1ζ1
(
L (Xn) , L e(Xn)

)
,

ζ1
(
L

(
SN0

)
, L e(SN0

))
≤ EX2

N
2|a| .

Proof. Let Fn be the d.f. of Xn, n ∈ N. Then, according to Equation (20), Theorem 1(h), Tonelli’s
theorem, and an obvious fact that L (Sn) = L (Sn−1) ∗L (Xn), we have

ζ1
(
L (SN) , L e(SN)

)
=

∫
R

∣∣∣FSN (x)− Fe
SN

(x)
∣∣∣ dx ≤

≤
∞

∑
n=1

p(1− p)n−1
∫
R

∫
R

∣∣Fn(x− s)− Fe
n(x− s)

∣∣ dFSn−1(s) dx =

=
∞

∑
n=1

p(1− p)n−1
∫
R

∫
R

∣∣Fn(x− s)− Fe
n(x− s)

∣∣ dx dFSn−1(s) =

=
∞

∑
n=1

p(1− p)n−1ζ1
(
L (Xn) , L e(Xn)

)
,
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which proves the first claim of the lemma, and, similarly,

ζ1
(
L

(
SN0

)
, L e(SN0

))
≤

∞

∑
n=1

p(1− p)n−1
∫
R

∫
R

∣∣∣ (0,+∞)(x− s)− Fe
n(x− s)

∣∣∣ dFSn−1(s) dx =

=
∞

∑
n=1

p(1− p)n−1
∫
R

∣∣∣ (0,+∞)(x)− Fe
n(x)

∣∣∣ dx =
∞

∑
n=1

p(1− p)n−1ζ1
(
δ0, L e(Xn)

)
,

where δ0 denotes the Dirac delta-measure concentrated in 0. As can easily be seen from the definition
of the equilibrium transform given in Equation (21),

if a > 0, then Fe(x) ≤ 0, x ≤ 0, F(x) ≤ 1, x ≥ 0,

if a < 0, then Fe(x) ≥ 0, x ≤ 0, F(x) ≥ 1, x ≥ 0,

hence, we write

| (0,+∞)(x)− Fe
n(x)| =

{
Fe

n(x) sign a, x ≤ 0,

(1− Fe
n(x)) sign a, x ≥ 0,

and also using Equation (28), we obtain

ζ1
(
δ0, L e(Xn)

)
= sign a ·

(
−

∫ 0

−∞
Fe

n(x) dx +
∫ +∞

0

(
1− Fe

n(x)
)

dx
)
= sign a ·

∫
R

x dFe
n(x) =

EX2
n

2|a| .

The second claim of the lemma follows now by the total probability formula and
independence conditions.

Proof of Theorem 4. Due to the homogeneity of both the Kantorovich metric (Lemma 1(a)) and the
equilibrium transform (Theorem 1(f)), without loss of generality, we can assume that a = 1. The second
inequality in Equation (44) is the implication of Theorem 2, thus it remains only to prove the first
inequality in Equation (44) and the inequality in Equation (45). Indeed, by Theorems 3 and 1(f) and
Lemmas 1 and 3, we have

ζ1(W, E ) ≤ 2 ζ1
(
L (W) , L e(W)

)
=

= 2p ζ1
(
L (SN) , L e(SN)

)
≤ 2p

∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
,

and

ζ1(W0, E ) ≤ 2 ζ1
(
L (W0) , L e(W0)

)
=

=
2p

1− p
ζ1

(
L

(
SN0

)
, L e(SN0

))
≤ p

1− p
EX2

N .

Corollary 1. Under the conditions of Theorem 4 and supn EX2
n < ∞, we have

ζ1(W, E ) ≤ 2p
|a| sup

n
ζ1

(
L (Xn) , L e(Xn)

)
≤ p sup

n

(
EX2

n
a2 − 2 P(Xn ≤ 0)

)
, (46)

ζ1(W0, E ) ≤ p
(1− p)a2 sup

n
EX2

n. (47)

Remark 4. The right-hand side of Equation (47) is no less than that of Equation (46) because of the factor
1

1−p > 1 and the absence of the nonpositive term −2P(Xn ≤ 0). This result agrees with the intuition that W
may be closer to E than W0, because SN contains a.s. one summand more than SN0 .

16



Mathematics 2020, 8, 577

Corollary 2. Under the conditions of Theorem 4, we have

ζ2(W, E ) ≤ 3p
|a|

∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
≤ 3p

2

(
EX2

N
a2 − 2 P(XN ≤ 0)

)
, (48)

ζ2(W0, E ) ≤ p
1− p

· 3 EX2
N

2a2 . (49)

Recently, Korolev and Zeifman [28] obtained a bound similar to Equation (49), but with the
constant factor of 1/2 on the right-hand side instead of 3/2, i.e., three times smaller. The estimate in
Equation (48) is also worse than Kalashnikov’s bound in Equation (10) obtained in the i.i.d. case and
EX1 = 1, since Equation (10) with s = 2, by Theorem 3, yields

ζ2(W, E ) ≤ pζ1(X1, E ) ≤ 2pζ1
(
L (X1) , L e(X1)

)
,

while Equation (48) in the i.i.d. case with EX1 = 1 reduces to

ζ2(W, E ) ≤ 3pζ1
(
L (X1) , L e(X1)

)
,

which is 1.5 times greater.

Proof. Using subsequently Theorem 1(i,c), the triangle inequality for the Kantorovich metric,
Theorem 3, and Lemma 3 together with the homogeneity of the Kantorovich distance and the
equilibrium transform, we obtain

ζ2(W, E ) = ζ1
(
L e(W) , L e(E )

)
= ζ1

(
L e(W) , L (E )

)
≤ ζ1

(
L e(W) , L (W)

)
+ ζ1(W, E ) ≤

≤ 3 ζ1
(
L e(W) , L (W)

)
≤ 3p
|a|

∞

∑
n=1

P(N = n) ζ1
(
L (Xn) , L e(Xn)

)
.

Similarly,

ζ2(W0, E ) ≤ 3 ζ1
(
L e(W0) , L (W0)

)
≤ 3

2
· p

1− p
· EX2

N
a2 .

To study the problem of the accuracy of the estimates obtained above in Equations (46) and (47),
let us introduce the asymptotically best constant for the Kantorovich distance in the Rényi theorem for
geometric random sums of i.i.d. r.v.s in a way similar to the definition of the asymptotically best
constant [29] in the classical Berry–Esseen inequality (see also [3,30–35]):

CAB := sup
{Xn}∼i.i.d. : EX1 �=0, EX2

1<∞
lim

p→+0
ζ1(W, E )

(EX1)
2

pEX2
1

, (50)

which serves as a lower bound to the constant C in the inequality

ζ1(W, E ) ≤ Cp EX2
1/(EX1)

2, (51)

still if it is supposed to hold only for sufficiently small p. Similarly, define C0
AB for W0. The inequality

in Equation (46) (similarly, Equation (47)) trivially yields the validity of Equation (51) with C = 1 for
all p ∈ (0, 1). Since

C ≥ CAB,

it is easy to conclude that CAB ≤ 1.

17
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Theorem 5. For the asymptotically best constants CAB, C0
AB defined in Equation (50), for W and W0 we have

CAB ≥ 1/4, C0
AB ≥ 1/4.

Proof. Taking all Xn := 1, we get EXn = EX2
n = 1 and W = pN, W0 := pN0/(1− p), where N ∼

Geom(p) and N0 := N − 1. To estimate ζ1(W, E ), we use the definition of the Kantorovich distance
in Equation (19) and take h(x) = 1

t sin(tx) ∈ Lip1 as a test function, where t ∈ R \ {0} is the free
parameter to be chosen later. Recalling the ch.f.s of the exponential and the geometric distributions,
we obtain

Eh(E ) =
1
t
�EeitE = � 1

t(1− it)
=

1
1 + t2 ,

Eh(W) = Eh(pN) =
1
t
�EeitpN =

1
t
�
[

peitp

1− (1− p)eitp

]
=

=
1
t
�
[

peitp (1− (1− p)e−itp)
1 + (1− p)2 − 2(1− p) cos(tp)

]
=

p sin(tp)
tp2 + 2t(1− p) (1− cos (tp))

,

Eh(W0) = Eh
(

pN0

1− p

)
=

1
t
�EeitpN0/(1−p) =

p(1− p) sin
(

tp
1−p

)
tp2 + 2t(1− p)

(
1− cos

(
tp

1−p

)) .

Thus,

CAB ≥ lim
p→+0

sup
t �=0

|Eh(W)− Eh(E )|
p

≥ sup
t �=0

lim
p→+0

∣∣∣∣Eh(W)− Eh(E )

p

∣∣∣∣ =
= sup

t �=0
lim

p→+0

∣∣∣∣ p3t3 + o(p3)

p3t(t2 + 1)2 + o(p3)

∣∣∣∣ = sup
t �=0

t2

(t2 + 1)2 = 1/4,

and, similarly,

C0
AB ≥ sup

t �=0
lim

p→+0

∣∣∣∣Eh(W0)− Eh(E )

p

∣∣∣∣ = sup
t �=0

t2

(t2 + 1)2 = 1/4.

Theorem 1(h) allows extending Theorem 4 to non-geometric random sums of independent random
variables with arbitrary means of identical signs. Namely, the following statement holds.

Theorem 6. Let X1, X2, . . . be a sequence of independent random variables, independent of all else, with

an := EXn > 0, bn := EX2
n < ∞, n ∈ N,

and Sn := ∑n
i=1 Xi for n ∈ N, S0 := 0. Let N be a N0-valued r.v.,

A := ESN =
∞

∑
n=1

anP(N ≥ n) < ∞,

and M be a N-valued r.v. with the distribution

P(M = m) =
am

A
P(N ≥ m), m ∈ N.

18
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Assume also that ESM < ∞. Then, with W := SN/ESN = A−1SN, for any joint distribution L (N, M),
we have

ζ1(W, E ) ≤ 2A−1
(

sup
n

E|Xn| · E|N −M|+ ∑
m∈N

P(M = m) ζ1
(
L (Xm) , L e(Xm)

) )
≤ (52)

≤ 2A−1
(

sup
n

E|Xn| · E|N −M|+ E

(
bM

2aM
− aM · P(XM ≤ 0|M)

))
. (53)

Remark 5. If both expectations EN and EM are finite, then E|N − M| in Equations (52) and (53) can be
replaced with ζ1(N, M).

Remark 6. Theorem 6 reduces to ([13], Theorem 3.1) in the case of nonnegative {Xn} and to Theorem 4,
Equation (44), in the case of N ∼ Geom(p) and identical a := EXn �= 0, n ∈ N. For shifted geometric N, i.e.,
P(N = n) = p(1− p)n, n ∈ N0, under the assumptions of Theorem 4, Theorem 6 yields a bound

ζ1(W0, E ) ≤ p
1− p

(
2 sup

n

E|Xn|
|a| + ∑

n∈N
P(N = n− 1) ζ1

(
L (Xn) , L e(Xn)

))
≤

≤ p
1− p

(
EX2

N+1
a2 + 2 sup

n

E|Xn|
|a| − P(XN+1 ≤ 0)

)
,

whose rightmost part is worse than the estimate in Equation (45), generally speaking (for example, in the i.i.d.
case), since E|Xn| ≥ |a| for all n ∈ N and P(XN+1 ≤ 0) ≤ 1.

Proof of Theorem 6. By Theorem 3 and homogeneity of the Kantorovich distance and the equilibrium
transform (see Lemma 1(a) and Theorem 1(f)), we have

ζ1(W, E ) ≤ 2 ζ1
(
L (W) , L (We)

)
= 2A−1ζ1

(
L (SN) , L e(SN)

)
. (54)

Let us bound ζ1
(
L (SN) , L e(SN)

)
from above.

For a given joint distribution L (N, M), let pnm := P(N = n, M = m), n ∈ N0, m ∈ N. Denoting
Sj,k := ∑k

i=j Xi for j ≤ k and using the representation in Equation (20) and Theorem 1(h), we have

ζ1
(
L (SN) , L e(SN)

)
=

∫
R

∣∣∣FSN (x)− Fe
SN

(x)
∣∣∣ dx =

∫
R

∣∣∣FSN (x)− FSM−1 ∗ Fe
XM

(x)
∣∣∣ dx =

=
∫
R

∣∣∣∣∣ ∑
n∈N0,m∈N

pnm

(
FSn(x)− FSm−1 ∗ Fe

Xm
(x)

)∣∣∣∣∣ dx ≤

≤ ∑
n,m

pnm

∫
R

∣∣FSn(x)− FSm−1 ∗ Fe
Xm

(x)
∣∣ dx ≤

≤ ∑
n<m

pnm

∫
R

∣∣∣ (0,+∞)(x)− FSn+1,m−1 ∗ Fe
Xm

(x)
∣∣∣ dx+

+ ∑
n≥m

pnm

∫
R

∣∣FSm,n(x)− Fe
Xm

(x)
∣∣ dx.

Adding and subtracting FSn+1,m(x) under the modulus sign in the integrands in the first sum
(w.r.t. n < m) and FXm(x) in the second one (w.r.t. n ≥ m) and using further the triangle inequality
and Lemma 1(b), we obtain
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ζ1
(
L (SN) , L e(SN)

)
≤ ∑

n<m
pnm ζ1(δ0, Sn+1,m) + ∑

n≥m
pnm ζ1(Sm+1,n, δ0)+

+ ∑
n,m

pnm ζ1
(
L (Xm) , L e(Xm)

)
=

= ∑
n,m

pnmE

∣∣∣∣ n∨m

∑
i=(n∧m)+1

Xi

∣∣∣∣+ ∑
m∈N

P(M = m) ζ1
(
L (Xm) , L e(Xm)

)
≤

≤ sup
i

E|Xi| ·∑
n,m

pnm|n−m|+ ∑
m∈N

P(M = m) ζ1
(
L (Xm) , L e(Xm)

)
= sup

i
E|Xi| · E|N −M|+ ∑

m∈N
P(M = m) ζ1

(
L (Xm) , L e(Xm)

)
.

Substituting the latter bound into Equation (54) yields Equation (52). The bound in Equation (53)
follows from Equation (52) by Theorem 2 (see also Remark 2).
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Abstract: The paper studies a controllable multi-server heterogeneous queueing system where
servers operate at different service rates without preemption, i.e., the service times are uninterrupted.
The optimal control policy allocates the customers between the servers in such a way that the mean
number of customers in the system reaches its minimal value. The Markov decision model and the
policy-iteration algorithm are used to calculate the optimal allocation policy and corresponding mean
performance characteristics. The optimal policy, when neglecting the weak influence of slow servers,
is of threshold type defined as a sequence of threshold levels which specifies the queue lengths
for the usage of any slower server. To avoid time-consuming calculations for systems with a large
number of servers, we focus here on a heuristic evaluation of the optimal thresholds and compare this
solution with the real values. We develop also the simple lower and upper bound methods based on
approximation by an equivalent heterogeneous queueing system with a preemption to measure the
mean number of customers in the system operating under the optimal policy. Finally, the simulation
technique is used to provide sensitivity analysis of the heuristic solution to changes in the form of
inter-arrival and service time distributions.

Keywords: heterogeneous servers; Markov decision process; policy-iteration algorithm; mean number
of customers; decomposable semi-regenerative process

1. Introduction

The study of multi-server queueing systems in most cases assumes the servers to be homogeneous
when the individual service rates are the same for all the servers in the system. However, in many
real applications, the assumption of the homogeneity cannot be valid, e.g., a group of servers with
different types of processors as a consequence of irregular system updates, nodes in telecommunication
networks with links of different unequal capacities and availability, nodes in wireless systems
serving different mobile users, peer-to-peer services for data streaming, file sharing and storage,
where heterogeneous servers arrive and depart randomly, multi-processor systems with heterogeneous
processor’s attributes like a throughput and an electric energy consumption, etc. Moreover, in many cases
the heterogeneous server system outperforms its homogeneous server counterpart. This reality leads to
necessity to analyse multi-server queueing systems with heterogeneous servers. The assumption of the
heterogeneity of servers does not automatically mean that the stochastic modelling of such a queueing
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system becomes more complex. If the customers can change the server to a faster one during a service,
in other words, the service is with a preemption, this is a classic one-dimensional birth-and-death process,
that can be analysed in a standard way. The task of analysing a heterogeneous system becomes much
more complex with the assumption that the customer cannot change the server during a service time,
i.e., service without any preemption. In this case, on the one hand, the dimension of the corresponding
random process increases and on the other hand, a mechanism for allocation of customers between the
servers must be introduced.

The systems with heterogeneous servers are mostly investigated with respect to heuristic
allocation policies, e.g., allocation according to the fastest server first (FSF) policy or the randomly
chosen server (RCS). The results dedicated to the heterogeneous systems operating under these
policies and some approximations of such models can be found in papers of Alves et al. [1], Bilgen and
Altintas [2], Melikov et al. [3], The question of how to allocate the customers between the heterogeneous
servers in order to minimize the mean number of customers in the system was studied for the
queueing system with two servers in terms of a Markov decision process (MDP), e.g., by Larsen [4],
Larsen and Agrawala [5], who conjectured the optimality of threshold policy that functions as follows:
the fastest server must be used whenever it is idle and the slower one must be used only if the
number of customers in the queue exceeds some prespecified threshold level q ≥ 1. Based on the
MDP model, Lin and Kumar in [6] considered a similar problem and proved the optimality of a
threshold policy. Simple proofs of corresponding results have later been given by Koole [7], Luh and
Viniotis [8], Walrand [9] and Weber [10]. The problem of an optimal control of a two-server queueing
system with failures was studied by Özkan and Kharoufeh [11]. The problem of the optimal control
allocation in the systems with more than two servers were investigated by Armony and Ward [12],
Efrosinin [13], Rosberg and Makowski [14], Viniotis and Ephremides [15]. Rykov in [16] gave evidence
for certain monotonicity properties of an optimal policy in case of the mean number of customers
minimization. The techniques to prove such results are based on monotonicity properties of the
dynamic programming relative value function. The case of infinitely many servers was proposed by
Shenker and Weinrib [17], where an asymptotic analysis of large heterogeneous queueing systems
is performed.

As it was shown in [18,19], also taking into account the incompleteness of the theoretical proof
noticed by Vericourt and Zhou in [20], the optimal allocation policy, which minimizes the mean number
of customers in heterogeneous queueing system without preemption, belongs to a set of structural
policies. According to this policy for the servers’ enumeration (1) the first server is used whenever it is
free and there is a waiting customer in the queue, while the empty server with a number k + 1 must be
occupied only if the first k faster servers are busy and the number of customers in the queue reaches
some threshold level qk+1 ≥ 1. Numerical analysis shows that the threshold level qk in general case can
have a very weak dependence of slower servers’ states. Due to our observations, the optimal threshold
may vary by at most 1 when the state of a slower server changes. Moreover, since this deviation
has no influence on the mean number of customers in the system, it can be neglected. Hence the
optimal allocation policy can be defined as a classic threshold one through a sequence of threshold
levels 1 = q1 ≤ q2 ≤ · · · ≤ qK < ∞, that is the first k servers must be occupied whenever there are q
customers in the queue and qk ≤ q ≤ qk+1 − 1.

While there is a certain amount of work being done on heterogeneous systems, there are still
many open questions related to the accurate and quick calculation of the optimal control policy and the
resulting performance characteristics. Searching for optimal values q2, . . . , qK by a direct minimizing
the mean number of customers in the system can be performed only for small K by solving the
system of difference equations for the steady-state probabilities or by means of a matrix geometric
approach introduced by Neuts [21]. However, when K is large, these methods become too complicated.
For example, the involved in computation matrix sizes become infeasible large even for the moderate
numbers of servers like K ≥ 4, see e.g., [22]. To calculate the optimal threshold levels the MDP
model and a policy iteration algorithm [23–25], which constructs a sequence of improved policies
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that converges to optimal one, can also be used. While this approach is a powerful tool for solving
many optimization tasks, it has significant limitations on dimension of the model, number of states,
convergence in a heavy traffic case due to processing time and memory requirements. The contribution
of the paper is three-fold. First, we provide a simple heuristic solution (HS) for a sub-optimal policy in
order to avoid the time-consuming search for the optimal one in case of an arbitrary number of servers.
Second, we investigate the possibility to use the equivalent queueing system with a preemption
and a threshold-based policy to evaluate the lower and upper boundaries for the optimal mean
number of customers in the system without preemption. Third, we check by means of a simulation,
whether the proposed heuristic solution for the optimal thresholds is insensitive to changes in the form
of inter-arrival and service time distributions.

This paper is organized as follows. In Section 2 we discuss a queueing model, formulate
the corresponding MDP and specify a policy-iteration algorithm used for evaluation the optimal
threshold policy. Section 3 introduces a heuristic solution for the optimal threshold levels based on
a simple discrete fluid approximation, that turn out to be nearly optimal. In Section 4 we propose
approximations to calculate the lower and upper bounds for the mean number of customers in the
system under the optimal allocation policy. In Section 5 the simulation is used to provide sensitivity
analysis of the heuristic solution to changes in inter-arrival and service time distributions. Finally,
we make some conclusions and remarks.

2. Mathematical Model and MDP Formulation

Consider an infinite-capacity M/M/K queueing system with K heterogeneous servers and one
common queue, see Figure 1. The customers arrive to the system according to a homogeneous Poisson
process with a rate λ. The jth server has an exponentially distributed service time with a rate μj.
The server j is called an available server if it is idle. The service of customers is has no preemption,
i.e., a customer being served on a server cannot change it. In this case a threshold-based policy defined
below which is used for the customer allocation has sense. The inter-arrival and service times are
assumed to be mutually independent. Assume that the servers are enumerated in a way

μ1 ≥ · · · ≥ μK. (1)

Figure 1. Controllable multi-server queueing system with heterogeneous servers.

The stability condition is obviously defined through the inequality

λ <
K

∑
j=1

μj. (2)

The controller or decision maker has a full information about system states. It allocates customers
between servers according to a control policy f either to one of available servers or to queue at a new
arrival and service completion epoch if it occurs with a nonempty queue. The system dynamics is
common for the systems with one common queue and heterogeneous servers. At each arrival epoch
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the customer joins the queue and the controller can allocate the customer staying at the head of the
queue to an available server j. At service completion epochs the controller may decide to allocate
the customer from the head of nonempty queue to an available server or leave the customer in the
queue. As it was mentioned above, the optimal control policy f , which minimizes the mean number of
customers in the system with servers ordered according to (1), belongs to a set of threshold policies
defined as a sequence of threshold levels

1 = q1 ≤ q2 ≤ · · · ≤ qK < ∞. (3)

According to this policy the first k servers must be occupied whenever there are q customers in the
queue and qk ≤ q ≤ qk+1 − 1 for k = 1, . . . , K− 1, and qk ≤ q < ∞ for k = K. For example, the policy
f for the system M/M/5 with K = 5 servers and thresholds (q1, q2, . . . , q5) = (1, 3, 4, 5, 12) means that
the fastest server is used whenever upon arrival of a customer it is free and there are q customers in
the queue with 1 ≤ q ≤ 2. The first two servers are used when q = 3. The first three servers must be
occupied whenever there are q = 4 customers in the queue, the first four customers are used when
5 ≤ q ≤ 11. All servers must be used when the queue length exceeds the level q ≥ 12. When the queue
length drops below a specific threshold level, then the corresponding busy server remains idle after a
service completion. As thresholds can take on different values, there are a huge number of admissible
threshold policies. Hence the main goal is to calculate the optimal values for threshold levels qk and
the minimized mean number of customers in the system.

We formulate the above optimization problem as a Markov decision process associated with a
multi-dimensional continuous-time Markov chain

{X(t)}t≥0 = {Q(t), D1(t), . . . , DK(t)}t≥0 (4)

with a set of admissible actions A = {0, 1, . . . , K} with elements a, where a = 0 means the allocation
of the customer to the queue and a = j �= 0 – to the jth server. The term Q(t) ∈ N0 in (4) denotes the
number of customers in the queue at time t, Dj(t) ∈ {0, 1} – the state of server j at time t, where

Dj(t) =

{
0 if server j is idle

1 if server j is busy.

For any fixed allocation policy f we wish to guarantee that the process {X(t)}t≥0 is an irreducible,
positive recurrent Markov chain with a state space E = {x = (q(x), d1(x), . . . , dK(x))} ≡ N0 × {0, 1}K

and infinitesimal generator Λ f which depend on the policy f . The notations q(x) and dj(x) will be
used further in the paper to specify the components of the vector state x ∈ E, where q(x) denotes the
queue length in state x and dj(x) – the state of the jth server in state x. We use next the notations

J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) = 1}

to specify respectively a set of idle and busy servers in state x, A(x) = J0(x) ∪ {0} ⊆ A the subset of
admissible actions in state x and ej stands for a vector of dimension K + 1 with 1 in the jth position
(j = 0, 1, . . . , K) and 0 elsewhere.

For the ergodic Markov decision process a long-run average cost in the system per unit of time
for the policy f coincides with the corresponding assemble average, i.e.,

g f = lim sup
t→∞

1
t

V f (x, t) = ∑
y∈E f

l(y)π f
y < ∞, (5)
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where l(y) = q(y) + ∑K
j=1 dj(y) in our model is a number of customers in state y ∈ E,

V f (x, t) = E f
[ ∫ t

0

(
Q(t) +

K

∑
j=1

Dj(t)
)

dt|X(0) = x
]

denotes the total average number of customers up to time t given initial state is x and
π

f
y = P f [X(t) = y] is a stationary state probability of the process under given policy f . The policy f ∗

is said to be optimal when for g f defined in (5) we evaluate

g∗ = inf
f

g f = min
q2,...,qK

g(q2, . . . , qK). (6)

One fruitful approach to finding optimal policy f ∗ is through solving the Bellman’s optimality
equation, which in our case is of the form

Bv(x) = (λ + ∑
j∈J1(x)

μj)v(x) + g, (7)

where B is a dynamic programming operator acting on a relative value function v : E → R which
indicates a transient effect of an initial state x to the total average cost, and, according to Howard [23],
the following asymptotic relation for the function V f (x, t) in case of a Markov-chain with one ergodic
class holds,

V f (x, t) = g f t + v f (x) + o(1), x ∈ E, t→ ∞. (8)

The functions v f and g f further in the paper will be denoted by v and g without upper index f .

Proposition 1. The Bellman’s optimality Equation (7) is defined as follows

Bv(x) = l(x) + λ min
a∈A(x)

v(x + ea) + ∑
j∈J1(x)

μjv(x− ej)1{q(x)=0}+ (9)

+ ∑
j∈J1(x)

μj min
a∈A(x−ej−e0)

v(x− ej − e0 + ea)1{q(x)>0},

where the notation 1{A} specifies the indicator function, which takes the value 1 if the event A holds,
and 0 otherwise.

Proof. According to [26], the behaviour of the function V(x, t) in the interval [t, t + dt) by letting
t → ∞ and taking into account the asymptotic relation (8) can be represented as a system of linear
equations, which in general case is of the form

v(x) = min
a

{ 1
λx(a)

[
c(x) + ∑

y �=x
λxy(a)v(y)− g

]}
.

Evaluating these equations for analyzed queueing system and taking into account the transition
rates of the specified Markov decision model we get

v(x) =
1

λ + ∑j∈J1(x) μj
[Bv(x)− g].

The relation for Bv(x) contains the term l(x) specifying a number of customers in state x ∈ EX,
the second term represents the changing of the state accompanying with a new arrival which occurs
with a rate λ. The third and the fourth terms represent transitions due to service completions at server
j with a rate μj by en empty and non-empty queue respectively.
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To generate a data-set for the queueing system under study which includes optimal threshold
levels and corresponding values of the system parameters the policy-iteration Algorithm 1 is used.
For numerical results the truncated equivalent system with a buffer size W is considered. The algorithm
consists of two main steps: policy evaluation and policy improvement. In the first step, for a given
control policy f the system of linear equations for the relative value function v(x), x ∈ E \ {(0, 0, . . . , 0)}
must be solved together with an equation g = λv(e1). In the second step, the obtained in the first
step relative function is used to improve the current policy. The algorithm stops when a new policy
coincides with a previous one. As an initial policy the FSF allocation policy is used.

Algorithm 1 Policy-iteration algorithm

1: procedure PIA(K, W, λ, μj, j = 1, 2, . . . , K)
2: f (0)(x) = argmaxj∈J0(x)

{
μj

}
� Initial policy

3: n← 0
4: g(n) ← λv(n)(e1) � Policy evaluation
5: for x = (0, 1, 0, . . . , 0) to (N, 1, 1, . . . , 1) do
6:

v(n)(x)← 1
λ + ∑j∈J1(x) μj

[
l(x)− g(n) + λv(n)(x + e f (n)(x))

+ ∑
j∈J1(x)

μjv(n)(x− ej)1{q(x)=0}

+ ∑
j∈J1(x)

μjv(n)(x− ej − e0 + e f (n)(x−ej−e0)
)1{q(x)>0}

]
7: end for
8: � Policy improvement

f (n+1)(x)← argmina∈A(x) v(n)(x + ea)

9: if f (n+1)(x)← f (n)(x), x ∈ E then return f (n+1)(x), v(n)(x), g(n)

10: else n← n + 1, go to step 4

11: end if

12: end procedure

We convert by implementing the Algorithm 1 the K + 1-dimensional state space E of the Markov
decision process ordered in a certain way to a one-dimensional equivalent state space N0, Δ : E→ N0,
for state x = (q(x), d1(x), . . . , dK(x)) ∈ E,

Δ(x) = q(x)2K +
K

∑
i=1

di(x)2i−1. (10)

Therefore, in one-dimensional case the changing of the state x due to adding or removing a
customer from the queue and due to occupation or departure of a customer from the jth server can be
respectively represented in the form,

Δ(x± e0) = (q(x)± 1)2K +
K

∑
i=1

di(x)2i−1 = Δ(x)± 2K,

Δ(x± ej) = q(x)2K +
K

∑
i=1

di(x)2i−1 ± 2j−1 = Δ(x)± 2j−1, j = 1, 2, . . . , K.

For further details about derivation of the dynamic programming equation needed to evaluate
the optimal policy the interested readers are referred to [13]. The infinite buffer queueing system is
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approximated by a finite buffer equivalent system in such a way that the loss probability does not
exceed some specified small number ε > 0.

Remark 1. For the bounded buffer size W the number of states is

|E| = 2K(W + 1).

If the queue length q ≥ qK, all servers must be busy and the system behaves like a M/M/1 queueing system
with a service rate ∑K

j=1 μj. The stationary state probabilities π(q,1,...,1), q ≥ qK, satisfy the difference equation

λπ(q−1,1,...,1) −
(

λ +
K

∑
j=1

μj

)
π(q,1,...,1) +

K

∑
j=1

μjπ(q+1,1,...,1) = 0,

which has a solution in a geometric form, π(q,1,...,1) = π(qK ,1,...,1)ρ
q−qK , q ≥ qK. For details and theoretical

substantiation see e.g., [27]. The threshold level qK can be estimated using HS (11). The buffer size W is chosen
in such a way that it satisfies the condition for the loss probability

∞

∑
q=W

π(q,1,...,1) = πqK

∞

∑
q=W

ρq−qK ≤
∞

∑
q=W

ρq−qK =
ρW−qK

1− ρ
< ε,

where ρ = λ

∑K
j=1 μj

. After simple algebra it implies

W >
log ε(1− ρ)

log(ρ)
+ qK.

The algorithm was implemented in C++ and tested for model problems up to 10 servers and
a queue of size W = 100. It shows matching results to the proposed heuristic solution but is only
viable for relative small number of servers. For system with 100 servers the maximum number of
states would be in the order of 2100 which makes a reasonable usage of the policy-iteration algorithm
impossible.

Example 1. Consider the system M/M/5 with K = 5 and λ = 15. The service rates take the following
values: (μ1, μ2, μ3, μ4, μ5) = (20, 8, 4, 2, 1). The buffer size is W = 80 which for ε = 0.0001 guaranties that
W >

log 0.0001(1−14/36)
log(14/36) + q5 = 22.2734, where q5 = 12 is evaluated by (11). The table of evaluated control

actions f (x) for selected system states x is of the form:

System state x Queue length q(x)

d = (d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,0,*,*,*) 0 0 2 2 2 2 2 2 2 2 2 2 2 2

(1,1,0,*,*) 0 0 0 3 3 3 3 3 3 3 3 3 3 3

(1,1,1,0,*) 0 0 0 0 4 4 4 4 4 4 4 4 4 4

(1,1,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 5 5 5

(1,1,1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Threshold levels qk, k = 1, . . . , K = 5, can be evaluated by comparing the optimal actions
f (q, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) < f (q + 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) for q = 0, . . . , W − 1. In this example the optimal

policy f ∗ is defined here through a sequence of threshold levels (q2, q3, q4, q5) = (3, 4, 5, 12) and g∗ = 4.92897.
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3. Heuristic Solution

As it was mentioned above, the policy iteration algorithm has restrictions on dimension of the
model, number of states, convergence in a heavy traffic case. In this section we derive a heuristic
solution (HS) to estimate threshold levels qk, k = 2, . . . , K, for the arbitrary K using a simple discrete

fluid approximation Q(t)−Q
(

t + 1
∑k−1

j=1 μj−λ

)
= 1, t = 0, 1

∑k−1
j=1 μj−λ

, . . . , qk−1
∑k−1

j=1 μj−λ
, for the queue length

at time t, as illustrated in Figure 2.

Figure 2. Fluid approximation.

We now explain how this fluid model can be employed for our aim. Assume that qk
is an optimal threshold to allocate the customer to server k in state (qk − 1, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

),

where the first k − 1 servers are busy. Now we compare the queues of the system given initial
state is x0 = (qk, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server is not used for a new customer,

and y0 = (qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server is occupied by a waiting customer. It is

assumed that the stability condition holds. In Figure 2, the queue lengths are labeled by A = qk and
B = qk − 1. If the queue dynamics corresponded to the deterministic fluid, it would decrease at the
rate ∑k−1

j=1 μj − λ. When this rate is maintained until the queue is empty, it occurs respectively at points

D = qk

∑k−1
j=1 μj−λ

and C = qk−1
∑k−1

j=1 μj−λ
. The total holding times of customers in a queue with lengths qk and

qk − 1 are equal obviously to the areas

FAOD =
qk(qk + 1)

2
· 1

∑k−1
j=1 μj − λ

and FBOC =
qk(qk − 1)

2
· 1

∑k−1
j=1 μj − λ

of triangles AOD and BOC. The mean service time of customers by first k− 1 busy servers until the
queue is empty starting from state x0 is equal to

qk

( 1
μ1

μ1

∑k−1
j=1 μj

+ · · ·+ 1
μk−1

μk−1

∑k−1
j=1 μj

)
= qk

k− 1

∑k−1
j=1 μj

,

where μi

∑k−1
j=1 μj

is a probability to be served by the ith server, and starting from state y0—is equal to

(qk − 1) k−1
∑k−1

j=1 μj
.

According to a specified deterministic fluid schema we formulate
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Proposition 2. The optimal thresholds qk, k = 2, . . . , K, are defined by

qk ≈ q̂k = min
{

q̂k−1,
⌊( k−1

∑
j=1

μj − λ
)( 1

μk
− k− 1

∑k−1
j=1 μj

)⌋
+ 1

}
. (11)

Proof. Denote by V(x) the overall average holding time of customers until the system is empty
given initial state is x ∈ E. The decision to perform the allocation to the kth server in state
(qk − 1, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) must lead to a reduction of the overall holding time under fluid schema, i.e.,

V(x0)−V(y0) > 0. (12)

where

V(x0) = FAOD + qk
k− 1

∑k−1
j=1 μj

+ V(0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

), (13)

V(y0) =
1
μk

+ V(qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
K−k

)

=
1
μk

+ FBOC + (qk − 1)
k− 1

∑k−1
j=1 μj

+ V(0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

).

After substitution of (13) into (12) and some simple manipulations we get that the heuristic
solution for the optimal threshold qk is defined then as the integer larger then 1 and the smallest integer
(11) satisfying the inequality (12).

Example 2. Consider a queueing system from previous example for K = 5. We generate a data-set S in form of
a list

S = (14){
(λ, μ1, . . . , μK)→ (q2, . . . , qK) : λ ∈ [1, 45], μ1, . . . , μK ∈ [1, 40], λ <

K

∑
j=1

μj, μ1 ≥ · · · ≥ μK

}
.

and evaluate with HS for the corresponding thresholds qk, k = 1, . . . , K. Confusion matrices in Figure 3 visualize
the performance of proposed heuristics respectively for the threshold levels (q2, q3, q4, q5). Each row of these
matrices represents the instances in a predicted value while each column represents the instances in an actual
value. We notice the heavily diagonally dominant matrices that indicates a very good classification. This fact is
confirmed also by overall accuracies. Such metrics describe the closeness of the heuristic measurements to a real
threshold value and are calculated through the ratio of correct predictions to total predictions. Calculations of the
overall accuracies as well as the accuracies for results with an acceptable deviation of threshold values by ±1
from the real value are summarized in Table 1.

Table 1. Accuracy for prediction with heuristic solution (HS).

HS q2 q3 q4 q5

Accuracy 0.8430 0.8778 0.7899 0.6282
Accuracy ±1 0.9861 0.9884 0.9871 0.9769
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(a) (b)

(c) (d)

Figure 3. Confusion matrices (a–d) for prediction of q2, q3, q4 and q5 using HS.

Example 3. Consider the queueing system M/M/K with a different number of servers K = 2, 3, . . . , 8.
Service rates take the values as given in Table 2.

Table 2. Service rates μk, k = 1, . . . , K.

�����μk

K
2 3 4 5 6 7 8

μ1 34 32 28 20 18 16 14
μ2 1 2 4 8 8 8 6
μ3 - 1 2 4 4 4 5
μ4 - - 1 2 2 3 4
μ5 - - - 1 2 2 2
μ6 - - - - 1 1 2
μ7 - - - - - 1 1
μ8 - - - - - - 1

Table 3 lists values of optimal thresholds qk and corresponding heuristic solutions q̂k. As we see it,
the maximum deviation of the optimal thresholds from the heuristic solution is 1 independently of the number
of servers.

Table 3. Threshold values qk and q̂k, k = 2, . . . , K.

�������(qk, q̂k)
K

2 3 4 5 6 7 8

(q2, q̂2) (24,24) (11,11) (5,4) (1,1) (1,1) (1,1) (1,1)
(q3, q̂3) - (23,23) (10,10) (4,4) (3,3) (3,3) (2,2)
(q4, q̂4) - - (22,22) (9,9) (8,9) (4,5) (2,2)
(q5, q̂5) - - - (21,22) (8,9) (8,8) (7,7)
(q6, q̂6) - - - - (20,21) (19,20) (7,8)
(q7, q̂7) - - - - - (19,20) (19,19)
(q8, q̂8) - - - - - - (19,20)
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The large number of numerical experiments carried out using the policy-iteration algorithm and simulations
allows us to conclude that deviations of certain thresholds by 1 have practically no effect on the value of the
minimised function. Thus, we believe that the proposed heuristic solution is effective for an arbitrary number
of servers.

4. Simple Bounds for the Optimal Mean Number of Customers in the System

As established in previous section, the estimation of the optimal threshold policy is possible
by means of a simple heuristic solution. Nevertheless, with this knowledge it is quite complicated
to calculate the optimal mean number of customers in the system with a high number of servers.
A possible solution for this problem consists in construction a proper approximation of the original
system with a preemption by an equivalent system without preemption. In this case a multidimensional
Markov-chain can be described by an one-dimensional process. In this section we develop
approximations for the low L̄l and upper L̄u bounds for the optimal gain function g = L̄, L̄l ≤ L̄ ≤ L̄u.

To calculate the lower bound L̄l we use a heterogeneous queueing system with a preemption
and threshold-based control policy denoted by Sl Further define by {Yl(t)}t≥0 the corresponding
continuous-time Markov chain with a state space El = {y : y ∈ N0} describing the number of
customers in the system. The state transition diagram of this system is illustrated in Figure 4.

Figure 4. The state transition diagram for the queueing system Sl .

The optimal threshold levels qk, k = 2, . . . , K are calculated using the heuristic solution (11).
Obviously, since the customer being served in a slower server can change it as the faster one
becomes empty, the mean number of customers in the system must be lower comparing to an original
queue. The steady-state probabilities πy = limt→∞ P[Yl(t) = y] obviously exist under the stability
condition (2).

Proposition 3. The steady-state probabilities πy of the Markov chain {Yl(t)}t≥0 are given by

π0 =
[
1 +

q2

∑
y=1

( λ

μ1

)y
+

K

∑
k=3

qk

∑
y=qk−1

( λ

∑k−1
j=1 μj

)y−qk−1 ·
k−2

∏
i=1

( λ

∑i
j=1 μj

)qi+1−qi
+

+
K−1

∏
i=1

( λ

∑i
j=1 μj

)qi+1−qi · λ

∑K
j=1 μj − λ

]−1
,

πy =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
π0 ·

(
λ
μ1

)y
, 1 ≤ y ≤ q2

π0 ·∏k−2
i=1

(
λ

∑i
j=1 μj

)qi+1−qi ·
(

λ

∑k−1
j=1 μj

)y−qk−1
, qk−1 ≤ y ≤ qk, 3 ≤ k ≤ K

π0 ·∏K−1
i=1

(
λ

∑i
j=1 μj

)qi+1−qi ·
(

λ

∑K
j=1 μj

)y−qK
, y ≥ qK + 1

Proof. The proposition follows directly from the properties of the ergodic birth-and-death process
{Yl(t)}t≥0 [28].

From the probabilities πy it is possible to derive the performance measures of the system,
e.g., the mean number of customers in the system L̄ and the mean number of customers in the
queue Q̄.
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Corollary 1. The mean number of customers in the system Sl satisfies the relation

L̄l =
∞

∑
y=0

πy =
qK

∑
y=0

πy +
λ(∑K

j=1 μj + (∑K
j=1 μj − λ)qK)

(∑K
j=1 μj − λ)2

πqK . (15)

The upper bound L̄u for the optimal mean number of customers in the system can be obtained
from an equivalent system under the FSF policy, see a state transition diagram in Figure 5, where qk = 1
for k = 1, . . . , K.

Figure 5. The state transition diagram for the heterogeneous queueing system with the fastest server
first (FSF) policy.

In this diagram the group of states with a certain number of busy servers are labeled by
(q, ∑K

j=1 dj) according to the number of busy servers in a state. An analytical solution for the
heterogeneous queueing system with the FSF policy, where all states of servers are taken into account,
although possible, but it is limited by the number of servers in the system. The latter system can be
approximated in turn by a heterogeneous system Su with a preemption with appropriate evaluated
service rates mj, j = 1, . . . , K. The dynamics of the system Su is described by the continuous-time
Markov-chain {Yu(t)} with a state space Eu = {y : y ∈ N0}, where Yu(t) specifies the number of
customers in the system at time t. The state transition diagram for this Markov-chain is presented in
Figure 6.

Figure 6. The state transition diagram for the queueing system Su.

The approximations for mj are based on the observation that the incentive to occupy the slower
servers is getting higher as arrival rate increases.

Proposition 4. The service rates mj, j = 1, . . . , K− 1, of the queueing model {Yu(t)}t≥0 can be approximated
by the following relations

mj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

j
i=1 μi, 0 < λ ≤ ∑

j−1
i=0 μK−i

∑
j−1
i=0

μK−i
λ ∑

j
i=1 μi + ∑

k−j
i=1

(
μK−i−j+1

λ ∑k
n=1 μn+i

)
+
(

1−∑k−1
i=0

μK−i
λ

)
∑k+1

i=k−j+2 μj, ∑k−1
i=0 μK−i < λ ≤ ∑k

i=0 μK−i, j ≤ k ≤ K− 1,

mK =
K

∑
i=1

μi. (16)
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Proof. For small arrival rate, e.g., 0 < λ ≤ μK, most probably that only the first server which is
the fastest one will be occupied and hence it will have the main contribution to the service rate m1.
When the values λ are larger, e.g., μK < λ ≤ μK−1 + μK, the first server will have a contribution
to μ1 with a probability μK

λ and the second server—with a complementary probability (1 − μK
λ ).

For larger values of λ, μK−1 + μK < λ ≤ μK−2 + μK−1 + μK the first three servers will contribute to

μ1 with probabilities μK
λ , μK−1

λ and
(

1− μK−1+μK
λ

)
. Similarly we may derive the contribution of the

servers larger values of λ up to the condition μ2 + . . . ,+μK < λ ≤ μ1 + μ2 + · · ·+ μK. To evaluate
the contribution to the service rate m2 in a state with two busy servers the same schema can be
used. When λ is small, 0 < λ ≤ μK−1 + μK, the first two servers will form the service rate μ2.
If μK−1 + μK < λ ≤ μK−2 + μK−1 + μK, the first three servers will have a contribution to μ2, the first
and second servers contribute with a probability μ1+μ2

λ , the second and fourth – with a probability(
1− μ2+μ3

λ

)
. When ∑2

j=0 μK−j < λ ≤ ∑3
j=0 μK−j, the four faster servers will serve the customers,

the first and second server with probability μK−1+μK
λ , the second and third server with probability μ3

λ

and the third and fourth with probability
(

1− μK−2+μK−1+μK
λ

)
. The procedure can be continued for

larger values of λ in a similar way as before. The proposed arguments can be summarized for all service
rates mj, j = 1, . . . , K, and the arbitrary number of servers K in form of the approximation (16).

It can be verified that for any j the quotient λ
mj

< 1 and λ < mK = ∑K
j=1 μj. Now we can use the

approximation (16) to derive the steady-state distribution.

Proposition 5. The steady-state probabilities πy of the Markov-chain {Yu(t)}t≥0 are given by

π0 =
[
1 +

K−1

∑
y=1

λy

∏
y
j=1 mj

+
λK+1

(mK − λ)∏K
j=1 mj

]−1
,

πy =

⎧⎪⎨⎪⎩
π0 · λy

∏
y
j=1 mj

1 ≤ y ≤ K,

π0 · λy

my−K
K ∏K

j=1 mj
y ≥ K + 1.

Proof. The proposition follows from the properties of the ergodic birth-and-death process
{Yu(t)}t≥0 [28].

Corollary 2. The mean number of customers in the system Su satisfies the relation

L̄u =
∞

∑
y=0

πy =
K

∑
y=0

πy +
λ(mK + (mK − λ)K)

(mK − λ)2 . (17)

Example 4. Consider the M/M/K queueing system with a total service intensity equal to ∑K
j=1 μj = 35.

Here we analyse the systems with different number of servers and their heterogeneity.
A Gini’s index G(μ), 0 ≤ G(μ) ≤ 1, can be used to measure the inequality for individual data μ, see for

details [29], and hence is quite appropriate as a metric for the heterogeneity of servers. This index can be obtained
by computing the moments of the data set μ = {μK, μK−1, . . . , μ1} with μj sorted in increasing order,

G(μ) =
2Cov[μ, nK]

Kμ̄
, μ̄ =

1
K

K

∑
j=1

μj, nK = {1, 2, . . . , K}.

The Gini’s index ranges from a minimum value of zero, when all individuals are equal, e.g., for the
homogeneous servers G(μ) = 0, to a theoretical maximum of one when every individual except one has a
value zero. Two different values of heterogeneity are studied within this example, namely G(μ) = 0.63 and
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G(μ) = 0.40. The corresponding values of service intensities for three types of systems with K = 3, K = 5 and
K = 8 are presented in Table 4.

Table 4. Service intensities versus Gini’s index.

K μ G(μ) K μ G(μ)

3 (1,11,23) 0.63 3 (5,11,19) 0.40
5 (1,2,4,8,20) 0.63 5 (2,4,6,10,13) 0.40
8 (0.5,1,1.5,2,2.5,3,7,17.5) 0.63 8 (1.5,1.5,2,3,4,6,8,9) 0.40

In Figures 7–9 we display the values L̄ with bounds L̄l and L̄u calculated respectively by the policy-iteration
Algorithm 1 and by expressions (15) and (17) as functions of λ and number of servers K = 3, 5, 8. The Gini’s
index G(μ) = 0.63 in a figures labeled by (a) and G(μ) = 0.40—by (b). The curves in figures show, that the
mean number of customers as well as the size of the gap between the lower and upper bounds increases with
increasing values of K. As expected, the low and upper bounds must coincide with a mean value L̄ for the system
with homogeneous servers, where G(μ) = 0. Indeed, in figures with less heterogeneity of servers the curves for
L̄ L̄u and L̄l are getting closer, as the Gini’s index decreases. Moreover, we notice that the functions take similar
values in a light traffic case when λ << ∑K

j=1 μj and tend to the same values as the traffic becomes heavier,
i.e., if λ→ ∑K

j=1 μj.

(a) (b)
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Figure 7. Mean value L̄ with the bounds versus λ.
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Figure 8. Mean value L̄ with the bounds versus λ.
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Figure 9. Mean value L̄ with the bounds versus λ.

5. Sensitivity Analysis of the Heuristic Solution to Changes in Distribution

Another natural method to calculate the mean number of customers in the system and to
check whether a certain policy leads to a reduction of this value is a simulation. This approach,
while time-consuming, also makes it possible to examine the sensitivity of the optimal control policy f
and the corresponding mean performance characteristics to changes in distribution types other than
exponential. An implementation of a simulation model is shown in the Figure 10 bellow.

Figure 10. Simulation of the heterogeneous queueing system without preemption.

For this specific implementation it is possible to set the number of servers, the buffer capacity,
threshold levels (limits), the arrival and service rates. The customers are indicated by a black circle,
and are numbered accordingly to their arrival times. On the graphical interface there are also fields
that show the actual amount of customers in the system, the average number and the total number
of customers in the system including the already processed customers, the number of lost customers
due to the truncated buffer capacity. The stability condition is taken into account and the buffer size is
big enough so there should be hardly any lost customers. Hence the results with a truncated queue
are comparable to systems with infinite queue lengths. Unfortunately, simulations are also unfit to
solve systems with a large number of servers and states, as one would need to simulate a large number
of different configurations with thousands of customers to get acceptable results. This fact further
confirms the relevance of the results obtained in the previous sections.
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The inter-arrival A and service times Bj, j = 1, 2, . . . , K, of customers follow exponential, gamma,
Pareto, log-normal and hyper-exponential distributions. To get comparable results the parameters of
the distributions are chosen to have the same means E[A] = 1

λ , E[Bj] =
1
μj

, j = 1, 2, . . . , K, and variances

V[A] = 1
λ2 , V[Bj] =

1
μ2

j
, j = 1, 2, . . . , K, as the system driven by exponential distribution. For this

purpose we use formulas describing the parameters in terms of the mean and variance given by
Toth et al. [30]. The main goal of the simulation experiments consists in understanding weather the
heuristic solution (11) for λ = 1

E[A]
and μj =

1
E[Bj ]

is insensitive to changes in forms of distributions.

Example 5. As a reference, we first simulate the system M/M/5 with an arrival rate λ = 25,
(μ1, μ2, μ3, μ4, μ5) = (20, 8, 4, 2, 1). Table 6 lists the mean number of customers in the system the optima,
heuristic, FSF policies as well for other threshold policies with lower and higher values of thresholds.

We now simulate the systems like GI/M/5, M/G/5 as well as GI/G/5 with heterogeneous servers
and threshold-based allocation policy where either the inter-arrival times, the service time or both follow one
of the distributions mentioned above. For all the following simulation results we hereby want to find the mean
number of customers in the system L̄ for the policies specified in the preceding table for the markovian queueing
system M/M/5. Table 6 provide a sensitivity and comparative analysis of the system performance obtained by
employing different inter-arrival and service time distributions.

Of course, finding the optimal control policy through a simulation modelling is not an easy task. But in our
example, we do not want to find the real values of the optimum thresholds, but rather to understand whether the
optimum control and heuristic solution changes drastically when the distribution of the corresponding random
values characterising the behaviour of a queueing system changes. Note that L̄ for the optimal and heuristic
policy takes always the values between those corresponding to the policies with lower and higher thresholds.
The results of this example, as well as numerous other results carried out for systems with other parameters,
show that while the absolute values of the mean number of customers vary as distributions change, the values of
the optimal and heuristic thresholds are concentrated sufficiently close to the respective thresholds for markovian
systems. Thus, we strongly believe, it is possible to use a heuristic solution with the replacement of exponential
intensities by intensities of arbitrary distributions as a quasi-optimal solution in the problem of minimising the
mean number of customers in the system with non-exponential inter-arrival and service time distributions.

Table 5. Simulation results for the M/M/5 queueing system.

Exponential Distribution

Optimal Solution Heuristic Solution FSF Lower Thresholds Higher Thresholds

q2 = 1 q2 = 1 q2 = 1 q2 = 1 q2 = 2
q3 = 2 q3 = 2 q3 = 1 q3 = 1 q3 = 3
q4 = 4 q4 = 3 q4 = 1 q4 = 2 q4 = 4
q5 = 9 q5 = 8 q5 = 1 q5 = 7 q5 = 9
L = 4.082 L = 4.189 L = 4.860 L = 4.213 L = 4.674

Table 6. Simulation results for the GI/M/5, M/G/5 and GI/G/5 queueing systems.

gamma distribution

optimal solution heuristic solution FSF lower thresholds higher thresholds

GI/M/5: L = 4.491 GI/M/5: L = 4.499 GI/M/5: L = 5.230 GI/M/5: L = 4.375 GI/M/5: L = 5.002
M/G/5: L = 4.527 M/G/5: L = 4.646 M/G/5: L = 5.011 M/G/5: L = 4.742 M/G/5: L = 5.223
GI/G/5: L = 4.048 GI/G/5: L = 4.154 GI/G/5: L = 4.827 GI/G/5: L = 4.352 GI/G/5: L = 4.719

Pareto distribution

optimal solution heuristic solution FSF lower thresholds higher thresholds

GI/M/5: L = 3.857 GI/M/5: L = 3.958 GI/M/5: L = 4.426 GI/M/5: L = 3.889 GI/M/5: L = 4.561
M/G/5: L = 4.211 M/G/5: L = 4.321 M/G/5: L = 4.870 M/G/5: L = 4.477 M/G/5: L = 4.913
GI/G/5: L = 3.385 GI/G/5: L = 3.473 GI/G/5: L = 3.837 GI/G/5: L = 3.461 GI/G/5: L = 4.051
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Table 6. Cont.

log-normal distribution

optimal solution heuristic solution FSF lower thresholds higher thresholds

GI/M/5: L = 4.366 GI/M/5: L = 4.479 GI/M/5: L = 4.911 GI/M/5: L = 4.509 GI/M/5: L = 5.037
M/G/5: L = 4.429 M/G/5: L = 4.545 M/G/5: L = 4.870 M/G/5: L = 4.824 M/G/5: L = 5.139
GI/G/5: L = 3.821 GI/G/5: L = 3.921 GI/G/5: L = 4.636 GI/G/5: L = 3.975 GI/G/5: L = 4.593

hyper-exponential distribution

optimal solution heuristic solution FSF lower thresholds higher thresholds

GI/M/5: L = 4.043 GI/M/5: L = 4.148 GI/M/5: L = 4.771 GI/M/5: L = 4.129 GI/M/5: L = 4.645
M/G/5: L = 4.024 M/G/5: L = 4.129 M/G/5: L = 4.707 M/G/5: L = 4.167 M/G/5: L = 4.801
GI/G/5: L = 4.021 GI/G/5: L = 4.126 GI/G/5: L = 4.709 GI/G/5: L = 4.233 GI/G/5: L = 4.768

6. Conclusions

The queueing systems with heterogeneous servers have many real applications. The optimal
control policy which minimizes the mean number of customers in the system without preemption
under certain assumptions belongs to a threshold policy. Classical methods, such as the solution
of difference equations, matrix-analytic and dynamic-programming approach, have significant
restrictions due to the dimension of the random processes involved. A heuristic solution is obtained
for the optimal threshold levels in a system with an arbitrary number of servers. The simple lower
and upper bounds for the minimal mean number of customers in the system are derived using one
dimensional processes for the equivalent heterogeneous queues with a preemption. The gap between
the bounds increases with increasing of the servers’ heterogeneity and the number of servers in the
system. We have further conducted simulation to provide sensitivity analysis of the obtained HS to
changes in inter-arrival and service time distributions. Simulation results showed that the optimal
thresholds are likely to depend on the mean inter-arrival and service times and hence the proposed
heuristic solution can be used as a quasi-optimal in systems with arbitrary distributions.
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Abstract: We consider accumulative defined contribution pension schemes with a lump sum payment
on retirement. These schemes differ in relation to inheritance and provide various decrement factors.
For each scheme, we construct the balance equation and obtain an expression for calculation of gross
premium. Payments are made at the end of the insurance event period (survival to retirement age
or death or retirement for disability within the accumulation interval). A simulation model was
developed to analyze the constructed schemes.
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1. Introduction

At present, the accumulative pension schemes with a lump sum payment are not used in the
Russian Federation. Such schemes may be of interest to many people for many reasons. For example,
the pensioner plans to make large purchases, such as purchase of housing, purchase of household
appliances and/or purchase of expensive treatment. In addition, such schemes allow elderly parents
to ensure the future of their minor children.

At the end of October 2019, the Central Bank and the Ministry of Finance of the Russian Federation
announced a draft law for a new system of voluntary retirement savings, called Guaranteed Retirement
Plan. This draft law inspired the authors to write this article.

Pension schemes with the possibility of inheritance are popular in many countries. For example,
in the United Kingdom, in many circumstances, one can inherit a pension. Examples of such pension
schemes are defined contribution pension funds, joint life annuities and annuities with guarantee
periods. In the UK, it has now become easier to inherit a pension thanks to the 2015 pension freedoms
and the introduction of flexi-access drawdown, which is a newer, more flexible version of pension
drawdown (see [1–4]).

In this work, we used standard methods of actuarial calculations. However, the authors would
like to emphasize that since the actuarial calculations associated with a specific insurance contract are
made by the actuaries of the insurance companies and pension funds; the details of these calculations
are confidential.

Let us now describe the main results of this work. In this work, we consider accumulative defined
contribution pension schemes with a lump sum payment on retirement. These schemes differ in
relation to inheritance and provide various decrement factors: mortality or mortality and disability
(recall that the disability retirement is a plan of retirement which is invoked when person covered is
disabled from working to normal retirement age). It is assumed that contributions are paid regularly
at the beginning of each period (monthly, quarterly, yearly, etc.). In other words, the contributions

Mathematics 2020, 8, 2081; doi:10.3390/math8112081 www.mdpi.com/journal/mathematics41
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(without premium load) form an annuity due (for more details about basic actuarial definitions and
terminology, see [5,6]). Recall that the premium load is a percentage of insurance premium deducted
from the premium payments to cover policy administrative expenses, including the agent’s sales
commissions and a return on investment.

For each scheme, we construct the balance equation and obtain an expression for calculation
of gross premium (Propositions 1–4). The balance equation is based on the equivalence principle of
financial liabilities of the pension fund and the insured person. In general, the equivalence principle
states that the (expected) present values of premiums and benefits should be equal. In other words,
the equivalence principle ensures that, at any time, the net contributions (i.e., the contributions balance
after taking into account the premium load) in the past provide precisely the amount needed to meet
net liabilities in the future. Note that the premium load leads to a decrease of contributions when
applying the principle of equivalence.

For all schemes with the possibility of inheritance (see Sections 2.2, 2.3 and 3), we assume that
if the death or disability of the insured person occurs before reaching the retirement age then the
payments will be made not at the time of death or disability, but at the end of the last contribution
period in which the death or disability occurs (in other words, we consider the so-called discrete
models of pension insurance). It is assumed that the net contributions are not refunded if the death
occurs within the last period of the insurance contract. In the event of disability within the last period
of the insurance contract, the insured receives the lump sum payment at the end of this period.

Note that for long-term insurance, the investment income of the collected premiums should be
taken into account in the balance equation. This income is related to the changing value of money over
time. In particular, when deriving the balance equation, it is necessary to find the (present) value of
liabilities of the pension fund and the insured person (i.e., the value of contributions and payments)
relative to one time point [5,6]. For our schemes, we derive the balance equation relative to the moment
of concluding the pension insurance contract.

To analyze the constructed schemes, in Section 4 we discuss the results of a simulation model
developed by the authors for calculating the gross premium.

This work is dedicated to Zolotarev V.M. the founder of the International Seminar on Stability
Problems for Stochastic Models and to Kalashnikov V.V., whose works have important applications in
actuarial mathematics and mathematical risk theory (see [7–11]. See also [12]).

Some results of this work were announced in Russian in [13,14].

2. Cumulative Models of Pension Insurance Based on one Decrement Factor (Mortality)

In this section, we consider accumulative defined contribution pension schemes with a lump sum
payment on retirement. These schemes differ in relation to inheritance and provide one decrement
factor (mortality). It is assumed that contributions are paid regularly at the beginning of each period
(monthly, quarterly, yearly, etc.).

In this section, we use the following notation:

• x is the age of the insured person at the time of concluding the pension insurance contract.
• y is the retirement age (for example, y = 55, 60 or 65).
• B is the gross premium paid by the policyholder at the beginning of each period (monthly,

quarterly, yearly, etc.) until retirement.
• Pl is the lump sum payment on retirement if the insured person survives to the retirement age.
• α1, . . . , αy−x are the annual premium loads under the insurance pension contract.
• i is the effective annual interest rate, ν = 1

1+i is the annual discount factor and a = 1 + i is the
annual growth rate.

• Pr is the present value of the net contributions refunded to the inheritors if the insured dies before
surviving to the retirement age. It is assumed that the net contributions are not refunded if the
death occurs within the last period of the insurance contract.
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Let us recall the definitions of some actuarial symbols (life table notation) that are used in this
section (for more details see [5,6]).

With a starting group of l0 newborns lz denotes the expected number of survivors at age z from
the original group.

Some definitions and relationships involving life table functions are:

• dz = lz − lz+1 is the number of deaths between ages z and z + 1.
• The number of deaths between ages z and z + t is

tdz = lz − lz+t.

If t = n is an integer, then
ndz = dz + dz+1 + . . . + dz+n−1.

Note that 1dz = dz.
• The notation (z) refers to an individual alive at age z.
• tqz = tdz

lz
is the probability that (z) will die within the next t years (by age z + t).

• The complement of tqz is denoted by t pz = 1− tqz =
lz+t
lz

which is the probability that (z) survives
at least to time t (and dies some time after t).

• Recall that for discrete n-year temporary life annuity due the first payment (contribution) is made
at age z and the latest possible payment is made at age z + n− 1 (a maximum of n payments,
with last occurring at the beginning of the n-th year). The actuarial present value of this annuity
is denoted by äz:n|. We have (see [5,6]).

äz:n| =
n−1

∑
k=0

νk
k pz.

2.1. Scheme 1. Accumulative Pension Scheme with Annual Contributions and a Lump Sum Payment on
Retirement and without the Possibility of Inheritance

Consider an accumulative defined contribution pension scheme with a lump sum payment on
retirement and without the possibility of inheritance (i.e., Pr = 0). Suppose that a group of individuals
at age x start to pay the pension contributions of size B at the beginning of each year until retirement,
i.e., until the age y. A schematic drawing of this pension model is presented in Figure 1.

Figure 1. Schematic drawing of the accumulative pension scheme with annual contributions and a
lump sum payment on retirement and without the possibility of inheritance.
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Proposition 1. Consider the pension Scheme 1. Then, the balance equation has the form

Bäx:y−x| = B
y−x−1

∑
k=0

αk+1νk
k px + Pl y−x px νy−x. (1)

In particular, the annual gross premium B is equal to

B =
Pl y−x px νy−x

äx:y−x| −
y−x−1

∑
k=0

αk+1νk
k px

. (2)

The proof of Proposition 1 will be given in Section 2.3 as a special case of more general pension
scheme (Scheme 3).

2.2. Scheme 2. Accumulative Pension Scheme with Annual Contributions and a Lump Sum Payment on
Retirement and with Possibility of Inheritance

Consider Scheme 1 with possibility of inheritance. In other words, assume that if the insured dies
before surviving to the retirement age, then all the net contributions are paid before the deaths are
refunded to the inheritors at the end of the death year.

Recall that Pr is the present value of the net contributions refunded to the inheritors and Pl is the
lump sum payment on retirement. Recall also that the net contributions are not refunded if the death
occurs within the last period of the insurance contract (i.e., within (y− 1, y)). A schematic drawing of
this pension model is presented in Figure 2.

Figure 2. Schematic drawing of the accumulative pension scheme with annual contributions and a
lump sum payment on retirement and with the possibility of inheritance.

Proposition 2. Consider the pension Scheme 2. Then, the balance equation has the form

Bäx:y−x| = B
y−x−1

∑
k=0

αk+1νk
k px + Pl y−x px νy−x + P′r , (3)

where

P′r =
Pr

lx
= B

y−x−1

∑
j=1

j−1|qx

j

∑
k=1

(1− αk)ν
k−1 (4)
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and

s|qx =
lx+s − lx+s+1

lx
(5)

is the probability that (x) will die in a year, deferred s years; that is, that he will die in the (s + 1)th year
(see [5,6] for more details about this actuarial symbol).

In particular, the annual gross premium B is equal to

B =
Pl y−x px νy−x

äx:y−x| −
y−x−1

∑
k=0

αk+1νk
k px −

y−x−1
∑

j=1
j−1|qx

j
∑

k=1
(1− αk)νk−1

. (6)

The proof of Proposition 2 will be given in Section 2.3 as a special case of a more general pension
scheme (Scheme 3).

2.3. Scheme 3. Accumulative Pension Scheme with m-thly Payable Contributions and a Lump Sum Payment on
Retirement and with Possibility of Inheritance

Assume in Scheme 2 that the contributions form an m-thly payable annuity due, in which each
year is broken into m equal fractions, and the annuity pays B at the start of each fraction of a year,
as long as the annuitant survives. The first payment is made at age x. If the insured dies before
surviving to the retirement age, then all the net contributions paid before the death are refunded to the
inheritors at the end of the death period. Recall that the net contributions are not refunded if the death
occurs within the last period of the insurance contract (i.e., within (y− 1/m, y)). A schematic drawing
of this pension model is presented in Figure 3.

Figure 3. Schematic drawing of the accumulative pension scheme with m-thly payable contributions
and a lump sum payment on retirement and with possibility of inheritance. The cross indicates the
moment of death.

Since the life table functions in the published mortality tables are given for exact integer
ages, actuaries make fractional age assumptions when insurance event occurs at non-integer ages.
A fractional age assumption is an interpolation of life table functions between integer age values
which are accepted as given. Three fractional age assumptions have been widely used by actuaries:
the uniform distribution of death (UDD) assumption, the constant force assumption and the hyperbolic
or Balducci assumption (see [5,6]). For Scheme 3, we apply the uniform distribution of death
assumption. UDD assumption is equivalent to the linear interpolation of lz:

lz+t = (1− t)lz + tlz+1 for integer z and t ∈ [0, 1]. (7)
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Proposition 3. Consider the pension Scheme 3. Then, under UDD assumption, the balance equation has
the form

B
y−x−1

∑
k=0

(1− αk+1)
m−1

∑
j=0

νk+ j
m

(
k px −

j
m k|qx

)
= P′r + Pl y−x pxνy−x, (8)

where

P′r =
Pr

lx
=

B
m

m(y−x)−1

∑
k=1

� k−1
m � |

qx

k

∑
j=1

(
1− α� j−1

m �+1

)
ν�

j−1
m �+

(j−1) mod m
m (9)

and �·� is the floor function.
In particular, the m-thly payable gross premium B is equal to

B =
Pl y−x pxνy−x

y−x−1
∑

k=0
(1− αk+1)

m−1
∑

j=0
νk+ j

m

(
k px − j

m k|qx

)
− P′′r

, (10)

where P′′r = P′r/B.

Proof of Proposition 3. For the convenience of calculation of the balance equation, we give in Table 1
the present values of net contributions (PVNCs) and payments (PVPs) to the inheritors for each period.
The last line consists of the present value of the lump sum payments (PVLS).

Denote respectively by

PVNC = ∑ PVNCs, PVP = ∑ PVPs

the present values of all net contributions and payments to the inheritors. Then, the balance equation
has the form

PVNC = PVP + PVLS. (11)

According to Table 1, the present value of the net contributions is

PVNC = lxB(1− α1)ν
0 + lx+ 1

m
B(1− α1)ν

1
m + lx+ 2

m
B(1− α1)ν

2
m + . . . + lx+1B(1− α2)ν

1+

+lx+1+ 1
m

B(1− α2)ν
1+ 1

m + . . . + ly−1+ 1
m

B(1− αy−x)ν
y−x−1+ 1

m + . . .+

+ ly−1+ m−1
m

B(1− αy−x)ν
y−x−1+ m−1

m . (12)

According to Table 1, the present value of the payments is

PVP =
(

lx − lx+ 1
m

)
B(1− α1)ν

0 +
(

lx+ 1
m
− lx+ 2

m

)
B
[
(1− α1)ν

0 + (1− α1)ν
1
m

]
+ . . .+

+
(

lx+ m−1
m
− lx+1

)
B
[
(1− α1)ν

0 + (1− α1)ν
1
m + (1− α1)ν

2
m + . . . + (1− α1)ν

m−1
m

]
+ . . .+

+
(

ly−1 − ly−1+ 1
m

)
B
[
(1− αy−x)ν

y−x−1 + (1− αy−x−1)ν
y−x−1− 1

m + . . .+

+(1− α1)ν
0 ] + . . . +

(
ly−1+ m−2

m
− ly−1+ m−1

m

)
B
[
(1− αy−x)ν

y−x−1+ 2
m +

+(1− αy−x)ν
y−x−1+ 1

m + (1− αy−x)ν
y−x−1 + . . . + (1− α1)ν

0
]

. (13)
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Table 1. Present values of individual net contributions and payments to the inheritors by period
(except the last line). The last line consists of the present value of the lump sum payments.

Age PVNCs PVPs

x lxB(1− α1)ν
0 0

x + 1
m lx+ 1

m
B(1− α1)ν

1
m

(
lx − lx+ 1

m

)
B(1− α1)(i + 1)

1
m ν

1
m =

=
(

lx − lx+ 1
m

)
B(1− α1)ν

0

x + 2
m lx+ 2

m
B (1− α1) ν

2
m

(
lx+ 1

m
− lx+ 2

m

)
B
[
(1− α1) (i + 1)

1
m +

+ (1− α1) (i + 1)
2
m

]
ν

2
m =

=
(

lx+ 1
m
− lx+ 2

m

)
B
[
(1− α1) ν0 + (1− α1) ν

1
m

]
...

...
...

x + 1 lx+1B (1− α2) ν1
(

lx+ m−1
m
− lx+1

)
B
[
(1− α1) (i + 1)

1
m +

+ (1− α1) (i + 1)
2
m + . . .+

+ (1− α1) (i + 1)
m−1

m + (1− α1) (i + 1)1
]

ν1 =

=
(

lx+ m−1
m
− lx+1

)
B
[
(1− α1) ν0 + (1− α1) ν

1
m +

+ (1− α1) ν
2
m + . . . + (1− α1) ν

m−1
m

]
x + 1 + 1

m lx+1+ 1
m

B (1− α2) ν1+ 1
m

(
lx+1 − lx+1+ 1

m

)
B
[
(1− α2) (i + 1)

1
m +

+ (1− α1) (i + 1)
2
m + . . . (1− α1) (i + 1)

m−1
m +

+ (1− α1) (i + 1)1 + (1− α1) (i + 1)1+ 1
m

]
ν1+ 1

m =

=
(

lx+1 − lx+1+ 1
m

)
B
[
(1− α2) ν1+

+ (1− α1) ν
m−1

m + . . . + (1− α1) ν
2
m +

+ (1− α1) ν
1
m + (1− α1) ν0

]
...

...
...

y− 1 + 1
m ly−1+ 1

m
B
(
1− αy−x

)
νy−x−1+ 1

m

(
ly−1 − ly−1+ 1

m

)
B
[(

1− αy−x
)
(i + 1)

1
m +

+
(
1− αy−x−1

)
(i + 1)

2
m + . . .+

+
(
1− αy−x−1

)
(i + 1)1+ 1

m +

+ . . . + (1− α1) (i + 1)y−x−2+ 1
m + . . .+

+ . . . + (1− α1) (i + 1)y−x−1+ 1
m

]
νy−x−1+ 1

m =

=
(

ly−1 − ly−1+ 1
m

)
B
[(

1− αy−x
)

νy−x−1+(
1− αy−x−1

)
νy−x−1− 1

m + . . . + (1− α1) ν0
]

...
...

...
y− 1 + m−1

m ly−1+ m−1
m

B
(
1− αy−x

)
νy−x−1+ m−1

m

(
ly−1+ m−2

m
− ly−1+ m−1

m

)
B
[(

1− αy−x
)
(i + 1)

1
m +

+
(
1− αy−x

)
(i + 1)

2
m + . . . +

(
1− αy−x

)
(i + 1)

m−1
m +

+ . . . + (1− α1) (i + 1)y−x−1 + . . .+
+ (1− α1) (i + 1)y−x−1+ m−1

m

]
νy−x−1+ m−1

m =

=
(

ly−1+ m−2
m
− ly−1+ m−1

m

)
B
[(

1− αy−x
)

νy−x−1+ 2
m +

+
(
1− αy−x

)
νy−x−1+ 1

m +
+

(
1− αy−x

)
νy−x−1 + . . . + (1− α1) ν0]

PVLS

y 0 Pllyνy−x

The present value of the lump sum payments (PVLS) is

PVLS = Pllyνy−x. (14)

Under the assumption of uniform distribution of deaths, we have (see (7))

l
x+k+ j

m
=

(
1− j

m

)
lx+k +

j
m

lx+k+1 = lx+k −
j

m
(lx+k − lx+k+1) , (15)
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where x, k are integers and j/m ∈ [0, 1]. Hence, PVNC can be rewritten as

PVNC = B
[
(1− α1)

{
lxν0 +

(
lx −

1
m

(lx − lx+1)

)
ν

1
m +

(
lx −

2
m

(lx − lx+1)

)
ν

2
m +

+ . . . +
(

lx −
m− 1

m
(lx − lx+1)

)
ν

m−1
m

}
+

+ (1− α2)

{
lx+1ν1 +

(
lx+1 −

1
m

(lx+1 − lx+2)

)
ν1+ 1

m + . . .+

+

(
lx+1 −

m− 1
m

(lx+1 − lx+2)

)
ν1+ m−1

m

}
+ . . . +

(
1− αy−x

) {
ly−1νy−x−1+

+

(
ly−1 −

1
m

(
ly−1 − ly

))
νy−x−1+ 1

m + . . . +
(

ly−1 −
m− 1

m
(
ly−1 − ly

))
νy−x−1+ m−1

m

}]
. (16)

Consider now PVP. From (15), it follows that

l
x+k+ j

m
− l

x+k+ j+1
m

=
1
m

(lx+k − lx+k+1) , (17)

where x, k are integers and j/m, (j + 1)/m ∈ [0, 1]. Hence, PVP can be rewritten as

PVP =
1
m

(lx − lx+1) B (1− α1) ν0 +
1
m

(lx − lx+1) B
[
(1− α1) ν0 + (1− α1) ν

1
m

]
+ . . .+

+
1
m

(lx − lx+1) B
[
(1− α1) ν0 + (1− α1) ν

1
m + (1− α1) ν

2
m + . . . + (1− α1) ν

m−1
m

]
+

+ . . . +
1
m

(
ly−1 − ly

)
B
[(

1− αy−x
)

νy−x−1+

+
(
1− αy−x−1

)
νy−x−1− 1

m + . . . + (1− α1) ν0
]
+

+
1
m

(
ly−1 − ly

)
B
[(

1− αy−x
)

νy−x−1+ 2
m +

(
1− αy−x

)
νy−x−1+ 1

m +

+
(
1− αy−x

)
νy−x−1 + . . . + (1− α1) ν0

]
. (18)

Multiplying both sides of the balance Equation (11) by 1/lx and taking into account (14), (16)
and (18), we obtain

1
lx

PVNC = B
[
(1− α1)

{
0 pxν0 +

(
0 px −

1
m 0|qx

)
ν

1
m +

(
0 px −

2
m 0|qx

)
ν

2
m + . . .+

+

(
0 px −

m− 1
m 0|qx

)
ν

m−1
m

}
+ (1− α2)

{
1 pxν1 +

(
1 px −

1
m 1|qx

)
ν1+ 1

m + . . .+

+

(
1 px −

m− 1
m 1|qx

)
ν1+ m−1

m

}
+ . . . +

(
1− αy−x

) {
y−x−1 pxνy−x−1+

+

(
y−x−1 px −

1
m y−x−1|qx

)
νy−x−1+ 1
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+

(
y−x−1 px −

m− 1
m y−x−1|qx

)
νy−x−1+ m−1

m

}]
=

= B
y−x−1

∑
k=0

(1− αk+1)
m−1

∑
j=0

νk+ j
m

(
k px −

j
m k|qx

)
, (19)
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1
lx

PVP =
1
m 0|qxB (1− α1) ν0 +

1
m 0|qxB

[
(1− α1) ν0 + (1− α1) ν

1
m

]
+ . . .+

+
1
m 0|qxB

[
(1− α1) ν0 + (1− α1) ν

1
m + (1− α1) ν

2
m + . . .+

+ (1− α1) ν
m−1

m

]
+ . . . +

1
m y−x−1|qxB

[(
1− αy−x

)
νy−x−1+

+
(
1− αy−x−1

)
νy−x−1− 1

m + . . . + (1− α1) ν0
]
+

1
m y−x−1|qxB

[(
1− αy−x

)
νy−x−1+ 2

m +

+
(
1− αy−x

)
νy−x−1+ 1

m +
(
1− αy−x

)
νy−x−1 + . . . + (1− α1) ν0

]
=

=
B
m

m(y−x)−1

∑
k=1

� k−1
m �|qx

k

∑
j=1

(
1− α� j−1

m �+1

)
ν�

j−1
m �+

(j−1) mod m
m , (20)

1
lx

PVLS = Pl y−x pxνy−x. (21)

Relations (19)–(21) prove Proposition 3.

Proof of Proposition 1. Relations (1), (2) can be obtained from Proposition 3 if we set in (8)–(10) Pr = 0
and m = 1.

Proof of Proposition 2. Relations (3), (4), (6) can be obtained from Proposition 3 if we set in (8)–(10)
m = 1.

3. Scheme 4. Cumulative Model of Pension Insurance with Possibility of Inheritance Based on
Two Decrement Factors (Mortality and Disability) and with Annual Contributions and a Lump
Sum Payment on Retirement

This scheme differs from Scheme 2 (Section 2.2) in that it provides for exit from the pension fund
for reasons of death, old-age retirement or disability. A schematic drawing of this pension model is
presented in Figure 4.

Figure 4. Schematic drawing of the accumulative pension scheme with possibility of inheritance based
on two decrement factors and with annual contributions and a lump sum payment on retirement.
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For this scheme, some of the actuarial symbols introduced in Section 2 may have another
interpretation (the symbols x, y and dz have the same meaning as in Section 2):

• lz is the expected number of active insured persons of the pension scheme at age z.
• Pr is the present value of the net contributions refunded to the inheritors/insured if the

death/disability occurs before the retirement age. The net contributions are not refunded if
the death occurs within the last period of the insurance contract (i.e., within (y− 1, y)). If the
insured person has become disabled within (y− 1, y) and reaches the retirement age y, then the
pension fund pays him the lump sum at age y.

• iz is the number of insured persons who leave the pension scheme due to disability between ages
z and z + 1.

• n pz is the probability for an active insured aged z, of being active at age z + n. This probability is
equal to

n pz =
lz+n

lz
= 1−

n−1
∑

j=0

(
dz+j + iz+j

)
lz

.

If z = x and n = y− x, then according to our assumptions, we have

y−x px =
ly
lx

= 1−

y−x−2
∑

j=0

(
dx+j + ix+j

)
+ dy−1

lx
.

• n|qz is the probability for an active insured aged z, of being active at age z + n and leaving the
pension scheme during the next year (i.e., between ages z + n and z + n + 1). This probability is
equal to

n|qz =
lz+n − lz+n+1

lz
=

dz+n + iz+n

lz
. (22)

Proposition 4. Consider the pension scheme 4. Then, the balance equation has the form

Bäx:y−x| = B
y−x−1

∑
k=0

αk+1νk
k px + Pl y−x px νy−x + P′r , (23)

where

P′r =
Pr

lx
= B

y−x−1

∑
j=1

j−1|qx

j

∑
k=1

(1− αk)ν
k−1. (24)

In particular, the annual gross premium B is equal to

B =
Pl y−x px νy−x

äx:y−x| −
y−x−1

∑
k=0

αk+1νk
k px −

y−x−1
∑

j=1
j−1|qx

j
∑

k=1
(1− αk)νk−1

. (25)

Remark 1. Although the relations in Propositions 2 and 4 seem to coincide, they have different meanings,
since the relations in Proposition 4 contain decrement functions and probabilities. In particular, äx:n| is the
decrement n-year temporary life annuity due.

The proof of this proposition is similar to the proof of Proposition 3 with m = 1. One can do this
with the help of Table 2.
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Table 2. Present values of individual net contributions and payments to the inheritors by period
(except the last line). The last line consists of the present value of the lump sum payments.

Age PVNCs PVPs

x lxB (1− α1) ν0 0
x + 1 lx+1B (1− α2) ν1 (dx + ix) B (1− α1) (i + 1) ν1 =

= (dx + ix) B (1− α1) ν0

x + 2 lx+2B (1− α3) ν2 (dx+1 + ix+1) B
[
(1− α1) (i + 1)2+

+ (1− α2) (i + 1)] ν2 =
= (dx+1 + ix+1) B

[
(1− α1) ν0 + (1− α2) ν1]

...
...

...
y− 1 ly−1B

(
1− αy−x

)
νy−x−1 (

dy−2 + iy−2
)

B
[
(1− α1) ν0 + (1− α2) ν1+

+ . . . +
(
1− αy−x−1

)
νy−x−2]

PVLS

y 0 Pllyνy−x

4. Simulation Results and Discussion

A simulation model was developed to analyze the constructed schemes. The annual gross
premium was calculated on the base of this simulation model for the schemes with one decrement
factor (Sections 2.1–2.3) and for the scheme with two decrement factors (Section 3). In the calculations,
the authors used the male/female mortality table of the Russian Federation for schemes with one
decrement factor and the decrement table for the scheme with two factors. A comparative analysis of
these four schemes was also carried out.

For calculation purposes, an Excel macro code was written in the VBA programming language
(Visual Basic for Applications).

In our calculations, we assumed (we keep the notation of Sections 2 and 3)

1. The retirement age y = 55 or 60 for females and 60 or 65 for males.
2. The age x of the insured person ranges from 18 to y.
3. The annual premium loads α1, . . . , αy−x are selected by two rules (deterministic and random

rules). Under the deterministic rule, the premium load increases every year by a fixed value,
for example by 1%: αk+1 = αk + 0.01, k = 1, . . . , y− x− 1 for a given α1 (for example α1 = 0.05).
Under the random rule, the premium loads are generated by the Excel built-in function RAND.
Recall that RAND returns an evenly distributed random real number greater than or equal to 0
and less than 1.

4. The effective annual interest rate i = 3%, 4% or 5%.
5. The lump sum payment may take any non-negative value.

The calculation results show that all the constructed schemes are qualitatively adequate, namely:

• All other things equal, when the accumulation period decreases, the contribution size B increases.
The results of some scenarios are shown in Figure 5. In particular, since females reach retirement
age earlier than males, the possible accumulation period for females is always shorter. Hence,
the contribution size for females is always higher than for males (see Figure 6).

• All other things equal, when the interest rate i increases, the contribution size B decreases.
The results of some scenarios are shown in Figure 7.
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Figure 5. Gross premium size as a function of the accumulation period.

Figure 6. Gross premium size for males and females.

Figure 7. Gross premium size as a function of the interest rate.
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• All other things equal, when the lump sum payment Pl decreases the contribution size B also
decreases. Namely if we replace Pl by rPl then B is replaced by rB and vice versa. This immediately
follows from (2), (6), (10) and (25). The results of some scenarios are shown in Figure 8.

• For Scheme 3: the lower number of contributions m per year, the higher contribution size B.

Let us now give a comparative analysis of the constructed schemes (see Figure 9).

• Consider schemes with one decrement factor (mortality) and annual contributions (Schemes 1
and 2). Then for both genders, all other things equal, the scheme without inheritance (Scheme 1)
is the cheapest. This immediately follows from (2) and (6).

• Consider schemes with inheritance and one decrement factor (Schemes 2 and 3). Then for both
genders the scheme with at least two contributions per year is more expensive than the scheme
with annual contributions (Scheme 2).

• Consider schemes with inheritance and annual contributions (Schemes 2 and 4). Then the scheme
with two decrement factors (Scheme 4) is the cheapest.

Figure 8. Gross premium size as a function of the lump sum payment.

Figure 9. Comparative analysis of Schemes 1–4.
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5. Conclusions

In this work, four accumulative defined contribution pension schemes with a lump sum payment
on retirement are proposed. These schemes differ in relation to inheritance and provide various
decrement factors. The availability of various schemes allows the insured to choose the most suitable
scheme depending on the size of the contribution or the size of the lump sum payment. When choosing
a pension scheme, the insured person may have health or family reasons, for example, elderly parents
would like to ensure the future of their minor children.

The results of this work are directly related to the Russian draft law of a new system of voluntary
retirement savings, called Guaranteed Retirement Plan. In particular, these results are of practical
importance for the Pension Fund of the Russian Federation, as well as for private pension funds and
pension actuaries in general.

Let us summarize the main results of this work. For each scheme, we use standard methods
of actuarial calculations to construct the balance equation and to obtain an expression for the gross
premium. A simulation model was developed to analyze the constructed schemes. The gross premium
was calculated on the base of this simulation model. A comparative analysis of various schemes was
also carried out. According to our calculation, we obtained

• Scheme 1 is the cheapest for the insured person, since it does not provide for the possibility of
inheritance and takes into account only one decrement factor (mortality).

• For schemes with inheritance and annual contributions, the scheme with the two decrement
factors is the cheapest.

• Consider schemes with one decrement factor (mortality). Then, Scheme 3 with m > 1 is the most
expensive in terms of total annual contribution.

This work can be developed in two directions. It is interesting to consider schemes with a limited
inheritance period. This allows one to reduce the size of the gross premium as well as the obligations
of the insurer. Since some policyholders may lose jobs and/or do not have funds to pay contributions
in full and on time for a certain period, it is interesting to consider schemes that take this into account.
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Abstract: A single-server queueing system with a finite buffer, several types of impatient customers,
and non-preemptive priorities is analyzed. The initial priority of a customer can increase during
its waiting time in the queue. The behavior of the system is described by a multi-dimensional
Markov chain. The generator of this chain, having essential dependencies between the components,
is derived and formulas for computation of the most important performance indicators of the system
are presented. The dependence of some of these indicators on the capacity of the buffer space is
illustrated. The profound effect of the phenomenon of correlation of successive inter-arrival times and
variance of the service time is numerically demonstrated. Results can be used for the optimization of
dispatching various types of customers in information transmission systems, emergency departments
and first aid stations, perishable foods supply chains, etc.

Keywords: priority system; marked Markov arrival process; phase-type distribution; change of the
priority; dispatching

1. Introduction

Queueing theory is successfully applied in various fields of human activity for optimization of the
consumption and scheduling certain restricted resources and provisioning the high quality of service.
The overwhelming majority of the existing literature in this theory is devoted to the systems with
homogeneous customers; see, e.g., [1]. Because real-world customers are very often heterogeneous
in many respects, new developments in the analysis of queues with heterogeneous customers are
of great importance. The heterogeneity of the customers with respect to the required resources,
level of service, and their economical or social value causes the necessity of the optimal management
of their service. Such management can be implemented, e.g., in various generalizations of polling
disciplines, processor sharing, applying versatile priority schemes. For some references, see, e.g., [2].
Priority schemes assume the assignment of a certain priority to each class of customers and providing
the advantage of access to the restricted resource (we will call this resource as a server) to available
customers having the highest priority. Static priorities suggest that once the priorities are assigned,
a low priority customer does not have any chance to start service until the server finishes service of all
high priority customers presenting in the system. This may cause a low priority customer to wait in
the queue much longer than the just arrived high priority customer. To avoid this evident unfairness
to the low priority customers, dynamic priorities were taken into consideration. The dynamic priority
assumes, e.g., that the low priority customers obtain the chance to start service in presence of high
priority customers when: (i) the queue of the low priority customers exceeds some threshold values,
see, e.g., [3–6]; or (ii) some relation between the queue lengths of priority and non-priority customers is
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fulfilled, see, e.g., [7]; or (iii) a certain limit of the number of high priority customers that can overtake
the low priority customers is exceeded, see, e.g., [8]. The use of dynamic priorities allows to essentially
improve the quality of the system operation. The shortcomings of such priorities are: (i) the necessity
to permanently monitor the values of the queue length of different classes of customers what is not
always possible (or costly) in some real-world systems and (ii) dependence of the waiting time of a
concrete low priority customer on the rate of future arrival of other low priority customers. Another
opportunity of providing more fair access to low priority customers is assumed in the models where
a low priority customer can become higher priority customer after a certain period of waiting in the
buffer. A currently popular model assumes that the low priority customers accumulate a priority
during the stay in the queue. The accumulation of the priority may be described as some function,
e.g., linear or piece-wise linear function, of the time spent by the customer in a queue. The rate of the
increase of the priority may depend on the class to which the customer belongs. Such a type of model
was considered, e.g., in the papers [9–14]. The main interest to the queues with accumulating priorities
stems from their applicability to modeling operation of emergency departments of hospitals. Arriving
customers (patients) are preliminarily sorted (triaged) into several groups according to the severity of
the patient’s condition. However, during the waiting for treatment by the doctors, a state of health
of some patient, which was initially classified as not requiring very urgent treatment, can become
essentially worse and this patient has to be transferred to the group of very urgent patients. Because in
the described situation the increase of the priority of a customer is not defined by some deterministic
function of the elapsed waiting time, another type of model, with the randomized change of a priority,
exists in the literature. This type of model was considered, e.g., in [15,16] and the recent paper [17].
The table presenting the state of art in the analysis of queues with priority change after some random
amount of time is presented in [17]. It follows from that table that only a few papers consider the
models where the arrival processes of customers of different types are not defined by the stationary
Poisson arrival process, while it is already well recognized that the flows in many real systems and
networks are poorly described by the stationary Poisson arrival process. The rare exceptions, when
a more complicated arrival process is considered, are the papers [18–20]. In all these papers, an
arbitrary number of priority classes is suggested. In [18], it is assumed that all the flows, except the
flow having the highest priority, are described by the stationary Poisson arrival process. The arrival
flow of customers having the highest priority is described by a much more general Markov arrival
process (MAP); see, e.g., [21–23] for more details. In [19,20], the arrival flow is described by even
more general marked Markov arrival process (MMAP). The MMAP, as the essential generalization
of the MAP to the case of heterogeneous customers, was introduced in [24]. The models with the
MAP or MMAP are much more difficult for analysis than the models with the stationary Poisson
arrival process. This explains why only some bounds and tail distributions were obtained in [18]
and only the problem of establishing the ergodicity condition (but not the problem of computation of
the stationary distribution of the system states and performance measures) is solved in [19,20]. The
problem of computation of the stationary distribution of the system states is successfully solved in [17]
but only for two classes of customers. The advantage of our paper over [17] is that we suggest any
finite number R of priority classes. The arrival process is described by the MMAP. The system has a
finite buffer and any arriving customer is admitted to the buffer if it is not full. If the buffer is full while
some waiting customers have lower priority than the arriving customer, the arriving customer pushes
out from the buffer a customer having the lowest priority among the presenting ones. During the stay
in the buffer, after an exponentially distributed time, any customer can increase its priority. The service
time has a phase-type distribution. After the service completion, the next service is provided for a
customer with the highest priority among the presented in the buffer.

It is worth mentioning that the problem of assigning the priorities to different classes of customers
is often closely related to the problem of the account of possible impatience of customers from different
classes, e.g., if customers of two types are almost equally valuable for the system, the more impatient
customers should be given higher priority (and the possibility to increase the priority during the

58



Mathematics 2020, 8, 1292

waiting time in a buffer) to avoid the loss of the customer and possible starvation (and poor utilization)
of the server in the future. In our model, we pay significant attention to the account of impatience.

Besides the above-mentioned popular model of treatment of patients in a hospital emergency
department, we mention the following examples of potential applications of the considered model to
the analysis and optimization of real-world systems.

(1) Let us consider the operation of an information transmission channel. Several kinds of information
having approximately the same transmission times, but having different importance for the
system and different tolerance to the delay are transmitted through this channel. Initially,
the priorities can be assigned to the different types of information depending on their importance.
However, to avoid the loss of low priority and delay-sensitive information units (and possible
under-utilization of the channel in the future), it makes sense to allow a low priority information
unit whose obsolescence time is almost expired to become a high priority information unit and
receive the service soon.

(2) Let us consider the operation of a first aid station. The station has to accept the calls for help,
categorize the urgency of the required help, and to manage the assignment of the necessary
ambulance car for providing help, e.g., in the Republic of Belarus (as of 1 January 2020), there are
three possible categories of the urgency of the required help.

(a) An emergency call—when a patient suddenly has diseases, conditions and (or) exacerbation
of chronic diseases that pose a threat to the patient’s life and (or) others requiring emergency
medical intervention;

(b) An urgent call is associated with a sharp deterioration in the patient’s health status when it
is not possible to clarify the reasons for treatment;

(c) A less urgent call—when the patient suddenly has diseases, conditions, and/or exacerbation
of chronic diseases without obvious signs of a threat to the patient’s life, requiring urgent
medical intervention.

Accordingly, the emergency call has the highest priority, the urgent call has the middle priority,
and the less urgent calls have the lowest priority. However, along with this categorization and
establishing the priority in service, there exist strict standards for starting the provisioning of help.
A dispatcher has to assign an ambulance car for providing help to patients before the fixed deadlines.
In Minsk, the capital of the Republic of Belarus, these standards are fixed as four minutes for the
emergency call, fifteen minutes for the urgent call, and sixty minutes for the less urgent call. Violation of
this standard is punished. In this example, the service time can be interpreted as a time between the
sequential release of ambulance cars. The service time essentially depends on the number of available
cars and medical teams. The results of the analysis of the model given in our paper can be useful for
the optimization of the work of the described first aid station via a proper choice of the number of
ambulance teams to guarantee the required quality of service.

Methodological value of the paper consists of presenting a way for analysis of various transitions
of a set of interacting Markov processes, which define the dynamics of the number of customers of
several types in the system, caused by new customers of various types arrival, service completion,
departure due to impatience, changing the priority, and pushing out the low priority customers in the
case of the buffer overflow.

The organization of the text is as follows. In Section 2, the mathematical model is described
and graphically illustrated. The multi-dimensional Markov chain including as components the total
number of customers in the system, the states of the underlying processes of customers arrival and
service, and the number of customers of all types presenting in the system is defined in Section 3.
The set of matrices defining the probabilities or intensities of transitions of the number of customers of
all types are given and the generator of the Markov chain is written down. Formulas for computation
of the main performance measures of the system are presented in Section 4. The numerical example

59



Mathematics 2020, 8, 1292

illustrating the dependence of performance measures of the system on the capacity of the buffer is
presented in Section 5. The importance of account of a complicated pattern of arrival process and
variance of the service time is demonstrated there. Section 6 concludes the paper.

2. Mathematical Model

We consider a single-server queuing system where service is provided to R types of customers.
The structure of the system is presented in Figure 1.

MMAP

�

ty
pe 1

type
R

PH

�
1

R

�

. . .
type 2

R

�2

highest priority

lowest priority

Buffer of capacity N

Figure 1. Structure of the system.

The customer arrival process is assumed to be defined by the MMAP (see, e.g., [24]). As the
recent papers where the queuing models with the MMAP are analyzed, we can mention, e.g., [25–27].

Customer arrivals in the MMAP can occur at the moments of the transitions of the irreducible
continuous-time Markov chain νt, t ≥ 0, having a state space {1, 2, ..., W}. The MMAP is completely
described by the square matrices D0, Dr, r = 1, R. Hereinafter, the denotation like r = 1, R means that
the parameter r takes values {1, . . . , R}.

The matrix Dr defines the transition intensities of the underlying process νt that lead to arrival of a
type-r customer, r = 1, R. The non-diagonal entries of the matrix D0 define the transition intensities of
the underlying process that do not lead to any arrival. The moduli of the diagonal entries of the matrix
D0 define the intensity of the the process νt departure of from its states. The matrix D(1) = D0 + D

where D =
R
∑

r=1
Dr is the generator of the underlying process.

The mean arrival rate λ is defined by λ = θDe where θ is the invariant probability row vector
of the underlying process. This vector is computed as the unique solution for the finite system
θD(1) = 0, θe = 1. Hereinafter, e denotes a column vector of appropriate size consisting of 1s and 0

denotes a row vector consisting of zeroes.
The mean rate λr of type-r customers arrival is computed as λr = θDre, r = 1, R.

The squared coefficient of variation c2
var of the intervals between successive arrivals is given by

c2
var = 2λθ(−D0)

−1e− 1. The coefficient of correlation ccor of two successive intervals between arrivals
is given by

ccor = (λθ(−D0)
−1D(−D0)

−1e− 1)/c2
var.

The system has the finite common buffer space for storing the customers that arrive when the
server is busy. The capacity of the buffer is N, N ≥ 1. Therefore, the total number of customers of all
types, which can stay in the system simultaneously, is restricted by the number N + 1. If a customer
of any type arrives when the server is idle, the customer immediately starts processing by the server
(service). If the server is busy but the buffer is not full, the customer of any type is placed into the buffer
dedicated to this type of customers. There is no specific restriction on the capacity of the dedicated
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buffers, except that the total number of the customers staying in all these buffers always does not
exceed the capacity N.

Customers of different types have different priorities. The priority defines the fate of the customer
if it arrives when the buffer is full and the order of picking up the customers from the buffer when the
server finishes service. We assume that type-r, r = 1, R, customers have the non-preemptive priority
over type-l customers, l = r + 1, R. This means the following.

(1) If during the arrival of a type-r customer the server is busy and the number of customers in
the buffer is N and there are no type-l, l = r + 1, R, customers, the arriving customer is lost.
If there are type-l, l = r + 1, R, customers in the buffer then, with the probability q, the arriving
customer is accepted to the buffer and one of the customers with the lowest priority among the
presenting in the buffer is lost. With the complimentary probability 1− q, the arriving customer
is lost despite the presence in the system of customers with lower priority.

(2) Type-1 customers have the highest priority among all types of customers and if type-1 customers
present in the buffer at a service completion epoch, one of these customers starts service, ...,
type R customers have the lowest priority. A customer of such a type has a chance to start service
only if customers of types 1, 2, . . . , R− 1 are absent in the buffer. Service of any customer cannot
be preempted (interrupted) in the case of an arrival of a customer having a higher priority.

We assume that during the stay in the system, each customer of type-r, r = 2, R, can increase its
priority. It means that after exponentially distributed time with the parameter αr a type-r customer
becomes a type-l customer with the probability pr,l , l = 1, r− 1, independently of other customers.

Here,
r−1
∑

l=1
pr,l = 1, r = 2, R.

It is worth noting that more popular in the existing literature assumption is that only the
head-of-the-line customer of each type can make a jump to the end of the queue of higher
priority customers. We assume that each customer of any type can jump to higher priority class,
independently of other customers. This means that not only the head-of-the-line customer has a
clock counting the time till the jump, but each customer (not of the highest priority) has its own clock.
Our assumption seems more realistic in some potential applications, e.g., health of any patient, not only
the head-of-the-line patient in emergency department modeling example, can suddenly become worse.
The same is true in applications where various information units become obsolete independently of the
other units or different perishable foods have independent spoiling times. Note also, that, using the
slight modification of some matrix blocks defined and constructed in the next section, the presented
results can be extended to the models with the head-of-the-line customer priority jumps as well.

Customers staying in the buffer are impatient and can leave the system without service,
independently of other customers, if the waiting time is too long. A type-r customer leaves the
system without service after an exponentially distributed patience time with the parameter γr , γr ≥ 0.
Let us denote γ = (γ1, γ2, . . . , γR). If the customer changes the priority, its patience time starts from
the early beginning with the parameter corresponding to the new priority.

We assume that the service time of any type customer has a PH distribution with the underlying
Markov process mt, t ≥ 0, having a finite state space {1, . . . , M, M + 1} and the irreducible
representation (β, S), see, [28]. We denote S0 = −Se. The mean service time is given by b1 = β(−S)−1e.
The mean service rate can be compute as μ = b−1

1 .
If during the service completion epoch there are customers in the buffer, the first customer

among having the highest priority starts service. Otherwise, the server remains idle until the next
arrival moment.
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3. Process of the System States

The behavior of the system under study can be described by the regular irreducible
continuous-time Markov chain

ξt = {nt, νt, mt, η
(1)
t , . . . , η

(R)
t }, t ≥ 0,

where, during the epoch t,

• nt is the number of customers in the system, nt = 0, N + 1;
• νt is the state of the underlying process of the MMAP, νt = 1, W;
• mt is the state of the underlying process of PH service process, mt = 1, M;

• η
(r)
t is the number of type-r customers in the buffer, η

(r)
t = 0, nt − 1, r = 1, R,

R
∑

r=1
η
(r)
t = nt − 1,

nt > 1.

To investigate the Markov chain ξt, t ≥ 0, let us enumerate its states in the direct lexicographic
order of the components νt and mt, and in the reverse lexicographic order of the components
η
(1)
t , . . . , η

(R)
t .

The most technically difficult and important part of the research is the analysis of the transitions
of the process of the number of different type customers in the buffer. Let us firstly consider the

process ζ
(n)
t = {η(1)

t , . . . , η
(R)
t }, t ≥ 0, η

(r)
t = 0, n, r = 1, R,

R
∑

r=1
η
(r)
t = n. The process ζ

(n)
t describes

the transitions of the number of different types customers in the buffer when the total number of
customers in the buffer is n. First, we present the algorithms for computing the set of the matrices that
define the transition probabilities or transition intensities of the process ζ

(n)
t at the moments of the

changes, due to various reasons, of the components of this process when n, n = 1, N, customers stay
in the buffer.

Lemma 1.

(a) Let Ln(γ) be the matrix the entries of which define the intensities of transitions when some customer leaves
the buffer due to impatience.

The matrices Ln(γ), n = 1, N, can be computed by the following way:

1. Calculate the matrices L(l)
n (γ) using the recursive formulas:

L(0)
n (γ) = nγR,

L(l)
n (γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nγR−l I O · · · O

L(l−1)
1 (γ) (n− 1)γR−l I · · · O

O L(l−1)
2 (γ) · · · O

...
...

. . .
...

O O · · · γR−l I

O O · · · L(l−1)
n (γ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, l = 1, R− 1.

Here and after, I is the identity matrix and O is a zero matrix of an appropriate dimension;

2. Calculate the matrices Ln(γ) as Ln(γ) = L(R−1)
n (γ), n = 1, N.

(b) Let Yn = Yn(H) be the matrix the entries of which define the intensities of transitions that occur when
some customer increases its priority. Here, the matrix H defines the intensities of priorities increasing and
has the following form:
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H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0

α2 0 0 · · · 0 0

p3,1α3 p3,2α3 0 · · · 0 0
...

...
. . .

...
...

...
pR−1,1αR−1 pR−1,2αR−1 pR−1,3αR−1 · · · 0 0

pR,1αR pR,2αR pR,3αR · · · pR,R−1αR 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Calculation of the matrices Yn(H), n = 1, N, can be performed as follows:

1. Calculate the matrices Hj, j = 1, R− 2, which are obtained by deletion of R− 2− j first rows and
columns from the matrix H.

2. Calculate the matrices Z(l)
n (Hj) using the recursive formulas:

Z(0)
n (Hj) = nhj

rj ,1
, n = 1, N, j = 1, R− 2,

Z(l)
n (Hj) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nhj
rj−l,1 I O · · · O

Z(l−1)
1 (Hj) (n− 1)hj

rj−l,1 I · · · O

O Z(l−1)
2 (Hj) · · · O

...
...

. . .
...

O O · · · hj
rj−l,1 I

O O · · · Z(l−1)
n (Hj)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

l = 1, . . . , rj − 2, n = 1, N, j = 1, R− 2,

where hj
a,b is the (a, b)th entry of the matrix Hj and rj is the number of rows of the matrix Hj.

3. Calculate the matrices X(l)
n (Hj) using the recursive formulas:

X(0)
n (Hj) = hj

1,rj
, n = 0, N − 1, j = 1, R− 2,

X(l)
n (Hj) =

⎛⎜⎜⎜⎜⎜⎜⎝
hj

1,rj−l I X(l−1)
0 (Hj) O · · · O O

O hj
1,rj−l I X(l−1)

1 (Hj) · · · O O
...

...
...

. . .
...

...
O O O · · · hj

1,rj−l I X(l−1)
n (Hj)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

l = 1, rj − 2, n = 0, N − 1, j = 1, R− 2.

4. Calculate the matrices Zn(Hj) = Z
(rj−2)
n (Hj), n = 1, N, and Xn(Hj) = X

(rj−2)
n (Hj), n =

0, N − 1, j = 1, R− 2.
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5. Calculate the matrices Y(j)
n , n = 1, N, using the recursive formulas:

Y(0)
n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 nHM−1,M 0 · · · 0 0
HM,M−1 0 (n− 1)HM−1,M · · · 0 0

0 2HM,M−1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 HM−1,M
0 0 0 · · · nHM,M−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Y(j)
n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O nX0(Hj) O · · · O O

Z1(Hj) Y(j−1)
1 (n− 1)X1(Hj) · · · O O

O Z2(Hj) Y(j−1)
2 · · · O O

...
...

...
. . .

...
...

O O O · · · Y(j−1)
n−1 1Xn−1(Hj)

O O O · · · Zn(Hj) Y(j−1)
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

j = 1, R− 2.

6. Calculate the matrices Yn(H) as Yn(H) = Y(R−2)
n , n = 1, N.

(c) Let An(h), n = 0, N − 1, be the matrix the entries of which define the transition probabilities at
the moment when a new customer arrives to the system and the system capacity is not exhausted
(there are n, 0 ≤ n < N, customers in the buffer). Here, the row vector h has the following
form h = (h1, h2, . . . , hR) where hr is the probability that the arrived to the system customer has
type-r, r = 1, R.

Computation of the matrices An(h) can be performed as follows:

A0(h) = h and An(h) = A(R−2)
n (h) where the matrices A(l)

n (h) of block size (n + 1) × (n + 2),
n = 1, N − 1, are recursively computed as

A(0)
n (h) =

⎛⎜⎜⎜⎜⎝
hR−1 hR 0 · · · 0 0

0 hR−1 hR · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · hR−1 hR

⎞⎟⎟⎟⎟⎠ ,

A(l)
n (h) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

hR−l−1 h̄(l) 0 0 · · · 0 0

0T hR−l−1 I A(l−1)
1 O · · · O O

0T O hR−l−1 I A(l−1)
2 · · · O O

...
...

...
...

. . .
...

...
0T O O O · · · hR−l−1 I A(l−1)

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

l = 1, R− 2,

where the vectors h̄(l) are defined as h̄(l) = (hR−l , hR−l+1, . . . , hR), l = 1, R− 2.
(d) Let E−n , n = 1, N, be the matrix the entries of which define the transition probabilities at the moment when

a customer with the maximal (among currently presenting in the system) priority is chosen for service.

The matrices E−n can be computed as
E−1 = (1, 1, . . . , 1︸ ︷︷ ︸

R

)T ,
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E−n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
K(n)

R

O
K(n)

R−1×(K
(n)
R −K(n)

R−1)
I
K(n)

R−1

. . .
O

K(n)
2 ×(K

(n)
R −K(n)

2 )
I
K(n)

2

O
K(n)

1 ×(K
(n)
R −K(n)

1 )
I
K(n)

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, n = 2, N,

where

K(n)
r =

(
n + r− 2

r− 1

)
, r = 1, R.

Here, (n+r−2
r−1 ) = Cr−1

n+r−2 is the binomial coefficient.

(e) Let the entries of the square matrix Êr, r = 1, R, of size (N+R−1
R−1 ) define the transition probabilities at

the moment when a type-r customer arrives at the system when there are N customers in the buffer and
the arriving customer tries to force out a customer with a lower priority from the buffer. All entries
in each row of this matrix are equal to zero except one entry which is equal to 1. We assume that each
row and column of the matrix Êr correspond to some state {η1, η2, . . . , ηR} of the process ζt, t ≥ 0.
Note, that all states of the process ζt, t ≥ 0, are enumerated in the reverse lexicographical order of
components η

(1)
t , . . . , η

(R)
t . For example, the first row and column of the matrix Êr correspond to the

state {N, 0, 0, . . . , 0}, the second row and column correspond to the state {N − 1, 1, 0, . . . , 0},. . ., the last
row and column correspond to the state {0, 0, 0, . . . , N}. In the row of the matrix Êr that corresponds
to the state {η1, η2, . . . , ηR}, the entry 1 is located in the column that corresponds to the same state
{η1, η2, . . . , ηR} only in the case if ηl = 0 for all l, R ≥ l > r. In this case, the arriving type-r customer
is lost, because the customers with lower priority are absent in the buffer. If ηl > 0 for some l, R ≥ l > r
and r∗ is a maximum of such values l, then the entry 1 is located in the column that corresponds to the
state {η1, . . . , ηr−1, ηr + 1, ηr+1, . . . , ηr∗−1, ηr∗ − 1, 0, . . . , 0}. In this case, the customer of type-r∗ has
the lowest priority among the customers presenting in the system and an arriving type-r customer forces
out one type-r∗ customer which departs from the system (is lost).

Proof. The derivation of the form of the matrices that describe the transitions of the process ζ
(n)
t , t ≥ 0,

is quite complicated and cumbersome. In derivations, we used some ideas of the paper [29]. To explain
the scheme of the derivation of the form of the presented matrices, we show here how to compute the
matrices Ln(γ), n = 1, R, the entries of which define the intensities of transitions of the components
of the process ζ

(n)
t , t ≥ 0, when some customer leaves the buffer due to impatience. The rest of the

matrices that define the intensities of transition of the components of the process ζ
(n)
t , t ≥ 0, can be

obtained by the same way based on the careful account of possible transitions.
Computation of the matrices Ln(γ) can be performed as follows. Let us introduce the matrices

L(l)
n (γ) of the transition intensities of the components n(R)

t , . . . , n(R−l)
t at the moment when there are n

customers in the buffer and one of the customers leaves it due to impatience conditional on the fact
that all customers have types R, R− 1, . . . , R− l, where l = 0, R− 1.

It is clear, that for l = 0, the matrices L(0)
n (γ) have the scalar form L(0)

n (γ) = nγR, because all n
customers are of type-R in this situation.

Let us consider the matrix L(1)
n . This matrix defines the transition intensities of the components

n(R)
t , n(R−1)

t at the moment when there are n customers in the buffer and one of the customers leaves
it due to impatience conditional on the fact that all customers have types R or R − 1. Taking into
account the reverse lexicographic order of components, by definition the first row of the matrix L(1)

n (γ)

corresponds to the state where all n customers are of type-(R− 1), the second row corresponds to
the state where n− 1 customers are of type-(R− 1) and one customer is of type-R, etc., the last row
corresponds to the state where all n customers are of type-R. After the customer leaves the system,
the number of customers in the buffer decreases by 1. Thus, the first column of the matrix L(1)

n (γ)
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corresponds to the state where all n− 1 customers are of type-(R− 1), the second column corresponds
to the state where n− 2 customers are of type-(R− 1) and one customer is of type-R, etc., the last
column corresponds to the state where all n− 1 customers are of type-R. Taking into account these
considerations, it is easy to verify that the matrix L(1)

n (γ) of size (n + 1)× n has the form

L(1)
n (γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nγR−1 0 · · · 0

γR (n− 1)γR−1 · · · 0

0 2γR · · · 0
...

...
. . .

...
0 0 · · · γR−1

0 0 · · · nγR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

or

L(1)
n (γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nγR−1 0 · · · 0

L(0)
1 (γ) (n− 1)γR−1 · · · 0

0 L(0)
2 (γ) · · · 0

...
...

. . .
...

0 0 · · · γR−1

0 0 · · · L(0)
n (γ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the same reasonings, it can be shown that the matrix L(l)
n (γ) of block size (n + 1)× n has

the following form

L(l)
n (γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nγR−l I O · · · O

L(l−1)
1 (γ) (n− 1)γR−l I · · · O

O L(l−1)
2 (γ) · · · O

...
...

. . .
...

O O · · · γR−l I

O O · · · L(l−1)
n (γ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, l = 2, R− 1.

It is clear that the required matrices Ln(γ) can be computed as Ln(γ) = L(R−1)
n (γ), n = 1, N.

This proves the proposed formulas for computation of the matrices Ln(γ).

Remark 1. Derivation of the form of the matrices defined in Lemma 1 creates an opportunity to analyze not
only the system under study in this paper but also many other queueing systems with a finite buffer and many
types of customers having different priorities.

Let us introduce the following notation:

• ⊗ and⊕ indicate the symbols of the Kronecker product and sum of matrices, respectively, see [30];
• hr = (0, . . . , 0︸ ︷︷ ︸

r−1

, 1, 0, . . . , 0︸ ︷︷ ︸
R−r

), r = 1, R;

• În = −diag{Yne + Lne}, n = 1, N, where diag{. . . } denotes the diagonal matrix with the
diagonal entries defined by the vector in the brackets;

• Kn = (n+R−1
R−1 ), n = 1, N.
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By analyzing all possible transitions of the Markov chain ξt, t ≥ 0, during an interval of
infinitesimal length and rewriting the intensities of these transitions in the block matrix form, we obtain
the following result.

Theorem 1. The infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has the following
block-tridiagonal structure

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
Q0,0 Q0,1 O O . . . O O
Q1,0 Q1,1 Q1,2 O . . . O O
O Q2,1 Q2,2 Q2,3 . . . O O
...

...
...

...
. . .

...
...

O O O O . . . QN+1,N QN+1,N+1

⎞⎟⎟⎟⎟⎟⎟⎠ .

The non-zero blocks are defined as follows:

Q0,0 = D0,

Q1,1 = D0 ⊕ S,

Qn,n = D0 ⊕ S⊗ IKn−1 + IWM ⊗ (Yn−1 + În−1), n = 2, N,

QN+1,N+1 = (D0 ⊕ S)⊗ IKN + IWM ⊗ (YN + ÎN) + (1− q)
R

∑
r=1

Dr ⊗ IMKN+

q
R

∑
r=1

Dr ⊗ IM ⊗ Êr,

Q0,1 =
R

∑
r=1

Dr ⊗ β,

Qn,n+1 =
R

∑
r=1

Dr ⊗ IM ⊗ An−1(hr), n = 1, N,

Q1,0 = IW ⊗ S0,

Qn,n−1 = IW ⊗ S0β⊗ E−n−1 + IWM ⊗ Ln−1(γ), n = 1, N + 1.

The Markov chain ξt, t ≥ 0, is an irreducible and has a finite state space. Therefore, the stationary
probabilities of the system states

π(n, ν, m, η(1), . . . , η(R)) =

= lim
t→∞

P{nt = n, νt = ν, mt = m, η
(1)
t = η(1), . . . , η

(R)
t = η(R)}

always exist.
Let us form the row vectors πn, n = 0, N + 1, of these probabilities which are enumerated in the

reverse lexicographic order of the components η
(1)
t , . . . , η

(R)
t and the direct lexicographic order of the

components νt and mt.
It is well known that the probability vectors πn, n = 0, N + 1, satisfy the following system of

linear algebraic equations:
(π0, π1, . . . , πN+1)Q = 0, (1)

(π0, π1, . . . , πN+1)e = 1

where Q is the infinitesimal generator of the Markov chain ξt, t ≥ 0.
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To compute the steady-state distribution of this Markov chain, it is necessary to solve system (1).
The matrix of this system has the block-tridiagonal structure. Markov chains having the structure of
the generator similar to the one defined in Theorem 1 are sometimes called in the existing literature as
the Level-Dependent Quasi-Birth-and-Death processes; see, e.g., [31]. System (1) is finite and can be
directly solved via the use of the variety of the standard computer programs. However, the number of
equations of the finite system (1) for queueing model under study can be large especially when the
buffer capacity N or the number of priority classes is large. Therefore, to effectively solve this system,
it is desirable to apply an algorithm that exploits the sparse block-tridiagonal structure of the generator
Q. In particular, the algorithm given in [32] can be recommended.

4. Performance Measures

The average number of customers in the buffer is

Nbu f f er =
N+1

∑
n=2

(n− 1)πne.

The average number N(r)
bu f f er of type-r, r = 1, R, customers in the buffer can be computed as

N(r)
bu f f er =

N+1

∑
n=2

πn(IWM ⊗ Ln−1(hr))e.

The intensity of the output flow of successfully serviced customers is

λout =
N+1

∑
n=1

πn(IW ⊗ S0 ⊗ IKn−1)e.

The intensity of the output flow of customers who leave the buffer due to impatience is

λimp =
N+1

∑
n=2

πn(IWM ⊗ Ln−1(γ))e.

The probability Ploss of loss of an arbitrary customer is computed

Ploss = 1− λout

λ
.

The probability Pimp−loss of loss of an arbitrary customer due to impatience is computed

Pimp−loss =
λimp

λ
.

The intensity λ
(r)
imp of the output flow of the type-r, r = 1, R, customers who leave the buffer due

to impatience is

λ
(r)
imp =

N+1

∑
n=2

πn(IWM ⊗ Ln−1(γr))e

where γr is the row vector of size R with all zero entries except the r-th entry which is equal to γr.
The average intensity λ̃(r) of the type-l, l = r + 1, R, customers transformation to the type-r,

r = 1, R− 1, customers is computed as

λ̃(r) =
R

∑
l=r+1

αl N
(l)
bu f f er pl,r.
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The probability P(r)
imp−loss, r = 1, R, of loss of an arbitrary type-r customer due to impatience can

be computed

P(r)
imp−loss =

λ
(r)
imp

λr + λ̃(r)
.

Here, we assume that λ̃(R) = 0.
The probability of an arbitrary type-r customer loss upon arrival without trying to force out a

customer with lower priority is

P(r)
ent−loss−without− f orce−out = (1− q)λ−1

r πN+1(Dr ⊗ IMKN )e, r = 1, R.

The probability of an arbitrary type-r customer loss upon arrival despite an attempt to force out a
customer with lower priority is

P(r)
ent−loss−with− f orce−out = qλ−1

r πN+1(Dr ⊗ IM ⊗ Ẽr)e, r = 1, R,

where the matrix Ẽr has all zero entries except the diagonal entries which are equal to the diagonal
entries of the matrix Êr.

The probability of an arbitrary customer loss upon arrival is

Pent−loss =

R
∑

r=1
((1− q)πN+1(Dr ⊗ IMKN )e + qπN+1(Dr ⊗ IM ⊗ Ẽr)e)

λ
.

The probability of an arbitrary type-r customer loss upon arrival is

P(r)
ent−loss = P(r)

ent−loss−with− f orce−out + P(r)
ent−loss−without− f orce−out, r = 1, R.

The probability that an arbitrary type-r customer meets the full buffer upon arrival and forces out
a customer with lower priority is

P(r)
f orce−out = qλ−1

r πN+1(Dr ⊗ IM ⊗ Ēr)e, r = 1, R,

where the matrix Ēr = Êr − Ẽr.
Let the square matrix Êr,l , r = 1, R− 1, l = r + 1, R, of size (N+R−1

R−1 ) define the transition

probabilities of the process ζ
(N)
t , t ≥ 0, at the moment when a type-r customer arrives to the system

when there are N customers in the buffer and the arriving customer forces out a type-l customer from
the buffer. This matrix is defined by analogy with the matrix Êr defined above. All entries in each
row of this matrix are equal to zero except one entry which can be equal to 1. We assume that each
row and column of the matrix Êr,l correspond to some state {η1, η2, . . . , ηR} of the process ζ

(N)
t , t ≥ 0.

In the row of the matrix Êr,l that corresponds to the state {η1, η2, . . . , ηR}, the entry 1 is located in the
column that corresponds to the state {η1, . . . , ηr−1, ηr + 1, ηr+1, . . . , ηl−1, ηl − 1, 0, . . . , 0} only in the
case if ηm = 0 for all m, R ≥ m > l, and ηl > 0. If this condition is false, all entries of this row are
zero entries.

The intensity λ
(r)
f orce−out of forcing out from the buffer type-r, r = 2, R, customers is

λ
(r)
f orce−out = q

r−1

∑
l=1

πN+1(Dl ⊗ IM ⊗ Êl,r)e.
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The probability Pf orce−loss of the loss of an arbitrary customer due to forcing out is

Pf orce−loss =

R
∑

r=2
λ
(r)
f orce−out

λ
.

The probability P(r)
f orce−loss of the loss of an arbitrary type-r, r = 2, R, customer due to forcing

out is

P(r)
f orce−loss =

λ
(r)
f orce−out

λr + λ̃(r)
.

5. Numerical Example

In this section, we illustrate the dependencies of some performance measures of the system on the
buffer capacity N and show the poor quality of evaluation of the value of the loss probability via the
following three simplifications of the model: (i) the arrival flow is assumed to be described not by the
MMAP, but by the superposition of the stationary Poisson processes; (ii) the service time distribution
is assumed to be not of a general phase-type, but exponential; (iii) the arrival flow is assumed to be
the superposition of the stationary Poisson processes and the service time distribution is assumed to
be exponential.

In this illustrative example, we consider a small information transmission device that is designed
for transmission of four types of information. We assume that the distribution of the size of various
types information units is the same. The information units of various types have different importance
for the system and, correspondingly, have different priority. Let us assume that the arrivals of the units
(customers) of different types are modeled by the MMAP arrival process defined by the matrices:

D0 =

(
−1.8 0.0
0.0 −0.4458

)
, D1 =

(
0.51 0.04

0.006 0.1047

)
,

D2 =

(
0.31 0.01
0.0 0.2641

)
, D3 =

(
0.41 0.01

0.002 0.058

)
, D4 =

(
0.5 0.01

0.001 0.01

)
.

It has the average arrival intensity λ = 0.600076, the coefficient of correlation ccor = 0.148534,
and the coefficient of variation c2

var = 1.46139. The intensities of type-r customer arrivals are
λ1 = 0.160747, λ2 = 0.270468, λ3 = 0.101013, λ4 = 0.0678481, respectively.

The PH service process is defined by the vector β = (0.01, 0.99) and the sub-generator

S =

(
−0.1 0.1
0.02 −2

)
.

The average service time is b1 = 0.706060 and the coefficient of variation is c2
var = 8.781.

The rest parameters are as follows: γ1 = 0.012, γ2 = 0.011, γ3 = 0.01, γ4 = 0.009, αr = 0.1, r =
2, 4, p2,1 = 1, p3,1 = p3,2 = 0.5, p4,1 = p4,2 = p4,3 = 1

3 , q = 0.5.
Let us vary the buffer capacity N over the interval [1, 25] and calculate the main performance

measures of the system. It is worth to note that capacity of the buffer not exceeding 25 is realistic in
many real-world applications, e.g., in application for modeling emergency departments in a hospital,
the number of waiting patients cannot be large because if this number grows, the ambulance cars
will deliver new patients to other neighboring hospitals. In modeling the operation of an information
transmission device, the capacity of the buffer can also be not very large due to fast obsolescence of the
transmitted information.

For computations, we use a PC with an Intel Core i7-8700 CPU and 16 GB RAM, Mathematica 11.0.
The computation time for all 25 different buffer capacities is about 15 min.
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Figure 2 illustrates the dependence of the average number of customers in the buffer Nbu f f er and

the average numbers N(r)
bu f f er, r = 1, R, of type-r customers in the buffer on the buffer capacity N. As it

is expected, the values Nbu f f er and N(r)
bu f f er, r = 1, R, increase with the growth of the buffer capacity N.
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Figure 2. The dependence of Nbu f f er and N(r)
bu f f er, r = 1, R, on the buffer capacity N.

Figure 3 illustrates the dependence of the average intensities λ̃(r) of type-l, l = r + 1, R,
customers transformation to the type-r, r = 1, R− 1, customers on the buffer capacity N. All these
intensities increase with the growth of the buffer capacity N because the larger capacity of the buffer
implies the longer stay of a customer in the buffer and, therefore, higher chances to increase the priority.
The highest value of the intensity λ̃(1) among the values λ̃(r), r = 1, R− 1, is easily explained by the
fact that about 45 percent of arriving customers are type-2 customers that can increase their priority
only to type-1, a half of type-3 customers may increase the priority directly to type-1 and one third of
type-4 customers may also increase the priority directly to type-1.
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Figure 3. The dependence of the average intensities λ̃(r), r = 1, R− 1, on the buffer capacity N.

Figure 4 illustrates the dependence of the probability of an arbitrary customer loss upon arrival
Pent−loss and the probabilities of an arbitrary type-r, r = 1, R, customer loss upon arrival P(r)

ent−loss on
the buffer capacity N. This figure confirms the intuitively clear fact that all these loss probabilities
decrease with the growth of the buffer capacity.
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Figure 4. The dependence of the probabilities Pent−loss and P(r)
ent−loss, r = 1, R, on the buffer capacity N.

Figure 5 illustrates the dependence of the probability Pf orce−loss of the loss of an arbitrary customer

due to forcing out and the probability P(r)
f orce−loss of the loss of an arbitrary type-r, r = 2, R, customer on

the buffer capacity N. The behavior of these probabilities for type-3 and type-4 customers is explained
as follows. For small values of N, these probabilities are small because there is a high probability that
such customers are not admitted to the system at all (are lost at the entrance to the system). Then,
when the buffer capacity N increases, fewer customers of these types are lost at the entrance and,
therefore, more customers are accepted to the buffer and are forced out by the high priority customers.
After the buffer capacity N reaches the values about 2 or 3, the probability that the high priority
customers will meet full buffer essentially decreases and these customers have no need to force out
type-3 and type-4 customers. Consequently, the probabilities P(r)

f orce−loss, r = 3, 4, decrease when N
further increases.
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Figure 5. The dependence of the probabilities Pf orce−loss and P(r)
f orce−loss, r = 2, R, on the buffer

capacity N.

Figure 6 illustrates the dependence of the probability Pimp−loss of the loss of an arbitrary customer

due to impatience and the probability P(r)
imp−loss, r = 1, R, of loss of an arbitrary type-r customer due to

impatience on the buffer capacity N. When the buffer capacity increases, customers of all types spend
more time in the buffer and are lost due to the impatience more frequently.
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Figure 6. The dependence of the probabilities Pimp−loss and P(r)
imp−loss, r = 1, R, on the buffer capacity N.

As it was announced above, one of the important goals of our numerical example is to
demonstrate the poor quality of approximation of the value of the loss probability in the considered
MMAP/PH/1/N model with dynamically variable non-preemptive priorities by the value of the loss
probability in more simple models coded below as MMAP/M/1/N, M/PH/1/N and M/M/1/N
type priority models with the same rates of the arrival of different types of customers and the service
rate. Using the MMAP/M/1/N model, one ignores that we assumed that the service time has the
coefficient of variation c2

var = 8.781, not c2
var = 1, as the exponential distribution of the service time

suggests. Using the M/PH/1/N model, one ignores that the inter-arrival times have the coefficient
of correlation ccor = 0.148534, and the coefficient of variation c2

var = 1.46139, not c2
var = 1, as the

exponential distribution of inter-arrival times of different types of customers suggests. Using the
M/M/1/N model, one assumes a zero coefficient of inter-arrival times and the coefficient of variation
of inter-arrival of all types of customers and the service times equal to 1.

Figure 7 illustrates the dependence of the probability Ploss of the loss of an arbitrary customer on
the buffer capacity N for the considered MMAP/PH/1/N priority system and its particular cases
coded as the MMAP/M/1/N, M/PH/1/N and M/M/1/N type systems.
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Figure 7. The dependence of the probability Ploss on the buffer capacity N for the considered set of the
system parameters.

One can see that the values of the loss probabilities computed for the approximating models
are essentially smaller than the actual value. It is well known that queueing models with a finite
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buffer can help to solve the important problem of computing the required capacity N of the buffer,
e.g., the problem of finding the minimum value of N such as the loss probability Ploss is less than 0.05
can be considered. Using the approximate value of this loss probability computed via the M/M/1/N
type system, one can compute that the buffer capacity N = 2 is enough to guarantee the fulfillment
of the inequality Ploss < 0.05. Using the approximate value of this loss probability computed via the
M/PH/1/N type system, one can compute that the required buffer capacity is N = 8. Using the
approximate value of this loss probability computed via the MMAP/M/1/N type system, one can
compute that the required buffer capacity is N = 9. Furthermore, finally, if one properly accounts
the values of the coefficients of correlation and variation via the use of the MMAP/PH/1/N model,
he/she obtains that the required buffer capacity is N = 21. For N = 2, 8 and 9 the loss probability has
values 0.1659179, 0.087093, and 0.081367, correspondingly, and is essentially larger than 0.05. Therefore,
the simplified models give a quite poor estimation of the required capacity of the buffer.

6. Conclusions

We analyzed a quite general single-server queue with heterogeneous customers and a finite buffer.
The arrival flow is defined by the MMAP what allows us to take into account the possible correlation
of inter-arrival intervals of customers of different types. The service time distribution is of phase-type
which allows to approximate more general distributions. Customers of various types have different
impatience. It is assumed that the problem of assigning the non-preemptive priorities to different types
of customers is solved in the assumption that during staying in the buffer customers can improve their
priority. Presented above results allow computing the steady-state distribution of the system and the
key performance measures of the system under any fixed set of the system parameters. This creates an
opportunity for further use of the obtained results for the optimal scheduling of the flows (assigning
the priorities and permissions to increase the priority) under any fixed cost criterion. The criterion
may include, e.g., the profit gained via the service of different types of customers or the coefficient of
utilization of the server and loss probabilities (rejection at the entrance of the system, pushing out by a
high priority customer, leaving the system due to impatience) of different types of customers.

Results can be applied for optimization of the scheduling of: (i) information flows in
communication networks where users are categorized into several groups according to their
importance, in particular, possible damage caused by the loss or obsolescence of the corresponding
information; (ii) patients with different degree of life threat in emergency departments; (iii) perishable
goods and foods in warehouses, etc. As future directions of generalization of the considered model we
can mention the account of possibility of different distribution of service time for different types of
customers and possibility of unreliable service of customers similar to [33].
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Abstract: This article is partially a review and partially a contribution. The classical two approaches
to robustness, Huber’s minimax and Hampel’s based on influence functions, are reviewed with
the accent on distribution classes of a non-neighborhood nature. Mainly, attention is paid to
the minimax Huber’s M-estimates of location designed for the classes with bounded quantiles
and Meshalkin-Shurygin’s stable M-estimates. The contribution is focused on the comparative
performance evaluation study of these estimates, together with the classical robust M-estimates
under the normal, double-exponential (Laplace), Cauchy, and contaminated normal (Tukey gross
error) distributions. The obtained results are as follows: (i) under the normal, double-exponential,
Cauchy, and heavily-contaminated normal distributions, the proposed robust minimax M-estimates
outperform the classical Huber’s and Hampel’s M-estimates in asymptotic efficiency; (ii) in the case of
heavy-tailed double-exponential and Cauchy distributions, the Meshalkin-Shurygin’s radical stable
M-estimate also outperforms the classical robust M-estimates; (iii) for moderately contaminated
normal, the classical robust estimates slightly outperform the proposed minimax M-estimates. Several
directions of future works are enlisted.

Keywords: robustness; minimax approach; stable estimation

1. Introduction

Robust statistics, as a new field of mathematical statistics, originates from the pioneering works of
John Tukey (1960) [1], Peter Huber (1964) [2], and Frank Hampel (1968) [3]. The term “robust” (Latin:
strong, vigorous, sturdy, tough, powerful) was introduced into statistics by George Box (1953) [4].

The reasons of research in this field of statistics are of a general mathematical nature: the
conceptions of “optimality” and “stability” are mutually complementary in performance evaluation
for almost all mathematical procedures, and the trade-off between them is often a sought goal.

It is not rare that the performance of optimal solutions is rather sensitive to small violations of
the assumed conditions of optimality. In statistics, the classical example of such unstable optimal
procedure is given by the least squares estimates, in which performance under small deviations from
normality can become disastrous [5].

Since the term “stability” is overloaded in mathematics, the term “robustness” being its synonym
is at present conventionally used in statistics and in optimal control theory: in general, it means the
stability of statistical inference under uncontrolled violations of accepted distribution models.

In present, there are two main approaches to robustness: historically, the first global minimax
approach of Huber (quantitative robustness) [5] and the local approach of Hampel based on influence
functions (qualitative robustness) [6]. Within the first approach, the least informative (favorable)
distribution minimizing Fisher information over a certain distribution class is obtained with the
subsequent use of the asymptotically optimal maximum likelihood parameter estimate for this
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distribution. In this case, the minimax approach gives the guaranteed accuracy of robust estimates,
that is, the asymptotic variance of the optimal parameter estimate is upper-bounded for distributions
from the aforementioned class.

Within the second approach, a parameter estimate is defined by its desired influence function,
which determines the qualitative robustness properties of an estimate, such as its low sensitivity to the
presence of gross outliers in the data, to the data rounding-off, to the missing data, etc.

In what follows, we consider these methodologies in detail focusing on the optimization and
variational calculus tools used in both aforementioned approaches. Within Huber’s minimax approach,
we review the conventional least informative (favorable) distributions obtained for the neighborhoods
of a Gaussian [5], as well as those designed for a variety of the non-standard distribution classes of a
non-neighborhood nature [7]. Within Hampel’s local approach [6], we mostly emphasize its recently
developed stable estimation branch with the originally posed variational calculus problems and rather
prospective results on their application to robust statistics [8].

While this paper focuses on particular topics in the field of robust statistics, it is worth noting a
few comprehensive reviews also covering the present state of art in this field, namely Reference [9–14].

An outline of the remainder of the article is as follows. In Section 2, a general problem setting for
the design of minimax variance M-estimates of location is recalled. In Section 3, the globally stable
Meshalkin-Shurygin’s M-estimates are described. In Section 4, a comparative performance evaluation
of the conventional robust M-estimates of location with the several novel proposed M-estimates
is examined (univariate setting is considered throughout the paper), and several unforeseen and
unexpected results have been obtained. In Section 5, some conclusions are given.

2. Huber’s Minimax Variance Robust M-Estimates of Location

2.1. Preliminaries

The minimax principle aims at the worst case suggesting for it the best solution [2]; thus, this
approach provides a guaranteed result [5]. However, being applied to the problem of estimation of
location, it yields a robust version of the principle of the maximum likelihood [2]. Usually, estimation
of location is of a primary interest, and, in this study, we focus on it.

Let x1, . . . , xn be a sample from a distribution with density p(x− θ) from a convex class P, where
θ is a location parameter. Further, we assume that p is a symmetric distribution density; hence, θ is the
center of symmetry to be estimated.

An M-estimate Tn of θ is a solution to the following minimization problem:

Tn = arg min
θ

n∑
i=1

ρ (xi − θ), (1)

where ρ (u) is called the function of contrast [15]: ρ (xi − θ) is a measure of difference between the
observation xi and the estimated center of symmetry. The following particular cases of (??) are of
a particular interest: (i) for ρ (u) = u2, we have the least squares method with the sample mean
x as the estimate of location; (ii) for ρ (u)=|u|, we arrive at the least absolute values method with
the sample median estimate med x; and (iii), mostly importantly, for a given density p, the choice
ρ (u) = − log p(u) yields the maximum likelihood (ML) estimate of location.

It is more convenient to formulate the properties of M-estimates in terms of the derivative of the
function of contrast ψ(u) = ρ ′(u) called a score function. In this case, an M-estimate is defined as a
solution to the following implicit estimating equation

n∑
i=1

ψ(xi − Tn) = 0. (2)
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Under rather general conditions of regularity imposed on the class Ψ of score functions ψ and
on the class P of densities p (their various forms can be found in Reference [2,5,6]), M-estimates are
consistent and asymptotically normal with the asymptotic variance AV:

Var
(
n1/2Tn

)
= AV(ψ, p) =

A
B2 =

∫
ψ2(x)p(x) dx(∫
ψ′(x)p(x) dx

)2 , (3)

where

A(ψ, p) =
∫
ψ2(x)p(x) dx,

B(ψ, p) =
∫
ψ′(x)p(x) dx.

For M-estimates (??), the following result holds [5].

Theorem 1. (Huber, 1964) Under regularity conditions, M-estimates satisfy the minimax property

AV(ψ∗, p) ≤ AV(ψ∗, p∗) = sup
p∈P

inf
ψ∈Ψ

AV(ψ, p) ≤ AV(ψ, p∗), (4)

where p∗(x) is the least informative (favorable) density p∗ minimizing Fisher information for location I(p) over
the class P:

p∗ = arg min
p∈P I(p), I(p) =

∫ [
p′(x)
p(x)

]2

p(x) dx. (5)

From (??) and (??), it follows that the minimax function of contrast and score function are given
by the maximum likelihood method for the least informative density p∗:

ρ ∗(x) = − log p∗(x),ψ∗(x) = −p∗(x)′/p∗(x). (6)

Thus, the pair (ψ∗, p∗) is the saddle-point of the functional AV(ψ, p). The right-hand part of
inequality (??) is the Rao–Cramér inequality:

AV(ψ, p∗) ≥ AV(−p∗′/p∗, p∗) = 1/
∫ (

p∗(x)′
)2

/p∗(x) dx = 1/I(p∗) ,

whereas its left-hand part guarantees the asymptotic accuracy of robust minimax estimation with the
following upper bound upon the asymptotic variance of the minimax variance robust M-estimate of
location: AV(ψ∗, p) ≤ 1/I(p∗).

The key point of the minimax approach is the solution of the variational problem (??): further,
various classes P with the corresponding least informative densities p∗ and minimax estimates
are enlisted.

Now, we recall the Huber’s classical solution for ε-contaminated normal distributions (Tukey’s
gross-error model):

Pε =
{
p : p(x) ≥ (1− ε) ϕ (x),

(7)
where ϕ (x) = (2π)−1/2 exp

(
−x2/2

)
is the standard normal distribution density.

Theorem 2. (Huber, 1964) In the class Pε, the least informative density p∗ and the optimal score function has
the following form [2]:

p∗(x) = pHuber(x) =

⎧⎪⎪⎨⎪⎪⎩
(1− ε) ϕ (x), |x|≤ k,
C exp(−D|x|), |x|> k,

(8)
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ψ∗(x) = ψHuber(x) =
{

x, |x|≤ k,
CD sgn (x), |x|> k,

(9)

where the parameters C, D, and k satisfy the conditions of norming, continuity, and continuous differentiability
of the solution at x = k:

∫
p∗(x) dx = 1, p∗(k− 0) = p∗(k + 0), p∗′(k− 0) = p∗′(k + 0).

Finally, we get the linear bounded score ψHuber(x) = max{−k, min{x, k}}, where k depends on the
value of the contamination parameter ε, as follows:

2 ϕ (k)

k
− 2 Φ(−k) =

ε
1− ε , Φ(x) =

∫ x

−∞
ϕ (t) dt;

the values of the parameter k = k(ε) are tabulated in Reference [5].
The particular cases of this solution for ε = 0 and ε→ 1 are given by k→∞ (the sample mean)

and k = 0 (the sample median), respectively.
The Huber’s score function ψHuber(x) is a robust version of the ML estimation: in the center

|xi−θ|≤ k , the data are processed by the ML method, and they are trimmed within the exponential
distribution tails |xi−θ|> k . In the limiting case of a completely unknown density as ε→ 1 , the
minimax variance M-estimate of location tends to the sample median.

2.2. Free Extremals of the Basic Variational Problem

Consider the problem of minimization of Fisher information for location (??) under two basic side
conditions of non-negativeness and norming: p(x) ≥ 0,

∫ ∞
−∞ p(x) dx = 1.

Set
√

p(x) = q(x), and rewrite this minimization problem as

minimizeI(p) = 4
∫ ∞

−∞
(q′(x))2 dxunder

∫ ∞

−∞
q2(x) dx = 1.

Introducing the Lagrange multiplier λ related to the norming condition, we obtain the following
differential equation for the function q(x): 4q′′(x) + λq(x) = 0.

The general solutions of this harmonic oscillator equation have the well-known forms depending
on the sign of λ = 4k2: (i) the exponential q(x) = C1ekx +C2e−kx, the cosine q(x) = C1 sin kx+C2 cos kx,
and the linear q(x) = C1 + C2x, where k = ±√λ/2.

Further, we show that all these forms work in the structures of least informative
distribution densities.

2.3. Least Informative Distributions

The neighborhoods of normal, generally, are not the only models of interest. In real-life applications,
the information about the distribution central part tails, its moments, and/or subranges is rather often
available. The empirical distribution and quantile functions, histograms, and kernel estimates, together
with their tolerance limits, provide other examples. To enhance the efficiency of robust estimates, this
information can be used in minimax settings.

Further, we deal with symmetric distribution densities p(−x) = p(x). Evidently, distribution
densities must also satisfy the non-negativeness and norming conditions common for all classes. For
brevity, we do not write out all these conditions any time we define a distribution density class.

Now, we enlist several examples of distribution classes convenient for the description of a prior
knowledge about data distributions [7].
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(1) The class of non-degenerate densities [15]: P1 =
{
p : p(0) ≥ 1/(2a) > 0

}
. The parameter a of this

class characterizes the dispersion of the central part of a distribution. The least informative density
in this class is given by the double-exponential or Laplace density [16]: p∗1(x) = L(x; 0, a) =

2a−1 exp(−|x|/a). This result is quite natural if one recalls the exponential form of free extremals
for the basic variational problem.

(2) The class P2 of distribution densities with a bounded variance:

P2 =

{
p : σ2(p) =

∫ ∞

−∞
x2p(x) dx ≤ σ2

}
.

All distribution densities with bounded variances are the members of this class. Evidently, the
Cauchy-type distributions do not belong to it. The least informative density in this class is
normal [17]:

p∗2(x) = N(x; 0, σ) =
1√
2πσ

exp
(
− x2

2σ2

)
.

(3) The class P3 of approximately normal distribution densities is defined by Equation (??):{
p : p(x) ≥ (1− ε) ϕ (x),

(4) The class of finite distributions: P4 =
{
p :

∫ l
−l p(x) dx = 1

}
. This class defines the boundaries of

the data (i.e., the inequality |X|≤ l holds with probability one), and there is no more information
about this distribution besides the boundary conditions of smoothness: p(±l) = p′(±l) = 0. The
least informative density in this class has the cosine-squared form [15]:

p∗4(x) =
⎧⎪⎪⎨⎪⎪⎩

1
l cos2

(
πx
2l

)
for |x|≤ l,

0 for |x|> l.

(5) The class of distributions with a bounded interquantile distribution mass:

P5 =

⎧⎪⎨⎪⎩p :
∫ l

−l
p(x) dx ≥ 1− β

⎫⎪⎬⎪⎭, 0 ≤ β < 1.

The parameters l and β are assumed given. The restriction upon the interquantile mass means that
P(|X|≤ l) ≥ 1− β. We can redefine this class in a different way as the class with an upper-bounded
interquantile range IQRβ = P−1

( 1+β
2

)
−P−1

( 1−β
2

)
≤ 2l, where P(x) is a probability density function.

The least informative density in this class has both the cosine and exponential parts working at
the center and tail areas, respectively [7],

p∗5(x) =
{

A1 cos2(B1x) for |x|≤ l,
A2exp(−B2|x|) for |x|> l,

where the constants A1, A2, B1, and B2 are determined from the simultaneous equations
(restrictions) of the class P5, namely the conditions of normalization and upon the distribution
interquantile range, and the conditions of continuity and continuous differentiability at x = l (for
details, see Reference [7]). It is worth noting that the classes P1 and P4 are the particular cases of
the class P5 when β→ 0 and β = 1, respectively.

3. Hampel’s Robust and Shurygin’s Stable Estimates of Location

Robust methods have lower sensitivity to possible departures from the accepted distribution
models as compared to conventional statistical methods. To analyze the sensitivity of estimation, it
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is natural to have its specific indicator. In what follows, we introduce these indicators, namely the
influence function and related to it measures.

3.1. Hampel’s Local Approach to Robustness

Let P be a distribution function corresponding to p ∈ P, the class of distribution densities, and let
T(P) be a functional defined in a subset of all distribution functions. The natural estimate defined by T
is Tn = T(Pn), i.e., the functional computed at the sample distribution function Pn.

The influence function IF(x; T, p) of this functional is defined as

IF(x; T, p) = lim
t→0

T((1− t)P + tΔx) − T(P)
t

, (10)

where Δx is the degenerate distribution taking mass 1 at x [6].
The influence function measures the impact of an infinitesimal contamination at x on the value of

an estimate, formally being the Gâteaux derivative of the functional T(P). For an M-estimate with
a score function ψ, the influence function is proportional to it: IF(x;ψ, p) = ψ(x)/B(ψ, p), where the
term B(ψ, p) stands in Equation (??) for the asymptotic variance of M-estimates.

Based on the influence function, several local measures of robustness are defined [6], including the
gross-error sensitivity of T at p:

γ∗(T, p) = sup
x

∣∣∣IF(x; T, p)
∣∣∣.

This indicator of sensitivity gives an upper bound upon the asymptotic estimate bias and measures
the worst influence of an infinitesimal contamination on the value of an estimate. Maximizing the
efficiency of an M-estimate of location under the condition of a bounded gross-error sensitivity at the
normal distribution

max
ψ

e f f
(
ψ, ϕ

)
underγ∗ ≤ γ,

where e f f (ψ, p) = 1
AV(ψ,p)I(p) formally leads to the Huber’s minimax linear bounded score ψHuber(x) =

max{−k, min{x, k}} in the class of contaminated normal distributions [6]. This particular result confirms
the following general observation: the best estimates within both approaches, Huber’s minimax and
Hampel’s local, are rather close in their performances.

3.2. Meshalkin-Shurygin’s Stable Estimates of Location

This topic is partially reversal to the conventional setting: the maximum of some measure of
sensitivity is minimized under the guaranteed value of the estimate variance or efficiency.

The conventional point-wise local measures of sensitivity, such as the influence and
change-of-variance functions [6] are not appropriate here—a global indicator of sensitivity is desirable.
We show that a novel global indicator of robustness proposed by Shurygin [18], the estimate stability, is
closely related to the classical variation of the functional of the estimate asymptotic variance. Although
the related theory has been developed for stable estimation of an arbitrary parameter of the underlying
distribution, here, we focus on stable estimation of location.

A measure of the M-estimate sensitivity called variance sensitivity (VS) is introduced in
Reference [19]. Formally, it is defined as the Lagrange functional derivative of the asymptotic
variance (??):

VS(ψ, p) =
∂AV(ψ, p)

∂p
=

∂
∂p

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫
ψ2(x)p(x) dx(∫
ψ′(x)p(x) dx

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
∫
ψ2(x) dx(∫

ψ′(x)p(x) dx
)2 . (11)

Equation (??) gives a global measure of the stability of an M-estimate in a model, where the
outliers occur uniformly anywhere on the real line. The boundness of the Lagrange derivative (??)
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holds under the condition of square integrability of ψ with the corresponding redescending scores when
ψ(x)→ 0 for |x|→ ∞ .

In Reference [7], it is shown that the principal part of the variation δAV(ψ, p) of the asymptotic
variance AV(ψ, p) with respect to

∣∣∣∣∣∣δp
∣∣∣∣∣∣ is proportional to the variance sensitivity (??) or to the Lagrange

derivative of the asymptotic variance: δAV(ψ, p) ∝ ∂AV(ψ, p)/∂p .
Further, consider the following optimization problem: what is the minimum variance sensitive

score function for a given distribution density p? The solution of this optimization problem is given by
the minimum variance sensitive (MVS) score function:

ψMVS(x) = arg min
ψ

VS(ψ, p) = −p′(x). (12)

The estimate with this optimal score function (??) is called as the estimate of minimum variance
sensitivity with VSmin = VS(ψMVS, p). We define a global measure of the stability of any M-estimate
comparing an estimate variance sensitivity with its minimum

0 ≤ stb(ψ, p) = VSmin(p)/VS(ψ, p) ≤ 1 .

A number of optimization criteria settings with different weights for efficiency and stability
of M-estimates of location have been proposed and solved; in other examples, efficiency is
maximized under guaranteed stability, and vice versa [18]. Practically in all these cases, we deal
with the score functions ψopt(x) with the following limiting forms: the maximum likelihood case
ψopt(x)→ ψML(x) = −p′(x)/p(x) when the requirement of high efficiency mostly matters and the
opposite redescending case ψopt(x)→ ψMVS(x) = −p′(x) when the requirement of high stability
is important.

A compromise case is given by a stable estimate called radical with equal efficiency and stability,
e f f (ψ, p) = stb(ψ, p), desirably both highly efficient and stable: its score function is given by

ψrad(x) = ψML(x)
√

p(x) = −p′(x)/
√

p(x) . (13)

Finally, it should be noted that the minimum sensitivity and radical estimates belong to the
class of M-estimates with the exponentially weighted maximum likelihood score functions previously
proposed by Meshalkin [20].

4. Asymptotic Efficiency of M-Estimates: A Comparative Study

Here, we compare the asymptotic efficiency performance of various robust and stable estimates
of location at the conventional in robustness studies distributions: some particular results can be
found in Reference [19,21]. We mainly focus on the minimax variance estimates for distributions with
bounded interquantile ranges, as until present, their performance has not been thoroughly studied. It
is important that some obtained results are unexpected and surprising.

4.1. Robust and Stable M-Estimates of a Location Parameter

We test the following M-estimates of location: (i) the sample mean and median, (ii) the Huber’s
minimax variance M-estimate with the linear bounded score ψHuber(x) = max [−1.14, min (x, 1.14)]
optimal for ε-contaminated standard normal distributions with the parameter of contamination ε = 0.1,
(iii) the Hampel’s M-estimate with the redescending three-part score

ψHampel(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x for0 ≤|x|≤ a,
a sgn(x) fora ≤|x|≤ b,

a r−|x|
r−b sgn(x) fora ≤|x|≤ b,

0 forr ≤|x|,
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where the parameters a = 1.31, b = 2.039, and r = 4 (see Reference [6], pp. 166–167), (iv)
the minimax variance M-estimates with the scores ψβ(x) for various values of the parameter
β : 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, and (v) the stable Shurygin’s minimum variance sensitivity and
radical M-estimates with the scores ψMVS(x) = −p′(x) and ψrad(x) = −p′(x)/

√
p(x), respectively.

4.2. Data Distributions

In our study, the following distribution densities are used:
(i) the standard normal p(x) = N(x; 0, 1) = (2π)−1/2 exp

(
−x2/2

)
,

(ii) the standard Laplace p(x) = L
(
x; 0, 1/

√
2
)
= 2−1/2exp(− √2|x|),

(iii) the standard Cauchy p(x) = C(x; 0, 1) = π−1
(
1 + x2

)−1
, and

(iv) the heavy-tailed Tukey gross-error model as the Cauchy contaminated normal density
p(x) = 0.9N(x; 0, 1) + 0.1C(x; 0, 1).

4.3. Asymptotic Efficiency

The asymptotic efficiency of M-estimates is numerically computed as follows:

e f f (Tn) =
Var(TML)

Var(Tn)
=

(∫
ψ′(x)p(x) dx

)2

I(p)
∫
ψ2(x)p(x) dx

.

5. Conclusions

From Table 1, it follows:

(1) As usual, the performance of the sample mean under heavy-tailed Cauchy and contaminated
normal distributions is awful. Designed for these models, Huber’s and Hampel’s M-estimates
perform well except the Laplace distribution case. This distribution with moderately heavy
tails against a sharp peak at the center is a rather tough test for the asymptotic performance of
M-estimates of location, especially as compared to the Cauchy distribution case. Recall that the
Laplace and distributions close to it are the least informative ones in wide classes of distributions,
for instance, in the class Pβ with the parameter β close to unit (the corresponding minimax
variance M-estimates perform quite well in these cases). For a statistical user, the version with a
bounded IQR (interquartile range, β = 1/2) seems a reasonable choice.

(2) Surprisingly, the proposed minimax variance M-estimates with the scores ψβ outperform the
classical robust Huber’s and Hampel’s M-estimates at the normal, although the shape of the least
informative distribution is not at all normal: note that the Taylor expansion of the cosine2-bell
shape is close to the exponential one with small values of β. Moreover, these M-estimates are
better than the classical robust estimates in heavy-tailed distribution models. We explain this
effect by the nature of the distribution class Pβ—it is one of the most wide possible distribution
classes. Finally, these M-estimates and their statistical properties can be obtained in a closed
analytical form.

(3) The globally stable Meshalkin-Shurygin’s radical M-estimate also outperforms the classical robust
Huber’s and Hampel’s M-estimates at the heavy-tailed Laplace and Cauchy distributions.
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Table 1. Asymptotic efficiency (two best values are boldfaced).

M-Estimate Normal Laplace Cauchy Tukey Gross Error

mean 1 0.500 0 0
median 0.636 1 0.811 0.678

Huber’s linear
bounded 0.924 0.669 0.759 0.953

Hampel’s
three-part 0.911 0.644 0.869 0.946

ψ0.01 0.895 0.310 0.250 0.747
ψ0.1 0.976 0.503 0.484 0.948
ψ0.5 0.844 0.799 0.765 0.962
ψ0.9 0.679 0.965 0.898 0.825
ψ0.99 0.641 0.995 0.859 0.727
MVS 0.650 0.750 0.800 0.710

radical 0.840 0.890 0.920 0.890

Finally, we outline the prospective future works: (i) an extension of the proposed minimax
variance M-estimates to the multivariate case and the classes with simultaneously bounded subranges
of different parameter β values—in the latter case, we may expect a uniformly better performance;
(ii) a generalization of the Meshalkin-Shurygin’s stable estimates to the multivariate case; and (iii)
a thorough comparative study of the small sample performance of M-estimates of location—Monte
Carlo experiments show a slightly better performance of the classical Huber’s and Hampel’s estimates
in this case.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Tukey, J.W. A Survey of Sampling from Contaminated Distributions. Contributions to Probability and Statistics;
Olkin, I., Ed.; Stanford Univ. Press: Redwood City, CA, USA, 1960; pp. 448–485.

2. Huber, P.J. Robust estimation of a location parameter. Ann. Math. Stat. 1964, 35, 73–101. [CrossRef]
3. Hampel, F.R. Contributions to the Theory of Robust Estimation. Ph.D. Thesis, University of California,

Berkeley, CA, USA, 1968.
4. Box, G.E.P. Non-normality and tests on variances. Biometrika 1953, 40, 318–335. [CrossRef]
5. Huber, P.J.; Ronchetti, E. Robust Statistics; Wiley: New York, NY, USA, 2009.
6. Hampel, F.R.; Ronchetti, E.; Rousseeuw, P.J.; Stahel, W.A. Robust Statistics. The Approach Based on Influence

Functions; Wiley: New York, NY, USA, 2005.
7. Shevlyakov, G.L.; Oja, H. Robust Correlation. Theory and Applications; Wiley, John Wiley & Sons Ltd.: Chichester,

UK, 2016.
8. Shevlyakov, G.L.; Morgenthaler, S.; Shurygin, A.M. Redescending M-estimators. J. Stat. Plann. Inference 2008,

138, 2906–2916. [CrossRef]
9. Daszykowski, M.; Kaczmarek, K.; Vander Heyden, Y.; Walczak, B. Robust statistics in data analysis—A

review: Basic concepts. Chemom. Intell. Lab. Syst. 2007, 85, 203–219. [CrossRef]
10. Augustin, T.; Hable, R. On the impact of robust statistics on imprecise probability models: A review. Struct.

Saf. 2010, 32, 358–365. [CrossRef]
11. Rousseeuw, P.J.; Hubert, M. Robust statistics for outlier detection. Wiley Interdiscip. Rev. Data Min. Knowl.

Discov. 2011, 1, 73–79. [CrossRef]
12. Maronna, R.A.; Martin, R.D.; Yohai, V.J. Robust Statistics: Theory and Methods (with R); Wiley: John Wiley &

Sons Ltd.: Chichester, UK, 2019.

85



Mathematics 2021, 9, 105

13. Rousseeuw, P.J.; Hubert, M. Anomaly detection by robust statistics. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 2018, 8, e1236. [CrossRef]

14. Ronchetti, E. The main contributions of robust statistics to statistical science and a new challenge. METRON
2020, 1–9. [CrossRef]

15. Polyak, B.T.; Tsypkin, Y.Z. Robust identification. In Identification of Systems and Parameter Estimation, Part
1, Proceedings of the 4th IFAC Symposium, Tbilisi, GA, USA, 21–27 September 1976; North-Holland Pub. Co.:
Amsterdam, The Netherlands, 1976; pp. 203–224.

16. Shevlyakov, G.L.; Vilchevski, N.O. Robustness in Data Analysis: Criteria and Methods; VSP BV: Zeist, The
Netherlands, 2002.

17. Kagan, A.M.; Linnik, Y.V.; Rao, S.R. Characterization Problems in Mathematical Statistics; Wiley: New York, NY,
USA, 1972.

18. Shurygin, A.M. New approach to optimization of stable estimation. In Proceedings of the 1 US/Japan Conference
on Frontiers of Statist. Modeling; Bozdogan, H., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands,
1994; pp. 315–340.

19. Shevlyakov, G.L.; Shagal, A.A.; Shin, V.I. A comparative study of robust and stable estimates of multivariate
location. J. Math. Sci. 2019, 237, 831–845. [CrossRef]

20. Meshalkin, L.D. Some mathematical methods for the study of non-communicable diseases. In Proceedings of
the 6th International Meeting of Uses of Epidemiology in Planning Health Services, Primosten, Yugoslavia,
29 August–3 September 1971; Volume 1, pp. 250–256.

21. Shevlyakov, G.L.; Tkhakushinova, R.V.; Snin, V.I. Robust minimax variance estimation of location under
bounded interquantile ranges. J. Math. Sci. 2020, 248, 25–32. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

86



mathematics

Article

Local Limit Theorem for the Multiple Power
Series Distributions

Arsen L. Yakymiv

Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina St., Moscow 119991, Russia;
arsen@mi-ras.ru

Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020

Abstract: We study the behavior of multiple power series distributions at the boundary points of their
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1. Introduction

Let (a(i) ≥ 0, i = 0, 1, 2, . . . ) be a sequence with

B(x) =
∞

∑
i=0

a(i)xi < ∞

for x ∈ (0, 1). The trivial case a(i) ≡ 0, i = 0, 1, 2, . . . is excluded. It is said that a random variable ξx

has a power series distribution iff

P{ξx = i} = a(i)xi

B(x)
,

for some B(x) and for any i ∈ Z+.
Power series distributions were introduced in the fundamental paper of Noack [1] (1950).
Systematic studies of their properties (moments, generating functions, convolutions, limit properties,

statistical applications, etc.) began immediately. References may be found in the encyclopedias of
Johnson, Kotz, and Kemp [2] (for the one-dimensional case) and Johnson, Kotz, and Balakrishnan [3]
(for the multidimensional case). For example, the binomial, Poisson, negative binomial, and logarithmic
distributions, as well as their multidimensional analogues are among the important distributions
in this class.

Note that power series distributions are widely useful in a generalized allocation scheme (in the
one-dimensional case). This scheme was introduced by V. Kolchin [4]. His results and, in particular,
those obtained with the use of this scheme, play an important role in probabilistic combinatorics
(see, for example, his books [5,6]). So, one can express distributions of various characteristics of
random permutations (a(i) = 1/i), random mappings ((a(i) = i−1 ∑i−1

k=0 ik/k!)) [5]), and random
mappings with various constraints (on cycle length, height, component sizes, etc.; see, for example,
the books of Timashev [7,8]), random trees, and random forests (i.e., random mappings with cycles of
only unit length (see the book of Yu. Pavlov [9])) in terms of power series distributions. An analogue
of Kolchin’s generalized allocation scheme [4] with a bounded number of particles was introduced
in the work of A.N. Chuprunov and I. Fezekash [10]. A corresponding multivariate scheme was

Mathematics 2020, 8, 2067; doi:10.3390/math8112067 www.mdpi.com/journal/mathematics87
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recently introduced by A.N. Chuprunov, G. Alsaied, and M. Alkhuzani [11]. For another investigation
of A.N. Chuprunov and his students, see the paper [11] and the references therein. We also note the
successful work of the representatives of the Karelian Scientific Center in the study of the asymptotic
properties of configuration graphs under the leadership and participation of Yu.L. Pavlov by I.A.
Cheplyukova, M.M. Leri, and E.V. Khvorostyanskaya [12–17].

Suppose that B(x) regularly varies as x ↑ 1 with index � > 0 [18,19]. It is known, in this case, that

P{ξx(1− x) ≤ y} →
∫ y

0
e−uu�−1 du, ∀y ≥ 0

as x ↑ 1. In addition, the corresponding local limit theorem is true when a(i) is regularly varying at
infinity with index �− 1 > −1. See, for instance, Timashev [8].

The multidimensional integral limit theorem was obtained in [20]. It is supposed in [20] that
the corresponding multiple power series regularly varies at the boundary point of its convergence
(see Definition 2). In [21], it was shown that this condition is necessary and sufficient.

In this paper, we prove the corresponding local limit theorem. For this aim, we introduce
in Section 2 some generalizations of multivariate regularly varying sequences in the orthant.
Namely, the notion of R-weakly one-sided oscillatory sequences at infinity along some sequence
(see Definition 3). This concept allows us to give adequate conditions for the validity of both the
local limit theorem and the corresponding statement of Tauberian type (Lemma 2). The definition of
multiple power series distribution and the main result are given in the next section (see Definition 1 and
Theorem 1, respectively). Here, we also formulate the corresponding integral limit result from [21] as
Lemma 1. The statement of this lemma also gives the necessary and sufficient conditions but describes
them in terms of regular variation of the power series B(x) at the boundary point of their existence.
Proofs of Lemma 2 and the main result (Theorem 1) are given in the Sections 3 and 4, respectively.
In Section 5, we describe some previous results in this direction.

2. Main Result

2.1. Some Notations

We introduce the following notations. Let the vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)

belong to Rn. Denote xy = (x1y1, . . . , xnyn) and x/y = (x1/y1, . . . , xn/yn) (the last in the
case, when yk �= 0 ∀k = 1, . . . , n). Put exp(x) = (exp(x1), . . . , exp(xn)), ln x = (ln x1, . . . , ln xn).
The notation x ↑ 1 means that x → 1, x ∈ (0, 1)n. Here 1 = (1, . . . , 1). Set Rn

+ = {x : x = (x1, . . . , xn) ∈
Rn, xk ≥ 0 ∀k = 1, . . . , n}, Zn

+ = {x : x = (x1, . . . , xn) ∈ Rn
+, xk ∈ Z+ = N ∪ 0 ∀k = 1, . . . , n}.

For α = (α1, . . . , αn) ∈ Rn
+, x = (x1, . . . , xn) ∈ Rn

+ we use an abbreviation

xα =
n

∏
k=1

xαk
k ,

assuming that 00 = 1. Let (ηk, k ∈ N) be a sequence of random vectors (r.v.) from Rn.

Further, the notation ηk
d→ η means the weak convergence of the corresponding distributions with

P{η ∈ Rn} = 1.

2.2. Multiple Power Series Distributions

First we give the necessary definitions. Let (a(i) ≥ 0, i ∈ Zn
+) be a multiple sequence with

B(x) = ∑
i∈Zn

+

a(i)xi < ∞

for x = (x1, . . . , xn) ∈ [0, 1)n. The trivial case a(i) ≡ 0, i ∈ Zn
+ is excluded.
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Definition 1. For x ∈ [0, 1)n a random vector (r.v.) ξx has a multiple power series distribution iff

P{ξx = i} = a(i)xi

B(x)
, (1)

for some B(x) and for any i ∈ Zn
+.

It is clear that P{ξx ∈ Rn} = 1. The history of this notion and some bibliographic references
are given in encyclopedias [2,3], also see the articles [20,22]. Let the sequence of vectors b = b(k) ∈
(0, ∞)n, k ∈ N be given with bj = bj(k)→ ∞, ∀j = 1, . . . , n as k→ ∞.

Definition 2 ([23]). We say that B(x) regularly varies as x ↑ 1 along the sequence b = b(k), iff

B(exp(−λ/b))
B(exp(−1/b))

→ Ψ(λ) ∈ (0, ∞), (2)

for an arbitrary fixed λ = (λ1, . . . , λn) > 0 as k→ ∞.

(Notations λ/b and exp(−λ/b) are defined in the Section 2.1).
The following statement has been proved in [21] (we formulate it as a lemma).

Lemma 1. A series B(x) regularly varies as x ↑ 1 along the sequence b = b(k) iff for any (some) fixed vector
u ∈ G and x = exp(−u/b)

ξx(1− x) d→ η = η(u), (k→ ∞) (3)

In both cases, the function Ψ(λ) from Equation (2) is the Laplace transform of some σ-finite measure Φ(·) and
r.v. η(u) has Laplace transform Ψ((λ + 1)u)/Ψ(u).

Let R(k) be some positive sequence. To formulate the resulting limit theorem, we need to give the
following definition.

Definition 3. We say that the sequence a(i) is R-weakly one-sided oscillatory at infinity along the sequence
b = b(k) if for every j = 1, . . . , n and for any sequence zj = zj(k) > 1, zj = 1 + o(1) one of the
following inequalities

lim inf
k→∞

(a(r1, . . . , rj−1, zjrj, rj+1, . . . , rn)− a(r))/R(k) ≥ 0; (4)

lim sup
k→∞

(a(r1, . . . , rj−1, zjrj, rj+1, . . . , rn)− a(r))/R(k) ≤ 0. (5)

holds for every fixed y = (y1, . . . , yn) ∈ G. Here r = r(k) = (r1(k), . . . , rn(k)) is an arbitrary function of
k with

r1 ∼ y1b1, . . . , rn ∼ ynbn.

Hereinafter, we define a(x) = a([x]) for x /∈ Zn
+. The simplest examples of such sequences are

monotone in each variable sequence (a(i) ≥ 0, i ∈ Zn
+).

Theorem 1. Suppose that B(x) regularly varies as x ↑ 1 along the sequence b = b(k) (i.e., the the assumption
of integral limit Lemma 1 is true). Then, for any compact K ⊂ G and for any (some) fixed vector u ∈ G and
x = exp(−u/b)

P{ξx = [y/(1− x)]}
∏n

j=1(1− xj)

y∈K
⇒ ψu(y) < ∞ (k→ ∞) (6)
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where function ψu(·) is continuous in G, iff the sequence a(i) is R-weakly one-sided oscillatory at infinity along
the sequence b = b(k) with

R(k) = B(exp(−1/b(k)))/ ∏
i=1

bi(k). (7)

In both cases, the measure Φ(·) from Lemma 1 has the continuous density ϕ(·) in G and the following
equality holds:

ψu(y) =
ϕ(y/u)e−(y,1)

∏n
j=1 ujΨ(u)

, ∀y ∈ G. (8)

Note that, in Theorem 1, the case when Φ(∂G) > 0(⇔ P{η(u) ∈ ∂G} > 0) is not excluded.
In addition, we admit that ψu(y) = 0, y ∈ V, for some nonempty set V ⊆ G in this theorem.

3. Tauberian Lemma

The next lemma gives some generalization of the Tauberian Theorem 2 from [23].

Lemma 2. Assume that B(x) regularly varies as x ↑ 1 along the sequence b = b(k) (i.e., (2) holds). Then,
for some continuous function ϕ(·) in G the relation

a(bv)
R(k)

v∈K
⇒ ϕ(u) < ∞ (9)

holds for any compact K ⊂ G iff the sequence a(i) is R-weakly one-sided oscillatory at infinity along the sequence
b = b(k) with R(k) from Equation (7). In both cases, the measure Φ(·) from Lemma 1 is absolutely continuous
in G with density ϕ(·).

Proof. For an arbitrary bounded set A ⊂ Rn
+, put

Φk(A) = ∑
i∈Zn

+ , i/b∈A

a(i)
∏n

j=1 mj(k)R(k)
(10)

It follows from Equations (2) and (7) that

Φ̃k(y) ≡
∫

Rn
+

e−(x,y)Φk(dx) =
B(exp(−y/b))
∏n

j=1 bj(k)R(k)

→ ψ(y) = Φ̃(y) ≡
∫

Rn
+

e−(x,y)Φ(dx)

for any fixed y ∈ G. The last equality follows from the statement of Lemma 1. Thus, according to the
continuity theorem for Laplace transforms of measures, it follows from Equation (10) that

Φk(·)⇒ Φ(·). (11)

(see, for example the theorem 1.3.2 from [24]). Suppose that the sequence a(i) is R-weakly one-sided
oscillatory at infinity along the sequence b = b(k). Set m(j) = 1 if Equation (4) holds and m(j) = −1 if
Equation (5) is valid. Fix v ∈ G. For an arbitrary δ ∈ (0, 1), put

A(δ) =
{

y = (y1, . . . , yn), yj ∈
(

vj, vj(1 + δ)b(j)
)

, ∀j = 1, . . . , n
}

(12)

(for c > d, we put (c, d) = (d, c)). Further, for an arbitrary ε ∈ (0, 1), there exists such δ ∈ (0, ε) that

a(i)− a(bv)
R(k)

≥ −ε (13)
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for any i ∈ mA(δ). The proof of this fact repeats the proof of Lemma 5 from [23]. Without loss of
generality, we assume that Φ(∂A(δ)) = 0. It follows from Equations (9) and (13) that

Φk(A(δ)) = ∑
i∈Zn

+ , i/b∈A(δ)

a(i)
∏n

j=1 bj(k)R(k)

≥ −ε +
a(bv)
R(k)

1
∏n

j=1 bj(k)
∑

i∈Zn
+ , i/b∈A(δ)

1.

≥ −ε +
a(bv)
R(k)

(1 + ηk)|A(δ)|

where ηk → 0 as k→ ∞. By |A(δ)|, we denote here the Lebesque measure of the set A(δ). Therefore,

a(bv)
R(k)

≤
(

Φk(A(δ))

|A(δ)| +
ε

|A(δ)|

)
1

1 + ηk
. (14)

Since Φ(∂A(δ)) = 0, we have from Equations (9) and (11) that

Φk(A(δ)) = ∑
i∈Zn

+ , i/b∈A(δ)

a(i)
∏n

j=1 bj(k)R(k)
→ Φ(A(δ)). (15)

Tending in Equation (14) k to ∞ and using Equation (15), we have

lim sup
k→∞

a(bv)
R(k)

≤ Φ(A(δ))

|A(δ)| +
ε

|A(δ)| . (16)

Since the left side of Equation (16) does not depend on ε, we have

lim sup
k→∞

a(bv)
R(k)

≤ Φ(A(δ))

|A(δ)| . (17)

Put Δ = { δ ∈ (0, 1) : Φ(∂A(δ)) = 0}. Since the left side of Equation (17) does not depend on δ,
we have

lim sup
k→∞

a(bv)
R(k)

≤ lim inf
δ→0, δ∈Δ

Φ(A(δ))

|A(δ)| . (18)

Similarly, we obtain the inequality

lim inf
k→∞

a(bv)
R(k)

≥ lim sup
δ→0, δ∈Δ

Φ(A(δ))

|A(δ)| . (19)

It follows from Equations (18) and (19) that there exist the next two limits:

lim
k→∞

a(bv)
R(k)

= lim
δ→0, δ∈Δ

Φ(A(δ))

|A(δ)|

(
de f
= ϕ(v)

)
.

The next proof repeats the proof of Theorem 2 from [23]. The inverse assertion of Lemma 2 follows
immediately from Equation (9). Lemma 2 is proved.
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4. Proof of Theorem 1

Suppose that Equation (2) holds. Put for z ∈ Nn and x ∈ [0, 1]n

p(z, x) = P{ξx = z} = a(z)
B(x)

exp(z, ln x).

We have
a(z) = p(z, x)B(x) exp(z,− ln x). (20)

Suppose that Equation (6) takes place for some u ∈ G and continuous in G function ψu(·). For fixed
y ∈ G, put in Equation (20) x = exp(−u/b(k)) and z = [y/(1− x)]. We have x = 1− (u + ε(k))/b(k)
and z = [b(k)y/(u + ε(k))] = b(k)(y/u + δ(k)). Here ε(k) and δ(k) are some functions tending to zero
as k→ ∞. Thus (z,− ln x) = (y, 1) + o(1) as k→ ∞. So, it follows from Equations (20), (2), and (6) that

a(z) = p(z, x)B(x) exp(z,− ln x) = (1 + o(1))p(z, x)B(x) exp(y, 1)

=
n

∏
j=1

(1− xj)B(x)(ψu(y) + o(1)) exp(y, 1)

=
n

∏
j=1

(1− xj)B(exp(−1/b(k))Ψ(u)(ψu(y) + o(1)) exp(y, 1)

=
n

∏
j=1

(uj/bj(k))B(exp(−1/b(k))Ψ(u)(ψu(y) + o(1)) exp(y, 1)

= R(k)
n

∏
j=1

ujΨ(u)(ψu(y) + o(1)) exp(y, 1) (21)

according to Equation (7). Since Equation (6) holds locally uniformly on y then it follows from
Equation (21) that

a(by/u)
R(k)

→
n

∏
j=1

ujΨ(u)ψu(y) exp(y, 1) = ϕ(y/u) (22)

and the last relation also holds locally uniformly on y. The equality Equation (8) follows directly from
Equation (22). Replacing in Equation (22) y/u by v, we obtain Equation (9). One-sided R-oscillation
of a(·) along b(k) follows immediately from Equation (9). The proof of inverse assertion repeats the
proof of Theorem 2 from [20].

5. On Some Previous Results

The definition of regularly varying functions of one variable was given in Karamata’s well-known
work [25]. The notion of regularly varying functions at infinity along some sequence in an orthant was
introduced in Omey [26]. The definition of regularly varying multiple power series is given in [23].
A brief overview of various definitions of multivariate regularly varying functions is available in [27].
The history of different class functions having slow (one-sided or ordinary) oscillation can be seen in
the book [24]. In [22], we give the integral representation and Abelian statements (Theorems 3.1 and
3.2). With the help of these theorems, it is easy to set such sequences a(i) explicitly.

As the source, for n = 1 the sufficient condition for Equation (3) was given in Timashev [28],
see also [8]. In [20], we show that conditions from [8,28] are equivalent to Equation (2). Timashev used
the method of moments in his aforementioned result. In the papers [20,22,27] and in this article, we use
the corresponding Tauberian statements. All these statements go back to Karamata’s well-known
Tauberian theorems [29,30].
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Abstract: In the paper, multivariate probability distributions are considered that are representable
as scale mixtures of multivariate stable distributions. Multivariate analogs of the Mittag–Leffler
distribution are introduced. Some properties of these distributions are discussed. The main focus
is on the representations of the corresponding random vectors as products of independent random
variables and vectors. In these products, relations are traced of the distributions of the involved terms
with popular probability distributions. As examples of distributions of the class of scale mixtures
of multivariate stable distributions, multivariate generalized Linnik distributions and multivariate
generalized Mittag–Leffler distributions are considered in detail. Their relations with multivariate
‘ordinary’ Linnik distributions, multivariate normal, stable and Laplace laws as well as with univariate
Mittag–Leffler and generalized Mittag–Leffler distributions are discussed. Limit theorems are proved
presenting necessary and sufficient conditions for the convergence of the distributions of random
sequences with independent random indices (including sums of a random number of random
vectors and multivariate statistics constructed from samples with random sizes) to scale mixtures
of multivariate elliptically contoured stable distributions. The property of scale-mixed multivariate
elliptically contoured stable distributions to be both scale mixtures of a non-trivial multivariate stable
distribution and a normal scale mixture is used to obtain necessary and sufficient conditions for the
convergence of the distributions of random sums of random vectors with covariance matrices to the
multivariate generalized Linnik distribution.
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distribution; multivariate Linnik distribution; generalized Mittag–Leffler distribution;
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1. Introduction

Actually, this paper can be regarded as variations on the theme of ‘multiplication theorem’ 3.3.1
in the famous book of V. M. Zolotarev [1]. Here, multivariate probability distributions are considered
that are representable as scale mixtures of multivariate stable distributions. Some properties of these
distributions are discussed. Attention is paid to the representations of the corresponding random
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vectors as products of independent random variables and vectors. In these products, relations of the
distributions of the involved terms with popular probability distributions are traced.

As examples of distributions of the class of scale mixtures of multivariate stable distributions,
multivariate generalized Linnik distributions and multivariate generalized Mittag–Leffler distributions
are considered in detail. Limit theorems are proved presenting necessary and sufficient conditions for
the convergence of the distributions of random sequences with independent random indices (including
sums of a random number of random vectors and multivariate statistics constructed from samples with
random sizes) to scale mixtures of multivariate elliptically contoured stable distributions. As particular
cases, conditions are obtained for the convergence of the distributions of random sums of random
vectors with covariance matrices to the multivariate generalized Linnik distribution.

Along with general multiplicative properties of the class of scale mixtures of multivariate stable
distributions, some important and popular special cases are considered in detail. Multivariate analogs
of the Mittag–Leffler distribution are proposed. We study the multivariate (generalized) Linnik
and related (generalized) Mittag–Leffler distributions, their interrelation and their relations with
multivariate ‘ordinary’ Linnik distributions, multivariate normal, stable and Laplace laws as well as
with univariate ‘ordinary’ Mittag–Leffler distributions. Namely, we consider mixture representations
for the multivariate generalized Mittag–Leffler and multivariate generalized Linnik distributions.
We continue the research we started in [2–5]. In most papers (see, e.g., [6–18]), the properties of the
(multivariate) generalized Mittag–Leffler and Linnik distributions were deduced by analytical methods
from the properties of the corresponding probability densities and/or characteristic functions. Instead,
here we use the approach which can be regarded as arithmetical in the space of random variables or
vectors. Within this approach, instead of the operation of scale mixing in the space of distributions,
we consider the operation of multiplication in the space of random vectors/variables provided the
multipliers are independent. This approach considerably simplifies the reasoning and makes it
possible to notice some general features of the distributions under consideration. We prove mixture
representations for general scale mixtures of multivariate stable distributions and their particular cases
in terms of normal, Laplace, generalized gamma (including exponential, gamma and Weibull) and
stable laws and establish the relationship between the mixing distributions in these representations.
In particular, we prove that the multivariate generalized Linnik distribution is a multivariate normal
scale mixture with the univariate generalized Mittag–Leffler mixing distribution and, moreover, show
that this representation can be used as the definition of the multivariate generalized Linnik distribution.
Based on these representations, we prove some limit theorems for random sums of independent
random vectors with covariance matrices. As a particular case, we prove some theorems in which the
multivariate generalized Linnik distribution plays the role of the limit law. By doing so, we demonstrate
that the scheme of geometric (or, in general, negative binomial) summation is not the only asymptotic
setting (even for sums of independent random variables) in which the multivariate generalized Linnik
law appears as the limit distribution.

In [2], we showed that along with the traditional and well-known representation of the univariate
Linnik distribution as the scale mixture of a strictly stable law with exponential mixing distribution,
there exists another representation of the Linnik law as the normal scale mixture with the Mittag–Leffler
mixing distribution. The former representation makes it possible to treat the Linnik law as the limit
distribution for geometric random sums of independent identically distributed random variables
(random variables) in which summands have very large variances. The latter normal scale mixture
representation opens the way to treating the Linnik distribution as the limit distribution in the central
limit theorem for random sums of independent random variables in which summands have finite
variances. Moreover, being scale mixtures of normal laws, the Linnik distributions can serve as
the one-dimensional distributions of a special subordinated Wiener process. Subordinated Wiener
processes with various types of subordinators are often used as models of the evolution of stock prices
and financial indexes, e.g., [19]. Strange as it may seem, the results concerning the possibility of
representation of the Linnik distribution as a scale mixture of normals were never explicitly presented

96



Mathematics 2020, 8, 749

in the literature in full detail before [2], although the property of the Linnik distribution to be a normal
scale mixture is something almost obvious. Perhaps, the paper [10] was the closest to this conclusion
and exposed the representability of the Linnik law as a scale mixture of Laplace distributions with
the mixing distribution written out explicitly. These results became the base for our efforts to extend
them from the Linnik distribution to the multivariate generalized Linnik law and more general scale
mixtures of multivariate stable distributions. Methodically, the present paper is very close to the
work of L. Devroye [20] where many examples of mixture representations of popular probability
distributions were discussed from the simulation point of view. The presented material substantially
relies on the results of [2,5,15].

In many situations related to experimental data analysis, one often comes across the following
phenomenon: although conventional reasoning based on the central limit theorem of probability theory
concludes that the expected distribution of observations should be normal, instead, the statistical
procedures expose the noticeable non-normality of real distributions. Moreover, as a rule, the observed
non-normal distributions are more leptokurtic than the normal law, having sharper vertices and
heavier tails. These situations are typical in financial data analysis (see, e.g., Chapter 4 in [19] or
Chapter 8 in [21] and the references therein), in experimental physics (see, e.g., [22]) and other fields
dealing with statistical analysis of experimental data. Many attempts were undertaken to explain
this heavy-tailedness. Most significant theoretical breakthrough is usually associated with the results
of B. Mandelbrot and others [23–25] who proposed, instead of the standard central limit theorem,
to use reasoning based on limit theorems for sums of random summands with very large variances
(also see [26,27]) resulting in non-normal stable laws as heavy-tailed models of the distributions of
experimental data. However, in most cases, the key assumption within this approach, the lareg size
of the variances of elementary summands, can hardly be believed to hold in practice. To overcome
this contradiction, in [28], we considered an extended limit setting where it may be assumed that the
intensity of the flow of informative events is random resulting in that the number of jumps up to a
certain time in a random-walk-type model or the sample size is random. We show that in this extended
setting, actually, heavy-tailed scale mixtures of stable laws can also be limit distributions for sums of a
random number of random vectors with finite covariance matrices.

The paper is organized as follows. Section 2 contains basic notations and definitions.
Some properties of univariate scale distributions are recalled in Section 3. In Section 4, we introduce
multivariate stable distributions and prove a multivariate analog of the univariate ’multiplication
theorem’ (see Theorem 3.3.1 in [1]). In Section 5 we discuss some properties of scale-mixed multivariate
elliptically contoured stable laws. In particular, we prove that these mixtures are identifiable.
Section 6 contains the description of the properties of uni- and multi-variate generalized Mittag–Leffler
distributions. In Section 7, we consider the multivariate generalized Linnik distribution. Here,
we discuss different approaches to the definition of this distribution and prove some new mixture
representations for the multivariate generalized Linnik distribution. General properties of scale-mixed
multivariate stable distributions are discussed in Section 8. In Section 9, we first prove a general transfer
theorem presenting necessary and sufficient conditions for the convergence of the distributions of
random sequences with independent random indices (including sums of a random number of random
vectors and multivariate statistics constructed from samples with random sizes) to scale mixtures of
multivariate elliptically contoured stable distributions. As particular cases, conditions are obtained
for the convergence of the distributions of scalar normalized random sums of random vectors with
covariance matrices to scale mixtures of multivariate stable distributions and their special cases: ‘pure’
multivariate stable distributions and the multivariate generalized Linnik distributions. The results of
this section extend and refine those proved in [29].

2. Basic Notation and Definitions

Let r ∈ N. We will consider random elements taking values in the r-dimensional Euclidean space
Rr. The Euclidean norm of a vector x ∈ Rr will be denoted ‖x‖. Assume that all the random variables
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and random vectors are defined on one and the same probability space (Ω,A, P). The distribution of a
random variable Y or an r-variate random vector Y with respect to the measure P will be denoted L(Y)
and L(Y), respectively. The weak convergence, the coincidence of distributions and the convergence

in probability with respect to a specified probability measure will be denoted by the symbols =⇒, d
=

and P−→, respectively. The product of independent random elements will be denoted by the symbol ◦.
The vector with all zero coordinates will be denoted 0.

A univariate random variable with the standard normal distribution function Φ(x) will be
denoted X,

P(X < x) = Φ(x) =
1√
2π

∫ x

−∞
e−z2/2dz, x ∈ R.

Let Σ be a positive definite (r × r)-matrix. The normal distribution in Rr with zero vector of
expectations and covariance matrix Σ will be denoted NΣ. This distribution is defined by its density

φ(x) =
exp{− 1

2 x"Σ−1x}
(2π)r/2|Σ|1/2 , x ∈ Rr.

The characteristic function f(X)(t) of a random vector X such that L(X) = NΣ has the form

f(X)(t) = E exp{it"X} = exp
{
− 1

2 t"Σt
}

, t ∈ Rr.

A random variable having the gamma distribution with shape parameter r > 0 and scale
parameter λ > 0 will be denoted Gr,λ,

P(Gr,λ < x) =
∫ x

0
g(z; r, λ)dz, with g(x; r, λ) =

λr

Γ(r)
xr−1e−λx, x � 0,

where Γ(r) is Euler’s gamma-function,

Γ(r) =
∫ ∞

0
xr−1e−xdx, r > 0.

In this notation, obviously, G1,1 is a random variable with the standard exponential distribution:
P(G1,1 < x) =

[
1− e−x]1(x � 0) (here and in what follows 1(A) is the indicator function of a set A).

The gamma distribution is a particular representative of the class of generalized gamma
distributions (GG distributions), that was first described in [30] as a special family of lifetime
distributions containing both gamma and Weibull distributions. A generalized gamma (GG) distribution
is the absolutely continuous distribution defined by the density

g(x; r, α, λ) =
|α|λr

Γ(r)
xαr−1e−λxα

, x � 0,

with α ∈ R, λ > 0, r > 0. A random variable with the density g(x; r, α, λ) will be denoted Gr,α,λ. It is
easy to see that

Gr,α,μ
d
= G1/α

r,μ
d
= μ−1/αG1/α

r,1
d
= μ−1/αGr,α,1. (1)

Let γ > 0. The distribution of the random variable Wγ:

P
(
Wγ < x

)
=

[
1− e−xγ]

1(x � 0),

is called the Weibull distribution with shape parameter γ. It is obvious that W1 is the random variable
with the standard exponential distribution: P(W1 < x) =

[
1− e−x]1(x � 0). The Weibull distribution

is a particular case of GG distributions corresponding to the density g(x; 1, γ, 1). It is easy to see that
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W1/γ
1

d
= Wγ. Moreover, if γ > 0 and γ′ > 0, then P(W1/γ

γ′ � x) = P(Wγ′ � xγ) = e−xγγ′
= P(Wγγ′ �

x), x � 0, that is, for any γ > 0 and γ′ > 0

Wγγ′
d
= W1/γ

γ′ .

In the paper [31], it was shown that any gamma distribution with shape parameter no greater
than one is mixed exponential. Namely, the density g(x; r, μ) of a gamma distribution with 0 < r < 1
can be represented as

g(x; r, μ) =
∫ ∞

0
ze−zx p(z; r, μ)dz,

where

p(z; r, μ) =
μr

Γ(1− r)Γ(r)
· 1(z � μ)

(z− μ)rz
. (2)

Moreover, a gamma distribution with shape parameter r > 1 cannot be represented as a mixed
exponential distribution.

In [32] it was proved that if r ∈ (0, 1), μ > 0 and Gr, 1 and G1−r, 1 are independent
gamma-distributed random variables, then the density p(z; r, μ) defined by (2) corresponds to the
random variable

Zr,μ =
μ(Gr, 1 + G1−r, 1)

Gr, 1

d
= μZr,1

d
= μ

(
1 + 1−r

r V1−r,r
)
, (3)

where V1−r,r is the random variable with the Snedecor–Fisher distribution defined by the
probability density

q(x; 1− r, r) =
(1− r)1−rrr

Γ(1− r)Γ(r)
· 1

xr[r + (1− r)x]
, x � 0.

In other words, if r ∈ (0, 1), then

Gr, μ
d
= W1 ◦ Z−1

r, μ. (4)

3. Univariate Stable Distributions

Let r ∈ N. Recall that the distribution of an r-variate random vector S is called stable, if for
any a, b ∈ R there exist c ∈ R and d ∈ Rr such that aS1 + bS2

d
= cS + d, where S1 and S2 are

independent and S1
d
= S2

d
= S. In what follows we will concentrate our attention on a special sub-class

of stable distributions called strictly stable. This sub-class is characterized by that in the definition given
above d = 0.

In the univariate case, the characteristic function f(t) of a strictly stable random variable can
be represented in several equivalent forms (see, e.g., [1]). For our further constructions the most
convenient form is

fα,θ(t) = exp{−|t|α + iθw(t, α)}, t ∈ R, (5)

where

w(t, α) =

⎧⎨⎩tan πα
2 · |t|αsign t, α �= 1,

− 2
π · t log |t|, α = 1.

(6)

Here α ∈ (0, 2] is the characteristic exponent, θ ∈ [−1, 1] is the skewness parameter (for simplicity we
consider the “standard” case with unit scale coefficient at t). Any random variable with characteristic
function (5) will be denoted S(α, θ) and the characteristic function (5) itself will be written as fα,θ(t).
For definiteness, S(1, 1) = 1.
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From (5) it follows that the characteristic function of a symmetric (θ = 0) strictly stable distribution
has the form

fα,0(t) = e−|t|
α
, t ∈ R. (7)

From (7) it is easy to see that S(2, 0) d
=
√

2X.
Univariate stable distributions are popular examples of heavy-tailed distributions. Their moments

of orders δ � α do not exist (the only exception is the normal law corresponding to α = 2), and if
0 < δ < α, then

E|S(α, 0)|δ = 2δ

√
π
· Γ( δ+1

2 )Γ(1− δ
α )

Γ( 2
δ − 1)

(8)

(see, e.g., [33]). Stable laws and only they can be limit distributions for sums of a non-random
number of independent identically distributed random variables with very large variance under
linear normalization.

Let 0 < α � 1. By S(α, 1) we will denote a positive random variable with the one-sided stable
distribution corresponding to the characteristic function fα,1(t), t ∈ R. The Laplace–Stieltjes transform

ψ
(S)
α,1 (s) of the random variable S(α, 1) has the form

ψ
(S)
α,1 (s) = E exp{−sS(α, 1)} = e−sα

, s > 0.

The moments of orders δ � α of the random variable S(α, 1) are very large and for 0 < δ < α

we have

ESδ(α, 1) =
2δΓ(1− δ

α )

Γ(1− δ)

(see, e.g., [33]). For more details see [27] or [1].
The following product representations hold for strictly stable random variables. Let α ∈ (0, 2],

|θ| � min{1, 2
α − 1}, α′ ∈ (0, 1]. Then

S(αα′, θ)
d
= S1/α(α′, 1) ◦ S(α, θ), (9)

see Theorem 3.3.1 in [1]. In particular,

S(α, 0) d
=

√
2S(α/2, 1) ◦ X. (10)

Another particular case of (9) concerns one-sided strictly stable random variables: if 0 < α � 1
and 0 < α′ � 1, then

S(αα′, 1) d
= S1/α(α′, 1) ◦ S(α, 1), (11)

see Corollary 1 to Theorem 3.3.1 in [1]. Finally, if 0 < α � 1, then

S(α, θ)
d
= S(α, 1) ◦ S(1, θ), (12)

see Corollary to Theorem 3.3.2 (relation (3.3.10)) in [1].

4. Multivariate Stable Distributions

Now turn to the multivariate case. By Qr we denote the unit sphere: Qr = {u ∈ Rr : ‖u ‖ = 1}.
Let μ be a finite (‘spectral’) measure on Qr. It is known that the characteristic function of a strictly
stable random vector S has the form

E exp{it"S} = exp
{
−

∫
Qr

(
|t"s|α + iw(t"s, α)

)
μ(ds)

}
, t ∈ Rr, (13)
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with w( · , α) defined in (6), see [34–37]. An r-variate random vector with the characteristic function
(13) will be denoted S(α, μ). We will sometimes use the notation Sα,μ for L

(
S(α, μ)

)
.

As is known, a random vector S has a strictly stable distribution with some characteristic exponent
α if and only if for any u ∈ Rr the random variable u"S (the projection of S) has the univariate strictly
stable distribution with the same characteristic exponent α and some skewness parameter θ(u) up to a
scale coefficient γ(u):

u"S(α, μ)
d
= γ(u)S

(
α, θ(u)

)
, (14)

see [38]. Moreover, the projection parameter functions are related with the spectral measure μ as

(
γ(u)

)α
=

∫
Qr
|u"s|αμ(ds), (15)

θ(u)
(
γ(u)

)α
=

∫
Qr
|u"s|α sign(u"s)μ(ds), u ∈ Rr, (16)

see [36–38]. Conversely, the spectral measure μ is uniquely determined by the projection parameter
functions γ(u) and θ(u). However, there is no simple formula for this [37].

An r-variate analog of a one-sided univariate strictly stable random variable S(α, 1) is the random
vector S(α, μ+) where 0 < α � 1 and μ+ is a finite measure concentrated on the set Qr

+ = {u =

(u1, . . . , ur)" : ui � 0, i = 1, . . . , r}.
Consider multivariate analogs of product representations (9) and (11).

Theorem 1. Let 0 < α � 2, 0 < α′ � 1, μ be a finite measure on Qr, S(α, μ) be an r-variate random vector
having the strictly stable distribution with characteristic exponent α and spectral measure μ. Then

S(αα′, μ)
d
= S1/α(α′, 1) ◦ S(α, μ). (17)

If, in addition, 0 < α < 1, and μ+ is a finite measure on Qr
+, then

S(αα′, μ+)
d
= S1/α(α′, 1) ◦ S(α, μ+). (18)

Proof. Let γ(u) and θ(u), u ∈ Rr, be the projection parameter functions corresponding to the measure
μ (see (15) and (16)). Then, in accordance with (9) and (14), for any u ∈ Rr we have

u"
(
S1/α(α′, 1) ◦ S(α, μ)

)
= S1/α(α′, 1) ◦ u"S(α, μ)

d
= S1/α(α′, 1) ◦

(
γ(u)S(α, θ(u))

) d
=

d
= γ(u) · S1/α(α′, 1) ◦ S

(
α, θ(u)

) d
= γ(u)S

(
αα′, θ(u)

)
.

The remark that γ(u) and θ(u) uniquely determine μ concludes the proof of (17).
Representation (18) is a particular case of (17).

Remark 1. Actually, the essence of Theorem 1 is that all multivariate strictly stable distributions with α < 2
are scale mixtures of multivariate scale laws with no less characteristic exponent, the mixing distribution being
univariate one-sided strictly stable law. The case α = 2 is not an exception: in this case the mixing distribution
is degenerate concentrated in the unit point. This degenerate law formally satisfies the definition of a stable
distribution being the only stable law that is not absolutely continuous.

Let Σ be a symmetric positive definite (r × r)-matrix, α ∈ (0, 2]. If the characteristic function
fα,μ(t) of a strictly stable random vector S(α, μ) has the form

fα,μ(t) = E exp{it"Sα,μ} = exp{−(t"Σt)α/2}, t ∈ Rr, (19)
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then the random vector S(α, μ) is said to have the (centered) elliptically contoured stable distribution
with characteristic exponent α. In this case for better vividness we will use the special notation
S(α, μ) = S(α, Σ). The corresponding characteristic function (19) will be denoted fα,Σ(t) and the
elliptically contoured stable distribution with characteristic function (19) will be denoted Sα,Σ. It is
easy to see that S2,Σ = N2Σ.

Let α ∈ (0, 2]. If X is a random vector such that L(X) = NΣ independent of the random variable
S(α/2, 1), then from (17) it follows that

S(α, Σ) d
= S1/2(α/2, 1) ◦ S(2, Σ) d

=
√

2S(α/2, 1) ◦X (20)

(also see Proposition 2.5.2 in [27]). More general, If 0 < α � 2 and 0 < α′ � 1, then

S(αα′, Σ) d
= S1/α(α′, 1) ◦ S(α, Σ). (21)

If α = 2, then (21) turns into (20).

5. Scale Mixtures of Multivariate Elliptically Contoured Stable Distributions

Let U be a nonnegative random variable. The symbol ENUΣ(·) will denote the distribution which
for each Borel set A in Rr is defined as

ENUΣ(A) =
∫ ∞

0
NuΣ(A)dP(U < u).

It is easy to see that if X is a random vector such that L(X) = NΣ, then ENUΣ = L(
√

U ◦X).
In this notation, relation (20) can be written as

Sα,Σ = EN2S(α/2,1)Σ. (22)

By analogy, the symbol ESα,U2/αΣ will denote the distribution that for each Borel set A in Rr is
defined as

ESα,U2/αΣ(A) =
∫ ∞

0
Sα,u2/αΣ(A)dP(U < u).

The characteristic function corresponding to the distribution ESα,U2/αΣ has the form

∫ ∞

0
exp

{
−

(
t"(u2/αΣ)t

)α/2}dP(U < u) =
∫ ∞

0
exp

{
−

(
(u1/αt)"Σ(u1/αt)

)α/2}dP(U < u) =

= E exp
{

it"U1/α ◦ S(α, Σ)
}

, t ∈ Rr, (23)

where the random variable U is independent of the random vector S(α, Σ), that is, the distribution
ESα,U2/αΣ corresponds to the product U1/α ◦ S(α, Σ).

Let U be the set of all nonnegative random variables. Now consider an auxiliary statement dealing
with the identifiability of the family of distributions {ESα,U2/αΣ : U ∈ U}.

Lemma 1. Whatever a nonsingular positive definite matrix Σ is, the family {ESα,U2/αΣ : U ∈ U} is
identifiable in the sense that if U1 ∈ U , U2 ∈ U and

ES
α,U2/α

1 Σ(A) = ES
α,U2/α

2 Σ(A) (24)

for any set A ∈ B(Rr), then U1
d
= U2.
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Proof. The proof of this lemma is very simple. If U ∈ U , then it follows from (13) that the characteristic
function v

(U)
α,Σ (t) corresponding to the distribution ESα,U2/αΣ has the form

v
(U)
α,Σ (t) =

∫ ∞

0
exp

{
−

(
t"(u2/αΣ)t

)α/2}dP(U < u) =

=
∫ ∞

0
exp{−us}dP(U < u), s = (t"Σt)α/2, t ∈ Rr, (25)

But on the right-hand side of (25) there is the Laplace–Stieltjes transform of the random variable U.
From (24) it follows that v(U1)

α,Σ (t) = v
(U2)
α,Σ (t) whence by virtue of (25) the Laplace–Stieltjes transforms

of the random variables U1 and U2 coincide, whence, in turn, it follows that U1
d
= U2. The lemma

is proved.

Remark 2. When proving Lemma 1 we established a simple but useful by-product result: if ψ(U)(s) is the
Laplace–Stieltjes transform of the random variable U, then the characteristic function v

(U)
α,Σ (t) corresponding to

the distribution ESα,U2/αΣ has the form

v
(U)
α,Σ (t) = ψ(U)

(
(t"Σt)α/2), t ∈ Rr. (26)

Let X be a random vector such that L(X) = NΣ with some positive definite (r × r)-matrix Σ.
Define the multivariate Laplace distribution as L

(√
2W1 ◦ X

)
= EN2W1Σ. The random vector with

this multivariate Laplace distribution will be denoted ΛΣ. It is well known that the Laplace—Stieltjes
transform ψ(W1)(s) of the random variable W1 with the exponential distribution has the form

ψ(W1)(s) = (1 + s)−1, s > 0. (27)

Hence, in accordance with (27) and Remark 2, the characteristic function f
(Λ)
Σ (t) of the random

variable ΛΣ has the form

f
(Λ)
Σ (t) = ψ(W1)

(
t"Σt

)
=

(
1 + t"Σt

)−1, t ∈ Rr.

6. Generalized Mittag–Leffler Distributions

We begin with the univariate case. The probability distribution of a nonnegative random variable
Mδ whose Laplace transform is

ψ
(M)
δ (s) = Ee−sMδ =

(
1 + λsδ

)−1, s � 0, (28)

where λ > 0, 0 < δ � 1, is called the Mittag–Leffler distribution. For simplicity, in what follows we will
consider the standard scale case and assume that λ = 1.

The origin of the term Mittag–Leffler distribution is due to that the probability density corresponding
to Laplace transform (28) has the form

f (M)
δ (x) =

1
x1−δ ∑∞

n=0
(−1)nxδn

Γ(δn + 1)
= − d

dx
Eδ(−xδ), x � 0,

where Eδ(z) is the Mittag–Leffler function with index δ that is defined as the power series

Eδ(z) = ∑∞
n=0

zn

Γ(δn + 1)
, δ > 0, z ∈ Z.

With δ = 1, the Mittag–Leffler distribution turns into the standard exponential distribution, that is,
FM

1 (x) = [1− e−x]1(x � 0), x ∈ R. But with δ < 1 the Mittag–Leffler distribution density has the
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heavy power-type tail: from the well-known asymptotic properties of the Mittag–Leffler function it
can be deduced that if 0 < δ < 1, then

f (M)
δ (x) ∼ sin(δπ)Γ(δ + 1)

πxδ+1

as x → ∞, see, e.g., [39].
It is well-known that the Mittag–Leffler distribution is geometrically stable. This means that if

X1, X2, . . . are independent random variables whose distributions belong to the domain of attraction of
a one-sided α-strictly stable law L(S(α, 1)) and NB1, p is the random variable independent of X1, X2, . . .
and having the geometric distribution

P(NB1, p = n) = p(1− p)n−1, n = 1, 2, . . . , p ∈ (0, 1), (29)

then for each p ∈ (0, 1) there exists a constant ap > 0 such that ap
(
X1 + . . . + XNB1, p

)
=⇒ Mδ as p→ 0,

see, e.g., [40].
The history of the Mittag–Leffler distribution was discussed in [2]. For more details see e.g., [2,3]

and the references therein. The Mittag–Leffler distributions are of serious theoretical interest in the
problems related to thinned (or rarefied) homogeneous flows of events such as renewal processes or
anomalous diffusion or relaxation phenomena, see [41,42] and the references therein.

Let ν > 0, δ ∈ (0, 1]. It can be easily seen that the Laplace transform ψ
(M)
δ (s) (see (28))

is greatly divisible. Therefore, any its positive power is a Laplace transform, and, moreover,
is greatly divisible as well. The distribution of a nonnegative random variable Mδ, ν defined by
the Laplace–Stieltjes transform

ψ
(M)
δ, ν (s) = Ee−sMδ, ν =

(
1 + sδ

)−ν, s � 0, (30)

is called the generalized Mittag–Leffler distribution, see [43,44] and the references therein. Sometimes
this distribution is called the Pillai distribution [20], although in the original paper [18] R. Pillai called it
semi-Laplace. In the present paper we will keep to the first term generalized Mittag–Leffler distribution.

The properties of univariate generalized Mittag–Leffler distribution are discussed in [4,43–45].
In particular, if δ ∈ (0, 1] and ν > 0, then

Mδ, ν
d
= S(δ, 1) ◦ Gν, δ, 1

d
= S(δ, 1) ◦ G1/δ

ν,1 (31)

(see [43,44]). If ν = 1, then (31) turns into

Mδ
d
= S(δ, 1) ◦W1/δ

1 . (32)

If β � δ, then the moments of order β of the random variable Mδ, ν are very large, and if
0 < β < δ < 1, then

EMβ
δ, ν =

Γ(1− β
δ )Γ(ν + β

δ )

Γ(1− β)Γ(ν)
,

see [4].
In [4] it was demonstrated that the generalized Mittag–Leffler distribution can be represented as a

scale mixture of ‘ordinary’ Mittag–Leffler distributions: if ν ∈ (0, 1] and δ ∈ (0, 1], then

Mδ, ν
d
= Z−1/δ

ν,1 ◦Mδ. (33)
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In [4] it was also shown that any generalized Mittag–Leffler distribution is a scale mixture a
one-sided stable law with any greater characteristic parameter, the mixing distribution being the
generalized Mittag–Leffler law: if δ ∈ (0, 1], δ′ ∈ (0, 1) and ν > 0, then

Mδδ′ , ν
d
= S(δ, 1) ◦M1/δ

δ′ ,ν . (34)

Now turn to the multivariate case. As the starting point for our consideration we take
representation (31). The nearest aim is to obtain its multivariate generalization. Let S(α, μ) be a
strictly stable random vector with α �= 1. Consider the characteristic function hα,ν,μ(t) of the random
vector G1/α

ν,1 ◦ S(α, μ). From (13) and (6) we have

hα,ν,μ(t) = E exp
{

it"
(
G1/α

ν,1 ◦ S(α, μ)
)}

=
1

Γ(ν)

∫ ∞

0
fα,μ(s1/αt)sν−1e−sds =

=
1

Γ(ν)

∫ ∞

0
exp

{
− s

(
1− log fα,μ(t)

)}
sν−1ds =

=
1

Γ(ν)
(
1− log fα,μ(t)

)ν

∫ ∞

0
e−ssν−1ds =

(
1− log fα,μ(t)

)−ν. (35)

That is, from (1) and (35) we obtain the following result.

Lemma 2. The characteristic function hα,ν,μ(t) of the product of the random variable Gν,α,1 with the generalized
gamma distribution with parameters ν > 0, 0 < α � 2, α �= 1, λ = 1 and the random vector S(α, μ) with the
multivariate strictly stable distribution with the characteristic exponent α and spectral measure μ, independent
of Gν,α,1, has the form (35).

Now, comparing the right-hand side of (35) with (30) we can conclude that, if Gν,α,1 is the random
variable with the generalized gamma distribution with parameters ν > 0, 0 < α � 2, α �= 1, λ = 1,
and S(α, μ+) is a random vector with the one-sided strictly stable distribution with characteristic
exponent α ∈ (0, 1) and spectral measure μ+ concentrated on Qr

+, then we have all grounds to call the
distribution of the random vector Gν,α,1 ◦ S(α, μ+) multivariate generalized Mittag–Leffler distribution with
parameters α, ν and μ+. To provide the possibility to consider the univariate generalized Mittag–Leffler
distribution as a particular case of a more general multivariate definition, here we use the measure μ+

and α ∈ (0, 1) characterising the “one-sided” stable law, although from the formal viewpoint this is not
obligatory. Moreover, as we will see below, in the multivariate case the (generalized) Mittag–Leffler
distribution can be regarded as a special case of the (generalized) Linnik law defined in the same way
but with μ and α ∈ (0, 2].

By Mα,ν,μ+ we will denote the random vector with the multivariate generalized Mittag–Leffler

distribution, Mα,ν,μ+
d
= Gν,α,1 ◦ S(α, μ+).

Setting ν = 1 we obtain the definition of the ‘ordinary’ multivariate Mittag–Leffler distribution

as the distribution of the random vector Mα,μ+
d
= W1/α

1 ◦ S(α, μ+) given by the characteristic function

hα,μ+(t) =
(
1− log fα,μ+(t)

)−1.
Some properties of the multivariate generalized Mittag–Leffler distributions generalizing (33) and

(34) to the multivariate case are presented in the following theorem.

Theorem 2. Let δ ∈ (0, 1), δ′ ∈ (0, 1) and ν > 0. Then

Mδδ′ ,ν,μ+
d
= M1/δ

δ′ ,ν ◦ S(δ, μ+), (36)

Mδ,ν,μ+
d
= Z−1/δ

ν,1 ◦Mδ,μ+ (37)

105



Mathematics 2020, 8, 749

with the random variable Zν,1 defined in (3).

Proof. To prove (36) use (1) together with representation (18) in Theorem 1 and obtain

Mδδ′ ,ν,μ+
d
= Gν,δδ′ ,1 ◦ S(δδ′, μ+)

d
= G1/δ

ν,δ′ ,1 ◦ S1/δ(δ′, 1) ◦ S(δ, μ+)
d
= M1/δ

δ′ ,ν ◦ S(δ, μ+).

To prove (37) use (1) together with (4) and obtain

Mδ,ν,μ+
d
= Gν,δ,1 ◦ S(δ, μ+)

d
= Z−1/δ

ν,1 ◦W1/δ
1 ◦ S(δ, μ+)

d
= Z1/δ

ν,1 ◦Mδ,μ+ .

The theorem is proved.

7. Generalized Linnik Distributions

In 1953 Yu. V. Linnik [46] introduced a class of symmetric distributions whose characteristic
functions have the form

f
(L)
α (t) =

(
1 + |t|α

)−1, t ∈ R, (38)

where α ∈ (0, 2]. The distributions with the characteristic function (38) are traditionally called the
Linnik distributions. Although sometimes the term α-Laplace distributions [18] is used, we will use the
first term which has already become conventional. If α = 2, then the Linnik distribution turns into the
Laplace distribution corresponding to the density

f (Λ)(x) = 1
2 e−|x|, x ∈ R. (39)

A random variable with density (39) will be denoted Λ. A random variable with the Linnik
distribution with parameter α will be denoted Lα.

Perhaps, most often Linnik distributions are recalled as examples of symmetric geometric stable
distributions. This means that if X1, X2, . . . are independent random variables whose distributions
belong to the domain of attraction of an α-strictly stable symmetric law and NB1, p is the random
variable independent of X1, X2, . . . and having the geometric distribution (29), then for each p ∈ (0, 1)
there exists a constant ap > 0 such that ap

(
X1 + . . . + XNB1, p

)
=⇒ Lα as p→ 0, see, e.g., [47] or [40].

The properties of the Linnik distributions were studied in many papers. We should
mention [7–9,48] and other papers, see the survey in [2].

In [2,7] it was demonstrated that

Lα
d
= W1/α

1 ◦ S(α, 0) d
=

√
2Mα/2 ◦ X, (40)

where the random variable Mα/2 has the Mittag–Leffler distribution with parameter α/2.
The multivariate Linnik distribution was introduced by D. N. Anderson in [49] where it was

proved that the function

f
(L)
α,Σ(t) =

[
1 + (t"Σt)α/2]−1, t ∈ Rr, α ∈ (0, 2), (41)

is the characteristic function of an r-variate probability distribution, where Σ is a positive definite
(r× r)-matrix. In [49] the distribution corresponding to the characteristic function (41) was called the
r-variate Linnik distribution. For the properties of these distributions see [16,49]. To distinguish from
the general case, in what follows, the distribution corresponding to characteristic function (41) will be
called multivariate (centered) elliptically contoured Linnik distribution.
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The r-variate elliptically contoured Linnik distribution can also be defined in another way. Let X
be a random vector such that L(X) = NΣ, where Σ is a positive definite (r× r)-matrix, independent of
the random variable Mα/2. By analogy with (40) introduce the random vector Lα,Σ as

Lα,Σ =
√

2Mα/2 ◦X.

Then, in accordance with what has been said in Section 5,

L(Lα,Σ) = EN2Mα/2Σ. (42)

Using Remark 1 we can easily make sure that the two definitions of the multivariate elliptically
contoured Linnik distribution coincide. Indeed, with the account of (28), according to Remark 2,
the characteristic function of the random vector Lα,Σ defined by (42) has the form

E exp{it"Lα,Σ} = ψ
(M)
α/2

(
t"Σt

)
=

[
1 + (t"Σt)α/2]−1

= f
(L)
α,Σ(t), t ∈ Rr,

that coincides with Anderson’s definition (41).
Based on (40), one more equivalent definition of the multivariate elliptically contoured Linnik

distribution can be proposed. Namely, let Lα,Σ be an r-variate random vector such that

Lα,Σ = W1/α
1 ◦ S(α, Σ). (43)

In accordance with (27) and Remark 2 the characteristic function of the random vector Lα,Σ defined
by (43) again has the form

E exp{it"Lα,Σ} = ψ(W1)
(
(t"Σt)α/2) = [

1 + (t"Σt)α/2]−1
= f

(L)
α,Σ(t), t ∈ Rr.

The definitions (42) and (43) open the way to formulate limit theorems stating that the multivariate
elliptically contoured Linnik distribution can not only be limiting for geometric random sums of
independent identically distributed random vectors with very large second moments [50], but it also
can be limiting for random sums of independent random vectors with finite covariance matrices.

It can be easily seen that the characteristic function f
(L)
α (t) (see (38)) is very largely divisible.

Therefore, any its positive power is a characteristic function and, moreover, is also very largely divisible.
In [17], Pakes showed that the probability distributions known as generalized Linnik distributions which
have characteristic functions

f
(L)
α,ν (t) =

(
1 + |t|α

)−ν, t ∈ R, 0 < α � 2, ν > 0, (44)

play an important role in some characterization problems of mathematical statistics. The class of
probability distributions corresponding to characteristic function (44) have found some interesting
properties and applications, see [6,7,10–12,14,51,52] and related papers. In particular, they are good
candidates to model financial data which exhibits high kurtosis and heavy tails [53].

Any random variable with the characteristic function (44) will be denoted Lα,ν.
Recall some results containing mixture representations for the generalized Linnik distribution.

The following well-known result is due to Devroye [7] and Pakes [17] who showed that

Lα,ν
d
= S(α, 0) ◦ G1/α

ν,1
d
= S(α, 0) ◦ Gν,α,1 (45)

for any α ∈ (0, 2] and ν > 0.
It is well known that

EGγ
ν,1 =

Γ(ν + γ)

Γ(ν)
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for γ > −ν. Hence, for 0 � β < α from (8) and (45) we obtain

E|Lα,ν|β = E|S(α, 0)|β · EGβ/α
ν,1 =

2β

√
π
· Γ( β+1

2 )Γ(1− β
α )Γ(ν + β

α )

Γ( 2
β − 1)Γ(ν)

.

Generalizing and improving some results of [15,17], with the account of (31) in [5] it was
demonstrated that for ν > 0 and α ∈ (0, 2]

Lα,ν
d
= X ◦

√
2S(α/2, 1) ◦ G1/α

ν,1
d
= X ◦

√
2S(α/2, 1) ◦ Gν,α/2,1

d
= X ◦

√
2Mα/2, ν. (46)

that is, the generalized Linnik distribution is a normal scale mixture with the generalized Mittag–Leffler
mixing distribution.

It is easy to see that for any α > 0 and α′ > 0

Gν,αα′ ,1
d
= G1/αα′

ν,1
d
= (G1/α′

ν,1 )1/α d
= G1/α

ν,α′ ,1.

Therefore, for α ∈ (0, 2], α′ ∈ (0, 1) and ν > 0 using (45) and the univariate version of (14) we
obtain the following chain of relations:

Lαα′ , ν
d
= S(αα′, 0) ◦ G1/αα′

ν,1
d
= S(α, 0) ◦ S1/α(α′, 1) ◦ G1/αα′

ν,1
d
=

d
= S(α, 0) ◦

(
S(α′, 1)Gν,α′ ,1

)1/α d
= S(α, 0) ◦M1/α

α′ ,ν .

Hence, the following statement, more general than (46), holds representing the generalized
Linnik distribution as a scale mixture of a symmetric stable law with any greater characteristic
parameter, the mixing distribution being the generalized Mittag–Leffler law: if α ∈ (0, 2], α′ ∈ (0, 1)
and ν > 0, then

Lαα′ , ν
d
= S(α, 0) ◦M1/α

α′ ,ν .

Now let ν ∈ (0, 1]. From (45) and (4) it follows that

Lα,ν
d
= S(α, 0) ◦ G1/α

ν,1
d
= S(α, 0) ◦W1/α

1 ◦ Z−1/α
ν,1

d
= Lα ◦ Z−1/α

ν,1

yielding the following relation proved in [5]: if ν ∈ (0, 1] and α ∈ (0, 2], then

Lα,ν
d
= Lα · Z−1/α

ν,1 .

In other words, with ν ∈ (0, 1] and α ∈ (0, 2], the generalized Linnik distribution is a scale mixture
of ‘ordinary’ Linnik distributions. In the same paper the representation of the generalized Linnik
distribution via the Laplace and ‘ordinary’ Mittag–Leffler distributions was obtained.

For δ ∈ (0, 1] denote

Rδ =
S(δ, 1)
S′(δ, 1)

,

where S(δ, 1) and S′(δ, 1) are independent random variables with one and the same one-sided stable
distribution with the characteristic exponent δ. In [2] it was shown that the probability density f (R)

δ (x)
of the ratio Rδ of two independent random variables with one and the same one-sided strictly stable
distribution with parameter δ has the form

f (R)
δ (x) =

sin(πδ)xδ−1

π[1 + x2δ + 2xδ cos(πδ)]
, x > 0,
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also see [1], Section 3.3, where it was hidden among other calculations, but was not stated explicitly.
In [5] it was proved that if ν ∈ (0, 1] and α ∈ (0, 2], then

Lα,ν
d
= X ◦ Z−1/α

ν,1 ◦
√

2Mα/2
d
= Λ ◦ Z−1/α

ν,1 ◦
√

Rα/2.

So, the density of the univariate generalized Linnik distribution admits a simple integral
representation via known elementary densities (2), (39) and (45).

As concerns the property of geometric stability, the following statement holds.

Lemma 3. Any univariate symmetric random variable Yα is geometrically stable if and only if it is representable as

Yα = W1/α
1 ◦ S(α, 0), 0 < α � 2.

Any univariate positive random variable Yα is geometrically stable if and only if it is representable as

Yα = W1/α
1 ◦ S(α, 1), 0 < α � 1.

Proof. These representations immediately follow from the definition of geometrically stable
distributions and the transfer theorem for cumulative geometric random sums, see, e.g., [54].

Corollary 1. If ν �= 1, then from the identifiability of scale mixtures of stable laws (see Lemma 1) it follows that
the generalized Linnik distribution and the generalized Mittag–Leffler distributions are not geometrically stable.

Let Σ be a positive definite (r× r)-matrix, α ∈ (0, 2], ν > 0. As the ‘ordinary’ multivariate Linnik
distribution, the multivariate elliptically contoured generalized Linnik distribution can be defined in at
least two equivalent ways. First, it can be defined by its characteristic function. Namely, a multivariate
distribution is called (centered) elliptically contoured generalized Linnik law, if the corresponding
characteristic function has the form

f
(L)
α,ν,Σ(t) =

[
1 + (t"Σt)α/2]−ν, t ∈ Rr. (47)

Second, let X be a random vector such that L(X) = NΣ, independent of the random variable
Mα/2,ν with the generalized Mittag–Leffler distribution. By analogy with (46), introduce the random
vector Lα,ν,Σ as

Lα,ν,Σ =
√

2Mα/2,ν ◦X.

Then, in accordance with what has been said in Section 5,

L(Lα,ν,Σ) = EN2Mα/2,νΣ. (48)

The distribution (42) will be called the multivariate (centered) elliptically contoured generalized
Linnik distribution.

Using Remark 2 we can easily make sure that the two definitions of the multivariate elliptically
contoured generalized Linnik distribution coincide. Indeed, with the account of (30), according to
Remark 2, the characteristic function of the random vector Lα,ν,Σ defined by (48) has the form

E exp{it"Lα,ν,Σ} = ψ
(M)
α/2,ν

(
t"Σt

)
=

[
1 + (t"Σt)α/2]−ν

= f
(L)
α,ν,Σ(t), t ∈ Rr,

that coincides with (47).
Based on (45), one more equivalent definition of the multivariate elliptically contoured generalized

Linnik distribution can be proposed. Namely, let Lα,ν,Σ be an r-variate random vector such that

Lα,ν,Σ = G1/α
ν,1 ◦ S(α, Σ). (49)
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If ν = 1, then, by definition, we obtain the random vector W1/α
1 ◦ S(α, Σ) = Lα,Σ with the ‘ordinary’

multivariate elliptically contoured Linnik distribution.
It is well known that the Laplace—Stieltjes transform ψ

(G)
ν,1 (s) of the random variable Gν,1 having

the gamma distribution with the shape parameter ν has the form

ψ
(G)
ν,1 (s) = (1 + s)−ν, s > 0.

Then in accordance with Remark 1 the characteristic function of the random vector Lα,ν,Σ defined
by (49) again has the form

E exp{it"Lα,ν,Σ} = ψ
(G)
ν,1

(
(t"Σt)α/2) = [

1 + (t"Σt)α/2]−ν
= f

(L)
α,ν,Σ(t), t ∈ Rr.

Definitions (48) and (49) open the way to formulate limit theorems stating that the multivariate
elliptically contoured generalized Linnik distribution can be limiting both for random sums of
independent identically distributed random vectors with very large second moments, and for random
sums of independent random vectors with finite covariance matrices.

There are some different ways of generalization of the univariate symmetric Linnik and
generalized Linnik laws to the asymmetric case. The traditional (and formal) approach to the
asymmetric generalization of the Linnik distribution (see, e.g., [15,55,56]) consists in the consideration
of geometric sums of random summands whose distributions are attracted to an asymmetric strictly
stable distribution. The variances of such summands are very large. Since in modeling real phenomena,
as a rule, there are no solid reasons to reject the assumption of the finiteness of the variances of
elementary summands, in [57], two alternative asymmetric generalizations were proposed based on
the representability of the Linnik distribution as a scale mixture of normal laws or a scale mixture of
Laplace laws.

Nevertheless, for our purposes it is convenient to deal with the traditional asymmetric
generalization of the generalized Linnik distribution. Let S(α, θ) be a random variable with the
strictly stable distribution defined by the characteristic exponent α ∈ (0, 2] and asymmetry parameter
θ ∈ [−1, 1], Gν,α,1 be a random variable having the GG distribution with shape parameter ν > 0 and
exponent power parameter α independent of S(α, θ). Based on representation (45), we define the
asymmetric generalized Linnik distribution as L

(
Gν,α,1 ◦ S(α, θ)

)
. A random variable with this distribution

will be denoted Lα,ν,θ .
In the multivariate case a natural way of construction of the asymmetric Linnik laws consists

in the application of Lemma 2 with not necessarily elliptically contoured strictly stable distribution.
Namely, let the random variable Gν,α,1 have the generalized gamma distribution and be independent
of the random vector S(α, μ) with the strictly stable distribution with characteristic exponent α ∈ (0, 2]
and spectral measure μ. Extending the definitions of multivariate elliptically contoured generalized
Linnik distribution given above, we will say that the distribution of the random vector Gν,α,1 ◦ S(α, μ)

is the multivariate generalized Linnik distribution. Formally, this definition embraces both multivariate
elliptically contoured generalized Linnik laws and, moreover, multivariate generalized Mittag–Leffler
laws (if μ = μ+). A random vector with the multivariate generalized Linnik distribution will be
denoted Lα,ν,μ.

If ν = 1, then we have the ‘ordinary’ multivariate Linnik distribution. By definition, Lα,1,μ = Lα,μ.
Mixture representations for the generalized Mittag–Leffler distribution were considered in [5]

and discussed in Section 6 together with their extensions to the multivariate case. Here, we will focus
on the mixture representations for the multivariate generalized Linnik distribution. Our reasoning is
based on the definition of the multivariate generalized Linnik distribution given above and Theorem 1.

For α ∈ (0, 2], α′ ∈ (0, 1) and ν > 0 using (1), (17) and (31) we obtain the following chain
of relations:

Lαα′ ,ν,μ
d
= Gν,αα′ ,1 ◦ S(αα′, μ)

d
= G1/αα′

ν,1 ◦ S(αα′, μ)
d
= S1/α(α′, 1) ◦ G1/αα′

ν,1 ◦ S(α, μ)
d
=
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d
=

(
S(α′, 1) ◦ Gν,α′ ,1

)1/α ◦ S(α, μ)
d
= M1/α

α′ ,ν ◦ S(α, μ).

Hence, the following statement holds representing the multivariate generalized Linnik
distribution as a scale mixture of a multivariate stable law with any greater characteristic parameter,
the mixing distribution being the univariate generalized Mittag–Leffler law.

Theorem 3. If α ∈ (0, 2], α′ ∈ (0, 1) and ν > 0, then

Lαα′ ,ν,μ
d
= M1/α

α′ ,ν ◦ S(α, μ). (50)

Now let ν ∈ (0, 1]. From (45) and (4) it follows that

Lα,ν,μ
d
= G1/α

ν,1 ◦ S(α, μ)
d
= Z−1/α

ν,1 ◦W1/α
1 ◦ S(α, μ)

d
= Z−1/α

ν,1
d
= Z−1/α

ν,1 ◦ Lα,μ

yielding the following statement.

Theorem 4. If ν ∈ (0, 1] and α ∈ (0, 2], then

Lα,ν,μ
d
= Z−1/α

ν,1 ◦ Lα,μ.

In other words, with ν ∈ (0, 1] and α ∈ (0, 2], the multivariate generalized Linnik distribution is a scale
mixture of ‘ordinary’ multivariate Linnik distributions.

Consider projections of a random vector with the multivariate generalized Linnik distribution.
For an arbitrary u ∈ Rr we have

u"Lα,ν,μ
d
= u"

(
Gν,α,1 ◦ S(α, μ)

)
= Gν,α,1 ◦ u"S(α, μ)

d
= Gν,α,1 ◦

(
γ(u)S(α, θ(u))

)
=

= γ(u) · Gν,α,1 ◦ S(α, θ(u)) d
= γ(u)Lα,ν,θ(u).

This means that the following statement holds.

Theorem 5. Let the random vector Lα,ν,μ have the multivariate generalized Linnik distribution with α ∈ (0, 2],
ν > 0 and spectral measure μ. Let to the spectral measure μ there correspond the projection scale parameter
function γ(u) and projection asymmetry parameter function θ(u), u ∈ Rr. Then any projection of the random
vector Lα,ν,μ has the univariate asymmetric Linnik distribution with the asymmetry parameter θ(u) scaled
by γ(u):

u"Lα,ν,μ
d
= γ(u)Lα,ν,θ(u).

Now consider the elliptically contoured case. Let α ∈ (0, 2] and the random vector ΛΣ have the
multivariate Laplace distribution with some positive definite (r× r)-matrix Σ. In [33] it was shown
that if δ ∈ (0, 1], then

Wδ
d
= W1 ◦ S−1(δ, 1). (51)

Hence, it can be easily seen that

Lα,Σ
d
= W1/α

1 ◦ S(α, Σ) d
=

√
2Wα/2 ◦ S(α/2, 1) ◦X d

=
√

2W1 ◦ Rα/2 ◦X d
=

√
Rα/2 ◦ΛΣ. (52)

So, from Theorem 4 and (52) we obtain the following statement.

111



Mathematics 2020, 8, 749

Corollary 2. If ν ∈ (0, 1] and α ∈ (0, 2], then the multivariate elliptically contoured generalized Linnik
distribution is a scale mixture of multivariate Laplace distributions:

Lα,ν,Σ
d
= Z−1/α

ν,1 ◦
√

Rα/2 ◦ΛΣ.

From (31) with ν = 1 and (51) it can be seen that

Lα,Σ
d
=

√
2Mα/2 ◦X.

Therefore we obtain one more corollary of Theorem 4 representing the multivariate generalized
Linnik distribution via ‘ordinary’ Mittag–Leffler distributions.

Corollary 3. If ν ∈ (0, 1] and α ∈ (0, 2], then

Lα,ν,Σ
d
= Z−1/α

ν,1 ◦
√

2Mα/2 ◦X.

8. General Scale-Mixed Stable Distributions

In the preceding sections we considered special scale-mixed stable distributions in which the
mixing distribution was generalized gamma leading to popular Mittag–Leffler and Linnik laws.
Now turn to the case where the mixing distribution can be arbitrary.

Let α ∈ (0, 2], let U be a positive random variable and S(α, μ) be a random vector with the strictly
stable distribution defined by the characteristic exponent α and spectral measure μ. An r-variate
random vector Yα,μ is said to have the U-scale-mixed stable distribution, if

Yα,μ
d
= U1/α ◦ S(α, μ)

Correspondingly, for 0 < α � 1, a univariate positive random variable Yα,1 is said to have the
U-scale-mixed one-sided stable distribution, if Yα,1 is representable as

Yα,1
d
= U1/α ◦ S(α, 1).

As above, in the elliptically contoured case, where to the spectral measure μ there corresponds a
positive definite (r× r)-matrix Σ, instead of Yα,μ we will write Yα,Σ.

The following statement generalizes Theorem 2 (Equation (36)) and Theorem 3.

Theorem 6. Let U be a positive random variable, α ∈ (0, 2], α′ ∈ (0, 1]. Let S(α, μ) be a random vector
with the strictly stable distribution defined by the characteristic exponent α and spectral measure μ. Let an
r-variate random vector Yαα′ ,Σ have the U-scale-mixed stable distribution and a random variable Yα′ ,1 have the
U-scale-mixed one-sided stable distribution. Assume that Sα,μ and Yα′ ,1 are independent. Then

Yαα′ ,μ
d
= Y1/α

α′ ,1 ◦ S(α, μ).

Proof. From the definition of a U-scale-mixed stable distribution and (17) we have

Yαα′ ,μ
d
= U1/αα′ ◦ S(αα′, μ)

d
= U1/αα′ ◦ S1/α(α′, 1) ◦ S(α, μ)

d
=

d
=

(
U1/α′ ◦ S(α′, 1)

)1/α ◦ S(α, μ)
d
= Y1/α

α′ ,1 ◦ S(α, μ).

In the elliptically contoured case with α = 2, from Theorem 6 we obtain the following statement.
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Corollary 4. Let α ∈ (0, 2), U be a positive random variable, Σ be a positive definite (r× r)-matrix, X be a
random vector such that L(X) = NΣ. Then

Yα,Σ
d
=

√
2Yα/2,1 ◦X.

In other words, any multivariate scale-mixed symmetric stable distribution is a scale mixture of multivariate
normal laws. On the other hand, since the normal distribution is stable with α = 2, any multivariate normal
scale mixture is a ‘trivial’ multivariate scale-mixed stable distribution.

To give particular examples of ‘non-trivial’ scale-mixed stable distributions, note that

• if U d
= W1, then Yα,1

d
= Mα and Yα,μ

d
= Lα,μ;

• if U d
= Gν,1, then Yα,1

d
= Mα,ν and Yα,μ

d
= Lα,ν,μ;

• if U d
= S(α′, 1) with 0 < α′ � 1, then Yα,1

d
= S(αα′, 1) and Yα,μ

d
= S(αα′, μ).

Among possible mixing distributions of the random variable U, we will distinguish a special class
that can play important role in modeling observed regularities by heavy-tailed distributions. Namely,
assume that V is a positive random variable and let

U d
= V ◦ Gν,1,

that is, the distribution of U is a scale mixture of gamma distributions. We will denote the class
of these distributions as G(V). This class is rather wide and besides the gamma distribution and
its particular cases (exponential, Erlang, chi-square, etc.) with exponentially fast decreasing tail,
contains, for example, Pareto and Snedecor–Fisher laws with power-type decreasing tail. In the last
two cases the random variable V is assumed to have the corresponding gamma and inverse gamma
distributions, respectively.

For L(U) ∈ G(V) we have

Yα,1
d
= (V ◦ Gν,1)

1/α ◦ S(α, 1) d
= V1/α ◦

(
G1/α

ν,1 ◦ S(α, 1)
) d
= V1/α ◦Mα,ν

and
Yα,μ

d
= (V ◦ Gν,1)

1/α ◦ S(α, μ)
d
= V1/α ◦

(
G1/α

ν,1 ◦ S(α, μ)
) d
= V1/α ◦ Lα,ν,μ.

This means that with L(U) ∈ G(V), the U-scale-mixed stable distributions are scale mixtures of
the generalized Mittag–Leffler and multivariate generalized Linnik laws.

Therefore, we pay a special attention to mixture representations of the generalized Mittag–Leffler
and multivariate generalized Linnik distributions. These representations can be easily extended to any
U-scale-mixed stable distributions with L(U) ∈ G(V).

9. Convergence of the Distributions of Random Sequences with Independent Indices to
Multivariate Scale-Mixed Stable Distributions

In applied probability it is a convention that a model distribution can be regarded as well-justified
or adequate, if it is an asymptotic approximation, that is, if there exists a rather simple limit setting (say,
schemes of maximum or summation of random variables) and the corresponding limit theorem in
which the model under consideration manifests itself as a limit distribution. The existence of such
limit setting can provide a better understanding of real mechanisms that generate observed statistical
regularities, see e.g., [54].

In this section we will prove some limit theorems presenting necessary and sufficient conditions
for the convergence of the distributions of random sequences with independent random indices
(including sums of a random number of random vectors and multivariate statistics constructed from
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samples with random sizes) to scale mixtures of multivariate elliptically contoured stable distributions.
As particular cases, conditions will be obtained for the convergence of the distributions of random sums
of random vectors with both very large and finite covariance matrices to the multivariate generalized
Linnik distribution.

Consider a sequence {Sn}n�1 of random elements taking values in Rr. Let Ξ(Rr) be the set of
all nonsingular linear operators acting from Rr to Rr. The identity operator acting from Rr to Rr will
be denoted Ir. Assume that there exist sequences {Bn}n�1 of operators from Ξ(Rr) and {an}n�1 of
elements from Rr such that

Qn = B−1
n (Sn − an) =⇒ Q (n→ ∞) (53)

where Q is a random element whose distribution with respect to P will be denoted H, H = L(Q).
Along with {Sn}n�1, consider a sequence of integer-valued positive random variables {Nn}n�1

such that for each n � 1 the random variable Nn is independent of the sequence {Sk}k�1. Let cn ∈ Rr,
Dn ∈ Ξ(Rr), n � 1. Now we will formulate sufficient conditions for the weak convergence of the
distributions of the random elements Zn = D−1

n (SNn − cn) as n→ ∞.
For g ∈ Rr denote Wn(g) = D−1

n (BNn g + aNn − cn). By measurability of a random field we
will mean its measurability as a function of two variates, an elementary outcome and a parameter,
with respect to the Cartesian product of the σ-algebra A and the Borel σ-algebra B(Rr) of subsets
of Rr.

In [58,59] the following theorem was proved which establishes sufficient conditions of the
weak convergence of multivariate random sequences with independent random indices under
operator normalization.

Theorem 7. [58,59]. Let ‖D−1
n ‖ → ∞ as n→ ∞ and let the sequence of random variables {‖D−1

n BNn‖}n�1

be tight. Assume that there exist a random element Q with distribution H and an r-dimensional random field
W(g), g ∈ Rr, such that (53) holds and

Wn(g) =⇒W(g) (n→ ∞)

for H-almost all g ∈ Rr. Then the random field W(g) is measurable, linearly depends on g and

Zn =⇒W(Q) (n→ ∞),

where the random field W( · ) and the random element Q are independent.

Now consider a special case of the general limit setting and assume that the normalization is
scalar and the limit random vector Q in (53) has an elliptically contoured stable distribution. Namely,
let {bn}n�1 be an very largely increasing sequence of positive numbers and, instead of the general
condition (53) assume that

L
(
b−1/α

n Sn
)
=⇒ Sα,Σ (54)

as n→ ∞, where α ∈ (0, 2] and Σ is some positive definite matrix. In other words, let

b−1/α
n Sn =⇒ S(α, Σ) (n→ ∞).

Let {dn}n�1 be an very largely increasing sequence of positive numbers. As Zn take the scalar
normalized random vector

Zn = d−1/α
n SNn .

The following result can be considered as a multivariate generalization of the main theorem of [29].
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Theorem 8. Let Nn → ∞ in probability as n → ∞. Assume that the random vectors S1, S2, . . . satisfy
condition (54) with α ∈ (0, 2] and a positive definite matrix Σ. Then a distribution F such that

L(Zn) =⇒ F (n→ ∞), (55)

exists if and only if there exists a distribution function V(x) satisfying the conditions

(i) V(x) = 0 for x < 0;
(ii) for any A ∈ B(Rr)

F(A) = ESα,U2/αΣ(A) =
∫ ∞

0
Sα,u2/αΣ(A)dV(u), x ∈ R1;

(iii) P(bNn < dnx) =⇒ V(x), n→ ∞.

Proof. The ‘if’ part. We will essentially exploit Theorem 7. For each n � 1 let an = cn = 0, Bn = b1/α
n Ir,

Dn = d1/α
n Ir. Let U be a random variable with the distribution function V(x). Note that the conditions

of the theorem guarantee the tightness of the sequence of random variables

‖D−1
n BNn‖ = (bNn /dn)

1/α, n = 1, 2, . . .

implied by its weak convergence to the random variable U1/α. Further, in the case under consideration
we have Wn(g) = (bNn /dn)1/α · g, g ∈ Rr. Therefore, the condition bNn /dn =⇒ U implies Wn(g) =⇒
U1/αg for all g ∈ Rr.

Condition (54) means that in the case under consideration H = Sα,Σ. Hence, by Theorem 7
Zn =⇒ U1/α ◦ S(α, Σ) (recall that the symbol ◦ stands for the product of independent random elements).
The distribution of the random element U1/α ◦ S(α, Σ) coincides with ESα,U2/αΣ, see Section 5.

The ‘only if’ part. Let condition (55) hold. Make sure that the sequence {‖D−1
n BNn‖}n�1 is tight.

Let Q d
= S(α, Σ). There exist δ > 0 and ρ > 0 such that

P(‖Q‖ > ρ) > δ. (56)

For ρ specified above and an arbitrary x > 0 we have

P(‖Zn‖ > x) � P
(∥∥d−1/α

n SNn

∥∥ > x;
∥∥b−1/α

Nn
SNn

∥∥ > ρ
)
=

= P
(
(bNn /dn)

1/α > x ·
∥∥b−1/α

Nn
SNn

∥∥−1;
∥∥b−1/α

Nn
SNn

∥∥ > ρ
)
�

� P
(
(bNn /dn)

1/α > x/ρ;
∥∥b−1/α

Nn
SNn

∥∥ > ρ
)
=

= ∑∞
k=1 P(Nn = k)P

(
(bk/dn)

1/α > x/ρ;
∥∥b−1/α

k Sk
∥∥ > ρ

)
=

= ∑∞
k=1 P(Nn = k)P

(
(bk/dn)

1/α > x/ρ
)
P
(∥∥b−1/α

k Sk
∥∥ > ρ

)
(57)

(the last equality holds since any constant is independent of any random variable). Since by (54) the
convergence b−1/α

k Sk =⇒ Y takes place as k → ∞, from (56) it follows that there exists a number
k0 = k0(ρ, δ) such that

P
(∥∥b−1/α

k Sk
∥∥ > ρ

)
> δ/2

for all k > k0. Therefore, continuing (57) we obtain

P(‖Zn‖ > x) � δ

2 ∑∞
k=k0+1 P(Nn = k)P

(
(bk/dn)

1/α > x/ρ
)
=

=
δ

2
[
P
(
(bNn /dn)

1/α > x/ρ
)
−∑k0

k=1 P(Nn = k)P
(
(bk/dn)

1/α > x/ρ
)]

�
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� δ

2
[
P
(
(bNn /dn)

1/α > x/ρ
)
− P(Nn � k0)

]
.

Hence,

P
(
(bNn /dn)

1/α > x/R
)
� 2

δ
P(‖Zn‖ > x) + P(Nn � k0). (58)

From the condition Nn
P−→ ∞ as n → ∞ it follows that for any ε > 0 there exists an n0 = n0(ε)

such that P(Nn � n0) < ε for all n � n0. Therefore, with the account of the tightness of the sequence
{Zn}n�1 that follows from its weak convergence to the random element Z with L(Z) = F implied
by (55), relation (58) implies

lim
x→∞

sup
n�n0(ε)

P
(
(bNn /dn)

1/α > x/ρ
)
� ε, (59)

whatever ε > 0 is. Now assume that the sequence

‖D−1
n BNn‖ = (bNn /dn)

1/α, n = 1, 2, . . .

is not tight. In that case there exists an γ > 0 and sequencesN of natural and {xn}n∈N of real numbers
satisfying the conditions xn ↑ ∞ (n→ ∞, n ∈ N ) and

P
(
(bNn /dn)

1/α > xn
)
> γ, n ∈ N . (60)

But, according to (59), for any ε > 0 there exist M = M(ε) and n0 = n0(ε) such that

sup
n�n0(ε)

P
(
(bNn /dn)

1/α > M(ε)
)
� 2ε. (61)

Choose ε < γ/2 where γ is the number from (60). Then for all n ∈ N large enough, in accordance
with (60), the inequality opposite to (61) must hold. The obtained contradiction by the Prokhorov
theorem proves the tightness of the sequence {‖D−1

n BNn‖}n�1 or, which in this case is the same, of the
sequence {bNn /dn}n�1.

Introduce the setW(Z) containing all nonnegative random variables U such that P(Z ∈ A) =

ESα,U2/αΣ(A) for any A ∈ B(Rr). Let λ(·, ·) be any probability metric that metrizes weak convergence
in the space of r-variate random vectors, or, which is the same in this context, in the space of
distributions, say, the Lévy–Prokhorov metric. If X1 and X2 are random variables with the distributions
F1 and F2 respectively, then we identify λ(X1, X2) and λ(F1, F2)). Show that there exists a sequence of
random variables {Un}n�1, Un ∈ W(Z), such that

λ
(
bNn /dn, Un

)
−→ 0 (n→ ∞). (62)

Denote
βn = inf

{
λ
(
bNn /dn, U

)
: U ∈ W(Z)

}
.

Prove that βn → 0 as n→ ∞. Assume the contrary. In that case βn � δ for some δ > 0 and all n
from some subsequence N of natural numbers. Choose a subsequence N1 ⊆ N so that the sequence
{bNn /dn}n∈N1 weakly converges to a random variable U (this is possible due to the tightness of the
family {bNn /dn}n�1 established above). But then Wn(g) =⇒ U1/αg as n→ ∞, n ∈ N1 for any g ∈ Rr.
Applying Theorem 7 to n ∈ N1 with condition (54) playing the role of condition (53), we make sure
that U ∈ W(Z), since condition (55) provides the coincidence of the limits of all weakly convergent
subsequences. So, we arrive at the contradiction to the assumption that βn � δ for all n ∈ N1. Hence,
βn → 0 as n→ ∞.
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For any n = 1, 2, . . . choose a random variable Un fromW(Z) satisfying the condition

λ
(
bNn /dn, Un

)
� βn +

1
n .

This sequence obviously satisfies condition (62). Now consider the structure of the set W(Z).
This set contains all the random variables defining the family of special mixtures of multivariate
centered elliptically contoured stable laws considered in Lemma 1, according to which this family
is identifiable. So, whatever a random element Z is, the set W(Z) contains at most one element.
Therefore, actually condition (62) is equivalent to

bNn /dn =⇒ U (n→ ∞),

that is, to condition (iii) of the theorem. The theorem is proved.

Corollary 5. Under the conditions of Theorem 7, non-randomly normalized random sequences with independent
random indices d−1/α

n SNn have the limit stable distribution Sα,Σ′ with some positive definite matrix Σ′ if and
only if there exists a number c > 0 such that

bNn /dn =⇒ c (n→ ∞).

Moreover, in this case Σ′ = c2/αΣ.

This statement immediately follows from Theorem 8 with the account of Lemma 1.
Now consider convergence of the distributions of random sums of random vectors to special

scale-mixed multivariate elliptically contoured stable laws.
In Section 4 (see (20)) we made sure that all scale-mixed centered elliptically contoured stable

distributions are representable as multivariate normal scale mixtures. Together with Theorem 8 this
observation allows to suspect at least two principally different limit schemes in which each of these
distributions can appear as limiting for random sums of independent random vectors. We will illustrate
these two cases by the example of the multivariate generalized Linnik distribution.

As we have already mentioned, ‘ordinary’ Linnik distributions are geometrically stable.
Geometrically stable distributions are only possible limits for the distributions of geometric random
sums of independent identically distributed random vectors. As this is so, the distributions of
the summands belong to the domain of attraction of the multivariate strictly stable law with some
characteristic exponent α ∈ (0, 2] and hence, for 0 < α < 2 the univariate marginals have very large
moments of orders greater or equal to α. As concerns the case α = 2, where the variances of marginals
are finite, within the framework of the scheme of geometric summation in this case the only possible
limit law is the multivariate Laplace distribution.

Correspondinly, as we will demonstrate below, the multivariate generalized Linnik distributions
can be limiting for negative binomial sums of independent identically distributed random vectors.
Negative binomial random sums turn out to be important and adequate models of characteristics
of precipitation (total precipitation volume, etc.) during wet (rainy) periods in meteorology [60–62].
However, in this case the summands (daily rainfall volumes) also must have distributions from the
domain of attraction of a strictly stable law with some characteristic exponent α ∈ (0, 2] and hence,
with α ∈ (0, 2), have very large variances, that seems doubtful, since to have an very large variance,
the random variable must be allowed to take arbitrarily large values with positive probabilities. If α = 2,
then the only possible limit distribution for negative binomial random sums is the so-called variance
gamma distribution which is well known in financial mathematics [54].

However, when the (generalized) Linnik distributions are used as models of statistical regularities
observed in real practice and an additive structure model is used of type of a (stopped) random walk
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for the observed process, the researcher cannot avoid thinking over the following question: which of
the two combinations of conditions can be encountered more often:

• the distribution of the number of summands (the number of jumps of a random walk) is
asymptotically gamma (say, negative binomial), but the distributions of summands (jumps)
have so heavy tails that, at least, their variances are very large, or

• the second moments (variances) of the summands (jumps) are finite, but the number of summands
exposes an irregular behavior so that its very large values are possible?

Since, as a rule, when real processes are modeled, there are no serious reasons to reject the
assumption that the variances of jumps are finite, the second combination at least deserves a
thorough analysis.

As it was demonstrated in the preceding sections, the scale-mixed multivariate elliptically
contoured stable distributions (including multivariate (generalized) Linnik laws) even with α < 2 can
be represented as multivariate normal scale mixtures. This means that they can be limit distributions
in analogs of the central limit theorem for random sums of independent random vectors with finite
covariance matrices. Such analogs with univariate ‘ordinary’ Linnik limit distributions were presented
in [2] and extended to generalized Linnik distributions in [5]. In what follows we will present some
examples of limit settings for random sums of independent random vectors with principally different
tail behavior. In particular, it will de demonstrated that the scheme of negative binomial summation is
far not the only asymptotic setting (even for sums of independent random variables!) in which the
multivariate generalized Linnik law appears as the limit distribution.

Remark 3. Based on the results of [63], by an approach that slightly differs from the one used here by the starting
point, in the paper [64] it was demonstrated that if the random vectors {Sn}n�1 are formed as cumulative sums
of independent random vectors:

Sn = X1 + . . . + Xn (63)

for n ∈ N, where X1, X2, . . . are independent r-valued random vectors, then the condition Nn
P−→ ∞ in the

formulations of Theorem 8 and Corollary 4 can be omitted.

Throughout this section we assume that the random vectors Sn have the form (63).
Let U ∈ U (see Section 5), α ∈ (0, 2], Σ be a positive definite matrix. In Section 8 the r-variate

random vector Yα,Σ with the the multivariate U-scale-mixed elliptically contoured stable distribution
was introduced as Yα,Σ = U1/α ◦ S(α, Σ). In this section we will consider the conditions under
which multivariate U-scale-mixed stable distributions can be limiting for sums of independent
random vectors.

Consider a sequence of integer-valued positive random variables {Nn}n�1 such that for each
n � 1 the random variable Nn is independent of the sequence {Sk}k�1. First, let {bn}n�1 be an very
largely increasing sequence of positive numbers such that convergence (54) takes place. Let {dn}n�1 be
an very largely increasing sequence of positive numbers. The following statement presents necessary
and sufficient conditions for the convergence

d−1/α
n SNn =⇒ Yα,Σ (n→ ∞). (64)

Theorem 9. Under condition (54), convergence (64) takes place if and only if

bNn /dn =⇒ U (n→ ∞).

Proof. This theorem is a direct consequence of Theorem 8 and the definition of Yα,Σ with the account
of Remark 3.
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Corollary 6. Assume that ν > 0. Under condition (54), the convergence

d−1/α
n SNn =⇒ Lα,ν,Σ (n→ ∞)

takes place if and only if
bNn /dn =⇒ Gν,1 (n→ ∞). (65)

Proof. To prove this statement it suffices to notice that the multivariate generalized Linnik distribution

is a U-scale-mixed stable distribution with U d
= Gν,1 (see representation (49)) and refer to Theorem 9

with the account of Remark 3.
Condition (65) holds, for example, if bn = dn = n, n ∈ N, and the random variable Nn has the

negative binomial distribution with shape parameter ν > 0, that is, Nn = NBν,pn ,

P(NBν,pn = k) =
Γ(ν + k− 1)
(k− 1)!Γ(r)

· pν
n(1− pn)

k−1, k = 1, 2, ...,

with pn = n−1 (see, e.g., [65,66]). In this case ENBν,pn = nν.

Now consider the conditions providing the convergence in distribution of scalar normalized
random sums of independent random vectors satisfying condition (54) with some α ∈ (0, 2] and Σ
to a random vector Yβ,Σ with the U-scale-mixed stable distribution ESβ,U2/βΣ with some β ∈ (0, α).
For convenience, let β = αα′ where α′ ∈ (0, 1).

Recall that in Section 8, for α′ ∈ (0, 1] the positive random variable Yα′ ,1 with the univariate

one-sided U-scale-mixed stable distribution was introduced as Yα′ ,1
d
= U1/α ◦ S(α′, 1).

Theorem 10. Let α′ ∈ (0, 1]. Under condition (54), the convergence

d−1/α
n SNn =⇒ Yαα′ ,Σ (n→ ∞)

takes place if and only if
bNn /dn =⇒ Yα′ ,1 (n→ ∞).

Proof. This statement directly follows from Theorems 5 and 7 with the account of Remark 3.

Corollary 7. Let α′ ∈ (0, 1], ν > 0. Under condition (54), the convergence

d−1/α
n SNn =⇒ Lαα′ ,Σ,ν (n→ ∞)

takes place if and only if
bNn /dn =⇒ Mα′ ,ν (n→ ∞).

Proof. This statement directly follows from Theorems 3 (see representation (50)) and 9 with the account
of Remark 3.

From the case of heavy tails turn to the ‘light-tails’ case where in (54) α = 2. In other words,
assume that the properties of the summands Xj provide the asymptotic normality of the sums Sn.
More precisely, instead of (54), assume that

b−1/2
n Sn =⇒ X (n→ ∞). (66)

The following results show that even under condition (66), heavy-tailed U-scale-mixed
multivariate stable distributions can be limiting for random sums.
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Theorem 11. Under condition (66), convergence (64) takes place if and only if

bNn /dn =⇒ Yα/2,1 (n→ ∞).

Proof. This theorem is a direct consequence of Theorem 8 and Corollary 4, according to which

Yα,Σ
d
=

√
2Yα/2,1 ◦X with the account of Remark 3.

Corollary 8. Assume that Nn → ∞ in probability as n→ ∞. Under condition (66), non-randomly normalized
random sums d−1/2

n SNn have the limit stable distribution Sα,Σ if and only if

bNn /dn =⇒ 2S(α/2, 1) (n→ ∞).

Proof. This statement follows from Theorem 11 with the account of (13) and Remark 3.

Corollary 9. Assume that Nn → ∞ in probability as n→ ∞, ν > 0. Under condition (66), the convergence

d−1/2
n SNn =⇒ Lα,ν,Σ (n→ ∞)

takes place if and only if
bNn /dn =⇒ 2Mα/2,ν (n→ ∞).

Proof. To prove this statement it suffices to notice that the multivariate generalized Linnik distribution
is a multivariate normal scale mixture with the generalized Mittag–Leffler mixing distribution (see
definition (48)) and refer to Theorem 11 with the account of Remark 3.

Another way to prove Corollary 9 is to deduce it from Corollary 7.

Product representations for limit distributions in these theorems proved in the preceding sections
allow to use other forms of the conditions for the convergence of random sums of random vectors to
particular scale mixtures of multivariate stable laws.

10. Conclusions

In this paper, multivariate probability distributions were considered that are representable as scale
mixtures of multivariate stable distributions. Multivariate analogs of the Mittag–Leffler distribution
were introduced. Some properties of these distributions were discussed. Attention was paid to the
representations of the corresponding random vectors as products of independent random variables
and vectors. In these products, relations were traced of the distributions of the involved terms
with popular probability distributions. As examples of distributions of the class of scale mixtures
of multivariate stable distributions, multivariate generalized Linnik distributions and multivariate
generalized Mittag–Leffler distributions were considered in detail. Their relations with multivariate
‘ordinary’ Linnik distributions, multivariate normal, stable and Laplace laws as well as with univariate
Mittag–Leffler and generalized Mittag–Leffler distributions were discussed. Limit theorems were
proved presenting necessary and sufficient conditions for the convergence of the distributions of
random sequences with independent random indices (including sums of a random number of random
vectors and multivariate statistics constructed from samples with random sizes) to scale mixtures
of multivariate elliptically contoured stable distributions. The property of scale-mixed multivariate
elliptically contoured stable distributions to be both scale mixtures of a non-trivial multivariate stable
distribution and a normal scale mixture was used to obtain necessary and sufficient conditions for the
convergence of the distributions of random sums of random vectors with covariance matrices to the
multivariate generalized Linnik distribution.

The key points of the paper are:
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• analogs of the multiplication theorem for stable laws were proved for scale-mixed multivariate
stable distributions relating these laws with different parameters;

• some alternative but equivalent definitions are proposed for the generalized multivariate Linnik
distributions based on their property to be scale-mixed multivariate stable distributions;

• The multivariate analog of the (generalized) Mittag–Leffler distribution was introduced and it
was noticed that the multivariate (generalized) Mittag–Leffler distribution can be regarded as a
special case of the multivariate (generalized) Linnik distribution;

• new mixture representations were presented for the multivariate generalized Mittag–Leffler and
Linnik distributions;

• a general transfer theorem was proved establishing necessary and sufficient conditions for the
convergence of the distributions of sequences of multivariate random vectors with independent
random indices (including sums of a random number of random vectors and multivariate statistics
constructed from samples with random sizes) to multivariate elliptically contoured scale-mixed
stable distributions;

• the property of scale-mixed multivariate elliptically contoured stable distributions to be both scale
mixtures of a non-trivial multivariate stable distribution and a normal scale mixture was used
to obtain necessary and sufficient conditions for the convergence of the distributions of random
sums of random vectors to the multivariate elliptically contoured generalized Linnik distribution
in covariance matrices.
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Abstract: In 2019 Seneta has provided a characterization of slowly varying functions L in the Zygmund
sense by using the condition, for each y > 0, x

(
L(x+y)

L(x) − 1
)
→ 0 as x→ ∞. Very recently, we have

extended this result by considering a wider class of functions U related to the following more general
condition. For each y > 0, r(x)

(
U(x+yg(x))

U(x) − 1
)
→ 0 as x→ ∞, for some functions r and g. In this

paper, we examine this last result by considering a much more general convergence condition. A wider
class related to this new condition is presented. Further, a representation theorem for this wider class
is provided.

Keywords: slowly varying; monotony in the Zygmund sense; class Γa(g); self-neglecting function;
convergence rates

1. Introduction

The notion of ultimately monotony introduced by Zygmund says that a function U ≥ 0 is slowly
varying if for each ε > 0 the function xεU(x) is ultimately increasing and x−εU(x) is ultimately
decreasing ([1], p. 186). A different kind of slowly varying functions was defined by Karamata [2]
known as simply the class of slowly varying functions (KSV). It is known that any ZSV function is a
KSV function (see [1], p. 186 and, e.g., [3], p. 49).

Recently, Seneta [4] found that the slowly varying functions L in the sense of Zygmund are
characterized by the relation:

lim
x→∞

x
(

L(x + y)
L(x)

− 1
)
= 0, ∀y.

More recently, Omey and Cadena’s [5] functions extended the results of Seneta, and they
considered functions for which the following relation holds:

lim
x→∞

r(x)
(

L(x + yg(x))
L(x)

− 1
)
= 0, ∀y.

Here, the function g(x) is self-neglecting (notation: g ∈ SN) and r is in the class Γ0(g) with
r(x)→ ∞. The class Γ0(g) is deeply studied in [6]. Recall that g ∈ SN if it satisfies

lim
x→∞

g(x + yg(x))
g(x)

= 1,

locally uniformly in y. In addition, recall that, for g ∈ SN, we have f ∈ Γα(g) if f satisfies

lim
x→∞

f (x + yg(x))
f (x)

= eαy, ∀y.
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Now, we study more general relations of the form

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− eαy
)
= θ(y), ∀y,

where we assume that the convergence is l.u. in y. As before, we assume that r ∈ Γ0(g), r(x)→ ∞ and
that g ∈ SN.

Throughout this paper, we use the notation f (x) ∼ g(x) for representing f (x)
/

g(x) → 1
as x → ∞.

We study in detail the two cases: α = 0 and α �= 0. The case α = 0 can be considered as the
class SN with a rate of convergence in the definition. This case is presented in the following section.
The case where α �= 0 can be considered as the class Γα(g) with a rate of convergence in the definition.
This case is presented in Section 3. For each case, characterizations of the involved functions are
provided. Concluding remarks are presented in the last section.

2. The Case α = 0

2.1. The Limit Function

Suppose that U, g, r > 0 are measurable functions and suppose that the following relation holds:

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− 1
)
= θ(y), (1)

and we assume that Equation (1) holds locally uniformly in y. As before, we assume that r(x)→ ∞,
r ∈ Γ0(g) and that g ∈ SN.

Clearly, Equation (1) holds if and only if

lim
x→∞

r(x)
(
W(x + yg(x))−W(x)

)
= θ(y), (2)

where W(x) = log U(x).
Now, we replace x by x = t + zg(t). Note that g(t)

/
t→ 0 so that x

/
t→ 1 l.u. in z. We find

lim
t→∞

r(t + zg(t))
(
W(t + zg(t) + yg(t + zg(t)))−W(t + zg(t))

)
= θ(y).

Using r ∈ Γ0(g), we have

lim
t→∞

r(t)
(
W(t + zg(t) + yg(t + zg(t)))−W(t + zg(t))

)
= θ(y),

and then it follows that

lim
t→∞

r(t)
(
W(t + zg(t) + yg(t + zg(t)))−W(t)

)
= θ(y) + θ(z).

Now, we have

W(t + zg(t) + yg(t + zg(t)))−W(t) = W
(

t +
(

z + y
g(t + zg(t))

g(t)

)
g(t)

)
−W(t).

Using l.u. convergence, we obtain that

lim
t→∞

r(t)(W(t + zg(t) + yg(t + zg(t)))−W(t)) = θ(y + z).

We conclude that
θ(z + y) = θ(z) + θ(y),
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and (since θ is measurable) hence also that θ(y) = θy for some constant θ.
Conversely, we have the following (cf. [6]): if

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− 1
)
= θy,

then this relation holds l.u. in y.
To conclude, we have the following theorem.

Theorem 1. Assume that g ∈ SN and that r ∈ Γ0(g) with r(x)→ ∞.

(a) If Equation (1) or Equation (2) holds l.u. in y, then θ(x) = θx for some constant θ.
(b) If Equation (1) or Equation (2) holds with θ(x) = θx for some constant θ, then Equation (2) holds l.u.

in y.

2.2. Representation

Three different ways to represent the functions satisfying Equation (1) follow.

2.2.1. First Form

For further use, let A(x) =
∫ x

a 1/g(t)dt. Clearly, we have

A(x + yg(x))− A(x) =
∫ y

0

g(x)
g(x + zg(x))

dz→ y

l.u. in y. Note that A(x) is an increasing function so that fx(y) = A(x + yg(x))− A(x) is an increasing
function of y for which fx(y) → y as x → ∞. As a consequence, the inverse function also satisfies
f−1
x (y)→ y. To calculate the inverse, we set

fx(y) = A(x + yg(x))− A(x) = t

so that x + yg(x) = A−1(t + A(x)) and

y = f−1
x (t) =

A−1(t + A(x))− A−1(A(x))
g(x)

.

We conclude that

A−1(t + A(x))− A−1(A(x))
g(x)

→ t,

so that (replacing A(x) by x and t by y)

A−1(x + y)− A−1(x)
g(A−1(x))

→ y,

l.u. in y.
Now, let K(x) := W(A−1(x)). We have (using l.u. convergence in the last step):

r(x)(K(A(x) + y)− K(A(x))) = r(x)(W(A−1(A(x) + y))−W(x))

= r(x)
(

W
(

x + g(x)
A−1(A(x) + y)− x

g(x)

)
−W(x)

)
→ θy.

It follows that
r(A−1(x))(K(x + y)− K(x))→ θy (3)
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l.u. in y. Taking the integral
∫ 1

y=0(.)dy in Equation (3) we have

∫ 1

y=0
r(A−1(x))(K(x + y)− K(x))dy→

∫ 1

0
θydy

or

r(A−1(x))
∫ x+1

x
K(z)dz− r(A−1(x))K(x)→ θ

2
.

We see that K(x) is of the form

K(x) = C +
∫ x+1

x
K(z)dz +

C(x)
r(A−1(x))

= L(x) +
C(x)

r(A−1(x))
,

where C(x)→ C(= θ/2) and L(x) =
∫ x+1

x K(z)dz. Note that

r(A−1(x)L′(x) = r(A−1(x)(K(x + 1)− K(x))→ θ.

Using W(x) = K(A(x)), we find that

W(x) = T(x) +
C◦(x)
r(x)

,

where C◦(x) = C(A(x))→ C and T(x) = L(A(x)). Note that

r(x)g(x)T′(x) = r(x)L′(A(x))g(x)A′(x) = r(x)L′(A(x))→ θ.

We prove the following result:

Theorem 2. Assume that g ∈ SN and that r ∈ Γ0(g), r(x)→ ∞.

(a) If Equation (1) holds with θ(x) = θx, then W(x) = log U(x) is of the form

W(x) = T(x) +
C(x)
r(x)

,

where C(x)→ C and r(x)g(x)T′(x)→ θ.
(b) If W(x) = T(x) + C(x)

/
r(x), where C(x)→ 0 and r(x)g(x)T′(x)→ θ, then Equation (1) holds with

θ(y) = θy.

Proof. The proof of (a) is given above. To prove (b), we have

W(x + yg(x))−W(x)

= T(x + yg(x))− T(x) +
C(x + yg(x))
r(x + yg(x))

− C(x)
r(x)

.

Clearly, we have

r(x)(T(x + yg(x))− T(x)) = yr(x)g(x)T′(x + βg(x))
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for some β ∈ (0, y). It follows that

r(x)(T(x + yg(x))− T(x)) = y(θ + o(1))
r(x)g(x)

r(x + βg(x))r(x + βg(x))
→ yθ.

For the second term, we have

r(x)
(

C(x + yg(x))
r(x + yg(x))

− C(x)
r(x)

)
=

r(x)
r(x + yg(x))

C(x + yg(x))− C(x)→ 0.

The result follows.

Remark 1.

1. In the special case where g(x) = 1, we have

lim
x→∞

r(x)(W(x + y)−W(x)) = θy

iff W is of the form W(x) = C + T(x) + ε(x)
/

r(x) where ε(x)→ 0 and r(x)T′(x)→ θ.
2. From Equation (1), it follows that

r(x)
U(x)

(U(x + yg(x))−U(x))→ θy.

The previous representation result shows that

U(x) = T(x) + C(x)
U(x)
r(x)

where r(x)g(x)T′(x) ∼ θU(x).
3. Using U(x) = eW(x), we also have that U(x) = R(x)eC(x)/r(x) where R(x) = eT(x). Note that

r(x)g(x)
R′(x)
R(x)

= r(x)g(x)T′(x)→ θ.

2.2.2. Second Form

In Equation (3), we find that r(A−1(x))(K(x + y) − K(x)) → θy, where K(x) = W(A−1(x)).
Using logarithms, we get that

K(log xy)− K(x)
L(x)

→ θ log y

where L(x) = r(A−1(log x)). From de Haan’s theorem ([7], Theorem 3.7.3), we find that K(log x) can
be written as

K(log x) = C + θL1(x) +
∫ x

a
θL1(t)t−1dt,

where L1(x) ∼ L(x). It follows that

K(x) = C + θL2(x) + θ
∫ x

a◦
L2(t)dt,

where L2(x) = L1(exp x) ∼ r(A−1(x)).
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2.2.3. Third Form

In [5], we found that relations of the form in Equation (1) hold with limit function θ(x) = 0. In that
case, we have

r(x)
(

U(x + yg(x))
U(x)

− 1
)
→ 0.

As usual, we assume that g ∈ SN, r ∈ Γ0(g) and r(x) → ∞. From Theorem 3 in [5], we get the
following representation:

U(x) = exp
(

c +
∫ x

0
f (t)dt

)
where f satisfies r(x)g(x) f (x)→ 0.

2.3. Sufficient Conditions

In the next result, we assume that the kth derivative of U exists and we assume that

hk(x) = g(x)
U(k)(x)

U(k−1)(x)
→ 0,

where U(0)(x) = U(x).

(a) If k = 1, we have U′(x)
/

U(x) = ε(x)
/

g(x) with ε(x)→ 0 and

∫ x+yg(x)

x

U′(z)
U(z)

dz =
∫ x+yg(x)

x

ε(z)
g(z)

dz,

so that

log
U(x + yg(x))

U(x)
=

∫ y

0

ε(x + zg(x))g(x)
g(x + zg(x))

dz→ 0,

and hence
U(x + yg(x))

U(x)
→ 1.

(b) If k = 2, then we have
U′′(x)
U′(x)

=
ε(x)
g(x)

and ∫ x+yg(x)

x

U′′(z)
U′(z)

dz =
∫ x+yg(x)

x

ε(z)
g(z)

dz,

so that

log
U′(x + yg(x))

U′(x)

=
∫ y

0

ε(x + zg(x))
g(x + zg(x))

g(x)dz→ 0.

We find that
U′(x + yg(x))

U′(x)
→ 1.

130



Mathematics 2020, 8, 634

Now, consider

U(x + yg(x))−U(x) =
∫ x+yg(x)

x
U′(z)dz

= g(x)
∫ y

0
U′(x + zg(x))dz

= g(x)U′(x)
∫ y

0

U′(x + zg(x))
U′(x)

dz

∼ g(x)U′(x)y,

and then
U(x + yg(x))

U(x)
− 1 ∼ h1(x)y,

and thus Equation (1) holds with r(x) = 1
/

h1(x).
(c) If k = 3, as before, we have

U′′(x + yg(x))
U′′(x)

→ 1

and

U′(x + yg(x))−U′(x) = g(x)U′′(x)
∫ y

0

U′′(x + zg(x))
U′′(x)

dz

∼ g(x)U′′(x)y.

Further, we have

U(x + yg(x))−U(x) = g(x)
∫ y

0
U′(x + zg(x))dz

and

U(x + yg(x))−U(x)− g(x)U′(x)y

= g(x)
∫ y

0
(U′(x + zg(x))−U′(x))dz

∼ g2(x)U′′(x)
y2

2
.

We conclude that
U(x + yg(x))

U(x)
− 1− h1(x)y ∼ h1(x)h2(x)

y2

2
.

(d) In general, we get a result of the type

U(x + yg(x))
U(x)

− 1−
k−1

∑
i=1

i

∏
j=1

hj(x)
yi

i!
∼

k

∏
j=1

hj(x)
yk

k!
.

As a special case, we can take g(x) = 1: if U′′′(x)
/

U′′(x)→ 0, then

U(x + y)
U(x)

− 1− U′(x)
U(x)

y ∼ U′′(x)
U(x)

y2

2
.
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2.4. More Results

Proposition 1. Suppose that F(x) = x−αL(x) where L(·) is a normalized slowly varying (SV) function (that
is, xL′(x)

/
L(x)→ 0). Assume that g(x) and r(x) satisfy g(x)

/
x → 0 and r(x)g(x)

/
x → δ > 0. Then,

r(x)
(

F(x + yg(x))
F(x)

− 1
)
→ −αδy.

Proof. We have F(x) = L(x)x−α and then

F(x + yg(x))
F(x)

=
L(x + yg(x))

L(x)
×

(
1 + y

g(x)
x

)−α

.

It follows that

F(x + yg(x))
F(x)

− 1 =
L(x + yg(x))

L(x)
×

((
1 + y

g(x)
x

)−α

− 1

)
+

L(x + yg(x))
L(x)

− 1

= I(a) + I(b).

For I(a), we have

L(x + yg(x))
L(x)

=
L
(

x
(

1 + y g(x)
x

))
L(x)

→ 1,

because L is SV and g(x)
/

x → 0. We also have(
1 + y

g(x)
x

)−α

− 1 ∼ −αy
g(x)

x
,

so that

r(x)

((
1 + y

g(x)
x

)−α

− 1

)
∼ −αy

r(x)g(x)
x

→ −αδy.

For the second term, we have

r(x)(
L(x + yg(x))

L(x)
− 1) =

r(x)
L(x)

∫ x+yg(x)

x
L′(t)dt

=
r(x)
L(x)

∫ x+yg(x)

x

tL′(t)
L(t)

L(t)
t

dt

= o(1)
r(x)g(x)

L(x)

∫ y

0

L(x + θg(x))
x + θg(x)

dθ

= o(1)
r(x)g(x)

x
.

We conclude that

r(x)
(

L(x + yg(x))
L(x)

− 1
)
→ 0.

Combining these results, we obtain the desired result.

Remark 2. The condition on L(x) in the previous theorem is equivalent to the requirement that

x f (x)
F(x)

→ α,

where f (x) = F′(x) is the density of F.
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2.5. Examples

2.5.1. Example 1

Assume that U(x) = exp xβ with β > 1. We have

U′(x)
U(x)

= βxβ−1

and
U′′(x)
U′(x)

= βxβ−1 + (β− 1)x−1.

Using g(x) = x−γ, we find

h1(x) = g(x)
U′(x)
U(x)

= βxβ−γ−1

and

h2(x) = g(x)
U′′(x)
U′(x)

= βxβ−γ−1 + (β− 1)x−γ−1.

If 0 < β− 1 < γ, we find that h1(x)→ 0 and h2(x)→ 0. The results of this section show that

U(x + yg(x))
U(x)

− 1 ∼ h1(x)y,

and Equation (1) holds with r(x) = 1
/

h1(x) ∼ xγ+1−β
/

β.

2.5.2. Example 2

Assume that U(x) = exp x−β with β > 0. Clearly, we have

U′(x)
U(x)

= −βx−β−1

U′′(x)
U′(x)

= −βx−β−1 − (β + 1)x−1.

We use g(x) = xγ and find

h1(x) = −βxγ−β−1

h2(x) = h1(x)− (β + 1)xγ−1.

If γ < β + 1, we have h1(x)→ 0. If γ < 1, we have h1(x)→ 0 and h2(x)→ 0. The results of the
previous section show that

U(x + yg(x))
U(x)

− 1 ∼ h1(x)y,

and Equation (1) holds with r(x) = 1/h1(x) ∼ −xβ+1−γ/β.

2.5.3. Example 3

Assume that U(x) = xβ where β �= 0. We have

h1(x) = g(x)
U′(x)
U(x)

= β
g(x)

x
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and

h2(x) = g(x)
U′′(x)
U′(x)

= (β− 1)
g(x)

x
.

Taking g ∈ SN and r(x) = x
/

g(x) (→ ∞) we find

r(x)
(

U(x + yg(x))
U(x)

− 1
)
→ βy.

2.5.4. Example 4

Proposition 1 can be extended for some stable distributions. For instance, consider the density
of an asymmetric stable distribution. The representation of such a stable density in the form of a
convergent series is, for 0 < α < 1 and for any x > 0 (see, e.g., [8]),

q(x, α, ρ) =
1
π

∞

∑
n=1

(−1)n−1Γ(αn + 1)
n!

sin(nρπ)x−αn−1.

Additionally, assume xq′(x, α, ρ)
/

q(x, α, ρ)→ τ ( �= 0) as x → ∞.
Let g(x) and r(x) be positive functions satisfying g(x)

/
x → 0 and r(x)g(x)/x → δ > 0.

Note that, for each n > 1 and for x large enough, we have, making use of z− 1 ∼ log z as z→ 1,(
1 + y

g(x)
x

)−αn−1

− 1 ∼ −(αn + 1) log
(

1 + y
g(x)

x

)
∼ −(αn + 1)y

g(x)
x

.

Then, we have for x large enough

q(x + yg(x), α, ρ)

q(x, α, ρ)
− 1

=
1

πq(x, α, ρ)

∞

∑
n=1

(−1)n−1Γ(αn + 1)
n!

sin(nρπ)x−αn−1

((
1 + y

g(x)
x

)−αn−1

− 1

)

∼ yg(x)
−1

πq(x, α, ρ)

∞

∑
n=1

(αn + 1)
(−1)n−1Γ(αn + 1)

n!
sin(nρπ)x−αn−2

= yg(x)
q′(x, α, ρ)

q(x, α, ρ)
.

Hence, we have

lim
x→∞

r(x)
(

q(x + yg(x), α, ρ)

q(x, α, ρ)
− 1

)
= yδτ.

3. The Case α �= 0

Now, suppose that α �= 0 and that

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− eαy
)
= θ(y),

holds l.u. in y.
Equivalently, we have

lim
x→∞

r(x)
(

e−αyU(x + yg(x))
U(x)

− 1
)
= e−αyθ(y),
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and then (using log z ∼ z− 1)

lim
x→∞

r(x)(W(x + yg(x))−W(x)− αy) = Ω(y), (4)

where W(x) = log U(x) and Ω(y) = e−αyθ(y).

3.1. The Limit

In Equation (4), we replace x by x = t + zg(t) to find

lim
x→∞

r(x)
(
W(t + zg(t) + yg(t + zg(t)))−W(t + zg(t))− αy

)
= Ω(y),

and

lim
x→∞

r(x)(
(W(t + zg(t) + yg(t + zg(t)))−W(t)− α(y + z))− (W(t + zg(t))−W(t)− αz)

)
= Ω(y).

The second term converges to Ω(z) and thus we have

lim
x→∞

r(x)(
W

(
t +

(
z + y

g(t + zg(t))
g(t)

)
g(t)

)
−W(t)− α(y + z)

)
= Ω(z) + Ω(y)

or

r(x)

(
W

(
t +

(
z + y

g(t + zg(t))
g(t)

)
g(t)

)
−W(t)

−α

(
z + y

g(t + zg(t))
g(t)

))
+ αy

(
g(t + zg(t))

g(t)
− 1

)
→ Ω(z) + Ω(y).

By l.u. convergence, the first part converges to Ω(z + y) and then we have

r(x)αy
(

g(t + zg(t))
g(t)

− 1
)
→ Ω(z) + Ω(y)−Ω(y + z).

Using the result of the previous subsection, we find that

αyβz = Ω(z) + Ω(y)−Ω(y + z).

We propose a solution of the form Ω(z) = dx + cx2. The previous equation gives

αβyz = cz2 + cy2 − c(y2 + z2 + 2yz),

and hence αβyz = 2cyz so that c = αβ
/

2. We conclude that Ω(x) = dx + αβx2/2 and that θ(x) =

(dx + αβx2/2)eαx.
We conclude:
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Theorem 3. Suppose that α �= 0. If

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− eαy
)
= θ(y),

holds l.u. in y, or equivalently if

lim
x→∞

r(x)
(
W(x + yg(x))−W(x)− αy

)
= Ω(y),

holds l.u. in y, then g(x) satisfies Equation (2), Ω(x) = dx + αβx2/2 and θ(x) =
(
dx + αβx2/2

)
eαx.

3.2. Special Case

We assume that W is differentiable and that g(x)W ′(x)→ α.
In this case, we have

W(x + yg(x))−W(x) = g(x)
∫ y

0
W ′(x + zg(x))dz

=
∫ y

0

g(x)
g(x + zg(x))

g(x + zg(x))W ′(x + zg(x))dz

→ αy.

Now, suppose in addition that r(x)
(

g(x)W ′(x)− α
)
→ δ and that

r(t)
(

g(x + tg(x))
g(x)

− 1
)
→ βt.

We have

W(x + yg(x))−W(x)− αy

= g(x)
∫ y

0
W ′(x + tg(x))dt− αy

=
∫ y

0
g(x + tg(x))W ′(x + tg(x))

g(x)
g(x + tg(x))

dt− αy

=
∫ y

0
g(x + tg(x))W ′(x + tg(x))

(
g(x)

g(x + tg(x))
− 1

)
dt

+
∫ y

0
(g(x + tg(x))W ′(x + tg(x))− α)dt.

For the first integral, by assumption, we have

r(t)
(

g(x + tg(x))
g(x)

− 1
)
→ βt,

or

r(t)
g(x + tg(x))

g(x)

(
1− g(x)

g(x + tg(x))

)
→ βt,

or

r(t)
(

g(x)
g(x + tg(x))

− 1
)
→ −βt.
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Since r(x)
(

g(x)W ′(x)− α
)
→ δ, we obtain

r(x)
(
W(x + yg(x))−W(x)− αy

)
=

∫ y

0
g(x + tg(x))W ′(x + tg(x))r(x)

(
g(x)

g(x + tg(x))
− 1

)
dt

+
∫ y

0
r(x)(g(x + tg(x))W ′(x + tg(x))− α)dt

→ α(−β)
y2

2
+ δy.

3.3. Representation Theorem

Now, consider Q(x) = W(x) + αA(x), where A(x) =
∫ x

a 1/g(t)dt as before. We prove above that

A(x + yg(x))− A(x)→ y

l.u. in y. If g ∈ SN satisfies

lim
x→∞

x
(

g(x + yg(x))
g(x)

− 1
)
= βy,

then we also have

A(x + yg(x))− A(x)− y =
∫ y

0

(
g(x)

g(x + zg(x))
− 1

)
dz

= −
∫ y

0

g(x)
g(x + zg(x))

(
g(x + zg(x))

g(x)
− 1

)
dz,

so that

r(x)(A(x + yg(x))− A(x)− y)→ −β
y2

2
.

Using Q(x) = W(x)− αA(x), we see that

Q(x + yg(x))−Q(x)

= W(x + yg(x))−W(x)− αy

−α
(

A(x + yg(x))− A(x)− y
)
.

Hence, using Equation (3),

r(x)
(
Q(x + yg(x))−Q(x)

)
= r(x)

(
W(x + yg(x))−W(x)− αy

)
−αr(x)

(
A(x + yg(x))− A(x)− y

)
→ Ω(y) + αβ

y2

2
= Ψ(y)

l.u. in y. As in the previous subsection, we conclude that

r(x)
(
Q(x + yg(x))−Q(x)

)
→ Ψ(y) = λy

for some real number λ. The first representation of the previous subsection gives

Q(x) = T(x) +
C(x)
r(x)

,
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or

W(x) = αA(x) + T(x) +
C(x)
r(x)

,

where C(x)→ C and r(x)g(x)T′(x)→ λ.

Theorem 4. We have Equation (3) if and only if W(x) is of the form

W(x) = αA(x) + T(x) +
C(x)
r(x)

,

where C(x)→ C and r(x)g(x)T′(x)→ λ.

3.4. More Results

In our next result, we consider the function h(x) = f (x)
/

F(x), where f is the density of F.
We make the following assumptions about h:

(a) h ∈ SN.
(b) r(x)h′(x)

/
h2(x)→ −β > 0, where r(x)→ ∞, r(x) ∈ Γ0(g) with g(x) = 1

/
h(x).

Recall that r ∈ Γ0(g) means that r(x + yg(x))
/

r(x)→ 1 as x → ∞.

Lemma 1. If (a) and (b) hold, then

r(x)
(

h(x + yg(x))
h(x)

− 1
)
→ −βy.

Proof. We have
h(x + yg(x))− h(x) = g(x)

∫ y

0
h′(x + zg(x))dz.

Since r(x)h′(x)
/

h2(x) → −β > 0, we have that h′(x) ∈ Γ0(g) and, using g(x) = 1
/

h(x), we
obtain that

r(x)
(

h(x + yg(x))
h(x)

− 1
)
=

r(x)
h2(x)

∫ y

0
h′(x + zg(x))dz→ −βy.

Now, we study the tail F(x).

Lemma 2. If (a) and (b) hold, then

r(x)
(

log
F(x + yg(x))

F(x)
+ y

)
→ β

y2

2
.

Proof. Using h(x) = f (x)
/

F(x), we obtain that

∫ x+yg(x)

x
h(z)dz =

∫ x+yg(x)

x

f (z)
F(z)

dz,

so that

g(x)
∫ y

0
h(x + zg(x))dz = − log

F(x + yg(x))
F(x)

.

It follows that (recall g(x) = 1/h(x))

r(x)
∫ y

0

(
h(x + zg(x))

h(x)
− 1

)
dz = −r(x)

(
log

F(x + yg(x))
F(x)

+ y
)

,
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and using Lemma 1, it follows that

r(x)
(

log
F(x + yg(x))

F(x)
+ y

)
→ β

y2

2
.

This proves the result.

Now, we arrive at the main result here.

Theorem 5. If (a) and (b) hold, then

r(x)
(

F(x + yg(x))
F(x)

− e−y
)
→ β

y2

2
e−y.

Proof. Using Lemma 2, we have

r(x) log ey F(x + yg(x))
F(x)

→ β
y2

2
.

Using log z ∼ z− 1, it follows that

r(x)
(

ey F(x + yg(x))
F(x)

− 1
)
→ β

y2

2
,

or

r(x)
(

F(x + yg(x))
F(x)

− e−y
)
→ β

y2

2
e−y.

The previous theorem can be useful in extreme value theory as follows.
We assume that (a) and (b) hold and that F is strictly increasing. We define an by the equality

nF(an) = 1. It is clear that an ↑ ∞. In the result of Theorem 5, we replace x by an to see that

r(an)
(
nF(an + yg(an))− e−y)→ β

y2

2
e−y.

Now, we use log(z) + (1− z) = O(1)(1− z)2 and write

nF(an + yg(an)) = nF(an + yg(an)) + n log F(an + yg(an))− n log F(an + yg(an))

= O(1)nF2
(an + yg(an))− log Fn(an + yg(an)).

Now, notice that

r(an)nF2
(an + yg(an)) = O(1)r(an)nF2

(an) = O(1)
r(an)

n
.

If r(an)
/

n→ 0, we obtain that

r(an)
(

log Fn
(an + yg(an)) + e−y

)
→ −β

y2

2
e−y,

and hence also that

r(an) log eexp−yFn
(an + yg(an))→ −β

y2

2
e−y,
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and

r(an)
(

eexp−yFn
(an + yg(an))− 1

)
→ −β

y2

2
e−y,

or

r(an)
(

Fn
(an + yg(an))− exp−e−y

)
→ −β

y2

2
e−y exp−e−y.

It means that, if Xi are independent and identically distributed random variables with distribution
function F, then

r(an)

(
P
(

Mn − an

g(an)
≤ y

)
−Λ(y)

)
→ Φ(y),

where Mn = max(X1, X2, ..., Xn), Λ(y) = exp−e−y and Φ(y) = −β
y2

2 e−y exp−e−y.
It means that F is in the max-domain of attraction of the double exponential and the convergence

rate is determined by r(an).

3.5. Examples

3.5.1. Example 1

The following example is related to Theorem 5.
Let U(x) = exp−x2 for x > 0. Using g(x) = 1/(2x), we have U(x) ∈ Γ−1(g). Now, we consider

the difference
U(x + yg(x))

U(x)
− e−y.

We have

U(x + yg(x))
U(x)

− e−y = e−y−y2g2(x) − e−y

= e−y(e−y2g2(x) − 1)

∼ −e−yy2g2(x)

and

x2
(

U(x + yg(x))
U(x)

− e−y
)
→ −1

4
y2e−y.

3.5.2. Example 2

Let U(x) = exp xβ, β > 1. We have W(x) = log U(x) = xβ and W ′(x) = βxβ−1. Taking
g(x) = x1−β, we have

g(x)W ′(x) = β.

As for g(x), we have g(x)
/

x → 0 and

g(x + yg(x))
g(x)

− 1 =

(
1 + y

g(x)
x

)1−β

− 1 ∼ (1− β)y
g(x)

x
.

Taking r(x) = x
/

g(x) = xβ, we have

r(x)
(

g(x + yg(x))
g(x)

− 1
)
→ (1− β)y.

The result of Section 3.2 shows that

r(x)
(
W(x + yg(x))−W(x)− βy

)
→ β(β− 1)

y2

2
,
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and then

r(x)
(

U(x + yg(x))
U(x)

− eβy
)
→ β(β− 1)

y2

2
eβy.

4. Concluding Remarks

In this paper, new results on the condition, for some functions r and g,

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− eαy
)
= θ(y), ∀y,

where we assume that the convergence is l.u. in y, are presented. This limit generalizes the ones
analyzed by Seneta [4] and Omey and Cadena [5], both of them being related to the monotony of
functions in the Zygmund sense. Under this analysis, properties of θ(y) are described. Representations
of the functions U involved in this limit are provided.
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Abstract: The paper is devoted to the optimal state filtering of the finite-state Markov jump processes,
given indirect continuous-time observations corrupted by Wiener noise. The crucial feature is
that the observation noise intensity is a function of the estimated state, which breaks forthright
filtering approaches based on the passage to the innovation process and Girsanov’s measure change.
We propose an equivalent observation transform, which allows usage of the classical nonlinear
filtering framework. We obtain the optimal estimate as a solution to the discrete–continuous stochastic
differential system with both continuous and counting processes on the right-hand side. For effective
computer realization, we present a new class of numerical algorithms based on the exact solution to
the optimal filtering given the time-discretized observation. The proposed estimate approximations
are stable, i.e., have non-negative components and satisfy the normalization condition. We prove
the assertions characterizing the approximation accuracy depending on the observation system
parameters, time discretization step, the maximal number of allowed state transitions, and the applied
scheme of numerical integration.

Keywords: stochastic differential observation system; nonlinear filtering problem; state-dependent
observation noise; numerical filtering algorithm; filtering given time-discretized observations;
stable approximation; approximation accuracy

1. Introduction

The Wonham filter [1], as well as the Kalman–Bucy filter [2], is one of the most practically
used filtering algorithms for the states of the stochastic differential observation systems. It is
applied extensively for signal processing in technics, communications, finance and economy, biology,
medicine, etc. [3–6]. The filter provides the optimal in the Mean Square (MS) sense on-line estimate
of the finite-state Markov Jump Process. (MJP) given indirect continuous-time observations, corrupted
by the Wiener noise. The elegant algorithm represents the desired estimate as a solution to
a Stochastic Differential System (SDS) with continuous random processes on the Right-Hand Side (RHS).

The fundamental condition for the solution to the filtering problem is the independence of
the observation noise intensity of the estimated state. It provides the continuity from the right
for the natural flow of σ-algebras induced by the observations, with subsequent utilization of
the innovation process framework. The condition violation breaks these advantages. In the case of
the state-dependent observation noise, the author of [7] presents the optimal estimate within the class
of the linear estimates. Further, the authors of [8,9] use filters of a linear structure for the solution
to theH2-optimal state filtering problem. To find the absolute optimal filtering estimate, one has to

Mathematics 2020, 8, 506; doi:10.3390/math8040506 www.mdpi.com/journal/mathematics143
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make extra efforts. First, for proper utilization of the stochastic analysis framework, one needs to
reformulate the optimal filtering problem, “smoothing forward“ the flow of σ-algebras induced by
the observations. Second, in the case of state-dependent noise, the innovation process contains less
information than the original observations. One has to supplement the innovation by the observation
quadratic characteristic, which represents a continuous-time noiseless function of the estimated MJP
state. In general, the optimal filtering given partially noiseless observations is a challenging problem.
Its solution can be expressed either as a sequence of some regularized estimates [10] or by the additional
differentiation of the smooth observation components or their quadratic characteristics [11–14]. In both
cases, one needs to realize a limit passage, which is difficult in computers.

Even in the traditional settings, the numerical realization of the MJP state filtering is a complicated
problem. For example, the explicit numerical methods based on the Itô–Taylor expansion applied
to the Wonham filter equation, diverge: the produced approximations do not meet component-wise
non-negativity condition. Over time the approximation components reach arbitrary large absolute
values. Further, in the presentation, we refer to the approximations, preserving both the component
non-negativity and normalization condition as the stable ones.

The Wonham filtering equation is a particular case of the nonlinear Kushner–Stratonovich
equation. To solve it, one can use various numerical algorithms

• the procedures based on the weak approximation of the original processes by Markov
chains [15,16],

• some variants of the splitting methods [17],
• the robust procedures based on the Clark transform [18,19],
• the schemes, which represent the conditional probability distributions through

the logarithm [20], etc.

All the algorithms are developed for the case of additive observation noise and based on
the Girsanov’s measure transform. Hence, they are useless for the estimation of the MJP given
the observations with state-dependent noise.

The goal of the paper is two-fold. First, it presents a theoretical solution to the MS-optimal filtering
problem, given the observations with state-dependent noise. Second, it introduces a new class of stable
numerical algorithms for filter realization and investigates its accuracy. We organize the paper as
follows. Section 2 contains a description of the studying observation system with state-dependent
observation noise along with the MS-optimal filtering problem statement. To solve the problem,
one needs to transform the available observations both to preserve the information equivalence
and suit for application of the known results of the optimal nonlinear filtering. Section 3 describes
both the observation transformation and the SDS defining the optimal filtering estimate. The SDS
is discrete–continuous and contains both continuous and counting random processes on the RHS.
Previously, the author of the note [21] presents a sketch of the observation transform, but it cannot
guarantee the uniqueness of that SDS solution.

Section 4 presents a new class of the stable numerical algorithms of the nonlinear filtering.
The main idea is to discretize original continuous-time observations and then find the MS-optimal
filtering estimate given the sampled observations. The authors of [22] use this idea to solve a particular
case of the estimation problem, namely the classification problem of a finite-state random vector given
continuous-time observations with multiplicative noise. Section 4.1 contains a general solution to
the problem. The corresponding estimate represents a ratio, which numerator and denominator are
the infinite sums of integrals. They are shift-scale mixtures of the Gaussians. The mixing distributions,
in turn, describe the occupation time of the system state in each admissible value during the time
discretization interval. In Section 4.2, we suggest approximating the estimates by a convergent
sequence bounding number s of possible state transitions, which occurred over the discretization
interval. We replace the infinite sums in the formula of the optimal estimate by their finite analogs
and also investigate the accuracy of the approximations. We refer these approximations as the analytical
ones of the s-th order. One cannot calculate the integrals analytically and have to replace them with some
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integral sums, and this brings an extra error. Section 4.3 analyzes the value of this error and the total
distance between the optimal filtering estimate given the discretized observations and its numerical
realization. Section 4.4 presents a numerical example that illustrates the conformity of theoretical
estimates and their numerical realization. Section 5 contains discussion and concluding remarks.

2. Continuous-Time Filtering Problem Statement

On the probability triplet with filtration (Ω,F ,P , {F}t�0) we consider the observation system

Xt = X0 +
∫ t

0
Λ"(s)Xsds + MX

t , (1)

Yt =
∫ t

0
f (s)Xsds +

∫ t

0

N

∑
n=1

Xn
s G1/2

n (s)dWs. (2)

Here

• Xt = col(X1
t , . . . , XN

t ) ∈ SN is an unobservable state which is a finite-state Markov jump process
(MJP) with the state space SN � {e1, . . . , eN} (SN stands for the set of all unit coordinate
vectors of the Euclidean space RN) with the transition matrix Λ(t) and the initial distribution
π = col(π1, . . . , πN); the process MX

t is an Ft-adapted martingale,
• Yt = col(Y1

t , . . . , YM
t ) ∈ RM is an observation process: Wt = col(W1

t , . . . , WM
t ) ∈ RM

is an Ft-adapted standard Wiener process characterizing the observation noise, f (t) is
an M× N-dimensional observation matrix and the collection of M×M-dimensional matrices
{Gn(t)}n=1,N defines the conditional observation noise intensities given Xt = en.

The natural flow of σ-algebras generated by the observations Y up to the moment t is denoted by
Yt � σ{Ys : s ∈ [0, t]}, Y0 � {∅, Ω}.

The optimal state filtering given the observations Y is to find the Conditional Mathematical
Expectation (CME)

X̂t � E {Xt|Yt+} . (3)

3. Observation Transform and Optimal Filtering Equation

Before derivation of the optimal filtering equation we specify the properties of the observation
system (1) and (2).

1. All trajectories of {Xt}t�0 are continuous from the left and have finite limits from the right, i.e.,
are cádlág-processes.

2. Nonrandom matrix-valued functions Λ(t), f (t) and {Gn(t)}n=1,N consist of
the cádlág-components.

3. The noises in Y are uniformly nondegenerate [10], i.e., min
1�n�N,

t�0

Gn(t) > αI for some α > 0;

here and after, I is a unit matrix of appropriate dimensionality.
4. The processes

Kij(t) � I{0}(Gi(t)− Gj(t)), i, j = 1, N (4)

have a finite variation; here and after, IA(x) is an indicator function of the set A, and 0 is a zero
matrix of appropriate dimensionality.

Conditions 1–3 are standard for the filtering problems [10]. They guarantee the proper description
of MJP distribution π(t) � E {Xt} by the Kolmogorov system π(t) = π +

∫ t
0 Λ"(s)π(s)ds. Condition 4

relates to the quadratic characteristic of the observation process as a key information source itself.
Below we show that collection of Gn(·), distinguished for different n, allows to restore the state Xt

precisely given the available noisy observations. Condition 4 guarantees the local regularity of the time
subsets, where Gn(·) coincide and/or differ each other: one can express them as finite unions of
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the intervals. The condition is not too restrictive: for instance, they are valid when Gn(·) are piece-wise
continuous with bounded derivatives.

Both the system state and observation are special square-integrable semimartingales [6,23] with
the predictable characteristics

〈X, X〉t � XtX"t −
∫ t

0
Xs−dX"s −

∫ t

0
dXsX"s− =

=
∫ t

0

(
diag

(
Λ"(s)Xs

)
−Λ"(s)diag Xs − diag (Xs)Λ(s)

)
ds (5)

and

〈Y, Y〉t � YtY"t −
∫ t

0
Ys−dY"s −

∫ t

0
dYsY"s− =

N

∑
n=1

∫ t

0
Xn

s Gn(s)ds. (6)

Conditions 1–3 and the properties of Xt guarantee P-a.s. fulfilment of the following equalities for
the one-sided derivatives of 〈Y, Y〉t:

d〈Y,Y〉s
ds

∣∣
s=t−= ∑N

n=1 Xn
t−Gn(t−) = ∑N

n=1 Xn
t Gn(t−),

d〈Y,Y〉s
ds

∣∣
s=t+= ∑N

n=1 Xn
t− (Gn(t−) + ΔGn(t)) = ∑N

n=1 Xn
t Gn(t),

(7)

where ΔGn(t) � Gn(t) − Gn(t−) is a jump function of Gn(t). So, if there exists a nonrandom
instant t∗ > 0 such that ∑N

n=1 πn(t∗)ΔGn(t∗) �= 0, then Yt∗ ⊂ Yt∗+ = Yt∗ ∨ σ{∑N
n=1 Xn

t∗ΔGn(t∗)}.
The inclusion presumes the flow of σ-subalgebras {Yt}t�0 is not necessarily continuous from the right
for the considered observations [24]. This is a reason to define a filtering estimate as a CME of Xt with
respect to the “smoothed” flow Yt+ for subsequent correct usage of the stochastic analysis framework.

Let us transform the available observations in such a way to derive the optimal filtering estimate
by the standard methods [6,23]. Initially, the idea of this transform is suggested in [11]. As the result,
the authors introduce the pair

Ut �
∫ t

0

(
d〈Y,Y〉u

du |u=s+

)−1/2
dYs, (8)

〈Y, Y〉t =
N

∑
n=1

∫ t

0
Xn

s Gn(s)ds. (9)

The authors of [11] prove coincidence of the σ-algebras
Yt = σ{Us, 0 � s � t} ∨ σ{〈Y, Y〉s, 0 � s � t} for the general diffusion observation systems.
However, they do not pay attention to the continuity of {Yt} from the right. The authors of [12,14]
suggest to replace the observations 〈Y, Y〉t by their derivative

Q(t) � d〈Y,Y〉s
ds |s=t− =

N

∑
n=1

Xn
t−Gn(t−). (10)

Then, one can construct the optimal estimate either to use Qt as a linear constraint or to
differentiate (10) for extraction of the dynamic noises. The papers [12,14] contain a rather pessimistic
conclusion: the number of differentiations is unbounded in the general case of diffusion observation
system. In contrast, we estimate a finite-state MJP and can construct the optimal filtering estimate
using Q without additional differentiation.

So, the transformed observations will contain

• diffusion processes with the unit diffusion,
• counting stochastic processes,
• indirect state observations obtained at the nonrandom discrete moments.

146



Mathematics 2020, 8, 506

The first transformed observation part is the process Ut (8), and in view of (2) and (7) it can be
rewritten as

Ut =
∫ t

0
f (s)Xsds + Wt, (11)

where f (s) � ∑N
n=1 G−1/2

n (s) f (s)diag(en) and Wt is an Ft-adapted standard Wiener [10].
The process Qt could play the role of the second part of the transformed observations since

Yt = σ{Us, Qs, s ∈ [0, t]} [11], however the natural flow of σ-algebras generated by the couple
(U, Q) is not continuous from the right yet. Moreover, the process Qt is matrix-valued and looks
overabundant for the filter derivation. The point is, Qt = Q(t, Xt−) (10) is a function of the finite-set
argument Xt, and it affects the estimate performance through its complete preimage

Qt = Q(t, Xt−)
Q−1

−−→ {en ∈ SN : Gn(t−)en = Qt}.

To go to the preimage we introduce the following transformation of Qt:

Ht �
N

∑
n=1

I{0} (Qt − Gn(t)) en.

Ht is a Yt-adapted vector process with components 0 or 1, but the trajectories Ht are not cádlág
processes. Due to the fact Xt− = Xt P-a.s. for ∀ t ≥ 0 the equalities below are valid

Ht =
N

∑
n,k=1

I{0} (Gk(t)− Gn(t)) Xk
t en = K(t)Xt = K(t)Xt− P − a.s., (12)

where K(t) is the N × N-dimensional matrix with the components (4).
The function K(t) has the following properties.

1. K(t) ≡ K"(t) for any t � 0.
2. The number of K(·) jumps occurred in any finite time interval is finite due to condition 4.
3. K(t) is not a cádlág-function [25].
4. P {‖ΔK(t)‖‖ΔXt‖ > 0} = 0 for any t � 0.
5. For any t � 0 there exists a transformation T(t) such that the matrix T(t)K(t) is trapezoid with

orthogonal strings and 0 and 1 as the components.
6. P

{
T(t)Ht ∈ SN}

= 1 for any t � 0.

Let us define a Yt+-adapted process Vt = col(V1
t , . . . , VN

t ) with the cádlág-trajectories:

Vt � T(t+)Ht+. (13)

From (12) and (13) it follows that Vt = J(t)Xt P-a.s., where J(t) � T(t+)K(t+).
We denote the set of the process V discontinuity by V , X stands for the set of X discontinuity

and J for the analogous set of the process J. The sets V and X are random, in contrast J is nonrandom.
The process Vt is purely discontinuous, and due to property 4 it can be rewritten in the form

Vt = J(0)X0 + ∑
κ∈V : κ�t

ΔVκ = J(0)X0 + ∑
κ∈J : κ�t

ΔJ(κ)Xκ + ∑
κ∈V\J : κ�t

J(κ)ΔXκ =

= J(0)X0 + ∑
κ∈J : κ�t

ΔJ(κ)Xκ + ∑
κ∈X : κ�t

J(κ)ΔXκ = J(0)X0 + ∑
κ∈J : κ�t

ΔJ(κ)Xκ︸ ︷︷ ︸
�Dt

+
∫ t

0
J(s)dXs︸ ︷︷ ︸
�Rt

. (14)

Due to the definition Vt ∈ SN for ∀ t � 0. The process Dt characterizes the observable jumps at
the nonrandom moments caused by J(t) changes, and Rt is an observable part of the state Xt jumps,
occurred, at some random instants.
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As a second part of the transformed observations, we choose the N-dimensional random process
Ct � col(C1

t , . . . , CN
t ): the components Cn

t count the jumps of the process Vt into the state en, occurred
at the random instants over the interval [0, t]:

Cn
t =

∫ t

0
(1− e"n Vs−)e"n dRs. (15)

The third part of the transformed observations is the N-dimensional process Dt with the jumps at
the nonrandom moments.

Lemma 1. If Y t � σ{(Us, Cs, Ds), s ∈ [0, t]}, then the coincidence Y t = Yt+ is true for any t � 0.

Correctness of the Lemma assertion follows immediately from the fact the composite process
(Ut, Ct, Dt) is constructed to be Yt+-adapted, and one-to-one correspondence of the (U, C, D)

and Y paths: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut =
∫ t

0

(
d〈Y,Y〉u

du |u=s+

)−1/2
dYs,

Ct =
∫ t

0
(I − diag Vs−)dVs − ∑

κ∈J : κ�t
(I − diag Vκ−)ΔVκ ,

Dt = ∑
κ∈J : κ�t

(I − diag Vκ−)ΔVκ ,

Vt = T(t+)Ht+,

Ht �
N

∑
n=1

I{0}
(

d〈Y,Y〉s
ds

∣∣
s=t−−Gn(t)

)
en,

(16)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Vt = Dt +

∫ t

0

N

∑
(i,j): i �=j

Vi
s−(ej − ei)dCj

s.

Yt =
∫ t

0

N

∑
n=1

Vn
s G1/2

n (s)dUs,

(17)

Below we use the following notations: 1 is a row vector of the appropriate dimensionality formed
by units, Jn(s) � e"n J(s) is the n-th row of the matrix J(s),

Γn(s) � diag(Jn(s))Λ"(s)(I − diag Jn(s)). (18)

Lemma 2. The process Ct = col(C1
t , . . . , CN

t ) has the following properties.

1. n-th component Cn
t allows the martingale representation

Cn
t =

∫ t

0
1Γn(s)Xsds +

∫ t

0
(1− Jn(s)Xs−)Jn(s)dMX

s .

2. [Cn, Cm]t ≡ 0 for any n �= m;

〈Cn, Cn〉t =
∫ t

0
1Γn(s)Xsds. (19)

3. The innovation processes

νn
t �

∫ t

0

(
dCn

s − 1Γn(s)X̂sds
)

, n = 1, N (20)

are Y t-adapted martingales with the quadratic characteristics

〈νn, νn〉t =
∫ t

0
1Γn(s)X̂sds. (21)

Proof of Lemma 2 is given in Appendix A.
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Finally, the transformed observations (U, C, D) take the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ut =

∫ t

0
f (s)Xsds + Wt,

Cn
t =

∫ t

0
1Γn(s)Xsds +

∫ t

0
(1− Jn(s)Xs−)Jn(s)dMX

s , n = 1, N,

Dt = J(0)X0 + ∑
κ∈J : κ�t

ΔJ(κ)Xκ .

(22)

Theorem 1. The optimal filtering estimate X̂t is a strong solution to the SDS

X̂t =
(
(D0)

" J(0)π0

)+
diag(D0)J(0)π0 +

∫ t

0
Λ"(s)X̂sds +

∫ t

0

(
diag X̂s − X̂sX̂"s

)
f
"
(s)dωs+

+
N

∑
n=1

∫ t

0

(
Γn(s)− 1Γn(s)X̂s− I

)
X̂s−

(
1Γn(s)X̂s−

)+
dνn

s +

+ ∑
κ∈J : κ�t

((
ΔD"κ ΔJ(κ)X̂κ−

)+
diag(ΔDκ)ΔJ(κ)− I

)
X̂κ−, (23)

where

ωt � Ut −
∫ t

0
f (s)X̂sds (24)

and A+ is a Moore–Penrose pseudoinverse. The solution is unique within the class of nonnegative
piecewise-continuous Yt+-adapted processes with discontinuity set lying in V .

Proof of Theorem 1 is given in Appendix B.
The transformed observations (22) along with Theorem 1 prompt a condition of the exact

identifiability of the state Xt given indirect noisy observations Yt (2).

Corollary 1. If for any n �= m (n, m = 1, N) the inequalities Gn(s) �= Gm(s) are true almost everywhere on
[0, t], then X̂t = Xt P-a.s., and Xt is the solution to SDS (23).

The proof of Corollary 1 is given in Appendix C.

4. Numerical Algorithms of Optimal Filtering

4.1. Optimal Filtering Given Discretized Observations

The latter section contains the stochastic system (23) defining the optimal filtering estimate
X̂t. The problem of its numerical realization seems routine: we should apply the corresponding
methods of numerical integration of SDS with jumps on the RHS [26]. However, this simplicity
is illusory. The problem is that the “new” countable observation Ct and discrete-time one Dt are
results of certain transform of the available observation Y, and this transform includes a limit passage
operation. In fact, to obtain Ct we have to estimate/restore the current value of the derivative d〈Y,Y〉t+

dt .
First, this leads to some time delay to accumulate observations Yt. Second, any pre-limit variant of Ct

either has a.s. continuous trajectories or represents their sampling, which demonstrates oscillating
nature. Third, the considered filtering estimate is the CME of the state Xt given the observations
Y up to the moment t. The CME has natural properties: its components are a.s. non-negative
and satisfy the normalization condition. The estimates and approximations having these properties are
referred in the paper as the stable ones. Mostly, the conventional numerical algorithms do not provide
these properties for the calculated approximations. They can preserve the normalization condition
only, but the components can have the arbitrary signs and absolute values.

In the paper we present another approach to the numerical realization of the filtering algorithm
above. We discretize the available observations Y by time with the increment h and then solve
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the optimal state filtering problem given discretized observations. The estimate can be considered
as approximation of the one given the initial continuous-time observations. Properties of the CME
guarantee the stability of the proposed approximation.

To simplify derivation of the numerical algorithm and its accuracy analysis we investigate
the time-invariant subset of the observation system (1), (2), i.e., Λ(t) ≡ Λ, A(t) ≡ A, Gn(t) ≡ Gn,
n = 1, N. The observations are discretized with the time increment h:

Yr �
∫ tr

tr−1

f Xsds +
∫ tr

tr−1

N

∑
n=1

Xn
s G1/2

n dWs, r ∈ N, (25)

where tr � rh are equidistant time instants. We denote Yr � σ{Ys : 1 � s � r} non-decreasing
collection of σ-algebras generated by the time-discretized observations; Y0 � {∅, Ω}.

The optimal state filtering problem given discretized observations is to find X̂r � E {Xtr |Yr}.
Let us consider asymptotics of X̂. We fix some T > 0 and consider a condensed sequence of

binary meshes { rT
2n }r=1,2n with time increments hn � T

2n and corresponding increasing sequence
of σ-subalgebras {Yn

2n}: Yn
2n � σ{Yr, 1 � r � 2n}. The observation process {Yt} is separable,

hence σ {⋃∞
n=1 Yn} = YT . Then, by Levy theorem X̂2n � E {XT |Yn} n→∞−−−→ E {XT |YT} =

E {XT |YT+} � X̂T P-a.s. Moreover, since E
{

X̂T

}
≡ E

{
X̂2n

}
= π(T), the L1-convergence is also

true: limn→∞ E
{
|X̂T − X̂2n |

}
= 0. The convergence also holds, if we replace the sequence of the binary

meshes by any condensed sequence with vanishing step. So, we can conclude that the optimal filtering
given the discretized observation is a way to design the stable convergent approximations without
observation transform Y → (U, C, D) introduced in the previous section.

To derive the filtering formula we use the approach of [27] and the mathematical induction.
In the case r = 0 we have

X̂0 = E {X0|Y0} = E {X0} = π. (26)

Let for some r ∈ N the estimate X̂r−1 = E
{

Xtr−1 |Yr−1
}

be known. Now we calculate X̂r at
the next time instant. To do this we have to specify the mutual conditional distribution (Xtr ,Yr) with
respect to Yr−1. From the observation model and ([10] Lemma 7.5) it follows that the conditional
distribution of Yr given σ-algebra FX

tr
∨Yr−1 is Gaussian with the parameters

E
{
Yr|FX

tr

}
= f υr, cov(Yr,Yr|FX

tr ) =
N

∑
n=1

υn
r Gn. (27)

Here, υr = col(υ1
r , . . . , υN

r ) �
∫ tr

tr−1

Xsds is a random vector composed of the occupation times of

the process X in each state en during the interval [tr−1, tr].
Below in the presentation we use the following notations:

• D � {u = col(u1, . . . , uN) : un � 0, ∑N
n=1 un = h} is an (N − 1)-dimensional simplex in

the space RM; D is a distribution support of the vector υr;
• Π � {π = col(π1, . . . , πN) : πn � 0, ∑N

n=1 πn = 1} is a “probabilistic simplex” formed by
the possible values of π;

• NX
r is a random number of the state Xt transitions, occurred on the interval [tr−1, tr],

• as
r � {ω ∈ Ω : NX

r (ω) � s}, As
r � ∏r

q=1 as
q;

• ρk,�,q(du) is a conditional distribution of the vector X�
tr

I{q}(NX
r )υr given Xtr−1 = ek, i.e., for any

G ∈ B(RM) the following equality is true:

E
{

IG(υr)I{q}(NX
r )X�

tr |Xtr−1 = ek

}
=

∫
G

ρk,�,q(du);
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• N (y, m, K) � (2π)−M/2det−1/2K exp
{
− 1

2‖y−m)‖2
K−1

}
is an M-dimensional Gaussian

probability density function (pdf) with the expectation m and nondegenerate covariance matrix K;
• ‖α‖2

K � α"Kα, 〈α, β〉K � α"Kβ.

Markovianity of {(Xtr ,Yr)}r�0, formula of the total probability and Fubini theorem provide
the equalities below for any set A ∈ B(RM)

E
{

Xtr IA(Yr)
∣∣Yr−1

}
= E

{
E
{

Xtr IA(Yr)
∣∣FX

tr ∨Yr−1

} ∣∣Yr−1

}
=

= E

{
Xtr

∫
A
N

(
y, f υr,

N

∑
p=1

υ
p
r Gp

)
dy

∣∣∣Yr−1

}
=

= E

{
E

{
Xtr

∫
A
N

(
y, f υr,

N

∑
p=1

υ
p
r Gp

)
dy

∣∣∣Xtr−1 ∨Yr−1

} ∣∣∣Yr−1

}
=

= E

{
N

∑
�=1

e�
∞

∑
q=0

N

∑
k=1

e"k Xtr−1

∫
D

∫
A
N

(
y, f u,

N

∑
p=1

upGp

)
dyρk,�,q(du)

∣∣∣Yr−1

}
=

=
N

∑
�=1

e�
∫
A

[
N

∑
k=1

X̂k
r−1

∞

∑
q=0

∫
D
N

(
y, f u,

N

∑
p=1

upGp

)
ρk,�,q(du)

]
dy.

This means that the integrand in the square brackets defines the conditional distribution (Xtr ,Yr)

given Yr−1. Further, the conditional distribution X̂r is defined component-wisely by the generalized
Bayes rule [10]

X̂
j
r =

∑N
k=1 X̂

k
r−1 ∑∞

q=0
∫
D N

(
Yr, f u, ∑N

p=1 upGp

)
ρk,j,q(du)

∑N
i,�=1 X̂

i
r−1 ∑∞

c=0
∫
D N

(
Yr, f v, ∑N

n=1 vnGn

)
ρi,�,c(dv)

, j = 1, N. (28)

So, we have proved the following

Lemma 3. If for the observation system (1), (2) conditions 1–3 are valid, then the filtering estimate X̂r

given the discretized observations is defined by (26) at r = 0, and by recursion (28) at the instant tr of
the discretized observation Yr reception.

4.2. Stable Analytic Approximations

Recursion (23) cannot be realized directly because of infinite summation both in the numerator
and denominator. We replace them by the finite sums, and the corresponding vector sequence Xr(s),
calculated by the formula

X
j
r(s) =

∑N
k=1 X

k
r−1(s)∑s

q=0
∫
D N

(
Yr, f u, ∑N

p=1 upGp

)
ρk,j,q(du)

∑N
i,�=1 X

i
r−1(s)∑s

c=0
∫
D N

(
Yr, f v, ∑N

n=1 vnGn

)
ρi,�,c(dv)

, j = 1, N (29)

is called the analytic approximation of the s-th order of X̂r. Obviously, that Xr(s) is stable.
Let us introduce the following positive random numbers and matrices:

ξ
kj
q �

s

∑
m=0

∫
D
N

(
Yq, f u,

N

∑
p=1

upGp

)
ρk,j,m(du),

θ
kj
q �

∞

∑
m=s+1

∫
D
N

(
Yq, f u,

N

∑
p=1

upGp

)
ρk,j,m(du),

ξq � ‖ξkj
q ‖k,j=1,N , θq � ‖θkj

q ‖k,j=1,N .

(30)
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The estimates X̂r (28) and Xr(s) (29) can be rewritten in the recurrent form:

X̂r = (1(ξr + θr)
"X̂r−1)

−1(ξr + θr)
"X̂r−1, (31)

Xr(s) = (1ξ"r Xr−1(s))−1ξ"r Xr−1(s). (32)

Let us define the global distance [28] between the estimates {Xr(s)} and {X̂r} as

Σr(s) � sup
π∈Π

E
{
‖X̂r − Xr(s)‖1

}
= sup

π∈Π

N

∑
j=1

E
{
|X̂j

r − X
j
r(s)|

}
. (33)

The pretty natural characteristic shows the maximal expected divergence of the recursions (28)
and (29) at the r-th step.

The assertion below defines an upper bound of the characteristic Σr(s).

Lemma 4. If the conditions of Lemma 3 are valid, then

Σr(s) � 2− 2
(

1− C1
(λh)s+1

(s+1)!

)r
, (34)

where λ � max1�n�N |λnn|, and C1 = C1(h, λ) ∈ (0, 1) is the following parameter:

C1 � e−λh (s+1)!
(λh)s+1

∞

∑
k=s+1

(λh)k

k! , (35)

which is bounded from above: C1
(λh)s+1

(s+1)! < 1.

The proof of Lemma 4 is given in Appendix D.
Assertion of Lemma brings the practical benefit. The Lemma does not contain any asymptotic

requirements neither to the approximation order s nor to the discretization step h: inequality (34) is
universal. Mostly, in the digital control systems the data acquisition rate is fixed or bounded from
above. There are some extra algorithmic limitations of the rate: the “raw” data should be preprocessed,
smoothed, averaged, refined from outliers, etc. For example, utilization of the central limit theorem [29]
and diffusion approximation framework [30] for the the renewal processes is legitimate with significant
averaging intervals, and their length depends on the process moments.

Now we fix the time instant T and consider an asymptotic h→ 0. In this case r = T
h → ∞ and

Σ T
h
(s) � 2− 2

(
1− C1

(λh)s+1

(s+1)!

) T
h ∼ 2λT (λh)s

(s+1)! .

4.3. Stable Numerical Approximations

In the recursion (32) we use the integrals ξ
ij
r , which cannot be calculated analytically.

The numerical integration brings some extra approximation error. Let us investigate its affect to
the total accuracy of the filter numerical realization.

The integrals ξ ij(y) are usually approximated by the sums

ξ ij(y) ≈ ψij(y) � ∑L
�=1N

(
y, f w�, ∑N

p=1 wp
� gp

)
�

ij
� , ψ(y) � ‖ψij(y)‖i,j=1,N , (36)

which are defined by the collection of the pairs {(w�, �
ij
� )}�=1,L. Here, w� � col(w1

� , . . . , wN
� ) ∈ D are

the points, and �
ij
� � 0 (� = 1, L) are the weights: ∑N

j=1 ∑L
�=1 �

ij
� � Q � 1.
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In complete analogy with ξq we define the approximations ψq � ‖ψij(Yq)‖i,j=1,N . By construction,

the elements of ψq are positive random values, hence the approximation X̃r

X̃r � (1ψ"r X̃r−1)
−1ψ"r X̃r−1, X̃0 = π (37)

is stable. Below we denote the numerical integration errors and their absolute values as follows

γkj � ψkj − ξkj, γr � ‖γkj(Yr)‖k,j=1,N (38)

γkj � |γkj|, γr �
∥∥∥|γkj(Yr)|

∥∥∥
k,j=1,N

. (39)

So, the recursion (32) is replaced by the scheme (37), holding the common initial condition π.
Both (32) and (37) are constructed in light of the event As

r: the state transition numbers do
not exceed the threshold s over any subintervals [tq−1, tq] belonging to [0, tr]. So, the distance
between X̃r and Xr(s) should be determined taking into account As

r. In view of this fact, we propose
the pseudo-metrics

Er(s) � sup
π∈Π

E
{

IAs
r (ω)‖X̃r − Xr(s)‖1

}
= sup

π∈Π

N

∑
n=1

E
{

IAs
r (ω)|X̃n

r − X
n
r (s)|

}
. (40)

This index reflects maximal divergence of the algorithms (32) and (37) after r steps, being started from
the arbitrary but common initial condition.

Theorem 2. If the inequality

max
i=1,N

N

∑
j=1

∫
RM
|ψij(y)− ξ ij(y)|dy < δ (41)

is true for the numerical integration scheme (36), then the distance Er(s) is bounded from above:

Er(s) � 2rQr−1δ. (42)

The proof of Theorem 2 is given in Appendix E.
The chance to describe the accuracy of the numerical algorithm for the stochastic filtering using

only the condition (41), related to the calculus, looks remarkable. Furthermore, if the total weight
Q = ∑�,j �

ij
� separates from the unity, i.e., Q < 1, then the index Er(s) is a sublinear function of r, so as

the index Σr(s) of the analytic accuracy is. Notably, that in the classic numerical algorithms of the SDS
solution the global error grows linearly with respect to the number of steps r [26].

The precision characteristics of both the analytical approximation and its numerical realization
should be aggregated into the one. If the conditions of Lemma 4 and Theorem 2 are valid, then the local
distance (i.e., the distance after one iteration) between the optimal filtering estimate and its numerical
approximation can be bounded from above:

τ(s) � sup
π∈Π

E
{
‖X̂1 − X̃1‖1

}
� sup

π∈Π
E
{

Ias
1
(ω)‖X̃1 − X1(s) + X1(s)− X̂1‖1 + Ias

1
(ω)‖X̃1 − X1(s)‖1

}
�

� 2P {as
1}+ sup

π∈Π
E
{
‖X1(s)− X̂1‖1

}
+ sup

π∈Π
E
{

Ias
1
(ω)‖X̃1 − X1(s)‖1

}
=

= 2P {as
1}+ σ(s) + E1(s) � 4 (λh)s+1

(s+1)! + 2δ. (43)

The global distance between X̂r � E {Xr|Yr} and X̃r can be bounded in the similar way:

T (s) � sup
π∈Π

E
{
‖X̂r − X̃r‖1

}
� 4

[
1−

(
1− (λh)s+1

(s+1)!

)r
]
+ 2rQr−1δ. (44)
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We could choose the parameters (h, s) of the analytical approximation and δ of the numerical
integration independently each other. However, both the limitation of the computational resources
and the accuracy requirements lead to the necessity of the mutual optimization of (h, s, δ).

Let us fix some time horizon T along with the order s of analytical approximation, and consider
the asymptotic r → ∞, or, equivalently, h = T

r → 0. Due to the Bernoulli inequality, and condition
0 < Q � 1 we have that

sup
π∈Π

E
{
‖X̃T/h − X̂T/h‖1

}
� 4

[
1−

(
1− (λh)s+1

(s+1)!

)r
]
+ 2rQr−1δ � 4r (λh)s+1

(s+1)! + 2rQr−1δ =

= 4λT (λh)s

(s+1)! + 2rQr−1δ � 2T
(

2λ
(λh)s

(s+1)! +
δ
h

)
. (45)

The first summand in the brackets represents the contribution of the analytical approximation
error, the second one reflects the error of the specified numerical integration scheme. Obviously,
the optimal choice of the parameters provides an equal infinitesimal order for both the summands,

and it is possible when δ ∼ (λh)s+1

λ
.

4.4. Numerical Example

To illustrate the correspondence between the theoretical estimate and its realization along with
the performance of the numerical algorithm, we consider the filtering problem for the observation
system (1) and (2) with the following parameters: t ∈ [0, 1], N = 3,

Λ =

⎡⎢⎣ −1.0 0.2 0.8
0.8 −1.0 0.2
0.2 0.8 −1.0

⎤⎥⎦ , π =

⎡⎢⎣ 0.333
0.333
0.334

⎤⎥⎦ , f =

⎡⎢⎣ 0.0
0.0
0.0

⎤⎥⎦ ,
G1 = 1.0,
G2 = 4.0,
G3 = 9.0.

The specified observation system is the one with state-dependent noise, and the conditions of
Corollary 1 hold, so the optimal filter (23) restores the MJP state precisely under available noisy
observations. Let us verify this theoretical fact, using the recursive algorithm (37). We choose
the analytical approximation of the order s = 1 with numerical integration by the simple midpoint
rectangle scheme and calculate estimate approximations with decreasing time-discretization step:
h = 0.01; 0.001; 0.0001; 0.00001. We expect the descent of the estimation error characterized by

the MS-criterion St(h) =

√
E
{
‖Xt − X̃ t

h
‖2

2

}
. To calculate the criterion, we use the Monte–Carlo

method over the test sample of the size 1000. Figure 1 presents the corresponding plots of the quality
index St(h) for various values of h.

Figure 1. Estimation quality index St(h) depending on the time-discretization step h.
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The determination of the precision order provided by the chosen numerical integration method is
out of the scope of this investigation. Nevertheless, one can see the expected decrease of the estimation
error when the time-discretization step descends. We appraise this result as a practical confirmation of
both the theoretical assertions and numerical algorithm.

5. Conclusions

In this paper, we investigated the optimal filtering problem of the MJP states, given the indirect
noisy continuous-time observations. The observation noise intensity was a function of the estimated
state, so it was impossible to apply the classic Wonham filter to this observation system. To overcome
this obstacle, we suggested an observation transform. On the one hand, the transformed observations
remained to be equivalent to the original one from the informational point of view. On the other
hand, the “new“ observations allowed to apply the effective stochastic analysis framework to
process them. We derived the optimal filtering estimate theoretically as a unique strong solution
to some discrete–continuous stochastic differential system. The transformed observations included
derivative of the quadratic characteristics, i.e., the result of some limit passage in the stochastic settings.
Hence, the subsequent numerical realization of the filtering became challenging. We proposed to
approximate the initial continuous-time filtering problem by a sequence of the optimal ones given
the time-discretized observations. We also involved numerical integration schemes to calculate
the integrals included in the estimation formula. We prove assertions, characterizing the accuracy
of the numerical approximation of the filtering estimate, i.e., the distance between the calculated
approximation and optimal discrete-time filtering estimate. The accuracy depended on the observation
system parameters, time discretization step, a threshold of state transition number during the time
step, and the chosen scheme of the numerical integration. We suggested the whole class of numerical
filtering algorithms. In each case, one could choose any specific algorithm individually, taking into
account characteristics of the concrete observation system, accuracy requirements, and available
computing resources.

We do not consider the presented investigations as completed. First, the characterization
of the distance between the initial optimal continuous-time filtering estimate and its proposed
approximation is still an open problem. Second, we can use the theoretical solution to the MJP filtering
problem as a base of numerical schemes for the diffusion process filtering, given the observations with
state-dependent noise. Third, the obtained optimal filtering estimate looks a springboard for a solution
to the optimal stochastic control of the Markov jump processes, given both the counting and diffusion
observations with state-dependent noise. All of this research is in progress.
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Appendix A. Proof of Lemma 2

From (14), (15), the identity diag(a)b ≡ diag(b)a, the fact that Jn(t) �= Jn(t−) at most at finite
points of any finite interval and property 4 of the function K(t), the following equalities are true

Cn
t =

∫ t

0
(1− e"n Vs−)e"n dRs =

∫ t

0
(1− e"n Vs−)e"n J(s)(Λ"(s)Xs−ds + dMX

s ) =

=
∫ t

0
(1− Jn(s−)Xs−)Jn(s−)Λ"(s)Xs−ds +

∫ t

0
(1− e"n Vs−)Jn(s)dMX

s =

=
∫ t

0
Jn(s)Λ"(s)(I − diag Jn(s))Xsds +

∫ t

0
(1− e"n Vs−)Jn(s)dMX

s =

=
∫ t

0
1Γn(s)Xsds +

∫ t

0
(1− e"n Vs−)Jn(s)dMX

s . (A1)

Assertion 1 of Lemma is proved.
The definition of the processes Cn

t (n = 1, N) guarantees their strong orthogonality, i.e.,

P
{

ΔCi
tΔCj

t = 0
}
≡ 0 for any i �= j and t � 0, so [Ci, Cj]t ≡ 0.

Let us use (5), (19) and properties of X and Jn to derive the quadratic characteristics of Cn:

〈Cn, Cn〉t =
∫ t

0
(1− Jn(s)Xs−)2 Jn(s)d〈X, X〉s J"n (s) =

=
∫ t

0
(1− Jn(s)Xs−)Jn(s)

(
diag(Λ"(s)Xs− −Λ"(s)diag Xs− − diag(Xs−)Λ(s)

)
J"n (s)ds =

=
∫ t

0
(1− Jn(s)Xs−)Jn(s)diag(Jn(s))Λ"(s)Xs−ds =

∫ t

0
Jn(s)Λ"(s)(I − diag Jn(s))Xsds =

=
∫ t

0
1Γn(s)Xsds. (A2)

Assertion 2 of Lemma is proved.
If s and t are two arbitrary moments, such that s � t, then

E
{

νn
t − νn

s |Y s
}
= E

{∫ t

s
Jn(u)Λ"(u)(I − diag Jn(u))E

{
(Xu − X̂u)|Yu

}
du|Y s

}
+

+ E

{
E

{∫ t

s
(1− Jn(s)Xs−)Jn(u)dMX

u |Fs

}
|Y s

}
= 0,

i.e., νn
t is a Y t-adapted martingale. Note, that νn

t is purely discontinuous with unit jumps, hence

[νn, νn]t = ∑
τ�t

(Δνn
τ )

2 = [Cn, Cn]t = ∑
τ�t

(ΔCn
τ )

2 = Cn
t =

=
∫ t

0
Jn(s)Λ"(s)(I − diag Jn(s))Xsds +

∫ t

0
(1− Jn(s)Xs−)Jn(s)dMX

s =
∫ t

0
1Γn(s)X̂sds + μ0

t ,

where μ0
t is some Y t-adapted martingale. From the uniqueness of the special martingale representation

[νn, νn]t it follows that 〈νn, νn〉t =
∫ t

0 1Γn(s)X̂sds. Lemma 2 is proved. �

Appendix B. Proof of Theorem 1

We use the same approach as in ([6], Part III, Sect. 8.7) to derive the MJP filtering equations.
The idea exploits the uniqueness of the representation for a special semimartingale along with
the integral representation of a martingale [23].
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From the Bayes rule it follows that X̂0 = E {X0|D0} =
(

D"0 J(0)π
)+

diag(D0)J(0)π. Let κn−1 be
a random instant of the n− 1-th discrete observation ΔDκn−1 . We investigate evolution of Xt over
the interval [κn−1,κn):

Xt = Xκn−1 +
∫ t

κn−1

Λ"(s)Xsds + MX
t −MX

κn−1
, t ∈ [κn−1,κn).

Conditioning the left and right parts of the latter equality over Y t, one can show that

X̂t = X̂κn−1 +
∫ t

κn−1

Λ"(s)X̂sds + μ1
t ,

where {μ1
t }t∈[κn−1,κn) is an Y tadapted martingale. For any t ∈ [κn−1,κn) the equality Y t = Yκn−1 ∨

σ{Us, s ∈ (κn−1, t]} ∨ σ{Cj
s, s ∈ (κn−1, t], j = 1, N} holds. The process {ωt} (24) is a Y t -adapted

standard Wiener process [10].
The process Ut is a Y t-adapted semimartingale with FX-conditionally-independent increments,

meanwhile {Cj
t}j=1,N are Y t-adapted point processes. Hence, the martingale μ1

t admits an integral
representation ([23], Chap. 4, §8, Problem 1), i.e.,

X̂t = X̂κn−1 +
∫ t

κn−1

Λ"(s)X̂sds +
∫ t

κn−1

αsdωs +
∫ t

κn−1

N

∑
j=1

β
j
sdν

j
s, (A3)

where αt and {βj
t}j=1,N are Y t-predictable processes of appropriate dimensionality, which should be

determined.
Due to the generalized Itô rule

XtU"t = Xκn−1U"κn−1
+

∫ t

κn−1

(
Λ"(s)XsU"s + diag(Xs) f

"
(s)

)
ds + μ2

t ,

where μ2
t is an Ft-adapted matringale. Conditioning both sides of the latter equality over Y t, we can

show that

X̂tU"t = X̂κn−1U"κn−1
+

∫ t

κn−1

(
Λ"(s)X̂sU"s + diag(X̂s) f

"
(s)

)
ds + μ3

t , (A4)

where μ3
t is a Y t-adapted martingale. On the other hand, using the Itô rule, representation (A3)

and the fact that ωt is the Wiener process, we can obtain

X̂tU"t = X̂κn−1U"κn−1
+

∫ t

κn−1

(
Λ"(s)X̂sU"s + X̂sX̂"s f

"
(s) + αs

)
ds + μ4

t , (A5)

where μ4
t is a Y t-adapted martingale. One can see that (A4) and (A5) are two representations of

the same special semimartingale X̂tU"t , hence due to the representation uniqueness the Y t-predictable
process αt should satisfy the equality

∫ t

κn−1

diag(X̂s) f
"
(s)ds =

∫ t

κn−1

(
X̂sX̂"s f

"
(s) + αs

)
ds,

and αt may be chosen in the form

αt =
(

diag X̂t− − X̂t−X̂"t−
)

f
"
(t). (A6)
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Due to the generalized Itô rule, formulae (5), (18) and the properties of X and Jj we can obtain, that

XtC
j
t = Xκn−1 Cj

κn−1 +
∫ t

κn−1

(
Λ"(s)XsCj

s + Γj(s)Xs

)
ds + μ5

t ,

where μ5
t is an Ft-adapted martingale. Conditioning both sides of this equality over Y t, we get

X̂tC
j
t = X̂κn−1 Cj

κn−1 +
∫ t

κn−1

(
Λ"(s)X̂sCj

s + Γj(s)X̂s

)
ds + μ6

t , (A7)

where μ6
t is a Y t-adapted martingale. On the other hand, using the Itô rule, representation (A3)

and quadratic characteristic (21) we deduce, that

X̂tC
j
t = X̂κn−1 Cj

κn−1 +
∫ t

κn−1

(
Λ"(s)X̂sCj

s + X̂s1Γj(s)X̂s + β
j
s1Γj(s)X̂s

)
ds + μ7

t , (A8)

where μ7
t is a Y t-adapted martingale. Since the representations (A7) and (A8) correspond to the same

special semimartingale X̂tC
j
t we conclude that the process β

j
s should satisfy the equality

∫ t

κn−1

Γj(s)X̂sds =
∫ t

κn−1

[
X̂s1Γj(s)X̂s + β

j
s1Γj(s)X̂s

]
ds.

Acting as with the coefficient αt, we choose the predictable processes β
j
t in the form

β
j
t =

(
Γj(t)− 1Γj(t)X̂t− I

)
X̂t−

(
1Γj(t)X̂t−

)+
, j = 1, N. (A9)

So, on the interval [κn−1,κn) the optimal filtering estimate X̂t is described by the SDS

X̂t = X̂κn−1 +
∫ t

κn−1

Λ"(s)X̂s−ds +
∫ t

κn−1

(diag X̂s− − X̂s−X̂"s−) f
"
(s)dωs+

+
N

∑
j=1

∫ t

κn−1

(
Γj(s)− 1Γj(s)X̂s− I

)
X̂s−

(
1Γj(s)X̂s−

)+
dν

j
s. (A10)

Since P {ΔXκn = 0} = 1, equation (A10) presumes P-a.s. fulfilment of the equality

E
{

Xκn |Yκn−1 ∨ σ{Us, s ∈ (κn−1,κn]} ∨ σ{Cj
s, s ∈ (κn−1,κn], j = 1, N}

}
=

= X̂κn−1 +
∫ κn

κn−1

Λ"(s)X̂s−ds +
∫ κn

κn−1

(diag X̂s− − X̂s−X̂"s−) f
"
(s)dωs+

+
N

∑
j=1

∫ κn

κn−1

(
Γj(s)− 1Γj(s)X̂s− I

)
X̂s−

(
1Γj(s)X̂s−

)+
dν

j
s = X̂τn−.

Finally,

Yκn = Yκn−1 ∨ σ{Us, s ∈ (κn−1,κn]} ∨ σ{Cj
s, s ∈ (κn−1,κn], j = 1, N} ∨ σ{ΔDκn},

so, by the Bayes rule we get that

X̂τn =
(

ΔD"τn ΔJ(τn)X̂τn−
)+

diag(ΔDτn)ΔJ(τn)X̂τn−. (A11)
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Equation (23) can be obtained as “gluing“ of local equations (A10), which describe the evolution
of X̂t on the intervals [κn−1,κn), and formula (A11), which describes the estimate correction given
the observations available at the moments κn.

Uniqueness of the strong solution within the class of nonnegative piecewise-continuous
Yt+-adapted processes with discontinuity set lying in V can be proved in complete analogy with ([31]
Chap. 9, Theorem 9.2). Theorem 1 is proved. �

Appendix C. Proof of Corollary 1

The conditions of Corollary guarantee, that the elements of K(t) (4) satisfy the equality
Knm(t) = δnm almost everywhere, hence J(t) ≡ I. This means that in (23) D0 = X0, P-a.s., i.e.,
X̂0 = X0. Further, from the properties of transition intensity matrix Λ(·) and the identity Jn(t) ≡ e"n
it follows that Γn(t) = diag(en)Λ

"
(t), where Λ(t) � Λ(t) − λ(t), λ(t) � diag(Λ11(t), . . . , ΛNN).

In this case

Ct =
∫ t

0
Λ"(s)Xsds +

∫ t

0
(I − diag Xs−)dMX

s ,

and the n-th component counts the jumps of Xt into the state en, occurred on the interval (0, t].
This means Xt is the unique solution to the “purely discontinuous” equation

Xt = D0 +
∫ t

0
(I − Xs−1)dCs, (A12)

i.e., the state Xt is measurable with respect to σ{D0, Cs, 0 � s � t}, so X̂t = Xt P-a.s.
Further, we substitute Xt into (23) and verify its validity. To do this we simplify the RHS of

the equality using the explicit form of Jn(t), Γn(t) and Ct, along with the identities diag Xt −XtX"t ≡ 0
and ΔJ(t) ≡ 0:

Xt = D0 +
∫ t

0
Λ"(s)Xsds+

+
N

∑
n=1

∫ t

0

[
diag(en)Λ

"
(s)− e"n Λ"(s)Xs− I

]
Xs−

(
e"n Λ"(s)Xs−

)+ [
dCn

s − e"n Λ"(s)Xs−ds
]
=

= D0 +
N

∑
n=1

∫ t

0

[
diag(en)Λ

"
(s)− e"n Λ"(s)Xs− I

]
Xs−

(
e"n Λ"(s)Xs−

)+
dCn

s .

The properties of counting processes also provides the following implication: if for some T ⊆ [0, T]
the equality

∫
T e"n Λ"(s)Xsds = 0 holds, then

∫
T dCn

s = 0. Hence, the latter transformation can be
continued:

Xt = D0 +
N

∑
n=1

∫ t

0
[en − Xs−] e"n dCs = D0 +

∫ t

0
(I − Xs−1)dCs,

which leads to (A12). So, we have verified that under conditions of Corollary 1 the state Xt is a solution
to the filtering equation (23). Corollary 1 is proved. �

Appendix D. Proof of Lemma 4

Using notations Ξr � ξ1ξ2 . . . ξr and Θr � θ1θ2 . . . θr we can rewrite the estimates X̂r and Xr(s) in
the explicit form

X̂r =
(

1 (Ξr + Θr)
" π

)−1
(Ξr + Θr)

" π, Xr(s) =
(

1Ξ"r π
)−1

Ξ"r π.
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To simplify inferences we will omit the index r in Ξr and Θr. The following relations are valid

E
{∥∥∥X̂r − Xr(s)

∥∥∥
1

}
= E

{∥∥∥∥ 1
1(Ξ+Θ)"π

(Ξ + Θ)" π − 1
1Ξ"π

Ξ"π

∥∥∥∥
1

}
=

= E

{
1

1(Ξ+Θ)"π1Ξ"π

∥∥1Ξ"πΘ"π − 1Θ"πΞ"π
∥∥

1

}
�

� E

{
1

1(Ξ+Θ)"π1Ξ"π

(
1Ξ"π‖Θ"π‖1 + 1Θ"π‖Ξ"π‖1

)}
= 2E

{
1

1(Ξ+Θ)"π
1Θ"π

}
. (A13)

Let us consider an auxiliary estimate X̆r � E
{

Xtr IAs
r (ω)|Yr

}
. From the Bayes rule it follows that

X̆r =
1

1(Ξ+Θ)"π
Ξ"π and

X̂r − X̆r = E
{

Xtr IAs
r
(ω)|Yr

}
= 1

1(Ξ+Θ)"π
Θ"π. (A14)

From (A13) and (A14) we deduce, that for r = 1 and ∀ π ∈ Π

E
{
‖X̂1 − X1(s)‖1

}
� 2E

{
‖E

{
Xt1 Ias

1
(ω)|Y1

}
‖1

}
=

= 2E

{
N

∑
n=1

E
{

Xn
t1

Ias
1
(ω)|Y1

}}
= 2E

{
E
{

Ias
1
(ω)|Y1

}}
= 2P {as

1} . (A15)

The counting process NX
t has the quadratic characteristic 〈NX , NX〉t = −

∫ t
0 ∑N

n=1 λnnXn
s ds, hence

the probability P {as
1} can be bounded from above as

P {as
1} � e−λh

∞

∑
k=s+1

(λh)k

k! = C1
(λh)s+1

(s+1)! . (A16)

Formulae (A15) and (A16) lead to the fact, that supπ∈Π E
{
‖X̂1 − X1(s)‖1

}
� 2C1

(λh)s+1

(s+1)! .

Markovianity of the pair (Xt, NX
t ) and inequality (A16) also allow to bound the probability

P
{

As
r

}
from above: P

{
As

r

}
� 1−

(
1− C1

(λh)s+1

(s+1)!

)r
, that leads to (34). Lemma 4 is proved. �

Appendix E. Proof of Theorem 2

We have X̃1 = (1ψ"1 π)−1ψ"1 π, X1 = (1ξ"1 π)−1ξ"1 π and Δ1 = X̃1 − X1(s). Using the matrix
algebra it is easy to verify that [γ"π1 − 1γ"π I]γ"π ≡ 0. Both the estimates are stable, hence
‖X̃1‖1 = ‖X1(s)‖1 = 1. The following relations are valid:

‖Δ1‖1 = 1
1ψ"1 π1ξ"1 π

‖1ξ"1 πψ"1 π − 1ψ"1 πξ"1 π‖1 = 1
1ψ"1 π1ξ"1 π

‖1ξ"1 πγ"1 π − 1γ"1 πξ"1 π‖1 =

= 1
1ψ"1 π1ξ"1 π

‖[γ"1 π1− 1γ"1 π I]ξ"1 π‖1 =

= 1
1ψ"1 π1ξ"1 π

‖[γ"1 π1− 1γ"1 π I][ξ"1 π + γ"1 π]‖1 = 1
1ξ"1 π
‖[γ"1 π1− 1γ"1 π I]X̃1‖1 �

� 1
1ξ"1 π
‖[γ"1 π1− 1γ"1 π I]‖1‖X̃1‖1 � 2 1γ"1 π

1ξ"1 π
= ∑N

i=1 πi
∑N

j=1 γ
ij
1

∑N
k,�=1 ξk�

1 πk
.

Using the last inequality, (41) and (A20), it can be shown that

E
{

Ias
1
(ω)‖Δ1‖1

}
� 2

N

∑
i=1

πi

∫
RM

N

∑
i=1

γij(y)dy � 2δ.
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Since the latter inequality is valid for any π ∈ Π, we have an upper bound for the local distance
characteristic:

sup
π∈Π

E
{

Ias
1
(ω)‖X̃1 − X1(s)‖1

}
� 2δ. (A17)

Let us define the following products of the random matrices ξr and ψr:

Ξq,r �
{

ξqξq+1 . . . ξr, if q � r,
I otherwise,

Ψq,r �
{

ψqξq+1 . . . ψr, if q � r,
I otherwise,

Γq,r � Ψq,r − Ξq,r.

To proceed the proof of Theorem 2 we need the following auxiliary

Lemma A1. If φr � φr(Y1, . . . ,Yr) is a non-negative Yr-measurable random value, and Φr � φr
1Ξ"1,rπ

, then

E
{

IAs
r (ω)Φr

}
=

∫
RM

. . .
∫
RM

φr(y1, . . . , yr)dyr . . . dy1. (A18)

Proof of Lemma A1. We consider a non-negative integrable function φ1 = φ1(y) : RM → R+ and
a Y1-measurable random value

Φ1 � φ1(Y1)

1ξ"1 (Y1)π
=

φ1(Y1)

∑N
i,j=1 ∑s

m=0
∫
D N (Y1, f u, ∑N

p=1 upGp)ρi,j,m(du)πi
. (A19)

We find E
{

Ias
1
(ω)Φ1

}
:

E
{

Ias
1
(ω)Φ1

}
=

∫
RM

∫
D

φ1(y)∑N
k,�=1 ∑s

n=0N (y, f v, ∑N
q=1 vqGq)ρk,�,n(dv)πk

∑N
i,j=1 ∑s

m=0
∫
D N (y, f u, ∑N

p=1 upGp)ρi,j,m(du)πi
dy =

=
∫
RM

φ1(y)
∑N

k,�=1 ∑s
n=0

∫
D N (y, f v, ∑N

q=1 vqGq)ρk,�,n(dv)πk

∑N
i,j=1 ∑s

m=0
∫
D N (y, f u, ∑N

p=1 upGp)ρi,j,m(du)πi
dy =

∫
RM

φ1(y)dy. (A20)

Let us consider a non-negative integrable function φ2 = φ1(y1, y2) : R2M → R+ and a
Y2-measurable random value

Φ2 � φ1(Y1,Y2)

1Ξ"1,2(Y1,Y2)π
=

=
φ2(Y1,Y2)

N

∑
i,i2,j=1

s

∑
m1,m2=0

∫
D

∫
D
N (Y1, f u1,

N

∑
p1=1

up1 Gp1)N (Y2, f u2,
N

∑
p2=1

up2 Gp2)ρ
i,i2,m1(du1)ρ

i2,j,m2(du2)πi

.
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We find E
{

IAs
2
(ω)Φ2

}
:

E
{

IAs
2
(ω)Φ2

}
=

∫
RM

∫
RM

φ2(y1, y2)×

×

N

∑
k,k2,�=1

s

∑
n1,n2=0

∫
D

∫
D
N (y1, f v1,

N

∑
q1=1

vq1 Gq1 )N (y2, f v2,
N

∑
q2=1

vq2 Gq2 )ρ
k,k2,n1 (dv1)ρ

k2,�,n2 (dv2)πk

N

∑
i,i2,j=1

s

∑
m1,m2=0

∫
D

∫
D
N (y1, f u1,

N

∑
p1=1

up1 Gp1 )N (y2, f u2,
N

∑
p2=1

up2 Gp2 )ρ
i,i2,m1 (du1)ρ

i2,j,m2 (du2)πi

dy2dy1 =

=
∫
RM

∫
RM

φ2(y1, y2)dy2dy1.

The correctness of the Lemma assertion in the general case of E
{

IAs
r (ω)Φr

}
can be verified

similarly. Lemma A1 is proved.

Let us define an upper estimate for the norm of Δr = X̃r − Xr. From the definitions of Ξ, Ψ and Γ
it follows that

Γ1,r � Ψ1,r − Ξ1,r =
r

∑
t=1

Ψ1,t−1γtΨt+1,r. (A21)

Making the same inferences as for Δ1, we can deduce that

‖Δr‖1 � 1
1Ξ"1,rπ

‖[Γ"1,rπ1− 1Γ"1,rπ I]‖1 � 2
r

∑
t=1

1
1Ξ"1,rπ

1Ψ"t+1,rγ"t Ψ"1,t−1π. (A22)

To estimate the contribution of each summand in (A22) we use (A18). To simplify derivation we
consider the case r = 3, function φ(y1, y2, y3) : R3M → R+

φ(y1, y2, y3) = 1ψ"(y3)γ
"(y2)ψ

"(y1)π

and the Y3-measurable random value Φ � φ(Y1,Y2,Y3)

1Ξ"1,3(Y1,Y2,Y3)π
. Let us estimate from above

the mathematical expectation

E
{

IAs
3
(ω)Φ

}
=

∫
RM

∫
RM

∫
RM

N

∑
i,j,k,m=1

πiψ
ij(y1)γ

jk(y2)ψ
km(y3)dy3dy2dy1 =

=
N

∑
i,j,k=1

πi

L

∑
�=1

�
ij
�

∫
RM

γjk(y2)dy2

N

∑
m=1

L

∑
n=1

�km
n = Q

N

∑
i,j=1

πi

L

∑
�=1

�
ij
�

N

∑
k=1

∫
RM

γjk(y2)dy2 �

� Qδ
N

∑
i=1

πi

N

∑
j=1

L

∑
�=1

�
ij
� � Q2δ.

Acting in the same way, we can prove that for arbitrary r � 2 the inequality

E

{
IAs

r (ω)
1Ψ"t+1,rγ"t Ψ"1,t−1π

1Ξ"1,rπ

}
� Qr−1δ

is valid for all r summands in the RHS of (A22). Finally E
{

IAs
r (ω)‖Δr‖1

}
� 2rQr−1δ, and

the correctness of (42) follows from the fact that the latter inequality is valid for arbitrary π ∈ Π.
Theorem 2 is proved. �
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Abstract: In this paper we study the time-fractional wave equation of order 1 < ν < 2 and give a
probabilistic interpretation of its solution. In the case 0 < ν < 1, d = 1, the solution can be interpreted
as a time-changed Brownian motion, while for 1 < ν < 2 it coincides with the density of a symmetric
stable process of order 2/ν. We give here an interpretation of the fractional wave equation for d > 1
in terms of laws of stable d−dimensional processes. We give a hint at the case of a fractional wave
equation for ν > 2 and also at space-time fractional wave equations.

Keywords: Hankel contours; multivariate stable processes; contour integrals; fractional laplacian

1. Introduction

In this paper we study in detail the solution of the time-fractional equation

∂νu
∂tν

= c2
d

∑
j=1

∂2u
∂x2

j
(1)

for 1 < ν < 2 under the initial conditions{
u(x, 0) = δ(x)

ut(x, 0) = 0.
(2)

The time-fractional derivative is hereafter understood in the Caputo sense:

∂νu
∂tν

=
1

Γ(m− ν)

∫ t

0

∂m

∂tm u(x, s) (t− s)m−ν−1 ds m− 1 < ν < m. (3)

We first prove that the Fourier transform of the solution of the Cauchy problem (1) and (2) is

U (γ1, . . . , γd, t) = U (γ, t) = Eν,1(−c2‖γ‖2tν) (4)

where

Eν,1(x) =
∞

∑
k=0

xk

Γ(νk + 1)
x ∈ R (5)

is the one-parameter Mittag-Leffler function, first introduced in [1]. The representation of (4) as a
contour integral on the Hankel path Ha

Eν,1(−c2‖γ‖2tν) =
1

2πi

∫
Ha

ewwν−1

wν + tνc2‖γ‖2 dw (6)

Mathematics 2020, 8, 874; doi:10.3390/math8060874 www.mdpi.com/journal/mathematics165
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permits us to obtain a representation of (6) as

Eν,1(−c2‖γ‖2tν) =
sin πν

π

∫ ∞

0

zν−1e−tzc2/ν‖γ‖2/ν

z2ν + 2zν cos πν + 1
dz (7)

+
1
ν

[
ec2/ν‖γ‖2/νteiπ/ν

+ ec2/ν‖γ‖2/νte−iπ/ν
]

.

Some details about the representation (6) and the Hankel path can be found in [2]. For d = 1,
1 < ν < 2 the inversion of (7) is presented in [3] with the conclusion that the solution of (1) is the
distribution of a stable symmetric process of order 2/ν.

We here show that for d > 1, 1 < ν < 2 the solution can be expressed in terms of the law of a d−
dimensional stable process Sα(t) with a suitable choice of the measure Γ appearing in

Eeiγ·Sα(t) = e−t
∫
Sd−1 ‖γ·s‖α(1−i sign(γ·s) tan πα

2 )Γ(ds). (8)

In particular, for Γ uniform on the upper and lower hemispheres of Sd−1 = {s ∈ Rd : ‖s‖ = 1},
we prove that (8) yields the characteristic functions in square brackets of Formula (7). We give also the
explicit forms of u(x, t) of the solution of (1) in terms of Bessel functions J d

2−1(ρ‖x‖), which for d = 1
can be reduced to Fujita’s result. Some results concerning wave equations of fractional type can be
found, e.g., in [4].

2. The Fractional Wave Equation

In this note we present some relationship between stable processes (and their inverses) with
fractional equations. Stable processes are studied in depth in the monograph [5]. Some simple and
well known results state that a symmetric stable process Sα(t), 0 < α ≤ 2 with characteristic function

EeiγSα(t) = e−|γ|
αt γ ∈ R, t > 0 (9)

has distribution pα(x, t), x ∈ R, t > 0, satisfying the fractional equation

∂p
∂t

=
∂α

∂|x|α p (10)

where ∂α

∂|x|α is the Riesz fractional derivative usually defined as

∂α

∂|x|α f (x) =
1

2Γ(m− α) cos(πα/2)
dm

dxm

∫ +∞

−∞

f (y)
|x− y|α+1−m dy m− 1 < α < m (11)

with Fourier transform ∫ +∞

−∞
eiγx ∂α

∂|x|α f (x)dx = −|γ|α
∫ +∞

−∞
eiγx f (x)dx. (12)

For the d-dimensional isotropic stable process Sα(t) = (S1
α(t), . . . , Sd

α(t)) with
characteristic function,

EeiγSd
α(t) = e−‖γ‖

αt γ ∈ Rd, t > 0 (13)

The corresponding probability law pα(x1, . . . , xd, t) = pα(x, t) satisfies the equation

∂p
∂t

= −(−Δ)α p (14)

where −(−Δ)α is the fractional Laplacian defined as the operator such that
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− (−Δ)α f (x) =
1

(2π)d

∫
Rd

e−i(γ,x)‖γ‖α f̂ (γ)dγ , f ∈ Dom((−Δ)α) (15)

where f̂ (γ) is the Fourier transform of a function f (x), x ∈ Rd and the domain of the operator
Dom((−Δ)α) is

Dom((−Δ)α) =

{
f ∈ L1

loc(Rn) :
∫
Rn
| f̂ (γ)|2(1 + ‖γ‖2α)dγ < ∞

}
(on this point see for example [6]). The connection between fractional operators and stochastic processes
is explored, e.g., in [7]. A detailed comparison of the several possible definitions of the fractional
Laplacian can be found in [8]. For the time-fractional equation (see [9]),⎧⎪⎪⎨⎪⎪⎩

∂ν p
∂tν = c2 ∂2 p

∂x2 0 < ν ≤ 2, x ∈ R, t > 0

u(x, 0) = δ(x)

ut(x, 0) = 0,

(16)

we have that the solution of the Cauchy problem is explicitly given by

u(x, t) =
1

2ctν/2 W−ν/2,1−ν/2

(
− |x|

ctν

)
(17)

where

Wα,β(x) =
∞

∑
k=0

xk

Γ(αk + β)
α > −1, b > 0, x ∈ R

is the Wright function. The d−dimensional counterpart of (16) is⎧⎪⎪⎨⎪⎪⎩
∂ν p
∂tν = c2Δu 0 < ν ≤ 2, x ∈ Rd, t > 0

u(x, 0) = δ(x)

ut(x, 0) = 0.

(18)

Some details about time-fractional derivatives can be found in [10]. For 0 < ν < 1 the solution
of (18) corresponds to the distribution of the vector process

B (Lν(t)) , t ≥ 0 (19)

where B(t) = (B1(t), . . . , Bd(t)) is the d−dimensional Brownian motion and Lν(t) is the inverse of the
stable subordinator Hν(t) (see [11]).

In the more general case⎧⎪⎪⎨⎪⎪⎩
∂ν p
∂tν = −c2(−Δ)αu 0 < ν ≤ 2, 0 < α ≤ 1, x ∈ Rd, t > 0

u(x, 0) = δ(x)

ut(x, 0) = 0.

(20)

The solution of the Cauchy problem (20) is the probability density of the process

Sα(Lν(t)), t ≥ 0 (21)

where Sα(t) = (S1
α(t), . . . , Sd

α(t)) is an isotropic stable process (see [11]). We here consider the case
where in (18) and (20) the order of the fractional derivative is 1 < ν ≤ 2.We start first with (18) and
observe that the Laplace–Fourier transform of the solution uα(x, t) is
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∫ ∞

0
e−λt

∫
Rd

eiγ·xu(x, t)dx =
λν−1

λν + c2‖γ‖2 (22)

and the Fourier transform reads∫
Rd

eiγ·xu(x, t)dx = Eν,1(−c2‖γ‖2tν). (23)

The Mittag-Leffler function Eν,1(−c2‖γ‖2tν) can be represented as a contour integral on the
Hankel path as

Eν,1(−c2‖γ‖2tν) =
1

2πi

∫
Ha

ewwν−1

wν + tνc2‖γ‖2 dw (24)

where Ha is the contour in the complex plane represented in Figure 1.

R

Figure 1. Hankel path in the complex plane.

The representation (24) is a consequence of the integral representation of the inverse of the
Gamma function

1
Γ(ν)

=
1

2πi

∫
Ha

eww−νdw.

The integral in (24) can be developed by inserting a ring of radius ε < R.
The contour C is composed by the circumferences CR and Cε with two segments joining Re−iπ

with εe−iπ and Reiπ with εeiπ , and is run counterclockwise. See Figure 2.
In order to evaluate

1
2πi

∫
C

ewwν−1

wν + tνc2‖γ‖2 dw (25)

we perform the transformation wν = z2m for 2m− 1 < ν < 2m.
The contour of Figure 2 after the transformation wν = z2m takes the form shown in Figure 3.

R

ε

C

Reiπ

Re−iπ

εe−iπ
εeiπ

Figure 2. Representation of the contour C.

168



Mathematics 2020, 8, 874

R′

ε′

ε′e
iπν
2m

ε′e−
iπν
2m

R
′
e

iπν
2m

R
′
e−

iπν
2m

Figure 3. Representation of the contour C′, with R′ = R
ν

2m and ε′ = ε
ν

2m .

Therefore, the horizontal segments of Figure 2 are rotated by an angle of amplitude ±πν/2m
and the radii are subject to contraction or dilation according to the value of ν. The integral on C′ thus
obtained from (25) is

1
2πi

∫
C

ewwν−1

wν + tνc2‖γ‖2 dw =
2m

2πνi

∫
C′

ez2m/ν
z2m−1

z2m + tνc2‖γ‖2 dz. (26)

The integral on the right side of (26) can be evaluated by means of the Cauchy residue theorem.
The function

f (z) =
ez2m/ν

z2m−1

z2m + tνc2‖γ‖2 z ∈ C (27)

has 2m poles at points zk = eiπ (2k+1)
2m (c2‖γ‖2tν)

1
2m for 0 ≤ k ≤ 2m − 1. It is easy to show that the

residues of (27) at the poles zk are given by

lim
z→zk

(z− zk)
ez2m/ν

z2m−1

z2m + tνc2‖γ‖2 =
ez2m/ν

k

2m
. (28)

Thus the integral (26) can be written as

1
2πi

∫
C′

f (z)dz =
1

2m

2m−1

∑
k=0

ez2m/ν
k where zk = eiπ 2k+1

2m (c2‖γ‖2tν)
1

2m (29)

By adding the contribution of the segments (Re−iπ , εe−iπ) and (Reiπ , εeiπ) for R→ ∞ and ε→ 0
we obtain

Eν,1(−c2‖γ‖2tν) =
sin πν

π

∫ ∞

0

zν−1e−tzc2/ν‖γ‖2/ν

z2ν + 2zν cos πν + 1
dz +

2m
ν

[
1

2m

2m−1

∑
k=0

ez2m/ν
k

]
. (30)

For m = 1 we must distinguish the cases 0 < ν < 1 where

Eν,1(−c2‖γ‖2tν) =
sin πν

π

∫ ∞

0

zν−1e−tzc2/ν‖γ‖2/ν

z2ν + 2zν cos πν + 1
dz (31)

and 1 < ν < 2, where

Eν,1(−c2‖γ‖2tν) =
sin πν

π

∫ ∞

0

zν−1e−tzc2/ν‖γ‖2/ν

z2ν + 2zν cos πν + 1
dz (32)

+
1
ν

[
ec2/ν‖γ‖2/νteiπ/ν

+ ec2/ν‖γ‖2/νte−iπ/ν
]

.

In order to simplify the formulas involved in the analysis we take c = 1.
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For m = 2 we have the subcases 2 < ν < 3 and 3 < ν < 4. In the first case the contour integral
of Figure 3 involves two poles and thus yields two additional terms in the representation of the
Mittag-Leffler function (32). In the second case we have the contribution of four poles in the contour
integral of Figure 3, so that for 3 < ν < 4

Eν,1(−c2‖γ‖2tν) =
sin πν

π

∫ ∞

0

zν−1e−tzc2/ν‖γ‖2/ν

z2ν + 2zν cos πν + 1
dz (33)

+
1
ν

[
e‖γ‖

2/νteiπ/4ν
+ e‖γ‖

2/νtei3π/4ν
+ e‖γ‖

2/νtei5π/4ν
+ e‖γ‖

2/νtei7π/4ν
]

.

The contours for 2 < ν < 3 and 3 < ν < 4 are depicted below (Figure 4).

z3 z3z4 z4

z2 z2z1
z1

2 < ν < 3 3 < ν < 4

Figure 4. Representation of the contour C′ for m = 2. The dots indicate the poles of f (z).

The substantial difference between the cases 1 < ν < 2 and ν > 2 is that in the first case we
have that %(e±iπ/ν) is negative and the contribution of the poles correspond to the characteristic
function of stable processes, whereas for 2 < ν < 3, %(eiπ/ν) and %(e7iπ/ν) are positive and thus are
not characteristic functions of random variables. Let us now concentrate our attention on the integrals
in Equations (31) and (32) (which is also true in the general case for ν > 2). If we write

sin πν

π

∫ ∞

0

zν−1e−tz‖γ‖2/ν

z2ν + 2zν cos πν + 1
dz (34)

=
sin πν

πν

∫ ∞

0

e−tw1/ν‖γ‖2/ν

w2 + 2w cos πν + 1
dw

=
sin πν

πν

∫ ∞

0

e−tw1/ν‖γ‖2/ν

(w + cos πν)2 + sin2 πν
dw

= Ee−t‖γ‖2/νW1/ν

where W is a non-negative r.v. with density

f (w) =
sin πν

πν

dw
(w + cos πν)2 + sin2 πν

w > 0, 0 < ν < 1

Note that for 1 < ν < 2 the function (2) is negative on (0, ∞). We note also that the r.v.
Wν, 0 < ν < 1 with density

P(Wν ∈ dw)/dw =
sin πν

π

wν−1

1 + w2ν + 2wν cos πν
w > 0 (35)

appearing in (35) has the same distribution as the ratio of two independent stable subordinators of
degree 0 < ν < 1.

We now give the inverse Fourier transform of (34) for 0 < ν < 1, d = 1.
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pν(x, t) =
1

2π

∫ ∞

−∞
e−iγxEν,1(−γ2tν)dγ (36)

=
1

2π

∫ ∞

−∞
e−iγx sin πν

π

∫ ∞

0

zν−1e−tzγ2/ν

z2ν + 2zν cos πν + 1
dz dγ = (tzγ

2
ν = w)

=
1

2π

∫ ∞

−∞
e−iγx sin πν

π

∫ ∞

0

e−wwν−1tνγ2

w2ν + t2νγ4 + 2tνγ2wν cos πν
dw dγ.

We start by evaluating the following integral

1
2π

∫ ∞

−∞
e−iγx tνγ2

w2ν + t2νγ4 + 2tνγ2wν cos πν
dγ

=
1

2πtν/2

∫ ∞

−∞

e−ixγ′t−ν/2
γ′2

γ′4 + 2γ′2wν cos πν + w2ν
dγ′

=
1

2π(wt)ν/2

∫ ∞

−∞

e−ixγ(w/t)ν/2
γ2

1 + γ4 + 2γ2 cos πν
dγ

=
1

2π(wt)ν/2

∫ ∞

−∞

e−iγAγ2

1 + γ4 + 2γ2 cos πν
dγ

where A = (w/t)ν/2x.
We must now evaluate the integral of

f (z) =
z2e−izA

z4 + 2z2 cos πν + 1
z ∈ C

on a suitable contour CR. The four roots of z4 + 2z2 cos πν + 1 = 0 are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z1 = e

iπν
2 −i π

2 = sin πν
2 − i cos πν

2

z2 = ei πν
2 +i π

2 = − sin πν
2 + i cos πν

2

z3 = e−i πν
2 −i π

2 = − sin πν
2 − i cos πν

2

z4 = e−i πν
2 +i π

2 = sin πν
2 + i cos πν

2

and are located in C as in Figure 5, because 1 < ν < 2.

z1z3

z2 z4

R−R

Figure 5. Integration contour for x > 0.

We observe that e−izA = e−i(u+iv)x(w/t)ν/2
= evAe−iuA for x > 0 and v < 0, the curvilinear integral

on the half-circle Reiθ , 0 ≤ θ ≤ π tends to zero as R→ ∞. By the residue theorem we thus have∫
CR

f (z)dz = −2πi(Rz2 + Rz4) (37)

The minus sign is due to the fact that the contour in Figure 5 is run clockwise.
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The residues Rz2 and Rz4 have the following values

Rz2 = − ei πν
2 eAeiπν/2

4 sin πν
Rz4 =

e−i πν
2 eAe−iπν/2

4 sin πν
(38)

and thus ∫
CR

f (z)dz = − 2πi
22 sin πν

(
e−i πν

2 eAe−iπν/2 − ei πν
2 eAeiπν/2

)
(39)

= − π

sin πν
eA cos πν

2 sin
(πν

2
+ A sin

πν

2

)
For x < 0, the integration of f (z) must be performed on the contour of Figure 6 and∫

CR

f (z)dz = −2πi(Rz1 + Rz3) (40)

the sign being in this case positive because the path is run counterclockwise.

z1z3

z2 z4

R−R

Figure 6. Integration contour for x < 0.

The residues in this case are

Rz1 =
eiπν/2e−Aeiπν/2

4 sin πν
Rz3 = − e−iπν/2e−Ae−iπν/2

4 sin πν

The integral (40), therefore, takes the form∫
CR

f (z)dz =
2πi

4 sin πν

(
eiπν/2e−Aeiπν/2 − e−iπν/2e−Ae−iπν/2

)
(41)

= − π

sin πν
e−A cos πν

2 sin
(πν

2
− A sin

πν

2

)
In conclusion we have that

∫ ∞

−∞

e−ixγ(w/t)ν/2
γ2

1 + γ4 + 2γ2 cos πν
dγ (42)

= − π

sin πν
e|x| cos πν

2 (w/t)ν/2
sin

(
πν

2
+ |x|

(w
t

) ν
2 sin

πν

2

)
.

We now consider the integration with respect to w in (36). This leads to the evaluation of the
following integral
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1
2π

∫ ∞

0
e−wwν−1 sin πν

π(wt)ν/2

[
− π

sin πν
e|x| cos πν

2 (w/t)ν/2
sin

(
πν

2
+ |x|

(w
t

) ν
2 sin

πν

2

)]
dw (43)

= − 1

2πt
ν
2

∫ ∞

0
e−ww

ν
2−1e|x| cos πν

2 ( w
t )

ν/2
sin

(
πν

2
+ |x|

(w
t

) ν
2 sin

πν

2

)
dw

= − 1

πνt
ν
2

∫ ∞

0
e−tw

2
ν (w

2
ν t)

ν
2−1 2

ν
tw

2
ν−1ew|x| cos πν

2 sin
(πν

2
+ w|x| sin

πν

2

)
dw

= − 1
πν

∫ ∞

0
e−tw

2
ν ew|x| cos πν

2 sin
(πν

2
+ w|x| sin

πν

2

)
dw

The last step of (43) can be developed as follows

− 1
πν

∫ ∞

0
e−tw2/ν

ew|x| cos πν
2

[
ei( πν

2 +w|x| sin πν
2 ) − e−i( πν

2 +w|x| sin πν
2 )

] dw
2i

(44)

= − eiπν/2

2iπν

∫ ∞

0
e−tw2/ν

ew|x|eiπν/2
dw +

e−iπν/2

2iπν

∫ ∞

0
e−tw2/ν

ew|x|e−iπν/2
dw

We evaluate the first integral in (44) by taking the contour integral of the function

f (z) = e−tz2/ν+|x|zeiπν2
z ∈ C

along the path CR depicted in Figure 7.

CR

R

π
2 − πν

2

Figure 7. Path CR corresponding to the change of variables z′ = ei π
2 (1−ν)z in the first integral of (44).

By the Cauchy theorem we have that

∫
CR

f (z)dz =
∫ R

0
f (w)dw +

∫
C

f (Reiθ)dθ +
∫ 0

R
f (zei π

2 −i πν
2 )ei π

2 −i πν
2 dz = 0 (45)

The integral on the arc C tends to zero because∣∣∣∣∫C
f (Reiθ)dθ

∣∣∣∣ ≤ ∫
C
| f (Reiθ)|dθ =

∫ 0

(1−ν)π
2

e−tR
2
ν cos 2θ

ν e|x|R cos(θ+ πν
2 ) dθ (46)

Since π > θ + πν
2 > π

2 as θ ∈ ( (1−ν)π
2 , 0), the exponent of the second factor of (46) is negative as

well as the first one because cos(2θ/ν) for θ ranging in the same interval.
We thus conclude that (46) converges to zero as R→ ∞ and thus (45) yields

∫ ∞

0
e−tw2/ν

ew|x|ei πν
2 dw =

∫ ∞

0
ei π

2 −i πν
2 e−t

(
zei π

2 −i πν
2
)2/ν

+i|x|z dz (47)

= ie−i πν
2

∫ ∞

0
ei|x|zetz2/νeiπ/ν

dz

In order to evaluate the second integral of (44) we integrate

f (z) = e−tz2/ν+|x|ze−iπν2
z ∈ C
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along the contour of Figure 8.

R

CR

π
2 − πν

2

Figure 8. Path CR corresponding to the change of variables z′ = ei π
2 (ν−1)z in the second integral of (44).

By performing the same steps as above we obtain

∫ ∞

0
e−tw2/ν

ew|x|e−i πν
2 dw =

∫ ∞

0
ei πν

2 −i π
2 e−t

(
zei πν

2 −i π
2
)2/ν

+|x|zei πν
2 −i π

2 e−i πν
2

dz (48)

= −iei πν
2

∫ ∞

0
e−i|x|zetz2/νe−iπ/ν

dz

in view of (47) and (48) the integral (44) becomes

− 1
2πν

∫ ∞

0
ei|x|zetz2/νeiπ/ν

dz− 1
2πν

∫ ∞

0
e−i|x|zetz2/νe−iπ/ν

dz

= − 1
2πν

∫ ∞

0
ei|x|zetz2/νeiπ/ν

dz− 1
2πν

∫ 0

−∞
ei|x|zet(−z)2/νe−iπ/ν

dz

= − 1
2πν

∫ +∞

−∞
ei|x|zet|z|2/νe

iπ
ν signz

dz

= − 1
2πν

∫ +∞

−∞
e−i|x|zet|z| 2ν e−

iπ
ν signz

dz

From (32), d = 1, we conclude that

pν(x, t) =
1

2π

∫ +∞

−∞
e−iγxEν,1(−γ2tν)dγ (49)

=
1

2πν

[
−

∫ +∞

−∞
e−i|x|γet|γ|2/νe−

iπ
ν signγ

dγ +
∫ +∞

−∞
e−ixγet|γ|2/νe

iπ
ν signγ

dγ +
∫ +∞

−∞
e−ixγet|γ|2/νe−

iπ
ν signγ

dγ

]
=

1
2πν

∫ +∞

−∞
ei|x|γet|γ|2/νe−

iπ
ν signγ

dγ

Remark 1. The function h(γ, 2
ν ) = et|γ|2/νe−

iπ
ν signγ

= et|γ| 2ν cos π
ν (1−isignγ tan π

ν ) is the characteristic function
of a stable random variable of order 1 < 2/ν < 2 with symmetry parameter β = 1. Many details about
the properties of such densities can be found in [12]. The function p 2

ν
(x, t) = 1

2π

∫ +∞
−∞ e−iγxh(γ, 2/ν)dγ is

unimodal with a positive maximal point and is such that
∫ ∞

0 p 2
ν
(x, t) = dx = ν/2. Analogously, the function

h(γ,−2/ν) is the characteristic function of a negatively skewed random variable. This implies that the function
pν can be seen as the superposition of the densities of stable random variables with index β = ±1, conditional to
be respectively positive or negative.

3. The Multidimensional Case for 1 < ν < 2

The Cauchy problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂νu
∂tν = ∑d

j=1
∂2u
∂x2

j
x ∈ Rd, t > 0

u(x, 0) = δ(x)

ut(x, 0) = 0.

(50)
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has solution with Fourier transform∫
Rd

eiγ·xu(x, t)dx = Eν,1(−‖γ‖2tν) (51)

=
sin πν

π

∫ ∞

0

zν−1e−tz‖γ‖2/ν

z2ν + 2zν cos πν + 1
dz +

1
ν

[
e‖γ‖

2/νteiπ/ν
+ e‖γ‖

2/νte−iπ/ν
]

.

as shown in the analysis presented above. Thus, the solution to the Cauchy problem (50) reads

u(x, t) =
1

(2π)d

∫
Rd

e−iγ·x (52)

×
{

sin πν

π

∫ ∞

0

zν−1e−tz‖γ‖2/ν

z2ν + 2zν cos πν + 1
dz +

1
ν

[
e‖γ‖

2/νteiπ/ν
+ e‖γ‖

2/νte−iπ/ν
]}

dγ

We must therefore evaluate the following three d−dimensional integrals, the first one being a
function of z.∫

Rd
e−iγ·xe−t‖γ‖2/νzdγ ,

∫
Rd

e−iγ·xe‖γ‖
2/νteiπ/ν

dγ ,
∫
Rd

e−iγ·xe‖γ‖
2/νte−iπ/ν

dγ (53)

Since the three integrals (53) are substantially similar, we restrict ourselves to the evaluation of
the first one. In spherical coordinates we have that∫

Rd
e−iγ·xe−t‖γ‖ 2

ν zdγ (54)

=
∫ ∞

0
ρd−1dρ

∫ π

0
dθ1 · · ·

∫ π

0
dθd−2

∫ 2π

0
dφ sin θd−2

1 · · · sin θd−2

× e−iρ(xd sin θ1··· sin θd−2 sin φ+xd−1 sin θ1··· sin θd−2 cos φ+···+x2 sin θ1 cos θ2+x1 cos θ1)e−tρ2/νz

=
∫ ∞

0
ρd−1e−tρ2/νz

(2π)
d
2 J d

2−1(ρ‖x‖)

(ρ‖x‖) d
2−1

dρ

The last step is the hyperspherical integral∫
{γ1,...γd :∑d

j=1 γ2
j =ρ2}

e−i ∑d
j=1 xjγj dγ1 . . . dγd (55)

=
∫ π

0
dθ1 · · ·

∫ π

0
dθd−2

∫ 2π

0
dφ sin θd−2

1 · · · sin θd−2

× e−iρ(xd sin θ1··· sin θd−2 sin φ+xd−1 sin θ1··· sin θd−2 cos φ+···+x2 sin θ1 cos θ2+x1 cos θ1)

=
(2π)

d
2 J d

2−1(ρ‖x‖)

(ρ‖x‖) d
2−1

which is proven in detail in [13], Formula (2.151).
By inserting (54) into (52) we have that
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u(x, t) =
1

(2π)d

∫ ∞

0
ρd−1

(2π)
d
2 J d

2−1(ρ‖x‖)

(ρ‖x‖) d
2−1

dρ (56)

×
{

sin πν

π

∫ ∞

0

zν−1e−tρ2/νz

z2ν + 2zν cos πν + 1
dz +

1
ν

[
eρ2/νteiπ/ν

+ eρ2/νte−iπ/ν
]}

=
1

(2π)
d
2 ‖x‖ d

2−1

∫ ∞

0
ρ

d
2 J d

2−1(ρ‖x‖)dρ

×
{

sin πν

π

∫ ∞

0

zν−1e−tρ2/νz

z2ν + 2zν cos πν + 1
dz +

1
ν

[
eρ2/νteiπ/ν

+ eρ2/νte−iπ/ν
]}

Note that the integral in z after the change of variable zν = z′ becomes

sin πν

πν

∫ ∞

0

e−tρ2/νz1/ν

z2 + 2z cos πν + 1
dz =

1
ν

∫ ∞

0
e−tρ2/νz1/ν

[
1
π

sin πν

(z− cos πν)2 + sin2 πν

]
dz (57)

since 1 < ν < 2 the function
f (z) =

1
π

sin πν

(z− cos πν)2 + sin2 πν
(58)

has the form shown in Figure 9.

z = cos πν z = cos πν

1 < ν < 3
2

3
2 < ν < 2

• •

Figure 9. Plot of the function f given in (58).

In conclusion
1
ν

∫ ∞

0
f (z)dz =

{
−1 3

2 < ν < 2

−1 + 1
ν 1 < ν < 3

2 .
(59)

We recall now the definition of an α−stable d−dimensional process Sα(t) = (Sα
1(t), . . . , Sα

d(t)),
0 < α < 2.

Its characteristic function has the following form [14]

Eeiγ·Sα(t) =

{
e−t

∫
Sd−1 |γ·s|α(1−i sign(γ·s) tan πα

2 )Γ(ds)+iγ·μ α �= 1

e−t
∫
Sd−1 |γ·s|(1−i 2

π sign(γ·s) log(γ·s))Γ(ds)+iγ·μ α = 1
(60)

where μ ∈ Rd, Γ is a finite measure on the sphere Sd−1 = {s ∈ Rd : ‖s‖ = 1}.
Since ‖γ · s‖ = ‖γ‖‖s‖ cos θ = ‖γ‖ cos θ, where s ∈ Sd−1 so that ‖s‖ = 1.

Furthermore sign (γ · s) = sign cos θ. We can assume γ oriented through the north pole of Sd−1

and thus θ can be viewed as the latitude of vector s, as shown in Figure 10.
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O

N

s

γ

θ

Figure 10. Domain of integration in (60), upon suitable rotation of the axis of the sphere.

We take the case 1 < α < 2 and rewrite the characteristic function as

Eeiγ·Sα(t) = e
−t‖γ‖α

∫
Sd−1 cosα θ(cos πα

2 −i sign(cos θ) sin πα
2 ) Γ(ds)

cos πα
2
+iγ·μ

(61)

= e−t‖γ‖ασα
∫
Sd−1 cosα θe−i πα

2 sign(cos θ)Γ(ds)+iγ·μ

where σα = 1
cos πα

2
.

For simplicity we assume d = 3 and suppose that Γ is a uniformly distributed measure on the
upper hemisphere of the unit sphere. Thus

Γ(ds) =
sin θ

2π
dθdφ 0 < θ <

π

2
, 0 < φ < 2π. (62)

with sign(cos θ) = 1. For μ = 0 the integral in (61) becomes

e−i πα
2

2π

∫
S2

cosα sin θ dφdθ =
e−i πα

2

2π

∫ π
2

0
sin θ cosα θ

∫ 2π

0
dφ =

e−i πα
2

α + 1
(63)

The characteristic function (61) turns out to be

Eeiγ·Sα(t) = e
−t‖γ‖α 1

cos πα
2

e−i πα
2

α+1 = e
t‖γ‖ 2

ν 1
|cos π

ν |
e−i π

ν
α+1 = e

t‖γ‖ 2
ν 1
|cos π

ν |
e−i π

ν σν

Since α = 2/ν and 1 < ν < 2, we have π > π/ν > π/2 so cos απ
2 = cos π

ν is negative.
If Γ is distributed on the lower hemisphere sign(cos θ) = −1, and in the same way we have that

Eeiγ·Sα(t) = e
−t‖γ‖α 1

cos πα
2

ei πα
2

α+1 = e
t‖γ‖ 2

ν 1
|cos π

ν |
ei π

ν
α+1 = e

t‖γ‖ 2
ν 1
|cos π

ν |
ei π

ν σν

The situation in the space Sd−1, d > 3 is quite similar with the integral in (61) evaluated in
hyperspherical coordinates.
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Abstract: Mathematical models are proposed for statistical regularities of maximum daily
precipitation within a wet period and total precipitation volume per wet period. The proposed
models are based on the generalized negative binomial (GNB) distribution of the duration of a
wet period. The GNB distribution is a mixed Poisson distribution, the mixing distribution being
generalized gamma (GG). The GNB distribution demonstrates excellent fit with real data of durations
of wet periods measured in days. By means of limit theorems for statistics constructed from samples
with random sizes having the GNB distribution, asymptotic approximations are proposed for the
distributions of maximum daily precipitation volume within a wet period and total precipitation
volume for a wet period. It is shown that the exponent power parameter in the mixing GG distribution
matches slow global climate trends. The bounds for the accuracy of the proposed approximations are
presented. Several tests for daily precipitation, total precipitation volume and precipitation intensities
to be abnormally extremal are proposed and compared to the traditional PoT-method. The results of
the application of this test to real data are presented.

Keywords: precipitation; limit theorems; statistical test; generalized negative binomial distribution;
generalized gamma distribution; asymptotic approximations; extreme order statistics; random
sample size

MSC: 60F05; 62G30; 62E20; 62P12; 65C20

1. Introduction

In this paper, we continue the research we started in [1,2]. We develop the mathematical models
for statistical regularities in precipitation proposed in the papers mentioned above. We consider the
models for the statistical regularities in the duration of a wet period, maximum daily precipitation
within a wet period and total precipitation volume per wet period. The base for the models is the
generalized negative binomial (GNB) introduced in the recent paper [3]. The GNB distribution is a
mixed Poisson distribution, the mixing distribution being generalized gamma (GG). The results of
fitting the GNB distribution to real data are presented and demonstrate excellent concordance of the
GNB model with the empirical distribution of the duration of wet periods measured in days. Based
on this GNB model, asymptotic approximations are proposed for the distributions of the maximum
daily precipitation volume within a wet period and of the total precipitation volume for a wet period.
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The asymptotic distribution of the maximum daily precipitation volume within a wet period turns out
to be a tempered scale mixture of the gamma distribution in which the scale factor has the Weibull
distribution, whereas the asymptotic approximation for the total precipitation volume for a wet
period turns out to be the GG distribution. These asymptotic approximations are deduced using limit
theorems for statistics constructed from samples with random sizes having the GNB distribution.
The bounds for the accuracy of the proposed approximations are discussed theoretically and illustrated
statistically. The proposed approximations appear to be very accurate. Based on these models, two
approaches are proposed to the definition of abnormally extremal precipitation. These approaches can
be regarded as a further development of those proposed in [2].

The importance of the problem of modeling statistical regularities in extreme precipitation is
indisputable. Understanding climate variability and trends at relatively large time horizons is of
crucial importance for long-range business, say, agricultural projects and forecasting of risks of water
floods, dry spells and other natural disasters. Modeling regularities and trends in heavy and extreme
daily precipitation is important for understanding climate variability and change at relatively small
or medium time horizons. However, these models are much more uncertain as compared to those
derived for mean precipitation or total precipitation during a wet period. In [4], a detailed review of
this phenomenon is presented and it is noted that, at least for the European continent, most results
hint at a growing intensity of heavy precipitation over the last decades.

In [2], we proposed a rather reasonable approach to the unambiguous (algorithmic) determination
of extreme or abnormally heavy total precipitation for a wet period. This approach was based on the
NB model for the duration of wet periods measured in days, and, as a consequence, on the distribution
of the total precipitation volume during a wet period. This approach has some advantages. First,
estimates of the parameters of the total precipitation are weakly affected by the accuracy of the daily
records and are less sensitive to missing values. Second, the corresponding mathematical models are
theoretically based on limit theorems of probability theorems that yield unambiguous asymptotic
approximations, which are used as adequate mathematical models. Third, this approach gives an
unambiguous algorithm for the determination of extreme or abnormally heavy total precipitation
that does not involve statistical significance problems owing to the low occurrence of such (relatively
rare) events.

The problem of the construction of a statistical test for the precipitation volume to be abnormally
large can be mathematically formalized as follows. Let m � 2 be a natural number and consider
a sample of m positive observations X1, X2, . . . , Xm. With finite m, among Xi’s there is always an
extreme observation, say, X1, such that X1 � Xi, i = 1, 2, . . . , m. Two cases are possible: (i) X1 is a
‘typical’ observation and its extreme character is conditioned by purely stochastic circumstances (there
must be an extreme observation within a finite homogeneous sample) and (ii) X1 is abnormally large
so that it is an ‘outlier’ and its extreme character is due to some exogenous factors.

To construct a test for distinguishing between these two cases for abnormally extreme daily
precipitation, we use the fact that the distribution of the maximum daily precipitation per wet period
is a tempered scale mixture of the gamma distribution in which the scale factor has the Weibull
distribution. According to this model, a daily precipitation volume is considered to be abnormally
extremal if it exceeds a certain (pre-defined) quantile of this distribution.

As regards testing for anomalous extremeness of total precipitation volume during a wet period,
we use the GG distribution as the model of statistical regularities of its behavior. The theoretical
grounds for this model are provided by the law of large numbers for random sums in which the
number of summands has the GNB distribution. It turns out that, as compared to the ordinary negative
binomial (NB) model (see [2]), the additional exponent power parameter in the corresponding GG
distribution matches slow global climate trends. Hence, the hypothesis that the total precipitation
volume during a certain wet period is abnormally large can be re-formulated as the homogeneity
hypothesis of a sample from the GG distribution. Two equivalent tests are proposed for testing
this hypothesis. One of them is based on the beta distribution whereas the second is based on the
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Snedecor–Fisher distribution. Both of these tests deal with the relative contribution of the total
precipitation volume for a wet period to the considered set (sample) of successive wet periods. Within
the second approach, it is possible to introduce the notions of relatively abnormal and absolutely
abnormal precipitation volumes. These tests are scale-free and depend only on the easily estimated
shape parameter of the GNB distribution and the time-scale parameter determining the denominator
in the fractional contribution of a wet period under consideration. The tests appeared to be applicable
not only to total precipitation volumes over wet periods but also to the precipitation intensities (the
ratios of total precipitation volumes per wet periods to the durations of the corresponding wet periods
measured in days).

2. Generalized Negative Binomial Model for the Duration of Wet Periods

The main results of this paper strongly rely on the GNB model, a wide and flexible family of
discrete distributions that are mixed Poisson laws with the mixing GG distribution. Namely, we
say that a random variable Nr,γ,μ (r > 0, γ ∈ R and μ > 0) has the generalized negative binomial
distribution, if

P(Nr,γ,μ = k) =
1
k!

∫ ∞

0
e−zzkg∗(z; r, γ, μ)dz, k = 0, 1, 2..., (1)

where g∗(z; r, γ, μ) is the density of GG distribution:

g∗(x; r, γ, μ) =
|γ|μr

Γ(r)
xγr−1e−μxγ

, x � 0, (2)

with γ ∈ R, μ > 0, r > 0. The GNB distributions seem to be very promising in the statistical description
of many real phenomena, being very convenient and almost universal models.

It is necessary to explain why this combination of the mixed and mixing distributions is considered.
First of all, the Poisson kernel is used as mixed for the following reasons. Pure Poisson processes
can be regarded as the best models of stationary (time-homogeneous) chaotic flows of events [5].
Recall that the attractiveness of a Poisson process as a model of homogeneous discrete stochastic chaos
is due to at least two circumstances. First, Poisson processes are point processes characterized by
the time intervals between successive points that are independent random variables (r.v.’s) with one
and the same exponential distribution, and, as is well known, the exponential distribution possesses
the maximum differential entropy among all absolutely continuous distributions concentrated on
the nonnegative half-line with finite expectations, whereas the entropy is a natural and convenient
measure of uncertainty. Second, the points forming the Poisson process are uniformly distributed
along the time axis in the sense that for any finite time interval [t1, t2], t1 < t2, the conditional joint
distribution of the points of the Poisson process that fall into the interval [t1, t2] under the condition
that the number of such points is fixed and equals, say, n, coincides with the joint distribution of
the order statistics constructed from an independent sample of size n from the uniform distribution
on [t1, t2], whereas the uniform distribution possesses the maximum differential entropy among all
absolutely continuous distributions concentrated on finite intervals and very well corresponds to the
conventional impression of an absolutely unpredictable random variable (see, e g., [5,6]). However, in
actual practice, as a rule, the parameters of the chaotic stochastic processes are influenced by poorly
predictable «extrinsic» factors, which can be regarded as stochastic so that most reasonable probabilistic
models of non-stationary (time-non-homogeneous) chaotic point processes are doubly stochastic
Poisson processes, also called Cox processes (see, e.g., [5,7,8]). These processes are defined as Poisson
processes with stochastic intensities. Such processes proved to be adequate models in insurance [5,7,8],
financial mathematics [9], physics [10] and many other fields. Their one-dimensional distributions are
mixed Poisson.

In order to have a flexible model of a mixing distribution that is “responsible” for the description
of statistical regularities of the manifestation of external stochastic factors, we suggest to use the GG
distributions defined by the density (2). The class of GG distributions was first described as a unitary

181



Mathematics 2020, 8, 604

family in 1962 by E. Stacy [11] as the class of probability distributions simultaneously containing both
Weibull and gamma distributions. The family of GG distributions contains practically all the most
popular absolutely continuous distributions concentrated on the non-negative half-line. In particular,
the family of GG distributions contains:

• The gamma distribution (γ = 1) and its special cases

◦ The exponential distribution (γ = 1, r = 1),
◦ The Erlang distribution (γ = 1, r ∈ N),
◦ The chi-square distribution (γ = 1, μ = 1

2 );

• The Nakagami distribution (γ = 2);
• The half-normal (folded normal) distribution (the distribution of the maximum of a standard

Wiener process on the interval [0, 1]) (γ = 2, r = 1
2 );

• The Rayleigh distribution (γ = 2, r = 1);
• The chi-distribution (γ = 2, μ = 1/

√
2);

• The Maxwell distribution (the distribution of the absolute values of the velocities of molecules in
a dilute gas) (γ = 2, r = 3

2 );
• The Weibull–Gnedenko distribution (the extreme value distribution of type III) (r = 1, γ > 0);
• The (folded) exponential power distribution (γ > 0, r = 1

γ );
• The inverse gamma distribution (γ = −1) and its special case

◦ The Lévy distribution (the one-sided stable distribution with the characteristic exponent
1
2 – the distribution of the first hit time of the unit level by the Brownian motion) (γ = −1,
r = 1

2 );

• The Fréchet distribution (the extreme value distribution of type II) (r = 1, γ < 0)

and other laws. The limit point of the class of GG-distributions is

• The log-normal distribution (r→ ∞).

GG distributions are widely applied in many practical problems. There are dozens of papers dealing
with the application of GG-distributions as models of regularities observed in practice. Apparently, the
popularity of GG-distributions is due to the fact that most of them can serve as adequate asymptotic
approximations, since all the representatives of the class of GG-distributions listed above appear as
limit laws in various limit theorems of probability theory in rather simple limit schemes. Below we
will formulate a general limit theorem (an analog of the law of large numbers) for random sums of
independent r.v.’s in which the GG-distributions are limit laws. It is worth noting that the GG distribution
and its limit cases give a general form of the exponential distribution of rank 1 for the scale parameter.

In [1], the data registered in so climatically different points as Potsdam (Brandenburg, Germany)
and Elista (Kalmykia, Russia) was analyzed, and it was demonstrated that the fluctuations of the
numbers of successive wet days with very high confidence fit the NB distribution with shape
parameters r = 0.847 and r = 0.876, respectively. In the same paper, a schematic attempt was
undertaken to explain this phenomenon by the fact that NB distributions can be represented as mixed
Poisson laws with mixing gamma distributions whereas, as it already has been mentioned, the Poisson
distribution is the best model for the discrete stochastic chaos and the mixing distribution accumulates
the stochastic influence of factors that can be assumed exogenous with respect to the local system
under consideration.

The NB distributions are special cases of the GNB distributions. This family of discrete
distributions is very wide and embraces Poisson distributions (as limit points corresponding
to a degenerate mixing distribution), NB (Polya) distributions including geometric distributions
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(corresponding to the gamma mixing distribution, see [12]), Sichel distributions (corresponding to the
inverse gamma mixing distributions, see [13,14]), Weibull–Poisson distributions (corresponding to
the Weibull mixing distributions, see [15]) and many other types supplying descriptive statistics with
many flexible models. More examples of mixed Poisson laws can be found in [8,16].

It is quite natural to expect that, having introduced one more free parameter into the pure
negative binomial model, namely, the power parameter in the exponent of the original gamma mixing
distribution, instead of the negative binomial model one might obtain a more flexible GNB model that
provides an even better fit with the statistical data of the durations of wet days. The analysis of the
real data shows that this is indeed so.

In Figures 1 and 2 there are the histograms constructed from real data of 3323 wet periods in
Potsdam and 2937 wet periods in Elista. On the same pictures, there are the graphs of the fitted
NB distribution (that is, the GNB distribution with γ = 1) and the fitted GNB distribution with
additionally adjusted scale and power parameters. For vividness, in the GNB model, the value of
the shape parameter r was taken the same as that obtained for the NB model and equal to 0.876 for
Elista and 0.847 for Potsdam. For the “fine tuning” of the GNB models with these fixed values of r,
the minimization of the �1-norm of the difference between the histogram and the fitted GNB model
was used. In Appendix A, the Algorithm A1 of for the computation of GNB probabilities by the
minimization of the �1, �2 and �∞-norms of the difference between the histogram and the fitted GNB
model is presented.

Figure 1. The histograms constructed from real data of 3320 wet periods in Potsdam and the fitted
negative binomial (NB) and generalized negative binomial (GNB) models, �1-distance minimization.

The analytic and asymptotic properties of the GNB distributions were studied in [3]. In particular,
it was shown in that paper that the GNB distribution with shape parameter and exponent power
parameter less than one is actually mixed geometric. The mixed geometric distributions were
introduced and studied in [17] (also see [15,18]). A mixed geometric distribution can be interpreted in
terms of the Bernoulli trials as follows. First, as a result of some “preliminary” experiment the value of
some r.v. taking values in [0, 1] is determined, which is then used as the probability of success in the
sequence of Bernoulli trials in which the original “unconditional” mixed Poisson r.v. is nothing else
than the “conditionally” geometrically distributed r.v. having the sense of the number of trials up to
the first failure. This makes it possible to assume that the sequence of wet/dry days is not independent
but is conditionally independent and the random probability of success is determined by some outer
stochastic factors. As such, we can consider the seasonality or the type of the cause of a wet period. So,
since the GG-distribution is a more general and, hence, a more flexible model than the “pure” gamma
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distribution, there arises a hope that the GNB distribution could provide an even better goodness of fit
to the statistical regularities in the duration of wet periods than the “pure” NB binomial distribution.

Figure 2. The histograms constructed from real data of 2937 wet periods in Elista and the fitted NB and
GNB models, �1-distance minimization.

3. Notation, Definitions and Mathematical Preliminaries

In the paper, conventional notation is used. The symbols d
= and =⇒ denote the coincidence of

distributions and convergence in distribution, respectively.
In what follows, for brevity and convenience, the results will be presented in terms of r.v.’s with

the corresponding distributions. It will be assumed that all the r.v.’s are defined on the same probability
space (Ω, F, P).

An r.v. having the gamma distribution with shape parameter r > 0 and scale parameter μ > 0
will be denoted Gr,μ,

P(Gr,μ < x) =
∫ x

0
g(z; r, μ)dz, with g(x; r, μ) =

μr

Γ(r)
xr−1e−μx, x � 0,

where Γ(r) is Euler’s gamma-function, Γ(r) =
∫ ∞

0 xr−1e−xdx, r > 0.
In this notation, obviously, G1,1 is an r.v. with the standard exponential distribution: P(G1,1 <

x) =
[
1− e−x]1(x � 0) (here and in what follows 1(A) is the indicator function of a set A).

A GG-distribution is the absolutely continuous distribution defined by the density (Equation (2)).
The distribution function (d.f.) corresponding to the density g∗(x; r, γ, μ) will be denoted F∗(x; r, γ, μ).

The properties of GG-distributions are described in [11,19]. An r.v. with the density g∗(x; r, γ, μ)

will be denoted Gr,γ,μ. It can be easily made sure that

Gr,γ,μ
d
= G1/γ

r,μ , (3)

and hence,
(Gr,γ,μ)

γ d
= Gr,μ (4)

For convenience, for an r.v. with the Weibull distribution, a particular case of GG-distributions
corresponding to the density g∗(x; 1, γ, 1) and the d.f.

[
1− e−xγ]

1(x � 0) with γ > 0, we will use a

special notation Wα, that is, Wγ
d
= G1,γ,1. Thus, G1,1

d
= W1. The density g∗(x; 1, α, 1) with α < 0 defines

the Fréchet or inverse Weibull distribution. It is easy to see that

W1/γ
1

d
= Wγ. (5)
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An r.v. Nr,p is said to have the negative binomial (NB) distribution with parameters r > 0 (shape)
and p ∈ (0, 1) (success probability), if

P(Nr,p = k) =
Γ(r + k)
k!Γ(r)

· pr(1− p)k, k = 0, 1, 2, ...

A particular case of the NB distribution corresponding to the value r = 1 is the geometric
distribution. Let p ∈ (0, 1) and let N1,p be the r.v. having the geometric distribution with parameter p :

P(N1,p = k) = p(1− p)k, k = 0, 1, 2, ...

This means that for any m ∈ N

P(N1,p � m) = ∑∞
k=m p(1− p)k = (1− p)m.

Let Y be an r.v. taking values in the interval (0, 1). Moreover, let for all p ∈ (0, 1) the r.v. Y and the
geometrically distributed r.v. N1,p be independent. Let M = N1,Y, that is, M(ω) = N1,Y(ω)(ω) for any
ω ∈ Ω. The distribution

P(M � m) =
∫ 1

0
(1− y)mdP(Y < y), m ∈ N,

of the r.v. M will be called Y-mixed geometric [17].
It is well known that the negative binomial distribution is a mixed Poisson distribution with the

gamma mixing distribution [12] (also see [20]): for any r > 0, p ∈ (0, 1) and k ∈ {0}⋃N we have

Γ(r + k)
k!Γ(r)

· pr(1− p)k =
1
k!

∫ ∞

0
e−zzkg(z; r, μ)dz, (6)

where μ = p/(1− p).
The d.f. and the density of a strictly stable distribution with the characteristic exponent α and

shape parameter θ defined by the characteristic function (ch.f.)

f(t; α, θ) = exp
{
− |t|α exp{− 1

2 iπθαsignt}
}

, t ∈ R,

where 0 < α � 2, |θ| � min{1, 2
α − 1}, will be respectively denoted F(x; α, θ) and f (x; α, θ) (see,

e.g., [21]). An r.v. with the d.f. F(x; α, θ) will be denoted Sα,θ .
To symmetric, strictly stable distributions, there corresponds the value θ = 0. To one-sided strictly

stable distributions concentrated on the nonnegative halfline, there correspond the values θ = 1 and
0 < α � 1. The pairs α = 1, θ = ±1 correspond to the distributions degenerate in ±1, respectively. All
the other strictly stable distributions are absolutely continuous. Stable densities cannot explicitly be
represented via elementary functions with four exceptions: the normal distribution (α = 2, θ = 0),
the Cauchy distribution (α = 1, θ = 0), the Lévy distribution (α = 1

2 , θ = 1) and the distribution
symmetric to the Lévy law (α = 1

2 , θ = −1). Expressions of stable densities in terms of the Fox
functions (generalized Meijer G-functions) can be found in [22,23].

The standard normal d.f. will be denoted Φ(x),

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy, y ∈ R.

An r.v. with the d.f. Φ(x) will be denoted X. The folded or half- normal distribution is the

distribution of the r.v. |X|. It can be easily verified that S2,0
d
=
√

2X.
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In [24,25], it was demonstrated that if γ ∈ (0, 1], then

Wγ
d
= W1 · S−1

γ,1 (7)

with the r.v.’s on the right-hand side being independent.
For r ∈ (0, 1) let Gr, 1 and G1−r, 1 be independent gamma-distributed r.v.’s. Let μ > 0. Introduce

the r.v.

Zr,μ =
μ(Gr, 1 + G1−r, 1)

Gr, 1

d
= μZr,1

d
= μ

(
1 + 1−r

r Q1−r,r
)
, (8)

where Q1−r,r is the r.v. with the Snedecor–Fisher distribution defined by the probability density

q(x; 1− r, r) =
(1− r)1−rrr

Γ(1− r)Γ(r)
· 1

xr[r + (1− r)x]
, x � 0. (9)

In the paper [26], it was shown that any gamma distribution with shape parameter no greater
than one is mixed exponential. For convenience, we formulate this result as the following lemma.

Lemma 1 ([26]). The density of a gamma distribution g(x; r, μ) with 0 < r < 1 can be represented as

g(x; r, μ) =
∫ ∞

0
ze−zx p(z; r, μ)dz,

where

p(z; r, μ) =
μr

Γ(1− r)Γ(r)
· 1(z � μ)

(z− μ)rz

is the density of the r.v. Zr,μ introduced above. In other words, if 0 < r < 1, then

Gr,μ
d
=

W1

Zr,μ
, (10)

where the random variables W1 and Zr,μ are independent. Moreover, a gamma distribution with shape parameter
r > 1 cannot be represented as a mixed exponential distribution.

Let r > 0, γ ∈ R and μ > 0. Let the r.v. Nr,γ,μ have the GNB distribution. Its d.f. will be denoted
FGNB(x; r, γ, μ).

Along with the arguments given above in favor of the adequacy of the GNB models for the
duration of wet periods based on their definition as mixed Poisson distributions, this effect can also be
explained (at least in part) by their one more important property of being mixed geometric formulated
as the following theorem.

Theorem 1 ([3]). If r ∈ (0, 1], γ ∈ (0, 1] and μ > 0, then a GNB distribution is a Yr,γ,μ-mixed geometric
distribution:

P(Nr,γ,μ = k) =
∫ 1

0
y(1− y)kdP(Yr,γ,μ < y), k = 0, 1, 2..., (11)

where

Yr,γ,μ
d
=

Sγ,1Z1/γ
r,μ

1 + Sγ,1Z1/γ
r,μ

d
=

μ1/γSγ,1(Gr,1 + G1−r,1)
1/γ

G1/γ
r,1 + μ1/γSγ,1(Gr,1 + G1−r,1)1/γ

, (12)

where the r.v.’s Sγ,1 and Zμ,r or Sγ,1, Gr,1 and G1−r,1 are independent.
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4. The Asymptotic Approximation to the Probability Distribution of Extremal Daily Precipitation
within a Wet Period

In this section, the probability distribution of extremal daily precipitation within a wet period will
be deduced as an asymptotic approximation. We will require some auxiliary statements formulated
as lemmas.

The following asymptotic property of the GNB distribution will play the fundamental role in the
construction of asymptotic approximations to the distributions of extreme daily precipitation within a
wet period and the total precipitation volume per wet period and the corresponding statistical tests for
precipitation to be abnormally heavy.

Lemma 2 ([3]). For r > 0, γ ∈ R, μ > 0 let Nr,γ,μ be an r.v. with the GNB distribution. We have

μ1/γNr,γ,μ =⇒ Gr,γ,1
d
= G1/γ

r,1 (13)

as μ→ 0. If, moreover, r ∈ (0, 1] and γ ∈ (0, 1], then the limit law can be represented as

Gr,γ,1
d
=

W1

Sγ,1Z1/γ
r,1

d
=

W1/γ
1

Z1/γ
r,1

d
=

(
W1Gr,1

Gr,1 + G1−r,1

)1/γ
d
= W1/γ

1 ·
(
1 + 1−r

r Q1−r,r
)−1/γ, (14)

where the r.v.’s W1, Sγ,1 and Zr,1 are independent as well as the r.v.’s W1 and Zr,1, or the r.v.’s W1, Gr,1 and
G1−r,1, and the r.v. Q1−r,r has the Snedecor–Fisher distribution with parameters 1− r and r, see Equation (9).

Let μ > 0, γ > 0. Instead of an infinitesimal parameter μ, in order to construct asymptotic
approximations with “large” sample size, introduce an auxiliary “infinitely large” parameter n ∈ N

and assume that μ = μn = μn−γ. It can be easily made sure that in this case

Gr,γ,μ/nγ
d
= nGr,γ,μ. (15)

Then for r > 0, μ > 0 for any n ∈ N, we have

n−1Gr,γ,λ/nγ
d
= Gr,γ,λ

d
= λ−1/γGr,γ,1

d
= λ−1/γG1/γ

r,1 . (16)

The standard Poisson process (the Poisson process with unit intensity) will be denoted P(t), t � 0.

Lemma 3 ([27]). Let Λ1, Λ2, . . . be a sequence of positive r.v.’s such that for any n ∈ N the r.v. Λn is
independent of the standard Poisson process P(t), t � 0. The convergence

n−1P(Λn) =⇒ Λ

as n→ ∞ to some nonnegative r.v. Λ takes place if and only if

n−1Λn =⇒ Λ, n→ ∞. (17)

Lemma 3 can be regarded as a special case of the following result. Consider a sequence of r.v.’s
W1, W2, ... Let N1, N2, ... be natural-valued r.v.’s such that for every n ∈ N the r.v. Nn is independent of
the sequence W1, W2, ... In the following statement, the convergence is meant as n→ ∞.

Lemma 4 ([28,29]). Assume that there exists an infinitely increasing (convergent to zero) sequence of positive
numbers {bn}n�1 and an r.v. W such that

b−1
n Wn =⇒W.
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If there exist an infinitely increasing (convergent to zero) sequence of positive numbers {dn}n�1 and an
r.v. N such that

d−1
n bNn =⇒ N, (18)

then
d−1

n WNn =⇒W · N, (19)

where the r.v.’s on the right-hand side of Equation (19) are independent. If, in addition, Nn −→ ∞ in probability
and the family of scale mixtures of the d.f. of the r.v. W is identifiable, then Condition (18) is not only sufficient
for Equation (19), but is necessary as well.

Consider a sequence of independent identically distributed (i.i.d.) r.v.’s X1, X2, . . .. Let N1, N2, . . .
be a sequence of natural-valued r.v.’s such that for each n ∈ N the r.v. Nn is independent of the
sequence X1, X2, . . .. Denote Mn = max{X1, . . . , XNn}.

Lemma 5 ([30]). Let Λ1, Λ2, . . . be a sequence of positive r.v.’s such that for each n ∈ N the r.v. Λn is
independent of the Poisson process P(t), t � 0. Let Nn = P(Λn). Assume that there exists a nonnegative r.v.
Λ such that Convergence (17) takes place. Let X1, X2, . . . be i.i.d. r.v.’s a common d.f. F(x). Assume also that
sup{x : F(x) < 1} = ∞ and there exists a number α > 0 such that for each x > 0

lim
y→∞

1− F(xy)
1− F(y)

= x−α. (20)

Then

lim
n→∞

sup
x�0

∣∣∣∣P( Mn

F−1(1− 1
n )

< x
)
−

∫ ∞

0
e−zx−α

dP(Λ < z)
∣∣∣∣ = 0.

Now we turn to the main results of this section. The principal role in our reasoning will be played
by Lemma 5. In order to justify its applicability, we need to make sure that the daily precipitation
volumes satisfy Condition (20). A thorough statistical analysis shows that, although being rather
adequate and, in general, acceptable model, the traditional gamma distribution (used, e.g., in [4]) is
not the best model for statistical regularities in daily precipitation. The analysis of meteorological data
(daily precipitation volumes) registered over 60 years at two geographic points with a very different
climate: Potsdam (Brandenburg, Germany) with a mild climate influenced by the closeness to the
ocean with warm Gulfstream flow and Elista (Kalmykia, Russia) with a radically continental climate
convincingly suggests the Pareto-type model for the distribution of daily precipitation volumes, see
Figures 3 and 4. For comparison, on these figures, the graphs of the best gamma-densities there are
also presented. It can be seen that the gamma model fits the histograms in a noticeably worse way
than the Pareto distribution.

Theorem 2. Let n ∈ N, γ > 0, μ > 0 and let Nr,γ,μn be an r.v. with the GNB distribution with parameters
r > 0, γ > 0 and μn = μ/nγ. Let X1, X2, . . . be i.i.d. r.v.’s with a common d.f. F(x). Assume that
rext(F) = ∞ and there exists a number α > 0 such that Relation (20) holds for any x > 0. Then

lim
n→∞

sup
x�0

∣∣∣∣P(max{X1, . . . , XNr,γ,μn
}

F−1(1− 1
n )

< x
)
− F(x; r, α, γ, μ)

∣∣∣∣ = 0,

where
F(x; r, α, γ, μ) =

∫ ∞

0
e−λx−α

g∗(λ; r, γ, μ)dλ ≡ P(Mr,α,γ,μ < x), x ∈ R.

The limit r.v. Mr,α,γ,μ admits the following product representations:

Mr,α,γ,μ
d
=

Gr,αγ,μ

Wα

d
=

(
Gr,γ,μ

W1

)1/α
d
= μ−1/αγ

(Gr,1

Wγ

)1/αγ
(21)
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and in each term, the involved random variables are independent.

Proof. By definition, the GNB distribution is a mixed Poisson distribution with the GG mixing

distribution. So, Nr,γ,μn
d
= P

(
Gr,γ,μn

)
. Therefore, from Equation (16), Lemma 3 with Λn = Gr,γ,μn

and Lemma 5 with the account of the absolute continuity of the limit distribution it immediately
follows that

lim
n→∞

sup
x�0

∣∣∣∣P(max{X1, . . . , XNr,γ,μn
}

F−1(1− 1
n )

< x
)
−

∫ ∞

0
e−zx−α

g∗(z; r, γ, μ)dz
∣∣∣∣ = 0.

Since the Fréchet (inverse Weibull) d.f. e−x−α
with α > 0 corresponds to the r.v. W−1

α , it is easy to
make sure

F(x; r, α, γ, μ) ≡
∫ ∞

0
e−zx−α

g∗(z; r, γ, μ)dz = P

(G1/α
r,γ,μ

Wα
< x

)
.

Moreover, using relation Gr,γ,μ
d
= G1/γ

r,μ , it is easy to see that

G1/α
r,γ,μ

Wα

d
=

Gr,αγ,μ

Wα

d
=

(
Gr,γ,μ

W1

)1/α
d
= μ−1/αγ

(Gr,1

Wγ

)1/αγ
,

where in each term the involved random variables are independent. The theorem is proved.

If γ = 1, then the limit distribution F(x; r, α, 1, μ) corresponds to the results of [31,32].

Theorem 3. The distribution of the r.v. Mr,α,γ,μ admits the following representations.

(i) If r ∈ (0, 1], it is the scale mixture of the distribution of the ratio of two independent Weibull-distributed
r.v.’s:

Mr,α,γ,μ
d
=

(
μZr,1

)−1/αγ · Wαγ

Wγ
,

where all the involved random variables are independent and the r.v. Zr,1 is defined in Equation (8).
(ii) If γ ∈ (0, 1], it is the scale mixture of the tempered Snedecor–Fisher distribution with parameters r and

1:

Mr,α,γ,μ
d
=

(Sγ,1

μr
·Qr,1

)1/αγ
,

where Sγ,1 is a positive strictly stable r.v. with characteristic exponent γ independent of the r.v. Qr,1

with the Snedecor–Fisher distribution in Equation (9) with parameters r and 1.
(iii) If γ ∈ (0, 1] and r ∈ (0, 1], it is the scale mixture of the Pareto laws:

Mr,α,γ,μ
d
= Πα

(
Sγ,1Z1/γ

r,1
)−1/α,

where P(Πα > x) = (xα + 1)−1, x � 0.
(iv) If r ∈ (0, 1] and αγ ∈ (0, 1], it is the scale mixture of the folded normal laws:

Mr,α,γ,μ
d
= |X| ·

√
2W1

μ1/αγWαSαγ,1Z1/αγ
r,1

,

where all the involved r.v.’s are independent.

Proof. To prove (i) it suffices to consider the rightmost term in Equation (21), apply relations W1/γ
1

d
=

Wγ and Gr,μ
d
=

W1

Zr,μ
(here 0 < r < 1 and the r.v.’s W1 and Zr,μ are independent (for details, see

Lemma 1).
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To prove (ii) it suffices to transform the rightmost term in (21) with the account of representation
in Equation (7) and use the definition of the Snedecor–Fisher distribution as the distribution of the
ratio of two independent gamma-distributed r.v.’s (see, e.g., Section 27 in [33]).

To prove (iii) it suffices to transform the second term in Equation (21) with the account of
Equation (14) and notice that the distribution of the ratio of two independent exponentially distributed
r.v.’s coincides with that of the random variable Π1.

To prove (iv) it suffices to transform the second term in (21) with the account of (14) and notice that

W1
d
= |X|√2W1 with the r.v.’s on the right-hand side being independent (see, e.g., [25]). The theorem

is proved.

Figure 3. The histogram of daily precipitation volumes in Potsdam and the fitted Pareto and
gamma distributions.

Figure 4. The histogram of daily precipitation volumes in Elista and the fitted Pareto and
gamma distributions.

The product representations for the random value Mr,α,γ,μ established in Theorem 3 can be used
for computer simulation.
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Theorem 4. If r ∈ (0, 1], μ > 0 and αγ ∈ (0, 1], then the d.f. F(x; r, α, γ, μ) is mixed exponential:

1− F(x; r, α, γ, μ) =
∫ ∞

0
e−uxdA(u), x � 0,

where A(u) = P
(
μ1/αγWαSαγ,1Z1/αγ

r,1 < u
)
, u � 0, and all the involved r.v.’s are independent.

Proof. To prove this statement, it suffices to transform the second term in Equation (21) with the
account of Equation (14) and obtain

Mr,α,γ,μ
d
=

W1

μ1/αγWαSαγ,1Z1/αγ
r,1

.

Corollary 1. Let r ∈ (0, 1], αγ ∈ (0, 1], μ > 0. Then the distribution function F(x; r, α, γ, μ) is
infinitely divisible.

Proof. This statement immediately follows from Theorem 3 and the result of [34] stating that
the product of two independent non-negative r.v.’s is infinitely divisible, if one of the two is
exponentially distributed.

It is possible to deduce explicit expressions for the moments of the r.v. Mr,α,γ,μ.

Theorem 5. Let 0 < δ < α. Then

EMδ
r,α,γ,μ =

Γ
(
r + δ

αγ

)
Γ
(
1− δ

α

)
μδ/αγΓ(r)

.

Proof. From Equation (14) it follows that EMδ
r,α,γ,μ = μ−δ/αγEGδ/αγ

r,1 ·EW−δ/α
1 . It is easy to verify that

EGδ/αγ
r,1 = Γ

(
r + δ

αγ

)
/Γ(r), EW−δ/α

1 = Γ
(
1− δ

α

)
. Hence follows the desired result.

Consider the bounds for the rate of convergence in Theorem 2. For this purpose, we will use one
more auxiliary statement.

Lemma 6. Let λ > 0, X1, X2, . . . be i.i.d. r.v.’s with a common d.f. F(x), P(t) be the standard Poisson process
independent of X1, X2, . . .. Assume that there exists a d.f. H(x) such that for any x ∈ R

lim
n→∞

P

(
1

F−1(1− 1
n )

max
1�k�n

Xk < x
)
= H(x). (22)

Then for any n ∈ N∣∣∣∣P( 1
F−1(1− 1

n )
max

1�k�P(nλ)
Xk < x

)
− Hλ(x)

∣∣∣∣ � ∣∣n[1− F
(

xF−1(1− 1
n )

)]
− log H(x)

∣∣λHλ(x).

Proof. This statement is a special case of Corollary 2 in [35].

Theorem 6. Let n ∈ N, γ > 0, μ > 0 and let Nr,γ,μn be an r.v. with the GNB distribution with parameters
r > 0, γ > 0 and μn = μ/nγ. Let X1, X2, . . . be i.i.d. r.v.’s with the common Pareto d.f.

F(x) = 1− c
axα + c

, x � 0,
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with a, c, α > 0,

F(x; r, α, γ, μ) =
∫ ∞

0
e−λx−α

g∗(λ; r, γ, μ)dλ, x ∈ R.

Then for any x ∈ R∣∣∣∣P([ a
c(n− 1)

]1/γ
max

1�k�Nr,γ,μn

Xk < x
)
− F(x; r, α, γ, μ)

∣∣∣∣ �

�
∣∣∣ xα − 1
xα(n− 1) + 1

∣∣∣ · ∫ ∞

0
λe−λx−α

g∗(λ; r, γ, μ)dλ �
∣∣∣ xα − 1
xα(n− 1) + 1

∣∣∣ · Γ(r + 1
γ )

μ1/γΓ(r)
.

Proof. First of all, check Condition (20). We have

1− F(xy)
1− F(y)

=
ayα + c

axαyα + c
−→ x−α

as y→ ∞, that is, Condition (20) holds implying Equation (22) with H(x) = e−x−α
in accordance with

the classical theory of extremes (see, e.g., [36]). Second, note that in the case under consideration
F−1(1− 1

n ) = [ c(n−1)
a ]1/α so that F

(
xF−1(1− 1

n )
)
= 1− [xα(n− 1) + 1]−1 and

n
[
1− F

(
xF−1

(
1− 1

n

))]
− log H(x) =

n
xα(n− 1) + 1

− 1
xα

=
xα − 1

xα(n− 1) + 1
.

Third, from Equation (15) it follows that Nr,γ,μ/nγ
d
= P(nGr,γ,μ) with independent P(t) and Gr,γ,μ.

Therefore, by Lemma 6 we have∣∣∣∣P([ a
c(n− 1)

]1/γ
max

1�k�Nr,γ,μn

Xk < x
)
− F(x; r, α, γ, μ)

∣∣∣∣ �
�

∫ ∞

0

∣∣∣∣P([ a
c(n− 1)

]1/γ
max

1�k�P(nλ)
Xk < x

)
− e−λx−α

∣∣∣∣g∗(λ; r, γ, μ)dλ �

�
∣∣∣ xα − 1
xα(n− 1) + 1

∣∣∣ · ∫ ∞

0
λe−λx−α

g∗(λ; r, γ, μ)dλ �
∣∣∣ xα − 1
xα(n− 1) + 1

∣∣∣ · EGr,γ,μ =

=
∣∣∣ xα − 1
xα(n− 1) + 1

∣∣∣ · Γ(r + 1
γ )

μ1/γΓ(r)
.

The theorem is proved.

Actually, Theorem 6 states that the rate of convergence in Theorem 2 is O(μ1/γ
n ) as μn → 0.

The results of this section serve as a theoretical base for the construction of a test for abnormally
extreme daily precipitation. The distribution of the maximum daily precipitation per wet period can
be assumed to be a tempered scale mixture of the gamma distribution in which the scale factor has the
Weibull distribution. According to the typical construction of a test, a daily precipitation volume is
considered to be abnormally extremal, if it exceeds a certain (pre-defined) quantile of this distribution.
A detailed description of this test and algorithm of estimation of the parameters of the distribution
mentioned above deserve a separate study as well as its application to real data.

5. The Asymptotic Approximation to the Probability Distribution of Total Precipitation over a
Wet Period. Generalized R ényi Theorem for Gnb Random Sums

As far ago as in the 1950s, being interested in modeling rare events, A. Rényi studied rarefaction of
renewal point processes and proved his famous theorem on convergence of rarefied renewal processes
to the Poisson process [37,38]. The Rényi theorem states that the distribution of a geometric sum
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(i.e., a sum of a random number of i.i.d. r.v.’s in which the number of summands is a r.v. with the
geometric distribution independent of the summands) normalized by its expectation converges to
the exponential law as the expectation of the sum infinitely increases. The normalization of a sum
by its expectation is typical for laws of large numbers. Therefore, the Rényi theorem can be regarded
as the law of large numbers for geometric sums. A general law of large numbers for random sums
of independent identically distributed (i.i.d.) random variables (r.v.’s) was proved in [28]. It was
demonstrated there that the distribution of a random sum normalized by its expectation converges
to some distribution, if and only if the distribution of the random index (the number of summands)
converges to the same distribution (up to a scale parameter) under the same normalization. In [3] the
law of large numbers for GNB random sums was proved. However, a direct application of this result
to modeling the probability distribution of total precipitation over a wet period is hampered by the
following very interesting practical observation.

One might have expected that successive daily precipitation volumes X1, X2, . . . satisfy the
classical law of large numbers, that is, the arithmetic mean 1

n (X1 + . . . + Xn) converges to some
number a almost surely as n infinitely grows, as it was done in [2]. However, a thorough analysis
of real data shows that this not quite so. In Figure 5, there are the graphs of the averaged daily
precipitation volumes in Potsdam and Elista demonstrating the slowly decreasing trend for Potsdam
and slowly increasing trend for Elista.

Figure 5. Stabilization of the cumulative averages of daily precipitation volumes as n grows in Potsdam
(continuous line) and Elista (dash line).

This means that, in order to match the stabilization of the averages at some level a, it is required
to normalize the sum X1 + . . . + Xn not by n, but by a somewhat more complicated function of n that
can match the influence of slow global trends. As such, a function of n, consider a power function nβ

with β > 0 and assume that not necessarily i.i.d. r.v.’s X1, X2, . . . satisfy the condition

1
nβ

n

∑
j=1

Xj =⇒ a ∈ (0, ∞) (23)

as n→ ∞. The parameters a and β can be rather reliably estimated by the least squares technique.
Let X1, X2, . . . , Xn be the observed values of successive nonzero daily precipitation volumes, n ∈

N be the total number of available observations. For a natural k = 1, . . . , n denote sk = X1 + . . . + Xk.
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If Condition (23) holds, then for k large enough (1 � m � k � n), the following estimates of the
parameters a and β in Relation (23) can be used:

ã = exp

{
∑n

k=m log sk ·∑n
k=m(log k)2 −∑n

k=m log k ·∑n
k=m

(
log k · log sk

)
(n−m + 1)∑n

k=m(log k)2 −
(

∑n
k=m log k

)2

}
, (24)

β̃ =
∑n

k=m log sk − (n−m + 1) log ã
∑n

k=m log k
. (25)

Indeed, if Condition (23) holds, the following approximate equality can be written:

Tk

kβ
≈ a⇔ −β log k + log Tk ≈ log a.

Therefore, the estimates of the parameters a and β can be found as the solution of the least
squares problem

n

∑
k=m

(log Tk − β log k− log a)2 −→ min
β, log a

.

This solution can be found explicitly and has the form

l̃og a =
∑n

k=m log Tk ·∑n
k=m(log k)2 −∑n

k=m log k ·∑n
k=m

(
log k · log Tk

)
(n−m + 1)∑n

k=m(log k)2 −
(

∑n
k=m log k

)2 ,

β̃ =
∑n

k=m log Tk − (n−m + 1)l̃og a
∑n

k=m log k
,

that leads to Formulas (24) and (25). This least squares method for estimation of a and β is realized by
Algorithm A2 (see Appendix A).

The application of Equation (23) to real data from Potsdam and Elista with a and β estimated by
Equations (24) and (25) is illustrated in Figure 6. It can be seen that the cumulative averages stabilize
at the level a = 4.087 with β = 0.981 for Potsdam and at the level a = 0.96 with β = 1.146 for Elista.

Figure 6. Stabilization of the cumulative averages of daily precipitation volumes as n grows with
β = 1.139 for Potsdam (solid line) and with β = 0.981 for Elista (dashed line).

So, to construct the asymptotic approximation to the probability distribution of total precipitation
over a wet period, we should prove a generalized Rényi theorem for GNB random sums improving an
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analogous statement proved in [3]. It must be especially noted that in the following theorem, the r.v.’s
X1, X2, ... are not assumed to be i.i.d.

Theorem 7. Assume that the nonzero daily precipitation volumes X1, X2, ... satisfy Condition (23) with some
β > 0 and a > 0. Let the numbers r > 0, γ and μ > 0 be arbitrary. For each n ∈ N, let the r.v. Nr,γ,μn have
the GNB distribution with parameters r, γ and μn = μ/nγ. Assume that for each n ∈ N the r.v. Nr,γ,μn is
independent of the sequence X1, X2, ... Then

aμβ/γ

nβ

Nr,γ,μ/nγ

∑
j=1

Xj =⇒ Gr,γ/β,1
d
= Gβ/γ

r,1

as n→ ∞.

Proof. The proof is based on Lemma 4 and Equation (16). From Equation (16) it follows that

μ1/γ

n
· Nr,γ,μ/nγ =⇒ Gr,γ,1 (26)

as n → ∞. By virtue of Condition (23), in Lemma 4 let bn = nβ/a. As Nn in Lemma 4 take Nr,γ,μ/nγ .

Then bNn = 1
a Nβ

r,γ,μ/nγ . From Equation (26) it follows that, as n→ ∞,

1
a Nβ

r,γ,μ/nγ ·
μβ/γ

nβ
=⇒ 1

a Gβ
r,γ,1

d
= 1

a Gr,γ/β,1
d
= 1

a Gβ/γ
r,1 . (27)

Therefore, as dn we can take dn = nβ/μβ/γ. So, using Equation (27) in the role of Equation (18) in
Lemma 4, we obtain Equation (19) in the form

μβ/γ

nβ

Nr,γ,μ/nγ

∑
j=1

Xj =⇒ 1
a Gr,γ/β,1

d
= 1

a Gβ/γ
r,1 , (28)

whence follows the desired result. The theorem is proved.

Theorem 7 presents a good tool for the account of the parameters β and γ characterizing the
deviation from traditional NB and arithmetic mean models due to the influence of possible (slow)
global trends. If in Theorem 7 r = γ = β = 1, then we obtain a version of the Rényi theorem [39]
generalized to non-identically distributed and not necessarily independent summands. If in Theorem 7
β = 1, then we obtain the law of large numbers for GNB random sums (see [3]). If in Theorem 7 γ = 1,
then we obtain the law of large numbers for NB random sums modified for the case β �= 1.

Therefore, if daily precipitation volumes X1, X2, . . . (of course, being non-identically distributed
and not independent), with the account of the excellent fit of the GNB model for the duration of a wet
period (see Figure 1), with rather small μ, the GG distribution can be regarded as an adequate and
theoretically well-based model for the total precipitation volume over a (long enough) wet period.

As regards the bounds for the rate of convergence in Theorem 7, consider a special case of β = 1
and i.i.d. X1, X2, . . .

As a measure of the distance between probability distributions, consider the ζ-metric proposed
by V. M. Zolotarev in [40,41] (also see [42], p. 44). Let s > 0. There exists a unique representation of the
number s as s = m + α where m is an integer and 0 < α � 1. By Fs we denote the set of all real-valued
bounded functions f on R that are m times differentiable and | f (m)(x)− f (m)(y)| � |x− y|α. Let X
and Y be two r.v.’s in which the distribution functions will be denoted FX(x) and FY(x), respectively.
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The ζ-metric ζs(X, Y) ≡ ζs(FX , FY) in the space of probability distributions is defined by the equality
ζs(X, Y) = sup

{∣∣E( f (X)− f (Y)
)∣∣ : f ∈ Fs

}
. In particular,

ζ1(X, Y) =
∫
R
|FX(x)− FY(x)|dx.

In [43], it was shown that in the case β = 1 and i.i.d. X1, X2, . . . for 1 � s � 2 we have

ζs

(
μ1/γ

na ∑
Nr,γ,μ/nγ

j=1 Xj, Gr,γ,1

)
� (EX2

1)
s/2

ns/2|EX1|s
·

Γ(1 + γ)Γ(r + s
2γ )

Γ(1 + s)Γ(r)
.

In particular,

ζ2

(
μ1/γ

na ∑
Nr,γ,μ/nγ

j=1 Xj, Gr,γ,μ

)
� EX2

1
2n(EX1)2 ·

Γ(r + 1
γ )

Γ(r)
.

The results presented above justify the GG models for the probability distribution of total
precipitation volume over a wet period improving the models considered in [2]. Statistical tests
for the detection of anomalously extreme total volumes will be considered below.

6. Statistical Tests for Anomalously Extreme Total Precipitation Volumes

Now we turn to the construction of the tests for the total precipitation volume during a wet period
to be abnormally large.

In what follows, based on the results of the preceding section, we will assume that the total
precipitation volume during a wet period has the GG distribution with some parameters r > 0, γ > 0
and μ > 0.

Let m ∈ N and G(1)
r,γ,μ, G(2)

r,γ,μ, . . . , G(m)
r,γ,μ be independent r.v.’s having the same GG distribution with

parameters r > 0, γ and μ > 0. Also, let G(1)
r,μ , G(2)

r,μ , . . . , G(m)
r,μ be i.i.d. r.v.’s having the same gamma

distribution with parameters r > 0 and μ > 0.
The base for the first step in the construction of the desired test is the following obvious conclusion:

if the r.v.’s G(1)
r,γ,μ, G(2)

r,γ,μ, . . . , G(m)
r,γ,μ are identically distributed (that is, the sample G(1)

r,γ,μ, G(2)
r,γ,μ, . . . , G(m)

r,γ,μ

is homogeneous), then the r.v.’s
(
G(1)

r,γ,μ
)γ,

(
G(2)

r,γ,μ
)γ, . . . ,

(
G(m)

r,γ,μ
)γ are also identically distributed (that

is, the sample
(
G(1)

r,γ,μ
)γ,

(
G(2)

r,γ,μ
)γ, . . . ,

(
G(m)

r,γ,μ
)γ is homogeneous.

Consider the relative contribution of the r.v.
(
G(1)

r,γ,μ
)γ to the sum

(
G(1)

r,γ,μ
)γ

+
(
G(2)

r,γ,μ
)γ

+ . . . +(
G(m)

r,γ,μ
)γ:

R =

(
G(1)

r,γ,μ
)γ(

G(1)
r,γ,μ

)γ
+

(
G(2)

r,γ,μ
)γ

+ . . . +
(
G(m)

r,γ,μ
)γ

. (29)

From Equation (4), it obviously follows that

R d
=

G(1)
r,μ

G(1)
r,μ + G(2)

r,μ + . . . + G(m)
r,μ

d
=

G(1)
r,1

G(1)
r,1 + G(2)

r,1 + . . . + G(m)
r,1

d
= R∗

(see Equation(29)).
So, the r.v. R characterizes the relative precipitation volume for one (long enough) wet period

with respect to the total precipitation volume registered for m wet periods.
Note that

R =

(
1 +

1

G(1)
r,μ

(G(2)
r,μ + . . . + G(m)

r,μ )

)−1
d
=

(
1 +

G(m−1)r,μ

Gr,μ

)−1

,
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where the gamma-distributed r.v.’s on the right hand side are independent. The distribution of the r.v.

R was described in [2] where it was demonstrated that R d
=

(
1 + k

r Qk,r
)−1 where Qk,r is the r.v. having

the Snedecor–Fisher distribution determined for k > 0, r > 0 by the Lebesgue density

fk,r(x) =
Γ(k + r)
Γ(k)Γ(r)

( k
r

)k xk−1

(1 + k
r x)k+r

, x � 0. (30)

It should be noted that the particular value of the scale parameter is insignificant. For convenience,
it is assumed equal to one. It can be easily made sure by standard calculation using Equation (30), the
distribution of the r.v. R is determined by the density

p(x; k, r) =
Γ(k + r)
Γ(r)Γ(k)

(1− x)k−1xr−1, 0 � x � 1,

that is, it is the beta distribution with parameters k = (m− 1)r and r.
Then the test for the homogeneity of an independent sample of size m consisting of the GG

distributed observations of total precipitation volumes during m wet periods with known γ based on
the r.v. R looks as follows. Let V1, . . . , Vm be the total precipitation volumes during m wet periods and,
moreover, V1 � Vj for all j � 2. Calculate the quantity

SR =
Vγ

1

Vγ
1 + . . . + Vγ

m

(SR means «Sample R»). From what was said above, it follows that under the hypothesis H0: «the
precipitation volume V1 under consideration is not abnormally large» the r.v. SR has the beta
distribution with parameters k = (m− 1)r and r. Let ε ∈ (0, 1) be a small number, βk,r(1− ε) be the
(1− ε)-quantile of the beta distribution with parameters k = (m− 1)r and r. If SR > βk,r(1− ε), then
the hypothesis H0 must be rejected, that is, the volume V1 of precipitation during one wet period must
be regarded as abnormally large. Moreover, the probability of erroneous rejection of H0 is equal to ε.

Instead of R, the quantity

R0 =
(m− 1)

(
G(1)

r,γ,μ
)γ(

G(2)
r,γ,μ

)γ
+ . . . +

(
G(m)

r,γ,μ
)γ

d
=

(m− 1)G(1)
r,μ

G(2)
r,μ + . . . + G(m)

r,μ

d
=

k
r

Gr,μ

Gk,μ

d
=

k
r

Gr,1

Gk,1

d
= Qr,k

can be considered. Then, as is easily seen, the r.v.’s R and R0 are related by the one-to-one
correspondence

R =
R0

m− 1 + R0
or R0 =

(m− 1)R
1− R

,

so that the homogeneity test for a sample from the GG distribution equivalent to the one described
above and, correspondingly, the test for a precipitation volume during a wet period to be abnormally
large, can be based on the r.v. R0, which has the Snedecor–Fisher distribution with parameters r and
k = (m− 1)r.

Namely, again let V1, . . . , Vm be the total precipitation volumes during m wet periods and,
moreover, V1 � Vj for all j � 2. Calculate the quantity

SRGG =
(m− 1)Vγ

1

Vγ
2 + . . . + Vγ

m
. (31)

(SR0 means «Sample R0»). From what was said above, it follows that under the hypothesis H0:
«the precipitation volume V1 under consideration is not abnormally large» the r.v. SR has the
Snedecor–Fisher distribution with parameters r and k = (m − 1)r. Let ε ∈ (0, 1) be a small
number, qr,k(1 − ε) be the (1 − ε)-quantile of the Snedecor–Fisher distribution with parameters r
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and k = (m− 1)r. If SR0 > qr,k(1− ε), then the hypothesis H0 must be rejected, that is, the volume
V1 of precipitation during one wet period must be regarded as abnormally large. Moreover, the
probability of erroneous rejection of H0 is equal to ε.

Let l be a natural number, 1 � l < m. It is worth noting that, unlike the test based on the statistic
R, the test based on R0 can be modified for testing the hypothesis H′0: «the precipitation volumes
Vi1 , Vi2 , . . . , Vil do not make an abnormally large cumulative contribution to the total precipitation
volume V1 + . . . + Vm». For this purpose denote

Tγ
l = Vγ

i1
+ Vγ

i2
+ . . . + Vγ

il
, Tγ = Vγ

1 + Vγ
2 + . . . + Vγ

m

and consider the quantity

SR′0 =
(m− l)Tγ

l
l(Tγ − Tγ

l )
.

In the same way as it was done above, it is easy to make sure that

SR′0
d
=

(m− l)Glr,l

lG(m−l)r,1

d
= Qlr,(m−l)r.

Let ε ∈ (0, 1) be a small number, qlr,(m−1)r(1− ε) be the (1− ε)-quantile of the Snedecor–Fisher
distribution with parameters lr and k = (m− l)r. If SR′0 > qlr,(m−l)r(1− ε), then the hypothesis H′0
must be rejected, that is, the cumulative contribution of the precipitation volumes Vi1 , Vi2 , . . . , Vil into
the total precipitation volume V1 + . . . + Vm must be regarded as abnormally large. Moreover, the
probability of erroneous rejection of H′0 is equal to ε.

7. Comparison of Tests for Anomalously Extreme Precipitation Volumes Based on Gamma and
Gg Distributions

In this section, the results of the application of the test based on the statistic R in Equation (29) to
the analysis of the time series of daily precipitation observed in Potsdam and Elista from 1950 to 2007
are considered and compared with similar results for the case of gamma distributed total precipitation
volumes during wet periods [2].

The results of the application of the tests for a total precipitation volume during one wet period to
be abnormally large based on GG and gamma models in the moving mode are shown in Figures 7 and 8
(Potsdam) and Figures 9 and 10 (Elista).

If m is the window width (the number of observations in a moving window). A fixed sample
point falls in exactly m windows. One of the following cases can occur for a fixed observation:

• Absolute (abs) extreme, if at all m windows it is recognized as abnormally extreme;
• Intermediate (int) extreme, if it is recognized as abnormally extreme for at least half of windows

containing it;
• Relative (rel) extreme, if it is recognized as abnormally extreme for at least one window;
• Not extremal, if it is not recognized as abnormally extreme for all windows.

Algorithm A3 (see Appendix A) realizes the method based on the statistic R described above.
For the sake of vividness on these figures the time horizon equals 90 and 360 days and

the significance level α of the tests is 0.01. The absolutely, intermediate and relatively abnormal
precipitation volumes are marked by downward-pointing triangles, circles and squares, respectively,
for the test based on the gamma model, whereas the corresponding test based on the statistic R
based on the GG distribution are marked by upward-pointing triangles, diamonds and right-pointing
triangles, respectively. It is worth noting that MATLAB’s notations are used here for these markers.
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Figure 7. Abnormal precipitation volumes (Potsdam, 90 days).

Figure 8. Abnormal precipitation volumes (Potsdam, 360 days).

Figures 7–10 demonstrate non-trivial values of the parameter γ, that is, γ �= 1. For Potsdam γ =

1.286, whereas for Elista γ equals 1.279. At the same time, the results of the two methods are quite close,
although the approach based on the GG distribution demonstrates a higher quality of determining
potentially extreme observations. The same conclusions are valid for smaller window sizes.
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Figure 9. Abnormal precipitation volumes (Elista, 90 days).

Figure 10. Abnormal precipitation volumes (Elista, 360 days).

8. Comparison of GG-Based Statistical Test and Peaks over Threshold Methodology for Extreme
Precipitation Intensities

One important precipitation indicator is the precipitation intensity that is defined as the ratio of
the total precipitation volume over a wet period to the duration of this wet period measured in days.
The extreme precipitation volumes and intensities are relevant to various problems of climatology and
hydrometeorology (see, for example, [44–47]). Traditionally, these phenomena are investigated for
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different geographical regions or countries [48,49]. In particular, the issue of determining threshold
values, the excess of which leads to the extreme events, for example, in daily rainfalls or their intensities,
is the key point of the study. Precipitation intensities are important not only for forecasting floods
but also for solving problems such as runoff and soil erosion [50,51]. It can be explained by the
contemporary climate change scenarios that predict a significant increase in the frequency of high
intensity rainfall events, primarily in the dry areas. Moreover, precipitation can induce shallow
landslides [52,53] and debris flows [54].

Statistical analysis of real data shows that the probability distribution of the precipitation intensity
can be approximated by the gamma distribution with very high accuracy. In [55], some theoretical
arguments were presented to justify the gamma model for the distribution of precipitation intensities.
So, the statistical approach described in Section 6 and in [2] can be also used for identification of
abnormally large intensities. For the analysis, the precipitation intensities in Potsdam and Elista
(verified samples without missing values) are used as the initial data. This section presents a
comparison of a non-parametric approach based on the extreme value theory as well as modified
Peaks over Threshold (PoT) methodology [56] with the parametric approach that significantly involves
testing parametric statistical hypotheses to determine extreme intensities of wet periods (see Section 6).
The classical version of PoT [57] is quite popular for solving a wide range of climatic problems. In
particular, the following results can be mentioned: the inverse Weibull distribution as an extreme
wind speed model [58], a time-dependent versions of the PoT model for severe storm waves [59]
and daily temperatures [60], probability model for rainfalls of high magnitude [61], analysis of
precipitation extremes in a changing climate [62]. Most applications of the extreme value theory
assume stationarity, but it is well-known that real events are not stationary. So, the generalized results
analogous to Theorem 7 are required. All the numerical methods are implemented as a MATLAB
program. Algorithm A4 demonstrates the method based on the PoT and GG-test (see Appendix A).

Figures 11 and 12 present the results obtained by the modified PoT algorithm in which the
Weibull distribution is considered as the distribution of time between extreme events. Starting
from the maximum threshold value that coincides with the maximum of the analyzed data, the
hypothesis that the time intervals between the moments of excess of a certain threshold have the
Weibull distribution is tested. The corresponding P-value is saved, and the threshold is shifted down
by a certain (small) step (in this case, 0.01). It is worth noting that a similar procedure was suggested
in [56] for precipitation volumes under the assumption that the time intervals between excesses have
the exponential distribution. For a given significance level (in both cases, α is chosen as 0.01), the
corresponding hypothesis is not rejected for all thresholds for which the P-values are located to the
right of the red vertical line in the upper graphs in Figures 11 and 12. The lower graphs show the
parameters of the fitted Weibull distribution.

On Figures 13 and 14 the results of the test (see Section 6) for both the GG and usual gamma
distribution are compared with those of the PoT method based on the exponential and Weibull
distributions for the intensities in Potsdam and Elista. The following notation is used:

• The thresholds with the indices low correspond to the minimum levels at which the hypothesis of
exponential or Weibull distribution is not rejected (the lowest point to the right of the red line on
the upper graphs in Figures 11 and 12);

• The thresholds with the indices maxval correspond to the maximum P-value (the rightmost point
in the upper graphs);

• The thresholds with the indices high correspond to the upper level, when the corresponding
hypothesis is not rejected (the highest point to the right of the red line on the graphs).
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Figure 11. P-values that correspond to the various thresholds (Potsdam).

Figure 12. P-values that correspond to the various thresholds (Elista).

The green-filled downward-pointing triangles mark the intensities, which are classified as
absolutely abnormal based on the GG test (see Section 6). The black upward-pointing triangles
correspond to the decision based on the classical gamma distribution test (that is, γ = 1, see (31)). The
circles denote intermediate extreme observations, and the squares mark relatively extreme ones. This
classification is described in Section 7. It is worth noting that for the GG test in Potsdam the value of γ

is 1.0775 and for Elista γ = 1.1257.
For Potsdam, the results of gamma and GG tests are good and close. In addition, the PoT method

is also effective in the case where the threshold is chosen with the maximum P-value. However, for
Elista, with less rainfalls with lower intensities, the results are quite different. Indeed, the decisions of
the PoT method are close for the exponential and Weibull cases (the thresholds differ by only 0.29).
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However, a statistical test based on the gamma distribution identifies only four intensities as absolutely
extreme, while the GG test identifies more absolute extremes, including those below the thresholds
mentioned above.

Figure 13. Comparison of statistical tests andpPeaks over threshold methodology for extreme
precipitation intensities (Potsdam).

Figure 14. Comparison of statistical tests and peaks over threshold methodology for extreme
precipitation intensities (Elista).
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9. Conclusions and Discussion

In the paper, asymptotic models for some precipitation characteristics based on GNB distributions
were considered. Also, a statistical test based on the GG distribution was proposed for the
determination of the type of precipitation extremes. The GG and GNB distributions are not quite
widespread, so the methods for the estimation of their parameters are, as a rule, not implemented
in standard statistical packages. Therefore, the implementation of appropriate procedures requires
the creation of specialized software solutions, for example, based on the functional approach, as it
was done in the study described in this paper using the MATLAB programming language. However,
as was demonstrated in the paper, the results of fitting such distributions to real data turned out to
be better as compared to conventional models. Therefore, for processing spatial meteorological data
from a large number of stations, the proposed methods and models can be effectively implemented as
high-performance computing services.
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Appendix A. Algorithms

This section presents the above-described algorithms in the form pseudo-code. All of these
algorithms have been implemented using Matlab programming language without any tools specific to
this development environment. They can be successfully implemented, for example, with the Python
programming language taking into account some minor changes.

Algorithm A1. GNB approximations

1: LOAD(Data); // Loading initial data (Potsdam, Elista)
2: α=0.05; // Significance level
3: WP=WETPERIODS(Data); // Finding wet periods in Data
4: r=NBFIT(WP-1, α); // Finding parameter r
5: [γl1,μl1,errl1]=GNBAPPROX(l1, r); // GNB approximation based on �1-distance minimization
6: [γl2,μl2,errl2]=GNBAPPROX(l2, r); // GNB approximation based on �2-distance minimization
7: [γl∞,μl∞,errl∞]=GNBAPPROX(l∞, r); // GNB approximation based on �∞-distance minimization

// Plotting initial histograms and GNB approximations for all cases
8: HISTOGRAMS(γl1,μl1,errl1,γl2,μl2,errl2,γl∞,μl∞,errl∞);

Algorithm A2. Stabilization of averages

1: LOAD(Potsdam, Elista); // Loading initial data
2: m=3000; // The value can be chosen empirically
3: DATAPREPROCESSING(Potsdam, Elista);
4: [βP,aP]=StabParams(Potsdam); // Search for stabilization parameters using Formulas (24) and (25)
5: [βE,aE]=StabParams(Elista);
6: PLOTAVERAGES(Potsdam,Elista,βP,aP,βE,aE); // Drawing results
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Algorithm A3. Statistical test for extreme volumes

1: α=0.01; // Significance level
2: LOAD(Data); // Loading initial data (Potsdam, Elista)

// Correspondence between astronomical time and sample elements
3: window=DAYSTOOBSERVATIONS(Days);
4: Vols=VOLUMES(Data); // Volumes obtained from raw data
5: γ=GAMMAFIT(Vols, α); // Finding parameter γ

6: [SR, SRGG]=GGSTATISTICS(Vols,γ); // Finding values of statistics based on Formula (31)
7: [Extrabs, GG Extrabs, Extrint, GG Extrint, Extrrel , GG Extrrel]=GGTEST(SR, SRGG);

// Plotting initial data and decisions based on statistics SR and SRGG

8: PLOTEXTREMES(Extrabs, GG Extrabs, Extrint, GGExtrint, Extrrel , GG Extrrel);

Algorithm A4. PoT and GG-based test for intensities

1: α=0.01; // Significance level
2: LOAD(Data); // Loading initial data (Potsdam, Elista)
3: Ints=INTENSITIES(Data); // Intensities obtained from raw data
4: [GG Extrabs, GG Extrint, GG Extrrel]=GGTEST(Ints,SRGG);

// Modified PoT
5: level=MAX(Ints); // Initial PoT level (threshold) equal to maximum data value
6: L=LENGTH(Ints);
7: k=0;

// Determining the dependence of the level on the p-value
8: while level�0 do

9: I=FIND(Ints>level);
// Minimum sufficient number of elements in the sample exceeding the threshold

10: if LENGTH(I)<MinNum) then

11: level=level-step;
12: CONTINUE;
13: end if

14: [ExpParam(k),ExpPval(k)] = FITEXP(I,α);
15: [WeibullParams(k),WeibullPval(k)] = FITWEIBULL(I,α);
16: k++;
17: level=level-step;
18: end while

19: PLOTEXTREMES(GG Extrabs, GGExtrint, GG Extrrel); // Plotting intensity extremes
20: PLOTTHRESHOLDS( ); // Plotting thresholds
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1. Introduction

The Laplace integrals find applications in numerous problems of mathematics and applied science,
and the literature on these integrals is abundant. For example, let us mention the applications in statistical
physics, see e.g., [1] or Lecture 5 in [2], in the pattern analysis [3], in the large deviation theory [4–6],
where it is sometimes referred to as the Laplace–Varadhan method, in the analysis of Weibullian chaos [7],
in the asymptotic methods for large excursion probabilities [8], in the asymptotic analysis of stochastic
processes [9], and in the calculation of the tunneling effects in quantum mechanics and quantum fields,
see [10,11]. It can be used to essentially simplify Maslov’s type derivation of the Gibbs, Bose–Einstein and
Pareto distribution [12]. An infinite-dimensional version and a non-commutative versions of the Laplace
approximations were developed recently in [13,14], respectively.

The majority of research on this topic is devoted to the asymptotic expansions, or even, following
the general approach to large deviation of Varadhan, just to the logarithmic asymptotics, see also [15].
In the present paper, following the recent trend for the searching of the best constants for the error term
in the central-limit-type results, see [16] and references therein, we are interested in exact estimates for
the main error term of the Laplace approximation. This approach to Laplace integrals was initiated by
the author in book [9] (Appendix B), where the stress was on the integrals with complex phase. Here
we aimed at making these asymptotic more precise for real phase including the most general case of
both exponent and the pre-exponential term in the integral depending on the parameter (which is
crucial for the applications to the classical conditional large numbers (LLN) that we have in mind here),
and stressing two new applications, to the sums instead of integrals (Laplace–Varadhan asymptotics)
and to the conditional law of large numbers (LLN) and central limit theorems (CLT) of large deviations.

The content of the paper is as follows. In Section 2 we obtained the estimates for the error term
in Laplace approximation with minimum of the phase in the interior of the domain of integration
improving slightly on estimates from [9], and in Section 3 we derived the resulting LLN and CLT
results. In Sections 4 and 5 the same program was carried out for the case of phase minima occurring
in the border of the domain. In Section 6 we derived the analogous results for the case of sums, rather
than integrals. In Section 7 we show how our results can be applied to the conditional LLN and CLT of
large deviations.

Mathematics 2020, 8, 479; doi:10.3390/math8040479 www.mdpi.com/journal/mathematics209
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2. Phase Minimum Inside the Domain of Integration

Here we present the estimates of the remainder in the asymptotic formula for the Laplace integrals
with the critical point of the phase lying in the interior of the domain of integration, adapting and
streamlining the arguments of [9].

Consider the integral

I(N) =
∫

Ω
f (x, N) exp{−NS(x, N)} dx, N ≥ N0 > 0, (1)

where Ω is an open bounded subset of the Euclidean space Rd, equipped with the Euclidean norm
|.|, with Euclidean volume |Ω|, the amplitude f and the phase S are continuous real functions of
x ∈ Ω, N ≥ N0.

Remark 1. The assumption that Ω is bounded is not essential, but simplifies explicit estimates for the error
terms. One should think of Ω as a bounded subset of the full domain of integration containing all minimum
points of S(., N). If f is integrable outside Ω, the integral of f (x, N) exp{−NS(x, N)} over Rd \Ω will be
exponentially small as compared with Equation (1).

Recall that the kth order derivative

φ(k)(x) =
∂kφ

∂xk

of a real function φ on Rd can be viewed as the multi-linear map

φ(k)(x)[v] =
∂kφ

∂xk (x)[v] =
d

∑
i1,··· ,ik=1

∂kφ(x)
∂xi1 · · · ∂xik

vi1 · · · vik , v ∈ Rd.

The second derivative will be written as usual in the matrix form

φ′′(x)[v] =
(

∂2φ

∂x2 (x)v, v
)

.

We shall denote by ‖φ(k)(x)‖ the corresponding norm defined as the lowest constant for which
the estimate

|φ(k)(x)[v]| ≤ ‖φ(k)(x)‖|v|k

holds for all v.

Remark 2. It is a standard way to define norms of multi-linear mappings, see e.g., [17]. However, as all norms
on finite-dimensional spaces are equivalent, the choice of a norm is not very essential here.

Let us make now the following assumptions on the functions f and S:
(C1) f (x, N)) is a Lipshitz continuous function of x with

f0 = sup
x∈Ω, N>N0

| f (x, N)| < ∞, f1 = sup
x �=y, N>N0

| f (x, N)− f (y, N)|
|x− y| < ∞;

(C2) S(x, N) is a thrice continuously differentiable function in x such that

S3 = sup
x∈Ω,N≥N0

‖∂3S(x, N)

∂x3 ‖ < ∞;
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and

Λm|ξ|2 ≤
(

∂2S
∂x2 (x, N)ξ, ξ

)
≤ ΛM|ξ|2

for all x ∈ Ω, N ≥ N0, ξ ∈ Rd, with positive constants Λm, ΛM; the latter condition can be concisely
written as

Λm ≤
∂2S
∂x2 (x, N) ≤ ΛM,

where the usual ordering on symmetric matrices is used;
(C3) For any N ≥ N0 there exists a unique point x(N) of global minimum of S(., N) in Ω,

and the ball
U(N) = {x : |x− x(N)| < N−1/3} (2)

is contained in Ω. Let us denote by DN the matrix of the second derivatives of S at x(N), that is

DN =
∂2S
∂x2 (x(N), N). (3)

Notice that from convexity of S in Ω and Assumption (C3) it follows that

Smin(N) = inf{S(x, N) : x ∈ Ω \U(N)} = min{S(x) : x ∈ ∂U(N)}. (4)

Our approach to the study of the Laplace integral I(N) is based on its decomposition

I(N) = I′(N) + I′′(N),

with

I′(N) =
∫

U(N)
f (x, N) exp{−NS(x, N)} dx, I′′(N) =

∫
Ω\U(N)

f (x, N) exp{−NS(x, N)} dx. (5)

Remark 3. In the proof below one can use U(N) = {x : |x− x(N)| < N−κ} instead of Equations (2) with
1/3 ≤ κ < 1/2, the lower bounds coming from the estimate of I1 below, and the upper bound from the estimate
of I3 below.

Proposition 1. Under Assumptions (C1)–(C3),

I(N) = exp{−NS(x(N), N)}
(

2π

N

)d/2 [ f (x(N), N)√
det DN

+
ω(N)√

N

]
+ ωexp(N), (6)

where ω(N) is a bounded function depending on Λm, f0, f1, S3, d, and ωexp(N) is exponentially small, compared
to the main term. Explicitly

|ω(N)| ≤ dΛ−(1+d)/2
m

[
f1 +

d + 1
6Λm

f0S3eS3/6
]

(7)

|ωexp(N)| ≤ f0 exp{−NS(x(N), N)} exp{−ΛmN1/3/2}

×
[
|Ω|+ (2π)d/2N−d/3

ΛmN1/3

(
1

Γ(d/2)
+

2d/2

2ΛmN1/3

)]
. (8)

Proof. From the Taylor formula for functions on R

g(t) = g(0) + g′(0)t +
∫ t

0
(t− s)g′′(s)ds
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it follows that
S(x, N)− S(x(N), N) = S(x(N) + t(x− x(N)), N)|t=1

t=0

=
∫ 1

0
(1− τ)

(
∂2S
∂x2 (x(N) + τ(x− x(N)), N)(x− x(N)), x− x(N)

)
dτ. (9)

Consequently, for x ∈ ∂U(N) we have by Assumption (C2) that

S(x, N)− S(x(N), N) ≥ 1
2

Λm|x− x(N)|2 =
1
2

ΛmN−2/3 (10)

It follows then from Equation (4) that

Smin(N) = inf{S(x, N) : x ∈ Ω \U(N)} ≥ S(x(N), N) +
1
2

ΛmN−2/3, (11)

so that

I′′(N) ≤ exp{−NSmin(N)}
∫

Ω
f (x, N) dx ≤ f0|Ω| exp{−ΛmN1/3/2} exp{−NS(x(N), N)}. (12)

To go further we shall need the Taylor expansion of S up to the third order. Namely, from Equation (9)
we deduce the expansion

S(x, N)− S(x(N), N) =
1
2
(DN(x− x(N)), x− x(N)) + σ(x, N), (13)

where, due to the equation
∫ 1

0 (1− τ)τ dτ = 1/6,

|σ(x, N)| ≤ 1
6

S3|x− x(N)|3. (14)

Turning to I′(N) we further decompose it into the four integrals

I′(N) = exp{−NS(x(N), N)}(I1(N) + I2(N) + I3(N) + I4(N)) (15)

with
I1(N) =

∫
U(N)

f (x, N) exp{−N
2
(DN(x− x(N)), x− x(N))}(e−Nσ(x,N) − 1)dx,

I2(N) =
∫

U(N)
( f (x, N)− f (x(N), N) exp{−N

2
(DN(x− x(N)), x− x(N))} dx,

I3(N) = f (x(N), N)
∫

Rd\U(N)
exp{−N

2
(DN(x− x(N)), x− x(N))} dx,

I4(N) = f (x(N), N)
∫

Rd
exp{−N

2
(DN(x− x(N)), x− x(N))} dx.

It follows from Equation (14) that, for x ∈ U(N), N|σ(x, N)| ≤ S3/6. Using Equation (14) again
and the trivial estimate |et − 1| ≤ |t|e|t|, we conclude that, for x ∈ U(N),

|e−Nσ(x,N) − 1| ≤ 1
6

eS3/6NS3|x− x(N)|3. (16)

Consequently,

|I1(N)| ≤ 1
6

eS3/6S3 f0N
∫

Rd
|y|3 exp{−NΛm|y|2/2}.
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From the standard integral

∫
Rd
|y|k exp{−α|y|2} dy = πd/2α−(k+d)/2 Γ((k + d)/2)

Γ(d/2)
, (17)

we deduce that

|I1(N)| ≤ 1
6

πd/2 Γ((3 + d)/2)
Γ(d/2)

2(3+d)/2Λ−(3+d)/2
m f0S3eS3/6N−(d+1)/2. (18)

Next,
|I2(N)| ≤ f1

∫
Rd
|y| exp{−NΛm|y|2/2},

or, using Equation (17) with k = 1,

|I2(N)| ≤ πd/2 Γ((1 + d)/2)
Γ(d/2)

2(1+d)/2Λ−(1+d)/2
m f1N−(d+1)/2. (19)

Next,
|I3(N)| ≤ f0

∫
{y:|y|≥N−1/3}

exp{−NΛm|y|2/2}dy

= f0 exp{−ΛmN1/3/2}
∫ ∞

N−1/3
exp{−NΛm(r2 − N−2/3)/2}|Sd−1|rd−1 dr,

where

|Sd−1| = 2
πd/2

Γ(d/2)

is the area of the unit sphere in Rd. Changing r to z so that

z = NΛm(r2 − N−2/3)/2⇐⇒ r2 = N−2/3
(

1 +
2z

ΛmN1/3

)
,

and thus dz = NΛmr dr, the last integral rewrites as

f0

Λm
N−(d+1)/3 exp{−ΛmN1/3/2}

∫ ∞

0
e−z

(
1 +

2z
N1/3Λm

)(d−2)/2
|Sd−1| dz,

so that, using the inequality (1 + ω) ≤ 2n(1 + ωn),

|I3(N)| ≤ f0

Λm
N−(d+1)/3 exp{−ΛmN1/3/2} πd/2

Γ(d/2)
2d/2

[
1 +

(
2

ΛmN1/3

)(d−2)/2
Γ
(

d
2

)]
. (20)

Remark 4. For d = 1 we get simply

|I3(N)| ≤ 2 f0

Λm
N−(d+1)/3 exp{−ΛmN1/3/2},

and for d = 2 the same with 2π instead of 2.

Finally I4 is calculated explicitly giving the main term of asymptotics:

I4(N) = f (x(N), N)

(
2π

N

)d/2
(det DN)

−1/2.

Summarizing the estimates for all integrals involved and performing elementary simplifications, in
particular using Γ((d + 1)/2) < dΓ(d/2)/

√
2 and Γ(1 + α) = αΓ(α), yields estimate Equation (7).
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Proposition 2. Under (C1)–(C3) assume additionally that S is four times differentiable and f has a Lipschitz
continuous first derivatives with respect to x with

S4 = sup
x∈Ω, N≥N0

‖∂4S(x, N)

∂x4 ‖ < ∞, f2 = sup
x �=y, N≥N0

| ∂ f
∂x (x, N)− ∂ f

∂x (y, N)|
|x− y| < ∞.

Then

I(N) = exp{−NS(x(N), N)}
(

2π

N

)d/2 [ f (x(N), N)√
det DN

+
ω(N)

N

]
+ ωexp(N), (21)

where the exponentially small term ωexp has exactly the same estimate as in the previous Proposition and ω(N)

is a bounded function depending on Λm, f0, f1, f2, S3, S4, d. Explicitly,

|ω(N)| ≤ max(1, Λ−3−d/2
m )[ f0S2

3d3eS3/6 + f0S4d2 + f2d + f2S3d3 + f1S3d2]. (22)

Remark 5. The key difference in the error term here is the denominator N instead of
√

N in Equation (6).

Proof. We again decompose I(N) in the sum I(N) = I′(N) + I′′(N) with I′(N), I′′(N) given by
Equation (5) and estimate I′′(N) by Equation (12). Estimation of I′(N) needs more careful analysis
using further terms of the Taylor expansion of S and f . Namely we decompose it first as

I′(N) = exp{−NS(x(N), N)}(I1(N) + I2(N)) (23)

with

I1(N) =
∫

U(N)
f (x, N) exp{−N

2
(DN(x− x(N)), x− x(N))}[e−Nσ(x,N) − 1 + Nσ(x, N)] dx,

I2(N) =
∫

U(N)
f (x, N) exp{−N

2
(DN(x− x(N)), x− x(N))}[1− Nσ(x, N)] dx.

From Equation (14) we get

|e−Nσ(x,N) − 1 + Nσ(x, N)| ≤ 1
2
(N|σ(x, N)|)2eN|σ(x,N)| ≤ 1

2
N2(S3/6)2|x− x(N)|6eS3/6.

Consequently,

|I1(N)| ≤ f0S2
3

72
eS3/6N2

∫
Rd
|y|6 exp{−NΛm|y|2/2}.

From Equation (17) with k = 6 we deduce that

|I1(N)| ≤ f0S2
3

72
eS3/6πd/2 Γ((6 + d)/2)

Γ(d/2)

(
2

Λm

)(6+d)/2
N−(d+2)/2

=
f0S2

3
72

eS3/6(2π)d/2 d(d + 2)(d + 4)

Λ3+d/2
m

N−(d+2)/2. (24)

To evaluate I2(N) we use the Taylor expansion of S to the fourth order yielding

σ(x, N) =
1
6

∂3S
∂x3 (x(N), N)[x− x(N)] + σ̃(x, N)

with
|σ̃(x, N)| ≤ 1

24
S4|x− x(N)|4.
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Consequently, I2(N) can be represented as I2(N) = J1(N) + J2(N) with

J1(N) = −N
∫

U(N)
f (x, N) exp{−N

2
(DN(x− x(N)), x− x(N))}σ̃(x, N) dx,

J2(N) =
∫

U(N)
f (x, N) exp{−N

2
(DN(x− x(N)), x− x(N))}

[
1− N

6
∂3S
∂x3 (x(N), N)[x− x(N)]

]
dx.

Using the estimate for σ̃ we obtain

|J1(N)| ≤ 1
24

N f0S4

∫
Rd

exp{−NΛm|y|2/2}|y|4 dy

=
1
24

f0S4πd/2 Γ((4 + d)/2)
Γ(d/2)

(
2

Λm

)(4+d)/2
N−(d+2)/2

=
1
24

f0S4(2π)d/2 d
2
(

d
2
+ 1)

4

Λ(4+d)/2
m

N−(d+2)/2.

To evaluate J2 we expand f in Taylor series writing

f (x, N) = f (x(N), N) +

(
∂ f
∂x

(x(N), N), x− x(N)

)

+[ f (x, N)− f (x(N), N)−
(

∂ f
∂x

(x(N), N), x− x(N)

)
].

Substituting this in J2 and using the fact that the integral of an odd function over a ball centered
at the origin vanishes, we get

J2(N) = J21(N) + J22(N) + J23(N)

with

J21(N) =
∫

U(N)
[ f (x, N)− f (x(N), N)−

(
∂ f
∂x

(x(N), N), x− x(N)

)
]

× exp{−N
2
(DN(x− x(N)), x− x(N))}

[
1− N

6
∂3S
∂x3 (x(N), N)[x− x(N)]

]
dx,

J22(N) = −
∫

U(N)

N
6

(
∂ f
∂x

(x(N), N), x− x(N)

)
∂3S
∂x3 (x(N), N)[x− x(N)]

× exp{−N
2
(DN(x− x(N)), x− x(N))} dx,

J23(N) =
∫

U(N)
f (x(N), N) exp{−N

2
(DN(x− x(N)), x− x(N))} dx.

The first two integrals are estimated as above, that is

|J21(N)| ≤
∫

Rd

1
2

f2|y|2
(

1 +
NS3

6
|y|3

)
exp{−NΛm|y|2/2} dy

=
1
2

f2πd/2

[
d
2

(
2

Λm

)(2+d)/2
N−(d+2)/2 +

S3

6

(
2

Λm

)(5+d)/2 Γ((5 + d)/2)
Γ(d/2)

N−(d+3)/2

]
,

and
|J22(N)| ≤

∫
Rd

1
6

N f1S3|y|4 exp{−NΛm|y|2/2} dy
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=
1
6

f1S3πd/2
(

2
Λm

)(4+d)/2
N−(d+2)/2 Γ((4 + d)/2)

Γ(d/2)
.

Finally, J23(N) was estimated in Proposition 1 by representing it as the difference between the
integral over the whole space Rd and the integral over Rd \U(N), the first term yielding the main
term of the asymptotics and the second one being exponentially small. Exponentially small terms are
exactly the same as in the previous Proposition. Summarizing the estimates obtained and slightly
simplifying, yields Equation (22).

3. LLN and CLT for Internal Minima of the Phase

Theorem 1. Let Ω be a bounded open subset of Rd and f (x, N), S(x, N) be continuous functions on Ω×
[N0, ∞) satisfying conditions of Proposition 1. Assume that f (x, N) is strictly positive and the sequence of
global minima x(N) converges, as N → ∞, to a point x0 belonging to the interior of Ω.

Let ξN denote a Ω-valued random variable having density φN(x) that is proportional to
f (x, N) exp{−NS(x, N)}, that is

φN(x) = f (x, N) exp{−NS(x, N)}
(∫

Ω
f (x, N) exp{−NS(x, N)} dx

)−1
.

(i) Then ξN weakly converge to x0. More explicitly, for a smooth g, one has

|Eg(ξN)− g(x0)| ≤
(

c1√
N

+ |x(N)− x0|
)
‖g‖C1(Ω) (25)

with a constant c1 depending on f0, Λm, S3, d and fm = minx∈Ω f (x), which can be explicitly derived from
Equations (7) and (8).

(ii) If additionally S satisfies the conditions of Proposition 2, then

|Eg(ξN)− g(x0)| ≤
c2

N
‖g‖C2(Ω) + |x(N)− x0|‖g‖C1(Ω), (26)

with a constant c2 depending on f0, f1, Λm, S3, S4, d and fm.

Proof. From Propositions 1 and 2 we conclude that

|Eg(ξN)− g(x(N))| ≤ c1√
N
‖g‖C1(Ω) (27)

and
|Eg(ξN)− g(x(N))| ≤ c2

N
‖g‖C2(Ω) (28)

in cases (i) and (ii) respectively. The estimates of Equations (25) and (26) are then obtained from the
triangle inequality.

Next we were interested in the convergence of the normalized fluctuations of ξN around x0,
namely, of the random variables

ηN =
√

N(ξN − x0). (29)

To simplify the formulas below we shall assume that f (x, N) = 1, but everything remains valid
under general f satisfying the assumptions above,

To analyze the fluctuations, we use their moment generating functions

MN(p) = E exp{(p, ηN)} =
∫

Ω exp{−NS(x, N) +
√

N(p, x− x0)} dx∫
Ω exp{−NS(x, N)} dx

(30)
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for p ∈ Rd.
The numerator in Equation (30) can be written in the form of Equation (1) as

I(p) =
∫

Ω
exp{−N

(
S(x, N)− 1√

N
(p, x− x0)

)
} dx =

∫
Ω

exp{−NS∗(x, N)} dx

where the new phase is

S∗(x, N) = S(x, N)− 1√
N
(p, x− x0).

To shorten the notations, we shall denote by primes the derivatives of S or S∗ with respect to the
variable x. S∗ is also convex, as S is, and has the same derivatives of order 2 and higher as S. To apply
the Laplace method we need to find its point of global minimum, which coincides with its (unique)
critical point, that we denote by x∗ = x∗(p, N) and that solves the equation

(S∗)′(x∗, N) = 0⇐⇒ S′(x∗, N) = p/
√

N. (31)

As a preliminary step to proving our CLT let us perform some elementary analysis of this equation
proving its well posedness and finding its dependence on N in the first approximation. We shall need
the following elementary result.

Lemma 1. Let S(x) be a smooth convex function in Rd s.t. S′′(x) ≥ Λm everywhere and S′(x0) = 0. Then
for any K the mapping z '→ S′(x0 + z) is a diffeomorphism of the ball BK = {z : |z| ≤ K} on its image and
this image contains the ball BKΛm .

Proof. Injectivity is straightforward from convexity. Let us prove the last statement, that is, that for
any y ∈ BKΛm there exists z ∈ BK such that S′(x0 + z) = y. For any α > 0, this claim is equivalent to
the existence of a fixed point for a mapping

Φ(z) = z− α(S′(x0 + z)− y) = z− α
∫ 1

0
S′′(x0 + sz)z ds + αy

in BK. By the famous fixed point principle, to show the existence of a fixed point, it is sufficient to
show that Φ maps BK to itself, that is, ‖Φ(z)‖ ≤ K whenever ‖z‖ ≤ K. Let

ΛM = sup
z∈Bk

‖S′′(x0 + z)‖

and take α = 1/ΛM. Then the symmetric matrix B = 1− α
∫ 1

0 S′′(x0 + sz) ds is such that 0 ≤ B ≤
1−Λm/ΛM for all z ∈ BK. Hence, if z ∈ BK we have

‖Φ(z)‖ ≤ (1− Λm

ΛM
)K +

‖y‖
ΛM

.

Hence, the inequality ‖Φ(z)‖ ≤ K is fulfilled whenever ‖y‖ ≤ ΛmK, as was claimed.

Thus the image of the set U(N) contains the ball of radius ΛmN−1/3, so that for every y : |y| ≤
ΛmN−1/3 there exists a unique x ∈ U(N) such that S′(x) = y.

On the other hand, for any K we can take N1 = max(N0, (K/Λm)6), which is such that

p√
N

< ΛmN−1/3
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for all N > N1 and |p| ≤ K. Consequently, by Lemma 1, for such p and N, there exists a unique
solution x∗ = x∗(p, N) of Equation (31) in Ω, and x∗ ∈ U(N), i.e.,

|x∗ − x(N)| ≤ N−1/3. (32)

Next, expanding S′(x, N) in the Taylor series around x(N) (where S′(x(N), N) = 0), we find from
Equation (31) that

|S′′(x(N), N)(x∗ − x(N))− p√
N
| ≤ S3|x∗ − x(N)|2, (33)

and thus
|DN(x∗ − x(N))− p√

N
| ≤ S3N−2/3 (34)

(recall that we denote DN = S′′(x(N), N)).
This allows us to improve the preliminary estimate of Equation (32) and to obtain

|x∗ − x(N)| ≤ D−1
N

(
p√
N

+
S3

N2/3

)
≤ |p|+ S3

Λm
√

N
. (35)

Hence from Equation (33) we get

|DN(x∗ − x(N))− p√
N
| ≤ S3(|p|+ S3)

2

Λ2
mN

. (36)

Finally we conclude that

x∗(p, N) = x(N) +
1√
N

D−1
N p +

ε

N
(37)

with

|ε| ≤ S3(|p|+ S3)
2

Λ3
m

. (38)

We can now prove a convergence result that can be called the CLT for Laplace integrals.

Theorem 2. Under the assumption of Theorem 1 (i), assume additionally that x(N) converges to x0 quickly
enough, that is

|x(N)− x0| ≤ cN−δ−1/2 (39)

with positive constants c, δ. Then the fluctuations ηN =
√

N(ξN − x0) converge weakly to a centered Gaussian
random variable with the moment generating function

M(p) = exp{1
2
(p, D−1

N p)}. (40)

Proof. We show that the moment generating functions of the fluctuations ηN given by Equation (30)
converge, as N → ∞, to the function M(p), the convergence being uniform on bounded subsets of p.
By the well known characterization of weak convergence this will apply the weak convergence of the
random fluctuations ηN .

Applying Proposition 1 to the numerator and denominator of the r.h.s. of Equation (30) we get,
for N > N0,

MN(p) =
exp{−NS∗(x∗(p, N), N)}

exp{−NS(x(N), N)}

√
det DN√

det S′′(x∗(p, N), N)

(
1 +

ω(x, N, p)√
N

)
, (41)

where ω is a bounded function, with a bound, depending on S3, Λm, p, d, that can be found explicitly
from Equation (7).
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We have

S(x∗(p, N), N) = S
(

x(N) +
1√
N

D−1
N p +

ε

N
, N

)
= S(X(N), N) +

1
2

(
DN(

1√
N

D−1
N p +

ε

N
),

1√
N

D−1
N p +

ε

N

)
+ φN−3/2,

with

|φ| ≤ S3

∣∣∣∣D−1
N p +

ε√
N

∣∣∣∣3 ,

and consequently

S(x∗(p, N), N) = S(X(N), N) +
1

2N
(p, D−1

N p) +
1

N3/2 (p, ε) +
1

2N2 (DNε, ε) + φN−3/2.

Therefore,

S∗(x∗(p, N), N) = S(x∗(p, N), N)− 1√
N

(
p, x(N) +

1√
N

D−1
N p +

ε

N
− x0

)

= S(X(N), N)− 1
2N

(p, D−1
N p) +

1
2N2 (DNε, ε) +

φ

N3/2 −
1√
N
(p, x(N)− x0).

Using Equation (63) we conclude that∣∣∣∣N[S(x(N), N)− S∗(x∗(p, N), N)]− 1
2
(p, D−1

N p)
∣∣∣∣ ≤ c

(
N−1/2 + N−δ

)
,

where the constant c depends on p, S3, Λm, ΛM, d.
Next, from Equation (35) we get

‖S′′(x(N), N)− S′′(x∗(p, N), N)‖ ≤ S3
|p|+ S3

Λm
√

N
,

so that ∣∣∣∣∣
√

det DN√
det S′′(x∗(p, N), N)

− 1

∣∣∣∣∣ ≤ c√
N

(42)

with another constant c depending on p, S3, Λm, ΛM, d. Consequently, we deduce from Equation (41) that

MN(p) = exp{1
2
(p, D−1

N p) +
c(N, p)√

N
}
(

1 +
ω(N, p)√

N

)
(43)

with some functions c, ω, which are bounded on bounded subsets of p, implying the required
convergence of the functions MN(p).

4. Phase Minimum on the Border of the Domain of Integration

Here we present the estimates of the remainder in the asymptotic formula for the Laplace integrals
with the critical point of the phase lying on the boundary of the domain of integration.

Let us start with a simple one-dimensional result, which is version of the well known Watson
lemma. The proof can be performed as above by decomposing the domain of integration [0, a] into the
two intervals: [0, N−1/2] and [N−1/2, a]. We omit the detail of the proof.

Lemma 2. Let S(x, N) and f (x, N) be two continuous functions on the domain {x ∈ [0, a], N ≥ 1} with
a > 0. Let f be continuously differentiable and S be twice continuously differentiable with respect to x, with the
uniform bounds

|S′′(x, N)| ≤ s2, | f (x, N)| ≤ f0, | f ′(x, N)| ≤ f1,
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and the lower bound
S′(x, N) ≥ s1,

with some strictly positive constants s1, s2, f0, f1, where by primes we denote derivatives with respect to x. Then,
for the Laplace integral

I(N) =
∫ a

0
exp{−NS(x, N)} f (x, N) dx,

we have the asymptotic expression

I(N) =
exp{−NS(0, N)}

NS′(0, N)

(
f (0, N) +

ω(N)

N

)
+ ωexp(N), (44)

where
|ω(N)| ≤ f1

S′(0, N)
+

f0

(S′(0, N))2 s2es2/2,

|ωexp(N)| ≤ 2a f0 exp{−NS(0, N)} exp{−s1
√

N}.

Remark 6. One can obtain similar result by decomposing [0, a] = [0, N−γ] ∪ [N−γ, a] for any γ ∈ [1/2, 1),
in which case the exponentially small term will get the estimate

|ωexp(x, N)| ≤ 2a f0 exp{−NS(0, N)} exp{−s1N1−γ}.

This also shows that Lemma 2 remains essentially valid for small a of order a = N−γ, γ < 1, which is
used in the proof of the next result.

Let us turn to the general case. Namely, assume Ω is a bounded open set in Rd+1. The coordinates
in Rd+1 will be denoted (x, y) with x ∈ R, y ∈ Rd. Let

Ω+ = {(x, y) ∈ Ω : x ≥ ψ(y)}, (45)

with some smooth function ψ. It will be convenient to introduce the sections of Ω as the sets

Ω(x) = {y : (x, y) ∈ Ω}.

We are interested in the asymptotics of the Laplace integral

I(N) =
∫

Ω+

f (x, y, N) exp{−NS(x, y, N)} dxdy, N > N0, (46)

with continuous functions f and S referred to as the amplitude and phase respectively.
Let us first discuss the case of Ω+ with a plane boundary, that is with ψ(Y) = 0, or equivalently with

Ω+ = {(x, y) ∈ Ω : x ≥ 0}. (47)

We shall assume the following:
(C1’) f (x, y, N) is a continuously differentiable function on Ω+ (up to the border) with

f0 = sup
(x,y)∈Ω+ ,N≥N0

| f (x, y, N)| < ∞, f1 = sup
(x,y)∈Ω+ ,N≥N0

(
|∂ f
∂x
|+ |∂ f

∂y
|
)
< ∞;

(C2’) S(x, y, N) is thrice continuously differentiable function of x and y such that

∂2S
∂y2 (x, y, N) ≥ Λm
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(where ≥ is the usual order on symmetric matrices) and

∂S
∂x

(x, y, N) ≥ gm

with positive constants Λm, gm, and

S2 = sup
(x,y)∈Ω+ , N≥N0

max
(
‖∂2S

∂x2 ‖, ‖
∂2S

∂x∂y
‖, ‖∂2S

∂y2 ‖
)
< ∞,

S3 = sup
(x,y)∈Ω+ , N≥N0

max
(
‖∂3S

∂x3 ‖, ‖
∂3S

∂x2∂y
‖, ‖ ∂3S

∂x∂y2 ‖, ‖
∂3S
∂y3 ‖

)
< ∞.

Remark 7. As was noted above, the norms of higher derivatives in the estimates that we are using are their

norms as multi-linear operators. For instance, ‖ ∂2S(x,y,N)
∂x∂y ‖ is the minimum of constants α such that∣∣∣∣∣ d

∑
j=1

∂2S(x, y, N)

∂x∂yj
xyj

∣∣∣∣∣ ≤ α|x||y|.

(C3’) For any N > N0, there exists a unique point of global minimum of S in Ω+, this point lies
on the boundary {x = 0}, i.e., it has coordinates (0, y(N)) with some y(N) ∈ Rd, and the box

U(N) = {(x, y) : x ∈ [0, N−2/3], |y− y(N)| ≤ N−1/3} (48)

is contained in Ω+. We shall also use the sections

U(x, N) = {y : (x, y) ∈ U(N)}.

Let us denote by DN the matrix of the second derivatives of S as a function of y at (0, y(N), N),
and by gN the gradient of S as a function of x at (0, y(N), N), that is

DN =
∂2S
∂y2 (0, y(N), N), gN =

∂S
∂x

(0, y(N), N). (49)

The approach of our analysis is to decompose the integral I(N) into the sum of two integrals

I(N) = I′(N) + I′′(N),

over the sets {x ≤ N−2/3} and {x > N−2/3}, to represent the first integral as the double integral,
so that

I′′(N) =
∫

Ω∩{(x,y):x>N−2/3}
f (x, y, N) exp{−NS(x, y, N)} dxdy, (50)

I′(N) =
∫ N−2/3

0
I(x, N)dx, I(x, N) =

∫
Ω(x)

f (x, y, N) exp{−NS(x, y, N)} dy, (51)

and to use Proposition 1 for the estimation of I(x, N), x ∈ [0, N−2/3], and finally Lemma 2 to
estimate I′(N).

Theorem 3. Under the assumptions (C1’)–(C3’), the formula

I(N) = exp{−NS(0, y(N), N)}
(

2π

N

)d/2 1
N

[
f (0, y(N))

gN
√

det DN
+

ω(N)√
N

]
+ ωexp(N) (52)
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holds for Ω+ from Equation (47) and N > N1 = max(N0, (2S2/Λm)3), where ωexp(N) is an exponentially
small term and

|ω(N)| ≤ 1

gmΛd/2
m

[
f1

(
1 +

d
Λm

)
+ f0d max(S3, S2)emax(S3,S2)

(
1 +

1
Λ2

m
+

1
g2

m

)]
. (53)

Proof. Integral I′′(N) from Equation (50) yields clearly an exponentially small contribution, similar to
the integral I′′(N) in Proposition 1, so we omit the details here.

To calculate I(x, N) we have to know critical points of the phase S(x, y, N) as a function of y,
that is the solutions y∗(x, N) of the equation

∂S
∂y

(x, y∗(x, N), N) = 0. (54)

As S is convex in y, the solution is unique, if it exists. Proceeding as in Lemma 1, that is, searching
for a fixed point of the mapping

z '→ z− ∂S
∂y

(x, y(N) + z, N),

we find that there exists a unique solution y∗(x, N) of Equation (54) whenever

S2 < ΛmN1/3 ⇐⇒ N > N1 (55)

such that
|y∗(x, N)− y(N)| ≤ N−1/3. (56)

Next, using the Taylor expansion of ∂S/∂y around the point (0, y(N), N) we get that

0 =
∂S
∂y

(x, y∗(x, N), N)

=
∂2S

∂y∂x
(0, y(N), N)x +

∂2S
∂y2 (0, y(N), N)(y∗(x, N)− y(N)) + φ(x, y, N) (57)

with
φ(x, y, N) ≤ 2S3(|x|2 + |y∗(x, N)− y(N)|2) ≤ 4S3N−2/3.

This implies

y∗(x, N)− y(N) = −D−1
N

(
∂2S

∂y∂x
(0, y(N), N)x + φ(x, y, N)

)
,

so that
|y∗(x, N)− y(N)| ≤ S2 + 4S3

Λm
N−2/3, (58)

which is an essential improvement as compared with the initial estimate of Equation (56). It ensures
that the distance from y∗(x, N) to the border of U(x, N) is of order N−1/3, so that Proposition 1 can in
fact be applied to the integral I(x, N) leading to

I(x, N) = ωexp(x, y, N)

+ exp{−NS(x, y∗(x, N), N)}
(

2π

N

)d/2
⎡⎢⎣ f (x, y∗(x, N))(

det ∂S2

∂y2 (x, y∗(x, N), N)
)1/2 +

ω(x, y, N)√
N

⎤⎥⎦ , (59)
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where ωexp is exponentially small compared to the main term and

|ω(x, y, N)| ≤ dΛ−(1+d)/2
m

[
f1 +

d + 1
6Λm

f0S3eS3/6
]

.

In order to apply Lemma 2 we need to get lower and upper bounds to the quantities

∂

∂x
S(x, y∗(x, N), N) and

∣∣∣∣∣ ∂

∂x

(
det

∂S2

∂y2 (x, y∗(x, N), N)

)−1/2
∣∣∣∣∣ ,

respectively.
We have

∂

∂x
S(x, y∗(x, N), N) =

∂S
∂x

(x, y∗(x, N), N) +
∂S
∂y

(x, y∗(x, N), N)
∂y∗

∂x
(x, N).

But the second term vanishes. Hence

∂

∂x
S(x, y∗(x, N), N) =

∂S
∂x

(x, y∗(x, N), N) ≥ gm.

Next, differentiating Equation (54) with respect to y we obtain

∂y∗

∂x
(x, N) = −

[
∂2S
∂y2 (x, y∗(x, N), N)

]−1
∂2S

∂x∂y
(x, y∗(x, N), N),

implying the estimate

‖∂y∗

∂x
(x, N)‖ ≤ S2

Λm
. (60)

Consequently, using the formula for the differentiation of the determinant of invertible
symmetric matrices,

(det A)′ = det A tr (A′A−1),

we can estimate∣∣∣∣∣ ∂

∂x

(
det

∂S2

∂y2 (x, y∗(x, N), N)

)−1/2
∣∣∣∣∣ ≤ dS3

2Λ2
m

(
det

∂S2

∂y2 (x, y∗(x, N), N)

)−1/2

.

Hence Lemma 2 can be applied to the calculation of I′(N) given by Equations (51) and (59)
yielding Equation (52).

Remark 8. Arguing as in Proposition 2, one can improve the estimate of the remainder term in Equation (52)
to be of order N−1, by assuming more regularity on S and f .

The general case of Equation (45) can be directly reduced to the case of Ω+ from Equation (47).
In fact, changing coordinates (x, y) to (z, y) with z = x− ψ(y) we get that Ω+ turns to Ω̃+ = {(z, y) :
z ≥ 0}. Making this change of the variable of integration in I(N) yields

I(N) =
∫

Ω̃+

f̃ (z, y, N) exp{−NS̃(z, y, N)} dxdy, N > N0,
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with S̃(z, y, N) = S(z + ψ(y), y, N), f̃ (z, y, N) = f (z + ψ(y), y, N). Assuming that these functions
satisfy the conditions of Theorem 3 we obtain

I(N) = exp{−NS(ψ(y(N)), y(N), N)}
(

2π

N

)d/2 1
N

[
f (ψ(y(N)), y(N))

gN
√

det D̃N
+

ω̃(N)√
N

]
+ ω̃exp(N), (61)

where

D̃N =
∂2S̃
∂y2 (0, y(N), N) =

(
∂2S
∂y2 +

∂S
∂x

∂2ψ

∂y2 +
∂2S
∂x2

∂ψ

∂y

)
(ψ(y(N)), y(N), N)

and with similar change in the constants appearing in ω̃(N) and ω̃exp(N).

5. LLN and CLT for Minima on the Boundary

The results on weak convergence of random variables with exponential densities given above for
the case of the phase having minimum in the interior of the domain can be now recast for the case of
the phase having minimum on the boundary of the domain of integration. The following statements
are proved by literally the same argument as Theorems 1 and 2. We omit details.

Theorem 4. Let Ω be a bounded open set in Rd+1
+ with coordinates (x, y), x ∈ R, y ∈ Rd, and let

Ω+ = {(x, y) ∈ Ω : x ≥ 0}.

Let the functions f (x, y, N), S(x, y, N) be a continuous functions on Ω+ × [1, ∞) satisfying condition
(C1’)- (C3’) from Theorem 3. Assume moreover that f is bounded below by a positive constants and that the
sequence of global minima (0, y(N)) converges, as N → ∞, to a point (0, y0) belonging to the interior of Ω.

Let (ξx
N , ξ

y
N) denote a Ω+-valued random variable having density φN(x, y) that is proportional to

f (x, y, N) exp{−NS(x, y, N)}, that is

φN(x, y) = f (x, y, N) exp{−NS(x, y, N)}
(∫

Ω+

f (x, y, N) exp{−NS(x, y, N)} dxdy
)−1

.

Then (ξx
N , ξ

y
N) weakly converge to a constant (0, y0). More explicitly, for a smooth g, one has

|Eg(ξx
N , ξ

y
N)− g(0, y0)| ≤

(
c√
N

+ |y(N)− y0|
)
‖g‖C1(Ω) (62)

with a constant c depending only on S (actually on the bounds for the derivatives of S up to the third order).

Theorem 5. Under the assumptions of Theorem 4 assume additionally that

|y(N)− y0| ≤ cN−δ−1/2. (63)

Then the fluctuations (ηx
N , η

y
N) = (Nξx

N ,
√

N(ξ
y
n − y0)) converge weakly to a (d + 1)-dimensional

random vector such that its last coordinates form a centered Gaussian random vector with the moment
generating function

M(p) = exp{1
2
(p, D−1

N p)}, (64)

and the first coordinate is independent and represents a g0- exponential random variable. The rates of convergence
with all explicit constants are obtained directly from Theorem 3.
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6. Laplace Sums with Error Estimates

It is more or less straightforward to modify the above results to the of sums rather than integrals.
Namely, instead of the integral I(N) from Equation (1) let us consider the sum

Σ(N) =
1

Nd ∑
k=(k1,··· ,kd):xk=k/N∈Ω

f (xk) exp{−NS(xk, N), N > 1, (65)

where Ω is an open polyhedron of the Euclidean space Rd, with Euclidean volume |Ω|, the amplitude
f and the phase S are continuous real functions.

Theorem 6. Under the assumptions of Proposition 1,

Σ(N) = exp{−NS(x(N), N)}
(

2π

N

)d/2 [ f (x(N), N)√
det DN

+
ω̃(N)√

N

]
+ ωexp(N), (66)

where
|ω̃(N)| ≤ |ω(N)|+ ( f0 + f1)C(Λm, ΛM, S3),

and where ω(N) and ωexp(N) are the same as in Proposition 1 and C(ΛM, S3) is yet another constant
depending on Λm, ΛM, S3.

Proof. We use the well known (and easy to prove) fact (a simplified version of the Euler–Maclorin
formula) that

|
∫

Ω
g(x)− 1

Nd ∑
k=(k1,··· ,kd):xk=k/N∈Ω

g(xk)| ≤
1
N

∫
Ω
|g′(x)| dx. (67)

Consequently,

|Σ(N)− I(N)| ≤ 1
N

∫
| f ′(x)| exp{−NS(x, N)} dx +

∫
f (x)|S′(x, N)| exp{−NS(x, N)} dx, (68)

where I(N) is from Equation (1). The first integral on the r.h.s. of Equation (68) is clearly of order
1/N, as compared with the main term of I(N) given in Proposition 1. The pre-exponential term in the
second integral vanishes at the critical point (x(N), N) of S(x, N). Hence the required estimate for the
second integral is obtained directly from Proposition 1.

Now all LLN and CLT results obtained above for continuous distributions can be reformulated
and proved straightforwardly for the case of discrete random variables taking values in the lattice
{xk = k/N ∈ Ω} with probabilities proportional to f (xk) exp{−NS(xk, N)}.

7. Application to LLN and CLT of Large Deviations

Conditional LLN (conditioned on the sums of the corresponding random variables to stay in
a certain prescribed domain, usually some linear subspace or a convex set) are well developed in
probability (see e.g., [2,18] for two different contexts). The results above can be used to supply
exact estimates for the error terms in these approximations. To illustrate this statement in the most
transparent way let us start with the classical multidimensional local theorem of large deviations as
given in [4] (that extends earlier results of [6]). Namely, let ξ, ξ1, ξ2, · · · be a sequence of independent
identically distributed Rk-valued random vectors. Assume that the set O of vectors λ ∈ Rk such that
the moment generating function v(λ) = Ee(λ,ξ) is well defined has a nonempty interior O0. It is well
known (and easy to see) that the functions v and ln v are convex and the sets O0 and its closure Ō0 = Ō
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are convex. The function ψ(α) = inf[ln v(λ)− (α, λ)] is called the entropy and it is concave. Moreover,
the infimum in its definition is attained, so that there exists λ(α) ∈ O such that

ψ(α) = inf
λ
[ln v(λ)− (α, λ)] = ln v(λ(α))− (α, λ(α)),

and the function λ(α) is a diffeomorphism of O0 onto some open domain Ω in Rk. Assume that the
random variable ξ has a bounded probability density p(x), and define the family of distributions Pα

with the densities
πα(x) = exp{(λ(α), x)− ψ(α)}p(x).

Let pn(x) be the density of the averaged sum Sn/n = (ξ1 + · · ·+ ξn)/n.
Theorem 1 of [4] states (though we formulate it equivalently in terms of the density of Sn/n,

rather than Sn as is done in [4]) that if Φ is any compact set in Ω, then

pn(α) =
nk/2enψ(α)

(2π)k/2 det(M(α))1/2

(
1 +

s

∑
j=1

cj(α)n−j + O(n−s)

)
, (69)

where s is arbitrary, the estimate is uniform for α ∈ Φ, M(α) is the matrix of the second moments of
the distributions Pα, the coefficients cj(α) depend only on 2j + 2 moments of Pα and are uniformly
bounded in Φ.

The densities of Equation (69) are exactly of the type dealt with in our Theorems 1, 2, and 4, and
Equation (5). Thus, these theorems are applied directly for finding the rates of convergence for LLN
and CLT for the sums of independent variables when Sn/n is reduced to some convex bounded set
with smooth boundary or a linear subspace. These conditional versions of LLN may be applied even if
Eξ is not defined, so that the usual LLN does not hold.

When the random variable ξ has values in a lattice, a version with sums, that is Theorem 6, should
be applied to get the rates of convergence in the corresponding laws of large numbers.
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Abstract: The motivation of mixing distributions in communication/queueing systems modeling is
that some input data (e.g., service time in queueing models) may follow several distinct distributions
in a single input flow. In this paper, we study the sensitivity of performance measures on proximity
of the service time distributions of a multiserver system model with two-component Pareto mixture
distribution of service times. The theoretical results are illustrated by numerical simulation of the
M/G/c systems while using the perfect sampling approach.

Keywords: pareto mixture distribution; multiserver system; uniform distance; perfect simulation

1. Introduction

Mixtures of distributions arise in complex stochastic systems and they are extensively used
for statistical analysis in many real fields, such as lifetime modeling, ageing or failure processes,
engineering reliability [1], and survival theory [2], where data are assumed to be heterogeneous. The
application of the mixture of distributions in the modeling of queueing systems is often induced
by diverse structure of the customers in the system, e.g., by various service time requirements of
multiple classes of customers that arrive into the system (for instance, the transmission time of IP
datagrams with different lengths), or by the noisy/biased measurements that induce the so-called
contaminated distributions. Ignoring such a diversity at the modeling phase may lead to significant
deviation of system performance at practical implementation phase as compared to the modelled
values. This motivates various types of analysis, including the analysis of continuity, robustness,
monotonicity, stability, and sensitivity. In this regard, we mention the fundamental result obtained for
telecommunication system models by B. A. Sevast’yanov [3], and the basic monographs [4,5].

The authors would like to use this opportunity to pay tribute to Professor Vladimir Zolotarev
and to note his outstanding role as the founder of the International Seminar on Stability Problems for
Stochastic Models. One of the authors had a great pleasure to communicate with Professor Zolotarev
over many years, and all of the authors actively participated in the seminar he has founded. In the
context of this paper, it is especially appropriate to emphasize an important role of Professor Zolotarev
in the study of the stability and monotonicty of queuieng processes, see [6–8].
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Information flows in modern telecommunications and computing systems have the form of a
superposition of some sequential-parallel structures [9]. Ranging from small personal devices up to
large scale high-performance computing systems, all of these may be modeled as multiserver queueing
systems. Thus, it is highly important to study the performance of such systems and, in particular,
the sensitivity of stationary performance indexes with respect to the variability of input parameters.
However, direct output analysis of queueing systems is often tricky (see e.g., [10,11]), and explicit
expressions for the distributions of steady-state performance indexes of a multiserver system are, in
general, hardly available and, beyond classic models, known in some special cases only. In some
cases, the analysis may be performed by obtaining asymptotic upper bounds, as in the paper [12], or
studying the continuity of the process, as in [8], or stochastic stability of the queueing process, like
in [4,13], or by means of simulation. In the present paper, we utilize the latter approach.

This paper is dedicated to sensitivity analysis of a steady-state performance index of a multiserver
system with respect to service time distribution having the form of the so-called finite mixture [14].
However, instead of studying the direct parametric sensitivity, we focus on a more delicate analysis of
the (combined) effect of the service time distribution on the steady-state performance estimate. That is,
we compare the basic system to a disturbed one, using a sensitivity measure (Kolmogorov–Smirnov
distance) both for the service time distributions, and for the steady-state performance estimate
(queue size). The service time distribution perturbation is performed by changing the mixing coefficient
and parameters defining the mixture components. We formalize this at the end of Section 3.

In general, the output distributions are hardly analytically available and, in this case, we must be
able to obtain the steady-state performance indexes by simulation. As a basic model, we consider the
classical M/G/c model, where the steady-state distribution of the vector workload process is unknown
as well; however, it can be estimated by means of the recently developed method of regenerative
perfect simulation [15]. In more detail, as the target (perturbed) service time distribution we take the
two-component mixture of Type-II Pareto distributions with support on the positive axis, which is
known as Lomax distributions, as well as two-component exponential (hyperexponential) distribution.
Such a choice also allows for obtaining some analytical expressions. Our interest to Pareto distribution
is caused by the heavy tailed property of this distribution that is frequently observed in models of file
size and flow duration [16].

This paper continues the study performed in [17] in the context of monotonicity. The key idea of
the present paper is to study qualitatively the sensitivity of the steady-state distribution of the system
performance index (steady-state queue size) to the variability of service time distribution by means of
simulation. We also apply the auxiliary results on the failure rates comparison, which allows us to
characterize the monotonicity of some stationary performance measures.

The structure of the paper is as follows. In Section 2, we introduce the two-component mixture
of distributions and discuss some properties that are used in the subsequent analysis. Subsequently,
we define the uniform distance between the mixture and the corresponding parent distribution.
In Section 3, some known stochastic monotonicity properties of the multiserver system are collected,
which further are specified for the considered mixture distributions. In Section 4, we describe the
perfect sampling algorithm that is then used to sample from exact (but unknown) steady-state
distribution of a multiserver queue M/G/c. The results of simulation are presented in Section 5.
We study the sensitivity of the steady-state queue size distribution with respect to (w.r.t.) the shape
parameters of mixture and the mixing coefficient and illustrate stochastic monotonocity of the system
performance. The discussion of the simulation results finalizes the paper in the concluding Section 6.

2. Two-Component Mixture Distributions

The goal of this Section is to derive the uniform distance between the two-component mixture
distribution and its parent distribution. First, we introduce the two-component mixture, and then give
a few properties, including the stochastic monotonicity. This property is further used to obtain the
monotonicity of the corresponding output queueing process.
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Let Xi be independent random variables having mean EXi, density fi, tail distribution function
(d.f.) Fi(x) = 1− Fi(x), and failure rate

ri(x) =
fi(x)
Fi(x)

, i = 1, 2,

defined for such x that Fi(x) > 0. We assume that F1 �= F2 to avoid trivial case. Let I be a Bernoulli
random variable independent of Xi, with success probability P(I = 1) = p. Subsequently, it is called
the random variable

XM = IX1 + (1− I)X2,

has the two-component mixture distribution [18] (we use the index M to denote the mixture). The
mean EXM and density, fM of XM equal, respectively,

EXM = pEX1 + (1− p)EX2, (1)

fM(x) = p f1(x) + (1− p) f2(x), (2)

and it is easy to see that the tail distribution is

FM(x) = pF1(x) + (1− p)F2(x). (3)

Note that the d.f. Fi may belong to the same family of distributions but have other parameters.
In reliability analysis, such a mixture may be interpreted as a contaminated distribution [19], where
1− p is, as a rule, small enough. F1 is called the parent distribution and F2 is the contaminating
distribution. In this Section, we focus on the distance between the mixture and its parent distribution.

A straightforward analysis shows that the failure rate of the mixture has the following form [20]:

rM(x) =
p f1(x) + (1− p) f2(x)
pF1(x) + (1− p)F2(x)

= a(x)r1(x) + (1− a(x))r2(x), (4)

where

a(x) =
pF1(x)

pF1(x) + (1− p)F2(x)
, x ≥ 0.

In particular, it follows from Equation (4) that

rM(x) ≥ min(r1(x), r2(x)), x ≥ 0. (5)

It is worth mentioning that the mixture preserves the monotonicity of failure rate in the following
way: if both rates ri(x) are non-increasing, that is d.f.’s Fi(x) are decreasing failure rate distributions
(DFR), then the mixture FM(x) is DFR distribution as well [21]. Indeed, one can check that

r′M(x) = a(x)r′1(x) + (1− a(x))r′2(x)− a(x)(1− a(x))(r1(x)− r2(x))2, (6)

also see [1]. Subsequently, if r′i(x) < 0, i = 1, 2, it follows from Equation (6) that r′M(x) < 0, since
a(x) ∈ [0, 1] for any x ∈ (0, ∞). In particular, it follows from Equation (6) that the mixture of two
exponential distributions is DFR (note that the exponential distribution has constant failure rate).

Another example of a DFR distribution is the Type-II Pareto distribution, denoted by Pareto(αi, x0),
having d.f. (see e.g., [22])

Fi(x) = 1−
(

x0

x0 + x

)αi

, x ≥ 0, x0 > 0, αi > 0, i = 1, 2.
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The failure rate of Pareto(αi, x0) equals

ri(x) =
αi

x0 + x
, x ≥ 0, i = 1, 2, (7)

and it is monotonically decreases to 0 as x → ∞. As has been noted above, the two-component mixture
of Pareto distributions is DFR distribution. However, the failure rate of finite mixtures, in general, is a
complicated function [20].

The uniform distance between distributions F and G, defined as [12]

Δ(F, G) = sup
x
|F(x)− G(x)|, (8)

is a recognised measure, which is actively used in the sensitivity analysis [12]. It is easy to see that the
uniform distance Δ(FM, F1) between the mixture distribution Equation (3) and its parent distribution is

Δ(FM, F1) = sup
x≥0
|pF1(x) + (1− p)F2(x)− F1(x)| = (1− p) sup

x≥0
|F1(x)− F2(x)|. (9)

Note that, if the densities fi exist, and there exists x∗ that delivers the supremum in Equation (9),

Δ(FM, F1) = |F1(x∗)− F2(x∗)|,

then x∗ satisfies the equality
f1(x∗) = f2(x∗). (10)

By definition of the failure rates, ri, it then follows that

r1(x∗)F1(x∗) = r2(x∗)F2(x∗).

Thus, expression Equation (9) can be written in the following convenient form

Δ(FM, F1) = (1− p)
|r2(x∗)− r1(x∗)|

r2(x∗)
F1(x∗) = (1− p)

|r1(x∗)− r2(x∗)|
r1(x∗)

F2(x∗). (11)

Note that Equation (11) allows obtaining the following upper bound for the distance Δ(FM, F1):

Δ(FM, F1) ≤ (1− p)
|r2(x∗)− r1(x∗)|

r1(x∗)
=: δ(x∗). (12)

In particular, for the hyperexponential distribution, that is for two-component mixture of
exponential distributions with densities fi(x) = λie−λi x, i = 1, 2, it follows from Equation (10),
that

x∗ =
log λ1 − log λ2

λ1 − λ2
,

and in this case expression Equation (11) becomes

Δ(FM, F1) = (1− p)
|λ2 − λ1|

λ2

(
λ1

λ2

)− λ1
λ1−λ2 ≤ (1− p)

|λ2 − λ1|
λ2

. (13)

Note that the last inequality in Equation (13) is a particular case of Equation (12). Expression
Equation (13) is consistent with a more general result for the so-called univariate scale mixture XM
having form [2]

XM
d
=

X1

Y
, (14)
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with d.f.
F̂M(x) =

∫ ∞

0
F1(θx)dG(θ),

where F1 is the parent distribution of the random variable X1 and G is the distribution of a mixing
random variable Y ≥ 0. It is clear that the transformation Equation (14) is a scale change, and if
Y ∈ {y1, . . . , ym} is a discrete random variable, then Equation (14) becomes

XM =
m

∑
i=1

1
yi

I(Y = yi)X1, (15)

which is a finite mixture, where I is an indicator function. The aforementioned general result for the
univariate scale mixture states that if F1 is an exponential d.f., then an upper bound for the uniform
distance may be obtained as follows [2,23]:

Δ(F̂M, F1) ≤ E|Y− 1|. (16)

To show that Equation (16) indeed coincides with Equation (13) for the two-component scale
mixture case, let Y have point masses at 1 and λ2/λ1 with probabilities p and 1− p, respectively.
It immediately follows from Equations (15) and (16) that

E(Y− 1) = (1− p)
|λ1 − λ2|

λ2
.

Now, we return to the two-component Pareto(αi, x0) mixture FM. It follows from Equation (11)
that in this case

Δ(FM, F1) = (1− p)
|α1 − α2|

α2

(
α2

α1

) α1
α1−α2

, (17)

where the value x∗ satisfying equality Equation (10) equals

x∗ = x0

((
α1

α2

) 1
α1−α2 − 1

)
.

Note that the r.h.s. of Equation (17) is similar to the r.h.s. of Equation (13). This similarity is
caused by the specific shape of the failure rate of the distribution Pareto(αi, x0). Moreover, in such a
case, the quantity δ(x∗) defined in Equation (12) does not depend on x∗ and, thus, for Pareto mixture,
it readily follows from Equation (12) that

Δ(FM, F1) ≤ (1− p)
|α1 − α2|

α2
=: δ(α1, α2). (18)

In Figure 1, to illustrate the dependence of the uniform distance on the parameter α2 of the
contaminating distribution, we depict Δ(FM, F1) jointly with δ(α1, α2) for fixed α1 = 2 and p = 0.9 by
varying α2 in the interval (1, 5).
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Figure 1. The distance Δ(FM, F1) with mixing parameter p = 0.9 and an upper bound δ(α1, α2) vs.
parameter α2.

3. Multiserver System Sensitivity

In this Section, we formalize our main goal for the numerical experiments conducted and
discussed in Section 5. We then demonstrate how stochastic and failure rate ordering can be applied
to multiserver systems with mixed service time distribution. The numerical experiments equipped
with the stochastic comparison technique not only allow for obtaining the absolute value, but also
characterizing the monotonicity of performance indexes.

Consider a classical First-Come-First-Served (FCFS) c-server M/G/c queueing system that is fed
by a Poisson input with rate λ, arrival instants {ti, i ≥ 1} with t1 = 0, independent and identically
distributed (iid) interarrival times Ti = ti+1 − ti and iid service times {Si, i ≥ 1}. Note that λ = 1/ET,
where T is generic interarrival time. Now, we consider the c-dimensional vector of the remaining
workload process in such a system,

Wi = (Wi,1, . . . , Wi,c),

where Wi,k is the kth smallest component of the vector which is observed by the ith arrival [24].
Thus, the vector components are kept in ascending order,

Wi,1 ≤ · · · ≤ Wi,c,

and the quantity Wi,j, “observed” by the arriving customer i, equals the unfinished work which must
be done by server j provided no new work arrives after arrival instant ti of customer i; j = 1, . . . , c.
If there are no idle servers upon arrival of customer i, then s/he waits in a common infinite capacity
queue until the server with minimal work, Wi,1, becomes free. It is easy to see that Wi,1 is the waiting
time of customer i which starts being served at time ti + Wi,1. It is well-known that the workload
vector sequence follows the celebrated stochastic Kiefer–Wolfowitz recursion [25]:

Wi+1 = R(Wi + e1Si − 1Ti)
+, (19)

where e1 = (1, 0, . . . , 0) and 1 is the vector of ones, operator R puts the components in an ascending
order, and operation (·)+ = max(0, ·) is applied componentwise (we omit the sub-index for a generic
element of a sequence). In what follows, we assume that the stability condition holds [25],

ρ := λES < c. (20)
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Define the departure instant of customer i by di = ti + Wi,1 + Si. Now define the process

Qn = ∑
j≥1, j �=n

I(tj ≤ tn < dj), (21)

counting the queue size (number of customers in the system) at the arrival instant tn. Under condition
Equation (20), Qn converges in distribution, as n → ∞, to the steady-state queue size Q, with
stationary distribution

πn = P(Q = n), n ≥ 0.

Note that when service times Si are exponential, the steady-state queue size distribution, πn, n ≥ 0,
is well known [26]:

πn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
c−1
∑

k=0

ρk

k! +
ρc

(c− 1)!(c− ρ)

)−1

, n = 0,

π0
ρn

n! , 1 ≤ n ≤ c,

π0
ρn

c!cn−c , n > c.

(22)

The operators R(·) and (·)+ in Equation (19) preserve ordering, and it allows for us to establish
the monotonicity of the workload sequence in the multiserver system in the case when the driving
sequences {T(i)

n , S(i)
n , n ≥ 1}, i = 1, 2 satisfy stochastic order. We recall that the stochastic order

X2 ≤st X1 between two random variables X1, X2 means that the tail d.f.’s satisfy inequality

P(X2 > x) ≤ P(X1 > x), x ≥ 0. (23)

In is known [27] that, in two c-server systems with stochastically ordered input sequences,
T(2) ≥st T(1) and S(2) ≤st S(1), the workload sequences {W(i)

n }, i = 1, 2, are (componentwise) ordered
in the following way

W(2)
n ≤st W(1)

n n ≥ 1. (24)

It also holds for the steady-state workloads:

W(2) ≤st W(1).

If the input in both systems is the same, which is T(2) =st T(1), then the the queue length process
at the arrival instants satisfy similar ordering both in path-wise sense and in steady-state [27]

Q(2) ≤st Q(1). (25)

The stochastic ordering ≤st can be transformed into the ordering with probability 1 by the
coupling technique [28]. In the context of this work, it is worth mentioning that the sufficient condition
for the stochastic ordering S(2) ≤st S(1) is the failure rate ordering [29]:

r2(x) ≥ r1(x), x ≥ 0, (26)

where ri is the failure rate of r.v. S(i), i = 1, 2. We summarize the discussion in the following lemma
which is a straightforward result of [27].

Lemma 1. Consider two c-server systems with stochastically equivalent input, T(2) =st T(1), and failure rate
ordered service time distributions, r2(x) ≥ r1(x), x ≥ 0. Subsequently, Equation (25) holds.

Now, we consider two M/G/c queueing systems, denoted by Σ(1) and Σ(M), fed by
(stochastically) identical Poisson process with rate λ. Let the first system Σ(1) have the service time
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distribution F1. We refer below to the first system as being basic. In the second (contaminated) system
Σ(M), we use service time distribution FM defined by Equation (3), with the same F1 and some F2 and
p ∈ (0, 1). Let now Q(1) (with d.f. FQ(1) ) be the steady-state queue size in the first system. Define

similarly Q(M) and FQ(M) for the system Σ(M). We are interested in studying the sensitivity of the
uniform distance

Δ(FQ(M) , FQ(1) ) = sup
x≥0
|FQ(1) (x)− FQ(M) (x)|. (27)

More formally, we study the effect of Δ(FM, F1) given by Equation (9), on the steady-state
performance Δ(FQ(M) , FQ(1) ) defined in Equation (27), by varying the mixing coefficient p and
parameters defining the mixture components F1 and F2. However, since the distributions FQ(M)

and FQ(1) are not available explicitly in general, we use simulation to obtain the corresponding
estimates. As such, we study a combined effect of the service time distribution on the steady-state
performance estimate.

The generic service time S(M) in the contaminated system Σ(M) has a two-component mixture
d.f. FM and, thus, it follows from Equation (5) that the conditions of Lemma 1 are satisfied, since M,
where rM is the failure rate of S(M). In particular, this means that the basic system Σ(1) is heavier
loaded than the contaminated system Σ(M). It then follows from Lemma 1 and Equation (23) that the
difference FQ(1) (x)− FQ(M) (x) (see Equation (27)) is negative for all x ≥ 0. In Section 5, we study the
distance Equation (27) numerically.

4. Exact Steady-State Simulation by Regenerative Approach

In general, there are no closed form expressions for the steady-state distribution of the queue
length and vector workload process in an M/G/c system. Although a number of approximations
exist [30–33], in general the accuracy of such methods is a point of discussion [34], especially when
the service times distribution is heavy-tailed. Thus, to study the sensitivity we need to rely on
simulation. A contribution of this work is that unlike classical discrete-event simulation (crude
Monte-Carlo), which always has the so-called transient (warm-up) period during which an influence
of initial conditions exists, we use the perfect simulation technique that allows exact sampling from the
(unknown) steady-state distribution. In what follows, we rely on the regenerative approach designed
for the M/G/c system in the work [15] (although there are recently developed more sophisticated
techniques based on backward coupling, for instant [35], which are valid for a more general G/G/c
system). Below, we outline the approach from [15].

This approach uses the so-called a Random Assignment (RA) system M/G/c as a majorant for
the original M/G/c system. In the RA system, each new customer is assigned to arbitrary server
randomly (that is with probability 1/c). As a result, the remaining workload in server j that customer
n meets, denoted by Vn,j, satisfies recursion

Vn+1,j = [Vn,j + I(Un = j)Sn − Tn]
+, j = 1, . . . , c, (28)

where iid random variables {Un} are uniformly distributed over {1, . . . , c}, and I(Un = j) = 1 means
that customer n is routed to server j. The RA system is indeed is a collection of M/G/1 systems, each
with Poisson input with rate λ/c. As a result, in each, such a system the stationary workload, D, is
distributed in accordance with the following version of the Pollaczek–Khintchine formula [15]

D =
L

∑
i=1

S(e)
i , (29)

where L has geometric distribution

P(L = k) =
(ρ

c
)k(1− ρ

c
)
, (30)
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and S(e) has the so-called equilibrium (integrated tail) distribution,

P
(

S(e) > x
)
=

1
ES

∫ ∞

x
FS(t)dt, (31)

where FS is the d.f. of original service time S. It is well-known that both workload process and
queue size process in the RA system dominate the corresponding process in the original M/G/c
system [5,24,27]. Applying coupling, this dominance holds with probability (w.p.) 1. In particular, the
regenerations of RA system (the instants when customers meet totally idle system) are also regeneration
instants of the original system M/G/c. These results then are used to sample from the steady-state
distribution of the RA system as follows:

1. sample the values Li, i = 1, . . . , c according to geometric distribution Equation (30);
2. sample S(e)

1 , . . . , S(e)
Li

, i = 1, . . . , c according to integrated tail distribution Equation (31); and,
3. construct the (stationary) components Di for i = 1, . . . , c, by formula Equation (29).

Subsequently, starting from the steady-state vector V1 = (D1, . . . , Dc) containing iid components,
the recursion Equation (28) is applied to each separate queue in the RA system until the event

Vτe = (Vτe ,1, . . . , Vτe ,c) = 0

happens at the (arrival) instant of some customer τe. Thus, τe is the length of equilibrium (steady-state)
remaining regeneration period. Note that by construction, at each step of this recursion, the workload
vector has steady-state distribution in the RA system. Omitting unnecessary details, the remaining
steps of algorithm are as follows [15]:

1. sample stochastic copies V(k) = (V(k)
1 , V(k)

2 , . . .), k = 1, 2, . . . of the sequence of workload vectors

using recursion Equation (28); each sequence starts with V(k)
1 = 0 and lasts until the event

V(k)
τ(k) = 0 happens at some instant τ(k); note that {τ(k)} are iid random variables distributed as a

generic regeneration period τ of RA system;
2. repeat previous step until the event τ(j) > τe happens in some sample V(j) = (V(j)

1 , V(j)
2 , . . .);

and,
3. the value V(j)

τe of the workload vector V(j) at instant τe, has the target steady-state distribution of
the workload in the original M/G/c system.

We note that, although this approach allows to sample exactly from the steady-state distribution,
the regeneration period in the dominated RA system can be very large in practice, and, thus, can lead
to unacceptable long simulation. For further details on perfect sampling, see [15,35–37].

Now we explain how to sample from the equilibrium distribution of a two-component mixture.
Let FM be the tail of a two-component mixture Equation (3). Subsequently, it follows from
Equation (3) that

F(e)
M (x) =

1
EXM

∫ ∞

x
FM(u)du =

pEX1

EXM
F(e)

1 (x) +
(1− p)EX2

EXM
F(e)

2 (x). (32)

It is clearly seen from Equation (32) that the equilibrium distribution of a mixture is itself a
two-component mixture of equilibrium distributions of the components. Thus, to sample from the
equilibrium distribution (32), we sample from F(e)

1 w.p. q = pEX1/EXM, and sample from F(e)
2 w.p.

1− q. Finally, note that, as easy to see, if the original distributions are Pareto(αi, x0), then F(e)
i are also

Pareto(αi − 1, x0), i = 1, 2 (also see [38]).

5. Simulation Results

As a sanity check of the perfect sampling M/G/c model, we validate the algorithm via the
M/M/c system having input rate λ = 7.5, service rate μ = 1.5, c = 10 servers, and ρ = λ/μ = 5.
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We run N = 5000 samples from steady-state process using perfect simulation and build the empirical
queue size distribution vs. theoretical values that were obtained from Equation (22). We depict the
results of validation on Figure 2. Note that the uniform distance between the empirical and theoretical
distributions is 0.0091.

Figure 2. Theoretical distribution of the steady-state queue size in an M/M/10 system vs.empirical
distribution (N = 5000 samples), with input rate λ = 7.5, service rate μ = 1.5. The uniform distance
between the theoretical and estimated queue size distributions equals Δ = 0.0091.

5.1. Experiment 1: Hyperexponential Case

Now, we step away from the basic Markovian case, M/M/c, having service time distribution
F1(x) = 1 − e−μ1x, by introducing a contaminated system M/G/c with generic service time,
S(M), having two-state hyperexponential distribution, H2, with Fi(x) = 1 − e−μi x, and mixing
coefficient p ∈ (0, 1). Note that such a case has computationally tractable solution, see [39].
However, we use the perfect sampling algorithm to check the accuracy of the sensitivity analysis.
We fix

μ1 = 2, c = λ = 5, p = 0.7,

and vary μ2 over range (2, 8] with step 0.4. We obtain the empirical queue size d.f., F̂Q(1) , in the
basic, and F̂Q(M) in the contaminated system, and construct Equation (27) for each combination of the
parameters while using N = 10,000 samples from the steady-state distribution. The linear dependence
of Δ(F̂Q(M) , F̂Q(1) ) on Δ(FM, F1) is clearly seen in Figure 3.

5.2. Experiment 2a: Pareto Case, Sensitivity to Mixing Parameter

In the following experiments, we use an M/G/c system with c = 4, load ρ = 0.5, and Pareto(α1, 1)
service time d.f., with α1 = 2.1 as the basic system for comparison. The input rate of the basic system
is taken as λ = ρc(α1 − 1) so as to guarantee the desired load ρ = 0.5. Note that, to the best of our
knowledge, there is no explicit expression for the steady-state queue size in such a system, and thus
simulation is used to obtain the corresponding estimates of the steady-state queue size d.f. To obtain
such an estimate, N = 10,000 samples from the corresponding steady-state distribution are obtained by
the perfect sampling technique described in Section 4.

In the first experiment, we study the steady-state queue size distribution sensitivity to the mixing
parameter, p. The mixing coefficient is iterated over the discrete values p = 0.95, 0.9, . . . , 0.25, and the
empirical steady-state queue size d.f., F

Q(M)
p

, is constructed for the disturbed system with mixture

service time d.f., FM given in Equation (3), consisting of Pareto(α1, 1) and Pareto(α2, 1) with mixing

238



Mathematics 2020, 8, 1277

parameter p, where α2 = 4.9. The input rate λ is fixed at the level λ = 2.2, so as to guarantee the
load ρ = 0.5 in the basic system. Note that the parameter p is varied in such a way that the mixing
proportion of Pareto(α2, 1) distribution becomes larger with smaller p, and dominates the Pareto(α1, 1),
for p < 0.5. Finally, we plot the values Δ(FM, F1) vs. Δ(F̂

Q(M)
p

, F̂Q(1) ) for the values p given. The results

are depicted in Figure 4. Note that the dependence of the distance is approximately linear in mixing
probability, p.

Figure 3. Distance, Δ(F̂Q(M) , F̂Q(1) ), between the empirical queue size d.f. in a basic M/M/5 system
with input rate λ = 5, service rate μ1 = 2, compared to a contaminated M/H2/5 system with input
rate λ = 5 and hyperexponential service times being a mixture with μ1 = 2 and μ2 = 2, 2.4, . . . , 8,
p = 0.7, obtained from N = 10,000 samples, vs. service time d.f. distance, Δ(FM, F1).

Figure 4. Distance between the empirical queue size d.f. in a basic M/G/c system with c = 4, ρ = 0.5,
F1 being Pareto(2.1, 1) service time d.f. and λ = 2.2, and system with a mixture, FM of Pareto(2.1, 1)
and Pareto(4.9, 1) service time d.f. vs. the distance between F1 and FM, for varying p = 1, 0.95, . . . , 0.25.

5.3. Experiment 2b: Pareto Case, Sensitivity to Contaminating Distribution

In the following experiment, we study the sensitivity of the steady-state queue size distribution
on the parameter α2 of the mixture. Now p = 0.7 is fixed, and α2 is iterated over the discrete
set α2 ∈ {2.1, 2.3, . . . , 4.9}, ceteris paribus. As in the previous experiment, we build the empirical
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steady-state queue size distribution of the basic system, F̂Q(1) , by exact sampling from steady state
using the method described in Section 4. We plot the values Δ(FM, F1) vs. Δ(F̂

Q(M)
α2

, F̂Q(1) ) for the given

values of α2 as a parametric functions of α2. The results are depicted in Figure 5, where, unlike the
previous scenarios, the nonlinear dependence on α2 is clear.

Figure 5. Distance between the empirical queue size d.f. in a basic M/G/c system with c = 4, ρ = 0.5,
F1 being Pareto(2.1, 1) service time d.f. and λ = 2.2, and system with a mixture, FM of Pareto(2.1, 1)
and Pareto(α2, 1) service time d.f. vs. the distance between F1 and FM, for fixed p = 0.7 and varying
α2 = 2.1, 2.3, . . . , 4.9.

Note that the non-linear dependence of Δ(FQ(M) , FQ(1) ) on α2 may be caused by the non-linear
dependence of the distance of service time distributions, Δ(FM, F1), on α2, see Figure 1. Moreover,
the mean service time, S(M), also differs from mean service time of the basic system, which causes
appropriate changes in the load, ρ, in the disturbed system, see Figure 6.

Figure 6. Dependence of the system load, ρ, on the parameter α2 = 2.1, 2.3, . . . , 4.9 of the mixture
distribution in an M/G/c system with c = 4, λ = 2.2, mixture, Fm of Pareto(2.1, 1) and Pareto(α2, 1)
service time d.f. with mixing coefficient p = 0.7.

Using the results of Experiment 2b, we illustrate the stochastic monotonicity property
Equation (25) for selected values of parameter α2. Figure 7 depicts the results.
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Figure 7. Stochastic monotonicity of the system output, in terms of steady-state queue size d.f., on
the parameter α2 = 2.1, 2.5, 4.9 of the mixture distribution in an M/G/c system with c = 4, λ = 2.2,
mixture, FM of Pareto(2.1, 1) and Pareto(α2, 1) service time d.f. with mixing coefficient p = 0.7.

5.4. Experiment 2c: Pareto Case, Constant Load

In the final experiment, we study the joint effect of both the parent and the contaminating (Pareto)
distributions. To do so, we change α1 = 2.1, 2.5, . . . , 4.9, vary α2 = α1, α1 + 0.4, . . . , 4.9. To mitigate the
effect of changing load illustrated by Figure 6, we simultaneously change the parameter λ, so as to
guarantee constant load ρ = 0.5 for all systems, keeping p = 0.7, c = 4 constant. The comparison is
done to the system with the parent distribution of α1 = 2.1 of the service times. Each point is obtained
then by N = 10,000 samples by the perfect sampling technique. Figure 8 depicts the results, where
the color reflects the parent distribution parameter, α1, and size of a dot is proportional to α2. With
increasing distance of the parent distribution from the contaminating distribution, the distance changes
in a linear manner. Moreover, increased α1 changes the starting point (which in all lines corresponds to
the parent distribution with parameter α1), and increasing α2 for fixed α1 increases the distance both in
the input (for the mixture) and performance index (queue size distribution distance). Interestingly,
for the lower line that corresponds to the fixed α1 = 2.1 and varying α2, there seems to be a slightly
negative slope, which is likely to be the result of an increasing variance and, hence, decreasing accuracy.
However, this effect might be interesting to study separately in the future.

Figure 8. Distance between the empirical queue size d.f. in a basic M/G/c system with c = 4,
F1 being Pareto(α1, 1) service time d.f., and system with a mixture, FM of Pareto(α1, 1) and Pareto(α2, 1)
service time d.f. vs. the distance between F1 and FM, for fixed p = 0.7, fixed ρ = 0.5, varying
α1 = 2.1, 2.4, . . . , 4.9 (color), varying α2 = α1, α1 + 0.4, . . . , 4.9 (dot size), and varying λ, so as to fix the
load, ρ.
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Finally, we note that, to speedup the computation, we used parallel computation of the uniform
distance for various system configurations using the resources of the High-Performance Datacenter of
Karelian Research Centre of Russian Academy of Sciences.

6. Conclusions and Discussion

In this paper, the effect of the service time distribution perturbation on the steady-state
performance measures of a multiserver queueing system is studied. The explicit form for the sensitivity
measure (Kolmogorov-Smirnov distance) between the service time distribution functions was obtained,
and the performance estimates were obtained by the regenerative perfect simulation technique.
The simulation results outline the qualitative nature of the sensitivity, which is, in most cases, linear
(possibly after appropriate scaling of the input rate to guarantee the constant load).

The approach to sensitivity analysis that is presented in this paper can be applied to more
sophisticated, and more practically oriented systems, such as the simultaneous service multiserver
system [40], which would result, though, in an increased dimension of the system state. However, we
note that the steady-state exact sampling by regenerative simulation has several serious drawbacks.
First, the average working time of the algorithm may be infinite [36], e.g., in a system with large number
of servers (which indeed depends on the regenerative cycle length). This problem can be solved
either by the coupling-from-the-past technique [35] (which, although, is rather technically tricky),
or by non traditional regenerative techniques, such as the artificial regeneration [41] or regenerative
envelopes [40]. Finally, the study may be extended to larger classes of service time distributions.
At that, we leave these as opportunities for future research.
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Abstract: A model of scientific citation distribution is given. We apply it to understand the role
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related fields. The proposed model is based on a generalization of such well-known distributions
as geometric and Sibuya laws. Real data analysis of the Hirsch index and corresponding citation
numbers is given.
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1. Introduction

In theory, a rather large number of indexes are proposed, which supposedly measure the
significance of the scientific publications of an author. Among the most popular of them should
be noted:

(i1) the total number of citations of a particular author [1–3];
(i2) Hirsch index of the author [4] (see also [5]).

It is these two indexes that we consider in the proposed work.
The definition of the numerical value of the index (i1) is clear from its name.
Recall the definition of the Hirsch index (see [4]). The Hirsch Index h is the number of articles

that have been cited at least h times each. This index was introduced in [4], where its properties were
explained. In our opinion, these do not correspond to the index purpose. However, we dwell on
the description of both the positive and negative sides of the Hirsch index after constructing citation
models for scientific articles. One of them has already been stated by us in preprint [6].

2. Citation Model Construction

We now turn to the construction of the author’s citation model. It will be considered as a composite
of two models. The first of it describes the process of publishing an article by one author which will be
cited, and the second describes the process of citing such an article.

Let us make some assumptions, which we discuss later.

Assumption 1. Let the probability of rejection or non citing of the manuscript be q and the decisions on
publication of different manuscripts are taken independently.

Mathematics 2020, 8, 713; doi:10.3390/math8050713 www.mdpi.com/journal/mathematics245
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Then it is clear that the probability that the scientist will have exactly k cited papers equals
q(1− q)k, k = 0, 1, . . .. In other words, the number of publications of a scientist has a geometric
distribution with parameter q. This distribution supposes that the number of an author publications
may be arbitrarily large. However, (1− q)k tends to zero rather fast as k→ ∞ and, therefore, the mean
value of the number of publications is not too large. The generating function of this distribution has
the form

Q(z) =
q

1− (1− q)z
. (1)

Of course, here we assume that all the journals to which the author sends manuscripts have the
same review system, i.e., all of them accept the manuscripts of this author with the same probability
1− q. More realistic is the situation with a random parameter q:

Q(z) =
∫ 1

0

q
1− (1− q)z

d Ξ(q),

where Ξ is a probability distribution on [0, 1] interval and then IP{X = k} = IE(q(1− q)n).
Let us go back to (1). How large may be the time spent by a scientist to publish a corresponding

number of papers? Of course, this time is a random variable T and we are interested in its distribution.
The usual assumption on the working time is its exponential distribution with parameter λ = IET and
the Laplace transform ϕ(t) = 1/(1 + λt). Suppose that times needed for the publication of j-th paper
is Tj, and T1, T2, . . . are independent and identically distributed as T random variables. Then the time
needed for all publications has the Laplace transform

∞

∑
k=1

ϕk(t)q(1− q)k−1 =
1

1 + λt/q
,

i.e., it has exponential distribution with the parameter λ/q.
It is natural to assume that each cited publication will produce some number of citations. Of course,

the likelihood that the article will be quoted again depends on the number of previous citations.

Assumption 2. Assume the probability that an article having k− 1 (k ≥ 1) citations will not have new quotes
equalling p/kγ where p is the probability that the article will not be quoted for the first time. The parameter γ is
responsible for the speed of convergence of the rejection probability to zero.

Consequently, the likelihood that the article will be quoted exactly k times equals p/kγ ∏k−1
j=1 (1−

p/jγ). For the case of γ = 1, the generating probability function for the number of citations of this
article is 1− (1− z)p. The corresponding distribution function is named after Sibuya [7]. Below we
consider the case of arbitrary positive γ. The corresponding study has general mathematical interest.
Therefore, we provide it in a number of sections below.

3. Distribution of Citation Number of a Paper

Let us consider an ordered sequence of experiments {En; n = 1, 2, . . .}, where an event A may
appear in each of the experiments with the probability pn. Define a random variable X as the number
of the first experiment in which A appears. We suppose that X is an improper random variable in the
sense that it may take infinite value (that is, the event A will never appear). For the case IP{X = ∞} = 0
we say that X is a proper random variable. It is clear that, since we define any product from 1 to 0 to
be 1,

IP{X = n} = pn ·
n−1

∏
k=1

(1− pk) (2)
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and

IP{X = ∞} = lim
n→∞

n−1

∏
k=1

(1− pk).

Particular cases are:

1. The probabilities pn = p are constant. So (2) is

IP{X = n} = p · (1− p)n−1, IP{X = ∞} = 0 (3)

corresponding to the classical geometric distribution. Its tail is

IP{X ≥ n} = (1− p)n−1, m = 1, 2, . . .

Clearly, the tail and probabilities (3) decrease exponentially fast as n tends to infinity.
2. The probabilities are given by pn = p/n, where p is a number from the interval (0, 1). Equation (3)

is transformed to

IP{X = n} = p
n
·

n−1

∏
k=1

(1− p
k
). (4)

According to (4) X is a proper random variable and has, in this case, the Sibuya distribution with
parameter p ∈ (0, 1) with the following tail

IP{X ≥ n} = Γ(n− p)
Γ(n) · Γ(1− p)

∼ 1
Γ(1− p) · np

having heavy power asymptotic for n→ ∞. Such the distribution does not have a finite mean
value. It is not difficult to see that

IP{X = n} ∼ p/(np+1 · Γ(1− p)), n→ ∞.

The presented distributions can be respected as a kind of “extreme points” from the perspective
of the tail behavior for proper random variable X. Hence, it is natural to study roughly speaking the
cases “happening between them”; namely to consider, for example, the situations when pn = p/nγ,
with p ∈ (0, 1) and γ > 0. As it was mentioned above, the parameter γ is responsible for the speed of
convergence of the rejection probability to zero.

4. Main Result on Citation Number Distribution

The research subject is in the asymptotic behavior of the probabilities (2) for pn = p/nγ with
γ ≥ 0. Additionally, to the discussed earlier values of γ = 0 or γ = 1, we distinguish the following
two cases:

(A) 0 < γ < 1;
(B) γ > 1.

Let us consider the case (A). We have

IP{X = n} = p
nγ
·

n−1

∏
k=1

(1− p
kγ

). (5)

Consider the product from right-hand-side of (5) in more details.

n−1

∏
k=1

(1− p
kγ

) = exp
{n−1

∑
k=1

log(1− p/kγ)
}
= exp

{
−

n−1

∑
k=1

∞

∑
j=1

pj

jkγj

}
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= exp
{
−

∞

∑
j=1

pj

j

n−1

∑
k=1

1
kγj

}
= exp

{
−

[1/γ]+1

∑
j=1

pj

j

n−1

∑
k=1

1
kγj

}
exp

{
−

∞

∑
[1/γ]+1

pj

j

n−1

∑
k=1

1
kγj

}
. (6)

Here [1/γ] is an integer part of 1/γ. It is not difficult to see that

exp{−
∞

∑
[1/γ]+1

(pj/j)
n−1

∑
k=1

k−γj}

has a finite positive limit as n → ∞. This limit may depend on p and γ. Let us denote it by C1 =

C1(γ, p). Therefore,

n−1

∏
k=1

(1− p
kγ

) ∼ C1 exp
{
−

[1/γ]+1

∑
j=1

pj

j

n−1

∑
k=1

1
kγj

}
as n→ ∞. (7)

Relations (5) and (7) give us

IP{X = n} ∼ C1 ·
p

nγ
· exp

{
−

[1/γ]+1

∑
j=1

pj

j

n−1

∑
k=1

1
kγj

}
as n→ ∞. (8)

For 0 < γj < 1 the following asymptotic representation is known

n−1

∑
k=1

1
kγj =

n1−γj

1− γj
+ ζ(γj) + o(1) as n→ ∞, (9)

where ζ(u) is Riemann zeta function. Further considerations depend on properties of the number γ.

(i) Suppose that 1/γ is not integer. Then γ · [1/γ] < 1 and

[1/γ]+1

∑
j=1

pj

j

n−1

∑
k=1

1
kγj =

[1/γ]

∑
j=1

n1−γj

1− γj
pj

j
+

[1/γ]

∑
j=1

ζ(γj)
pj

j
+

p[1/γ]+1

[1/γ] + 1

n−1

∑
k=1

1
kγ([1/γ]+1)

+ o(1). (10)

However, γ([1/γ] + 1) > 1 and, therefore,

lim
n→∞

n−1

∑
k=1

1
kγ([1/γ]+1)

=
∞

∑
k=1

1
kγ([1/γ]+1)

< ∞.

From this and (10) it follows

IP{X = n} ∼ C2 ·
p

nγ
· exp

{[1/γ]

∑
j=1

n1−γj

1− γj
· pj

j

}
, (11)

where C2 depends on p and γ only.
(ii) Suppose that 1/γ is positive integer. Then γ[1/γ] = 1 and

[1/γ]+1

∑
j=1

pj

j

n−1

∑
k=1

1
kγj =

[1/γ]−1

∑
j=1

n1−γj

1− γj
pj

j
+

[1/γ]−1

∑
j=1

ζ(γj)
pj

j
(12)

+
p[1/γ]

[1/γ]

n−1

∑
k=1

1
k
+

p[1/γ]+1

[1/γ] + 1

n−1

∑
k=1

1
k2 .
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It is known that

lim
n→∞

n−1

∑
k=1

1
k2 =

∞

∑
k=1

1
k2 < ∞

and
n−1

∑
k=1

1
k
= log(n) + γe + o(1),

where γe is Euler’s constant. Therefore,

IP{X = n} ∼ C3 ·
p

nγ+p[1/γ]/[1/γ]
· exp

{[1/γ]−1

∑
j=1

n1−γj

1− γj
· pj

j

}
as n→ ∞. (13)

Now we see that the asymptotic behavior of the probability IP{X = n} in the case A) is given
by (11) and (13). From the relations (11) and (13) it follows

IP{X = ∞} = lim
n→∞

n−1

∏
k=1

(1− p/kγ) = 0,

so that X is a proper random variable.
Denote by

bm =
m−1

∏
k=1

(1− p/kγ).

For the distribution tail Tm we have

Tm =
∞

∑
n=m

IP{X = n} = (bm − bm+1) + . . . + (bs − bs+1) + . . . = bm.

Particularly,
∞

∑
n=1

IP{X = n} = 1.

If 1/γ is not a positive integer, then

Tm =
m−1

∏
k=1

(1− p/kγ) ∼ C4 · exp
{[1/γ]

∑
j=1

n1−γj

1− γj
· pj

j

}
, as n→ ∞, (14)

where C4 depends on p and γ. Similarly, for the case of integer 1/γ,

Tm ∼ C5 ·
p

np[1/γ]/[1/γ]
· exp

{[1/γ]−1

∑
j=1

n1−γj

1− γj
· pj

j

}
as n→ ∞. (15)

Let us consider the case (B). We have

IP{X = n} = p
nγ
·

n−1

∏
k=1

(1− p
kγ

), (16)

where γ > 1. Transform the product in the right-hand-side:

bn =
n−1

∏
k=1

(1− p
kγ

) = exp
{n−1

∑
k=1

log(1− p/kγ)
}
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= exp
{
−

∞

∑
j=1

n−1

∑
k=1

pj/(jkγj)
}
= exp

{
−

n−1

∑
k=1

∞

∑
j=1

pj/(jkγj)
}

= exp
{
−

n−1

∑
k=1

p/(kγ − p)
} [

n→ ∞]−→ exp
{
−

∞

∑
k=1

p/(kγ − p)
}

.

The series under an exponential sign converges because γ > 1. From latest relation we see that

IP{X = ∞} = exp
{
−

∞

∑
k=1

p/(kγ − p)
}
> 0, (17)

and X is an improper random variable.
Therefore, for conditional probabilities we have

IP{X = n|X < ∞} ∼ C6
p

nγ
as n→ ∞, (18)

where C6 depends on p and γ only.
Summarizing, we obtain the following theorem

Theorem 1. For the considered experiment scheme with probabilities given in (5) the following statements
are true:

• If γ = 0 then IP{X = n} = p(1− p)n−1, n = 1, 2, . . ..
• If 0 < γ < 1 and 1/γ is not a positive integer then

IP{X = n} ∼ C2 ·
p

nγ
· exp

{
−

[1/γ]

∑
j=1

n1−γj

1− γj
· pj

j

}
as n→ ∞. (19)

If 0 < γ < 1 and 1/γ is a positive integer then

IP{X = n} ∼ C3 ·
p

nγ+p[1/γ]/[1/γ]
· exp

{
−

[1/γ]−1

∑
j=1

n1−γj

1− γj
· pj

j

}
as n→ ∞. (20)

• If γ = 1 then
IP{X = n} ∼ p/(np+1Γ(1− p)), n→ ∞. (21)

• If γ > 1 then
IP{X = n|X < ∞} ∼ C4

p
nγ

as n→ ∞, (22)

and

IP{X = ∞} = exp
{
−

∞

∑
k=1

p/(kγ − p)
}
> 0, (23)

All C, C1 − C6 depend on parameters p and γ only.

One of the reviewers of the first version of the paper advised us to study the form of the constants
for some particular cases. We are very grateful him for the advice. Below we consider the case
γ ∈ (1/2, 1). In this case [1/γ] = 1 so that the sum under exponential sign in (19) contains only
one summand. The calculations similar to give above leads to the following expression

IP{X = n} = p
nγ

exp
{
− p

1− γ
n1−γ −

∞

∑
k=1

pk

k
ζ(kγ) + o(1)

}
.
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In other words, the constant C2 has form

C2 = exp
{
−

∞

∑
k=1

pk

k
ζ(kγ)

}
> 0.

However, precise calculation of all other constant is rather difficult. We do not these constants for
the aims of this paper and omit any other calculations of constants.

5. Comments

Theorem 1 shows that for 0 ≤ γ < 1, the tail of the corresponding distribution is not heavy.
Namely, the distribution has finite moments of all positive orders. However, the tail becomes heavier
with growing γ ∈ [0, 1). In the case of γ ∈ [0, 1] the distribution is unimodal with mode equal to 1.
For the values γ ∈ [1, ∞), the distribution has a power-type tail, which is heavier than the ones
occurring for γ ∈ [0, 1). In the case γ ∈ [1, 2) the conditional distribution under condition X < ∞
does not have the finite mean. However, for growing values of γ ∈ [1, ∞) the tails of conditional
distributions look to be less heavy. In the case of γ ∈ [1, ∞) the conditional distribution has mode at 1.

6. The Case of Growing pn

Above, we considered the case of the probability of event A decreasing with increasing iment
number. For completeness, consider the case of an increase of this probability.

Namely, suppose that in (1) pn = 1− q/nγ for q ∈ (0, 1) and γ > 0. Then

IP{X = n} = (1− q/nγ)
n−1

∏
k=1

q
kγ

=
qn−1

((n− 1)!)γ
− qn

(n!)γ
. (24)

It is clear that IP{X = ∞} = 0, and the tail of the distribution

Tm =
qm−1

(Γ(m))γ

is a quickly decreasing function of m. Of course, distribution of X has finite moments of all orders and
it may have a mode not only at 1.

7. Back to the Distribution of Citation Number of One Author

We suppose now that the distribution of citation number of one paper has the form (5):

IP{X = n} = p
nγ
·

n−1

∏
k=1

(1− p
kγ

), n = 1, 2, . . .

with γ > 0. Corresponding probability generating function is

P(z) =
∞

∑
n=1

znIP{X = n}. (25)

As was mentioned above, the number of cited paper is distributed according to geometric law
with probability generating function (1):

Q(z) =
q

1− (1− q)z
, q ∈ (0, 1).

The probability generating function of citation number of one author equals to the composition
of P and Q, i.e., it is P(Q(z)). It is clear that the tail of corresponding distribution is not heavy for
γ ∈ [0, 1), it is heavy for γ = 1, and the distribution is improper for γ > 1.
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Although the case of improper distribution seems to be not realistic, we discuss it for some
particular cases below, after consideration of proper cases γ ∈ [0, 1].

Let us remind that the case γ ∈ (0, 1) leads to the light tailed distributions while γ = 1 leads to
the laws with the heavy tail. The choice between models with light or heavy tails can only be made
based on real data. Below we analyze some data of this kind.

7.1. Analyzing Data from Scholar Google “Mathematics"

Let us give the data for the part “Mathematics" on 16 February 2020 (see Table 1). The data given
concern are the first 10 in the number of citations of authors. We do not give the names of these
scientists. The table shows:

1. The serial number of the author;
2. The total number of citations by the author;
3. Hirsch Index;
4. The number of citations of the most popular work (By the most popular work we understand the

work of this author having the largest number of citations among the works of this scientist);
5. Ratio of citations to squared Hirsch index;

Table 1. Citations “Mathematics”.

1 2 3 4 5

1. 448,557 270 28,303 6.15
2. 162,457 98 44,406 16.92
3. 159,123 147 26,929 7.36
4. 138,820 64 110,393 33.89
5. 101,662 59 35,640 29.20
6. 99,206 78 41,647 16.31
7. 85,288 59 55,293 24.50
8. 84,918 48 18,901 36.86
9. 77,319 98 11,715 8.05
10. 73,989 72 17,153 14.27

Table 1 shows the first scientist has 2.76 times more citations than the second. In other words,
the maximum of the observations is essentially greater than previous one. This observation leads us to
think that the corresponding distribution has heavy tails (see [8,9]). As we have seen, it is possible for
the case γ = 1 only.

7.2. Analyzing Data from Scholar Google “Biostatistics"

Let us give the data for the part “Biostatistics" on 16 February 2020 (see Table 2). The structure of
Table 2 is the same as that of Table 1.

Table 2. Citations “Biostatistics".

1 2 3 4 5

1. 478,691 227 66,611 9.29
2. 301,786 132 59,613 17.32
3. 253,221 208 26,127 5.85
4. 223,038 218 10,184 4.69
5. 199,143 169 23,447 6.97
6. 178,855 117 39,271 13.07
7. 150,695 105 42,485 13.67
8. 119,199 111 20,666 9.67
9. 108,648 140 20,842 5.54
10. 100,491 111 30,315 8.16
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Table 2 shows the first scientist has 1.59 times more citations than the second. Although it is it is
less than the case of Table 1, the number is large enough to support our hypothesis on the presence of
a heavy tail.

We do not give the data on the part “Statistics” but mention the situation is similar to that of the
Tables 1 and 2.

7.3. Final Model for the Distribution of Citations

From the considerations of the two previous subsections, it follows that the most natural way to
describe the distribution of citations is to choose γ = 1. This means

P(z) = 1− (1− z)p, Q(z) =
q

1− (1− q)z

and the probability generation function of citations distribution is given by

R(z) = P(Q(z)) = 1−
(

1− q
1− (1− q)z

)p
.

Denote by Y the number of citations of a given scientist. It is clear that IP{Y = n}may be found
as the n-th coefficient of expansionR(z) in power series. We have

R(z) = 1− (1− q)p(1− z)p(1− (1− q)z
)−p

= 1− (1− q)p
∞

∑
s=0

(−1)s

(
s

∑
m=0

(−p
m

)(
p

s−m

)
(1− q)m

)
zs

= 1− (1− q)p +
∞

∑
s=1

(−1)s+1
(

p
s

)
2F1(p,−s, 1 + p− s, 1− q)zs,

where 2F1 is a hypergeometric function. Therefore,

IP{Y = 0} = 1− (1− q)p;

IP{Y = s} = (−1)s+1
(

p
s

)
2F1(p,−s, 1 + p− s, 1− q), s = 1, 2, . . .

(26)

It is possible to verify that IP{Y = 0} > IP{Y = 0} > IP{Y = s} for all integers s ≥ 2. Therefore,
we meet a scientist without papers or with citing papers with maximal probability. If we limit ourselves
by consideration of the scientists having at least one citation then the highest probability corresponds
to authors with one citation.

The Laplace transform of the distribution of Y has form

R(e−t) = 1−
(

1− q
1− (1− q)e−t

)p
, t ∈ [0, ∞).

Its asymptotic as t→ 0 is

1−R(e−t) ∼
(1− q

q

)p
· tp, as t→ +0. (27)

This relation shows that the random variable Y has moments of order less than p and does not
have moments of higher order. Because p < 1 the variable Y has infinite mean. In practice, this means
that some scholars have a very large number of citations. These citations refer to publications by
a relatively small number of scholars. Of course, the data in Tables 1 and 2 are in agreement with
these statements. It is important that the model is built on the assumption of the same capabilities of
scientists. Even so, we must observe a greater variability in the number of citations of their publications.
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Thus, the difference in the number of citations can be purely random and not say anything about the
real contribution of the scientist into corresponding science field.

Of course, the proposed model is very idealistic, since it does not take into account the real
difference in the capabilities of scientists, as well as in their equipping with the necessary tools
and equipment. Taking into account the noted differences is likely to lead to the need to consider
mixtures of the proposed distributions with different parameters p and q. However, such a complication
will not make it possible to distinguish scientists with a large contribution to science from those with
a smaller impact.

Surely, the arguments presented for the choice of γ = 1 are rather crude, i.e., in reality, it may
happen that γ is close to unity. Although in this case, the distribution tail is not heavy, but over a very
large (but finite) interval it is close to heavy. So, qualitatively, our conclusions will remain unchanged.

Based on the foregoing, we conclude that it is practically senseless to use the number of citations
of a scientist’s work to assess his contribution to science.

7.4. Remarks on the Model with γ > 1

In this subsection, we are trying to justify the possibility of using models with gamma greater
than one. As already noted, in this model the probability IP{Y = ∞} is not equal to zero. It is unlikely
that this corresponds to the situation with the consideration of all scientists working in this field of
science. However, a very long citation process (ideally, endless) is quite possible in the case of the
most prominent scientists. For example, in the field of Mathematics, the works of Professor Andrei
Nikolaevich Kolmogorov (1903–1987) continue to be cited. Over the past 15 years, they have been
cited about 30,000 times, although more than 30 years have passed since the death of their author. It is
highly probable that the citation process for these works will continue for a long time.

In addition, the concept of citation is somewhat arbitrary in our opinion. For example, in
Mathematics, some theorems or other objects bear the names of scientists who were related to their
preparation. Does the mention of these theorems and the corresponding names in some articles mean
their citation? For example, many articles and books mention the Gaussian distribution without
reference to the corresponding publication by Gauss. Is this mention a quotation? It seems to us that
such kind of nominal results are not counted in determining the citation index. However, they certainly
indicate the scientific significance of the result. It is very likely that for accounting for citations of this
kind, models with a γ greater than 1 may be required.

8. Hirsch Index

Recall that the definition of the Hirsch index was given on Page 1. Hirsch states that the proposed
index h is intended to rank authors of articles in the field of Physics. At the same time, it is noted that
the index can be used in other fields of science. Since the number of citations is used in determining
the index h, it seems plausible that h is associated with this number. Hirsch notes that the number of
citations is given by N = κh2. He wrote: “I find empirically that κ ranges between 3 and 5” (We change
notations of Hirsch. Namely, his a is our κ.). Further, Hirsch wrote: “κ > 5 is very atypical value”.

Below we show that the Hirsch statements presented here are doubtful. In addition, the use of
this index seems unreasonable.

Let’s start by analyzing the data in Tables 1 and 2. Remind that the column 5 gives corresponding
values of κ. Table 1 does not contain any κ ≤ 6 while Table 2 has only one such value κ = 4.69. Other
values of κ are “very atypical”, especially for Table 1. Table 2 contains 2 values of κ ∈ (5, 6). Therefore,
at least for such fields as “Mathematics” and “Biostatistics”, Hirsch’s conclusion about the “typical”
form of proportionality between the number of citations of an author and the square of corresponding
Hirsch’s index seems to be incorrect. However, was Hirsch right in the field of “Physics"?

8.1. Data in “Physics”

Now we give the data on field “Physics”, arranging them into a table in the same way as for Table 1.

254



Mathematics 2020, 8, 713

Again, Table 3 has only one κ ≤ 5, namely κ = 4.88. However, there are six values κ ∈ (5, 6).
The kappa values for the “Physics” area look smaller than for the “Biostatistics” area and significantly
smaller than for the “Mathematics” area. The value of the Hirsch index for Physics has much less
variability than for Biostatistics and Mathematics. The differences in citation numbers are much greater
for Mathematics than in the case of Physics.

So, we see that Hirsch’s understanding of the situation in Physics is closer to reality than in the
case of Biostatistics and, especially, Mathematics.

8.2. Data Comparison

Continue the analysis of the data in Tables 1–3.

Table 3. Citations “Physics".

1 2 3 4 5

1. 326,718 206 25,605 7.70
2. 259,321 223 7275 5.21
3. 240,376 200 15,651 6.01
4. 232,057 206 26,535 5.47
5. 231,746 218 15,589 4.88
6. 227,530 206 15,684 5.36
7. 217,495 144 35,746 10.49
8. 200,565 191 11,807 5.50
9. 198,735 190 7497 5.50
10. 197,679 198 25,649 5.04

The average value of the Hirsch index in the case of Table 1 is 99.3 with a standard deviation of
66.45. The same indicators for Table 2 are 153.8 and 47.97, and for Table 3—198.2 and 21.73. We see that
the standard deviation of the Hirsch index in the case of Mathematics is three times greater than in the
case of Physics. On the contrary, the average value of the index is maximum in the case of Physics and
minimum in the case of Mathematics. This shows that if Hirsch index is useful in the field of Physics,
then its usefulness in the field of Mathematics is doubtful. Probably, it is true for Biostatistics too.

Authors with a higher Hirsch index are often inferior to others in the number of citations of the
most popular works. For example, in Table 1, Author 1, having the highest Hirsch index, is inferior to
Authors 2, 4, 5, 6 and 7 in the number of citations of the most popular work. In this case, Author 1
wrote his most cited work with co-authors, while author 2 did without co-authors.

It is clear that the Hirsch index does not exceed the number of cited publications of the author,
which has an exponential distribution. Thus, the distribution of the Hirsch index has a light tail. Since
the number of citations has a heavy tail, it is more variable than the Hirsch index. However, these
two indicators are stochastically strongly related. Indeed, for the data in Table 1, the sample correlation
coefficient between these indicators is ρ1 = 0.94. On the other hand, the correlation coefficient between
the Hirsch index and the number of citations of the most popular works is ρ2 = −0.23. This coefficient
indicates a small relationship between the indicators, and it is negative. In other words, a large
Hirsch index is most likely not found among authors with highly cited individual articles. For Table 2,
the values of the correlation coefficients equal to ρ1 = 0.702, ρ2 = 0, and for Table 3 ρ1 = 0.36,
ρ2 = −0.57.

The increase in the Hirsch index with a decrease in the number of citations of the most popular
work may result in the division of the work into a series of publications. However, when assessing
the quality of a scientist’s contribution, one should take into account that the publication of a series
of articles instead of one may be caused not by a desire to increase the number of publications,
but, for example, by a gradual insight into the essence of the problem under consideration. Such
insight often requires a very long time, i.e., publication of a series of articles is justified. It should
be noted that the publication of a series of articles naturally leads to an increase in the number of
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self-citations. This increase cannot be considered as a flaw of the author and does not mean attempts
to artificially increase the number of citations. At the same time, the presence of a series of publications
(which increases the Hirsch index) cannot be considered as preferable to one highly cited work.

The presence of higher values of the Hirsch index in Physics compared to Mathematics can be
explained by the use in modern Physics of expensive equipment in experimental Physics and/or
the results obtained on it in theoretical Physics. Often this equipment is used by some laboratory or
scientific group, and then transferred to another or others. After some time, this equipment again
becomes available to the first group. Thus, new experimental facts arrive intermittently, and during the
break they are processed and published. A theoretical analysis of the observed facts is also taking place.
Then comes new information related to new experiments. Therefore, the very flow of information
(both experimental and theoretical) contributes to the publication of not a single article, but a series
of articles. This circumstance leads to an increase in the Hirsch index with a relative decrease in the
number of citations of popular works.

A similar situation is absent in Pure Mathematics. Therefore, there the appearance of the series
has much fewer reasons. Separate works appear, which often cover a substantial part of the problem
under consideration. They cause a stream of citation of this particular work, and in a series of works.
Thus, the Hirsch index becomes smaller than it would be if a series of articles were published instead
of this one, but the most popular work causes more citations than each individual work in the series.

So, the use of the Hirsch’s index has some basis in the field of Physics, but it is not related to what
is happening in Mathematics.

For some areas of Applied Mathematics, a situation may be observed that is intermediate between
what is happening in Physics and in Pure Mathematics.

However, it is not clear to us why not replace the Hirsch index with two. The first of these could
be the number of all citations, and the second - the number of citations of the most popular work.
The Hirsch index is stochastically quite closely linked to the number of all citations, so it and this
number are “interchangeable”. However, after the termination of the work of a scientist in a given field
of science, the number of his publications does not increase and, therefore, the Hirsch index remains
limited, while the number of citations can continue to grow unlimitedly. This is exactly what happens
with the works of the most outstanding scientists of the past.

9. Distribution of the Hirsch Index

In this section, we obtain the probability distribution of the Hirsch index.
We introduce some notation. It is clear that the Hirsch index is a random variable. Let us denote

it by H. We will denote the values of this H by h. Our aim here is to determine the probabilities that
H = h, i.e., IP{H = h}. In order for the event H = h to occur, it is necessary and sufficient that:

(a) no less than h works were published;
(b) h of the published works are cited at least h times, and the rest - less than h times.

Suppose that l works are published, and l ≥ h. The probability of this event is q(1− q)l . Recall,
the probability that a published work will be quoted k times equals to (p/k)∏k−1

j=1 (1− p/j). Therefore,
the probability that the published work will be cited at least h times equals to

∞

∑
k=h

p
k
·

k−1

∏
j=1

(1− p/j) =
Γ(h− p)

Γ(h) · Γ(1− p)
,

where Γ is Euler gamma function.
The probability that a published work will be cited less than h times is defined as

1− Γ(h− p)
Γ(h) · Γ(1− p)

.
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Thus, the probability that l papers are published, and the Hirsch index H has taken the value h is

q(1− q)l
(

l
h

)
·
(

Γ(h− p)
Γ(h) · Γ(1− p)

)h

·
(

1− Γ(h− p)
Γ(h) · Γ(1− p)

)l−h

.

Now we see that

IP{H = h} =
∞

∑
l=h

q(1− q)l
(

l
h

)
·
(

Γ(h− p)
Γ(h) · Γ(1− p)

)h

·
(

1− Γ(h− p)
Γ(h) · Γ(1− p)

)l−h

=

(
Γ(h− p)

Γ(h) · Γ(1− p)− Γ(h− p)

)h

· q · μh

(1− μ)h+1 ,

where

μ =
(

1− Γ(h− p)
Γ(h) · Γ(1− p)

)
· (1− q).

So, the random variable H has the following distribution

IP{H = h} = (1− ν) · νh,

where

ν =
(1− q)Γ(h− p)

qΓ(h)Γ(1− p) + (1− q)Γ(h− p)
.

Note that this distribution is not geometric one because the value of ν depends on h.
Next, we are interested in estimating the tail of the distribution of H. To do this, we estimate the

asymptotic behavior of the ν. An application of the Stirling formula allows one to easily obtain that

ν = ν(h) ∼ 1− q
qΓ(1− p)

· 1
hp .

This formula immediately leads us to an asymptotic expression for the logarithm of probability
IP{H = h} for h→ ∞. Namely,

log IP{H = h} ∼ p · h · log h, h→ ∞.

It follows that the probability of the event {H = h} decreases faster than the exponential function
for n → ∞. Of course, the tail of the distribution of H also decreases faster than the exponential
function. Therefore, there are moments of all orders of this distribution. Note that the distribution
of the number of citations of articles by this author has an infinite mean value. So, if an author has
a fairly large number of citations, then the ratio of the number of citations to the square of the Hirsch
index can be arbitrarily large. This fact contradicts Hirsch’s claim that κ is bounded.
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Abstract: We consider high-dimension low-sample-size data taken from the standard multivariate
normal distribution under assumption that dimension is a random variable. The second order
Chebyshev–Edgeworth expansions for distributions of an angle between two sample observations
and corresponding sample correlation coefficient are constructed with error bounds. Depending on
the type of normalization, we get three different limit distributions: Normal, Student’s t-, or Laplace
distributions. The paper continues studies of the authors on approximation of statistics for random
size samples.
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1. Introduction

Let �X1 = (X11, ..., X1m)
T , . . . ,�Xk = (Xk1, ..., Xkm)

T be a random sample from m-dimensional
population. The data set can be regarded as k vectors or points in m-dimensional space. Recently,
there has been significant interest in a high-dimensional datasets when the dimension is large.
In a high-dimensional setting, it is assumed that either (i) m tends to infinity and k is fixed, or (ii)
both m and k tend to infinity. Case (i) is related to high-dimensional low sample size (HDLSS) data.
One of the first results for HDLSS data appeared in Hall et al. [1]. It became the basis of research in
mathematical statistics for the analysis of high-dimensional data, see, e.g., Fujikoshi et al. [2], which are
an important part of the current data analysis fashionable area called Big data. Scientific areas where
these settings have proven to be very useful include genetics and other types of cancer research,
neuroscience, and also image and shape analysis. See a recent survey on HDLSS asymptotics and its
applications in Aoshima et al. [3].

For examining the features of the data set, it is necessary to study the asymptotic behavior of
three functions: the length ‖�Xi‖ of a m-dimensional observation vector, the distance ‖�Xi −�Xj‖ between
any two independent observation vectors, and the angle ang(�Xi,�Xj) between these vectors at the

Mathematics 2020, 8, 1151; doi:10.3390/math8071151 www.mdpi.com/journal/mathematics259
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population mean. Assuming that �Xi’s are a sample from N(0, Im), it was shown in Hall et al. [1] that
for HDLSS data the three geometric statistics satisfy the following relations:

‖�Xi‖ =
√

m +Op(1), i = 1, . . . , k, (1)

‖�Xi −�Xj‖ =
√

2m +Op(1), i, j = 1, . . . k, i �= j, (2)

ang(�Xi,�Xj) =
1
2

π +Op(m−1/2), i, j = 1, . . . k, i �= j, (3)

where ‖ · ‖ is the Euclidean distance and Op denotes the stochastic order. These interesting results
imply that the data converge to the vertices of a deterministic regular simplex. These properties were
extended for non-normal sample under some assumptions (see Hall et al. [1] and Aoshima et al. [3]).
In Kawaguchi et al. [4], the relations (1)–(3) were refined by constructing second order asymptotic
expansions for distributions of all three basic statistics. The refinements of (1) and (2) were achieved by
using the idea of Ulyanov et al. [5] who obtained the computable error bounds of orderO(m−1) for the
chi-squared approximation of transformed chi-squared random variables with m degrees of freedom.

The aim of the present paper is to study approximation for the third statistic ang(�X1,�X2) under
generalized assumption that m is a realization of a random variable, say Nn, which represents the
sample dimension and is independent of �X1 and �X2. This problem is closely related to approximations
of statistics constructed from the random size samples, in particular, to this kind of problem for the
sample correlation coefficient Rm.

The use of samples with random sample sizes has been steadily growing over the years. For an
overview of statistical inferences with a random number of observations and some applications,
see Esquível et al. [6] and the references cited therein. Gnedenko [7] considered the asymptotic
properties of the distributions of sample quantiles for samples of random size. In Nunes et al. [8] and
Nunes et al. [9], unknown sample sizes are assumed in medical research for analysis of one and
more than one-way fixed effects ANOVA models to avoid false rejections, obtained when using the
classical fixed size F-tests. Esquível et al. [6] considered inference for the mean with known and
unknown variance and inference for the variance in the normal model. Prediction intervals for the
future observations for generalized order statistics and confidence intervals for quantiles based on
samples of random sizes are studied in Barakat et al. [10] and Al-Mutairi and Raqab [11], respectively.
They illustrated their results with real biometric data set, the duration of remission of leukemia
patients treated by one drug. The present paper continues studies of the authors on non-asymptotic
analysis of approximations for statistics based on random size samples. In Christoph et al. [12], second
order expansions for the normalized random sample sizes are proved, see below Propositions 1 and 2.
These results allow for proving second order asymptotic expansions of random sample mean in
Christoph et al. [12] and random sample median in Christoph et al. [13]. See also Chapters 1 and 9 in
Fujikoshi and Ulyanov [14].

The structure of the paper is the following. In Section 2, we describe the relation between
ang(�X1,�X2) and Rm. We recall also previous approximation results proved for distributions of
ang(�X1,�X2) and Rm. Section 3 is on general transfer theorems, which allow us to construct
asymptotic expansions for distributions of randomly normalized statistics on the base of approximation
results for non-randomly normalized statistics and for the random size of the underlying sample,
see Theorems 1 and 2. Section 4 contains the auxiliary lemmas. Some of them have independent
interest. For example, Lemma 3 on the upper bounds for the negative order moments of a
random variable having negative binomial distribution. We formulate and discuss main results
in Sections 5 and 6. In Theorems 3–8, we construct the second order Chebyshev–Edgeworth expansions
for distributions of ang(�X1,�X2) and Rm in random setting. Depending on the type of normalization,
we get three different limit distributions: Normal, Laplace, or Student’s t-distributions. All proofs are
given in the Appendix A.

260



Mathematics 2020, 8, 1151

2. Sample Correlation Coefficient, Angle between Vectors and Their Normal Approximations

We slightly simplify notation. Let �Xm = (X1, ..., Xm)T and �Ym = (Y1, ..., Ym)T be two vectors from
an m-dimensional normal distribution N(0, Im) with zero mean, identity covariance matrix Im and the
sample correlation coefficient

Rm = Rm(�Xm,�Ym) =
∑m

k=1 Xk Yk√
∑m

k=1 X2
k ∑m

k=1 Y2
k

. (4)

Under the null hypothesis H0:
{
�Xm and �Ym are uncorrelated

}
, the so-called null density pRm(y; n)

of Rm is given in Johnson, Kotz and Balakrishnan [15], Chapter 32, Formula (32.7):

pRm (y; m) =
Γ((m− 1)/2)√
π Γ((m− 2)/2)

(
1 − y2

)(m−4)/2
I(−1 1)(y)

for m ≥ 3, where IA(.) denotes indicator function of a set A.

• Note μ = ERm = 0 and σ2 = Var(Rm) = 1/(m− 1) for m ≥ 2,
• R2 is two point distributed with P(R2 = −1) = P(R2 = 1) = 1/2,
• R3 is U-shaped with pR3(y; 3) = (1/π) (1− y2)−1/2 I(−1,1)(y) and
• R4 is uniform with density pR4(y; 4) = 1/2 I(−1,1)(y).
• Moreover, for m ≥ 5, the density function pRm(y; m) is unimodal.

Consider now the standardized correlation coefficient

Rm =
√

m− c Rm (5)

with some correcting real constant c < m having density

pRm
(y; m, c) =

Γ((m− 1)/2)√
m− c

√
π Γ((m− 2)/2)

(
1− y2

m− c

)(m−4)/2

I{|r|<√m−c }(y), (6)

which converges with c = O(1) as m→ ∞ to the standard normal density

ϕ(y) =
1√
2 π

e− y2/2, y ∈ (−∞ ∞)

and by Konishi [16], Section 4, Formula (4.1) as m→ ∞:

F∗m(x, c) := P
(√

m− c Rm ≤ x
)
= Φ(x) +

x3 + (2(c− 1)− 3)x
4 (m− c)

ϕ(x) +O(m−3/2), (7)

where Φ(x) =
∫ x
−∞ ϕ(y)dy is the standard normal distribution function. Note that in Konishi [16] the

sample size (in our case the dimension of vectors) is m + 1 and c = 1 + 2Δ with Konishi’s correcting
constant Δ. Moreover, (7) follows from the more general Theorem 2.2 in the mentioned paper for
independent components in the pairs (Xk Yk), k = 1, ..., m.

In Christoph et al. [17], computable error bounds of approximations in (7) with c = 2 and c = 2.5
of order O(m−2) for all m ≥ 7 are proved:

supx

∣∣∣∣P(√m− 2.5 Rm ≤ x
)
− Φ(x)− x3 ϕ(x)

4 (m− 2.5)

∣∣∣∣ ≤ Bm

(m− 2.5)2 ≤
B

m2 (8)

and

supx

∣∣∣∣P(√m− 2 Rm ≤ x
)
− Φ(x)− (x3 − x) ϕ(x)

4 (m− 2)

∣∣∣∣ ≤ B∗m
(m− 2)2 ≤

B∗

m2 (9)
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where for some m ≥ 7 constants Bm and B∗m are calculated and presented in Table 1 in
Christoph et al. [17]: i.e., B7 = 1.875, B∗7 = 2.083 and B50 = 0.720, B∗50 = 0.982.

Usually, the asymptotic for Rm is (9), where c = 2 since it is related to the t-distributed statistic√
m− 2 Rm /

√
1− R2

m. With the correcting constant c = 2.5, one term in the asymptotic in (8) vanishes.
In order to use a transfer theorem from non-random to random dimension of the vectors, we prefer

(7) with c = 0. In a similar manner as proving (8) and (9) in Christoph et al. [17], one can verify the
following inequalities for m ≥ 3:

supx

∣∣∣∣∣P(√mRm ≤ x
)
−Φ(x)− (x3 − 5 x)

4 m
ϕ(x)

∣∣∣∣∣ ≤ C1m−2. (10)

Let us consider now the connection between the correlation coefficient Rm and the angle θm of the
involved vectors �Xm,�Ym:

θm = ang(�Xm,�Ym). (11)

Hall et al. [1] showed that under the given conditions

θm =
1
2

π +Op(m−1/2) as m→ ∞,

where Op denotes the stochastic order. Since

cos θm =
‖�Xm‖2 + ‖�Ym‖2 − ‖�Xm − �Ym‖2

2 ‖�Xm‖ ‖�Ym‖
= Rm(�Xm,�Ym) = Rm,

the computable error bounds for θm follows from computable error bounds for Rm.
For any fixed constant c < m, and arbitrary x with |x| < √m− c π/2, we obtain for the angle

θm : 0 < θm < π :

P
(√

m− c(θm − π/2) ≤ x
)

= P
(

θm ≤ π/2 + x/
√

m− c
)

= P
(

cos θm ≥ cos(π/2 + x/
√

m− c)
)

= P
(

Rm ≥ − sin(x/
√

m− c)
)

= P
(√

m− c Rm ≤
√

m− c sin(x/
√

m− c)
)

(12)

because Rm is symmetric and P(Rm ≤ x) = P(− Rm ≤ x).
Equation (12) shows the connection between the correlation coefficient Rm and the angle θm among

the vectors involved. In Christoph et al. [17], computable error bound of approximation in (8) are
used to obtain similar bound for the approximation of the angle between two vectors, defined in (11).
Here, the approximation (10) and (12) with c = 0 lead for any m ≥ 3 and for |x| ≤ π

√
m /2 to

supx

∣∣∣P (√
m(θm −

π

2
) ≤ x

)
−Φ(x)− (1/3)x3 − 5x

4 m
ϕ(x)

∣∣∣ ≤ C1 m−2. (13)

Many authors investigated limit theorems for the sums of random vectors when their dimension
tends to infinity, see, e.g., Prokhorov [18]. In (6) and (7), the dimension m of the vectors �Xm and �Ym

tends to infinity.
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Now, we consider the correlation coefficient of vectors �Xm and �Ym, where the non-random
dimension m is replaced by a random dimension Nn ∈ N+ = {1, 2, ...} depending on some natural
parameter n ∈ N+ and Nn is independent of �Xm and �Ym for any m, n ∈ N+. Define

RNn =
∑Nn

k=1 Xk Yk√
∑Nn

k=1 X2
k ∑Nn

k=1 Y2
k

.

3. Statistical Models with a Random Number of Observations

Let X1, X2, . . . ∈ R = (−∞ ∞) and N1, N2, . . . ∈ N+ = {1, 2, ...} be random variables on the
same probability space (Ω,A,P). Let Nn be a random size of the underlying sample, i.e., the random
number of observations, which depends on parameter n ∈ N+. We suppose for each n ∈ N+

that Nn ∈ N+ is independent of random variables X1, X2, . . . and Nn → ∞ in probability as n →
∞. Let Tm := Tm (X1, . . . , Xm) be some statistic of a sample with non-random sample size m ∈ N+.
Define the random variable TNn for every n ∈ N+:

TNn(ω) := TNn(ω)

(
X1(ω), . . . , XNn(ω)(ω)

)
, ω ∈ Ω,

i.e., TNn is some statistic obtained from a random sample X1, X2, . . . , XNn .
The randomness of the sample size may crucially change asymptotic properties of TNn , see, e.g.,

Gnedenko [7] or Gnedenko and Korolev [19].

3.1. Random Sums

Many models lead to random sums and random means

SNn = ∑Nn
k=1 Xk and MNn =

1
Nn

Nn

∑
k=1

Xk, . (14)

A fundamental introduction to asymptotic distributions of random sums is given in Döbler [20].
It is worth mentioning that a suitable scaled factor by SNn affects the type of limit distribution.

In fact, consider random sum SNn given in (14). For the sake of convenience, let X1, X2, ... be
independent standard normal random variables and Nn ∈ N+ be geometrically distributed with
E(Nn) = n and independent of X1, X2, .... Then, one has

P

(
1√
Nn

SNn ≤ x
)

=
x∫
−∞

1√
2 π

e−u2/2du for all n ∈ N, (15)

P

⎛⎝ 1√
E(Nn)

SNn ≤ x

⎞⎠ →
x∫
−∞

1√
2

e−
√

2 |u|du as n→ ∞, (16)

P

⎛⎝
√
E(Nn)

Nn
SNn ≤ x

⎞⎠ →
x∫
−∞

(
2 + u2)−3/2 du as n→ ∞. (17)

We have three different limit distributions. The suitable scaled geometric sum SNn is standard
normal distributed or tends to the Laplace distribution with variance 1 depending on whether we take
the random scaling factor 1/

√
Nn or the non-random scaling factor 1/

√
ENn, respectively. Moreover,

we get the Student distribution with two degrees of freedom as the limit distribution if we use
scaling with the mixed factor

√
E(Nn)/Nn. Similar results also hold for the normalized random mean

MNn = 1
Nn

SNn .
Assertion (15) is obtained by conditioning and the stability of the normal law. Moreover,

using Stein’s method, quantitative Berry–Esseen bounds in (15) and (16) for arbitrary centered random
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variables X1 with E(|X1|3) < ∞ were proved in (Chen et al. [21], Theorem 10.6), (Döbler [20]
Theorems 2.5 and 2.7) and (Pike and Ren [22] Theorem 3), respectively. Statement (17) follows from
(Bening and Korolev [23] Theorem 2.1).

First order asymptotic expansions are obtained for the distribution function of random sample
mean and random sample median constructed from a sample with two different random sizes
in Bening et al. [24] and in the conference paper Bening et al. [25]. The authors make use of
the rate of convergence of P(Nn ≤ gnx) to the limit distribution H(x) with some gn ↑ ∞.
In Christoph et al. [12], second order expansions for the normalized random sample sizes are proved,
see below Propositions 1 and 2. These results allow for proving second order asymptotic expansions
of random sample mean in Christoph et al. [12] and random sample median in Christoph et al. [13].

3.2. Transfer Proposition from Non-Random to Random Sample Sizes

Consider now the statistic TNn = TNn

(
�XNn ,�YNn

)
,, where the dimension of the vectors �XNn ,�YNn

is a random number Nn ∈ N+.
In order to avoid too long expressions and at the same time to preserve a necessary accuracy,

we limit ourselves to obtaining limit distributions and terms of order m−1 in the following
non-asymptotic approximations with a bounds of order m−a for some a > 1.

We suppose that the following condition on the statistic Tm = Tm(�Xm,�Ym) with ETm = 0 is met
for a non-random sample size m ∈ N+:

Condition 1. There exist differentiable bounded function f2(x) with supx |x f ′2(x)| < c0 and real numbers
a > 1, C1 > 0 such that for all integer m ≥ 1

supx

∣∣∣P(mγTm ≤ x
)
−Φ(x)−m−1 f2(x)

∣∣∣ ≤ C1 m−a, (18)

where γ ∈ {−1/2, 0, 1/2}.

Remark 1. Relations (10) and (13) give the examples of statistics such that Condition 1 is met. For other
examples of multivariate statistics of this kind, see Chapters 14–16 in Fujikoshi et al. [2].

Suppose that the limiting behavior of distribution functions of the normalized random size
Nn ∈ N+ is described by the following condition.

Condition 2. There exist a distribution function H(y) with H(0+) = 0, a function of bounded variation
h2(y), a sequence 0 < gn ↑ ∞ and real numbers b > 0 and C2 > 0 such that for all integer n ≥ 1

supy≥0

∣∣P(g−1
n Nn ≤ y

)
− H(y)

∣∣ ≤ C2n−b, 0 < b ≤ 1

supy≥0

∣∣P(g−1
n Nn ≤ y

)
− H(y)− n−1h2(y)

∣∣ ≤ C2n−b, b > 1

⎫⎬⎭ (19)

Remark 2. In Propositions 1 and 2 below, we get the examples of discrete random variables Nn such that
Condition 2 is met.

Conditions 1 and 2 allow us to construct asymptotic expansions for distributions of randomly
normalized statistics on the base of approximation results for normalized fixed-size statistics
(see relation (18)) and for the random size of the underlying sample (see relation (19)). As a result,
we obtain the following transfer theorem.
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Theorem 1. Let |γ| ≤ K < ∞ and both Conditions 1 and 2 be satisfied. Then, the following inequality holds
for all n ∈ N+ :

supx∈R
∣∣∣P(gγ

n TNn ≤ x
)
− Gn(x, 1/gn)

∣∣∣ ≤ C1 E
(

N−a
n

)
+ (C3Dn + C4) n−b, (20)

Gn(x, 1/gn) =
∫ ∞

1/gn

(
Φ(x yγ) +

f2(xyγ)

gny

)
d
(

H(y) +
h2(y)

n

)
, (21)

Dn = sup
x

∫ ∞

1/gn

∣∣∣∣ ∂

∂y

(
Φ(xyγ) +

f2(xyγ)

ygn

)∣∣∣∣ dy, (22)

where a > 1, b > 0, f2(z), h2(y) are given in (18) and (19). The constants C1, C3, C4 do not depend on n.

Remark 3. Later, we use only the cases γ ∈ {−1/2, 0, 1/2}.

Remark 4. The domain [1/gn, ∞) of integration in (21) depends on gn. Thus, it is not clear how Gn(x, 1/gn) is
represented as a polynomial in g−1

n and n−1. To overcome this problem (see (26)), we prove the following theorem.

Theorem 2. Under the conditions of Theorem 1 and the additional conditions on functions H(.) and h2(.),
depending on the convergence rate b in (19):

H(1/gn) ≤ c1 g−b
n , b > 0, (23)

i :
∫ 1/gn

0 y− 1dH(y) ≤ c2 g−b+1
n ,

ii : h2(0) = 0 and |h2(1/gn)| ≤ c3 n g−b
n ,

iii :
∫ 1/gn

0 y− 1|h2(y)|dy ≤ c4 n g−b
n ,

⎫⎪⎬⎪⎭ f or b > 1, (24)

we obtain for the function Gn(x, 1/gn) defined in (21):

supx
∣∣Gn(x, 1/gn)− Gn,2(x)

∣∣ ≤ C g−b
n + supx

(
|I1(x, n)| I{b<1}(b) + |I2(x, n)|

)
(25)

with

Gn,2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
0

Φ(x yγ)dH(y), 0 < b < 1,

∞∫
0

Φ(x yγ)dH(y) + 1
gn

∞∫
0

f2(x yγ)
y dH(y), b = 1

∞∫
0

Φ(x yγ)dH(y) + 1
gn

∞∫
0

f2(x yγ)
y dH(y) I{γ=0}(γ) +

1
n

∞∫
0

Φ(x yγ)dh2(y), b > 1.

(26)

I1(x, n) =
∫ ∞

1/gn

f2(xyγ)

gn y
dH(y) f or b ≤ 1 and I2(x, n) =

∫ ∞

1/gn

f2(xyγ)

gn n y
dh2(y) f or b > 1.

Remark 5. The additional conditions (23) and (24) guarantee to extend the integration range from [1/gn, ∞)

to (0, ∞) of the integrals in (26).

Theorems 1 and 2 are proved in Appendix A.1.

4. Auxiliary Propositions and Lemmas

Consider the standardized correlation coefficient (5) having density (6) with correcting real
constant c = 0 and standardized angle

√
m(θm − π/2), see (12). By (10) and (13) for m ≥ 3, we have

supx

∣∣∣∣∣P(√m Rm ≤ x
)
−Φ(x)− (x3 − 5 x)

4 m
ϕ(x)

∣∣∣∣∣ ≤ C1m−2, m ∈ N+, (27)
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and for the angle θm between the vectors for |x| ≤ π
√

m /2

supx

∣∣∣P (√
m(θm −

π

2
) ≤ x

)
−Φ(x)− (1/3)x3 − 5x

4 m
ϕ(x)

∣∣∣ ≤ C1m−2, m ∈ N+, (28)

where (27) and (28) for m = 1 and m = 2 are trivial and C1 does not depend on m.
Suppose f2(x; a) = (a x3 − 5 x) ϕ(x)/4 with a = 1 or a = 1/3 when (27) or (28) are considered.

Since a product of polynomials in x with ϕ(x) is always bounded, numerical calculus leads to

supx |x f ′2(x; a)| = supx |x (ax4 − (3a + 5) x2 + 5)| ϕ(x)/4 ≤ 0.4.

Condition 1 of the transfer Theorem 1 to the statistics Rm and θm are satisfied with c0 = 0.4 and
a = 2.

Next, we estimate Dn(x) defined in (22).

Lemma 1. Let gn a sequence with 0 < gn ↑ ∞ as n→ ∞. Then, with some 0 < c(γ, a) < ∞, we obtain with
a = 1 and a = 1/3:

Dn = sup
x

∫ ∞

1/gn

∣∣∣∣ ∂

∂y

(
Φ(x yγ) +

f2(xyγ; a)
ygn

)∣∣∣∣ dy ≤ 1
2
+

c(γ, a)
4

.

In the next subsection, we consider the cases when the random dimension Nn is negative binomial
distributed with success probability 1/n.

4.1. Negative Binomial Distribution as Random Dimension of the Normal Vectors

Let the random dimension Nn(r) of the underlying normal vectors be negative binomial
distributed (shifted by 1) with parameters 1/n and r > 0, having probability mass function

P(Nn(r) = j) =
Γ(j + r− 1)

Γ(j) Γ(r)

(
1
n

)r (
1− 1

n

)j−1
, j = 1, 2, ... (29)

with E(Nn(r)) = r (n− 1) + 1. Then, P(Nn(r)/gn ≤ x) tends to the Gamma distribution function
Gr,r(x) with the shape and rate parameters r > 0, having density

gr,r(x) =
rr

Γ(r)
xr−1e−rx I(0 ∞)(x), x ∈ R. (30)

If the statistic Tm is asymptotically normal, the limit distribution of the standardized statistic
TNn(r) with random size Nn(r) is Student’s t-distribution S2r(x) having density

sν(x) =
Γ((ν + 1)/2)√

νπ Γ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2
, ν > 0, x ∈ R, (31)

with ν = 2r, see Bening and Korolev [23] or Schluter and Trede [26].

Proposition 1. Let r > 0, discrete random variable Nn(r) have probability mass function (29) and gn :=
ENn(r) = r(n− 1) + 1. For x > 0 and all n ∈ N there exists a real number C2(r) > 0 such that

supx≥0

∣∣∣∣P(
Nn(r)

gn
≤ x

)
− Gr,r(x)− h2;r(x)

n

∣∣∣∣ ≤ C2(r) n−min{r,2}, (32)

where

h2;r(x) =

⎧⎨⎩0, f or r ≤ 1,
gr,r(x)

(
(x− 1)(2− r) + 2Q1

(
gn x

))
2 r , f or r > 1.
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Q1(y) = 1/2− (y− [y]) and [.] denotes the integer part of a number. (33)

Figure 1 shows the approximation of P (Nn(r) ≤ (r(n− 1) + 1)x) by G2,2(x) and G2,2(x) +
h2(x)/n.

Figure 1. Distribution function P (Nn(r) ≤ (r(n− 1) + 1)x) (black line, almost covered by the red line),
the limit law G2,2(x) (blue line) and the second approximation G2,2(x) + h2(x)/n (red line) with n = 25
and r = 2.

Remark 6. The convergence rate for r ≤ 1 is given in Bening et al. [24] or Gavrilenko et al. [27]. The Edgeworth
expansion for r > 1 is proved in Christoph et al. [12], Theorem 1. The jumps of the sample size Nn(r) have an
effect only on the function Q1(.) in the term h2;r(.).

The negative binomial random variable Nn satisfies Condition 2 of the transfer Theorem 1 with
H(x) = Gr,r(x), h2(x) = h2;r(x), gn = ENn(r) = r(n− 1) + 1 and b = min{r 2}.

Lemma 2. In Theorem 2 the additional conditions (23) and (24) are satisfied with H(x) = Gr,r(x), h2(x) =
h2;r(x), gn = ENn(r) = r(n− 1) + 1 and b = min{r 2}. Moreover, one has for γ ∈ {−1/2, 0, 1/2} and
f2(z; a) = (a z3 − 5 z) ϕ(z)/4, with a = 1 or a = 1/3:

|I1(x, n)| =

⎧⎪⎨⎪⎩
∣∣∣ ∫ ∞

1/gn

f2(x yγ; a)
gn y dGr,r(y)

∣∣∣ ≤ c5 g−r
n r < 1,∣∣∣ ∫ ∞

1/n
f2(x yγ; a)

n y dG1,1(y)− n−1 f2(x; a) ln n I{γ=0}(γ)
∣∣∣ ≤ c6n−1, r = 1,

(34)

|I2(x, n)| =
∣∣∣∣∫ ∞

1/gn

f2(x yγ; a)
gn n y

dh2;r(y)
∣∣∣∣ ≤

{
c7g−r

n , r > 1, r �= 2,(
c7 + c8 ln n I{γ=0}(γ)

)
g−2

n , r = 2.
(35)

Furthermore, we have

0 ≤ g−1
n − (r n)−1 ≤ (r− 1) (r n)−2 e−1/2 for r > 1, n ≥ 2 . (36)

In addition to the expansion of Nn(r) a bound of E(Nn(r))−a is required, where m−a is rate of
convergence of Edgeworth expansion for Tm, see (18).

Lemma 3. Let r > 0, α > 0 and the random variable Nn(r) is defined by (29). Then,

E
(

Nn(r)
)−α ≤ C(r)

{
n−min{r, α}, r �= α

ln(n) n−α, r = α
(37)

and the convergence rate in case r = α cannot be improved.
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4.2. Maximum of n Independent Discrete Pareto Random Variables Is the Dimension of the Normal Vectors

Let Y(s) ∈ N be discrete Pareto II distributed with parameter s > 0, having probability mass and
distribution functions

P(Y(s) = k) =
s

s + k− 1
− s

s + k
and P

(
Y(s) ≤ k

)
=

k
s + k

, k ∈ N, (38)

which is a particular class of a general model of discrete Pareto distributions, obtained by discretization
continuous Pareto II (Lomax) distributions on integers, see Buddana and Kozubowski [28].

Now, let Y1(s), Y2(s), ..., be independent random variables with the same distribution (38).
Define for n ∈ N and s > 0 the random variable

Nn(s) = max
1≤j≤n

Yj(s) with P(Nn(s) ≤ k) =
(

k
s + k

)n
, n ∈ N. (39)

It should be noted that the distribution of Nn(s) is extremely spread out on the positive integers.
In Christoph et al. [12], the following Edgeworth expansion was proved:

Proposition 2. Let the discrete random variable Nn(s) have distribution function (39). For x > 0, fixed s > 0
and all n ∈ N, then there exists a real number C3(s) > 0 such that

sup
y>0

∣∣∣∣P(
Nn(s)

n
≤ y

)
− Hs(y)−

h2;s(y)
n

∣∣∣∣ ≤ C3(s)
n2 ,

Hs(y) = e−s/y and h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)
)
/
(
2 y2), y > 0 (40)

where Q1(y) is defined in (33).

Remark 7. The continuous function Hs(y) = e−s/yI(0 ∞)(y) with parameter s > 0 is the distribution function
of the inverse exponential random variable W(s) = 1/V(s), where V(s) is exponentially distributed with rate
parameter s > 0. Both Hs(y) and P(Nn(s) ≤ y) are heavy tailed with shape parameter 1.

Remark 8. Therefore, E
(

Nn(s)
)
= ∞ for all n ∈ N and E

(
W(s)

)
= ∞. Moreover:

• First absolute pseudo moment ν1 =
∫ ∞

0 x
∣∣d(P(Nn(s) ≤ n x

)
− e−s/x)∣∣ = ∞,

• Absolute difference moment χu =
∫ ∞

0 xu−1
∣∣P(Nn(s) ≤ n x

)
− e−s/x

∣∣dx < ∞
for 1 ≤ u < 2, see Lemma 2 in Christoph et al. [12].

On pseudo moments and some of their generalizations, see Chapter 2 in Christoph and Wolf [29].

Lemma 4. In Transfer Theorem 2, the additional conditions (23) and (24) are satisfied with H(y) = Hs(y) =
e−s/y, h2(y) = h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)

)
/
(
2 y2), y > 0, gn = n and b = 2. Moreover, one has

for |γ| ≤ K < ∞ and f2(z; a) = (a z3 − 5 z) ϕ(z)/4, with a = 1 or a = 1/3:

I2(x, n) =

∣∣∣∣∣
∫ ∞

1/n

f2(x yγ; a)
n2 y

dh2;s(y)

∣∣∣∣∣ ≤ C(s)n−2.

Lemma 5. For random size Nn(s) with probabilities (39) with reals s ≥ s0 > 0 and arbitrary small s0 > 0
and n ≥ 1, we have

E
(

Nn(s)
)−α ≤ C(s)n−α. (41)

The Lemmas are proved in Appendix A.2.
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5. Main Results

Consider the sample correlation coefficient Rm = Rm(�Xm,�Ym), given in (4) and the two statistics
R∗m =

√
m Rm and R∗∗m = m Rm which differ from Rm by scaling factors. Hence, by (10),

P(
√

mRm ≤ x) = P(R∗m ≤ x) = P

(
1√
m

R∗∗m ≤ x
)
= Φ(x) +

(x3 − 5 x)
4 m

ϕ(x) + r(m) (42)

with |r(m)| ≤ Cm−2.
Let θm be the angle between the vectors �Xm and �Ym. Contemplate the statistics Θm = θm − π/2,

Θ∗m =
√

m (θm − π/2) and Θ∗∗m = m (θm − π/2) which differ only in scaling . Then, by (13),

P(
√

m Θm ≤ x) = P(Θ∗m ≤ x) = P

(
1√
m

Θ∗∗m ≤ x
)
= Φ(x) +

(
(1/3)x3 − 5 x

)
4 m

ϕ(x) + r∗(m)

with |r∗(m)| ≤ Cm−2.
Consider now the statistics RNn , R∗Nn

and R∗∗Nn
as well as ΘNn , Θ∗Nn

and Θ∗∗Nn
when the vectors

have random dimension Nn. The normalized statistics have different limit distributions as n→ ∞.

5.1. The Random Dimension Nn = Nn(r) Is Negative Binomial Distributed

Let the random dimension Nn(r) be negative binomial distributed with probability mass
function (29) and gn = ENn(r) = r(n − 1) + 1. “The negative binomial distribution is one of the
two leading cases for count models, it accommodates the overdispersion typically observed in count
data (which the Poisson model cannot)”, see Schluter and Trede [26].

It follows from Theorems 1 and 2 and Proposition 1 that if limit distributions for

P
(

gγ
n Nn(r)1/2−γRNn(r) ≤ x

)
for γ ∈ {1/2, 0− 1/2} exist they are

∫ ∞
0 Φ(x yγ)dGr,r(y) with densities

given bellow in the proof of the corresponding theorems:

rr
√

2 π Γ(r)

∫ ∞

0
yr−1/2e−(x yγ+r y)dy =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
s2 r(x) = Γ(r + 1/2)√

2 rπ Γ(r)

(
1 + x2

2 r

)−(r+1/2)
, γ = 1/2,

ϕ(x) = 1√
2 π

e−x2/2, γ = 0,

l1(x) = 1√
2

e−
√

2 |x|, for r = 1, γ = −1/2,

(43)

where in case γ = −1/2 for r �= 1 generalized Laplace distributions occur.

5.1.1. Student’s t-Distribution

We start with the case γ = 1/2 in Theorems 1 and 2. Consider the statistic RNn(r) =
√

gnRNn(r).
The limit distribution is the Student’s t-distribution S2r(x) with 2 r degrees of freedom with
density (31).

Theorem 3. Let r > 0 and (29) be the probability mass function of the random dimension Nn = Nn(r) of
the vectors under consideration. If the representation (42) for the statistic Rm and the inequality (32) with
gn = ENn(r) = r(n− 1) + 1 hold, then there exists a constant Cr such that for all n ∈ N+

sup
x

∣∣∣P (√
gn RNn(r) ≤ x

)
− S2r;n(x; 1)

∣∣∣ ≤ Cr

{
n−min{r,2}, r �= 2,

ln(n) n−2, r = 2,
(44)

where

S2r;n(x; a) = S2r(x) +
s2r(x)

r n

(
a x3 − 10 r x + 5 x3

2r− 1
+

(2− r) (x3 + x)
4 (2r− 1)

)
. (45)
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Moreover, the scaled angle θNn(r) between the vectors �XNn(r) and �YNn(r) allows the estimate

supx

∣∣∣P (√
gn (θNn(r) − π/2) ≤ x

)
− S2r;n(x; 1/3)

∣∣∣ ≤ Cr

{
n−min{r,2}, r �= 2,

ln(n) n−2, r = 2,

where S2r;n(x; 1/3) is given in (45) with a = 1/3.

Figure 2 shows the advantage of the Chebyshev–Edgeworth expansion versus the limit law in
approximating the empirical distribution function.

Figure 2. Empirical version of P
(√

gn RNn(r) ≤ x
)

(blue line), limit Student law S2r(x) (orange line)

and second approximation S2r;n(x; 1) (green line) for the correlation coefficient for pairs of normal
vectors with random dimension N25(2). Here, x > 0, n = 25 and r = 2.

Remark 9. The limit Student’s t-distribution S2r(x) is symmetric and a generalized hyperbolic distribution
which can be written as a regularized incomplete beta function Iz(a, b). For x > 0:

S2r(x) =
∫ x

−∞
s2r(u) du =

1
2

(
1 + I2r/(x2+2 r)(1/2, r)

)
and Iz(a, b) =

Γ(a + b)
Γ(a) Γ(b)

∫ z

0
ta−1(1− t)b−1.

Remark 10. For integer values ν = 2 r ∈ {1, 2, ...} the Student’s t-distribution S2r(x) is computable in
closed form:

the Cauchy law S1(x) =
1
2
+

1
π

arctan(x), S2(x) =
1
2
+

x
2
√

2 + x2
,

S3(x) =
1
2
+

1
π

(
x√

3(1 + x2/3)
+ arctan(x/

√
3)

)
and S4(x) =

1
2
+

27 (x2 + 3) x (2 x2 + 9)
8 (3 x2 + 9)5/2 .

Remark 11. If the dimension of the vectors has the geometric distribution Nn(1), then asymptotic distribution
of the sample coefficient is the Student law S2(x) with two degrees of freedom.

Remark 12. The Cauchy limit distribution occurs when the dimension of the vectors has distribution Nn(1/2).

Remark 13. The Student’s t-distributions S2r(x) are heavy tailed and their moments of orders α ≥ 2 r do
not exist.
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5.1.2. Standard Normal Distribution

Let γ = 0 in the Theorems 1 and 2 examining the statistics R∗Nn(r)
and Θ∗Nn(r)

=
√

Nn(r)(θNn(r) −
π/2).

Theorem 4. Let r > 0 and Nn = Nn(r) be the random vector dimension having probability mass function (29).
If the representation (42) for the statistic Rm and the inequality (32) with gn = ENn(r) = r(n− 1) + 1 hold,
then there exists a constant Cr such that for all n ∈ N+

sup
x

∣∣∣∣P(√
Nn(r) RNn(r) ≤ x

)
−Φn;2(x; 1)

∣∣∣∣ ≤ Cr

{
n−min{r,2}, r �= 2,

ln(n) n−2, r = 2,
(46)

where

Φn;2(x; a) = Φ(x) +
ϕ(x)

n

(
(a x3 − 5 x) ln n

4
I{r=1}(r) +

Γ(r− 1) (a x3 − 5 x)
4 Γ(r)

I{r>1}(r)

)
. (47)

Moreover, the scaled angle θ∗Nn(r)
between the vectors �XNn(r) and �YNn(r) allows the estimate

supx

∣∣∣∣P(√
Nn(r) (θNn(r) − π/2) ≤ x

)
−Φn;2(x; 1/3)

∣∣∣∣ ≤ Cr

{
n−min{r,2}, r �= 2,

ln(n) n−2, r = 2,

where Φn;2(x; 1/3) is given in (47) with a = 1/3.

Figure 3 shows that the second order Chebyshev–Edgeworth expansion approximates the
empirical distribution function better than the limit normal distribution.

Figure 3. Empirical version of P
(√

Nn(r) RNn(r) ≤ x
)

(blue line), limit normal law Φ(x) (orange line)

and second approximation Φn;2(x; 1) (green line) for the correlation coefficient for pairs of normal
vectors with random dimension N25(2). Here, x > 0, n = 25 and r = 2.

Remark 14. When the distribution function of a statistic Tm without standardization tends to the standard
normal distribution Φ(x), i.e., P(Tm ≤ x)→ Φ(x), then the limit law for P(TNn ≤ x) remains the standard
normal distribution Φ(x).
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5.1.3. Generalized Laplace Distribution

Finally, we use γ = −1/2 in Theorems 1 and 2 examining the statistic g−1/2
n R∗∗Nn(r)

.

Theorems 1 and 2 state that if there exists a limit distribution of P
(

g−1/2
n R∗∗Nn

≤ x
)

as n→ ∞ then it
has to be a scale mixture of normal distributions with zero mean and gamma distribution:

Lr(x) =
∫ ∞

0
Φ(xy−1/2)dGr,r(y)

having density, see formula (A9) in the proof of Theorem 5:

lr(x) =
rr

Γ(r)

∫ ∞

0
ϕ(xy−1/2) yr−3/2e−rydy =

2 rr

Γ(r)
√

2 π

( |x|√
2 r

)r−1/2

Kr−1/2(
√

2 r |x|). (48)

where Kα(u) is the α-order Macdonald function or α-order modified Bessel function of the third kind.
See, e.g., Oldham et al. [30], Chapter 51, or Kotz et al. [31], Appendix, for properties of these functions.

For integer r = 1, 2, 3, ... these densities lr(x), so-called Sargan densities, and their distribution
functions are computable in closed forms:

l1(x) = 1√
2

e−
√

2 |x| and L1(x) = 1− 1
2 e−

√
2 |x|, x > 0

l2(x) =
(

1
2 + |x|

)
e−2 |x| and L2(x) = 1− 1

2 (1 + x) e−2 |x|, x > 0

l3(x) = 3
√

6
16

(
1 +
√

6 |x|+ 2 x2
)

e−
√

6 |x|) and L3(x) = 1−
(

1
2 + 5

√
6 x

16 + 3 x2

8

)
e−
√

6 |x|,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (49)

where Lr(−x) = 1− Lr(x) for x ≥ 0.
The standard Laplace distribution is L1(x) with variance 1 and density l1(x) given in (49).

Therefore, Sargans distributions are a kind of generalizations of the standard Laplace distribution.

Theorem 5. Let r = 1, 2, 3 and (29) be probability mass function of the random dimension Nn = Nn(r) of the
vectors under consideration. If the representation (42) for the statistic Rm and the inequality (32) for Nn(r) with
gn = ENn(r) = r(n− 1) + 1 hold, then there exists a constant Cr such that for all n ∈ N+

sup
x

∣∣∣P (
g−1/2

n Nn(r) RNn(r) ≤ x
)
− Ln;2(x; 1)

∣∣∣ ≤ Cr

{
n−min{r,2}, r �= 2,

ln(n) n−2, r = 2,
(50)

where

Ln;2(x; a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1(x), r = 1,

L2(x) + a x |x| − 5 x
√

2
2(n− 1) + 1 e−2 |x|, r = 2,

L3(x) + 27
24(n− 1) + 8

(
a x3√

2
− 5 x |x|

6 − 5 x
6
√

6

)
e−
√

6 |x|

+ 9 x
2 n

(
1

12
√

6
+
|x|
12 −

x2

6
√

6

)
e−
√

6 |x|, r = 3.

(51)

For arbitrary r > 0, the approximation rate is given by:

sup
x

∣∣∣P (
g−1/2

n Nn(r) RNn(r) ≤ x
)
− Lr(x)

∣∣∣ ≤ Crn−min {r 1}.

Moreover, the scaled angle Nn(r) θNn(r) between the vectors �XNn(r) and �YNn(r) allows the estimate

supx

∣∣∣P (
g−1/2

n Nn(r) θNn(r) ≤ x
)
− Ln;2(x; 1/3)

∣∣∣ ≤ Cr

{
n−min{r,2}, r �= 2,

ln(n) n−2, r = 2,
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where Ln;2(x; 1/3) is given in (51) with a = 1/3.

Figure 4 shows that the Chebyshev–Edgeworth expansion approaches the empirical distribution
function better than the limit Laplace law.

Remark 15. One can find the distribution functions Lr(x) for arbitrary r > 0 with formula 1.12.1.3 in
Prudnikov et al. [32]:

Lr(x) =
1
2
+

2 rr
√

2 π Γ(r)

∫ x

0

( |x|
2 r

)r−1/2

Kr−1/2(
√

2 r |x|)dx

=
1
2
+

x
(2 r)(r−1/2)/2

(
Kr−1/2(

√
2 rx)Lr−3/2(

√
2 rx) + Kr−3/2(

√
2 rx)Lr−1/2(

√
2 rx)

)
.

where Lα(x) are the modified Struve functions of order α, for properties of modified Struve functions see, e.g.,
Oldham et al. [30], Section 57:13.

Remark 16. The function (48) as density of a mixture of normal distributions with zero mean and
random variance Wr having gamma distribution P(Wr ≤ y) = Gr,r(y) is given also in Kotz et al. [31],
Formula (4.1.32) with τ = r, σ = 1/

√
r, using Formula (A.0.4) with λ = −r + 3/2 and the order-reflection

formula K−α(x) = Kα(x). Such a variance gamma model is studied in Madan and Senata [33] for share
market returns.

Remark 17. A systematic exposition about the Laplace distribution and its numerous generalization and diverse
applications one finds in the useful and interesting monography by Kotz et al. [31]. Here, these generalized
Laplace distributions L1(x), L2(x) and L3(x) are the leading terms in the approximations of the sample
correlation coefficient R∗∗Nn(r)

of two Gaussian vectors with negative binomial distributed random dimension
Nn(r) and the angle θ∗∗Nn(r)

between these vectors.

Remark 18. In Goldfeld and Quandt [34] and Missiakoulis [35] Sargans densities lr(x) and distribution
functions Lr(x) for arbitrary integer r = 1, 2, 3, ... have been studied as an alternative to normal law in
econometric models because they are computable in closed form, see also Kotz et al. [31], Section 4.4.3 and the
references therein.

Figure 4. Empirical version of P
(

g−1/2
n Nn(r) RNn(r) ≤ x

)
(blue line), limit Laplace law Lr(x) (orange

line) and second approximation Ln;2(x; 1) (green line) for the correlation coefficient for pairs of normal
vectors with random dimension N25(2). Here, x > 0, n = 25 and r = 2.
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5.2. The Random Dimension Nn = Nn(s) Is the Maximum of n Independent Discrete Pareto Random Variables

The random dimension Nn(s) has probability mass function (39): Since ENn(s) = ∞ we choose
gn = n and consider again the cases γ = 1/2, γ = 0 and γ = −1/2.

It follows from Theorems 1 and 2 and Proposition 2 that if limit distributions for P
(

gγ
n RNn(s) ≤ x

)
for γ ∈ {1/2, 0− 1/2} exist, they are

∫ ∞
0 Φ(x yγ)dHs(y) with densities given below in the proof of the

corresponding theorems

s√
2 π

∫ ∞

0
y− 3/2e−(x2 y2 γ/2+s/y)dy =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l1/
√

s(x) =
√

2 s
2 e−

√
2 s|x|, γ = 1/2,

ϕ(x) = 1√
2 π

e−x2/2, γ = 0,

s∗2(x;
√

s) = 1
2
√

2 s

(
1 + x2

2 s

)−3/2
, γ = −1/2,

(52)

where s∗2(x;
√

s) is the density of the scaled Student’s t-distribution S∗2(x;
√

s) with 2 degrees of freedom,
see Definition B37 in Jackman [36], p.507. If Z has density s∗2(x;

√
s) then Z/

√
s has a classic Student’s

t-distribution with two degrees of freedom.

5.2.1. Laplace Distribution

We start with the case γ = 1/2 in Theorems 1 and 2. Consider the statistics
√

n RNn(s) and√
n(θNn(s) − π/2). The limit distribution is now the Laplace distribution

L1/
√

s(x) =
1
2
+

1
2

sign(x)
(

1− e−
√

2 s |x|
)

with density l1/
√

s(x) =

√
2 s
2

e−
√

2 s|x|.

Theorem 6. Let s > 0 and (39) be the probability mass function of the random dimension Nn = Nn(s) of the
vectors under consideration. If the representation (42) for the statistic Rm and the inequality (32) with gn = n
hold, then there exists a constant Cs such that for all n ∈ N+

sup
x

∣∣∣P (√
n RNn(s) ≤ x

)
− L1/

√
s ;n(x; a)

∣∣∣ ≤ Csn−2,

where

L1/
√

s ;n(x; a) = L1/
√

s(x) +
l1/
√

s(x)
8 s n

(
a 2 s x3 − (4− s)x

(
1 +
√

2 s |x|
))

. (53)

Moreover, the scaled angle θNn(s) between the vectors �XNn(s) and �YNn(s) allows the estimate

supx

∣∣∣P (√
n (θNn(s) − π/2) ≤ x

)
− L1/

√
s ;n(x; 1/3)

∣∣∣ ≤ Cs n−2,

where L1/
√

s ;n(x; 1/3) is given in (53) with a = 1/3.

5.2.2. Standard Normal Distribution

Let γ = 0 in the Theorems 1 and 2 examine the statistics R∗Nn(s)
and Θ∗Nn(s)

=
√

Nn(s)(θNn(s) − π/2).

Theorem 7. Let s > 0 and Nn = Nn(s) be the random vector dimension having probability mass function (39).
If the representation (42) for the statistic Rm and the inequality (32) with gn = n hold, then there exists a
constant Cs such that, for all n ∈ N+

sup
x

∣∣∣∣P(√
Nn(s) RNn(s) ≤ x

)
−Φ(x)− 1

4n
ϕ(x) s2 (x3 − 5 x)

∣∣∣∣ ≤ Cs n−2,
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Moreover, the scaled angle θ∗Nn(s)
between the vectors �XNn(s) and �YNn(s) allows the estimate

supx

∣∣∣∣P(√
Nn(s) (θNn(s) − π/2) ≤ x

)
−Φ(x)− 1

4n
ϕ(x) s2 (

1
3

x3 − 5 x)
∣∣∣∣ ≤ Csn−2.

5.2.3. Scaled Student’s t-Distribution

Finally, we use γ = −1/2 in Theorems 1 and 2 examining the statistics n−1/2 Nn(s) RNn(s) and
n−1/2 Nn(s) (θNn(s) − π/2). The limit Scaled Student’s t-Distribution S∗2(x;

√
s) with two degrees of freedom

is a scale mixture of the normal distribution with zero mean and mixing exponential distribution
1− e−sy, y ≥ 0, and it is representable in a closed form, see (A15) below in the proof of Theorem 8:∫ ∞

0
Φ(x/

√
y)de−s/y =

∫ ∞

0
Φ(x/

√
y)sy−2e−s/ydy =

∫ ∞

0
Φ(x
√

z)se−szdz

=
∫ ∞

0
Φ(x
√

z)d(1− e−sz)dz =
1
2
+

x/
√

s
2
√

2
√

1 + x2/(2s)
= S∗2(x)

Theorem 8. Let s > 0 and Nn = Nn(s) be the random vector dimension having probability mass function (39).
If the representation (42) for the statistic Rm and the inequality (32) with gn = n hold, then there exists a
constant Cs such that for all n ∈ N+

sup
x

∣∣∣P (
n−1/2 Nn(s) RNn(s) ≤ x

)
− S∗n;2(x; 1)

∣∣∣ ≤ Cr n−2, (54)

where

S∗n;2(x;
√

s; a) = S∗2(x;
√

s) +
(15a + 3s− 18)x3 − 6 x s(6− s)

4 n (x2 + 2 s)2 s∗2(x;
√

s) (55)

Moreover, the scaled angle θ∗Nn(s)
between the vectors �XNn(s) and �YNn(s) allows the estimate

supx

∣∣∣P (
n−1/2 Nn(s) θNn(s) ≤ x

)
− Sn;2(x;

√
s; 1/3)

∣∣∣ ≤ Cs n−2,

where Sn;2(x;
√

s; 1/3) is given in (55) with a = 1/3.

Theorems 3 to 8 are proved in Appendix A.3.

6. Conclusions

The asymptotic distributions of the sample correlation coefficient of vectors with random
dimensions are normal scale mixtures. From (43) and (52), one can conclude that random dimension
and corresponding scaling have significant influence on limit distributions A scale mixture of a normal
distribution change the tail behavior of the distribution. Students t-Distributions have polynomial
tails, as one class of heavy-tailed distributions, they can be used to model heavy-tail returns data in
finance. The Laplace distributions have heavier tails than normal distributions.
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Appendix A. Proofs of the Theorems and Lemmas

Appendix A.1. Proofs of Theorems 1 and 2

Proof of Theorem 1. The proof follows along the similar arguments of the more general transfer
Theorem 3.1 in Bening et al. [24]. Since in Theorem 3.1 in Bening et al. [24] the constant γ has to
be non-negative and in our Theorem 1, we also need γ = −1/2, therefore we repeat the proof.
Conditioning on Nn, we have

P
(

gγ
n TNn ≤ x

)
= P

(
Nγ

n TNn ≤ x (Nn/gn)
γ
)

= ∑∞
m=1 P

(
mγTm ≤ x(m/gn)

γ
)
P(Nn = m).

Using now (18) with Φm(z) := Φ(z) + m−1 f2(z), we find

∑∞
m=1

∣∣∣P(mγTm ≤ x(m/gn)
γ
)
−Φm(x(m/gn)

γ)
∣∣∣ P(Nn = m)

(18)
≤ C1 ∑∞

m=1 m−a P(Nn = m) = C1 E(N−a
n ). (A1)

Taking into account P
(

Nn/gn < 1/gn

)
= P

(
Nn < 1

)
= 0, we obtain

∑∞
m=1 Φm(x (m/gn)

γ)P(Nn = m) = E (ΦNn(x (Nn/gn)
γ))

=
∫ ∞

1/gn
Δn(x, y)dP

(Nn

gn
≤ y

)
= Gn(x, 1/gn) + I1,

where Δn(x, y) := Φ(xyγ) + f2(xyγ)/(gny), Gn(x, 1/gn) is defined in (21) and

I1 =
∫ ∞

1/gn
Δn(x, y)d

(
P
(Nn

gn
≤ y

)
− H(y)−

h2(y) I{b>1}(b)
n

)
.

Estimating integral I1, we use the integration by parts for Lebesgue–Stieltjes integrals,
the boundedness of f2(z), say supz | f2(z)| ≤ c∗1, and estimates (19)

|I1| ≤ supx lim
L→∞

|Δn(x, y)|
∣∣P(Nn/gn ≤ y

)
− H(y)− n−1h2(y) I{b > 1}(b)

∣∣∣∣∣∣y=L

y=1/gn

+ supx

∫ ∞

1/gn

∣∣∣ ∂

∂ y
Δn(x, y)

∣∣∣ ∣∣∣P(Nn/gn ≤ y
)
− H(y)− n−1h2(y) I{b>1}(b)

∣∣∣ dy

≤ (1 + c∗1)C2 n−b + C2 Dn n−b,

where Dn is defined in (22). Together with (A1), we obtain (20) and Theorem 1 is proved.

Proof of Theorem 2. Using (23), we find for b > 0

∫ 1/gn

0
Φ(x yγ)dH(y) ≤

∫ 1/gn

0
dH(y) = H(1/

√
gn)− H(0)

(23)
≤ c1g−b

n .

Let now b > 1. Since f2(z) is supposed to be bounded, it follows from | f2(z)| ≤ c∗1 < ∞
and (24i) that ∫ 1/gn

0
| f2(x yγ)|y−1dH(y) ≤ c∗1

∫ 1/gn

0
y−1dH(y)

(24i)
≤ c∗1 c2g−b+1

n .

Integration by parts, |z|ϕ(z) ≤ c∗ = (2 π e)−1/2, (24ii) and (24iii) lead to∣∣∣∣∫ 1/gn

0
Φ(x yγ)dh2(y)

∣∣∣∣ ≤ |h2(1/gn)|+ γc∗
∫ 1/gn

0
y−1|h2(y)|dy ≤ (c3 + γc∗c4)n g−b

n .

276



Mathematics 2020, 8, 1151

Theorem 2 is proved.

Appendix A.2. Proofs of Lemmas 1 to 5

Proof of Lemma 1. To estimate Dn, we consider three cases:

Dn = supx |Dn(x)| = max{supx>0 |Dn(x)|, supx<0 |Dn(x)|, |Dn(0)|}.

Let x > 0. Since ∂
∂y Φ(x yγ) = γ x yγ−1 ϕ(x yγ) ≥ 0, we find

∫ ∞

1/gn

∣∣∣∣ ∂

∂y
Φ(x yγ)

∣∣∣∣ dy =
∫ ∞

1/gn
γ x yγ−1 ϕ(x yγ)dy =

∫ ∞

x g−γ
n

ϕ(u)du = Φ(∞)−Φ(x g−γ
n ) ≤ 1/2.

Consider now f2(x yγ; a) = (a(x yγ)3 − 5 x yγ) ϕ(x yγ)/4 with a = 1 or a = 1/3. Then,

∂

∂y

(
f2(x yγ; a)

y

)
=

Q5(x yγ; a)
4 y2 , Q5(z; a) = −(γ a z5 − ((3a + 5) γ− a) z3 + 5 (γ− 1)z) ϕ(z). (A2)

Since supz |Q5(z; a)| ≤ c(γ; a) < ∞ and g−1
n

∫ ∞
1/gn

y−2dy = 1, inequality (29) holds for x > 0.
Taking into account |Dn(x)| = |Dn(−x)| and Dn(0) = 0, Lemma 1 is proved.

Proof of Lemma 2. Using (30), we find Gr,r(1/gn) ≤ c1g−r
n with c1 = rr−1/Γ(r). For r > 1,

then
∫ 1/gn

0 y−1dGr,r(y) ≤ c2g−r+1
n with c2 = rr/

(
(r − 1)Γ(r)

)
. Since gr,r(0) = 0, h2;r(0) = 0

and gn ≤ r n for r > 1, then (24ii) and (24iii) hold with c3 = c∗r and c4 = c∗r /(r − 1),

where c∗r = rr

2r Γ(r) supy{e−r y (|y− 1||2− r|+ 1)} < ∞.

It remains to prove the bounds in (34) and (35). Let first r < 1. With c∗1 = supz | f2(z; a)|, we find

|I1(x, n)| ≤ c∗1 rr

gn Γ(r)

∫ ∞

1/gn
yr−2dy ≤ c∗1 rr

(r− 1) Γ(r)
g−r

n with c5 =
c∗1 rr

(r− 1) Γ(r)
.

If r = 1 with c∗∗1 = supz{|a z2 − 5|ϕ(z/
√

2)}, we find | f2(z; a)| ≤ c∗∗1 |z| ϕ(z/
√

2) and

|I1(x, n)| ≤ c∗∗1 |x|√
2 π n

∫ ∞

1/n
yγ−1e− (y+x2 y2 γ/4) dy with γ ∈ {−1/2, 0, 1/2}.

For γ = 1/2 using |x| (1 + x2/4)−1/2 ≤ 2, we obtain

|I1(x, n)| ≤ c∗∗1 |x|√
2 π n

∫ ∞

1/n
y1/2−1e− (1+x2/4) y dy ≤ c∗∗1 |x|Γ(1/2)√

2 π (1 + x2/4)1/2
n−1 ≤ c6 n−1, c6 =

√
2 c∗∗1 .

If γ = −1/2, then Prudnikov et al. [37], formula 2.3.16.3, for x �= 0 leads to

I1(x, n) ≤ c∗∗1 |x|√
2 π n

∫ ∞

1/n
y−1−1/2 e−(2 y+x2/(4 y))dy ≤ c∗∗1 |x|√

2 π n
2
√

π

|x| e−
√

2 |x| ≤
√

2 c∗∗1
n

, c6 =
√

2 c∗∗1 .

Finally, if γ = 0, then f2(x yγ; a) = f2(x; a) does not depend on y. Using now

0 ≤ ln n−
∫ 1

1/n
y−1dG1,1(y) =

∫ 1

1/n

1− e−y

y
dy ≤ 1 and

∫ ∞

1
y−1dG1,1(y) ≤ e−1,

then (34) for r = 1 holds with c6 = c∗1(1 + e−1).
Let r > 1. Integration by parts for Lebesgue–Stieltjes integrals in I2(x, n) in (35) and (A2) lead to

I2(x, n) ≤ 1
n gn

(
c∗1 gn |h2;r(1/gn)|+

∫ ∞

1/gn

|Q5(xyγ; a)|
4 y2 |h2;r(y)|dy

)
. (A3)
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Since c(γ; a) = supz |Q5(z; a)| < ∞ and with above defined c∗r , we find

∫ ∞

1/gn

|h2;r(y)|
y2 dy ≤ c∗r

∫ ∞

1/gn
yr−3dy =

c∗r
(2− r)

g−r+2
n for 1 < r < 2

and with c∗∗r = rr−1

2 Γ(r) supy{(e−r y/2 (|y− 1| |2− r|+ 1)} < ∞, we obtain

∫ ∞

1/gn

|h2;r(y)|
y2 dy ≤ c∗∗r

∫ ∞

1/gn
yr−3e−r y/2dy ≤ c∗∗r Γ(r− 2)

(r/2)r−2 for r > 2.

Hence, we obtain (35) for r > 1, r �= 2 with some constant 0 < c7 < ∞.
For r = 2, the second integral in line above is an exponential integral. Therefore, we estimate the

integral I2(x, n) in (35) more precisely like in estimating I1(x, n) above, taking into account the given
function f2(z; a).

Using |h2;2(y)| ≤ 4 y e−2y and consider (A2), define P4(z; a) by Q5(z; a) = −z P4(z; a)ϕ(z/
√

2)
with c∗2 = supz |P4(z; a)|ϕ(z/

√
2) < ∞, we obtain in (A3)

∫ ∞

1/gn

|Q5(x yγ)|
4 y2 |h2;2(y)|dy ≤ c∗2 |x|√

2 π

∫ ∞

1/gn
yγ−1 e−(2y+x2 y2γ/4)dy.

We estimate the latter integral in the same way as I1(x, n) for the two cases γ = 1/2 γ = −1/2 and
find (35) for r = 2 with some constants 0 < c7 < ∞.

In order to prove (35) for r = 2 and γ = 0, we consider for α > 0 the following inequalities:

∫ ∞

1/gn
y−1e−αydy

⎧⎪⎨⎪⎩
≤

∫ 1
1/gn

y−1dy +
∫ ∞

1 e−αydy ≤ ln gn + α−1 e−α,

≥
∫ 1

1/gn
y−1e−αydy ≥ e−α

∫ 1
1/gn

y−1dy ≥ e−α ln gn

. (A4)

The upper bound in (A4) leads to (35) for r = 2, γ = 0, too. The lower bound in (A4) shows that
the ln n-term cannot be improved.

Bound (36) for n ≥ 2, r > 1 results from 0 ≤ 1
gn
− 1

r n = r− 1
r2 n2(1− (r− 1)/(r n)

≤ 2(r− 1)
r2 n2 .

Proof of Lemma 3. Let r > 0. If n = 1, then P(N1(r) = 1) = 1 and (37) holds with C(r) = 1. Let n ≥ 2
and α > 0

E
(

Nn(r)
)−α

=
1
nr

(
1 + ∑∞

k=2
Γ(k + r− 1)
kα Γ(r) Γ(k)

(
1− 1

n

)k−1
)

.

It follows from the relations (49) and (50) with their corresponding bounds in the proof of
Theorem 1 in Christoph et al. [12] that

Γ(k + r− 1)
Γ(r)Γ(k)

=
1

(k + r− 1) B(r k)
=

kr−1

Γ(r)

(
1 + R1(k)

)
, |R1(k)| ≤

c1(r)
k

. (A5)

For x ≥ k ≥ 2 using (1− 1/n)x ≤ e−x/n, we find

kr−1(1− 1/n)k−1

kα
≤

∫ k+1

k

xr (1− 1/n)x−2

(x− 1)1+α
dx ≤ 23+α

∫ k+1

k
xr−3 e−x/ndx.

Then, with c2(r) = 23+α(1 + c1(r))/Γ(r), we obtain

E
(

Nn(r)
)−α ≤ c2(r)n−r Jr(n), where Jr(n) =

∫ ∞

1
xr−α−1 e−x/ndx = nr−α

∫ ∞

1/n
yr−α−1 e−ydy.
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Since Jr(n) ≤ (α − r)−1 for 0 < r < α, Jr(n) ≤ nr−α Γ(r− α) for r > α and using (A4) with r = α

Jr(n) ≤ ln n + e−1, the upper bound (37) is proved.
Let r = α > 0. Considering the formula (A5), 0 ≤ ∑∞

k=2 k−1|R1(k)| ≤ c1(r)π2/(6 Γ(r)) < ∞,

∑(n) := ∑n−1
k=2 k−1 ≥ ln n− ln 2 and ∑n−1

k=2
1− (1− 1/n)k−1

k ≤ ∑n−1
k=2

k− 1
k n ≤ 1, we find:

E(Nn(r))−r ≥ 1
nr Γ(r)

(
∑n−1

k=2
1
k

(
1− 1

n

)k−1
− c3

)
≥ 1

nr Γ(r)

(
∑n−1

k=2
1
k
− c4

)
≥ 1

nr Γ(r)
(ln n− c5) ,

where c3 = c1(r)π2/6, c4 = 1 + c3 and c5 = c4 − ln 2. Hence, the ln n-term cannot be dropped.

Proof of Lemma 4. The upper bounds in the estimates (23) and (24) with Hs(y), h2;s(y) and I2(x, n)
given in (40) are C(s)e−s n/2. For example, (24ii):∫ 1/n

0 y−1|h2;s(y)|dy ≤ s(s + 1)/2
∫ 1/n

0 y−3 e−s/ydy ≤ (s + 1)/(2s)
∫ ∞

s n z e−zdz ≤ (s +

1)/(2s)e−sn/2.

Proof of Lemma 5. Proceeding as in Bening et al. [24] using

P(Nn(s) = k) =
(

k
s + k

)n
−

(
k− 1

s + k− 1

)n
= s n

∫ k

k−1

xn−1

(s + x)n+1 dx

and Formula 2.2.4.24 in Prudnikov et al. [37], p. 298, then

E(N−α
n ) = s n

∞

∑
k=1

1
kα

∫ k

k−1

xn−1

(s + x)n+1 dx ≤ s n
∫ ∞

0

xn−1−α

(s + x)n+1 dx = s n B(n− α, 1 + α).

Using B(n− α, 1 + α) = Γ(1 + α) (n + 1)−1+α(1 + R1/n) with |R1| ≤ c < ∞, we obtain (41).

Appendix A.3. Proofs of Theorems 3 to 8

Proof of Theorem 3. Since the additional assumptions (23) and (24) in the transfer Theorem 2 for
the limit Gamma distribution H(x) = Gr,r(x) of the normalized sample size Nn(r) are satisfied by
Lemma 2 with b = r > 0 and by Lemma 3 for α = 2, it remains to calculate the integrals in (26). Define

J∗1 (x) =
∫ ∞

0
Φ(x
√

y)dGr,r(y), J∗2 (x) =
∫ ∞

0

a (x
√

y)3 − 5x
√

y ϕ(x
√

y)
4 y

dGr,r(y), and

J∗3 (x) =
∫ ∞

0
Φ(x
√

y)dh2;r(y) with h2;r(y) =
(
(y− 1) (2− r) + 2Q1

(
(r(n− 1) + 1)y

)) gr,r(y)
2r

,

and Q1(y) = 1/2− (y− [y]). Then,

G2;n(x; 0) = J∗1 (x) +
J∗2 (x)

gn
+

J∗3 (x)
n

with gn = ENn(r) = r(n− 1) + 1 . (A6)

Using formula 2.3.3.1 in Prudnikov et al. [37], p. 322, with α = r− 1/2, r + 1/2, p = 1 + x2/(2 r)
and q = 1:

Mα(x) =
rr

Γ(r)
√

2π

∞∫
0

yα−1e−(r+x2/2)ydy =
Γ(α) rr−α

Γ(r)
√

2 π

(
1 + x2/(2r)

)−α (A7)

we calculate the integrals occurring in (A6). Consider

∂

∂x
J∗1 (x) =

∫ ∞

0
y1/2 ϕ(x

√
y)gr,r(y)dy =

rr

Γ(r)
√

2 π

∫ ∞

0
yr−1/2e−(r+x2/2)ydy

= Mr+1/2(x) = s2r(x) and J∗1 (x) = S2r(x) .
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The integral J∗2 (x) in (A6) we calculate again with (A7) using Mr−1/2(x) = s2r(x) (2r + x2)/(2r−
1) and Mr+1/2(x) = s2r(x)

J∗2 (x) :=
rr

√
2π Γ(r)

∫ ∞

0

1
y

(
a x3y3/2 − 5 x y1/2

)
yr−1 e−(r+x2/2)ydy

=
(

a x3 Mr+1/2(x)− 5 x Mr−1/2(x)
)
=

(
a x3 − 10 r x + 5 x3

2r− 1

)
s2r(x).

The integral J∗3 (x) in (A6) is the same as the integral J4(x) in the proof of Theorem 2 in
Christoph et al. [12] with the estimate

sup
x

∣∣∣∣J∗3 (x)− (2− r)x(x2 + 1)
4r(2r− 1)

s2r(x)
∣∣∣∣ ≤ c(r) n−r+1 .

With (36), we proved (44).

Proof of Theorem 4. By Lemma 2, the additional assumptions (23) and (24) in the transfer Theorem 2
are satisfied with the limit Gamma distribution H(x) = Gr,r(x) of the normalized sample size Nn(r)
with b = r > 0. In Transfer Theorem 1 for TNn =

√
Nn RNn , the right-hand side of (20) is estimated by

Lemma 1 and Lemma 3 for α = 2 for the case γ = 0. Then, we have by (21) with (35)

Gn(x, 1/gn) = Φ(x)
(

1− Gr,r(1/gn)− n−1h2;r(1/gn)I{r>1}(r)
)
+

f2(x; a)
gn

∫ ∞

1/gn

1
y

dGr,r(y)I{r>1}(r).

The estimates (23), (24i), (24ii), (34) and
∫ ∞

0 y−1dGr,r(y) = r Γ(r− 1)/Γ(r) for r > 1 lead to (46)
with Φn;2(x; 1) defined in (47). Thus, Theorem 4 is proved.

Proof of Theorem 5. By Lemma 2, the additional assumptions (23) and (24) in the transfer Theorem 2
are satisfied with the limit Gamma distribution H(x) = Gr,r(x) of the normalized sample size Nn(r)
with b = r > 0. In Transfer Theorem 1 for TNn = g−1/2

n Nn RNn , the right-hand side of (20) is estimated
by Lemma 1 and Lemma 3 for α = 2 for the case γ = −1/2. Then, we have in (25)

G2;n(x; 0) = J∗1;r(x) +

(
J∗2;r(x)

gn
+

J∗3;r(x)
n

)
I{r>1}(r) with gn = ENn(r) = r(n− 1) + 1 (A8)

J∗1;r(x) =
∫ ∞

0
Φ(x/

√
y)dGr,r(y), J∗2;r(x) =

∫ ∞

0

(a x3 y−3/2 − 5x y−1/2)ϕ(x/
√

y)
4 y

dGr,r(y), and

J∗3;r(x) =
∫ ∞

0
Φ(x/

√
y)dh2;r(y) with h2;r(y) =

(
(y− 1) (2− r) + 2Q1

(
(r(n− 1) + 1)y

)) gr,r(y)
2r

.

Consider formula 2.3.16.1 in Prudnikov et al. [37], p. 444:

Iα :=
∫ ∞

0
yα−1 e−py−q/ydy = 2

(
q
p

)α/2
Kα(2

√
p q) p > 0, q > 0,

where Kα(u) is the α-order Macdonald function (or α-order modified Bessel function of the second
kind), see, e.g., Oldham et al. [30], Chapter 51, for properties of these functions.

Let us calculate the integral J∗1;r(x) occurring in (A8). Consider

d
dx

J∗1;r(x) =
rr

√
2 π Γ(r)

∫ ∞

0
yr−3/2e−ry−(x2/(2 y)dy

=
2 rr

√
2 π Γ(r)

( |x|
2 r

)r−1/2

Kr−1/2(
√

2 r |x|) =: lr(x). (A9)
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If α = ±1/2,±3/2,±5/2, ... the integral Iα and consequently Kα(x) are computable in closed-form
expressions with formula 2.3.16.2 in Prudnikov et al. [37], p. 444:

I∗m =
∫ ∞

0
ym−1/2e−py−q/ydy = (−1)m√π

∂m

∂pm

(
p−1/2e−2

√
pq
)

, p > 0, q > 0, m = 0, 1, 2, ... (A10)

and with formula 2.3.16.3 in Prudnikov et al. [37], p. 444:

I∗−m =
∫ ∞

0
y−m−1/2 e−py−q/ydy = (−1)m

√
π

p
∂m

∂qm e−2
√

p q, p > 0, q > 0, m = 0, 1, 2, ...

For r = 1, 2, 3 using (A10) with m = r− 1, we find

lr(x) =
d

dx
J∗1,r(x) =

rr

Γ(r)
√

2 π

∫ ∞

0
yr−3/2 e−ry−x2/(2y)dy =

rr

Γ(r)
√

2 π
I∗r−1

and we obtain the densities lr(x) in (49) with

I∗m(x) ==

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2 π 1
|x| e−

√
2 r |x|, x �= 0 m = −1,

√
π e−

√
2 r |x|, m = 0,

√
π

(
1

2 r3/2 +
|x|
√

2
2 r

)
e−
√

2 r |x|, m = 1,

√
π

(
3

4 r5/2 +
3 |x|
√

2
4 r2 +

|x|2
2 r3/2

)
e−
√

2 r |x|, m = 2.

Consider now J2;r(x) for r = 2 and r = 3:

J∗2;r(x) =
∫ ∞

0

(a x3 y−3/2 − 5x y−1/2) rr yr−1 e−ry−x2/(2y)

4 y
√

2π Γ(r)
dy =

rr

4
√

2π Γ(r)

(
a x3 I∗r−3(x)− 5 x I∗r−2(x)

)
.

Hence,

J∗2;2(x) =
(
a x |x| − 5 x/

√
2
)

e−2 |x| and J∗2;3(x) =
27
8

(
a x3
√

2
− 5 x

( 1
6
√

6
+
|x|
6

))
e−
√

6|x| .

Integration by parts in the integral J∗3;r in (A8) leads to

J∗3;r(x) :=
∫ ∞

0
Φ(x y−1/2)d(h2;r(y)) =

x
2

∫ ∞

0
y−3/2 ϕ(x y−1/2) h2;r(y)dy

=
rr x

2 r Γ(r)
√

2π

∫ ∞

0
yr−5/2e−r y−x2/(2 y)

(
(y− 1) (2− r) + 2Q1(gn y)

)
dy,

=
rr−1 x

2 Γ(r)
√

2π

∫ ∞

0
yr−5/2(y− 1) (2− r)e−r y−x2/(2 y)dy

+
rr−1 x

Γ(r)
√

2π

∫ ∞

0
yr−5/2Q1(gn y) e−r y−x2/(2 y)dy = J3;r,1(x) + J3;r,2(x).

Since J3;2,1(x) vanishes, we calculate J3;3,1(x):

J3;3,1(x) =
9 x

2
√

2π
(I∗1 (x)− I∗2 (x)) =

9 x
2

(
1

12
√

6
+
|x|
12
− |x|

2

6
√

6

)
e−
√

6 |x|.

It remains to estimate J3;2,2(x) and J3;3,2(x). The function Q1(y) is periodic with period 1:

Q1(y) = Q1(y + 1) for all y ∈ R and Q1(y) := 1/2− y for 0 ≤ y < 1
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It is right-continuous and has the jump 1 at every integer point y. The Fourier series expansion of
Q1(y) at all non-integer points y is

Q1(y) = 1/2− (y− [y]) = ∑∞
k=1

sin(2 π k y)
k π

y �= [y], (A11)

see formula 5.4.2.9 in Prudnikov et al. [37], p. 726, with a = 0.
Using the Fourier series expansion (A11) of the periodic function Q1(y) and interchange sum and

integral, we find

J∗3;r,2 =
x√
2 π

∑∞
k=1

1
k

∫ ∞

0
yr−5/2 e−r y−x2/(2 y) sin(2π k gn y)dy. (A12)

First, we consider r = 2. Let p > 0, q > 0 and b > 0 be some real constants. Formula 2.5.37.4 in
Prudnikov et al. [37], p. 453 reads

∫ ∞

0
y−1/2 e−p y−q/y sin(b y)dy =

√
π

p2 + b2 e−2
√

q z+ (z+ sin(2
√

q z−) + z− cos(2
√

q z−)) . (A13)

with 2 z2
± =

√
p2 + b2 ± p. Consider z± with p = r, q = x2/2, b = 2πkgn, k ≥ 1 and n ≥ 1: Then,√

π

p2 + b2 =

√
π

r2 + (2πkgn)2 ≤
√

π

2πkgn
,
√

2|x|z+ e−
√

2|x|z+ ≤ e−1 and 0 < z− ≤ z+

leads to

|J∗3;2,2(x)| ≤ 2 |x|√
2 π

∑∞
k=1

1
k

√
π

p2 + b2 e−2
√

q z+ (z+ sin(2
√

q z−) + z− cos(2
√

q z−))

≤ 2√
2 π

∑∞
k=1

1
k

√
π
√

2 e−1

2πkgn
=

1
2 π e gn

∑∞
k=1

1
k2 =

π

12 e gn
.

Together with gn ≥ n, we find n−1|J∗3;2,2(x)| ≤ C n−2.
Consider finally J∗3;3,2 given in (A12). In order to estimate J∗3;3,2(x), we apply Leibniz’s rule for

differentiation under the integral sign with respect to p in (A13) and obtain

∫ ∞

0
y1/2 e−p y−q/y sin(b y)dy =

∂

∂p

{√
π

p2 + b2 e−2
√

q z+ (z+ sin(2
√

q z−) + z− cos(2
√

q z−))
}

.

Simple calculation considering
√

q = |x|/
√

2 and |x|m e−
√

2 |x| z+ ≤ m
2m/2 z+

≤ m
2m/2 bm for

m = 1, 2, leads to

|x| ∂

∂p

{√
π

p2 + b2 e−2
√

q z+ (z+ sin(2
√

q z−) + z− cos(2
√

q z−))
}
≤ C

b2 =
C

(2π k gn)2

and we find equation (A12) with r = 3 that n−1 |J∗3;3,2| ≤ C n−3 and (50) is proved.
The approximation (52) holds since Lemmas 1, 2, and 3 are valid for arbitrary r > 0. Theorem 5
is proved.

Proof of Theorem 6. By Lemma 4, the additional assumptions (23) and (24) in the transfer Theorem 2
are satisfied with the limit inverse exponential distribution Hs(y) and h2;s(y) given in (40), gn = n and
b = 2. In Transfer Theorem 1, the right-hand side of (20) is estimated by Lemma 1 and Lemma 5 for
α = 2 for the case γ = 1/2. Then, we have in (25) with (35)

G2;n(x; 0) = J∗1;s(x) + n−1 J∗2;s(x) + n−1 J∗3;s(x),
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where J∗1;s(x) =
∫ ∞

0
Φ(x
√

y)de−s/y, J∗2;s(x) =
∫ ∞

0

(ax3y3/2 − 5x
√

y)ϕ(x
√

y)
4 y

de−s/y,

and J∗3;s(x) =
∫ ∞

0
Φ(x
√

y)dh2;s(y) with h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)
)
/
(
2 y2).

To obtain (53), we calculate the above integrals as in the proof of Theorem 5 in Christoph et al. [12].
Here, we use Formula 2.3.16.3 in Prudnikov et al. [37], p. 344 with p = x2/2 > 0, s > 0, m = 1, 2:

∫ ∞

0

e−x2y/2
√

2π ym−3/2
dHs(y) =

∫ ∞

0

s e−x2y/2−s/y
√

2π ym+1/2
dy = (−1)m s

|x|
∂m

∂sm e−
√

2 s|x|. (A14)

In the mentioned proof we obtained with (A14) for m = 1∫ ∞

0
Φ(x
√

y)dHs(y) = L1/
√

s(x)

and with (A14) for m = 2

n−1 sup
x

∣∣∣∣∣J∗3;s(x)− (1− s)x(1 +
√

2s|x|)
8 s

l1/
√

s(x)

∣∣∣∣∣ ≤ n−1c(s)e−
√

πsn/2 ≤ C(s)n−2.

Again using (A14) with p = x2/2 > 0, s > 0, m = 1, 2 we find

J2;s(x) =
s√
2π

∫ ∞

0
(ax3y−1−1/2 − 5xy−2−1/2)e−(x2 y/2+s/y)dy

=
2sax3 − 5x(

√
2s |x|+ 1)

8 s
l1/
√

s(x).

Proof of Theorem 7. By Lemma 4, the additional assumptions (23) and (24) in Transfer Theorem 2 are
satisfied with the limit inverse exponential distribution Hs(y) and h2;s(y) given in (40), gn = n and
b = 2. In Transfer Theorem 1, the right-hand side of (20) is estimated by Lemma 1 and Lemma 5 for
α = 2 in the case γ = 0. Then, we have in (21) with (35)

Gn(x, 1/n) = Φ(x)
(

1− e−sn − n−1h2;s(1/n)
)
+

f2(x; a)
n

∫ ∞

1/n

1
y

de−s/y.

The estimates (24i), (24ii) for b = 2 and
∫ ∞

0 y−1de−s/y = s
∫ ∞

0 y−3e−s/ydy = s2
∫ ∞

0 ze−zdz = s2

lead to ∣∣∣Gn(x, 1/gn)−Φ(x)− n−1s2 f2(x; a)
∣∣∣ ≤ Cs n−2

and Theorem 7 is proved.

Proof of Theorem 8. By Lemma 4, the additional assumptions (23) and (24) in Transfer Theorem 2 are
satisfied with the limit inverse exponential distribution Hs(y) and h2;s(y) given in (40), gn = n and
b = 2. In Transfer Theorem 1, the right-hand side of (20) is estimated by Lemma 1 and Lemma 5 for
α = 2 in the case γ = −1/2. Then, we have in (21) with (35)

G2;n(x; 0) = J∗1;s(x) + n−1 J∗2;s(x) + n−1 J∗3;s(x),

where J∗1;s(x) =
∫ ∞

0
Φ(xy−1/2)de−s/y, J∗2;s(x) =

∫ ∞

0

(ax3y−3/2 − 5xy−1/2)ϕ(xy−1/2)

4 y
de−s/y,

and J∗3;s(x) =
∫ ∞

0
Φ(xy−1/2)dh2;s(y) with h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)

)
/
(
2 y2).
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To obtain (54), we calculate the above integrals:

∂

∂x

∫ ∞

0
Φ(x
√

y)de−s/y =
s√
2 π

∫ ∞

0
y− 3/2e−(x2/2+s)/y)dy =

s√
2 π

∫ ∞

0
z1/2−1e−(x2/2+s)z)dz

=
1

2
√

2 s

(
1 +

x2

2 s

)−3/2
= s∗2(x;

√
s), and

∫ ∞

0
Φ(x
√

y)de−s/y = S∗2(x;
√

s). (A15)

Define K = (s + x2/2). With z = K/y and Γ(α) =
∫ ∞

0 zα−1e−zdz, α > 0, we obtain

J∗2;s(x) =
s

4
√

2π

∫ ∞

0
(ax3y−9/2 − 5xy−7/2)e−K/ydy =

s K−7/2

4
√

2π

∫ ∞

0
(ax3z5/2 − 5xz3/2 K)e−zdz

=
s K−7/2

4
√

2π

(
ax3Γ(7/2)− 5x K Γ(5/2)

)
=

1
4 (x2 + 2s)2

(
15(a− 1)x3 − 30xs

)
s∗2(x;

√
s).

Integration by parts in J∗3;s(x) leads to

J∗3;s(x) =
x

2
√

2π

∫ ∞

0
y−3/2e−x2/(2y)s y−2e−s/y ((s− 1)/2 + Q1(n y)

)
dy = J∗4;s(x) + J∗5;s(x),

where

J∗4;s(x) =
s (s− 1) x

4
√

2π

∫ ∞

0
y−7/2e−K/ydy =

s (s− 1) x Γ(5/2)
4
√

2π K5/2
=

3 (s− 1) x
4 (x2 + 2s)

s∗2(x;
√

s)

and using the Fourier series expansion (A11) of the periodic function Q1(y) and interchange sum and
integral, we find

J∗5;s(x) =
s x

2
√

2π

∫ ∞

0
y−7/2e−K/y Q1(n y)dy =

s x
2
√

2 π
∑∞

k=1
1
k

∫ ∞

0
y−7/2 e−K/y sin(2π k n y)dy

=
s x

2
√

2 π
∑∞

k=1
1
k

∫ ∞

0
y−7/2 e−K/y sin(2π k n y)dy.

Integration by parts in the latter integral and |x|/
√

K ≤
√

2 leads now to

supx |J∗5;s(x)| ≤ supx
s |x|

(2 π)3/2 n ∑∞
k=1

1
k2

∫ ∞

0

(
7
2

y−9/2 + K y11/2
)

e−K/ydy ≤ csn−1

with cs =
s
√

2
(2 π)3/2 n

(
7 Γ(11/2)

2 s3 +
Γ(13/2)

s4

)
π2

6 and Theorem 8 is proved.
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Abstract: This paper is largely a review. It considers two main methods used to study stability and to
obtain appropriate quantitative estimates of perturbations of (inhomogeneous) Markov chains with
continuous time and a finite or countable state space. An approach is described to the construction
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1. Introduction

In this paper, some topics are considered that are related to the stability of both homogeneous and
non-homogeneous continuous-time Markov chains with respect to the perturbation of their intensities
(infinitesimal characteristics). It is assumed that the evolution of the system under consideration is
described by a Markov chain with the known state space, and it is the infinitesimal matrix that is
given inexactly. Different classes of admissible perturbations can be considered. The “perturbed”
infinitesimal matrix can be arbitrary, and the small deviation of its norm from that of the original
matrix is assumed or it can be assumed that the structure of the infinitesimal matrix is known and only
its elements are “perturbed” within the same structure. Below we will give a detailed description of
these cases. In some papers it is assumed that the perturbations have a special form and, for example,
are expanded in a power series of a small parameter. This assumption seems to be too restrictive
and unrealistic.

The study of stability of characteristics of stochastic models has been actively developing since
the 1970s [1–3]. At that time, Zolotarev proposed to treat limit theorems of probability theory as
special stability theorems. Zolotarev created the theoretical foundation of the key method used within
this approach, namely, the theory of probability metrics [4]. This approach assumes that statements
establishing the convergence must be accompanied by statements establishing the convergence rate.
Zolotarev called the conditions of convergence that simultaneously serve as convergence rate estimates
“natural.” This approach was developed in the works of Zolotarev, Kalashnikov, Kruglov, Senatov, Yu,
Korolev, Yu, Khokhlov, and their colleagues in the framework of international seminars on stability
problems for stochastic models. This seminar was founded by Zolotarev in the early 1970s and still
continues to hold its regular (as a rule, annual) international sessions (see the series of the proceedings
of the seminar published as Springer Lecture Notes starting from [5] or as issues of the Journal of
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Mathematical Sciences). In particular, this approach proved to be very productive for the study of
random sums in queueing theory, renewal theory, and the theory of branching processes [6].

Since the 1980s, the problems related to the estimation of stability of Markov chains with respect
to perturbations of their characteristics have been thoroughly studied by Kartashov for homogeneous
discrete-time chains with general state space and, in parallel, by Zeifman for inhomogeneous
continuous-time chains within the seminar mentioned above (see [7–9]). In particular, a general
approach for inhomogeneous continuous-time chains was developed in [9]. That paper was published
in the proceedings of the seminar “Stability Problems for Stochastic Models” and dealt with both
uniform and strong cases.

Later birth-death processes were considered in [10], and general properties and estimates for
inhomogeneous finite chains were considered in [11]. The paper [12] was specially devoted to estimates
for general birth-death processes, with the queueing system Mt|Mt|N considered as an example. It
should be mentioned that these papers were not noticed by Western authors. For example, in [13],
it was stated that there were no papers on the stability of the (simplest stationary!!) system M|M|1.
For the first time, we used the term “perturbation bounds” instead of “stability” in the paper [14] on
the referee’s prompt. The same situation takes place with Kartashov’s papers cited above. The methods
proposed in those papers seem to be used by most authors of subsequent studies in estimations of
perturbations of discrete-time chains. Possibly, poor acquaintance with the early papers of Kartashov
and Zeifman can be explained by the differences in terminology mentioned above: in the original
(and foundational) papers, the term “stability” was used (in the proceedings of the seminar with the
consonant appellation “Stability Problems for Stochastic Models”).

The present paper deals only with continuous-time chains, so the subsequent remarks mainly
regard such a case.

Note that, to obtain explicit and exact estimates of the perturbation bounds of a chain, it is
required to have estimates of the rate of convergence of the chain to its limit characteristics in the form
of explicit inequalities. Moreover, the sharper the convergence rate estimates are, the more accurate the
perturbation bounds are. These bounds can be more easily obtained for finite homogeneous Markov
chains. Therefore, most publications concern this situation only (see, e.g., [15–20]). Thus, two main
approaches can be highlighted.

The first of them can be used for the case of weak ergodicity of a chain in the uniform operator
topology. The first bounds in this direction were obtained in [9]. The principal progress related to
the replacement of the constant S with log S in the bound was implemented in [17] and continued
in Mitrophanov’s papers [18–20] for the case of homogeneous chains and then in [14,21] and in the
subsequent papers of these authors for the inhomogeneous chains. The contemporary state of affairs
in this field and new applied problems related to the link between convergence rate and perturbation
bounds in the “uniform” case were described in [22]. In some recent papers, uniform perturbation
bounds of homogeneous Markov chains were studied by the techniques of stochastic differential
equations (see, for instance, [23] and the references therein).

The second approach is used in the case where the uniform ergodicity is not assured, which
is typical for the processes most interesting from a practical viewpoint. For example, birth-death
processes used for modeling queueing systems, and real processes in biology, chemistry, and physics,
as a rule, are not uniformly ergodic.

Following the ideas of Kartashov (see a detailed description in [24]), most authors use the
probability methods to study ergodicity and perturbation bounds of stationary chains (with a finite,
countable, or general state space) in various norms [13,25,26]. For a wide class of (mainly) stationary
discrete-time chains, a close approach was considered in [27] and more recent papers [28–38].

In the works of the authors of the present paper, perturbation bounds for non-stationary finite or
infinite continuous-time chains were studied by other methods.

The first papers dealing with non-stationary queueing models appeared in the 1970s (see [39,40],
and the more recent paper [41]). Moreover, as far back as the year in which [42] was published,
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it was noted that it is principally possible to use the logarithmic matrix norm for the study of the
convergence rate of continuous-time Markov chains. The corresponding general approach employing
the theory of differential equations in Banach spaces was developed in a series of papers by the authors
of the present paper(see a detailed description in [43,44]). In [9] (see also [10,11]), a method for the
study of perturbation bounds for the vector of state probabilities of a continuous-time Markov chain
with respect to the perturbations of infinitesimal characteristics of the chain in the total variation
norm (l1-norm) was proposed. The paper [12] contained a detailed study of the stability of essentially
non-stationary birth-death processes with respect to conditionally small perturbations. Convergence
rate estimates in terms of weight norms, and hence the corresponding bounds for new classes of
Markov chains, were considered in [45–48].

In the present paper, both approaches are considered along with the classes of inhomogeneous
Markov chains, for which at least one of these approaches yields reasonable perturbation bounds for
basic probability characteristics.

The paper is organized as follows. In Section 2, basic notions and preliminary results are
introduced. In Section 3, general theorems on perturbation bounds are considered. Section 4 contains
convergence rate estimates and perturbation bounds for basic classes of the chains under consideration.
Finally, in Section 5, some special queueing models are studied.

2. Basic Notions and Preliminaries

Let X = X(t), t ≥ 0, be, in general, an inhomogeneous continuous-time Markov chain with a
finite or countable state space ES = 0, 1, . . . , S, S ≤ ∞. The transition probabilities for X = X(t) will
be denoted pij(s, t) = Pr {X(t) = j |X(s) = i}, i, j ≥ 0, 0 ≤ s ≤ t. Let pi(t) = Pr {X(t) = i} be the
state probabilities of the chain and p(t) = (p0(t), p1(t), . . . )T be the corresponding vector of state
probabilities. In what follows, it is assumed that

Pr {X (t + h) = j|X (t) = i} =

=

⎧⎪⎨⎪⎩
qij (t) h + αij (t, h) , if j �= i

1−∑
k �=i

qik (t) h + αi (t, h), if j = i (1)

where all αi(t, h) are o(h) uniformly in i, that is, supi |αi(t, h)| = o(h).
As usual, we assume that, if a chain is inhomogeneous, then all the infinitesimal characteristics

(intensity functions) qij (t) are integrable in t on any interval [a, b], 0 ≤ a ≤ b.
Let aij(t) = qji(t) for j �= i and aii(t) = −∑j �=i aji(t) = −∑j �=i qij(t).
Further, to provide the possibility to obtain more evident estimates, we will assume that

|aii(t)| ≤ L < ∞ (2)

for almost all t ≥ 0.
The state probabilities then satisfy the forward Kolmogorov system

dp

dt
= A(t)p(t) (3)

where A(t) = QT(t), and Q(t) is the infinitesimal matrix of the process.
Let ‖ · ‖ be the usual l1-norm, i.e. ‖x‖ = ∑ |xi|, and ‖B‖ = supj ∑i |bij| for B = (bij)

∞
i,j=0. Denote

Ω =
{

x : x ∈ l+1 & ‖x‖ = 1
}

. Therefore,

‖A(t)‖ = 2 sup
k
|akk(t)| ≤ 2L
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for almost all t ≥ 0, and we can apply the results of [49] to Equation (3) in the space l1. Namely, in [49]
it was shown that the Cauchy problem for Equation (3) has a unique solution for an arbitrary initial
condition. Moreover, if p(s) ∈ Ω, then p(t) ∈ Ω, for any 0 ≤ s ≤ t and any initial condition p(s).

Let p0(t) = 1−∑i≥1 pi(t).
Put z = (p1, p2, . . . )T .
Therefore, from Equation (3), we obtain the equation

dz

dt
= B(t)z(t) + f(t), (4)

where f = (a10, a20, · · · )T ,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 − a10 a12 − a10 · · · a1r − a10 · · ·
a21 − a20 a22 − a20 · · · a2r − a20 · · ·
a31 − a30 a32 − a30 · · · a3r − a30 · · ·
· · ·

ar1 − ar0 ar2 − ar0 · · · arr − ar0 · · ·
· · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

where all expressions depend on t.
By X̄ = X̄(t), we will denote the “perturbed” Markov chain with the same state space,

state probabilities p̄i(t), transposed infinitesimal matrix Ā(t) =
(
āij(t)

)∞
i,j=0, and so on, and the

“perturbations” themselves, that is, the differences between the corresponding “perturbed” and original
characteristics will be denoted by âij(t), Â(t).

Let E(t, k) = E {X(t) |X(0) = k}. Recall that a Markov chain X(t) is weakly ergodic if ‖p∗(t)−
p∗∗(t)‖ → 0 as t→ ∞ for any initial condition, and it has the limiting mean φ(t) if |E(t, k)− φ(t)| → 0
as t→ ∞ for any k.

Now we briefly describe the main classes of the chains under consideration. The details concerning
the first four classes can be found in [47,50].

Case 1. Let aij(t) = 0 for all t ≥ 0 if |i − j| > 1, and ai,i+1(t) = μi+1(t), ai+1,i(t) = λi(t). This
is an inhomogeneous birth-death process (BDP) with the intensities λi(t) (of birth) and μi+1(t) (of death)
correspondingly.

Case 2. Now let aij(t) = 0 for i < j− 1, ai+k,i(t) = ak(t) for k ≥ 1, and ai,i+1(t) = μi+1(t). This chain
describes, for instance, the number of customers in a queueing system in which the customers arrive in groups,
but are served one by one (in this case, ak(t) is the arrival intensity of a group of k customers, and μi(t) is the
service intensity of the ith customer). The simplest models of this type were considered in [51] (see also [47,50]).

Case 3. Let aij(t) = 0 for i > j + 1, ai,i+k(t) = bk(t), k ≥ 1, and ai+1,i(t) = λi(t). This situation occurs in
modeling queueing systems with the arrivals of single customers and group service.

Case 4. Let ai+k,i(t) = ak(t), ai,i+k(t) = bk(t) for k ≥ 1. This process appears in the description of a system
with group arrival and group service, for earlier studies see [46,52,53].

Case 5. Consider a Markov chain with “catastrophes” used for modeling of some queueing systems (see,
e.g., [14,54–58]). Here the intensities have a general form, whereas a single (although substantial) restriction
consists in that the zero state is attainable from any other state, and the corresponding intensities qk,0(t) = a0,k(t)
for k ≥ 1 are called the intensities of catastrophes.
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Now consider the following example illustrating some specific features of the problem
under consideration.

Example 1 ([14]). Consider a homogeneous BDP (Class I) with the intensities λk(t) = 1, μk(t) = 4 for all t
and k and denote by A the corresponding transposed intensity matrix. Therefore, as is known (see, e.g., [59]),
the BDP is strongly ergodic and stable in the corresponding norm. On the other hand, take a perturbed process
with the transposed infinitesimal matrix Ā = A + Â, where â00 = −ε, âk0 = ε

k(k+1) for k ≥ 1, and âij = 0
for the other i, j. The perturbed Markov chain X̄(t) (describing the “M|M|c queue with mass arrivals when
empty” (see [54,58,60])) is then not ergodic, since, from the condition Āp̄ = 0, it follows that the coordinates
of the stationary distribution (if it exists) must satisfy the condition 4p̄k+1 = p̄k + p̄0

ε
k+1 ≥ p̄0

ε
k+1 , which

is impossible.

As has already been noted, the (upper) bounds of perturbations are closely connected with the
(correspondingly, upper) estimates for the convergence rate (see also the two next sections). On the
other side, it is also possible to construct important lower estimates of the rate of convergence provided
that the influence of the initial conditions cannot fade too rapidly (see [61]). It turns out that it is
principally impossible to construct lower bounds for perturbations. Indeed, if we consider the same
BDP and, as a perturbed BDP, choose a BDP with the intensities λ̄k(t) = 1 + ε, μ̄k(t) = 4(1 + ε), then
the stationary distribution for the perturbed process will be the same as that for the original BDP for
any positive ε.

3. General Theorems Concerning Perturbation Bounds

First consider uniform bounds that provide the first approach to perturbation estimation. This
approach is applied to uniformly ergodic Markov chains and the study of stability of the state
probability vector. The most important class of such processes is that of Markov chains on finite
state space, both homogeneous and inhomogeneous.

Theorem 1. Let the Markov chain X(t) be exponentially weakly ergodic; that is, for any initial conditions
p∗(s) ∈ Ω, p∗∗(s) ∈ Ω and any s ≥ 0, t ≥ s, there holds the inequality

‖p∗(t)− p∗∗(t)‖ ≤ 2ce−b(t−s). (6)

Therefore, for the perturbations small enough (Â(t) ≤ ε for almost all t ≥ 0), the perturbed chain X̄(t) is
also exponentially weakly ergodic, and the following perturbation bound takes place:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ (1 + log(c/2)) ε

b
. (7)

For the proof, we will use the approach proposed in [17] and modified in [21] for the
inhomogeneous case, see also [14]. Let

β(t, s) = sup
‖v‖=1,∑ vi=0

‖U(t)v‖ = 1
2 sup

i,j
∑
k
|pik(t, s)− pjk(t, s)|. (8)

Therefore,

‖p(t)− p̄(t)‖ ≤ β(t, s)‖p(s)− p̄(s)‖+
∫ t

s
‖Â(u)‖β(u, s)du. (9)

Moreover,
β(t, s) ≤ 1, β(t, s) ≤ c

2 e−b(t−s), 0 ≤ s ≤ t. (10)

Hence,
‖p(t)− p̄(t)‖ ≤
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⎧⎨⎩‖p(s)− p̄(s)‖+ (t− s)ε, i f 0 < t−s < 1
b ln c

2 ,
c
2 e−b(t−s)‖p(s)− p̄(s)‖+ 1

b (ln
c
2+ 1−ce−b(t−s))ε, i f t−s ≥ 1

b ln c
2

(11)

whence, as t→ ∞, we obtain Equation (7).

Corollary 1. If under the conditions of Theorem 1 the Markov chain X(t) has a finite state space, then both
Markov chains X(t) and X̄(t) have limit expectations and

|φ(t)− φ̄(t)| ≤ 1
b S (1 + log(c/2)) ε. (12)

Now consider the second approach. Namely, we turn to weighted bounds. Such estimates can be
applied to a wide class of Markov chains which are exponentially ergodic in some weighted norms.
Moreover, as a rule, these estimates also allow one to study stability characteristics of the mathematical
expectation for countable Markov chains, both homogeneous and inhomogeneous. Here we use the
approach proposed in [9] (see also the detailed description in [43,44]).

Let 1 ≤ d1 ≤ d2 ≤ . . . ,

D =

⎛⎜⎜⎜⎜⎜⎜⎝
d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·

. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ . (13)

Let l1D =
{

z = (p1, p2, · · · )T : ‖z‖1D ≡ ‖Dz‖ < ∞
}

. Therefore, ‖B‖1D = ‖DBD−1‖.
In addition, let ‖p‖1D = ‖z‖1D.

Below we will assume that the following conditions hold:

‖B(t)‖1D ≤ B < ∞, ‖f(t)‖1D ≤ f < ∞ (14)

for almost all t ≥ 0.

Recall that X(t) is a 1D-exponentially weakly ergodic Markov chain if

‖p∗(t)− p∗∗(t)‖1D ≤ Me−a(t−s)‖p∗(s)− p∗∗(s)‖1D. (15)

for some M > 0, a > 0 and any s, t: t ≥ s ≥ 0, any initial conditions p∗(s) ∈ l1D, p∗∗(s) ∈ l1D.

If one can choose p∗∗(t) = ß, then the chain is 1D-exponentially strongly ergodic.
Let

‖B(t)− B̄(t)‖1D ≤ |B− B̄| , ‖f(t)− f̄(t)‖1D ≤ |f− f̄| . (16)

for almost all t ≥ 0.

Theorem 2. If a Markov chain X(t) is 1D-exponentially weakly ergodic, then X̄(t) is also 1D-exponentially
weakly ergodic and the following perturbation estimate in the 1D-norm holds:

lim sup
t→∞

‖p(t)− p̄(t)‖1D ≤
M (M |B− B̄| f+ a |f− f̄|)

a (a−M |B− B̄|) . (17)

If W = infi≥1
di
i > 0, then both chains X(t) and X̄(t) have limiting means and

lim sup
t→∞

|φ(t)− φ̄(t)| ≤ M (M |B− B̄| f+ a |f− f̄|)
Wa (a−M |B− B̄|) . (18)
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Proof. The detailed consideration can be found in [44]. Here we only outline the scheme of reasoning.
Let V(t, s) and V̄(t, s) be the Cauchy operators for Equation (4) and for the corresponding “perturbed”
equation, respectively. Therefore,

‖V(t, s)‖1D ≤ Me−a(t−s), ‖V̄(t, s)‖1D ≤ Me−(a−M|B−B̄|)(t−s) (19)

for all t ≥ s ≥ 0. Therefore, rewriting Equation (4) as

dz

dt
= B̄(t)z(t) + f(t) + (B(t)− B̄(t)) z(t), (20)

after some algebra, we obtain the following inequality in the 1D-norm:

‖z(t)− z̄(t)‖ ≤
∫ t

0
‖V̄(t, τ)‖

(
‖B(τ)− B̄(τ)‖‖z(τ)‖+ ‖f(τ)− f̄(τ)‖

)
dτ ≤

≤
∫ t

0
Me−(a−M|B−B̄|)(t−τ) (|B− B̄| ‖z(τ)‖+ |f− f̄|) dτ. (21)

On the other hand, ‖z(t)‖1D ≤ Me−at‖z(0)‖1D + M
a f, for any 0 ≤ s ≤ t. Hence, under any initial

condition z(0) ∈ l1D, we obtain the following inequalities for the 1D-norm:

‖z(t)− z̄(t)‖ ≤ M
(
|B− B̄| M

a
f+ |f− f̄|

) ∫ t

0
e−(a−M|B−B̄|)(t−τ) dτ+

+M
∫ t

0
e−(a−M|B−B̄|)(t−τ) |B− B̄|Me−aτ‖z(0)‖ dτ ≤

≤ M (M |B− B̄| f+ a |f− f̄|)
a (a−M |B− B̄|) + o (1) . (22)

Therefore, the first assertion of the theorem is proved.
Therefore, the second assertion follows from the inequality ‖z‖1E ≤W−1‖z‖1D (see, e.g., [62]) and

the estimate expressed by Equation (22), where l1E =
{

z = (p1, p2, . . .)T : ‖z‖1E ≡ ∑ n|pn| < ∞
}

.

Remark 1. A number of consequences of this statement can be formulated, for example,

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 4M (M |B− B̄| f+ a |f− f̄|)
ad (a−M |B− B̄|) , (23)

which follows from

‖p∗ − p∗∗‖ ≤ 2‖z∗ − z∗∗‖ ≤ 4
d
‖z∗ − z∗∗‖1D. (24)

The respective perturbation bounds can be formulated for strongly ergodic (for instance, homogeneous)
Markov chains (see [44]).

Remark 2. As shown in [44], the bounds presented in Theorem 2 and its corollaries are sufficiently sharp.
Namely, in [44], we considered the queue-length process for the simplest ordinary M/M/1 queue and proved
that the bounds established in Theorem 2 have the proper order.

4. Convergence Rate Estimates and Perturbation Bounds for Main Classes

For Markov chains of Classes 1–4, an important role is played by the matrix B∗∗(t) = DB(t)D−1.
To begin with, write out this matrix for each of these classes.

For Class 1, this matrix has the form
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B∗∗(t) =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (λ0+μ1)
d1
d2

μ1 0 · · · 0 · · · · · ·
d2
d1

λ1 −(λ1+μ2)
d2
d3

μ2 · · · 0 · · · · · ·

. . .
. . .

. . .
. . .

. . . · · ·

0 · · · · · · dr
dr−1

λr−1 −(λr−1+μr)
dr

dr+1
μr · · ·

· · · · · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(25)

in the case of a countable state space (S = ∞);

B∗∗(t) =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− (λ0+μ1)
d1
d2

μ1 0 · · · 0

d2
d1

λ1 −(λ1+μ2)
d2
d3

μ2 · · · 0

. . . . . . . . . . . . . . .

0 · · · · · · dS
dS−1

λS−1 −(λS−1+μS)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(26)

in the case of a finite state space (S < ∞).
For Class 2, this matrix has the form

B∗∗(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11
d1
d2

μ1 0 · · · 0

d2
d1

a1 a22
d2
d3

μ2 · · · 0

d3
d1

a2
d3
d2

a1 a33
d3
d4

μ3 · · ·
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(27)

in the case of a countable state space (S = ∞);

B∗∗(t) =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 − aS
d1
d2

μ1 0 · · · 0

d2
d1
(a1 − aS) a22 − aS−1

d2
d3

μ2 · · · 0

. . . . . . . . . . . . . . .

dS
d1

(aS−1 − aS) · · · · · · dS
dS−1 (a1 − a2) aSS − a1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(28)

in the case of a finite state space (S < ∞).
For Class 3, this matrix has the form
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B∗∗(t) =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (λ0+b1)
d1
d2

(b1−b2)
d1
d3

(b2−b3) · · · · · ·
d2
d1

λ1 −
(
λ1+ ∑

i≤2
bi
) d2

d3
(b1−b3) · · · · · ·

. . .
. . .

. . .
. . .

. . .

0 · · · · · · dr
dr−1

λr−1 −
(
λr−1+ ∑

i≤r
bi
)
· · ·

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(29)

in the case of a countable state space (S = ∞);

B∗∗(t) =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(λ0+b1)
d1
d2

(b1−b2)
d1
d3

(b2−b3) · · · d1
dS

(bS−1−bS)

d2
d1

λ1 −
(
λ1+ ∑

i≤2
bi
) d2

d3
(b1−b3) · · · d2

dS
(bS−2−bS)

. . .
. . .

. . .
. . .

. . .

0 · · · · · · dS
dS−1

λS−1 −
(
λS−1+ ∑

i≤S
bi
)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(30)

in the case of a finite state space (S < ∞).
Finally, for Class 4, this matrix has the form

B∗∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11
d1
d2
(b1 − b2)

d1
d3
(b2 − b3) · · · · · ·

d2
d1

a1 a22
d2
d3
(b1 − b3) · · · · · ·

. . . . . . . . . . . . . . .

dr
d1

ar−1 · · · · · · dr
dr−1

a1 arr · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(31)

in the case of a countable state space (S = ∞);

B∗∗(t) =

=

⎛⎜⎜⎜⎜⎜⎜⎝
a11−aS

d1
d2

(b1−b2)
d1
d3

(b2−b3) · · · d1
dS

(bS−1−bS)

d2
d1

(a1−aS) a22−aS−1
d2
d3

(b1−b3) · · · d2
dS

(bS−2−bS)

. . .
. . .

. . .
. . .

. . .

dS
d1

(aS−1−aS) · · · · · · dS
dS−1

(a1−a2) aSS−a1

⎞⎟⎟⎟⎟⎟⎟⎠ (32)

in the case of a finite state space (S < ∞).
In the proofs of the following theorems, we use the notion of the logarithmic norm of a linear

operator function and the related estimates of the norm of the Cauchy operator of a linear differential
equation. The corresponding results are described in detail in our preceding works (see [47,62,63]).
Here we restrict ourselves only to the necessary minimum.

Recall that the logarithmic norm of an operator function B∗∗(t) is defined as the number

γ(B∗∗(t)) = lim
h→+0

h−1 (‖I + hB∗∗(t)‖ − 1) .
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Let V(t, s) = V(t)V−1(s) be the Cauchy operator of the differential equation

dw

dt
= B∗∗(t)w.

Therefore, the estimate
‖V(t, s)‖ ≤ e

∫ t
s γ(B∗∗(u)) du

holds. Moreover, if for each t ≥ 0 B∗∗(t) maps l1 into itself, then the logarithmic norm can be calculated
by the formula

γ(B∗∗(t)) = sup
1≤j≤S

(
b∗∗jj (t) + ∑

i �=j
|b∗∗ij (t)|

)
. (33)

Now let

αi (t) = −
(

b∗∗jj (t) + ∑
i �=j
|b∗∗ij (t)|

)
, α (t) = inf

i≥1
αi (t) . (34)

Also note that, if in Classes 2–4 the intensities ak(t) and bk(t) do not increase in k for each t, then
in all the cases the matrix B∗∗(t) is essentially nonnegative (that is, its non-diagonal elements are
nonnegative); therefore, in Equations (33) and (34), the signs of the absolute value can be omitted.

The following statement ([47]) Theorem 1 is given here for convenience.

Theorem 3. Let, for some sequence {di, i ≥ 1} of positive numbers, the conditions d1 = 1, d = infi≥1 di >

0 and ∫ ∞

0
α(t) dt = +∞ (35)

hold. Therefore, the Markov chain X(t) is weakly ergodic and for any initial condition s ≥ 0, w(s), and for all
t ≥ s the following estimate holds:

‖w (t) ‖ ≤ e−
∫ t

s α(u)du‖w(s)‖. (36)

Now let, instead of Equation (35), for all 0 ≤ s ≤ t, a stronger condition

e−
∫ t

s α(τ) dτ ≤ M∗e−a∗(t−s) (37)

hold.

Theorem 4. Let, under the conditions of Theorem 3, Inequality (37) hold. Therefore, the Markov chain X(t) is
1D-exponentially weakly ergodic, and for all t ≥ s ≥ 0 and p∗(s) ∈ l1D, p∗∗(s) ∈ l1D, Inequality (15) holds
with M = M∗ and a = a∗.

Remark 3. In the case of a homogeneous Markov chain, or if all intensities are periodic with one and the same
period, conditions expressed by Equations (35) and (37) are equivalent.

Theorem 5. Let the conditions of Theorem 4 hold. Therefore, the Markov chain X(t) is 1D-exponentially
weakly ergodic. Under perturbations small enough (see Equation (16)), the perturbed chain X̄(t) is also
1D-exponentially weakly ergodic, and the perturbation bound expressed by Equation (38) in the 1D-norm holds.
If, moreover, W = infi≥1

di
i > 0, then both chains X(t) and X̄(t) have limit expectations and the estimate

expressed by Equation (18) holds for the perturbation of the mathematical expectation.

To obtain perturbation bounds in the natural norm, it suffices to use Inequality (24)
mentioned above.
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Corollary 2. Under the conditions of Theorem 5, the following perturbation bound in the natural l1- (total
variation) norm holds:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 4M (M |B− B̄| f+ a |f− f̄|)
ad (a−M |B− B̄|) . (38)

Note that it is convenient to use the results formulated above for the construction of perturbation
bounds for Markov chains of the first four classes (see, e.g., [12,44,46,47]).

For chains of the fifth class, as a rule, it is convenient to use the approach based on uniform
bounds as shown below. These models were considered, e.g., in [14,64,65].

Let
β∗ (t) = inf

k
a0k(t). (39)

Theorem 6. Let the intensities of catastrophes be essential, that is∫ ∞

0
β∗ (t) dt = +∞. (40)

Therefore, the chain X (t) is weakly ergodic in the uniform operator topology and for any initial conditions
p∗ (0) , p∗∗ (0), and any 0 ≤ s ≤ t, the following convergence rate estimate holds:

‖p∗ (t)− p∗∗ (t)‖ ≤ 2e
−

t∫
s

β∗(τ) dτ
. (41)

To prove this theorem, we will use the same technique as in [14]. Rewrite the forward Kolmogorov
system expressed by Equation (3) in the form

dp

dt
= A∗ (t) p + g (t) , t ≥ 0. (42)

Here g (t) = (β∗ (t) , 0, 0, . . . )T , A∗ (t) =
(

a∗ij (t)
)∞

i,j=0
, and

a∗ij (t) =

⎧⎨⎩a0j (t)− β∗ (t) , if i = 0,

aij (t) , otherwise .
(43)

The solution to this equation can be written as

p (t) = U∗ (t, 0) p (0) +
∫ t

0
U∗ (t, τ) g (τ) dτ (44)

where U∗ (t, s) is the Cauchy operator of the differential equation

dz

dt
= A∗ (t) z. (45)

Note that the matrix A∗ (t) is essentially nonnegative for all t ≥ 0. Its logarithmic norm is equal to

γ(A∗(t)) = sup
i

(
a∗ii (t) + ∑

j �=i
a∗ji (t)

)
= −β∗ (t) . (46)

Hence,

‖p∗ (t)− p∗∗ (t)‖ ≤ e
−

t∫
s

β∗(τ) dτ
‖p∗ (s)− p∗∗ (s)‖ ≤ 2e

−
t∫

s
β∗(τ) dτ

. (47)
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Theorem 7. Let, instead of Equation (40), the stronger condition

e−
∫ t

s β∗(τ) dτ ≤ c∗e−b∗(t−s) (48)

hold. Therefore, the chain X (t) is weakly exponentially ergodic in the uniform operator topology, and if the
perturbations are small enough, that is, ‖Â(t)‖ ≤ ε for almost all t ≥ 0, then the perturbed chain X̄(t) is also
exponentially weakly ergodic, and the perturbation bound expressed by Equation (7) holds with c = c∗ and
b = b∗.

5. Examples

First note that many examples of perturbation bounds for queueing systems have been considered
in [11,12,14,44,46,66,67].

Here, to compare both approaches, we will mostly deal with the queueing system Mt|Mt|N|N
with losses and 1-periodic intensities. In the preceding papers on this model, other problems were
considered. For example, in [68], the asymptotics of the rate of convergence to the stationary mode as
N → ∞, was studied, whereas the paper [69] dealt with the asymptotics of the convergence parameter
under various limit relations between the intensities and the dimensionality of the model. In [66,67],
perturbation bounds were considered under additional assumptions.

Let N ≥ 1 be the number of servers in the system. Assume that the customers arrival intensity
λ(t) and the service intensity of a server μ(t) are 1-periodic nonnegative functions integrable on the
interval [0, 1]. Therefore, the number of customers in the system (queue length) X(t) is a finite Markov
chain of Class 1, that is, a BDP with the intensities λk−1(t) = λ(t), μk(t) = kμ(t) for k = 1, . . . , N.

It should be especially noted that the process X(t) is weakly ergodic (obviously exponentially
and uniformly ergodic, since the intensities are periodic and the state space is finite) if and only if

∫ 1

0
(λ(t) + μ(t)) dt > 0 (49)

(see, e.g., [70]).
For definiteness, assume that

∫ 1
0 μ(t) dt > 0.

Apply the approach described in Theorems 3 and 4.
Let all dk = 1. Therefore,

B∗∗(t) =

⎛⎜⎜⎜⎜⎜⎝
− (λ + μ) μ 0 · · · 0

λ − (λ + 2μ) 2μ · · · 0
. . . . . . . . . . . . . . .

0 · · · · · · λ − (λ + Nμ)

⎞⎟⎟⎟⎟⎟⎠ , (50)

and in Equation (34) we have αi (t) = μ(t) for all i; hence, α (t) = μ(t).
Therefore, Theorem 3 yields the estimate

‖p∗(t)− p∗∗(t)‖1D ≤ e−
∫ t

s μ(τ) dτ‖p∗(s)− p∗∗(s)‖1D. (51)

To find the constants in the estimates, let μ∗ =
∫ 1

0 μ(τ) dτ and consider

∫ t

0
μ(τ) dτ = μ∗t +

∫ {t}
0

(μ(τ)− μ∗) dτ. (52)
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Find the bound for the second summand in Equation (52). Assuming u = {t}, we obtain∣∣∣∣∫ u

0
(μ(τ)− μ∗) dτ

∣∣∣∣ ≤ K∗ = sup
u∈[0,1]

∫ u

0
(μ(τ)− μ∗) dτ. (53)

Therefore,
e−

∫ t
s μ(τ) dτ ≤ eK∗ e−μ∗(t−s). (54)

Therefore, for the queueing system Mt|Mt|N|N, the conditions of Theorem 5 and Corollary 2

d = 1, M = M∗ = eK∗ , a = a∗ = μ∗, W =
1
N

. (55)

These statements imply the following perturbation bounds:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
4eK∗

(
eK∗ |B− B̄| f+ μ∗ |f− f̄|

)
μ∗ (μ∗ − eK∗ |B− B̄|) (56)

for the vector od=f state probabilities, and

lim sup
t→∞

|φ(t)− φ̄(t)| ≤
NeK∗

(
eK∗ |B− B̄| f+ μ∗ |f− f̄|

)
μ∗ (μ∗ − eK∗ |B− B̄|) , (57)

for limit expectations.
Moreover, for these bounds to be consistent, additional information is required concerning the

form of the perturbed intensity matrix. The simplest bounds can be obtained, if it is assumed that the
perturbed Markov chain is also a BDP with the same state space and the birth and death intensities
λk−1(t) and μk(t), respectively. Therefore, if the birth and death intensities themselves do not exceed ε

for almost all t ≥ 0, then |f− f̄| ≤ ε and |B− B̄| ≤ 5ε, so that the bounds expressed by Equations (56)
and (57) have the form

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
4eK∗

(
5LeK∗ + μ∗

)
ε

μ∗ (μ∗ − 5εeK∗)
(58)

for the vectors of state probabilities, and

lim sup
t→∞

|φ(t)− φ̄(t)| ≤
4NeK∗

(
5LeK∗ + μ∗

)
ε

μ∗ (μ∗ − 5εeK∗)
(59)

for the limit expectations.
On the other hand, Theorem 7 can be applied as well. To construct the bounds for the

corresponding parameters, Equation (24) and the fact that ‖D‖1 = N is exploited. Therefore, Theorem
7 is valid for the queueing system Mt|Mt|N|N with the following values of the parameters:

c = c∗ = 4NeK∗ , b = b∗ = μ∗. (60)

According to this theorem, we obtain the estimate

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ (1 + K∗ + log(2N)) ε

μ∗
. (61)
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Moreover, the Markov chains X(t) and X̄(t) have limit expectations and

|φ(t)− φ̄(t)| ≤ N (1 + K∗ + log(2N)) ε

μ∗
. (62)

It is worth noting that, for the estimates expressed by Equations (61) and (62) to hold, only the
condition of the smallness of perturbations is required, and no additional information concerning the
structure of the intensity matrix is required.

Thus, in the example with the finite state space under consideration, uniform bounds turn out to
be more exact.

Now consider a more special example. Let N = 299, λ(t) = 200(1 + sin 2πωt), μ(t) = 1.
In Figures 1–5, there are plots of the expected number of customers in the system for some of most

probable states with ω = 1; in Figures 6 and 7, there are plots of the expected number of customers
with ω = 0.5.

Figure 1. Example 1. The mean E(t, 0) and E(t, N) for the original process t ∈ [0, 19], ω = 1.
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Figure 2. Example 1. The perturbation bounds for the limit expectation E(t, 0), t ∈ [19, 20], ω = 1.

Figure 3. Example 1. The perturbation bounds for the “limit” probability Pr(X(t) = 190), t ∈ [19, 20],
ω = 1.
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Figure 4. Example 1. The perturbation bounds for the “limit” probability Pr(X(t) = 200), t ∈ [19, 20],
ω = 1.

Figure 5. Example 1. The perturbation bounds for the “limit” probability Pr(X(t) = 210), t ∈ [19, 20],
ω = 1.
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Figure 6. Example 1. The expectations E(t, 0) and E(t, N) for the original process t ∈ [0, 18], ω = 0.5.

Figure 7. Example 1. The perturbation bounds for the limit expectation E(t, 0), t ∈ [18, 20], ω = 0.5.
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On the other hand, as has already been noted, for the Markov chains of Classes 1–4 with countable
state space, no uniform bounds could be constructed.

Consider the construction of bounds on the example of a rather simple model, which, however,
does not belong to the most well-studied Class 1 (that is, which is not a BDP).

Let a queueing system be given in which the customers can appear separately or in pairs with
the corresponding intensities a1(t) = λ(t) and a2(t) = 0.5λ(t), but are served one by one on one of
two servers with constant intensities μk(t) = min(k, 2)μ, where λ(t) is a 1-periodic function integrable
on the interval [0, 1]. Therefore, the number of customers in this system belongs to Class 2, and the
corresponding matrix B∗∗(t) has the form

B∗∗(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11
d1
d2

μ 0 · · · 0

d2
d1

λ a22
d2
d3

2μ · · · 0

d3
d1

0.5λ d3
d2

λ a33
d3
d4

2μ · · ·

0
. . . . . . . . . . . .

. . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(63)

where a11(t) = − (1.5λ(t) + μ), akk(t) = − (1.5λ(t) + 2μ), if k ≥ 2. This matrix is essentially
nonnegative, such that, in the expression for the logarithmic norm, the signs of the absolute value
can be omitted. Let d1 = 1, dk+1 = δdk, and δ > 1. For this purpose, consider the expressions from
Equation (34). We have

α1(t) = μ− λ(t)
(

0.5δ2 + δ− 1.5
)

,

α2(t) = μ
(

2− δ−1
)
− λ(t)

(
0.5δ2 + δ− 1.5

)
,

αk(t) = 2μ
(

1− δ−1
)
− λ(t)

(
0.5δ2 + δ− 1.5

)
, k ≥ 3.

Therefore, for δ ≤ 2, we obtain

α (t) = inf
i≥1

αi (t) = 2μ
(

1− δ−1
)
− λ(t)

(
0.5δ2 + δ− 1.5

)
=

= (δ− 1)
(

2μ

δ
− 0.5λ(t) (δ + 3)

)
, (64)

and the condition

α∗ =
∫ 1

0
(δ− 1)

(
2μ

δ
− 0.5λ(t) (δ + 3)

)
dt =

δ− 1
2

(
4μ

δ
− λ∗ (δ + 3)

)
> 0 (65)

will a fortiori hold if μ > λ∗ with a corresponding choice of δ ∈ (1, 2].
The further reasoning is almost the same as in the preceding example: instead of Equation (54),

we obtain
e−

∫ t
s α(τ) dτ ≤ eK∗ e−α∗(t−s) (66)

where now
K∗ = sup

u∈[0,1]

∫ u

0
(α(τ)− α∗) dτ. (67)

Hence, the conditions of Theorem 5 and Corollary 2 for the number of customers in the system
under consideration hold for

d = 1, M = M∗ = eK∗ , a = a∗ = α∗, W = inf
k≥1

δk−1

k
. (68)
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To construct meaningful perturbation bounds, it is necessarily required to have additional
information concerning the form of the perturbed intensity matrix. Therefore, Example 1 in Section 2
shows that, if a possibility of the arrival of an arbitrary number of customers (“mass arrival” in the
terminology of [58]) to an empty queue is assumed, then an arbitrarily small (in the uniform norm)
perturbation of the intensity matrix can “spoil” all the characteristics of the process. For example,
satisfactory bounds can be constructed if we know that the intensity matrix of the perturbed system
has the same form; that is, the customers can appear either separately or in pairs and are served one by
one. Therefore, if the perturbations of the intensities themselves do not exceed ε for almost all t ≥ 0,
then |f− f̄| ≤ 5ε and |B− B̄| ≤ 5ε, such that, instead of Equations (56) and (57), we obtain

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
20eK∗ ε

(
LeK∗ + α∗

)
α∗ (α∗ − 20εeK∗)

(69)

for the vectors of state probabilities and

lim sup
t→∞

|φ(t)− φ̄(t)| ≤
20eK∗ ε

(
LeK∗ + α∗

)
α∗W (α∗ − 20εeK∗)

(70)

for the limit expectations.
For example, let λ(t) = 1 + sin 2πt, μ(t) = 3, and δ = 2. Therefore, we have

α(t) = μ− 2.5λ(t), α∗ = 0.5, W = 1. (71)

Furthermore, we follow the method described in [71,72] in detail. Namely, we choose the
dimensionality of the truncated process (300 in our case), the interval on which the desired accuracy is
achieved ([0, 100]) in the example under consideration) and the limit interval itself (here it is [100, 101]).

Figures 8–13 expose the plots of the expected number of customers in the system and some of the
most probable states.

Figure 8. Example 2. The expectations E(t, 0) and E(t, 299) for the original process t ∈ [0, 100].
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Figure 9. Example 2. The perturbation bounds for the limit expectation E(t, 0), t ∈ [100, 101].

Figure 10. Example 2. The probabilities of the empty queue for X(0) = 0 and X(0) = 299 for the
original process t ∈ [0, 100].
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Figure 11. Example 2. The perturbation bounds for the “limit” probability Pr(X(t) = 0), t ∈ [100, 101].

Figure 12. Example 2. The perturbation bounds for the “limit” probability Pr(X(t) = 1), t ∈ [100, 101].
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Figure 13. Example 2. The perturbation bounds for the “limit” probability Pr(X(t) = 2), t ∈ [100, 101].
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Abstract: Integral representations for the probability density and distribution function of a strictly stable
law with the characteristic function in the Zolotarev’s “C” parametrization were obtained in the paper.
The obtained integral representations express the probability density and distribution function of standard
strictly stable laws through a definite integral. Using the methods of numerical integration, the obtained
integral representations allow us to calculate the probability density and distribution function of a strictly
stable law for a wide range of admissible values of parameters (α, θ). A number of cases were given
when numerical algorithms had difficulty in calculating the density. Formulas were given to calculate the
density and distribution function with an arbitrary value of the scale parameter λ.
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1. Introduction

The problem of calculating the density of a strictly stable law with the characteristic function

g̃(t, α, θ, λ) = exp{−λ|t|α exp{−i π
2 αθ sign t}}, t ∈ R, (1)

where 0 < α � 2, |θ| � min(1, 2/α− 1), λ > 0 is considered in the paper. One of the reasons why it became
necessary to calculate the density of a strictly stable law with this characteristic function is the need to
calculate the density of a fractionally stable law which is defined by the expression

q(x, α, ν, θ) =
∫ ∞

0
g(xyν/α, α, θ)g(y, ν, 1)yν/αdy. (2)

Here, g(x, α, θ) and g(y, ν, 1) are the densities of strictly stable and one-sided strictly stable laws with
the characteristic function in Equation (1) and parameter λ = 1. For the first time, the density in Equation (2)
was obtained in the article [1]. The density in Equation (2) got its name in the work [2], since the random
variable Z(α, ν, θ) distributed by this law is defined by the ratio Z(α, ν, θ) = Y(α, θ)[V(ν, 1)]−ν/α. Here the
random variables Y(α, θ) and V(ν, 1) are distributed by the laws g(x, α, θ) and g(y, ν, 1), respectively.

The density Equation (2) appears as a limit distribution with the following random walk scheme.
Let the particle be at the origin x = 0 at the initial time t = 0 and it stays at this point during random
time T1. Then, it instantly moves with an equal probability to the right or left at random distance
X1 and it stays at rest again random time T2. Then, the whole process is repeated in the same way.
Values Xi, i = 1, 2, . . . are independent identically distributed random variables belonging to the domain
of normal attraction of a strictly stable law g(t, α, θ) with the characteristic function in Equation (1).
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Values Ti, i = 1, 2, . . . are independent both between themselves and of the sequence {Xi} by identically
distributed random variables belonging to the domain of normal attraction of a strictly stable law g(t, ν, 1)
with the characteristic function in Equation (1) and 0 < ν � 1. We will form the sum of these random
variables S(τ) = ∑

N(τ)
i=1 Xi, τ > 0, where N(τ) is the counting process: N(τ) = max {n : ∑n

i=1 Ti � τ}.
The physical interpretation of the sum S(τ) is the coordinate of particle x at time τ. In the works [1,2] it has
been shown that the asymptotic (at τ → ∞) distribution of the sum S(τ) is described by the distribution
Equation (2).

The described random walk scheme is called Continuous Time Random Walk (CTRW). For the first
time it was considered in the work [3]. Later, it was described in the works [4–6]. For more detailed
familiarity with this model one can look through the overviews [7,8]. In the work [1] it has been shown
that the asymptotic (at t → ∞) distribution of the CTRW process is described with the distribution (2).
In the work [9], it has been shown that the CTRW process in large time asymptotics is described with
the fractional-differential equation of diffusion. The solution of this equation is expressed through
fractional-stable distributions in Equation (2). This is one of the factors determining the interest in studying
the class of the fractional-stable laws.

Another factor is the appearance of these distributions in various processes occurring in a plasma [10,11]
or in biology processes [12–14]. In particular, the fractional-stable distributions were used to describe a
distribution of the gene expression in cells of tissues of various organisms in the following papers [12–14].
It is known that the distribution of the gene expression is described by laws with the power decrease
in the density [15–17]. Since the density in Equation (2) decreases as x−α−1 at x → ∞, therefore this
class of distributions was used to describe the gene expression distribution. In the articles [12,13] the
fractional-stable distributions were used to describe the gene expression obtained with the microarray
technology. In the paper [14], these distributions were used to describe the results obtained with the Next
Generation Sequence technology. In the papers [12–14] the Monte Carlo method was used to calculate the
density q(x, α, ν, θ). To estimate the parameters (α, ν, θ) of the fractional-stable law a method described
in [18] was used which is also based on the Monte Carlo method. However, to construct more effective
estimators of the parameters (α, ν, θ), for example, the maximum likelihood estimation, one should be able
to calculate the density q(x, α, ν, θ). As a result we come again to the necessity of calculating the integral of
Equation (2).

As we can see from Equation (2), the density of a fractional-stable law is defined using the Mellin
convolution of two strictly stable densities with the characteristic function in Equation (1). Hence,
to calculate the density in Equation (2) it is necessary to be able to calculate densities g(x, α, θ) for any
admissible set of parameters (α, θ). It should be pointed out that the problem of calculating densities
of stable laws at present is well studied. The solution to this problem is based on the inverse Fourier
transform of the characteristic function of a stable law. There are several methods for performing the
inverse Fourier transform: a direct calculation of the inverse Fourier transform [19–26], the use of the fast
Fourier transform algorithm [27,28], the use of the inversion formula followed by the numerical calculation
of the integral [29,30], and the use of the inversion method by V. Zolotarev [31–34].

Direct implementation of the inverse Fourier transform of the characteristic function of the stable
law leads to the appearance of special functions. As a rule, such a transformation can be implemented if
the shift parameter of the stable law γ = 0. Therefore, practically all cases when it is possible to express
the density of a stable law through special functions are referred to strictly stable laws. In addition,
the density of a strictly stable law can be obtained only for rational values of characteristic exponent α and
parameter of skewness. For instance, in the works [19,20], representations were obtained for the densities
of stable laws through the Fox H-function. Representations for the densities of stable laws through an
incomplete hypergeometric function were obtained in the article [21]. Later, the results of the article [21]
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were generalized in [22] in which representations were obtained through Meijer’s G-function. In the
work [23] the expressions for density were obtained through the Fox H-function and hypergeometric
function. In the work [24] expressions for the density of a one-sided stable law were obtained at 0 < α < 1
through the hypergeometric function. In the subsequent work [25] using the law of duality and the Mellin
transform, the authors generalized the result to the case of two-sided distributions (−∞ < x < ∞) and to
the range of values 0 < α � 2, where α is a rational number. It has been mentioned earlier that it is possible
to directly implement the inverse Fourier transform of the characteristic function if the shift parameter
γ = 0. An exception may be represented by the work [26]. In this work, the author was able to invert
the characteristic function of the stable law for arbitrary values of the shift parameter and scale. As a
result, for α ∈ (1, 2] it was possible to express the density of stable laws through a generalization of the
Srivastava-Daoust of Kampé de Fériet two-variable hypergeometric function.

In the work [27], to invert the characteristic function of the stable law, the fast Fourier transform (FFT)
algorithm is used. Using the FFT algorithm allows one to quickly reverse the characteristic function of the
stable law and obtain numerical values of the density. However, the FFT algorithm allows one to calculate
density values only on a grid of equally spaced coordinate values. This is not always convenient, since one
should use interpolation methods to calculate density values at intermediate points. In the paper [28],
standard quadrature numerical integration algorithms are redefined to invert the characteristic function.
In the proposed approach, the FFT algorithm is used to calculate the value of the integrand at the nodes
of the grid. This approach makes it possible to reduce the approximation error in the central part of the
distribution. To calculate the density in the tails of the distribution, the Bergström expansion of the density
of a stable law in a series is used [35] (see also § 2.4 in [32]). However, the accuracy of the proposed method
depends on the values α and β and turns out to be effective only with values α ∈ (1, 2].

In the papers [29,30], the inversion formula is used to calculate the density of a stable law

g(x, α, β) =
1
π
%

∫ ∞

0
eitx ĝ(t, α,−β)dt =

1
π

∫ ∞

0
cos(h(t, x, α, β))e−tα

dt, (3)

where ĝ(t, α, β) is the characteristic function of a stable law with the scale parameter λ = 1 and shift
parameter γ = 0. In this case, the density g(x, α, β) is expressed through the improper integral of real
variables. To calculate it, one can use standard algorithms of numerical integration. This approach was
used in the work [29] where the characteristic function was chosen as

ĝ(t, α, β, λ, γ) =

{
exp

{
itλγ− λ|t|α + itλ

(
|t|α−1 − 1

)
β tan(πα/2)

}
, α �= 1,

exp {itλγ− λ|t|α − itλβ(2/π) ln |t|} , α = 1.
(4)

Here the parameters vary within 0 < α � 2, −1 � β � 1, −∞ < γ < ∞, λ > 0. As it was
pointed out in the paper, this approach does not have difficulty with the values α > 1.1. Difficulties with
calculation arise at α < 0.75, α ≈ 1, and β �= 0. In addition to it, at greater values of x the integrand
begins to oscillate fast which leads to difficulties in numerical integration. In the paper [30], it is proposed
to use an optimized generalized Gaussian scheme of numerical integration to calculate the integral of
Equation (3) with the characteristic function in Equation (4). In this work the constants B∞

80 and B∞
40 were

introduced (more detailed information about the definition of these constants see [30]). If β = 0 the
proposed integration scheme is effective at 0.5 � α � 2 and |x| � B∞

40. If β �= 0 the scheme is effective
for values α ∈ [0.5, 0.9] ∪ [1.1, 2.0] and |x − ζ| � B∞

80. With the values of |x| > B∞
40 and |x − ζ| > B∞

80
an asymptotic expansion of the density is used in a series. With the values α ∈ (0.9, 1.1), β �= 0 and
α ∈ (0, 0.5), β ∈ [−1, 1] the scheme is not applicable.

The use of Equation (3) leads to the appearance of fast oscillating functions under the sign of the
integral. To get around this problem, in the paper [31], Zolotarev V.M. developed a method of inverting the
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characteristic function of a stable law. Using this method, in the paper [31] (see also § 2.2 in [32], § 4.4 in [36])
an integral representation was obtained for the density of a stable law with the characteristic function

ĝ(t, α, β, λ, γ) =

{
exp

{
itλγ− λ|t|α exp

{
−i π

2 βK(α) sign t
}}

, α �= 1,
exp

{
itλγ− λ|t|α

(
π
2 + iβ log |t| sign t

)}
, α = 1,

(5)

where 0 < α � 2,−1 � β � 1, λ > 0,−∞ < γ < ∞, K(α) = α− 1 + sign (1− α). The obtained integral
representation of the density of the stable law is expressed through a definite integral. It is not possible to
calculate this integral analytically. However, using the methods of numerical integration, it is possible to
calculate and obtain the probability density and the distribution function of a stable law. Using the specified
method of inverting the characteristic function in the work [33] integral representations for probability
density and distribution functions of a stable law with the characteristic function in Equation (4) were
obtained. In the paper [37], a slight modification of the characteristic function in Equation (4) is considered
and it is noted that for calculation purposes it is more convenient to use this particular modification.
Subsequently, this integral representation formed the basis of various software packages for calculating
the probability density and distribution function of stable laws [38–42]. In the paper [43], it is indicated
that difficulties in calculating the integral in the integral representation obtained in [33] arise with (1) small
values of α and x → 0, (2) x → ∞ and (3) α close either to 1 or 2. In this paper, the authors proposed
a method of solving the last two problems for symmetric stable laws and note that using the proposed
approach, it is possible to calculate the densities of stable laws for values α close to either 1 or 2 as well as
at x → 0 and x → ∞.

Having slightly modified Zolotarev’s method [31,32] of inverting the characteristic function in
the paper [34] expansions were obtained for the density of stable laws in power series. Investigating
trans-stable distributions, the authors obtained expansions in the power series of densities of stable laws
for the cases 0 < α < 1 and 1 < α < 2. In each of the ranges 0 < α < 1 and 1 < α < 2 expansions
are represented in the form of “internal” (x → 0) and “external” (x → ∞) expansions. To describe the
behavior of the density of a stable law in the whole range of values 0 < x < ∞ these two expansions are
put together.

Thus, all the results related to obtaining expressions for the probability density of stable laws were
obtained for laws with characteristic functions in Equations (4) and (5). However, to calculate the density in
Equation (2), it is necessary to have an expression for the probability density g(x, α, θ) with a characteristic
function Equation (1). It should be emphasized that an integral representation for the density of a stable
law with the characteristic function in Equation (1) is presented in the paper [44]. However, the expression
cited is valid only for x > 0 and α �= 1. In this paper, we will obtain an integral representation for the
density and distribution function of a stable law with a characteristic function Equation (1) for arbitrary x
and any admissible values of parameters α and θ.

2. Auxiliary Results

Thus, the objective is to obtain an integral representation of the density of a strictly stable law with a
characteristic function Equation (1). Without losing generality we will further assume everywhere that
λ = 1. A strictly stable law with a parameter λ = 1 is commonly called the standard strictly stable
law. An abbreviated notation of the characteristic function is accepted for standard strictly stable laws
ĝ(t, α, θ, 1) ≡ ĝ(t, α, θ), for density g(x, α, θ, 1) ≡ g(x, α, θ), for the distribution function G(x, α, θ, 1) ≡
G(x, α, θ), and random variable Y(α, θ, 1) ≡ Y(α, θ). Everywhere below, for standard strictly stable laws,
we will use this notation. To obtain an integral representation, we use the method of inverting the
characteristic function of a stable law for the first time proposed by V. Zolotarev in the work [31] and
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described in detail in his monograph [32] (see also § 4.4 in [36]). To prove the main theorem, we will need
some auxiliary results.

Property 1 (Property of inversion). For any admissible set of values of parameters (α, θ)

Y(α,−θ)
d
= −Y(α, θ). (6)

Proof. The proof of this property is simple enough. Applying the definition of the characteristic function
in Equation (1) and by making the substitution of a variable t→ −τ, we obtain

E exp {itY(α,−θ)} = exp{−|t|α exp{i π
2 αθ sign t}} =

exp{−|t|α exp{−i π
2 αθ sign τ}} = E exp {−iτY(α, θ)} .

It follows directly from here Equation (6).

In terms of the characteristic function ĝ(t, α, θ), probability density functions g(x, α, θ) and distribution
functions G(x, α, θ) of a strictly stable law the property of inversion is written in the form

ĝ(−t, α, θ) = ĝ(t, α,−θ), g(−x, α, θ) = g(x, α,−θ), G(−x, α, θ) = 1− G(x, α,−θ). (7)

The utility of this property consists in the fact that owing to this property it is sufficient to consider
the issue of the density representation g(x, α, θ) or the distribution function G(x, α, θ) only for x � 0 or for
θ � 0. For negative values of the argument x or the parameter θ expressions can be obtained according to
the expressions given earlier.

The following property will be useful further.

Property 2. For any two admissible sets of parameters (α, θ, λ) and (α, θ, λ′), there is such a unambiguously

defined real a > 0, that Y(α, θ, λ)
d
= aY(α, θ, λ′). For the characteristic function in Equation (1), the value a is

connected with parameters in the following way a = (λ/λ′)1/α.

This property is a full analog of property 2.1 in [32] (see also § 3.7 in [36]) formulated for strictly stable
random variables with the characteristic function in Equation (1). This property is proved in the same way
to the one which is performed in [32]. In the particular case that is of interest to us λ′ = 1, we obtain

Y(α, θ, λ) = λ1/αY(α, θ, 1). (8)

We now formulate a lemma which makes it possible to perform the inverse Fourier transform of the
characteristic function and obtain the density of a strictly stable law.

Lemma 1. The probability density function g(x, α, θ) for any admissible values of parameters (α, θ) and any x can
be obtained with the help of the inversion formulas

g(x, α, θ) =
1

2π

∫ ∞

−∞
e−itx ĝ(t, α, θ)dt =

⎧⎪⎨⎪⎩
1
π
%

∫ ∞

0
eitx ĝ(t, α,−θ)dt,

1
π
%

∫ ∞

0
e−itx ĝ(t, α, θ)dt.

(9)
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Proof. Performing the inverse of the characteristic function ĝ(t, α, θ) we obtain

g(x, α, θ) =
1

2π

∫ ∞

−∞
e−itx exp {−|t|α exp{−iα(π/2)θ sign t}} dt =

1
2π

∫ 0

−∞
exp {−itx− |t|α exp{−iα(π/2)θ sign t}} dt+

1
2π

∫ ∞

0
exp {−itx− |t|α exp{−iα(π/2)θ sign t}} dt = I1 + I2.

Let us consider the integral I1. By substituting the integration variable in this integral −t → τ,
we obtain

I1 =
1

2π

∫ 0

−∞
exp {−itx− |t|α exp{−iα(π/2)θ sign t}} dt

=
1

2π

∫ ∞

0
exp {iτx− |τ|α exp{iα(π/2)θ sign τ}} dτ.

Now having calculated the sum I1 + I2, we will obtain

I1 + I2 =
1

2π

∫ ∞

0
exp

{
iτx− |τ|α exp{iα π

2 θ sign τ}
}

dτ+

1
2π

∫ ∞

0
exp

{
−itx− |t|α exp{−iα π

2 θ sign t}
}

dt =

1
π

∫ ∞

0
exp{−tα cos(π

2 αθ)} cos(tx− tα sin(π
2 αθ))dt =

1
π
%

∫ ∞

0
exp{−tα cos(π

2 αθ)}
(
cos(tx− tα sin(π

2 αθ)) + i sin(tx− tα sin(π
2 αθ))

)
dt =

1
π
%

∫ ∞

0
eitx exp

{
−tα exp{i π

2 αθ}
}

dt =
1
π
%

∫ ∞

0
eitx ĝ(t, α,−θ)dt. (10)

As a result, we obtained the first formula in Equation (9). In order to obtain the second formula in (9)
it is necessary to subtract in the penultimate manipulation the imaginary component in Equation (10).

Later, we need analytic continuation of the characteristic function ĝ(t, α, θ) in the complex plane z.
We will carry out this analytic continuation in the complex plane z with a semiaxis %z = t > 0 with
a cut along the negative part of the real axis arg z = −π. The resulting analytic continuation of the
function ĝ(t, α, θ) with a half-line t > 0 will be designated as g+(z, α, θ). Using the characteristic function
in Equation (1), we obtain

g+(z, α, θ) = exp
{
−zα exp

{
−i π

2 αθ
}}

. (11)

The idea of analytic continuation of the integrand in the formula of inversion in Equation (9) in the
complex plane z and subsequent calculation of the resulting integral

∫
Γ exp{izx}g+(z, α, θ)dz underlies the

method of inverting a characteristic function developed by Zolotarev V.M. in the work [31]. This integral is
calculated due to such a change in the integration contour Γ at which its real part does not change (for more
details see [32]). To substantiate the change in the integration contour, we need the following lemma.

Lemma 2. For any arbitrarily small ε > 0 of any admissible values of parameters α and θ and any x � 0 the
integral is

I(CR) =
∫

CR

eizxg+(z, α,−θ)dz→ 0,
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if:

1. α < 1, −1 � θ � 1, x > 0, the contour CR has the form CR = {z : |z| = R, 0 � arg z � π − ε} and
R→ ∞;

2. α > 1, |θ| � (2/α− 1), x > 0, the contour CR has the form CR = {z : |z| = R, − π
2α − πθ

2 + ε � arg z �
π
2α − πθ

2 } and R→ ∞;
3. 0 < α � 2, |θ| � min(1, 2/α− 1) the contour CR has the form CR = {z : |z| = R, −π � arg z � π} and

R→ 0;
4. 0 < α � 2, x = 0, |θ| � min(1, 2/α− 1) the contour CR has the form CR = {z : |z| = R, − π

2α − πθ
2 + ε �

arg z � π
2α − πθ

2 − ε} and R→ ∞;
5. α = 1, x > 1, −1 � θ � 1, the contour CR has the form CR = {z : |z| = R, ϕ0(θ, x) + ε � arg z � π

2 }
and R→ ∞;

6. α = 1, 0 � x < 1, −1 � θ < θ0, the contour CR has the form CR = {z : |z| = R, ϕ0(θ, x) + ε � arg z �
π
2 } and R→ ∞;

7. α = 1, 0 � x < 1, θ = θ0, the contour CR has the form CR = {z : |z| = R, −π
2 + ε � arg z � π

2 − ε} and
R→ ∞;

8. α = 1, 0 � x < 1, θ0 < θ � 1, the contour CR has the form CR = {z : |z| = R, −π
2 � arg z �

ϕ0(θ, x)− ε} and R→ ∞;
9. α = 1, x = 1, −1 � θ < 1, the contour CR has the form CR = {z : |z| = R, ϕ0(θ, x) + ε � arg z � π

2 }
and R→ ∞.

Here, θ0 = 2
π arcsin x and

ϕ0(θ, x) = arctan
(

cos(πθ/2)
sin(πθ/2)− x

)
. (12)

Proof. Let us consider the integral I(CR) =
∫

CR
eizxg+(z, α,−θ)dz. As an integration contour CR we will

consider contour lines that represent an arc of a circle of radius R which has ϕ1 � arg z � ϕ2 or

CR = {z : |z| = R, ϕ1 � arg z � ϕ2}. (13)

The task is to determine under what conditions imposed on the contour CR and the parameters α and
θ limits limR→0 I(CR) = 0 and limR→∞ I(CR) = 0.

For any contour CR the inequality

|I(CR)| �
∫

CR

|eizxg+(z, α,−θ)||dz|,

is true. Assuming in this expression z = reiϕ and taking into account that CR is an arc of a circle of radius
R , we obtain

|I(CR)| � R
∫ ϕ2

ϕ1

|eixR exp{iϕ}g+(Reiϕ, α,−θ)|dϕ

= R
∫ ϕ2

ϕ1

∣∣∣exp
{

ixReiϕ − Rα exp {iα (ϕ + πθ/2)}
}∣∣∣ dϕ =

∫ ϕ2

ϕ1

U(R, ϕ, α, θ)dϕ, (14)

where
U(r, ϕ, α, θ) = exp {−rx sin ϕ− rα cos(α(ϕ + πθ/2)) + ln r} . (15)
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(1) Let us consider the behavior of this integral at R→ ∞ and α < 1 and x > 0. Let us consider the
integrand U(R, ϕ, α, θ). Assuming that R→ ∞ and taking into account that α < 1 we obtain

lim
R→∞

U(R, ϕ, α, θ) = lim
R→∞

exp{−R(x sin ϕ + Rα−1 cos(α(ϕ + πθ/2))) + ln R}

= lim
R→∞

exp{−Rx sin ϕ + ln R}.

In view of the fact that x > 0 and the fact that the linear function grows faster than ln R, we obtain
limR→∞ exp{−Rx sin ϕ + ln R} = 0, if 0 < ϕ < π and any α < 1 and −1 � θ � 1. If ϕ = 0, then

U(R, 0, α, θ) = exp{−Rα cos(απθ/2) + ln R}.

Taking into account that 0 < α < 1 and −1 � θ � 1, we deduce that −π/2 < αθπ/2 < π/2 and,
therefore, cos(αθπ/2) > 0. Assuming that R → ∞ in this expression and in view of the fact that Rα

grows faster than ln R, we deduce limR→∞ U(R, 0, α, θ) = 0. Without loss of generality the case ϕ = π

can be excluded from consideration. Hence, ϕ1 = 0, and ϕ2 we represent in the form ϕ2 = π − ε, where
0 < ε � π/6 is an arbitrary fixed number. As a result, we deduce

lim
R→∞

U(R, ϕ, α, θ) = 0 if 0 � ϕ < π − ε, (16)

and integration contour in Equation (13) takes the form

CR = {z : |z| = R, 0 � arg z � π − ε}. (17)

Now assuming that R→ ∞ in Equation (14) and using Equation (16) we deduce

lim
R→∞

|I(CR)| � lim
R→∞

∫ π−ε

0
U(R, ϕ, α, θ)dϕ = 0.

From here it follows that in the case α < 1 and x > 0 the integral I(CR) = 0, at R→ ∞ where contour
integration has the form (17). The first item of the lemma is proved.

(2) Let us consider the case α > 1. As it is known that at 1 < α � 2 the parameter θ can vary within
the range −(2/α− 1) � θ � (2/α− 1). We are interested in the conditions under which the integral in
Equation (14) will tend to zero at R→ ∞. Assuming R→ ∞ in Equation (14), we deduce

lim
R→∞

|I(CR)| � lim
R→∞

∫ ϕ2

ϕ1

U(R, ϕ, α, θ)dϕ. (18)

From here it follows that the behavior of this integral at R→ ∞ is defined by the behavior U(R, ϕ, α, θ).
Applying Equation (15), we deduce

lim
R→∞

U(R, ϕ, α, θ) = lim
R→∞

exp{−Rα(R1−αx sin ϕ + cos(α(ϕ + πθ/2))) + ln R}. (19)

Taking into account that 1 < α � 2, then 1− α < 0. Consequently, at R → ∞ we can ignore the
summand R1−α sin ϕ in comparison with the second summand in these brackets. As a result, we have
limR→∞ U(R, ϕ, α, θ) = limR→∞ exp{−Rα cos(α(ϕ + πθ/2)) + ln R}. Taking into account that Rα grows
faster than ln R we deduce that limR→∞ U(R, ϕ, α, θ) = 0 if cos(α(ϕ + πθ/2)) > 0, or −π/2 + 2kπ <

α(ϕ + πθ/2) < π/2 + 2kπ, k = 0,±1,±2, . . . . In this problem we will be interested in the case k = 0.
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It should be noted that here there is a strict inequality, that is why the cases α(ϕ + πθ/2) = ±π/2 will be
considered separately. As a result, we have −π/2 < α(ϕ + πθ/2) < π/2. From here it follows that

lim
R→∞

U(R, ϕ, α, θ) = 0, if − π

2α
− πθ

2
< ϕ <

π

2α
− πθ

2
. (20)

Now we consider the cases α(ϕ + πθ/2) = ±π/2. With this value of the argument cos(α(ϕ +

πθ/2)) = 0 and, therefore, it is impossible to ignore the summand R1−αx sin ϕ in Equation (19) now.
We will assume that x > 0. In view of the aforesaid Equation (19) takes the form

lim
R→∞

U(R, ϕ, α, θ) = lim
R→∞

exp{−Rx sin ϕ + ln R}, at α(ϕ + πθ/2) = ±π/2. (21)

Since R grows faster than ln R, then we will take interest in the constraints imposed on ϕ at which
sin ϕ > 0. For the case α(ϕ + πθ/2) = π/2 we deduce that ϕ = π

2α − πθ
2 . Now we will take into account

that the parameter θ can take values in a range −(2/α− 1) � θ � (2/α− 1). Thus, if θ = −(2/α− 1),
then ϕ = 3π

2α − π
2 . If θ = 2/α− 1, then ϕ = − π

2α + π
2 . As a result, we deduce

− π

2α
+

π

2
� ϕ � 3π

2α
− π

2
(22)

We will take into account now that 1 < α � 2. Substituting the values α = 1 and α = 2 in Equation (22),
alternately we deduce 0 < ϕ < π, if α → 1 and π/4 � ϕ � π/4, if α = 2. It should be pointed out that
since in the considered case α cannot take the value α = 1, then in the corresponding inequality there is
a strict inequality. As a result we deduce sin ϕ > 0, if α(ϕ + πθ/2) = π/2 for any 1 < α � 2 and any
−(2/α− 1) � θ � 2/α− 1. Applying this result in Equation (21), we deduce

lim
R→∞

U(R, ϕ, α, θ) = 0, if α(ϕ + πθ/2) = π/2 and x > 0. (23)

The case α(ϕ + πθ/2) = −π/2 is considered in the similar way as the previous case. As a result,
we obtain −π < ϕ < 0 if α → 1 and −π/4 � ϕ � −π/4, if α = 2. From here it follows that sin ϕ < 0 if
α(ϕ + πθ/2) = −π/2 for any 1 < α � 2 and any −(2/α− 1) � θ � 2/α− 1. Making use of this result in
Equation (21), we obtain

lim
R→∞

U(R, ϕ, α, θ) = ∞, if α(ϕ + πθ/2) = −π/2. (24)

and, consequently, it is necessary to exclude this case from our consideration. Putting together
Equations (20) and (23), and taking account of Equation (24) we obtain limR→∞ U(R, ϕ, α, θ) = 0 if
− π

2α − πθ
2 < ϕ � π

2α − πθ
2 and x > 0. In view of the obtained result, the expression in Equation (18) takes

the form

lim
R→∞

|I(CR)| � lim
R→∞

∫ π
2α− πθ

2

− π
2α− πθ

2 +ε
U(R, ϕ, α, θ)dϕ = 0,

where ε > 0 is an arbitrary small number. Thus, in the considered case contour integration Equation (13)
takes the form CR =

{
z : |z| = R, − π

2α − πθ
2 + ε � ϕ � π

2α − πθ
2

}
, and for this contour limR→∞ I(CR) = 0.

This proves the second item of the lemma.
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(3) Now let us consider the case 0 < α � 2 and R→ 0. It is known that for a specified range of values
of the parameter α the parameter θ can take the values |θ| � min(1, 2/α− 1). Assuming that R → 0 in
Equation (14) we obtain

lim
R→0
|I(CR)| � lim

R→0

∫ ϕ2

ϕ1

U(R, ϕ, α, θ)dϕ. (25)

From here we can see that the behavior of this integral at R→ 0 will be determined by the behavior
U(R, ϕ, α, θ) at R→ 0. Using Equation (15), we obtain

lim
R→0

U(R, ϕ, α, θ) = lim
R→0

exp {−Rx sin ϕ− Rα cos(α(ϕ + πθ/2)) + ln R} = 0 (26)

For any values of ϕ and any x. Choosing ϕ1 = −π and ϕ2 = π a contour CR will take the form

CR = {z : |z| = R, −π � arg z � π}. (27)

Now using Equations (26) and (27) in Equation (25) we will finally obtain limR→0 |I(CR)| �
limR→0

∫ π
−π U(R, ϕ, α, θ)dϕ = 0, for any admissible values of parameters α and θ and for any x. It proves

the third item of the lemma.
(4) We will consider the case x = 0 and R→ ∞. In this case, the expression in Equation (15) will take

the form
U(R, ϕ, α, θ) = exp {−Rα cos(α(ϕ + πθ/2)) + ln R} . (28)

Thus, the integral in Equation (14) will tend to zero at R→ ∞ if cos(α(ϕ + πθ/2)) > 0. Consequently,
ϕ must meet the conditions

− π

2α
− πθ

2
< ϕ <

π

2α
− πθ

2
. (29)

Since no additional limitations for parameters α and θ were introduced here, then this result is true
for any admissible values of these parameters. It should be pointed out that there are strict inequalities
here. In fact, if ϕ = ± π

2α − πθ
2 , then cos(α(ϕ + πθ/2)) = 0 and in this case U(R, ϕ, α, θ) → ∞ at R → ∞.

Choosing in Equation (14) the values ϕ1 = −π/(2α) − πθ/2 + ε and ϕ2 = π/(2α) − πθ/2− ε as the
limits of integration, contour integration CR at x = 0 takes the form

CR =

{
z : |z| = R, − π

2α
− πθ

2
+ ε � arg z � π

2α
− πθ

2
− ε

}
, (30)

where ε is an arbitrary small positive number. Now using Equations (28) and (30) in Equation (14),
we obtain

lim
R→∞

|I(CR)| � lim
R→∞

∫ π
2α− πθ

2 −ε

− π
2α− πθ

2 +ε
U(R, ϕ, α, θ)dϕ = 0

at x = 0 and any admissible values of parameters α and θ. It proves the fourth item of the lemma.
(5) Let us consider the case α = 1. In this case the parameter θ can vary within the limits −1 � θ � 1.

It is necessary to determine under which conditions the integral in Equation (14) tends to zero at R→ ∞.
As in previous cases, assuming that R→ ∞ in Equation (14), we obtain

lim
R→∞

|I(CR)| � lim
R→∞

∫ ϕ2

ϕ1

U(R, ϕ, 1, θ)dϕ. (31)
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From this it follows that these conditions are a consequence of the behavior U(R, ϕ, 1, θ) at R→ ∞.
Applying Equation (15), we obtain

lim
R→∞

U(R, ϕ, 1, θ) = lim
R→∞

exp {−R(x sin ϕ + cos(ϕ + πθ/2)) + ln R} . (32)

In view of the fact that R grows faster than ln R at R→ ∞ we obtain that

exp {−R(x sin ϕ + cos(ϕ + πθ/2)) + ln R} →
R→∞

0

if
x sin ϕ + cos(ϕ + πθ/2) > 0. (33)

This inequality allows us to determine the conditions imposed on ϕ. It should be noted that one
should exclude the case x = 1, θ = 1 from consideration. In fact, substituting these values in Equation (32),
we obtain limR→∞ U(R, ϕ, 1, 1) = ∞ for any ϕ. Thus, from Equation (31) we obtain

I(CR) →
R→∞

∞, if α = 1, x = 1, θ = 1. (34)

Making some transformations the inequality in Equation (33) can be written in the form

tan ϕ >
cos(πθ/2)

sin(πθ/2)− x
(35)

From this inequality we can see that it is necessary to consider three cases: x > 1, 0 � x < 1,
and x = 1.

In the case x > 1 for any θ the difference sin(πθ/2)− x is negative. Taking into account that the
function arctan x is a multi-valued function, then choosing the principal branch arctan x we deduce
π/2 � ϕ > max(−π/2, ϕ0(θ, x)) or

ϕ0(θ, x) < ϕ � π/2, x > 1, −1 � θ � 1, (36)

where

ϕ0(θ, x) = arctan
(

cos(πθ/2)
sin(πθ/2)− x

)
. (37)

It should be noted here that this expression is the solution of the equation

x sin ϕ + cos(ϕ + πθ/2) = 0. (38)

We need to consider the case 0 � x < 1. Here we need to consider three possible situations:
(1) sin(πθ/2) − x < 0, if θ < θ0, (2) sin(πθ/2) − x = 0, if θ = θ0, (3) sin(πθ/2) − x > 0, if θ > θ0.
Here θ0 = (2/π) arcsin x. We will introduce the notation as follows f (ϕ, θ, x) = x sin ϕ + cos(ϕ + πθ/2).
In view of this notation, the condition in Equation (33) will take the form f (ϕ, θ, x) > 0. In Figure 1 the
function graph f (ϕ, θ, x) is plotted for 0 � x < 1 with different values of the parameter θ that correspond
to three possible situations: θ < θ0, θ = θ0, θ > θ0.
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Figure 1. The graph of the function f (ϕ, θ, x) at x < 1 (the curve is plotted at x = 0.7) and different values
of the parameter θ: θ0 = (2/π) arcsin x, θ1 < θ0, θ2 > θ0. Heavy dots demonstrate the value of the solution
of the Equation f (ϕ, θ, x) = 0 for values θ = θ0, θ1, θ2.

Let us consider the case θ < θ0. In Figure 1, a curve f (ϕ, θ1, x) corresponds to this case. From this
figure one can see that the condition f (ϕ, θ, x) > 0 is met for values ϕ > ϕ0(θ, x). We need to remind that
ϕ0(θ, x) is the solution of the Equation (38). Thus, choosing the principal branch of the function arctan x
we get π/2 � ϕ > max(−π/2, ϕ0(θ, x)) or

ϕ0(θ, x) < ϕ � π/2, 0 � x < 1, θ < θ0. (39)

This condition is easy to determine from Figure 2. The values of ϕ lying above the curve ϕ0(θ, x) and
not exceeding the value π/2 correspond to the condition f (ϕ, θ, x) > 0 at θ < θ0.
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Figure 2. The graph of the function ϕ0(θ, x) at x � 1. The figure shows the graphs for values x = 0, 0.7, 1.
Heavy dots designate the values of this function with the value of the parameter θ = θ0, θ1, θ2 and x = 0.7
corresponding to Figure 1.

In the case of x = 0, we get θ0 = 0 and ϕ0(θ, 0) = arctan(cot(πθ/2)). Therefore, the condition θ < θ0

will take the form θ < 0. One should pay attention that the argument πθ/2 at −1 � θ � 1 takes the values
in the range from −π/2 to π/2. In this range of values cot(πθ/2) in the point θ = 0 has the point of
discontinuity. We will write ϕ0(θ, 0) in the form

ϕ0(θ, 0) = arctan(1/ tan(πθ/2)). (40)
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and will make use of the following trigonometric identities

arctan y =

{
arccot(1/y)− π, y � 0,
arccot(1/y), y > 0

(41)

and
arctan y + arccot y = π/2. (42)

Now using these two trigonometric identities in Equation (40), we find

ϕ0(θ, x) = −π

2
− πθ

2
, θ < 0 (43)

Thus, at x = 0 the condition in Equation (39) will take the form −π
2 − πθ

2 < ϕ � π
2 , if α = 1 and θ < 0.

The condition obtained is the same as the condition in Equation (29), if to limit the latter above with the
value π/2 at θ < 0.

Now we need to consider the case θ = θ0. In Figure 2 we can see that when increasing the parameter
θ the point ϕ0(θ, x) will approach the value −π/2. With such a change of the parameter θ the function
graph f (ϕ, θ, x) in Figure 1 will shift to the left and with the value θ = θ0 will take the form that is given in
Figure 1. As we can see from Figure 2, in this case the function ϕ0(θ, x) has a discontinuity in the point
θ = θ0. It is connected with the fact that the principal branch of the function arctan x is investigated.
In the vicinity of this point we have limθ→θ0−0 ϕ0(θ, x) = limθ→θ0−0 arctan

(
cos(πθ/2)

sin(πθ/2)−x

)
= −π

2 and

limθ→θ0+0 ϕ0(θ, x) = limθ→θ0+0 arctan
(

cos(πθ/2)
sin(πθ/2)−x

)
= π

2 . From this we can see that the point θ0 is the
point of discontinuity of the first kind. It is possible to eliminate the discontinuity of the function ϕ0(θ, x)
in the point θ0 by defining the value of this function in the given point. We will select

ϕ0(θ0, x) = −π/2, 0 � x < 1. (44)

Thus, the condition in Equation (33) is met if

− π/2 < ϕ < π/2, 0 � x < 1, θ = θ0. (45)

It should be noted that there are precisely strict inequalities here. In fact, if to take ϕ = ±π/2, then in
the case considered these values will be the solution of the Equation (38) which will lead to divergence of
the integral in Equation (31).

Now we will consider the case θ > θ0. From Figure 1 one can see that by increasing the parameter
θ from θ0 to 1 the half-period of the function f (ϕ, θ, x) satisfying the condition f (ϕ, θ, x) > 0 will keep
moving to the left. At the same time, the left point which is the solution of an equation f (ϕ, θ, x) = 0 will
become smaller than −π/2. Since we take interest in the interval from −π/2 to π/2, then the left bound
of the interval will be the value −π/2. Keeping in mind that the half-period of the function f (ϕ, θ, x)
is equal to π, the right bound of the interval f (ϕ, θ, x) > 0 will be the second solution of the equation
f (ϕ, θ, x) = 0. As a result, the case considered the condition in Equation (33) will be met with values ϕ

satisfying the inequality
− π/2 � ϕ < ϕ0(θ, x), 0 � x < 1, θ > θ0. (46)

The graph of the function ϕ0(θ, x) is given in Figure 2.
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If x = 0, we have θ0 = 0 and condition θ > θ0 turns into a condition θ > 0. As it was pointed out
earlier, in this case it is convenient to represent ϕ0(θ, x) in the form of Equation (40). Now using the
trigonometric identities in Equations (41) and (42) in Equation (40) we obtain

ϕ0(θ, x) =
π

2
− πθ

2
, θ > 0. (47)

Thus, at x = 0 the condition in Equation (46) takes the form −π
2 � ϕ < π

2 − πθ
2 , if x = 0 and θ > 0.

The condition obtained is the same as the condition in Equation (29), if to limit the latter below with a
value −π/2 at θ > 0.

If now we put together the expressions in Equations (43), (44), and (47), then ϕ0(θ, 0) takes the form

ϕ0(θ, 0) =

{
−π/2− πθ/2, θ � 0
π/2− πθ/2, θ > 0.

The graph of the function ϕ0(θ, 0) is given in Figure 2.
Consider now the case x = 1. In this case the inequality in Equation (35) has the form

tan ϕ(1− sin(πθ/2)) > − cos(πθ/2). (48)

From this it follows that 1− sin(πθ/2) > 0, for any θ < θ0, where θ0 = (2/π) arcsin 1 = 1. As a
result, selecting the principal branch of the function arctan y, the inequality in Equation (48) takes the form

ϕ0(θ, x) < ϕ � π/2, x = 1, −1 � θ < 1. (49)

This inequality gives a condition under which the inequality will be satisfied in Equation (35) in case
x = 1. The graph of the function ϕ0(θ, 1) is given in Figure 2.

Thus, the inequalities in Equations (36), (39), (45), (46), and (49) completely define the condition under
which the inequality is satisfied in Equation (33). Combining these conditions for Equation (32), we obtain

lim
R→∞

U(R, ϕ, 1, θ) = 0, if

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ0(θ, x) < ϕ � π/2, x > 1, −1 � θ � 1,
ϕ0(θ, x) < ϕ � π/2, 0 � x < 1, θ < θ0,
−π/2 < ϕ < π/2, 0 � x < 1, θ = θ0,
−π/2 � ϕ < ϕ0(θ, x), 0 � x < 1, θ > θ0,
ϕ0(θ, x) < ϕ � π/2, x = 1, −1 � θ < 1,

(50)

where θ0 = (2/π) arcsin x. It should be noted that if ϕ = ϕ0(θ, x), then in this case x sin ϕ + cos(ϕ +

πθ/2) = 0 and, as a consequence, limR→∞ U(R, ϕ0(θ, x), 1, θ) = ∞. Therefore, ϕ �= ϕ0(θ, x). In addition,
in terms of Equation (34), one should exclude the case x = 1, θ = 1 from consideration.

Now using Equation (50) in Equation (31), we ultimately obtain

I(CR) →
R→∞

0 if

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CR = {z : |z| = R, ϕ0(θ, x) + ε � arg z � π/2}, x > 1, −1 � θ � 1,
CR = {z : |z| = R, ϕ0(θ, x) + ε � arg z � π/2}, 0 � x < 1, −1 � θ < θ0,
CR = {z : |z| = R, −π/2 + ε � arg z � π/2− ε}, 0 � x < 1, θ = θ0,
CR = {z : |z| = R, −π/2 � arg z � ϕ0(θ, x)− ε}, 0 � x < 1, θ0 < θ � 1,
CR = {z : |z| = R, ϕ0(θ, x) + ε � arg z � π/2}, x = 1, −1 � θ < 1,

where ε is any arbitrary small positive number. This proves items 5, 6, 7, 8, and 9 of the lemma and proves
the lemma completely.
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Remark 1. The statements of the Lemma 2 are preserved if to substitute contours CR with their parts.

Using the lemma which was proved one can substantiate the validity of transition from an integral∫ ∞
0 exp{itx}ĝ(t, α, θ)dt along the real variable t to an integral

∫
Γ exp{izx}g+(z, α, θ)dz in the complex

variable z along some contour Γ for inversion formulas in Equation (9). We will state this result in the form
of a lemma.

Lemma 3. Let us consider the family of contours {Γ} in the complex plane z with a cut along a half-line arg z = −π

satisfying the following conditions:

1. Every contour starts in the point z = 0.
2. None of the contours Γ intersects the lines of the cut.
3. Moving from the point z = 0 along the contour Γ we let it tend to infinity but in such a way that starting from

some place all points z ∈ Γ have values of arguments within the limits:

0 � arg z � π − ε, if 0 < α < 1, −1 � θ � 1, x > 0, (51)

− π

2α
− πθ

2
+ ε � arg z � π

2α
− πθ

2
, if 1 < α � 2, |θ| � (2/α− 1), x > 0, (52)

− π

2α
− πθ

2
+ ε � arg z � π

2α
− πθ

2
− ε, if 0 < α � 2, x = 0, |θ| � min(1, 2/α− 1), (53)

ϕ0(θ, x) + ε � arg z � π

2
, if α = 1, x > 1, −1 � θ � 1, (54)

−π

2
� arg z � ϕ0(θ, x)− ε, if α = 1, 0 � x < 1, θ0 < θ � 1, (55)

−π

2
+ ε � arg z � π

2
− ε, if α = 1, 0 � x < 1, θ = θ0, (56)

ϕ0(θ, x) + ε � arg z � π

2
, if α = 1, 0 � x < 1, −1 � θ < θ0, (57)

ϕ0(θ, x) + ε � arg z � π

2
, if α = 1, x = 1, −1 � θ < 1, (58)

where θ0 = (2/π) arcsin x and ϕ0(θ, x) have the form in Equation (12) and ε > 0 is any arbitrary small number.
Then for any contour of the specified type and any pair of admissible parameters (α, θ) and any x � 0 (with the
exception of the point x = 1, α = 1, θ = 1)∫ ∞

0
eitxg(t, α,−θ)dt =

∫
Γ

eizxg+(z, α,−θ)dz, (59)

where t is real.

Proof. From constraints imposed on contours Γ one can see that it is possible to divide the whole family
of contours {Γ} into two kinds. The contours which start in the point z = 0 and tend to infinity without
intersecting the positive part of a real semiaxis are referred to the contours of the first kind. The contours
intersecting the positive part of a real semiaxis are referred to the contours of the second kind.

We will consider, at first, contours of the first kind. We will introduce the following notation: zr is
the intersection point of the contour Γ with a circle |z| = r, Cr is an arc of a circle of radius r (not crossing
the cut) which is formed when moving from the point z = r to the point zr and Γr,R is a part of a
contour Γ which is formed when moving from the point zr to the point zR. We form a closed contour
Gr,R = [r, R] ∪ CR ∪ Γ̄r,R ∪ Cr (see Figure 3). The line means that we go along the contour in the opposite

327



Mathematics 2020, 8, 775

direction. Since the function h(z) = eizxg+(z, α,−θ) is analytic in the region restricted by the contour Gr,R,
then by using the Cauchy theorem

∫
Gr,R

h(z)dz =
∫ R

r
h(z)dz +

∫
CR

h(z)dz−
∫

Γr,R

h(z)dz +
∫

Cr
h(z)dz = 0.

We will assume in this expression that r → 0 and R→ ∞. Using Lemma 2 and Remark 1 we find that∫
CR

h(z)dz +
∫

Cr
h(z)dz→ 0, at R→ ∞ and r → 0. Therefore, the equality in Equation (59) is true.

Γ

Cr

Γr,R

CR

0

1
6
π

1
3
π

1
2
π

r R

r

R

Figure 3. Auxiliary contour Gr,R (heavy curve).

Now consider the contours of the second kind. These contours are characterized by the feature that
they intersect the real axis. Therefore, to prove the lemma, we consider two closed auxiliary contours:
the contour Gr,x = [r, x] ∪ Γ̄r,x ∪ Cr and contour Gx,R = [x, R] ∪ CR ∪ Γx,R (see Figure 4). Here x is the
intersection point of a contour Γ with a real axis. Since the function h(z) is analytic within the regions
restricted with the contours Γr,x and Γx,R, then by using the Cauchy theorem∫

Gx,r
h(z)dz =

∫ x

r
h(z)dz−

∫
Γr,x

h(z)dz +
∫

Cr
h(z)dz = 0, (60)∫

Gx,R

h(z)dz =−
∫ R

x
h(z)dz +

∫
Γx,R

h(z)dz +
∫

CR

h(z)dz = 0. (61)

Now we will assume in these expressions that r → 0 and R → ∞. Using Lemma 2 and Remark 1,
we find that

∫
Cr

h(z)dz → 0 at r → 0 and
∫

CR
h(z)dz → 0 at R → ∞. Now summing up Equations (60)

and (61) in view of this result we obtain∫ x

0
h(z)dz +

∫ ∞

x
h(z)dz =

∫
Γ0,x

h(z)dz +
∫

Γx,∞
h(z)dz,

hence, the equality in Equation (59) is true.
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Figure 4. Auxiliary contours Gr,x (heavy curve) and Gx,R (dashed heavy curve).

The following lemma will be useful further

Lemma 4. For any x � 0 and any −1 � θ � 1 the function

ϕ(θ, x) = arctan

(
x− sin

(
π
2 θ

)
cos

(
π
2 θ

) )
(62)

and function ϕ0(θ, x), defined by (12), are connected with relations between each other:

1. if x � 1, then
ϕ0(θ, x) = ϕ(θ, x)− π/2; (63)

2. if 0 � x < 1, then

ϕ0(θ, x) =

{
ϕ(θ, x)− π/2, −1 � θ � θ0,
ϕ(θ, x) + π/2, θ0 < θ � 1,

(64)

where θ0 = (2/π) arcsin x.

Proof. Let us consider the case x > 1. Using the identity in Equation (42) as well as the identity

arccot(−y) = π − arccot(y), (65)

we obtain

ϕ0(θ, x) = arctan
(

cos(πθ/2)
sin(πθ/2)− x

)
=

π

2
− arccot

(
cos(πθ/2)

sin(πθ/2)− x

)
= −π

2
+ arccot

(
cos(πθ/2)

x− sin(πθ/2)

)
.

Since x > 1, then the argument cos(πθ/2)
x−sin(πθ/2) > 0 for any −1 � θ � 1. Now using the identity in

Equation (41) for y > 0 we get

ϕ0(θ, x) = ϕ(θ, x)− π/2, x > 1, −1 � θ � 1. (66)
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Consider the case x = 1. In the same way as in our previous case, using the identities in Equations (42)
and (65), we find

ϕ0(θ, 1) = arctan
(

cos(πθ/2)
sin(πθ/2)− 1

)
= −π

2
+ arccot

(
cos(πθ/2)

1− sin(πθ/2)

)
. (67)

From this expression one can see that the argument cos(πθ/2)
1−sin(πθ/2) � 0 for any −1 � θ < 1 and it has an

indeterminate form 0/0 at θ = 1. Evaluating indeterminate forms according to L’Hôpital’s rule we get
limθ→1−0

cos(πθ/2)
1−sin(πθ/2) = ∞. Consequently, cos(πθ/2)/(1− sin(πθ/2)) � 0, if −1 � θ � 1. Now using in

Equation (67) the identity of Equation (41) for y > 0, we obtain

ϕ0(θ, 1) = ϕ(θ, 1)− π/2, −1 � θ � 1.

Combining now this expression and the expression of Equation (66) we come to Equation (63). Thus,
the first item of the lemma is proved.

Now we will consider the case 0 � x < 1. Using the identities in Equations (42) and (65) we get

ϕ0(θ, x) = arctan
(

cos(πθ/2)
sin(πθ/2)− x

)
= −π

2
+ arccot

(
cos(πθ/2)

x− sin(πθ/2)

)
. (68)

Taking into consideration that cos(πθ/2) � 0 for any θ ∈ [−1, 1], we find that the sign of cos(πθ/2)
x−sin(πθ/2)

is defined by the denominator. We have three possible situations: (1) x − sin(πθ/2) < 0, if θ > θ0,
(2) x− sin(πθ/2) = 0, if θ = θ0, (3) x− sin(πθ/2) > 0, if θ < θ0. Here θ0 = (2/π) arcsin x. Taking into
consideration Equation (44), we obtain cos(πθ/2)

x−sin(πθ/2) = +∞, if θ = θ0. Thus, cos(πθ/2)
x−sin(πθ/2) � 0, if θ > θ0,

and cos(πθ/2)
x−sin(πθ/2) � 0, if θ � θ0. Now in Equation (68) applying the identity in Equation (41) we get

ϕ0(θ, x) =

⎧⎨⎩ −
π
2 + arctan

(
x−sin(πθ/2)

cos(πθ/2)

)
, θ � θ0,

−π
2 + π + arctan

(
x−sin(πθ/2)

cos(πθ/2)

)
, θ > θ0.

From here it follows Equation (64). The lemma is completely proved.

In Figures 5 and 6, the graphs of the functions ϕ0(θ, x) and ϕ(θ, x) are given for the cases x � 1 and
0 � x < 1 which clearly illustrate the validity of the lemma that has just been proved.

x = 1.5

x = 1.5

x = 1

x = 1

−1 −0.5 0 0.5 1
−π

2

0

π
2

θ

ϕ(θ, x) ϕ0(θ, x)

Figure 5. The graph of the function ϕ(θ, x) and ϕ0(θ, x) depending on the parameter θ in the case of x � 1
(The graphs are plotted for x = 1.5 and x = 1).
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1
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2
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2

θ
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Figure 6. The graph of the function ϕ(θ, x) and ϕ0(θ, x) depending on the parameter θ in the case x < 1
(The graphs are plotted for x = 0.7 and x = 0).

3. Main Results

Now we can formulate the main theorem which gives an integral representation for the probability
density of a stable law g(x, α, θ) with the characteristic function in Equation (1).

Theorem 1. The distribution density g(x, α, θ) of a strictly stable law with a characteristic function as in
Equation (1) can be represented in the form

1. If α �= 1 and x �= 0 for any values |θ| � min(1, 2/α− 1)

g(x, α, θ) =
α

π|α− 1|
∫ π/2

−πθ∗/2
exp

{
−|x|α/(α−1)U(ϕ, α, θ∗)

}
U(ϕ, α, θ∗)|x|1/(α−1)dϕ, (69)

where θ∗ = θ sign x and

U(ϕ, α, θ) =

(
sin

(
α
(

ϕ + π
2 θ

))
cos ϕ

)α/(1−α)
cos

(
ϕ(1− α)− π

2 αθ
)

cos ϕ
. (70)

2. If x = 0, then for any 0 < α � 2 and |θ| � min(1, 2/α− 1)

g(0, α, θ) = 1
π cos (πθ/2) Γ (1/α + 1) (71)

3. If α = 1, then for any |θ| � 1 and any values x

g(x, 1, θ) =
cos(πθ/2)

π(x2 − 2x sin(πθ/2) + 1)
. (72)

Proof. To obtain the expression for the probability density we use the inversion formulas in Equation (9).
In principle, it makes no difference which formula to use. The result will differ then only by the sign of the
parameter θ. We will use the first formula in Equation (9), we have

g(x, α, θ) =
1
π
%

∫ ∞

0
eitx ĝ(t, α,−θ)dt. (73)

Without loss of generality, we assume that x > 0. The density g(x, α, θ) for x < 0 can be obtained
with the inversion property in Equation (7). Next, let us make the substitution of integration variable
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t→ z, where z is complex-valued. Such a substitution means that we analytically extend the integral to
the complex plane. With this analytical continuation is carried out starting with the positive part of a real
semiaxis. As a result, we have that ĝ(t, α,−θ)→ g+(z, α,−θ), where g+(z, α, θ) is defined by Equation (11).
The improper integral becomes the integral along the contour Γ. We will define the contour Γ in such a
way that �eizxg+(z, α, θ) = 0, and the contour itself Γ should start in the point z = 0 tend to infinity. Since
in the inversion formula of Equation (73) the variable is t > 0 then from this it follows that arg z must lie
within the limits −π/2 � arg z � π/2. As result, the contour Γ will take the form

Γ = {z : �eizxg+(z, α, θ) = 0, −π
2 � arg z � π

2 , |z| � 0}, (74)

However, the specific type of the contour has to be defined. In view of the foregoing, the expression
in Equation (73) will be written in the form

g(x, α, θ) =
1
π
%

∫
Γ

exp{izx− zα exp{i π
2 αθ}}dz. (75)

As a result, the problem consists in determining the contour form Γ, in proving the validity of
transition from Equation (73) to Equation (75) and in calculating this integral.

Let us consider the case α �= 1. Representing z = reiϕ and using this representation in Equation (75)
for the intergrand we obtain

exp{izx− zα exp{i π
2 αθ}} = exp

{
ixreiϕ − rαeiαϕ exp{i π

2 αθ}
}
=

exp{−rx sin ϕ− rα cos(α(ϕ + π
2 θ))} exp

{
i[rx cos ϕ− rα sin(α(ϕ + π

2 θ))]
}

. (76)

From the condition �eizxg+(z, α, θ) = 0 and −π
2 � arg z � π

2 follows that

rx cos ϕ− rα sin(α(ϕ + π
2 θ)) = 0. (77)

The solution of this equation is in an explicit form

r(ϕ) =

(
sin(α(ϕ + π

2 θ))

x cos(ϕ)

) 1
1−α

. (78)

This expression determines the form of contour integration Γ.
We will determine the admissible region arg z ≡ ϕ. From the condition |z| � 0 follows that (sin(α(ϕ +

π
2 θ)))/(x cos(ϕ)) � 0. Taking into account that x > 0 we obtain that the condition r(ϕ) > 0 is met if
sin(α(ϕ + π

2 θ)) � 0 and cos ϕ � 0. From the condition sin(α(ϕ + π
2 θ)) � 0 we obtain that −π

2 θ � ϕ �
π
α − π

2 θ, and from the condition cos ϕ � 0 we get that −π
2 � ϕ � π

2 . Combining these two inequalities
we obtain

max
(
−π

2
,−π

2
θ
)
� ϕ � min

(π

2
,

π

α
− π

2
θ
)

. (79)

Taking into consideration that at 0 < α < 1 the parameter θ takes values from the range −1 � θ � 1
and at 1 < α � 2 from the range −( 2

α − 1) � θ � 2
α − 1 we obtain that max

(
−π

2 ,−π
2 θ

)
= −π

2 θ and
min

(
π
2 , π

α − π
2 θ

)
= π

2 . Using this result in Equation (79) we get −πθ/2 � ϕ � π/2. Taking account of
this condition and the expression in Equation (78) we obtain that in the case α �= 1 the contour Γ takes
the form

Γ =

⎧⎨⎩z : r(ϕ) =

(
sin(α(ϕ + π

2 θ))

x cos(ϕ)

) 1
1−α

, −π

2
θ � ϕ � π

2
, α �= 1

⎫⎬⎭ . (80)
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We consider now the contour form Γ with different values of parameters. Replacing the boundary
values ϕ in the expression for r(ϕ), we obtain

r
(
−π

2 θ
)
= 0, r

(
π
2
)
= ∞, at 0 < α < 1

r
(
−π

2 θ
)
= ∞, r

(
π
2
)
= 0, at 1 < α � 2.

(81)

Thus, at 0 < α < 1 the contour Γ starts in the point z = 0 at ϕ = −π
2 θ and tends to infinity at ϕ = π

2 .
In the case 1 < α � 2 the situation is opposite: the contour Γ starts in the point z = 0 at ϕ = π

2 and tends
to infinity at ϕ = −π

2 θ.
As we can see the contours Γ described in Equation (80) with different values of the parameter θ differ

in its type (see Figures 7 and 8). They can be divided into 7 main groups.

1. The contours of the first group are made up of the contours with values 0 < α < 1 and θ = −1.
In Figure 7 the contour Γ1 corresponds to this case. From the definition of the contour in Equation (80)
one can see that in this case the admissible region of an angle ϕ takes the form π

2 � ϕ � π
2 . This means

that the contour goes along the positive part of the imaginary axis: Γ ≡ Γ1 = I+.
2. The contours of the second group include the contours with values 0 < α < 1 and −1 < θ � 0.

In Figure 7 the contours Γ2, Γ′2, Γ′′2 , Γ′′′2 are referred to this case. The contours of this group start in
the point z = 0 at ϕ = −π

2 θ and tend to infinity at ϕ → π
2 . As one can see, in this case −π

2 θ � 0,
and contours of this group do not cross the real semiaxis.

3. The third group is made up of the contours with values of parameters 0 < α < 1 and 0 < θ < 1.
In Figure 7 this group consists of the contours Γ3, Γ′3, Γ′′3 , Γ′′′3 . The contours of this group start in the
point z = 0 coming out at an angle ϕ = −π

2 θ, and tend to infinity at ϕ → π
2 . As we can see in this

case −π
2 θ < 0. Therefore, the contours of this group approach the point z = 0 at values of ϕ < 0

which, in its turn, means that these contours intersect the positive part of the real axis.
4. The fourth group is composed of the contours 0 < α < 1, θ = 1. In Figure 7 the contour Γ4.

corresponds to this case. From the expression in Equation (78) we can see that in this case at ϕ→ −π
2

in this expression there is an indeterminate form 0/0. Evaluating this indeterminate form according
to L’Hôpital’s rule we get limϕ→− π

2
r(ϕ) = (α/x)1/(1−α). Thus, the contours of this group start in the

point z = −i(α/x)1/(1−α) at ϕ = −π
2 and tend to infinity at ϕ→ π/2. As we can see the contours of

this group also cross the positive part of the real axis.
5. The fifth group includes the contours with parameters 1 < α � 2 and−(2/α− 1) � θ � 0. In Figure 8

the contours Γ5, Γ′5, Γ′′5 , Γ′′′5 are referred to this case. The contours of this group start in the point z = 0
at ϕ = π/2 and tend to infinity at ϕ→ −π

2 θ. Since in this case θ � 0, then the condition ϕ > 0 is met
for all points of the contour. Therefore, the contours of this group do not cross the positive part of the
real axis.

6. The sixth group consists of the contours with parameters 1 < α � 2, 0 < θ < 2/α− 1. In Figure 8
the contours Γ6, Γ′6 correspond to this case. The contours of this groups start in the point z = 0 at
ϕ = π/2 and tend to infinity at ϕ→ −π

2 θ. Since in this case θ > 0, then −π
2 θ < 0 and, consequently,

the contours of this group cross the positive part of the real semiaxis.
7. The seventh group comprises the contours with parameters 1 < α � 2 and θ = 2/α− 1. In Figure 8

the contour Γ7 corresponds to this case. One should pay attention that in this case at ϕ = π/2 the
function r(ϕ) defined by Equation (78) has an indeterminate form 0/0. Evaluating this indeterminate
form according to L’Hôpital’s rule we obtain limϕ→π/2 r(ϕ) = (α/x)1/(1−α). Thus, the contours
of this group start in the point z = i(α/x)1/(1−α) at ϕ = π/2 and tend to infinity at ϕ → −π

2 θ.
The contours of this group also cross the positive part of the real axis.
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Figure 7. The type of a contour Γ at α ∈ (0, 1) and various values of parameter θ. The contours are given
for the case α = 0.6 and Γ1 - θ = −1, Γ2 - θ = −0.75, Γ′2 - θ = −0.5, Γ′′2 - θ = −0.25, Γ′′′2 - θ = 0, Γ3 - θ = 0.25,
Γ′3 - θ = 0.5, Γ′′3 - θ = 0.75, Γ′′′3 - θ = 0.98, Γ4 - θ = 1.
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Figure 8. The type of a contour Γ at α ∈ (1, 2] and with different values of the parameter θ. The contours
are given for the case α = 1.25 and Γ5 - θ = −0.6, Γ′5 - θ = −0.4, Γ′′5 - θ = −0.2, Γ′′′5 - θ = 0, Γ6 - θ = 0.2,
Γ′6 - θ = 0.57, Γ7 - θ = 0.6.
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This indicates that the contours of the first, second and third groups (0 < α < 1,−1 � θ < 1) and
contours of the fifth and sixth groups (1 < α � 2,−(2/α − 1) � θ < 2/α − 1) satisfy the conditions
of the Lemma 3. In fact, the contours of these groups start in the point z = 0, do not cross the line of
the cut that goes through a half-line arg z = −π and tend to infinity. The contours of the first, second,
third groups tend to infinity at ϕ = π

2 . This means that the contours of these groups satisfy the condition in
Equation (51). The contours of the fifth and sixth groups tend to infinity at ϕ = −π

2 θ. Thus, these contours
satisfy the condition in Equation (52).

Consider the contours of the fourth group Γ4. The contours of this group start in the point
z = −i(α/x)1/(1−α) and tend to infinity at ϕ → π

2 . Consider an auxiliary contour Γ∗ = {z : arg z =

−π/2, 0 � |z| � (α/x)1/(1−α)}. With the help of a contour Γ∗ we form a new contour S = Γ∗
⋃

Γ4.
The specific feature of the contour Γ∗ is then that � exp{izx− zα exp{i π

2 αθ}} = 0 for z ∈ Γ∗. From this it
follows that

1
π
%

∫
Γ∗

exp{izx− zα exp{i π
2 αθ}}dz = 0.

Therefore, for the case 0 < α < 1, θ = 1 we get

1
π
%

∫
S

exp{izx− zα exp{i π
2 αθ}}dz =

1
π
%

∫
Γ4

exp{izx− zα exp{i π
2 αθ}}dz. (82)

However, now the contour S = Γ∗
⋃

Γ4 completely satisfies the conditions of the Lemma 3: it starts in
the point z = 0 without crossing the line of the cut and tends to infinity at ϕ = π/2.

For the contours of the seventh froup Γ7 we do the same. Consider an auxiliary contour
Γ∗∗ = {z : arg z = π/2, 0 � |z| � (x/α)1/(α−1)}. With the help of this contour we form the contour
S∗ = Γ∗∗

⋃
Γ7. Now, the contour S∗ completely satisfies the conditions of the Lemma 3. As in the previous

case � exp{izx− zα exp{i π
2 αθ}} = 0 for z ∈ Γ∗∗. From this it follows

1
π
%

∫
Γ∗∗

exp{izx− zα exp{i π
2 αθ}}dz = 0.

As a result, for the case 1 < α � 2, θ = 2/α− 1 we get

1
π
%

∫
S∗

exp{izx− zα exp{i π
2 αθ}}dz =

1
π
%

∫
Γ7

exp{izx− zα exp{i π
2 αθ}}dz. (83)

Now, applying Lemma 3 and taking account of the equalities in Equations (82) and (83) we find that

1
π
%

∫ ∞

0
eitx ĝ(t, α,−θ)dt =

1
π

∫
Γ

eizxg+(z, α,−θ)dz, (84)

where the contour Γ is defined by the expression in Equation (80). As a result, an improper integral along
the positive part of the real axis in the expression of Equation (73) can be replaced with an integral along
the contour Γ. Thus, in the case considered (α �= 1) we showed the validity of transition from Equation (73)
to Equation (75).

Returning to Equation (75), taking into consideration Equation (76) and representing complex z in the
form z = reiϕ, we obtain

g(z, α, θ) =
1
π
%

∫
Γ

exp{izx− zα exp{i π
2 αθ}}dz =

1
π

∫
Γ
% exp{izx− zα exp{i π

2 αθ}}d(%z) =

1
π

∫
Γ

exp{−rx sin ϕ− rα cos(α(ϕ + π
2 θ))} cos

(
rx cos ϕ− rα sin(α(ϕ + π

2 θ))
)

d[r cos ϕ].
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We will place here the expression in Equation (78). One should pay attention that in this case the
Equation (77) is valid, consequently, we obtain

g(x, α, θ) =
1
π

∫
Γ

exp{A(ϕ)}d[r(ϕ) cos ϕ], (85)

where A(ϕ) = −r(ϕ)x sin ϕ− r(ϕ)α cos(α(ϕ + π
2 θ)) and r(ϕ) is defined by Equation (78). We transform

the function A(ϕ)

A(ϕ) = −x
(

sin(α(ϕ + π
2 θ))

x cos(ϕ)

)1/(1−α)

sin ϕ−
(

sin(α(ϕ + π
2 θ))

x cos(ϕ)

)α/(1−α)

cos(α(ϕ + π
2 θ))

= −xα/(α−1)
(

sin(α(ϕ + π
2 θ))

cos(ϕ)

)α/(1−α) cos
(

ϕ(1− α)− π
2 αθ

)
cos ϕ

= −xα/(α−1)U(ϕ, α, θ), (86)

where U(ϕ, α, θ) has the form of Equation (70).
Now we consider the differential, we have d[r(ϕ) cos ϕ] = cos ϕd[r(ϕ)] − r(ϕ) sin ϕdϕ. For the

differential d[r(ϕ)] we get

d[r(ϕ)] = d

[(
sin(α(ϕ + π

2 θ))

x cos(ϕ)

)1/(1−α)
]
=

r(ϕ)

1− α

(
α cot

(
α
(

ϕ + π
2 θ

))
+ tan ϕ

)
dϕ.

Using now this result in the expression for d[r(ϕ) cos ϕ], we have

d[r(ϕ) cos ϕ] =
r(ϕ)

1− α
cos ϕ

(
α cot

(
α
(

ϕ + π
2 θ

))
+ tan ϕ

)
dϕ− r(ϕ) sin ϕdϕ

=
αr(ϕ)

1− α

(
cos ϕ cot

(
α
(

ϕ + π
2 θ

))
+ sin ϕ

)
dϕ

=
α

1− α

(
sin

(
α
(

ϕ + π
2 θ

))
x cos ϕ

)1/(1−α)
cos

(
α
(

ϕ + π
2 θ

)
− ϕ

)
sin

(
α
(

ϕ + π
2 θ

)) dϕ =
α

1− α
x1/(α−1)U(ϕ, α, θ)dϕ, (87)

where U(ϕ, α, θ) has the form of Equation (70).
Now using Equations (86) and (87) in Equation (85) and also taking into consideration that the motion

along the contour Γ, having the form of Equation (80) now described by the parameter change ϕ, we obtain

g(x, α, θ) =
α

π(1− α)

∫ ϕmax

ϕmin

exp
{
−xα/(α−1)U(ϕ, α, θ)

}
x1/(α−1)U(ϕα, θ)dϕ (88)

From the expression in Equation (84) one can see that the integration limits ϕmin and ϕmax should be
selected in such a way that the motion along the contour Γ could correspond to a change from r = 0 to
r = ∞. From the expression in Equation (81) it is clear that in the case 0 < α < 1 a change in the angle ϕ

from −π
2 θ to π

2 corresponds to the motion along the contour Γ from r = 0 to r = ∞. Therefore, in this case
ϕmin = −π

2 θ, ϕmax = π
2 . In the case 1 < α � 2 a change in the angle ϕ from π

2 to −π
2 θ corresponds to the

motion from r = 0 to r = ∞. Therefore, in this case ϕmin = π
2 , and ϕmax = −π

2 θ. Combining these two
cases the expression in Equation (88) takes the form

g(x, α, θ) =
α

π|1− α|
∫ π

2

−π
2 θ

exp
{
−xα/(α−1)U(ϕ, α, θ)

}
x1/(α−1)U(ϕ, α, θ)dϕ, α �= 1. (89)
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It should be pointed out that this formula was obtained on the assumption x > 0. The case x < 0 is
easy to obtain using the property of inversion for the density of probabilities in Equation (7). For this it is
enough to replace the parameter θ in the formula in Equation (89) with −θ. It is possible to combine these
two cases if in the formula of Equation (89) to substitute the parameter θ for the parameter θ∗ = θ sign x
and the value x is taken in absolute value. As a result, we obtain the expression in Equation (69) valid for
any x �= 0 and any admissible α �= 1.

Now we consider the case 0 < α � 2 and x = 0. In this case the inversion formula of Equation (75)
takes the form

g(0, α, θ) =
1
π
%

∫
Γ

exp
{
−zα exp

{
π
2 αθ

}}
dz, (90)

where the contour Γ is determined by the expression in Equation (74), but it is necessary to determine the
specific type of a contour in the case under consideration.

We represent the complex number z in the form z = reiϕ. As a result, the integrand in Equation (90)
takes the form

exp
{
−zα exp

{
π
2 αθ

}}
= exp

{
−rα cos

(
α
(

ϕ + π
2 θ

))
− irα sin

(
α
(

ϕ + π
2 θ

))}
. (91)

Using the condition �g+(0, α, θ) = 0, we obtain

rα sin
(
α
(

ϕ + π
2 θ

))
= 0. (92)

This equation has two solutions: r = 0, for any ϕ, and ϕ = −πθ/2, r � 0. It is clear that if r = 0,
then �g+(0, α, θ) = 0 for any value of ϕ, for definiteness we will select ϕ = −πθ/2 if r = 0. As a result,
the contour of integration of Equation (74) takes the form Γ = {z : |z| � 0, arg z = −πθ/2}, where
|θ| � min(1, 2/α− 1), 0 < α � 2. From this it is clear that in the case under consideration the family
of contours Γ are represented by half-lines starting from the point z = 0 at an angle arg z = −πθ/2.
Consequently, the family of contours Γ satisfy items 1 and 2 of Lemma 3 and also the condition in
Equation (53) in item 3. Thus, we substantiate the transition from the improper integral of Equation (73) to
the contour integral in Equation (90).

Now we put the expression in Equation (91) in Equation (90) and taking into account Equation (92),
we obtain

g(0, α, θ) =
1
π

∫
Γ

exp
{
−rα cos

(
α
(

ϕ + π
2 θ

))}
%[dz] =

cos(πθ/2)
π

∫ ∞

0
exp {−rα} dr.

Here it was taken into account that %[dz] = cos(πθ/2)dr on the contour Γ. The limits of integration
were selected in such a way that when moving along the contour r could change from 0 to ∞. Since the
contour Γ in the case under consideration is a half-line coming out of the point z = 0 at an angle
arg z = −πθ/2, then the motion along the contour Γ from 0 to ∞ corresponds to a change r from 0 to ∞.
Making in this integral a substitution of a variable rα = y and using the definition of the gamma-function
Γ(n) =

∫ ∞
0 tn−1e−tdt, n > 0 we obtain the expression Equation (71). Thus, the second item of the theorem

is proved.
Now we consider the case α = 1. We will make an assumption that x � 0. In this case, the inversion

formula in Equation (75) takes the form

g(x, 1, θ) =
1
π
%

∫
Γ

exp
{

izx− z exp
{

i π
2 θ

}}
dz, (93)
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where the contour of integration defined by Equation (74) will be written in the form

Γ = {z : �eizxg+(z, 1, θ) = 0, π
2 � arg z � π

2 , |z| � 0}, (94)

Here it should be noted that analytic continuation of the function ĝ(t, 1,−θ) from the positive part of
the real axis t to the complex plane z at α = 1 is an analytic function and it has the form g+(z, 1,−θ) =

exp
{
−z exp

{
i π

2 θ
}}

.
As in the previous case, we begin by defining the form of the integration contour Γ. Consider the

integrand in Equation (93) and we represent the complex number z in the form z = reiϕ. As a result,
we obtain

exp{izx− z exp{i π
2 θ}} = exp

{
ixreiϕ − reiϕ exp{i π

2 θ}
}
=

exp{−r
(

x sin ϕ + cos((ϕ + π
2 θ))

)
} exp

{
ir
(
x cos ϕ− sin((ϕ + π

2 θ))
)}

. (95)

From this expression we get that the condition �eizxg+(z, 1,−θ) = 0 leads to an equation

r
(
x cos ϕ− sin((ϕ + π

2 θ))
)
= 0. (96)

This equation has two solutions. The first solution is r = 0. The second solution we obtain from the
equation x cos ϕ− sin((ϕ + π

2 θ)) = 0, r � 0. Solving it with respect to ϕ we get

ϕ(θ, x) = arctan
(

x− sin(πθ/2)
cos(πθ/2)

)
. (97)

As a result, the contour of integration in Equation (94) takes the form

Γ = {z : arg z = ϕ(θ, x), |z| � 0,−1 � θ � 1} (98)

Thus, the contours Γ with different values θ are half-lines coming out of the origin at an angle ϕ(θ, x)
and tending to infinity.

Next, it is necessary to substantiate the transition from the integral in Equation (73) to the integral
along the contour in Equation (93). For this we will use Lemmas 3 and 4. From the definition in
Equation (98), it is clear that for all admissible values θ and x � 0 the contour Γ satisfies item 1 and 2 of
the Lemma 3. There is only one thing left, to find out if the contour in Equation (98) satisfies item 3 of
this lemma.

Consider the case x > 1 at first. According to item 3 of the Lemma 3 for the equality in Equation (59) to
be valid the contour of Equation (98) must satisfy the condition in Equation (54). Now using the Lemma 4.
According to this lemma in the case x � 1 the functions ϕ(θ, x) and ϕ0(θ, x) are connected between each
other with a ratio (63) from which it directly follows that ϕ0(θ, x) < ϕ(θ, x) for all θ ∈ [−1, 1]. Therefore,
at x > 1 the condition in Equation (54) is met and we can move from the integral in Equation (73) to
the integral in Equation (93). In the case x = 1 the contour Γ must meet the condition in Equation (58).
Now using the Lemma 4 we obtain that in this case for all θ ∈ [−1, 1] the inequality ϕ0(θ, x) < ϕ(θ, x) is
true. Therefore, in this case the condition in Equation (58) is satisfied. Now we consider the case 0 � x < 1.
Similar to previous case, applying the Lemma 4 namely, the formula in Equation (64) we get that in this
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case the contour in Equation (98) satisfies the conditions in Equations (55)–(57) Lemma 3. Thus, the contour
in Equation (98) completely satisfies the conditions of the Lemma 3 and therefore, the equality

1
π
%

∫ ∞

0
eitx ĝ(t, 1,−θ)dt =

1
π

∫
Γ

eizxg+(z, 1,−θ)dz

is true. This makes it possible to replace the improper integral in the expression of Equation (73) over the
real variable with the integral over the contour Γ. Thus, the possibility for the transition from the formula
in Equation (73) to the formula in Equation (75) is substantiated. We need to note that in the case under
consideration α = 1 the expression in Equation (75) takes the form of Equation (93). It should also be
pointed out that that due to Equation (34) the case α = 1, θ = 1, x = 1 is excluded in the Lemma 3. That is
why, here, this case should also be excluded from consideration.

Now taking into account Equation (95), the expression of Equation (93) will be written in the
following form

g(x, 1, θ) =
1
π
%

∫
Γ

exp{−r
(
x sin ϕ + cos(ϕ + π

2 θ)
)
} exp

{
ir
(
x cos ϕ− sin(ϕ + π

2 θ)
)}

dz =

1
π

∫
Γ

exp{−r
(
x sin ϕ + cos(ϕ + π

2 θ)
)
} cos

{
r
(
x cos ϕ− sin(ϕ + π

2 θ)
)}
%[dz]

Now using here the definition of Equation (98) we obtain that %[dz] = cos(ϕ(θ, x))dr. The motion
along the contour Γ should take place in such a way that it would start in the point z = 0 in the process of
moving it would tend to infinity. Therefore, the motion from r = 0 to r = ∞ corresponds to such motion.
Taking into consideration that on the contour Γ the condition of Equation (96) is met, we obtain

g(x, 1, θ) =
1
π

∫ ∞

0
exp{−r

(
x sin ϕ(θ, x) + cos(ϕ(θ, x) + π

2 θ)
)
} cos(ϕ(θ, x))dr

As we can see, the integral obtained is easy to calculate. As a result, we obtain

g(x, 1, θ) =
1
π

cos(ϕ(θ, x))
x sin ϕ(θ, x) + cos(ϕ(θ, x) + πθ/2)

.

Using now the definition of the function ϕ(θ, x) (97) after simple transformations we get

g(x, 1, θ) =
cos(πθ/2)

π (x2 − 2x sin(πθ/2) + 1)
. (99)

Recall that consideration was carried out for the case x � 0. The case x < 0 can be obtained using the
inversion property for the density of probability of Equation (7). For this it is enough to replace θ with −θ.
It is possible to combine these two cases if to introduce a parameter θ∗ = θ sign x. However, we want to
note that if to perform this replacement in the expression of Equation (99), then the expression itself will
not change g(x, 1, θ)→ g(x, 1, θ∗) ≡ g(x, 1, θ). Consequently, the formula in Equation (99) is true for any x.
Thus, the theorem is completely proved.

We will make some remarks on the proved theorem.

Remark 2. The proof of the case α = 1 was carried out under the assumption x � 0. Therefore, the formula in
Equation (99) was obtained for the case x � 0. The generalization of this formula for the case x < 0 was carried
out using the inversion property g(−x, 1, θ) = g(x, 1,−θ). It should be noted here that in the process of proving
this case the point θ = 1, x = 1 was excluded from consideration. Therefore, in view of the inversion property,
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the point θ = −1, x = −1 should also be excluded. In these two points the density g(x, 1, θ) has a peculiarity.
In fact, substituting the value θ = ±1, we obtain

g(x, 1,±1) =
cos(π/2)
π(x∓ 1)2 =

{
0, x �= ±1,
0/0, x = ±1.

However, an indeterminate form 0/0 can be evaluated in the following remark.

Remark 3. Equations (71) and (72) can be obtained directly from the inversion formulas in Equation (9) without
resorting to analytic continuation of the characteristic function ĝ(t, α, θ) to the complex plane with the subsequent
transition from the improper integral over the real variable (73) to the integral along the contour in Equation (75).
We first consider the case α = 1. Using the inversion formula (the first formula in Equation (9)) we obtain

g(x, 1, θ) =
1
π
%

∫ ∞

0
eitx ĝ(t, 1,−θ)dt =

1
π
%

∫ ∞

0
exp

{
t
(
ix− exp

{
i π

2 θ
})}

dt =
1
π
%I, (100)

where I =
∫ ∞

0 exp
{

t
(
ix− exp

{
i π

2 θ
})}

dt. We determine under which conditions this integral will converge.
For the integral I the inequality is valid

|I| �
∫ ∞

0

∣∣exp
{

t
(
ix− exp

{
i π

2 θ
})}∣∣ dt (101)

For the integrand we have∣∣exp
{

t
(
ix− exp

{
i π

2 θ
})}∣∣ = exp {−t cos(πθ/2)} cos(t(x− sin(πθ/2))). (102)

Since in the case considered (α = 1) the parameter θ varies within the limits −1 � θ � 1, we obtain
cos(πθ/2) > 0, if − 1 < θ < 1. From here we get limt→∞

∣∣exp
{

t
(
ix− exp

{
i π

2 θ
})}∣∣ = 0, if −1 < θ < 1.

Thus, the integral in Equation (101) will converge, and, therefore, and the integral I will also converge at−1 < θ < 1.
We consider now the cases θ = ±1. If θ = 1, then from Equation (102) we obtain

|exp {t (ix− exp{iπ/2})}| = cos(t(x− 1)). (103)

Substituting this result in Equation (101) we get

|I| �
∫ ∞

0
cos(t(x− 1))dt =

{
0, x �= 1
∞, x = 1.

(104)

Similarly, if θ = −1, we have

|I| �
∫ ∞

0
cos(t(x + 1))dt =

{
0, x �= −1
∞, x = −1.

(105)

Thus, at θ = ±1 the integral I = 0 for all x �= ±1, and integral I will diverge in the points x = 1, θ = 1 and
x = −1, θ = −1.
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Returning to Equation (100) and by calculating the integral directly, we get

g(x, 1, θ) =
1
π
%

∫ ∞

0
exp

{
t
(
ix− exp

{
i π

2 θ
})}

dt = − 1
π
% 1

ix− exp{iπθ/2}

= − 1
π
% −ix− exp{−iπθ/2}
(ix− exp{iπθ/2})(−ix− exp{−iπθ/2}) =

1
π

cos(πθ/2)
x2 − 2x sin(πθ/2) + 1

. (106)

From the formula obtained it is clear that if θ = ±1

g(x, 1,±1) =
cos(π/2)
π(x∓ 1)2 =

{
0, x �= ±1
∞, x = ±1.

(107)

Thus the behavior of the formula in Equation (106) coincides with the behavior of the integral I in
Equations (104) and (105) in the cases θ = ±1. Therefore, the formula in Equation (106) is true for any−1 � θ � 1.
The expression in Equation (107) means that the density g(x, 1,±1) is a degenerate distribution in the point x = ±1.
In other words,

g(x, 1,±1) = δ(x∓ 1). (108)

Thus, the obtained expression in Equation (106) completely coincides with the one previously obtained
in the Theorem 1 the density in Equation (72), and the conclusion presented in this remark is an alternative
way of deducing this density.

Remark 4. By a similar method, one can obtain the density value at x = 0. Using the first formula in Equation (9)
and making a substitution of the integration variable tα = τ we get

g(0, α, θ) =
1
π
%

∫ ∞

0
ĝ(t, α,−θ)dt =

1
π
%

∫ ∞

0
exp

{
−tα exp

{
i π

2 αθ
}}

dt

=
1

απ
%

∫ ∞

0
exp

{
−τ cos

(
π
2 αθ

)
− iτ sin

(
π
2 αθ

)}
τ1/α−1dτ

=
1

απ

∫ ∞

0
exp

{
−τ cos

(
π
2 αθ

)}
cos

(
y sin

(
π
2 αθ

))
τ1/α−1dτ. (109)

To calculate the integral obtained it is necessary to use the formula (see [45], Section 1.5. the Equation (35))∫ ∞

0
tα−1e−ct cos β cos(ct sin β)dt = Γ(α)c−α cos(αβ), c > 0, %α > 0, −π/2 < β < π/2.

It is clear that the integral in Equation (109) completely satisfies the conditions of this integral. Consequently,
using it in Equation (109) we get g(0, α, θ) = 1

π Γ(1/α + 1) cos(πθ/2). The formula obtained coincides completely
with the formula in Equation (71).

We will make another useful remark.

Remark 5. The Theorem 1 formulates an integral representation for the density of a standard strictly stable law.
However, it is useful to have a formula that allows one to convert the density of a standard strictly stable law to the
density of a strictly stable law with arbitrary λ. The Property 2 and, in particular, the formula in Equation (8) allows
one to obtain such a formula.
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In fact, in terms of characteristic functions, the formula in Equation (8) will be written as

ĝ(t, α, θ, λ) = ĝ
(

λ1/αt, α, θ
)

. (110)

The density is obtained using the inverse Fourier transform of the characteristic function g(x, α, θ, λ) =
1

2π

∫ ∞
−∞ eitx ĝ(t, α, θ, λ)dt. Using now the relation in Equation (110) and changing the integration variable λ1/αt =

τ we obtain the relation for densities.

g(x, α, θ, λ) = λ−1/αg(xλ−1/α, α, θ). (111)

Thus, the Theorem 1 defines an integral representation for the probability density of a standard
strictly stable law with the characteristic function in Equation (1). Using this representation, we can obtain
an integral representation for the distribution function of the standard strictly stable law. We formulate
this result as a corollary to the Theorem 1.

Corollary 1. The distribution function of a stable law G(x, α, θ) with the characteristic function in Equation (1)
can be represented as

1. If α �= 1, then for any |θ| � min(1, 2/α− 1) and x �= 0

G(x, α, θ) = 1
2 (1− sign (x)) + sign (x)G(+)(|x|, α, θ∗), (112)

where θ∗ = θ sign (x),

G(+)(x, α, θ) = 1− (1 + θ)

4
(1 + sign (1− α))

+
sign (1− α)

π

∫ π/2

−πθ/2
exp

{
−xα/(α−1)U(ϕ, α, θ)

}
dϕ, x > 0, (113)

and U(ϕ, α, θ) is defined by Equation (70).
2. If α = 1, then for any −1 � θ � 1 and any x

G(x, 1, θ) =
1
2
+

1
π

arctan
(

x− sin(πθ/2)
cos(πθ/2)

)
. (114)

3. If x = 0, then for any admissible α and θ

G(0, α, θ) = (1− θ)/2. (115)

Proof. We consider the case α �= 1. It is necessary to obtain the distribution function of a stable law with
the characteristic function in Equation (1). For the density of distribution a stable law, one should choose
the expression in Equation (89) which defines the density g(x, α, θ) for x > 0. In view of this, we write the
distribution function in the form

G(+)(x, α, θ) = 1−
∫ ∞

x
g(ξ, α, θ)dξ, x > 0.
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Now substituting here Equation (89) we find

G(+)(x, α, θ) = 1− α

π|1− α|
∫ π/2

−πθ/2
U(ϕ, α, θ)dϕ

∫ ∞

x
ξ1/(α−1) exp

{
−ξα/(α−1)U(ϕ, α, θ)

}
dξ

=

⎧⎪⎪⎨⎪⎪⎩
1 +

sign (α− 1)
π

∫ π/2

−πθ/2

(
1− exp

{
−xα/(α−1)U(ϕ, α, θ)

})
dϕ, α < 1, x > 0,

1− sign (α− 1)
π

∫ π/2

−πθ/2
exp

{
−xα/(α−1)U(ϕ, α, θ)

}
dϕ, α > 1, x > 0.

=

⎧⎪⎪⎨⎪⎪⎩
1− (1 + θ)

2
+

1
π

∫ π/2

−πθ/2
exp

{
−xα/(α−1)U(ϕ, α, θ)

}
dϕ, α < 1, x > 0,

1− 1
π

∫ π/2

−πθ/2
exp

{
−xα/(α−1)U(ϕ, α, θ)

}
dϕ, α > 1, x > 0.

If we combine the cases α < 1 and α > 1 we obtain

G(+)(x, α, θ) = 1− (1 + θ)

4
(1 + sign (1− α)) +

sign (1− α)

π

∫ π/2

−πθ/2
exp

{
−xα/(α−1)U(ϕ, α, θ)

}
dϕ.

This formula defines the distribution function of stable law for the case x > 0 and α �= 1. The case
x < 0 is reduced to the case x > 0 using the property of an inversion, namely, the formula in Equation (7)
for G(x, α, θ). As a result, we get G(−)(−x, α, θ) = 1− G(+)(x, α,−θ), x > 0. This formula gives the
distribution function for negative x. Combining the formulas for G(+)(x, α, θ) and G(−)(−x, α, θ), we obtain
the formula in Equation (112) which is true for any x �= 0 and α �= 1.

We now consider the case α = 1. According to the definition G(x, 1, θ) =
∫ x
−∞ g(ξ, 1, θ)dξ. Substituting

the density (72) here and replacing the variable ξ − sin(πθ/2) = τ we obtain

G(x, 1, θ) =
cos(πθ/2)

π

∫ x

−∞

dξ

ξ2 − 2ξ sin(πθ/2) + 1

=
cos(πθ/2)

π

∫ x−sin(πθ/2)

−∞

dτ

τ2 + cos2(πθ/2)
=

1
2
+

1
π

arctan
(

x− sin(πθ/2)
cos(πθ/2)

)
.

Thus, the second item of the corollary has been proved.
To calculate G(x, α, θ) at x = 0 we use the formula in Equation (113). Performing the passage to the

limit x → 0 in this expression we get G(0, α, θ) = (1− θ)/2. Since the formula in Equation (113) is valid
for α �= 1, then the result obtained is valid only for α �= 1. To calculate G(0, 1, θ) it is necessary to use (114).
Substituting the value x = 0 in (114) we obtain G(0, 1, θ) = (1− θ)/2. Thus, the expression (115) is true
for any admissible α and θ.

We make some remarks on the proved corollary.

Remark 6. In the Remark 3 it is emphasized that in the case α = 1, θ = ±1 the density g(x, 1,±1) is a degenerate
distribution in the point x = ±1 and has the form of Equation (108). Consequently, for the indicated parameter
values, the distribution function G(x, 1,±1) will have the form of the Heaviside function G(x, 1,±1) = H(x∓ 1).
This is directly seen from the form of the distribution function at α = 1. Indeed, substituting the values θ = ±1 in
Equation (114), we obtain

G(x, 1,±1) =
1
2
+

1
π

arctan
(

x∓ sin(π/2)
cos(π/2)

)
=

{
1, x > ±1,
0, x < ±1

= H(x∓ 1).
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Remark 7. The proved corollary gives an integral representation for the distribution function of a standard strictly
stable law. In order to get the distribution function of a strictly stable law for an arbitrary λ it is necessary to use
the Remark 5. By definition G(x, α, θ, λ) =

∫ x
−∞ g(y, α, θ, λ)dy. Using now the relation in Equation (111) and

changing the variable xλ−1/α = τ we arrive at the relation

G(x, α, θ, λ) = G
(

xλ−1/α, α, θ
)

.

It should be noted the density in Equation (72) and distribution function in Equation (114) is not new.
These formulas were deduced by V.M. Zolotarev (see § 2.3 in [32]). As we can see, this distribution is the
stable law for α = 1 and any −1 � θ � 1 and it is expressed in terms of elementary functions.

4. The Calculation of the Density and Distribution Function of a Stable Law

Integral representations for the probability density and distribution function of a stable law with the
characteristic function in Equation (1) were obtained in the Theorem 1 and Corollary 1. These integral
representations in Equations (69) and (112) express the probability density and the distribution function
in terms of a definite integral. That is why, using the methods of numerical integration, it is possible to
calculate the values of these integrals without much difficulty.

In this paper, to calculate definite integrals in Equations (69) and (112) we used the adaptive
Gaussian–Kronrod numerical integration algorithm for 31 points. To implement the program for
calculating the functions g(x, α, θ) and G(x, α, θ) we used the implementation of this algorithm in the gsl
library (GNU Scientific Library) of version 1.8 [46]. The calculation results for the functions g(x, α, θ) and
G(x, α, θ) by the Equations (69) and (112) are given in Figures 9–14.

The figures show the probability density and distribution function for the values of the characteristic
exponent α = 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and specified values of the parameter θ and λ = 1. It should be noted
that the admissible region of the parameter θ is determined by the inequality |θ| � min(1, 2/α− 1). Thus,
−1 � θ � 1, if 0 < α � 1, and −(2/α− 1) � θ � 2/α− 1, if 1 < α � 2. It is clear that if α > 1 then the
admissible region of the parameter θ narrows and at α = 2 the parameter θ may take a single value θ = 0.

Let us analyze the results presented in more detail. We first consider the case α < 1. The results related
to this case are given in Figures 9–11. From these figures it can be seen that when θ = 1 the probability
density is concentrated on the positive semiaxis. Thus, g(x, α, 1) = 0, G(x, α, 1) = 0, if x < 0, α < 1.
Similarly, for the case θ = −1 and α < 1, we obtain that the negative semiaxis is the area of concentration
of the probability density. Consequently, g(x, α,−1) = 0, G(x, α,−1) = 1, if x > 0, α < 1. This result is in
complete agreement with remarks 3 and 4 on page 79 of theorem 2.2.3 from the book by [32].

In the introduction, it was noted that in the work [31] (see also [32]) integral representations were
obtained for the probability density and distribution function of a stable law with the characteristic function
in Equation (5). In order to avoid any confusion the parameters of a stable law with the characteristic
function in Equation (5) will be designated as (α′, β, λ′, γ). For the parameters of a strictly stable law with
the characteristic function in Equation (1) we keep the notation (α, θ, λ). The parameters (α′, β, λ′, γ) are
related to the parameters (α, θ, λ) by the relations (see [32,36]): α′ = α,

θ = βK(α′)/α′, λ = λ′, if α �= 1,

θ = (2/π) arctan(2γ/π), λ = λ′
(
π2/4 + γ2)1/2 , if α = 1.

In the case of α �= 1 from the relation for the parameters θ and β we get θ = β, if α < 1, and θ =

β(1− 2/α), if α > 1.
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Figure 9. The probability density function g(x, α, θ) (on the left) and cumulative distribution function
G(x, α, θ) (on the right) of a standard strictly stable law with α = 0.3 and specified values θ.
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Figure 10. The probability density function g(x, α, θ) (on the left) and cumulative distribution function
G(x, α, θ) (on the right) of a standard strictly stable law with α = 0.6 and specified values θ.
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Figure 11. The probability density function g(x, α, θ) (on the left) and cumulative distribution function
G(x, α, θ) (on the right) of a standard strictly stable law with α = 0.9 and specified values θ.
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Figure 12. The probability density function g(x, α, θ) (on the left) ) and cumulative distribution function
G(x, α, θ) (on the right) of a standard strictly stable law with α = 1.2 and specified values θ.
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Figure 13. The probability density function g(x, α, θ) (on the left) ) and cumulative distribution function
G(x, α, θ) (on the right) of a standard strictly stable law with α = 1.5 and specified values θ.
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Figure 14. The probability density function g(x, α, θ) (on the left) and cumulative distribution function
G(x, α, θ) (on the right) of a standard strictly stable law with α = 1.8 and specified values θ.
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Thus, at α < 1 the parameters θ and β coincide. Therefore, the corresponding properties for the
probability density and the distribution function of stable laws with characteristic functions in Equations (1)
and (5) coincide. The situation slightly changes if α > 1. It can be seen from the above relation that,
firstly, the admitted region of the parameter θ narrows in comparison with the admitted region of the
parameter β, secondly, the parameter θ changes its sign to the opposite with respect to the parameter
β. Since the parameter θ has the meaning of an asymmetry parameter, then a change of the sign of this
parameter when passing from α < 1 to α > 1 will affect the form of probability density. This is clearly seen
in Figures 11 and 12 for densities with extreme values of the parameter θ. Comparing densities for the
values α = 0.9, θ = 1 given in Figure 11 and density for the values α = 1.2, θ = 0.66 given in Figure 12
one can see that these densities are turned into different directions. This fact is a consequence of the fact
that the parameter θ changed the sign compared to the sign of the parameter β. Thus, for the same sign of
the parameter θ of density g(x, α, θ) at α < 1 and α > 1 will be turned into different directions. The reason
for this behavior is related to the selected parameter system (α, θ, λ) of the characteristic function in
Equation (1). As it was mentioned in the book by Zolotarev V.M. (see page 19 in [32]), distributions from
the class of strictly stable laws are continuous in the totality of their parameters in the entire range of their
admissible values it is with this choice of parameters.

It should be pointed out that the Theorem 1 and Corollary 1 formulate expressions for probability
density and distribution functions for strict stable laws with a scale parameter λ = 1. To obtain the
density and distribution function with an arbitrary value of the scale parameter λ it is necessary to use
Remarks 5 and 7.

5. Conclusions

In this paper, integral representations for the probability density have been obtained (Theorem 1) and
distribution function (Corollary 1) of a standard (λ = 1) strictly stable law with the characteristic function
in Equation (1). In the general case α �= 1 and x �= 0 the probability density and distribution function are
expressed in terms of a definite integral. In the case α = 1 for any x and in the case x = 0 for any admissible
α and θ the probability density and distribution function are expressed in terms of elementary functions.
Applying the method of numerical integration, the values of the density and distribution function of
strictly stable laws with the characteristic function in Equation (1) were calculated. The calculations show
that the numerical methods do not have any difficulties in calculating the density and distribution function
for the selected parameter values.

However, this does not mean that one can calculate the density and function of distribution for all
admissible parameters by using obtained integral representations. Most likely, numerical integration
algorithms will have difficulty in calculating the integral for small values α, at α ≈ 1 and for bigger values of
x. The results of the works in which integral representations for densities of stable laws with characteristic
functions in Equations (5) and (4) were investigated testify to this. An integral representation for a stable
law with the characteristic function in Equation (5) was obtained in the work [31] (see also § 2.2 in [32],
§ 4.4 in [36]). In the work [33], it was pointed out that when values of α close to 1 problems arise
with the numerical calculation of the integral in this integral representation. An integral representation
for the density of a stable law with the characteristic function in Equation (4) was obtained in [33].
In this work, it was emphasized that when calculating the density, calculation difficulties arise at values
0 < |α− 1| < 0.02 and at values α close to zero. In the works by [38,43] the same problems are mentioned
when calculating the integral in the representation obtained in the work [33]. Based on this, it should be
expected that, with the above parameter values, calculation difficulties will also arise with the density
and distribution functions obtained in the Theorem 1 and Corollary 1. In particular, directly from the
expressions in Equations (69) and (113), it can be seen that at α close to 1, but not equal to 1, problems may

347



Mathematics 2020, 8, 775

arise with the numerical calculation of the integral. This is indicated by the exponent α/(α− 1). It can be
seen that when α→ 1 this value increases unlimitedly. Most likely, in this case, one will have to look for
other ways of calculating the density and distribution function of a strictly stable law.

In conclusion, we would like to point out that the integral representation of the density g(x, α, θ)

formulated in the Theorem 1 was used to calculate the density in Equation (2). To calculate the improper
integral in Equation (2) we used the adaptive quadrature Gaussian–Kornord numerical integration
algorithm on 15 points. We used the implementation of this algorithm in the library gsl (GNU Scientific
Library) version 1.8 [46]. The calculations performed in some cases show the presence of problems of
numerical integration. In particular, at x close to zero, the calculated density behaves like a periodic
function. In addition, in some cases, the integration algorithm generates an integration error. All this
indicates the need for additional study of the integrand function in Equation (2) and adapting this
expression for numerical integration algorithms. It should be noted that the most likely causes of these
difficulties may be the ones described above when calculating the density g(x, α, θ). Therefore, first of all,
it is necessary to find a solution to the problems described above. To calculate the density at x close to zero
and for bigger values x the most promising approach is to use an expansion of the strictly stable density in
the power series. The method described in the article [43] can be used to calculate the density at α→ 1.
However, the possibility of using this approach requires additional research.
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Abstract: Signal de-noising methods based on threshold processing of wavelet decomposition
coefficients have become popular due to their simplicity, speed, and ability to adapt to signal
functions with spatially inhomogeneous smoothness. The analysis of the errors of these methods
is an important practical task, since it makes it possible to evaluate the quality of both methods
and equipment used for processing. Sometimes the nature of the signal is such that its samples are
recorded at random times. If the sample points form a variational series based on a sample from
the uniform distribution on the data registration interval, then the use of the standard threshold
processing procedure is adequate. The paper considers a model of a signal that is registered at
random times and contains noise with long-term dependence. The asymptotic normality and strong
consistency properties of the mean-square thresholding risk estimator are proved. The obtained
results make it possible to construct asymptotic confidence intervals for threshold processing errors
using only the observed data.

Keywords: threshold processing; random samples; long-term dependence; mean-square risk estimate

1. Introduction

In digital signal processing tasks, it is often assumed that the recorded signal samples are
independent. However, there are many physical processes that demonstrate long-term dependence
where correlations between observations decrease rather slowly. For example, long-term dependence
is often observed in geophysical processes where it takes the form of long periods of large or small
values of observations. Interferences in communication channels demonstrate similar phenomena.
Wavelet methods are widely used in the analysis and processing of signals recorded during the study
of such processes.

The wavelet decomposition of a function f (x) is a series

f (x) = ∑
j,k∈Z
〈 f , ψj,k〉ψj,k(x),

where ψj,k(x) = 2j/2ψ(2jx − k), and ψ(x) is a wavelet function. The indices j and k are called the
scale and the shift, respectively. This decomposition provides a time/scale representation of the
signal function, that allows one to localise its features. There exist many wavelet functions with
various properties.

In practice, a discrete wavelet transform is used. It is a multiplication of a sampled signal vector by
an orthogonal matrix defined by the wavelet function ψ(x) (in practice implemented with a fast cascade
algorithm [1]). This transform is applied to data, and the threshold processing of the resulting wavelet
coefficients is performed [1]. For a model of signal samples with an equispaced grid, these methods
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were well studied by D. Donoho, I. Johnstone, B. Silverman and others [2–10]. Statistical properties
of the mean-square risk estimator were also studied. It is shown that under certain conditions it is
strongly consistent and asymptotically normal [11–13].

In some experiments it is not possible to record signal samples at regular intervals [14]. Sometimes
registration of samples is made at random times. It was shown by T. Cai and L. Brown [15] that, if the
sample points form a variational series based on a sample from the uniform distribution on the data
registration interval, then the rate of the mean-square thresholding risk remains, up to a logarithmic
factor, equal to the optimal rate in the class of Lipschitz regular functions. A special case of the uniform
distribution appears, for example, when considering a Poisson process, and since the conditional
distribution of its points on a given time interval, given the number of points, is uniform. These models
can arise, for example, in astronomy when considering the stellar intensity. In this paper, it is proven
that under some regularity conditions, the statistical properties of the risk estimator also remain the
same for both equispaced and random sample grids.

2. Long-Term Dependence

Let the signal function f (x) be defined on the segment [0, 1] and be uniformly Lipschitz regular
with some exponent γ > 0 and Lipschitz constant L > 0: f ∈ Lip(γ, L). Assume that the samples of
f (x) contain additive correlated noise and are recorded at random times that are independent and
uniformly distributed on [0, 1]. Namely, consider the following data model:

Yi = f (x(i)) + ei, i = 1, . . . , N (N = 2J), (1)

where 0 ≤ x(1) < . . . < x(N) ≤ 1 is the variational series based on a sample from the uniform
distribution on the segment [0, 1], and {ei, i ∈ Z} is a stationary Gaussian process with the covariance
sequence rk = cov(ei, ei+k). We assume that ei have zero mean and unit variance. We also assume that
the noise autocovariance function decreases at the rate of rk ∼ k−α, where 0 < α < 1. This corresponds
to the long-term dependence between observations [7].

The observations consist of pairs (x(1), Y1), . . . , (x(N), YN), where the distances between the
samples are, generally, not equal. It is known that Ex(i) = i/(N + 1) (see Lemma 2 in [15]). Along with
(1), consider a sample with equal distances between sample points(

1
N + 1

, Z1

)
, . . . ,

(
N

N + 1
, ZN

)
. (2)

where

Zi = f
(

i
N + 1

)
+ ei, i = 1, . . . , N.

For the sample (2) threshold processing methods have been developed that effectively suppress
the noise and provide an “almost” optimal rate of the mean-square risk [7,8]. The discrete wavelet
transform with Meyer wavelets is applied to the sample (2) to obtain a set of empirical wavelet
coefficients [1]

Wj,k = μj,k + 2
(1−α)(J−j)

2 ξ j,k, j = 0, . . . , J − 1, k = 0, . . . , 2j − 1,

where μj,k are discrete wavelet coefficients of the sample

f
(

1
N + 1

)
, . . . , f

(
N

N + 1

)
,

and the noise coefficients ξ j,k have the standard normal distribution, but are not independent.
The variances of Wj,k have the form σ2

j = 2(1−α)(J−j) [12]. To suppress the noise the coefficients
Wj,k are processed with the hard thresholding function ρH(y, T) = x1(|y| > T) or the soft thresholding
function ρS(y, T) = sgn(x) (|y| − T)+ with some threshold T, and the estimates Ŵj,k are obtained.
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After that, the inverse wavelet transform is performed. The idea of threshold processing is that the
wavelet transform provides a “sparse” representation of the useful signal function; i.e., the signal
is represented by a relatively small number of modulo large coefficients. To provide a “sparse”
representation of a function that is uniformly Lipschitz regular with an exponent γ, the wavelet
function participating in the discrete wavelet transform must have M continuous derivatives (M ≥ γ)
and M vanishing moments. It also must decrease fast enough at infinity. It is further assumed that the
Meyer wavelets [1] that satisfy all the necessary conditions are used to perform the wavelet transform.

If we apply the discrete wavelet transform to the sample (1), we obtain the set of empirical
wavelet coefficients

Vj,k = νj,k + ξ j,k, j = 0, . . . , J − 1, k = 0, . . . , 2j − 1.

Here νj,k are the coefficients of the discrete wavelet transform of the sample

f
(

x(1)
)

, . . . , f
(

x(N)

)
.

In general, Vj,k are not equal to Wj,k, and νj,k are not equal to μj,k. However, one can apply the
same thresholding procedure to the coefficients Vj,k as to the coefficients Wj,k and obtain the estimators
V̂j,k. The following sections discuss the properties of the resulting estimators.

3. Mean-Square Thresholding Risk

The mean-square thresholding risk for a sample with random grid is defined as

Rν( f , T) =
J−1

∑
j=0

2j−1

∑
k=0

E(V̂j,k − μj,k)
2. (3)

We also define the mean-square risk for the equispaced sample as

Rμ( f , T) =
J−1

∑
j=0

2j−1

∑
k=0

E(Ŵj,k − μj,k)
2.

The threshold selection is one of the main problems in threshold processing. For the class Lip(γ, L),

the threshold Tγ = σj

√
4αγ

2γ+α ln2j (calculated for each j) is close to optimal [16]. Using the results of [7]
(Theorem 3), we can estimate the rate of Rμ( f , Tγ).

Theorem 1. Let α > 1/2 and f ∈ Lip(γ, L) on the segment [0, 1] with γ > (4α − 2)−1. Then for the
threshold Tγ we have

Rμ( f , Tγ) ≤ C2
2γ+α−2αγ

2γ+α J J
2γ+2α
2γ+α ,

where C is a positive constant.

Additionally, repeating the arguments of Theorem 1 in [15], it can be shown that similar statement
is valid for Rν( f , Tγ) when γ > max{(4α − 2)−1, 1/2}. Thus, the replacement of equally-spaced
samples by random ones does not affect the upper estimate for the rate of the mean-square risk.

4. Properties of the Mean-Square Risk Estimate

Since expression (3) explicitly depends on the unknown values of μj,k, it cannot be calculated in
practice. However, it is possible to construct its estimate based only observable data. This estimate is
determined by the expression

R̂ν( f , T) =
J−1

∑
j=0

2j−1

∑
k=0

F[Vj,k, T], (4)
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where F[Vj,k, T] = (V2
j,k − σ2)1(|Vj,k| ≤ T) + σ21(|Vj,k| > T) for the hard threshold processing and

F[Vj,k, T] = (V2
j,k − σ2)1(|Vj,k| ≤ T) + (σ2 + T2)1(|Vj,k| > T) for the soft threshold processing [1,3].

Estimator (4) provides an opportunity to get an idea of the evaluation error for the function f ,
since it can be calculated using only the observable values Vj,k. The following statement establishes its
asymptotic normality, that, in particular, allows constructing asymptotic confidence intervals for the
mean-square risk (3).

Theorem 2. Let f ∈ Lip(γ, L) on the segment [0, 1] with γ > max{(4α− 2)−1, 1/2}, α > 1/2, and let the
Meyer wavelet satisfy the conditions listed above. Then for the hard and soft threshold processing we have

P

(
R̂ν( f , Tγ)− Rν( f , Tγ)

DJ
< x

)
→ Φ(x) when J → ∞,

where Φ(x) is the distribution function of the standard normal law, D2
J = Cα2J , and the constant Cα depends

only on α and the wavelet type.

Remark 1. In practice, one needs to know the constant Cα. Unlike the case of independent observations, this
constant depends on the chosen wavelet. The method of calculation of Cα is discussed in [12].

Proof. Let us prove the theorem for the hard threshold processing method. In the case of soft threshold
processing, the proof is similar.

Along with R̂ν( f , Tγ), consider

R̂μ( f , Tγ) =
J−1

∑
j=0

2j−1

∑
k=0

F[Wj,k, Tγ]

and write the difference R̂ν( f , Tγ)− Rν( f , Tγ) in the form

R̂ν( f , Tγ)− Rν( f , Tγ) = R̂μ( f , Tγ)− Rμ( f , Tγ) + R̃,

where
R̃ = R̂ν( f , Tγ)− R̂μ( f , Tγ)− (Rν( f , Tγ)− Rμ( f , Tγ)).

In [12] with the use of the results of [17–19] it is shown that

P

(
R̂μ( f , Tγ)− Rμ( f , Tγ)

DJ
< x

)
→ Φ(x) when J → ∞.

Therefore, to prove the theorem, it suffices to show that

R̃
2J/2

P−→ 0 when J → ∞.

Under the conditions γ > max{(4α− 2)−1, 1/2} and α > 1/2, by virtue of Theorem 1 and a
similar statement for Rν( f , T), we obtain that

Rν( f , Tγ)− Rμ( f , Tγ)

2J/2 → 0 when J → ∞.

Set
j0 ≈

α

2γ + α
J +

1
2γ + α

log2 J.
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Let us represent R̂ν( f , Tγ)− R̂μ( f , Tγ) as

R̂ν( f , Tγ)− R̂μ( f , Tγ) = S1 + S2,

where

S1 =
j0−1

∑
j=0

2j−1

∑
k=0

(
F[Vj,k, Tγ]− F[Wj,k, Tγ]

)
,

S2 =
J−1

∑
j=j0

2j−1

∑
k=0

(
F[Vj,k, Tγ]− F[Wj,k, Tγ]

)
.

Since for some constant C̃ > 0 we have∣∣∣F[Vj,k, Tγ]
∣∣∣ ≤ C̃T2

γ,
∣∣∣F[Wj,k, Tγ]

∣∣∣ ≤ C̃T2
γ a.s., (5)

then
S1

2J/2
P−→ 0 when J → ∞.

Next

S2 =
J−1

∑
j=j0

2j−1

∑
k=0

(
F[Vj,k, Tγ]− F[Wj,k, Tγ]

)
=

J−1

∑
j=j0

2j−1

∑
k=0

(V2
j,k −W2

j,k)+

+
J−1

∑
j=j0

2j−1

∑
k=0

(W2
j,k − 2σ2)1(|Vj,k| ≤ Tγ, |Wj,k| > Tγ)+

+
J−1

∑
j=j0

2j−1

∑
k=0

(2σ2 −V2
j,k)1(|Vj,k| > Tγ, |Wj,k| ≤ Tγ)+

+
J−1

∑
j=j0

2j−1

∑
k=0

(W2
j,k −V2

j,k)1(|Vj,k| > Tγ, |Wj,k| > Tγ). (6)

Consider the sum
J−1
∑

j=j0

2j−1
∑

k=0
(V2

j,k −W2
j,k):

J−1

∑
j=j0

2j−1

∑
k=0

(V2
j,k −W2

j,k) =
J−1

∑
j=j0

2j−1

∑
k=0

(ν2
j,k − μ2

j,k) + 2
J−1

∑
j=j0

2j−1

∑
k=0

ξ j,k(νj,k − μj,k).

Using the results of [12,15,20], it can be shown that the conditional distribution of this sum for
fixed xi is normal with the mean

J−1

∑
j=j0

2j−1

∑
k=0

(ν2
j,k − μ2

j,k)

and the variance that is less than

C̃α

J−1

∑
j=j0

2j−1

∑
k=0

(νj,k − μj,k)
2,

where C̃α is a positive constant.
Since f ∈ Lip(γ, L), repeating the arguments of [20], it can be shown that

1
2J/2Ex

∣∣∣∣∣ J−1

∑
j=j0

2j−1

∑
k=0

(ν2
j,k − μ2

j,k)

∣∣∣∣∣→ 0,
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1
2J/2Ex

J−1

∑
j=j0

2j−1

∑
k=0

(νj,k − μj,k)
2 → 0. (7)

Hence, applying the Markov inequality, we obtain

1
2J/2

J−1

∑
j=j0

2j−1

∑
k=0

(ν2
j,k − μ2

j,k)
P−→ 0,

1
2J/2

J−1

∑
j=j0

2j−1

∑
k=0

(νj,k − μj,k)
2 P−→ 0

when J → ∞. Thus,
J−1
∑

j=j0

2j−1
∑

k=0
(V2

j,k −W2
j,k)

2J/2
P−→ 0 when J → ∞.

The remaining sums in (6) contain indicators where either |Vj,k| > Tγ or |Wj,k| > Tγ. Repeating
the reasoning from [12] and using (7), it can be shown that, when divided by 2J/2, they also converge
to zero in probability. The theorem is proven.

Theorem 2 provides the possibility to construct asymptotic confidence intervals for the
mean-square thresholding risk on the basis of its estimate.

In addition to the asymptotic normality, the estimator (4) also possesses the property of
strong consistency.

Theorem 3. Suppose that the conditions of Theorem 2 are satisfied. Then for hard or soft threshold processing,
for any λ > 1/2 we have

R̂ν( f , Tγ)− Rν( f , Tγ)

2λJ → 0 a.s. when J → ∞.

Since (5) holds, for fixed xi the conditional version of Bosq inequality [21] (Theorem 1.3) applies
for (4), and the proof of this statement almost completely repeats the proof of the corresponding risk
estimator property in [13].

5. Discussion

As it has been already mentioned, Theorem 2 provides the possibility to construct asymptotic
confidence intervals for the mean-square thresholding risk. For practical purposes, it is desirable to
have guaranteed confidence intervals. These intervals could be constructed based on the estimates of
the convergence rate in Theorem 2. The estimates should depend on the Lipschitz parameters and
parameter α. Guaranteed confidence intervals would help to explain how the results of Theorems 2
and 3 affect the error estimation for the finite signal size. We therefore leave the problem of estimation
of the rate of convergence and explicit numerical simulation for future work.

The obtained results are applicable to Meyer wavelets. Their advantage is that they possess
infinitely many vanishing moments. It simplifies the proof of asymptotic normality in [12]. In view of
the results of [8] it is clear that similar conclusions could be obtained with other wavelets that have a
large enough number of vanishing moments (e.g., various Daubechies families).

It follows from Theorems 2 and 3 that the statistical properties of the mean-square risk estimator
in a model with the uniform random design remain the same as in a model with equispaced samples.
Note that this situation is not common. Random times of sample registration can also result in a
random sample size. This situation was considered in [22]. In this case, the properties of the model
can significantly differ from the properties of the fixed sample size model. For example, the limit
distribution of the mean-square risk estimator can be a scale mixture of normal laws, which can have
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significantly heavier tails than the normal distribution. In particular, this distribution may belong to
the class of stable laws, and it is well known that the variances of all stable laws, except the normal
one, are infinite (the properties of stable distributions are discussed in detail in the monograph of V. M.
Zolotarev [23]; see also [24]).
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