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Fractional Derivatives: The Perspective of System Theory
Reprinted from: Mathematics 2019, 7, 150, doi:10.3390/math7020150 . . . . . . . . . . . . . . . . . 121

Vasily E. Tarasov and Svetlana S. Tarasova

Fractional Derivatives and Integrals: What Are They Needed For?
Reprinted from: Mathematics 2020, 8, 164, doi:10.3390/math8020164 . . . . . . . . . . . . . . . . . 135

Kai Diethelm, Roberto Garrappa and Martin Stynes

Good (and Not So Good) Practices in Computational Methods for Fractional Calculus
Reprinted from: Mathematics 2020, 8, 324, doi:10.3390/math8030324 . . . . . . . . . . . . . . . . . 157

Dumitru Baleanu and Arran Fernandez

On Fractional Operators and Their Classifications
Reprinted from: Mathematics 2019, 7, 830, doi:10.3390/math7090830 . . . . . . . . . . . . . . . . . 179

Jocelyn Sabatier, Christophe Farges and Vincent Tartaglione

Some Alternative Solutions to Fractional Models for Modelling Power Law Type Long
Memory Behaviours
Reprinted from: Mathematics 2020, 8, 196, doi:10.3390/math8020196 . . . . . . . . . . . . . . . . . 189

Daniel Cao Labora

Fractional Integral Equations Tell Us How to Impose Initial Values in Fractional Differential
Equations
Reprinted from: Mathematics 2020, 8, 1093, doi:10.3390/math8071093 . . . . . . . . . . . . . . . . 205

v



Eyaya Fekadie Anley and Zhoushun Zheng

Finite Difference Method for Two-Sided Two Dimensional Space Fractional
Convection-Diffusion Problem with Source Term
Reprinted from: Mathematics 2020, 8, 1878, doi:10.3390/math8111878 . . . . . . . . . . . . . . . . 223

Christopher N. Angstmann, Byron A. Jacobs, Bruce I. Henry, and Zhuang Xu

Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional
Caputo–Fabrizio and Atangana–Baleanu Operators
Reprinted from: Mathematics 2020, 8, 2023, doi:10.3390/math8112023 . . . . . . . . . . . . . . . . 251

vi



About the Editor

Yuri Luchko is a Full Professor at the Faculty of Mathematics - Physics - Chemistry of the

Technical University of Applied Sciences Berlin. He studied Mathematics at the Belarussian State

University in Minsk and received his PhD degree from this University. In 1994, he was awarded

a DAAD research grant at the Free University of Berlin. The main field of his research is Applied

Mathematics with a special focus on Fractional Calculus and its applications. Yuri Luchko published

more than 100 papers in the international peer-reviewed scientific journals and about 20 books and

books chapters as author or editor. He is associate editor of the international journal “Fractional

Calculus and Applied Analysis” and editor of a dozen of other reputable mathematical journals.

vii





Preface to ”Fractional Integrals and Derivatives:

“True” versus “False””

Even if the Fractional Calculus (FC) is nearly as old as the conventional calculus, for long time it

was addressed and used just sporadically and only by few scientists. Within the last few decades, the

situation changed dramatically and nowadays we observe an exponential growth of FC publications,

conferences, and scientists involved into this topic. One of the explanations for this phenomenon

is in active attempts to introduce a new kind of mathematical models containing fractional order

operators into physics, chemistry, engineering, biology, medicine, and other sciences. This speeds

up the development of the mathematical theory of FC, including fractional ordinary and partial

differential equations, fractional calculus of variations, inverse problems for the fractional differential

equations, fractional stochastic models, etc. Unfortunately, most of these new models and results are

just formal “fractionalisations” of the known conventional theories, often without any justification

and motivation.

Additionally, a recent trend in FC is in introducing “new fractional derivatives and integrals”

and considering classical equations and models with these fractional order operators in place of

the conventional integrals and derivatives. This development led to an uncontrolled flood of FC

publications both in mathematical and physical journals. Some of these publications contain trivial,

well-known, and sometimes even wrong results that threaten the image of FC in the scientific

community. Thus, the FC researches have to think about and to answer questions like “What are

the fractional integrals and derivatives?”, “What are their decisive mathematical properties?”, “What

fractional operators make sense in applications and why?”, etc. These and similar questions were

mostly unanswered until now and the main aim of this Special Issue is a contribution to resolving of

some of these questions.

The Special Issue opens with three surveys. The review article [1], by Yuri Luchko and Masahiro

Yamamoto, presents an in deep discussion of the general fractional derivatives and integrals as well

as the fractional ordinary and partial differential equations with the general fractional derivatives.

For the fractional partial differential equations with the general fractional derivatives, both direct

and inverse problems are discussed. The survey paper [2], by Virginia Kiryakova, addresses another

important topic in FC: a unified approach to evaluation of images of the special functions under action

of different FC operators. The general scheme proposed in the paper is based on a few classical results

combined with ideas and developments from more than 30 years of author’s research. The review

article [3], by Min Cai and Changpin Li, focuses on numerical approximations to fractional integrals

and derivatives. Almost all relevant results known up to now are presented, discussed, and compared

each to other.

The research part of the Special Issue contains a series of important contributions that provide

some partial answers to the questions already mentioned above and others as e.g., “What are the FC

operators needed for?”. This series starts with the article [4], by Rudolf Hilfer and Yuri Luchko,

which proposes desiderata for calling an operator a fractional derivative or a fractional integral.

The desiderata are based on a small number of time honored and well established criteria. However,

they are not axioms and do not define fractional derivatives or integrals uniquely. The short

communication [5], by Rudolf Hilfer and Tillmann Kleiner, announces existence of fractional

calculi on precisely specified domains of distributions that satisfy the desiderata proposed in [4].

The contribution [6], by Manuel Duarte Ortigueira and José Tenreiro Machado, aims to provide the

ix



answers to the same questions as the ones considered in [4]. However, by doing so, the authors act

from the perspective of the classical system theory. The article [7], by Vasily E. Tarasov and Svetlana

S. Tarasova, addresses usefulness of the FC operators from the viewpoint of applied mathematics.

The key idea of the authors is an attempt to introduce a correspondence between the kernel properties

of the FC operators and the types of the phenomena that they can adequately describe.

The next three contributions of the Special Issue are devoted to some important practical

aspects of FC. The article [8], by Kai Diethelm, Roberto Garrappa, and Martin Stynes, addresses

the numerical treatment of the fractional differential equations. In particular, the authors provide

a description of some common pitfalls in the use of numerical methods in fractional calculus,

explain their nature, and list some good practices. In the article [9], by Dumitru Baleanu and Arran

Fernandez, a classification idea for the FC integrals and derivatives into distinct classes of operators

is discussed. The contribution [10], by Jocelyn Sabatier, Christophe Farges, and Vincent Tartaglione,

considers modeling of the processes exhibiting a power law long memory behavior and discusses the

alternatives to the models in form of the fractional differential equations.

The final part of the Special Issue includes a series of three original contributions. The article [11],

by Daniel Cao Labora, addresses the role of the initial values in the fractional differential equations,

their form, and the amount of necessary initial values and the orders of differentiability where these

conditions need to be imposed. In the contribution [12], by Eyaya Fekadie Anley and Zhoushun

Zheng, a numerical difference approximation for solving a two-dimensional space-fractional

convection-diffusion equation with a source term is suggested. Finally, the article [13], by Christopher

Nicholas Angstmann, Byron Alexander Jacobs, Bruce Ian Henry, and Zhuang Xu, raises concerns

about using some of the “new fractional derivatives” with the non-singular kernels in modelling

because the solutions to the fractional differential equations with these derivatives have an intrinsic

discontinuity at the origin.

Even if the articles collected in this Special Issue provide a certain contribution to resolving

of some current problems related to FC and its applications, the discussions regarding “true” and

“false” fractional integrals and derivatives are not yet completed. On the contrary, they are nowadays

more urgent than ever before. Thus, let us continue to debate about the questions like “What are the

fractional integrals and derivatives?”, “What are their decisive mathematical properties?”, “What

fractional operators make sense in applications and why?”, etc. There are still many open problems

both in the foundations of FC and in its usability for applications.
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Abstract: In this survey paper, we start with a discussion of the general fractional derivative (GFD)
introduced by A. Kochubei in his recent publications. In particular, a connection of this derivative
to the corresponding fractional integral and the Sonine relation for their kernels are presented.
Then we consider some fractional ordinary differential equations (ODEs) with the GFD including the
relaxation equation and the growth equation. The main part of the paper is devoted to the fractional
partial differential equations (PDEs) with the GFD. We discuss both the Cauchy problems and the
initial-boundary-value problems for the time-fractional diffusion equations with the GFD. In the final
part of the paper, some results regarding the inverse problems for the differential equations with the
GFD are presented.

Keywords: general fractional derivative; general fractional integral; Sonine condition; fractional
relaxation equation; fractional diffusion equation; Cauchy problem; initial-boundary-value problem;
inverse problem

MSC: 26A33; 35A05; 35B30; 35B50; 35C05; 35E05; 35L05; 35R30; 45K05; 60E99

1. Introduction

In functional analysis, the integral operators with the weakly singular kernels have been an
important topic for research for many years. They are defined in the form

(T f )(t) =
∫

Ω
K(t, τ) f (τ) dτ, (1)

where Ω is an open subset of Rn and the kernel K = K(t, τ) is a real or complex valued continuous
function on Ω×Ω\D, D = {(t, t) : t ∈ Ω} being the diagonal of Ω×Ω that satisfies the condition

|K(t, τ)| ≤ c
|t− τ|α with α < n. (2)

In case Ω is a bounded domain, the operator (1) is called the Schur integral operator. It is compact
from C(Ω) to C(Ω) [1]. If, additionally, α < n

q , 1
p + 1

q = 1, 1 ≤ p < +∞, then (1) is a Hilbert-Schmidt

operator that is compact from Lp(Ω) to C(Ω).
In Fractional Calculus (FC), the operators of type (1) with special weakly singular kernels are

studied on both bounded and unbounded domains. For instance, the classical left-hand sided
Riemann-Liouville fractional integral of order α ∈ R+ of a function f on a finite or infinite interval
(a, b) is defined as follows:

Mathematics 2020, 8, 2115; doi:10.3390/math8122115 www.mdpi.com/journal/mathematics1
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(Iα
a+ f ) (t) =

1
Γ(α)

t∫
a

(t− τ)α−1 f (τ) dτ, t ∈ (a, b). (3)

In the case α = 0, this integral is interpreted as the identity operator(
I0
a+ f

)
(t) = f (t) (4)

because of the relation ([2])
lim

α→0+
(Iα

a+ f ) (t) = f (t), (5)

that is valid in particular for f ∈ L1(a, b) in every Lebesgue point of f , i.e., almost everywhere on (a, b).
Evidently, the Riemann-Liouville fractional integral is a generalization of the well-known formula

for the n-fold definite integral

(In
a+ f ) (t) =

∫ t

a
dτ

∫ t

a
dτ· · ·

∫ t

a
f (τ) dτ =

1
(n− 1)!

∫ t

a
(t− τ)n−1 f (τ) dτ, n ∈ N.

In a certain sense, this generalization is unique. In the case of a finite interval (without any
restriction of generality, we fix the interval (0, 1)), the following result was proved in [3]:

Let E be the space Lp(0, 1), 1 ≤ p < +∞, or C[0, 1]. Then there exists precisely one family
Iα, α > 0 of operators on E satisfying the following conditions:

(CM1) (I1 f )(t) =
∫ t

0 f (τ) dτ, f ∈ E (interpolation condition),
(CM2) (Iα Iβ f )(t) = (Iα+β f )(t), α, β > 0, f ∈ E (index law),
(CM3) α → Iα is a continuous map of R+ into the space L(E) of the linear bounded operators from

E to E for some Hausdorff topology on L(E), weaker than the norm topology (continuity),
(CM4) f ∈ E and f (t) ≥ 0 (a.e. for E = Lp(0, 1)) ⇒ (Iα f )(t) ≥ 0 (a.e. for E = Lp(0, 1)) for all α > 0

(non-negativity).

That family is given by the Riemann-Liouville Formula (3) with a = 0 and b = 1. From the present
viewpoint ([4]), the conditions (CM1)–(CM4) are very natural for any definition of the fractional
integrals defined on a finite interval. As proved in [3], they are also sufficient for uniqueness of the
family of the Riemann-Liouville fractional integrals. Thus, in this sense, the Riemann-Liouville
fractional integrals are the only “right” one-parameter fractional integrals defined on a finite
one-dimensional interval.

The problem regarding the “right” fractional derivatives is more delicate and has no unique
solution. Presently, the main approach for introducing the fractional derivatives is to define
them as the left-inverse operators to the fractional integrals ([4–6]). However, even for the
Riemann-Liouville fractional integral, there exist infinitely many different families of operators that
fulfill this property ([6]). In particular, for 0 < α ≤ 1, the Riemann-Liouville fractional derivative

(Dα
RL f )(t) =

d
dt
(I1−α

0+ f )(t), (6)

the Caputo fractional derivative

(Dα
C f )(t) = (I1−α

0+
d f
dτ

)(t), (7)

and the Hilfer fractional derivative

(Dα
H f )(t) = (Iβ(1−α)

0+
d

dτ
I(1−α)(1−β)
0+ f )(t), 0 ≤ β ≤ 1 (8)

are the left-inverse operators to the Riemann-Liouville fractional integral on the suitable nontrivial
spaces of functions including the space of the absolutely continuous functions on [0, 1], i.e.,
the Fundamental Theorem of FC holds true ([6]):

2
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(Dα
X Iα

0+ f )(t) = f (t), t ∈ [0, 1], X ∈ {RL, C, H}. (9)

Moreover, in [6], infinitely many other families of the fractional derivatives in the sense
of Formula (9) called the nth level fractional derivatives were introduced. Let the parameters
γ1, γ2, . . . , γn ∈ R satisfy the conditions

0 ≤ γk and α + sk ≤ k with sk :=
k

∑
i=1

γi, k = 1, 2, . . . , n. (10)

The nth level fractional derivative of order α, 0 < α ≤ 1 and type γ = (γ1, γ2, . . . , γn) is defined
as follows:

(Dα,(γ)
nL f )(t) =

(
n

∏
k=1

(Iγk
0+

d
dτ

)

)
(In−α−sn

0+ f )(t). (11)

This derivative satisfies the Fundamental Theorem of FC, i.e., the relation

(Dα,(γ)
nL Iα

0+ f )(t) = f (t), t ∈ [0, 1] (12)

holds true on a nontrivial space of functions (see [6] for details).
To keep an overview of these and many other fractional derivatives, it is very natural to consider

some general integro-differential operators of convolution type and to clarify the question under what
conditions can they be interpreted as a kind of the fractional derivatives. In particular, one expects that
for these derivatives and the appropriate defined fractional integrals the Fundamental Theorem of
FC holds true. Moreover, for the sake of possible applications, one wants to keep some fundamental
properties of solutions to the differential equations with these derivatives. In particular, the property
of complete monotonicity of solutions to the appropriate relaxation equation or the positivity of
the fundamental solution to the Cauchy problem for the fractional diffusion equation with the
time-derivatives of this type.

In the theory of the abstract Volterra integral equations in the Banach spaces, the evolution
equations including the integro-differential operators of convolution type

(Dk u)(t) =
d
dt

∫ t

0
k(t− τ)u(τ) dτ, t ∈ [0, T], 0 < T ≤ +∞ (13)

have been a subject for research for more than a half century. In particular, in [7] (see also the references
therein), the abstract Volterra integral equations including the operators (13) with the completely
positive kernels k ∈ L1(0, T) have been studied. This class of the kernels can be characterized as
follows: A function k ∈ L1(0, T) is completely positive on [0, T] if and only if there exist a ≥ 0 and
l ∈ L1(0, T), non-negative and non-increasing, satisfying the relation

a k(t) +
∫ t

0
k(t− τ)l(τ) dτ = 1, t ∈ (0, T]. (14)

In particular, the completely monotone kernels are completely positive. The notion of completely
positive kernels originated from the “positivity preserving property” that is valid for the corresponding
Volterra integral equations in the case of the Banach space X = R with the usual norm.

In [8,9], the properties of the appropriate defined weak solutions to the linear and quasi-linear
evolutionary partial integro-differential equations of second order with the time-operators of type (13)
in the form

(Dk u)(t) =
d
dt

∫ t

0
k(t− τ)(u(τ)− u0) dτ, t ∈ R+ (15)

were addressed in the case of the kernels k ∈ Lloc(R+) that satisfy the following conditions:

3
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(Z1) The kernel k is non-negative and non-increasing on R+,
(Z2) There exists a kernel l ∈ Lloc(R+) such that

∫ t
0 k(t− τ)l(τ) dτ = 1, t ∈ R+.

An important example of a kernel k that satisfies the conditions (Z1)–(Z2) is the following
generalization of the Riemann-Liouville kernel ([8]):

k(t) = h1−α(t) exp(−μ t), μ ≥ 0, 0 < α < 1, (16)

where

hβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0. (17)

For this kernel k, the kernel l from the property (Z2) takes the form

l(t) = hα(t) exp(−μ t) + μ
∫ t

0
hα(τ) exp(−μ τ) dτ, t > 0. (18)

However, in [8,9] and in earlier publications, the operators of type (13) were not interpreted as
a kind of the generalized fractional derivatives. In particular, no construction of the corresponding
fractional integral was presented and no conditions that ensure the physically relevant properties
of solutions to the time-fractional differential equations including these derivatives were suggested.
Both tasks along with a series of other useful properties were addresses in [10–13], where a very
nice theory of the general fractional derivative of type (13) was developed and applied for studying
properties of the ordinary and partial differential equations with this derivative. In this survey,
we present some selected results obtained in these and other related publications.

The rest of the paper is organized as follows. In Section 2, we introduce the GFD and the related
fractional integral and discuss some of their basic properties. Section 3 is devoted to the Cauchy
problems for the fractional ODEs with the GFD. In particular, the fractional relaxation equation and
properties of its solution and the fractional growth equation and long time asymptotic of its solution
are considered [10,11,13]. Moreover, existence and uniqueness of solutions to the Cauchy problem for
the nonlinear fractional ODEs with the GFD and their continuous dependence on the problem data are
also addressed following [14]. In Section 4, we present some results regarding the fractional PDEs with
the GFD. We start with the Cauchy problem for the linear fractional diffusion equation and address its
well-posedness with the focus on an interpretation of its fundamental solution as a probability density
function [10,11]. Then we proceed with a treatment of the initial-boundary-value problems for the
time-fractional diffusion equation including the GFD. Based on a suitable estimate for the GFD of a
function at its maximum point, a weak maximum principle for the general time-fractional diffusion
equation with the GFD is deduced. Then, following [15], the maximum principle is employed to show
uniqueness of the strong and the weak solutions to the initial-boundary-value problems for the general
time-fractional diffusion equations. Existence of a weak solution in the sense of Vladimirov [16] is
also discussed. Finally, some important results from the recent publications [17–19] regarding inverse
problems for the fractional differential and integral equations with the GFD are shortly presented.

2. General Fractional Derivative and Integral

Following [10], in this paper we consider the GFD of the Riemann-Liouville type in the form
(compare to (13))

(DRL
k f )(t) =

d
dt

∫ t

0
k(t− τ) f (τ) dτ (19)

and of the Caputo type in the form

(DC
k f )(t) =

∫ t

0
k(t− τ) f ′(τ) dτ, (20)

4
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where k is a non-negative locally integrable function. For an absolutely continuous function f satisfying
f ′ ∈ L1

loc(R+), the relation (compare to (15))

(DC
k f )(t) = (DRL

k ( f − f (0)))(t) = (DRL
k f )(t)− k(t) f (0) =

d
dt

∫ t

0
k(t− τ) f (τ) dτ − k(t) f (0) (21)

between the Caputo and Riemann-Liouville types of GFDs holds true. In [10], the Caputo type GFD
was introduced in form (21) that is well defined for a lager class of functions (in particular, for absolutely
continuous functions) compared to the definition (20) that requires the inclusion f ′ ∈ L1

loc(R+).
In what follows, we mainly address the GFD of the Caputo type in the sense of the right-hand side of
Formula (21).

The Riemann-Liouville and Caputo fractional derivatives defined by (6) and (7), respectively,
are particular cases of the GFDs (19) and (20) with the kernel

k(t) = h1−α(t), 0 < α < 1, (22)

the power function hβ being defined by (17). Other important particular cases of (19) and (20) are
the multi-term fractional derivatives and the fractional derivatives of the distributed order. They are
generated by (19) and (20) with the kernels

k(t) =
n

∑
k=1

ak h1−αk (t), 0 < α1 < · · · < αn < 1, ak ∈ R, k = 1, . . . , n (23)

and

k(t) =
∫ 1

0
h1−α(t) dρ(α), (24)

where ρ is a Borel measure on [0, 1].
Even if the operators (19) and (20) have been employed in the theory of the abstract Volterra

integral equations for many years, the main advantage of the Kochubei’s approach was to establish a
connection of these operators to FC and to introduce a special class of the kernels that ensures both
existence of the corresponding fractional integrals and physically relevant properties of the fractional
differential equations with these time-fractional derivatives. Moreover, the results presented in [10]
and in the subsequent publications were derived using a completely different technique, namely the
theory of the complete Bernstein functions ([20]).

The kernels of the GFDs (19) and (21) considered in [10] satisfy the following conditions:

(K1) The Laplace transform k̃ of k,

k̃(p) = (L k)(p) =
∫ ∞

0
k(t) e−pt dt

exists for all p > 0,
(K2) k̃(p) is a Stieltjes function,
(K3) k̃(p)→ 0 and pk̃(p)→ ∞ as p → ∞,
(K4) k̃(p)→ ∞ and pk̃(p)→ 0 as p → 0.

In what follows, we denote the set of the kernels that satisfy the conditions (K1)–(K4) by K. As we
see, the condition of type (Z2) (Sonine condition) does not belong to the set of the conditions (K1)–(K4).
However, it is one of the consequences of these conditions and especially of the strong condition
(K2). Roughly speaking, a function defined on R+ is a Stieltjes function if it can be represented as a
restriction of the Laplace transform of a completely monotone function to the real positive semi-axis.
Any completely monotone function is non-negative and thus any Stieltjes function is completely
monotone as the Laplace transform of a non-negative function. For the strict definition and properties
of the Stieltjes functions see e.g., [20,21]. The kernel functions (22) and (23) as well as the function (24)

5
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under some suitable conditions on the measure ρ belong to the class K. In [10], another example of a
function k ∈ K was introduced in terms of its Laplace transform k̃(p) = p−1 log(1 + pβ), 0 < β < 1.

As shown in [10], for each k ∈ K, there exists a completely monotone function κ such that the
Sonine condition holds true:

(k ∗ κ)(t) =
∫ t

0
k(t− τ)κ(τ) dτ = 1. (25)

Henceforth by

(Ik f )(t) =
∫ t

0
κ(t− τ) f (τ) dτ (26)

we denote a general fractional integral (GFI) with the kernel κ associated with the kernel k of the GFD
by means of the relation (25).

The notion of the GFI is justified by the following Fundamental Theorem of FC:

Theorem 1 ([10]). If f is a locally bounded measurable function on R+, then

(DC
k Ik f )(t) = f (t). (27)

If f is absolutely continuous on [0,+∞), then

(Ik D
C
k f )(t) = f (t)− f (0). (28)

The Formula (27) and the relation (21) between the GFDs of the Caputo and the Riemann-Liouville
types lead to the identity

(DRL
k Ik f )(t) = f (t), (29)

i.e., the Riemann-Liouville GFD is also a left inverse operator to the GFI defined by (26).
In the case of the Riemann-Liouville and the Caputo fractional derivatives that are particular cases

of the GFDs (19) and (20), respectively, with the power function kernel k defined by (22), the kernel κ

in the GFI (25) is also the power function κ(t) = hα(t) and thus in this case the GFI (26) is nothing else
as the conventional Riemann-Liouville fractional integral.

As shown in [22], the functions that satisfy the Sonine condition (25) cannot be continuous at the
point t = 0 and thus the “new fractional derivatives” with the continuous kernels introduced recently
in the FC literature do not belong to the class of the GFDs that are discussed in this paper.

In the next sections, we consider other physically relevant properties of the GFD including
complete monotonicity of the solutions to the fractional relaxation equation with this derivative,
positivity of the fundamental solution to the Cauchy problem for the fractional diffusion equation
with the time-derivative in form of the GFD, and a maximum principle for the initial-boundary-value
problems for the fractional diffusion equation with this derivative.

3. Fractional ODEs with the GFD

3.1. Fractional Relaxation Equation

In this subsection, we consider the fractional relaxation equation

(DC
k u)(t) = −λu(t), λ > 0, t > 0 (30)

subject to the initial condition
u(0) = 1. (31)

As discussed in [23] (see also references therein), in the framework of the linear viscoelasticity
models, the solutions to the relaxation equations are expected to be completely monotone. Only in this

6
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case the relaxation processes can be interpreted as superpositions of (infinitely many) elementary, i.e.,
exponential, relaxation processes. For the fractional relaxation equation with the GFD of the Caputo
type, the following result holds true:

Theorem 2 ([10]). Let the kernel k of the Caputo type GFD belong to the class K.
Then the Cauchy problem (30), (31) has a unique solution uλ = uλ(t), continuous on [0, +∞), infinitely

differentiable and completely monotone on R+.

We remind the readers that a function u : R+ → R is called completely monotone if the conditions

(−1)nu(n)(t) ≥ 0, t > 0, n = 0, 1, 2 . . . (32)

hold true.
In the case of the Cauchy problem (30), (31) with the Caputo fractional derivative (7), the solution

can be expressed in terms of the Mittag-Leffler function

uλ(t) = Eα,1(−λtα),

where Eα,β stands for the two-parameters Mittag-Leffler function that is defined by the following
convergent series:

Eα,β(z) =
∞

∑
k=0

zk

Γ(α k + β)
, α > 0, β, z ∈ C. (33)

It is worth mentioning that the fractional relaxation equations with the Riemann-Liouville
fractional derivative (6) and the Hilfer derivative (8) have the solutions

uλ(t) = tα−1 Eα,α(−λtα),

and
uλ(t) = tα+γ1−1 Eα,α+γ1(−λtα),

respectively, provided that we set suitable initial conditions. These solutions are continuous, infinitely
differentiable and completely monotone on R+, but have an integrable singularity at the point t = 0.
As to the relaxation equation with the nth level fractional derivative (11), its solution is given by the
following theorem:

Theorem 3 ([24]). The fractional relaxation equation

(Dα,(γ)
nL u)(t) = −λ u(t), λ > 0, t > 0 (34)

subject to the initial conditions(
n

∏
i=k+1

(
Iγi
0+

d
dt

)
In−α−sn
0+ u

)
(0) = uk, k = 1, . . . , n (35)

has a unique solution, continuous and infinitely differentiable on R+, given by the formula

u(t) =
n

∑
k=1

uk tα+sk−k Eα,α+sk−k+1(−λtα), sk =
k

∑
i=1

γi. (36)

7
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If the initial conditions are non-negative (uk ≥ 0, k = 1, . . . , n in (35)) and the inequalities

k− 1 ≤ sk =
k

∑
i=1

γi, k = 1, . . . , n (37)

hold true, the solution (36) is completely monotone on R+.

In [10], an important probabilistic interpretation of Theorem 2 has been provided. Let D(t) be a
subordinator of the Lévy process with the Laplace exponent Ψ = Ψ(s) ([25]):

E
[
e−sD(t)

]
= e−tΨ(s),

where Ψ is a Bernstein function ([20]) with the representation

Ψ(s) = bs +
∫ +∞

0
(1− e−sτ)Φ(dτ),

where b ≥ 0 is the drift coefficient and Φ is the Lévy measure, such that either b > 0, or Φ(R+) = +∞,
or both.

Because the process D is strictly increasing, it possesses an inverse function

E(t) = inf{r > 0 : D(r) > t}.

Now we consider a Poisson process N(t) with the intensity λ. It is known that N(E(t)) is a
renewal process with the waiting times Jn and

P[Jn > t] = E
[
e−λE(t)

]
. (38)

As shown in [10], if the restriction Ψ = Ψ(p), p > 0 of the Laplace exponent Ψ = Ψ(s) to the real
semi-axes R+ is a complete Bernstein function that satisfies the conditions (K3) and (K4), then the
right-hand side of Formula (38) can be interpreted as the solution to the Cauchy problem (30), (31).
According to Theorem 2, it is continuous on [0, +∞) and completely monotone.

3.2. Fractional Growth Equation

In this subsection, some of the results derived in [13] are shortly addressed. We consider the
fractional growth equation with the GFD of Caputo type

(DC
k u)(t) = λu(t), λ > 0, t > 0 (39)

subject to the initial condition
u(0) = 1. (40)

In the case of the conventional growth equation, the solution is uλ(t) = exp(λ t). The problem (39),
(40) with the Caputo fractional derivative (7) is solved by the function uλ(t) = Eα,1(λtα) that is known
to be of exponential growth as t → +∞ ([26]). It turns out that the solution to the problem (39), (40)
with the GFD with a kernel k ∈ K (k fulfills the conditions (K1)–(K4)) is also of exponential growth as
t → +∞.

For formulation of the corresponding result, the notation

Φ(p) = p k̃(p)

is introduced, k̃ being the Laplace transform of k. Because k̃ is a Stieltjes function, Φ is a Bernstein
function and Φ′ is completely monotone ([20]). The made assumptions ensure that Φ is strictly

8
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monotone and thus for every λ > 0 there exists a unique p0 = p0(λ) such that Φ(p0) = λ.
Then we have the following result regarding the asymptotic of the unique solution uλ of the Cauchy
problem (39), (40) as t → +∞.

Theorem 4 ([13]). Let k ∈ K and the condition∫ +∞

1

dp
p Φ(p)

< +∞ (41)

hold true. Then the solution uλ of the Cauchy problem (39), (40) has the following exponential
asymptotic behavior:

uλ(t) =
λ

Φ′(p0(λ))p0(λ)
ep0(λ) t + o

(
ep0(λ) t

)
, t → +∞. (42)

In the case of the Cauchy problem (39), (40) with the Caputo derivative (7), the function Φ takes
the form Φ(p) = pα and p0(λ) = λ1/α. The condition (41) is evidently fulfilled and Formula (42) takes
the form

uλ(t) =
1
α

eλ
1
α t + o

(
eλ

1
α t

)
,

that corresponds to the main term of the asymptotic of the Mittag-Leffler function uλ(t) = Eα,1(λtα) as
t → +∞ (see e.g., [26]).

Another important particular case is the Cauchy problem (39), (40) with the distributed order
derivative (the GFD with the kernel (24)). It turns out that under some standard assumptions Theorem 4
is applicable also in this case (see [13] for details).

3.3. The Cauchy Problem for a Nonlinear Fractional ODE

Following [14], in this subsection, we address a nonlinear fractional differential equation with the
GFD of the Caputo type

(DC
k u)(t) = f (t, u(t)), t > 0 (43)

subject to the initial condition
u(0) = u0 ∈ R. (44)

In what follows, we again assume that the kernel k of DC
k defined by (21) belongs to the class K,

i.e., that the conditions (K1)–(K4) are fulfilled.
For derivation of results regarding existence and uniqueness of the solution to the Cauchy

problem (43), (44), we first transform it into an integral equation by applying the GFI (26). Let L > 0
and f : [0, L]×R→ R be a continuous function. Then the Cauchy problem (43), (44) is equivalent to
the integral equation

u(t) = u0 +
∫ t

0
κ(t− τ) f (τ, u(τ)) dτ, t > 0, (45)

where the kernel function κ is determined by the relation (25).
The sufficient conditions for existence of the local and global solutions to the integral Equation (45)

and thus to the Cauchy problem (43), (44) are provided in the following two theorems.

Theorem 5 ([14]). Let L, Q > 0, f be a continuous function on the closed domain G = {(t, τ) : 0 ≤ t ≤
L, |τ − u0| ≤ Q}, and l ∈ (0, L] satisfy the inequality

max
(t,τ)∈G

| f (t, τ)|
∫ l

0
κ(τ) dτ ≤ Q.

Then the Cauchy problem (43), (44) has a solution absolutely continuous on the interval [0, l].

9
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Theorem 6 ([14]). Let L > 0 and f : [0, L]×R→ R be a continuous function that satisfies the inequality

| f (t, τ)| ≤ b0 + b1|τ|p, 0 ≤ t ≤ L, τ ∈ R

with b0, b1 > 0 and 0 < p ≤ 1.
Then the Cauchy problem (43), (44) has a solution absolutely continuous on the interval [0, L].

As a corollary from Theorem 6, we get the following result: Let f : [0, +∞) × R → R be a
continuous function that satisfies the inequality

| f (t, τ)| ≤ b0 + b1|τ|p, 0 ≤ t < +∞, τ ∈ R

with b0, b1 > 0 and 0 < p ≤ 1. Then the Cauchy problem (43), (44) has a global solution absolutely
continuous on [0, +∞).

As to uniqueness of the solution, it was proved under some stronger conditions compared to the
ones required for its existence.

Theorem 7 ([14]). Let L > 0 and f : [0, L]×R → R be a continuous function that satisfies the Lipschitz
condition with respect to its second variable

| f (t, s)− f (t, τ)| ≤ b|s− τ|, 0 ≤ t ≤ L, s, τ ∈ R, b > 0. (46)

Then the Cauchy problem (43), (44) has a unique absolutely continuous solution on the interval [0, L].

As before, the result formulated in Theorem 7 can be extended to the case of the infinite interval
[0, +∞): Let f : [0, +∞)×R→ R be a continuous function that satisfies the Lipschitz condition

| f (t, s)− f (t, τ)| ≤ b|s− τ|, 0 ≤ t < +∞, s, τ ∈ R, b > 0.

Then the Cauchy problem (43), (44) has a unique absolutely continuous solution on the interval
[0, +∞).

To address a continuous dependence of solutions to the Cauchy problem (43), (44) on the problem
data, in [14], a Gronwall-type inequality was derived. It is important by itself and we formulate
it below.

Lemma 1 ([14]). Let l, v0, b > 0 and v ∈ C[0, l]. If the inequality

v(t) ≤ v0 + b
∫ t

0
κ(t− τ) v(τ) dτ (47)

holds true for t ∈ [0, l], then
v(t) ≤ u(t), t ∈ [0, l], (48)

where u = u(t) is the solution to the fractional relaxation equation

(DC
k u)(t) = −b u(t) (49)

subject to the initial condition
u(0) = v0. (50)

Based on Lemma 1, in [14], the continuous dependence of the solution to the Cauchy
problem (43), (44) on the problem data was proved.

10
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Theorem 8 ([14]). Let the conditions of Theorem 7 be fulfilled, u be the solution to the Cauchy problem (43), (44),
and uk be the solution to the Cauchy problem (43), (44) with the initial condition u(0) = u0k. Then

‖u− uk‖C[0,L] → 0 as u0k → u0.

Theorem 9 ([14]). Let the conditions of Theorem 7 be fulfilled for the functions f and g, u be the solution to the
Cauchy problem (43), (44), and v be the solution to the Cauchy problem (43), (44) with the right-hand side g
and with the same initial condition u0. Then

‖u− v‖C[0,L] → 0 as max
(t,τ)∈[0,L]×[−Ω,Ω]

| f (t, τ)− g(t, τ)| → 0,

where Ω is the upper bound of the supremum norm of the solution u.

4. Time-Fractional PDEs with the GFD

In this section, we present some important results concerning the direct and inverse problems for
the time-fractional PDEs with the GFD of the Caputo type.

4.1. Cauchy Problem for the Time-Fractional Diffusion Equation

Following [10], in this subsection we address the properties of solutions to the Cauchy problem
for the general time-fractional diffusion equation in the form

(DC
k u(x, ·))(t)=Δu(x, t) t > 0, x ∈ Rn, u(x, 0) = u0(x), (51)

where u0 is a bounded globally Hölder continuous function on Rn.
In [10], solutions to the Cauchy problem (51) were understood in the following sense: Applying

formally the Laplace transform in the variable t to the equation in (51), we arrive at the equation

pk̃(p)ũ(x, p)− k̃(p)u0(x) = Δũ(x, p), p > 0, x ∈ Rn (52)

for the Laplace transform ũ(x, p) of a solution to the Cauchy problem (51). A bounded function
u = u(x, t) is called an LT-solution of (51), if u is continuous in t on [0, +∞) uniformly with respect
to x ∈ Rn, satisfies the initial condition u(x, 0) = u0(x), while its Laplace transform ũ(x, p) is twice
continuously differentiable in x, for each p > 0, and satisfies Equation (52).

Theorem 10 ([10]). Let the kernel k of the GFD of the Caputo type belong to the class K.
Then there exist a non-negative function Z = Z(x, t), t > 0, x ∈ Rn, x 
= 0, locally integrable in t and

infinitely differentiable in x 
= 0 that satisfies the relation∫
Rn

Z(x, t) dx = 1, t > 0, (53)

and for any bounded globally Hölder continuous u0, the function

u(x, t) =
∫
Rn

Z(x− ζ, t) u0(ζ) dζ (54)

is an LT-solution to the Cauchy problem (51).

The function Z = Z(x, t) is what is usually called the fundamental solution to the Cauchy
problem (51), i.e., the one that formally corresponds to the initial condition u(x, 0) = u0(x) = δ(x),
δ being the Dirac delta function. As stated in Theorem 10, the fundamental solution to the Cauchy
problem (51) can be interpreted as a probability density function for each t > 0 and thus the
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time-fractional diffusion Equation (51) with the GFD could be potentially useful for modeling of
the anomalous diffusion processes.

The explicit form of the fundamental solution is as follows ([10]):

Z(x, t) =
∫ +∞

0
(4πs)−n/2e−

|x|2
4s G(s, t) ds, x 
= 0,

where

G(s, t) =
∫ t

0
k(t− τ)μs(dτ)

with the probability measure μs(dτ) that satisfies the relation

e−spk̃(p) =
∫ +∞

0
e−pτμs(dτ).

Under the conditions of Theorem 10, the measure μs(dτ) always exists because the function
p → e−spk̃(p) is completely monotone on R+ for each s ≥ 0.

For the validity of Theorem 10, the condition k ∈ K is essential. However, it is worth mentioning
that for the well-posedness of the Cauchy problem for the equations with the operators of type DC

k
much weaker conditions than (K1)–(K4) are sufficient (see e.g., [27]). Here we formulate the uniqueness
result for the Cauchy problem (51) in the class of the LT-solutions proved in [10].

Theorem 11 ([10]). Let the kernel k of the GFD of the Caputo type be non-negative, locally integrable, nonzero
on a set of positive measure, and its Laplace transform k̃ = k̃(p) exist for all p > 0.

If u = u(x, t) is a polynomially bounded LT-solution to the Cauchy problem (51) with u0(x) ≡ 0,
then u(x, t) ≡ 0.

In the definition of the LT-solutions, their boundedness was required. However, this definition
makes sense also for the polynomially bounded solutions, i.e., such solutions u = u(x, t) that satisfy
the inequality |u(x, t)| ≤ Pu(|x|), where Pu are some polynomials independent on t.

4.2. Initial-Boundary-Value Problems for the Time-Fractional Diffusion Equation

In this subsection, we present some results regarding the initial-boundary-value problems for the
time-fractional diffusion equation with the GFD of the Caputo type in the form

(DC
k u(x, ·))(t)=D2(u) + D1(u)− q(x)u(x, t) + F(x, t), (x, t) ∈ Ω× (0, T], (55)

subject to the initial condition
u(x, t)

∣∣
t=0 = u0(x), x ∈ Ω̄ (56)

and the boundary condition

u(x, t)
∣∣
(x,t)∈∂Ω×(0,T] = v(x, t), (x, t) ∈ ∂Ω× (0, T]. (57)

In Equations (55)–(57), Ω is a bounded open domain in Rn with a smooth boundary ∂Ω, q ∈ C(Ω̄),
q(x) ≥ 0 for x ∈ Ω̄, and

D1(u) =
n

∑
i=1

bi(x)
∂u
∂xi

, D2(u) =
n

∑
i,j=1

aij(x)
∂2u

∂xi∂xj
. (58)

Moreover we assume that D2 is a uniformly elliptic differential operator.
A function u ∈ S(Ω, T) is called a strong solution to the initial-boundary-value problem (55)–(57)

if it satisfies both Equation (55) and the initial and boundary conditions (56) and (57), respectively.
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By S(Ω, T), we denoted the space of functions u = u(x, t), (x, t) ∈ Ω̄× [0, T] that satisfy the inclusions
u ∈ C(Ω̄× [0, T]), u(·, t) ∈ C2(Ω) for any t > 0, and ∂tu(x, ·) ∈ C(0, T] ∩ L1(0, T) for any x ∈ Ω.

First we discuss a maximum principle for the time-fractional diffusion Equation (55). For its
validity, we assume that the following conditions for the kernel k of DC

k are satisfied:

(LY1) k ∈ C1(R+) ∩ L1
loc(R+),

(LY2) k(τ) > 0 and k′(τ) < 0 for τ > 0,
(LY3) k(τ) = o(τ−1), τ → 0.

Let us note that the Kochubei’s conditions (K1)–(K4) are not needed for validity of the maximum
principle for the general diffusion Equation (55). However, if the condition (K3) holds true, then it
follows from the Feller-Karamata Tauberian theorem for the Laplace transform ([21]) that the condition
(LY3) is also satisfied.

The maximum principle for the general diffusion Equation (55) is based on an appropriate estimate
of the GFD of a function f at its maximum point. It is given in the following theorem.

Theorem 12 ([28]). Let the conditions (LY1)–(LY3) be fulfilled, a function f ∈ C[0, T] attain its maximum
over the interval [0, T] at the point t0, t0 ∈ (0, T], and f ′ ∈ C(0, T] ∩ L1(0, T).

Then the inequality
(DC

k f )(t0) ≥ k(t0)( f (t0)− f (0)) ≥ 0 (59)

holds true.

In the case of the Caputo fractional derivative, the inequality (59) takes the known form

(Dα
C f )(t0) ≥

t−α
0

Γ(1− α)
( f (t0)− f (0)) ≥ 0. (60)

In what follows, we use the notation

Pk(u) := (DC
k u)(t)− D2(u)− D1(u) + q(x)u(x, t). (61)

Theorem 13 ([28]). Let the conditions (LY1)–(LY3) be fulfilled and a function u ∈ S(Ω, T) satisfy the
inequality

Pk(u) ≤ 0, (x, t) ∈ Ω× (0, T]. (62)

Then the following maximum principle holds true:

max
(x,t)∈ Ω̄×[0,T]

u(x, t) ≤ max{max
x∈Ω̄

u(x, 0), max
(x,t)∈ ∂Ω×[0,T]

u(x, t), 0}. (63)

The maximum principle formulated in Theorem 13 can be applied, among other things,
for derivation of some a priori estimates for the strong solutions of the initial-boundary-value
problem (55)–(57).

Theorem 14 ([28]). Let the conditions (K1)–(K4) and (LY1)–(LY3) be fulfilled and u be a strong solution to the
initial-boundary-value problem (55)–(57).

Then
‖u‖C(Ω̄×[0,T]) ≤ max{M0, M1}+ M f (T), (64)

where
M0 = ‖u0‖C(Ω̄), M1 = ‖v‖C(∂Ω×[0,T]), M = ‖F‖C(Ω×[0,T]), (65)

and

f (t) =
∫ t

0
κ(τ) dτ, (66)
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where the function κ is the kernel of the GFI defined by (25).

The uniqueness of the strong solution to the initial-boundary-value problem (55)–(57) and its
continuous dependence on problem data easily follow from the solution norm estimate (64).

Theorem 15 ([28]). The initial-boundary-value problem (55)–(57) possesses at most one strong solution.
This solution—if it exists—continuously depends on the problem data in the sense that if u and ũ are

strong solutions to the problems with the sources functions F and F̃ and the initial and boundary conditions u0

and ũ0 and v and ṽ, respectively, and
‖F− F̃‖C(Ω̄×[0,T]) ≤ ε,

‖u0 − ũ0‖C(Ω̄) ≤ ε0, ‖v− ṽ‖C(∂Ω×[0,T]) ≤ ε1,

then the norm estimate
‖u− ũ‖C(Ω̄×[0,T]) ≤ max{ε0, ε1} + ε f (T) (67)

holds true, where the function f is defined by (66).

In the rest of this subsection, we address uniqueness and existence of a weak solution to
the initial-boundary-value problem (55)–(57) defined in the sense of Vladimirov [16]: We call
u ∈ C(Ω̄× [0, T]) a weak solution to the initial-boundary-value problem (55)–(57) in the sense of
Vladimirov, if there exist Fk ∈ C(Ω̄ × [0, T]), u0k ∈ C(Ω̄) and vk ∈ C(∂Ω × [0, T]), k = 1, 2, . . .
satisfying (V1) and (V2) below such that

‖uk − u‖C(Ω̄×[0,T]) → 0 as k → +∞. (68)

(V1) There exist the functions F, u0, and v, such that

‖Fk − F‖C(Ω̄×[0,T]) → 0 as k → +∞, (69)

‖u0k − u0‖C(Ω̄) → 0 as k → +∞, (70)

‖vk − v‖C(∂Ω×[0,T]) → 0 as k → +∞. (71)

(V2) For each k = 1, 2, . . . there exists a strong solution uk = uk(x, t) to the general time-fractional
diffusion equation

(DC
k uk(x, ·))(t) = D2(uk) + D1(uk)− q(x)uk(x, t) + Fk(x, t), (x, t) ∈ Ω× (0, T]. (72)

subject to the initial condition
uk

∣∣
t=0 = u0k(x), x ∈ Ω̄ (73)

and the boundary condition

uk
∣∣
∂Ω×(0,T] =vk(x, t), (x, t)∈∂Ω× (0, T]. (74)

In [28], the correctness of the definition of a weak solution was shown. A weak solution to the
problem (55)–(57) in the sense of Vladimirov is a continuous function, not a distribution. However,
the weak solutions are not required to be smooth.

Any strong solution to the problem (55)–(57) is evidently also its weak solution. If the
problem (55)–(57) possesses a weak solution, then the functions F, u0 and v from the problem
formulation have to belong to the spaces C(Ω̄× [0, T]), C(Ω̄) and C(∂Ω× [0, T]), respectively, as the
limits of the sequences of the continuous functions in the uniform norm.
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The estimate (64) for the strong solutions holds true also for the weak solutions. To show this,
we just let k → +∞ in the inequality

‖uk‖C(Ω̄T)
≤ max{M0k, M1k}+ Mk f (T), k = 1, 2 . . . (75)

with
M0k := ‖u0k‖C(Ω̄), M1k := ‖vk‖C(∂Ω×[0,T]), Mk := ‖Fk‖C(Ω̄×[0,T]).

The estimate (64) for the weak solutions is employed to prove the following uniqueness result.

Theorem 16 ([28]). The initial-boundary-value problem (55)–(57) possesses at most one weak solution.
The weak solution—if it exists—continuously depends on the data given in the problem in the sense of the
estimate (67).

In the rest of this subsection, we address the question of existence of a weak solution to the
initial-boundary-value problem (55)–(57) in the case of the homogeneous Equation (55) without the
first order spatial differential operator D1 subject to the initial condition (56) and the homogeneous
boundary condition (57), i.e., we consider the initial-boundary-value problem

(DC
k u(x, ·))(t) = D2(u)− q(x)u(x, t), (x, t) ∈ Ω× (0, T], (76)

u(x, t)
∣∣
t=0 = u0(x), x ∈ Ω̄, (77)

u(x, t)
∣∣
(x,t)∈∂Ω×(0,T] = 0, (x, t) ∈ ∂Ω× (0, T] (78)

under the same conditions on the coefficients of the operator D2 and the function q that we assumed
at the beginning of the subsection. Moreover, we also assume that the kernel k of DC

k is from K, i.e.,
the conditions (K1)–(K4) are satisfied.

First, a formal solution to the initial-boundary-value problem (76)–(78) is constructed in form of
the Fourier series

u(x, t) =
∞

∑
k=1

(u0, Xk)Uk(t) Xk(x), (79)

where Xk, k = 1, 2, . . . are the eigenfunctions corresponding to the eigenvalues λk of the
eigenvalue problem

L(X(x)) = λ X(x), x ∈ Ω, (80)

X(x)
∣∣
x∈∂Ω = 0 (81)

for the operator L, L(x) = −D2(X) + q(x)X(x). Because of the conditions posed on the operator D2

and the function q, the differential operator L is positive definite and self-adjoint. Thus the eigenvalue
problem (80)–(81) has a countable number of the positive eigenvalues 0 < λ1 ≤ λ2 ≤ . . . with the finite
multiplicities and—if the boundary ∂Ω of Ω is smooth—any function f ∈ ML can be represented
through its Fourier series in the form

f (x) =
∞

∑
k=1

( f , Xk) Xk(x), (82)

where Xk ∈ ML are the eigenfunctions corresponding to the eigenvalues λk:

L(Xk) = λk Xk, k = 1, 2, . . . . (83)

By ML, the space of the functions f that satisfy the boundary condition (81) and the inclusions
f ∈ C1(Ω̄) ∩ C2(Ω), L( f ) ∈ L2(Ω) is denoted.
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As to the functions Uk = Uk(t), they are solutions to the fractional relaxation equations

(DC
k Uk)(t) = −λkUk(t), t > 0, k = 1, 2, . . . (84)

subject to the initial conditions
Uk(0) = 1, k = 1, 2, . . . . (85)

According to Theorem 2 from Section 3, for any λ = λk > 0, k = 1, 2, . . . this initial-value problem
has a unique solution Uk = Uk(t) that belongs to the class C∞(R+) and is a completely monotone
function. In particular, any Uk is non-negative and non-increasing and thus the inequalities

0 ≤ Uk(t) ≤ Uk(0) = 1 (86)

hold true. Let us mention that in the case of the single-term time-fractional diffusion equation with the
Caputo fractional derivative (k(τ) = τ−α

Γ(1−α)
, 0 < α < 1), the solution to the initial-value problem (84),

(85) with λ = λk, k = 1, 2, . . . has the form ([29])

Uk(t) = Eα,1(−λktα). (87)

Under some standard assumptions, the formal solution (79) is a weak solution to the
initial-boundary-value problem (76)–(78) in the sense of Vladimirov.

Theorem 17 ([15]). Let the function u0 in the initial condition (77) be from the space ML. Then the formal
solution (79) of the problem (76)–(78) is its weak solution in the sense of Vladimirov.

For a survey of other results regarding the maximum principles for the time-fractional PDEs of
different types see the recent publication [30].

4.3. Inverse Problems Involving GFD

The starting point of this subsection is a reconstruction problem for a function based on its values
and the values of its GFD in a neighborhood of the final time ([19]):

IP1. Let 0 < t0 < T < +∞. Given φ, g : (t0, T)→ R, find a function u : (0, T)→ R such that

u(t)|(t0,T) = φ(t), and (DC
k u)(t)|(t0,T) = g(t). (88)

The inverse problems of type IP1 are potentially useful for applications. For instance, in the
framework of the Scott-Blair model of viscoelasticity, the stress is proportional to a time-fractional
derivative of the strain ([23]). In this context, the IP1 means a reconstruction of the strain history based
on the measurements of strain and stress starting from a certain time t0.

In [19], a uniqueness result for the IP1 was proved under the following conditions on the kernel k
of DC

k :

(KJ1) ∃μ ∈ R :
∫ +∞

0 e−μ t|k(t)| dt < +∞,
(KJ2) k is real analytic on R+,
(KJ3) the Laplace transform k̃ of k cannot be meromorphically extended to the whole complex

plane C.

Theorem 18 ([19]). Let the kernel k of DC
k fulfill the conditions (KJ1)–(KJ3). Then the following uniqueness

results for the IP1 hold true:

(i) If u ∈ L1(0, T), k ∗ u ∈ W1,1(0, T), and u(t)|(t0,T) = (DC
k u)(t)|(t0,T) = 0, then u = 0,

(ii) If u ∈ W1,1(0, T) and u(t)|(t0,T) = (DC
k u)(t)|(t0,T) = 0, then u = 0.
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The results formulated in Theorem 18 were employed in [19] for studying uniqueness of solution
to the following source reconstruction problem for the fractional PDEs with the GFD of Caputo type:

IP2. Let 0 < t0 < T < +∞ and Ω ⊆ Rn. Given φ, Φ : Ω × (t0, T) → R, find the functions
u, F : Ω× (0, T)→ R such that they fulfill the equation

(DC
k B(u))(t) + Dl(u)− A(u) = F(x, t), x ∈ Ω, t ∈ (0, T) (89)

and the relations
u(x, t)|Ω×(t0,T) = φ, and F|Ω×(t0,T) = Φ (90)

hold true.
In the formulation of IP2, Dl = ∑l

j=1 qj
∂j

∂tj is a differential operator of order l with respect to
the time variable t and with qj ∈ R and A and B are some operators that act with respect to the
spatial variable x. Moreover, we assume that D(A) ⊆ C(Ω)→ C(Ω), D(B) ⊆ C(Ω)→ C(Ω) and the
operator B is invertible.

In particular, the time-fractional PDE (89) includes the time-fractional diffusion Equations (51)
and (55) that were considered in the previous subsections of this section.

As shown in [19], IP2 can be reduced to IP1. Indeed, let the pair of functions (u, F) solve the IP2.
The Equation (89) restricted to Ω× (t0, T) has the form (DC

k B(u))(t) + Dl(φ)− A(φ) = Φ(x, t) and
thus the function Bu is a solution to the following inverse problem of IP1 type:

Bu|Ω×(t0,T) = Bφ, and DC
k Bu|Ω×(t0,T) = g, (91)

where
g(x, t) = Φ(x, t) + A(φ)− Dl(φ), x ∈ Ω, t ∈ (t0, T).

The solution (u, F) of IP2 can be explicitly expressed in terms of the solution Bu of the IP1
formulated above as follows: u = B−1 Bu, F = DC

k Bu + Dl(u)− A(u). Accordingly, a uniqueness
result for the IP2 immediately follows from Theorem 18 (see [19] for details).

It is worth mentioning that the inverse problems IP1 and IP2 are severely ill-posed ([19]) and thus
appropriate regularization methods are needed for their numerical treatment.

Next, we consider the following evolutionary integral equation:

u(x, t)=
∫ t

0
κ(t− τ)Δu(x, τ) dτ + f (x, t), x ∈ Rn, t ≥ 0. (92)

Please note that the Cauchy problem (compare to (51))

(DC
k u(x, ·))(t)=Δu(x, t) + F(x, t) t > 0, x ∈ Rn, u(x, 0) = u0(x) (93)

can be reduced to an evolutionary integral equation of type (92) by applying the GFI (26) to both sides
of this equation and by using Formula (28) from Theorem 1:

u(x, t) =
∫ t

0
κ(t− τ)Δu(x, τ) dτ + (IC

k F(x, ·))(t) + u0(x), x ∈ Rn, t ≥ 0, (94)

where the kernel κ is connected with the kernel k of DC
k by means of the relation (25).

In [17], an important inverse problem of kernel identification in the boundary value problems
for an equation associated with the evolutionary integral Equation (92) was addressed. Let Ω ⊂ Rn

be a bounded domain with sufficiently smooth boundary ∂Ω. The direct boundary value problem
formulated in [17] is as follows:
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{
u(x, t) =

∫ t
0 κ(t− τ)Δu(x, τ) dτ + f (x, t), x ∈ Ω, t ∈ [0, T],

Bu(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T],
(95)

where B is a boundary operator of the Dirichlet, Neumann, or Robin type, respectively:

Bν(x) = ν(x), Bν(x) = n(x) · ∇ν(x), Bν(x) = n(x) · ∇ν(x) + θν(x), θ ≥ 0,

n(x) being the unit outer normal of ∂Ω at the point x ∈ Ω.
The inverse problem addressed in [17] is formulated via the so called observation functional

Φ that maps the functions defined on Ω onto R. Usually, the functional Φ is defined in one of the
following ways:

Φ[ν] = ν(x0), Φ[ν] = n(x0) · ∇ν(x0), Φ[ν] =
∫

Ω
μ(x) ν(x) dx,

where x0 ∈ Ω and μ : Ω → R are given. In the case x0 ∈ ∂Ω, the observation functional has to be
different from the boundary operator, i.e., Φ[ν] 
= Bν(x0).

The inverse problem considered in [17] is as follows:

IP3. Given h : (0, T)→ R find a kernel κ such that the solution u of the boundary value problem (95)
satisfies the condition

Φ[u(t, ·)] = h(t), t ∈ (0, T). (96)

In [17], existence, uniqueness, and stability of solutions to the IP3 were studied for a certain class
of kernels (see [17] for details).

Finally, we mention that in [18] two other inverse problems for a time-fractional PDE with the
GFD of Caputo type were addressed. Let Ω ⊂ Rn be a bounded domain with the boundary ∂Ω.
The direct initial-boundary-value problem is formulated as follows:⎧⎪⎪⎨⎪⎪⎩

d
dt (k ∗ (U −Φ))(x, t) = LxU(x, t) + H(x, t), x ∈ Ω, t ∈ (0, T),

U(x, 0) = Φ(x), x ∈ Ω,

B(U − b)(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T),

(97)

where Φ and b are given functions, the operator Lx is a linear second order differential operator with
respect to the variable x in the form

LxU(x, t) =
n

∑
i,j=1

aij(x)
∂2U

∂xi∂xj
+

n

∑
j=1

aj(x)
∂U
∂xj

+ r(x)U(x, t),

and B is a boundary operator of the Dirichlet or Neumann type, respectively:

Bv(x) = v(x) or Bv(x) = ω(x) · ∇v(x)

with ω · n > 0, n being the unite outer normal of ∂Ω at the point x ∈ Ω.
The inverse problems considered in [18] are formulated in terms of the given observation function

Φ at the final time T in the form
U(x, T) = Φ(x), x ∈ Ω. (98)

In [18], the following inverse problems were addressed:
IP4. (inverse source problem). Let

H(x, t) = g(x, t) f (x) + h0(x, t), (99)
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where the components g f and h0 may correspond to different sources or sinks. The factor f is unknown
and has to be reconstructed by means of the data given by the observation function Φ from (98).
The inverse problem consists in determination of a pair of functions ( f , U) that satisfies (97), (98), and (99).

Another inverse problem considered in [18] is determination of the coefficient r in the
operator Lx U:

IP5. Determine a pair of functions (r, U) that satisfies (97) and (98).

In [18], existence, uniqueness, and stability of solutions to IP4 and to IP5 were shown under some
additional conditions posed on the problem data (see [18] for details).

For the surveys of the recent results concerning the inverse problems for the fractional PDEs
including different kinds of the conventional fractional derivatives we refer the readers to [31–33].

Finally we mention that the theory of the fractional PDEs with the GFDs is still far away from
being completed. In particular, the regularity of their solutions is not yet investigated in detail.
Another interesting problem for further research would be to address the abstract fractional evolution
equation in the form

(DC
k u)(t) = Au(t) (100)

subject to the initial condition u(0) = x. In (100), A stands for a linear closed unbounded operator
densely defined in a Banach space X and the initial condition x belongs to the space X. This problem
will be considered elsewhere.
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Abstract: Evaluation of images of special functions under operators of fractional calculus has become
a hot topic with hundreds of recently published papers. These are growing daily and we are able
to comment here only on a few of them, including also some of the latest of 2019–2020, just for
the purpose of illustrating our unified approach. Many authors are producing a flood of results
for various operators of fractional order integration and differentiation and their generalizations of
different special (and elementary) functions. This effect is natural because there are great varieties of
special functions, respectively, of operators of (classical and generalized) fractional calculus, and thus,
their combinations amount to a large number. As examples, we mentioned only two such operators
from thousands of results found by a Google search. Most of the mentioned works use the same
formal and standard procedures. Furthermore, in such results, often the originals and the images are
special functions of different kinds, or the images are not recognized as known special functions, and
thus are not easy to use. In this survey we present a unified approach to fulfill the mentioned task at
once in a general setting and in a well visible form: for the operators of generalized fractional calculus
(including also the classical operators of fractional calculus); and for all generalized hypergeometric
functions such as pΨq and pFq, Fox H- and Meijer G-functions, thus incorporating wide classes of
special functions. In this way, a great part of the results in the mentioned publications are well
predicted and appear as very special cases of ours. The proposed general scheme is based on a few
basic classical results (from the Bateman Project and works by Askey, Lavoie–Osler–Tremblay, etc.)
combined with ideas and developments from more than 30 years of author’s research, and reflected in
the cited recent works. The main idea is as follows: From one side, the operators considered by other
authors are cases of generalized fractional calculus and so, are shown to be (m-times) compositions of
weighted Riemann–Lioville, i.e., Erdélyi–Kober operators. On the other side, from each generalized
hypergeometric function pΨq or pFq (p ≤ q or p = q + 1) we can reach, from the final number of
applications of such operators, one of the simplest cases where the classical results are known, for
example: to 0Fq−p (hyper-Bessel functions, in particular trigonometric functions of order (q− p)), 0F0

(exponential function), or 1F0 (beta-distribution of form (1− z)αzβ). The final result, written explicitly,
is that any GFC operator (of multiplicity m ≥ 1) transforms a generalized hypergeometric function
into the same kind of special function with indices p and q increased by m.

Keywords: fractional calculus operators; special functions; generalized hypergeometric functions;
integral transforms of special functions

MSC: 26A33; 33C60; 33E12; 44A20

1. Introduction

Special functions (SF) have always been unavoidable tools for mathematicians, physicists,
astronomers, applied scientists and engineers while looking to express and study (theoretically, in tables
or by numerical algorithms) the solutions of treated mathematical models. On the other side, recently
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there has been an increased interest in fractional calculus (FC) and its applications, as evidence for
which we refer the readers to the data in the survey by Machado–Kiryakova [1]. Fractional calculus is
nowadays a favorite, and even a sort of fashionable research area, although the boom of publications
and attempts to “fractalize” any kinds of integer order models can bring some threats to the prestige
of this discipline, especially in cases of weak or wrong results and not adequate innovations. Let us
mention also the phenomenon of hundreds of papers of the last few years (only a few of them can
be cited here) dealing with “evaluation of FC images of SF”, most of which use the same standard
techniques with changing only the particular special function (SF) and the particular case of the FC
operator. Furthermore, it often happens that in such results the originals and the images are special
functions of different kinds, or the images are not recognized as known special functions, and thus are
not easy to use. In recent papers, such as [2–5], we share our criticism on this practice and show that
all such results can be derived at once by following a general approach, based on ideas from older
author’s works on generalized fractional calculus (GFC), since [6].

Here we try to collect the ideas, results and examples from our recent works on the subject.
The survey starts with Preliminaries (Section 2) providing a short background on the considered SF and
FC operators; followed by Section 3 with results for images of the generalized hypergeometric functions
pFq and pΨq and their simpler cases under the operators the classical FC operators (Riemann–Liouville
and Erdélyi–Kober integrals and derivatives of fractional order). Then, in Section 4 we present our
unified approach for evaluation of GFC operators of arbitrary generalized hypergeometric functions (pFq and
pΨq), resulting in the main Theorems 3 and 4. This allows to handle very wide classes of operators
of generalized (m-tuple, m ≥ 1) fractional integration and differentiation and of considered special
functions. In Sections 5–7 we consider specifications of these results for the Erdélyi–Kober, Saigo
and Marichev–Saigo–Maeda (M-S-M) operators, that appear as cases of our GFC, resp. for m = 1,
m = 2, m = 3, give their images for the Wright generalized hypergeometric functions, and many
illustrative examples for particular results by other authors. Section 8 considers more general cases
of GFC operators with arbitrary multiplicity m ≥ 1, as the multiple Gel’fond–Leontiev operators
related to the multi-index Mittag–Leffler functions, and the hyper-Bessel operators related to the
hyper-Bessel functions of Delerue. In Section 9 we comment on works of other authors on introducing
some “new” special functions and show that these are again Wright generalized hypergeometric
functions pΨq. Therefore, the various FC images they propose come as simple corollaries of our general
results. To show the effectiveness of the proposed unified approach, in this survey we collected some
21 examples for FC images of SF, and referred to a long list of other authors’ works on the subject.
Section 10 summarizes some conclusions.

2. Preliminaries

Here we provide a short and only necessary background on the considered classes of special
functions (SF) and of operators of classical FC and of generalized fractional calculus (GFC), so as
to explain the general ideas. All details on defining the single-valued branches of the considered
functions, functional spaces, and necessary conditions on appearing parameters, can be found in our
previous works, as cited, and for example in ([6], Section 5.5.i). Basically, we consider functions in the
complex plane of the form

{
f (z) = zμ f̃ (z), μ ≥ 0, f̃ (z) analytic and single valued in Ω

}
, where Ω is

a starlike domain with respect to z = 0, usually a disk ΔR : |z| < R. Most of the considered special
functions are entire functions, or analytic ones in disks in C.

The results we consider are for the classes of so-called generalized hypergeometric functions
(g.h.f) with Mellin–Barnes type integral representations, namely the Fox H-function, Meijer G-function
and their most widely used cases of Wright g.h.f. pΨq and g.h.f. pFq. Even if our aim is to incorporate
as large as possible classes of special functions, let us mention that other transcendental functions
as the elliptic integrals, Lambert W-, Mathiew-, Zeta-, etc. functions are outside of our studies.
Also, we emphasize on results for LHS integrals, although for the RHS ones similar techniques and

22



Mathematics 2020, 8, 2260

results are applied; and consider Riemann–Liouville type fractional derivatives. For the Caputo-type
differentiation operators, similar but different results will be exposed in a separate work.

2.1. Special Functions of Fractional Calculus

Under “classical” Special Functions (SF) we mean these “mathematical functions” and orthogonal
polynomials of which the origin goes back to 18th and 19th centuries and are named after great
mathematicians like Euler, Gauss, Riemann, Bessel, Kummer, Legendre, Laguerre. These “Special
Functions of Mathematical Physics” appeared with the needs of applied sciences and serve as solutions
of integer order (most commonly 2nd order) differential equations from models in mathematical
physics. In the last two centuries it was observed that modeling of many phenomena of the physical
and social world can be reflected much more adequately by means of differential equations of arbitrary
fractional or higher integer orders, and the so-called special functions of fractional calculus (SF of FC)
as providing tools for their explicit solutions became unavoidable tools in the hands of theoretical and
applied scientists recognizing the power of fractional calculus (FC).

Recently, many handbooks and surveys appeared as dedicated not only to classical SF but
also to the SF of FC, to mention some of them: Prudnikov–Brychkov–Marichev [7], Marichev [8],
Srivastava–Gupta–Goyal [9], Kilbas–Srivastava–Trujillo [10], Podlubny [11], Kiryakova [6],
Yakubovich–Luchko [12], Mathai–Haubold [13], Gorenflo–Kilbas–Mainardi-Rogosin [14]. Such a
list cannot be full here, and for more sources see also the survey paper Machado–Kiryakova [1]. In the
papers on the topic and in this survey, we limit ourselves to the Fox H-functions of one complex
variable, as enough of a general level to expose the proposed approach.

Definition 1 (Ch. Fox 1960). see books such as [6,7,9,10], and earlier and latest ones) The Fox H-function is
a generalized hypergeometric function, defined by means of the Mellin–Barnes type contour integral

Hm,n
p,q

[
z

∣∣∣∣∣ (ai, Ai)
p
1

(bj, Bj)
q
1

]
= 1

2πi
∫
L
Hm,n

p,q (s) z−sds, with Hm,n
p,q (s)=

m
∏
j=1

Γ(bj+Bjs)
n
∏

i=1
Γ(1−ai−Ais)

q
∏

j=m+1
Γ(1−bj−Bjs)

p
∏

i=n+1
Γ(ai+Ais)

, (1)

z 
= 0, where L is a suitable contour (of three possible types in C: L−∞, L∞, (γ− i∞, γ + i∞)), the orders
(m, n, p, q) are non negative integers so that 0 ≤ m ≤ q, 0 ≤ n ≤ p, the parameters Ai > 0, Bj > 0 are positive,
and ai, bj, i = 1, . . . , p; j = 1, . . . , q can be arbitrary complex such that Ai(bj+l) 
= Bj(ai−l′−1), l, l′ =
0, 1, 2, . . . ; i = 1, . . . , n; j = 1, . . . , m. Note that the integrand Hm,n

p,q (s) with s �→ −s is the Mellin transform
of the H-function (1).

The details on the properties of the Fox H-function can be found in many contemporary handbooks on SF
such as [7,9,10], where its behavior is described in term of the denotations:

ρ =
p

∏
i=1

A−Ai
i

q
∏
j=1

B
Bj
j ; Δ =

j
∑

k=1
Bj −

p
∑

i=1
Ai;

μ =
q
∑

j=1
bj −

p
∑

i=1
ai +

p− q
2

; a∗ =
n
∑

i=1
Ai −

p
∑

i=n+1
Ai +

m
∑

j=1
Bj −

q
∑

j=m+1
Bj.

(2)

Note that the H-function is an analytic function of z in circle domains |z| < ρ or outside them (or in
sectors of them, or in the whole C), depending on the above parameters and the contours.
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If all Ai =Bj =1, i = 1, ..., p; j = 1, ..., q, the H-function Hm,n
p,q

[
z

∣∣∣∣∣ (ai, 1)p
1

(bj, 1)q
1

]
reduces to the Meijer’s

G-function (C.S. Meijer (1936), see details in ([15], Vol.1) and all above-mentioned books)

Gm,n
p,q

[
z

∣∣∣∣∣ (ai)
p
1

(bj)
q
1

]
=

1
2πi

∫
L
Gm,n

p,q (s) z−sds =
1

2πi

∫
L

m
∏
j=1

Γ(bj + s)
n
∏
i=1

Γ(1− ai − s)

q
∏

j=m+1
Γ(1− bj − s)

p
∏

i=n+1
Γ(ai + s)

z−sds, z 
= 0. (3)

Although simpler than (1), the G-function is yet enough general as it incorporates the Classical
SF (known also as Named SF) and many elementary functions. See lists of examples, for
example, in ([15], Vol.1), ([6], Appendix C).

Now, we attract the readers’ attention to the most typical examples of SF of FC, which are
Fox H-functions but not reducible to Meijer G-functions in the general case (of irrational Aj, Bk).
These originate from works of Sir Edward Maitland (E.-M.) Wright in a series of his works (1935–1940).

Definition 2 (see, e.g., ([6,7,14], App.E)). The Wright generalized hypergeometric function pΨq(z), called
also Fox–Wright function (F-W g.h.f.) is defined as:

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ z

]
=

∞

∑
k=0

Γ(a1 + kA1) . . . Γ(ap + kAp)

Γ(b1 + kB1) . . . Γ(bq + kBq)

zk

k!
(4)

= H1,p
p,q+1

[
−z

∣∣∣∣∣ (1− a1, A1), . . . , (1− ap, Ap)

(0, 1), (1− b1, B1), . . . , (1− bq, Bq)

]
. (5)

In terms of parameters (2), the pΨq-function is an entire function of z if Δ > −1, while for Δ = −1, it is
an absolutely convergent series in the disk {|z|<ρ}, and also for |z|=ρ if Re (μ)>1/2, see, for example, [16].

If all A1 = · · · = Ap = 1, B1 = · · · = Bq = 1, the Wright g.h.f. reduces to the generalized
hypergeometric pFq-function, which is a case of the G-function (3), see details in ([15], Vol.1):

pΨq

[
(a1, 1),. . ., (ap, 1)
(b1, 1),. . ., (bq, 1)

∣∣∣∣∣ z

]
= c pFq(a1,. . ., ap; b1,. . ., bq; z) =

∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!

= G1,p
p,q+1

[
−z

∣∣∣∣∣ 1− a1, . . . , 1− ap

0, 1− b1, . . . , 1− bq

]
; where c =

[
p

∏
i=1

Γ(ai) /
q

∏
j=1

Γ(bj)

]
, (a)k := Γ(a + k)/Γ(a).

(6)

The Mittag-Leffler (M-L) function, introduced by G. Mittag-Leffler (1902–1905), with extended
2-parameters’ definition by R.P. Agarwal (1953), was presented yet in Bateman Project’s [15], Vol.3
(1954), in a chapter for “Miscellaneous Functions”. However, it was ignored for a long time in
the books on special functions because the applied scientists suffered from a lack of tables for its
Laplace transforms. Although appearing from studies not related to fractional calculus, nowadays
the M-L function has become the most popular and most exploited SF of FC, honored to be the
“Queen”-function of FC. See details, for example, in [14], also in [6,17,18].

Definition 3. The Mittag-Leffler (M-L) functions Eα and Eα,β, are entire functions of order ρ = 1/α and type
1, defined by the power series

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0. (7)
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As “fractional index” (α > 0) analogs of the exponential and trigonometric functions that satisfy
ODEs of 1st and 2nd order (α = 1, 2), the M-L functions serve as solutions of fractional order differential
equations. A M-L type function with three indices, known as the Prabhakar function (T.R. Prabhakar,
1971) is also often studied and used, for details see [14,17–19], and other contemporary books and
surveys on M-L type functions:

Eγ
α,β(z) =

∞

∑
k=0

(γ)k
Γ(αk + β)

zk

k!
, α, β, γ ∈ C, Re α > 0, (8)

where (γ)0 = 1, (γ)k = Γ(γ + k)/Γ(γ) denotes the Pochhammer symbol. For γ = 1 we get the M-L
function Eα,β, and if additionally β = 1, it is Eα.

These M-L type functions are simple cases of the Wright g.h.f. and of the H-function, namely:

Eα,β(z) = 1Ψ1

[
(1, 1)
(β, α)

∣∣∣∣∣ z

]
= H1,1

1,2

[
−z

∣∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]
,

Eγ
α,β(z) =

1
Γ(γ) 1Ψ1

[
(γ, 1)
(β, α)

∣∣∣∣∣ z

]
= H1,1

1,2

[
−z

∣∣∣∣∣ (1− γ, 1)
(0, 1), (1− β, α)

]
.

A vector index extension of (7) appeared in the works by Luchko et al. (for example,
Yakubovich-Luchko [12]) on operational calculus’ methods for some fractional order PDE.
Under the name multi-index (multiple) M-L function, it was introduced by Kiryakova [20]
using a different approach, via the Gelfond–Leontiev generalized integration and differentiation
operators (see Section 8). Further, these functions are studied in detail by Kiryakova [21,22],
by Kilbas–Koroleva–Rogosin [23], Paneva–Konovska [19], and many other followers.

Definition 4 (Kiryakova [21,22]). Let m > 1 be an integer, (α1 >0, α2 >0, ..., αm >0) and (β1, β2, ..., βm)

be arbitrary real parameters. By means of these “multi-indices”, the multi-index Mittag-Leffler function
(multi-M-L f.) is the entire function defined as:

E(αi),(βi)
(z) :=E(m)

(αi),(βi)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1) . . . Γ(αmk + βm)
(9)

= 1Ψm

[
(1, 1)

(βi, αi)
m
1

∣∣∣∣∣ z

]
= H1,1

1,m+1

[
−z

∣∣∣∣∣ (0, 1)
(0, 1), (1− βi, αi)

m
1

]
. (10)

Under weakened restrictions on the α’s not obligatory to be all nonnegative, the study was extended by
Kilbas et al; see Kilbas–Koroleva–Rogosin [23].

The basic properties and results for the functions (9) and long lists of their examples, all of them
having wide applications in solutions of integer- and fractional-order models, are provided in our
previous papers like Kiryakova [21,22,24]. Let us shortly mention particular cases like: for m = 1, we
have the classical M-L function Eα,β with all its particulars (error-, incomplete gamma-, Rabotnov, etc.,
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functions); and for m > 1 (many of them treated in the examples in next sections) (see ([15], Vol.2,
Section 7.5.4, Section 7.5.5), [25]):

the Wright function / Bessel-Maitland function φ(κ, ν + 1; z) := Jκ
ν (−z) = E(2)

(κ,1),(ν+1,1)(z)

= 1Ψ1

[
(1, 1)

(ν + 1, κ), (1, 1)

∣∣∣∣∣ z

]
= 0Ψ1

[
−−

(ν + 1, κ)

∣∣∣∣∣ z

]
;

the Mainardi function M(z; β) = φ(−β, 1− β;−z) = E(2)
(−β,1),(1−β,1)(−z);

and its examples, as M(z; 1/2) = 1/
√

π exp(−z2/4), and Airy f. M(z; 1/3) = 32/3 Ai(z/31/3);

Pathak’s gen. Wright-Bessel-Lommel f. Jμ

(ν,λ)(z) = ... = (z/2)ν+2λE(2)
(1/μ,1),(ν+λ+1,λ+1)(−z2/4);

of which, for μ = 1, the Lommel f. appears as s2λ+ν−1,ν(z) = const · J1
ν,λ(z),

and, thus its particular case, the Struve f. Hν(z);
Dzrbashjan’s function with 2× 2 parameters Φ1/α1,1/α1(z; β1, β2) := E(2)

(α1,α2),(β1,β2)
(z);

if all αi = 1, i=1, ..., m: hyper-Bessel f. of Delerue J(m)
ν1,...,νm(z), as multi-index ext. of the Bessel f.; etc.

(11)

Recently, in Kilbas–Koroleva–Rogosin [23] the definition (9) has been extended for arbitrary
values of the α’s parameters. Paneva-Konovska introduced and studied generalizations of the
Prabhakar function (8) by means of three sets of parameters (α1>0, α2>0, ..., αm >0), (β1, β2, ..., βm),
(γ1, γ2, ..., γm), called 3m-parametric M-L functions, see, for example, [19,26] and references therein.
Multivariate and matrix extensions of the M-L and multi-index M-L functions are also explored.

In another survey paper, Kiryakova [27], we are exposing many other details on the theory
of the SF of FC, in the sense of Wright generalized hypergeometric functions pΨq and multi-index
Mittag-Leffler functions, and provide an extensive list of their particular cases, studied in theoretical
and applicable aspects by various authors.

Remark 1. The techniques of the Mellin transform

M { f (z); s} := F∗(s) =
∞∫

0

f (z) zs−1dt

is one of the main tools to evaluate integrals and various integral transforms of special functions, including their
images under operators of FC. After some classical publications of previous centuries, the main contribution
to this approach is due to Marichev [8]. He proposed a natural but wide ranged scheme, based on the contour
integral representations of Mellin–Barnes type for the H- and G-functions, like (1) and (3). Note that the
integrands Hm,n

p,q and Gm,n
p,q are their Mellin transforms (of variable s �→ −s) are fractions of products of 2× 2

groups of Gamma-functions, and each special function being a special case of the generalized hypergeometric
functions, has a particular representation of that kind. For example ([10], (1.11.24)):

M

{
pΨq

[
(ai, Ai)

p
1

(bj, Bj)
a
1

∣∣∣∣∣− z

]
; s

}
=

Γ(s)
p

∏
i=1

Γ(ai − sAi)

q
∏
j=1

Γ(bj − sBj)

.

For variations of results, one can use in addition the relations (see, e.g., in ([28], (2.6)–(2.8))):

M { f (λz); s} = λ−sF∗(s + γ), λ > 0; M {zγ f (z); s} = F∗(s + γ); M { f (zμ); s} = 1
μ

F∗( s
μ
), μ > 0.

Examples for the use of the Mellin transform in this respect are given (among many others works) in:
Luchko and Kiryakova ([28], Section 4) (general scheme and examples with the M-L and Wright functions),
Agarwal, Rogosin, and Trujillo [29] and Paneva-Konovska and Kiryakova [30] (images for multi-index M-L
functions and their particular cases).
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2.2. Operators of Generalized Fractional Calculus

In fractional calculus (FC), meant as a theory of the integration and differentiation of arbitrary
(including fractional, not obligatorily integer) order, there are several almost equivalent definitions for
“fractional” integrals and derivatives, applied in various functional spaces. Here we are interested in
evaluating FC operator images of special functions, defined by power series, most of which are entire
functions, or at least analytic ones inside/outside disks in a complex plane. Therefore, we restrict our
statements to such functions, although they hold also for spaces of weighted continuous or Lebesgue
integrable functions on the real half-line.

For the basic background on FC theory and related topics as SF, integral transforms,
generalizations and applications, we can refer to the books (among many others, for a longer
list see, e.g., Machado and Kiryakova [1]), such as those by: Samko, Kilbas, and Marichev [31],
Podlubny [11], Kilbas, Srivastava, and Trujillo [10], Yakubovich and Luchko [12], including the
author’s one, Kiryakova [6] and a recent one, Sandev and Tomovski [32].

We state results for the Riemann-Liouville (R-L) operator for integration Rδ of order δ > 0,
the corresponding R-L fractional derivative Dδ, and its counterpart ∗Dδ in the Caputo sense, that
is only the left-hand sided operators of FC (and skip similar details for the Weyl-type, right-hand
sided operators).

The main operator of fractional integration we consider is the Erdélyi–Kober operator (E-K) of
integration of order δ > 0, depending on two additional parameters γ ∈ R and β > 0,

Iγ,δ
β f (z) =

1
Γ(δ)

1∫
0

σγ (1− σ)δ−1 f (zσ
1
β ) dσ =

z−β(γ+δ)

Γ(δ)

z∫
0

(zβ − ξβ)δ−1 ξβγ f (ξ)d(ξβ), (12)

note it is the identity for δ = 0. Especially for functional spaces of weighted analytic functions
of the form f (z) = zμ f̃ (z), μ ≥ 0 (see beginning of Section 2), to be preserved by this operator,
we require γ > −1 − μ

β , in addition to δ ≥ 0, β > 0. This operator, more general than the R-L
integral, and having many more applications, was introduced in Sneddon’s works, such as [33], and is
considered in books ([6,10,31], Ch.2), and recently in many other works on fractional order models.
The Erdélyi–Kober-type fractional integrals, or briefly Erdélyi–Kober integrals, of the form

I f (z) = zδ0 Iγ,δ
β f (z), with δ0 ≥ 0. (13)

are basic in our studies, and are called classical fractional integrals, and we consider their commutable
compositions that are presented as our generalized fractional integrals, Kiryakova [6,34].

The Erdélyi–Kober operator (13) reduces to the R-L operator of integration for γ=0, β=1, δ0 = δ,

Rδ
0+,z f (z) := Rδ f (z) = zδ I0,δ

1 f (z); and conversely, Iγ,δ
1 f (z) = z−γ−δRδzγ f (z). (14)

Note that some authors often refer to the Erdélyi–Kober integral (12) as Euler integral
transformation, when they are to handle various integral transforms of special functions.

The fractional order derivative of R-L type corresponding to the E-K integral (12), called E-K

fractional derivative Dγ,δ
β , is an extension of the R-L fractional derivative Dδ f (z) :=

(
d
dz

)n
Rn−δ f (z).

Instead of (d/dz)n, a suitably chosen auxiliary differential operator Dn of integer order is used,
a polynomial of the Euler differential operator (z d/dz). It has been introduced and studied in the
works of Kiryakova and Luchko et al., ([6], Ch.2) and ([12], Ch.3) and in the next ones, as [35],

Dγ,δ
β f (z) = Dn Iγ+δ,n−δ

β f (z) =
n

∏
j=1

(
1
β

z
d
dz

+ γ + j
)

Iγ+δ,n−δ
β f (z), n− 1 < δ ≤ n, n ∈ N. (15)
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The more formal representation ([6], Ch.1, Equation (1.6.7))

Dγ,δ
β f (z) =

[
z−γDδzγ+δ f (z1/β)

]
z �→zβ

(16)

serves to provide a better understanding on the structure and nature of (15).
The Caputo-type analogs of the R-L and E-K fractional derivatives are defined in the same way

but with exchanged order of the nonnegative order integration and the integer order differentiation,
see, for example, [36], also [35], namely,

∗Dγ,δ
β f (z) = Iγ+δ,n−δ

β Dn f (z).

The notion of generalized fractional integration operators was introduced by S. Kalla (1969–1979),
who suggested the common form of such operators (see details and references in [37]),

I f (z) =
1∫

0

Φ(σ) σγ f (zσ)dσ = z−γ−1
z∫

0

Φ(
ξ

z
) ξγ f (ξ)dξ, (17)

where Φ(σ) is an arbitrary continuous (analytical) function for which the integral makes sense, most
commonly a special function as the Bessel, Gauss, G- or H-function. The operators of such generalized
fractional calculus (GFC) are expected to include, in particular, these of the classical FC and should
satisfy the main axioms for the FC theory.

Note that for a rather general or rather narrow choice of the special function Φ, only some formal
operational rules for the generalized fractional integrals (17) can be provided. Therefore, in our
generalized fractional calculus (GFC), Kiryakova [6], the suitable choice of the kernel-functions Φ
as Gm,0

m,m- and Hm,0
m,m-functions was crucial. In that case, the generalized fractional integrals can be

decomposed into commutative products of operators of classical FC (Erdélyi–Kober operators). Thus,
the tools of the special functions and the wide usage of the classical FC are combined into a GFC with
developed detailed theory and many established applications.

Definition 5 (Kiryakova [6]). The multiple E-K integral (of multiplicity m > 1), is defined by means of
the real parameters’ sets (δ1≥0, ..., δm≥0)—multi-order of integration, (γ1, ..., γm)— multi-weight; and
(β1>0, ..., βm >0)—additional multi-parameter, as:

I(γk),(δk)
(βk),m

f (z) :=
1∫

0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk + 1− 1
βk

, 1
βk
)m

1

(γk + 1− 1
βk

, 1
βk
)m

1

]
f (zσ)dσ, (18)

if
m
∑

k=1
δk > 0; and as the identity operator: I(γk),(0,...,0)

(βk),m
f (z) = f (z), if δ1 = δ2 = · · · = δm = 0.

Note that the above kernel Hm,0
m,m-function is an analytic function in the unit disk and Hm,0

m,m(σ) ≡ 0
for |σ| > 1 (Kiryakova, [6]). Specially for functional spaces of weighted analytic functions of the
form f (z) = zμ f̃ (z), μ ≥ 0 (see beginning of Section 2), to be preserved by this operator, we require
γk > −1− μ

βk
, in addition to δk ≥ 0, βk > 0.

If all the β’s are equal: β1 = β2 = ... = βm = β > 0, then (18) has a simpler representation where
the kernel is a Gm,0

m,m-function of Meijer, which is also analytic in unit disk and Gm,0
m,m(σ) ≡ 0 for |σ| > 1,

I(γk),(δk)
(β,...,β),m f (z) := I(γk),(δk)

β,m f (z) =
1∫

0

Gm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk)
m
1

(γk)
m
1

]
f (zσ1/β)dσ =

[
m

∏
k=1

Iγk ,δk
β

]
f (z). (19)
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The operators of the form

Ĩ f (z) = zδ0 I(γk),(δk)
(βk),m

f (z), Ĩ f (z) = zδ0 I(γk),(βk)
β,m f (z), with δ0 ≥ 0, (20)

are both referred to shortly as generalized fractional integrals of multi-order (δ1, ..., δm).
The following decomposition property is proved in [6], etc. (see, e.g., decomposition Th.5.2.1

in [6]). It is important because the GFC integrals (18) and (19) can be represented not only by using
the kernel Fox H- and G-functions, but also by means of the repeated integral representations for the
commutative product of classical E-K operators (12):

I(γk),(δk)
(βk),m

f (z) :=
[

m
∏

k=1
Iγk ,δk
βk

]
f (z) =

1∫
0

· · ·
1∫

0

[
m

∏
k=1

(1− σk)
δk−1σ

γk
k

Γ(δk)

]
f
(

z σ
1/β1
1 . . . σ

1/βm
m

)
dσ1 . . . dσm. (21)

In the book Kiryakova [6] and subsequent papers, we have provided the operational properties of
the operators (18) and (19) as semigroup property, formal inversion formula, reduction to identity or
to the conventional integration operators for special parameters’ choice. This is to justify their names
as operators of GFC.

Following the idea of how the R-L and E-K fractional derivatives are defined, we have proposed
the definition of the corresponding generalized fractional derivatives. To this end, the auxiliary

differential operator Dη , a polynomial of z(
d
dz

) of degree η1 + ... + ηm, is used:

Dη =

[
m

∏
r=1

ηr

∏
j=1

(
1
βr

z
d
dz

+ γr + j
)]

, with ηk :=

{
[δk] + 1, for noninteger δk,

δk, for integer δk,
k = 1, . . . , m. (22)

Definition 6 (Kiryakova ([6], Ch.1,Ch.5), [34,35]). The multiple (m-tuple) Erdélyi-Kober fractional
derivative of R-L type of multi-order δ = (δ1 ≥ 0, . . . , δm ≥ 0) is defined by means of the differ-integral operator:

D(γk),(δk)
(βk),m

f (z) := Dη I(γk+δk),(ηk−δk)
(βk),m

f (z) = Dη

1∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + ηk + 1− 1
βk

, 1
βk
)m

1

(γk + 1− 1
βk

, 1
βk
)m

1

]
f (zσ) dσ. (23)

Analogously, the Caputo-type generalized fractional derivative has been introduced in Kiryakova and
Luchko [35], as

∗D(γk),(δk)
(βk),m

f (z) = I(γk+δk),(ηk−δk)
(βk),m

Dη f (z). (24)

For all equal β’s: β1 = ... = βm = β > 0, the R-L and Caputo-type “derivatives” corresponding to
the generalized fractional integral (19) has a simpler form with Meijer G-function in the kernel:

D(γk),(δk)
β,m f (z) = Dη I(γk+δk),(ηk−δk)

β,m f (z) =

[
m

∏
r=1

ηr

∏
j=1

(
1
β

z
d
dz

+γr+ j
)]

I(γk+δk),(ηk−δk)
β,m f (z),

and ∗D(γk),(δk)
β,m f (z) = I(γk+δk),(ηk−δk)

β,m Dη f (z). (25)

Under generalized (multiple, multi-order) fractional derivatives of the R-L type, resp. of the
Caputo type, we have in mind all the differ-integral/integro-differential operators of the form

D̃ f (z) = D(γk),(δk)
(βk),m

z−δ0 f (z)= z−δ0 D
(γk− δ0

β ),(δk)

(βk),m
f (z), ∗̃D f (z) = ∗D(γk),(δk)

(βk),m
z−δ0 f (z) with δ0 ≥ 0. (26)

A basic formula for the image of a power function in the general case of (18) and (19) (say from
Kiryakova [6]) reads as

I(γk),(δk)
(βk),m

{zp} = cp zp, with cp =
m

∏
i=1

Γ(γi+1+p/βi)

Γ(γi+δi+1+p/βi)
, δk ≥ 0, p > −βk(γk + 1), k = 1, ..., m, (27)
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and a similar one holds for the generalized fractional derivatives, both analogous to the same formulas
for the classical Erdélyi–Kober operators. These results are in the base of the standard techniques
applied by other authors for the evaluation of FC operators of special functions, in various particular
cases. Using (27), in particular for p = k = 0, 1, 2, ..., n, ..., then interchanging the integration and
summation of the power series for a particular special function, the authors of mentioned papers
obtain a new power series to be recognized as another special function (in the successful cases, or the
result is useless, left just as such series or as some pΨq-function). Our general result states as follows.

Theorem 1 (Kiryakova, since 1988, see, e.g., ([6,38], Ch.5)). Let the conditions βk(γk + 1) > −μ, δk ≥
0, βk > 0, k = 1, ..., m, be satisfied for the parameters of the multiple E-K integral (18). Then, it preserves the
class of weighted analytic functions f (z) in a disk ΔR, denoted by Hμ(ΔR ={|z|<R}):

f (z) = zμ
∞

∑
k=0

akzk = zμ(a0 + a1z + . . . ) ∈ Hμ(ΔR) with R=

{
lim sup

k→∞

k
√
|ak|

}−1

. (28)

Namely, the images of such functions have the same form:

I(γk),(δk)
(βk),m

f (z) = zμ
∞

∑
k=0

ak bk zk ∈ Hμ(ΔR), with bk =

⎧⎨⎩ m

∏
i=1

Γ(γi +
k+μ

βi
+ 1)

Γ(γi + δi +
k+μ

βi
+ 1)

⎫⎬⎭ > 0, (29)

with the same radius of convergence R > 0 and the same signs of the coefficients in their series expansions.

2.3. Some Special Cases of GFC Operators

We emphasize here only some operators of FC that are recently exploited very often in publications
on FC operators of SF. In [6] and the author’s other papers as well as in works by other authors, there
many other particular cases of linear integral and differential operators provided and used with
applications in geometric (univalent) function theory, in differential and integral equations of integer
and fractional order, operational calculus, transmutation theory, special functions theory, mathematical
models of phenomena of fractional order, etc.

For m = 1 the kernel-functions of the generalized fractional integrals and derivatives (18) and (23)
can be represented as

H1,0
1,1

[
σ

∣∣∣∣∣ (γ + δ, 1/β)

(γ, 1/β)

]
= β σβ−1 G1,0

1,1

[
σβ

∣∣∣∣∣ γ + δ

γ

]
= β

σβγ+β−1(1− σβ)δ−1

Γ(δ)
,

therefore we have the E-K and R-L (γ=0, β=1) operators of classical FC. Many other integration and
differentiation operators introduced and used by different authors appear as special cases of Iγ,δ

β,1 = Iγ,δ
β ,

Dγ,δ
β,1 = Dγ,δ

β , Rδ and Dδ.

When m = 2, the kernels H2,0
2,2 and G2,0

2,2 reduce to a Gauss hypergeometric lfunction:

H2,0
2,2

[
σ

∣∣∣∣∣ (γ1 + δ1 + 1− 1
β , 1

β ), (γ2 + δ2 + 1− 1
β , 1

β )

(γ1 + 1− 1
β , 1

β ), (γ2 + 1− 1
β , 1

β )

]
= G2,0

2,2

[
σβ

∣∣∣∣∣ γ1 + δ1, γ2 + δ2

γ1, γ2

]

=
σβγ2 (1− σβ)δ1+δ2−1

Γ(δ1 + δ2)
2F1(γ2 + δ2 − γ1, δ1; δ1 + δ2; 1− σβ).

(30)

In this case, the generalized fractional integrals are known as hypergeometric fractional integrals,
and some of them are introduced and studied by Love, Saxena, Kalla, Saigo (see in next Section 6),
Hohlov, etc.
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In the case m = 3, a recently very popular example is with the Marichev–Saigo–Maeda (M-S-M)
operators. These FC integration operators are introduced and studied by Marichev [39] and by
Saigo et al. [40]. Their kernel-function, the Appel F3 function (Horn function)

F3
(
a, a′, b, b′, c, z, ξ

)
=

∞

∑
m,n=0

(a)m(a′)n(b)m(b′)n

(c)m+n

zm ξn

m! n!
, |z| < 1, |ξ| < 1 (see, e.g., [7,15]),

appears as a case of the G3,0
3,3-function and of H3,0

3,3 -function. Indeed, according to [7], p.727, (2); and as
observed in Kiryakova [6], p.21:

(1− σ)c−1

Γ(c)
F3

(
a, a′, b, b′, c, 1− 1

σ , 1− σ
)

= G3,0
3,3

[
σ

∣∣∣∣∣ a + b, c− a′, c− b′

a, b, c− a′ − b′

]
= H3,0

3,3

[
σ

∣∣∣∣∣ (a + b, 1), (c− a′, 1), (c− b′, 1)
(a, 1), (b, 1), (c− a′ − b′, 1)

]
, Re c > 0.

(31)

Therefore, our generalized fractional integrals reduce in this case to the M-S-M integral operators.

Let m ≥ 1 be an arbitrary integer, but all δ’s are integers, say δ1 = ... = δm = 1. Then we have
the Bessel type integral and differential operators of arbitrary (higher) integer order, introduced by
Dimovski [41] (see also [42]) and named as hyper-Bessel operators by Kiryakova ([6], Ch.3), as shown
related to the hyper-Bessel functions of Delerue [43] as their eigenfunctions (see Example 16, in next
Section 8). The studies on these operators gave rise to our GFC, since they appeared as “fractional”
integrals and derivatives of integer multi-orders (1, 1, ..., 1) and for λ > 0 their fractional powers have
multi-orders (λ, λ, ..., λ). In Section 8, we will discuss also the Gelfond–Leontiev operators generated
by the multi-index M-L functions, as more general operators of arbitrary multiplicity m > 1 and
arbitrary fractional multi-order.

As mentioned, here we stress on only a few particular examples of GFC operators I(γk),(δk)
(βk),m

,

D(γk),(δk)
(βk),m

, that are involved in results on to the topic of this survey. This is because many other authors’
works handle the evaluation of images of various elementary or special functions under the classical or
some “generalized operators of FC”—such as the operators of R-L, E-K, Saigo, Marichev–Saigo–Maeda.
Say, one takes first the cosine or Bessel function, later the generalized Bessel (Bessel-Maitland) function,
then an M-L or generalized M-L function, etc., so as to produce new publications by same standard
techniques. Very rarely observed, or mostly is ignored, the fact from relation (21) that these are 2-tuple
(m = 2), respectively 3-tuple (m = 3), or m-tuple (arbitrary m > 1) compositions of Erdélyi–Kober
operators. Therefore, the task can be done at once, if one knows how an E-K operator acts on such
special functions, all being cases of Wright g.h.f. (4), and then applying the procedure a suitable
number of times (2-, 3-, or m). Thus, the result can be predicted in advance, having in mind the general
statements in the next sections.

3. Erdélyi-Kober and Riemann–Liouville Images of pΨq, pFq and Simpler Special Functions

Some basic classical results on the topic exist from the previous century that should not be
forgotten and on which our approach was built. Namely, the image of a generalized hypergeometric
function pFq, with p ≤ q + 1, under the R-L fractional integral/ derivative is shown to be the same special
function with indices p and q increased by 1:

Rδ
{

zν−1
pFq(a1, ..., ap; b1, ..., bq; λz)

}
=

Γ(ν)
Γ(δ+ν)

zδ+ν−1
p+1Fq+1(a1, ..., ap, ν; b1, ..., bq, δ+ν; λz), (32)

with Re δ > 0, Re ν > 0, p ≤ q + 1; λ 
= 0, z ∈ C and if p = q + 1: |λz| < 1 is additionally required.
For this, we can refer to Erdélyi et al. ([44], Vol.2), Ch. XIII, Equations (95)–(97); Askey ([45], p.19),
and emphasize the survey by Lavoie-Osler-Tremblay [46], a table on p.261. Then, to make use of (32),
in our older works on the topic since 1984-1985, we started from the R-L images of the pFq functions
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with the lowest possible indices: 1F0, 1F1 and 0F1, given by three basic elementary functions, see for
example in Kiryakova ([6], Ch.4). Some particular illustrative cases in this direction were mentioned
there, as

I−1,ν+ 1
2

2 {cos z} = Rν+ 1
2

z2

{cos z
z

}
=
√

π 2νz−ν Jν(z) =
√

π 2ν−1z−ν+1
0F1

(
ν+1;− z2

4

)
, ν > − 1

2 , (33)

Rδ
{

zν−1 exp(λz)
}
=

Γ(ν)
Γ(δ+ν)

zδ+ν−1
1F1(ν; δ + ν; λz), Re δ > 0, Re ν > 0, (34)

Rδ
{

zν−1(z− λ)μ
}
=

(−λ)μzδ+ν−1Γ(ν)
Γ(δ+ν) 2F1(−μ, ν; δ+ν, b1, ..., bq; z/λ), Re δ > 0, Re ν > 0. (35)

Note that (33) is an interpretation of the Poisson integral formula for the Bessel function, that
has been generalized in [42] and ([6], Ch.4) to represent the hyper-Bessel functions J(m)

ν1,...,νm with
multi-indices (ν1, ..., νm) (the Bessel function Jν is the case for m=q−p=1 with one index ν), that is,
to represent the 0Fq−p-functions by means of “generalized cosine” cosm.

R-L integrals/ derivatives of the most general G- and H-functions are also well known in the
literature (for example, from [44]), and these are the same type of functions but with increased orders
and additional parameters.

Along with the mentioned old classical results, recently, new articles are published on the
evaluation of classical (R-L, E-K) or generalized FC operators of classical SF or of SF of FC almost
every day (e.g., in 2020: [47,48]), and also of their multivariate or matrix variants. Just as one example on
fractional operators for the matrix Wright hypergeometric functions (5), is a 2020 paper [49].

The classical results (32) and (33)–(35) have been extended in our works (as in ([6], Ch.4), [22,24,50])
in terms of the Erdélyi–Kober operators (12) and (15) and for their counterparts of the GFC: I(γk),(δk)

(βk),m
,

D(γk),(δk)
(βk),m

, not only for pFq but for pΨq as well. To reduce the Wright g.h.f. pΨq in the general case
to three basic simplest functions with lowest indices p and q, we also apply modifications as the
Wright–Erdélyi–Kober multiple operators with a Bessel–Maitland kernel-function and in general, GFC
operators with H-functions like in (20) but with different parameters 1/βk > 0 and 1/λk > 0 in the
upper and low row. Details are in Kiryakova [24].

Now we provide some basic statements necessary for the topic of this survey, repeating in a few
lines the ideas of the proofs, so as to clarify the approach used.

Lemma 1. The image of a Wright g.h.f. pΨq under the Erdélyi–Kober fractional integral (12) is the same type
of function in which the indices p- and q are increased by one, and so, has two additional parameters:

Iγ,δ
β

{
zc

pΨq

[
(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

∣∣∣∣∣ λzμ

]}
= zc

p+1Ψq+1

[
(ai, Ai)

p
1 , (γ+1+c/β, μ/β)

(bj, Bj)
q
1, (γ+δ+1+c/β, μ/β)

∣∣∣∣∣ λzμ

]
.

(36)
It is supposed that Re δ > 0, Re γ > −1, μ > 0, λ 
= 0, c is arbitrary (real), and if p = q + 1, then |λzμ| < 1
is additionally required.

Proof. In a simpler case with c = 0, this is Lemma 1 from Kiryakova [2]. There, a proof is based on the
Formula (44) (Section 4) for the integral (the Mellin transform) of a product of two H-functions, since
both the pΨq-function and the kernel of the E-K operator are cases of H-functions; compare (5) and
Section 2.3. This approach will be discussed later for the more general case of GFC operators.

As a very standard technique, to prove (36), one can use term-by-term integration in series (4),
similarly to that in Kilbas ([16], Th.2) for the particular case of R-L integral, with c := ν−1 there:

Rδ

{
zc

pΨq

[
(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

∣∣∣∣∣ λzμ

]}
= zc+δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, μ)

(bj, Bj)
q
1, (c + δ + 1, μ)

∣∣∣∣∣ λzμ

]
. (37)
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Note that the known simpler formula (32), written by means of E-K integrals, appears as a special
case of (36) if all A1 = ... = Ap = B1 = ... = Bq = 1 and β = 1, see Equation (4.2.2

′
) in Kiryakova [6],

for Re δ > 0, Re γ > −1:

Iγ,δ
1

{
pFq(a1, ..., ap; b1, ..., bq; λz)

}
=

Γ(γ + 1)
Γ(γ + δ + 1) p+1Fq+1(a1, ..., ap, γ+ 1; b1, ..., bq, γ+ δ+ 1; λz). (38)

Lemma 2. The image of a Wright g.h.f. pΨq under the E-K fractional derivative (15) is the same kind of function
but with indices p and q increased by 1, and with 2 the additional parameters:

Dγ,δ
β

{
zc

pΨq

[
(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

∣∣∣∣∣ λzμ

]}
= zc

p+1Ψq+1

[
(ai, Ai)

p
1 , (γ + δ + 1 + c/β, μ/β)

(bj, Bj)
q
1, (γ + 1 + c/β, μ/β)

∣∣∣∣∣ λzμ

]
, (39)

provided Re δ > 0, Re γ > −1, μ > 0, λ 
= 0, and if p = q + 1, we require |λzμ| < 1.

Proof. For c = 0 this is Lemma 3 in Kiryakova [2], and for the case of γ = 0, β = 1 we have the
formula for the R-L fractional derivative from Kilbas ([16], Th.4) (where ν−1 := c, Re c > −1, and the
same other conditions):

Dδ

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ λzμ

]}
= zc−δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, μ)

(bj, Bj)
q
1, (c + 1− δ, μ)

∣∣∣∣∣ λzμ

]
. (40)

The same standard term-by-term integration/differentiation technique can be used for the
proof of (39).

Consider also the simplest case as an analog of (39), when β = 1, c = 0 and all A1 = ...= Ap =

B1= ...=Bq =1. This is our Lemma 4.3.1 from [6] for the pFq-functions. Namely,

Dγ,δ
1

{
pFq(a1, ..., ap; b1, ..., bq; λz)

}
=

Γ(γ+δ+1)
Γ(γ+1) p+1Fq+1(a1, ..., ap, γ + δ + 1; b1, ..., bq, γ + 1; λz). (41)

In the proof of (41) given in [2], we used the relation (16) between the E-K derivative (15)

and the R-L derivative Dδ f (z) = (
d
dz

)nRn−δ f (z) , n = [δ]+1, combined with the result (32).
Then, employed a formula from ([7], Section 7.2.3, (51)) for differentiation of integer order n of a
generalized hypergeometric function pFq with specific parameters as above.

Here we demonstrate a new proof of Lemma 2 for the more general case of Wright function pΨq. For
simplicity, β=1 and μ=1. Interpreting the E-K derivative (15) as in (16), we have subsequently:

The L.H.S. of (41) =
[
z−γDδzγ+δ

] {
zc

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λz

]}

=

[
z−γ

(
d
dz

)n
Rn−δ

]{
zγ+δ+c

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λz

]}

(and due to (37)) = z−γ

(
d
dz

)n
{

zγ+n+c
p+1Ψq+1

[
(ai, Ai)p

1 , (γ + δ + c + 1, 1
(bj, Bj)

q
1, (γ + n + c + 1, 1)

∣∣∣∣∣ λz

]}
.

Now, we use the representation (5) of the Wright g.h.f. as an H-function, and may apply
a formula for differentiation of integer order n of the H-function, say Equation (1.69) from
Mathai-Saxena-Haubold [51], to continue as follows:

... = z−γ

(
d
dz

)n
{

zγ+n+c H1,p+1
p+1,q+2

[
−λz

∣∣∣∣∣ (1− ai, Ai)
p
1 , (−γ− δ− c, 1)

(0, 1), (1− bj, Bj)
q
1, (−γ− n− c, 1)

]}
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= z−γzγ+c H1,p+2
p+2,q+3

[
−λz

∣∣∣∣∣ (−γ− n− c, 1), (1− ai, Ai)
p
1 , (−γ− δ− c, 1)

(0, 1), (1− bj, Bj)
q
1, (−γ− n− c, 1), (−γ− c, 1)

]
and because of the coincidence of the terms (−γ − n − c, 1) in upper and low parameters’ rows,
according to the reduction order formula for the H-function: (1.56) in [51], see also (E.8) in [6],
and [7,9]), we have

... = zc H1,p+1
p+1,q+2

[
−λz

∣∣∣∣∣ (1− ai, Ai)
p
1 , (−γ− δ− c, 1)

(0, 1), (1− bj, Bj)
q
1, (−γ− c, 1)

]
,

which, by using again (5) to go back to a Wright g.h.f., gives the result (39). In case β 
= 1, substitution
z �→ z1/β is necessary, and same for μ 
= 1.

Yet another approach to check the validity of (39) is to use the identity Dγ,δ
β Iγ,δ

β f (z) = f (z)

for f (z) := zc
pΨq

[
(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

∣∣∣∣∣ λzμ

]
, the result from Lemma 1 and reduction of the

intermediate result p+2Ψq+2 to a p+1Ψq+1-function, since the last two equal parameters in the upper
and low rows of its series eliminate each other.

Remark 2. The corresponding result for the Caputo-type E-K derivative ∗Dγ,δ
β for images of the Wright

pΨq-functions, and in particular also for the pFq-functions and for the simpler case of operators with β1 = ... =
βm = β > 0, will be presented in another separate work.

Example 1. The classical result (34) can be extended to an Erdélyi–Kober integral if we use Lemma 1 for

exp(z) = 0F0(−;−; z) = 1F1(0; 0; z) = 1Ψ1

[
(0, 1)
(0, 1)

∣∣∣∣∣ z

]
(which is also a 0Ψ0, G1,0

0,1, and H1,0
0,1 -function):

Iγ,δ
β

{
zc exp(λz)

}
= Iγ,δ

β

{
zc

1Ψ1

[
(0, 1)
(0, 1)

∣∣∣∣∣ λz

]}
= zc

2Ψ2

[
(0, 1), (γ + 1 + c/β, 1/β)

(0, 1), (γ + δ + 1 + c/β, 1/β)

∣∣∣∣∣ z

]

= 1Ψ1

[
(γ + 1 + c/β, 1/β)

(γ + δ + 1 + c/β, 1/β)

∣∣∣∣∣ λz

]
, reducible to (34) for γ = 0, β = 1, ν = c + 1 > 0. (42)

4. Results for the Generalized Fractional Calculus Operators of Special Functions

Here we present our results on evaluating operators of generalized fractional calculus (in the sense
of [6] and of Riemann–Liouville type) of wide classes of special functions as the Wright generalized
hypergeometric functions pΨq and even of the Fox H-functions (thus incorporating the SF of FC) and
in particular, of the pFq- and Meijer G-functions (thus having general results also for the “classical” SF).

We start with the most general result, presented in Kiryakova ([2], Th.3) and mentioned
in ([3], Th.4.3).

Theorem 2. The generalized (m-tuple) fractional integral I(γk),(δk)
(βk),m

of a H-function is again an H-function:

I(γk),(δk)
(βk),m

{
Hs,t

u,v

[
λz

∣∣∣∣∣ (ci, Ci)
u
1

(dj, Dj)
v
1

]}
= Hs,t+m

u+m,v+m

[
λz

∣∣∣∣∣ (ci, Ci)
t
1, (−γk)

m
1 , (ci, Ci)

u
t+1

(dj, Dj)
s
1, (−γk − δk)

m
1 , (dj, Dj)

v
s+1

]
. (43)

Note that three of the orders of the H-function are increased by the multiplicity m, and additional m+m
parameters appear depending on those of the operator.

Proof. The following known formula for integral (can be seen as a Mellin transform) of product of two Fox
H-functions is very important for evaluating integrals of products of special functions of general nature,
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because almost all of them can be presented as H-functions (([9], Section 5.1, (5.1.1)), ([7], Section 2.25,
(1)), see also (E.21

′
) in ([6], Appendix)):

∞∫
0

σα−1Hs,t
u,v

[
κσ

∣∣∣∣∣ (ci, Ci)
u
1

(dl , Dl)
v
1

]
Hm,n

p,q

[
ωσr

∣∣∣∣∣ (aj, Aj)
p
1

(bk, Bk)
q
1

]
dσ

= κ−α Hm+t,n+s
p+v,q+u

[
ω
κr

∣∣∣∣∣ (aj, Aj)
n
1 , (1− dl − αDl , rDl)

v
1, (aj, Aj)

p
n+1

(bk, Bk)
m
1 , (1− ci − αCi, rCi)

u
1 , (bk, Bk)

q
m+1

]
,

(44)

under the conditions Δ > −1, a∗ = Δ + 1 > 0) (in terms of (2)).
To prove (43) we use the definition (18) of I(γk),(δk)

(βk),m
, the fact that the kernel Hm,0

m,m-function vanishes
for |σ| > 1 and so the limits (0, 1) of the integral can be changed into (0, ∞), and the above Formula (44):

I(γk),(δk)
(βk),m

{
Hs,t

u,v

[
λz

∣∣∣∣∣ (ci, Ci)
u
1

(dj, Dj)
v
1

]}
=

1∫
0

... dσ =

∞∫
0

... dσ

=

∞∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk + 1− 1
βk

, 1
βk
)m

1

(γk + 1− 1
βk

, 1
βk
)m

1

]
Hs,t

u,v

[
λz σ

∣∣∣∣∣ (ci, Ci)
u
1

(dj, Dj)
v
1

]
dσ

= Hs+0,t+m
u+m,v+m

[
λz

∣∣∣∣∣ (ci, Ci)
t
1, (1− γk − 1 + 1

βk
− 1

βk
, 1

βk
)m

1 , (ci, Ci)
u
t+1

(dj, Dj)
s
1, (1− γk − δk − 1 + 1

βk
− 1

βk
, 1

βk
)m

1 , (dj, Dj)
v
s+1

]

= Hs,t+m
u+m,v+m

[
λz

∣∣∣∣∣ (ci, Ci)
t
1, (−γk, 1

βk
)m

1 , (ci, Ci)
u
t+1

(dj, Dj)
s
1, (−γk − δk, 1

βk
)m

1 , (dj, Dj)
v
s+1

]
.

For β1 = β2 = ... = βm = β > 0, the image of an arbitrary G-function under the simpler GFC
integrals with Meijer’s Gm,0

m,m-kernels has been provided earlier.

Corollary 1 (Lemma 1.2.2, [6])). The I(γk),(δk)
β,m -image of a G-function is also a G-function in which the three

orders are increased by the multiplicity m and has additional m + m parameters depending on those of the GFC
operator:

I(γk),(δk)
β,m

{
Gs,t

u,v

[
λzβ

∣∣∣∣∣ (ci)
u
1

(dj)
v
1

]}
= Gs,t+m

u+m,v+m

[
λzβ

∣∣∣∣∣ (ci)
t
1, (−γk)

m
1 , (ci)

u
t+1

(dj)
s
1, (−γk − δk)

m
1 , (dj)

v
s+1

]
. (45)

Proof. In this case one can use a formula for the integral of product of two arbitrary G-functions,
simpler than (44) (see for example, ([7], Section 2.24, (1)]) and with a proof in ([6], App., (A.29))), and
be reminded again that the Gm,0

m,m-function vanishes outside the unit disc. Thus the integral (45)

I =
1∫

0

... dσ =

∞∫
0

Gm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk)
m
1

(γk)
m
1

]
Gs,t

u,v

[
λzβ

∣∣∣∣∣ (ci)
u
1

(dj)
v
1

]
dσ,

gives the required image G-function. Because the Gs,t
u,v-function is from the space of an analytic function

in a disk centered at the origin, and has the following asymptotic behavior

Gs,t
u,v

[
λzβ

]
= O

(
zd∗

)
as |z| → 0, with d∗ = β min

j
dj > max

k
[−β(γk + 1)],

the conditions for the used formula to hold on are satisfied.
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Formulas (43) and (45) can be used to evaluate practically all (classical and generalized) operators
of FC of arbitrary SF (which are representable either as a G- or as a more general H-function).

Now we present the main result on the topic of this survey paper, which comes from
Kiryakova [2], Th.1.

Theorem 3. Assume that the conditions δk ≥ 0, γk > −1, βk > 0, k = 1, ..., m and μ > 0, λ 
= 0 hold. The
image of a Wright g.h.f. pΨq(z) by a generalized fractional integral (20) (multiple, m-tuple Erdélyi–Kober
integral) is another Wright g.h.f. with indices p and q increased by the multiplicity m and with additional
parameters coming from those of the GFC integral:

I(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ λzμ

]}

= zc
p+mΨq+m

[
(ai, Ai)

p
1 , (γi + 1 + c

βi
, μ

βi
)m

1

(bj, Bj)
q
1, (γi + δi + 1 + c

βi
, μ

βi
)m

1

∣∣∣∣∣ λzμ

]
.

(46)

Proof. Here we briefly repeat the proof from Kiryakova [2], Th.1, in order to exhibit the main ideas on
which this survey paper is based.

As one approach to prove (46), the general integral formula (44) can be used. This theorem can
be seen also as a consequence of Theorem 2. It is because the kernel-function of the operator is a
Hm,0

m,m-function and the pΨq-function is a H1,p
p,q+1-function, see (5). Then, according to (45) the result will

be a H1,p+m
p+m,q+1+m-function that should be recognized as a p+1Ψq+1-function, because it is reduced to

a H1,p+1
p+1,q+2-function in view of the coincidence of (m−1) parameters in the upper and low row (use

“reduction order” property of the H-function, [7], Section 8.3, 6.; [6], App. (E.8), etc.).
However, to clarify our main idea it is more instructive to refer to the decomposition property (21)

presenting the generalized fractional integral (18) as a product of commuting (classical) Erdélyi–Kober
operators. In the simplest case, we use subsequently m-times (36) from Lemma 1, to get:

I(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λz

]}
= I

(γk)
m−1
1 ,(δk)

m−1
1

(βk)
m−1
1 ,m−1

{
Iγm ,δm
βm pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λz

]}

= I
(γk)

m−2
1 ,(δk)

m−2
1

(βk)
m−2
1 ,m−2

{
Iγm−1,δm−1
βm−1

{
p+1Ψq+1

[
(ai, Ai)

p
1 , (γm + 1, 1/βm)

(bj, Bj)
q
1, (γm + δm + 1, 1/βm)

∣∣∣∣∣ λz

] }}

= · · · = Iγ1,δ1
β1

{
Iγ2,δ2
β2

{
p+m−2Ψq+m−2

[
(ai, Ai)

p
1 , (γr + 1, 1/βr)

m−2
1

(bj, Bj)
q
1, (γr + δr + 1, 1/βr)

m−2
1

∣∣∣∣∣ λz

] }}

= Iγ1,δ1
β1

{
p+m−1Ψq+m−1

[
(ai, Ai)

p
1 , (γr + 1, 1/βr)

m−1
1

(bj, Bj)
q
1, (γr + δr + 1, 1/βr)

m−1
1

∣∣∣∣∣ λz

]}

= p+mΨq+m

[
(ai, Ai)

p
1 , (γr + 1, 1/βr)m

1
(bj, Bj)

q
1, (γr + δr + 1, 1/βr)m

1

∣∣∣∣∣ λz

]
.

(47)

To derive the general relation (46) we apply to the above result the property for “generalized
commutation” from Kiryakova ([6], Ch.5, (5.1.28)), namely:

I(γk),(δk)
(βk),m

zc f (zμ) = zc I
(γk+

c
βk

),(δk)

(
βk
m ),m

f (zμ), with μ > 0. (48)
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Corollary 2. (Lemma 4.2.1., Equations (4.2.2)–(4.2.2’) in Kiryakova ([6], Ch.4)) The image of a pFq g.h.f. (6)

under a generalized (m-tuple) fractional integral I(γk ,δk)
1,m := I(γk ,δk)

(1,...,1),m, (19) with (for simplicity) all βk = β=

1, k=1, ..., m, is another g.h.f. of the same kind with indices increased by the multiplicity m:

I(γk)
m
1 ,(δk)

m
1

1,m
{

pFq
(
a1, ..., ap; b1, ..., bq; λz

)}
= p+mFq+m

(
a1, ..., ap, (γi+1)m

1 ; (b1, ..., bq, (γi+δi+1)m
1 ; λz

)
. (49)

The above results (46) and (49) can be interpreted alternatively as the assertions stated in our
earlier works ([6,50], Ch.4) (in the simpler case of Corollary 2), and later in [24] (in more general case
of Theorem 3). That is, a p+mΨq+m-function (resp. a p+mFq+m-function) of the form below can be
represented by means of a multiple (m-tuple) operator of GFC

Ĩ = I
(ap+i−1)m

i=1,(bq+i−ap+i)
m
i=1

(1/βi)
m
i=1,m

of a pΨq-function (resp. a pFq-function), with orders reduced by m, namely:

p+mΨq+m

[
(ai, Ai)

p
i=1; (ap+i, 1/βi)

m
i=1

(bj, Bj)
q
k=1; (bq+i, 1/βi)

m
i=1

∣∣∣∣∣ λz

]
= Ĩ

{
pΨq

[
(aj, Aj)

p
j=1

(bk, Bk)
q
k=1

∣∣∣∣∣ λz

]}
. (50)

In the case of Wright function with arbitrary parameters Ap+i, Bq+i, i = 1, ..., m:

p+mΨq+m

[
(ai, Ai)

p
i=1; (ap+i, Ap+i)

m
i=1

(bj, Bj)
q
k=1; (bq+i, Bq+i)

m
i=1

∣∣∣∣∣ z

]
, such kind of result is presented in [24] by means of more

general operators Ĩ, the so-called Wright-Erdélyi–Kober operators. This means that using a suitable
number of times of a procedure similar to that in proof of Theorem 3, from any pΨq-function (resp.
pFq-function) we can go down to one of the three basic generalized hypergeometric functions, depending
on if p < q, p = q or p = q+1: 0Ψq−p, 1Ψ1, 2Ψ1; resp. to: 0Fq−p (hyper-Bessel f. and cosm-f.), 1F1

(confluent h.f. and exp-f.), 2F1 (Gauss f. and beta-distribution of form zα(1− z)β). This is the reason
that we classified the g.h.f. to be of three basic types, as: “g.h.f. of Bessel/cosine type”, “g.h.f. of
confluent/exp type” and “g.h.f. of Gauss/beta-distribution type”. Details on this approach and such a
classification of the SF can be found in Kiryakova ([6,22,24,50], Ch.4).

Analogously to Theorem 3, we have also a relation (image) for the generalized fractional
derivatives of g.h.f., presented as Theorem 2 in Kiryakova [2]. The more general formula (as below) is
available in Kiryakova, ([3], Theorem 4.2.).

Theorem 4.

D(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ λzμ

]}

= zc
p+mΨq+m

[
(ai, Ai)

p
1 , (γk + δk + 1 + c

βk
, μ

βk
)m

1

(bj, Bj)
q
1, (γk + 1 + c

βk
, μ

βk
)m

1

∣∣∣∣∣ λzμ

]
.

(51)

Proof. One possible approach to derive this, is to use a decomposition formula for the generalized
(multiple) fractional derivatives (23),

D(γk),(δk)
(βk),m

f (z) = Dγm ,δm
βm

{
Dγm−1,δm−1

βm−1

[
· · ·Dγ1,δ1

β1
f (z)

]}
,

as sequential derivatives. Then, we apply m-times the result (39) of Lemma 2.
We can verify (51) also directly, in the same way as in the end of the proof of Lemma 2, using the

basic relation D(γk),(δ)k
(βk),m

I(γk),(δk)
(β)k ,m f (z) = f (z).

The case of images under the Caputo type generalized fractional derivatives D(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m defined

in (24) will be discussed in a separate work, see also Remark 2.
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5. Examples of Erdélyi–Kober and Riemann–Liuoville Operators of Some Special Functions

In the beginning of Section 3 we already acknowledged the contributions by some classical
authors, such as Erdélyi et al., Askey, Lavoie-Osler-Tremblay, to provide the images of some
special and elementary functions under the Riemann–Liuoville fractional integral/derivative,
see Formulas (32)–(35). We may refer also to works where detailed tables of images under
Riemann–Liuoville operators are provided, for example the book Erdélyi et al. [44], some
recent surveys, including in this Journal, such as by Rogosin [18] (as for M-L type functions),
Garrappa-Kaslik-Popolizio [52] (images of elementary functions expressed by M-L functions).

As mentioned in Section 3, the proof of Lemma 1, a most general result for Riemann–Liuoville
operators of special functions (in sense of g.h.f.) is formula (37) from Kilbas ([16], Th.2):

Rδ

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ λzμ

]}
= zc+δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, μ)

(bj, Bj)
q
1, (c + δ + 1, μ)

∣∣∣∣∣ λzμ

]
,

and for the R-L derivative, the corresponding result is as in Equation (40).
It may be instructive to repeat (as from [2]) some very special cases of the images (37) and (40)

under the R-L integral Rδ f (z) = zδ I0,δ
1 f (z), that have been derived by the cited authors by the standard

term-by-term integration/differentiation. Naturally, these come also as specifications of our results
from Lemmas 1 and 2 for the Erdélyi–Kober operators (case m = 1).

Example 2. The R-L fractional integral of the weighted Bessel function, for Re δ>0, Re ν>−1, Re (γ + ν)>0,
is given by Kilbas-Sebastian ([53], Cor.1, (28)), in the form

Rδ
{

zγ−1 Jν(z)
}
=

zγ+ν+δ−1

2ν 1Ψ2

[
(γ + ν, 2)

(γ + ν + δ, 2), (ν + 1, 1)

∣∣∣∣∣− 1
4

z2

]
. (52)

We can use Jν(z) = 0Ψ1

[
−−

(ν + 1, 1)

∣∣∣∣∣− 1
4 z2

]
, so to see (52) as an immediate corollary of (37), and also

of our E-K result (36). Because a 1-tuple fractional calculus operator (R-L, or E-K) is applied, the preliminary
expectation is confirmed to have as a result a 0+1Ψ1+1-function.

Example 3. The R-L fractional integral of the generalized Bessel function Jκ
ν (usually called Bessel–Maitland

function, a name that should correctly be called the Bessel-Wright function) is derived in Kilbas ([16], Th.8,

(26)), and extends the above formula (52): Note the representation Jκ
ν (z) = 0Ψ1

[
−−

(ν + 1, κ)

∣∣∣∣∣− z

]
, then from

our result in Lemma 1, and in particular, from (37), it is expected to have the result as a 1Ψ2-function:

Rδ
{

zγ−1 Jκ
ν (λzμ)

}
= zγ+δ−1

1Ψ2

[
(γ, μ)

(γ + δ, μ), (ν + 1, κ)

∣∣∣∣∣− λzμ

]
, (53)

for Re δ > 0, Re (γ− 1) > −1, κ > −1, μ > 0. The sign “minus” in the argument of RHS was missing
in [16] due to a possible typo.

The same result, in terms of the (classical) Wright function is presented in the same paper, Kilbas ([16],
Th.6, (18)), with the true argument sign (we slightly change the denotations to be similar as in the first row of
our (11)),

Rδ
{

zγ−1 φ(κ, ν + 1; λzμ)
}
= zγ+δ−1

1Ψ2

[
(γ, μ)

(γ + δ, μ), (ν + 1, κ)

∣∣∣∣∣ λzμ

]
. (54)
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A more useful result, in the sense that the R-L integral transforms a generalized Bessel function/resp. Wright
function, into same kind of function but with increased index comes if we put γ− 1 = ν, κ = μ in (53), see, for
example, ([16], Cor.8.1, (28)), wth Re δ > 0, Re ν > −1, μ > 0:

Rδ
{

zν Jμ
ν (λzμ)

}
= zν+δ Jμ

ν+δ+1(λzμ), Rδ {zνφ(μ, ν + 1; λzμ)} = zν+δ φ(μ, ν + δ + 1; λzμ), λ 
= 0. (55)

Next, we mention an example with the so-called generalized M-series. Namely, (M.) Sharma

and Jain [54] introduced the special function p
α,β
Mq (z), as an extension of both g.h.f. pFq(z) and the

(2-parameters) M-L function Eα,β(z):

p
α,β
Mq

(
a1, ..., ap; b1, ...s, bq; z

)
=

∞

∑
k=0

(a1)k...(ap)k

(b1)k...(bq)k

zk

Γ(αk + β)
= κ p+1Ψq+1

[
(a1, 1), ..., (ap, 1), (1, 1)
(b1, 1), ..., (bq, 1), (β, α)

∣∣∣∣∣ z

]
. (56)

Here z, α, β ∈ C, Re α > 0, p ≤ q are the integer orders, and if p = q + 1 we require additionally

that |z| < R = αα, and κ :=
q

∏
j=1

Γ(bj)/
p

∏
i=1

Γ(ai). Usually the following particular cases are always

mentioned: (1) β = 1: this is the (simpler) M-series, introduced by M. Sharma (2008, in same journal
as [54]); (2) p = q = 0 (that is, no upper and no lower parameters): this is the M-L function Eα,β(z);
(3) p = 0, q = 1, b1 = 1: one has the Wright function φ(α, β, z), or the generalized Bessel–Maitland
function; (4) p = q = 1, a1 = γ, b1 = 1: this is the Prabhakar M-L type function (8), (5) α = β = 1: we
have the g.h.f. pFq(a1, ..., ap; b1, ..., bq; z), etc.

Since (56) is a p+1Ψq+1-function, all FC operators of the form (20) (and their particular cases as
R-L, E-K, Saigo, M-S-M) of the M-series can be evaluated using our formulas in Lemmas 1 and 2 and
Theorems 3 and 4.

Example 4. In [54], the images of the generalized M-series are derived in the case of R-L fractional integral and
derivative of order δ > 0:

Rδ

{
p

α,β
Mq

(
a1, . . . , ap; b1, . . . , bq; z

)}
=

zδ

Γ(1 + δ) p+1
α,β
Mq+1

(
a1, . . . , ap, 1; b1, . . . , bq, 1 + δ; z

)
, (57)

Dδ

{
p

α,β
Mq

(
a1, . . . , ap; b1, . . . , bq; z

)}
=

z−δ

Γ(1− δ) p+1
α,β
Mq+1

(
a1, . . . , ap, 1; b1, . . . , bq, 1− δ; z

)
, (58)

using term-by-term integration/differentiation of the series (56). However, having in mind the representations in
both sides as Wright g.h.f., one can get these results directly from the corollaries of Lemmas 1 and 2, the R-L
integral (37) and derivative (40). See also in Lavault [55].

The formulas in Theorems 3 and 4 can easily be reduced to corresponding results for generalized

fractional integrals and derivatives (20) and (23) of the M-series, to appear in terms of p+m
α,β
Mq+m (z),

with additional parameters depending on (γk)
m
1 , (δk)

m
1 . Again in view of (56), evaluation of other

particular FC operators, such as E-K, Saigo, M-S-M, of the M-series can be done. For example,
the M-S-M images were evaluated by Kumar and Saxena [56].

6. Saigo Hypergeometric Operators of Various Special Functions

In a series of papers since 1978, such as [57] (for more references see in [6,58]), Saigo introduced a
linear integral operator with Gauss function in the kernel, and applied it first for studying BVP for PDE
as the Euler-Darboux equation. Later on, this operator was used by him and collaborators in geometric
function theory (classes of univalent functions). It happens that, as a case of the hypergeometric
integral operators, the Saigo operator has also a role as an FC operator and this has recently become a
reason for great interest for researchers in FC, and mainly to authors whose job is to evaluate images
of Saigo operator(s) of various special functions. A search in Google for the phrase “Saigo operator”
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+ “function” returns now more than 1060 results (of course some of them may also concern the more
general Marichev–Saigo–Maeda, discussed in next Section 7).

First, let us remind the definition and two basic properties of the Saigo operators.
For complex α, β, η and Re α > 0, the Saigo fractional integration operator (the LHS version) is

Iα,β,η f (z) =
z−α−β

Γ(α)

z∫
0

(z− ξ)α−1
2F1(α + β,−η; α; 1− ξ

z ) f (ξ)dξ

=
z−β

Γ(α)

1∫
0

s(1− σ)α−1
2F1(α + β,−η; α; 1− σ) f (zσ)dσ,

(59)

and we skip the discussion on the RHS versions of the Saigo integrals, as similar. The Saigo fractional
derivative is used as: Dα,β,η f (z) = (d/dz)n Iα+n,β−n,η−n f (z) with n = [−Re α] + 1. For its explicit
differ-integral expression, see for example in ([6], Ch.1). More details can be found in Kiryakova ([6,58],
Ch.1, Ch.5) and other our papers dealing with these operators in classes of univalent functions (some
of which are joined with Professor Megumi Saigo). A basic formula (known from the original Saigo works)
that all authors use (and sometimes derive again) is for the image of a power function:

Iα,β,η {zp} = [Γ(p+1)Γ(p+η−β+1)/Γ(p−β+1)Γ(p+α+η+1)] zp−β,

for Re α > 0, Re (p + 1) > max[0, Re (β− η)].

As mentioned in Section 2.3, the Saigo operators are cases of the hypergeometric operators of FC,
and of the GFC operators for m = 2, simply because according to (30) the Gauss kernel function is
representable as the kernel of (19) and (18) with m = 2, β = 1, γ1 = η− β, γ2 = 0, δ1 = −η, δ2 = α+ η:

(1− σ)α−1

Γ(α) 2F1(α + β,−η; α; 1− σ) = G2,0
2,2

[
σ

∣∣∣∣∣ −β, α + η

η − β, 0

]
.

Thus, the Saigo operator is a generalized (2-tuple fractional integral) of the form (20) and therefore
in view of (21), it is also a commutable composition of two classical E-K fractional integrals, see for example
([6], Ch.1):

Iα,β,η f (z) = z−β I(η−β,0),(−η,α+η)
(1,1),2 f (z) = z−β Iη−β,−η

1 I0,α+η
1 f (z)

= Iη,−η
1 Iβ,α+η

1 z−β f (z) = I(η,β),(−η,α+η)
(1,1),2 z−β f (z) = R−η z−α−β Rα+η f (z).

(60)

The relation between the first and second lines follows by application of the “generalized commutation”
between (multiple) Erdélyi–Kober operators and power functions (([6], Ch.1, (1.3.3)), ([34], Th.4), etc.).
For particular parameters α, β, η, the Saigo operator can reduce to one E-K operator or an R-L operator,
say for β = −α, η = 0 it is an R-L integral; and for η = −α, an E-K integral: Iα,β,−α = z−β I−α−β,α

1 .
Therefore, the Saigo image of some special function, which can be represented as a Wright function

pΨq, can be written as a particular case of the general formulas (46), resp. (51), or also, as a subsequent
two-times application of classical E-K operators. Therefore, the Saigo image of a pΨq-function can always
be predicted to result into a p+2Ψq+2-function (unless some parameters in upper and lower rows eliminate
each other, and so the indices can be reduced). Our result, as a corollary of Theorem 3 and Corollary 2
states as follows.

Lemma 3. The images of the Wright g.h.f. pΨq, and in particular of the g.h.f. pFq, under the Saigo operator (59)
are the same kind of functions with orders increased by 2:

Iα,β,η

{
zc

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λzμ

]}
= zc−β

p+2Ψq+2

[
(ai, Ai)

p
1 , (η − β + 1 + c, μ), (1 + c, μ)

(bj, Bj)
q
1, (−β + 1 + c, μ), (α + η + 1 + c, μ)

∣∣∣∣∣ λzμ

]
, (61)
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(for c = 0, μ = 1, this is Cor. 3 in [2]) and

Iα,β,η {
pFq

(
a1, ..., ap; b1, ..., bq; λz

)}
= z−β

p+2Fq+2
(
a1, ..., ap, η − β + 1, 1; b1, ..., bq,−β + 1, α + η + 1; λz

)
, (62)

under the mentioned conditions in the definition of (59).

The following examples for Saigo operators of particular functions from our previous papers [2,3]
are repeated here as an illustration for the general result in Lemma 3.

Example 5. The Saigo fractional integral (59) of a weighted Bessel function was evaluated in
Kilbas-Sebastian ([53], Th.1), for Re α > 0, Re ν > −1, Re (γ + ν) > max [0, Re (β− η)]:

Iα,β,η
{

zγ−1 Jν(z)
}
=

zγ+ν−β−1

2ν 2Ψ3

[
(γ + ν, 2), (γ + η + ν− β, 2)

(γ + ν− β, 2), (γ + ν + α + η, 2), (ν + 1, 1)

∣∣∣∣∣− 1
4

z2

]
. (63)

To apply (61) from Lemma 3, let us remind the reader again that zγ−1 Jν(z)= zγ−1
0Ψ1

[
−−
(ν, 1)

∣∣∣∣∣− 1
4 z2

]
and so, the result should be expected to appear as a 0+2Ψ1+2. Alternatively, to exhibit the use of decomposition
of the Saigo operator in two R-L operators (the last relation in (60)) combined with (52) from Example 2, we may
proceed as follows:

R−ηz−α−βRα+η

{
zγ−1

0Ψ1

[
−−
(ν, 1)

∣∣∣∣∣− 1
4

z2

]}

= R−ηz−α−β

{
2−νzγ+ν+α+η−1

1Ψ2

[
(γ + ν, 2)

(γ + ν + α + η, 2), (ν + 1, 1)

∣∣∣∣∣− 1
4

z2

]}

= 2−νR−η

{
zγ−β+η+ν−1

1Ψ2

[
(γ + ν, 2)

(γ + ν + α + η, 2), (ν + 1, 1)

∣∣∣∣∣− 1
4

z2

]}
= ... 2Ψ3 ..., as in (63).

Example 6. The more special case for Saigo fractional integral of a (weighted) cosine function is the formula
from the same paper of Kilbas-Sebastian ([53], Th.5, (47)), for Re α > 0, Re γ > max [0, Re (β− η)]:

Iα,β,η
{

zγ−1 cos z
}
=
√

π zγ−β−1
2Ψ3

[
(γ, 2), (γ + η − β, 2)

(γ− β, 2), (γ + η + α, 2), ( 1
2 , 1)

∣∣∣∣∣− 1
4

z2

]
. (64)

Note that cos z =
√

πz/2 J−1/2(z), and use the result (63) of Example 4 with ν = −1/2. To use our general
approach, we can present the cos-function as a 0Ψ1-function, and predict the result to be a 0+2Ψ1+2-function
in (64).

Next, we consider a case with a more general special function, called generalized K-series.
In [59] (K.) Sharma introduced an extension of both a g.h.f. pFq(z) and Prabhakar (three-parameter
Mittag-Leffler) function Eγ

α,β(z) (see (8)):

p
α,β;γ

K q
(
a1, . . . , ap; b1, . . . , bq; z

)
:= p

α,β;γ
K q (z) =

∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

(γ)k zk

Γ(αk+β)
, (65)

with z, α, β ∈ C, Re α > 0, integers p ≤ q (and additional requirement |z| < R = αα if p = q+1).
When γ = 1 it reduces to the (generalized) M-series (56) by Sharma-Jain [54], Example 4.
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Example 7. Recently, Lavault [55] represented the above K-series in terms of a Wright g.h.f.:

p
α,β;γ

K q
(
a1, . . . , ap; b1, . . . , bq; z

)
=

q
∏
j=1

Γ(bj)

Γ(γ)
p

∏
i=1

Γ(ai)
p+2Ψq+2

[
(a1, 1), . . . (ap, 1), (γ, 1), (1, 1)
(b1, 1), . . . , (bq, 1), (1, 1), (β, α)

∣∣∣∣∣ z

]
, (66)

and calculated some of its FC operators, as the R-L, Saigo and M-S-M operators. As should be expected, the image

of a p
α,β;γ

K q-function under the R-L integral is a p+1
α,β;γ

K q+1-function (Th. 4.1 there), similarly to Example 4 for
the M-series.

The Saigo operator is also derived by Lavault in [55]: for the M-series—in Th. 4.2, and for the K-series—in
Cor. 4.3. Namely, Equation (4.10), [55] reads as:

Iα,β,γ
{

tσ−1
p

ξ,η;ν
K q (czμ)

}
=

∏
q
1 Γ(bj)

∏
p
1 Γ(ai)

zσ−β−1

Γ(ν) p+3Ψq+3

[
(ai, 1)p

1 , (σ, μ), (−β+γ+σ, μ), (ν, 1)
(bj)

q
1, (β+σ, μ), (α+γ+σ, μ), (η, ξ)

∣∣∣∣∣ czμ

]
. (67)

Let us note that the K-series is a p+2Ψq+2-function (66), and from our Lemma 3 the expected result should
be a p+4Ψq+4-function, with indices increased by two. However, pairs of upper and lower rows’ parameters
appear the same and eliminate each other, therefore the result reduces to a p+3Ψq+3, as above.

7. Marichev–Saigo–Maeda (M-S-M) Operators of Various Special Functions

As mentioned in Section 2.3, there is an interesting particular case of the GFC operators (20) and
(23) for m = 3, often abbreviated as M-S-M (MSM) operators. These operators have also become
very popular in works dedicated to evaluate FC images of special functions. A search in Google for
“Marichev–Saigo–Maeda” returns at least 2430 results, and for “MSM operator”—some 2670 results.

This operator appeared in a paper by Marichev of 1974, [39], see also in the book ([31],
Section 8.4.51); and further was introduced and studied by Saigo, Saigo and Maeda in 1996, see [40],
also by Saigo and Saxena (1996, 1998, 2001), details on references are in ([6,37,58,60], Ch.1), etc.

For complex parameters a, a′, b, b′, c, Re c > 0, the Marichev–Saigo–Maeda (M-S-M) integral operator,
of which the kernel is the Appel function, or Horn’s function F3 (see ([15], Vol.1), also [7])

F3
(
a, a′, b, b′, c, z, ξ

)
=

∞

∑
m,n=0

(a)m(a′)n(b)m(b′)n

(c)m+n

zmξn

m!n!
, |z| < 1, |ξ| < 1,

is defined as the linear integral operator

Ia,a′ ,b,b′ ,c f (z) =
z−a

Γ(c)

z∫
0

(z− ξ)c−1ξ−a′F3(a, a′, b, b′; c; 1− ξ

z
, 1− z

ξ
) f (ξ)dξ

= zc−a−a′
1∫

0

(1− σ)c−1

Γ(c)
σ−a′ F3(a, a′, b, b′; c; 1− σ, 1− 1

σ
) f (zσ)dσ.

(68)

Observing the representation (31) of the kernel F3-function as a kernel of the generalized fractional
integrals (20) (see Section 2.3), it is evident that the M-S-M operator is nothing but their special case
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for m = 3. Then, in view of (21), it is also a composition of three commutable classical E-K integrals (see
Kiryakova [6,37,58]). This fact seems to be unknown to the other authors (or is continuously ignored):

Ia,a′ ,b,b′ ,c f (z) = zc−a−a′
1∫

0
σ−a′ G3,0

3,3

[
σ

∣∣∣∣∣ a + b, c− a′, c− b′

a, b, c− a′ − b′

]
f (zσ)dσ

= zc−a−a′
1∫

0
G3,0

3,3

[
σ

∣∣∣∣∣ a− a′ + b, c− 2a′, c− a′ − b′

a− a′, b− a, c− 2a′ − b′

]
f (zσ)dσ

= zc−a−a′
1∫

0
H3,0

3,3

[
σ

∣∣∣∣∣ (a− a′ + b, 1), (c− 2a′, 1), (c− a′ − b′, 1)
(a− a′, 1), (b− a, 1), (c− 2a′ − b′, 1)

]
f (zσ)dσ

= zc−a−a′ I(a−a′ ,b−a′ ,c−2a′−b′),(b,c−a′−b,a′)
(1,1,1),3 f (z)

= zc−a−a′ Ia−a′ ,b
1 Ib−a′ ,c−a′−b

1 Ic−2a′−b′ ,a′
1 f (z).

(69)

The relations (31) and (69) have been recently denied and argued in the Response of authors [61] to
our critical Commentary [5] to their paper [62]. Then, I needed to support (by my footnote remark to [61])
the truth of (69) as appearing also in the basic FC book by Samko-Kilbas-Marichev [31], see there
Equation (10.38) (for decomposition of Saigo operator) and Equation (10.46), p. 193 (for decomposition
of the M-S-M operator).

For the above reasons, to evaluate M-S-M images of special functions, which are representable as
Wright g.h.f., one can use the general result of Theorem 3. Thus we have:

Lemma 4. The image of a Wright g.h.f. under the M-S-M fractional integral is given by the formula

Ia,a′ ,b,b′ ,c
{

zν
pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λzμ

]}

= zc−a−a′
p+3Ψq+3

[
(ai, Ai)

p
1 , (a− a′ + 1 + ν, 1), (b− a′ + 1 + ν, 1), (c− 2a′ − b′ + 1 + ν, 1)

(bj, Bj)
q
1, (a− a′ + b + 1 + ν, 1), (c− 2a′ + 1 + ν, 1), (c− a′ − b′ + 1 + ν, 1)

∣∣∣∣∣ λzμ

]
.

(70)

The corresponding simpler result for ν = 0 is given by Corollary 4 in Kiryakova [2].

The M-S-M fractional derivatives Da,a′ ,b,b′ ,c, denoted also by Ia,a′ ,b,b′ ,c with Re c ≤ 0, are considered
by Saigo and Maeda and by the next authors as originally defined by analogy with the Saigo derivatives
Dα,β,η . In view of (69), they can be considered also as special cases of the generalized fractional

derivatives (23) with m = 3, namely as Da,a′ ,b,b′ ,c = D(a−a′ ,b−a′ ,c−2a′−b′),(b,c−a′−b,a′)
(1,1,1),3 z−c.

The authors after Saigo-Maeda use to derive first a formula for the M-S-M image of a power
function zp, ignoring the fact that it exists in the original paper (1996) (and follows also as a particular
case of our (27) in Section 2). Then, to find the M-S-M fractional integral or derivative of a particular
special function, they use the standard techniques of term-by-term integration/or differentiation of
the corresponding powers series. However, our general approach says that we know in advance the
image of a pΨq-function expected as a p+3Ψq+3, see (70).

We provide a few illustrative examples for other authors’ results, mentioned also in Kiryakova [2].

Example 8. The formula for the M-S-M generalized fractional integral of a weighted Bessel function:

Ia,a′ ,b,b′ ,c{zγ−1 Jν(z)
}
=

zγ+ν−a−a′+c−1

2ν

× 3Ψ4

[
(γ + ν, 2), (γ + ν + c− a− a′ − b, 2), (γ + ν + b′ − a′, 2)

(γ + ν + b′, 2), (γ + ν + c− a− a′, 2), (γ + ν + c− a′ − b, 2), (ν + 1, 1)

∣∣∣∣∣− z2

4

]
,

(71)
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can be found in Purohit-Suthar-Kalla ([60], Th.2.1, (10)). It is supposed that Re c>0, Re ν>−1, Re (γ + ν)>

max [0, Re (a + a′ + b− c), Re (a′ − b′)]. The same result, however, can be obtained in the way as discussed in
Example 5, using the M-S-M operator’s representation (69) and the result from Lemma 4. Then, by analogy with
Example 6, one can derive the particular result from ([60], Cor.3.1, (24)) for the M-S-M image of zγ−1 cos z,
again in terms of 3Ψ4(− z2

4 ).

Example 9. Mondal-Nisar ([63], Th.3, (11)) evaluated the M-S-M integral (68) of the so-called generalized
Bessel function

Wp,β,γ(z) =
∞

∑
k=0

(−1)kγk

Γ(p + β
2 + 1

2 + k) k!

( z
2

)2k+p
.

Evidently, it is a variant (up to variable substitution) of the Bessel–Maitland-Wright function Jκ
ν (z) and of the

Wright function φ(z), representable as 0Ψ1-function of (z2/4). Then as well expected, the result comes as a
3Ψ4-function, since the indices are increased by 3.

Example 10. Next, in Nisar-Mondal-Agrawal ([64], Th.1), the authors derive the M-S-M operator of the
Bessel-Struve function, which is representable as a 2× 2-indices (multi-index, m = 2) Mittag-Leffler function (9),
see Examples (11) mentioned in Section 2.1, as well as a Wright g.h.f. 1Ψ1,

Sν(z) =
Γ(ν)√

π

∞

∑
k=0

Γ( 1
2 + k

2 )

Γ(ν + 1 + k
2 )

zk

k!
=

Γ(ν)√
π

1Ψ1

[
( 1

2 , 1
2 )

(ν + 1, 1
2 )

∣∣∣∣∣ z

]
.

Then, the result for Ia,a′ ,b,b′ ,c {tγ−1Sν(λz)
}

is expected, written in terms of a 1+3Ψ1+3(λz) = 4Ψ4(λz), with
parameters following from the general scheme.

Example 11. The M-S-M operator (68) of a generalized multi-index Mittag-Leffler function

Eγ,κ
(αj ,β j)

m
1
(z) =

∞

∑
k=0

(γ)κk zk

m
∏
j=1

Γ(αjk + β j)
k! =

1
Γ(γ) 1Ψm

[
(γ, κ)

(β j, αj)
m
1

∣∣∣∣∣ z

]
,

is handled in Agarwal-Rogosin-Trujillo [29]. When m = 1 it was studied also by Srivastava-Tomovski [65].
Note that for γ = κ = 1 the above function reduces to the (2m) multi-index Mittag-Leffler function (9).
This appeared also in Saxena-Nishimoto [66] and was studied in Saxena-Pogany-Ram-Daiya [67]. The result
from ([29], Th.3.1, (3.2)) is the following:

Ia,a′ ,b,b′ ,c
{

zρ−1Eγ,κ
(αj ,β j)

m
1
(λzμ)

}
=

zρ+c−a−a′−1

Γ(γ)

× 4Ψm+3

[
(γ, κ), (ρ, μ), (ρ + c− a− a′ − b, μ), (ρ + b′ − a′, μ)

(αj, β j)
m
1 , (ρ + b′, μ), (ρ + c− a− a′, μ), (ρ + c− b− a′, μ)

∣∣∣∣∣ λzμ

]
.

(72)

Using the representations of the M-S-M operator as three-tuple generalized fractional integral (69) and of
this special function as a 1Ψm-function, the same formula can be evaluated by the general result in Theorem 3,
that is the image is again a Wright g.h.f. but its indices are increased by three.

Example 12. We were stuck on a paper by Kumar-Gupta-Rawat [68] (very fast accepted and published with a
lot of typographical problems). The authors there aim to “establish certain generalized fractional differentiation
involving M-L type function with four parameters, recently introduced by Garg et al. (2016)”. Namely, they
have evaluated its image under the Marichev–Saigo–Maeda derivative Da,a′ ,b,b′ ,c, corresponding to the integral
operator (68). Their result, Theorem 1 (p.205), reads as follows:

Da,a′ ,b,b′ ,c
{

tρ−1
ξ,γEμ,ν(λzσ)

}
=

zρ+a+a′−c−1

Γ(ξ)
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× 5Ψ4

[
(ξ, γ), (ρ, σ), (ρ + a + a′ + b′ − c, σ), (ρ + a− b, σ), (1, 1)
(ρ− b, σ), (ρ + a + a′ − c, σ), (ν, μ), (ρ + a + b′ − c, σ)

∣∣∣∣∣ λzσ

]
.

The authors did not observe the fact that the considered M-L type function is a case of the generalized Wright
function (4), the definition of which is also given in the mentioned paper, namely:

ξ,γEμ,ν(z) =
∞

∑
k=0

(ξ)γk

Γ(μk + ν)
zk =

1
Γ(ξ)

∞

∑
k=0

Γ(ξ + γk)Γ(k + 1)
Γ(μk + ν)

zk

k!
=

1
Γ(ξ) 2Ψ1

[
(ξ, γ), (1, 1)

(ν, μ)

∣∣∣∣∣ z

]
.

Then, its image under the M-S-M differentiation, as a three-tuple generalized fractional derivative, is well
expected to be the Wright function 2+3Ψ1+3, in view of our general results as (51) and (70).

Example 13. In [62], Agarwal-Jain-Baleanu considered the M-S-M images of the generalized
Lommel-Wright function

Jϕ,m
ω,θ (z) = (

z
2
)ω+2θ

∞

∑
k=0

(−1)k(
z
2
)2k

(Γ(θ + k + 1))m Γ(ω + kϕ + θ + 1)

= (
z
2
)ω+2θ

1Ψm+1

[
(1, 1); (θ + 1, 1), ..., (θ + 1, 1), (ω + θ + 1, ϕ);−z2/4

]
,

(73)

which is a Wright g.h.f. (see Equation (1.1) there). We can note that it is also example of the multi-index
M-L function (9), namely Jϕ,m

ω,θ (z) = ( z
2 )

ω+2θ( z
2 )

ω+2θE(m+1)
(1,...,1,ϕ),(θ+1,...,θ+1,ω+θ+1)

(−( z
2 )

2). Then the result,
as calculated by the authors, follows directly from Theorem 3 and especially from Lemma 4 (below, A :=
χ + ω + 2θ, ϕ>0):

Iξ,ξ ′ ,ρ,ρ′ ,κ
0+

[
tχ−1 Jϕ,m

ω,θ (tz)
]
(x) = xA−ξ−ξ ′+κ−1(

z
2
)ω+2θ

× 4Ψ4+m

[
(A, 2), (A +κ − ξ − ξ ′ − ρ, 2), (A + ρ′ − ξ ′, 2), (1, 1)

(A + ρ′, 2), (A +κ − ξ − ξ ′, 2), (A +κ − ξ ′ − ρ, 2), (ω + θ + 1, ϕ), (θ + 1, 1)

∣∣∣∣∣− (tz)2

4

]
,

(74)

to be again a Wright g.h.f. but with indices increased by three, that is, a 4Ψm+4-function. In [62] also many
special cases are derived, such as Beta-transform (that is E-K integral), Saigo operator, path integral, of the
function (73) and of its particular cases. As in the Commentary [5] we discussed the possibilities to use our
unified approach, the authors tried to argue with the facts in their Response [61]. The curious readers are
recommended to read Kiryakova’s footnote comments at the bottom to this Response [61].

8. Multiple Gel’fond-Leontiev Operators of Multi-Index Mittag-Leffler Functions; Hyper-Bessel
Operators and Functions

We consider now GFC images of the multi-index M-L functions (9).

Lemma 5. Taking in general m 
= n (m-tuple operators of GFC and 2n-indexed M-L functions), we have

I(γk),(δk)
(βk),m

{
zc E(n)

(αi),(νi)
(λzμ)

}
= I(γk),(δk)

(βk),m

{
zc

1Ψn

[
(1, 1)

(νi, αi)
n
1 )

∣∣∣∣∣ λzμ

]}

= zc
1+mΨn+m

[
(1, 1), (γk + 1 + c/βk, μ/βk)

m
1

(νi, αi)
n
1 , (γk + δk + 1 + c/βk, μ/βk)

m
1

∣∣∣∣∣ λzm

]
.

(75)

This is an easy corollary of Theorem 3. In particular, for c = 0, μ = 1, m = n, and for
GFC parameters taken to be γk = νk − 1, βk = 1/αk, k = 1, 2, ..., m, it happens that the parameters
(γk + 1, 1/βk)

m
1 in the upper row and (νi, αi)

m
1 in bottom row appear equal and cancel each other,

and then the W. g.h.f. 1+mΨm+m reduces to 1Ψm, again a multi-index M-L function!
Then, as proved (in other direct way) in our previous papers, we have:
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Example 14 (Kiryakova, [21,22]). For each fixed j = 1, ..., m, a (classical) E-K integral of (9) reads as:

I
β j−1,δj
1/αj

E(αi),(βi)
(λz) = E(αi),(β1,...,β j−1,β j+δj ,β j+1,...,βm)(λz). (76)

This is an extension of the result for an E-K integral (12) of an M-L function: Iβ−1,δ
1/α Eα,β(z) = Eα,β+δ(z), where

its second index is increased by the order of fractional integral. After m-times application of the above relation
with respect to each j = 1, ..., m, we obtain that a GFC integral (18) with suitably chosen parameters transforms
a multi-index M-L function into the same kind of multi-index M-L function of which the indices of the second
set are increased by the multi-order of fractional integration:

I(βk−1),(δk)
(1/αk),m

E(αi)
m
1 ,(βi)

m
1
(λz) = E(αi)

m
1 ,(βi+δi)

m
1
(λz), with Re δk > 0, γk > −1, αk > 0, k = 1, ..., m, λ 
= 0. (77)

If we take δk = αk, k = 1, ..., m, formula (77) has the form (Kiryakova, [21,22])

I(βk−1),(αk)
(1/αk),m

E(αi),(βi)
(λz) = E(αi),(βi+αi)

(λz) = (λz)−1
[

E(αi),(βi)
(λz)− 1

m
∏
i=1

Γ(βi)

]
.

According to the operational rules of the GFC (([6], Ch.5)) and rewriting the above relation for the
generalized fractional derivative D(βk−1−αk),(αk)

(1/αk),m
defined as in (23), we have

D(βk−1−αk),(αk)
(1/αk),m

E(αi),(βi)
(λz) = (λz) E(αi),(βi)

(λz) +

[
m

∏
i=1

Γ(βi − αi)

]−1

.

Here one can see an analogy with the results (10.6), (10.9) from Haubold-Mathai-Saxena [17] for the R-L
operators (in the case m = 1).

Next, let us consider the special cases of GFC operators for which the multi-index M-L functions (9)
appear as eigenfunctions, that is, these special functions are transformed into the same kind of functions
with the same multi-indices.

Example 15. The so-called Gelfond–Leontiev (G-L) operators are operators of generalized integration and

differentiation, defined for functions f (z) =
∞
∑

j=0
ajzj analytic in a disk |z| < R, and are generated by the

coefficients of a given entire function ϕ(σ), used as a multipliers’ sequence. They were introduced in a paper
by Gelfond and Leontiev of 1951 (for details and references see our works, such as [6,20,21]). In the case when
ϕ(σ) = E(αi),(βi)

(σ) is the multi-index M-L function (9), these operators were considered by Kiryakova [20],
see also [21], etc., and called (multiple) Dzrbashjan–Gelfond–Leontiev (D-G-L) operators. We defined them
as follows:

D f (z) =
∞

∑
j=1

aj
Γ(β1 + jα1)...Γ(βm + jαm)

Γ(β1 + (j− 1)α1)...Γ(βm + (j− 1)αm)
zj−1,

L f (z) =
∞

∑
j=0

aj
Γ(β1 + jα1)...Γ(βm + jαm)

Γ(β1 + (j + 1)α1)...Γ(βm + (j + 1)αm)
zj+1,

(78)

and noted that the image functions D f (z), L f (z) are also analytic functions in the same disk |z| < R.
We have shown (e.g., in [21,22]) that the operators (78) can be analytically extended (outside a disk,

to holomorphic functions in starlike domain) to operators of GFC, namely to generalized integrals and derivatives
of fractional multi-order (α1, ..., αm) as follows:

L f (z) = z1 I(βk−1),(αk)
(1/αk),m

f (z), D f (z) = z−1D(βk−1−αk),(αk)
(1/αk),m

f (z)− z−1 f (0)

[
m

∏
k=1

Γ(βk)

Γ(βk − αk)

]
.
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Then, as proved in [21,22], etc., and seen also in the end of Example 14, the multi-index M-L function (9)
is a solution of the differential equation of fractional multi-order

DE(αi),(βi)
(λz) = E(αi),(βi)

(λz), that is, E(αi),(βi)
(z) is an eigenfunction of the operator D. (79)

In view of this relation, the multi-index M-L function serves as an eigenfunction of the D-G-L differentiation
generated by its own coefficients!

In the case of the 3m-parametric M-L type functions (multi-index Prabhakar functions, [26])

E(γi), m
(αi), (βi)

(z) =
∞

∑
k=0

(γ1)k . . . (γm)k
Γ(α1k + β1) . . . Γ(αmk + βm)

zk

(k!)m , with Pochhamer symbols (γi)k :=
Γ(γi + k)

Γ(γi)
,

the R-L, classical E-K operators and some multiple E-K operators are evaluated in the works of
Paneva-Konovska, for example, the book [19].

Example 16. In 1966, and his later works, Dimovski [41] introduced a very general class of differential
operators of arbitrary (integer) order generalizing the Bessel operators of second order. His aims were to develop
operational calculus for these operators, both via a Laplace-type integral transform and by the Mikusinski
algebraical approach. These operators have the alternative representations

B f (t) = tα0
d
dt

tα1
d
dt
· · · tαm−1

d
dt

tαm f (t) = t−β Pm

(
t

d
dt

)
f (t) = t−β

m

∏
k=1

(
t

d
dt

+ βγk

)
f (t), t > 0, (80)

with arbitrary parameters α0; αk, γk, k = 1, ..., m; β > 0; Pm a polynomial of degree m, and their different
cases were studied by many authors as appearing in various equations of mathematical physics, problems in
analysis, etc., disciplines. The name “hyper-Bessel differential operator” for (80) was introduced by Kiryakova
in the further studies on the topic, for example ([6], Ch.3), and next ones as [69]. For the linear right inverse
operator denoted by L and called hyper-Bessel integral operator (such that B L f (t) = f (t)), we have found a
representation by an integral operator with Meijer’s Gm,0

m,m-function in the kernel, and later, the same kind of
integral representation also for its fractional powers Lλ, λ > 0. These results were the hint of how to introduce
the operators of GFC: the generalized integration and differentiation (20) and (26) of arbitrary fractional
multi-order (δ1, δ2, ..., δm) instead of the multi-order (λ, λ, ..., λ) for Lλ. The story is explained in [69]. Due to
the representation of the hyper-Bessel operators in the form: B = t−1D(γk−1),(1,1,...,1)

(β,β,...,β),m , L = t I(γk),(1,1,...,1)
(β,β,...,β),m , these

operators are important examples of the generalized “fractional” derivatives and also of the Gelfond–Leontiev

operators (78). Indeed, for simplicity we take β = 1 and γm = 0, then we have that B = t−1D(γk−1)m
1 ,(1)m

1
(1)m

1 ,m is a
particular case of the operator denoted by D in the previous Example 15, with modified denotations.

Consider the m-th order (that is, of multi-order (1, 1, ..., 1)) hyper-Bessel differential equation

B y(t) = λ y(t), λ 
= 0. (81)

In ([6], Ch.3, Th.3.4.3) and the next corollaries (see also [37]), we proved that the functions, j = 1, ..., m:

yj(t) = G1,0
0,m

[
−λt

∣∣∣∣∣ −−
−γj,−γ1, ...,−γj−1,−γj+1, ...,−γm−1, 0

]

= (λt)−γj
m
∏

k=1
Γ(γk+1)

0Fm−1
(
(1 + γi − γj)i 
=j; λt

)
:= J(m−1)

(1+γi−γj)i 
=j
(λt), the hyper-Bessel functions,

(82)
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form a fundamental system of solutions of equation (81) in a neighborhood of origin t = +0. Under the
assumptions of Th.3.4.3 in [6], γ1 < ... < γm < γ1 + 1 and γm = 0, we have that −γj ∈ (0, 1) for all
j = 1, ..., m, and one of these solutions, for j = m, can be written as

ym(t) =
[

m
∏

k=1
(γk + 1)

]−1

0Fm−1

(
(1 + γi)

m−1
1 ; λt

)
=

[
m
∏

k=1
(γk + 1)

]−1

1Fm

(
1; (1 + γi)

m−1
1 , 1; λt

)
= 1Ψm

[
(1, 1)

(1 + γi)
m−1
1 , 1

∣∣∣∣∣ λz

]
= E(1,1,...,1),(1+γi)

m
1
(λz), a case of the multi-index M-L functions.

Therefore, Example 16 appears a special case of Example 15, and shows that the multi-index Mittag-Leffler
functions (9) can be seen also as “fractional indices” analogs, extensions of the hyper-Bessel functions (82),
which themselves are multi-index variants of the classical Bessel function.

9. Some “New” Special Functions and Their FC Images

Recently, some authors claimed to introduce and consider “new” SF. Among these are examples of the
so-called k-analogs of the Bessel and Mittag-Leffler functions, some generalized multi-index Bessel
and Mittag-Leffer functions, and some S-functions. The mentioned k-analogs are based on the use of
the k-Γ-function, which, however, can be rewritten in terms of the “classical” Γ-function:

Γk(s)=
∞∫

0

exp(− tk

k
) ts−1dt = k

s
k−1 Γ(

s
k
), s ∈ C, Re (s) > 0, k > 0; Γ(.) the Gamma-function. (83)

Usually, the denotations include also the k-analogs of the Pochhamer symbol:

(η)ν,κ := Γk(η + νκ)/Γk(λ), η ∈ C \ {0}, ν ∈ C, (84)

and in view of (83) are representable again by means of classical Gamma-functions.
Then, one can easily observe that such “new SF” are just cases of the Wright generalized

hypergeometric function pΨq. Therefore, all the results provided by the mentioned authors to evaluate
FC operators of these special functions follow from our general ones, say from Theorems 3 and 4,
or the special cases as Lemmas 1 and 2 (for E-K operators, incl. R-L ones), Lemma 3 (for Saigo
operators), Lemma 4 (for M-S-M operators), and so on. As an illustration, we repeat some examples
from Kiryakova [4].

Example 17. A generalization of the Bessel function, called generalized k-Bessel function was introduced by
Gehlot [70] and studied by Mondal [71], Shaktawat et al. [72], defined as

Wk
ν,c(z) =

∞

∑
n=0

(−c)n

Γk(nk + ν + k)
· (z/2)2n+ ν

k

n!
, z ∈ C, k > 0, Re (ν) > −1, c ∈ C. (85)

Lets us note that this function is practically a Wright g.h.f. 0Ψ1, and even a simpler g.h.f. 0F1 of the same
type as the classical Bessel function:

Wk
ν,c(z)=(z/2)ν/k

∞
∑

n=0

[−c(z/2)2]n

kn+1+(ν/k)Γ(n+1+(ν/k))Γ(n+1)
=

(z/2)ν/k

k1+(ν/k)

∞
∑

n=0

[−c(z/2)2]n

kn Γ(1+(ν/k)+n.1) Γ(1+n.1)

=
(z/2)ν/k

k1+(ν/k)

∞
∑

n=0

[−(c/k)(z/2)2]n

Γ(1 + (ν/k) + n.1) Γ(1 + n.1)
=

(z/2)ν/k

k1+(ν/k) 1Ψ2

[
(1, 1)

(1 +
ν

k
, 1), (1, 1)

∣∣∣∣∣− c
k

( z
2

)2
]

=
(z/2)ν/k

k1+(ν/k) 0Ψ1

[ −−
(1 +

ν

k
, 1)

∣∣∣∣∣− c
k

( z
2

)2
]
=

(z/2)ν/k

k1+(ν/k)Γ(1 + ν)
0F1

(
−; 1 +

ν

k
;− c

k
z2

4

)
.

(86)
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Naturally, for k = 1, c = 1, (85) becomes the classical Bessel function:

W1
ν,1(z) =

(z/2)ν

Γ(1 + ν) 0F1

(
−; 1+ν;− z2

4

)
.

In the case c = 1, Gehlot [70] considered (85) as a solution of a k-Bessel differential equation. Mondal [71]
studied its properties for complex c ∈ C. Shaktawat et al. [72] evaluated the M-S-M operators of FC of this
function. In view of Lemma 4, the result there (Th.1, (18)) is well expected to appear in terms of the 3Ψ4-function
(because the 3-tuple FC integral increases by three the indices of the initial 0Ψ1-function).

Example 18. The simplest k-analogs of the M-L function are considered by Dorrego-Cerruti [73] and Gupta
and Parihar [74], and very recently (2020/2021) studied also by Ali et al. [47]:

Ek,α,β(z) =
∞

∑
n=0

zn

Γk(αn + β)
, resp. Eδ

k;ν,ρ =
∞

∑
n=0

(δ)η,k zn

Γk(νn + ρ) n!
.

Various further extensions appeared, as the generalized k-Mittag-Leffler function, studied by Gupta and
Parihar [74] and Nisar-Eata-Dhaifalla-Choi [75] in the form (note that the index p was missing in these authors’
original denotation):

Eη,δ,p,q
κ,α,β (z) :=

∞

∑
n=0

(η)qn,κ

Γk(αn + β) (δ)pn,κ
zn, κ, p, q ∈ R+; α, β, η, δ ∈ C, (87)

with min{Re (α), Re (β), Re (η), Re (δ)} > 0; q ≤ Re (α) + p; the k-Pochhammer symbol as in (84).

Again, the function (87) can be rewritten as a Wright g.h.f., now as 2Ψ2. Using the representations for (83)
and (84) we have, respectively:

(η)qn,κ = ... = kqnκ/kΓ(
η + qnκ

k
)/Γ(

η

k
); (δ)pn,κ = ... = kpnκ/kΓ(

δ + pnκ

k
)/Γ(

δ

k
);

and Γk(αn + β) = kαn+β/k · k−1 Γ(
αn + β

k
).

Then,

Eη,δ,p,q
κ,α,β (z) = k1− β

k
Γ(δ/k)
Γ(η/k)

∞

∑
n=0

Γ( η
k + n · qκ

k ) Γ(1 + n.1)

Γ( δ
k + n · pκ

k ) Γ( β
k + n · α

k )
·
[
k

qκ−pκ−α
k z

]n

n!

= k1− β
k

Γ(δ/k)
Γ(η/k) 2Ψ2

[
( η

k , qκ
k ), (1, 1)

( δ
k , pκ

k ), ( β
k , α

k )

∣∣∣∣∣ k
(q−p)κ−α

k z

]
.

By the standard techniques, Nisar-Eata-Dhaifalla-Choi [75] evaluated FC operators of the functions (87).
In view of our general results, as expected, the results are 5Ψ5-functions (for the MSM operators, Ths. 1–2,
3–4) there), and in particular, 4Ψ4-functions (for the Saigo operators, Cor. 3.1–3.2, there). Also, the pathway
integrals (that are related to E-K integrals) are calculated.

Example 19. The so-called multi-index Bessel function:

J
(αj)m ,γ,c
(β j)m ,κ,b (z) =

∞

∑
k=0

ck (γ)κk
m
∏
j=1

Γ(αjk + β j +
b+1

2 )
· zk

k!
, m = 1, 2, 3, ..., (88)

with the Pochhammer symbol (γ)κk, were introduced and studied in a series of papers by Nisar at al., see, for
example, Nisar-Purohit-Parmar [76]. The authors proposed a result for the R-L fractional integral of (88),
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unfortunately written wrongly in their Theorem 1, Equation (2.4) of [76] as a 2Ψ2-function, although it is
evidently a 2Ψm+1-function having (m+1) parameters in the low row. The true result should be

Rλ

{
tδ−1 J

(αj)m ,γ,c
(β j)m ,κ,b(z)

}
=

1
Γ(γ)

zδ+λ−1
2Ψm+1

[
(γ,κ), (δ, 1)

(β j +
b+1

2 , αj)
m
1 , (λ + δ, 1)

; cz

]
. (89)

However, it is easily seen that (88) is: J
(αj)m ,γ,c
(β j)m ,κ,b (z) =

1
Γ(γ 1Ψm

[
(γ,κ)

(β j +
b+1

2 , αj)
m
j=1

; cz

]
, so this result

follows directly from our Lemma 1. Note that the function (88) is also a special case of the generalized multi-index
M-L function in Example 11 with β j �→ β j + (b + 1)/2, and then the results for its images under FC operators
follow from these in Agarwal-Rogosin-Trujillo [29].

Very recently (published 24 September 2020), in Mubeen etal. [48], the authors considered integral
transforms, including FC operators, of yet more general SF called “extended generalized multi-index Bessel
function" introduced by Kamarujjama-Khan-Khan (2019) with an additional member (δ)k in the denominator
of the series, as:

J
(αj)m ,γ,c
(β j)m ,κ,b,δ(z) =

∞

∑
k=0

(γ)κk (−cz)k

(δ)k
m
∏
j=1

Γ(αjk + β j +
b+1

2 )
. (90)

Following similar manipulations as we did in [4] (Section 5.3, Equation (48)) for the case of (88), one can
show that

J
(αj)m ,γ,c
(β j)m ,κ,b,δ(z) =

Γ(δ)
Γ(γ) 2Ψm+1

[
(γ, κ), (1, 1)

(δ, 1), (β j +
b+1

2 , αj)
m
1

∣∣∣∣∣− cz

]
,

and is evidently reducible to (88) for δ = 1. Therefore, the M-S-M fractional integral will be a
5Ψm+4-function—presented as an explicit SF, instead of the authors’ hardly visible result in form of some
unknown complicated series, compared with Th.5.3, [48] for the extension (1.17) of the function (90).

Example 20. The S-function was introduced in Saxena-Daiya [77] as a “new” special function extending the
M-L function (p = q = 0, k = 1), the Prabhakar function (8), the M-series (56) of Sharma and Jain [54] (γ = 1,
k = 1), etc., by

S[z] := Sα,β,γ,τ,k
(p,q) (a1, ..., ap; b1, ..., bq; z) =

∞

∑
n=0

(a1)n...(ap)n · (γ)nτ,k

(b1)n...(bq)n · Γk(nα + β)
· zn

n!
, (91)

with k ∈ R, ; α, β, γ, τ ∈ C; Re (α) > 0; Re (α) > k, Re (τ), p < q + 1. For p = q = 0 it reduces to the
generalized k-Mittag-Leffler function Eγ,τ

k,α,β(z), see in Example 18, the simplest case by Gupta and Parihar [74].
However, as shown in Kiryakova ([4], Section 5.4), this S-function (91) appears to be a Wright g.h.f. (4) of

the form p+1Ψq+1

(
zkτ− α

k

)
, namely:

S[z] = k1− β
k

Γ(b1)...Γ(bq)

Γ(a1)...Γ(ap) · Γ( γ
k )

p+1Ψq+1

[
(a1, 1), ..., (ap, 1), ( γ

k , τ)

(b1, 1), ..., (bq, 1), ( β
k , α

k )
; zkτ− α

k

]
.

Unfortunately, this fact has not been observed neither by the authors of [77] introducing it, nor by their numerous
followers. Then, all results for images of FC operators, such as R-L, E-K, Saigo, M-S-M, the Euler-transform
(which is in fact E-K operator), Laplace transform, follow as images of the Wright function according to our
general results, say Theorem 4.1. Then, as evaluated in [77], Th. 2.10, (32), the Euler transform is a function
p+2Ψq+2 (zkτ− α

k ), because the indices are increased by one for the E-K operator; the Saigo operators will increase
the indices by two; the M-S-M integral will be in terms of Wright function with indices increased by three,
namely: (p+1)+3Ψ(q+1)+3, etc.

Special cases of (91) are the generalized K-series (65) and M-series (56), see Examples 4 and 7.
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Example 21. The generalized k-Wright function (multi-parametric k-M-L function) is introduced by Purohit
and Badguzer [78] as a k-extension of the Wright g.h.f. (4):

pΨk
q(z) = pΨk

q

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ z

]
=

∞

∑
n=0

Γk(a1 + nA1) . . . Γk(ap + nAp)

Γk(b1 + nB1) . . . Γk(bq + nBq)

zn

n!
, k > 0. (92)

However, from the representation (83), it is seen that this “new” function is again a Wright generalized
hypergeometric function, namely:

const p+1Ψq+1

[
(ai/k, Ai/k)p

i=1
(bj/k, Bj/k)q

j=1

∣∣∣∣∣ k(A1+...+Ap−B1−...−Bq)/k · z

]
.

Then the M-S-M operators evaluated for (92) by these authors can appear directly from our general results
(say, Lemma 4) in terms of p+4Ψq+4-functions.

10. Conclusions

10.1. The researchers on the topic can be advised to follow a procedure like this:

(1) Check if the considered SF can be presented as a Wright g.h.f. pΨq or as simpler pFq-function; in
more complicated cases, or if it is a Fox H-function or a Meijer G-function;

(2) Check if the operator of FC to be evaluated is some special case of the GFC operators, that is, if it
can be presented as a composition of classical R-L or E-K operators (also in the form (20) and (26));

(3) Then, apply a general result like Theorem 3, Theorem 4 (or more generally, Theorem 2) and their
special cases (Lemmas 1–4) and the examples, provided in this survey.

10.2. In Section 3 we first give the images of the SF (the generalized hypergeometric functions pΨq,
pFq and their simplest cases) for the classical FC operators: E-K and R-L, and show that these are the
same kinds of functions of which the indices p, q are increased by 1. Then, the images under the GFC
operators are obtained by m-times application of these results, in Section 4. Our result states that the
image of a pΨq-function (resp. pFq-function) under any (m-tuple) GFC operator can be predicted by Theorems 3
and 4 to be a p+mΨq+m-function (resp. p+mFq+m-function) with additional parameters depending on
those of the FC operators. Using this general approach, one can avoid application of the standard
term-by-term integration/differentiation of the power series for each particular special function the
authors choose to treat.

10.3. For the proofs of Theorems 3 and 4 and their corollaries, see Kiryakova [2–4], and for their
alternative interpretations—in other our works as ([6,22,24,50], Ch.4), [27]. The basic idea is that by
means of a multiple (m-tuple) operator of GFC each p+mΨq+m-function (resp. a p+mFq+m-function) can
be reduced to a pΨq-function (resp. a pFq-function), see comments and formula (50) before Theorem
4. Thus, by a suitable number of steps, from any pΨq-function (resp. pFq-function) we can reach
to one of the three basic generalized hypergeometric functions, depending on either p < q, p = q or
p=q+1: 0Ψq−p, 1Ψ1, 2Ψ1 (resp. 0Fq−p, 1F1, 2F1). Additionally, by an Erdélyi–Kober operator these are
reducible to one of the three elementary functions: cos z, zα exp(z) or (1− z)αzβ. Details are given
in Kiryakova [27], submitted to this Journal. As a conclusion, we have classified the g.h.f., that is the
SF, in three basic classes: “g.h.f. of Bessel/cosine type”, “g.h.f. of confluent/exp type” and “g.h.f. of
Gauss/beta-distribution type”, each of these classes with own specific properties. Thus, the title of
Kiryakova [50] appeared as: “All the special functions are fractional differintegrals of elementary functions”.

10.4. In some papers, the authors evaluate an operator of FC of a particular special function in
terms of another special function. Or even, the final result is written only as a series not recognized as
some SF. However, for both theoretical reasons and possible applications, the results can be useful
when a GFC operator transforms a special function from some class into a special function of the same
class, although with changed (increased/decreased) indices and additional parameters. Such are

51



Mathematics 2020, 8, 2260

our Theorems 3 and 4, showing that a pΨq-function (resp. a pFq-function) is transformed into a
p+mΨq+m-function (resp. a p+mFq+m-function). We discussed similar results also for some particular

cases of SF, such as for the (classical) Wright function φ(α, β, z), the M-series p
α,β
Mq (z). Among the

illustrative examples for SF having FC images of the same class, are our formulas: (32), (36), (37), (39), (40),
(41), (46), (49), (51), and their corollaries like (55)–(58),(61), (62), (70), (77).

10.5. Next goal: the most useful results on the topic are when we can specify an operator of GFC
corresponding to the considered special function, so that this function is to be its eigenfunction. In this
survey we give such examples, say for the multi-index Mittag-Leffler functions E(αi),(βi)

(z) and the

hyper-Bessel functions of Delerue 0Fm−1

(
(1 + γi)

m−1
1 ; z

)
. These are the formulas (79), (81) and (82),

etc. Another example, for the eigenfunction of the simplest fractional order differential equation, is the
Rabotnov function zα−1Eα,α(zα) (called also fractional exponent), namely:

Dαyα(z) = λyα(z) , where yα(z) = zα−1Eα,α(λzα), α > 0, λ 
= 0. (93)

10.6. Many authors are publishing results on the images of particular special functions under some
integral transforms like the Laplace transform, Mellin transform, Euler (Beta) transform, Whittaker transform.
Observe that the Euler transform (called so after the Euler integral formula for the Gauss function)
is just a case of the Erdélyi–Kober fractional integral (12), as an extension of the Riemann–Liuoville
fractional integral (14). Therefore, there is no need to separately evaluate these two transforms (Euler
transform and Riemann–Liouville operator), and what is more, to repeat such calculations for each
particular special function. One can just apply the general result, as in Lemma 1. Note that the so-called
pathway-transform is also closely related to the E-K integral. To evaluate a Laplace transform, say for
any special function which is an H-function, one can use the general integral formula (44) and the
representation of the kernel exponential function as a Wright g.h.f. (see (42), Example 1), then also

as a H-function: exp(−z) = H1,0
0,1

[
z

∣∣∣∣∣ −−
(0, 1)

]
. As already mentioned in Remark 1, a basic approach

to evaluate integral transforms (also FC operators) of special functions relies on their images under
the Mellin transform in terms of Gamma-functions, to which the fundamental book by Marichev [8]
is devoted.
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Abstract: Fractional calculus, albeit a synonym of fractional integrals and derivatives which have
two main characteristics—singularity and nonlocality—has attracted increasing interest due to its
potential applications in the real world. This mathematical concept reveals underlying principles
that govern the behavior of nature. The present paper focuses on numerical approximations to
fractional integrals and derivatives. Almost all the results in this respect are included. Existing results,
along with some remarks are summarized for the applied scientists and engineering community of
fractional calculus.
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1. Introduction

1.1. Historical Review

The primary attempt, which was recorded in history to discuss the idea of generalizing the
integer-order differentiation dn f (t)

dtn to dα f (t)
dtα with non-integer α, was contained in the correspondence of

Leibniz [1]. Some remarks were made on the possibility of considering differentials and derivatives of
order one-half. Then, the formulation for derivative of non-integer orders was considered by Euler [2]
and Fourier [3]. At the end of the 19-th century, the theory of more-or-less complete form appeared for
fractional calculus, primarily due to Liouville [4–11], Riemann [12], Grünwald [13], Letnikov [14–17],
and Marchaud [18,19].

Theoretical analysis of fractional calculus has been booming since the 20-th century. Results
in this respect are fruitful, for example, in mapping properties of fractional integration and
integro–differentiation [20], Leibniz rule for the generalized differentiation [21], formulae for fractional
integration by parts [22], and the Bernstein-type inequality for fractional integration and differentiation
operators [23,24], et al.

It is believed that the proper history of fractional calculus began in the realm of physics, with the
papers by Abel [25,26]. In those two papers the integral equation

∫ x

a

ϕ(t)dt
(x− t)μ = f (x), x > a, 0 < μ < 1, (1)

was solved in connection with the tautochrone problem. Although Abel did not intend to generalize
differentiation, the left-hand side of the integral equation leads to the fractional integral operator
of order 1 − μ. Fractional integro–differentiation in such a form was sharpened somewhat later.
It was not until the recent few decades that scholars came to realize the importance of fractional
calculus for applied sciences, such as rheology, continuum mechanics, porous media, thermodynamics,
electrodynamics, quantum mechanics, plasma dynamics, and cosmic rays [27]. Achievements in this
regard were also presented in Refs. [28–31].
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1.2. Current Situations

For the time being, the most frequently utilized fractional integrals and derivatives in applications
are the left- and right-sided Riemann–Liouville integrals [32] (fractional integrals for short),

RLD−α
a,x f (x) =

1
Γ(α)

∫ x

a

f (t)dt
(x− t)1−α

, α > 0, (2)

RLD−α
x,b f (x) =

1
Γ(α)

∫ b

x

f (t)dt
(t− x)1−α

, α > 0, (3)

the left- and right-sided Riemann-Liouville derivatives [32],

RLDα
a,x f (x) =

1
Γ(m− α)

dm

dxm

∫ x

a

f (t)dt
(x− t)α+1−m , m− 1 ≤ α < m ∈ Z+, (4)

RLDα
x,b f (x) =

(−1)m

Γ(m− α)

dm

dxm

∫ b

x

f (t)dt
(t− x)α+1−m , m− 1 ≤ α < m ∈ Z+, (5)

the left- and right-sided Caputo derivatives [32],

CDα
a,x f (x) =

1
Γ(m− α)

∫ x

a

f (m)(t)dt
(x− t)α+1−m , m− 1 ≤ α < m ∈ Z+, (6)

CDα
x,b f (x) =

(−1)m

Γ(m− α)

∫ b

x

f (m)(t)dt
(t− x)α+1−m , m− 1 ≤ α < m ∈ Z+, (7)

and Riesz derivative [33]

RZDα
x f (x) = Ψα

[
RLDα

a,x f (x) + RLDα
x,b f (x)

]
, 0 < α 
= 1, 3, 5, . . . , (8)

where Ψα = − 1
2 cos( απ

2 )
. They are the subjects of this paper. Fractional integrals and derivatives of other

kinds such as ones in [34] and the very newly defined ones in [35,36] and their approximations are
omitted here.

Fractional calculus which has two main characteristics—singularity and nonlocality from its
origin, is a generalization of the classical one to some extent. However, these two concepts are different.
First of all, fractional integral and Riemann–Liouville derivatives coincide with the integer-order ones
while Caputo derivative and Riesz derivative fail to be consistent with integer-order derivatives in
general cases. Besides, semigroup property is valid for fractional integral while is invalid for the case
with fractional derivatives. Fractional derivatives of periodic functions are not in the same form of
those in the integer-order case, either. For example, the α-th order Riemann–Liouville derivative of
sin x and cos x with α > 0 are not sin(x+ απ

2 ) and cos(x+ απ
2 ) unless one adopts the new axiom system

proposed in Ref. [37], which differs from the commonly used one. Last but not least, definite conditions
for fractional differential equations are in general different from the integer-order case. Especially,
in the case with fractional derivatives, boundary and/or initial conditions usually contain fractional
derivatives/integrals at the terminals or integer-order derivatives/integrals at points close to the
terminals [38,39]. The behavior of the solutions to fractional differential equations may also differ from
that of the solutions to the general class of difference equations presented in [40].

In light of potential applications of fractional integration and differentiation operators, there is
a substantial demand for efficient algorithms for their numerical handling. Discretizing fractional
integrals and derivatives gives a series of quadrature formulae. Different choices of nodes and
coefficients give distinct accuracies. Numerical approximations to fractional integrals and derivatives
are mainly derived from three distinct paths. Based on the polynomial interpolation, numerical
schemes can be obtained with accuracy generally depending on the order of integration and
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differentiation, for example, the L1, L2, and L2C methods. Convolution quadratures, which preserve
properties of fractional integrals and derivatives can be viewed as numerical evaluations of fractional
integrals and derivatives with integer-order accuracy. For instance, the fractional multistep methods,
among which the fractional backward difference formulae are mostly used, are of integer-order
accuracy independent of the order of integration and differentiation. These methods can be verified
through Fourier analysis. So do the Grünwald-Letnikov type approximations and fractional centered
difference methods. Reformulating fractional integrals and derivatives as infinite integrals of solutions
to integer-order ordinary differential equations, the diffusive approximation for fractional calculus can
be obtained. Those numerical approximations are discussed in the coming sections. Without specific
clarification, the introduced methods are in the setting of uniformed mesh with h = b−a

N , N ∈ Z+,
and xj = a + jh, j = 0, 1, 2, . . . , N.

2. Numerical Approximations to Fractional Integral

The weak singularities in Equations (2) and (3) often make it difficult to calculate fractional
integrals directly. In the following, several kinds of numerical methods are introduced.

2.1. Numerical Methods Based on Polynomial Interpolation

Assume that f (x) is suitably smooth on [a, b]. Then the α-th order fractional integral of f (x) at
x = xj with 1 ≤ j ≤ N can be expressed as

[
RLD−α

a,x f (x)
]

x=xj
=

1
Γ(α)

j−1

∑
k=0

∫ xk+1

xk

(xj − t)α−1 f (t)dt. (9)

It is reasonable to utilize an interpolate function f̃ (x) to approximate f (x) on each subinterval,
such that the integral

∫ xk+1
xk

(xj − t)α−1 f̃ (t)dt can be calculated exactly. This idea yields a series of
numerical formulae in the form

[
RLD−α

a,x f (x)
]

x=xj
≈

j

∑
k=0

ωk f (xk), 1 ≤ j ≤ N, (10)

where ωk (k = 0, 1, . . . , j) are the corresponding coefficients. To better understand this method,
we retrospect some specific formulae with their brief derivations.

If f (x) ∈ C[a, b] on the right-hand side of Equation (9) is approximated by a piecewise
constant function

f̃ (x) = f (xk), x ∈ [xk, xk+1), 0 ≤ k ≤ j− 1, (11)

then there holds [
RLD−α

a,x f (x)
]

x=xj
≈ 1

Γ(α)

j−1

∑
k=0

∫ xk+1

xk

(xj − t)α−1 f (xk)dt. (12)

This yields the left fractional rectangular formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈

j−1

∑
k=0

bj−k−1 f (xk), (13)

where the convolution coefficients bk (0 ≤ k ≤ j− 1) are given by

bk =
1

Γ(α)

∫ xk+1

xk

(xj − t)α−1dt =
hα

Γ(α + 1)
[(k + 1)α − kα] . (14)
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Similarly, if the function f (x) on the right-hand side of Equation (9) is replaced by

f̃ (x) = f (xk+1), x ∈ (xk, xk+1], (15)

then we have the right fractional rectangular formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈

j−1

∑
k=0

bj−k−1 f (xk+1), (16)

with bk (0 ≤ k ≤ j− 1) given by Equation (14). Based on the left and right rectangular formulae,
the weighted fractional rectangular formula [38] yields

[
RLD−α

a,x f (x)
]

x=xj
≈

j−1

∑
k=0

bj−k−1 [θ f (xk) + (1− θ) f (xk+1)] , 0 ≤ θ ≤ 1, (17)

or the similar form

[
RLD−α

a,x f (x)
]

x=xj
≈

j−1

∑
k=0

bj−k−1 f (xk + (1− θ)h) , 0 ≤ θ ≤ 1. (18)

Remark 1. (I) The left fractional rectangular formula (13) and the right fractional rectangular formula (16)
will be recovered if θ = 1 and θ = 0, respectively. In addition, the weighted rectangular formula (17) (or (18)) is
reduced to the composite trapezoidal formula (or midpoint formula) [41] for the classical integral provided that
α = 1 and θ = 1

2 .
(II) Leading terms of remainders for left- and right-rectangular formulae generally can not be canceled out by
introducing weights as the remainders depend on f ′(ξk)(t− xk), 0 ≤ k ≤ j− 1 and f ′(ηk+1)(t− xk+1), 0 ≤
k ≤ j− 1, respectively. Therefore, the accuracy of fractional rectangular formulae are of first order accuracy for
all 0 ≤ θ ≤ 1. And all the above fractional rectangular formulae are of the first order accuracy.

Assume that f (x) ∈ C[a, b]. Replacing f (x) in Equation (9) with the piecewise linear polynomial

f̃ (x) =
xk+1 − x
xk+1 − xk

f (xk) +
x− xk

xk+1 − xk
f (xk+1), x ∈ [xk, xk+1], (19)

we obtain the fractional trapezoidal formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈ hα

Γ(α + 2)

j

∑
k=0

ak,j f (xk). (20)

Here the coefficients ak,j (0 ≤ k ≤ j) are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
a0,j =(j− 1)α+1 − (j− 1− α)jα,

ak,j =(j− k + 1)α+1 − 2(j− k)α+1 + (j− k− 1)α+1, 1 ≤ k ≤ j− 1,

aj,j =1.

(21)

Suppose that f (x) ∈ C[a, b]. For 0 ≤ k ≤ j− 1, let {lk,i(x)} be Lagrangian functions defined on
the grid points {xk+s, s ∈ S} with S = {0, 1

2 , 1}, which are given by

lk,i(x) = ∏
s∈S, s 
=i

x− xk+s
xk+i − xk+s

, i ∈ S. (22)
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Denote xk+ 1
2
=

xk+xk+1
2 and utilize the piecewise quadratic polynomial

f̃ (x) = ∑
i∈S

lk,i(x) f (xk+i), x ∈ [xk, xk+1]. (23)

Then we obtain the following fractional Simpson’s formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈ hα

Γ(α + 3)

[
j

∑
k=0

ck,j f (xk) +
j−1

∑
k=0

ĉk,j f (xk+ 1
2
)

]
, (24)

in which

ĉk,j =4(α + 2)
[
(j− k)1+α + (j− k− 1)1+α

]
− 8

[
(j− k)2+α − (j− k− 1)2+α

]
, 0 ≤ k ≤ j− 1, (25)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0,j =4
[

j2+α − (j− 1)2+α
]
− (α + 2)

[
3j1+α + (j− 1)1+α

]
+ (α + 2)(α + 1)jα,

ck,j =− (α + 2)
[
(j− k + 1)1+α + (j− k− 1)1+α + 6(j− k)1+α

]
+ 4

[
(j− k + 1)2+α − (j− k− 1)2+α

]
, 1 ≤ k ≤ j− 1,

cj,j =2− α.

(26)

Assume that f (x) ∈ C[a, b]. Let f (x) be approximated by the following r-th degree polynomial
on the grid points

{
xk = x(k)0 , x(k)1 , . . . , x(k)r−1, x(k)r = xk+1

}
,

pk,r(x) =
r

∑
i=0

lk,i(x) f (x(k)i ), x ∈ [xk, xk+1], (27)

with

lk,i(x) =
r

∏
n=0,
n 
=i

x− x(k)n

x(k)i − x(k)n

. (28)

Then we obtain the fractional Newton–Cotes formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈ [

RLD−α
a,x pk,r(x)

]
x=xj

=
j−1

∑
k=0

r

∑
i=0

A(k)
i,j f (x(k)i ), (29)

with the coefficients being calculated by

A(k)
i,j =

1
Γ(α)

∫ xk+1

xk

(xj − t)α−1lk,i(t)dt. (30)

Remark 2. It has been demonstrated in Ref. [38] that the error estimate of Equation (29) is O(hr+1) provided
that f ∈ Cr+1([a, b]). The error estimate does not equal that for the classical one, which is O(hr+2).
This inconsistency may be due to the asymmetry of the weakly singular kernel (xj − x)α−1, which leads

to the non-symmetry of the remainder term (xj − x)α−1
r

∏
i=0

(x− x(k)i ) in the integrand. Note that formulae (13),

(16), (20), and (24) are special cases of Equation (29). Therefore, they are of the first, second, and third-order
accuracy, respectively.
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Consider the function f (x) in the Sobolev space Hr[a, b] with r ≥ 1 being an integer. Generalizing
the above approaches, we can derive spectral approximations [42]. For f (x) defined on [−1, 1],
we consider the interpolation function

pN(x) =
N

∑
j=0

p̃u,v
j Pu,v

j (x), (31)

based on the Jacobi polynomials {Pu,v
j (x)}N

j=0 (u, v > −1). Here

p̃u,v
j =

1
δu,v

j

N

∑
k=0

f (xk)Pu,v
j (xk)ωk, j = 0, 1, . . . , N, (32)

with {xk}N
k=0 and {ωk}N

k=0 being the collocation points and the corresponding quadrature weights [43].
The constants δu,v

j are given by

δu,v
j =

{
γu,v

j , j = 0, 1, . . . , N − 1,

(2 + u+v+1
N )γu,v

N , j = N,
(33)

with γu,v
j being defined by

γu,v
j =

2u+v+1Γ(j + u + 1)Γ(j + v + 1)
(2j + u + v + 1)j!Γ(j + u + v + 1)

. (34)

In this case, we have the following spectral approximation based on Jacobi polynomials

RLD−α
−1,x f (x) ≈ RLD−α

−1,x pN(x) =
N

∑
j=0

p̃u,v
j P̂u,v,α

j (x), x ∈ [−1, 1]. (35)

Here P̂u,v,α
j (x) = 1

Γ(α)

∫ x
−1(x− t)α−1Pu,v

j (t)dt can be explicitly calculated by the recurrence formula⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̂u,v,α
0 (x) =

(x + 1)α

Γ(α + 1)
,

P̂u,v,α
1 (x) =

u + v + 2
2

(
x(x + 1)α

Γ(α + 1)
− α(x + 1)α+1

Γ(α + 2)

)
+

u− v
2

P̂u,v,α
0 (x),

P̂u,v,α
j+1 (x) =

Au,v
j x− Bu,v

j − αAu,v
j B̂u,v

j

1 + αAu,v
j Ĉu,v

j

P̂u,v,α
j (x)

+
α
(

Âu,v
j Pu,v

j−1(−1) + B̂u,v
j Pu,v

j (−1) + Ĉu,v
j Pu,v

j+1(−1)
)

Γ(α + 1)(1 + αAu,v
j Ĉu,v

j )
Au,v

j (x + 1)α

−
Cu,v

j + αAu,v
j Âu,v

j

1 + αAu,v
j Ĉu,v

j

P̂u,v,α
j−1 (x), j ≥ 1,

(36)
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which follows from the three-term recurrence relation of the Jacobi polynomials. Here the coefficients
are given by ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Au,v
j =

(2j + u + v + 1)(2j + u + v + 2)
2(j + 1)(j + u + v + 1)

,

Bu,v
j =

(v2 − u2)(2j + u + v + 1)
2(j + 1)(j + u + v + 1)(2j + u + v)

,

Cu,v
j =

(j + u)(j + v)(2j + u + v + 2)
(j + 1)(j + u + v + 1)(2j + u + v)

,

(37)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Âu,v
j =

−2(j + u)(j + v)
(j + u + v)(2j + u + v)(2j + u + v + 1)

,

B̂u,v
j =

2(u− v)
(2j + u + v)(2j + u + v + 2)

,

Ĉu,v
j =

2(j + u + v + 1)
(2j + u + v + 1)(2j + u + v + 2)

,

(38)

and Âu,v
j = 0 if j = 1. For f (x) defined on an arbitrary interval [a, b], it follows from the affine

transformation x̂ = 2x−a−b
b−a ∈ [−1, 1] that

RLD−α
a,x f (x) ≈

(
b− a

2

)α

RLD−α
a,x̂ pN(x̂) =

(
b− a

2

)α N

∑
j=0

p̃u,v
j P̂u,v,α

j (x̂). (39)

Let u = v = 0. Then the Jacobi polynomials {Pu,v
j }N

j=0 reduce to the Legendre polynomials

{Lj(x)}N
j=0. Consequently, numerical scheme (35) becomes the spectral approximation based on

Legendre polynomials

RLD−α
−1,x f (x) ≈

N

∑
j=0

l̃j L̂α
j (x), x ∈ [−1, 1]. (40)

Here the coefficients are given by

l̃j =
1
γ̄j

N

∑
k=0

f (xk)Lj(xk)ωk, (41)

with γ̄j =
2

2j+1 for 0 ≤ j ≤ N − 1, γ̄N = 2
N , and {ωk}N

k=0 being the corresponding quadrature weights.

Recurrence formula for L̂α
j (x) is in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̂α
0(x) =

(x + 1)α

Γ(α + 1)
,

L̂α
1(x) =

x(x + 1)α

Γ(α + 1)
− α(x + 1)α+1

Γ(α + 2)
,

L̂α
j+1(x) =

(2j + 1)xL̂α
j (x)− (j− α)L̂α

j−1(x)

j + 1 + α
, j ≥ 1.

(42)

Correspondingly, for the case with arbitrary interval [a, b], we also have

RLD−α
a,x f (x) ≈

(
b− a

2

)α n

∑
j=0

l̃j L̂α
j (x̂), x̂ =

2x− a− b
b− a

. (43)
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Let u = v = − 1
2 in Equation (39). We obtain the spectral approximation based on

Chebyshev polynomials

RLD−α
a,x f (x) ≈

(
b− a

2

)α N

∑
j=0

t̃j T̂α
j (x̂), x̂ =

2x− a− b
b− a

∈ [−1, 1], (44)

which follows from the relation P−
1
2 ,− 1

2
j (x) =

Γ(j+ 1
2 )

j!
√

π
Tj(x) with {Tj(x)}N

j=0 being the Chebyshev

polynomials. Here T̂α
j (x) = 1

Γ(α)

∫ x
−1(x− s)α−1Tj(s)ds can be computed by the recurrence formula

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T̂α
0 (x) =

(x + 1)α

Γ(α + 1)
,

T̂α
1 (x) =

x(x + 1)α

Γ(α + 1)
− α(x + 1)α+1

Γ(α + 2)
,

T̂α
2 (x) =

4x
2 + α

T̂α
1 (x)− 2

2 + α
T̂α

0 (x) +
α(x + 1)α

(2 + α)Γ(α + 1)
,

T̂α
j+1(x) =

2(j + 1)x
j + 1 + α

T̂α
j (x)− (j + 1)(j− 1− α)

(j + 1 + α)(j− 1)
T̂α

j−1(x)

+
2(−1)jα(x + 1)α

Γ(α + 1)(j + 1 + α)(j− 1)
, j ≥ 2.

(45)

The coefficients t̃j (0 ≤ j ≤ N) are determined by

t̃j =
1
σj

N

∑
k=0

f (xk)Tj(xk)ωk, (46)

with

σj =

⎧⎨⎩ γ
− 1

2 ,− 1
2

j , j = 0, 1, . . . , N − 1,

2γ
− 1

2 ,− 1
2

N , j = N,
(47)

and {ωk}N
k=0 being the corresponding quadrature weights.

The above spectral approximations can be rewritten in matrix forms. For differential matrices
for fractional integrals and derivatives, see Refs. [42,44] for more details. Here we present numerical
examples given by Ref. [42] to verify the spectral accuracy of spectral approximations.

Example 1. Let f (x) = xμ, x ∈ [0, 1]. Apply scheme (39) to evaluating its fractional integral. Table 1 shows
the absolute maximum errors at the Jacobi–Gauss–Lobatto points. The spectral accuracy is visible.

Table 1. The absolute errors for Example 1.

u = v = 0, μ = 3.5
n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

10 4.57×10−8 3.57×10−8 1.78×10−8 5.18×10−9 1.67×10−9 6.04×10−10

20 2.89×10−10 1.52×10−10 5.37×10−11 9.88×10−12 2.54×10−12 1.31×10−12

40 1.82×10−12 6.36×10−13 1.52×10−13 1.74×10−14 3.68×10−15 2.77×10−15

80 1.12×10−14 2.59×10−15 4.11×10−16 1.67×10−16 1.67×10−16 1.18×10−16

u = v = − 1
2 , μ = 3.5

n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

10 5.49×10−8 4.59×10−8 2.54×10−8 8.33×10−9 3.09×10−9 1.67×10−9

20 3.08×10−10 1.96×10−10 7.62×10−11 1.70×10−11 4.97×10−12 2.93×10−12

40 1.81×10−12 7.79×10−13 2.14×10−13 3.23×10−14 8.09×10−15 5.61×10−15

80 1.06×10−14 3.05×10−15 5.66×10−16 3.33×10−16 1.80×10−16 1.73×10−16
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Example 2. Let f (x) = sin x, x ∈ [0, 1]. Utilize scheme (39) to evaluate its fractional integral. Table 2
displays the absolute maximum errors of the spectral approximations to the fractional integral with u = v = 0
and u = v = − 1

2 . We can observe that satisfactory results are obtained as well.

Table 2. The absolute errors for Example 2.

u = v = 0
n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

4 4.46×10−6 5.40×10−6 3.88×10−6 1.71×10−6 6.94×10−7 2.90×10−7

8 4.79×10−12 4.72×10−12 2.73×10−12 8.94×10−13 2.88×10−13 6.96×10−14

16 6.66×10−16 2.22×10−16 2.22×10−16 1.67×10−16 1.67×10−16 8.33×10−17

u = v = − 1
2

n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

4 6.08×10−6 7.91×10−6 6.26×10−6 3.41×10−6 1.87×10−6 1.27×10−6

8 6.58×10−12 6.63×10−12 3.96×10−12 1.38×10−12 4.97×10−13 1.36×10−13

16 3.33×10−16 3.33×10−16 2.22×10−16 5.55×10−17 2.22×10−16 5.55×10−17

2.2. Fractional Linear Multistep Method

In Ref. [45], the convolution quadrature

Iα
h f (x) = hα

n

∑
j=0

ω�,n−j f (jh) + hα
s

∑
j=0

wn,j f (jh), x = nh, (48)

is utilized to evaluate fractional integrals (with α > 0) and derivatives (with α < 0).
Here the convolution quadrature weights ω�,j (j ≥ 0) and the starting quadrature weights wn,j (n ≥
0, j = 0, . . . , s; s fixed) do not depend on h.

On the basis of Dahlquist’s theorem on linear multistep methods [46], the proposed convolution
quadrature was proved to be convergent of order � if and only if it is stable and consistent of order �.
An easy way of obtaining such a convolution quadrature is by using an �-th order linear multistep
method to the power α, which gives fractional linear multistep methods. The widely used one is
fractional backward difference formula (the fractional BDF), whose implementations are as follows.

Theorem 1 ([45,47,48]). The convolution quadrature (48) approximates the fractional integral RLD−α
0.x f (x)

with accuracy order O(h�), i.e.,

RLD−α
0,x f (x) = hα

n

∑
j=0

ω�,n−j f (jh) + hα
s

∑
j=0

wn,j f (jh) +O(h�), x = a + nh, (49)

where s is a fixed integer with s ≤ n. Here the convolution coefficients ω�,j are respectively those of the Taylor
series expansions of the corresponding generating functions

W(α)
� (z) =

(
�

∑
k=1

1
k
(1− z)k

)α

=
∞

∑
j=0

ω�,jzj, |z| < 1, (50)

with � being the order of consistency. Technically all the coefficients ω�,j can be computed by using any
implementation of the fast Fourier transform. For the starting weights wn,j, we can consider the fixed s = 0.
In this case, we obtain the Lubich formulae for fractional integrals

RLD−α
0,x f (x) = hα

n

∑
j=0

ω�,n−j f (jh) +O(h�), x = a + nh, (51)
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when f (0) = 0. For s 
= 0, the coefficients wn,j can be constructed such that Equation (49) exactly holds for
power functions. Therefore, we recover

s

∑
j=0

wn,j jq =
Γ(q + 1)

Γ(q + α + 1)
nq+α −

n

∑
j=0

ω�,n−j jq, q = 0, . . . , s, (52)

and it makes sense to choose s = �− 1.

In the case with the lower terminal a 
= 0, we can readily adopt affine transform to modify the
fractional linear multistep methods.

Remark 3. Apart from the choice given by Equation (50), which corresponds to the fractional BDF, there are
alternatives for the generating functions of the convolution coefficients. When we choose

Wα
2 (z) =

(
1
2

1 + z
1− z

)α

(53)

as the generating function, the fractional trapezoidal rule with second order accuracy for α ≥ 0 is obtained.
Let γi (i = 0, 1, 2, . . .) denote the coefficients of

∞

∑
i=0

γi(1− z)i =

(
ln z

z− 1

)−α

, (54)

and set
W̃α

� = (1− z)−α
[
γ0 + γ1(1− z) + · · ·+ γ�−1(1− z)�−1

]
, � = 1, 2, . . . (55)

Then we obtain the generating function for the coefficients of the generalized Newton-Gregory formulae, which
is convergent of order �. Direct calculation gives γ0 = 1 and γ1 = − α

2 . Then the corresponding generating
function for the second order generalized Newton–Gregory formula is given by

W̃α
2 = (1− z)−α

[
1− α

2
(1− z)

]
. (56)

More details for generating functions can be found in Refs. [45,49–51].

2.3. Diffusive Approximation

The above numerical methods may result in expensive computational costs. To eliminate this
deficiency, the diffusive approximation reformulates the model containing the fractional integral as a
system of differential equations.

Recalling the relations

Γ(α) =
∫ ∞

0
e−zzα−1dz, (57)

and
Γ(1− α)Γ(α) =

π

sin(πα)
, (58)

the fractional integral with 0 < α < 1 can be rewritten as [52]

RLD−α
0,x f (x) =

sin(πα)

π

∫ x

0

[∫ ∞

0
e−z

(
z

x− t

)1−α dz
z

]
f (t)dt. (59)

Define the variable transformation z = (x− t)ω2, ω ≥ 0. The Fubini’s Theorem yields

RLD−α
0,x f (x) =

2 sin(πα)

π

∫ ∞

0
ω1−2α

(∫ x

0
e−(x−t)ω2

f (t)dt
)

dω. (60)
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Introducing the auxiliary function

φ(ω, x) =
2 sin(πα)

π
ω1−2α

∫ x

0
e−(x−t)ω2

f (t)dt, (61)

we have

RLD−α
0,x f (x) =

∫ ∞

0
φ(ω, x)dω, 0 < α < 1. (62)

It follows from the definition of φ(ω, x) that the auxiliary function satisfies⎧⎪⎨⎪⎩
∂

∂x
φ(ω, x) =

2 sin(πα)

π
ω1−2α f (x)−ω2φ(ω, x),

φ(ω, 0) = 0.
(63)

In this case, evaluating Riemann–Liouville integral RLD−α
0,x f (x) consists of two steps: solving the

first order differential equation (63), and computing the infinite integral in Equation (62) via suitable
quadratures.

Instead of utilizing the properties of the Gamma function, Chatterjee adopted a popular integral
representation [53,54]

xα−1 =
1

Γ(1− α)

∫ ∞

0
e−zxz−αdz. (64)

Consequently, the Fubini’s Theorem gives

RLD−α
0,x f (x) =

1
Γ(α)

1
Γ(1− α)

∫ ∞

0

(∫ x

0
e−z(x−t) f (t)dt

)
dz
zα

=
sin(πα)

π

∫ ∞

0
g(z, x)z−αdz,

(65)

where g(z, x) is defined as

g(z, x) =
∫ x

0
e−z(x−t) f (t)dt. (66)

In order to generate nonreflecting boundary conditions [55] and accelerate convolutions with the
heat kernel [56], literatures such as Ref. [57] usually recognize

g(z, x) = e−zΔxg(z, x− Δx) + Ψ(z, x, Δx), (67)

where
Ψ(z, x, Δx) =

∫ x

x−Δx
e−z(x−t) f (t)dt. (68)

Alternatively, other literatures have regarded g(z, x) as the solution of a first order ordinary
differential (ODE) equation [52,53,58,59],

dg(z, x)
dx

= −zg(z, x) + f (x), g(z, 0) = 0. (69)

Any approximate method for ODEs can be used to obtain g(z, x), x = Δx, 2Δx, . . ., in an amount
of work that is linear.

The principle difficulty of implementing both approaches lies in the discretization of the integrals
on the right-hand side of Equations (62) and (65). The choices of quadrature nodes and corresponding
weights have been investigated in several literatures, see Refs. [57,60,61] for more details.
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3. Numerical Approximations to Fractional Derivatives

We introduce the existing numerical evaluations to Caputo, Riemann–Liouville, and Riesz
derivatives in this section. The basic ideas of these methods are presented as well.

3.1. Numerical Caputo Differentiation

Caputo derivatives in Equations (6) and (7) can be viewed as Riemann–Liouville fractional
integrals of integer-order derivatives. As a result, most of the numerical evaluations of Caputo
derivatives follow from those of fractional integrals. We derive numerical evaluations of the Caputo
derivative as follows.

3.1.1. L1, L2, and L2C Methods

The well-known L1 method was originally introduced in Ref. [62] to evaluate Riemann–Liouville
derivative with 0 < α < 1, which equivalently reads as

RLDα
a,x f (x) =

(x− a)−α

Γ(1− α)
f (a) +

1
Γ(1− α)

∫ x

a
(x− t)−α f ′(t)dt. (70)

Note that the second term on the right-hand side happens to be Caputo derivative with 0 < α < 1.
That is the reason why we introduce the L1 method when considering numerical approximations to
the Caputo derivative.

Let f (x) ∈ C2[a, b]. On the setting of uniform grids {xk}N
k=0, utilizing the constant f (xk+1)− f (xk)

h
to approximate f ′(x) on each interval [xk, xk+1] yields the following L1 method on uniform grids for
Caputo derivative [62]

[
CDα

a,x f (x)
]

x=xj
=

1
Γ(1− α)

j−1

∑
k=0

∫ xk+1

xk

(xj − t)−α f (xk+1)− f (xk)

h
dt +O(h2−α)

=
j−1

∑
k=0

bj−k−1 [ f (xk+1)− f (xk)] +O(h2−α), 0 < α < 1, 1 ≤ j ≤ N.

(71)

Here the coefficients are given by

bk =
h−α

Γ(2− α)

[
(k + 1)1−α − k1−α

]
, 0 ≤ k ≤ j− 1. (72)

Normally, the L1 method can lead to unconditionally stable algorithms [63–69]. Therefore, it is
frequently used in the discretization of time fractional differential equations. Since the proof for this
scheme available is not very direct or a little cryptic, it is necessary to present clear proof of its truncated
error for reference as it is mostly used.

Theorem 2. Let 0 < α < 1 and f (x) ∈ C2[a, b]. Denote by

[δα
x f (x)]x=xj

=
j−1

∑
k=0

bj−k−1 [ f (xk+1)− f (xk)] , 1 ≤ j ≤ N. (73)

Then it holds that ∣∣∣[δα
x f (x)]x=xj

− [
CDα

a,x f (x)
]

x=xj

∣∣∣ ≤ Ch2−α, (74)

where C is a positive constant given by

C =
1

Γ(2− α)

[
1− α

12
+

22−α

2− α
− (2−α + 1)

]
max

x0≤x≤xj
| f ′′(x)|. (75)
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Proof. Denote

A =
j−1

∑
k=0

f (xk+1)− f (xk)

h

∫ xk+1

xk

dt
(xj − t)α

−
∫ xj

x0

f ′(t)
(xj − t)α

dt. (76)

Then it immediately follows that

|A|
Γ(1− α)

=

∣∣∣∣ j−1

∑
k=0

bj−k−1 [ f (xk+1)− f (xk)]−
[

CDα
a,x f (x)

]
x=xj

∣∣∣∣. (77)

Using the Taylor expansion with integral remainder, we have for t ∈ [xk, xk+1],

f ′(t)− f (xk+1)− f (xk)

h
=

1
h

[∫ t

xk

f ′′(s)(s− xk)ds−
∫ xk+1

t
f ′′(s)(xk+1 − s)ds

]
, (78)

which yields

A =
j−1

∑
k=0

∫ xk+1

xk

[
f ′(t)− f (xk+1)− f (xk)

h

]
(xj − t)−αdt

=
1
h

j−1

∑
k=0

∫ xk+1

xk

[∫ t

xk

f ′′(s)(s− xk)ds−
∫ xk+1

t
f ′′(s)(xk+1 − s)ds

]
dt

(xj − t)α
.

(79)

Exchanging the order of integration gives

A =
1
h

j−1

∑
k=0

∫ xk+1

xk

[∫ t

xk

f ′′(s)(s− xk)ds−
∫ xk+1

t
f ′′(s)(xk+1 − s)ds

]
dt

(xj − t)α

=
1
h

j−1

∑
k=0

[∫ xk+1

xk

f ′′(s)(s− xk)
∫ xk+1

s
(xj − t)−αdtds−

∫ xk+1

xk

f ′′(s)(xk+1 − s)
∫ s

xk

(xj − t)−αdtds
]

=
1

1− α

j−1

∑
k=0

[ ∫ xk+1

xk

f ′′(s) s− xk
h

[
(xj − s)1−α − (xj − xk+1)

1−α
]

ds

−
∫ xk+1

xk

f ′′(s) xk+1 − s
h

[
(xj − xk)

1−α − (xj − s)1−α ]ds
]

=
1

1− α

j−1

∑
k=0

∫ xk+1

xk

f ′′(s)
{
(xj − s)1−α −

[
s− xk

h(xj − xk+1)α−1 +
xk+1 − s

h(xj − xk)α−1

]}
ds.

(80)

In the following, we show that when 0 < α < 1,

∫ xk+1

xk

{
(xj − s)1−α −

[
s− xk

h(xj − xk+1)α−1 +
xk+1 − s

h(xj − xk)α−1

]}
ds ≥ 0 (81)

for 0 ≤ k ≤ j− 1, and

j−1

∑
k=0

∫ xk+1

xk

{
(xj − s)1−α −

[
s− xk

h(xj − xk+1)α−1 +
xk+1 − s

h(xj − xk)α−1

]}
ds < +∞. (82)

Denote g(s) = (xj − s)1−α. Then it holds for any s ∈ (xk, xk+1) that

g(s)−
[

s− xk
h

g(xk+1) +
xk+1 − s

h
g(xk)

]
=

(1− α)(−α)(s− xk)(s− xk+1)

2(xj − ξk)α+1 ≥ 0, (83)
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with certain ξk ∈ (xk, xk+1). As a result, inequality (81) holds. For the inequality (82), one has

j−3

∑
k=0

∫ xk+1

xk

{
g(s)−

[
s− xk

h
g(xk+1) +

xk+1 − s
h

g(xk)

]}
ds

=
j−3

∑
k=0

∫ xk+1

xk

α(1− α)(s− xk)(xk+1 − s)
2(xj − ξk)α+1 ds

≤α(1− α)

2

j−3

∑
k=0

(xj − xk+1)
−α−1

∫ xk+1

xk

(s− xk)(xk+1 − s)ds

≤ h2

12
α(1− α)

j−3

∑
k=0

∫ xk+2

xk+1

(xj − s)−α−1ds

≤1− α

12
h2−α,

(84)

and
j−1

∑
k=j−2

∫ xk+1

xk

{
g(s)−

[
s− xk

h
g(xk+1) +

xk+1 − s
h

g(xk)

]}
ds

=
∫ xj

xj−2

g(s)ds−
[ g(xj−2)

2
+ g(xj−1) +

g(xj)

2

]
h

=
∫ xj

xj−2

g(s)ds−
[ g(xj−2)

2
+ g(xj−1)

]
h

=
∫ xj

xj−2

(xj − s)1−αds−
[
(xj − xj−2)

1−α

2
+ (xj − xj−1)

1−α

]
h

=

[
22−α

2− α
− (2−α + 1)

]
h2−α.

(85)

The above two equalities yield that Equation (82) holds.
Combining the above analysis, one has

0 ≤
j−1

∑
k=0

∫ xk+1

xk

{
(xj − s)1−α −

[
s− xk

h(xj − xk+1)α−1 +
xk+1 − s

h(xj − xk)α−1

]}
ds

≤
[

1− α

12
+

22−α

2− α
− (2−α + 1)

]
h2−α.

(86)

Inserting the above estimate into Equation (80) gives

|A| ≤ 1
1− α

[
1− α

12
+

22−α

2− α
− (2−α + 1)

]
max

x0≤x≤xj
| f ′′(x)|h2−α. (87)

All this ends the proof.

Remark 4. The idea of proving Theorem 2 is borrowed from Ref. [70] where the case with α ∈ (1, 2) was
considered. Such an estimate was also considered in [71].
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Let {x̃i} be any division of [a, b] with a = x̃0 < x̃1 < . . . < x̃n−1 < x̃N = b. Then the classical L1
method is generalized into the L1 method on nonuniform grids for Caputo derivative [72]

[
CDα

a,x f (x)
]

x=x̃j
=

j−1

∑
k=0

bj
k+1 [ f (x̃k+1)− f (x̃k)] +O(h̃2−α

max), (88)

provided that
max

0≤k≤j−1
h̃k

min
0≤k≤j−1

h̃k
≤ C with C being a positive constant. Here h̃k = x̃k+1 − x̃k, h̃max = max

0≤k≤j−1
h̃k,

and the coefficients are given by

bj
k+1 =

1

Γ(2− α)h̃k

[
(x̃j − x̃k)

1−α − (x̃j − x̃k+1)
1−α

]
. (89)

In the special case of nonuniform grids with x̃0 = x0, x̃j = xj− 1
2
=

xj+xj−1
2 , j = 1, 2, . . ., scheme (88)

is reduced to

[
CDα

a,x f (x)
]

x=x̃j+1
= b0 f (x̃j+1)−

j

∑
k=1

(bj−k − bj−k+1) f (x̃k)− Bj f (x̃0) +O(h2−α). (90)

Here the coefficients are given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
bk =

(k + 1)1−α − k1−α

Γ(2− α)hα
, 0 ≤ k ≤ j,

Bj =
2
(

j + 1
2

)1−α − 2j1−α

Γ(2− α)hα
, 0 ≤ j ≤ N.

(91)

Replacing f (x̃k) = f ( xk−1+xk
2 ) with f (xk)+ f (xk−1)

2 yields the following modified L1 method for
Caputo derivative [38]

[
CDα

a,x f (x)
]

x=x
j+ 1

2

=− 1
2

j

∑
k=1

(bj−k − bj−k+1) [ f (xk−1) + f (xk)]

+
b0

2
[

f (xj+1) + f (xj)
]− Bj f (x0) +O(h2−α).

(92)

Remark 5. (I) The modified L1 method (92) is useful to obtain the Crank–Nicolson scheme for the time-fractional
subdiffusion equation [73,74], which can be regarded as a natural extension of the classical Crank–Nicolson
scheme [75].
(II) The (weak) singularity makes it difficult to evaluate fractional derivatives. In this case, approximations such
as Equations (88) and (92) on nonuniform meshes or graded meshes can be utilized. One can refer to [72,76,77]
for more details in this respect.

For the case with 1 < α < 2 and the lower terminal a = 0, there holds

[
CDα

0,x f (x)
]

x=xj
=

1
Γ(2− α)

j−1

∑
k=0

∫ xk+1

xk

t1−α f ′′(xj − t)dt. (93)

Suppose that f (x) ∈ C3[a, b]. Utilizing the central difference scheme

f (xj − xk+1)− 2 f (xj − xk) + f (xj − xk−1)

h2 , (94)
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to approximate f ′′(xj − t) on each interval [xk, xk+1], we have the following L2 method for Caputo
derivative [62] [

CDα
0,x f (x)

]
x=xj

=
1

Γ(3− α)hα

j

∑
k=−1

Wk f (xj−k) +O(h3−α), (95)

in which ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

W−1 = 1, W0 = 22−α − 3,

Wk =
[
(k + 2)2−α − 3(k + 1)2−α + 3k2−α − (k− 1)2−α

]
, 1 ≤ k ≤ j− 2,

Wj−1 = −2j2−α + 3(j− 1)2−α − (j− 2)2−α,

Wj = j2−α − (j− 1)2−α.

(96)

In Ref. [78], the integral
∫ xk+1

xk
t1−α f ′′(xj − t)dt was evaluated in a more symmetric form. For t ∈

[xk−1, xk], if we replace f ′′(xj − t) with the difference

f (xj − xk+2)− f (xj − xk+1) + f (xj − xk−1)− f (xj − xk)

2h2 , (97)

then the L2C method for Caputo derivative

[
CDα

0,x f (x)
]

x=xj
=

1
2Γ(3− α)hα

j+1

∑
k=−1

Ŵk f (xj−k) +O(h3−α) (98)

is obtained. Here the coefficients are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŵ−1 = 1, Ŵ0 = 22−α − 2, Ŵ1 = 32−α − 23−α,

Ŵk =
[
(k + 2)2−α − 2(k + 1)2−α + 2(k− 1)2−α − (k− 2)2−α

]
, 2 ≤ k ≤ j− 2,

Ŵj−1 = 2(j− 2)2−α − j2−α − (j− 3)2−α,

Ŵj = 2(j− 1)2−α − j2−α − (j− 2)2−α,

Ŵj+1 = j2−α − (j− 1)2−α.

(99)

Note that in the above two schemes the value of f (x−1) is needed. We can set f (x−1) = f (x1)

when the condition f ′(0) = 0 is met. For the case with lower terminal a 
= 0, we can utilize affine
transformation before applying the L2 and L2C methods.

Remark 6. The L2 and L2C methods reduce to the backward difference method and the central difference method
for the first order derivative, respectively, when α = 1. If α = 2, the L2 method reduces to the central difference
method for the second order derivative and the L2C method reduces to

d2 f (xk)

dx2 ≈ f (xk+2)− f (xk) + f (xk−1)− f (xk+1)

2h2 (100)

with the first order accuracy. As a matter of fact, the error bound for the L2 method is O(h3−α).
Numerical experiments indicate that the L2 method is more accurate than the L2C method for 1.5 < α < 2,
while the opposite result appears when 1 < α < 1.5. And these two methods behave in almost the same way
near α = 1.5 [78].
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3.1.2. Numerical Methods Based on Polynomial Interpolation

It is evident that the higher-order accuracy can be achieved by utilizing the higher-order
interpolation, provided that f (x) is suitably smooth. In the following, we introduce numerical
approximations in this respect.

(I) (3− α)-th order approximations
Let f (x) ∈ C3[a, b]. For 0 ≤ k ≤ j and 0 < x − xk < h, it follows from Taylor expansions of

f (xk+1), f (xk), and f (xk−1) at x that

f ′(x) =
f (xk+1)− f (xk−1)

2h
+

f (xk+1)− 2 f (xk) + f (xk−1)

h2 (x− xk)

− f (3)(xk)

3!
h2 +

f (3)(xk)

2!
(x− xk)

2 +O
(
(x− xk)

3
)

.

(101)

In this case, we have the following (3− α)-th order approximation [79],

[
CDα

a,x f (x)
]

x=xj
=

1
Γ(1− α)

∫ xj

x0

(xj − t)−α f ′(t)dt (102)

=
h−α

Γ(3− α)

j−1

∑
k=0

{
ω1,j−k [ f (xk+1)− f (xk−1)] + ω2,j−k [ f (xk+1)− 2 f (xk) + f (xk−1)]

}
+ Rj,

where 0 < α < 1, Rj denotes the truncated error, and the coefficients are given by⎧⎪⎨⎪⎩
ω1,j−k =

2− α

2

[
(j− k)1−α − (j− k− 1)1−α

]
,

ω2,j−k =(j− k)2−α − (j− k− 1)2−α − (2− α)(j− k− 1)1−α,
(103)

with 0 ≤ k ≤ j− 1 and 1 ≤ j ≤ N.
Since the above (3− α)-th order method is also widely used, we estimate its truncated error

in detail.

Theorem 3 ([80]). Let 0 < α < 1 and f (x) ∈ C3[a, b]. For the truncated error Rj of approximation (102),
it holds that ∣∣∣Rj

∣∣∣ ≤ ch3−α, 1 ≤ j ≤ N, (104)

with c being a positive constant and f (x−1) in Equation (102) being used.

Proof. It is clear that the truncated error is given by

Rj =− 1
Γ(1− α)

j−1

∑
k=0

∫ xk+1

xk

(xj − t)−α

{
1

2! · 2h

[∫ xk+1

t
(xk+1 − s)2 f (3)(s)ds

−
∫ xk−1

t
(xk−1 − s)2 f (3)(s)ds

]
+

(t− xk)

2h2

[∫ xk+1

t
(xk+1 − s)2 f (3)(s)ds− 2

∫ xk

t
(xk − s)2 f (3)(s)ds

+
∫ xk−1

t
(xk−1 − s)2 f (3)(s)ds

]}
dt.

(105)
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Interchanging the order of integrations yields

Rj =
1

2hΓ(2− α)

j−1

∑
k=0

{ ∫ xk+1

xk

(xk+1 − s)2 f (3)(s)

[
(xj − s)1−α − (xj − xk)

1−α

2

+
(xj − s)1−α(s− xk)

h
+

(xj − s)2−α − (xj − xk)
2−α

h(2− α)

]
ds

+
2
h

∫ xk+1

xk

(xk − s)2 f (3)(s)
[
(xj − xk+1)

1−αh− (xj − s)1−α(s− xk)

+
(xj − xk+1)

2−α − (xj − s)2−α

2− α

]
ds

+
∫ xk+1

xk

(xk−1 − s)2 f (3)(s)

[
(xj − xk+1)

1−α − (xj − s)1−α

2
− (xj − xk+1)

1−α

+
(xj − s)1−α(s− xk)

h
− (xj − xk+1)

2−α − (xj − s)2−α

h(2− α)

]
ds

+
∫ xk

xk−1

(xk−1 − s)2 f (3)(s)
[
(xj − xk+1)

1−α − (xj − xk)
1−α

2

− (xj − xk+1)
2−α − (xj − xk)

2−α

h(2− α)
− (xj − xk+1)

1−α

]
ds

}

=
1

2hΓ(2− α)

j−1

∑
k=0

Sk.

(106)

For k = 0, 1, . . . , j− 1, denote

Bk =
∫ xk

xk−1

(xk−1 − s)2 f (3)(s)
[
(xj − xk+1)

1−α − (xj − xk)
1−α

2

− (xj − xk+1)
2−α − (xj − xk)

2−α

h(2− α)
− (xj − xk+1)

1−α

]
ds,

(107)

and
Ak = Sk − Bk, (108)

where the expression of Ak can be derived from Equations (106) and (107) so is left out due
to lengthiness.

Let l = j− k, k = 0, 1, . . . , j− 1. The affine transformation s = xk−1 + ξh with ξ ∈ [0, 1] yields

Bj−l =h4−α
∫ 1

0
ξ2 f (3)(xj−l−1 + ξh)

[
(l − 1)1−α − l1−α

2
− (l − 1)1−α − (l − 1)2−α − l2−α

2− α

]
dξ

=h4−αbl

∫ 1

0
ξ2 f (3)(xj−l−1 + ξh)dξ, 1 ≤ l ≤ j.

(109)

It is evident that b1 = 1
2−α − 1

2 , and for l ≥ 2,

bl = l1−α
∞

∑
n=2

1
ln

(
1

2n!
− 1

(n + 1)!

)
(−α + 1)α(α + 1) · · · (α + n− 2) ≥ 0. (110)
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Thus, it holds for l ≥ 2 that∣∣∣Bj−l

∣∣∣ = h4−α

∣∣∣∣bl

∫ 1

0
ξ2 f (3)(xj−l−1 + ξh)dξ

∣∣∣∣
≤ h4−α

3
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣ l1−α

∞

∑
n=2

1
ln

(
1

2n!
− 1

(n + 1)!

)
(1− α)α(α + 1) · · · (α + n− 2)

≤ h4−α

3
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣ l1−α

∞

∑
n=2

1
ln

(
1
2
− 1

n + 1

)
1− α

n

≤ h4−α

3
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣ l−1−α

∞

∑
n=2

1
ln−2 ·

1
2
· 1− α

2

≤ h4−α(1− α)

12
l−1−α l

l − 1
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣

≤ h4−α

6
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣ 1− α

l1+α
.

(111)

As a result,∣∣∣∣∣ j−1

∑
k=0

Bk

∣∣∣∣∣ =
∣∣∣∣∣ j

∑
l=1

Bj−l

∣∣∣∣∣ ≤h4−α

{∣∣∣∣b1

∫ 1

0
ξ2 f (3)(xj−2 + ξh)dξ

∣∣∣∣+ j

∑
l=2
|Bl |

}

≤h4−α max
x∈[x−1,xj−1]

∣∣∣ f (3)(x)
∣∣∣ [1

3

(
1

2− α
− 1

2

)
+

1− α

12

j

∑
l=2

l−1−α

]

≤C2 max
x∈[x−1,xj−1]

∣∣∣ f (3)(x)
∣∣∣ h4−α

(112)

with C2 > 0 being a constant.
Note that Ak contains all the terms in Equation (106) with the form of integrals over [xk, xk+1].

Then the affine transformation s = xk + ξh, ξ ∈ [0, 1] and l = j− k, k = 0, 1, . . . , j− 1 yield

Aj−l =h4−α
∫ 1

0
f (3)(xj−l + ξh)

{
− 2

2− α

[
(l − 1)2−α − (l − ξ)2−α

]
+

(1− ξ)2

2− α

[
(l − 1)2−α − l2−α

]
+ 2

[
(l − ξ)1−αξ − (l − 1)1−α

]
+ (1− ξ)2(l − 1)1−α +

(1− ξ)2

2

[
(l − ξ)1−α − l1−α

]
+

(ξ + 1)2

2

[
(l − 1)1−α − (l − ξ)1−α

]}
dξ

=h4−α
∫ 1

0
f (3)(xj−l + ξh)al(ξ)dξ.

(113)

Rewrite al(ξ) in the form

al(ξ) = l1−α
∞

∑
n=2

1
ln ãn(ξ)(−α + 1)α(α + 1) · · · (α + n− 2), (114)

with

ãn(ξ) =
2ξn+1 − 2 + (1− ξ)2

(n + 1)!
+

2− (1− ξ)2 − 1
2 (1 + ξ)2

n!
, n ≥ 2. (115)
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For n ≥ 2, we have ãn(ξ) ≥ 0 for arbitrary ξ ∈ [0, 1]. To see this, recall that⎧⎪⎪⎪⎨⎪⎪⎪⎩
ã′n(ξ) =

2ξn

n!
− 2(1− ξ)

(n + 1)!
+

1− 3ξ

n!
,

ã′′n(ξ) =
2ξn−1

(n− 1)!
+

2
(n + 1)!

− 3
n!

.

(116)

When ξ0 =
(

1
2n + 1

n+1

) 1
n−1 ∈ (0, 1), there hold

ã′′n(ξ0) = 0, (117)

and

ã′′n(ξ)
{

< 0, ξ ∈ [0, ξ0),

≥ 0, ξ ∈ [ξ0, 1],
(118)

Note that ⎧⎪⎨⎪⎩
ã′n(1) = 0,

ã′n(0) =
1
n!
− 2

(n + 1)!
> 0.

(119)

One has ã′n(ξ0) < ã′n(1) = 0, and there exits ξ1 ∈ (0, ξ0) such that ã′n(ξ1) = 0 since ã′n(0) > 0.
Therefore,

ã′n(ξ)
{

> 0, ξ ∈ [0, ξ1),

≤ 0, ξ ∈ [ξ1, 1].
(120)

Since ⎧⎪⎨⎪⎩
ãn(1) = 0,

ãn(0) =
1

2n!
− 1

(n + 1)!
> 0,

(121)

it holds that ãn(ξ) ≥ 0 for arbitrary ξ ∈ [0, 1] when n ≥ 2. As a result,

al(ξ) = l1−α
∞

∑
n=2

1
ln ãn(ξ)(1− α)α(α + 1) · · · (α + n− 1) ≥ 0, 2 ≤ l ≤ j. (122)

Furthermore,

al(ξ) =l1−α
∞

∑
n=2

1
ln

[
2ξn+1 − 2 + (1− ξ)2

(n + 1)!
+

2− (1− ξ)2 − 1
2 (1 + ξ)2

n!

]
(1− α)α(α + 1) · · · (α + n− 1)

≤l1−α
∞

∑
n=2

1
ln

{
2ξ3 − 2 + (1− ξ)2

n + 1
+

[
2− (1− ξ)2 − 1

2
(1 + ξ)2

]}
1− α

n

≤l1−α
∞

∑
n=2

1
ln

(
1

n + 1
35 + 13

√
13

54
+

2
3

)
1− α

n

≤l−1−α(1− α)
143 + 13

√
13

324
1

1− 1
l

.

(123)

Especially, for l ≥ 2,

al(ξ) ≤ l−1−α(1− α)
143 + 13

√
13

162
. (124)
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As a result, it holds that∣∣∣∣∣ j

∑
l=1

Al

∣∣∣∣∣ ≤ h4−α

{∣∣∣∣∫ 1

0
a1(ξ) f (3)(xj−1 + ξh)dξ

∣∣∣∣+ j

∑
l=2
|Al |

}

≤h4−α max
x∈[x0,xj ]

∣∣∣ f (3)(x)
∣∣∣ {∫ 1

0
a1(ξ)dξ +

j

∑
l=2

∫ 1

0
al(ξ)dξ

}

≤h4−α max
x∈[x0,xj ]

∣∣∣ f (3)(x)
∣∣∣ [ 2

(2− α)(3− α)
− 1

3(2− α)
− 1

6
+

j

∑
l=2

l−1−α(1− α)
31
√

13 + 125
162

]

≤C1 max
x∈[x0,xj ]

∣∣∣ f (3)(x)
∣∣∣ h4−α,

(125)

with C1 > 0 being a constant. Consequently, the truncated error has the bound

∣∣∣Rj
∣∣∣ =

1
2hΓ(2− α)

∣∣∣∣∣ j−1

∑
k=0

(Ak + Bk)

∣∣∣∣∣
≤ 1

2hΓ(2− α)

{∣∣∣∣∣ j

∑
l=1

Aj−l

∣∣∣∣∣+
∣∣∣∣∣ j

∑
l=1

Bj−l

∣∣∣∣∣
}

≤ h3−α

2Γ(2− α)

{
C1 max

x∈[x0,xj ]

∣∣∣ f (3)(x)
∣∣∣+ C2 max

x∈[x−1,xj−2]

∣∣∣ f (3)(x)
∣∣∣} .

(126)

Note that the derivative f (3)(x) with x ∈ [x−1, x0] is needed in the above inequality. In this case,
f (3)(xk) with k ≥ 0 can be utilized to approximate f (3)(x) when x ∈ [x−1, x0] and then f (3)(x) is
bounded on [x−1, x0]. Consequently, the desired estimate is obtained.

Remark 7. In formula (102), f (x−1) is defined outside of [a, b]. In numerical calculation, we can approximate
f (x−1) based on the relation f (x−1) = f (a) − h f ′(a) + h2

2 f ′′(a) + O(h3). When f ′(a) = f ′′(a) = 0,
then f (x−1) = f (a) + O(h3), and we have Rj = O(h3−α). When f ′(a) = 0 and f ′′(a) 
= 0, then
f (x−1) = f (a) + h2

2 f ′′(a) +O(h3), and Rj = O(h2). If f ′(a) 
= 0, then Rj = O(h).

Example 3 ([79]). Consider the function f (x) = x4, x ∈ [0, 1]. Evaluate its Caputo derivative at x = 1 by
formula (102). Absolute error (AE) and convergence order (CO) are shown in Table 3. It is obvious that the
convergence order is (3− α), which is in line with the theoretical analysis.

Table 3. Numerical results for Example 3.

α h AE CO α h AE CO

0.2

1
10 0.0015 -

0.6

1
10 0.0139 -

1
40 3.7575×10−5 2.6809 1

40 5.4517×10−4 2.3606
1

160 8.6640×10−7 2.7289 1
160 2.0146×10−5 2.3846

0.4

1
10 0.0052 -

0.8

1
10 0.0331 -

1
40 1.6158×10−4 2.5282 1

40 0.0017 2.1414
1

160 4.6455×10−6 2.5676 1
160 8.1011×10−5 2.1910
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In Ref. [81], another (3− α)-th order approximation was proposed. Denote⎧⎪⎪⎨⎪⎪⎩
δx fj− 1

2
=

f (xj)− f (xj−1)

h
, j ≥ 1

δ2
x fj =

1
h

(
δx fj+ 1

2
− δx fj− 1

2

)
, j ≥ 1.

(127)

Let f (x) ∈ C3[a, b] and 0 < α < 1. We utilize the linear interpolation

P1,k(x) = f (xk−1)
xk − x

h
+ f (xk)

x− xk−1
h

, (128)

on the first interval [x0, x1], and the quadratic interpolation

P2,k(x) =
2

∑
l=0

f (xk−l)
2

∏
i=0
i 
=l

x− xk−i
xk−l − xk−i

= P1,k(x) +
1
2

(
δ2

x fk−1

)
(x− xk−1)(x− xk) (129)

on the remaining intervals [xk−1, xk] (k ≥ 2) to approximate f (x). Denote xj+ 1
2
=

xj+1+xj
2 , j ≥ 0.

We obtain the following L1-2 formula [81]

[
CDα

a,x f (x)
]

x=xj
=

1
Γ(1− α)

[∫ x1

x0

(P1,1(t))
′

(xj − t)α
dt +

j

∑
k=2

∫ xk

xk−1

(P2,k(t))
′

(xj − t)α
dt

]
+ Rj

=
1

Γ(1− α)

⎧⎨⎩ j

∑
k=2

∫ xk

xk−1

δx fk− 1
2
+

(
δ2

x fk−1
)
(t− xk− 1

2
)

(xj − t)α
dt + δx f 1

2

∫ x1

x0

dt
(xj − t)α

⎫⎬⎭+ Rj

=
h−α

Γ(2− α)

[
c(α)0 f (xj)−

j−1

∑
k=1

(
c(α)j−k−1 − c(α)j−k

)
f (xk)− c(α)j−1 f (x0)

]
+ Rj,

(130)

with the truncated errors R1 = O(h2−α) and Rj = O(h3−α), j ≥ 2. The coefficient c(α)0 = 1 when j = 1.
For j ≥ 2, the coefficients are give by

c(α)k =

⎧⎪⎪⎨⎪⎪⎩
a(α)0 + b(α)0 , k = 0,

a(α)k + b(α)k − b(α)k−1, 1 ≤ k ≤ j− 2,

a(α)k − b(α)k−1, k = j− 1

(131)

with
a(α)k = (k + 1)1−α − k1−α, 0 ≤ k ≤ j− 1, (132)

and

b(α)k =
(k + 1)2−α − k2−α

2− α
− (k + 1)1−α + k1−α

2
, 0 ≤ k ≤ j− 2. (133)

Numerical results in Ref. [81] imply that the computational errors given by the L1-2 formula are
obviously much smaller than those of the L1 formula.

Modifying the above L1-2 formula, Alikhanov proposed an overall (3− α)-th order approximation.
Let σ = 1− α

2 with 0 < α < 1, then the Caputo derivative of f (x) ∈ C3[a, b] at xj+σ = a + (j + σ)h
with 0 ≤ j ≤ N − 1 can be expressed by

[
CDα

0,x f (x)
]

x=xj+σ
=

1
Γ(1− α)

[
j

∑
k=1

∫ xk

xk−1

f ′(t)dt
(xj+σ − t)α

+
∫ xj+σ

xj

f ′(t)dt
(xj+σ − t)α

]
. (134)
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Applying the quadratic interpolation

Π2,k f (x) = f (xk−1)
(x− xk)(x− xk+1)

2h2 − f (xk)
(x− xk−1)(x− xk+1)

h2

+ f (xk+1)
(x− xk−1)(x− xk)

2h2 , x ∈ [xk−1, xk], 1 ≤ k ≤ j,

(135)

which is different from the one defined in Equation (129) to approximating f (x), and utilizing the

expression f ′(t) ≈ f (xj+1)− f (xj)

h on the interval [xj, xj+σ], we obtain the L2-1σ formula [82]

[
CDα

a,x f (x)
]

x=xj+σ
=

h−α

Γ(2− α)

j

∑
k=0

c(α,σ)
j−k [ f (xk+1)− f (xk)] +O(h3−α) (136)

with 0 ≤ j ≤ N − 1. Here c(α,σ)
0 = a(α,σ)

0 when j = 0, and for j ≥ 1,

c(α,σ)
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(α,σ)

0 + b(α,σ)
1 , k = 0,

a(α,σ)
k + b(α,σ)

k+1 − b(α,σ)
k , 1 ≤ k ≤ j− 1,

a(α,σ)
j − b(α,σ)

j , k = j,

(137)

with a(α,σ)
k and b(α,σ)

k given by⎧⎨⎩a(α,σ)
0 = σ1−α,

a(α,σ)
k = (k + σ)1−α − (k + σ− 1)1−α, k ≥ 1,

(138)

and

b(α,σ)
k =

(k + σ)2−α − (k + σ− 1)2−α

2− α
− (k + σ)1−α + (k + σ− 1)1−α

2
. (139)

The comparison between the L2-1σ and L1-2 methods in Ref. [82] shows that the L2-1σ formula refines
the accuracy indeed.

Remark 8 ([80]). The L2-1σ formula for the right-sided Caputo derivative can be derived in a similar manner.
In this case, the parameter should be chosen as σ = α

2 , α ∈ (0, 1). The corresponding approximation is given by

[
CDα

x,b f (x)
]

x=xj+σ

=
h−α

Γ(2− α)

N−1

∑
k=j

c̃(α,σ)
k−j [ f (xk)− f (xk+1)] +O(h3−α) (140)

with 0 ≤ j ≤ N − 1. Here the coefficients are given by

c̃(α,σ)
0 = −ã(α,σ)

0 , (141)

if j = N − 1, and for 0 ≤ j < N − 1,

c̃(α,σ)
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b̃(α,σ)

1 , k = 0,

b̃(α,σ)
k+1 − b̃(α,σ)

k , 1 ≤ k ≤ N − j− 2,

−ã(α,σ)
N−j−1 − b̃(α,σ)

N−j−1, k = N − j− 1,

(142)

where
ã(α,σ)

k = (k + 1− σ)1−α, (143)
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and

b̃(α,σ)
k =

(k + 1− σ)1−α − (k− σ)1−α

2
− (k + 1− σ)2−α − (k− σ)2−α

2− α
. (144)

For other (3− α)-th order approximations to Caputo derivative based on interpolation, one may
refer to Refs. [83,84].

(II) (4− α)-th order approximation
Let 0 < α < 1 and f (x) ∈ C4[x0, xj]. A linear interpolation of f (x) on the first subinterval [x0, x1]

yields

∫ x1

x0

(xj − t)−α f ′(t)dt ≈ f (x1)− f (x0)

h

∫ x1

x0

(xj − t)−αdt =
aj−1

hα(1− α)
[ f (x1)− f (x0)] (145)

with aj−1 = j1−α − (j− 1)1−α. On the second subinterval [x1, x2], we similarly obtain

∫ x2

x1

(xj − t)−α f ′(t)dt ≈ h−α

1− α

[
(aj−2 + bj−2) f (x2)− (aj−2 + 2bj−2) f (x1) + bj−2 f (x0)

]
(146)

through the quadratic interpolation, where⎧⎪⎨⎪⎩
aj−2 =(j− 1)1−α − (j− 2)1−α,

bj−2 =
(j− 1)2−α − (j− 2)2−α

2− α
− (j− 1)1−α + (j− 2)1−α

2
.

(147)

For the remaining subintervals, we use the cubic interpolation function

p3(x) =
3

∑
l=0

f (xk−l)
3

∏
i=0,i 
=l

x− xk−i
xk−l − xk−i

, x ∈ [xk−1, xk], k ≥ 3, (148)

to approximate f (x). Consequently, it holds that

1
Γ(1− α)

j

∑
k=3

∫ xk

xk−1

f ′(t)
(xj − t)α

dt ≈ 1
Γ(1− α)

j

∑
k=3

∫ xk

xk−1

(xj − t)−α p′3(t)dt

=
h−α

Γ(2− α)

j

∑
k=3

[
ω1,j−k f (xk) + ω2,j−k f (xk−1) + ω3,j−k f (xk−2) + ω4,j−k f (xk−3)

]
, j ≥ 3,

(149)

where the coefficients are given by

ω1,j−k =
2(j− k + 1)1−α − 11(j− k)1−α

6
− 2(j− k)2−α − (j− k + 1)2−α

2− α
− (j− k)3−α − (j− k + 1)3−α

(2− α)(3− α)
,

ω2,j−k =
6(j− k)1−α + (j− k + 1)1−α

2
+

5(j− k)2−α − 2(j− k + 1)2−α

2− α
+

3(j− k)3−α − 3(j− k + 1)3−α

(2− α)(3− α)
,

ω3,j−k =− 3(j− k)1−α + 2(j− k + 1)1−α

2
− 4(j− k)2−α − (j− k + 1)2−α

2− α
− (j− k)3−α − (j− k + 1)3−α

(2− α)(3− α)
,

ω4,j−k =
2(j− k)1−α + (j− k + 1)1−α

6
+

(j− k)2−α

2− α
+

(j− k)3−α − (j− k + 1)3−α

(2− α)(3− α)
, 3 ≤ j ≤ N.

In view of the above analysis, we obtain the numerical approximation [85]

[
CDα

a,x f (x)
]

x=xj
=

1
Γ(1− α)

j

∑
k=1

∫ xk

xk−1

f ′(t)
(xj − t)α

dt =
h−α

Γ(2− α)

j

∑
k=0

gk f (xj−k) + Rj, 0 < α < 1. (150)
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The coefficients gk have different values for different j. When j = 1,

g0 = a0, g1 = −a0. (151)

When j = 2, ⎧⎪⎪⎨⎪⎪⎩
g0 = a0 + b0,

g1 = a1 − a0 − 2b0,

g2 = b0 − a1.

(152)

When j = 3, ⎧⎪⎪⎨⎪⎪⎩
g0 = ω1,0, g1 = ω2,0 + a1 + b1,

g2 = ω3,0 + a2 − a1 − 2b1,

g3 = ω4,0 − a2 + b1.

(153)

When j = 4, ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g0 = ω1,0, g1 = ω1,1 + ω2,0,

g2 = ω2,1 + ω3,0 + a2 + b2,

g3 = ω3,1 + ω4,0 + a3 − a2 − 2b2,

g4 = ω4,1 − a3 + b2.

(154)

When j = 5, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0 = ω1,0, g1 = ω1,1 + ω2,0,

g2 = ω1,2 + ω2,1 + ω3,0,

g3 = ω2,2 + ω3,1 + ω4,0 + a3 + b3,

g4 = ω3,2 + ω4,1 + a4 − a3 − 2b3,

g5 = ω4,2 − a4 + b3.

(155)

When j ≥ 6, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0 = ω1,0, g1 = ω1,1 + ω2,0,

g2 = ω1,2 + ω2,1 + ω3,0,

gk = ω1,k + ω2,k−1 + ω3,k−2 + ω4,k−3, 3 ≤ k ≤ j− 3,

gj−2 = aj−2 + bj−2 + ω2,j−3 + ω3,j−4 + ω4,j−5,

gj−1 = ω3,j−3 + ω4,j−4 + aj−1 − aj−2 − 2bj−2,

gj = ω4,j−3 − aj−1 + bj−2.

(156)

If f (x) ∈ C4[x0, xj] and α ∈ (0, 1), the truncated error Rj in Equation (150) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣R1
∣∣∣ ≤ c1 max

x0≤x≤x1

∣∣ f ′′(x)
∣∣ h2−α, c1 > 0,∣∣∣R2

∣∣∣ ≤ c2 max
x0≤x≤x2

∣∣ f ′′′(x)
∣∣ h3−α, c2 > 0,

∣∣∣Rj
∣∣∣ ≤ 1

Γ(1− α)

{
2α

3
max

x0≤x≤x2

∣∣ f ′′′(x)
∣∣ (xj − x2)

−α−1h4

+

[
1
12

+
3α2

2(1− α)(2− α)

]
max

x0≤x≤xj

∣∣∣ f (4)(x)
∣∣∣ h4−α

}
, j ≥ 3.

(157)
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Numerical examples in Ref. [85] verify the above theoretical results.

Example 4. Suppose that 0 < α < 1 and f (x) = x4. Evaluate the α-th order Caputo derivative of f (x) at
x = 1 by Equation (150). Maximum errors (ME) and convergence order (CO) are presented in Table 4.

Table 4. Numerical results for Example 4.

α h ME CO α h ME CO

0.2

1
10 1.2176×10−4 -

0.6

1
10 1.0943×10−3 -

1
40 6.9376×10−7 3.7336 1

40 9.9598×10−6 3.3918
1

160 3.8404×10−9 3.7528 1
160 8.9946×10−8 3.3963

0.4

1
10 4.1401×10−4 -

0.8

1
10 2.6315×10−3 -

1
40 2.9349×10−6 3.5741 1

40 3.1265×10−5 3.1982
1

160 2.0437×10−8 3.5855 1
160 3.7065×10−7 3.1994

Example 5. Let f (x) = e2x. We evaluate Caputo derivative of f (x) at x = 1 by utilizing Equation (150).
The maximum errors (ME) and convergence order (CO) are shown in Table 5.

Table 5. Numerical results for Example 5.

α h ME CO α h ME CO

0.2

1
10 4.9025×10−4 -

0.6

1
10 4.2309×10−3 -

1
40 3.8638×10−6 3.5125 1

40 4.6839×10−5 3.2902
1

160 3.1440×10−8 3.4447 1
160 4.5469×10−7 3.3536

0.4

1
10 1.6156×10−3 -

0.8

1
10 1.0190×10−2 -

1
40 1.4478×10−5 3.4371 1

40 1.4521×10−4 3.1086
1

160 1.1851×10−7 3.4669 1
160 1.8089×10−6 3.1747

(III) (r + 1− α)-th order approximation
Generalizing the above (4− α)-th order approximation, an (r+ 1− α)-th order approximation was

proposed in Ref. [86] by virtue of the Lagrange polynomials of degree r. Let f (x) ∈ Cr[a, b] (r ≥ 4) and
0 < α < 1. On the subintervals [xk−1, xk], j ≥ k ≥ r, N ≥ j ≥ r, we utilize the Lagrange polynomial

pr(x) =
r

∑
l=0

f (xk−l)
r

∏
i=0,i 
=l

x− xk−i
xk−l − xk−i

, x ∈ [xk−1, xk], (158)

to approximate f (x). Denote

Ik[pr(x)] =
1

Γ(1− α)

∫ xk

xk−1

(xj − t)−α p′r(t)dt. (159)

Then it holds that

1
Γ(1− α)

∫ xk

xk−1

f ′(t)
(xj − t)α

dt ≈ Ik[pr(x)]

=
1

Γ(1− α)

r

∑
l=0

(−1)l f (xk−l)

l!(r− l)!hr

∫ xk

xk−1

(xj − t)−α

[
r

∏
i=0,i 
=l

(t− xk−i)

]′
dt

=
h−α

Γ(1− α)

r

∑
l=0

ωr
l,j−k f (xk−l).

(160)
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To compute the coefficients ωr
i,j−k, we denote by

as
k = sk−α, bs

k = (s + 1)k−α, pk =
k

∏
l=1

(l − α), (161)

and

αk
j,i =

{
φk

j,i, k 
= 0,

1, k = 0,
βk

j,i =

{
ψk

j,i, k 
= 0,

1, k = 0.
(162)

Here φk
j,i and ψk

j,i are the sums of products of all different combinations of k elements in
the sets Aj,i = {ā|ā ∈ [0, j− 1], ā 
= i, ā ∈ Z}, and Bj,i = {b̄|b̄ ∈ [−1, j − 2], b̄ 
= i − 1, b̄ ∈ Z},
respectively. Then

ωr
i,j−k =

(−1)i+1

i!(r− i)!

r

∑
l=1

[
l!
pl

(
αr−l

r+1,i aj−k
l − βr−l

r+1,i bj−k
l

)]
, 0 ≤ i ≤ r− 1. (163)

On the subinterval [xk−1, xk], 1 < k < r, 1 ≤ j ≤ N, there are no enough nodes to obtain
an r-th degree Lagrange polynomial. In this case, we use Ik[pk(x)] to approximate the integral

1
Γ(1−α)

∫ xk
xk−1

(xj − t)−α f ′(t)dt. In summary, we obtain the following approximation [86]

[
CDα

a,x f (x)
]

x=xj
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j

∑
k=1

Ik[pk(x)] + Rj
r, j < r,

r−1
∑

k=1
Ik[pk(x)] +

j
∑

k=r
Ik[pr(x)] + Rj

r, r ≤ j ≤ N,
(164)

with Rj
r being the truncated error. It has been proved that when f (x) ∈ Cr[a, b] (r ≥ 4), the truncation

error satisfies

(1)
∣∣R1

r
∣∣ ≤ c1 max

x0≤x≤x1

∣∣∣ f (2)(x)
∣∣∣ h2−α, c1 > 0;

(2)
∣∣R2

r
∣∣ ≤ c2 max

x0≤x≤x2

∣∣∣ f (3)(x)
∣∣∣ h3−α, c2 > 0;

(3) If f (1)(a) = f (2)(a) = 0, then
∣∣R3

r
∣∣ ≤ c3 max

x0≤x≤x3

∣∣∣ f (4)(x)
∣∣∣ h4−α, c3 > 0;

(4) Provided that f (k)(a) = 0 for 0 < k ≤ j, then∣∣∣Rj
r

∣∣∣ ≤ cj max
x0≤x≤xj

∣∣∣ f (j+1)(x)
∣∣∣ hj+1−α, 2 < j < r, cj > 0;

(5) Provided that f (k)(a) = 0 for 0 ≤ k ≤ r− 1, then∣∣∣Rj
r

∣∣∣ = α

Γ(1− α)

[
1

r + 1

(
1
α
+

1
(1− α)(2− α)

)
max

x0≤x≤xj

∣∣∣ f (r+1)(x)
∣∣∣ hr+1−α

+
r−1

∑
k=1

(xj − xr−1)
−α−1(r− 1)r−1

(r− k− 1)!(k + 1)
max

x0≤x≤xj

∣∣∣ f (r)(x)
∣∣∣ hr+1

]
, j ≥ r.

Numerical examples in Ref. [86] verify the above theoretical results.

Example 6. Suppose 0 < α < 1, and let f (x) = x6, x ∈ [0, 1]. Use scheme (164) to compute Caputo derivative
of f (x) at x = 1 with different stepsizes. Table 6 lists the computational errors and convergence orders at x = 1
with different values for α, and r = 4, 5. It can be observed that the numerical convergence order of the utilized
scheme is (r + 1− α).
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Table 6. Numerical results for Example 6.

α h Errors (r = 4) Order Errors (r = 5) Order

0.2

1
40 3.4260×10−7 - 7.5843×10−9 -
1

50 1.2040×10−7 4.6900 2.0999×10−9 5.7583
1

60 5.1128×10−8 4.7001 7.3082×10−10 5.8067

0.4

1
40 1.5377×10−6 - 3.3066×10−8 -
1

50 5.5973×10−7 4.5319 9.5097×10−9 5.5862
1

60 2.4468×10−7 4.5408 3.4281×10−9 5.6014

0.8

1
40 1.7551×10−5 - 3.7712×10−7 -
1

50 6.9402×10−6 4.1604 1.1820×10−7 5.1992
1

60 3.2473×10−6 4.1673 4.5817×10−8 5.1977

Example 7. Suppose 0 < α < 1, and consider the function f (x) = e2x − 2x− 2x2 − 4
3 x3 − 2

3 x4, x ∈ [0, 1].
Table 7 lists the numerical results with different values for α, and r = 4, 5. It is evident that scheme (164) can
reach (r + 1− α)-th order accuracy.

Table 7. Numerical results for Example 7.

α h Errors (r = 4) Order Errors (r = 5) Order

0.2

1
26 7.7151×10−7 - 4.7095×10−8 -
1

28 5.4884×10−7 4.5977 3.1083×10−8 5.6001
1

30 3.9948×10−7 4.6064 2.1014×10−8 5.7337

0.4

1
26 3.2710×10−6 - 1.9686×10−7 -
1

28 2.3542×10−6 4.4402 1.3170×10−7 5.4275
1

30 1.7322×10−6 4.4490 9.0617×10−8 5.4056

0.8

1
26 3.2210×10−5 - 1.9644×10−6 -
1

28 2.3819×10−5 4.0750 1.3521×10−6 5.0431
1

30 1.7973×10−5 4.0832 9.5398×10−7 5.0602

Remark 9. The (3 − α)-th, (4 − α)-th, and (r + 1 − α)-th order numerical schemes established in
Refs. [79,85,86] are of unconditional stability in the practical sense when solving fractional differential equations.
In other words, numerical schemes for fractional differential equations based on these approximations are stable
only if α lies in their respective subsets of the interval (0, 1). On the other hand, there are some other interesting
methods in this respect. See [87,88] for more details.

(IV) Spectral approximations
Let m − 1 < α < m ∈ Z+ and f (x) ∈ Hr[a, b] with r ≥ 2m. Now we introduce spectral

approximations to Caputo derivative [42,44]. Here we take the Jacobi approximation as a representative
example since the others such as Chebyshev approximation are special cases of the Jacobi one.
Let the polynomial

pN(x) =
N

∑
j=0

p̃u,v
j Pu,v

j (x), x ∈ [−1, 1] (165)

be an approximation of f (x) based on the Jacobi polynomials. Recall that⎧⎪⎪⎨⎪⎪⎩
dm

dxm Pu,v
j (x) = du,v

j,mPu+m,v+m
j−m (x), j ≥ m ∈ Z+,

du,v
j,m =

Γ(j + m + u + v + 1)
2mΓ(j + u + v + 2)

.
(166)
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It holds that

CDα
−1,x pN(x) =

1
Γ(m− α)

∫ x

−1
(x− t)m−α−1

N

∑
j=m

p̃u,v
j du,v

j,mPu+m,v+m
j−m (t)dt

=
N

∑
j=m

p̃u,v
j du,v

j,mP̂u+m,v+m,m−α
j−m (x),

(167)

where p̃u,v
j and P̂u+m,v+m,m−α

j (x) are defined by Equations (32) and (36). Denote

Du,v,α,m
j (x) = du,v

j,mP̂u+m,v+m,m−α
j−m (x) (168)

with Du,v,α,m
j (x) = 0 for 0 ≤ j ≤ m− 1. Then it holds that

CDα
−1,x f (x) ≈ CDα

−1,x pN(x) =
n

∑
j=m

p̃u,v
j Du,v,α,m

j (x), x ∈ [−1, 1]. (169)

The affine transformation x̂ = 2x−a−b
b−a with x ∈ [a, b] yields

CDα
a,x f (x) ≈

(
b− a

2

)−α N

∑
j=m

p̃u,v
j Du,v,α,m

j (x̂). (170)

For the corresponding differential matrix, see Ref. [44] for more details.
The following numerical examples verify the efficiency of the spectral approximation.

Example 8 ([42]). Let f (x) = xμ, x ∈ [0, 1]. We use formula (170) to compute CDα
0,x f (x). Table 8 shows the

absolute maximum errors at the Jacobi-Gauss-Lobatto points. The spectral accuracy is obtained.

Table 8. The absolute errors for Example 8.

u = v = 0, μ = 3.5
n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

20 2.49×10−9 2.90×10−8 1.99×10−7 6.63×10−6 1.92×10−5 2.67×10−5

40 2.70×10−11 4.73×10−10 4.88×10−9 2.81×10−7 1.22×10−6 2.55×10−6

80 2.88×10−13 7.62×10−12 1.19×10−10 1.18×10−8 7.77×10−8 2.44×10−7

u = v = − 1
2 , μ = 3.5

n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

20 2.12×10−9 2.11×10−8 1.62×10−7 5.37×10−6 1.86×10−5 3.95×10−5

40 2.15×10−11 3.22×10−10 3.77×10−9 2.17×10−7 1.14×10−6 3.66×10−6

80 2.20×10−13 5.00×10−12 8.89×10−11 8.92×10−9 7.10×10−8 3.45×10−7

Example 9 ([42]). Let f (x) = sin x, x ∈ [0, 1]. We utilized Equation (170) to evaluate CDα
0,x f (x). Table 9

presents the absolute maximum errors for the cases of u = v = 0 and u = v = − 1
2 . The expected results can

be observed.
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Table 9. The absolute errors for Example 9.

u = v = 0
n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

4 1.05×10−5 6.17×10−5 2.31×10−4 1.02×10−3 2.18×10−3 5.66×10−3

8 1.48×10−11 1.08×10−10 5.96×10−10 4.14×10−9 1.47×10−8 5.33×10−8

16 3.22×10−15 1.91×10−14 9.29×10−14 6.39×10−13 2.45×10−12 9.03×10−12

u = v = − 1
2

n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

4 1.34×10−5 5.66×10−5 1.95×10−4 9.93×10−4 2.05×10−3 5.40×10−3

8 1.98×10−11 1.04×10−10 3.92×10−10 3.34×10−9 1.15×10−8 4.34×10−8

16 4.44×10−16 1.22×10−15 7.55×10−15 4.40×10−14 2.32×10−13 9.82×10−13

(V) Radial basis function discretization
Being a natural generalization of univariate polynomial splines to a multivariate setting, radial

basis functions work for arbitrary geometry with high dimensions and it does not require a mesh
at all [89]. Numerically solving fractional differential equations based on radial basis functions has
attracted sustained attention in engineering and science community. See [90–93] and references cited
therein. In [94], radial basis functions are utilized to evaluate fractional differential operators. In the
following, we introduce the basic idea of this method.

Take the one-dimensional case as an example. Let xj (j = 1, 2, . . . , N) be the collocation points in
the interval [a, b]. An radial basis function interpolant of a given function f (x) is defined in the form

f (x) ≈ S(x) =
N

∑
j=1

λjφ(|x− xj|). (171)

In order to take the values f (xi), i = 1, 2, . . . , N, the expansion coefficients λj are required to
satisfy the matrix form

A�λ = �f (172)

with �λ = (λ1, λ2, . . . , λN)
�, �f = ( f (x1), f (x2), . . . , f (xN))

�, and Aij = φ(|xi − xj|). Here φ(·) is the
radial basis function. Some popular choices of radial basis function are cubic (φ(r) = r3), multiquadrics
(φ(r) =

√
r2 + c2), and Gaussian (φ(r) = e−cr2

), where the free parameter c is called the shape
parameter for the radial basis function. The smooth radial functions (such as multiquadrics and
Gaussian) give rise to spectrally accurate function representation while the piecewise smooth radial
functions (such as cubic) only produce algebraically accurate representations [94]. Applying the
Caputo differentiation operator to (171) yields

N

∑
j=1

λj CDα
a,xφ(|x− xj|)

∣∣
x=xi

≈ g(xi), 1 ≤ i ≤ N, (173)

which can be written in the matrix form
B�λ ≈ �g (174)

with Bi,j = CDα
a,xφ(|x− xj|)

∣∣
x=xi

and �g = (g(x1), g(x2), . . . , g(xN))
�. Here g(xi) is the value of

CDα
a,x f (x) at the point x = xi. Note that the collocation matrix A is unconditionally nonsingular [94].

Combing equations (172) and (174) gives

�g ≈ BA−1�f . (175)

Therefore, the differential matrix D = BA−1 yields an radial basis function discretiazation of the
operator CDα

a,x.
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Remark 10. (I) The above procedure of deriving differential matrix based radial basis functions is applicable for
other fractional differentiation operators as well.
(II) Finding a closed form analytical expression for the fractional derivative of a given function may be challenging.
In practice, one has to represent the radial basis function in the form of Taylor series before applying fractional
differentiation operator term by term. Then the infinite sum can be truncated once the terms are smaller in
magnitude than machine precision.
(III) The standard radial basis function methods may result in ill-conditioning which often impairs the
convergence. To offset this deficiency, the so-called RBF-QR method can be utilized instead of the standard one.
See Ref. [94] for more details.

3.1.3. Fractional Backward Difference Formulae

It has been mentioned in Ref. [45] that the fractional linear multistep method is applicable for
numerical Riemann-Liouville differentiation, provided that the generating functions are properly
chosen. We can therefore derive fractional backward multistep methods for Caputo derivative, on the
basis of the relation ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CDα
a,x f (x) =RLDα

a,x f (x)−
m−1

∑
k=0

f (k)(a)(x− a)k−α

Γ(1 + k− α)
,

CDα
x,b f (x) =RLDα

x,b f (x)−
m−1

∑
k=0

(−1)k f (k)(b)(b− x)k−α

Γ(1 + k− α)
,

(176)

where m − 1 < α < m ∈ Z+. In Ref. [95], shifted fractional backward difference formulae for
Caputo derivative were derived through three steps. Shifted Lubich formulae for Riemann–Liouville
derivative on bounded domain were first introduced for the case with homogeneous conditions.
At that stage, generating functions of the coefficients were constructed to maintain high-order accuracy.
By virtue of adopting suitable auxiliary functions, the shifted formulae were modified for the case with
inhomogeneous conditions. Finally, the shifted formulae for Caputo derivative are obtained based on
relation (176). Theoretical results which can be proved through Fourier analysis are as follows.

Theorem 4. Suppose that f (x) ∈ C[α]+3[a, b], and that the derivatives of f (x) up to order [α] + 4 belong to
L1[a, b]. Then there hold

[
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ζ
(α)
2,p,k f (xj−k+p) +O(h2), 0 < α < 1, (177)

and [
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ξ
(α)
2,p,k f (xj−k+p) +O(h2), 1 < α < 2, (178)

where the weights ζ
(α)
2,p,k and ξ

(α)
2,p,k (k = 0, 1, . . .) are given by

ζ
(α)
2,p,k =

⎧⎪⎨⎪⎩
�
(α)
2,p,k, k = 0, 1, . . . , j + p− 1,

−
j+p−1

∑
l=0

�
(α)
2,p,l , k = j + p,

(179)
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and,

ξ
(α)
2,p,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(α)
2,p,k, k = 0, 1, . . . , j + p− 3,

�
(α)
2,p,j+p−2 +

1
2

j+p
∑

l=0
�
(α)
2,p,l(j− l + p), k = j + p− 2,

�
(α)
2,p,j+p−1 − 2

j+p
∑

l=0
�
(α)
2,p,l(j− l + p), k = j + p− 1,

−
j+p−1

∑
l=0

�
(α)
2,p,l +

3
2

j+p
∑

l=0
�
(α)
2,p,l(j− l + p), k = j + p.

(180)

Here the shift p ≤ 3α
2 , and the coefficients �

(α)
2,p,k (0 ≤ k ≤ j + p) are given by

ω
(α)
2,p (z) =

(
3α− 2p

2α
− 2(α− p)

α
z +

α− 2p
2α

z2
)α

=
∞

∑
k=0

�
(α)
2,p,kzk, |z| < 1. (181)

Theorem 5. Suppose that f (x) ∈ C[α]+4[a, b], and that the derivatives of f (x) up to order [α] + 5 belong to
L1[a, b]. Then the third order schemes are given by

[
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ζ
(α)
3,p,k f (xj−k+p) +O(h3), 0 < α < 1, (182)

and [
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ξ
(α)
3,p,k f (xj−k+p) +O(h3), 1 < α < 2, (183)

where the weights ζ
(α)
3,p,k and ξ

(α)
3,p,k (k = 0, 1, . . .) are

ζ
(α)
3,p,k =

⎧⎪⎨⎪⎩
�
(α)
3,p,k, k = 0, 1, . . . , j + p− 1,

−
j+p−1

∑
l=0

�
(α)
3,p,l , k = j + p,

(184)

and,

ξ
(α)
3,p,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(α)
3,p,k, k = 0, 1, . . . , j + p− 4,

�
(α)
3,p,j+p−3 − 1

3

j+p
∑

l=0
�
(α)
3,p,l(j− l + p), k = j + p− 3,

�
(α)
3,p,j+p−2 +

3
2

j+p
∑

l=0
�
(α)
3,p,l(j− l + p), k = j + p− 2,

�
(α)
3,p,j+p−1 − 3

j+p
∑

l=0
�
(α)
3,p,l(j− l + p), k = j + p− 1,

−
j+p−1

∑
l=0

�
(α)
3,p,l +

11
6

j+p
∑

l=0
�
(α)
3,p,l(j− l + p), k = j + p.

(185)

Here the shift p satisfies 3p2 − 12αp + 11α2 ≥ 0, and �
(α)
3,p,k (0 ≤ k ≤ j + p) are given by

ω
(α)
3,p (z) =

(
a0 + a1z + a2z2 + a3z3

)α
=

∞

∑
k=0

�
(α)
3,p,kzk, |z| < 1, (186)

with ⎧⎪⎪⎨⎪⎪⎩
a0 =

11α2 − 12αp + 3p2

6α2 , a1 =
−18α2 + 30αp− 9p2

6α2 ,

a2 =
9α2 − 24αp + 9p2

6α2 , a3 =
−2α2 + 6αp− 3p2

6α2 .

(187)
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Theorem 6. Suppose that f (x) ∈ C[α]+5[a, b], and that the derivatives of f (x) up to order [α] + 6 belong to
L1[a, b]. Then there hold

[
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ζ
(α)
4,p,k f (xj−k+p) +O(h4), 0 < α < 1, (188)

and [
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ξ
(α)
4,p,k f (xj−k+p) +O(h4), 1 < α < 2, (189)

where the weights ζ
(α)
4,p,k and ξ

(α)
4,p,k (k = 0, 1, . . .) are defined by

ζ
(α)
4,p,k =

⎧⎪⎨⎪⎩
�
(α)
4,p,k, k = 0, 1, . . . , j + p− 1,

−
j+p−1

∑
l=0

�
(α)
4,p,l , k = j + p,

(190)

and,

ξ
(α)
4,p,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(α)
4,p,k, k = 0, 1, . . . , j + p− 5,

�
(α)
4,p,j+p−4 +

1
4

j+p
∑

l=0
�
(α)
4,p,l(j− l + p), k = j + p− 4,

�
(α)
4,p,j+p−3 − 4

3

j+p
∑

l=0
�
(α)
4,p,l(j− l + p), k = j + p− 3,

�
(α)
4,p,j+p−2 + 3

j+p
∑

l=0
�
(α)
4,p,l(j− l + p), k = j + p− 2,

�
(α)
4,p,j+p−1 − 4

j+p
∑

l=0
�
(α)
4,p,l(j− l + p), k = j + p− 1,

−
j+p−1

∑
l=0

�
(α)
4,p,l +

25
12

j+p
∑

l=0
�
(α)
4,p,l(j− l + p), k = j + p.

(191)

Here the shift p satisfies 25α3 − 35α2 p + 15αp2 − 2p3 ≥ 0, and �
(α)
4,p,k (0 ≤ k ≤ j + p) are given by

ω
(α)
4,p (z) =

(
b0 + b1z + b2z2 + b3z3 + b4z4

)α
=

∞

∑
k=0

�
(α)
2,p,kzk, |z| < 1, (192)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0 =
25α3 − 35α2 p + 15αp2 − 2p3

12α3 ,

b1 =
−48α3 + 104α2 p− 54αp2 + 8p3

12α3 ,

b2 =
36α3 − 114α2 p + 72αp2 − 12p3

12α3 ,

b3 =
−16α3 + 56α2 p− 42αp2 + 8p3

12α3 ,

b4 =
3α3 − 11α2 p + 9αp2 − 2p3

12α3 .

(193)

Different from numerical algorithms based on the polynomial interpolation, in which the
corresponding accuracy depends on the derivative order α and homogenous conditions are needed,
the formulae presented in Theorems 4–6 for Caputo derivatives have no restriction on the initial
conditions, and are of integer-order accuracy. Here we display two numerical examples to verify
these arguments.
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Example 10 ([95]). Consider the function f (x) = x6+α, x ∈ [0, 1]. We utilize schemes (178), (183), and (189)
to evaluate the α-th order Caputo derivative at x = 1. The absolute errors and convergence orders for p = 0
and p = 1 are shown in Table 10. The experiment convergence orders are consistent with theoretical analysis.
Furthermore, the shifted numerical methods are more efficient than the unshifted one when 1 < α < 2.

Table 10. The absolute errors and convergence orders of Example 10.

p = 0

α h n = 2 n = 3 n = 4
E(h) rate E(h) rate E(h) rate

1.70

1
20 1.0791 - 1.5714×10−1 - 1.9056×10−2 -
1

80 7.5767×10−2 1.94 2.8201×10−3 2.93 8.4873×10−5 3.94
1

320 4.8717×10−3 1.99 4.5587×10−5 2.99 3.4203×10−7 3.96

1.80

1
20 1.4104 - 2.0548×10−1 - 2.4921×10−2 -
1

80 9.9074×10−2 1.94 3.6878×10−3 2.93 1.1098×10−4 3.94
1

320 6.3705×10−3 1.99 5.9612×10−5 2.98 4.4862×10−7 3.98

1.85

1
20 1.6112 - 2.3480×10−1 - 2.8478×10−2 -
1

80 1.1321×10−1 1.94 4.2140×10−3 2.93 1.2682×10−4 3.94
1

320 7.2796×10−3 1.99 6.8119×10−5 2.98 5.1220×10−7 3.98

p = 1

α h n = 2 n = 3 n = 4
E(h) rate E(h) rate E(h) rate

1.70

1
20 3.0173×10−1 - 4.3788×10−2 - 5.0963×10−3 -
1

80 1.9203×10−2 1.99 7.3362×10−4 2.97 2.1650×10−5 3.96
1

320 1.2061×10−3 2.00 1.1665×10−5 2.99 8.6359×10−8 4.00

1.80

1
20 3.2844×10−1 - 5.0679×10−2 - 6.0965×10−3 -
1

80 2.0842×10−2 1.99 8.4958×10−4 2.97 2.5938×10−5 3.96
1

320 1.3081×10−3 2.00 1.3511×10−5 2.99 1.0348×10−7 3.99

1.85

1
20 3.3890×10−1 - 5.4135×10−2 - 6.6280×10−3 -
1

80 2.1454×10−2 1.99 9.0750×10−4 2.97 2.8214×10−5 3.96
1

320 1.3456×10−3 2.00 1.4432×10−5 2.99 1.1252×10−7 3.99

Example 11 ([95]). Consider f (x) = x6+α + (x + 1)2, x ∈ [0, 1]. In this case, f (0) 
= 0. We utilize schemes
(178), (183), and (189) to evaluate its α-th order Caputo derivative at x = 1. Numerical results are presented in
Table 11. These results imply that the numerical approximations can be used to compute Caputo derivatives of
suitably smooth functions with inhomogeneous conditions at the initial time.

Table 11. The absolute errors and convergence orders of Example 11 with p = 1.

α h n = 2 n = 3 n = 4
E(h) rate E(h) rate E(h) rate

1.70

1
20 3.0157×10−1 - 4.3799×10−2 - 5.0897×10−3 -
1

80 1.9193×10−2 1.99 7.3380×10−4 2.97 2.1622×10−5 3.96
1

320 1.2055×10−3 2.00 1.1668×10−5 2.99 8.6891×10−8 3.98

1.80

1
20 3.2833×10−1 - 5.0688×10−2 - 6.0949×10−3 -
1

80 2.0836×10−2 1.99 8.4970×10−4 2.97 2.5935×10−5 3.96
1

320 1.3077×10−3 2.00 1.3513×10−5 2.99 1.0350×10−7 3.99

1.85

1
20 3.3882×10−1 - 5.4142×10−2 - 6.6269×10−3 -
1

80 2.1449×10−2 1.99 9.0760×10−4 2.97 2.8211×10−5 3.96
1

320 1.3453×10−3 2.00 1.4433×10−5 2.99 1.1225×10−7 3.99
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3.1.4. Diffusive Approximation

Recall that Caputo derivative is defined as the Riemann–Liouville integral of an integer-order
derivative, i.e.,

CDα
a,x f (x) = RLD−(m−α)

0,x f (m)(x), m− 1 < α < m ∈ Z+. (194)

In this case, Equation (62) implies

CDα
0,x f (x) =

∫ ∞

0
φ(ω, x)dω, (195)

with m− 1 < α < m ∈ Z+ and φ : (0, ∞)× [0, x]→ R being the auxiliary bivariate function defined by

φ(ω, x) = (−1)m−1 2 sin(πα)

π
ω2α−2m+1

∫ x

0
f (m)(t)e−(x−t)ω2

dt. (196)

For fixed ω > 0, the function φ(ω, ·) satisfies the differential equation

∂

∂x
φ(ω, x) = (−1)m−1 2 sin(πα)

π
ω2α−2m+1 f (m)(x)−ω2φ(ω, x) (197)

subject to the initial condition φ(ω, 0) = 0. Consequently, any implementation solving ODEs and
suitable quadratures approximating the infinite integral (196) yield numerical approximations to
Caputo derivative.

For more details of discussions, modifications, and applications of the diffusive approximation,
see Refs. [60,61].

3.2. Numerical Riemann-Liouville Differentiation

Now we consider numerical approximations to Riemann-Liouville derivatives. The relation (176)
indicates that numerical evaluations of Riemann–Liouville derivative can be readily obtained based on
those of Caputo derivative. Numerical approximations derived from evaluations of Caputo derivative
are therefore omitted in this section. Here we present alternative approaches.

3.2.1. Numerical Methods Based on Linear Spline Interpolation

Let f (x) ∈ C4[a, b] and 1 < α < 2. For j = 1, 2, . . . , N − 1, there holds

[
RLDα

a,x f (x)
]

x=xj
=

1
Γ(2− α)

[
d2

dx2

∫ x

a
(x− t)1−α f (t)dt

]
x=xj

≈ h−2

Γ(2− α)

[
I l

α(xj−1)− 2I l
α(xj) + I l

α(xj+1)
]

,

(198)

where I l
α(xj) =

∫ xj
a (xj − t)1−α f (t)dt. Approximate f (x) with the linear spline

sl
j(x) =

j

∑
k=0

f (xk)sl
j,k(x), (199)

where

sl
j,k(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x− xk−1
xk − xk−1

, xk−1 ≤ x ≤ xk,

xk+1 − x
xk+1 − xk

, xk ≤ x ≤ xk+1,

0, otherwise,

(200)
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for 1 ≤ k ≤ j− 1,

sl
j,0(x) =

⎧⎪⎨⎪⎩
x1 − x
x1 − x0

, x0 ≤ x ≤ x1,

0, otherwise,
(201)

and

sl
j,j(x) =

⎧⎪⎨⎪⎩
x− xj−1

xj − xj−1
, xj−1 ≤ x ≤ xj,

0, otherwise.

(202)

Then we obtain an approximation to I l
α(xj) given by

Il
α(xj) =

∫ xj

a
(xj − t)1−αsl

j(t)dt =
h2−α

(2− α)(3− α)

j

∑
k=0

al
j,k f (xk) (203)

with

al
j,k =

⎧⎪⎪⎨⎪⎪⎩
(3− α)j2−α + (j− 1)3−α − j3−α, k = 0,

(j− k + 1)3−α − 2(j− k)3−α + (j− k− 1)3−α, 1 ≤ k ≤ j− 1,

1, k = j.

(204)

As a result, there holds [96][
RLDα

a,x f (x)
]

x=xj

≈ h−α

Γ(4− α)

[
j−1

∑
k=0

al
j−1,k f (xk)− 2

j

∑
k=0

al
j,k f (xk) +

j+1

∑
k=0

al
j+1,k f (xk)

]

=
h−α

Γ(4− α)

[ j−1

∑
k=0

(
al

j−l,k − 2al
j,k + al

j+l,k

)
f (xk) +

(
al

j+1,j − 2al
j,j

)
f (xj) + al

j+1,j+1 f (xj+1)

]
.

(205)

Similarly, the right-sided Riemann–Liouville derivative can be approximated by [96]

[
RLDα

x,b f (x)
]

x=xj
≈ h−α

Γ(4− α)

[
N

∑
k=j+1

(
ar

j−1,k − 2ar
j,k + ar

j,k

)
f (xk)

+ ar
j−1,j−1 f (xj−1) +

(
ar

j−1,j − 2ar
j,j

)
f (xj)

]
,

(206)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ar

j,N =(3− α)(N − j)2−α + (N − j− 1)3−α − (N − j)3−α,

ar
j,k =(k− j + 1)3−α − 2(k− j)3−α + (k− j− 1)3−α, j + 1 ≤ k ≤ N − 1,

ar
j,j =1.

(207)

The truncated error of this approach has been proved in Ref. [96] to beO(h2) provided that f (4)(x)
has compact support on [a, b].

In the particular cases with a = −∞ and b = +∞, Equations (205) and (206) can be written
as [96–98] [

RLDα−∞,x f (x)
]

x=xj
≈ h−α

Γ(4− α)

∞

∑
m=−1

qm f (xj−m), (208)

and [
RLDα

x,∞ f (x)
]

x=xj
≈ h−α

Γ(4− α)

∞

∑
m=−1

qm f (xj+m), (209)
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with

qm =

⎧⎪⎪⎨⎪⎪⎩
am−1 − 2am + am+1, m ≥ 1,

−2a0 + a1, m = 0,

a0, m = −1.

(210)

Here

am =

{
1, m = 0,

(m + 1)3−α − 2m3−α + (m− 1)3−α, m ≥ 1.
(211)

Both series on the right-hand side of Equations (208) and (209) converge absolutely for 1 < α < 2
if f (x) is bounded [96]. When α = 1, Equations (208) and (209) reduce to the second order finite
difference formula for the first order derivative. When α = 2, Equations (208) and (209) are consistent
with the central difference formula for the second order derivative.

3.2.2. Grünwald-Letnikov Type Approximations

Let m− 1 < α < m ∈ Z+ and f (x) be m times continuously differentiable. It is known that when
a = −∞ or f (a) = 0, the Grünwald–Letnikov derivative

GLDα
a,x f (x) = lim

h→0

1
hα

[ x−a
h ]

∑
l=0

(−1)l
(

α

l

)
f (x− lh), (212)

can approximate the α-th order Riemann–Liouville derivative with first order accuracy [48], i.e.,

RLDα
a,x f (x) =

1
hα

j

∑
l=0

ω
(α)
l f (x− lh) +O(h), jh = x− a, (213)

where ω
(α)
l = (−1)l(α

l ). Equation (213) can be verified through the Fourier transform. The above
numerical approximation, which is called the classical Grünwald–Letnikov formula, is warmly
applied to solving fractional differential equations. However, this approximation is not suitable for the
discretization of fractional differential equations when α ∈ (1, 2) since it leads to unstable numerical
schemes [99].

One way to construct stable schemes for fractional differential equations is to make the
corresponding coefficient matrix diagonally dominated via replacing f (x − lh) in Equation (213)
by f (x − (l − p)h) with p ∈ Z being the shift. In this case, we obtain the shifted
Grünwald–Letnikov formula

RLDα
a,x f (x) =

1
hα

[j+p]

∑
l=0

ω
(α)
l f (x− (l − p)h) +O(h), jh = x− a. (214)

It turns out that the best performances of the shifted Grünwald–Letnikov method come
from minimizing |p − α

2 |. And it coincides with the central difference of the classical second
order differentiation. If the shift is chosen to be non-integers, numerical method (214) may have
superconvergent behaviors [100–102].

Introducing integer shifts to the classical Grünwald-Letnikov approximation may eliminate the
instability indeed, while the truncated error is still O(h). A modification called the weighted and
shifted Grünwald-Letnikov formulae was proposed in Ref. [103], in the spirit of eliminating the first
order terms in the truncated errors of the shifted Grünwald–Letnikov formulae. In the following,
we introduce the basic idea in details.
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Let f (x) ∈ L1(R), RLDα+1−∞,x f , and its Fourier transform belong to L1(R). It can be verified through
the Fourier analysis that the shifted Grünwald–Letnikov difference operator

Aα
h,p f (x) = h−α

∞

∑
k=0

ω
(α)
k f (x− (k− p)h) , (215)

with p ∈ Z approximates the left-sided Riemann-Liouville derivative RLDα−∞,x f (x) with first
order accuracy. Assume that the following weighted and shifted Grünwald–Letnikov difference
(WSGD) operator

Bα
h,p,q f (x) = a1 Aα

h,p f (x) + b1 Aα
h,q f (x), a1, b1 ∈ R, (216)

approximates the Riemann–Liouville derivative with second order accuracy. Then the Fourier
transform gives

F
{

Bα
h,p,q f (x); ξ

}
=

1
hα

∞

∑
k=0

ω
(α)
k

(
a1e−i(k−p)hξ + b1e−i(k−q)hξ

)
F{ f (x); ξ}

=
1
hα

(
a1(1− e−ihξ)αeiphξ + b1(1− e−ihξ)αeiqhξ

)
F{ f (x); ξ}

=

(
1− eihξ

ihξ

)α [
a1eiphξ + b1eiqhξ

]
(iξ)αF{ f (x); ξ}

(217)

with i2 = −1. Note that
F{RLDα−∞,x f (x); ξ} = (iξ)αF{ f (x); ξ}, (218)

and (
1− ez

z

)α

ezr = 1 + (r− α

2
)z +O(|z|2). (219)

Therefore, a1 and b1 need to satisfy{
a1 + b1 = 1,

a1(p− α
2 ) + b1(q− α

2 ) = 0,
(220)

to assure that Bα
h,p,q f (x) is of second order accuracy. In other words,

Bα
h,p,q f (x) = RLDα−∞,x f (x) +O(h2) (221)

holds uniformly when a1 = α−2q
2p−2q and b1 = 2p−α

2p−2q [103].

Remark 11. The relevant academic literature has revealed that numerical approximation (221) results in
unstable schemes for fractional partial differential equations when the shift paring (p, q) = (0,−1) [99].
The corresponding schemes are stable when (p, q) = (1, 0) and (p, q) = (1,−1). Furthermore, the WSGD
operator reduces to the centred difference approximation for the classical second order differentiation when
(p, q) = (1, 0) and (p, q) = (1,−1) in the case with α = 2, while for the classical first order one when
(p, q) = (1, 0) if α = 1.

A third order WSGD operator was also proposed in Ref. [103]. Nevertheless, it fails to obtain
stable numerical schemes when α ∈ (1, 2). To offset this situation, the compact-WSGD operator [104]
was introduced through combining WSGD operators with Taylor expansions of the shifted Grünwald
formula for sufficiently smooth function f (x) that satisfies homogeneous initial conditions.

The construction of the WSGD operators implies the possibility of deriving higher-order
numerical approximations to Riemann-Liouville derivative by imposing various weights and shifts on
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higher-order Lubich formulae. In Ref. [105], numerical algorithms with second, third, and fourth order
accuracy are proposed based on the second order Lubich formula.

3.2.3. Fractional Backward Difference Formulae and Their Modifications

It is evident that the classical Grünwald–Letnikov approximation coincides with the first order
Lubich formula (51) with α > 0 replaced by −α. In fact, Lubich formulae (51) are applicable for
evaluating Riemann–Liouville derivative indeed.

Let f (k)(a+) = 0 (k = 0, 1, . . . , �− 1). We have the classical Lubich formulae [106]

RLDα
a,x f (x) =

1
hα

[ x−a
h ]

∑
l=0

�
(α)
�,l f (x− lh) +O(h�), α > 0, (222)

in which h is the stepsize. The convolution coefficients �
(α)
�,l are generated by W(α)

� (z) defined in
Equation (50). This can be readily verified by the Fourier transform.

Remark 12. In Ref. [106], the coefficients of high-order approximations (till 10-th order) for Riemann–Liouville
derivative were computed. Furthermore, a conjecture on coefficients of the third, fourth, and fifth order schemes
was proposed by Li and Ding and was rephrased on Page 80 of Ref. [38], stated as follows,

(1) If 0 < α < 1, then �
(α)
3,l ≤ �

(α)
3,l+1 for l ≥ 4, �

(α)
4,l ≤ �

(α)
4,l+1 for l ≥ 7, and �

(α)
5,l ≤ �

(α)
5,l+1 for l ≥ 12;

(2) If 1 < α < 2, then �
(α)
3,l ≥ �

(α)
3,l+1 for l ≥ 7, �

(α)
4,l ≥ �

(α)
4,l+1 for l ≥ 12, and �

(α)
5,l ≥ �

(α)
5,l+1 for l ≥ 16.

Recently, the above conjecture for �
(α)
3,l with 0 < α < 1 has been proved in Ref. [107].

Similarly to the case of the classical Grünwald-Letnikov approximation, the classical Lubich
formulae may produce unstable numerical schemes for fractional differential equations due to the
eigenvalue issue [105]. In this case, we often introduce shifts. To maintain the high-order accuracy,
the corresponding generating functions need modifying. The shifted fractional backward difference
formulae [108], which can be proved via the Fourier transform method, are presented as follows.

Theorem 7. Suppose that f (x) ∈ C[α]+3(R), and all the derivatives of f (x) up to order [α] + 4 belong to
L1(R). Then we have

RLDα−∞,x f (x) =
1
hα

∞

∑
l=0

k(α)2,l f (x− (l − 1)h) +O(h2), (223)

and

RLDα
x,+∞ f (x) =

1
hα

∞

∑
l=0

k(α)2,l f (x + (l − 1)h) +O(h2), (224)

as h → 0. Here k(α)2,l (l = 0, 1, . . .) are generated by

W̃2(z) =
(

3α− 2
2α

− 2(α− 1)
α

z +
α− 2

2α
z2
)α

=
∞

∑
l=0

k(α)2,l zl , |z| < 1. (225)

Theorem 8. Let p ≥ 3, f (x) ∈ C[α]+p+1(R), and all the derivatives of f (x) up to order [α] + p + 2 belong to
L1(R). Then there hold

RLDα−∞,x f (x) =
1
hα

∞

∑
l=0

k(α)p,l f (x− (l − 1)h) +O(hp), p ≥ 3, (226)

and

RLDα
x,+∞ f (x) =

1
hα

∞

∑
l=0

k(α)p,l f (x + (l − 1)h) +O(hp), p ≥ 3. (227)
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Here the generating functions of coefficients k(α)p.l (l = 0, 1, . . .) with p ≥ 3 are

W̃p(z) =
(
(1− z) +

α− 2
2α

(1− z)2 +
p

∑
k=3

λ
(α)
k−1,k−1

α
(1− z)k

)α

, (228)

in which the parameters λ
(α)
k−1,k−1 (k = 3, 4, . . .) can be determined by the relation

W̃k(e−z)
ez

zα
= 1−

∞

∑
l=k

λ
(α)
k,l zl , k = 2, 3, . . . (229)

Introducing suitable weights and shifts to the classical Lubich operators, we can obtain weighted
and shifted Lubich formulae [105], which are not only of high-order accuracy but also stable when
α ∈ (1, 2).

Define the operator

Aα
p =

1
hα

∞

∑
k=0

�
(α)
2,k f (x− (k− p)h), (230)

where the shift p is an integer. The coefficients �
(α)
2,k can be calculated by Equation (50) with � = 2.

The weighted and shifted Lubich formulae, whose convergence and accuracy can be verified through
the Fourier transform, are given as follows.

Theorem 9. Let f (x), RLDα+1−∞,x f (x) (or RLDα+2−∞,x f (x)) with 1 < α < 2 and their Fourier transforms belong
to L1(R). Then we have ⎧⎨⎩RLDα−∞,x f (x) = Aα

p f (x) +O(h), p 
= 0,

RLDα−∞,x f (x) = Aα
p f (x) +O(h2), p = 0,

(231)

where Aα
p is given by Equation (230)

Theorem 10. When f (x), RLDα+2−∞,x f (x) with 1 < α < 2, and their Fourier transforms belong to L1(R),
there holds

RLDα−∞,x f (x) = Aα
p,q f (x) +O(h2). (232)

Here
Aα

p,q f (x) = Wp Aα
p f (x) + Wq Aα

q f (x) (233)

with Aα
p, Aα

q being defined in Equation (230), Wp = q
q−p , Wq = p

p−q , p 
= q, and p, q being integers.

It was proved in Ref. [105] that the approximation (232) with 1 < α < 2 works well for space
fractional differential equations when the pair (p, q) = (1, q) with |q| ≥ 2.

Theorem 11. Assume that f (x), RLDα+3−∞,x f (x) with 1 < α < 2, and their Fourier transforms belong to
L1(R). Then there holds

RLDα−∞,x f (x) = Aα
p,q,r,s f (x) +O(h3), (234)

Aα
p,q,r,s f (x) = Wp,q Aα

p,q f (x) + Wr,s Aα
r,s f (x), (235)

where Aα
p,q and Aα

r,s are defined in Equation (233), Wp,q = 3rs+2α
3(rs−pq) , Wr,s =

3pq+2α
3(pq−rs) , rs 
= pq, and p, q, r, s

are integers.

When (p, q, r, s) = (1, q, 1, s), |q| ≥ 2, |s| ≥ 2, and qs < 0, the approximation (234) with 1 < α < 2
works well for space fractional differential equations.

96



Mathematics 2020, 8, 43

For higher-order weighted and shifted Lubich formulae such as the fourth order one, see Ref. [105]
for more details.

Remark 13. All the above weighted and shifted Lubich formulae are applicable to the bounded domain (a, b)
through performing zero extension, whenever the zero extended function satisfies the corresponding assumptions
of the approximations.

An alternative approach modifying the Lubich formulae is to introduce compact operators,
which gives the following fractional-compact formulae [109]. The corresponding accuracy can be
proved by the Fourier transform.

Theorem 12. Define the following two difference operators,

LBα
2 f (x + sh) =

1
hα

∞

∑
l=0

k(α)2,l f (x− (l − s− 1)h) , (236)

and
RBα

2 f (x + sh) =
1
hα

∞

∑
l=0

k(α)2,l f (x + (l − s− 1)h) , (237)

where the coefficients k(α)2,l are given by the function

W̃2(z) =
(

3α− 1
2α

− 2(α− 1)
α

z +
α− 2

2α
z2
)α

=
∞

∑
l=0

k(α)2,l zl , |z| < 1. (238)

If we introduce the fractional-compact difference operator

L f (x) =
(

1− 2α2 − 6α + 3
6α

δ2
x

)
f (x), (239)

with δ2
x being a second order central difference operator defined by δ2

x f (x) = f (x + h)− 2 f (x) + f (x + h),
then equalities

LBα
2 f (x) = L RLDα−∞,x f (x) +O(h3) (240)

and
RBα

2 f (x) = L RLDα
x,∞ f (x) +O(h3) (241)

hold uniformly for x ∈ R, provided that f (x) ∈ C[α]+4(R) and all derivatives of f (x) up to order [α] + 5
belong to L1(R).

Theorem 13. Choose the generating function as

˜̃W2(z) =
(

3α + 2
2α

− 2(α + 1)
α

z +
α + 2

2α
z2
)α

=
∞

∑
l=0

k̃(α)2,l zl , |z| < 1, (242)

and define the following difference operators

LB̃α
2 f (x + sh) =

1
hα

∞

∑
l=0

k̃(α)2,l f (x− (l − s + 1)h) , (243)

RB̃α
2 f (x + sh) =

1
hα

∞

∑
l=0

k̃(α)2,l f (x + (l − s + 1)h) . (244)
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Then the equalities
LB̃α

2 f (x) = L̃ RLDα−∞,x f (x) +O(h3), (245)

and
RB̃α

2 f (x) = L̃ RLDα
x,∞ f (x) +O(h3) (246)

hold uniformly for x ∈ R, provided that f (x) ∈ C[α]+4(R) and all derivatives of f (x) up to order [α] + 5
belong to L1(R). Here the fractional-compact difference operator L̃ is given by

L̃ f (x) =
(

1− 2α2 + 6α + 3
6α

δ2
x

)
f (x). (247)

Theorem 14. Let f (x) ∈ C[α]+5(R) and all derivatives of f (x) up to order [α] + 6 belong to L1(R). Define the
fractional-compact operator as

H f (x) =
[(

σ̃
(α)
3,0 − σ

(α)
3,0

)
+

(
σ
(α)
2,0 σ̃

(α)
3,0 − σ̃

(α)
2,0 σ

(α)
3,0

)
δ2

x

]
f (x), (248)

where ⎧⎪⎪⎨⎪⎪⎩
σ
(α)
2,0 = −2α2 − 6α + 3

6α
, σ̃

(α)
2,0 = −2α2 + 6α + 3

6α
,

σ
(α)
3,0 =

3α3 − 11α2 + 12α− 4
12α2 , σ̃

(α)
3,0 =

3α3 + 11α2 + 12α + 4
12α2 .

(249)

Then
σ̃
(α)
3,0

LBα
2 f (x)− σ

(α)
3,0

LB̃α
2 f (x) = H RLDα−∞,x f (x) +O(h4), (250)

and
σ̃
(α)
3,0

RBα
2 f (x)− σ

(α)
3,0

RB̃α
2 f (x) = H RLDα

x,∞ f (x) +O(h4) (251)

hold uniformly on R.

The idea of the above approximations can be applied to evaluating tempered fractional derivatives,
see Ref. [110] for more details.

3.2.4. Fractional Average Central Difference Method

In Ref. [111], a shifted operator of the form

CΔα
−h f (x) =

∞

∑
k=0

(−1)k
(

α

k

)
f
(

x−
(

k− α

2

)
h
)

(252)

with h > 0 was proposed to approximate Riemann–Liouville derivative. This difference operator
reduces to the standard central difference operator when α is a positive integer. It can be verified
through the Fourier transform that the equality

1
hα CΔα

−h f (x) = RLDα−∞,x f (x) +O(h2), (253)

holds uniformly for x ∈ R as h → 0, provided that f ∈ C[α]+3(R) and all derivative of f up to the
order [α] + 4 exist and belong to L1(R).

Recently, the above shifted operator has been modified to obtain higher-order approximations,
which are based on the fractional left and right average central difference operators [112]

ACΔα
−h f (x) =

1
2

∞

∑
k=0

(−1)k
(

α

k

)
[ f (x− kh) + f (x− (k− α)h)] , (254)
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and

ACΔα
+h f (x) =

1
2

∞

∑
k=0

(−1)k
(

α

k

)
[ f (x + kh) + f (x + (k− α)h)] . (255)

The main results, which can be verified through Fourier transform, are presented as follows.

Theorem 15. Assume that f (x), the Fourier transform of RLDα+2−∞,x f (x) and RLDα+2
x,+∞ f (x) are in L1(R).

Then the equalities

RLDα−∞,x f (x) = ACΔα
−h f (x)
hα

+O(h2), (256)

RLDα
x,+∞ f (x) = ACΔα

+h f (x)
hα

+O(h2) (257)

hold uniformly on R.

Theorem 16. When f (x) and the Fourier transforms of RLDα+4−∞,x f (x) and RLDα+4
x,+∞ f (x) are in L1(R),

then the relations [
1 +

α(3α + 1)
24

δ2
x

]
RLDα−∞,x f (x) =

1
hα ACΔα

−h f (x) +O(h4), (258)

and [
1 +

α(3α + 1)
24

δ2
x

]
RLDα

x,+∞ f (x) =
1
hα ACΔα

+h f (x) +O(h4) (259)

hold uniformly on R. Here δ2
x denotes the second order central difference operator defined by δ2

x f (xj) =

f (xj+1)− 2 f (xj) + f (xj−1).

For functions defined on [a, b], the fractional average central difference formulae can be modified
through suitable extensions.

3.3. Numerical Riesz Differentation

Since Riesz derivative can be viewed as a linear combination of the left- and right-sided
Riemann–Liouville derivatives. Several numerical approximations to Riesz derivative can be readily
obtained based on the aforementioned methods of Riemann–Liouville derivative. Here we only
present the one based on L2-1σ formulae when introducing indirect evaluations of Riesz derivative.
For more details of these indirect approaches, one can refer to Refs. [108,109,112,113]. Then we focus
on introducing some schemes evaluating Riesz derivative in direct ways.

3.3.1. Approximation Based on L2-1σ Formulae

In Ref. [107], the L2-1σ formulae are reformulated in the following forms,

[
CDα

a,x f (x)
]

x=xj+σ
=

h−α

Γ(2− α)

j

∑
k=0

d(α,σ)
j−k [ f (xk+1)− f (xk)] +O(h3−α), (260)

and [
CDα

x,b f (x)
]

x=xj+σ′
= − h−α

Γ(2− α)

N−1

∑
k=j

d̃(α,σ′)
k−j [ f (xk+1)− f (xk)] +O(h3−α), (261)
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with 0 ≤ j ≤ N− 1, σ = 1− α
2 , and σ′ = α

2 . When j = 0, d(α,σ)
0 = c(α,σ)

0 . When j = N− 1, d̃(α,σ)
0 = c(α,σ′)

0 .
For j ≥ 1, the coefficients are given by

d(α,σ)
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c(α,σ)

0 + c̃(α,σ)
1 , k = 0,

c(α,σ)
k + c̃(α,σ)

k+1 − c̃(α,σ)
k , 1 ≤ k ≤ j− 1,

c(α,σ)
i − c̃(α,σ)

i , k = j,

(262)

in which the second case of the right-hand side of Equation (262) should be removed if j = 1, and

d̃(α,σ′)
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c(α,σ′)

0 + c̃(α,σ′)
2 , k = 0,

c(α,σ′)
k+1 − c̃(α,σ′)

k+1 + c̃(α,σ′)
k+2 , 1 ≤ k ≤ N − 2− j,

c(α,σ′)
k+1 − c̃(α,σ′)

k+1 , k = N − 1− j,

(263)

in which the second case of the right-hand side of Equation (263) should be removed if j = N− 2. Here⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(α,σ)
0 =σ1−α,

c(α,σ)
k =(k + σ)1−α − (k− 1 + σ)1−α, k ≥ 1,

c̃(α,σ)
k =

1
2− α

[
(k + σ)2−α − (k− 1 + σ)2−α

]
− 1

2

[
(k + σ)1−α + (k− 1 + σ)1−α

]
, k ≥ 1,

(264)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(α,σ′)
0 =(1− σ′)1−α,

c(α,σ′)
k =(k− σ′)1−α − (k− 1− σ′)1−α, k ≥ 1,

c̃(α,σ′)
k =

1
2− α

[
(k− σ′)2−α − (k− 1− σ′)2−α

]
− 1

2

[
(k− σ′)1−α + (k− 1− σ′)1−α

]
, k ≥ 1.

(265)

In order to combine Equations (260) and (261), σ + σ′ = 1 should be satisfied such that 2σ− 2 +
α + 2σ′ − α = 0. Furthermore, assume that σ = σ′, i.e., σ = σ′ = 1

2 , then xj+σ = xj+ 1
2
= xj+σ′ . One can

get the following (3− α)-th order scheme for Riesz derivatives at x = xj+ 1
2

with 0 ≤ j ≤ N − 1 [107],

[RZDα
x f (x)]x=x

j+ 1
2

=− 1
2 cos(πα

2 )

[
(xj+ 1

2
− a)−α f (a)

Γ(1− α)
+

(b− xj+ 1
2
)−α f (b)

Γ(1− α)

+
h−α

Γ(2− α)

(
j

∑
k=0

d(α, 1
2 )

j−k [ f (xk+1)− f (xk)]

−
N−1

∑
k=j

d̃(α, 1
2 )

k−j [ f (xk+1)− f (xk)]

)]
+O(h3−α),

(266)

in which d(α, 1
2 )

j−k and d̃(α, 1
2 )

k−j are defined by Equations (262) and (263) with σ = σ′ = 1
2 , respectively.
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3.3.2. Asymmetric Centred Difference Operators

Slightly different from the fractional average central difference operators in the previous section,
the symmetric fractional centred difference operator is defined as

Δα
h f (x) =

+∞

∑
k=−∞

g(α)k f (x− kh), (267)

with the coefficients being given by

g(α)k =
(−1)kΓ(α + 1)

Γ( α
2 − k + 1)Γ( α

2 + k + 1)
, k = 0,±1,±2, . . . (268)

It can be verified through the Fourier analysis that the relation [114]

RZDα
x f (x) = − 1

hα
Δα

h f (x) +O(h2), 1 < α ≤ 2, (269)

holds uniformly for x ∈ R as h → 0+, provided that f ∈ C5(R) and all of its derivatives up to order
five belong to L1(R). It has been pointed out by Ref. [115] that Equation (269) also holds for 0 < α ≤ 1.

3.3.3. Weighted and Shifted Centred Difference Operators

Introducing shifts to the symmetric fractional centred difference operator in Equation (267),
the shifted centred difference operators [112]

Lθ f (x) =
∞

∑
k=−∞

g(α)k f (x− (k + θ)h), |θ| = 0, 1, 2, . . . (270)

can be obtained. To achieve high-order accuracy, the following high-order approximations to Riesz
derivative can be derived through combining these shifted operators with suitable weights.

Theorem 17 ([116]). If f (x) lies in C7(R) with all the derivatives up to order 7 in L1(R), then the relation

RZDα
x f (x) =

1
hα

[ α

24
L−1 f (x)−

(
1 +

α

12

)
L0 f (x) +

α

24
L1 f (x)

]
+O(h4) (271)

holds uniformly for x ∈ R.

Theorem 18 ([112]). Assume that f (x) ∈ C9(R) with all the derivatives up to order 9 in L1(R). Then

RZDα
x f (x) =

1
hα

[A1L−2 f (x) +A2L−1 f (x) +A3L0 f (x) +A2L1 f (x) +A1L2 f (x)] +O(h6) (272)

holds uniformly for x ∈ R, in which ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = −
(

α

1152
+

11
2880

)
α,

A2 =

(
α

288
+

41
720

)
α,

A3 = −
(

α2

192
+

17α

160
+ 1

)
.

(273)
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Theorem 19 ([112]). Assume that f (x) lies in C11(R) with all the derivatives up to order 11 in L1(R). Then

RZDα
x f (x) =

1
hα

[B1L−3 f (x) + B2L−2 f (x) + B3L−1 f (x) + B4L0 f (x)

+B3L1 f (x) + B2L2 f (x) + B1L3 f (x)] +O(h8)

(274)

holds uniformly for x ∈ R. Here⎧⎪⎪⎪⎨⎪⎪⎪⎩
B1 =

(
α2

82944
+

11α

69120
+

191
362880

)
α, B2 = −

(
α2

13824
+

7α

3840
+

211
30240

)
α,

B3 =

(
5α2

27648
+

3α

512
+

7843
120960

)
α, B4 = −

(
5α3

20736
+

29α2

3456
+

5297α

45360
+ 1

)
.

(275)

For much higher-order difference operators in this respect, see Ref. [112].

3.3.4. Compact Centred Difference Operators

As another variant of the centred difference operator, compact centred difference operators are
based on the idea of introducing compact operators to maintain even-order accuracy.

Theorem 20 ([117]). Suppose that f (x) ∈ C2n+3(R), and all the derivatives of f (x) up to order 2n + 4 exist
and belong to L1(R). Then

(
δ0

x − bn−1δ2n−2
x

)
RZDα

x f (x) =

(
n−2

∑
l=0

blδ
2l
x

)(
−Δα

h f (x)
hα

)
+O(h2n), n ∈ Z+, (276)

where

δ2l
x f (xj) =

2l

∑
s=0

(−1)s
(

2l
s

)
f (xl+j−s), l ≥ 0. (277)

Specifically, δ0
x is the identity operator, i.e., δ0

x f (xj) = f (xj). The coefficients bl (l = 0, 1, . . . , n− 2) satisfy the
following equation

n−2

∑
l=0

bl

(
2

l−1

∑
s=0

n−1

∑
q=0

n−1−q

∑
p=0

(−1)s+q(l − s)2q(2l
s )ap

(2q)!
|ωh|2(p+q) + (−1)l

(
2l
l

) n−1

∑
p=0

ap|ωh|2p

)

=1− bn−1

(
n−2

∑
s=0

(−1)s
(

2n− 2
s

)
2(n− 1− s)2n−2

(2n− 2)!

)
(−1)n−1|ωh|2n−2,

(278)

and ap (p = 0, 1, . . .) satisfy the equation

∞

∑
p=0

ap|ωh|2p =

∣∣∣∣∣∣
2sin

(
ωh
2

)
ωh

∣∣∣∣∣∣
α

=

[
1− α

24
|ωh|2 +

(
1

1920
+

α− 1
1152

)
α|ωh|4

−
(

1
322560

+
α− 1
46080

+
(α− 1)(α− 2)

82944

)
α|ωh|6 + · · ·

]
.

(279)

Remark 14. In view of proofs in Refs. [111,118,119], conditions in Theorem 20 can be weakened as f (x) ∈
L2n+α(R), where

L2n+α(R) =

{
f
∣∣∣ f ∈ L1(R), and

∫
R
(1 + |ω|)2n+α| f̂ (ω)|dω < +∞

}
. (280)
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Remark 15. One should bear in mind that some suitable smooth conditions for f (x) are necessary and cannot
be dropped. Once these conditions are violated, the expected accuracy cannot be achieved. Example 13 will verify
this assertion latter.

For function f (x) defined on the bounded interval [a, b] with f (a) = f (b) = 0, we can extend
f (x) by zero outside of the domain. When the conditions in Theorem 20 or Remark 14 are satisfied,
the compact centred difference formula can be written in the following form,

(δ0
x − bn−1δ2n−2

x )
∂α f (x)
∂|x|α =

⎛⎝− 1
hα

n−2

∑
l=0

blδ
2l
x

[ x−a
h ]−l

∑
k=[− b−x

h ]+l

g(α)k f (x− kh)

⎞⎠+O(h2n). (281)

The following numerical examples demonstrate the accuracy of the fractional-compact centred
formula (281) and the assertion in Remark 15.

Example 12 ([117]). Consider the function fn(x) = x2n(1− x)2n, x ∈ [0, 1], n = 2, 3, 4, 5. Utilize numerical
scheme (281) with n = 2, 3, 4, 5 to compute the Riesz derivative of f (x) at x = 0.5. The absolute error (AE) and
experimental convergence order (CO) displayed in Table 12 are in line with the theoretical analysis.

Table 12. The absolute error and the experimental convergence order of function f2(x) in Example 12
by numerical scheme (281) with n = 2, 3, 4, 5.

n = 2

α h AE CO α h AE CO

1.1

1
20 1.985528×10−6 -

1.7

1
20 9.316621×10−6 -

1
80 7.806460×10−9 3.9981 1

80 3.661963×10−8 3.9982
1

320 3.050456×10−11 4.0000 1
320 1.431370×10−10 3.9995

1.3

1
20 3.418165×10−6 -

1.9

1
20 1.486627×10−5 -

1
80 1.343913×10−8 3.9981 1

80 5.841643×10−8 3.9983
1

320 5.251979×10−11 3.9998 1
320 2.284402×10−10 3.9988

n = 3

1.1

1
20 3.120201×10−8 -

1.7

1
20 2.053203×10−7 -

1
28 4.223802×10−9 5.9537 1

28 2.780411×10−8 5.9527
1
36 9.422903×10−10 5.9735 1

36 6.204232×10−9 5.9727

1.3

1
20 6.008620×10−8 -

1.9

1
20 3.675466×10−7 -

1
28 8.135715×10−9 5.9531 1

28 4.976658×10−8 5.9530
1
33 1.815230×10−9 5.9730 1

36 1.110461×10−8 5.9727

n = 4

1.1

1
30 3.442344×10−11 -

1.7

1
30 2.889640×10−10 -

1
38 5.303531×10−12 7.9206 1

38 4.449502×10−11 7.9249
1
46 1.164521×10−12 7.9393 1

46 9.752953×10−12 7.9502

1.3

1
30 7.195825×10−11 -

1.9

1
30 5.601931×10−10 -

1
38 1.108608×10−11 7.9213 1

38 8.624075×10−11 7.9260
1
46 2.433728×10−12 7.9402 1

46 1.890060×10−11 7.9506

n = 5

1.1

1
30 2.669378×10−12 -

1.7

1
30 2.756366×10−11 -

1
38 2.057061×10−13 9.5521 1

38 2.007171×10−12 9.8190
1
46 2.983513×10−14 8.8684 1

46 2.368039×10−13 10.2781

1.3

1
30 6.076893×10−12 -

1.9

1
30 5.640743×10−11 -

1
38 4.563785×10−13 9.6687 1

38 4.097488×10−12 9.8250
1
46 6.127250×10−14 9.3784 1

46 4.868649×10−13 10.2198
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Example 13 ([117]). Consider the function f (x) = x(1 − x), x ∈ [0, 1]. This function fails to meet
prerequisites for Equation (281) and Remark 14. We numerically compute its Riesz derivative at x = 0.5 by
using scheme (281) with n = 2. The absolute error (AE) and experimental convergence order (CO) are displayed
in Table 13. One can see that the expected fourth order accuracy is not achieved, which verifies the assertion in
Remark 15.

Table 13. Numerical results of Example 13 by using scheme (281) with n = 2.

α h AE CO α h AE CO

1.1

1
10 5.900848×10−4 -

1.7

1
10 6.101600×10−4 -

1
40 3.674047×10−5 2.0011 1

40 3.779590×10−5 2.0026
1

160 2.295736×10−6 2.0001 1
160 2.360928×10−6 2.0002

1.3

1
10 6.828118×10−4 -

1.9

1
10 2.863584×10−4 -

1
40 4.245071×10−5 2.0015 1

40 1.770032×10−5 2.0032
1

160 2.652296×10−6 2.0001 1
160 1.105502×10−6 2.0002

4. Conclusions

In this paper we focus on numerical approximations to fractional integrals and derivatives,
which are essential for solving fractional differential equations. This work is targeted at systematically
clarifying basic ideas of the existing numerical evaluations, which provides the readers with
comprehensive understanding of numerical methods for fractional calculus.

As the experimental advances further reveal nonlocality, memory, and hereditary properties of
numerous materials and processes, the importance of the fractional calculus is becoming obvious.
We hope that this work, which is designated to compressively review numerical approximations to
fractional calculus, will become the first step in elucidating underlying principles and results of a
wider variety of fractional dynamics.
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9. Liouville, J. Mémorie sur l’usage que l’on peut faire de la formule de Fourier, dans le calcul des differentielles
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A list of six desiderata1 is proposed that in our opinion would justify calling an operator Dα (or Iα)
a fractional derivative (or a fractional integral) of non-integer order α /∈ N. Derivatives and integrals of
fractional order have a long history and, up until the recent proliferation of novel fractional derivatives,
most definitions and interpretations of fractional operators seem to implicitly assume the desiderata of
an operational calculus as formulated in this article.

Mathematical terms used in the formulation of our desiderata are defined in Appendix A. A family
{Dα, Iα} of operators with α ∈ Q,R or C is proposed to be called a family of fractional derivatives Dα and
integrals Iα of order α (with Re α ≥ 0)2 if and only if it satisfies the following six desiderata:

(a) Integrals Iα and derivatives Dα of fractional order α should be linear operators on linear spaces3.
(b) On some subset4 G(b) ⊂ D(Iα) ∩ Iβ[D(Iβ)] ∩D(Iα+β) 
= ∅ the index law (semigroup property)

(Iα ◦ Iβ) f = Iα+β f (1)

holds true for Re α ≥ 0 and Re β ≥ 0, where D(Iα) denotes the domain of Iα, and ◦ denotes
composition of operators.

(c) Restricted to a suitable subset G(c) ⊂ D(Iα) of the domain of Iα the fractional derivatives Dα of
order α operate as left inverses

Dα ◦ Iα = 1G(c)
(2)

for all α with Re α ≥ 0, where 1G(c)
is the identity on G(c).

1 properties to be desired.
2 It is common to use only one of the symbols I or D in the sense that either Dα = I−α or Iα = D−α. In this paper we keep the

distinction between I and D by assuming Re α ≥ 0 unless otherwise specified. This entails discussing the case Re α = 0
separately whenever necessary.

3 Dependencies of Iα and Dα on other parameters are usually present, but notationally suppressed.
4 Here the index (b) refers to desideratum (b). The same applies in desiderata (d)–(f) below.
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(d) There is a subset G(d) ⊂ D(Dα) of the domain of Dα such that the limits

g1 = D1 f = lim
α→1

Dα f , f ∈ G(d), (3a)

g0 = D0 f = lim
α→0

Dα f , f ∈ G(d), (3b)

exist in some sense and define linear maps D1 : G(d) → G(d) resp. D0 : G(d) → G(d).
(e) The limiting map D0 = 1G(d)

is the identity on G(d), i.e., g0 = f ;
(f) The limiting map D1 = D is a derivation on G(d). This means it is possible to define a

multiplication · : G(d) × G(d) → G(d) on G(d) such that the Leibniz rule

D( f · g) = g · (D f ) + f · (D g) (4)

holds for all f , g ∈ G(d).

If the semigroup law (1) can be extended to all α ∈ R or α ∈ C, we propose to speak of fractional
calculus. Our desiderata are obviously inspired by operational calculus. Recall that an operational
calculus is a continuous one-to-one mapping between an algebra of functions and an algebra of
operators such that the neutral elements match and algebraic relations are preserved. Extending the
algebra from polynomial functions to convergent power series suffices for an operational calculus.
More singular functions, namely non-analytic power functions, are required for fractional calculus.

Desiderata differing substantially from those above have been formulated in [1] (p. 5) and [2] (p. 5).
Envisaging exclusively analytic functions the criteria given in [1] (p. 5) are extremely restrictive. In
theory and applications it is nowadays imperative to include more general functions, measures and
also distributions into the purview.

Given the extreme restrictions in [1] (p. 5) a more recent proposal [2] went to opposite extremes.
Little or no attention is given to a domain of definition for the fractional derivatives in [2]. Our
desiderata for fractional derivatives again differ substantially from those in [2]. Rather than requiring
some form of the generalized Leibniz rule 2P5 in [2] for all α we desire the Leibniz rule only for α = 1,
and that differs not only from 2P5, but also from 2P3. In addition the identity rule 2P2 in [2] does not
restrict the admissible operators at all. As long as there is no continuity in α or a well defined limit,
the identity rule can always be fulfilled, simply by setting D0 = 1. More generally, Ref. [2] seems to
neglect parameters other than α, or the topological and operator-theoretic implications of the limit in
Equation (2) [2].

Our desiderata do not include non-locality of fractional derivatives. Fractional derivatives, that are
local operators, were introduced in [3,4] and are discussed further in [5] and Section 7 of [6]. Contrary
to 2P3 in [2] we do not constrain the limits α → n with n ∈ N for n ≥ 2, because we wish to allow
more generality.

To illustrate our desiderata in a simple case consider fractional operators of Riemann-Liouville type
for complex valued functions f : [a, b] → C on a compact interval [a, b] ⊂ R with −∞ < a < b < ∞
when the fractional order α is real and restricted to 0 ≤ α ≤ 1. The (right-sided) Riemann-Liouville
fractional integrals Iα

a+ of order α ≥ 0 with lower limit a are defined by setting I0
a+ f := f for α = 0 and

(Iα
a+ f )(x) :=

1
Γ(α)

x∫
a

(x− y)α−1 f (y)dy (5)

for α > 0 and x ≤ b. The (right-sided) Riemann-Liouville-type fractional derivatives Dα
a+ of order

0 ≤ α ≤ 1 are defined as [5] (p. 434)

(Dα,β
a+ f )(x) =

(
Iβ(1−α)
a+

d
dx

I(1−β)(1−α)
a+ f

)
(x) (6)

112



Mathematics 2019, 7, 149

where the number 0 ≤ β ≤ 1 parametrizes different types of fractional derivatives. The classical
Riemann-Liouville derivative is of type β = 0, while the popular Liouville-Caputo derivative has type
β = 1 [7] (p. 10).

Both operator families are linear and desideratum (a) can be fulfilled on numerous linear spaces
due to the compactness of [a, b]. Examples are the Lebesgue spaces Lp([a, b]) with 1 ≤ p ≤ ∞ or Hölder
spaces Cγ([a, b]) with γ > 0. Desideratum (c) holds e.g. for G(c) = Cγ([a, b]) with γ > α + β− αβ and
α + β− αβ 
= 1. The Riemann-Liouville fractional integrals (extended from 0 ≤ α ≤ 1 to α ≥ 0) are a
strongly continuous semigroup of operators with respect to the parameter α ≥ 0, and obey the index
law (1) in desideratum (b) for all α, β ≥ 0 on G(b) = Lp([a, b]) or suitable subspaces. The desiderata (d),
(e) and (f) can then be derived with the help of the semigroup property. For the Riemann-Liouville
operators they hold e.g. for smooth (infinitely often differentiable) functions f ∈ G(d) = C∞([a, b]).

For infinite intervals or for generalized functions the problem of domains may become more
involved and our desiderata may become more restrictive. As an example consider the family of
symmetric Riesz operators

(Iα f )(x) :=
1

2Γ(α) cos(απ/2)

∞∫
−∞

|x− y|α−1 f (y)dy (7)

on the real line. In this case the limiting operator D1 = limα→−1 Iα is again well defined, but does not
fulfill desideratum (f). Instead, it fulfills Leibniz’ formula for Dn( f g) with n = 2, i.e.,

D1[D1( f g)] = g D1(D1 f ) + 2(D1 f )(D1 g) + f D1(D1 g). (8)

We propose to call such operators obeying Leibniz formula for Dn( f g) with n ≥ 2 pseudofractional
derivatives or fractional pseudoderivatives.

Of course, our desiderata do not define fractional derivatives and integrals in a unique way. Still,
they considerably restrict the set of admissible operators as seen above. In our opinion the above
desiderata formulate crucial constraints for the development of a meaningful mathematical theory of
fractional calculus and its reasonable applications.

Much work has been done on mathematical interpretations of fractional derivatives and integrals.
The results are documented in numerous texts and treatises (see [6,8] for recent reviews). It seems
however, that the connection (or not) of classical and recent fractional calculi with historical and
contemporary forms of operational and functional calculi such as Heaviside-Mikusinski calculus,
Dunford-Schwarz calculus, or Hille-Phillips calculus is a rich source of numerous open problems
whose speedy solution would seem pertinent to advance and ultimately consolidate the field. We hope
that the desiderata above are sufficiently restrictive to initiate a discussion of these pressing problems,
and thereby stimulate readers and contributors to address some of these open problems in their areas
of expertise and interest.

Appendix A

For the convenience of readers from non-mathematical disciplines we recall some definitions:
A real (or complex) linear space (or vector space) over the field R (or C) of real (or complex) numbers is
a non-empty set X with two operations called addition and scalar multiplication fulfilling the usual
rules of vector addition and multiplication of vectors with numbers5.

5 (a) for all f , g ∈ X also f + g ∈ X, (b) f + g = g + f , (c) f + (g + h) = ( f + g) + g, (d) there exists an element 0 ∈ X (called
origin ) such that f + 0 = f for all f ∈ X, (e) for all f ∈ X there is an element − f ∈ X such that f + (− f ) = 0 (f) for all a ∈ R

(or a ∈ C) and f ∈ X an element a f ∈ X is defined, (g) for all a ∈ R (or a ∈ C) and f , g ∈ X one has a( f + g) = a f + ag,
(h) for all a, b ∈ R (or a, b ∈ C) and f ∈ X one has (a + b) f = a f + b f , (i) for all a, b ∈ R (or a, b ∈ C) and f ∈ X one has
a(b f ) = (ab) f , and (j) 1 f = f for all f ∈ X.
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Let X,Y,Z be linear spaces (vector spaces). A linear operator A : X→ Y is a linear subspace of the
direct sum X⊕ Y, where

X⊕ Y := {( f , g) : f ∈ X, g ∈ Y} (A1)

is the linear space of pairs ( f , g) with f ∈ X, g ∈ Y and addition defined as ( f1, g1) + ( f2, g2) =

( f1 + f2, g1 + g2) for all fi ∈ X and gi ∈ Y. The identity operator 1X : X→ X is defined as

1X = 1 := {( f , f ) : f ∈ X} . (A2)

The domain D(A) and range R(A) of a linear operator A : X→ Y are

D (A) := { f ∈ X : ∃ g ∈ Y s.t. ( f , g) ∈ A} (A3a)

R (A) := {g ∈ Y : ∃ f ∈ X s.t. ( f , g) ∈ A} . (A3b)

The inverse A−1 of A is defined as

A−1 := {(g, f ) ∈ Y⊕ X : ( f , g) ∈ A} (A4)

with domain D(A−1) = R(A). For A, B ∈ X⊕ Y their sum is defined as

A+B := {( f , g + h) ∈ X⊕ Y : ( f , g) ∈ A, (g, h) ∈ B} (A5)

with D(A+B) = D(A) ∩D(B). For A ∈ X⊕ Y, B ∈ Y⊕ Z the composition B ◦A : X → Z is the linear
operator defined as

B ◦A := {( f , h) ∈ X⊕ Z : ∃g ∈ Y s.t. ( f , g) ∈ A and (g, h) ∈ B} (A6)

with D(B ◦A) = { f ∈ D(A) : ∃g ∈ D(B) s.t. ( f , g) ∈ A}.
Let 1 ≤ p < ∞ be a fixed real number. The Lebesgue space Lp([a, b]) consists of those Lebesgue

measurable functions f : [a, b]→ C on the intervall [a, b] = [a, b] ⊂ R for which the norm

‖ f ‖p =

⎛⎜⎝ ∫
[a,b]

| f (x)|p dx

⎞⎟⎠
1/p

(A7)

is finite. For p = ∞ the space L∞([a, b]) is the set of all Lebesgue measurable functions such that
‖ f ‖∞ = ess supx∈[a,b] | f (x)| is finite where ess sup denotes supremum up to sets of Lebesgue measure
zero (called essential supremum). The space B([a, b]) consists of all bounded functions on [a, b]. Its
norm is ‖ f ‖B = supx∈[a,b] | f (x)|. The space C([a, b]) = C0([a, b]) consists of all continuous functions.
Its norm is again ‖ f ‖B = supx∈[a,b] | f (x)| because continuous functions on a compact interval are also
bounded. For 0 < γ ≤ 1 and f : [a, b]→ C the number

Hölγ( f , [a, b]) := sup
{ | f (x)− f (y)|

|x− y|γ ; x, y ∈ [a, b], x 
= y
}
∈ [0, ∞] (A8)

is called Hölder constant of f on [a, b] of Hölder order γ. The Hölder space Cγ([a, b]) is defined as

Cγ([a, b]) := { f ∈ C([a, b]) : Hölγ( f , [a, b]) < ∞} (A9)
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and is a Banach space for the norm

‖ f ‖Cγ = sup
s∈[a,b]

| f (x)|+ Hölγ( f , [a, b]). (A10)

For α = k + γ > 1 with k = 0, 1, 2, ... and 0 < γ ≤ 1 it is defined as

Cα([a, b]) :=
{

f ∈ Ck([a, b]) : Hölγ( f (k), [a, b]) < ∞
}

(A11)

with

‖ f ‖Cα = ‖ f ‖Ck + ‖ f (k)‖Cγ (A12)

where f (k) is the k-th derivative of f .
A family {T(t)}, t ≥ 0 of bounded linear operators T(t) : X→ X on a Banach space X is called a

strongly continuous one-parameter semigroup if it satisfies:

(a) T(0) = 1X.
(b) T(t)T(s) = T(t + s) for all t, s ≥ 0.
(c) For every x ∈ X the orbit maps yx : t �→ yx(t) := T(t)x are continuous from [0, ∞) into X.
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A list of six desiderata was recently proposed in [1] for calling families of operators {Dα, Iα} with
family index α ∈ I from some index set I ⊆ C fractional derivatives (Dα) and fractional integrals
(Iα) of order α /∈ N. Distributional domains for {Dα, Iα} seem to require a minor modification of
these desiderata.

Multiplication of distributions is ill-defined so that for distributions desideratum (f) (Leibniz rule)
requires generalization. A slightly modified list of desiderata might read as follows:

(a) Integrals Iα and derivatives Dα of fractional order α should be linear operators on linear spaces.

(b) On some subset G(b) ⊆ D(Iα) ∩ Iβ[D(Iβ)] ∩ D(Iα+β), G(b) 
= ∅, G(b) 
= {0} the index law
(semigroup property)

(Iα ◦ Iβ) f = Iα+β f (1)

holds true for Re α ≥ 0 and Re β ≥ 0, where D(Iα) denotes the domain of Iα.
(c) Restricted to a suitable subset G(c) ⊆ D(Iα) of the domain of Iα the fractional derivatives Dα of

order α operate as left inverses

Dα ◦ Iα = 1G(c)
(2)

for all α with Re α ≥ 0, where ◦ denotes composition of operators, and 1G(c)
is the identity

on G(c).
(d) Each of the two limits

g1 = D1 f = lim
α→1

Dα f , f ∈ G(d), (3a)

g0 = D0 f = lim
α→0

Dα f , f ∈ G(d), (3b)

should exist in some sense on some set G(d) ⊆ D(Dα), G(d) 
= ∅, G(d) 
= {0}. Moreover,
the limiting maps D1 : G(d) → G(d) and D0 : G(d) → G(d) should be linear.

Mathematics 2020, 8, 1107; doi:10.3390/math8071107 www.mdpi.com/journal/mathematics117
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(e) D0 = 1G(d)
is the identity on G(d), i.e., g0 = f in Equation (3b).

(f) Endowed with a suitable multiplication � : G(f) × G(d) → G(d) the limiting map D1 = D obeys
the Leibniz rule

D( f � g) = f � (D g) + (D f )� g (4)

for all f ∈ G(f), g ∈ G(d) with G(f) 
= ∅, G(f) 
= {0}. If G(d) consist of numerical functions, then �
is pointwise multiplication and G(f) = G(d).

Given these modified desiderata, the objective in this short note is to introduce fractional calculi
for distributions. Let us stress that the distributional domains D(Iα), D(Dα) given in Theorem 1 below
are maximal in a precise mathematical sense. One cannot enlarge them without violating either
the desiderata or the interpretation of fractional derivatives and integrals as convolution operators.
Recall that numerous other mathematical interpretations exist [2], that may have different maximal
domains. In this paper fractional operators are interpreted as convolutions with power law kernels
(cf. [2], Equation (28)). A comprehensive analysis of convolutions with power law kernels on weighted
spaces of continuous functions was recently given in [3].

Define the spaces of continuously differentiable functions, test functions, and smooth functions
with bounded derivates

Cm(Rd) :=
{

f : Rd → C| f is m-times continuously differentiable
}

(5a)

D(Rd) :=
{

f ∈ C∞(Rd)| f has compact support
}

(5b)

B(Rd) :=
{

f ∈ C∞(Rd)| f has bounded derivatives
}

(5c)

in the usual way [4]. The spaces Cm,D are endowed with the norm ‖ f ‖∞ = sup | f |. The topology on
B is induced by the seminorms ‖ f ‖N,g = sup{‖g∂n1 ...∂nd f ‖∞ : ni ∈ N, ∑d

i ni ≤ N} with N ∈ N and
g ∈ Cv, where Cv is the space of continuous functions vanishing at infinity.

The space of distributions D′ is the topological dual of D. The dual space B′ is the space of
integrable distributions. The pairing D ×D′ → C is denoted 〈·, ·〉, the pairing B × B′ → C as 〈·, ·〉B .

Definition 1. Two distributions f1, f2 ∈ D′(Rd) are called convolvable iff ϕ( f1 ⊗ f2) ∈ B′(R2d) for all
φ ∈ D(Rd), where ϕ(x1, x2) = φ(x1 + x2). Their convolution f1 ∗ f2 is defined by requiring that

〈φ, f1 ∗ f2〉 = 〈1, ϕ( f1 ⊗ f2)〉B (6)

holds for all φ ∈ D(Rd).

Let D′+ denote the space of causal distributions defined as elements f ∈ D′(R) whose support is
bounded on the left.

Definition 2. Fractional integrals Iα
+ and derivatives Dα

+ are defined for all α ∈ C and all distributions
f ∈ D′+ as convolution operators

Iα
+ f := Kα ∗ f (7a)

Dα
+ f := K−α ∗ f (7b)
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with kernels

Kα(x) =

⎧⎪⎨⎪⎩
xα−1

Γ(α)
for x > 0

0 for x ≤ 0
for Re α > 0 (8a)

Kα(x) =
dm

dxm Kα+m(x) for −m < Re α ≤ 0, m ∈ N. (8b)

The operators Iα
+ and Dα

+ are linear and continuous on D′+. The kernels {Kα : α ∈ C} form a
convolution group

Kα ∗ Kβ = Kα+β (9)

for all α, β ∈ C. This entails the index law Iα
+(I

β
+ f ) = Iα+β

+ f for all f ∈ D′+ and α, β ∈ C. Clearly,
all desiderata are fulfilled for {Iα

+, Dα
+} with D(Iα

+) = D(Dα
+) = G(b) = G(c) = G(d) = D′+ and G(f) = C∞.

The domain D′+ of causal distributions will now be enlarged using certain sets of lower
semicontinuous functions as convolution weights. A function f : R → R+, where R+ := [0, ∞],
is called lower semicontinuous, if the set { f ≤ a} is closed for every a ∈ R+. The set of all lower
semicontinuous functions is denoted I , the set of lower semicontinuous functions whose support is
bounded on the left is denoted I+. For (p, k) ∈ R×N let

Pp;k :=
{

f ∈ I | ∃C > 0 ∀x ∈ R : f (x) ≤ C(1 + |x|)p[log(e + |x|)]k
}

(10)

be the set of lower semicontinuous functions of power-logarithmic growth of order (p, k). Then

P+ := I+ ∩
⎛⎝ ⋃

q∈R
Pq;0

⎞⎠ (11a)

R+ := I+ ∩
⎛⎝ ⋃

k∈N0

P−1;k

⎞⎠ (11b)

are the sets of interest.

Definition 3. Let U ⊆ D′ and let B(D) denote the set of all bounded subsets of D. Then

(U)∗D′ :=
{

f ∈ D′ : ( f , g) are convolvable for all g ∈ U
}

(12)

denotes the set of all distributions convolvable with the given set U. A locally convex topology TU on U ⊆ D′ is
defined by the family of seminorms

‖ f ‖V,g = (| f |V ∗ |g|V)(0) =
∫
| f |V(x)|g|V(−x)dx (13)

with V ⊂ D, V ∈ B(D) and g ∈ (U)∗D′ . Here, the V-modulus of an element f ∈ D′ is defined as

| f |V(x) := sup
g∈V

|〈 f ( · ), g( · − x)〉| (14)

for all x ∈ R.

119



Mathematics 2020, 8, 1107

Theorem 1. The convolution group {Kα : α ∈ C}, resp. {Kα : α ∈ iR}, can be extended from (D′+, TD′+)
to operate linearly, bijectively, and continuously on the space (U, TU) with U = (P+)∗D′ , resp. U = (R+)∗D′ ,
in such a way that compact sets of indices α map to equicontinuous sets of operators.

Corollary 1. The desiderata (a)–(e) are fulfilled for {Iα
+, Dα

+}α∈C with

D(Iα
+) = D(Dα

+) = G(b) = G(c) = G(d) = (P+)∗D′ (15a)

and for {Iα
+, Dα

+}α∈iR with D1,G(d) as in (15a) and

D(Iα
+) = D(Dα

+) = G(b) = G(c) = (R+)
∗
D′ . (15b)

In both cases it is possible to choose G(f) = B.

The proof of Theorem 1 and its corollary will be published elsewhere, because it is lengthy and
giving it here would distract attention from the main message. The domains D(Iα

+), D(D
α
+), G(b),G(c)

are maximal with respect to convolvability in both cases. The second case {Iα
+, Dα

+}α∈iR yields a (purely
imaginary) “fractional calculus of order zero” in the sense that Re α = 0 for all operators in that subset.
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1. Introduction

The name fractional derivative (FD) is assigned to several mathematical operators, namely the
Grünwald-Letnikov (GL), Liouville (L), Riemann-Liouville (RL), Caputo (C), Marchaud, Hadamard
(H), Riesz, and others [1–5]. They are considered as generalisations of the classical derivative
studied by Leibniz, Newton, Euler, and Lagrange, just to name a few of the most important
mathematicians [1,2,6–10]. In previous papers we contributed to the on-going debate about the pros and
cons of each formulation and we proposed possible approaches coherent with classic results in Science
and Engineering [11,12]. In recent years, several operators were suggested claiming to be a “fractional
derivative”. This state of affairs motivated several papers showing the incorrectness of using the
designation FD and even, in several cases, the absence of novelty [13–17]. We proposed a coherent
framework for deciding if a given operator is a FD by formulating two criteria [11]. Nevertheless,
the debate and the controversy remain. Some questions require suitable answers:

• What do we mean by “derivative”?
• What is the relation between derivative and integral?
• Frequently different notions of “integral” are mixed. Should not we use different notations or

distinct names?
• When can we say that an operator is fractional?
• Should we consider a framework where integer and non integer orders co-exist and are mixed?
• What do we mean by fractional calculus? Should it be the calculus involving, at least, one “non integer

order” derivative?
• Can we consider as “fractional operator” any expression involving a convolution of a function

and a given kernel?
• Is it reasonable to choose a classic operator, to change its form by introducing a parameter and to

call it FD?
• How can we call “fractional derivative” to an operator that is itself solution of a linear

differential equation?

Mathematics 2019, 7, 150; doi:10.3390/math7020150 www.mdpi.com/journal/mathematics121
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• The existence of a non integer parameter is reason for the use of the word “fractional”?

Several of these questions and others were discussed in round tables in the scope of several
meetings held by the fractional calculus community [18,19]. Nevertheless, present day state of affairs
reveals that they were not sufficient to stimulate all researchers for a systematic definition of the
fundamental concepts. We observe the emergence of a plethora of assumed new operators that are
named as novel or generalised fractional derivatives. Often it is also claimed that such operators
fit better the experimental data. Obviously, from an application point of view, such lightly written
words would need a systematic and solid testing with data from many distinct scientific areas, and the
comparison with the results provided by classical derivatives (it is important to remark that this
requires long observation intervals to capture long range memory effects). Furthermore, from a formal
point of view, the good or bad fit into data, or the so-called “generalisation” by modifying some kernel,
are not necessarily correct in mathematical terms when thinking on the properties of FD. Quoting
Henri Poincaré Mathematics has a threefold purpose. It must provide an instrument for the study of nature.
But this is not all: it has a philosophical purpose, and, I dare say, an aesthetic purpose. The main aim in this
paper is to continue the discussion and try to establish a framework for avoiding misinterpretations
and controversial or, even the incorrect, use of definitions.

Having these ideas in mind, this paper is organized as follows. Section 2 introduces the main
terms and assumptions adopted in the follow-up. Section 3 recalls the definitions and fundamental
properties of classic derivatives. Several aspects for the unification of concepts in the perspective
of system theory are also discussed. Motivated by these ideas, Section 4 addresses the definition of
fractional derivative. In these initial sections we assume that the independent variable t is continuous.
However, computational systems are being increasingly important. Section 5 considers the case of
the “discrete-time” operators. Finally, in Section 6 several conclusions and additional comments
are presented.

2. Glossary and Assumptions

In Science it is important to define precisely the concepts that we are talking about. In fractional
calculus there is a considerable confusion in the adopted terminology having, in some cases, different
names for the same operator. Here we try to clarify the meaning for different terms in order to avoid
such problem. Therefore, we start with some fundamental terms. Later, when necessary, we will
introduce others, that are necessary in the rest of the paper.

• Anti-causal
An anti-causal system is causal under reverse time flow. A system is anti-causal if the output at
any instant depends only on values of the input at the present and future time.

• Anti-derivative
The operator that is simultaneously the left and right inverse of the derivative will be called
anti-derivative. It will be used to compute the definite integral through the Barrow formula [20].
This should be not confused with the negative order derivative, that needs not to be inverse of
a derivative.

• Backward
Reverse time flow—from future to past.

• Causal operator or system
A system is causal if the output at any instant depends only on values of the input at the present
and past time [21].

• Derivative
Derivative (first order) of a function, f (t) is the limit of the ratio of the change in such function to
the corresponding change in its independent variable as the latter change approaches zero. It will
be represented by D f (t), f ′(t), or d f (t)

dt .

122



Mathematics 2019, 7, 150

• Forward
Normal time flow—from past to future.

• Fractional
Fractional will have the meaning of non integer real number.

• Integral
In strict mathematical therms, there are several definitions of integral. However, the simplest is
the Riemann integral that we can state as the numerical measure of the area under the graph of
a given positive function, above the horizontal axis, and bounded on the sides by ordinates drawn
at the endpoints of a specified interval. This is usually called definite integral and it is distinct from
the indefinite integral, also called primitive.

• Primitive
The operator that is only the right inverse of the derivative will be called primitive.

This paper tries to answer some of the initial questions. To clarify concepts, we adopt the
designation “unified derivative” instead of “fractional derivative”.

We assume that

• We work on R. Nonetheless, this is not a limitation. If the function at hand is defined on any
sub-interval in R, we can extend the definition of the function to the whole real line with
null values.

• We do not address the proof of existence of the operators.
• We use the two-sided Laplace transform (LT):

F(s) = L [ f (t)] =
∫
R

f (t)e−stdt, (1)

where f (t) is any function defined on R and F(s) is its transform, provided that it has a non
empty region of convergence

• The Fourier transform (FT), F [ f (t)], is obtained from the LT through the substitution s = iω with
ω ∈ R and i =

√−1
• The functions and distributions have Laplace and/or Fourier transforms
• Current properties of the Dirac delta distribution, δ(·), and its derivatives, δ′(·), δ′′(·) · · · ,

will be used
• The standard convolution operation will be adopted

f (t) ∗ g(t) =
∫
R

f (τ)g(t− τ)dτ. (2)

• The order of any fractional derivative, α, is any real number. We will not consider the complex
order, since it gives non Hermitian derivatives.

• The multi-valued expressions sα and (−s)α will be used. To obtain functions from them we will
fix for branch-cut lines the negative real half axis for the first and the positive real half axis for the
second; for both the first Riemann surface is chosen.

• The Heaviside unit step will be represented by ε(t) and the signum function by sgn(t).
These functions are related by sgn(t) = 2ε(t)− 1.

• We define the “floor” of a real number α as the integer N = �α� verifying N ≤ α < N + 1.
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3. The Classic Derivatives and Their Inverses

3.1. Elemental Derivatives

We find in the literature three standard definitions of (order 1) derivative [12] (the called quantum
derivative will not be considered here [22]). These elemental derivatives can be considered as “seeds”
for the notion of high level derivatives. Such derivatives are:

Definition 1.

• Forward or causal

Df f (t) = lim
h→0

f (t)− f (t− h)
h

, (3)

• Backward or anti-causal

Db f (t) = lim
h→0

f (t + h)− f (t)
h

. (4)

Remark 1. Substituting −h for +h interchanges the definitions, meaning that we only have to consider h > 0.

• Two-sided or centred

Dc f (t) = lim
h→0

f (t + h/2)− f (t− h/2)
h

. (5)

Remark 2. The expression (5) was used in [23,24] to obtain two different two-sided (centred) fractional
derivatives. Later, in Section 3.4, we will recover the general formulation of these derivatives.

Remark 3. Most literature on Differential Calculus uses definition (4) only due to historical reasons.

In terms of the Laplace transform we have

• Forward or causal

L
[

Df f (t)
]
= lim

h→0

1− e−sh

h
F(s) = sF(s), (6)

• Backward or anti-causal

L [Db f (t)] = lim
h→0

esh − 1
h

= sF(s), (7)

• Two-sided or acausal

F [Dc f (t)] = lim
h→0

esh/2 − e−sh/2

h
F(iω) = sF(s) (8)

Remark 4. Note that, although different, the LT of the three derivatives is the same and valid in the whole
complex plane.

It is straightforward to invert the relations (3) and (4), and we obtain

D−1
f f (t) = lim

h→0

∞

∑
n=0

f (t− nh) · h, (9)

D−1
b f (t) = lim

h→0

∞

∑
n=0

f (t + nh) · h. (10)
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Using the LT, we have

L
[

D−1
f f (t)

]
= lim

h→0
h

∞

∑
n=0

e−shF(s) =
1
s

F(s), Re(s) > 0, (11)

L
[

D−1
b f (t)

]
= lim

h→0
h

∞

∑
n=0

eshF(s) =
1
s

F(s), Re(s) < 0. (12)

Remark 5. Note the appearance of the regions of convergence (ROC) subsets of C. This important fact is tied
with causality [21,25].

3.2. First Unification

The repeated use of the above derivatives and anti-derivatives leads to closed formulae valid for
any integer order, N ∈ Z [12], such that:

DN
f f (t) = lim

h→0+

∞
∑

n=0

(−N)n
n! f (t− nh)

hN , (13)

DN
b f (t) = (−1)N lim

h→0+

∞
∑

n=0

(−N)n
n! f (t + nh)

hN , (14)

respectively, where (a)k = a(a + 1)(a + 2) . . . (a + k − 1) denotes the Pochammer symbol.
Expressions (13) and (14) reflect, in a unified way, all integer order derivatives and anti-derivatives.
Therefore, we can use only the word derivative independently of having positive or negative order.

The corresponding LT are given by:

L
[

DN
f f (t)

]
= sN F(s), Re(s) > 0, (15)

L
[

DN
b f (t)

]
= sN F(s), Re(s) < 0, (16)

respectively. From the point of view of system theory, expressions (15) and (16) tell us that the
derivative operator represents a system with transfer function (TF) given by H(s) = sN . In this
perspective, we consider the system approach with the integer order derivatives formulated by means
of the two-sided LT property L

[
f (n)(t)

]
= snL [ f (t)] , where n ∈ Z, and it becomes clear the meaning

of the sequence
. . . s−n . . . s−2 s−1 1 s1 s2 . . . sn . . . (17)

in the Laplace domain. Indeed, the corresponding time sequence is

· · · ± tn−1

(n− 1)!
u(±t) · · · ± t2

2!
u(±t) ± t1

1!
u(±t)± u(±t) δ(t) δ′(t) δ′′(t) . . . δ(n)(t) . . . (18)

that allows us to write, for the causal definition (the other case is similar),

DN
f f (t) =

∫ ∞

0
f (t− τ)

τN−1

(N − 1)!
dτ, (19)

where we assume that, if N ≤ 0, then τN−1

(N−1)! = δ(N)(τ).
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3.3. Second Unification

It is straightforward to extend formulae (13) and (14) to any real order. In fact, with α ∈ R we
can write

Dα
f f (t) = lim

h→0+

∞
∑

n=0

(−α)n
n! f (t− nh)

hα
, (20)

Dα
b f (t) = e−iαπ lim

h→0+

∞
∑

n=0

(−α)n
n! f (t + nh)

hα
, (21)

that have LT
L
[

Dα
f f (t)

]
= sαF(s), Re(s) > 0, (22)

L [Dα
b f (t)] = sαF(s), Re(s) < 0, (23)

respectively. These relations, allow us to fill in the gaps in middle the discrete sequence (17) to obtain,
for example

. . . s−n . . . s−π . . . s−2 . . . s−3/2 . . . s−1 . . . s−1/3 . . . 1 s1 . . . s3/2 . . . s2 . . . sn . . . . (24)

giving a meaning for sα, ±Re(s) > 0. The inverse LT of this transfer function is

L [sα] = ± t−α−1

Γ(−α)
ε(±t) (25)

that leads to

Dα
f f (t) =

∫ ∞

0
f (t− τ)

τ−α−1

Γ(−α)
dτ, (26)

generalising the causal expression (19) to real orders. For the anti-causal case, we get the
general expression:

Dα
b f (t) = e−iαπ

∫ ∞

0
f (t + τ)

τ−α−1

Γ(−α)
dτ. (27)

3.4. Third Unification

The factor e−iαπ in (27) was already included by Liouville [26] to guarantee that
L [

Dα
b f (t)

]
= sαF(s), for Re(s) < 0. It apeared also in the backward GL derivative (21) and particular

integer order cases. However, this factor may be of no relevance in many applications, especially
when the independent variable is space, not time. If this term is removed, then we can join pairs of
formulae into only one. We change also the nomenclature, using left for forward and right for backward.
Therefore, (20) and (21) lead to

Dα
l,r f (t) = lim

h→0+

∞
∑

n=0

(−α)n
n! f (t± nh)

hα
, (28)

where the signs − and + are used for the left and right derivatives, respectively. The corresponding
Liouville integral formulations are expressed by

Dα
l,r f (t) =

∫ ∞

0
f (t± τ)

τ−α−1

Γ(−α)
dτ. (29)
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The LT of these derivatives are

L
[

Dα
l,r f (t)

]
= (±s)αF(s), Re(±s) > 0. (30)

From these results we conclude that

1. We can combine two derivatives of any orders, α and β, to obtain a third derivative

sαsβ = sα+β (31)

2. If f (t) = eiωt, ω ∈ R, then

Dαeiωt = (±ω)αeiωt = |ω|α e±iα π
2 sgn(ω)eiωt (32)

where the + and − signs refer to the left and right cases in (28) and (29), respectively.
3. The corresponding frequency responses are given by

H(iω) = |ω|α e±iα π
2 sgn(ω) (33)

This result is important, since it expresses very clearly the unification of the derivatives and
motivates a further development as discussed in the next subsection.

3.5. Fourth Unification

In (31) it is written that the combination of two derivatives of the same type (e.g., left) gives rise to
another derivative of the same type. Now, we consider the combination of one derivative of each type.

Definition 2. Consider two derivatives, causal and anti-causal, with orders α and β, having frequency responses
|ω|α eiα π

2 sgn(ω) and |ω|β e−iβ π
2 sgn(ω), respectively.

We define a new derivative with frequency response

Ψγ
θ (iω) = |ω|γ eiθ π

2 sgn(ω), (34)

where γ = α + β is the order of the derivative and θ = α − β is the parameter of asymmetry (sometimes
called skewness).

It can be shown [23,24] that, if γ > −1, then the frequency response (34) corresponds to a two-sided
derivative given by:

Dγ
c f (t) := lim

h→0+
h−γ

+∞

∑
n=−∞

(−1)n · Γ (γ + 1)

Γ
(

γ+θ
2 − n + 1

)
Γ
(

γ−θ
2 + n + 1

) f (t− nh). (35)

Suitable choices of the parameters γ and θ allow us to recover the causal and anti-causal
derivatives. The particular cases of α = β and α− β = ±1 are interesting and correspond to well-known
operators as we will see later at Section 4.3.

3.6. Bode Diagrams

Bode diagrams are useful tools for the analysis and design of linear systems [21,25], since they
provide a direct insight into models adopted in engineering and natural systems. This tool is of
relevance when applied to the unified derivatives above discussed in Sections 3.2–3.5.
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Definition 3. From formula (34) define two spectra (Figure 1):

1. Amplitude spectrum

A(ω) = |ω|γ (36)

2. Phase spectrum

Φ(ω) = θ
π

2
sgn(ω) (37)

For real-valued functions, the amplitude and the phase are even and odd functions,
respectively [21,25]. For this reason, we only need to represent log plots for positive frequencies that
are called Bode diagrams. For A (ω) it is usual to express the amplitude in deciBell (dB). Then, it results

A(ω)|dB = γ20 log ω (38)

that is represented by a straight line with slop 20γ dB per decade (dB/dec). The phase Φ (ω) is
expressed in radians or degrees and represented by horizontal straight lines at α π

2 .
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Figure 1. Bode plots for α = {−1,−0.5, 0.5, 1} with θ = α, corresponding to the amplitude and phase
spectra, given in (36) and (37).

In Table 1, we consider some particular cases for the parameters γ and θ and we point out
the name of the of resulting derivatives, assuming that α > 0. We include also the Riesz and Feller
potentials [1,2] that we will discuss in Section 4.
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Table 1. Some of known derivatives obtained with particular values of γ and θ.

γ θ Freq. Response Name

1 α α (iω)α causal derivative/Grünwald-Letnikov
2 −α −α (iω)−α causal anti-derivative/Grünwald-Letnikov/Liouville
3 α α (iω)N (iω)α−N causal/Liouville
4 α α (iω)α−N (iω)N causal/Liouville-Caputo
5 α −α (−iω)α right derivative/Grünwald-Letnikov
6 −α −α (−iω)−α right anti-derivative/Grünwald-Letnikov/Liouville
7 α −α (−iω)N (−iω)α−N anti-causal/Liouville
8 α −α (−iω)α−N (−iω)N right/Liouville-Caputo
9 α 0 |ω|α symmetric two-sided
10 −α 0 |ω|−α Riesz potential
11 α ±1 i sgn(ω) |ω|α anti-symmetric two-sided
12 −α 0 i sgn(ω) |ω|−α Feller potential

This list includes the most relevant examples of application of our framework. Some operators
such as, for example, the Erdélyi and Kober integrals fall outside this point of view and should not be
considered derivatives.

Remark 6. It can be shown that the derivatives defined by means of (34) verify the usual properties required for
the FD to follow, namely the strict sense criterion proposed in [11].

4. Derivative Definition Through Integral Formulations

4.1. Definition

The results from the previous section motivate the following definition of the unified derivative.

Definition 4. We define the α-order “unified derivative” as the convolutional operator

Dα
θ f (t) =

∫
R

f (t− τ)ψα
θ (τ)dτ, (39)

where ψα
θ (t), t ∈ R, is the kernel of the derivative and θ ∈ R, is an asymmetry parameter that controls the

characteristics of the derivative, namely the causality. The kernel ψα
θ (t) is a function with Fourier transform

Ψα
θ (iω), ω ∈ R, such that the corresponding Bode diagram of amplitude is a straight line with slope 20α dB/dec

and the phase is a horizontal straight line with value α π
2 .

4.2. A General Kernel

In (34) we obtained the frequency response of the unified derivative. If the inverse Fourier
transform is ψα

θ (t) = F−1
[
|ω|α ei π

2 θ·sgn(ω)
]
, then it is known [23,24] that:

ψα
θ (t) =

sin
[
(α + θ · sgn(t)) π

2
]

2 sin (απ) Γ(−α)
|t|−α−1. (40)

This is the general kernel that allows us to express the integral formulation of the unified derivative
that can be written as:

Dα
θ f (t) =

1
2 sin (απ) Γ(−α)

∫
R

f (t− τ) sin
[
(α + θ · sgn(τ))

π

2

]
|τ|−α−1dτ. (41)
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4.3. Some Particular Kernels

As seen above, the most interesting derivatives result from particular values of the parameters α

and θ. Here, we analyse several cases as follows.

1. α = θ = N ∈ N0

In this case, Ψγ
θ (iω) = (iω)α and ψN

N(t) = δ(N)(t). It yields

DN
l (t) =

∞∫
0

f (t− τ)δ(N)(τ)dτ =

∞∫
−∞

f (τ)δ(N)(t− τ)dτ (42)

stating a well known property of the impulse distribution.
2. α = θ ∈ R+

In this case, Ψ−α−α(iω) = (iω)−α and ψ−α−α(t) =
tα−1

Γ(α) ε(t). We obtain

D−α
l f (t) =

1
Γ(α)

∞∫
0

f (t− τ)τα−1dτ =
1

Γ(α)

t∫
−∞

f (τ)(t− τ)α−1dτ (43)

corresponding to the causal Liouville anti-derivative (line 2 in Table 1).
3. α ∈ R+ and θ = −α

In this case, Ψ−α
α (iω) = (−iω)−α and ψ−α

α (t) = (−t)α−1

Γ(α) ε(−t). Then, it results

D−α
r f (t) =

1
Γ(α)

∞∫
0

f (t + τ)τα−1dτ =
1

Γ(α)

∞∫
t

f (τ)(τ − t)α−1dτ, (44)

that corresponds to line 6 in Table 1.
4. α ∈ R+, θ = α

Let Ψα
α(iω) = (iω)α . This is essentially the previous case 2 that leads to (43). However, the inverse

FT produces a kernel that originates a singular integral. To avoid this problem we can use the
properties of the pseudo-functions [27] that allow us to regularize (43) and use it for the derivative
case. Let N = �α�+ 1. We can write (43) as [28]

Dα
l f (t) =

1
Γ(−α)

∞∫
0

τ−α−1

[
f (t− τ)−

N−1

∑
0

(−)m f (m)(t)
m!

τm

]
dτ, (45)

that we will call regularized Liouville derivative. Similar regularised integrals can be obtained
for (44).

Remark 7. If 0 < α < 1 and N = 1, then we get

Dα
l f (t) =

1
Γ(−α)

∞∫
0

τ−α−1 [ f (t− τ)− f (t)] dτ, (46)

that coincides with the Marchaud derivative [1]. Nonetheless, for α > 1, the Marchaud operator is no
longer a derivative.

5. α ∈ R+, θ = α and N = �α�+ 1
In this case, we have two possibilities:
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(a) Ψα
α(iω) = ΨN

N(iω)Ψα−N
α−N(iω) = (iω)N (iω)α−N . This frequency response corresponds to

a two-step derivative: integer order, N, derivative after a fractional anti-derivative of
order N − α . Instead of (41), we can write

Dα
l f (t) =

dN

dtN
1

Γ(−α + N)

t∫
−∞

(t− τ)N−α−1 f (τ)dτ, (47)

that is called Liouville derivative [1] (line 3 in Table 1).

(b) Ψα
α(iω) = Ψα−N

α−N(iω)ΨN
N(iω) = (iω)α−N (iω)N . It is the reverse of the above: a fractional

anti-derivative of order N − α after an integer order N derivative. Then, (41) assumes the
form

Dα
l f (t) =

1
Γ(−α + N)

t∫
−∞

(t− τ)N−α−1 dN f (τ)
dτN dτ. (48)

that is called Liouville-Caputo derivative [10] (line 4 in Table 1).

The corresponding right derivatives are easily obtained.
6. α ∈ R+, θ = 0

In this case, Ψ−α
0 (iω) = |ω|−α and the inverse FT of (40) is

ψα
0 (t) =

1
cos

(
α π

2
)

Γ(α)
|t|α−1,

that leads to the Riesz potential (line 10 in Table 1)

D−α
0 f (t) =

1
cos

(
α π

2
)

Γ(α)

∫
R

f (t− τ)|τ|α−1dτ (49)

7. α ∈ R+ and θ = 1
In this case, Ψ−α

0 (iω) = |ω|−α and the inverse FT of (40) is

ψα
0 (t) =

1
sin

(
α π

2
)

Γ(α)
|t|α−1sgn(t).

that leads to the Riesz-Feller potential (line 12 in Table 1)

D−α
0 f (t) =

1
sin

(
α π

2
)

Γ(α)

∫
R

f (t− τ)|τ|α−1sgn(τ)dτ (50)

8. α = 0 and θ = 1
In this case, Ψ0

θ(iω) = ei π
2 θsgn(ω) = i sgn(ω), and (40) leads to

D0
1 f (t) =

1
π

∫ ∞

−∞
f (t− τ)

1
τ

dτ (51)

which is the Hilbert transform of f (t) [21,25].

Remark 8. We note that the scheme we presented is a theretical base for supporting the development and
aplications of the FD. Practical problems may require some kind of modification—see for example [29].

131



Mathematics 2019, 7, 150

4.4. Classic Riemann-Liouville, Caputo, and Hadamard derivatives

The classic formulations of Riemann-Liouville (RL) and Caputo (C) left derivatives (α > 0) are
obtained from the (47) and (48) assuming that f (t) is defined on a given interval [a, b] (we can set
b = ∞). Therefore, for t ∈ [a, b] the RL and C derivatives are given by

RLDα
l f (t) = DN

l

⎡⎣ 1
Γ(−α + N)

t∫
a

(t− τ)N−α−1 f (τ)dτ

⎤⎦ (52)

CDα
l f (t) =

1
Γ(−α + N)

t∫
a

(t− τ)N−α−1 f (N)(τ)dτ, (53)

respectively, where N = �α�+ 1.

Remark 9. It is important to note that, although the function f (t) has bounded support, both derivatives define
non bonded support functions.

Concerning the Hadamard derivative and anti-derivative cases and for α > 0, we have [2]

H Dα[ f (x)] =
(

x
d

dx

)N 1
Γ(N − α)

∫ x

a

(
log

x
ξ

)N−α+1 f (ξ)dξ

ξ
(54)

and
H D−α[ f (x)] =

1
Γ(α)

∫ x

a

(
log

x
ξ

)α−1 f (ξ)dξ

ξ
. (55)

With the change of variable inside the integral, that is, with ξ = eτ and x = et, we obtain
a derivative of the RL type.

5. On the Discrete-Time Derivatives

There are several approaches into the discrete-time FD. The most interesting are

• The methodology based on time scales [30–32] that uses the nabla and delta derivatives;
• Infinite series based on the approaches by Tarasov [33,34].

The first approach has more similarities with the theory we presented here and consists of the
framework presented in [32]. In fact, the discrete-time derivatives described there recover the GL
forward and backward derivatives introduced in (20) and (21). However, it is not straightforward to
introduce some tool similar to Bode diagrams because:

1. The frequency response H(iω) is obtained from the TF given by H(s), when s assumes values on
the Hilger circle: |s− 1

h | = 1
h , where h is the sampling interval. Therefore, the domain is defined

by ω ∈ (−π
h , π

h
]
;

2. The eigenvalue of the nabla derivative corresponding to the eigenvector eiωhn is s = 1−e−iωh

h .
If h is very small, then s ≈ iω. Therefore, only for small values of h the derivative is represented
by straight lines in log plots;

3. There are no studies for the two-sided derivatives recovering to the one described in Section 3.5.
The one proposed in [34] has a different formulation and properties.

From these considerations we conclude that the topic of discrete-time derivatives, requires still
further study for keeping the simplicity of Bode diagrams.
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6. Conclusions

This paper discussed the problem of multiple attempts to have distinct operators under the
umbrella of “fractional derivatives”. One possible strategy is to discuss the validity of several operators
recently proposed. Indeed, in previous papers it was demonstrated that such “novel” fractional
derivatives are incorrect. Here we adopted an alternative strategy based on the classical system theory
well known in applied sciences. Based on the tools of this theory we discussed a unified framework
demystifying misleading, and often incorrect, formulations. Quoting again Henri Poincaré: To doubt
everything, or, to believe everything, are two equally convenient solutions; both dispense with the necessity
of reflection.
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Abstract: The question raised in the title of the article is not philosophical. We do not expect general
answers of the form “to describe the reality surrounding us”. The question should actually be
formulated as a mathematical problem of applied mathematics, a task for new research. This question
should be answered in mathematically rigorous statements about the interrelations between the
properties of the operator’s kernels and the types of phenomena. This article is devoted to a discussion
of the question of what is fractional operator from the point of view of not pure mathematics, but
applied mathematics. The imposed restrictions on the kernel of the fractional operator should actually
be divided by types of phenomena, in addition to the principles of self-consistency of mathematical
theory. In applications of fractional calculus, we have a fundamental question about conditions of
kernels of fractional operator of non-integer orders that allow us to describe a particular type of
phenomenon. It is necessary to obtain exact correspondences between sets of properties of kernel
and type of phenomena. In this paper, we discuss the properties of kernels of fractional operators
to distinguish the following types of phenomena: fading memory (forgetting) and power-law
frequency dispersion, spatial non-locality and power-law spatial dispersion, distributed lag (time
delay), distributed scaling (dilation), depreciation, and aging.

Keywords: fractional calculus; fractional derivative; translation operator; distributed lag; time delay;
scaling; dilation; memory; depreciation; probability distribution

MSC: 26A33 Fractional derivatives and integrals; 34A08 Fractional differential equations; 60E05
Distributions: general theory

1. Introduction

Why do we need fractional derivatives and integrals of non-integer order? We are not interested in
the answer from the standpoint of philosophy or methodology of science. We are primarily interested
in the answer from the point of view of applied mathematics, theoretical physics, economic theory, and
other applied sciences. For application of fractional calculus [1–7], we want to have an answer in the
form of exact mathematical statements that is formulated in precise and strict form. To get such an
answer, it is required to formulate the question in mathematical form. The question should actually be
formulated as a mathematical problem of applied mathematics, as a task for new research.

We also do not plan to delve into the “linguistic” question of which operators might be called
fractional and which are not. The first author has already formulated their point of view on this
issue in articles [8–12]. There are also many important contributions to this discussion (for example,
see [13–16]). In this article, we do not plan to continue the discussion directly in this direction. We
want to direct our discussion in a different direction. However, we will make an important remark for
this paper. Please note that the proposed principle “No nonlocality. No fractional derivative” [11]

Mathematics 2020, 8, 164; doi:10.3390/math8020164 www.mdpi.com/journal/mathematics135



Mathematics 2020, 8, 164

cannot be turned into the principle "No memory. No fractional derivative". This is due to the fact
that nonlocality in time cannot be reduced only to memory (about the concept of memory, see for
example in articles [17,18]). It should also be noted here that the operators that describe the delay,
lag, and scaling continuously distributed over time cannot be attributed to fractional operators if the
distribution is described by probability density functions. These operators are integer order operators
with distributed delay, lag, and scaling.

The fractional calculus, which is the theory of integrals and derivatives of fractional order,
describes a wide variety of different types of operators with non-integer order [1–7]. Fractional calculus
allows us to describe various phenomena and effects in natural and social sciences. For example, we
should note the non-locality of power-law type, spatial dispersion of power type, fading memory,
frequency dispersion of power type, intrinsic dissipation, the openness of systems (interaction with
environment), fractional relaxation-oscillation, fractional viscoelasticity, fractional diffusion-waves,
long-range interactions of power-law type, and many others [19,20].

In applied mathematics, it is important to have a tool that allows you to adequately select the
type of fractional operators for the type of phenomena under consideration. It is necessary to have
clear mathematical criteria for associating fractional operators of non-integer orders and those types
of phenomena that they can describe. Differential and integral operators of non-integer orders are a
powerful tool for modeling and description of processes that characterized by fading memory and
spatial nonlocality. However, not all operators of non-integer orders can describe the effects of memory
(or non-locality).

We should emphasize that not all fractional derivatives and integrals can be used for modeling
the processes with memory. For example, the Kober and Erdelyi–Kober operators as well as the
Caputo–Fabrizio integral and derivatives cannot be applied to describe phenomena with memory
or spatial nonlocality. These operators can be applied only to describe processes with continuously
distributed scaling (dilation) and lag (delay), respectively [21,22]. We also can state that these operators
can be interpreted as derivatives and integrals of integer orders with scaling or lag, distributions of
which are described by some probability density functions [21,22].

In application of the differential and integral operators with non-integer orders, a fundamental
question arises about the correct subject interpretation of the different types of operators. Interpretation
is not in the form of a description of one of the particular manifestations of real processes, but by one
or another type of phenomena. We should clearly understand what type of effects and phenomena a
given fractional operator of non-integer order can describe.

It is necessary to understand what types of fractional operators, what types of phenomena can be
described in principle. The most important role in this description of phenomena must be understood
by what types of fractional derivatives and integrals of non-integer order, in principle, what types
(classes) of phenomena can describe.

In applications of fractional calculus, we can distinguish the following types (classes) of phenomena
by some properties of kernels:

• fading memory (forgetting) and power-law frequency dispersion;
• spatial non-locality and power-law spatial dispersion;
• distributed lag (time delay);
• dictributed scaling (dilation);
• depreciation and aging.

These types of phenomena can be described by fractional operators of non-integer orders with
some types of operator kernels. For these types of phenomena, we should have mathematical conditions
on the operator kernels, which uniquely identify one of types of these phenomena.

Let us give some examples of the correspondence between the some fractional derivatives
(or integrals) and the type of phenomena, which can be described by these operators in Table 1.
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Examples of these type of phenomena in physics are described in Handbook of Fractional Calculus
with Application [19,20].

Table 1. Examples of the correspondence between the some fractional derivatives (or integrals) and the
type of phenomena.

№ Type of Phenomena: Example of Fractional Operators:

1 Memory and Non-Locality in Time Caputo and Riemann–Liouville

2 Spatial Non-Locality and Spatial Dispersion Riess and Liouville

3 Distributed Time Delay and Lag Caputo–Fabrizio

4 Distributed Dilation and Scaling Kober and Erdelyi–Kober,
Gorenflo–Luchko–Mainardi

5 Distributed Depreciation and Aging Prabhakar and Kilbas–Saigo–Saxena

In this paper, we proposed the properties of operator kernels and corresponding types of
phenomena. In fractional calсulus, we do not have a list of correspondence between mathematical
properties of the operators kernels and types of effects and phenomena. Mathematically rigorous
conditions on the kernels of fractional differential and integral operators are necessary to distinguish
between different types of phenomena and processes.

First of all, we must clearly distinguish between types of fractional operators and types of
phenomena. This should not be just a list of examples of specific manifestations in the different sciences.
In fractional calculus, we should have correspondence between the types of phenomena and the types
of properties of operator kernels. In this article, we will explain in more detail the proposed approach
to the interpretation of fractional derivatives and integrals.

2. Formulation of Mathematical Problem

This article does not claim to be a general consideration of fractional derivatives and integrals. To
simplify the discussion of fractional operators, we will consider operators with respect to one variable
t, which will be interpreted as time. A discussion of the problem of the relationship between the
types of phenomena and the types of fractional operators will be constructed on the example of the
following operator (

D(K) f
)
(t) =

∫ t

t0

K(t, τ)
(
D(n)
τ f (τ)

)
dτ, (1)

where
(
D(n)
τ f
)
(τ) is differential operator of the integer order n, where n = 0, 1, 2, . . . , and K(t, τ) is a

kernel of the operator. For example, we can consider the standard derivative of the integer order n, i.e.,

(
D(n)
τ f
)
(τ) = f (n)(τ) =

dn f (τ)
dτn . (2)

In general, the kernel K(t, τ) depends on the order n and initial point t0, i.e., we should use Kn,t0(t, τ).
To simplify the notation, we will use K(t, τ), assuming that n and t0 are already fixed. Expression (1)
has a sense, if the integral (1) exists. In general, the function f (n)(τ) does not have to be continuous
function and the kernel K(t, τ) can have an integrable singularity of some kind.
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Remark 1. In general, we can consider other differential operators
(
D(n)
τ f
)
(τ) of the integer order n instead

of the standard derivative f (n)(τ). For example, we can consider the operators (1), where differential operator(
D(n)
τ f
)
(τ) is defined in the form.

(
D(n)
τ f
)
(τ) =

n∏
k=0

(
1 + γ+ k + β−1τ

d
dτ

)
, (3)

which is used in the Gorenflo-Luchko-Mainardi (GLM) operator [23–25] with some parameters γ ∈ R and β > 0
of the kernel K(t, τ) (for details see Equations (1) and (12) in [24], and Equations (4) and (39) in [25]). This
operator is also known as the left-sided Caputo-type modification of the Erdelyi–Kober fractional derivative (see
Equation (12) in [24] (p. 362)). Please note that the GLM operator was introduced for the first time in [23] in
connection with the scale-invariant solutions of the time-fractional diffusion-wave equation (see Equation (58)
on [23] (p. 188)). The special form (3) is needed in order to make this operator a left-inverse operator to the
Erdelyi–Kober integral operator (see Equation (13) in [24] (p. 362)). Emphasize that the main property of any
generalized (fractional) derivative is to be a left-inverse operator to the corresponding generalized (fractional)
integral operator. Please note that the Kober and Erdelyi–Kober operators [1,4], as well as the Caputo–Fabrizio
operators [26–28], cannot be applied for modeling processes with fading memory or spatial nonlocality. These
operators can be used only to describe continuously distributed scaling (dilation) and lag (delay), respectively
(sections below). Therefore we also can state that these operators are interpreted as derivatives and integrals of
integer orders with scaling or lag, distributions of which are described by probability density functions.

Remark 2. We can also consider instead of
(
D(n)
τ f
)
(τ) a fractional differential (or integral) operator

(
D(α)
τ f

)
(τ)

of another type than the ones defined by the kernel K(t, τ). For example, we can use the Caputo fractional

derivative,
(
D(α)
τ f

)
(τ) =

(
DαC,0+ f

)
(τ), and the kernel is the probability density function of the gamma

distriburion (for details, see the Section 7 of the article [29] and the papers [30–32]). Such a choice is necessary
to describe the simultaneous presence of two such phenomena as distributed lag and fading memory.

Let us give a formulation of a mathematical problem of applied mathematics, as task for new
research in fractional calculus that will be illustrated in this paper below.

Mathematical problem of fractional calculus in application: What conditions must the kernel
K(t, τ) of operator (1) have in order to describe one or another type of phenomena? It is necessary to
obtain exact correspondences between sets of properties of kernel and type of phenomena.

In this paper, we describe the conditions on the kernel K(t, τ), which allow us to use operator of
the form (1) to describe the following types of phenomena:

(Type I): Continuously Distributed Scaling (Dilation);
(Type II): Continuously Distributed Lag (Delay).
We also give some comments to the phenomena:
(Type III): Continuously Distributed Fading Memory;
(Type IV): Distributed Depreciation and Aging.
Let us give these conditions for phenomena of Types I and II in the form of the following statements.

The conditions on the kernel K(t, τ) for phenomenon of Types III and IV are discussed in the separate
sections of this paper.

Statement 1.

Let us assume that the kernel K(t, τ) of the operator (1) with t0 = 0 satisfies the following conditions

K(λt,λτ) = λ−1K(t, τ), (4)
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for all λ > 0, and the condition of non-negativity, and the normalization condition

K(1, x) ≥ 0,
∫ 1

0
K(1, x) dx = K < ∞ (5)

for all x ∈ (0, 1), where K is a finite positive constant. In this case, operator (1) can be represented (by
using the change of variable τ→ x = τ/t ) in the form

(
D(K) f

)
(t) = K

∫ 1

0
ρ1(x) Sx

(
D(n)
τ f (τ)

)
dx (6)

with a numerical factor K, where ρ1(x) = K(1, x)/K is the probability density function that satisfies the
condition of non-negativity and the normalization condition

ρ1(x) ≥ 0,
∫ 1

0
ρ1(x) dx = 1, (7)

and Sx is the scaling (dilation) operator

Sx f (t) = f (t·x),
Sx

(
D(n)

z f (z)
)
=
(
D(n)

z f (z)
)

z=t·x
,

Sx f (n)(t) =
(

dn f (z)
dzn

)
z=t·x

.

(8)

Then operator (1) describes the continuously distributed scaling (dilations). In physics and
economics, the dilation is the change of scale of objects and processes.

Remark 3. Please note that using property (4) also allows us to write the operator (1) as the Mellin-type
convolution (

D(K) f
)
(t) =

∫ t

0
K
( t
τ

, 1
)(
D(n)
τ f (τ)

)dτ
τ

, (9)

which differs from the Mellin convolution by the upper limit of t instead of infinity. Using the kernel

KH(x, 1) =
{

K(x, 1)
0

x > 1,
x ≤ 1.

(10)

The operator (7) can be represented in the form

(
D(K) f

)
(t) = KH ∗M f (n) =

∫ ∞
0

KH

( t
τ

, 1
)(
D(n)
τ f (τ)

)dτ
τ

, (11)

where ∗M is the Mellin convolution [33,34]. This representation allows us to propose a generalization the
operator (9) by using the of the Mellin convolution in the definition of these generalized operators [29].

Remark 4. Operators (1) and (2) with kernel, which satisfies the conditions (4) and (5), cannot be considered to
be fractional derivative of non-integer order for positive integer values of n. The correct interpretation of these
operators is integer order derivatives with the continuously distributed scaling (dilation). Please note that as a
basis for the definition of these operators, which actually are integer order operators, one can use expression (6)
with conditions (7) instead of Equation (1) with conditions (4) and (5).

To have fractional generalization of these operators there are two ways: (A) we can use a fractional

differential (or integral) operator
(
D(α)
τ f

)
(τ) instead of

(
D(n)
τ f
)
(τ); (B) we can also use the kernel ρ1(x),

which is not satisfied the normalization condition (7). In the work [29], we proposed a fractional
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generalization of this type of operators by the way (A) to describe processes with fading memory and
distributed scaling.

Remark 5. In our opinion, the Kochubei’s approach to general fractional calculus [35–37], which is based on
the Laplace convolution, can be applied to formulate new general fractional calculus, which will be based on
the Mellin convolution. Moreover, the general fractional operators (9) and (11) can be used to formulate a
generalization of the Luchko operational calculus [24,38], where the Mellin convolution will be used instead of
the Laplace convolution.

Statement 2.

Let us assume that the kernel K(t, τ) of the operator (1) with t0 = −∞ satisfies the
following condition

K(t, τ) = K(t− τ) (12)

for all t > τ, the condition of non-negativity and the normability (or the normalization) condition

K(x) ≥ 0,
∫ ∞

0
K(x) dx = K < ∞ (13)

for all x ∈ (0,∞), where K is a finite positive constant. In this case, operator (1) can be represented (by
using the change of variable τ→ x = t− τ ) in the form

(
D(K) f

)
(t) = K

∫ ∞
0
ρ2(x)Tx

(
D(n)
τ f (τ)

)
dx (14)

with a finite positive constant K, where ρ2(x) = K(x)/K is the probability density function that satisfies
the condition of non-negativity and the normalization condition

ρ2(x) ≥ 0,
∫ ∞

0
ρ2(x) dx = 1, (15)

and Tx is the translation (shift, lag) operator

Tx f (t) = f (t− x), Tx

(
D(n)
τ f (τ)

)
=
(
D(n)

z f (z)
)

z=t−x
. (16)

Then operators (1) describe the continuously distributed lag (time delay).

Remark 6. Given the above, we can state that the operator with kernel, which satisfies the conditions (12) and
(13), cannot be interpreted as fractional derivative of non-integer order for positive integer values of n. The
correct interpretation of this operator is integer order derivative with the continuously distributed lag [29].
As a basis for the definition of this operator, which is integer order operators, we can use expression (14) with
conditions (15) instead of Equation (1) with conditions (12) and (13).

To have a fractional generalization of this operator, there are two ways: (A) to use a fractional

differential (or integral) operator
(
D(α)
τ f

)
(τ) instead of

(
D(n)
τ f
)
(τ); (B) to use the kernel K(t, τ), for which

the normalization condition (15) is violated. In the work [29], we proposed a fractional generalization
of this type operators by the way (A) to describe processes with memory and distributed lag. The
fractional derivatives and integrals of non-integer orders, in which lag (time delay) is described by
continuous probability distributions, were proposed in [29] (pp. 148–154), and used in macroeconomic
models [30–32]. An example of fractional operators with distributed lag is also suggested in the
Section 7 of the paper [29] (pp. 148–154).
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Remark 7. Please note that general operators of type (1) with the kernel (12) and without the condition (8) were
considered by Anatoly N. Kochubei in works [35–37]. These works suggested concept of a general fractional
calculus by using the differential operator based on Laplace convolution. Kochubei proposed the mathematical
conditions on kernel of general fractional derivative, which lead to the fact that this general operator has a right
inverse operator (a kind of a general fractional integral).

3. Continuously Distributed Scaling (Dilation): Erdelyi–Kober Operators

As a generalization of the Riemann–Liouville fractional integral was proposed by Herman Kober.
The Kober fractional integral [4] (p. 106), of the order α > 0 is defined as

(
IαK;0+;η f

)
(t) =

t−α−η
Γ(α)

∫ t

0
τη (t− τ)α−1 f (τ)dτ, (17)

where η ∈ R. If function f (t) ∈ Lp(R+), with 1 ≤ p < ∞, and η > (1− p)/p, the operator (17) is
bounded [1] (p. 323). For η = 0, operator (17) can be expressed through the Riemann-Liouville
integration by the expression (

IαK;0+;1 f
)
(t) = t−α (IαRL,0+ f )(t). (18)

Changing the variable of integration by τ→ x = τ/t , the Kober operator (17) takes the form

(
IαK;0+;η f

)
(t) =

1
Γ(α)

∫ 1

0
xη(1− x)α−1 f (x t)dx. (19)

Expression (19) allows us to use the probability density function (p.d.f.) of the beta distribution in
the form

ρα;β(x) =
1

B(α, β)
xα−1(1− x)β−1 for x ∈ [0, 1], (20)

and ρα;β(x) = 0 if x � [0, 1], where B(α, β) is the beta function. Using (20), the Kober fractional integral
is represented by the equation

(
IαK;0+;η f

)
(t) = KEK

∫ 1

0
ρη+1;α(x) f (x·t)dx (21)

with the constant

KEK =
Γ(η+ α+ 1)
Γ(η+ 1)

. (22)

We note that expression (21) contains f (x·t) instead of f (x). Therefore the variable x > 0 can be
interpreted as a random variable, which describes scaling (dilation) with the gamma distribution. Using
the scaling operator Sx: Sx f (t) = f (x·t), the Kober fractional integral (17) is represent by the equation

(
IαK;0+;η f

)
(t) = KEK

∫ 1

0
ρη+1;α(x)(Sx f (t))dx, (23)

where KEK is defined by Equation (22). Equation (23) leads to the interpretation of the Kober operator
as an expected value, where x > 0 is a random variable that describes the scaling and has the beta
distribution up to numerical factor (22).

As a result, expression (23) gives a possibility to state that the Kober operator (17) can be interpreted
as a continuously distributed dilation operator, in which the scaling variable has the beta distribution
up to a constant factor (22).

The proposed interpretation of the Kober operator (17) allows us to generalize this operator
by using other the probability density function instead of the beta distribution (20) and other lower
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and upper limits of integral in Equation (23). For example, the generalized operator of continuously
distributed scaling (dilation) is define [29] by the expression

(
D(ρ;S) f

)
(t) =

∫ ∞
0
ρ(x)

(
Sx

(
D(n)

t f
)
(t)
)
dx, (24)

where n = 0, 1, 2, . . ., and ρ(x) ≥ 0 is the probability density function such that

∫ ∞
0
ρ(x)dx = 1. (25)

In Equation (24) it is assumed that the integral
∫ ∞

0 ρ(x)
∣∣∣∣∣Sx

(
D(n)

t f
)
(t)
∣∣∣∣∣ dx converges, where

D(n)
x f (x) and ρ(x) are piecewise continuous or continuous functions on R. Here we can consider
D(n)

t f (t) = f (n)(t).
The Erdelyi–Kober type operator [4] (p. 105), is defined by the equation

(
IαEK;0+;σ,η f

)
(t) =

σ t−σ(α+η)
Γ(α)

∫ t

0
τσ(η+1)−1 (tσ − τσ)α−1 f (τ)dτ, (26)

where α > 0 is the order of integration. To get the notation of the paper (see Equation (1) in p. 360, [24]),
we should change the indexes: σ→ β , α→ δ , η→ γ . In the case σ = 1, operator (26) is represented
in the form of the Kober operator (17). Operator (26) can be represented by the equation

(
IαEK;0+;σ,η f

)
(t) = KEK

∫ 1

0
ρEK(x)(Sx f (t))dx (27)

with the probability density function

ρEK(x) =
σ

B(η+ 1,α)
xσ(η+1)−1(1− xσ)α−1, (28)

and the constant factor KEK defined by Equation (22). For σ = 1, the function (28) described beta
distribution (20).

As a result, the Erdelyi–Kober and Kober operators are operators of integer orders with
continuously distributed scaling (dilation). We should note that the fractional generalizations of these
operators, which can be applied to describe simultaneously action of distributed scaling and fading
memory, were proposed in [29].

As a result, we can state that the operators (1) with kernels (4) and (5), the operators (6) with
different probability density functions (7), and operators (23), (24), (27) can be applied to describe
continuously distributed scale phenomena in economics, physics, and other sciences.

4. Continuously Distributed Delay (Lag): Caputo–Fabrizio Operator

The Caputo–Fabrizio operator is proposed in [26–28]. The Caputo–Fabrizio operator D(α)
CF of the

non-integer order α ∈ (0, 1) is defined (see Equation (2.2) of [26] (p. 74)) by the equation

(
D(α)

CF f
)
(t) =

m(α)

1− α
t∫

t0

exp
{
− α

1− α (t− τ)
}

f (1)(τ)dτ, (29)
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where f (1)(τ) = d f (τ)/dτ is the standard derivative of first order, m(α) is a “normalization” function.
For n > 1, the Caputo–Fabrizio operator of the order α+ n ∈ (n, n + 1) is defined (see, Equation (2.8)
of [26] (p. 76)) by the expression

(
D(α+n)

CF f
)
(t) =

(
D(α)

CF f (n)
)
(t), (30)

where α ∈ (0, 1) and f (n)(τ) = dn f (τ)/dτn are the standard derivatives of integer order n ∈ N. The
Caputo–Fabrizio operator of the order α ∈ (n, n + 1) is defined (see, Equation (2.8) of [26] (p.76)) by the
expression

(
D(α)

CF f
)
(t) =

m(α− n)
n− α+ 1

t∫
t0

exp
{
− α− n

n− α+ 1
(t− τ)

}
f (n+1)(τ)dτ, (31)

where n = [α]. The Caputo–Fabrizio operators (31) of order α ∈ (n, n + 1) with t0 = −∞ can be
represented in the form

(
D(α)

CF f
)
(t) =

λ m(α− n)
α− n

∫ t

−∞
exp
{− λ (t− τ)} f (n+1)(τ)dτ, (32)

where
λ =

α− n
n− α+ 1

(33)

Changing the variable τ→ x = t− τ of integration in (32), Equation (32) takes the form

(
D(α)

CF f
)
(t) =

λ m(α− n)
α− n

∫ ∞
0

exp
{− λx)

}
f (n+1)(t− x)dx. (34)

Equation (34) can be represented by expression (14) in the form

(
D(α)

CF f
)
(t) = KCF

∫ ∞
0
ρ(x)

(
Tx f (n+1)(t)

)
dx, (35)

where the positive constant KCF is

KCF =
m(α− n)
α− n

, (36)

and ρ(x) is the probability density function of the exponential distribution

ρ(x) = λ exp(− λ x), (37)

for x > 0 and ρ(x) = 0 for x ≤ 0, where λ > 0 is the parameter that is often called the rate parameter
or the speed of response [39] (p. 27). It is also used the parameter T = 1/λ as time-constant of
exponentially distributed lag. This parameter T is interpreted as the length of the time delay [39] (p.27).
The kernel (37) is actively used in economics to describe processes with distributed lag [39] (p. 26). We
should note that distribution (37) describes the time between events in a Poisson point process, which
is the continuous analogue of the geometric distribution. It is well-known that this distribution has the
key property of being memoryless.

In the work [22], it is proved that the Caputo–Fabrizio operator of the order β = n− 1/(λ+ 1),
coincides with derivative of integer order with exponentially distributed lag, where λ is the rate
parameter (33) of the distribution (37), and n = [β] + 1. Therefore, the Caputo–Fabrizio operator can
be interpreted as an integer order derivative with the exponentially distributed time delay.

The existence of the time delay is based on the fact that the processes have a finite speed, and the
change of the input does not lead to instant changes of output. In physical sciences it is well-known
that the finite speed of the process does not mean that there is memory in the process. Therefore
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continuously distributed lag cannot be considered to be a dependence of the state of as process on its
history. The time delay cannot be interpreted as a memory.

As a result, the Caputo–Fabrizio operators cannot be applied to modeling memory or spatial
nonlocality in processes, but this operator describes continuously (exponentially) distributed time delay.

The proposed interpretation of the Caputo–Fabrizio operator (35) allows us to generalize this
operator [29] by using other the probability density function instead of the exponential distribution
(37). For example, the generalized operator of continuously distributed scaling (dilation) is define [29]
by the expression (

D(ρ;T) f
)
(t) =

∫ ∞
0
ρ(x)

(
Tx f (n)(t)

)
dx, (38)

where n = 0, 1, 2, . . ., and ρ(x) ≥ 0 is the probability density function such that

∫ ∞
0
ρ(x)dx = 1. (39)

In Equation (38) it is assumed that the integral
∫ ∞

0 ρ(x)
∣∣∣∣(Tx f (n)(t)

)∣∣∣∣ dx converges, where f (n)(x)
and ρ(x) are piecewise continuous or continuous functions on R.

The fractional generalization of the Caputo–Fabrizio operator was proposed in [29] to take into
account various distributions of delay time and power-law fading memory in one operator.

5. Continuously Distributed Fading Memory

To describe memory (the fading memory), we can use operators (1), for which the normability
condition is not satisfied.

For example, the operator (1) with t0 = −∞ and the kernel

K(t, τ) =
1

Γ(n− α) (t− τ)
n−α−1 (40)

is the left-sided Caputo fractional derivative of the order α ≥ 0 (see Equation (2.4.15) [4] (p. 92) for
a = −∞) that is defined by the equation

(
DαC+ f

)
(t) =

1
Γ(n− α)

∫ t

−∞
(t− τ)n−α−1 f (n)(τ)dτ, (41)

where Γ(α) is the gamma function, and f (n)(τ) is the derivative of the integer order n = [α] + 1 for
non-integer values of α (and n = α for integer values of α). Changing the variable τ→ x = t− τ
operator (1) with the kernel (40) and t0 = −∞ can be represented in the form

(
D(K) f

)
(t) =

∫ ∞
0

Kc(x)
(
Tx f (n)(t)

)
dx, (42)

where the kernel

Kc(x) =
xn−α−1

Γ(n− α) (43)

cannot be interpreted as a probability density function since the normalization condition is violated

∫ ∞
0

Kc(x) dx =

(
xn−α

Γ(n− α+ 1)

)∞
0
= ∞ (44)

for non-integer values of α.
Let us describe some basic principles and properties of the kernel that should be taken into account

to describe memory.
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Principle of violation of normability. Processes with memory cannot be described by operators
(1) if the operator kernel can be considered to be a probability density function. In other words, the
memory function cannot be probability density function.

The requirement of violation of the normability conditions is not enough for a comprehensive
description of fading memory. We should have conditions for the kernel of operator (1), which allow
us to use this operator to described memory.

Principle of causality. The main condition that must be satisfied for all types of memory is the
fulfillment of the causality principle. It is obvious that the operators that describe memory phenomena
should satisfy the causality principle. In mathematical form, the causality principle can be realized by
the Kramers–Kronig relations [18].

In addition to these relations, we can state that the right-sided fractional derivatives (for example
the Riemann–Liouville, Liouville, and Caputo-type) cannot be used to processes with the memory.
The right-sided fractional integrals and derivatives are defined for τ > t, where t is the present time
moment. Therefore these operators describe dependencies of processes on the future states. The
left-sided fractional operators describe the past states of the process.

Principle of memory fading. The important property of memory is the memory fading. The
principle of memory fading was first proposed by Ludwig Boltzmann, and then it was significantly
developed by Vito Volterra. This principle states that the increasing of the time interval leads to a
decrease in the contribution of impact to the response. The exact mathematical formulation of this
principle is given in [40–44], it is more complicated than that required for us in this paper, which
is restricted by the operators (1). Therefore we will use a simplified formulation of the principle of
memory fading [17].

Let us consider two functions f (τ) and y(t), which are interpreted as the impact and response
variables respectively, and we will assume that these functions are connected by the equation

y(t) =
∫ t

0
K(t, τ)

(
D(n)
τ f (τ)

)
dτ. (45)

Let us assume thatD(n)
τ f (τ) is different from zero on a finite time interval τ ∈ [0, T], and which

is zero outside this interval (D(n)
τ f (τ) = 0 for t > T). This means that we consider H(T–τ)D(n)

τ f (τ)
instead ofD(n)

τ f (τ) in Equation (45) with times t ∈ [T,∞). Then Equation (45) gives

y(t) =
∫ T

0
K(t, τ)

(
D(n)
τ f (τ)

)
dτ f or t < T. (46)

We see that for t > T there is no impact, but the response is different from zero (y(t) � 0 for t > T).
This means that the memory about the impact, which acts on time interval [0, T], is stored in the process.
Therefore, we can state that this process saves the history of changes of the impact. Using the mean
value theorem, there is a value ξ ∈ [0, T] and Equation (46) can be written as

y(t) = K(t, ξ)
(
D(n)
τ f (τ)

)
τ=ξ

T. (47)

As a result, we can see that the behavior of the response y(t) is determined by the behavior of the
kernel K(t, τ) with fixed constant time τ = ξ. The behavior of the kernel K(t, τ) at infinite increase of t
( t→∞ ) and fixed τ determines the dynamics of the process with memory (See Table 2).
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Table 2. Examples of the correspondence between the type of memory and type of operator kernels.

Type of Memory Type of Kernel Fading (Dissipation)

Memory of Insignificant Events
∣∣∣∣∣ limt→∞K(t, τ)

∣∣∣∣∣ = 0 Fading Memory

Memory of Significant Events 0 <
∣∣∣∣∣ limt→∞K(t, τ)

∣∣∣∣∣ < ∞ Non-Fading Memory

Memory of Crises and Shocks
∣∣∣∣∣ limt→∞K(t, τ)

∣∣∣∣∣ = ∞ Non-Fading Memory

Let us assume that there is the limit

lim
t→∞K(t, τ) = K∞(τ) = K∞, (48)

for all τ, when τ < t. In this case, we can consider the three basic type of behavior of K(t, ξ) at infinity
t→∞ .

First Type (K∞ = 0): Memory of Insignificant Events (IE-memory). If the kernel tends to zero
(K(t, τ)→ 0) at t→∞ , then the process completely forgets about the impact that acts in the past.
Then the process that is described by Equation (47) is reversible (is repeated) in a sense. We can say
that the memory effects did not lead to irreversible changes of the process, since the memory about
the impact has not been preserved forever. Therefore this type of memory can be called “the memory
with complete forgetting” (or the memory of insignificant events). As a result, the mathematical
characteristic of processes with fading memory can be described by the operator kernels that satisfy
the following Principle of Memory Fading memory: Memory, which is described by the operator (45),
is fading if the kernel satisfies the condition

lim
t→∞K(t, τ) = 0 (49)

for all fixed values of τ. The memory will be called the memory with power-law fading if there is
a parameter α > 0 such that the limit lim

t→∞t−α K(t, τ) is a finite constant for fixed τ. For example, the

kernel (40) of the left-sided Caputo fractional derivative describes the power-law memory fading.
Second Type (0 <|K∞|< ∞ ): Memory of Significant Events (SE-memory). If the kernel K(t, τ)

tends to a finite limit at t→∞ , the impact leads to the irreversible consequences in the sense that the
memory of the impact is preserved forever. Therefore this type of memory can be called “the memory
with remembering forever” (or memory of significant events).

Third Type (K∞ = ∞): Memory of Crises and Shocks (CS-memory). Unbounded increase of
the kernel K(t, τ) at t→∞ (with fixed τ) characterizes an unstable process with memory. This kernel
cannot be used to describe stable processes. However, this type of kernels can be used in the various
models, which take into account the processes with crises and shocks (for example in economy), when
we can expect a manifestation of instability phenomena. The behavior of processes with memory at
time t is determined by the behavior of the operator kernel (memory function) in the previous time
instants τ < t. Therefore, an unbounded increase in the memory function at infinity ( t→∞ ) does not
lead us to the rejection of consideration of such operator kernels. For example, in this type of memory
one can assume that the operator kernel K(t, τ) is bounded for all τ < t for a fixed t < ∞. Therefore this
type of memory can be called “the memory of crises and shocks”.

Non-Monotony of Decrease. In general, the memory fading assumes a set of stronger restrictions
on the operator kernels. For example, it is assumed that the fading memory is described by operator
kernels, which tends to zero monotonically with increasing the time variable. This assumption means
that it is less probable to expect of strengthening of the memory with respect to the more distant
events. We should note that in economics the agents may remember sharp and significant changes of
the variables despite the fact that these changes were more distant past compared to weaker changes
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in the near past. For this reason, in economics we can use operator kernels without property of
monotonic decrease.

Principle of memory reversibility. In paper [17,18], we describe some general restrictions that
can be imposed on the structure and properties of memory. For example we consider the principle
of memory reversibility (the principle of memory recovery). The principle of memory reversibility
is connected with the principle of duality of accelerator with memory and multiplier with memory,
which is proposed in [45]. Mathematically this principle is based on the main property of any fractional
derivative to be a left-inverse operator to the corresponding fractional integral operator.

Remark 8. We should note that there is an addition restriction on the kernel of the operator (1). In general,
to have a self-consistent mathematical theory of the operators (1), the general fractional derivative (1) with
n = 1, 2, 3, . . . should be a left-inverse operator to the corresponding general fractional integral operator (1) with
n = 0. This requirement leads us to a relationship between the type of the operator kernels K(t, τ) and the order

(and type) of the operators
(
D(n)
τ f (τ)

)
of integer order n = 1, 2, 3, . . .. For the kernel should depend on the order

, i.e., K(t, τ) = Kn(t, τ).

Remark 9. General fractional calculus was proposed by Anatoly N. Kochubei in [35–37] and based on the use of
differential operators with Laplace convolution (the general Laplace-convolutional derivatives). The principle of
memory reversibility means that the general operators should have right inverse (a kind of a fractional integral).
We assume that the Kochubei approach to formulation of general fractional calculus, which is based on the Laplace
convolution, can be applied to formulate new fractional calculus based on Mellin convolution. The general
operators (the general Mellin -convolutional derivatives), which are based on Mellin convolution, and equations
with these operators can be used to describe the scaling (dilation) phenomena in physics and economics.

6. Properties of Kernels of Inverse Operators and Type of Phenomena

An addition restriction on the kernel of the operator (1) can be considered. The general operators
(1) with n = 1, 2, 3, . . . can be considered to be the general fractional derivative. The general operators (1)
with n = 0 can be considered to be general fractional integrals. In our opinion to have a self-consistent
mathematical theory, the general fractional derivative (1) with n = 1, 2, 3, . . . should be a left-inverse
operator to the corresponding general fractional integral operator (1) with n = 0. Therefore we
proposed the following principle for fractional calculus: Any type of generalized (fractional) derivative
should be a left-inverse operator to the corresponding type of generalized (fractional) integral operator.
This principle can be considered to be a requirement of the existence of a generalization of the
fundamental theorem of calculus, which is a theorem that links the concept of differentiating with the
concept of integrating.

Obviously, this principle, this requirement lead us to a relationship between the type of the
operator kernels Kn(t, τ) n = 1, 2, 3, . . . , and the type of the kernel K0(t, τ). Please note that this
requirement also leads us to a relationship between the type of the operator kernels Kn(t, τ) and

the order (and type) of the operators
(
D(n)
τ f (τ)

)
of integer order n = 1, 2, 3, . . .First Question: In

connection with this principle, the natural question arises about the relationship between the properties
of the kernels of fractional operators, considered to be the fractional integrals and as the fractional
derivatives. In many cases, kernels belong to one type of functions. For example, the kernel of the
left-sided Caputo fractional derivative (see Equation (2.4.15) in p. 92, [4]) has the form

Kn(t, τ) =
1

Γ(n− α) (t− τ)
n−α−1 (50)

for = 1, 2, 3, . . . . This fractional derivative is the left-inverse operator for the left-sided
Riemann–Liouville fractional integral. The kernel of this integral is described by Equation (50)
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with n = 0 and negative α (see Equation (2.1.1) in [4] (p. 69)). The same situations we have for
the Erdelyi–Kober operator and other types of fractional operators. However, this is not true in the
general case.

Remark 10. In paper [17,18], we describe some general restrictions that can be imposed on the structure and
properties of memory. These restrictions are proposed as the principle of memory reversibility (the principle of
memory recovery). Mathematically this principle is based on the property of any fractional derivative to be a
left-inverse operator to the corresponding fractional integral operator.

Statement 3.

The generalized (fractional) derivative (1) with n = 1, 2, 3, . . . must be the left inverse operator
to the corresponding generalized (fractional) integral operator (1) with n = 0. However, the kernels
Kn(t, τ) with n = 1, 2, 3, . . . of operator (1) and the kernel K0(t, τ) of the fractional integral operator (1)
with n = 0 can belong to different types of functions.

To prove this statement, we give an example of fractional operators of distributed orders.
In general, the parameter α that is the order of the fractional derivative or integral and describes

the memory fading, can be distributed on an interval with some probability density function (the
weight function). In the simplest case, we can use the continuous uniform distribution (CUD). The
fractional integrals and derivatives of the uniform distributed order can be expressed thought the
continual fractional integrals and derivatives, which were suggested by Adam M. Nakhushev [46,47].
The operators of non-integer orders, which are left inverse to the continual fractional integrals and
derivatives, are proposed by Arsen V. Pskhu in [48,49]. Using the continual fractional integrals and
derivatives, which were suggested by Nakhushev, we can define the integral and derivatives of uniform
distributed order. These operators will be called the Nakhushev fractional integrals and derivatives.
The corresponding inverse operators are proposed by Pskhu and therefore operators, which are inverse
to fractional CUD fractional operators, will be called the Pskhu fractional integrals and derivatives.

In works of Pskhu [48,49] the notations D[α,β]
0+ and D−[α,β]

0+ are used for positive (0 < α < β) and
negative (α < β ≤ 0) values of α and β. In our opinion, this leads to confusion and misunderstanding
in applications. Therefore we will use new notations, which allow us to see explicitly the integration
and differentiation of the fractional orders.

The Nakhushev fractional integral can be defined (see Equation (5.1.7) of [49] (p. 136) and [48])
defined in the form

I[α,β]
N X(t) =

1
β− α

∫ β
α

IξRL,a+X(t)dξ =
∫ t

0
W(α, β, t− τ) X(τ)dτ, (51)

where we use the function

W(α, β, t) =
1

(β− α) t

∫ β
α

tξdξ
Γ(ξ)

. (52)

Using Equation (5.1.26) of [49] (p. 143), the Nakhushev fractional derivative can be written in
the form

D[α,β]
N X(t) =

(
d

dx

)n ∫ t

0
W(n− α, n− β, t− τ) X(τ)dτ, (53)

where β > α > 0. Please note that the Nakhushev fractional derivatives cannot be considered to
be inverse operators for the Nakhushev fractional integration. The Pskhu fractional derivatives are
inverse to the Nakhushev fractional integration and the Pskhu fractional integrals are inverse to the
Nakhushev fractional derivatives.
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The Pskhu fractional integral can be defined (see Equation (5.1.7) of [49] (p. 136), and [48]) by
the expression

I[α,β]
P X(t) = (α− β)

∫ t

0
(t− τ)β−1Eβ−α

[
(t− τ)β−α; β

]
X(τ)dτ, (54)

where β > α > 0. where Eα[z; β] is the Mittag–Leffler function that is defined by the expression

Eα[z; β] =
∞∑

k=0

zk

Γ(αk + β)
. (55)

Using Equation (5.1.7) of [49] (p. 136), we can define the Pskhu fractional derivative as

D[α,β]
P X(t) = (α− β)

(
d

dx

)n ∫ t

0
(t− τ)−α En−1

β−α
[
(t− τ)β−α; 1− α

]
X(τ)dτ, (56)

where β > α > 0 and the function Eμα[z; β] is defined by the equation

Eμα[z; β] =
∂
∂μ

(zμ Eα[z; β+ μ])

As a result, we have that the Nakhushev fractional derivatives cannot be considered to be
left-inverse operators for the Nakhushev fractional integrals [48,49]. Operators, which are left-inverse
operator for the Nakhushev fractional derivatives and integrals, are the Pskhu fractional integrals
and derivatives.

As a result, we proved that the kernels of the original and inverse operators can be of different types.
Second Question: If the kernels of generalized (fractional) derivative and the corresponding

generalized (fractional) integral operator can be described by functions of different types, then the
second natural question arises: Will these kernels describe the same types of phenomena? If the
operator cores are different, then what is the difference in the phenomena described by these different
types of cores? As a suggested answer on these questions, we can propose the following hypothesis.

Hypothesis of Duality: The kernels of the original and inverse operators of fractional calculus
should describe dual types of phenomena.

This hypothesis is based on an attempt to answer the second question in the framework of
economic interpretation, which is presented in the form of the principle of duality proposed in [45]. In
this principle we describe duality of two basic economic concepts: the accelerator with memory and
multiplier with memory (for details see [45]).

Remark 11. We assume that the Kochubei approach to formulation of general fractional calculus, which is based
on the Laplace convolution, can be applied to formulate new fractional calculus based on Mellin convolution. This
allows us to describe duality of the economic concepts of the accelerator with scaling and multiplier with scaling.

7. Memory with Lag: Distributed Lag Fractional Operators

In general, we can simultaneously take into account two different types of phenomena. For
example, we can simultaneously take into account lagging and memory phenomena. For this,
we proposed the distributed lag fractional calculus in [29]. Then this approach was applied to
macroeconomic models.

To illustrate this approach, let us assume that the joint action of two phenomena: the lag with
gamma distribution of delay time and the power-law fading memory. We will use the Caputo fractional
derivatives to describe power-law memory. The continuously distributed delay time is described by
the translation operator, where the delay time τ > 0 is a random variable that is distributed on positive
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semiaxis. We can prove that the composition of these operators is represented as the Abel-type integral
and integro-differential operators with the confluent hypergeometric Kummer function in the kernel.

The Caputo fractional derivative with gamma distributed lag is defined by the equation

(
Dλ,a;α

T;C;0+ f
)
(t) =

∫ t

0
Kλ,a

T (τ)
(
DαC,0+ f

)
(t− τ) dτ, (57)

where the kernel Kλ,a
T (τ) is the probability density function of the gamma distribution

Kλ,a
T (τ) =

⎧⎪⎪⎨⎪⎪⎩
λa τa−1

Γ(a) exp(−λ τ)
0

i f τ > 0,
i f τ ≤ 0,

(58)

with the shape parameter a > 0 and the rate parameter λ > 0. If a = 1, the function (58) describes the
exponential distribution. Using the associative property of the Laplace convolution, the operators (57)
can be represented [29] in the form

(
Dλ,a;α

T;C;0+ f
)
(t) =

∫ t

0
Kλ,a;n−α

TRL (τ) f (n)(t− τ) dτ, (59)

where n− 1 < α ≤ n, and the kernel Kλ,a;n−α
TRL (t) has the form

Kλ,a;n−α
TRL (t) =

λa Γ(a)
Γ(a + n− α) ta+n−α−1F1,1(a; a + n− α;−λt), (60)

where F1,1(a; b; z) is the confluent hypergeometric Kummer function that is defined (see [4] (pp.29–30))
by the equation

F1,1(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1 exp(zt)dt =

∞∑
k=0

Γ(a + k)Γ(c)
Γ(a)Γ(c + k)

zk

k!
, (61)

where a, z ∈ C, Re(c) > Re(a) > 0 such that c � 0,−1,−2, . . .. and series (61) is absolutely convergent
for all z ∈ C. It should be noted that the kernel (60) can be represented through the three parameter
Mittag-Leffler function Eγα,β(z), which is also called the Prabhakar function, by using the equation
F1,1(a; c; z) = Γ(c)Ea

1,c(z). The Laplace transform of fractional operator (59) has the form

(
L
(
Dλ,a;α

T;C;0+ f
)
(t)
)
(s) =

λa

(s + λ)a

⎛⎜⎜⎜⎜⎜⎜⎝sα(LY)(s) −
n−1∑
j=0

sα− j−1 f ( j)(0)

⎞⎟⎟⎟⎟⎟⎟⎠, (62)

where n− 1 < α ≤ n.
As a result, the kernel Kλ,a;n−α

TRL (τ) of the proposed special kind of the Abel-type fractional derivative
describes the joint phenomenon of the power-law fading memory and the continuously distributed
lag. Using Theorem 6.5 in [29] (pp. 145–146), and results of [31,32], we can describe the solution of the
fractional differential equation (

Dλ,a;α
T;C;0+y

)
(t) = ωy(t) + F(t), (63)

where the operator Dλ,a;α
T;C;0+ is defined by Equation (59), α > 0 is the order of the operators, the

parameters a > 0 and λ > 0 are the shape and rate parameters of the gamma distribution of delay time.
The solution of Equation (63) can be represented in the form

y(t) =
n−1∑
j=0

Sα− j−1
α,a [ω λ−a,λ|t]y( j)(0) +

1
ω

F(t) − 1
ω

∫ t

0
Sαα,a [ω λ

−a,λ
∣∣∣t− τ] F(τ)dτ, (64)
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with n = [α] + 1, and Sγ
α,δ [μ,λ

∣∣∣t] is the special function that is defined by the expression

Sγ
α,δ [μ,λ

∣∣∣t] = − ∞∑
k=0

tδ(k+1)−αk−γ−1

μk+1Γ(δ(k + 1) − αk− γ) F1,1(δ(k + 1); δ(k + 1) − αk− γ,−λt), (65)

where F1,1(a; b; z) is the confluent hypergeometric Kummer function (61).
In the connection with a possibility of composition of two or more kernels of operators that describe

different phenomena, an important question arises about the following inverse mathematical problem.
How we can identify and separate actions of two different type phenomena in it simultaneously
action? In our opinion, the answer on this question is important to physics, mechanics, economics and
other sciences.

8. Operator Kernel Behavior at Zero and Interpretation

In general, the type of behavior of the operator kernel (1) at t→ 0 can be important to different
applications. We can assume the following type of behavior the kernel K(t).

(1) The operator kernel tends to zero while the argument t tends to zero

lim
t→0+

K(t) = 0. (66)

(2) The kernel K(t) tends to finite nonzero constant while the argument t tends to zero

lim
t→0+

K(t) = K(0) = const. (67)

(3) The kernel K(t) tends to infinity as the argument t tends to zero

lim
t→0+

K(t) = ±∞.

A lot of kernels of the fractional integral and derivatives demonstrate only the third (or first) type
of behavior at zero for non-integer orders. Let us describe some examples of the operator kernels that
have this type of behavior.

The kernel of the Riemann–Liouville fractional integral has the form

KRLI(t) =
1
Γ(α)

tα−1, (68)

where α > 0 [4] (p.69). We see that

KRLI(0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0
1
∞

i f
i f
i f

α > 1
α = 1

0 < α < 1
. (69)

This means that kernel of the Riemann-Liouville fractional integral can demonstrate three type of
behavior at zero (t = 0). However, the second type of behavior (KPI(0)=const) cannot be realized for
non-integer orders α > 0.

The kernel of the Caputo and Riemann–Liouville fractional derivatives has the form

KCD(t) = KRLD(t) =
1

Γ(n− α) tn−α−1, (70)
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where n = [α] + 1, and n− 1 < α < n for non-integer values of order α [4] (pp.70–91). We see that

KCD(0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0
1
∞

i f
i f
i f

0 < α < n− 1
α = n− 1
α > n− 1

. (71)

This means that kernel of the Caputo and Riemann-Liouville fractional derivatives can demonstrate
only one (singular) type of behavior at zero (t = 0) for non-integer orders. The other two cases
(KCD(t) = 0 and KCD(0) = 1) are not implemented for the following reasons: (A) The case α = n− 1
cannot be used for the Caputo derivative since we have α = n for integer values of α (see Equation
(2.4.3) in [4] (p.91)). For this case, the Riemann–Liouville fractional derivative is standard derivative of
integer order. (B) The case 0 < α < n− 1 cannot be used by definition the Caputo and Riemann-Liouville
fractional derivatives that contains the condition n− 1 < α < n for non-integer values of order α. We
have a similar situation for the Erdelyi–Kober and Kober operators.

As a result, we see that the power-law kernels of fractional derivatives have significantly less
variability in the behavior properties at zero. Please note that the variety of properties of operator
kernel at zero is important for applications of these operators in economics and physics, for example.

Let us note that some important phenomena are described only by the kernels with second
type of behavior. For example, in economics this condition is used for the kernels that describe the
depreciation of fixed assets (of capital), depreciation of equipment, obsolescence, aging, wear and
tear [50] (p. 20). The kernel K(t− τ) characterizes the share of fixed assets put into operation at time
τ and continuing to operate at time t > τ. Obviously, in this case, the condition K(0) = 1 must be
satisfied. For this, economics often use the exponential functions and the probability density function
of the exponential distribution.

The kernels of the Riemann–Liouville, Caputo, Erdelyi–Kober fractional operators of non-integer
order cannot be used to describe the depreciation or aging phenomena in economy. To describe these
phenomena we can use the fractional operators with the Prabhakar function, the hypergeometric
function, the Kummer (confluent hypergeometric) function in the kernels. In the framework of
fractional calculus, these operators were proposed and described more than forty years ago in [51],
(see also [52,53]) for the Prabhakar function, [54,55] the Kummer (confluent hypergeometric) function,
and [56] (see also [1] (pp. 731–737)) for the hypergeometric function.

Please note that the operators with the Kummer (confluent hypergeometric) function in the kernels
can be interpreted as the joint effect of two phenomena: the memory with power-law fading and the lag
with gamma distribution of delay time. In the paper [29] (see Theorem 4.3 and Equation (4.48) p. 137;
see also Equations (4.53) and (6.7)), we use the operators with the Kummer (confluent hypergeometric)
function in the kernels that is Laplace convolution of the kernel of the Caputo fractional derivatives
and probability density function of the gamma distribution that describes the distribution of the delay
time τ > 0.

The kernel of the Prabhakar fractional integral has the form

KPI(t) = tμ−1Eγρ,μ[ωtρ] = tμ−1
∞∑

k=0

Γ(γ+ k)
Γ(γ)Γ(ρk + μ)

(ωtρ)k

k!
. (72)

We can see that the kernel (72) can demonstrate three type of behavior at zero

KPI(0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0
1
∞

i f
i f
i f

μ > 1
μ = 1

0 < μ < 1
(73)
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The kernel of the Kilbas–Saigo–Saxena fractional derivative [53] (that is also called the Prabhakar
fractional derivative), which is proposed in [53] and it is left-inverse operator for the Prabhakar
fractional integral, has the form

KPD(t) = tn−μ−1E−γρ,n−μ[ωtρ], (74)

where n ≥ [Re(μ)] + 1 with Re(μ) > 0. We should emphasize that in kernel (74), we can use all
positive integer values n ≥ [Re(μ)] + 1, where Re(μ) > 0 since n is defined as n = [μ+ ν] + 1 with
Re(μ), Re(ν) > 0 in Theorem 9 in [53] (p. 47)).

Using expression (74), we get the following properties of kernel (74) in the initial point

KPD(0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0
1
∞

i f
i f
i f

0 < μ < n− 1
μ = n− 1
μ > n− 1

. (75)

As a result, the kernel of the Kilbas–Saigo–Saxena fractional derivative can demonstrate three type
of behavior at zero. Please note that this operator remains a fractional operator and under condition
μ = n − 1. This behavior significantly distinguishes this operator from other fractional derivatives,
which usually have a singularity at zero.

Therefore to satisfy the initial conditions K(0) = 1 for the operator kernel, we can use the kernels
with the Prabhakar function. These kernels allow us to use the fractional integrals and derivatives with
the Prabhakar function in the kernel, which proposed in the works [51–53], to describe depreciation
processes in economics. In addition, we can state that the kernel KPI(t) is the complete monotonic
function for the case ω < 0, 0 < ρ,μ ≤ 1, 0 < γ ≤ μ/ρ. The property of the complete monotonicity is
important for the interpretation of operator kernels that describe standard depreciation phenomena.
However, we can assume that the requirement of complete monotonicity for depreciation kernels is
not necessary, when taking into account modernization of the equipment.

9. Conclusions

In this paper, we discussed an interpretation of fractional derivatives and integrals from the point
of view of applied mathematics, theoretical physics, and economic theory. We state that it is important
to connect all restrictions on the fractional operator kernels with types of phenomena, in addition to the
self-consistency of mathematical theory. In applications of fractional calculus, we have a fundamental
question about conditions of kernels of non-integer order operators that allow us to describe one or
another type of phenomena. It is necessary to obtain exact correspondences between sets of properties
of kernel and type of phenomena. In this paper, we describe some important properties of fractional
operator kernels that can determine the characteristic features of certain types of phenomena. We
consider the possible characteristic properties of kernels of fractional operators to distinguish the
following types of phenomena: fading memory (forgetting) and power-law frequency dispersion;
spatial non-locality and power-law spatial dispersion; distributed lag (time delay); distributed scaling
(dilation); depreciation and aging.

Let us briefly describe possible directions for application of the proposed approach.

a) We should note the power-law kernels function can be used to consider an approximation
of the generalized memory functions [57]. Using the generalized Taylor series in the
Trujillo-Rivero-Bonilla form for the memory function, we proved [57] that the equations with
memory functions can be represented through the Riemann–Liouville fractional integrals and the
Caputo fractional derivatives of non-integer orders for wide class of the kernels. We can also note
that the Abel-type fractional integral operator with Kummer function in the kernel (see Equation
(37.1) in [1] (p. 731), and [32]) can be represented as an infinite series of the Riemann–Liouville
fractional integrals.

b) We can have new types of phenomena in quantum theory, where we should take into account the
intrinsic dissipation, the openness of systems, an interaction with environment [58–61].
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c) We can expecte new types of phenomena in nonlinear, chaotic systems and for self-organization
processes [62–65], where we should take into account the new types of attractors, patterns
and effects.

At the same time, we emphasize that we have in mind not new regular applications of
fractional calculus to the description of various particular phenomena in various science. We
mean exact correspondence between the types of phenomena and the types of properties of fractional
operator kernels.
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Abstract: The solution of fractional-order differential problems requires in the majority of cases the use of
some computational approach. In general, the numerical treatment of fractional differential equations is
much more difficult than in the integer-order case, and very often non-specialist researchers are unaware
of the specific difficulties. As a consequence, numerical methods are often applied in an incorrect way
or unreliable methods are devised and proposed in the literature. In this paper we try to identify some
common pitfalls in the use of numerical methods in fractional calculus, to explain their nature and to list
some good practices that should be followed in order to obtain correct results.

Keywords: fractional differential equations; numerical methods; smoothness assumptions; persistent
memory

1. Introduction

The increasing interest in applications of fractional calculus, together with the difficulty of finding
analytical solutions of fractional differential equations (FDEs), naturally forces researchers to study, devise
and apply numerical methods to solve a large range of ordinary and partial differential equations with
fractional derivatives.

The investigation of computational methods for fractional-order problems is therefore a very active
research area in which, each year, a large number of research papers are published.

The task of finding efficient and reliable numerical methods for handling integrals and/or derivatives
of fractional order is a challenge in its own right, with difficulties that differ in character but are no less
severe than those associated with finding analytical solutions. The specific nature of these operators
involves computational challenges which, if not properly addressed, may lead to unreliable or even
wrong results.

Unfortunately, the scientific literature is rich with examples of methods that are inappropriate for
fractional-order problems. In most cases these are just methods that were devised originally for standard
integer-order operators then applied in a naive way to their fractional-order counterparts; without a proper
knowledge of the specific features of fractional-order problems, researchers are often unable to understand
why unexpected results are obtained.

Mathematics 2020, 8, 324; doi:10.3390/math8030324 www.mdpi.com/journal/mathematics
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The main aims of this paper are to identify a few major guidelines that should be followed when
devising reliable computational methods for fractional-order problems, and to highlight the main
peculiarities that make the solution of differential equations of fractional order a different—but surely
more difficult and stimulating—task from the integer-order case. We do not intend merely to criticize
weak or wrong methods, but try to explain why certain approaches are unreliable in fractional calculus
and, where possible, point the reader towards more suitable approaches.

This paper is mainly addressed at young researchers or scientists without a particular background
in the numerical analysis of fractional-order problems but who need to apply computational methods to
solve problems of fractional order. We aim to offer in this way a kind of guide to avoid some of the most
common mistakes which, unfortunately, are sometimes made in this field.

The paper is organized in the following way. After recalling in Section 2 some basic definitions and
properties, we illustrate in Section 3 the most common ideas underlying the majority of the methods
proposed in the literature: very often the basic ideas are not properly recognized and common methods
are claimed to be new. In Section 4 we discuss why polynomial approximations can be only partially
satisfactory for fractional-order problems and why they are unsuitable for devising high-order methods
(as has often been proposed). The major problems related to the nonlocality of fractional operators are
addressed in Sections 5 and 6 discusses some of the most powerful approaches for the efficient treatment
of the memory term. Some remarks related to the numerical treatment of fractional partial differential
equations are presented in Section 7 and some final comments are given in Section 8.

2. Basic Material and Notations

With the aim of fixing the notation and making available the most common definitions and properties
for further reference, we recall here some basic notions concerning fractional calculus.

For α > 0 and any t0 ∈ R, in the paper we will adopt the usual definitions for the fractional integral
of Riemann–Liouville type

Jα
t0

f (t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1 f (τ)dτ, t > t0, (1)

for the fractional derivative of Riemann–Liouville type

RLDα
t0

f (t) := Dm Jm−α
t0

f (t) =
1

Γ(m− α)

dm

dtm

∫ t

t0

(t− τ)m−α−1 f (τ)dτ, t > t0 (2)

and for the fractional derivative of Caputo type

CDα
t0

f (t) := Jm−α
t0

Dm f (t) =
1

Γ(m− α)

∫ t

t0

(t− τ)m−α−1 f (m)(τ)dτ, t > t0, (3)

with m = �α� the smallest integer greater than or equal to α.
We refer to any of the many existing textbooks on this subject (e.g., [1–6]) for an exhaustive treatment

of the conditions under which the above operators exist and for their main properties. We just recall here
the relationship between RLDα

t0
and CDα

t0
expressed as

CDα
t0

f (t) = RLDα
t0

(
f − Tm−1[ f ; t0]

)
(t), (4)
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where Tm−1[ f ; t0] is the Taylor polynomial of degree m− 1 for the function f about the point t0,

Tm−1[ f ; t0](t) =
m−1

∑
k=0

(t− t0)
k

k!
f (k)(t0). (5)

Moreover, we will almost exclusively consider initial value problems of Cauchy type for FDEs with
the Caputo derivative, i.e.,{

CDα
t0

y(t) = f (t, y(t))

y(t0) = y0, y′(t0) = y(1)0 , . . . , y(m−1)(t0) = y(m−1)
0 ,

(6)

for some assigned initial values y0, y(1)0 , . . . , y(m−1)
0 . A few general comments will also be made regarding

problems associated with partial differential equations.

3. Novel or Well-Established Methods?

Quite frequently, one sees papers whose promising title claims the presentation of “new methods” or
“a family of new methods” for some particular fractional-order operator. Papers of this type immediately
capture the attention of readers eager for new and good ideas for numerically solving problems of this type.

But reading the first few pages of such papers can be a source of frustration, since what is claimed to
be new is merely an old method applied to a particular (maybe new) problem. Now it is understandable
that sometimes an old method is reinvented by a different author, maybe because it can be derived by some
different approach or because the author is unaware of the previously published result (perhaps because it
was published under an imprecise or misleading title). In fractional calculus, however, a different and quite
strange phenomenon has taken hold: well-known and widely used methods are often claimed as “new”
just because they are being applied to some specific problem. It seems that some authors are unaware that
it is the development of new ideas and new approaches that leads to methods that can be described as
new—not the application of known ideas to a particular problem. Even the application of well-established
techniques to any of the new operators, obtained by simply replacing the kernel in the integral (1) with
some other function, cannot be considered a truly novel method, especially when the extension to the new
operator is straightforward.

Most of the papers announcing “new” methods are instead based on ideas and techniques that
were proposed and studied decades ago, and sometimes proper references to the original sources are not
even given.

In fact, there are a few basic and powerful methods that are suitable and extremely popular
for fractional-order problems, and many proposed “new methods” are simply the application of the
ideas behind them. It may therefore be useful to illustrate the main and more popular ideas that are
most frequently (re)-proposed in fractional calculus, and to outline a short history of their origin and
development.

3.1. Polynomial Interpolation and Product-Integration Rules

Solving differential equations by approximating their solution or their vector field by a polynomial
interpolant is a very old and common idea. Some of the classical linear multistep methods for ordinary
differential equations (ODEs), specifically those of Adams–Bashforth or Adams–Moulton type, are based
on this approach.
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In 1954 the British mathematician Andrew Young proposed [7,8] the application of polynomial
interpolation to solve Volterra integral equations numerically. This approach turns out to be suitable for
FDEs since (6) can be reformulated as the Volterra integral equation

y(t) = Tm−1[ f ; t0](t) +
1

Γ(α)

∫ t

t0

(t− u)α−1 f (u, y(u))du. (7)

The approach proposed by Young is to define a grid
{

tn
}

on the solution interval [t0, T] (very often,
but not necessarily, equispaced, namely tn = t0 + hn, h = (T − t0)/N) and to rewrite (7) in a piecewise
way as

y(tn) = Tm−1[ f ; t0](tn) +
1

Γ(α)

n−1

∑
j=0

∫ tj+1

tj

(tn − u)α−1 f (u, y(u))du, (8)

then to replace, in each interval [tj, tj+1], the vector field f (u, y(u)) by a polynomial that interpolates to f on
the grid. This approach is particularly simple if one uses polynomials of degree 0 or 1 because then one can
determine the approximation solely on the basis of the data at one of the subinterval’s end points (degree
0; the product rectangle method) or at both end points (degree 1; the product trapezoidal method); thus, in these
cases one need not introduce auxiliary points inside the interval or points outside the interval. Neither of
these methods can yield a particularly high order of convergence, but as we shall demonstrate in Section 4,
the analytic properties of typical solutions to fractional differential equations make it very difficult and
cumbersome to achieve high-order accuracy irrespective of the technique used. Consequently, and because
these techniques have been thoroughly investigated with respect to their convergence properties [9] and
their stability [10] and are hence very well understood, the product rectangle and product trapezoidal
methods are highly popular among users of fractional order models.

Higher-order methods have occasionally been proposed [11,12] but—as indicated above and discussed
in more detail in Section 4—they tend to require rather uncommon properties of the exact solutions to the
given problems and therefore are used only infrequently. We also have to notice that the effects of the lack
of regularity on the convergence properties of product-integration rules have been studied since 1985 for
Volterra integral equations [13] and since 2004 for the specific case of FDEs [14].

3.2. Approximation of Derivatives: L1 and L2 Schemes

A classical numerical technique for approximating the Caputo differential operator from (3) is the
so-called L1 scheme. For 0 < α < 1, the definition of the Caputo operator becomes

CDα
t0

f (t) =
1

Γ(1− α)

∫ t

t0

(t− τ)−α f ′(τ)dτ for t > t0.

The idea ([15], Equation (8.2.6)) is to introduce a completely arbitrary (i.e., not necessarily uniformly
spaced) mesh t0 < t1 < t2 < . . . < tN and to replace the factor f ′(τ) in the integrand by the approximation

f ′(τ) ≈ f (tj+1)− f (tj)

tj+1 − tj
whenever τ ∈ (tj, tj+1).

This produces the approximation formula

CDα
t0

f (tn) ≈ CDα
t0,L1 f (tn) =

1
Γ(2− α)

n−1

∑
j=0

wn−j−1,n( f (tn−j)− f (tn−j−1))
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with

wμ,n =
(tn − tμ)1−α − (tn − tμ+1)

1−α

tn−μ − tn−μ−1
.

For smooth functions f (but only under this assumption!) and an equispaced mesh tj = t0 + jh,
the convergence order of the L1 method is O(h2−α).

By construction, the L1 method is restricted to the case 0 < α < 1. For α ∈ (1, 2), the L2 method ([15],
§8.2) provides a useful modification. In its construction, one starts from the representation

CDα
t0

f (t) =
1

Γ(2− α)

∫ t

t0

t1−α f ′′(t− τ)dτ,

which is valid for these values of α. Using now a uniform grid tj = t0 + jh, one replaces the second
derivative of f in the integrand by its central difference approximation,

f ′′(tn − τ) ≈ 1
h2 ( f (tn − tk+1)− 2 f (tn − tk) + f (tn − tk−1))

for τ ∈ [tk, tk+1], which yields

CDα
t0

f (tn) ≈ CDα
t0,L2 f (tn) =

h−α

Γ(3− α)

n

∑
k=−1

wk,n f (tn−k),

where now

wk,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 for k = −1,

22−α − 3 for k = 0,

(k + 2)2−α − 3(k + 1)2−α + 3k2−α − (k− 1)2−α for 1 ≤ k ≤ n− 2,

−2n2−α + 3(n− 1)2−α − (n− 2)2−α for k = n− 1,

n2−α − (n− 1)2−α for k = n.

A disadvantage of this method is that it requires the evaluation for f at the point tn+1 = (n + 1)h
which is located outside the interval [0, tn].

The central difference used in the definition of the L2 method is symmetric with respect to one of the
endpoints of the associated subinterval [tk, tk+1], not with respect to its mid point. If this is not desired,
one may instead use the alternative

f ′′(tn − τ) ≈ 1
h2 ( f (tn−k−2)− f (tn−k−1) + f (tn−k+1)− f (tn−k))

on this subinterval. This leads to the L2C method [16]

CDα
t0

f (tn) ≈ CDα
t0,L2C f (tn) =

h−α

2Γ(3− α)

n+1

∑
k=−1

wk,n f (tn−k)
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with

wk,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for k = −1,

22−α − 2 for k = 0,

32−α − 22−α for k = 1,

(k + 2)2−α − 2(k + 1)2−α + 2(k− 1)2−α − (k− 2)2−α for 2 ≤ k ≤ n− 2,

−n2−α − (n− 3)2−α + 2(n− 2)2−α for k = n− 1,

−n2−α + 2(n− 1)2−α − (n− 2)2−α for k = n,

n2−α − (n− 1)2−α for k = n + 1.

Like the L2 method, the L2C method also requires the evaluation of f outside the interval [0, tn]; one
has to compute f ((n + 1)h) and f (−h). Both the L2 and the L2C method exhibit O(h3−α) convergence
behavior for 1 < α < 2 if f is sufficiently well behaved; the constants implicitly contained in the O-terms
seem to be smaller for the L2 method in the case 1 < α < 1.5 and for the L2C method if 1.5 < α < 2.

In the limit case α → 1, the L2 method reduces to first-order backward differencing, and the L2C
method becomes the centered difference of first order; for α → 2 the L2 method corresponds to the classical
second-order central difference.

3.3. Fractional Linear Multistep Methods

Fractional linear multistep methods (FLMMs) are less frequently used since their coefficients are,
in general, not known explicitly but it is necessary to devise some algorithm for their (technically often
difficult) computation. Nevertheless, since these methods allow us to overcome some of the issues
associated with other approaches, it is worth giving a short presentation of their properties.

FLMMs were proposed by Lubich in 1986 [17] and studied in the successive works [18–20].
They extend to fractional-order integrals the quadrature rules obtained from standard linear multistep
methods (LMMs) for ODEs.

Let us consider a classical k-step LMM of order p > 0 with first and second characteristic polynomials
ρ(z) = ρ0zk + ρ1zk−1 + · · ·+ ρk and σ(z) = σ0zk + σ1zk−1 + · · ·+ σk, namely

k

∑
j=0

ρjyn−j = h
k

∑
j=0

σj f (tn−j), where δ(ξ) =
ρ(1/ξ)

σ(1/ξ)
is the generating function. (9)

FLMMs generalizing LMMs (9) for solving FDEs (7) are expressed as

yn = Tm−1[ f ; t0](t) + hα
ν

∑
j=0

wn,j f (tj, yj) + hα
n

∑
j=0

ω
(α)
n−j f (tj, yj), (10)

where the convolution weights ω
(α)
n are obtained from the power series expansion of

(
δ(ξ)

)−α, namely

∞

∑
n=0

ω
(α)
n ξn =

1(
δ(ξ)

)α ,

and the wn,j are some starting weights that are introduced to deal with the lack of regularity of the solution
at the origin; they are obtained by solving, at each step n, the algebraic linear systems

ν

∑
j=0

wn,j jγ = −
n

∑
j=0

ωn−j jγ +
Γ(γ + 1)

Γ(1 + γ + α)
nγ+α, ν ∈ Ap, (11)
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with Ap =
{

γ ∈ R | γ = i + jα, i, j ∈ N, γ < p− 1
}

and ν + 1 the cardinality of Ap.
The intriguing property of FLMMs is that, unlike product-integration rules, they are able to preserve

the same convergence order p of the underlying LMMs if the LMM satisfies certain properties: it is required
that δ(ξ) has no zeros in the closed unit disc |ξ| ≤ 1 except for ξ = 1, and | arg δ(ξ)| < π for |ξ| < 1. Thus,
high-order FLMMs are possible without requiring the imposition of artificial smoothness assumptions as
is required for methods based on polynomial interpolation.

But the price to be paid for this advantage may be not negligible: the convolution weights ω
(α)
n are

not known explicitly and must be computed by some (possibly sophisticated) method (a discussion for the
general case is available in [17–20] while algorithms for FLMMs of trapezoidal type are presented in [21]).
Moreover, high-order methods may require the solution of large or very large systems (11) depending
on the equation order α and the convergence order p of the method; in some cases these systems are so
ill-conditioned as to affect the accuracy of the method, a problem addressed in depth in [22].

One of the simplest methods in this family is obtained from the backward Euler method, whose
generating function is δ(ξ) = (1− ξ). Its convolution weights are hence the coefficients in the asymptotic
expansion of (1− ξ)−α, i.e., they are the coefficients in the binomial series

ω
(α)
j = (−1)j

(−α

j

)
=

Γ(−α + 1)
j!Γ(−α− j + 1)

and no starting weights are necessary since the convergence order is p = 1 and hence Ap is the empty set.
One recognizes easily that the so-called Grünwald-Letnikov scheme is obtained in this case. Although
this scheme was discovered in the nineteenth century in independent works of Grünwald and Letnikov,
its interpretation as an FLMM may facilitate its analysis.

4. Classical Approximations Will Not Give High-Order Methods

Solutions of fractional-derivative problems typically exhibit weak singularities. This topic is discussed
at length in the survey chapter [23] and it is known since earlier works on Volterra integral equations [24,25].
This singularity is a consequence of the weakly singular behavior of the kernels of integral and fractional
derivatives and its importance, from a physical perspective, is related to the natural emergence of completely
monotone (CM) relaxation functions in models whose dynamics is governed by these operators [26,27];
CM relaxation behaviors are indeed typical of viscoelastic systems with strongly dissipative energies [28].

In the present section we shall examine the effects of the singular behavior on numerical methods,
in the context of initial value problems such as (6).

To grasp quickly the main ideas, we focus on a very simple particular case of (6): the problem

CDα
0 y(t) = 1 for t ∈ (0, T], (12)

where 0 < α < 1 and, for the moment, we do not prescribe the initial condition at t = 0. The general
solution of (12) is

y(t) =
xα

Γ(1 + α)
+ b, where b is an arbitrary constant. (13)

This solution lies in C[0, T] ∩ C1(0, T] but not in C1[0, T]. This implies that standard techniques for
integer-derivative problems, which require that y ∈ C1[0, T] (or a higher degree of regularity), cannot be
used here without some modification. In particular one cannot perform a Taylor series expansion of the
solution around t = 0 because y′(0) does not exist.

What about the initial condition? If we prescribe a condition of the form y(0) = y0 we get b = y0

in (13), but the solution is still not in C1[0, T]. One might hope that a Neumann-type condition of the form
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y′(0) = 0 would control or eliminate the singularity in the solution, but a consideration of (13) shows that
it is impossible to enforce such a condition; that is, the problem CDα

0 y(t) = 1 on (0, T] with y′(0) = 0 has no
solution. This seems surprising until we recall a basic property of the Caputo derivative from ([1], Lemma
3.11): if m− 1 < β < m for some positive integer m and z ∈ Cm[0, T], then limt→0

CDβ
0 z(t) = 0. Hence,

if in (12) one has y ∈ C1[0, T], then taking the limit as t → 0 in (12) we get 0 = 1, which is impossible. That
is, any solution y of (12) cannot lie in C1[0, T].

One can present this finding in another way: for the problem CDα
0 y(t) = f (t) on (0, T] with f ∈ C[0, T],

if the solution y ∈ C1[0, T], then one must have f (0) = 0. This result is a special case of ([1], Theorem 6.26).

Remark 1. For the problem CDα
0 y(t) = f (t) on (0, T] with 0 < α < 1, if one wants more smoothness of the solution

y on the closed interval [0, T], then one must impose further conditions on the data: by ([1], Theorem 6.27), for each
positive integer m, one has y ∈ Cm[0, T] if and only if 0 = f (0) = f ′(0) = · · · = f (m−1)(0).

Conditions such as f (0) = 0 (and the even stronger conditions listed in Remark 1) impose an artificial
restriction on the data f that should be avoided. Thus we continue by looking carefully at the consequence
of dealing with a solution of limited smoothness.

Returning to (12) and imposing the initial condition y(0) = b, the unique solution of the problem
is given by (13), where b is now fixed. Most numerical methods for integer-derivative initial value
problems are based on the premise that on any small mesh interval [ti, ti+1], the unknown solution can
be approximated to a high degree of accuracy by a polynomial of suitable degree. But is this true of the
function (13)? We now investigate this question.

Consider the interval [0, h], where h = t1. This is the mesh interval where the solution (13) is
worst behaved.

Lemma 1. Let α ∈ (0, 1). Consider the approximation of tα by a linear polynomial c0 + c1t on the interval [0, h].
Suppose this approximation is uniformly O(hβ) accurate on [0, h] for some fixed β > 0. Then one must have β ≤ α.

Proof. Our hypothesis is that |tα − (c0 + c1t)| ≤ Chβ for all t ∈ [0, h] and some constant C that is
independent of h and t. Consider the values t = 0, t = h/2 and t = h in this inequality: we get⎧⎪⎪⎨⎪⎪⎩

0− (c0 + 0) = O(hβ),

(h/2)α − (c0 + c1h/2) = O(hβ),

hα − (c0 + c1h) = O(hβ).

The first equation gives c0 = O(hβ). Hence the other equations give (h/2)α − c1h/2 = O(hβ) and
hα − c1h = O(hβ). Eliminate c1 by multiplying the first equation by 2 then subtracting from the other
equation; this yields hα − 2(h/2)α = O(hβ). But this cannot be true unless β ≤ α, since the left-hand side
is simply a multiple of hα because α 
= 1.

Lemma 1 says that the approximation of tα on [0, h] by any linear polynomial is at best O(hα). But the
order of approximation O(hα) of tα on [0, h] is also achieved by the constant polynomial 0. That is:
using a linear polynomial to approximate tα on [0, h] does not give an essentially better result than using
a constant polynomial. In a similar way one can show that using polynomials of higher degree does not
improve the situation: the order of approximation of tα on [0, h] is still only O(hα). This is a warning
that when solving typical fractional-derivative problems, high-degree polynomials may be no better than
low-degree polynomials, unlike the classical integer-derivative situation.
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One can generalize Lemma 1 to any α > 0 with α not an integer, obtaining the same result via the
same argument. Furthermore, our investigation of the simple problem (12) can be readily generalised to
the much more general problem (6); see ([1], Section 6.4).

Implications for the Construction of Difference Schemes

The discussion earlier in Section 4 implies that, to construct higher-order difference schemes for
typical solutions of problems such as (12) and (6), one must use non-classical schemes, since the classical
schemes are constructed under the assumption that approximations by higher-order polynomials gives
greater accuracy. The same idea is developed at length in [29], one of whose results we now present.

Note: although [29] discusses only boundary value problems, an inspection reveals that its arguments
and results are also valid (mutatis mutandis) for initial value problems such as (6) when f = f (t), i.e.,
when the problem (6) is linear.

Let α > 0 be fixed, with α not an integer. Consider the problem Dαy = f on [0, T] with y(0) = 0.
Assume that the mesh on [0, T] is equispaced with diameter h, i.e., xi = ih for i = 0, 1, . . . , N. Suppose
that the difference scheme used to solve Dαy = f at each point xi for i > 0 is ∑i

j=0 aijyN
j = f (ti). It is

reasonable to assume that |aij| = O(h−α) for all i and j since we are approximating a derivative of order α

(one can check that almost all schemes proposed for this problem have this property).
We have the following variant of ([29], Theorem 3.3).

Theorem 1. Assume that our scheme achieves order of convergence p for some p > α when f (t) = Ctk for
all k ∈ {0, 1, . . . , �p− α− 1�}. Then for each fixed positive integer i, the coefficients of the scheme must satisfy the
following relationship:

lim
h→0

(
hα

i

∑
j=0

jk+αaij

)
=

ik Γ(α + k + 1)
Γ(k + 1)

for k = 0, 1, . . . , �p− α− 1�. (14)

Proof. Fix k ∈ {0, 1, . . . , �p− α− 1�}. This implies that k < p− α. Choose for simplicity

f (t) =
Γ(k + α + 1)

Γ(k + 1)
tk.

Then the true solution of our initial value problem is y(t) = tk+α. Fix a positive integer i. Then

i

∑
j=0

aijyN
j = f (ti) =

Γ(k + α + 1)
Γ(k + 1)

(ih)k.

Hence, using the hypothesis that our scheme achieves order of convergence p and |aij| = O(h−α),

lim
h→0

⎛⎝hα
i

∑
j=0

jk+αaij

⎞⎠ = lim
h→0

h−k
i

∑
j=0

aijy(tj)

= lim
h→0

h−k

⎧⎨⎩Γ(k + α + 1)
Γ(k + 1)

(ih)k +
i

∑
j=0

aij

[
y(xj)− yN

j

]⎫⎬⎭
= lim

h→0

[
Γ(k + α + 1)

Γ(k + 1)
ik +O(hp−α−k)

]
=

Γ(k + α + 1)
Γ(k + 1)

ik,
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since k < p− α.

Theorem 1 implies that schemes that fail to satisfy (14) cannot achieve an order of convergence greater
than O(hα) at each mesh point. (This is consistent with the approximation theory result of Lemma 1.)
For example, in the case 0 < α < 1, it follows from Theorem 1 that the well-known L1 scheme is at best
O(hα) accurate.

Remark 2. To avoid the consequences of results such as Theorem 1, one can impose data restrictions such as
f (0) = 0. This is discussed in ([29], Section 5), where theoretical and experimental results show an improvement in
the accuracy of standard difference schemes, but only for a restricted class of problems.

5. Failed Approaches to Treat Non-Locality

Non-locality is one of the major features of fractional-order operators. Indeed, fractional integrals and
derivatives are often introduced as a mathematical formalism with the primary purpose of encompassing
hereditary effects in the modeling of real-life phenomena when theoretical or experimental observations
suggest that the effects of external actions do not propagate instantaneously but depend on the history of
the system.

On the one hand, non-locality is a very attractive feature that has driven most of the interest
and success of the fractional calculus; on the other hand, non-locality introduces severe computational
difficulties that researchers try to overcome in different ways.

Unfortunately, some attempts to treat non-locality are unreliable and lead to wrong results. This is the
case of the naive implementation of the “finite memory principle” consisting in simply neglecting a large
amount of the history solution; since on the basis of this technique it is however possible to devise more
sophisticated and accurate approaches, we postpone its discussion to Section 6.

We have also to mention methods based on some kind of fractional Taylor expansion of the solution,
such as

y(t) =
∞

∑
k=0

Yk(t− t0)
kα,

where the coefficients Yk are determined by some suitable numerical technique.
When solving integer-order differential equations, it is possible to use Taylor expansions to

approximate the solution at a given point t1 and hence reformulate the same expansion by moving
the origin to the new point t1, thus generating a step-by-step method in which the approximation at tn+1

is evaluated on the basis of the approximation at tn (or at additional previous points).
With fractional-order equations, instead, the above expansion holds only with respect to the point t0

(the initial or starting point of the fractional differential operator) and it is not possible to generate
a step-by-step method. Expansions of this type are therefore able to provide an accurate approximation
only locally, i.e., very close to the starting point t0; consequently, as discussed in [30], methods based on
these expansions are usually unsuitable for FDEs.

Another failed approach is based on an attempt to exploit the difference between y(tn+1) and y(tn) in
the integral formulation (7): rewrite the solution at tn+1 as some increment of the solution at tn, i.e.,

y(tn+1) = y(tn) + Gn(t, y(t)), (15a)

then approximate the increment

Gn(t, y(t)) =
1

Γ(α)

∫ tn+1

t0

(tn+1 − u)α−1 f (u, y(u))du− 1
Γ(α)

∫ tn

t0

(tn − u)α−1 f (u, y(u))du (15b)
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by replacing the vector field f (t, y(t)) in both integrals of (15b) by its (first-order) interpolating polynomial
at the grid points tn−1 and tn. Methods of this kind read as

yn+1 = yn + Pn(yn−1, yn), (16)

with Pn a known function obtained by standard interpolation techniques. Approaches of this kind are called
two-step Adams–Bashforth methods and attract researchers since they apparently transform the non-local
problem into a local one (and thus, a difficult problem into a much easier one); in (15b) Gn(t, y(t)) is still
a non-local term but these methods are strangely becoming quite popular despite the fact that, as discussed
in [31], they are usually unreliable because in most cases they attempt to approximate the (implicitly)
non-local contribution Gn(t, y(t)) by some purely local term.

Using interpolation at the points tn−1 and tn to approximate f (t, y(t)) over the much larger intervals
[t0, tn] and [t0, tn+1] is completely inappropriate. It is well known that polynomial interpolation may offer
accurate approximations within the interval of the data points, in this case in [tn−1, tn]; but outside this
interval (where an extrapolation is made instead of an interpolation), the approximation becomes more
and more inaccurate as the integration intervals [t0, tn] and [t0, tn+1] in (15b) become larger and larger, i.e.,
as the integration proceeds and n increases.

The consequence is that completely untrustworthy results must be expected from methods based on
this idea.

Note that the fundamental flaw of this approach is not the decomposition (15) but the local (and hence
inappropriate) way (16) in which the history is handled. Indeed, it is possible to construct technically
correct and efficient algorithms on the basis of (15), for example if one treats the increment term (15b) by
a numerical method that is cheaper in computational cost than the method used for the local term [32].

6. Some Approaches for the Efficient, and Reliable, Treatment of the Memory Term

The non-locality of the fractional-order operator means that it is necessary to treat the memory term
in an efficient way. This term is commonly identified to be the source of a computational complexity
which, especially in problems of large size, requires adequate strategies in order to keep the computational
cost at a reasonable level, and indeed this observation has led to many investigations of (more or less
successful) approaches to reduce the computational cost. It should be noted however that the high number
of arithmetic operations is not the only potential difficulty that the memory term introduces. There is
another more fundamental issue, which seems to have attracted much less attention: the history of the
process not only needs to be taken into account in the computation but, in order to be properly handled,
also needs to be stored in the computer’s memory. While the required amount of memory is usually easily
available in algorithms for solving ordinary differential equations, the memory demand may be too high
for efficient handling in the case of, e.g., time-fractional partial differential equations where finite element
techniques are used to discretize the spatial derivatives.

Most finite-difference methods for FDEs require at each time step the evaluation of some convolution
sum of the form

yn = φn +
n

∑
j=0

cjyn−j or yn = φn +
n

∑
j=0

cj f (tn−j, yn−j), n = 1, 2, . . . , N, (17)

where φn is a term which mainly depends on the initial conditions or other known information.
A naive straightforward evaluation of (17) has a computational cost proportional to O(

N2) and,
when integration with a small-step size or on a large integration interval is required, the value of N can be
extremely large and leads to prohibitive computational costs.
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For this reason different approaches for a fast, efficient and reliable treatment of the memory term in
non-local problems have been devised. We provide here a short description of some of the most interesting
methods of this type. The influence of these approaches on the memory requirements will be addressed
as well.

6.1. Nested Mesh Techniques

Several different concepts can be subsumed under the heading of so-called nested meshes. The general
idea is based on the observation that the convolution sum in Equation (17) stems from a discretization of
a fractional integral or differential operator that uses all the previous grid points as nodes. One can then
ask whether it is really neccessary to use all these nodes or whether one could save effort by including
only a subset of them by using a second, less fine mesh—i.e., a mesh nested inside the original one.

6.1.1. The Finite Memory Principle

The simplest idea in this class is the finite memory principle ([5], §7.3). It is based on defining a constant
τ > 0, the so-called memory length, and replacing (for t > t0 + τ) the memory integral term that extends
over the interval [t0, t] by the integral over [t− τ, t] with the same integrand function. Technically speaking,
this amounts to “forgetting” the entire history of the process that is more than τ units of time in the past,
so the memory has a finite and fixed length τ instead of the variable length t− t0 that may, in a long
running process, be very much longer. From an algorithmic point of view, the finite memory method
truncates the convolution sum in Equation (17) to a sum where j runs from n− ν to n for some fixed ν.
This has a number of significant advantages:

• The computational complexity of the nth time step is reduced from O(n) to O(1). Therefore, the
combined total complexity of the overall method with N time steps is reduced from O(N2) to O(N).

• At no point in time does one need to access the part of the process history that is more than ν time
steps in the past. Therefore, all those previous time steps can be removed from the active memory,
and the memory requirement also decreases from O(N) to O(1).

Unfortunately, this idea also has severe drawbacks. Specifically, it has been shown in [33] that the
convergence order of the underlying discretization technique is lost completely. In other words, one cannot
prove that the algorithm converges as the (maximal) step size goes to 0. Therefore, the method is not
recommended for practical use.

6.1.2. Logarithmic Memory

To overcome the shortcomings of the finite memory principle, two related but not identical methods,
both of which are also based on the nested mesh concept, have been developed in [33,34]. The common
idea of both these approaches is the way in which the distant part of the memory is treated. Rather than
ignoring it completely as the finite memory principle does, they do sample it, but on a coarser mesh;
indeed the fundamental principle is to introduce not just one coarsening level, but to use, say, the step size
h on the most recent part of the memory, step size wh (with some parameter w > 1) on the adjacent region,
w2h on the next region, etc. The main difference between the two approaches of [33,34] then lies in the
way in which the transition points from one mesh size to the next are chosen.

Specifically, as indicated in Figure 1, the method of Ford and Simpson [33] starts at the current time
and fills subintervals of prescribed lengths from right to left with appropriately speced mesh points.
This will lead to a reduction of the computational cost to O(N log N) while retaining the convergence
order of the underlying scheme [33]. However, as indicated in Figure 1, it is common that the left end
point of the leftmost coarsely subdivided interval does not match the initial point. In this case, one can
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either fill the remaining subinterval at the left end of the full interval with a fine mesh (which increases
the computational cost but also reduces the error) or simply ignore the contribution from this subinterval
(which reduces the computational complexity but slightly increases the error; however, since the memory
length still grows with the number of steps, this does not imply the complete loss of accuracy observed in
the finite memory principle). In either case, grid points from the fine mesh that are not currently used in
the nested mesh may become active again in future steps. Therefore, all previous grid points need to be
kept in memory, so the required amount of memory space remains at O(N).

� t

0 4 8 12 16 20
� t

0 5 13 17 20
� t

0 8 12 16 18 20
Figure 1. Full mesh (top) and nested meshes proposed in [33] (center) and in [34] (bottom). The meshes
are shown for the time instant t = 21 and the basic step size h = 1/10.

In contrast, the approach of Diethelm and Freed [34] starts to fill the basic interval from left to right, i.e.,
it begins with the subinterval with the coarsest mesh and then moves to the finer-mesh regions. The final
result is also a method with an O(N log N) computational cost, and with the same convergence order as
the Ford-Simpson method; but its selection strategy for grid points implies that points that are inactive in
the current step will never become active again in future steps, and consequently the history data for these
inactive points can be eliminated from the main memory. This reduces the memory requirements to only
O(log N).

6.2. A Method Based on the Fast Fourier Transform Algorithm

An effective approach for the fast evaluation of the convolution sums in (17) was proposed in [35,36].
The main idea is to split each of these sums in a way that enables the exploitation of the fast Fourier
transform (FFT) algorithm. To provide a concise description, let us introduce the notations

Tp(n) =
n

∑
j=p

cn−jgj, Sp,q(n) =
q

∑
j=p

cn−jgj, n ≥ p,

where gj = yj or gj = f (tj, yj) according to the formula used in (17). Thus the numerical methods described
by (17) can be recast as

yn = φn + T0(n), n = 1, 2, . . . , N.

The algorithm described in [35,36] is based on splitting T0(n) into one or more partial sums of type
Sp,q(n) and just one final convolution sum Tp(n) of a maximum (fixed) length r. Thus, the computation is
simply initialized as

T0(n) =
n

∑
j=0

cn−jgj n ∈ {1, 2, . . . , r− 1}
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and the following r values of T0(n) are split into the two terms

T0(n) = S0,r−1(n) + Tr(n) n ∈ {r, r + 1, . . . , 2r− 1}.

Similarly, for the computation of the next 2r values, T0(n) is split according to

T0(n) =

{
S0,2r−1(n) + T2r(n) n ∈ {2r, 2r + 1, . . . , 3r− 1}
S0,2r−1(n) + S2r,3r−1(n) + T3r(n) n ∈ {3r, 3r + 1, . . . , 4r− 1}

and the further 4r summations are split according to

T0(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S0,4r−1(n) + T4r(n) n ∈ {4r, 4r + 1, . . . , 5r− 1}
S0,4r−1(n) + S4r,5r−1(n) + T5r(n) n ∈ {5r, 5r + 1, . . . , 6r− 1}
S0,4r−1(n) + S4r,6r−1(n) + T7r(n) n ∈ {6r, 6r + 1, . . . , 7r− 1}
S0,4r−1(n) + S4r,6r−1(n) + S6r,7r−1(n) + T8r(n) n ∈ {7r, 7r + 1, . . . , 8r− 1}

and this process is continued until all terms T0(n), for n ≤ N, are evaluated.
Note that in the above splittings the length �(p, q) = q − p + 1 of each sum Sp,q is always some

multiple of r with a power of 2 as multiplying factor (i.e., the possible length of Sq,p(n) is r, 2r, 4r, 8r and
so on).

For clarity, the diagram in Figure 2 illustrates the way in which the computation on the main
triangle T0 =

{
(n, j) : 0 ≤ j ≤ n ≤ N

}
is split into partial sums identified by the (red-labeled) squares

Sp,q =
{
(n, j) : q + 1 ≤ n ≤ q + �(p, q) , p ≤ j ≤ q

}
and final blocks denoted by the (blue-labeled)

triangles Tp =
{
(n, j) : p ≤ j ≤ n ≤ p + r− 1

}
.

Figure 2. Splitting of the computation of T0(n) into partial sums Sp,q (red-labeled squares) and final blocks
Tp (blue-labeled triangles).

Each of the final blocks T�r(n), n = �r, �r + 1, . . . , (� + 1)r − 1, is computed by direct summation
requiring r(r + 1)/2 floating-point operations. The evaluation of the partial sums Sq,p(n) can instead be
performed by the FFT algorithm (see [37] for a comprehensive description) which requires a number of
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floating-point operations proportional to 2� log2 2�, with � = �(p, q) the length of each partial sum Sq,p(n),
since r is a power of 2.

In the optimal case in which both r and N are powers of 2, each partial sum Sp,q that must be computed
together with its length, number and computational cost is described in Table 1.

Table 1. Partial sums, their length, number and computational cost for the evaluation of T0(N).

Partial Sums Len. No. Cost

S0, N
2 −1

N
2 1 O(

N log2 N
)

S0, N
4 −1, S N

2 , 3N
4 −1

N
4 2 O( N

2 log2
N
2
)

S0, N
8 −1, S N

4 , 3N
8 −1, S N

2 , 5N
8 −1, S 3N

4 , 7N
8 −1

N
8 4 O( N

4 log2
N
4
)

S0, N
16−1, S N

8 , 3N
16 −1, S N

4 , 5N
16 −1, S 3N

8 , 7N
16 −1, S N

1 , 9N
16 −1, S 5N

8 , 11N
16 −1, S 3N

4 , 13N
16 −1, S 7N

8 , 15N
16 −1

N
16 8 O( N

8 log2
N
8
)

...
...

...
...

S0,r−1, S2r,3r−1, S4r,5r−1, S6r,7r−1, S8r,9r−1, . . . r s = N
2r O( N

s log2
N
s
)

Furthermore, N/r final blocks T�r, each of length r, are also computed in r(r + 1)/2 floating-point
operations and hence the total amount of floating point operations is proportional to

N log2 N+2
(

N
2

log2
N
2

)
+ 4

(
N
4

log2
N
4

)
+ · · ·+ s

(
N
s

log2
N
s

)
+

N
r

r(r + 1)
2

=

=
log2 s

∑
j=0

N log2
N
2j + N

r + 1
2

= O(
N(log2 N)2), s =

N
2r

,

which turns out, for sufficiently large N, to be consistently significantly smaller than the number O(
N2)

required by the direct summation of T0(N).
Although the whole procedure may appear complicated and requires some extra effort in coding,

it turns out to be quite efficient since it can be applied to different methods of the form (17) and does not
affect their accuracy. This preservation of accuracy is because the technique does take into account the
entire history of the process in the same way as the straightforward approach mentioned above whose
computational cost is O(N2). Thus, one does need to keep the entire history data in active memory, but
one avoids the requirement of using special meshes. All the Matlab codes for FDEs described in [10,21,38],
and freely available on the Mathworks website [39], make use of this algorithm.

6.3. Kernel Compression Schemes

Although the terminology “kernel compression scheme” has been introduced only recently for a few
specific works [40–42], we use it here to describe a collection of methods that were proposed at various
times by various authors and are all based on essentially the same principle: approximation of the solution
of a non-local FDE by means of (possibly several) local ODEs. We provide here just the main ideas
underlying this approach and we will refer the reader to the literature for a more comprehensive coverage
of the subject.

Actually, these are standalone methods (usually classified as nonclassical methods [43]) and not
just algorithms improving the efficiency of the treatment of the memory term; for this reason they could
have been discussed in Section 3 along with the other methods for FDEs. But since one of their main
achievements (and the motivation for their introduction) is to handle memory and computational issues
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related to the long and persistent memory of fractional-order problems, we consider it appropriate to
discuss them in the present section.

For ease of presentation we consider only 0 < α < 1 but the extension to any positive α is only
a technical matter. The basic idea starts from some integral representation of the kernel of the RL
integral (1), e.g.,

tα−1

Γ(α)
=

sin(απ)

π

∫ ∞

0
e−rtr−αdr, (18)

which, thanks to standard quadrature rules, can be approximated by exponential sums

tα−1

Γ(α)
=

K

∑
k=1

wke−rkt + eK(t), (19)

where the error eK(t) and the computational complexity related to the number K of nodes and weights
depend on the choice among the many possible quadrature rules. When applying this approximation
instead of the exact integral in the integral formulation (7), the solution of the FDE (6) is rewritten as

y(t) = y0 +
K

∑
k=1

wk

∫ t

t0

e−rk(t−u) f (u, y(u))du + EK(t). (20)

Each of the integrals in (20) is actually the solution of an initial value problem:{
y[k](t) = −rky[k](t) + f (t, y[k](t))
y[k](t0) = 0,

(21)

which can be numerically approximated by standard ODE solvers, yielding approximations y[k]n on some
grid {tn}. If the quadrature rule is chosen so as to make the error EK(t) so small that it can be neglected,
an approximate solution of the original FDE (6) can be obtained step-by-step as

yn = y0 +
K

∑
k=1

w̄ky[k]n ,

where each y[k]n depends only on y[k]n−1 or on a few other previous values, according to the selected
ODE solver.

In practice, a non-local problem (the FDE) with non-vanishing memory is replaced by K local problems
(the ODEs) each demanding a smaller computational effort and the memory storage is restricted to O(

pK
)

if a p-step ODE solver is used for each of the ODEs (21).
Obviously, the idea sketched above requires several further technical details to work properly. First,

an accurate error analysis is needed to ensure that the overall error is below the target accuracy. This is a
very delicate task because it involves the investigation of the interaction between the quadrature rule used
to approximate the integral in (20) and the ODE solver applied to the system (21), which can be a highly
nontrivial matter. Moreover, some substantial additional problems must be addressed. For instance,
A-stable methods should generally be preferred when solving the system (21) since some of the rk > 0 can
be very large and give rise to stiff problems.

A non-negligible issue is that it is not possible to find a quadrature rule approximating (18) in
a uniform manner with respect to all relevant values of t, i.e. with the same accuracy for any t ≥ t1 where
t1 is the first mesh point to the right of the initial point t0 or for all t ≥ t0 (in either case, the singularity
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at t0 indeed makes the integral quite difficult to be approximated). To overcome this difficulty, several
different approaches have been proposed.

In a series of pioneering works [44–46], where a complex contour integral

tα−1

Γ(α)
=

1
2πi

∫
C

ests−αds

is chosen to approximate the kernel, the integration interval [t0, T] is divided into a sequence of subintervals
of increasing lengths, and different quadrature rules (on different contours C) are used in each of these
intervals. While high accuracy can be obtained, this strategy is quite complicated and requires the use of
more expensive complex arithmetic.

In [40–42] the integral in (7) is divided into local and history terms

y(t) = y0 +
1

Γ(α)

∫ t−δt

t0

(t− u)α−1 f (u, y(u))du︸ ︷︷ ︸
History term

+
1

Γ(α)

∫ t

t−δt
(t− u)α−1 f (u, y(u))du︸ ︷︷ ︸

Local term

for a fixed δt > 0. This confines the singularity of the kernel to the local term, which can be approximated by
standard methods for weakly singular integral equations (e.g., a product-integration rule) with a reduced
computational cost and an insignificant memory requirement. The kernel in the history term no longer
contains any singularity and can be safely approximated by (19) which applies now just for t > δt.

To obtain the highest possible accuracy, Gaussian quadrature rules are usually preferred. A rigorous
and technical error analysis is necessary to tune parameters in an optimal way. Several implementations
of approaches of this kind have been proposed (e.g., see [47–51]) but owing to their technical nature,
a comparison to decide which method is in general the most convenient is difficult; we just refer to the
interesting results presented in [52].

7. Some Remarks about Fractional Partial Differential Equations

Even though this paper is essentially devoted to the numerical solution of ordinary differential
equations of fractional order and the computational treatment of the associated differential and integral
operators, a few comments should be made regarding numerical methods for partial fractional differential
equations (PDEs).

Remark 3. The issues discussed in Section 4 are relevant to partial differential equations also. Indeed, it is shown
in [53] that imposing excessive smoothness requirements on the solutions to a partial differential equation (e.g., for the
sake of simplifying the error analysis or for obtaining a higher convergence order) has drastic implications regarding
the class of admissible problems; in particular, the choice of the forcing function f (x, t) in a linear initial-boundary
value problem will then completely determine the initial condition in the problem.

Our second remark regarding partial differential equations deals with a totally different aspect.

Remark 4. Typical algorithms for time-fractional partial differential equations contain separate discretisation
techniques with respect to the time variable and the space variable(s). A current trend is to employ a very high order
method for the discretisation of the (non-fractional) differential operator with respect to the space variable. While this
might seem an attractive approach at first sight, it has a number of disadvantages. Specifically, while this leads to
a smaller discretization error in the space variable, it also increases the algorithm’s overall complexity and makes
the understanding of its properties more difficult. This complexity would be acceptable if the overall error could
be reduced significantly. But since the overall error comprises not only the error from the space discretisation but
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also the contribution from the time approximation, it follows that to reduce the overall error, one must force this
latter component to be very small also. As indicated above, we cannot expect to achieve a high convergence order in
this variable, so the only way to reach this goal is to choose the time step size very small (in comparison with the
space mesh size). From Section 6 we conclude that a standard algorithm with a higher-than-linear complexity is
likely to lead to prohibitive run times, and even if the time discretisation uses a method with a linear or almost linear
complexity, this very small step size requirement will still imply a high overall cost. Therefore, the use of a high-order
space discretisation in a time-fractional partial differential equation is usually inadvisable.

8. Concluding Remarks

In this paper we have tried to describe some issues related to the correct use of numerical methods
for fractional-order problems. Unlike integer-order ODEs, numerical methods for FDEs are in general
not taught in undergraduate courses and, very often, non-specialists are unaware of the peculiarities and
major difficulties that arise in the numerical treatment of FDEs and fractional PDEs.

The availability of only a few well-organized textbooks and monographs in this field, together with
the presence of many incorrect results in the literature, makes the situation even more difficult.

Some of the ideas collected in this paper were discussed in the lectures of the Training School on
“Computational Methods for Fractional-Order Problems”, held in Bari (Italy) during 22–26 July 2019, and
promoted by the Cost Action CA15225—Fractional-order systems: analysis, synthesis and their importance for
future design.

We believe that the scientific community should make an effort to raise the level of knowledge in this
field by promoting specific academic courses at a basic level and/or by organizing training schools.
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Abstract: Fractional calculus dates its inception to a correspondence between Leibniz and L’Hopital
in 1695, when Leibniz described “paradoxes” and predicted that “one day useful consequences
will be drawn” from them. In today’s world, the study of non-integer orders of differentiation has
become a thriving field of research, not only in mathematics but also in other parts of science such
as physics, biology, and engineering: many of the “useful consequences” predicted by Leibniz have
been discovered. However, the field has grown so far that researchers cannot yet agree on what a
“fractional derivative” can be. In this manuscript, we suggest and justify the idea of classification of
fractional calculus into distinct classes of operators.
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1. Background

Fractional calculus is a venerable branch of mathematics, first conceptualised in 1695 in a series of
letters. L’Hopital posed the question to Leibniz of what would happen if the order of differentiation
were taken to be 1

2 , and Leibniz replied [1]:

“It appears that one day useful consequences will be drawn from these paradoxes.”

After these prophetic words, however, Leibniz did not propose a definition, leaving this task to
the later scientists who followed him.

The concepts of fractional differentiation and fractional integration were examined further over
the course of the 18th and 19th centuries. The topic attracted the attention of mathematical giants
such as Riemann [2], Liouville [3], Abel [4], Laurent [5], and Hardy and Littlewood [6,7]. Detailed
discussions of the history of fractional calculus may be found in [8–11]; here, we wish to focus on a
few key points concerning the directions in which the field developed.

The “paradoxes” described by Leibniz were resolved by later authors, but this is not to say that
the field of fractional calculus is now wholly free of open problems. One recurring issue through the
centuries has been the existence of multiple conflicting definitions. In the mid-19th century, several
different definitions of fractional calculus had already been proposed: Liouville had created one
definition based on differentiating exponential functions and another based on an integral formula
for inverse power functions, while Lacroix had created a different definition based on differentiating
power functions. The definitions of Liouville and Lacroix are not equivalent, which led some critics to
conclude that one must be “correct” and the other “wrong”. De Morgan, however, wrote [12] that:

“Both these systems, then, may very possibly be parts of a more general system.”
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His words, like those of Leibniz 145 years earlier, were prophetic. Both Liouville’s formula and
Lacroix’s are in fact special cases of what is now called the Riemann–Liouville definition of fractional
calculus. This involves an arbitrary constant of integration c, which when set to zero yields Lacroix’s
formula and when set to −∞ yields Liouville’s.

This general Riemann–Liouville definition, for the fractional derivative and fractional integral of
an arbitrary function, emerged in the late 19th century through a complex-analysis approach. Although
the Riemann–Liouville formula is now used mostly in a real-analysis context, its original motivation
came from generalising the Cauchy integral formula for repeated derivatives of a complex analytic
function. Now, Riemann–Liouville is the most common way of defining fractional calculus. In this
model, the fractional integral and fractional derivative of a function f (x) are defined as follows:

RL
c Iν

x f (x) =
1

Γ(ν)

∫ x

c
(x− t)ν−1 f (t)dt, Re(ν) > 0;

RL
cDν

x f (x) =
dn

dxn
RL

c In−ν
x f (x), n = �Re(ν)�+ 1, Re(ν) ≥ 0.

This definition is sufficiently general to cover the formulae both of Liouville and of Lacroix.
However, it is still not the only proposed way of defining fractional calculus: multiple conflicting
formulae persist to this day, confusing many newcomers to the field who expect to see a single
definition of fractional derivatives just like there is a single definition of the first-order derivative.
Fractional calculus may be called an “extension of meaning” [13], but there is more than one way to
extend meaning. The Riemann–Liouville model can be used to describe processes with power-law
behaviour, due to the power-function kernel in the definition of the integral transform, but there
are many other types of behaviours that occur in nature and that cannot be described by simple
power functions.

In the late 20th century, fractional calculus began to undergo a large increase in popularity and
research output. The first international conference on fractional calculus was organised in 1974 in the
USA; the same year also saw the publication of the first textbook [14] devoted to this field. Since then,
fractional calculus has become a very active field of research, with several specialist journals on the
topic. Applications have been discovered in many fields of science, as summarised in [15–18] and
the references therein. In particular, the intermediate property of fractional-calculus operators is vital
for the modelling of certain intermediate physical processes, e.g., in viscoelasticity [19,20]. Fractional
calculus has also become a standard part of the graduate mathematics curriculum in some universities,
with several textbooks [8,11,14,21–23] that can function as an introduction to the field for students and
young researchers.

From the point of view of research, currently there are several differing perspectives and directions
of exploration, which in some respects may be in opposition to each other. In the following section, we
propose a possible way of resolving these issues.

2. The Question of Classification

In recent years, two trends have emerged in the consideration of fractional-calculus operators,
motivated by a number of different considerations.

Firstly, there exists a desire to explore and create new definitions and models for fractional
integral and differential operators. Dozens of definitions have been proposed in the 2010s alone, with
a wide variety of types and properties [24–27]. One motivation here is the pure mathematician’s desire
to generalise: for example, to go beyond simple power functions and extend definitions to cover a
whole host of different kernel functions. Another motivation is the applied scientist’s need for models
to describe accurately a wide variety of different systems: several definitions of fractional calculus
have been inspired directly by real-world applications. The result of both types of research is to expand
the field of fractional calculus. However, the question arises of how far the field can be stretched and
still be called “fractional calculus”, and the validity of some definitions has been debated.
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Secondly, there exists a desire to impose criteria and strict definitions for what we call a
“fractional derivative” or “fractional integral”: which operators between functions should be named
as such and which should not. The proposals range from strict requirements to mere suggestions,
and multiple different criteria have been proposed [13,28–31]. The motivation here is to create a
mathematical framework for fractional calculus, to know the boundaries of the field. Metric spaces and
vector spaces, for example, have rigorous definitions and strict sets of criteria, so why not fractional
integrals and fractional derivatives? The result of such a system would be to restrict the study of
fractional calculus within certain boundaries. However, there is no consensus on where the boundaries
should be drawn: opinions differ widely on what the criteria should be.

At first, these two ways of thinking seem very different. One seeks to expand the field without
regard for boundaries, while the other seeks to restrict the field to within prescribed boundaries.
However, as both points of view have some merit, we would like to seek a middle path, a way of
satisfying both the desire for generalisation and diversification and the desire for rigorous classification.

The key lies in considering the valid motivations for both approaches. Mathematical structures
have an aesthetic, intuitive logic, which guides our path to choosing appropriate criteria to define
them and which often connects directly or indirectly with their physical applications. These real-world
connections are of paramount importance: if one particular mathematical model emerges from some
real data, then that model must be worth studying, and so we should not exclude it from consideration
by imposing overly strict criteria.

The desire for generalisation and the desire for criteria, which seem opposed to each other, may
both be satisfied by considering broad classes of fractional-calculus operators. We recall again the
words of Augustus de Morgan, quoted above: if different definitions seem in contradiction, it is worth
considering whether they may be unified as part of “a more general system”. Ideally, such a system
would be itself part of fractional calculus. Formally, then, we seek to define sets A , B, C , etc. (we do
not presume to know how many such sets will emerge), of operators between function spaces, such
that each element of each of these sets may be interpreted as a “fractional operator” acting on functions
and such that each set has some unifying properties which enable useful results to be proven for the
entire class. We do not impose any requirements in general on how large or small these classes should
be, or which function spaces they should act between, as we believe such a system should be able to
cover many different families of operators.

Fractional calculus has been usefully interpreted in connection with many different branches
of mathematics: for example, distributional calculus, functional calculus, spectral theory, Cauchy
integrals, and Laplace transforms, as described and summarised in [32] (pp. 58–64). Our aim here is
related but different: instead of embedding the whole of fractional calculus into other fields of analysis,
we seek to create classifications within fractional calculus itself. Some recent studies [30,33–35] have
proposed general classes of operators that are broad enough to cover many existing models of fractional
calculus but still narrow enough to be rigorously analysed themselves. This approach is optimal for
several reasons:

1. It satisfies the desire for generalisation. Any class of fractional-calculus operators will be more
general than any one particular model, and the specific models can be studied as before within
this framework or as special cases of the general class. If real-world applications give rise to a new
model of fractional calculus, it may be able to fit into such a class, and then many of its properties
would be known directly from general theorems about the class.

2. It also satisfies, to a certain degree, the desire for restrictions and criteria. Not all types of fractional
calculus fall into one particular class, but each class can be studied in its own right; its defining
attributes could be considered as “axioms” or criteria for that particular class. Thus, it is possible
to study fractional calculus within the framework of certain prescribed conditions, without
dismissing everything outside that framework as invalid.

In shaping the mathematical theory of fractional calculus, we should look beyond single specific
formulae and create wider avenues of study. This will eliminate the need for many different research
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papers proving the same results in the same way for many different types of fractional calculus: instead,
we can prove them just once for a whole class and then deduce the individual results as special cases.
From the applications point of view, a particular collection of real data can be fitted to a particular
model of fractional calculus which is already known as a special case of one of these broad classes.

At some point in the future, it may be possible to create a “most general” definition of fractional
calculus by defining one single class F that covers all fractional operators and nothing else, with all
the other classes of fractional derivatives and integrals as subsets. However, we believe that such
a breakthrough is not imminent. We must wait to discover the full range of applications before we
can decide where to draw the boundaries of the field, and at present, new applications of fractional
calculus are still being discovered all the time. It would be hasty to restrict the field too far now and
then discover after a few years that the restrictions exclude those fractional-calculus operators that are
most useful in real-world modelling.

3. The Class of Analytic Kernels

To illustrate the ideas discussed in the previous section, we shall conduct a detailed analysis of
one general class of fractional-calculus operators that was recently proposed in [35]. First we consider
briefly some of the many models of fractional calculus that may be covered by this class.

• A model proposed by Atangana and Baleanu [25], which was defined more rigorously in [36]
and whose applications have been discussed in [37–39], utilises an integral transform with a
one-parameter Mittag-Leffler function (Eν(z) = ∑∞

n=0
zn

Γ(nν+1) for Re(ν) > 0) in the kernel and an
arbitrary normalisation function multiplier:

AB
c Iν

x f (x) =
1− ν

B(ν)
f (x) +

ν

B(ν)
RL

c Iν
x f (x);

ABRL
cDν

x f (x) =
B(ν)
1− ν

· d
dx

∫ x

c
Eν

( −ν
1−ν (x− t)ν

)
f (t)dt;

ABC
cDν

x f (x) =
B(ν)
1− ν

∫ x

c
Eν

( −ν
1−ν (x− t)ν

)
f ′(t)dt.

• A model due to Prabhakar [40], which was formally connected to fractional calculus in [41]
and whose applications have been discussed in [42,43], utilises an integral transform with
a three-parameter Mittag-Leffler function (Eρ

μ,ν(z) = ∑∞
n=0

(ρ)nzn

Γ(nμ+ν)
for Re(μ), Re(ν) > 0) in

the kernel:

P
c Iμ,ν,ρ,ω

x f (x) =
∫ x

c
(x− t)ν−1Eρ

μ,ν (ω(t− x)μ) f (t)dt;

P
cDμ,ν,ρ,ω

x f (x) =
dn

dxn
P
c Iμ,n−ν,−ρ,ω

x f (x), n = �Re(ν)�+ 1.

• A model known as tempered fractional calculus [44,45], utilises an integral transform with the
product of a power function and an exponential function in the kernel:

T
c I(α,β)

x f (x) =
1

Γ(α)

∫ c

c
(x− t)α−1e−β(x−t) f (t)dt;

T
cD(α,β)

x f (x) =
(

d
dx

+ β

)n (
T
c I(n−α,β)

x f (x)
)

, n = �Re(ν)�+ 1.

• A model due to Srivastava et al. [26] utilises an integral transform with a Fox H-function in
the kernel:

SHJ
c Iω;m,n,p,q;α,β

x f (x) =
∫ x

c
(x− t)α−1Hm,n

p,q

(
ω(x− t)β

)
f (t)dt,
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where Hm,n
p,q (z) = 1

2πi
∫
L Θ(s)zs ds with L being a Mellin–Barnes contour from −i∞ to i∞ and

Θ(s) =
∏m

j=1 Γ(cj−djs)∏n
j=1 Γ(1−aj+bjs)

∏
p
j=n+1 Γ(aj−bjs)∏

q
j=m+1 Γ(1−cj+djs)

with parameters satisfying the conditions stated in [26].

The definition presented in [35] is general enough to cover all of the above as special cases, while
not so general as to lose its connection to fractional calculus. For this reason, we use it as an example
of a broad class of fractional-calculus operators as discussed in the previous section. We may define a
class A consisting of all operators given by the following general integral transform formula:

A
c Iα,β

x f (x) =
∫ x

c
(x− t)α−1 A

(
(x− t)β

)
f (t)dt, (1)

where c is a constant in the extended real line (often taken as zero or −∞), α and β are complex
parameters with positive real parts, and A(z) = ∑∞

k=0 akzk is a general analytic function whose
coefficients ak ∈ C are permitted to depend on α and β. We may consider x as a real variable larger
than c; function spaces for f are discussed below. Many properties of this newly-defined operator
were already proved in [35]; here, as well as providing a brief summary of these, we shall extend the
discussion by considering more properties and potential subclassifications.

Part of fractional calculus. The following series formula, proved in [35], expresses this integral
transform directly in terms of the Riemann–Liouville fractional integral:

A
c Iα,β

x f (x) =
∞

∑
k=0

akΓ(βk + α) RL
c Iβk+α

x f (x). (2)

Formally, we may write this series formula as a relation between functional operators:

A
c Iα,β

x = AΓ

(
RL

c Iβ
x

)
RL

c Iα
x, (3)

where AΓ is the transformed analytic function defined by:

A(z) =
∞

∑
k=0

akzk ⇒ AΓ(z) =
∞

∑
k=0

akΓ(βk + α)zk. (4)

From the relation (2), it is clear that the general operator (1) can always be described using only
the classical Riemann–Liouville fractional integral, which is indisputably part of fractional calculus.
Thus, we contend that it makes sense to consider the general operator (1) as always a part of fractional
calculus as well. It is already known [35] that the series formula (2) may be used to prove various
useful properties, such as for example the product rule and chain rule [46,47], for the general operator
(1) directly from the corresponding known result for Riemann–Liouville.

Generalisation of well-known models. It was verified in [35], or is clear from the definitions, that
all four of the specific example models of fractional calculus mentioned above are special cases of
the general definition (1). Of course, this class does not cover all possible types of fractional calculus:
there are also many that are not special cases of (1). These include the Hadamard and Erdelyi–Kober
definitions, and some definitions involving special functions applied to 1− t

x instead of x− t, like
[27,48].

Now we have confirmed that it makes sense to use (1) as the definition of a class of
fractional-calculus operators: not all of fractional calculus, not just one specific model, but a general
class that covers many cases and can be analysed in its own right. We continue with a further analysis
of this class, its properties, and subclasses.
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Historical connections and integral transform. The transformation between A and AΓ defined by
Equation (4) has some historical significance. In one of his “notes” working on what we now call the
Mittag-Leffler function, Gösta Mittag-Leffler himself [49] considered the following transformation:

F(x) =
∞

∑
n=0

knxn ⇒ Fβ(x) =
∞

∑
n=0

kn

Γ(βn + 1)
xn. (5)

After relabelling notation, it is clear that Mittag-Leffler’s transformation of F to Fβ is precisely the
inverse of the transformation (4) from A to AΓ in the case where α = 1. Mittag-Leffler noted that using
F(x) = 1

1−x yields Fβ(x) = Eβ(x), which we now call the Mittag-Leffler function. Thus, the study of
the general class (1) intimately involved with the transformation (4) has some historical justification.

Furthermore, Mittag-Leffler [49] found the following relation between the functions in (5):

F(x) =
∫ ∞

0
e−ω Fβ(ω

βx)dω.

By a natural extension of this result to the case of general α, β, we obtain the following integral
transform between A and AΓ:

AΓ(z) =
∫ ∞

0
e−ωωα−1 A(ωβz)dω. (6)

Going back to the classics is often a useful endeavour, and indeed, Mittag-Leffler’s 1905 paper
provided us with an elegant integral formula (6) for transforming between the functions A and AΓ,
which are important in the analysis of the class (1) of fractional models.

Local and non-local operators. In classical fractional calculus such as the Riemann–Liouville model,
the operators are non-local. Like integrals, fractional derivatives depend not just on the behaviour of
a function near a single point, but also on its behaviour in a wider region. This non-locality is often
useful in modelling physical processes that have memory effects.

For our general class, the fractional integrals are always non-local since they are defined by an
integral from c to x. The fractional derivatives as discussed in [35] are also non-local, except in the very
special case when they reduce to the standard differentiation operations dn

dxn . This reminds us that our
class does not cover the entirety of what has been called fractional calculus: any operators with locality
properties are not contained in this class and must be classified using some other class.

Possession or lack of a semigroup property. One important property of any fractional-calculus
operator is whether or not it has a semigroup property in one (or more) of the parameters associated
with the operator. For example, in the Riemann–Liouville model, fractional integrals have a semigroup
property while fractional derivatives do not. It is natural to ask, is the mth derivative/integral of the
nth derivative/integral always equal to the (m + n)th derivative/integral?

For the general class (1), it was proved in [35] that a semigroup property in both α and β is
impossible, but a semigroup property in the first parameter α can be obtained under the following
condition on the coefficients ak for the analytic function A:

∑
m+n=k

an(α1, β)am(α2, β)B(α1 + nβ, α2 + mβ) = ak(α1 + α2, β) ∀k ∈ Z+
0 . (7)

It is easy to see that this class is general enough to cover both some fractional models with a
semigroup property (such as Riemann–Liouville and Prabhakar) and some without a semigroup
property (such as Atangana–Baleanu). However, Equation (7) gives us an explicit condition to know
whether a given special case possesses a semigroup property or not.

We note that a semigroup property is not always required by physical motivations: fractional
models either with or without such properties can be used to describe real-world problems [50].
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Singular and non-singular operators. Another property that has been subject to much discussion is
the singularity or non-singularity of fractional-calculus operators. The classical Riemann–Liouville
model is defined by a singular integral, due to the power function (x− t)ν−1 in the integrand, but the
singularity is integrable provided that Re(ν) > 0. Some other models [24,25] have been promoted due
to the non-singularity of their defining integrals.

Again, the class (1) is general enough to cover both some singular and some non-singular
fractional-calculus operators. This time it is easy to find a condition for which is which. We write
v0(A) ≥ 0 for the valency (multiplicity or ramification index) of the analytic function A(z) at the point
z = 0, so that A(z) = zv0(A)B(z) for some function B that is analytic and nonzero in a neighbourhood
of z = 0. Then, the general integral transform (1) is non-singular if:

Re (α + βv0(A)) ≥ 1

(the most usual case is α = 1, v0(A) = 0), and it has an integrable singularity if:

0 < Re (α + βv0(A)) < 1.

(In the case where Re (α + βv0(A)) ≤ 0, we have a non-integrable singularity, and the integral (1)
is not defined since the function cannot be integrated near t = x.)

Again, neither singularity nor non-singularity is always required by physical motivations.
Both singular and non-singular fractional-calculus operators have discovered many applications
to real-world problems [51].

Dual operators. The definition (1) is, for a left-sided fractional integral operator, the integration being
performed from c to x. We can equally well define a right-sided fractional integral operator, for x
contained in some fixed interval [c, d], namely:

A
x Iα,β

d f (x) =
∫ d

x
(t− x)α−1 A

(
(t− x)β

)
f (t)dt. (8)

This modified operator has the property that it is the dual of the original left-sided fractional
integral operator: ∫ d

c

(
A
c Iα,β

x f (x)
)

g(x)dx =
∫ d

c
f (x)

(
A
x Iα,β

d g(x)
)

dx.

This can be quickly proved using Fubini’s theorem, and it is an analogue of the integration by
parts rule for standard integrals and Riemann–Liouville fractional integrals.

Functional bounds. The operator A
c Iα,β

x defined by (1) defines a map between function spaces, and it
may be useful to consider bounds and properties of this functional map.

In [35] it was proved that A
c Iα,β

x is bounded on the space L1[c, c + R], with∥∥∥A
c Iα,β

x f (x)
∥∥∥

L1
≤ RRe(α) sup

|z|<RRe(β)

|A(z)|
∥∥∥ f (x)

∥∥∥
L1

.

Using Young’s inequality for convolutions, we can prove that the same operator is also bounded
on any Lp space, with ∥∥∥A

c Iα,β
x f (x)

∥∥∥
Lp
≤ RRe(α) sup

|z|<RRe(β)

|A(z)|
∥∥∥ f (x)

∥∥∥
Lp

for all p ∈ [1, ∞]. This functional space bound strengthens the pure mathematical foundation for the
general class of operators, and it may be useful in the future study of fractional differential equations
using operators in this class.

Fractionally-iterated operators. Some fractional operators in the literature have arisen by means of
iteration. The process here is to start from some standard operator K between functions, write a
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formula for the iterated operator Kn, and then generalise that formula to non-integer values of n. This
idea is of course what gave rise to fractional calculus in the first place, with the starting operator being
simply K = d

dx , but it is also possible to apply the same process from a starting operator K which is
already fractional.

However, doing so does not always yield a new fractional operator. In some cases, the process does
give rise to new types of fractional calculus [52,53], but this relies on the semigroup property not being
valid for the starting operator D. For example, if K is the Riemann–Liouville fractional integral RL

c Iα,
then Kn = RL

c Inα, and so, the fractionally-iterated operator Kν = RL
c Iνα is also a Riemann–Liouville

fractional integral, not a new type of operator.
Some of the issues around fractional iteration were also discussed in ([54], §5).

4. Conclusions

Fractional calculus is currently in a stage of rapid and continuous expansion and development.
Right now, several different fractional-calculus operators are being proposed, with many different
behaviours such as singular or non-singular, semigroup law or none, etc. On the other hand, several
classifications of fractional-calculus operators have been suggested, proposing a variety of possible
conditions that might be imposed. Some models of fractional calculus are subject to debate, being
acceptable under one classification system, but not another.

There are many different points of view and approaches being taken in the study of fractional
calculus. In terms of real-world problems, it is important to remember that not everything is known:
some systems and behaviours are not yet understood using fractional calculus. In our opinion, going to
the extremes—e.g., creating operators without regard for applications, or imposing hard conditions for
all potential fractional-calculus operators—will not lead to significant progress in the understanding of
the still hidden flavours of fractional calculus and their applications.

Instead of imposing criteria, we suggest organising fractional-calculus operators into classes
having different types of properties. One large class of operators, presented in detail in this manuscript,
is one example of a class with real-world applications where both singular and non-singular operators,
both with and without semigroup properties, may live together in the same class. We think the
words “true” and “false” are too simplistic to describe the complex process of debates that is
occurring nowadays.

Author Contributions: Conceptualisation, D.B. and A.F.; investigation, D.B. and A.F.; writing—original draft
preparation, D.B. and A.F.; writing—review and editing, D.B. and A.F.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Leibniz, G.W. Mathematische Schriften: aus den Handschriften der Königlichen Bibliothek zu Hannover. Briefwechsel
zwischen Leibniz, Wallis, Varignon, Guido Grandi, Zendrini, Hermann und Freiherrn von Tschirnhaus; Druck und
Verlag von H. W. Schmidt: Halle, Germany, 1859; Volume 1.

2. Riemann, B. Versuch einer allgemeinen Auffassung der Integration und Differentiation. In Gessamelte
Mathematische Werke; Dedekind, R., Weber, H., Eds.; Druck und Verlag: Leipzig, Germany, 1876.

3. Liouville, J. Mémoire Sur quelques Questions de Géometrie et de Mécanique, et sur un nouveau genre de
Calcul pour résoudre ces Questions. J. L’École Polytech. 1832, 13, 1–69.

4. Abel, N.H. Solution de quelques problèmes á l’aide d’intégrales définies. In Oeuvres Complètes de Niels Henrik
Abel; Sylow, L., Lie, S., Eds.; CUP: Cambridge, UK, 1881.

5. Laurent, H. Sur le calcul des dérivées à indices quelconques. Nouv. Ann. MathÉmatiques J. Des Candidats Aux
Écoles Polytech. Norm. 1884, 3, 240–252.

6. Hardy, G.H.; Littlewood, J.E. Some properties of fractional integrals I. Math. Z. 1928, 27, 565–606. [CrossRef]
7. Hardy, G.H.; Littlewood, J.E. Some properties of fractional integrals II. Math. Z. 1932, 34, 403–439. [CrossRef]

186



Mathematics 2019, 7, 830

8. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley:
New York, NY, USA, 1993.

9. Dugowson, S. Les Différentielles Métaphysiques: Histoire et Philosophie de la Généralisation de l’ordre de
Dérivation. Ph.D. Thesis, Université Paris Nord, Paris, France, 1994.

10. Hilfer, R. Threefold Introduction to Fractional Derivatives. In Anomalous Transport: Foundations and
Applications; Klages, R., Radons, G., Sokolov, I.M., Eds.; John Wiley & Sons: Berlin, Germany, 2008.

11. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 2nd ed.;
World Scientific: New York, NY, USA, 2017.

12. De Morgan, A. The Differential and Integral Calculus Combining Differentiation, Integration, Development,
Differential Equations, Differences, Summation, Calculus of Variations with Applications to Algebra, Plane and Solid
Geometry; Baldwin and Craddock: London, UK, 1840.

13. Ross, B. A Brief History and Exposition of the Fundamental Theory of Fractional Calculus. In Fractional
Calculus and Its Applications; Lecture Notes in Mathematics No. 457; Ross, B., Ed.; Springer: Heidelberg,
Germany, 1975.

14. Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: San Diego, CA, USA, 1974.
15. Baleanu, D.; Lopes, A.M. (Eds.) Handbook of Fractional Calculus with Applications, Volume 7: Applications in

Engineering, Life and Social Sciences, Part A; De Gruyter: Berlin, Germany, 2019.
16. Baleanu, D.; Lopes, A.M. (Eds.) Handbook of Fractional Calculus with Applications, Volume 8: Applications in

Engineering, Life and Social Sciences, Part B; De Gruyter: Berlin, Germany, 2019.
17. Hilfer; R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
18. Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of

fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231.
[CrossRef]

19. El-Sayed, A.M.A.; Gaafar, F.M. Fractional calculus and some intermediate physical processes. Appl. Math.
Comput. 2003, 144, 117–126. [CrossRef]

20. Bonfanti, A.; Fouchard, J.; Khalilgharibi, N.; Charras, G.; Kabla, A. A unified rheological model for cells and
cellularised materials. preprint under review. [CrossRef]

21. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Taylor &
Francis: London, UK, 2002.

22. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier:
Amsterdam, The Netherlands, 2006.

23. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
24. Caputo, M.; Fabrizio, M. A new Definition of Fractional Derivative without Singular Kernel. Prog. Fract.

Differ. Appl. 2015, 1, 73–85.
25. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and

application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [CrossRef]
26. Srivastava, H.M.; Harjule, P.; Jain, R. A general fractional differential equation associated with an integral

operator with the H-function in the kernel. Russ. J. Math. Phys. 2015, 22, 112–126. [CrossRef]
27. Çetinkaya, A.; Kiymaz, I.O.; Agarwal, P.; Agarwal, R. A comparative study on generating function relations

for generalized hypergeometric functions via generalized fractional operators. Adv. Differ. Equ. 2018, 156.
[CrossRef]

28. Ortigueira, M.D.; Machado, J.A.T. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [CrossRef]
29. Caputo, M.; Fabrizio, M. On the notion of fractional derivative and applications to the hysteresis phenomena.

Meccanica 2017, 52, 3043–3052. [CrossRef]
30. Zhao, D.; Luo, M. Representations of acting processes and memory effects: general fractional derivative and

its application to theory of heat conduction with finite wave speeds. Appl. Math. Comput. 2018, 346, 531–544.
[CrossRef]

31. Hilfer, R.; Luchko, Y. Desiderata for Fractional Derivatives and Integrals. Mathematics 2019, 7, 149. [CrossRef]
32. Hilfer, R. Mathematical and physical interpretations of fractional derivatives and integrals. In Handbook of

Fractional Calculus with Applications, Volume 1; Kochubei, A., Luchko, Y., Eds.; de Gruyter: Berlin, Germany,
2019; pp. 47–85.
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Abstract: The paper first describes a process that exhibits a power law-type long memory behaviour:
the dynamical behaviour of the heap top of falling granular matter such as sand. Fractional modelling
is proposed for this process, and some drawbacks and difficulties associated to fractional models are
reviewed and illustrated with the sand pile process. Alternative models that solve the drawbacks and
difficulties mentioned while producing power law-type long memory behaviours are presented.
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1. Introduction

Research related to fractional differentiation has grown exponentially in recent years in many
areas, including automatic control. In automatic control, many applications have been developed in
dynamical system modelling using “fractional models”. These models are mainly used to capture
power law-type long memory input/output behaviours. In most of these applications, the models
are described by differential equations that involve fractional derivatives or “fractional differential
equations”. For the multi-input, multi-output case, these models can be described by the equation:

∑Na

k=0
Sk

(
d
dt

)νak
y(t) =

∑Nb

k=0
Tk

(
d
dt

)νbk
u(t) Na ∈ N∗, Nb ∈ N∗ (1)

in which u(t) ∈ Rm denotes the input vector, y(t) ∈ Rp denotes the output vector, Sk ∈ Rpxp, Tk ∈ Rpxm.
(d/dt)νak and (d/dt)νbk denote fractional differential operators of orders vak ∈ R and vbk

∈ R, respectively.
These operators are defined in [1–4], and a detailed survey of the properties linked to these definitions
can be found in [2].

If orders νak and νbk
in Relation (1) verify the relations νak1

= k1/q, νbk2
= k2/q, k1 ∈ N∗ and k2 ∈ N∗,

q ∈ N∗, then the differentiation orders νak and νbk
are commensurate (multiple of the same rational

number ν = 1/q). Here, it is assumed that Na ≥ Nb. Using the order commensurability condition and
for null initial conditions, the differential Equation (1) can be rewritten under the form:

{ dν
dtν ζ(t) = Aζ(t) + Bu(t)
y(t) = Cζ(t) + Du(t)

, (2)

where ζ(t) ∈ Rn is the pseudo-state vector, ν = 1/q is the fractional order of the model, and A ∈ Rnxn,
B ∈ Rnxm, C ∈ Rpxn, and D ∈ Rpxm are constant matrices. Model (2) is known in the literature under the
name “fractional state space description”, which was introduced for the first time in [5]. Alternatively,
Models (1) and (2) can be described by transfer functions that involve non-integer powers of the
Laplace variable s.
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Although Models (1) and (2) are widely used in the literature, for modelling and beyond,
several drawbacks associated with their use have been revealed in the last 10 years. Some of these
problems result from too hasty “fractionalisations” of concepts dedicated to classical integer systems,
without any physical justification. Thus, using an example, this paper aims:

- to illustrate these drawbacks and to show that alternative solutions exist for power law-type long
memory behaviours modelling;

- to clarify the limits and benefits of fractional models.

In this paper, the first section defines the concept of “power law-type long memory behaviour” for
linear time invariant (LTI) dynamical systems and gives some conditions in time and frequency domains
for this class of systems to exhibit a power law-type behaviour. In Section 2, the dynamical behaviour
of the heap top of falling granular matter such as sand is studied. This is an example of a process that
exhibits a power law-type long memory behaviour. Then, fractional modelling is proposed for this
process in Section 3, and some drawbacks and difficulties associated to fractional models are reviewed
and illustrated with the sand pile process. Section 4 demonstrates that the power law-type behaviour
of the sand pile process can be modelled by a non-linear model, thus demonstrating that other models
than fractional models are possible for power law-type behaviours. Then, several alternative models
that solve the drawbacks and difficulties mentioned while producing power law-type long memory
behaviours are presented in Section 6.

2. Power Law-Type Long Memory Behaviours

In this paper, we intentionally use the expression “power law-type behaviours” and not “fractional
behaviours”, as the word fractional refers to fractional models, which are one of the means among
others for modelling power law-type behaviours, and because the power can be other than a fractional
number (a real number).

In the sequel, we will say that a system has a power law-like behaviour if its impulse response or
if its frequency response exhibits a power law behaviour in a given time or frequency range. The term
“power law” comes from the time series analysis field, as is recalled in the following subsection.

In the analysis of time series, long memory behaviours can be characterized in terms of their
autocorrelation functions [6]. The autocorrelation highlights that the coupling between values of a signal
at different times decreases slowly as the time difference increases. The decay of the autocorrelation
function can be power-like and so is slower than exponential decay.

Thus, the concept of power law-type long memory is defined for signals in the time series field.
The purpose of this section is to extend this concept to models that have output signals exhibiting
power law-type long memory behaviour.

In Section 2.1, some properties of the spectral density of a system output signal and properties
linking the autocorrelation functions of the input signal and the output signal are demonstrated in the
general case of a linear time invariant (LTI) model. In Section 2.2, these properties are particularised
to systems that have output signals exhibiting power law-type long memory behaviour, allowing to
propose a general definition of a power law-type long memory model.

2.1. Spectral Density and Autocorrelation Functions of the Input Output Signals of an LTI System

Let u(t) and y(t) be respectively the input and the output of a dynamical LTI single input–single
output model. Input u(t) is assumed to be a white noise, and let Ry(ξ) be the output autocorrelation
defined by:

Ry(ξ) =

∫ ∞
−∞

y(t + ξ)y(t)dt. (3)
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In addition, let Sy(ω) be the output power spectral density defined by:

Sy(ω) =

∫ ∞
−∞

Ry(ξ)e− jωξdξ. (4)

The autocorrelation function Ry(ξ) of the system output y(t) is related to the autocorrelation
function Ru(ξ) =

∫ ∞
−∞ u(t + ξ)u(t)dt of the system input u(t) through the relation:

Ry(ξ) =

∫ ∞
−∞

∫ ∞
−∞

u(t− p)h(p)dp
∫ ∞
−∞

u(t + ξ− q)h(q)dqdt (5)

or (if permutations of integrals are permitted)

Ry(ξ) =

∫ ∞
−∞

∫ ∞
−∞

h(p)h(q)
(∫ ∞
−∞

u(t− p)u(t + ξ− q)dt
)
dqdp. (6)

Using the change of variable t′ = t− p, Relation (6) becomes

Ry(ξ) =

∫ ∞
−∞

∫ ∞
−∞

h(p)h(q)
[∫ ∞
−∞

u(t′)u(t′ + ξ+ p− q)dt′
]
dqdp (7)

or

Ry(ξ) =

∫ ∞
−∞

∫ ∞
−∞

h(p)h(q)Ru(ξ+ p− q)dqdp. (8)

If u(t) is a white noise of variance σ, then Ru(ξ) = σδ(ξ) where δ(.) is the Dirac function. Thus,

Ry(ξ) = σ

∫ ∞
−∞

∫ ∞
−∞

h(p)h(q)δ(ξ+ p− q)dqdp. (9)

Using Relation (4),

Sy(ω) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h(p)h(q)Ru(ξ+ p− q)e− jωξdqdpdξ. (10)

Using τ = ξ+ p− q, the previous relation becomes

Sy(ω) =

∫ ∞
−∞

h(p)ejωpdp
∫ ∞
−∞

h(q)e− jωqdq
∫ ∞
−∞

Ru(τ)e− jωτdτ (11)

and thus, if H( jω) denotes the frequency response (and H∗( jω) its conjugate) of the considered
dynamical system:

Sy(ω) = H( jω)H∗( jω)Su(ω) = σ
∣∣∣H( jω)

∣∣∣2. (12)

2.2. Power Law Concept Extended to LTI Systems

Let us now consider an LTI system whose impulse response is of the form

h(t) =
Kt

t1−ν He(t) and H( jω) =
Kω
( jω)ν

0 < ν < 2, Kt ∈ R, Kω ∈ R. (13)

where He(t) is the Heaviside function. According to Relation (12), the power spectral density of the
system output to a white noise of variance σ is defined by

Sy(ω) =
σKω2

ω2ν (14)
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and exhibits a power law-type behaviour in the frequency domain. According to Relation (9) for a
white noise input u(t) of variance σ, the output autocorrelation is defined by

Ry(ξ) = σ

∫ ∞
p=0

∫ ∞
q=0

h(p)h(q)δ(ξ+ p− q)dqdp (15)

or as the integrated function is not equal to 0 only if ξ+ p = q

Ry(ξ) = σ

∫ ∞
p=0

h(p)h(p + ξ)dp = σ

∫ ∞
p=0

Kt

p1−ν
Kt

(p + ξ)1−ν dp (16)

and thus if Γ(.) denotes the Euler gamma function:

Ry(ξ) =
σKt

24−νΓ(ν)Γ
(

1
2 − ν

)
√
π

ξ2ν−1. (17)

Relation (17) demonstrates that the output signal autocorrelation exhibits a power
law-type behaviour.

Definition 1 [Power law-type long memory system]. A power law-type long memory system is an LTI
system that has one of the following equivalent properties in a given time or frequency range:

1. Its impulse response h(t) slowly decays with respect to time according to:

h(t) =
Kt

t1−ν He(t) 0 < ν < 2. (18)

2. For a white noise input u(t) of variance σ, its output autocorrelation function is:

Ry(ξ) =
σKt

24−νΓ(ν)Γ
(

1
2 − ν

)
√
π

ξ2ν−1. (19)

3. For a white noise input u(t) of variance σ, its output power spectral density is:

Sy(ω) =
σKω2

ω2ν . (20)

Definition 1 allows characterising the input output behaviour of the class of systems that is
considered in this paper.

3. Sand Heap Growth: An Example of Power Law-Type Long Memory Behaviour

3.1. System Description

The dynamical behaviour of falling granular matter such as sand is studied (here, granulated
sugar). As shown in Figure 1, it is assumed that the granular matter grows under a flow of sand
Q(t) and that the base of the cone created by the accumulation of matter can also grow with time.
The experimental apparatus used to create the heap and to measure its height is also described in
Figure 1. The sand falls from a conic tank and the height is measured using a webcam.
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Figure 1. Illustration of sand pile growth (right) and description of the apparatus used to measure the
heap height (left).

The time evolution of the sand heap top denoted as h(t) is represented by Figure 2. The shape
of the curve is similar to those represented in [7,8]. In order to show that this system has a power
law-type long memory behaviour, the function

log[h(log(t))] ∼
for large t

K0 + νlog(t) K0 ∈ R (21)

is represented in Figure 3. For a large time duration, this figure shows that the curve behaves as a
straight line:

K0 + νlog(t) (22)

thus highlighting that the considered system exhibits a power law-type behaviour. Indeed, if h(t) = k0tν

then log[h(t)] = log(k0) + νlog(t) = K0 + νlog(t). Thus, this system has Property 1 of Definition 1.

Figure 2. Heap top h(t) variation.
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Figure 3. Function log[h(log(t))].

3.2. Fractional Modelling of the Sand Pile Growth

As the system exhibits a power law-type behaviour, in a first approach, a fractional model was
considered to model the system. The proposed model is defined by the transfer function

H(s) =
K
sν

K ∈ R∗+, ν ∈ R, 0 < ν < 1. (23)

Parameters K and ν are obtained through the minimisation of a quadratic criterion on the error
between the measure and the model time response. The input of the model is assumed to be a Heaviside
function of magnitude 1. The parameters obtained are:

K = 1.23 ν = 0.35. (24)

Figure 4 shows a comparison of the measures and the model time response. This comparison
reveals that the fractional model permits an accurate fitting of the measures thanks to a compact model
involving only two parameters (K and ν). However, such a modelling approach comes with several
drawbacks that are now described.

Figure 4. Comparison of the measures and the model response.
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4. Drawbacks of Fractional Modelling

The drawbacks listed in the sequel hold for the fractional modelling approach done in the previous
section and beyond. The fractional model obtained in the previous section is a particular form of the
more general model

H(s) =
T(s)
R(s)

(25)

with T(s) =
∑r

l=0 tlsβl and R(s) =
∑m

k=0 rksαk where r ∈ N∗, m ∈ N∗, tl ∈ R, rk ∈ R, βl+1 ≥ βl ≥ 0
and αk+1 ≥ αk ≥ 0. The first drawback associated to this class of model is linked to its physical
interpretation. The time constant distribution interpretation is often invoked [9] but does not reflect the
internal behaviour of the modelled system, as for example for the case of the pile of sand. The other
interpretations are not more satisfactory.

Drawback 1. The physical interpretations proposed in the literature are not obtained based on the observation
of a given phenomenon but result from purely mathematical discussions [9–17]. In the case of incommensurate
orders, some interpretations can invalidate the obtained model [18].

The impulse response of the Transfer Function (25), computed with the residue theorem using a
Bromwich–Wagner path, can be written as [19]:

h(t) = hp(t) + hd(t) (26)

with

hp(t) =
∑n

i=1
aietpi n ∈ N∗, ai ∈ R, pi ∈ R−, and hd(t) =

∫ ∞
0
μ(x)e−txdx. (27)

Function hp(t) is produced by the poles of the transfer functions H(s) (residues of the Cauchy
method). As explained in [20], the function μ(x) in hd(t) is defined by

μ(x) =
1

2 jπ

[
H
(
(−x)−

)
−H
(
(−x)+

)]
=

1
π

∑m
k=1
∑r

l=0 akqlsin(π(αk − βl))xαk−βl∑m
k=0 a2

kx2αk +
∑

0≤k<l<m 2akalcos(π(αk − βl))xαk−βl
. (28)

The Laplace transform of the function hd(t) is given by

hd(s) =
∫ ∞

0

μ(z)
s + z

e−tzdz. (29)

Such a relation shows that a fractional model exhibits poles distributed from 0 to −∞, thus leading
to the following drawback.

Drawback 2. The memory of a fractional model is infinite and it exhibits infinitely slow and infinitely fast time
constants (even if they are attenuated through the function μ() , they exist), which excludes the possibility of
linking the model internal variable to a physical variable.

The infinite memory associated to fractional models can also be given by another interpretation.
If an input u(t) is applied to the submodel of the impulse response hd(t), the resulting output yd(t) is
given by the relation [20,21]:

⎧⎪⎪⎨⎪⎪⎩
∂w(t,z)
∂t = −zw(t, z) + u(t)

yd(s) =
∫ ∞

0 μ(z)w(t, z)dz
with z ∈ R+, (30)
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which is known in the literature as diffusive representation [21]. The inverse spatial Fourier transform
denoted by the symbol F −1 (F is for Fourier transform) applied to (30), leads to

⎧⎪⎪⎨⎪⎪⎩
∂φ(t,ζ)
∂t =

∂2φ(t,ζ)
∂ζ2 + u(t)δ(ζ)

yd(s) =
∫ ∞
−∞m(ζ)φ(t, ζ)dζ

with ζ ∈ R (31)

and
φ(t, ζ) = F −1

{
w
(
t, 4π2z2

)}
, m(ζ) = F −1

{
4π2ζμ

(
4π2ζ2

)}
.

Relation (31) allows us to claim that a fractional system can be associated to an infinite dimensional
system described by a diffusion equation on an infinite domain (ζ ∈ R) [22]. It is this (double) infinite
dimension requirement that creates the infinite memory mentioned above.

If Model (23) is used for the sand pile growth modelling, an infinite number of initial conditions is
required (i.e., a state of infinite dimension is required). However, it is clear that the initial condition of
the sand pile growth can be described using a single variable: the sand pile height h(t) (a state for this
system could be chosen as h(t), making the sand pile growth model a first-order model).

This can also be illustrated in the thermal domain [23]. A fractional integrator is a solution of the
heat equation (linking the thermal heat flux applied to the measured temperature) only if:

- the temperature measure is done at the point where the heat flux is applied; or
- an infinite dimension medium is considered.

Other spatial configurations can lead to power law-type behaviours but cannot be written under
the form of Model (25) (exponential and hyperbolic functions are involved in the Laplace domain).

If orders βl and αk meet a commensurate condition in Relation (25), it can be rewritten as:

⎧⎪⎪⎨⎪⎪⎩
dνx(t)

dtν = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

. (32)

In this representation, an analysis of the units very quickly leads to doubts about the physical
character of the coefficients in matrices A and B, leading to the following drawback.

Drawback 3. The parameter units associated to description (parameters inside Matrices A and B) have no
physical meaning (e.g., sec−ν for parameters in Matrix A).

Representation (32) is known in the literature as a “fractional state space description”. However,
this is an improper designation that results from a generalisation of concepts dedicated to integer
systems without inquiring into the notion of state. This analysis is demonstrated in [24], and it leads to
the following drawback.

Drawback 4. Representation (32) is not a state space representation, as the variable x(t) does not have
the properties of a state. That is why the terms “pseudo state” and “pseudo-state space description” were
introduced [24].

In Representation (32), as in the Transfer Function (25), the fractional differentiation operator dν
dtν

is not defined uniquely.

Drawback 5. There are more than 30 definitions of the operator dν
dtν [25].

This multiplicity of definitions leads to developing results by choosing the most convenient
definition to obtain them. This is why Caputo’s definition became so popular, as it offers the possibility
to take into account the initial conditions without taking into account all the past of the system. If from
a mathematical point of view the definitions of Caputo, Riemann-Liouville, or others are in no way
problematic, their use for the definition of fractional models is questionable. While fractional models
are known to have a long and even infinite memory, the use of Caputo’s derivative would make this
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memory disappear for a given time moment (initial time). This paradoxical situation led to several
analyses that revealed the following drawback.

Drawback 6. The initial conditions are not well taken into account in Representations (32) and (25) if the
Caputo or Riemann–Liouville definitions are used [16,22,26,27].

To solve these initialisation issues (and also the infinite memory issue), it was proposed in [28,29]
to use a limited frequency band fractional integration operator in the definition of fractional models.
Another consequence of the infinite memory of Model (32), and sometimes in contradiction with some
results proposed in the literature, is the poor properties of the considered models.

Drawback 7. Exact observability cannot be reached as all of the system’s past must be known to predict its
future [19].

The analysis proposed in [19] could be extended to the analysis of controllability and flatness as
model initialisation has an impact on these properties.

To avoid the multiplicity of definitions and the initial conditions problem, it was concluded in [24]
that fractional integration is preferable in the definition of a fractional model and thus that Relation
(32) should be rewritten under the form:

{
x(t) = Iνt0→−∞[Ax(t) + Bu(t)]

y(t) = Cx(t) + Du(t)
(33)

with:

Iνt0→−∞[ f (t)] =
1

Γ(ν)

∫ t

t0

f (τ)

(t− τ)1−ν dτ. (34)

However, such a definition entails another drawback.

Drawback 8. The fractional integration given by Relation (34) involves a singular kernel [30]; this leads to
complications in the solution / simulation of the fractional order differential equations.

Note that some non-singular kernels for modelling power law-type long memory behaviours
have been proposed in [29].

In the case of the sand pile, the following section shows that all these drawbacks could have been
avoided by using a different modelling approach while capturing accurately the power law behaviour.

5. Another Possible Model

Let Q(t) be the flow of falling sand. If Vc(t) denotes the sand heap cone volume with Vc(t) =
1/3πr2h, according to the notations introduced in Figure 5, the flow Q(t) generates the volume variation
of the cone:

dVc(t)
dt

= Q(t). (35)

Figure 5. Notations for the characterisation of the sand heap growth.
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As

tan(α) =
h(t)
r(t)

then Vc(t) =
πh(t)3

3tan2(α)
(36)

and thus, under the hypothesis of a constant angle of repose α

dVc(t)
dt

=
πh(t)2

tan2(α)

dh(t)
dt

. (37)

Combining Relations (35) and (37), variation in the sand heap height is thus defined by the
differential equation:

dh(t)
dt

=
tan2(α)

πh(t)2 Q(t). (38)

For Q(t) constant, Model (35) can be rewritten as:

dh(t)
dt

=
a0

h(t)2 He(t), (39)

in which a0 is a parameter and He(t) is the Heaviside fonction. With the measures in Figure 2, parameter
a0 was computed with an optimisation algorithm aiming at minimising the error between the response
of Model (38) and the measures. Parameter a0 = 1.07 was obtained, and a comparison of the measures
with the model response is shown by Figure 6.

Figure 6. Comparison of the measures with the Model (35) response.

Similar to the fractional model, Model (39) also permits an accurate fitting of the system behaviour
with a small number of parameters. However, Model (38) resolves most of the drawbacks mentioned
in the following paragraph and in particular eliminates any questioning about the infinite space
dimension and about initialization of the model.

Let us imagine that the experiment starts with a partially formed sand heap, as if the process had
a past. Fractional modelling with Model (23) would impose the knowledge of all the system’s past to
restart the experiment, as if knowing the position of all the grains was necessary. However, in practice,
this knowledge is not useful. It is not useful to know the position of all the grains of sand; it is only
necessary to reconstitute a pile with similar geometric characteristics (angle of repose contained in
parameter a0 and heap height h(t)). This is exactly what Model (35) does. Only one state h(t) and thus
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its initialisation is required. This example highlights the erroneous conclusions to which fractional
modelling can lead. Admittedly, the temporal evolution fitting is very accurate, but the physical
interpretation is not possible.

Due to the omnipresence of systems that exhibit power law-type behaviours, it appears important
to develop new models that do not exhibit the above problems while being able to capture the
corresponding dynamics. Some are proposed in the next section.

6. Beyond Fractional Models

6.1. Some Classes of Non-Linear Models

The previous section showed that models other than fractional models can be used to model
power law-type long memory behaviours, in particular non-linear models. This is exactly what the
authors did recently for the modelling of the adsorption process [31]. The adsorption process can
be likened to the process of the random deposition of discs on a surface, which is denoted random
sequential adsorption (RSA) and can be mathematically described as follows.

RSA Process: Let S be a square of size L×L, L ∈ R∗+. Let R ∈ R∗+ with R� L and t = (tk)k∈N ∈ RN

with t0 = 0 and such that for all k ∈ N, tk+1 − tk = Δt ∈ R∗+. At t = t0, the surface is empty. At each time
tk, a disk of radius R arrives on the surface S at a randomly chosen location. If the area corresponding
to the disk is empty, the disk is placed at the location. If part of the corresponding area is covered by
another disk, the disk goes back, and the configuration of S remains unchanged.

An example of the result produced by this process is shown in Figure 7.

Figure 7. A possible result for the random sequential adsorption (RSA) process.

If θ(t) denotes the density of the occupied area, it is explained in [32,33], and simulated in [31]
that the covered surface can be described by a power law (see Figure 8).

θ∞ − θ(t) ≈ t−1/2. (40)

Given the power law behaviour of this process, a fractional model should be effective to describe
the kinetic of the density θ(t). However, limitations on the ability of this kind of model to capture
some properties of the RSA model were highlighted in [31] and are now summarised.

- With the RSA process (as for the sand pile process), if the flow is stopped, then the surface filling
stops. If the flow restarts, the surface filling restarts from the same state. Such behaviour cannot
be reproduced with a classical linear fractional model whose output relaxes for a null input.

- With a fractional modelling approach, an infinite dimensional model is obtained, requiring the
entire model past knowledge for a proper initialisation. However, in practice, such knowledge is
not required. Initialisation of the RSA process only requires the knowledge of the density θ(t)
and a uniform distribution of the disks on the surface. Exact knowledge of the position of all the
disks on the surface is not necessary, and thus not all the process history is required.
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Figure 8. Density θ(t) of occupied area as a function of trials (left) and highlighting of the power law
behaviour of θ∞ − θ(t) for large values of t (right).

To overcome these limitations, a model of the form

.
y(t) = f (y)u(t) (41)

was proposed in [31], in which u(t) is the flow of disks that hit the surface, y(t) = 1− θ(t) denotes the
free surface density and

f (y) =
(
b0 + b1y + b2y2 + b3y3 + b4y4

)[ tanh(100(y−0.5))
2 − tanh(60(y−0.5))

2

]
+ (c0 + c1y) tanh(60(y−0.8))+1

2 . (42)

This model can be viewed as a serious alternative to fractional models as:

- It permits an accurate fitting of the RSA process kinetic in spite of its power law behaviour;
- It takes into account some non-linear behaviours in relation to the flow of incoming disks (or

particles for the case of a real adsorption process);
- Its state is only of one dimension, and its initialisation only requires knowledge of the

covered density;
- Its implementation does not require any approximation step.

6.2. Distributed Time Delay Models

Modelling of power law-type long memory behaviours is also possible using distributed time
delay systems. This is exactly what is done in [34,35], in which the following class of time delay system
is considered.

d
dt

x(t) = A0x(t) + A1

∫ T f

0
η(τ)x(t− τ)dτ+ Bu(t) (43)

in which

η(t) = C0

(
ωνl

Γ(ν)
tν−1e−ωlt − ω

ν
l

Γ(ν)
tν−1e−ωmt +ωνl ω

1−ν
m e−ωmt

)
(44)

with

C0 =

∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1( j

ωl
+ 1
)ν −

(
ωl
ωm

)ν 1( j
ωm

+ 1
)ν +

(
ωl
ωm

)ν 1
j
ωm

+ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1
∣∣∣∣∣∣∣∣∣
. (45)

As shown by Figure 9, the input/output frequency behaviour of such a model exhibits a power
law behaviour in a frequency band that can be adjusted using coefficients A0, A1, and B.
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Figure 9. Gain (left) and phase (right) diagrams of x(s)/u(s) for various values of ν where corner
frequencies ω1 = 10−3 rd/s, ω2 = 104 rd/s, and ω3 = 106 rd/s depend on parameters A0, A1, and
B [34].

In comparison with the Fractional Model (32), Model (43) has the following advantages:

- In Relation (43), the variable x(t) can be viewed as a real state and a physical meaning can be
associated to it;

- There is no longer any ambiguity in the operator used for the definition of Relation (43) (in
Equation (32), Caputo’s, Riemann–Liouville, or another can be chosen);

- Kernel η(t) in Relation (43) is not singular, unlike the definition of fractional derivative in Equation
(32);

- The memory of Model (43) is of finite length;
- Initialisation of Model (43) requires knowledge of its state on a finite length and is well defined.

6.3. First Kind Volterra Equations

It must be noted that Fractional Model (32), which is widely used in the literature, is a particular
case of a Volterra equation of the first kind. According to [4]—p. 46 (if the fractional integral of order
ν of each component of vector x(t) exists) and after first-order integration of both sides of the first
equation in Relation (32), the following equations can be obtained:

∫ t

0
η1−ν(t− τ)x(τ)dτ =

∫ t

0
[Ax(τ) + Bu(τ)]dτ (46)

where the kernel in Relation (46) is η1−ν(t) = t−ν/Γ(1− ν) and multiplies each component of vector
x(t). Thus, Representation (32) can be rewritten under the form of a Volterra equation of the first kind,

∫ t

0

(
t−ν

Γ(1− ν) In −A
)
x(τ)dτ = v(t) with v(t) =

∫ t

0
Bu(τ)dτ, y(t) = Cx(t), (47)

where In denotes an identity matrix with the same dimension as vector x(t). Relation (47) demonstrates
that a pseudo-state space description is a particular case of a Volterra equation of the first kind, as the
kernel in Relation (32) has a fixed structure. Using a Volterra equation, the following class of model
can be proposed

∫ t

0
η(t− τ)x(τ)dτ = v(t) with v(t) =

∫ t

0
u(τ)dτ, y(t) = x(t) (48)
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that generalises the pseudo-state space description (32) in two ways:

• Adapting the kernel η(t) in Relation (48) (see also [29], it is possible to produce, with the same
kind of equation, power law behaviours of various types (denoted explicit, implicit), but also
many other long memory behaviours;

• In Relation (48), if x(t) ∈ Rn, η(t) is a matrix of kernels such that η(t) =
[
ηi, j(t)

]
, thus permitting

great flexibility in the tuning of Relation (48). The case η(t) = diag[ηi(t)] comes closer to the
non-commensurate fractional pseudo-state space representation case, but it should be remembered
that physical interpretations invalidate this kind of model [18].

Description (48) has another important advantage. Model memory can be limited by introducing a
parameter T f in the integral bounds such that:

∫ t

t−T f

ην(t− τ)x(τ)dτ = v(t). (49)

Using the change of variable ξ < t− τ, Relation (48) becomes:

∫ T f

0
ην(ξ)x(t− ξ)dξ = v(t) with v(t) =

∫ t

0
u(τ)dτ, y(t) = x(t). (50)

Relation (50) is close to Relation (43) and explicitly shows that knowledge of the model state x(t)
is required only on

[
0, T f

]
to compute its future.

7. Conclusions

This paper started from an illustrative example: sand pile growth under the effect of falling sand
in the upper part of the heap. Using a simple experiment, it was shown that the pile growth exhibits a
power law-type long memory behaviour. As fractional models also exhibit power law-type behaviours,
they can be used to capture the input–output behaviour of such a system. However, several drawbacks
are associated to this modelling, and were reviewed here. It is shown that a simple non-linear model
permits a physical modelling of the considered system, thereby removing all the mentioned drawbacks.
This leads to two conclusions:

- Even if fractional models permit an accurate fitting of power law-type input–output behaviours,
they can give birth to disconnected issues of the system considered (initialisation, dimension,
interpretations, . . . )

- simpler more physical models can be obtained if we try to understand the physical origin of
the behaviour.

This is what the authors did to model adsorption phenomena [31]. Yet again, a non-linear model
proved to be more suitable than a fractional model for such a modelling problem. However, it is also
shown in the rest of the present paper that other models such as distributed time delay models, or a
Volterra equation of the first kind, also have the ability to produce power law behaviour without the
drawbacks associated to fractional models.
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Abstract: One major question in Fractional Calculus is to better understand the role of the initial
values in fractional differential equations. In this sense, there is no consensus about what is
the reasonable fractional abstraction of the idea of “initial value problem”. This work provides
an answer to this question. The techniques that are used involve known results concerning Volterra
integral equations, and the spaces of summable fractional differentiability introduced by Samko
et al. In a few words, we study the natural consequences in fractional differential equations of the
already existing results involving existence and uniqueness for their integral analogues, in terms
of the Riemann–Liouville fractional integral. In particular, we show that a fractional differential
equation of a certain order with Riemann–Liouville derivatives demands, in principle, less initial
values than the ceiling of the order to have a uniquely determined solution, in contrast to a widely
extended opinion. We compute explicitly the amount of necessary initial values and the orders of
differentiability where these conditions need to be imposed.

Keywords: fractional differential equations; initial values; existence; uniqueness

1. Introduction

One of the most typical trademarks involving Fractional Calculus is the wide range of opinions
about the notions of what is a natural fractional version of some integer order concept and what is
not. On the one hand, this plurality leads interesting debates and fosters a critical thinking about
whether research is going “in the right direction” or not. On the other hand, it is difficult to handle
such an amount of different notions and ideas in the extant literature. In particular, it is common to
find lots of generalized fractional versions of a single integer order concept, some of them not very
accurate or incoherent between them. These debates are still very alive nowadays [1].

In this frame, the task of this paper is to point out some relevant facts concerning the imposition
of initial values for Riemann–Liouville fractional differential equations (FDE). Although the existence
and study of FDE has been widely described, for instance in [2,3], in this paper, we provide strong
reasons to reconsider the way of imposing initial values.

We have to highlight that our research has been conducted for the Riemann–Liouville fractional
derivative, which is the most classical extension for the usual derivative. In addition, the results have
been developed for the particular case of linear equations with constant coefficients. However, it seems
natural that the ideas described here could be extended to much more general cases.

The main reason to study this issue for the Riemann–Liouville fractional derivative, and not
for other fractional versions, is that it is the left inverse of the Riemann–Liouville fractional integral.
In this sense, if we restrict the study of Fractional Calculus to functions defined on finite length
intervals [a, b], it is a big consensus that Riemann–Liouville fractional integral with base point a is the
unique reasonable extension for the integral operator

∫ t
a . The previous asseveration is not a simple

opinion, since the Riemann–Liouville fractional integral can be characterized axiomatically in very
reasonable terms.

Mathematics 2020, 8, 1093; doi:10.3390/math8071093 www.mdpi.com/journal/mathematics205
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Theorem 1 (Cartwright-McMullen, [4]). Given a fixed a ∈ R, there is only one family of operators
(

Iα
a+

)
α>0

on L1[a, b] satisfying the following conditions:

1. The operator of order 1 is the usual integral with base point a. (Interpolation property)

2. The Index Law holds. That is, Iα
a+ ◦ Iβ

a+ = Iα+β
a+ for all α, β > 0. (Index Law)

3. The family is continuous with respect to the parameter. That is, the following map Inda : R+ −→
EndB

(
L1[a, b]

)
given by Inda(α) = Iα

a+ is continuous, where EndB
(

L1[a, b]
)

denotes the Banach space
of bounded linear endomorphisms on L1[0, b]. (Continuity)

This family is precisely given by the Riemann–Liouville fractional integrals, whose expression will be
recalled during this paper.

Hence, it makes sense to study in detail fractional integral problems for the Riemann–Liouville
fractional integral to derive consequences for the corresponding fractional equations afterwards.
Finally, to draw the attention of curious readers, we mention again that one of the most interesting
results that we have found out is that a FDE of order α > 0 with Riemann–Liouville derivatives can
demand, in principle, less initial values than �α� to have a uniquely determined solution. This result
differs from a widely held opinion (see Theorem 1, Section 5.5, in [5]) which states that the necessary
amount of initial values is �α�. The reason for this discrepancy is that the question involving the
“fractional smoothness” of the solutions is often neglected, since many results are derived after a not
totally rigorous usage of certain mathematical concepts or results. In other words, it is important to
build first the space where solutions lie in, to later seek solutions in that space.

A complete range of highlighted results with their implications can be consulted in Section 5,
while the previous sections are devoted to the corresponding deductions.

Goal of the Work

The goal of this work is to study how should we impose initial values in fractional problems with
a Riemann–Liouville derivative to ensure that they have a smooth and unique solution, where smooth
simply means that the solution lies in a certain suitable space of fractional differentiability. To achieve
this, we will depart from some known results involving the Riemann–Liouville fractional integral,
since it arises as the natural generalization of the usual integral operator; recall Theorem 1.

First, we will recall some results that imply that fractional integral problems have always a unique
solution. We also recall the fundamental notions concerning Fractional Calculus, and we pay special
attention to the functional spaces where calculations are performed, and especially where fractional
derivatives are well defined. Note that this point of “where are functions defined” is crucial to talk
about existence or uniqueness of solution and is often neglected in the extant literature concerning
Fractional Calculus. Indeed, to avoid this problem, much research has been conducted for Caputo
derivatives instead of Riemann–Liouville, see, for instance, [6,7] or general comments in [8]. The ideas
of this paragraph are developed in the second section, and most of them are available in the extant
literature, except (to the best of the author’s knowledge) Lemma 2, which plays a key role in the rest of
the paper.

Second, we see how each FDE of order β is linked with a family of fractional integral problems,
whose source term lives in a �β� dimensional affine subspace of L1[0, b]. This means that each solution
to the FDE is a solution to one (and only one!) fractional integral problem of the �β� dimensional family.
Conversely, any solution to a fractional integral problem of the family solves the FDE, provided that
the solution is smooth enough. In general, the set of source terms of the family of fractional integral
problems that provide a smooth solution will consist in an affine subspace of L1[0, b] of a dimension
lower than �β�. This is done in the third section.

Third, we characterize when a source term of the �β� dimensional family induces a smooth
solution, and thus a solution to the associated FDE. In particular, the affine space of such source terms
is shown to have dimension �β− β∗�, where β∗ is the highest order of differentiability in the FDE such
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that β− β∗ 
∈ N. This characterization induces a natural correspondence between each source term
inducing a smooth solution for the integral problem and a vector of �β− β∗� initial values fulfilled by
the solution. More specifically, if we denote the solution to the FDE by y(t), the initial values ensuring
existence and uniqueness of solution are Dβ−k

0+ y(0) for k ∈ {1, 2, . . . , �β− β∗�}. The content of this
paragraph is discussed in the fourth section.

Finally, we establish a section of conclusions to highlight the most relevant obtained results, and to
point out to some relevant work that should be performed in the future to continue with this approach.

2. Fundamental Notions

In this section, we will introduce the fundamental notions of Fractional Calculus that we are going
to use, together with their more relevant properties and some results of convolution theory that will be
useful for our purposes. We assume that the reader is familiar with the basic theory of Banach spaces,
Special Functions, and Integration Theory, especially the main facts involving the space of integrable
functions over a finite length interval, denoted by L1[a, b], and the main properties of the Γ function.

2.1. The Riemann–Liouville Fractional Integral

We briefly introduce the Riemann–Liouville fractional integral, together with its most relevant
properties. We make this introduction from the perspective of convolutions, since it will be relevant to
notice that the Riemann–Liouville fractional integral is no more than a particular convolution operator,
to apply later some adequate results of convolution theory.

Definition 1. Given f ∈ L1[a, b], we defined its associated convolution operator as Ca( f ) : L1[a, b] −→
L1[a, b] defined as

( f ∗a g)(t) := (Ca( f ) g)(t) :=
∫ t

a
f (t− s + a) · g(s) ds

for g ∈ L1[a, b] and t ∈ [a, b]. Under the previous notation, we say that f is the kernel of the convolution
operator Ca( f ).

Definition 2. We define the left Riemann–Liouville fractional integral of order α > 0 of a function f ∈ L1[a, b]
with base point a as

Iα
a+ g(t) =

∫ t

a

(t− s)α−1

Γ(α)
· g(s) ds,

for almost every t ∈ [a, b]. In case that α = 0, we just define

I0
a+ g(t) = Id g(t) = g(t).

Without loss of generality, we will assume that a = 0, since the results for a generic value
of a can be achieved after developing them for a = 0 and applying a suitable translation.
Moreover, when using the expression “Riemann–Liouville fractional integral”, we will be referring to
the left Riemann–Liouville fractional integral with base point a = 0.

Remark 1. We observe that, for α > 0, the Riemann–Liouville fractional integral operator Iα
0+ can be written

as a convolution operator C0( f ), with kernel

f (t) =
tα−1

Γ(α)
.

It is well known that the Riemann–Liouville fractional integral fulfills the following properties,
see [9].

Proposition 1. For every α, β ≥ 0:
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• Iα
0+ is well defined, meaning that Iα

0+ L1[0, b] ⊂ L1[0, b].
• Iα

0+ is a continuous operator (equivalently, a bounded operator) from the Banach space L1[0, b] to itself.
• Iα

0+ is an injective operator.
• Iα

0+ preserves continuity, meaning that Iα
0+C[0, b] ⊂ C[0, b].

• We have the Index Law Iβ
0+ ◦ Iα

0+ = Iα+β
0+ for α, β ≥ 0. In particular, Iα+β

0+ L1[0, b] ⊂ Iβ
0+ L1[0, b].

• Given f ∈ L1[0, b] and α ≥ 1, we have that Iα
0+ f is absolutely continuous and, moreover, Iα

0+ f (0) = 0.

Furthermore, we will also use several times the following well known and straightforward remark,
see [9].

Remark 2. We have that, for β > −1 and α ≥ 0,

Iα
0+ tβ =

Γ(β + 1)
Γ(α + β + 1)

tα+β.

Indeed, Iα
0+ tβ ∈ Iγ

0+ L1[0, b] if and only if α + β > γ− 1.

2.2. The Riemann–Liouville Fractional Derivative

In this subsection, we will indicate the most relevant points when constructing the
Riemann–Liouville fractional derivative. We will begin with a short introduction to absolutely
continuous functions of order n, since the spaces where Riemann–Liouville differentiability is well
defined can be understood as their natural generalization for the fractional case, see [9].

2.2.1. A Short Reminder Involving Absolutely Continuous Functions and the Fundamental Theorem
of Calculus

It is widely known that absolutely continuous functions play a key role in several theories of
Mathematical Analysis. These functions can be characterized via a “ε, δ” definition, but we only
recall that absolutely continuous functions are, essentially, antiderivatives of functions in L1[0, b] up to
addition with a constant. We will see later how this idea is highly relevant to construct the maximal
spaces where Riemann–Liouville fractional derivatives are well defined.

Theorem 2 (Fundamental Theorem of Calculus). Consider a real function f defined on an interval [0, b] ⊂
R. Then, f ∈ AC[0, b] if and only if there exists ϕ ∈ L1[0, b] such that

f (t) = f (0) +
∫ t

0
ϕ(s) ds. (1)

This last result allows us to define the derivative of an absolutely continuous function on [0, b]
as a certain function in L1[0, b]. If f ∈ AC[0, b], we define its derivative D1 f as the unique function
ϕ ∈ L1[0, b] that makes (1) hold.

Remark 3. It is relevant to have in mind that the previous definition makes sense because the antiderivative
operator I1

0+ is injective, recall Proposition 1. In particular,

AC[0, b] = 〈{1}〉 ⊕ I1
0+ L1[0, b],

where “1” denotes the constant function with value 1.

Of course, it is possible to talk about absolutely functions of order n, for n ∈ Z+. In this case,
for any n ∈ Z+, we say that f ∈ ACn[0, b] if and only if f ∈ Cn−1[0, b] and Dn−1 f ∈ AC[0, b].
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Thus, ACn[0, b] consists of functions that can be differentiated n times, but the last derivative
might be computable only in the weak sense of Fundamental Theorem of Calculus. Analogously to
the previous remark, we have the following result, see page 3 of [9].

Remark 4. We have that
ACn[0, b] =

〈
{1, t, . . . , tn−1}

〉
⊕ In

0+ L1[0, b],

after applying n times the Fundamental Theorem of Calculus 2. Moreover, the sum is direct since the property
f ∈ In

0+ L1[0, b] implies that f (0) = f ′(0) = · · · = f n−1)(0) = 0, and the only polynomial of degree at most
n− 1 satisfying those conditions is the zero one.

The relevant observation is that the vector space of functions that can be differentiated n times,
in the sense of Fundamental Theorem of Calculus 2, has two distinct parts that only share the
zero function.

• The left part
〈{1, t, . . . , tn−1}〉 consists of polynomials of degree strictly lower than n.

These functions describe, indeed, the kernel of the operator Dn and, thus,

ker Dn =
〈
{1, t, . . . , tn−1}

〉
.

• The right part In
0+ L1[0, b] consists of functions that are obtained after integrating n times an element

of L1[0, b], and hence it contains functions of trivial initial values until the derivative of order
n− 1.

At this point, we recall the following result, which is widely known and can be proved
immediately with the previous definition.

Proposition 2. If n > m > 0, we have that

ACn[0, b] ⊂ ACm[0, b].

Although Proposition 2 seems irrelevant, it hides the key for a successful treatment of the fractional
case. In the next part of the paper, we will reproduce a natural construction for the fractional analogue
of the spaces ACn[0, b].

We will arrive to the same definition that was already presented in [9]. However, we will
emphasize that the space of fractional differentiability of order α will never be contained in the space
of order β, except if α− β ∈ N. This fact will cause FDEs to have less solutions than expected.

2.2.2. The Fractional Abstraction of the Spaces ACn[0, b]

It is reasonable to define the Riemann–Liouville fractional derivative in such a way that it is the
left inverse operator for the Riemann–Liouville fractional integral of the same order. After doing this,
an easy analytical expression for its computation follows. Moreover, this explicit description can be
extended to a bigger space, and it coincides with the definition available in the classical literature [9].

Property 1. Consider α ≥ 0. The Riemann–Liouville fractional derivative of order α (and base point 0) fulfils
that it is the left inverse of the Riemann–Liouville fractional integral of order α, meaning

Dα
0+ Iα

0+ f = f ,

for every f ∈ L1[0, b].
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We should note that, due to the injectivity of the fractional integral, Property 1 defines the
Riemann–Liouville fractional derivative on the space Iα

0+ L1[0, b]. Moreover, it will be a surjective
operator from Iα

0+ L1[0, b] to L1[0, b].
However, it is clear that we are ignoring something if we pretend that Dα

0+ matches perfectly
the usual derivative when α is an integer. In particular, we observe that, for an integer value of α,
Property 1 only describes the behavior of Dα over the space Iα

0+ L1[0, b]. Nevertheless, we are missing
its definition over the supplementary part of Iα

0+ L1[0, b] in ACα[0, b], which is ker Dα.
This problem is easily solved, since it is possible to describe Property 1 more explicitly. We just

observe that the left inverse for Iα
0+ is given by the expression Dα

0+ = D�α�
0+ I�α�−α

0+ , due to the
Fundamental Theorem of Calculus 2 and the Index Law in Proposition 1. Thus, one could define Dα

0+

in a more general space than Iα
0+ L1[0, b], since the only necessary condition to define D�α�

0+ I�α�−α
0+ f is to

ensure that I�α�−α
0+ f ∈ AC�α�[0, b]. Hence, the following definition is natural.

Definition 3. For each α > 0, we construct the following space

Xα =
(

I�α�−α
0+

)−1 (
AC�α�[0, b]

)
,

which will be called the space of functions with summable fractional derivative of order α. If α = 0, we define
Xα = L1[0, b].

Remark 5. Therefore, functions of Xα are defined as the ones producing a function in AC�α�[0, b] after being
integrated �α� − α times. This new function can be differentiated �α� times in the weak sense of Fundamental
Theorem of Calculus 2.

It is relevant to point out that the previous definition, although sometimes related, is different
from other notions of “fractional spaces” available in the literature like, for instance, the Fractional
Sobolev Spaces in Gagliardo’s sense [10]. In our case, Definition 3 coincides with the one already
presented in [9], and we can make it totally explicit.

Lemma 1. For any α > 0, we have that

Xα =
〈{

tα−�α�, . . . , tα−2, tα−1
}〉

⊕ Iα
0+ L1[0, b].

Proof. First, we check
〈{

tα−�α�, . . . , tα−2, tα−1
}〉

∩ Iα
0+ L1[0, b] = {0}. If there is a function f in both

summands, then I�α�−α
0+ f will be simultaneously a polynomial of degree at most �α� − 1, and a function

in I�α�0+ L1[0, b]. Therefore, I�α�−α
0+ f has to be the zero function after repeating the argument in Remark 4

and, since fractional integrals are injective (Proposition 1), f ≡ 0.
It is clear that, applying I�α�−α

0+ to the right-hand side, we will produce a function AC�α�[0, b].
Moreover, it is trivial that any function in AC�α�[0, b] can be obtained in this way by virtue of Remark 2.
Since the operator I�α�−α

0+ is injective, the result follows.

From the previous lemma, we get this immediate corollary.

Corollary 1. Given f ∈ L1[0, b], we have that f ∈ Iα
0+ L1[0, b] if, and only if, f ∈ Xα and also Ds I�α�−α

0+ f (0) =
0, for each s ∈ {0, . . . , �α� − 1}.

Hence, we can use Property 1 and Corollary 1 to define the Riemann–Liouville fractional
derivative, coinciding with Definition 2.4 in [9].
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Definition 4. Consider α ≥ 0 and f ∈ Xα. We define the Riemann–Liouville fractional derivative of order α

(and base point 0) as
Dα

0+ f := D�α�
0+ ◦ I�α�−α

0+ f ,

where the last derivative might be only computed in the weak sense of the Fundamental Theorem of Calculus.

2.2.3. Properties of the Space Xα

We want to fully understand how Dα
0+ works over Xα, and the most natural way is to split the

problem into two parts, as suggested by Lemma 1. We already know that Dα
0+ is the left inverse for Iα

0+ ,

so we should study how Dα
0+ behaves when applied to

〈{
tα−�α�, . . . , tα−2, tα−1

}〉
. It is a well known

and straightforward computation that

Dα
0+

(〈{
tα−�α�, . . . , tα−2, tα−1

}〉)
= {0}.

Hence, the kernel of Dα
0+ has dimension �α� and is given by

ker Dα
0+ =

〈{
tα−�α�, . . . , tα−2, tα−1

}〉
.

Moreover, we should note that, if f (t) = a0 tα−�α� + · · · + a�α�−1 tα−1 with aj ∈ R for each
j ∈ {0, 1, . . . , �α� − 1}, it is immediately necessary to do the following calculations from Remark 2,
where j ∈ {1, · · · , �α� − 1}, (

I�α�−α
0+ f

)
(0) = a0 Γ(α− �α�+ 1),(

Dα−�α�+j
0+ f

)
(0) = aj Γ(α− �α�+ j + 1).

(2)

The previous formula generalizes the obtention of the Taylor coefficients for a fractional case and
it can be used to codify functions in Xα modulo Iα

0+ L1[0, b], since(
I�α�−α
0+ g

)
(0) = 0,(

Dα−�α�+j
0+ g

)
(0) = 0,

(3)

for g ∈ Iα
0+ L1[0, b], due to Proposition 1.

2.2.4. Intersection of Fractional Summable Spaces

In general, fractional differentiation presents some extra problems that do not exist when dealing
with fractional integrals. One of the most famous ones is that there is no Index Law for fractional
differentiation. One underlying reason for all these complications is the following one.

Remark 6. The condition α > β does not ensure Xα ⊂ Xβ, although the condition α− β ∈ N trivially does.
This makes Riemann–Liouville fractional derivatives somehow tricky, since the differentiability for a higher order
does not imply, necessarily, the differentiability for a lower order with a different decimal part. In particular,
this fact has critical implications when considering fractional differential equations, as we shall see in the paper,
since the unknown function has to be differentiable for each order involved in the equation. These problems give
an idea of why it can be a reasonable approach to work with fractional integrals instead, and try to inherit the
obtained results for the case of fractional derivatives, instead of proving them for fractional derivatives directly.

Consequently, it is interesting to compute the exact structure of a finite intersection of such
spaces of fractional differentiability of different orders. To the best of our knowledge, this result is not
available in the extant literature.
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Lemma 2. Considering βn > · · · > β1 ≥ 0, we have that

n⋂
j=1

Xβ j =
〈{

tβn−�βn−β∗�, . . . , tβn−1
}〉

⊕ Iβn
0+ L1[0, b],

where β∗ is the maximum β j such that βn − β j 
∈ N. If such a β j does not exist, the result still holds after
defining β∗ = 0.

In particular, Iβn
0+ L1[0, b] ⊂ ⋂n

j=1 Xβ j and it has codimension �βn − β∗�.

Proof. It is obvious that
⋂n

j=1 Xβ j ⊂ Xβn . Hence,

n⋂
j=1

Xβ j ⊂ Xβn =
〈{

tβn−�βn�, . . . , tβn−1
}〉

⊕ Iβn
0+ L1[0, b]. (4)

It is clear that Iβn
0+ L1[0, b] lies in

⋂n
j=1 Xβ j , for any j ∈ {1, . . . , n}. This is simply because, due to the

Index Law, Iβn
0+ L1[0, b] ⊂ I

β j
0+ L1[0, b], since βn ≥ β j.

Thus, the remaining question is to see when a linear combination of the tβn−k, where k ∈
{1, . . . , �βn�}, lies in

⋂n
j=1 Xβ j . The key remark is to realize that, for any finite set F ⊂ (−1,+∞),

∑
γ∈F

cγ tγ ∈ Xβ j , where cγ 
= 0 for each γ ∈ F ,

if and only if γ− β j > −1 or γ− β j ∈ Z−, for every γ ∈ {1, . . . , r} with cγ 
= 0. Consequently, it is
enough study when tβn−k lies in Xβ j , and there are two options:

• If βn − β j ∈ N, we know that tβn−k ∈ Xβ j always. This happens because either βn − k ∈{
β j − �β j�, . . . , β j − 1

}
or βn − k > β j − 1.

• In other case, βn and β j do not share decimal parts and we need to have βn − k > β j − 1 that can
be rewritten as k < βn − β j + 1. If we want this to happen for every j such that βn − β j 
∈ N,
the condition is equivalent to k < βn − β∗ + 1, where β∗ is the greatest β j such that βn − β j 
∈ N.
Indeed, it can be rewritten as 1 ≤ k ≤ �βn − β∗�.
Therefore, the coefficients which are not necessarily null are the ones associated with tβn−k,

where k ∈ {1, . . . , �βn − β∗�}.

Remark 7. Due to Lemma 2, any affine subspace of
⋂n

j=1 Xβ j with dimension strictly higher than �βn − β∗�
contains two distinct functions whose difference lies in Iβn

0+ L1[0, b]. Thus, in any vector subspace of
⋂n

j=1 Xβ j

with dimension strictly higher than �βn − β∗�, there are infinitely many functions that lie in Iβn
0+ L1[0, b].

2.3. Fractional Integral Equations

Consider the fractional integral equation(
cn Iγn

0+ + · · ·+ c1 Iγ1
0+ + Iγ0

0+
)

x(t) = f̃ (t),

where f ∈ L1[0, b], γn > · · · > γ0 ≥ 0 and assume that it has a solution x ∈ L1[0, b]. Since Iγn
0+ L1[0, b] ⊂

· · · ⊂ Iγ0
0+ L1[0, b], and the left-hand side lies in Iγ0

0+ L1[0, b], the condition f̃ ∈ Iγ0
0+ L1[0, b] is mandatory to

ensure the existence of solution. In that case, we can apply the operator Dγ0
0+ to the previous equation

and we obtain (
cn Iαn

0+ + · · ·+ c1 Iα1
0+ + Id

)
x(t) = f (t), (5)
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where Dγ0
0+ f̃ = f and αj = γj − γ0 for j ∈ {1, . . . , n}. If we use the notation

Υ = cn Iαn
0+ + · · ·+ c1 Iα1

0+ ,

Equation (5) can be rewritten as
(Υ + Id) x(t) = f (t). (6)

Therefore, it is relevant to study the properties of the operator Υ+ Id from L1[0, b] to itself, in order
to understand Equation (6).

2.3.1. Υ + Id Is Bounded

This claim is a very well-known result, since each summand in Υ is a bounded operator, and Id
too, see [2]. It is also possible to prove this, just recalling that Υ is a convolution operator with kernel
in L1[0, b] and, thus, a bounded operator.

2.3.2. Υ + Id Is Injective

To prove that Υ + Id is injective, we will need a result concerning the annulation of a convolution.
In a few words, we need to know what are the possibilities for the factors of a convolution,
provided that the obtained result is the zero function. Roughly speaking, the classical result in this
direction, known as the Titchmarsh Theorem, states that the integrand of the convolution from 0 to t is
always zero, independently of t.

Theorem 3 (Titchmarsh, [11]). Suppose that f , g ∈ L1[0, b] are such that f ∗0 g ≡ 0. Then, there exist
λ, μ ∈ R+ such that the following three conditions hold:

• f ≡ 0 in the interval [0, λ],
• g ≡ 0 in the interval [0, μ],
• λ + μ ≥ b.

Remark 8. In particular, the Titchmarsh Theorem states that the operator C0( f ) : L1[0, b] −→ L1[0, b] is
injective, provided that f ∈ L1[0, b] and that f is not null at any interval [0, λ] for λ > 0.

In particular, we need the following result.

Corollary 2. The operator Υ + Id described in (6) is injective.

Proof. Note that we can not apply Theorem 3 directly to Υ + Id, since it is not a convolution
operator due to the “Id” term. However, I1

0+ ◦ (T + Id) is a convolution operator and we conclude,
following Remark 8, that I1

0+ ◦ (Υ + Id) is injective. If the previous composition is injective, the right
factor (Υ + Id) has to be injective.

2.3.3. Υ + Id Is Surjective

In this case, we will use the following result, concerning Volterra integral equations of the second
kind. This result essentially states that some family of integral equations do always have a continuous
solution, provided that the source term is continuous.

Theorem 4 (Rust, [12]). Given k ∈ L1[0, b], the Volterra integral equation

(C0(k) v) (t) + v(t) :=
∫ t

0
k(t− s) · v(s) ds + v(t) = w(t)

has exactly one continuous solution v ∈ C[0, b], provided that w ∈ C[0, b] and that the following two
conditions hold:
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• If h ∈ C[0, b], then Ca(k) h ∈ C[0, b].
• If n ∈ Z+ is big enough, then (C0(k))

n = C0(k̃) for some k̃ ∈ C[0, b],

Remark 9. We know that the image of Υ + Id will contain C[0, b], since fractional integrals map continuous
functions into continuous functions (Proposition 1). Moreover, Υn will be defined by a continuous kernel when
n ≥ α−1

1 ; recall that α1 > 0 was the least integral order in Υ.

We need to conclude that, indeed, the image of Υ + Id is L1[0, b].

Corollary 3. The operator Υ + Id described in (6) is surjective.

Proof. Consider f ∈ L1[0, b] and the equation

(Υ + Id) x(t) = f (t).

We need to show that there is x ∈ L1[0, b] solving this problem. Observe that x solves the previous
equation if and only if it solves

(Υ + Id) (x(t)− f (t)) = −Υ f (t),

but now the source term is in Iα1
0+ L1[0, b]. If we repeat this idea inductively, we see that x solves the

original equation if and only if

(Υ + Id) (x(t)− (Id− Υ + · · ·+ (−1)nΥ) f (t)) = (−1)n+1Υn+1 f (t).

The right-hand side will be continuous for n ≥ α−1
1 and, by Remark 9, it will have a solution.

2.3.4. Υ + Id Is a Bounded Automorphism in L1[0, b]

We have already seen that Υ + Id is bounded and bijective, and hence the inverse is also bounded
due to the Bounded Inverse Theorem for Banach spaces. Therefore, we have the following result.

Theorem 5. The operator Υ + Id, described in (6) is an invertible bounded linear map from the Banach space
L1[0, b] to itself, whose inverse is also bounded.

In particular, we get the following corollary

Theorem 6. Given f ∈ L1[0, b], the equation

(Υ + Id) x(t) = f (t)

has exactly one solution x ∈ L1[0, b].

Although it is not the scope of this paper, we highlight that such an equation can be solved using
classical techniques for integral equations or specifical tools for the particular case of fractional integral
equations, like the one exposed in [13].

3. Implications of Fractional Integral Equations in Fractional Differential Equations

It would be desirable to have a similar result to the previous one for the case of FDE,
ensuring existence and uniqueness of solution. Of course, in order to ensure uniqueness of
solution, it is necessary to add some “extra conditions” to the differential version of the equation.
Namely, one possibility is to impose initial values. In particular, given an ODE of order n ∈ Z+ with
unknown function u, we know that, after fixing the values u(0), u′(0), . . . , un−1)(0), we can ensure
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uniqueness of solution under general hypotheses. The question is: what is the reasonable “fractional
analogue” of the previous idea?

Before answering the previous question, we study the solutions of this general linear problem
with constant coefficients (

c1 Dβ1
0+ + · · ·+ cn−1 Dβn−1

0+ + Dβn
0+

)
u(t) = w(t), (7)

where βn > · · · > β1 ≥ 0 and w ∈ L1[0, b]. Of course, the first point to answer is where should
we look for the solution to (7). It is very relevant to clarify completely this issue, since there are
classical references; for instance, see [5] (Theorem 1, Section 5.5), which state the following theorem or
equivalent versions, which are not totally accurate as we shall comment on in the follow-up.

Theorem 7. Consider a linear homogeneous fractional differential equation (for Riemann–Liouville derivatives)
with constant coefficients and rational orders. If the highest order of differentiation is α, then the equation has
�α� linearly independent solutions.

It is important to note that several references are not clear enough about the notion of solution to
a fractional differential equation. With the previous sentence, we mean that it is desirable to introduce
a suitable space of differentiable functions first, to later discuss about the solvability of the fractional
differential equation. We devote the rest of the paper to show that the previous theorem is only true
in some weak sense. Indeed, after defining formally the notion of “strong solution”, we will see that,
in general, there are less than �α� linearly independent solutions. Indeed, only for those “strong”
solutions it will be coherent to talk about initial values.

The inaccuracy involving Theorem 7, and similar results, relies in the fact that the notion of
solution is not completely specified. Moreover, it is common to find “proofs” that use Laplace
Transform techniques without enough mathematical rigor (the final step of inverting the transform is
neglected), the order of infinite sums and linear operators is interchanged (without regarding if there
are sufficient hypotheses that make it legit),...

If we go back to (7), we can make the following vital remark.

Remark 10. We recall that, in the usual case of integer orders, we look for the solutions in Xβn . Although it
is quite common to forget it, the underlying reason to do this is that

⋂n
j=1 Xβ j = Xβn when every β j is

a non-negative integer. However, in general, this does not necessarily happen when the involved orders are
non-integers. Thus, we may have

⋂n
j=1 Xβ j 
= Xβn and, of course, a solution to Equation (7) has to lie in⋂n

j=1 Xβ j .

Consequently, it is convenient to know the structure of the set
⋂n

j=1 Xβ j , which has already been
described in Lemma 2, to study existence and uniqueness of solution. Of course, to expect uniqueness
of solution, some initial conditions have to be added to Equation (7), but this will be discussed in the
next section. The fundamental remark is that solutions to Equation (7) fulfill

Dβn
0+

(
c1 Iβn−β1

0+ + · · ·+ cn−1 Iβn−βn−1
0+ + Id

)
u(t) = w(t). (8)

Consequently, it is quite natural to make the following reflection. If u(t) solves (7), it is because(
c1 Iβn−β1

0+ + · · ·+ cn−1 Iβn−βn−1
0+ + Id

)
u(t) ∈ Iβn

0+w(t) + ker Dβn
0+ . (9)

We will refer to the set of solutions to Equation (9), as the set of weak solutions. The previous
terminology obeys the following reason: although a solution to (7) solves (9), the converse does not
hold in general. Namely, a solution to (9) may not lie in

⋂n
j=1 Xβ j . Of course, if the weak solution lies

in
⋂n

j=1 Xβ j , then it solves (7). The set of solutions to (7) will be called the set of strong solutions.
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At this moment, we know two vital things:

• We have already described ker Dβn
0+ =

〈{
tβn−1, . . . , tβn−�βn�

}〉
that is a vector space of dimension

�βn�. Therefore, the set of weak solutions has dimension �βn� too, since it is the image of the
affine space Iβn

0+w(t) + ker Dβn
0+ via the automorphism T−1 ∈ AutB(L1[0, b]).

• The dimension of the set of strong solutions is bounded from above by �βn− β∗�. If the dimension
were higher, due to Remark 7, we could find two different solutions to (7) whose difference would
lie in Iβn

0+ L1[0, b]. After writing their difference as Iβn
0+ g, where g 
= 0, it would trivially fulfill(

c1 Iβn−β1
0+ + · · ·+ cn−1 Iβn−βn−1

0+ + Id
)

g(t) = 0,

which is not possible since the linear operator on the left-hand side is injective.

From these remarks, there are some remaining points that need to be studied in detail. First,
we prove that the bound �βn − β∗� is sharp by inspecting which of elements in ker Dβn

0+ guarantee that
the weak solution associated with those elements is, indeed, a strong one.

Remark 11. We have
⋂n

j=1 Xβ j ⊂ Iβn−�βn−β∗�+1−ε
0+ L1[0, b] for every increment ε > 0, but not for ε = 0.

Moreover, if f ∈ ker Dβn
0+ is chosen as the right summand on the right-hand side in (9), we have that, for γ ≤ βn,

f ∈ Iγ
0+ L1[0, b] if and only if u ∈ Iγ

0+ L1[0, b].
Therefore, after putting together the two previous ideas, we arrive to the following conclusion. In order to

have a strong solution in (9), it is mandatory to select a source term f ∈
〈{

tβn−1, . . . , tβn−�βn−β∗�
}〉

.

We see that the converse also holds, since f ∈
〈{

tβn−1, . . . , tβn−�βn−β∗�
}〉

can be shown to be
sufficient, in order to have a strong solution.

Lemma 3. If u ∈ L1[0, b] solves(
c1 Iβn−β1

0+ + · · ·+ cn−1 Iβn−βn−1
0+ + Id

)
u(t) = Iβn

0+w(t) + f (t) (10)

for f ∈
〈{

tβn−1, . . . , tβn−�βn−β∗�
}〉

⊂ ker Dβn
0+ , then u ∈ ⋂n

j=1 Xβ j .

Proof. If we use the notation Υ := c1 Iβn−β1
0+ + · · ·+ cn−1 Iβn−βn−1

0+ , we deduce from Equation (10) that

(Υ + Id) (u(t)− f (t)) = Iβn
0+w(t)− Υ f (t).

Observe now that the summand −Υ f (t) can be decomposed into two parts, since two different
situations can happen:

• If βn − β j 
∈ N, we see that I
βn−β j
0+ tβn−k will be always in the space Iβn+(βn−β∗+1)−�βn−β∗�−ε

0+ L1[0, b]
for every ε > 0. This simply occurs because the worst choice is β j = β∗ and k = �βn− β∗�. Indeed,

for ε small enough, the previous space is contained in Iβn
0+ L1[0, b], since βn − β∗ + 1− �βn − β∗�

is strictly positive.
• If βn − β j ∈ N, there are two options:

– If βn − β j > βn − β∗, we have that I
βn−β j
0+ tβn−k lies again in Iβn

0+ L1[0, b], since the maximum
value admitted for k is �βn − β∗�.

– If βn − β j < βn − β∗, we have that I
βn−β j
0+ tβn−k ∈

〈{
tβn−k′

}〉
for some k′ < k.
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Thus, we can write Iβn
0+w(t)− Υ f (t) = Iβn

0+w1(t) + f1(t), and arrive to the equation(
c1 Iβn−β1

0+ + · · ·+ cn−1 Iβn−βn−1
0+ + Id

)
(u(t)− f (t)) = Iβn

0+w1(t) + f1(t).

Note that f lived in a �βn − β∗� dimensional vector space, but f1 lives in a (at most) �βn − β∗� − 1
dimensional vector space.

If we repeat the process, we obtain(
c1 Iβn−β1

0+ + · · ·+ cn−1 Iβn−βn−1
0+ + Id

)
(u(t)− f (t)− f1(t)) = Iβn

0+w2(t) + f2(t),

with f2 lying in a (at most) �βn − β∗� − 2 dimensional vector space. After enough iterations, the vector
space has to be zero dimensional and we will have the situation

(Υ + Id) (u(t)− f (t)− · · · − fr−1(t)) = Iβn
0+wr(t) ∈ Iβn

0+ L1[0, b].

Therefore, u(t)− f (t)− · · · − fr−1(t) ∈ Iβn
0+ L1[0, b]. Finally, if we use that

f (t) + f1(t) + · · ·+ fr−1(t) ∈
〈{

tβn−1, . . . , tβn−�βn−β∗�
}〉

,

it follows u ∈
〈{

tβn−1, . . . , tβn−�βn−β∗�
}〉

⊕ Iβn
0+ L1[0, b] =

⋂n
j=1 Xβ j .

4. Smooth Solutions for Fractional Differential Equations

Until this point, we have checked that, in general, there are more weak solutions (a �βn�
dimensional space) than strong solutions (a �βn − β∗� dimensional space). We have also seen how
weak solutions are codified depending on the source term, more specifically depending on the element
chosen in ker Dβn

0+ . Moreover, we know that, if the choice is made in a certain subspace of ker Dβn
0+ ,

then the obtained solution is a strong one. However, one could think about codifying strong solutions
directly in the fractional differential equation via initial conditions, instead of using fractional integral
problems and selecting a source term linked to a strong solution. Therefore, the last task should consist
of relating the choices for ker Dβn

0+ that give a strong solution with the corresponding initial conditions
for the strong problem.

First, to simplify the notation, we reconsider Equation (7) with the additional hypotheses that
each positive integer less then or equal to βn − β1 can be written as βn − β j for some j.

Dβn
0+

(
c1 Iβn−β1

0+ + · · ·+ cn−1 Iβn−βn−1
0+ + Id

)
u(t) = w(t)

This does not imply a loss of generality, since we can assume some cj = 0, if needed. The only
purpose of this assumption is to ease the notation in this proof, in the way that is described in the
following paragraph.

If β∗ = βn−m, then βn− βn−m is the least possible non-integer difference βn− β j. Thus, we can use
the previous notational assumption to check that βn − βn−j = j for j < m and βn − βn−m ∈ (m− 1, m).
Thus, �βn − β∗� = �βn − βn−m� = m, and cn−m+1, . . . , cn−1 are m− 1 constants multiplying integrals
of integer order in (10).

Now, we provide the main result of this section.
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Lemma 4. Under the previous notation, Equation (7) with given initial values Dβn−m
0+ u(0), . . . , Dβn−1

0+ u(0)
has a unique solution in

⋂n
j=1 Xβ j . This solution coincides with the unique solution to (10), where the source

term is the unique function f ∈ 〈{
tβn−1, . . . , tβn−m}〉

fulfilling

Dβn−m
0+ u(0) = Dβn−m

0+ f (0),
Dβn−m+1

0+ u(0) + cn−1 Dβn−m
0+ u(0) = Dβn−m+1

0+ f (0),
· · ·

Dβn−1
0+ u(0) + cn−1 Dβn−2

0+ u(0) + · · ·+ cn−m+1 Dβn−m
0+ u(0) = Dβn−1

0+ f (0).

Proof. Consider again Equation (10)(
c1 Iβn−β1

0+ + · · ·+ cn−1 Iβn−βn−1
0+ + Id

)
u(t) = Iβn

0+w(t) + f (t),

Recall that we look for strong solutions to (10) that lie in the functional space〈{
tβn−1, . . . , tβn−m}〉⊕ Iβn

0+ L1[0, b], so we write

u(t) = d1 tβn−m + · · ·+ dm tβn−1 + Iβn
0+ ũ(t).

Moreover, take into account that a strong choice for f ∈ ker Dβn
0+ allows us to write

f (t) = b1 tβn−m + · · ·+ bm tβn−1.

Now, we will just derive the initial conditions after applying Dβn−k
0+ , for every k ∈ {1, . . . , m},

and substituting t = 0 in (10).
On the right-hand side, this is easy, since Dβn−k

0+ Iβn
0+w(t) ∈ I1

0+ L1[0, b] and, thus, the substitution at

t = 0 gives zero. The function Dβn−k
0+ f (t) can be computed trivially, due to the expression of f , obtaining

Dβn−k
0+ f (0) = Γ(βn − k + 1) bk.

On the left-hand side, on the one hand, we have again a similar situation to the previous one,

since Dβn−k
0+ I

βn−β j
0+ Iβn

0+ ũ(t) ∈ I
k+(βn−β j)

0+ L1[0, b] ⊂ I1
0+ L1[0, b] for any subindex j ∈ {1, . . . , n} and,

thus, the substitution at t = 0 gives zero. On the other hand, Dβn−k
0+ I

βn−β j
0+ tβn−l has three possibilities:

• If βn− β j > l− k, then Dβn−k
0+ I

βn−β j
0+ tβn−l is a scalar multiple of a power of t with positive exponent.

Thus, when we make the substitution at t = 0, we get 0.

• If βn − β j = l − k, then Dβn−k
0+ I

βn−β j
0+ tβn−l = Γ(βn − l + 1) is constant, and it is obviously defined

for t = 0.
• If βn − β j < l− k ≤ m− 1, then βn − β j is an integer and the computation Dβn−k

0+ I
βn−β j
0+ tβn−l gives

the zero function.

The interest of the previous trichotomy is that we never obtain some t−γ with γ > 0. In other
cases, we would have huge trouble, since we could not evaluate the expression for t = 0. Fortunately,
we can always apply Dβn−k

0+ to Equation (10), for every value k ∈ {1, . . . , m}, and substitute at t = 0.
We arrive to the following linear system of equations:

Dβn−m
0+ u(0) = Dβn−m

0+ f (0),
Dβn−m+1

0+ u(0) + cn−1 Dβn−m
0+ u(0) = Dβn−m+1

0+ f (0),
· · ·

Dβn−1
0+ u(0) + cn−1 Dβn−2

0+ u(0) + · · ·+ cn−m+1 Dβn−m
0+ u(0) = Dβn−1

0+ f (0).
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Note that all the involved derivatives in the initial conditions have the same decimal
part, since only coefficients cn−1, · · · , cn−m+1 appear in the system. We also highlight that the
system always has a unique solution, since it is triangular and it has no zero element in the
diagonal. Therefore, a choice for f linked to a strong solution determines a vector of initial values
(Dβn−m

0+ u(0), . . . , Dβn−1
0+ u(0)) and vice versa in a bijective way.

We shall give two examples summarizing how to apply all the previous results.

Example 1. Consider the following fractional differential equation (strong problem):(
D

7
3
0+ + 3 D

4
3
0+ + 4 D

1
3
0+

)
u(t) = t3

and define β1 = 1
3 , β2 = 4

3 , β3 = 7
3 . In this case, note that β∗ = 0, since all the differences β3 − β j are

integers. The strong solutions for the example will lie in
⋂3

j=1 Xβ j . The dimension of the affine space of strong
solutions will be �β3� = 3, and the initial conditions that ensure existence and uniqueness of solution will be

D
4
3
0+u(0) = a3, D

1
3
0+u(0) = a2 and I

2
3
0+u(0) = a1.

Moreover, after left-factoring D
7
3
0+ , we find that the associated family of weak problems is

(
4 I2

0+ + 3 I1
0+ + Id

)
u(t) = I

7
3
0+ t3 + f (t)

where f (t) ∈
〈{

t
4
3 , t

1
3 , t− 2

3

}〉
, which lives in a three-dimensional space. The a priori weak, obtained solution is

always strong since we have that �β3 − β∗� = �β3�.
Finally, the relation between a choice for f (t) = b3 t

4
3 + b2 t

1
3 + b1 t− 2

3 providing a strong solution and
the initial conditions a1, a2 and a3 is

a1 = I
2
3
0+ f (0) = b1 · Γ

(
1− 2

3
)

,

a2 + 3 a1 = D
1
3
0+ f (0) = b2 · Γ

(
1 + 1

3

)
,

a3 + 3 a2 + 4 a1 = D
4
3
0+ f (0) = b3 · Γ

(
1 + 4

3

)
.

Example 2. Consider the following fractional differential equation (strong problem):(
D

13
4

0+ + 3 D
9
4
0+ + D2

0+ + D
5
4
0+ + D1

0+

)
u(t) = t

and define β1 = 1, β2 = 5
4 , β3 = 2, β4 = 9

4 , β5 = 13
4 . In this case, note that β∗ = β3, since it fulfills the

property that β5 − β∗ is the least possible non-integer difference β5 − β j. The strong solutions for the example
will lie in

⋂5
j=1 Xβ j . The dimension of the affine space of strong solutions will be �β5 − β∗� = 2 and the initial

conditions that ensure existence and uniqueness of solution will be D
9
4
0+u(0) = a2 and D

5
4
0+u(0) = a1.

Moreover, after left-factoring D
13
4

0+ , we find that the associated family of weak problems is(
I

9
4
0+ + I2

0+ + I
5
4
0+ + 3 I1

0+ + Id
)

u(t) = I
13
4

0+ t + f (t)

where f (t) ∈
〈{

t
9
4 , t

5
4 , t

1
4 , t− 3

4

}〉
, which lives in a four-dimensional space. The a priori weak, obtained solution

will be strong if f (t) ∈
〈{

t
9
4 , t

5
4

}〉
.
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Finally, the relation between a choice for f (t) = b2 t
9
4 + b1 t

5
4 providing a strong solution and the initial

conditions a1 and a2 is

a1 = D
5
4
0+u(0) = D

5
4
0+ f (0) = b1 · Γ

(
1 + 5

4
)

,

a2 + 3 a1 = D
9
4
0+u(0) + 3 D

5
4
0+u(0) = D

9
4
0+ f (0) = b2 · Γ

(
1 + 9

4
)

.

5. Conclusions

We summarize the conclusions obtained in this paper.

• We have recalled the main results involving existence and uniqueness of solution for linear
fractional integral equations with constant coefficients.

• We have seen that, from each linear FDE with constant coefficients of order βn, it is possible to
derive a �βn� dimensional family of associated fractional integral equations, in a natural way.
Moreover, each solution to the fractional differential equation fulfills exactly one of these fractional
integral equations.

• We have shown that there exists a �βn − β∗� dimensional subfamily (of the �βn� dimensional
family of associated fractional integral equations) such that each solution to a problem of the
subfamily gives a solution to the original linear fractional differential equation of order βn.
This value β∗ is obtained as the greatest differentiation order in the FDE such that βn − β∗ is not
an integer. If such a value does not exist, the same result holds after defining β∗ = 0.

• We have seen how initial values at t = 0 for the derivatives of orders βn − �βn − β∗�, . . . , βn − 1
guarantee existence and uniqueness of solution to a linear fractional differential equation with
constant coefficients of order βn. We have described the correspondence between such initial
values for the FDE and the selection of a source term in the �βn − β∗� dimensional subfamily
of integral equations, in such a way that both problems have the same unique solution. If βn −
�βn − β∗� ∈ (−1, 0), this first initial value is imposed, indeed, for the fractional integral of order
�βn − β∗� − βn.

• We expect that this idea can be extended to different types of fractional differential problems.
It would be nice to amplify the scope of this work to a more general case than the one of constant
coefficients. Furthermore, the same philosophy could be applied to other type of problems such
as, for instance, periodic ones that have relevant applications [14].
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Abstract: In this paper, we have considered a numerical difference approximation for solving
two-dimensional Riesz space fractional convection-diffusion problem with source term over a
finite domain. The convection and diffusion equation can depend on both spatial and temporal
variables. Crank-Nicolson scheme for time combined with weighted and shifted Grünwald-Letnikov
difference operator for space are implemented to get second order convergence both in space and time.
Unconditional stability and convergence order analysis of the scheme are explained theoretically and
experimentally. The numerical tests are indicated that the Crank-Nicolson scheme with weighted
shifted Grünwald-Letnikov approximations are effective numerical methods for two dimensional
two-sided space fractional convection-diffusion equation.

Keywords: Crank–Nicolson scheme; weighted Shifted Grünwald–Letnikov approximation; space
fractional convection-diffusion model; stability analysis; convergence order
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1. Introduction

Differential equation described fractional partial differential equations are appropriated to
explain complex problems like viscoelasticity, electroanalytical chemistry, biology, fluid mechanics,
engineering [1], physics [1,2], fractional operators [3] and flows in porous media [4–8]. Through the
advection and dispersion processes, pollutants create a contaminant plume within an aquifer,
the movement of which in an aquifer is described by transport model. One of the very rich transport
model is advection–dispersion model, which is used to describe the transport phenomena in different
fields of science. Solute transport is important to predict the solute concentration in aquifers, rivers,
lakes and streams too.

Due to the fractional derivative property of differential operator of space fractional derivative,
finding a numerical solution of fractional convection-diffusion equation is somehow difficult, specially
for high dimensional case. Numerical methods for numerical approximations of one dimensional
fractional convection-diffusion equations are the homotopy analysis transform method [9], the finite
difference method [2,10–12], the collocation method [13–16], the Galerkin method [17–20] and the finite
volume element method [21,22]. An improved matrix transform numerical method is proposed
in Reference [23] to solve one dimensional space fractional advection–dispersion model and its
analytical solution is found using padé approximation. Recently, space fractional convection-diffusion
with variable coefficients are solved using shifted Grünwald-Letnikov difference operator for space

Mathematics 2020, 8, 1878; doi:10.3390/math8111878 www.mdpi.com/journal/mathematics223
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and Crank-Nicolson scheme for time that produce second order convergence both in time and space
with extrapolation was studied [24].

There are numerical schemes that used to solve two-dimension space fractional diffusion
problems such as the alternating direction implicit (ADI) method [25–30], the Galerkin finite element
method [31], the finite volume method [32] and the kronecker product splitting method [33].
ADI and CN-ADI spectral methods are used to solve two-dimensional Riesz space fractional
diffusion equation with a non-linear reaction term with respect to their error estimates have been
discussed (see References [34,35]). Reference [36] proposed a new group iterative scheme for
the numerical solution of two dimensional time fractional advection-diffusion equation based on
Caputo-type discretization of the fractional group scheme in combination with Crank-Nicolson
scheme. The Crank-Nicolson Galerkin-fully discrete approximation method for two-dimensional
space fractional advection–diffusion problem with optimal error estimation was investigated
by Reference [37]. In Reference [38], comparative study of the finite element and difference
method for two dimension space fractional advection–dispersion equation has been considered
by modeling non-Fickian solute transport in groundwater. For the comparison they have used
a backward-distance algorithm that used to extend the triangular elements to generic elements
in the finite element analysis and a variable-step vector Grünwald-Letnikov formula to improve
the solution accuracy of finite difference method. The stability and second order convergence are
proved [39] by a novel finite volume method for the Riesz space distributed order advection-diffusion
equation. Linear spline approximation for Riemann-Liouville fractional derivative and CNADI finite
difference method for time discretization are applied for solving two-dimensional two-sided space
factional convection-diffusion equation was explained (read the details in Reference [40]). Having
the advantage of reduce multi-dimensional problems to one dimension and easy to implement, the
ADI algorithm is the more selected technique for the discretization. Reference [41] has implemented
unconditionally stable compact ADI method for two-dimensional Riesz space fractional diffusion
problem with second order in time and fourth order accuracy in both spaces. Here, we need to construct
weighted and shifted Grünwald-Letnikov difference operator (WSGD) with the Crank-Nicolson-ADI
(CNADI)method for two-sided two dimension space fractional convection–diffusion problem to have
second order both in time and space. The weighted and shifted Grünwald-Letnikov combined with
CNADI also have been applied effectively for convection– dominance two-dimension two-sided
space fractional convection–diffusion equation. It is suitable to apply the weighted combined with
shifted Grünwald–Letnikov difference approximation for two-sided Riemann–Liouville fractional
derivative to have second order accurate in space. Therefore, it is important to get a numerical
scheme that leads to evaluate a two-sided two dimension space fractional convection–diffusion
problem. Thus, this study has focused to have temporal and spatial second order convergence
estimates for two dimensional two-sided space fractional convection–diffusion equations based on
accurate finite difference method without extrapolation approach. The scheme has been judged using
the Crank-Nicolson Peaceman Rachford alternating direction implicit (CNADI) method with the novel
weighted Shifted Grünwald–Letnikov difference approximation (WSGD) and the algorithm has been
supported with numerical simulation.

Consider the two-dimensional two-sided space fractional convection–diffusion problem with
constant coefficients:

∂u(x, y, t)
∂t

= cx
∂α1 u(x, y, t)

∂|x|α1
+ cy

∂α2 u(x, y, t)
∂|y|α2

+ dx
∂β1 u(x, y, t)

∂|x|β1
+ dy

∂β2 u(x, y, t)
∂|y|β2

+ p(x, y, t),

corresponding to initial condition:

u(x, y, 0) = g(x, y), 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, (1)
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with the zero Dirichlet boundary conditions:

u(0, y, t) = 0; u(Lx, y, t) = 0;

u(x, 0, t) = 0; u(x, Ly, t) = 0,
(2)

where 0 < α1, α2 < 1, 1 < β1, β2 < 2, cx, cy ≥ 0 and dx, dy > 0 express the velocity parameter and
positive diffusion coefficients, respectively.

Here, u(x, y, t) is solute concentration expressed physically in References [42,43], and p(x, y, t)
is the source term so that the solute concentration transport is from left to right. For the case
of integer order (α1 = α2 = 1, β1 = β2 = 2), Equation (6) gives to the two-dimension classical
convection–diffusion equation (CDE). We have supposed that the two-dimensional space fractional
convection–diffusion problem has sufficiently smooth and unique enough solutions.

The remain arrangement of this paper is organized as follows—in Section 2, we introduce
some preliminary remarks, lemmas and definitions. We have shown the formulation of one
dimensional Riesz space fractional convection–diffusion problem with Crank-Nicolson and weighted
shifted Grünwald–Letnikov difference scheme in Section 3. In Section 4, we have described the
formulation with discretization of two-dimensional Riesz space fractional convection–diffusion
problem. In Section 5, unconditional stability and convergence order analysis of the scheme have done
using CNADI-WSGD. In Section 6, numerical simulations are implemented to show the importance of
our theoretical study and the conclusions are discussed in Section 7.

2. Preliminary Remarks

Definition 1. The Riesz differential operator which is given by analytic continuation in the whole range
0 < α ≤ 2 with α 
= 1 as:

∂αu(x, t)
∂|x|α = K [−∞Dα

x +x Dα
∞] u(x, t), (3)

where the fractional derivative,

−∞Dα
xu(x, t) =

(
d

dx

)n [
−∞ In−α

x u(x, t)
]

xDα
∞u(x, t) =

(
d

dx

)n [
x In−α

∞ u(x, t)
]

,
(4)

with n ∈ N and coefficient K = −1
2cos(απ/2) , are the left and right Riemann-Liouville fractional derivatives.

From this definition the fractional integral operators −∞ Iα
x u(x, t) and x Iα

∞u(x, t) are the left and right Weyl
fractional integrals as defined in Reference [44]:⎧⎪⎪⎨⎪⎪⎩

−∞ Iα
x u(x, t) =

1
Γ(α)

∫ x
−∞

u(η, t)
(x− η)1−α

dη, α > 0,

x Iα
∞u(x, t) =

1
Γ(α)

∫ ∞
x

u(η, t)
(η − x)1−α

dη, α > 0.
(5)

Lemma 1 ([44,45]). Let α > 0 and Γ(.) represents gamma function, then the following are properties of
binomial coefficients:

1.
(

α
k
)
=

(
α−1
k

)
+

(
α−1
k−1

)
.

2. (−1)k (α
k
)
= (−1)k α(α− 1)(α− 2)...(α− k + 1)

k!
.

3.
Γ(k− α)

Γ(−α)Γ(k + 1)
= (−1)k (α

k
)
=

(
k−α−1
k

)
.
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4. limm→∞(−1)m−k
(

α−k−1
m−k

)
(m− k)α−k

= limm→∞ (−1)m−k (−α + k + 1)(−α + k + 2)(−α + k + 3)...(−α + m)

(m− k)−α+k)(m− k)!

=
1

Γ(−α + k + 1)
.

5. limm→∞

(
m

m− k

)α−k
= lim

(
1

1− k
m

)α−k

= 1.

Theorem 1. Let u(x) has n− 1 continuous derivatives on the closed interval [a, b] with the derivatives u(n)(x)
are integrable for x ≥ a or x ≤ b, then for each α(n− 1 < α ≤ n), the left and right Riemann-Liouville fractional
derivatives exist and coincide with the corresponding (left and right) Grünwald-Letnikov fractional derivatives.

Proof. The left standard Grünwald-Letnikov fractional derivative is given by the limit expression
on [a, x],

aDα
xu(x) = lim

h→0

1
hα

(
n

∑
k=0

(−1)k (α
k ) u(x− kh)

)
, (6)

where x−a
n = h = b−x

n , n− 1 < α ≤ n. Here our aim is to evaluate the limit described in Equation (6).
For the evaluation of the limit, we are assuming the function u(x) continuous on [a, x] and for α > 0,
we have:

aDα
xu(x) = lim

h→0

1
hα

(
n

∑
k=0

(−1)k (α
k ) u(x− kh)

)
= lim

n→∞
Uh(x), (7)

where Uh(x) =
1
hα

(
∑n

k=0(−1)k (α
k
)

u(x− kh)
)

. We need to transform Equation (7) to the following
form using the property 1 of Lemma 1.

Uh(x) =
1
hα

(
n

∑
k=0

(−1)k
(

α−1
k

)
u(x− kh)

)
+

1
hα

(
n

∑
k=0

(−1)k
(

α−1
k−1

)
u(x− kh)

)

=
1
hα

(
n

∑
k=0

(−1)k
(

α−1
k

)
u(x− kh)

)
+

1
hα

(
n−1

∑
k=0

(−1)k+1
(

α−1
k

)
u(x− (k + 1)h)

)
(8)

=
(−1)n

hα

(
α−1
n

)
u(a) +

1
hα

(
n−1

∑
k=0

(−1)k
(α−1

k

)
Δu(x− kh)

)
,

where Δu(x − kh) = u(x − kh) − u(x − (k + 1)h) is the first order backward difference operator.
Similarly, we have to apply property 1 of Lemma 1 repeatedly m times, after simplification we get:

Uh(x) =
m

∑
p=0

(−1)n−p
(

α−p−1
n−p

)
h−αΔpu(a + ph)

+
n−m−1

∑
k=0

(−1)k
(

α−m−1
k

)
h−αΔm+1u(x− kh).

(9)

Now, we need to evaluate the limit of Equation (9).

lim
n→∞

Uh(x) = lim
n→∞

Uh f
(x) + lim

n→∞
Uhs(x),
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where Uh f
(x) = ∑m

k=0(−1)n−p
(

α−p−1
n−p

)
h−αΔpu(a + ph), which is the first sum and

Uhs(x) =
1
hα

(
∑n−m−1

k=0 (−1)k
(

α−m−1
k

)
Δm+1u(x− kh)

)
, denote the second sum. Let us find the limit

of pth-term of the first sum.

limn→∞ Uh f
(x) = limn→∞(−1)n−p

(
α−p−1
n−p

)
h−αΔpu(a + ph)

= limn→∞(−1)n−p
(

α−p−1
n−p

)
(n− p)α−p)

(
n

n− p

)α−p
(nh)−α+p Δpu(a + ph)

hp

= (x− a)−α+p limn→∞(−1)n−p
(

α−p−1
n−p

)
(n− p)α−p) × limn→∞

(
n

n− p

)α−p

× limh→0
Δpu(a + ph)

hp =
u(p)(a)(x− a)−α+p

Γ(−α + p + 1)
.

(10)

In order to evaluate the limit of second sum Uhs , we have to follow the property of binomial
coefficients of Lemma 1.

limn→∞ Uhs = limk→∞

(
1

Γ(−α + m + 1) ∑n−m−1
k=0 (−1)kΓ(−α + m + 1)

(
α−m−1
k

)
k−α+m

)
× limh→0 h(hk)−α+m Δm+1u(x− kh

hm+1 .
(11)

From property 4 of Lemma 1, we have

lim
k→∞

(−1)kΓ(−α + m + 1)
(

α−m−1
k

)
k−α+m = 1. (12)

Moreover, if m− α > −1, then

lim
h→0

(
n−m−1

∑
k=0

h(hk)−α+m Δm+1u(x− kh
hm+1

)
=

∫ x

a
(x− η)m−αu(m+1)(η)dη. (13)

By considering Equations (12) and (13) we have that:

lim
h→0

n−m−1

∑
k=0

(−1)k
(

α−m−1
k

)
h−αΔm+1u(x− kh) =

1
Γ(−α + m + 1)

∫ x

a
(x− η)−α+mu(m+1)(η). (14)

Now by combining Equations (10) and (14), we have finalized the general limit evaluation as:

aDα
xu(x) = limn→∞ Uh(x) = ∑m

p=0
u(p)(a)(x− a)−α+p

Γ(−α + p + 1)
+

1
Γ(−α + m + 1)

∫ x
a (x− η)−α+mu(m+1)(η)dη. (15)

By taking n = m + 1 or n− 1 = m with n− 1 < α ≤ n, the left Grünwald-Letnikov fractional
derivative over the closed interval [a, x] is written as:

aDα
xu(x) =

n−1

∑
p=0

u(p)(a)(x− a)−α+p

Γ(−α + p + 1)
+

1
Γ(−α + n)

∫ x

a
(x− η)−α+n−1u(n)(η)dη. (16)

Similarly, the right standard Grünwald-Letnikov fractional derivative on the closed interval
[x, b] is

xDα
b u(x) =

n−1

∑
p=0

u(p)(b)(b− x)p−α

Γ(p− α + 1)
+

(−1)n

Γ(n− α)

∫ b

x
(η − x)n−α−1u(n)(η)dη. (17)
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Thus, for a → −∞, u(p)(x) approaches to zero and Equation (16) leads to have:

−∞Dα
xu(x) =

1
Γ(n− α)

∫ x

−∞
(x− η)n−α−1u(n)(η)dη,

=
1

Γ(n− α)

∂n

∂xn

∫ x

−∞
(x− η)n−α−1u(η)dη,

(18)

which gives the left Riemann-Liouville fractional derivative as we are expected and it is also exists
for n− 1 < α ≤ n. In a similar proof, we also have the right Riemann-Liouville fractional derivative
as b → ∞:

xDα
∞u(x) =

(−1)n

Γ(n− α)

∫ ∞

x
(η − x)n−α−1u(n)(η)dη,

=
(−1)n

Γ(n− α)

∂n

∂xn

∫ ∞

x
(η − x)n−α−1u(η)dη.

(19)

Remark 1. The left and right Riemann-Liouville fractional derivative of the function u(x) with order α on a
bounded domain [0, L] are defined according to Theorem 1:

Left Riemann-Liouville fractional derivative:

0Dα
xu(x) =

1
Γ(n− α)

dn

dxn

∫ x

0
(x− ζ)n−1−αu(ζ)dζ. (20)

Right Riemann-Liouville fractional derivative:

xDα
Lu(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ L

x
(ζ − x)n−1−αu(ζ)dζ. (21)

As it is discussed in Reference [46], the shifted Grünwald-Letnikov difference operator with
first order

Δ(α)
+x,pu(x) =−∞ Dα

xu(x) + O(h), (22)

which is defined as,

Δ(α)
+x,pu(x) =

1
hα

∞

∑
k=0

g(α)k u(x− (k− p)h),

Δ(α)
−x,pu(x) =

1
hα

∞

∑
k=0

g(α)k u(x− (k− p)h),
(23)

approximates the left and right Riemann-Liouville fractional derivatives. Here p is an integer that
shifts the approximation p-shift to the right and gα

k = (−1)k (α
k
)

are the coefficients of the power series
for the function (1− z)α,

(1− z)α =
∞

∑
k=0

(−1)k (α
k ) zk =

∞

∑
k=0

gα
k zk (24)

for all |z| ≤ 1,with:

g(α)0 = 1, g(α)k =

(
1− α + 1

k

)
g(α)k−1, k = 1, 2, .... (25)

Lemma 2 ([47]). The coefficients g(α)k satisfy the following properties for 0 < α < 1.⎧⎪⎪⎨⎪⎪⎩
g(α)0 = 1, g(α)1 = −α < 0,

g((α)2 < g(α)3 < ... < 0,

∑∞
k=0 g(α)k = 0, ∑m

k=0 g(α)k > 0, m ≥ 1.

(26)
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Lemma 3 ([47]). The coefficients g(β)
k satisfy the following properties for the fractional order 1 < β < 2.⎧⎪⎪⎨⎪⎪⎩
g(β)

0 = 1, g(α)1 = −β < 0,

1 ≥ g((α)1 ≥ g(α)2 ≤ ... ≥ 0,

∑∞
k=0 g(α)k = 0, ∑m

k=0 g(α)k < 0, m ≥ 1.

(27)

Applying the above Theorem 1, and weighted shifted Grünwald-Letnikov fractional derivative
derivation from Reference [46] for 0 < α < 1, 1 < β ≤ 2, the left and right Riemann-Liouville fractional
derivatives of u(x) over a bounded interval at each point x can be formulated as:

0Dα
xu(xm) =

1
hα

m+1

∑
k=0

ω
(α)
k u(xm−k+1) + O(h2)

xDα
Lu(xm) =

1
hα

Nx−m+1

∑
k=0

ω
(α)
k u(xm+k−1) + O(h2)

(28)

and

0Dβ
x u(xm) =

1
hβ

m+1

∑
k=0

ω
(β)
k u(xm−k+1) + O(h2)

xDβ
Lu(xm) =

1
hβ

Nx−m+1

∑
k=0

ω
(β)
k u(xm+k−1) + O(h2),

(29)

where

ω
(α)
0 =

α

2
g(α)0 , ω

(α)
k =

α

2
g(α)k +

2− α

2
g(α)k−1, k ≥ 1

ω
(β)
0 =

β

2
g(β)

0 , ω
(β)
k =

β

2
g(β)

k +
2− β

2
g(β)

k−1, k ≥ 1.

The properties of the weighted coefficients ω
(α)
k and ω

(β)
k are discussed below.

Lemma 4 ([48]). Assume that 0 < α < 1, then the coefficients ω
(α)
k have the following properties:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω
(α)
0 =

α

2
> 0, ω

(α)
1 =

2− α− α2

2
> 0, ω

(α)
2 =

α(α2 + α− 4)
4

< 0,

ω
(α)
2 < ω

(α)
2 < ω

(α)
4 < ... < 0,

∑∞
k=0 ω

(α)
k = 0, ∑m

k=0 ω
(α)
k > 0, m ≥ 1.

(30)

Lemma 5 ([46]). Assume that 1 < β ≤ 2, then the coefficients ω
(β)
k have the following properties:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω
(β)
0 =

β

2
> 0, ω

(β)
1 =

2− β− β2

2
> 0, ω

(β)
2 =

β(β2 + β− 4)
4

< 0,

1 ≥ ω
(β)
0 ≥ ω

(β)
3 ≥ ω

(β)
4 ≥ ... ≥ 0,

∑∞
k=0 ω

(β)
k = 0, ∑m

k=0 ω
(β)
k < 0, m ≥ 2.

(31)

3. Numerical Approximation for One Dimensional Two-Sided Convection-Diffusion Problem
with Source Term

We have considered the one-dimensional two-sided space fractional convection–diffusion equation,

∂u(x, t)
∂t

= cx
∂αu(x, t)

∂|x|α + dx
∂βu(x, t)

∂|x|β + p(x, t), (x, t) ∈ (0, L)× (0, T) (32)
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with initial condition:
u(x, 0) = g(x), 0 ≤ x ≤ L,

and with zero Dirichlet boundary conditions:

u(0, t) = 0, u(L, t) = 0, 0 < t ≤ T,

where 0 < α < 1, 1 < β < 2.
The analytic solution for Riesz space fractional convection–diffusion equation is developed

in Reference [49] using the spectral representation on a finite interval [0, L]. Reference [50] used
Laplace transform and Fourier transform method for finding analytical solution of Riesz space
fractional convection–diffusion problem with initial and zero Dirichlet boundary conditions. Here our
discretization is based on the finite interval [0, L] into a uniform mesh with the space step h = L/Nx

and the time step τ = T/Nt, where Nx, Nt are positive integers and the set of grid points is denoted
by xm = mh and tn = nτ for 0 ≤ m ≤ Nx and 0 ≤ n ≤ Nt. Let tn+1/2 = (tn+1 + tn)/2 with
0 ≤ n ≤ Nt − 1.

We have used the following notations for our formulation:

un
m = u(xm, tn), pn+1/2

m = p(xm, tn+1/2), δtun
m =

un+1
m − un

m
τ

, cx ≥ 0, dx > 0.

The Riesz space fractional convection–diffusion equation for 0 < α < 1, 1 < β < 2 can be written
with following expression.

∂αu(x, t)
∂|x|α = −Kα (0Dα

x +x Dα
L) u(x, t),

∂βu(x, t)
∂|x|β = −Kβ

(
0Dβ

x +x Dβ
L

)
u(x, t) (33)

Theorem 1 allows us to use the Riemann-Liouville fractional derivative definition for the
formulation of the problem. The weighted shifted Grünwald-Letnikov derivative formula for
approximating the two-sided fractional derivative is derived in References [46,48] for space fractional
derivative and Crank-Nicolson scheme for time are used.

un+1
m − un

m
τ

=
Kαcx

hα

[
m+1

∑
k=0

ω
(α)
k

un+1
m+1−k + un

m+1−k
2

+
Nx−m+1

∑
k=0

ω
(α)
k

un+1
m−1+k + un

m−1+k
2

]

+
Kβdx

hβ

[
m+1

∑
k=0

ω
(β)
k

un+1
m+1−k + un

m+1−k
2

+
Nx−m+1

∑
k=0

ω
(β)
k

un+1
m−1+k + un

m−1+k
2

]
+ pn+1/2

m ,

(34)

where Kα =
−1

2cos(πα/2
, Kβ =

−1
2cos(πβ/2

. Then we have,

un+1
m − c̄x

2

(
m+1

∑
k=0

ω
(α)
k un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(α)
k un+1

m+k−1

)

− d̄x

2

(
m+1

∑
k=0

ω
(β)
k un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(β)
k un+1

m+k−1

)

= un
m +

c̄x

2

(
m+1

∑
k=0

ω
(α)
k un

m−k+1 +
Nx−m+1

∑
k=0

ω
(α)
k un

m+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β)
k un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(β)
k un

m+k−1

)
+ τpn+1/2

m ,

(35)

where c̄x = Kαcxτ
hα , d̄x =

Kβdxτ

hβ .
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Assume Un
m be the numerical approximation of the solution un

m, then the CN-WSGD formulation
for RSFCDEs become:

Un+1
m − c̄x

2

(
m+1

∑
k=0

ω
(α)
k Un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(α)
k Un+1

m+k−1

)

− d̄x

2

(
m+1

∑
k=0

ω
(β)
k Un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(β)
k Un+1

m+k−1

)

= Un
m +

c̄x

2

(
m+1

∑
k=0

ω
(α)
k Un

m−k+1 +
Nx−m+1

∑
k=0

ω
(α)
k Un

m+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β)
k Un

m−k+1 +
Nx−m+1

∑
k=0

ω
(β)
k Un

m+k−1

)
+ τpn+1/2

m .

(36)

By denoting,

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω
(α)
1 ωα

0 0 · · · 0 0

ωα
2 ω

(α)
1 ωα

0 · · · 0 0

ωα
3 ω

(α)
2 ωα

1 · · · 0 0
...

...
...

. . .
...

...

ω
(α)
m−2 ω

(α)
m−3 ω

(α)
m−4 · · · ω

(α)
1 ω

(α)
0

ω
(α)
m−1 ω

(α)
m−2 ω

(α)
m−3 · · · ω

(α)
2 ω

(α)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω
(β)
1 ω

β
0 0 · · · 0 0

ω
β
2 ω

(β)
1 ω

(β)
0 · · · 0 0

ω
(β)
3 ω

(β)
2 ω

(β)
1 · · · 0 0

...
...

...
. . .

...
...

ω
(β)
m−2 ω

(β)
m−3 ω

(β)
m−4 · · · ω

(β)
1 ω

(β)
0

ω
(β)
m−1 ω

(β)
m−2 ω

(β)
m−3 · · · ω

(β)
2 ω

(β)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we have,

A =
c̄x

2

(
a + a�

)
+

d̄x

2

(
b + b�

)
. (37)

Therefore, the system of equations takes the form:

(I − A)Un+1 = (I + A)Un + τpn+ 1
2 , (38)

where I is the (Nx − 1)× (Nt − 1) identity matrix with Am,j as the matrix coefficients. These matrix
coefficients for m = 1, 2, 3, ..., Nx − 1, j = 1, 2, ..., Nx − 1 are defined by:

Am,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄x

2

(
ω
(α)
0 + ω

(α)
2

)
+

d̄x

2

(
ω
(β)
0 + ω

(β)
2

)
, j = m− 1,

c̄x

2

(
ω
(α)
0 + ω

(α)
2

)
+

d̄x

2

(
ω
(β)
0 + ω

(β)
2

)
, j = m + 1,

c̄xω
(α)
1 + d̄xω

(β)
1 , j = m,

c̄x

2
ω
(α)
m−j+1 +

d̄x

2
ω
(β)
m−j+1, j < m− 1,

c̄x

2
ω
(α1)
j−m+1 +

d̄x

2
ω
(β)
j−m+1, j > m + 1.

(39)
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For the convenience of implementation, using the matrix form of the grid functions,

Un = [Un+1
1 , Un+1

2 , ..., Un
Nx−1]

�

pn+1/2 = [pn+1/2
1 , pn+1/2

2 , ..., pn+1/2
Nx−1 ]�.

4. Formulation and Discretization of Two-Dimensional Riesz Space Fractional Convection
Diffusion Equation with CNADI-WSGD Scheme

The analytic solution for two-dimensional Riesz space fractional anomalous diffusion equation
is obtained by using the Fourier series expansion with homogeneous Dirichlet boundary condition.
Let us take a bounded domain as Ω = [0, Lx]× [0, Ly], Ωt = [0, T] for our discretization of the problem.
Here our aim is to find the full numerical approximation of the two-dimensional Riesz space fractional
convection–diffusion problem with zero Dirichlet boundary condition over a finite domain Ω×Ωt.

Consider the two-dimensional two-sided space fractional convection-diffusion problem with
constant coefficients as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, y, t)
∂t

= cx
∂α1 u(x, y, t)

∂|x|α1
+ cy

∂α2 u(x, y, t)
∂|y|α2

+ dx
∂β1 u(x, y, t)

∂|x|β1

+dy
∂β2 u(x, y, t)

∂|y|β2
+ p(x, y, t), (x, y, t) ∈ Ω×Ωt,

u(x, y, 0) = g(x, y), (x, y) ∈ Ω,

u(0, y, t) = 0, u(Lx, y, t) = 0, (y, t) ∈ [0, Ly]×Ωt,

u(x, 0, t) = 0, u(x, Ly, t) = 0, (x, t) ∈ [0, Lx]×Ωt,

(40)

where 0 < α1, α2 < 1, 1 < β1, β2 < 2, cx, cy ≥ 0 and dx, dy > 0 express the velocity parameter and
positive diffusion coefficients. Here the function u(x, y, t) is specified as solute concentration under
the groundwater. The Riesz space fractional-order derivative is defined as:

∂α1 u(x, y, t)
∂|x|α1

= Kα1

[
0Dα1

x +x Dα1
Lx

]
u(x, y, t),

∂α2 u(x, y, t)
∂|y|α2

= Kα2

[
0Dα2

y +y Dα2
Ly

]
u(x, y, t),

∂β1 u(x, y, t)
∂|x|β1

= Kβ1

[
0Dβ1

x +x Dβ1
Lx

]
u(x, y, t),

∂β2 u(x, y, t)
∂|y|β2

= Kβ2

[
0Dβ2

y +y Dβ2
Ly

]
u(x, y, t),

(41)

where

Kα1 =
−1

2cos(πα1/2)
, Kα2 =

−1
2cos(πα2/2)

Kβ1 =
−1

2cos(πβ1/2)
, Kβ2 =

−1
2cos(πβ2/2)

and also from the coincides Theorem 1, we have the following left and right Riemann-Liouville
fractional derivative definition for two dimension space fractional derivative.

0Dα1
x u(x, y, t) =

1
Γ(1− α1)

∂

∂x

∫ x

0
(x− η)−α1 u(η, y, t)dη,

xDα1
Lx

u(x, y, t) =
−1

Γ(1− α1)

∂

∂x

∫ Lx

x
(η − x)−α1 u(η, y, t)dη,

0Dβ1
x u(x, y, t) =

1
Γ(2− β1)

∂2

∂x2

∫ x

0
(x− η)1−β1 u(η, y, t)dη,

xDβ1
Lx

u(x, y, t) =
1

Γ(2− β1)

∂2

∂x2

∫ Lx

x
(η − x)1−β1 u(η, y, t)dη,

(42)

where Γ(.) denotes the gamma function. In a similar way, we can express the Riesz space fractional

operators
∂α2 u(x, y, t)

∂|y|α2
and

∂β2 u(x, y, t)
∂|y|β2

of orders α2, β2, (0 < α2 < 1, 1 < β2 < 2) corresponding
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to y−direction. For time and space discretization, we use CNADI scheme and WSGD operator
respectively. Let un

m,j be the approximated solution of u(xm, yj, tn), tn+1/2 = (tn + tn+1)/2, pn+1/2
m,j =

p(xm, yj, tn+1/2), hx =
Lx

Nx
, hy =

Ly

Ny
, for the uniform space steps hx, hy and time-step τ = T/Nt,

0 < m < Nx − 1, 0 < j < Ny − 1, 0 < n < Nt − 1.
Therefore, the weighted and shifted-Grünwald-Letnikov difference operator with CN scheme for

2D-RSFCDE is expressed in the following formulation.

un+1
m,j − un

m,j

τ
=

kα1 cx

hα1
1

(
m+1

∑
k=0

ω
(α1
k

un+1
m−k+1,j + un

m−k+1,j

2
+

Nx−m+1

∑
k=0

ω
(α1)
k

un+1
m+k−1,j + un

m+k−1,j

2

)

+
kα2 cy

hα2
2

(
j+1

∑
k=0

ω
(α2)
k

un+1
m,j−k+1 + un

m,j−k+1

2
+

Ny−j+1

∑
k=0

ω
(α2)
k

un+1
m,j+k−1 + un

m,j+k−1

2

)

+
kβ1 dx

hβ1
1

(
m+1

∑
k=0

ω
(β1
k

un+1
m−k+1,j + un

m−k+1,j

2
+

Nx−m+1

∑
k=0

ω
(β1)
k

un+1
m+k−1,j + un

m+k−1,j

2

)

+
kβ2 dy

hα2
2

(
j+1

∑
k=0

ω
(α2)
k

un+1
m,j−k+1 + un

m,j−k+1

2
+

Ny−j+1

∑
k=0

ω
(β2)
k

un+1
m,j+k−1 + un

m,j+k−1

2

)
+ pn+1/2

m,j .

(43)

To simplify our formulation, it is possible to symbolize the following operator as:

Δ(α1)
x un

m,j =
Kα1 cx

hα1
1

(
m+1

∑
k=0

ω
(α1
k un

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k un

m+k−1,j

)
+ O(h2

1)

Δ(α2)
y un

m,j =
Kα2 cy

hα2
2

(
j+1

∑
k=0

ω
(α2)
k un

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k un

m,j+k−1

)
+ O(h2

2)

Δ(β1)
x un

m,j =
Kβ1 dx

hβ1
1

(
m+1

∑
k=0

ω
(β1
k un

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k un

m+k−1,j

)
+ O(h2

1)

Δ(β2)
y un

m,j =
Kβ2 dy

hβ2
2

(
j+1

∑
k=0

ω
(β2)
k un

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k un

m,j+k−1

)
+ O(h2

2).

(44)

By grouping like terms from Equations (43) and (44), we have:[
1− τ

2

(
Δ(α1)

x + Δ(β1)
x

)
− τ

2

(
Δ(α2)

y + Δ(β2)
y +

)]
un+1

m,j

=
[
1 +

τ

2

(
Δ(α1)

x + Δ(β1)
x

)
+

τ

2

(
Δ(α2)

y + Δ(β2)
y

)]
un

m,j +
τ

2
pn+1/2

m,j + τTn
m,j,

(45)

where Tn
m,j represent truncation error that can satisfy

∣∣∣Tn
m,j

∣∣∣ ≤ k̂
(
τ2 + h2

1 + h2
2
)
.

Let us define the operators:

Δ(α)
x = Δ(α1)

x + Δ(β1)
x

Δ(β)
y = Δ(α2)

y + Δ(β2)
y ,

with these operator definitions, the CNADI-WSGD scheme for the 2D-RSFCDE with homogeneous
Dirichlet boundary conditions can be defined as an operator form:[

1− τ

2

(
Δ(α)

x + Δ(β)
x

)]
un+1

m,j =
[
1 +

τ

2

(
Δ(α)

x + Δ(β)
y

)]
un

m,j + τpn+1/2
m,j . (46)
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An alternating direction implicit Peacemann-Rachford is reduced a two-dimensional problem in
to a one dimensional problem with a better computational efficient. For CNADI the operator can be
expressed in the product form as:(

1− τ

2
Δ(α)

x

) (
1− τ

2
Δ(β)

y

)
un+1

m,j

=
(

1 +
τ

2
Δ(α)

x

) (
1 +

τ

2
Δ(β)

y

)
un

m,j +
τ

2
pn+1/2

m,j , 1 ≤ m ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, (47)

which produce an additional perturbation error in the form of
τ2

4
Δα

xΔβ
y

(
un+1

m,j − un
m,j

)
that has Taylor

expansion as:

τ2

4
Δα

xΔβ
y

(
un+1

m,j − un
m,j

)
=

τ3

4

((
Δ(α1)

x + Δ(β1)
x

) (
Δ(α2)

y + Δ(β2)
y

)
ut

)n+1/2

m,j

+ τ3O
(

τ2 + h2
1 + h2

2

)
. (48)

As compared to the approximation errors, the additional perturbation errors is insignificant
and the scheme defined in Equation (45) has second order accuracy in both space and time which is
O

(
τ2 + h2

1 + h2
2
)
.

The problem defined by Equation (47) can be simulated by the following efficient
Peacemann-Rachford ADI approximation as it was presented in Reference [46] by considering u∗m,j as

an intermediate solution to make a numerical solution un
m,j at time tn to the numerical solution un+1

m,j at
time tn+1. The corresponding iterative algorithms are:

Algorithm 1: The first step is to solve the problem in the x-direction for each fixed yj to find an
intermediate solution u∗m,j in the form:(

1− τ

2
Δ(α)

x

)
u∗m,j =

(
1 +

τ

2
Δ(β)

y

)
un

m,j +
τ

2
pn+1/2

m,j . (49)

Algorithm 2: The next step is to solve the problem in y-direction for each fixed xm as:(
1− τ

2
Δ(α)

x

)
un+1

m,j =
(

1 +
τ

2
Δ(β)

y

)
u∗m,j +

τ

2
pn+1/2

m,j . (50)

Algorithm 3: We need to apply the homogeneous Dirichlet boundary conditions:

un
0,j = u(0, yj, tn) = 0, un

Nx ,j = u(Lx, yj, tn) = 0,

un
m,0 = u(xm, 0, tn) = 0, un

m,Ny
= u(xm, Ly, tn) = 0.

Therefore now compute the boundary condition for the intermediate solution u∗m,j which can be
derived from subtracting Equation (50) from (49) to get:

u∗m,j =
1
2

(
1− τ

2
Δ(β)

y

)
un+1

m,j +
1
2

(
1 +

τ

2
Δ(β)

y

)
un

m,j. (51)

Therefore, the boundary conditions for u∗m,j needed to solve each set of equations.

u∗0,j =
1
2

(
1− τ

2
Δ(β)

y

)
un+1

0,j +
1
2

(
1 +

τ

2
Δ(β)

y

)
un

0,j

u∗Nx ,j =
1
2

(
1− τ

2
Δ(β)

y

)
un+1

Nx ,j +
1
2

(
1 +

τ

2
Δ(β)

y

)
un

Nx ,j. (52)
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By setting Un
m,j be the numerical approximation to exact solution un

m,j, we get the finite difference
approximation for Equation (47):(

1− τ

2
δ
(α)
x

) (
1− τ

2
δ
(β)
y

)
Un+1

m,j =
(

1 +
τ

2
δ
(α)
x

) (
1 +

τ

2
δ
(β)
y

)
Un

m,j + τpn+1/2
m,j (53)

Un =
[
un

1,1, ..., un
N1,1, un

1,2, ..., un
N1,2, ..., un

1,N2
, ..., un+1/2

N1,N2

]�
pn+1/2 =

[
pn+1/2

1,1 , ..., pn+1/2
N1,1 , pn+1/2

1,2 , ..., pn+1/2
N1,2 , ..., pn+1/2

1,N2
, ..., pn+1/2

N1,N2

]�
.

5. CNADI-WSGD Scheme for Theoretical Analysis of 2D-RSFCDE with Source Term

5.1. Stability and Convergence Analysis of CNADI-WSGD Scheme

For discussing the stability and convergence of the scheme, we need to write our problem in
matrix form. Thus, the Equation (49) can be put as:

(I − A) u∗l = (I + A) un
l +

τ

2
p, 1 ≤ l ≤ Ny − 1 (54)

with

un
l =

(
un

1,l , un
2,l , ..., un

Nx−1,l

)�
,

u∗l =
(

u∗1,l , u∗2,l , ..., u∗Nx−1,l

)�
,

p = (p(x1, yl , tn), p(x2, yl , tn), ..., p(xNx−1, yl , tn))
� ,

and the coefficient of matrix A =
(
am,j

)
(Nx−1)×(Nx−1),

am,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
, j = m− 1,

c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
, j = m + 1,

c̄xω
(α1)
1 + d̄xω

(β1)
1 , j = m,

c̄x

2
ω
(α1)
m−j+1 +

d̄x

2
ω
(β1)
m−j+1, j < m− 1,

c̄x

2
ω
(α1)
j−m+1 +

d̄x

2
ω
(β1)
j−m+1, j > m + 1.

(55)

In a similar way, Equation (50) can be given in matrix form:

(I − B) ūn+1
q = (I + B) ū∗q , 1 ≤ q ≤ Nx − 1, (56)

where,

ūn+1
q =

(
un+1

q,1 , un+1
q,2 , ..., un+1

q,Ny−1

)�
,

ū∗q =
(

u∗q,1, u∗q,2, ..., u∗q,Ny−1

)�
,
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and B =
(
bm,j

)
(Ny−1)×(Ny−1),

bm,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄y

2

(
ω
(α2)
0 + ω

(α2)
2

)
+

d̄y

2

(
ω
(β2)
0 + ω

(β2)
2

)
, j = m− 1,

c̄y

2

(
ω
(α2)
0 + ω

(α2)
2

)
+

d̄y

2

(
ω
(β2)
0 + ω

(β2)
2

)
, j = m + 1,

c̄yω
(α2)
1 + d̄yω

(β2)
1 , j = m,

c̄y

2
ω
(α2)
m−j+1 +

d̄y

2
ω
(β2)
m−j+1, j < m− 1,

c̄y

2
ω
(α2)
j−m+1 +

d̄y

2
ω
(β2)
j−m+1, j > m + 1

(57)

where, c̄x =
Kα1 cxτ

hα1
1

, c̄y =
Kα2 cyτ

hα2
2

, d̄x =
Kβ1 dxτ

hβ1
1

, d̄y =
Kβ2 dyτ

hβ2
2

.

Theorem 2. Assume that 0 < α1, α2 < 1, 1 < β1, β2 ≤ 2 , the coefficient matrices defined in Equations (55)
and (57), then the diagonal matrix and coefficient matrix satisfy:

|am,m| >
Nx−1

∑
j=0,m 
=1

∣∣am,j
∣∣ , m = 1, 2, 3, ..., Nx − 1,

|bm,m| >
Ny−1

∑
j=0,m 
=1

∣∣bm,j
∣∣ , m = 1, 2, 3, ..., Ny − 1, (58)

tells us that A and B which are defined in Equations (54) and (56) are strictly diagonally dominant.

Proof. First we will consider the diagonal dominance of the coefficient matrix am,j. Since Kα1 =
1

2cos(πα1/2)
> 0 and Kβ1 =

1
2cos(πβ1/2)

< 0 for 0 < α1 < 1, 1 < β1 ≤ 2 implies that c̄x =
τKα1 cx

hα1
1

>

0 and d̄x =
τKβ1 dx

hβ1
1

< 0.

am,m+1 =
c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
. (59)

From Lemmas 4 and 5, we have:

ω
(α1)
0 + ω

(α1)
2 =

α1

2
+

α1(α
2
1 + α1 − 4)

4
< 0,

ω
(β1)
0 + ω

(β1)
2 =

β1

2
+

β1(β2
1 + β1 − 4)

4
> 0. (60)

Since c̄x > 0 and d̄x < 0, then we have:

am,m+1 =
c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
< 0,

am,m−1 =
c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
< 0. (61)

By looking Lemmas 4 and 5, we have seen that ω
(α1)
1 > 0 and ω

(β1)
1 < 0, hence,

am,m = c̄xω
(α1)
1 + d̄xω

(β1)
1 > 0. (62)
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As we have shown from Lemma 4, when k ≥ 3, ω
(α1)
k < 0, then c̄xω

(α1)
k < 0. Similarly by seeing

Lemma 5, when k ≥ 3, ω
(β1)
k > 0, then d̄xω

(β1)
k < 0. These indicates that the coefficient matrix am,j < 0

for j > m + 1, j < m− 1.

|am,m| >
Nx−1

∑
j=0,m 
=1

∣∣am,j
∣∣ , m = 1, 2, 3, ..., Nx − 1,

which means matrix A defined by the coefficient matrix am,j, is strictly diagonally dominant. In the
same way, the diagonally dominant result for matrix B can also be found as matrix A.

5.2. Stability Analysis of the CNADI-WSGD Method

In order to study the stability and convergence analysis for the CNADI-WSGD scheme , we are
focused on the following description.

Let χh =

{
ν : ν =

{
νm,j

}
:
{{

xm = mh1; yj = jh2
}Nx

m=0

}Ny

j=0

}
be the mesh grid function. For any

ν = νm,j ∈ χh, we define our point-wise maximum norm as:

||ν||∞ = max
(m,j)∈χh

|νm,j|, (63)

and the discrete L2-norm

||ν|| =
√√√√h1h2

Nx−1

∑
m=1

Ny−1

∑
j=1

ν2
m,j. (64)

Our next aim is to show the stability of CNADI-WSGD method which is defined as in the
matrix form:

(I − A) ((I − B)Un+1 = (I + A) ((I + B)Un + Tn+1 (65)

where the matrices A and B define the operator
τ

2
Δ(α)

x and
τ

2
Δ(β)

y , respectively. The vector Tn+1 absorbs

the source term pn+1/2
m,j and the Dirichlet boundary condition in the formulated problem.

Theorem 3. Let Un
m,j be the numerical solution of the exact solution un

m,j, then CNADI-WSGD finite difference
method (53) is unconditionally stable for 0 < α1, α2 < 1 with 1 < β1, β2 ≤ 2.

Proof. The matrices A and B are of size (Nx − 1)
(

Ny − 1
) × (Nx − 1)

(
Ny − 1

)
. The commutative

property defined in Reference [51], allows us to obtain the unconditional stability of
CNADI-WSGD method. The matrix A which is

(
Ny − 1

) × (
Ny − 1

)
block diagonal matrix

whose blocks are (Nx − 1× Nx − 1) square super triangular matrices which is expressed as
A = diag

(
A1, A2, ..., ANy−1

)
. In the same way, the matrix B is a block matrix with (Nx − 1)× (Nx − 1)

square diagonal matrices. The matrix B can be written as B = [bm,j], where each bm,j is an
(Nx − 1)× (Nx − 1) matrix such that bm,j is a diagonal matrix bm,j = diag

(
bm,j, bm,j, ..., bm,j

)
where bm,j

is the (m, j)th entry of the matrix B defined above. As we have seen from Theorem 2 , matrix A is
diagonal dominant with entry am,m > 0. The sum of the absolute value of the off-diagonal entries on
the row m of matrix A is:
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Nx−1

∑
j=0,j 
=m

∣∣am,j
∣∣ = m−2

∑
j=0

∣∣am,j
∣∣+ Nx−1

∑
j=m+2

∣∣am,j
∣∣+ |am,m+1|+ |am,m−1| ,

= −
m−2

∑
j=0

(
c̄x

2
ω
(α1)
m−j+1 +

d̄x

2
ω
(β1)
m−j+1

)
−

Nx−1

∑
j=m+2

(
c̄x

2
ω
(α1)
j−m+1 +

d̄x

2
ω
(β1)
j−m+1

)
,

− c̄x

(
ω
(α1)
0 + ω

(α1)
2

)
− d̄x

(
ω
(β1)
0 + ω

(β1)
2

)
<

m−2

∑
j=−∞

(
c̄x

2
ω
(α1)
m−j+1 +

d̄x

2
ω
(β1)
m−j+1

)
−

∞

∑
j=m+2

(
c̄x

2
ω
(α1)
j−m+1 +

d̄x

2
ω
(β1)
j−m+1

)
− c̄x

(
ω
(α1)
0 + ω

(α1)
2

)
− d̄x

(
ω
(β1)
0 + ω

(β1)
2

)
,

= −c̄x

∞

∑
k=3

ω
(α1
k − d̄x

∞

∑
k=3

ω
(β1
k − c̄x

(
ω
(α1)
0 + ω

(α1)
2

)
− d̄x

(
ω
(β1)
0 + ω

(β1)
2

)
,

= c̄xω
(α1
1 + d̄xω

(β1)
1 − c̄x

∞

∑
k=0

ω
(α1
k − d̄x

∞

∑
k=0

ω
(β1
k ,

= c̄xω
(α1
1 + d̄xω

(β1
k = |am,m| ,

(66)

implies that,
Nx−1

∑
j=0,j 
=m

∣∣am,j
∣∣ < |am,m| .

Next we need to show that the eigenvalue of matrix A is negative real parts. For 0 < α1 < 1,
1 < β1 < 2, we can see that,

∣∣∣λ1 − c̄xω
(α1)
1 − d̄xω

(β1)
1

∣∣∣ ≤ c̄x

2

(∣∣∣∣∣ m+1

∑
k=0,k 
=1

ω
(α1)
k +

Nx−m+1

∑
k=0, 
=1

ω
(α1)
k

∣∣∣∣∣
)
+

d̄x

2

(∣∣∣∣∣ m+1

∑
k=0,k 
=1

ω
(β1)
k +

Nx−m+1

∑
k=0, 
=1

ω
(β1)
k

∣∣∣∣∣
)

≤ c̄x

2

(
m+1

∑
k=0,k 
=1

∣∣∣ω(α1)
k

∣∣∣+ Nx−m+1

∑
k=0, 
=1

∣∣∣ω(α1)
k

∣∣∣)+
d̄x

2

(
m+1

∑
k=0,k 
=1

∣∣∣ω(β1)
k

∣∣∣+ Nx−m+1

∑
k=0, 
=1

∣∣∣ω(β1)
k

∣∣∣) .

(67)

We have noticed that,
∞

∑
k=0

ω
(α1)
k = 0,

∞

∑
k=0

ω
(β1)
k = 0,

and
Nx

∑
k=0

ω
(α1)
k +

Nx

∑
k=0

ω
(β1)
k < −

(
ω
(α1)
1 + ω

(β1)
1

)
.

Therefore, ∣∣∣λ1 − c̄xω
(α1)
1 − d̄xω

(β1)
1

∣∣∣ ≤ − (
c̄xω

(α1)
1 + d̄xω

(β1)
1

)
.

The eigenvalue λ1 of matrix A satisfy,

−
(

c̄xω
(α1)
1 + d̄xω

(β1)
1

)
≤ c̄xω

(α1)
1 + d̄xω

(β1)
1 ≤ λ1 ≤ 0. (68)
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According to Greschgorin Theorem [52], the given eigenvalue of matrix A have non-positive
real parts. Here we have noted that matrix A has an eigenvalue of λ1 if and only if (I − A) has an
eigenvalue of (1− λ1) if and only if (I− A)−1(I + A) has an eigenvalue of (1+λ1)/(1−λ1). From the
first part of this statement, we can concluded that all eigenvalues of the matrix (I − A) have a spectral
radius which is larger than unity indicates the matrix is invertible. Thus, every eigenvalue of the
(I − A)−1(I + A) has a spectral radius which is less than 1. Similarly, we can show that matrix B also
satisfy the same property as matrix A. From the scheme (53), we can express the error en+1 in Un+1 at
time tn+1 and the error en in Un at time tn as:

en+1 = (I − A)−1 (I − B)−1 (I + A) (I + B) en, (69)

where the identity matrix I is (Nx − 1)× (
Ny − 1

)
square. Hence, Equation (53) can be put in the form:

en =
(
(I − A)−1(I + A)

)n (
(I − B)−1(I + B)

)n
e0. (70)

Letting λ1 and λ2 be an eigenvalue of matrices A and B respectively, then it results from
Equation (69) that the real parts of λ1 and λ2 are both negative. The spectral radius of each matrix is less
than unity, which has followed that

(
(I − A)−1(I + A)

)n and
(
(I − A)−1(I + A)

)n which converges
to null matrix (see Reference [46]). Therefore, we have concluded the scheme defined in Equation (53),
is unconditionally stable.

5.3. Convergence Analysis of CNADI-WSGD Scheme

First of all we can express the truncation error of CNADI-WSGD difference method. So, it is easy
to conclude that:

u(xm, yj, tn+1)− u(xm, yj, tn)

τ
=

(
∂u(x, y, t)

∂t

)n+1/2

m,j
+ O(τ2) (71)

(
cx

∂α1 u(x, y, t)
∂|x|α1

+ cy
∂α2 u(x, y, t)

∂|y|α2

)n+1/2

m,j

=
1
2

(
cx

∂α1 u(xm, yj, tn+1)

∂|x|α1
+ cy

∂α2 u(xm, yj, tn+1)

∂|y|α2

)
+

1
2

(
cx

∂α1 u(xm, yj, tn)

∂|x|α1
+ cy

∂α2 u(xm, yj, tn)

∂|y|α2

)
+ O(τ2)

cx
∂α1 u(xm, yj, tn)

∂|x|α1
+ cy

∂α2 u(xm, yj, tn)

∂|y|α2

= c̄x

(
m+1

∑
k=0

ω
(α1)
k un

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k un

m+k−1,j

)
(72)

+ c̄y

(
j+1

∑
k=0

ω
(α2)
k un

m,j−k+1 +
Ny−m+1

∑
k=0

ω
(α2)
k un

m,j+k−1

)
+ O(h2

1 + h2
2),

where 0 < α1, α2 < 1. It is the same to have a truncation error of O(τ2) and O
(
h2

1 + h2
2
)

for
1 < β1, β2 < 2.

Therefore, the truncation error from Equation (43) is given by:

Tn+1
m,j = O(τ3 + τh2

1 + τh2
2).
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Theorem 4. Assume un
m,j be the analytic solution, and let Un

m,j be the approximation solution of the finite
difference method (65), then for all 1 ≤ n ≤ Nt, we have the estimate:

||un
m,j −Un

m,j||∞ ≤ C(τ2 + h2
1 + h2

2), (73)

where ||un
m,j −Un

m,j||∞ = max1≤m≤Nx ,1≤j≤Ny |un
m,j −Un

m,j| = |en
m̂, ĵ
|, C is a positive constant independent of

h1, h2 and τ with ||.|| stands for the discrete L2-norm.

Proof. Assume that en
m,j be the error at grid points (xm, yj, tn) can be defined as en

m,j = un
m,j − un

m,j and

denote en =
(

en
1,1, en

2,1, ..., en
Nx−1,1, en

1,2, ..., eNx−1,2, ..., e1,Ny−1, ..., eNx−1,Ny−1

)�
.

By looking to Equation (43), the error satisfies:

en+1
m,j +

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k en+1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k en+1

m+k−1,j

)
+

c̄y

2

(
j+1

∑
k=0

ω
(α2)
k en+1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k en+1

m,j+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k en+1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k en+1

m+k−1,j

)
+

d̄y

2

(
j+1

∑
k=0

ω
(β2)
k en+1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k en+1

m,j+k−1

)

= en
m,j −

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k en

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k en

m+k−1,j

)
− c̄y

2

(
j+1

∑
k=0

ω
(α2)
k en

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k en

m,j+k−1

)
(74)

− d̄x

2

(
m+1

∑
k=0

ω
(β1)
k en

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k en

m+k−1,j

)
− d̄y

2

(
j+1

∑
k=0

ω
(β2)
k en

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k en

m,j+k−1

)
+ τO(τ2 + h2

1 + h2
2).

We have e0 = 0, we have from Equations (43) and (74) if n = 0,

R1
m,j =

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k e1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k=0 e1

m+k−1,j

)
+

c̄y

2

(
j+1

∑
k=0

ω
(α2)
k e1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k e1

m,j+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k e1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k e1

m+k−1,j

)
+

d̄y

2

(
j+1

∑
k=0

ω
(β2)
k e1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k e1

m,j+k−1

) (75)

if n > 0,

Rn+1
m,j =

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k en+1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k=0 en+1

m+k−1,j

)
+

c̄y

2

(
j+1

∑
k=0

ω
(α2)
k en+1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k en+1

m,j+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k en+1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k en+1

m+k−1,j

)
+

d̄y

2

(
j+1

∑
k=0

ω
(β2)
k en+1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k en+1

m,j+k−1

)
,

(76)

where Rn+1
m,j ≤ τc(τ2 + h2

1 + h2
2), m = 1, 2, ..., Nx − 1, j = 1, 2, ..., Ny − 1, n = 1, 2, ..., Nt − 1, c is positive

constant independent of time step and space size. We have used the mathematical induction to
prove our Theorem 4. Let n = 1 and assume |em̂, ĵ| = max1≤m≤Nx−1,1≤j≤Ny−1 |e1

m,j|, we have the
following expression.
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||e1||∞ = |e1
m̂, ĵ| ≤

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k |e1

m̂−k+1, ĵ|+
Nx−m+1

∑
k=0

ω
(α1)
k |e1

m̂+k−1, ĵ|
)

+
c̄y

2

(
j+1

∑
k=0

ω
(α2)
k |e1

m̂, ĵ−k+1|+
Ny−j+1

∑
k=0

ω
(α2)
k |e1

m̂, ĵ+k−1|
)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k |e1

m̂−k+1, ĵ|+
Nx−m+1

∑
k=0

ω
(α1)
k |e1

m̂+k−1, ĵ|
)

+
d̄y

2

(
j+1

∑
k=0

ω
(β2)
k |e1

m̂, ĵ−k+1|+
Ny−j+1

∑
k=0

ω
(β2)
k |e1

m̂, ĵ+k−1|
)

≤
∣∣∣∣ c̄x

2

(
m+1

∑
k=0

ω
(α1)
k e1

m̂−k+1, ĵ +
Nx−m+1

∑
k=0

ω
(α1)
k e1

m̂+k−1, ĵ

)
(77)

+
c̄y

2

(
j+1

∑
k=0

ω
(α2)
k e1

m̂, ĵ−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k e1

m̂, ĵ+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k e1

m̂−k+1, ĵ +
Nx−m+1

∑
k=0

ω
(α1)
k e1

m̂+k−1, ĵ

)

+
d̄y

2

(
j+1

∑
k=0

ω
(β2)
k e1

m̂, ĵ−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k e1

m̂, ĵ+k−1

) ∣∣∣∣
=

∣∣∣R1
m,j

∣∣∣ ≤ τC(τ2 + h2
1 + h2

2)

Assume that if n ≤ r, ||er||∞ ≤ τC(τ2 + h2
1 + h2

2) hold and let n = r + 1, let |er+1
m̂, ĵ
| =

max1≤m≤Nx−1,1≤j≤Ny−1 |er+1
m,j |. Thus,

||er+1||∞ = |er+1
m̂, ĵ
| ≤ c̄x

2

(
m+1

∑
k=0

ω
(α1)
k |er+1

m̂−k+1, ĵ
|+

Nx−m+1

∑
k=0

ω
(α1)
k |er+1

m̂+k−1, ĵ
|
)

+
c̄y

2

(
j+1

∑
k=0

ω
(α2)
k |er+1

m̂, ĵ−k+1
|+

Ny−j+1

∑
k=0

ω
(α2)
k |er+1

m̂, ĵ+k−1
|
)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k |er+1

m̂−k+1, ĵ
|+

Nx−m+1

∑
k=0

ω
(α1)
k |er+1

m̂+k−1, ĵ
|
)

+
d̄y

2

(
j+1

∑
k=0

ω
(β2)
k |er+1

m̂, ĵ−k+1
|+

Ny−j+1

∑
k=0

ω
(β2)
k |er+1

m̂, ĵ+k−1
|
)

≤
∣∣∣∣ c̄x

2

(
m+1

∑
k=0

ω
(α1)
k er+1

m̂−k+1, ĵ
+

Nx−m+1

∑
k=0

ω
(α1)
k er+1

m̂+k−1, ĵ

)
(78)

+
c̄y

2

(
j+1

∑
k=0

ω
(α2)
k er+1

m̂, ĵ−k+1
+

Ny−j+1

∑
k=0

ω
(α2)
k er+1

m̂, ĵ+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k er+1

m̂−k+1, ĵ
+

Nx−m+1

∑
k=0

ω
(α1)
k er+1

m̂+k−1, ĵ

)

+
d̄y

2

(
j+1

∑
k=0

ω
(β2)
k er+1

m̂, ĵ−k+1
+

Ny−j+1

∑
k=0

ω
(β2)
k er+1

m̂, ĵ+k−1

) ∣∣∣∣
=

∣∣∣Rr+1
m,j

∣∣∣ ≤ τC(τ2 + h2
1 + h2

2)
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Therefore, there exists a positive constant c∗ such that∣∣∣er+1
m,j

∣∣∣
∞
≤ c∗(τ2 + h2

1 + h2
2),

which completes the proof.

6. Numerical Simulations

1. Consider the one dimensional RSFCDEs over a bounded domain with initial and Dirichlet
boundary conditions: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u(x, y, t)
∂t

= cx
∂αu(x, t

∂|x|α + dx
∂βu(x, t

∂|x|β + p(x, t),

u(x, 0) = 0, 0 < x ≤ 1,

u(0, t) = u(1, t) = 0, 0 < t ≤ T,

with the source term:

p(x, t) = tβ−1eαt(β + αt)x2(1− x)2

+
cxtβeαt

2cos(απ/2

[
2

Γ(3− α)

(
x2−α + (1− x)2−α

)
− 12

Γ(4− α

(
x3−α + (1− x)3−α

)
+

24
Γ(5− α)

(
x4−α + (1− x)4−α

) ]
+

dxtβeαt

2cos(βπ/2

[
2

Γ(3− β)

(
x2−β + (1− x)2−β

)
− 12

Γ(4− β

(
x3−β + (1− x)3−β

)
+

24
Γ(5− β)

(
x4−β + (1− x)4−β

) ]
.

The exact solution is
u(x, t) = tβeαtx2(1− x)2.

All the numerical simulations are done based on the finite space domain Ω×Ωt where Ω =

[0, 1]× [0, 1] and Ωt = [0, 1]. The order of convergence both in space and time are calculated using
the formula:

Order1 =
||E(h, τ)||∞

/||E(h/2, τ/2)||∞
log(2)

,

Order2 =
||E(hx, hy, τ)||∞

/||E(hx/2, hy/2, τ/2)||∞
log(2)

,

(79)

where order1 is the rate of convergence for one-dimensional two-sided space fractional
convection–diffusion equation and order2 is rate convergence of two dimensional two-sided space
fractional equation. ||E(h, τ)||∞ is the maximum error for one dimensional space fractional problem
and ||E(hx, hy, τ)||∞ for two dimensional space fractional problem, denoted as Max− Error. As we
have seen in Table 1, the second order convergence and the maximum error are confirmed at each
grid size for convection-dominance (i.e., cx > dx) for one dimensional two-sided space fractional
convection–diffusion equation with different space fractional order. As we have refined the grid
size, the suitable maximum error is obtained. The convergence order and maximum error for a
diffusion–dominance (i.e., cx < dx) one dimensional two-sided space fractional convection–diffusion
problem are shown in Table 2. Figure 1 shows the good agreement of exact and numerical solution
of one-dimensional convection–diffusion equation with the coefficients cx = 0.5, dx = 1.5 and with
fractional orders α = 0.75, β = 1.85 at Nx = Nt = 100 grid points.
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Table 1. Convergence order and maximum error are produced with convection–dominance for example
1 at T = 1, cx = 2, dx = 0.25.

α = 0.1 α = 0.45 α = 0.85

h = τ Max − Error Order1 Max − Error Order1 Max − Error Order1

1/10 8.3× 10−3 – 1.21× 10−2 – 1.70× 10−2 –
β = 1.25 1/20 2.2× 10−3 1.9156 3.2× 10−3 1.9189 4.4× 10−3 1.9500

1/40 5.5354× 10−4 1.9907 8.0831× 10−4 1.9851 1.1× 10−3 2.0000
1/80 1.3870× 10−4 2.0030 2.0291× 10−4 1.9941 2.7919× 10−4 1.9782
1/160 3.4320× 10−5 2.0086 5.0701× 10−5 2.0008 6.9932× 10−5 1.9972

1/10 8.8× 10−3 – 1.24× 10−2 – 1.81×10−2 –
β = 1.85 1/20 2.4× 10−3 1.8745 3.3× 10−3 1.9098 4.8× 10−3 1.9149

1/40 6.0999× 10−4 1.9762 8.5839× 10−4 1.9428 1.2× 10−3 2.0000
1/80 1.5478× 10−4 1.9786 2.1846× 10−4 1.9743 3.1912× 10−4 1.9109
1/160 3.8968× 10−5 1.9899 5.5120× 10−5 1.9867 8.0991× 10−5 1.9783

Table 2. Convergence order and maximum error produced with diffusion-dominance for example 1 at
T = 1, cx = 0.25, dx = 2.

α = 0.1 α = 0.45 α = 0.85

h = τ Max − Error Order1 Max − Error Order1 Max − Error Order1

1/10 8.3× 10−3 – 1.23× 10−2 – 1.75× 10−2 –
β = 1.25 1/20 2.1× 10−3 1.9827 3.2× 10−3 1.9425 4.5× 10−3 1.9594

1/40 5.3416× 10−4 1.9750 7.9693× 10−4 2.0055 1.1× 10−3 2.0324
1/80 1.3389× 10−4 1.9962 1.9979× 10−4 1.9960 2.8337× 10−4 1.9567
1/160 3.3498× 10−5 1.9989 4.9986× 10−5 1.9989 7.0902× 10−5 1.9988

1/10 9.5× 10−3 – 1.42× 10−2 – 2.01× 10−2 –
β = 1.85 1/20 2.5× 10−3 1.9260 3.7× 10−3 1.9403 5.3× 10−3 1.9231

1/40 6.3804× 10−4 1.9702 9.5140× 10−4 1.9594 1.3× 10−3 2.0275
1/80 1.6126× 10−4 1.9843 2.4052× 10−4 1.9839 3.4116× 10−4 1.9300
1/160 4.0532× 10−5 1.9923 6.0459× 10−5 1.9921 8.5774× 10−5 1.9918

Figure 1. Comparison of exact and numerical solution for one-dimensional convection–diffusion
equations (CDEs) at α = 0.75, β = 1.85 for numerical example 1.
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2. Consider two-dimensional diffusion problem.(cx = cy = 0)⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u(x, y, t)

∂t
= dx

∂β1 u(x, y, t)
∂|x|β2

+ dy
∂β2 u(x, y, t

∂|y|β2
+ p(x, y, t)

u(x, y, 0) = x2(1− x)2y2(1− y)2, 0 < x ≤ 1, 0 < y ≤ 1,

u(x, y, t)|∂Ω = 0, 0 < t ≤ T, 1 < β1, β2 < 2,

with the source term:

p(x, y, t) = β1(t + 1)β1−1x2(1− x)2β2(t + 1)β2−1y2(1− y)2

+
dx

2cos(β1π/2
(t + 1)β1

[
2

Γ(3− β1)

(
x2−β1 + (1− x)2−β1

)
− 12

Γ(4− β1

(
x3−β1 + (1− x)3−β1

)
+

24
Γ(5− β1)

(
x4−β1 + (1− x)4−β1

) ]
y2(1− y)2 (80)

+
dy

2cos(β2π/2
(t + 1)β2

[
2

Γ(3− β2)

(
y2−β2 + (1− y)2−β2

)
− 12

Γ(4− β2

(
y3−β2 + (1− y)3−β2

)
+

24
Γ(5− β2)

(
y4−β2 + (1− y)4−β2

) ]
x2(1− x)2.

Table 3 shows that the maximum error and order of convergence for two-dimensional two-sided
space fractional diffusion equation with different space fractional orders by taking cx = 0 = cy.
For this numerical simulation, we have used same step-size for space and time (i.e., hx = hy = τ).
The maximum time domain that used to obtain all the numerical results is T = 1 and the diffusion
coefficients are dx = 2 = dy. The surface plot of u(x, y, t) with the diffusion coefficients dx = 2.5,
dy = 1.5, β1 = 1.25, β2 = 1.85 at the mesh points h1 = h2 = τ = 0.01 is given in Figure 2.

Table 3. Convergence rate and maximum error produced for example 2 at T = 1, dx = 2 = dy, hx = hy = τ.

β1 = 1.25 β1 = 1.5 β1 = 1.95

hx, hy, τ Max − Error Order2 Max − Error Order2 Max − Error Order2

1/10 2.57× 10−2 – 2.75× 10−2 – 1.56× 10−2 –
β2 = 1.85 1/20 5.5× 10−3 2.2243 6.3× 10−3 2.0283 3.2× 10−3 2.2854

1/40 7.4176× 10−4 2.4894 1.2× 10−3 2.3923 7.9692× 10−4 2.0056
1/80 1.6630× 10−4 2.1565 2.4526× 10−4 2.2907 1.9977× 10−4 1.9961

Figure 2. Surface of u(x, y, t) for two-dimensional diffusion equation with max− error = 1.7563× 10−4,
β1 = 1.25, β2 = 1.85 for numerical example 2.
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3. Let us consider the two-dimensional Riesz space fractional convection–diffusion problem with
bounded domain:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u(x, y, t)
∂t

= cx
∂α1 u(x, y, t

∂|x|α1
+ cy

∂α2 u(x, y, t
∂|y|α2

+ dx
∂β1 u(x, y, t

∂|x|β1
+ dy

∂β2 u(x, y, t
∂|y|β2

+ p(x, y, t)

u(x, y, 0) = 0, 0 < x ≤ 1, 0 < y ≤ 1,

u(x, y, t)|∂Ω = 0, 0 ≤ t ≤ T,

with the source term:

p(x, y, t) = tβ1−1eα1t(β1 + α1t)x2(1− x)2y2(1− y)2

+
cxtβ1 eα1t

2cos(α1π/2)

[
2

Γ(2− α1)

(
x2−α1 + (1− x)2−α1

)
− 12

Γ(4− α1

(
x3−α1 + (1− x)3−α1

)
+

24
Γ(5− α1)

(
x4−α1 + (1− x)4−α1

) ]
y2(1− y)2

+
cytβ2 eα2t

2cos(α2π/2)

[
2

Γ(2− α2)

(
y2−α2 + (1− y)2−α2

)
− 12

Γ(4− α2

(
y3−α2 + (1− y)3−α2

)
+

24
Γ(5− α2)

(
y4−α2 + (1− y)4−α2

) ]
x2(1− x)2

+
dxtβ1 eα1t

2cos(β1π/2)

[
2

Γ(2− β1)

(
x2−β1 + (1− x)2−β1

)
− 12

Γ(4− β1

(
x3−β1 + (1− x)3−β1

)
+

24
Γ(5− β1)

(
x4−β1 + (1− x)4−β1

) ]
y2(1− y)2

+
dytβ2 eα2t

2cos(β2π/2)

[
2

Γ(2− β2)

(
y2−β2 + (1− y)2−β2

)
− 12

Γ(4− β2

(
y3−β1 + (1− y)3−β2

)
+

24
Γ(5− β2)

(
y4−β2 + (1− y)4−β2

) ]
x2(1− x)2

The exact solution is,
u(x, y, t) = tβeαtx2(1− x)2y2(1− y)2.

In Table 4, we have found a numerical results that produce second order convergence rate
and maximum error for two sided two dimensional space fractional convection–diffusion equation
with diffusion–dominance (cx = 0.25 = cy, dx = dy = 2) phenomena. For this simulation we
have taken a fixed value for β2(β2 = 1.75) and for α2(α2 = 0.5) with different values for α1, β1.
Similarly in Table 5, we have considered the convection–dominance (cx = 2 = cy, dx = dy = 0.25)
two-sided two-dimensional space fractional convection–diffusion problem with fixed β2(β2 = 1.75)
and for fixed α2(α2 = 0.5). The order of convergence and maximum errors are calculated using
the formula expressed in Equation (79). In Figure 3 the surface plot of exact and numerical
solutions for two-dimensional convection–diffusion equations are investigated by considering the
coefficients cx = cy = 2.5, dx = dy = 1.5 with orders α1 = 0.75, α2 = 0.75, β1 = 1.85, β2 = 1.85 at
Nx = Ny = Nt = 100 mesh grid points.
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Table 4. Convergence order produced with diffusion-dominance for example 3 at T = 1, cx = 0.25 =

cy, dx = 2 = dy, hx = hy = τ.

α1 = 0.5 α1 = 0.75 α1 = 0.95

hx, hy, τ Max − Error Order2 Max − Error Order2 Max − Error Order2

1/10 2.00× 10−2 – 2.09× 10−2 – 2.6× 10−3 –
β1 = 1.25 1/20 5.7×10−3 1.8110 6.1× 10−3 1.7766 6.4607× 10−4 2.0087

1/40 1.7× 10−3 1.7454 1.9× 10−3 1.6828 1.4898× 10−4 2.1166
1/80 2.8802× 10−4 1.9962 6.6947× 10−4 1.7467 2.9810× 10−5 2.3213

1/10 1.52× 10−2 – 2.06× 10−2 – 2.34× 10−2 –
β1 = 1.85 1/20 3.6× 10−3 2.0780 5.00× 10−3 2.0426 5.5× 10−3 2.0890

1/40 7.6214× 10−4 2.2399 1.1×10−3 2.1844 1.0001× 10−3 2.4595
1/80 1.0496× 10−4 2.4602 1.7907× 10−4 2.6189 1.8006× 10−4 2.4735

1/160 1.9729× 10−5 2.4114 2.7175× 10−5 2.5202 3.5515× 10−5 2.3420

Table 5. Convergence order produced with convection-dominance for example 3 at T = 1, cx = 2 =

cy, dx = 0.25 = dy, hx = hy = τ.

α1 = 0.5 α1 = 0.75 α1 = 0.95

hx, hy, τ Max − Error Order2 Max − Error Order2 Max − Error Order2

1/10 1.51× 10−2 – 1.09× 10−2 – 4.1× 10−3 –
β1 = 1.25 1/20 2.00×10−3 2.3163 1.9×10−3 2.5203 1.4× 10−3 1.6502

1/40 5.8273× 10−4 1.7791 4.8275×10−4 1.9767 2.7307× 10−4 2.3581
1/80 1.8883× 10−4 1.6257 1.5338× 10−4 1.6542 5.5304× 10−5 2.3038

1/10 1.80× 10−2 – 1.75× 10−2 – 1.39× 10−2 –
β1 = 1.85 1/20 4.3× 10−3 2.0656 4.1× 10−3 2.0937 2.4× 10−3 2.5340

1/40 8.7170× 10−4 2.3024 7.6626× 10−4 2.4197 5.5154× 10−4 2.1215
1/80 1.7428× 10−4 2.3224 1.3016× 10−4 2.5575 1.29899× 10−4 2.0861

Figure 3. The surface of u(x,y,t) for α1 = 0.75, α2 = 0.75, β1 = 1.85, β2 = 1.85 for numerical example 3.

7. Conclusions

In our study, we have developed an algorithm for two-dimensional two-sided space fractional
convection–diffusion problem using the CNADI difference method for time discretization combined
with WSGD scheme for the approximation of space fractional derivative. We have used a
shifted category of standard Grünwald-Letnikov difference method and weighted version of the
shifted Grünwald-Letnikov difference approximation with CNADI scheme to have unconditionally
stable and second order convergence both in space and time without extrapolation. Moreover,
unconditional stability and second order convergence is justified for convection-dominance two-sided
two dimension space fractional convection–diffusion equation. Our theoretical study and analysis
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has been confirmed by our numerical simulation in Section 6. We will consider the space fractional
reaction convection–diffusion equation in our near further research.
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Nomenclature

CN Crank-Nicolson scheme.
ADI Alternating direction implicit method.
CNADI Crank-Nicolson alternating direction implicit method.
WSGD Weighted shifted Grünwald-Letnikov difference operator.
RSFCDE Riesz space fractional convection–diffusion equation.
2D-RSFCDE Two-dimensional Riesz space fractional convection–diffusion equation.
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Abstract: There has been considerable recent interest in certain integral transform operators with
non-singular kernels and their ability to be considered as fractional derivatives. Two such operators
are the Caputo–Fabrizio operator and the Atangana–Baleanu operator. Here we present solutions
to simple initial value problems involving these two operators and show that, apart from some
special cases, the solutions have an intrinsic discontinuity at the origin. The intrinsic nature of the
discontinuity in the solution raises concerns about using such operators in modelling. Solutions to
initial value problems involving the traditional Caputo operator, which has a singularity inits kernel,
do not have these intrinsic discontinuities.
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1. Introduction

In mathematical models based on evolution equations it is standard to restrict consideration to
models whose solutions exist in a space of continuous functions. This is also true in cases of evolution
equations with fractional order differential operators, such as the Riemann–Liouville operator [1]
and the Caputo operator [2]. Both of these operators are based on integrals with power law kernels
that are singular at the origin. In recent years, there has been a great deal of attention focussed on
fractional differential operators based on integrals with non-singular kernels. Included in this are
the Caputo–Fabrizio (CF) operator [3] and the Atangana–Baleanu in the sense of a Caputo (ABC)
operator [4].

The CF and ABC operators have since been employed in numerous modelling applications,
including applications to phase transitions [5], fluid and ground water flow [6], cancer treatment [7],
and epidemiology [8], among others [9–12]. Many of the works in this field introduce the model
evolution equations by the ad hoc "fractionalisation" of simply replacing integer order derivatives in
traditional models with CF or ABC derivatives, without further phenomenological consideration.

On the theoretical side, there has been considerable effort devoted to understanding the
interpretations of these differential operators. In a sequence of studies, Tarasov [13–15], Ortigueira and
Machado [16], and Giusti [17] have shown that the CF differential operator should not be regarded
as a fractional order operator and the ABC operator does not extend beyond the Caputo operator.
Nevertheless, modelling applications still persist [8], as do numerical studies [18–20] and algebraic
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methods of solution [21]. We also note that, as presented by Hilfer and Luchko [22], there is no absolute
agreement on a well defined set of properties to which a fractional derivative must adhere and it is
not the aim of this work to interrogate such properties. A greater concern, expressed in the present
work, is that CF and ABC operators are not generally suitable for modelling, whenever a solution is
sought in a space of continuous functions. In particular, we show that we can construct well formed
solutions to initial values problems (IVPs) with CF operators but the solutions have discontinuities at
the origin. Many of the works discussed above make extensive use of integral transforms, and more
specifically, the Laplace transform. A key point of the present contribution is highlighting that the
Laplace transform is not bijective for the class of functions which solve IVPs under the CF operator
and careful treatment of the solution near the initial condition is paramount.

The discontinuities in the solution of the IVPs necessitate the more general consideration of the
derivatives in the definitions of both the CF and ABC operators. Such generalisations to distributional
derivatives are well defined [23]. There is a large body of work concerned with the analysis of such
derivatives, both for the case of the CF operator [24] and for the Riemann–Liouville, Caputo, and other
fractional derivatives [25–27].

The remainder of this paper is organised as follows. We first construct solutions of CF IVPs and
show that such solutions must, in general, feature a discontinuity at the origin. We then briefly discuss
the impacts of these results on numerical methods for the solution of IVPs involving CF operators
and point out a seemingly overlooked simple approach to the numerical evaluation of such equations.
Next we repeat this treatment for the ABC operator and again show that solutions, in general, will have
a discontinuity at the origin. Finally we consider a more traditional fractional derivative, the Caputo
derivative, and show that solutions to Caputo IVPs can not feature such discontinuities.

2. Caputo–Fabrizio Operator

Definition 1 (The Caputo–Fabrizio operator). The Caputo–Fabrizio (CF) operator is defined as [3],

CF
0Dα

t u(t) =
M(α)

1− α

∫ t

0
u′(τ) exp

(
−α(t− τ)

1− α

)
dτ, (1)

for 0 ≤ α < 1. Here M(α) is a weighting function such that M(0) = M(1) = 1.

It is typical and sufficient to take M(α) = 1. The CF operator has been purported to be a fractional
derivative when 0 < α < 1 which limits to an integer order derivative as α → 1− [3,28]. It should also
be noted that the derivative in the integral may be considered in the distributional sense; for more
information, see [24].

We will consider CF equations in the form of an IVP with

Definition 2 (A Caputo–Fabrizio Initial Value Problem). A CF IVP is given by both a CF equation of
the form

CF
0Dα

t u(t) = F(t), (2)

with F(t) a continuous function for t ≥ 0 and an initial value,

u(0) = u0, (3)

with u0 ∈ R.

For now, it will suffice to say that we will consider solutions, u(t), defined over the interval
t ∈ [0, ∞) without being overly concerned with the smoothness of such solutions other than asking for
the derivative, at least in the distributional sense, to be well defined.
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It should be noted that, in general, continuous solutions of this IVP do not exist [29]. Here we will
consider a more general form of a solution by taking an ansatz such that

u′(t) = u′c(t) + aδ(t− 0+), (4)

where uc is a continuous function, δ is a Dirac delta, and a is an unknown constant. Note that this form
of a solution still permits a purely continuous form with a = 0. The form of this Dirac delta is chosen
so that we have ∫ t

0
δ(τ − 0+)dτ = H(t) =

{
0 t ≤ 0,
1 t > 0.

(5)

With the ansatz in Equation (4) it follows that the solution will be of the form

u(t) = u(0) + uc(t)− uc(0) + aH(t). (6)

We will further simplify this by taking uc(0) = u(0), to give

u(t) = uc(t) + aH(t). (7)

Care has to be taken here due to the fact that the Laplace transform is not bijective, i.e.,

L−1 {L {u(t)}} = uc(t) + a 
= u(t). (8)

As such, we can not rely on Laplace transform techniques to find solutions of this form.

Theorem 1. For a CF IVP (Definition 2) assume that a solution in the form of the ansatz (Equation (7)) exists.
Then such a solution is given by

u(t) = u(0) +
1− α

M(α)
(F(t)− F(0)) +

α

M(α)

∫ t

0
F(τ)dτ +

(1− α)F(0)
M(α)

H(t). (9)

Proof. The solution is found by assuming that a solution in the form of the ansatz exists, substituting it
into the IVP, and showing that the result is then consistent. To find the value of the unknown constant
a from the ansatz we first substitute the Equation (4) into Equation (2), which gives

M(α)

1− α

∫ t

0
u′c(τ) exp

(
−α(t− τ)

1− α

)
dτ +

aM(α)

1− α
exp

(
− αt

1− α

)
= F(t) (10)

for t > 0. Next we take the limit as t approaches 0 from above to give

lim
t→0+

M(α)

1− α

∫ t

0
u′c(τ) exp

(
−α(t− τ)

1− α

)
dτ + lim

t→0+

aM(α)

1− α
exp

(
− αt

1− α

)
= lim

t→0+
F(t) (11)

and rearrange to find

a =
(1− α)F(0+)

M(α)
=

(1− α)F(0)
M(α)

(12)

as F is continuous.
To find the continuous part of this solution, we may differentiate the IVP, Equation (10),

with respect to t:

M(α)

1− α
u′c(t)−

αM(α)

(1− α)2

∫ t

0
u′c(τ) exp

(
−α(t− τ)

1− α

)
dτ − aαM(α)

(1− α)2 exp
(
− αt

1− α

)
= F′(t). (13)
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From Equation (10) we also have

∫ t

0
u′c(τ) exp

(
−α(t− τ)

1− α

)
dτ =

1− α

M(α)
F(t)− a exp

(
− αt

1− α

)
. (14)

Combining these two expressions gives an integer order differential equation for uc,

u′c(t) =
α

M(α)
F(t) +

1− α

M(α)
F′(t). (15)

The integral form of this equation is

uc(t) = uc(0) +
1− α

M(α)
(F(t)− F(0)) +

α

M(α)

∫ t

0
F(τ)dτ. (16)

Hence the general form for the solution of the IVP is

u(t) = u(0) +
1− α

M(α)
(F(t)− F(0)) +

α

M(α)

∫ t

0
F(τ)dτ +

(1− α)F(0)
M(α)

H(t). (17)

From Equation (12) we see that the CF IVP only permits a continuous solution in the case where
F(0) = 0. This requirement on the existence of continuous solutions has been noted in [29], where the
result was obtained via Laplace transforms, and is the case considered in [30]. In all other cases the
solution will involve both a continuous component and a step discontinuity at the origin.

This solution of the CF IVP can easily be alternatively verified by taking the CF operator of the
solution to recover the original IVP,

M(α)

1− α

∫ t

0
u′(τ) exp

(
−α(t− τ)

1− α

)
dτ

=
∫ t

0
F′(τ) exp

(
−α(t− τ)

1− α

)
dτ

+
α

1− α

∫ t

0
F(τ) exp

(
−α(t− τ)

1− α

)
dτ + F(0) exp

(
− αt

1− α

)
= F(t).

(18)

Here we have simply applied integration by parts.
This general solution may alternatively be written as

u(t) =

{
u(0) t = 0,
u(0) + 1−α

M(α)
F(t) + α

M(α)

∫ t
0 F(τ)dτ t > 0.

(19)

It should be noted that this solution differs from the solution given in other papers, such as [28,31],
although it is in agreement with the solution given in [17] for t > 0.

2.1. Weakening Continuity Requirements for F(t)

In the above we assumed that F(t) was a continuous function. This is a little restrictive, as it
excludes most of the interesting cases where F(t) depends on the function u(t), as u(t) is not a
continuous function. To accommodate a discontinuity at the origin we may remove the requirement
that F is continuous and assume that we can write

F(t) = Fc(t) + bH(t), (20)
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where Fc is a continuous function and b ∈ R. By following the same methodology as above, we have

M(α)

1− α

∫ t

0
u′c(τ) exp

(
−α(t− τ)

1− α

)
dτ +

aM(α)

1− α
exp

(
− αt

1− α

)
= Fc(t) + b (21)

for t > 0. By taking the limit from above as t tends to 0, we can find the unknown coefficient a.

a =
(1− α)(Fc(0) + b)

M(α)
. (22)

The continuous part of the solution will again be reduced to the solution of an ODE.

u′c(t) =
α(Fc(t) + b)

M(α)
+

1− α

M(α)
F′c(t). (23)

The general solution with a discontinuity at t = 0 for F(t) is thus

u(t) = u(0) +
1− α

M(α)
(Fc(t)− Fc(0)) +

α

M(α)

∫ t

0
(Fc(τ) + b)dτ +

(1− α)(Fc(0) + b)
M(α)

H(t). (24)

This solution is completely equivalent to the general solution given above in Equation (17).
From this we see that the weakening of the continuity requirement did not effect the solution and we
can attempt to solve IVPs of the form

CF
0Dα

t u(t) = F(u(t), t), (25)

with u(0) = u0. In the case of IVPs of this form the given solution may only exist in the case that
a, found via Equation (22), is real valued. For example with F(u(t), t) = M(α)

1−α u(t), the relation in
Equation (22) does not hold with uo 
= 0, and hence there is no solution of the ansatz form. Furthermore,
for a non-linear equation, the resulting ODE for the continuous part of the solution, Equation (23),
may not have solutions. Hence we must deal with each non-linear case individually.

2.2. Example Solutions for CF Initial Value Problems

We will construct some solutions of simple IVPs to illustrate the forms given above. In each case
the validity of the solution can easily be seen by a direct substitution into the original equation.

2.2.1. Example CF IVP with F(t) = 1

Consider the CF IVP with

CF
0Dα

t u(t) = 1, (26)

and

u(0) = u0. (27)

The solution of this IVP can be found directly via Equation (17) and is

u(t) = u0 +
α

M(α)
t +

1− α

M(α)
H(t). (28)

Notice that the definition of H(t) ensures that u(0) = u0, but the solution has a step at t = 0.
This is an illustrative example as it is simple to check against the definition of the CF operator.
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2.2.2. Example CF IVP with F(u(t), t) = −uc(t)

It is instructive to consider the differences induced by a discontinuity in F at t = 0. Here we
present an example where F is taken to be the continuous part of the solution whilst in the next
example we will show the case for F being the full solution.

Consider the CF IVP with

CF
0Dα

t u(t) = −uc(t), (29)

and
u(0) = u0. (30)

This solution can be found first by solving the ODE for uc, Equation (15), which can be rearranged
to obtain,

u′c(t) = − α

M(α) + 1− α
uc(t), (31)

subject to the initial condition uc(0) = u0. The continuous part of the solution is thus

uc(t) = u0e−
α

M(α)+1−α
t. (32)

The discontinuous part of the solution is readily found from Equation (12) and combining the
two will give the above solution. Thus the CF IVP has a solution of,

u(t) = u0e−
α

M(α)+1−α
t − (1− α)u0

M(α)
H(t). (33)

We can see that as t → ∞ this solution changes sign and asymptotes to − (1−α)u0
M(α)

.

2.2.3. Example CF IVP with F(u(t), t) = −u(t)

Using the weakened form of the continuity requirement we can consider the IVP of the form

CF
0Dα

t u(t) = −u(t), (34)

and
u(0) = u0. (35)

As the right-hand side of this equation is dependent on the solution, we will first find the unknown
coefficient from the ansatz via the relation given in Equation (22), with b = a and Fc(0) = uc(0) = u0.
This gives,

a = − (1− α)u0

M(α) + 1− α
. (36)

Following the same procedure as the previous example, we obtain the following ODE for the
continuous part of the solution:

u′c(t) = − α

M(α) + 1− α
(uc(t) + a). (37)

This can be solved with the initial condition uc(0) = u0 to give

uc(t) =
M(α)u0

M(α) + 1− α
e−

α
M(α)+1−α

t
+

(1− α)u0

M(α) + 1− α
. (38)
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Again, combining the continuous and discontinuous parts of the solution will give the
full solution,

u(t) =
M(α)u0

M(α) + 1− α
e−

α
M(α)+1−α

t
+

(1− α)u0

M(α) + 1− α
(1− H(t)). (39)

In contrast to the second example, this solution will remain positive, for u0 > 0, and will
asymptote to 0 as t → ∞.

2.2.4. Example CF IVP with F(u(t), t) = −
(

(1−α)u2
0

M(α)

)2
− 2(1−α)u2

0u(t)
M(α)

− u(t)2

Again, using the weakened form of the continuity requirement, we can consider the IVP of
the form

CF
0Dα

t u(t) = −
(
(1− α)u2

0
M(α)

)2

− 2(1− α)u2
0u(t)

M(α)
− u(t)2, (40)

and
u(0) = u0, with u0 < 0. (41)

In this case we see that

Fc(t) + bH(t) = −
(
(1− α)u2

0
M(α)

)2

− 2(1− α)u2
0u(t)

M(α)
− u(t)2. (42)

From the ansatz we also have
u(t) = uc(t) + aH(t), (43)

hence,

Fc(t) = −
(
(1− α)u2

0
M(α)

)2

− 2(1− α)u2
0uc(t)

M(α)
− uc(t)2 − 2a(uc(t)− u0), (44)

and

b = −2(1− α)u2
0a

M(α)
− a2 − 2au0. (45)

From Equation (22) we then have the relation

a =
(1− α)

M(α)

⎛⎝−(
(1− α)u2

0
M(α)

)2

− 2(1− α)u3
0

M(α)
− u2

0 −
2(1− α)u2

0a
M(α)

− a2 − 2au0

⎞⎠ . (46)

This has solutions

a = − (1− α)u2
0

M(α)
. (47)

From Equation (23) we have an ODE for the continuous part of the solution,

u′c(t) = −α(uc(t)2)

M(α)
+

2(1− α)

M(α)
uc(t)u′c(t). (48)

This ODE has a solution,

uc(t) = − M(α)

(1− α)W0

(
−M(α) exp

(
α

1−α t− M(α)
(1−α)u0

)
(1−α)u0

) , (49)
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where W0 is a Lambert W function [32]. The full solution to the IVP is thus

u(t) = − M(α)

(1− α)W0

(
−M(α) exp

(
α

1−α t− M(α)
(1−α)u0

)
(1−α)u0

) − (1− α)u2
0

M(α)
H(t). (50)

2.3. Numerical Considerations for Equations Involving the CF Operator

Equation (1) purports a memory effect by way of a convolution through time. Discretising the
CF operator in this form leads to the unnecessary computation of memory terms. As is shown above,
the solution to the IVP (2) may be obtained through the solution of the auxiliary ordinary differential
Equation (15) (or in integral form Equation (17)).

The numerics contained within the recent literature are largely restricted to low order numerical
methods. From the formulation presented in this work, we suggest that any numerical method
appropriate for ODEs may be used to accurately solve IVPs with CF operators, and as such many
efficient, highly accurate methods are available to these equations. To the best of the authors’
knowledge no preceding work has proposed a numerical method which recovers discontinuous
solutions to CF equations. As shown above these equations do not exhibit nontrivial continuous
solutions, and as such require numerical methods tailored to recover the discontinuous dynamics.

3. The Atangana–Baleanu Operator

In a similar manner to the CF operator we will consider another non-singular kernel operator,
the Atangana–Baleanu, in the sense of Caputo, (ABC) operator [4].

Definition 3 (The Atangana–Baleanu, in the sense of Caputo, Operator). The ABC operator for 0 ≤ α < 1
is defined as

ABC
0Dα

t u(t) =
B(α)
1− α

∫ t

0
u′(τ)Eα

(
−α(t− τ)α

1− α

)
dτ, (51)

where Eα is the Mittag-Leffler function, defined by:

Eα(x) =
∞

∑
n=0

xn

Γ(αn + 1)
. (52)

Here B(α) is a normalisation constant, that must obey B(0) = B(1) = 1.

It is sufficient to take B(α) = 1. The ABC operator is again often seen to be a fractional derivative
as we recover an integer order derivative in the case α → 1−. The use of the ABC operator as a
fractional derivative is less contentious than the CF operator as it is non-local in time. As we are
considering discontinuous solutions it is again necessary to interpret the derivative in the definition of
the ABC operator in a distributional sense.

Again we will consider simple IVPs arising from this operator.

Definition 4 (An ABC Initial Value Problem). An ABC IVP is given by both an ABC equation,

ABC
0Dα

t u(t) = F(t) (53)

with F(t) a continuous function in t, and an initial condition u(0) = u0 for some u0 ∈ R.

To find a solution we consider the ansatz

u′(t) = u′c(t) + aδ(t− 0+) (54)
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with the integral form of the solution

u(t) = u(0) + uc(t)− uc(0) + aH(t). (55)

We will further simplify this by taking uc(0) = u(0), to give

u(t) = uc(t) + aH(t). (56)

Theorem 2. For an ABC IVP (Definition 4) assume that a solution in the form of the ansatz (Equation (56))
exists. Then such a solution is given by

u(t) = u(0) +
1− α

B(α)
(F(t)− F(0)) +

α

B(α)Γ(α)

∫ t

0
F(τ)(t− τ)α−1dτ +

(1− α)F(0)
B(α)

H(t). (57)

Proof. Combining Equation (53) and Equation (54) gives

B(α)
1− α

∫ t

0
u′c(τ)Eα

(
−α(t− τ)α

1− α

)
dτ +

aB(α)
1− α

Eα

(
− αtα

1− α

)
= F(t) (58)

for t > 0. Taking the limit as t approaches 0 from above, we obtain

lim
t→0+

B(α)
1− α

∫ t

0
u′c(τ)Eα

(
−α(t− τ)α

1− α

)
dτ + lim

t→0+

aB(α)
1− α

Eα

(
− αtα

1− α

)
= lim

t→0+
F(t). (59)

Thus the coefficient a is given by

a =
(1− α)F(0+)

B(α)
=

(1− α)F(0)
B(α)

, (60)

provided F(x) is continuous.
As uc(t) is a continuous function and the Laplace transform is bijective over the space of

continuous functions, Laplace transform techniques can be applied. Therefore we take the Laplace
transform of both sides of Equation (58) from t to s domain to obtain

B(α)
1− α

sα−1(sL{uc(t)} − uc(0))
sα + α

1−α

+
aB(α)
1− α

sα−1

sα + α
1−α

= L{F(t)}, (61)

having used the result

L{tαk+β−1E(k)
α,β(ytα)} = k!sα−β

(sα − y)k+1 ,  (s) > |y|1/α, (62)

from [1]. By rearranging the equation above, we see that

sL{uc(t)} − uc(0) =
1− α

B(α)
(sL{F(t)} − F(0)) +

α

B(α)
s1−αL{F(t)}. (63)

To deal with the s1−αL{F(t)} on the RHS of Equation (63) we will utilise some results from
fractional calculus. The Riemann–Liouville fractional derivative [1] of order 1− α with 0 ≤ α ≤ 1 is
defined by

RL
0D1−α

t f (t) =
1

Γ(α)
d
dt

∫ t

0
f (τ)(t− τ)α−1dτ. (64)

The Laplace transform of the Riemann–Liouville derivative is given by [33],

L{RL
0D1−α

t f (t)} = s1−αL{ f (t)}+ lim
t→0+

RL
0D−α

t f (t), (65)
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where RL
0D−α

t f (t) is a Riemann–Liouville fractional integral of order α. Furthermore, provided the
limits exist, we also have [33,34],

lim
t→0+

RL
0D−α

t f (t) = lim
t→0+

Γ(1− α)tα f (t), (66)

and hence provided that lim
t→0+

F(t) exists we have

s1−αL{F(t)} = L{RL
0D1−α

t F(t)}. (67)

The inverse Laplace transform of Equation (63) then gives the following ordinary
integro-differential equation for uc(t):

d
dt

uc(t) =
1− α

B(α)
d
dt

F(t) +
α

B(α)Γ(α)
d
dt

∫ t

0
F(τ)(t− τ)α−1dτ. (68)

The integral form of the solution is obtained immediately from the equation above, the result is

uc(t) = uc(0) +
1− α

B(α)
(F(t)− F(0)) +

α

B(α)Γ(α)

∫ t

0
F(τ)(t− τ)α−1dτ. (69)

Hence the general form for the solution of the IVP is

u(t) = u(0) +
1− α

B(α)
(F(t)− F(0)) +

α

B(α)Γ(α)

∫ t

0
F(τ)(t− τ)α−1dτ +

(1− α)F(0)
B(α)

H(t). (70)

Again, we can alternatively verify this this solution by substituting the solution back to the
ABC operator,

B(α)
1− α

∫ t

0
u′(τ)Eα

(
−α(t− τ)α

1− α

)
dτ

= F(0)Eα

(
− αtα

1− α

)
+

∫ t

0
F′(τ)Eα

(
−α(t− τ)α

1− α

)
dτ

+
α

1− α

∫ t

0

(
RL

0D1−α
t F(t)

)
Eα

(
−α(t− τ)α

1− α

)
dτ.

(71)

Note that both sides of Equation (71) are continuous; thus, the corresponding equation in Laplace
space reads

L
{

B(α)
1− α

∫ t

0
u′(τ)Eα

(
−α(t− τ)α

1− α

)
dτ

}
=

sα−1F(0)
sα + α

1−α

+
sα−1(sL{F(t)} − F(0))

sα + α
1−α

+
α

1− α

sα−1

sα + α
1−α

(
s1−αL{F(t)}

)
= L{F(t)}.

(72)

We see that inverse Laplace transform of the equation above recovers the IVP:

ABC
0Dα

t u(t) = F(t). (73)

We can note that the continuity requirement on F(t) can be eased in the same manner as the
CF operator by considering a discontinuous F(t) such that F(t) = Fc(t) + bH(t), where Fc(t) is a
continuous function. As such, we can attempt to consider IVPs of the form
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ABC
0Dα

t u(t) = F(u(t), t), (74)

with u(0) = u0. Again a solution of the ansatz form will only exist if a real valued constant a can be
found such that the following relation holds,

a =
(1− α)(Fc(u0, 0) + b)

B(α)
, (75)

where Fc, a continuous function, and b, a real valued constant, are found from F(u(t), t) =

Fc(u(t), t) + bH(t).

3.1. Example ABC Initial Value Problems

3.1.1. Example ABC IVP with F(t) = 1

Consider the ABC IVP with

ABC
0Dα

t u(t) = 1, (76)

and

u(0) = u0. (77)

The solution of this IVP follows immediately from the Equation (70) and is

u(t) = u0 +
1

B(α)Γ(α)
tα +

1− α

B(α)
H(t). (78)

3.1.2. Example ABC IVP with F(t) = uc(t)

Consider the ABC IVP with
ABC

0Dα
t u(t) = uc(t), (79)

and
u(0) = u0. (80)

The solution can be found by independently calculating the continuous and discontinuous parts
of the solution. The continuous part of the solution is found by first considering the equation for uc in
Laplace space, Equation (63), which can be rearranged to obtain

L{uc(t)} = sα−1

sα − α
B(α)−1+α

uc(0). (81)

The inverse Laplace transform from s to t domain then gives

uc(t) = u0Eα

(
α

B(α)− 1 + α
tα

)
(82)

subject to the initial condition uc(0) = u0. The discontinuous part of the solution is found by calculating
the coefficient a from Equation (60), giving

a =
(1− α)u0

B(α)
. (83)

The solution of the IVP is then as follows:

u(t) = u0Eα

(
α

B(α)− 1 + α
tα

)
+

(1− α)u0

B(α)
H(t). (84)
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3.1.3. Example ABC IVP with F(u(t), t) = u(t)

Using the weakened form of the continuity requirement we can consider the IVP of the form

ABC
0Dα

t u(t) = u(t), (85)

and
u(0) = u0. (86)

Again the solution is found by considering the continuous and discontinuous parts separately.
From Equation (60), we obtain

a =
u0(1− α)

B(α) + α− 1
. (87)

Subject to the initial condition uc(0) = u0. The continuous part of the solution can be found via
its Laplace transform. Substituting the value for a into Equation (63) gives

L(uc(t)) =
u0B(α)

B(α) + α− 1
sα−1

sα − α
B(α)+α−1

− u0(1− α)

B(α) + α− 1
s−1. (88)

Inverting the Laplace transform then gives the continuous part of the solution,

uc(t) =
u0B(α)

B(α) + α− 1
Eα

(
α

B(α)− 1 + α
tα

)
− u0(1− α)

B(α) + α− 1
. (89)

Combining the continuous and discontinuous parts will then give the full solution,

u(t) =
u0B(α)

B(α) + α− 1
Eα

(
α

B(α)− 1 + α
tα

)
+

u0(1− α)

B(α) + α− 1
(H(t)− 1). (90)

4. Singular Kernel Operator Example: Caputo Derivative

Here we attempt to apply the same technique to a fractional derivative with a singular kernel, the
Caputo derivative.

Definition 5 (Caputo Derivative). The Caputo derivative of order α with 0 < α < 1, is defined as [2],

C
0Dα

t u(t) =
1

Γ(1− α)

∫ t

0
u′(τ)(t− τ)−αdτ. (91)

In order to explore the possibility of discontinuous solutions we will need to allow for the
derivative in the Caputo definition to be interpreted in a distributional sense; see [25] for a more
detailed exposition of the use of distributional derivatives in Caputo derivatives. We again consider a
simple IVP.

Definition 6 (Caputo IVP). A Caputo IVP is given by a Caputo equation,

C
0Dα

t u(t) = F(t), (92)

with an initial condition, u(0) = u0. We will assume that F(t) a continuous function in t, and u0 ∈ R.

In a similar manner as above we consider an ansatz and look for solutions of the form

u(t) = uc(t) + aH(t), (93)

with uc(t) a continuous function, a a constant, and H(t) as defined in the previous sections.
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Theorem 3. For an Caputo IVP (Definition 6) assume that a solution in the form of the ansatz (Equation (93))
exists. Then such a solution does not possess a step discontinuity at t = 0.

Proof. The proof follows from assuming a solution exists in the form of the ansatz and then showing
that the only permitted value of the parameter a is zero. From the ansatz we have

u′(t) = u′c(t) + aδ(t− 0+) (94)

with u′c(t) being the derivative of a continuous function, δ a Dirac delta, and a some unknown constant.
To obtain the value of the unknown constant we will substitute this into the IVP to give

1
Γ(1− α)

∫ t

0
u′c(τ)(t− τ)−αdτ +

a
Γ(1− α)

t−α = F(t). (95)

Next we take the limit as t → 0+,

lim
t→0+

1
Γ(1− α)

∫ t

0
u′c(τ)(t− τ)−αdτ + lim

t→0+

a
Γ(1− α)

t−α = F(0+). (96)

The left-hand side of this expression only exists if a = 0, whilst the right-hand side is well defined.
As such solutions with a step discontinuity at the origin do not exist for the Caputo derivative.

5. Conclusions

We have shown that the solutions of initial value problems using both the CF and ABC operators
feature, in almost all cases, a discontinuity at the origin. The occurrence of the discontinuity is
problematic for the application of the CF and ABC operators in modelling. Very few physical processes
are well described by discontinuous functions, and fewer still with the discontinuity at the origin.

This discontinuity also raises issues with the use of these operators as fractional derivatives.
Whilst both operators are generalisations of derivatives, in the sense that as α → 1− we recover an
integer order derivative, the lack of smooth solutions is problematic. Many proponents of the use of
these operators claim that the non-singular kernel is desirable, but as we have shown here in order for
the solution of the IVP to exist the derivative of the solution must be singular, and thus the integrand
is still singular.

In the Appendix A we have considered a more generalized ansatz for the solution of CF operator
equations. This generalization does not give solutions to IVPs, but we can find solutions that diverge
at the origin.

Traditional numerical methods are based on approximating the solution, and derivatives thereof,
by their respective discrete counterparts. In the case where the solution exhibits a discontinuity,
these approaches attempt to capture an infinite gradient in the same manner as the gradient of a
smooth function. As such, resulting schemes are inadequate for capturing the dynamics of solutions
admitted by the present IVPs. By decomposing the solution into discontinuous and continuous parts,
traditional methods can be modified to approximate the continuous dynamics only.

In the case of the CF operator, the continuous part of the solution follows from a relatively simple
integer order differential equation and the vast literature of methods are available to find efficient high
order solutions. The numerical solution of the ABC operator equations is more complicated, as the
operator does involve a history dependence.

In this work we have concentrated on the often explored case of 0 < α < 1, although extensions
to the case α > 1 are possible. Generalisations of the CF and ABC operators for larger values of α exist.
To investigate the occurrence of discontinuities in such systems alternate forms of our ansatz would
need to be taken.

We have also shown that this type of discontinuity at the origin can not occur in Caputo
derivatives. The ansatz approach that we use is applicable to cases where we have derivatives
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appearing in integrands, such as the CF, ABC, and Caputo operators. This approach would need
further modifications to be applicable to Riemann–Liouville type operators where the derivative occurs
outside of the integral.
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Appendix A. Higher Order Singularities in the the Solution

We could consider a more generalised ansatz, with a higher order singularities,

u′(t) = u′c(t) +
∞

∑
i=0

ai
di

dti δ(t− 0+), (A1)

The solution in this case will then be of the form

u(t) = uc(t) + a0H(t) +
∞

∑
i=0

ai+1
di

dti δ(t− 0+), (A2)

where di

dti δ(t) denotes i-th derivative of the Dirac delta δ(t) with corresponding unknown constant ai.
Inserting this generalised ansatz into Equation (2), one finds

M(α)

1− α

∫ t

0
u′c(τ) exp

(
−α(t− τ)

1− α

)
dτ +

M(α)

1− α

∞

∑
i=0

ai

(
α

1− α

)i
exp

(
− αt

1− α

)
= Fc(t) + b (A3)

for t > 0. In the limit as t → 0 from above, we have

∞

∑
i=0

ai

(
α

1− α

)i
=

(1− α)(Fc(0+) + b)
M(α)

=
(1− α)(Fc(0) + b)

M(α)
, (A4)

since Fc is continous. Again, we make use of Leibniz’s rule and differentiate Equation (A3) with respect
to t; this gives

M(α)
1−α u′c(t)− αM(α)

(1−α)2

∫ t
0 u′c(τ) exp

(
− α(t−τ)

1−α

)
dτ − αM(α)

(1−α)2 ∑∞
i=0 ai

(
α

1−α

)i exp
(− αt

1−α

)
= F′c(t). (A5)

From Equation (A3), one finds

∫ t

0
u′c(τ) exp

(
−α(t− τ)

1− α

)
dτ =

(1− α)(Fc(t) + b)
M(α)

−
∞

∑
i=0

ai

(
α

1− α

)i
exp

(
− αt

1− α

)
. (A6)

Replacing the integral in Equation (A5) with RHS of Equation (A6) and rearranging yields

u′c(t) =
α(Fc(t) + b)

M(α)
+

1− α

M(α)
F′c(t). (A7)

The integral solution of Equation (A7) is given as

uc(t) = uc(0) +
1− α

M(α)
(Fc(t)− Fc(0)) +

α

M(α)

∫ t

0
(Fc(τ) + b)dτ. (A8)
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Hence the general form of the unbounded solution takes the following form

u(t) = uc(0) +
1− α

M(α)
(Fc(t)− Fc(0)) +

α

M(α)

∫ t

0
(Fc(τ) + b)dτ + a0H(t) +

∞

∑
i=0

ai+1
di

dti δ(t− 0+). (A9)

Therefore, we see that the unbounded solution is non-unique with the only condition for the
coefficients a′is given by Equation (A4). Note that generally the initial value u(0) = u0 can not be
imposed for solution of this form, as it involves a delta function and its distributional derivatives
at the origin, unless we force the unknown coefficients ai = 0 for i ∈ Z+. If we set {a1, a2, ...} = 0,
from Equation (A4), it is then required that

a0 =
(1− α)(Fc(0) + b)

M(α)
. (A10)

This allows us to impose the initial condition u(0) = u0, and the solution for the IVP in this
case reads

u(t) = u(0) +
1− α

M(α)
(Fc(t)− Fc(0)) +

α

M(α)

∫ t

0
(Fc(τ) + b)dτ +

(1− α)(Fc(0) + b)
M(α)

H(t). (A11)

From this we see that higher order discontinuities at the origin can still produce solutions to the
equation, but do not provide solutions for an IVP.
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