
﻿Rem
ote Sensing of Snow

 and Its Applications   •   Ali N
adir Arslan and Zuhal Akyurek

Remote Sensing 
of Snow and 
Its Applications

Printed Edition of the Special Issue Published in Geosciences

www.mdpi.com/journal/geosciences

Ali Nadir Arslan and Zuhal Akyurek
Edited by



Remote Sensing of Snow and
Its Applications





Remote Sensing of Snow and
Its Applications

Editors

Ali Nadir Arslan

Zuhal Akyurek

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Ali Nadir Arslan

Finnish Meteorological Institute

Finland

Zuhal Akyurek

Middle East Technical University

Turkey

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Geosciences (ISSN 2076-3263) (available at: https://www.mdpi.com/journal/geosciences/special

issues/Remot Sensing Snow Applications).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-0070-6 (Hbk)

ISBN 978-3-0365-0071-3 (PDF)

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Ali Nadir Arslan and Zuhal Akyürek
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Vera Potopová, Samantha Pullen, Dagrun Vikhamar-Schuler and Ali Nadir Arslan

Review of Snow Data Assimilation Methods for Hydrological, Land Surface, Meteorological
and Climate Models: Results from a COST HarmoSnow Survey
Reprinted from: Geosciences 2018, 8, 489, doi:10.3390/geosciences8120489 . . . . . . . . . . . . . . 93

Kristi R. Arsenault and Paul R. Houser

Generating Observation-Based Snow Depletion Curves for Use in Snow Cover
Data Assimilation
Reprinted from: Geosciences 2018, 8, 484, doi:10.3390/geosciences8120484 . . . . . . . . . . . . . . 115
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Abstract: Snow cover is an essential climate variable directly affecting the Earth’s energy balance.
Snow cover has a number of important physical properties that exert an influence on global and
regional energy, water, and carbon cycles. Remote sensing provides a good understanding of
snow cover and enable snow cover information to be assimilated into hydrological, land surface,
meteorological, and climate models for predicting snowmelt runoff, snow water resources, and to
warn about snow-related natural hazards. The main objectives of this Special Issue, “Remote Sensing
of Snow and Its Applications” in Geosciences are to present a wide range of topics such as (1)
remote sensing techniques and methods for snow, (2) modeling, retrieval algorithms, and in-situ
measurements of snow parameters, (3) multi-source and multi-sensor remote sensing of snow,
(4) remote sensing and model integrated approaches of snow, and (5) applications where remotely
sensed snow information is used for weather forecasting, flooding, avalanche, water management,
traffic, health and sport, agriculture and forestry, climate scenarios, etc. It is very important to
understand (a) differences and similarities, (b) representativeness and applicability, (c) accuracy and
sources of error in measuring of snow both in-situ and remote sensing and assimilating snow into
hydrological, land surface, meteorological, and climate models. This Special Issue contains nine
articles and covers some of the topics we listed above.

Keywords: remote sensing; snow parameters; spatial and temporal variability of snow;
snow hydrology; integration of remote sensing with models (hydrological; land surface; meteorological
and climate)

1. Introduction

Snow cover is an essential climate variable directly affecting the Earth’s energy balance. Snow cover
has a number of important physical properties that exert an influence on global and regional
energy, water, and carbon cycles. Surface temperature is highly dependent on the presence or
absence of snow cover, and temperature trends have been shown to be related to changes in snow
cover [1,2]. Its quantification in a changing climate is thus important for various environmental and
economic impact assessments. Identification of snowmelt processes could significantly support water
management, flood prediction, and prevention. Remote sensing provides a good understanding of
snow cover and enables snow cover information to be assimilated into hydrological, land surface,
meteorological, and climate models for predicting snowmelt runoff, snow water resources, to warn
about snow-related natural hazards, and for short and long term weather forecasting. This Special
Issue invited and encouraged the submission of studies covering all instrumentation/sensors
and methodologies/models/algorithms in remote sensing of snow cover parameters (snow extent,
snow depth, snow wetness, snow density, snow water equivalent, etc.) and applications where
remotely-sensed snow information are used. Our motivation for publishing this Special Issue is to

Geosciences 2019, 9, 277; doi:10.3390/geosciences9060277 www.mdpi.com/journal/geosciences1
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combine all aspects of remote sensing of snow from data retrieval to application. This Special Issue,
“Remote Sensing of Snow and Its Applications” [3], contains nine published articles. This guest
editorial addresses article contributions in this Special Issue in three categories: (a) New opportunities
(Copernicus Sentinels) and emerging remote sensing methods, (b) the use of snow data in modeling,
and (c) the characterization of snowpack.

2. Remote Sensing of Snow and Its Applications

2.1. New Opportunities (Copernicus Sentinels) and Emerging Remote Sensing Methods

Copernicus is the European Union (EU)’s Earth Observation (EO) program which offers free and
open information services based on satellite Earth Observation and in situ (non-space) data [4]. Since the
launch of Sentinel-1A [5] in 2014, the European Union set in motion a process to place a constellation
of almost 20 more satellites, carrying a range of technologies such as radar and multi-spectral imaging
instruments, in orbit before 2030, and that was to be implemented by the European Space Agency
(ESA). These new series of satellites from the Copernicus program are very important for Remote
Sensing and its applications. In order to see the status on use of Copernicus Sentinels on snow in
general we looked at the published papers in Web of Science during the last five years (2015–2019).
We used key words, snow and remote sensing, in searching published papers in Web of Science. A total
of 313 published papers were listed by 17:00 (CET), June 7, 2019. A total of 194 out of 313 published
papers were found to be related to remote sensing of snow after looking at abstracts and full papers.
The papers related to remote sensing of snow using Advanced Very High Resolution Radiometer
(AVHRR), Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), Passive Microwave
(PMW) like Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), Sentinel-1
and -2, and emerging technologies are given in Table 1. Of course our objective here is not to give exact
statistics but rather to present a general picture. Although there may be errors in the exact numbers of
the results, we believe they are good enough to be presented here.

Table 1. Number of published papers on remote sensing of snow between 2015–2019 in Web of Science.

AVHRR Landsat MODIS
PMV (Mostly

AMSR-E)
Sentinel-1 Sentinel-2

Emerging Technologies
(UAS-Drone, GNSS,

GNSS-R, GPS-IR,
Webcam-Camera)

6 21 97 38 9 5 18

The MODIS and PMW were the most used ones in remote sensing snow studies according to
our quick analysis. We also see that Copernicus Sentinels and emerging technologies are taking
their place in remote sensing snow studies. During a PhD course entitled, “Remote Sensing and It’s
applications in Cryospheric sciences” given by Dr. Ali Nadir Arslan at the Department of Civil and
Environmental Engineering, Politecnico di Milano, PhD students under supervision of Professor Dr
Carlo de Michele conducted a user experience study on Copernicus Data Information and Access
Systems (DIAS) for Earth Observation (EO) newcomers, where five online platforms allowed users to
discover, manipulate, process, and download Copernicus data and information [6]. The purpose of
the study was to understand possible ways to lower the data access barriers for this category of users.
The following criteria are identified from the study given in Table 2.
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Table 2. Criterias for lowering barriers of EO newcomers on data access systems.

User Interface Database Repository Database Acquisitions & Services

Simplicity & Clarity Dataset Services & Descriptions Advanced Products/Tools/Services

Demonstarte Core Benefits Effectively Other Dataset than Copernicus Cloud Services

User Guides & Tutorials Search Criteria by Region Ease of Downloading

Help Desk & FAQ Search Criteria by Products Example Analysis

User Update Search Criteria by End-use Application Customized/Direct Pricing

No Prerequisite Knowledge Visualization by Timeline Open Source Software

Mobile Compatibility Global/Regional Visualization Monitoring & Dashboard

There has been a tradeoff between the spatial and temporal resolution of remote sensing snow
mapping because of the characteristics of available optical and microwave (passive and active) sensors
used for snow detection [7]. Medium spatial resolution satellite-derived snow products are good in
monitoring snow dynamics, but a better spatial resolution is needed in understanding the spatial
variation, especially in rough terrain. Validation of the satellite-derived snow products is also very
important and critical. The in situ snow observations may not be representing the field of view of the
satellite data. This mismatching problem can be solved by using remote sensing data with high spatial
resolution. Piazzi et al. [8] presented the use of Sentinel-2A high resolution satellite data in validating
the moderate resolution satellite-derived snow products, namely H10 and H12 supplied by the Satellite
Application Facility on Support to Operational Hydrology and Water Management (H-SAF) project
of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). In their
study they used the webcam imagery as ground data. Salzano et al. [9] presented the importance of
ground based cameras in obtaining a long time series of snow cover. The images taken over a ten-year
period were analyzed using an automated snow-not-snow detection algorithm based on Spectral
Similarity. Webcam/camera monitoring system is easy to implement and very cheap in comparison
to satellites. It provides a valuable data source and can be used as complementary information to
different multispectral remotely sensed datasets for validation and calibration processes [9]. The usage
of webcam on monitoring snow is growing [10–15] and there are already several tools [16,17] available
for processing webcam/camera data.

MODIS snow products provide a good archive since 2000 and, as presented in Table 1, MODIS
products have been used in many snow studies. Munkhjargal et al. [18] combined MODIS snow
products with Landsat-7 and -8, and Sentinel-2A images to map snow cover and its duration in the
mountainous region with 30 m resolution by applying a series of adjustments, including temporal
gap-filling and conditional adjustments. In understanding climate related glacier behavior, continuous
monitoring of glacier changes is needed. Heilig et al. [19] presented the use of Sentinel-1 data in
monitoring the recession of wet snow area extent per season for three different glacier areas of the
Rofental, Austria. They showed that surface conditions during the melt season can quasi-continuously
be monitored using Sentinel-1 SAR data, which is essential for glacier runoffmodeling.

2.2. The Use of Snow Data in Modeling

The in situ and satellite snow data contribute to the development of both retrieval algorithms of
remote sensing and snowpack models as they are used in validation studies. Recently, data assimilation
(DA) has provided an outstanding solution for improving hydrological modeling by synchronously
integrating observations from in situ stations or remote sensors. Helmert et al. [20] reviewed approaches
used for assimilation of snow measurements, such as remotely sensed and in situ observations into
hydrological, land surface, meteorological, and climate models based on a COST HarmoSnow survey
exploring the common practices on the use of snow observation data in different modeling environments.
As concluded by other authors [21–23], this study highlights the need of assimilation of bias corrected
snow data to get consistently improved snow and streamflow predictions. Therefore, it is essential to

3
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improve the snow observation data quality before assimilation into hydrological models, otherwise
the model performance will deteriorate. Arsenault and Houser [24] presented a new approach to
estimating snow depletion curves (SDC) and their application for assimilating snow cover fraction
observations using an Ensemble Kalman filter (EnKF) data assimilation approach and a land surface
model with a multi-layer snow physics scheme. They presented that the use of observation-based SDC
(they derived the new SDC from the MODIS snow cover fraction and SNOTEL snow water equivalent
(SWE) observations) showed improvement over the default model-based snow cover fraction (SCF)
forecasts and snow state analysis. Appel et al. [25] used the in situ and EO information to assimilate the
input and the parameters of the applied hydrological model PROMET (Processes of Mass and Energy
Transfer) to calculate SWE, snowmelt onset, and river run-off in catchments as spatial layers. They used
newly developed in situ snow monitoring stations based on signals of the Global Navigation Satellite
System (GNSS) and Sentinel-1A and -1B EO data in interferometric wide (IW) swath mode on the snow
cover extent and on information whether the snow is dry or wet. The snow monitoring stations based
on signals of the GNSS is a state-of-the-art remote sensing techniques which was mentioned in [7].
It is known that for hydrologists, snow mass and volume parameters are more critical, because the
water volume stored in the snowpack and subsequent snow melt runoff can be estimated. Most in situ
snow measurements are still performed using traditional laborious standardized techniques: Sampling
with snow tubes, digging snow pits, and manually measuring the density, temperature, hardness, and
other quantities. While these techniques are very robust and straightforward, they are very expensive
for larger areas or time spans, prone to human errors and biases, and do not provide all requested
quantities or provide only qualitative information of snow parameters. Obtaining continuous snow
water equivalent at the field is still missing and challenging. Cosmic ray sensors [26] and snowpack
analyzers [27] are two new techniques that can be used in the field. Both of the instruments need more
validation studies to be considered as robust in situ SWE measurement techniques.

2.3. Characterization of Snowpack

It is a challenging problem of bridging information from micro-structural scales of the snowpack up
to the grid resolution in models. In-situ ground-truth snow observations are necessary for developing
and validating remote sensing products. The advances in the modeling of the snow-electromagnetic
interaction and in the observational capabilities of the satellite-based sensors have pushed the
development of new in situ instrumentation, which are able to provide suitable reference and
ground-truth data for the validation of snow satellite products and of earth system models [28].
Monitoring of snow extent and SWE requires solid knowledge of the physical properties of snow,
high-quality instrumentation, and refined methods for calibration and interpretation of snow
observations. Leppanen et al. [29] presented an empirical linear relationship, on taiga snow, between
specific surface area (SSA) and reflectance observations of recently developed hand-held QualitySpec
Trek (QST) instrument. The microstructure of snow is an important parameter for the modeling of
microwave emission and optical reflectance, and it is therefore also important for remote sensing
applications. The SSA is an important snow parameter for the modeling of microwave emission and
optical reflectance, and is therefore also important for remote sensing applications [29]. Sanow et al. [30]
presented terrestrial laser scanner- (TLS) (resolution of +/−5 mm) derived surface geometry and vertical
wind profile measurements to compare concurrent aerodynamic roughness length estimates for
changing snow surface features of shallow snowpack. The roughness of a snow surface is an important
control on air-snow heat transfer and changes in the snow surface can have substantial effects on the
energy balance at this interface [30].

3. Summary

Monitoring the snow cover and its components at meso-, regional to global scale is important in
order to support weather, hydrological, and climate science, as well as in the monitoring of natural
hazards, and the decision-making and formulation of environmental policy. This capability will provide
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knowledge-based information on potential impacts to society, economy, and safety (e.g., hydro-power,
water availability, transportation, tourism, flooding, avalanches, etc.). Snow is a complex media
which is why all aspects such as characterization, sensing, and modeling are important to understand.
Our aim was to combine these three aspects together as we believe this will be useful for all disciplines
dealing with some part of snow science. Although this is a very small effort, we hope that this will be
useful for the scientific community.
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Abstract: Information on snow properties is of critical relevance for a wide range of scientific
studies and operational applications, mainly for hydrological purposes. However, the ground-based
monitoring of snow dynamics is a challenging task, especially over complex topography and
under harsh environmental conditions. Remote sensing is a powerful resource providing snow
observations at a large scale. This study addresses the potential of using Sentinel-2 high-resolution
imagery to assess moderate-resolution snow products, namely H10—Snow detection (SN-OBS-1) and
H12—Effective snow cover (SN-OBS-3) supplied by the Satellite Application Facility on Support to
Operational Hydrology and Water Management (H-SAF) project of the European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT). With the aim of investigating the reliability
of reference data, the consistency of Sentinel-2 observations is evaluated against both in-situ snow
measurements and webcam digital imagery. The study area encompasses three different regions,
located in Finland, the Italian Alps and Turkey, to comprehensively analyze the selected satellite
products over both mountainous and flat areas having different snow seasonality. The results over
the winter seasons 2016/17 and 2017/18 show a satisfying agreement between Sentinel-2 data and
ground-based observations, both in terms of snow extent and fractional snow cover. H-SAF products
prove to be consistent with the high-resolution imagery, especially over flat areas. Indeed, while
vegetation only slightly affects the detection of snow cover, the complex topography more strongly
impacts product performances.

Keywords: snow cover; fractional snow cover; Sentinel-2; H-SAF; webcam photography

1. Introduction

The knowledge of the extent and location of snow cover is of key importance to enhance the
understanding of the present and future climate, hydrological cycle, and ecological dynamics, at both
local and global scales [1,2]. Indeed, snow-dominated regions serve as an active reservoir for water
supply during the melting period [3,4], and the seasonal presence of snow cover significantly modulates
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a surface energy balance because of its high albedo and thermal properties [5]. Therefore, information
on the spatial and temporal distribution of snow cover is critical for several research purposes
and operational applications [6]. However, the monitoring of a snow-covered area is generally
hindered by the complex interactions among site-dependent factors, especially in mountainous and
forested regions. Meteorological forcings (i.e., precipitation regime, average air temperature, solar
radiation) [7–9] and local topography (i.e., elevation, slope orientation and mean aspect) [10–12] are
the most explanatory variables affecting spatial and temporal variability and persistence of snow cover.
The definition of the topographic control on snow distribution is made challenging by the presence
of vegetation, which intercepts snowfall and impacts the intensity of meteorological forcings [13–15].
Furthermore, wind-induced erosion and deposition phenomena are the main control factors driving
the snow’s spatial redistribution [16,17]. In-situ automatic measurements provide continuous and
direct observational data allowing the retrieval of a temporal evolution of snow cover. However, they
are site-dependent, generally subjected to distortions (e.g., wind action, vegetation interactions), and
they do not succeed in catching the spatial variability of snowpack due to the heterogeneity of both
climate and terrain with respect to the network density [18,19]. The collection of in-situ measurements
at a large scale necessarily faces a general widespread lack of instrumental records, especially for steep
slopes and remote high-elevation areas, where harsh environmental conditions usually entail a high
operating cost [20].

Among in-situ gauges, the time-lapse camera is renowned for being a cost-effective device to
monitor many environmental variables for scientific purposes [21–25]. Several webcam networks are
currently operational worldwide, such as the European phenology camera network (EUROPhen) [26],
the PhenoCam Network [27], and MONIMET camera network [24]. Recently, a growing interest aims at
using webcam photography to detect snow cover from digital images to monitor its variability in space
and time, even though the use of these observations is restricted to limited spatial scales [12,28–34].

Remote sensing represents a suited and powerful tool to monitor snow properties at larger scales
and to overcome the gradual decrease of the representativeness of the gauging network with the
increasing altitude. Under specific conditions (e.g., day-time, absence of cloudiness) [35], the snow
cover detection is relatively straightforward through satellite-based optical observations, because of
the high albedo of snow with respect to most land surfaces and the higher near-infrared reflectance
of most clouds compared to snow-covered surfaces [36,37]. As well as cloud cover, the vegetation
can obstruct visible and infrared information about snow, especially where forest canopy protruding
above the snowpack reduces the surface albedo [38] and partially or completely shades the underlying
surface [39,40]. Nevertheless, since satellite-based data are indirect measurements of snow-related
quantities, they require a quantitative understanding of their accuracy, mainly depending on the
uncertainty in retrieval algorithms [37,41]. Therefore, the comprehensive validation of satellite snow
products is of key importance to properly assess and quantify their reliability, to identify possible
errors and to provide input for further improvements. Indeed, the availability of information on the
quality control of remotely-sensed data is critically needed by the scientific community, as one of the
main key criteria for the selection of the most proper dataset to be effectively used, according to the
final purpose.

Numerous studies have addressed the validation of satellite snow products at local and global
scale by assessing the accuracy of remotely-sensed observations against ground-based data, which is
one of the most widely used validation procedures [42–54]. Lacking any available in-situ reference
data, a common approach relies on a cross-sensor comparison among different satellite-derived snow
products by assuming one of the analyzed datasets as the reference truth [55–58]. This approach is
even necessary when assessing the accuracy of satellite-derived products of fractional snow cover
(FSC) requiring spatially distributed observations of reference [33]. Even though currently there
is no agreed-upon methodology to perform a cross-sensor comparison, the most commonly used
approach assumes the high-resolution satellite imagery as the reference effective dataset to assess
moderate-resolution remotely-sensed observations, since it is supposed to provide the most reliable
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information on the actual snow cover [59]. Nowadays, the Sentinel-2 (S-2) mission of European
Copernicus Earth Observation program provides high-resolution multispectral imagery with an
operational short revisiting time (~5 days) and free, global and systematic availability. Because of its
meaningful payload, several studies have already experienced the potentialities of S-2 data in different
fields of application [60–65].

This study aims to investigate the potential use of S-2 data to assess the reliability of
moderate-resolution products of snow extent and FSC, that are the snow-related quantities most
commonly used as input for hydrologic, meteorological and climate modelling [2]. Indeed, H10—Snow
detection (SN-OBS-1) and H12—Effective snow cover (SN-OBS-3) supplied by the EUMETSAT’s
H-SAF project are compared against S-2 imagery. The interest in H-SAF snow products is focused
on investigating the potential of these datasets and their suitability for hydrological purposes [56].
Over past decades, operational H-SAF snow products have been continuously validated against
ground-based snow measurements [53,56]. Even though the high-resolution imagery can be reasonably
used to establish reliable ground truth, a finer spatial resolution does not necessarily entail a higher
accuracy of the satellite product, since its accuracy strongly depends on the retrieval algorithm used to
derive snow-related information. Furthermore, no existing study supplies detailed information on the
accuracy of S-2 imagery in detecting snow. For these reasons, the study has therefore the dual objective
of validating this high-resolution dataset against in-situ snow measurements and webcam photography
in order to properly assess its consistency and to guarantee the reliability of the comparison analysis.
Therefore, before addressing the cross-sensor comparison of snow satellite products, a comprehensive
validation of S-2 data is performed against ground-based data. With the aim of testing and assessing
the satellite snow products under different climatological and topographic conditions, three study
areas located in Finland, the Italian Alps, and Turkey are analyzed.

After introducing the context of this study, its motivation and research purposes, the article
consists of four main sections. Section 2 is focused on data collection through a comprehensive
description of the analyzed remotely-sensed (i.e., S-2, H-SAF H10 and H12) and ground-based (i.e.,
snow depth measurements and webcam imagery) datasets. The selected case studies in Finland, Italy
and Turkey are presented and characterized. In Section 3, the methodology is extensively explained
into the details of the retrieval algorithms for the generation of satellite products. The procedures
implemented within both the validation of S-2 imagery against in-situ data, and the comparison
between S-2-based and moderate-resolution snow products are widely described and their main
assumptions are discussed. Results are reported and assessed through several evaluation metrics in
Section 4. Lastly, conclusions are outlined in Section 5.

2. Materials

2.1. Satellite Datasets

2.1.1. Sentinel-2 Imagery

S-2 is a polar-orbiting, multispectral high-resolution imaging mission of the European Space
Agency (ESA) for land, ocean and atmospheric monitoring. With the aim of fulfilling revisit and
coverage requirements and providing robust datasets, the constellation consists of two identical
satellites, Sentinel-2A (S-2A) and Sentinel-2B (S-2B), which were launched on 23 June 2015 (operational
in early 2016) and 7 March 2017, respectively. Since the twin satellites are in the same sun-synchronous
orbit with a phase delay of 180◦, they guarantee an effective revisit time of 5 days at the equator and
2/3 days over mid-latitudes, with a 290-km swath width. Multi-Spectral Imager (MSI) instruments
provide fine spatial resolution optical images (Figure 1) having 13 bands spanning from the visible
and the near infrared to the shortwave infrared, covering wavelengths from 0.4 to 2.2 μm (Table 1) [66].
Depending on the spectral band, the spatial resolution varies from 10 to 60 m. Four visible and
near-infrared (VNIR) bands at 10 m for optical measurement, four NIR bands at 20 m for vegetation
red-edge, two shortwave infrared (SWIR) bands at 20 m for snow, ice, and cloud discrimination,
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three coarse bands at 60 m in the aerosol, water vapor, and cirrus domain designated for atmospheric
correction [67,68]. However, it is noteworthy that S-2 does not have a thermal band, which is of key
importance for cloud detection, as cloud pixels are much colder than clear-sky pixels [69]. By December
2015, the acquisition of S-2 Level-1C (L1C) top-of-atmosphere (TOA) reflectance data is available and
currently also S-2 Level-2A (L2A) bottom-of-atmosphere (BOA) reflectance data product is available to
the remote sensing community worldwide.

Figure 1. Sentinel-2 RGB image—Tile T32TLR (Italian Alps), 6 December 2017.

Table 1. Spatial resolution and central wavelength of Sentinel-2A and -2B spectral bands.

Band
Number

Spatial Resolution
[m]

S-2A Central Wavelength
[nm]

S-2B Central Wavelength
[nm]

1 60 442.7 442.2
2 10 492.4 492.1
3 10 559.8 559.0
4 10 664.6 664.9
5 20 704.1 703.8
6 20 740.5 739.1
7 20 782.8 779.7
8 10 832.8 832.9
8a 20 864.7 864.0
9 60 945.1 943.2
10 60 1373.5 1376.9
11 20 1613.7 1610.4
12 20 2202.4 2185.7

2.1.2. H-SAF H10 Product

H-SAF H10 (SN-OBS-1) is a daily operational product of snow extent generated from the visible
(VIS) and infrared (IR) radiometry of the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
instrument on board the geostationary Meteosat Second Generation (MSG) satellites. The high temporal
resolution and wide aerial coverage of SEVIRI imagery make it highly suitable for snow-cover mapping,
since cloud cover is continuously monitored. Indeed, the daily snow cover product is derived for
a multi-temporal analysis of SEVIRI 15-min images, that are processed as new data are available to
collect the largest possible number of cloud-free pixels. The sampling is performed at 3-km intervals,
which degrade to ~5 km over Europe. The resulting daily map has a spatial coverage delimited
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between longitude 25◦ W–45◦ E and latitude 25◦–75◦ N [56,70] and it consists of four different classes:
snow, cloud, water and bare ground (Figure 2).

 

Figure 2. H-SAF H10 product (25◦ W–45◦ E, 25◦–75◦ N), 5 April 2017.

2.1.3. H-SAF H12 Product

H-SAF H12 (SN-OBS-3) is a daily operational product of FSC based on the multi-channel
analysis of the Advanced Very High Resolution Radiometer (AVHRR) on board National Oceanic
and Atmospheric Administration (NOAA) and meteorological operational (MetOp) satellites. FSC is
generated at pixel resolution by exploiting the brightness intensity, which is the convolution of the
snow signal and the fraction of snow within the pixel.

The sampling is carried out at 1 km intervals over the same H-SAF area of H10 product.
The thematic map includes cloud and water classes, and percentage classes of fraction snow cover
ranging from 0% (i.e., snow-free condition) to 100% (i.e., full snow cover) (Figure 3).

Figure 3. H-SAF H12 product quick-look image (25◦ W–45◦ E, 25◦–75◦ N), 5 April 2017.

2.2. Test Sites and Data Collection

With the aim of properly investigating the reliability of satellite snow products and their
consistency under different topographical conditions (i.e., mountainous and flat areas) and vegetation
cover, this study includes three case studies located in Finland, the Italian Alps and Turkey (Figures 4–6).
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In each country, eight S-2 tiles of interest have been selected to properly ensure a sizeable sample
of satellite images. The selection of S-2 tiles has targeted those providing significant datasets over
the analyzed period by minimizing possible overlapping. Furthermore, when selecting S-2 tiles the
location of in-situ monitoring instruments has been considered to allow the validation of S-2 imagery
against ground-based data. It is noteworthy to consider that in this study both snow extent and FSC
are referred to the snow cover viewable over the satellite field of view, and not at the ground level.
Because of the significant impact of vegetation on satellite snow detection, ancillary information on
the vegetation cover of each S-2 tile has been derived from ESA GlobCover 2009 land cover map to
support the assessment of the comparison results. This GlobCover map is derived from an automated
classification of the Medium Resolution Imaging Spectrometer Full Resolution (MERIS FR) time series
and it consists of 22 land-cover classes at a 300 m spatial resolution. Among the classes of natural
and semi-natural terrestrial vegetation, two main categories have been defined (Table 2). The first
main category embraces the vegetation classes having the highest impact on snow detection (V_1) (i.e.,
evergreen or semi-deciduous forest), while the second one includes those having a lower impact (V_2)
(i.e., deciduous forest).

The selected tiles are reported in Table 3, where the percentage values of the main vegetation
categories are reported according to the GlobCover 300 m land cover map.

Table 2. Selected vegetation classes of ESA GlobCover product.

Vegetation Class Selection of GlobCover Vegetation Classes

V_1

Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5 m)

Closed (>40%) needle-leaved evergreen forest (>5 m)

Open (15–40%) needle-leaved deciduous or evergreen forest (>5 m)

Closed to open (>15%) mixed broadleaved and needle-leaved forest (>5 m)

V_2
Closed (>40%) broadleaved deciduous forest (>5 m)

Open (15–40%) broadleaved deciduous forest (>5 m)

Figure 4. Selection of S-2 tiles over Italian Alps.
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Figure 5. Selection of S-2 tiles in Finland.

Figure 6. Selection of S-2 tiles in Turkey.

The analysis period extends throughout two winter seasons, namely 2016/2017 and 2017/2018.
With the aim of properly taking account of the local climatology, the duration of the snow season has
been independently set from October to May (eight months) in Finland and over the Italian Alps, and
from November to April (six months) in Turkey.

13



Geosciences 2019, 9, 129

Table 3. Selection of S-2 tiles at each test site and characterization of vegetation cover according to
GlobCover 2009 land cover map. Two main vegetation classes having high (V_1) and medium (V_2)
impact on snow detection are reported.

Selection of S-2 Tiles

Finland T34VFN T34VFP T34VFR T34WFA T35VNL T35VPJ T35WMQ T35WNN

V_1 53% 73% 45% 57% 62% 57% 69% 73%
V_2 10% 6% 8% 2% 17% 14% 2% 2%

Italy T32TLQ T32TLR T32TMR T32TMS T32TNS T32TPS T32TQS T33TUM

V_1 10% 13% 6% 17% 20% 34% 33% 30%
V_2 15% 12% 19% 15% 12% 14% 21% 22%

Turkey T36SVF T36TWL T37SED T37SFD T37TEE T37TFE T38SKH T38SLH

V_1 17% 41% 1% 0% 5% 2% 0% 0%
V_2 0% 6% 0% 0% 2% 1% 0% 0%

Since this study is focused on assessing how satellite products succeed in detecting snow cover,
cloud free scenes or scenes with minor cloud cover are primarily selected. Indeed, only S-2 images
with cloud cover lower than 20% have been included in the analysis.

The resulting datasets of S-2 imagery for the analyzed case studies are reported in Table 4.
It is noteworthy to consider that the effective number of S-2 images in the snow season 2017/2018
is significantly higher than in the previous one (Table 4), since S-2B data has become available in
March 2017.

Table 4. Seasonal effective number of S-2 images at each test site.

Test Site
Seasonal Number of S-2 Images

Snow Season 2016/17 Snow Season 2017/18

Finland 60 193
Italian Alps 133 198

Turkey 37 101

Throughout the analyzed period, only one daily H10 image is missing during the first snow
season and 7 images are missing in the second one. Likewise, H12 product is not available for 7 and
16 days in snow seasons 2016/17 and 2017/18, respectively.

2.3. Ground-Based Datasets

The validation of S-2 imagery relies on both ground-based dataset of snow measurements in
Turkey and digital observations in Finland and over the Italian Alps.

2.3.1. In-Situ Webcam Imagery

In Finland and in Italy, in-situ webcam imagery has been used to assess the consistency of
FSC maps based on S-2 data (S-2-derived FSC), which are derived by counting the number of S-2
snow pixels versus the total number of S-2 pixels over the camera FOV. Webcams have been selected
according to two main criteria. The first constraint requires a sufficiently wide webcam field of
view (FOV) enabling the comparison with S-2-derived FSC. Secondly, webcams providing a properly
representative dataset of observations have been primarily selected. With the aim of complying with
these conditions, five webcams have been selected (Table 5), only one of which located over Italian
Alps, mainly due to the complex topography, which strongly limits the extent of the webcam FOV.

The four cameras selected in Northern Finland are part of the camera network deployed in
the frame of the MONIMET project [24]. MONIMET monitoring network consists of 28 cameras in
14 locations in Finland. The images are free and open. Those cameras produce images at each half
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an hour during daytime. For the study, midday time images are used since the snow cover does not
change significantly during the day. One of the cameras is located in Kenttärova looking over a large
evergreen spruce forest, another one is located in Lomppolojankka, a peatland site, and the other two
in Sodankylä, located in a Scots pine ecosystem and in a wetland site, respectively. The FOVs of those
cameras is shown in Figure 7a–d.

The webcam located in Aosta Valley (north-western Italian Alps) is at the experimental site of
Torgnon, which belongs to the Phenocam network [71]. The camera is pointed north and it looks over
grassland with mountains visible at distance. Camera images are provided every hour from 10 a.m. to
4 p.m. [21]. The FOV of the camera is shown in Figure 7e.

(a) (b) 

(c) (d) 

 
(e) 

Figure 7. Webcam field of views: (a) Kenttärova canopy camera, (b) Lompolojankka peatland camera,
(c) Sodankylä canopy camera, (d) Sodankylä peatland camera, (e) Torgnon camera.
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Table 5. Selected in-situ cameras in Finland and Italy.

Site Name Coordinates
Camera Brand and

Model
Resolution S-2 Tile

No. of Analyzed
Images

Torgnon 45.84◦ N, 7.57◦ E Campbell CC640 0.3 MP T32TLR 24
Sodankylä peatland 67.37◦ N, 26.65◦ E Stardot Netcam SC 5.0 MP

T35WMQ
22

Sodankylä canopy 67.36◦ N, 26.64◦ E Stardot Netcam SC 5.0 MP 22
Lompolojankka peatland 69.80◦ N, 24.21◦ E Stardot Netcam SC 5.0 MP

T34WFA
23

Kenttärova canopy 67.99◦ N, 24.24◦ E Stardot Netcam SC 5.0 MP 23

2.3.2. In-Situ Snow Measurements

In Turkey, binary snow maps derived from S-2 imagery have been validated against ground-based
measurements for the winter season 2017/18. Snow data from automatic weather stations (i.e., AWOS:
Automated Weather Observing System, and SPA: Snow Pack Analyser) operated by Turkish state
meteorological service (TSMS) have been used. Daily snow depth (SD) values have been obtained by
processing and filtering the raw data supplied by these stations (e.g., removal of possible false snow
detection due to grass). This analysis relies on SD measurements provided by 75 ground stations and
205 S-2 images available between November 2017 and April 2018 over Turkey. The validation has been
performed over 25 S-2 tiles and 286 in-situ SD observations have been analyzed. Relative positions of
S-2 tiles and the ground stations are shown in Figure 8.

 

Figure 8. Locations of ground-based monitoring stations in S-2 tiles.

3. Methods

After introducing the retrieval algorithms implemented for the generation of the satellite snow
products investigated in this study, the processing of in-situ data and imagery used to validate S-2
observations is described. The methodologies for the S-2-based assessment of H-SAF snow products
and the assessment of S-2 imagery against in-situ data are presented and discussed, as well as the
evaluation metrics.

3.1. Satellite Retrieval Algorithms

Snow detection can be retrieved from optical imagery through different algorithms, which
generally rely on thresholding methods based on channel differences and ratios to exploit the different
spectral properties of snow-covered areas with respect to snow-free surfaces and clouds. One of the
most commonly-used indices is the normalized difference snow index (NDSI), which is defined as the
difference of reflectance observed in a visible band and a shortwave infrared one, divided by the sum
if the two reflectance values [72]. Indeed, since snow reflectance is high in the visible wavelengths and
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low in the shortwave infrared ones, this method enables distinguishing snow from clouds and other
non-snow-covered conditions [72,73]. However, it is noteworthy that the suitability of each retrieval
algorithm necessarily depends on the main features of the satellite data to be processed [55,74,75].

3.1.1. Sen2Cor Algorithm

S-2 L1C data are downloaded from the Copernicus open access hub. The L1C image product
consists of a series of 100 × 100 km2-tiles, each of which is made of thirteen compressed JPEG-2000
images, one for every single band. The MSI TOA reflectance images are processed through the
Sen2Cor version 2.5.5, namely the last version of Sentinel-2 L2A prototype processor provided by
ESA. Sen2Cor consists of ten main modules and it can perform the tasks of atmospheric, terrain and
cirrus correction of L1C input data to generate optimally corrected BOA reflectance images. In this
study the L2A_SceneClass (SC) module is used to perform the classification of the input images and to
generate Scene Classification (SCL) maps at a spatial resolution of 20 m. The SC algorithm allows the
detection of clouds, snow and cloud shadows, and the generation of a classification map consisting of
four different classes for clouds (including cirrus), together with six different classifications for shadows,
cloud shadows, vegetation, soils/deserts, water and snow (Table 6). The SC module consists of the
cloud/snow algorithm, the cirrus detection algorithm, and the cloud showdown detection algorithm to
generate the classification map [76]. Each algorithm processes the TOA reflectance input data through
a sequence of thresholding filters, which are applied to S-2 spectral bands, band ratios, and indexes.
In the cloud/snow detection algorithm, each test provides a cloud probability, which is recursively
updated at each step. After thresholding the brightness in the red region of the solar spectrum (band
4), all potentially cloudy pixels are filtered by thresholding the NDSI [72], which is evaluated from
spectral bands 3 and 11. Snow confidence map is generated by detecting snow pixels, according to four
successive filters using spectral bands 2, 3, 8, 11. Ancillary information on yearly snow climatology is
used to define the monthly snow probability of each pixel and to discard possible false snow detections.
All potentially snow pixels are then filtered by sequentially thresholding the reflectance in band 8 (NIR)
and band 2 (blue), and the ratio between band 2 and band 4 to identify main water bodies. Lastly,
possible false cloud detection at the boundaries of snowy regions is removed by performing a brightness
test on band 12. Once cloud and snow confidence masks are generated, an optional spatial filter can be
applied to reduce possible false cloud detection. The cirrus detection algorithm mainly relies on the
reflectance thresholding of band 10, because of the high water vapor absorption in this region [77], and
an additional cross check is performed against the probabilistic cloud mask.

Table 6. Classes of Sen2Cor SCL map.

Label Classification

0 No data
1 Saturated/defective
2 Dark area
3 Cloud shadows
4 Vegetation
5 Not vegetated
6 Water
7 Unclassified
8 Cloud (medium probability)
9 Cloud (high probability)
10 Thin cirrus
11 Snow

3.1.2. H-SAF H10 Algorithms

The distribution of snow cover and the non-uniformity of snow properties are significantly
different over mountainous and flat/forested areas, since they strongly depend on the local topography
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and vegetation cover. Therefore, two distinct stand-alone algorithms are implemented within the
product generation and applied according to a mountain mask defined in [56]. The algorithm for
flat/forested areas has been developed by Finnish Meteorological Institute (FMI) [70,78]. The algorithm
utilizes TOA radiances of six SEVIRI channels (0.635, 0.81, 1.64, 3.90, 10.80, 12.00 μm), the brightness
temperatures of three channels (3.90, 10.80, and 12.00 μm), sun and satellite zenith and azimuth angles,
the International Geosphere-Biosphere Programme (IGBP) land-cover type by the U.S. Geological
Survey (USGS), and the land surface temperature (LST) classification produced by the EUMETSAT’s
Satellite Application Facility on Land Surface Analysis (LSA SAF) [77]. While information from
channels around 0.635, 0.81, and 1.64 μm are used to classify different surface types [72,79,80],
the algorithm exploits the radiance ratio of SEVIRI channels 2 (0.81 μm) and 3 (1.64 μm), and
the brightness temperature difference of channels 10 (12.00 μm) and 4 (3.90 μm) to properly
detect clouds [81,82]. The Middle East Technical University (METU) developed the algorithm for
mountainous areas [56], which exploits 4 SEVIRI spectral channels (0.635 μm, 1.64 μm, 3.90 μm,
10.80 μm). Cloud discrimination is preliminary performed to identify cloud-free pixels by jointly
using Cloud Mask (CMa) and Cloud Type (CT) products of the EUMETSAT’s Nowcasting Satellite
Application Facility (NWC SAF) [83]. Firstly, pixels having reflectance values higher than 0.35 are
collected, because of the high visible reflectance of snow. Secondly, since snow cover has a low
reflectance in the middle infrared and a high reflectance in the visible, pixels having snow index (SI)
value lower than 0.6 are collected, which is evaluated by dividing channel 3 (1.64 μm) to channel 1
(0.635 μm) [84,85]. Lastly, pixels having temperature lower than 288 K on channel 9 (10.80 μm)
are accepted, considering that the temperature of snow cannot exceed the freezing point [86]. It is
noteworthy that sun zenith angle (SZA) thresholds are applied, SZA > 80 in the FMI algorithm and
SZA > 85 in the METU algorithm are used for discarding the low-illuminated areas. No atmospheric
correction is included in both algorithms. The final snow recognition product results from the merging
of the products for flat/forested and mountainous areas over the full H-SAF spatial domain.

3.1.3. H-SAF H12 Algorithms

Consistently with H-SAF H10 product, two different retrieval algorithms are separately applied
for flat/forested and mountainous areas. Since the observing cycle of satellites over Europe is about
3 h, the scenes are multi-temporally analyzed to search for time instants of cloud-free conditions in
24 h. The retrieval algorithm of FSC in forested/flat areas has been developed at FMI. The method
is based on a semi-empirical reflectance model [87], which evaluates the reflectance as a function
of the snow-covered area by using visible and near-infrared data (visible band 1) [88]. Since forest
transmissivity is of critical importance to estimate the snow-covered area in all conditions of forest
coverage, the algorithm relies on the transmissivity map generated from reflectance data acquired at full
dry snow cover conditions to guarantee a proper contrast between forest canopy and ground. However,
a priori information on forests is not needed, because the effective average forest transmissivity is
estimated from Earth observation reflectance data. Conversely, the retrieval algorithm for mountainous
areas involves the thresholding of NDSI at 0.4, since it allows the derivation of the resulting average
fraction of snow-covered area by retrieving snow and snow-free ground from satellite data according
to the reflectance values [55]. Because in mountainous regions the sun zenith and azimuth angles,
as well as direction of observation relative to these are the most limiting factors [89], possible terrain
effects are properly removed from the measured radiance through a statistical-empirical correction
method [90]. Once the visible channel is corrected due to topographic effect, the average reflectance
values are determined from pixels of pure snow-covered area and pure bare ground. In defining the
pure snow-covered area and snow-free bare ground, the NDSI threshold greater than 0.4 and lower
than 0 are used, respectively. The original model has previously been developed by [91]. According to
this approach, the pixel reflectance is modelled as a linear mixture of snow, individual tree species and
snow-free bare ground (e.g., rock, soil, low vegetation). For mountainous areas the equation considers
snow and bare ground, because of the general lack of trees at high altitudes:
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RG = ASW RSW + ABGRBG (1)

where RG is the modelled pixel reflectance for a given wavelength, A represents area fractions of
a pixel (with ASW + ABG = 1), R is the reflectance, subscripts SW and BG refer to snow and bare
ground, respectively.

It is noteworthy that both atmospheric and topographic corrections are implemented in H12
algorithms. The products for flat/forested and mountainous areas are merged over the full H-SAF
area, according to the mountain mask defined in [56]. The merging algorithm is properly designed to
minimize the projection errors [92].

3.2. Validation of Sentinel-2 Imagery with In-Situ Data

3.2.1. Validation of Sentinel-2 Imagery by In-Situ Webcams

The validation is based on the comparison of single daily FSC values derived from camera
observations to the corresponding single values obtained from S-2-derived FSC maps over the observed
area. FSC values have been estimated by experts through the visual inspection of camera images. Visual
inspections have been limited over area of interests (AOIs) selected according to both camera properties
and the local topographic features, so that the snow cover is clearly visible, and the relative surface
area can be estimated as accurately as possible. FSC values have been estimated in 10%-intervals
(i.e., 0%, 10%, . . . , 90%, 100%). The visual inspection of each image has been performed by 4 expert
observers. With the aim of assessing the subjective error, the resulting RMSE of FSC estimates has
been also calculated, as shown in Table 7. The study of Arslan et al. (2017) [33] has estimated that
the subjective error is within 10%, in terms of FSC. For the comparison, average values of the visual
estimates have been used to minimize the subjective error.

Table 7. AOI Sizes, corresponding number of S-2 pixels and subjective error of webcam data observers.

Site Name AOI Size [m2]
Number of S-2

Pixels
RMSE

(All Days)
RMSE (Only Patchy

Snow Cover)

Torgnon 1,056,171 2722 13.6% 13.6%
Sodankylä peatland 3976 9 0% 0%
Sodankylä canopy 4760 11 6.3% 13.2%

Lompolojankka peatland 12,310 33 5.7% 15.8%
Kenttärova canopy 254,373 633 0% 0%

To properly validate the mapping of S-2-derived FSC, a mask for each selected webcam has been
created by drawing polygons over the approximate AOIs using Google Earth. This has been done by
visually comparing the landmarks in webcam images and Google Earth optical satellite data overlay.
AOIs have been modified according to the landmarks so that the polygons were as accurate as possible.
The polygons have been then converted into GeoTIFF files to be used in the FSC evaluation over
each AOI from S-2-based snow cover maps (S-2-derived FSC). Area sizes of those polygons and the
corresponding number of S-2 pixels are shown in Table 7. The comparison has been performed also
over the three AOIs corresponding to relatively low numbers of pixels in S-2 grid, since in those sites
most of the images were available either in full snow cover or snowless conditions, which make this
analysis feasible. Along with FSC, cloud cover fraction is also calculated for each AOI.

As an example, AOI for the Kenttärova canopy camera and S-2 derived snow cover map over the
AOI for 18 February 2018 are shown in Figure 9. In Figure 9c are reported the approximate camera
FOV (white polygon) and the selected AOI (yellow polygon) in the Google Earth view. AOI from the
camera FOV is reported in Figure 9a,b. The snow cover map derived from the S-2 image over the AOI
polygon is shown in Figure 9d. In this example, while experts have estimated FSC as full snow cover
(100%) from camera images (at 09:00 and 11:00), S-2-derived FSC (at 10:10) has been estimated as 82%.
However, it is noteworthy that 38% of the analysed pixels over the AOI are cloudy or unclassified.
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(a) (b) 

(c) (d) 

Figure 9. AOI for Kenttärova canopy camera and S-2 snow cover map over the AOI for 18 February
2018–(a) AOI marked on the camera image at 09:00 (yellow polygon); (b) AOI marked on the camera
image at 11:00 (yellow polygon); (c) Approximate FOV of the camera (white polygon) and AOI (yellow
polygon) in Google Earth; (d) Extracted snow cover map from S-2 image at 10:10 (white: snow; brown:
no-snow; black: clouds and unclassified; red: camera location). AOI is approximately 0.25 km2,
corresponding to 633 S-2 pixels.

After obtaining the value pairs for the comparison, the ones having cloud cover fraction over 50%
have been filtered out. The value pairs of FSC have been compared and the resulting RMSE values
have been evaluated.

3.2.2. Validation of Sentinel-2 Imagery against Ground-Based Snow Measurements

The procedure to validate S-2 snow mapping against ground-based data relies on the thresholding
of SD measurements to properly define snow and snowless conditions. According to the in-situ
measures, the presence of snow is detected whenever a threshold of 5 cm is exceeded. This threshold
has been set due to the expected uncertainty in measuring devices [93].

3.3. Procedures of Cross-Sensor Comparison between Satellitesnow Products

After processing S-2 data through Sen2Cor SC module, a quality check of the satellite data series
has been performed through random visual inspections to prevent possible systematic inconsistencies.
The comparison between observations sensed by different sensors on the same day is performed at
the scale of S-2 tile. Indeed, the consistency assessment of H-SAF products against S-2 data is carried
out individually over each single tile. In order to properly perform the comparison analysis, all the
satellite snow products have been preliminarily re-projected to the same common image projection,
namely WGS84/UTM. Since the analysis is tile-based, maps over the geographic extension of each
selected S-2 tile are derived from the original full images of both H-SAF products. The selection of the
data subset limited over the domain of each tile is carried out by considering the local coordinates of
tiles borders, in order to properly guarantee the intersection of the satellite products over each S-2 tile.
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3.3.1. Comparison between Sentinel-Based Snow Masks and H-SAF H10

Figure 10 shows the comparison procedure. Firstly, binary snow masks (presence/absence of
snow cover) are derived from both H10 and S-2 SCL maps. According to the original classification
of SCL map (Table 6), vegetation, not vegetated, and water (Table 6, classes 4, 5, 6) pixels have been
classified as no-snow pixels. Unclassified (Table 6, classes 0, 1, 2, 7) and cloud-contaminated (Table 6,
classes 3, 8, 9, 10) pixels are flagged and neglected in the comparison of snow maps, with the aim
of preventing possible cloud cover affecting the snow detection [57]. Consistently, H10-based snow
masks are derived by considering snow and bare-soil pixels. Since the satellite products are differently
gridded, the comparison is performed at the coarser spatial resolution of the H-SAF H10 [55]. For each
H10 grid cell, the percentage of snow cover is determined according to the S-2 observations by
counting the number of S-2 snow pixels versus the total number of S-2 pixels in the coarser cell [55].
This computation results into an S-2-based FSC map (S-2-derived FSC). In order to restore a binary
snow mask, each resulting S-2-based coarse cell is then classified as snow if FSC is higher than 50%,
otherwise it is classified as soil [57,94]. S-2-based coarse cell where more than the 50% of fine S-2 pixels
are classified as cloud or unclassified are neglected in order not to compromise the analysis results.
A preliminary analysis has been performed by testing threshold values equal to 25%, 50%, 75% to
properly assess the impact of the thresholding of cloud cover at pixel scale. The results have revealed
a poor sensitivity of the comparison procedure to the threshold value.

Figure 10. Flowchart of comparison procedure of H10 product.
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3.3.2. Comparison between Sentinel-Derived FSC Maps and H-SAF H12

Consistently with the assessment of H-SAF H10 product, the analysis of H12 data relies on the
same procedure and assumptions. The only main difference is the lack of the thresholding of FSC
derived from S-2 imagery over the coarser H-SAF grid (S-2-derived FSC), since it is directly comparable
with H12 product. Indeed, this analysis compares FSC maps of H12 product, which are generated
through retrieval algorithms (Section 3.1.3), with the S-2-based FSC maps, which are derived by
counting the number of S-2 snow pixels versus the total number of S-2 pixels in the coarser H12 cell.
The comparison scheme is reported in Figure 11.

Figure 11. Flowchart of comparison procedure for H12 product.

It is noteworthy that when mapping the snow cover through remotely-sensed optical imagery,
forests constitute a challenge, since the canopy (1) partially obscures the signal along the path from
ground to sensor and, (2) alters the observed reflectance [87]. Therefore, the accuracy of snow mapping
generally decreases in forested areas with respect to non-forested regions [72,95,96]. Even though
several methodologies have been proposed for the detection of snow under forest canopy [87,91,96–100],
this issue still remains a critical research topic. Subpixel classification methods [87,101,102] are used
to generate FSC maps with the aim of overcoming the limitations related to mixed-pixels problem
affecting coarse-resolution imagery, namely possible mixtures of land cover classes (i.e., snow, soil, rock,
vegetation, water, etc.) and area fractions of different cover classes within a pixel.
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When assessing the consistency between S-2 and H12 data, the impact of vegetation on snow
detection need to be investigated. Indeed, since the H12 retrieval algorithm in flat/forested area
involves transmissivity maps, this product results from snow detection at ground level. Conversely,
S-2 snow mask is derived from snow detection on canopy and thus it can be hindered by the presence
of vegetation, mainly where forest cover is present. It is noteworthy that this difference in retrieval
algorithms is supposed not to affect the analysis shortly after snowfall events, when forested areas
are likely to be classified as snow pixels because of canopy interception [103]. On the other hand,
during periods when no snowfall event occurs, the comparison between the two snow products
can be more challenging. Indeed, especially in dense forests, the lack of intercepted snow can lead
to a misleading S-2 classification as snow-free surface despite the presence of snow cover under
canopy. Therefore, with the aim of addressing this critical issue, a further analysis has been performed
according to the information on different vegetation types supplied by ESA GlobCover 2009 land cover
map. The impact of the vegetation cover has been investigated throughout the whole analysis period
by considering a sample of one tile in each country. The comparison between S-2-derived FSC and
H12 product has been performed after preliminarily filtering out of the vegetated pixels in S-2 data by
using the information supplied by GlobCover data for flat areas and without filtering in mountainous
regions. For the filtering, S-2 derived FSC maps have been collocated with the GlobCover map. The
pixels corresponding to flat regions in the mountain mask and belonging to the vegetation class V1 in
GlobCover (described in Section 2.2) have been discarded from S-2 derived FSC maps. After that, the
comparison has been performed through the same algorithm previously described. This procedure
has also been applied for the vegetation class V2 to properly assess the impact of different vegetation
types on snow detection. Results are presented separately for both classes.

3.4. Evaluation Metrics

For the consistency assessment of the mapping of snow extent, a contingency table is evaluated
(Table 8).

Table 8. Contingency table reporting number of HITS (a), number of FALSE ALARMS (b), number of
MISSES (c), number of CORRECT NEGATIVES (d).

Reference Dataset

Snow No Snow

Analyzed dataset
Snow a b

No Snow c d

From these classification results, different scores for dichotomous statistics are evaluated:

• Probability of detection:
POD = a/(a + c) (2)

• False alarm ratio:
FAR = b/(a + b) (3)

• Probability of false detection:
POFD = b/(b + d) (4)

• Accuracy:
ACC = (a + d)/(a + b + c + d) (5)

• Critical success index:
CSI = a/(a + b + c) (6)
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• Heidke skill score:
HSS = 2(ad − bc)/[(a + c)(c + d) + (a + b)(b + d)] (7)

FSC is assessed through the evaluation of Root Mean Square Error (RMSE) with respect to the
reference dataset

(
FSCre f

)
.

RMSE =

√√√√∑n
i=1

(
FSCre f ,i − FSCi

)2

n
(8)

4. Results and Discussion

4.1. Validation of Sentinel-2 Imagery

When validating S-2 imagery against in-situ observations, it is noteworthy that the evaluation
metrics have been evaluated by considering ground-based datasets as the reference ones.

4.1.1. In-Situ Digital Imagery

The comparison relies on a total of 50 pairs of FSC values, resulting from the analysis of matching
webcam and S-2 images, both in Finland and in Italy. The evaluation has revealed a total RMSE value
of 12.22%. In overall, S-2 snow mapping reveals a general FSC overestimation. When neglecting
full-snow and bare-soil classification (i.e., FSC equal to 0% and 100%), the total RMSE value increases
up to 19.82% for 19 value pairs. It is noteworthy that no outlier affects the distribution and the analyzed
data boast a high correlation. Figure 12 shows the data scatterplot resulting from the comparison.

 

Figure 12. Distribution of compared value pairs.

The undesired cases resulting in high errors have been investigated in more detail. In Torgnon,
where the AOI is selected over the mountainous area, the three scenes having the highest error are those
affected by the largest cloud cover fraction, greater than 29%. Indeed, in the presence of patchy snow
cover, partial cloud cover over the area is likely to unavoidably affect the FSC derived from S-2 data.
Under conditions of patchy snow cover, S-2 data are affected by overestimation in Lompolojankka.
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Two occurrences are during the melting period, where the ground is mostly cover by meltwater. One
further occurrence is in early winter, where snow cover is still not full and sparse vegetation is likely
to hinder the visual inspection.

4.1.2. Ground-Based Snow Measurements

The validation of S-2 snow mapping against ground-based SD measurements in Turkey has
revealed a significant consistency of satellite imagery, as evidenced by the highest number of hits and
lower values of false alarms and misses (Table 9).

Table 9. Contingency table of ground-based validation of S-2 binary snow maps in Turkey for winter
season 2017/18.

Ground-Based Measures

SD ≥ 5 cm SD < 5 cm

S-2 Binary Snow Masks
Snow 201 17

No Snow 43 25

As shown in Table 10 reporting the resulting evaluation metrics, the remotely-sensed high-
resolution observations properly succeed in detecting the presence of snow cover.

Table 10. Evaluation metrics of ground-based validation of S-2 binary snow maps in Turkey for winter
season 2017/18.

Metrics Value

POD 0.82
FAR 0.08

POFD 0.40
ACC 0.79
CSI 0.77
HSS 0.33

4.2. Cross-Sensor Comparison of Snow Extent Products

For each S-2 tile a pixel-to-pixel analysis has been performed to evaluate the consistency between
the S-2-based maps of snow extent and H-SAF H10 product.

Figures 13–15 show the comparison results in terms of POD, FAR and ACC for each analyzed
tile in Italy, Finland and Turkey, respectively. When assessing the evaluation metrics, it is noteworthy
that H10 product generally reveals higher performances over flat areas (i.e., Finland), rather than over
mountainous regions (i.e., Italian Alps and Turkey). This issue is mainly due to the impact of the local
complex topography affecting the sensors capability to detect snow. Indeed, mapping the high spatial
variability of snow cover distribution over mountain sides is a challenging task at the coarser satellite
resolution. Conversely, when considering the vegetation cover of each pixel (Table 3), even the presence
of the vegetation species supposed to hinder the snow detection (e.g., evergreen needle-leaved forest)
results in a lesser impact than topographic factors. However, both in Italy and Turkey, H10 product
reveals a slightly weaker reliability over the most vegetated tiles, namely T32TQS and T33TUM, and
T36TWL, respectively. This result suggests that the vegetation has a greater impact where the local
topography is complex, due to overlapping effects. Nevertheless, H10 product generally ensures an
accuracy greater than 0.8, except for tiles T32TNS and T33TPS over Italian Alps.

With the aim of investigating whether product performances are affected by the seasonality
of snow cover, the evaluation metrics have been assessed under different snow cover conditions.
Indeed, three different periods have been individually assessed, namely early winter (i.e., October and
November), winter (i.e., December-March), melting period (i.e., April and May) (Figure 16).
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Consistently with the tile-scale analysis, the agreement between S-2 and H10 data is higher over
flat areas (i.e., in Finland). The analyses show that in early winter the lower accuracy and higher FAR
values of H10 product over flat areas are mainly due to frequent cloudiness, which is likely to affect
the snow detection. However, it is noteworthy that the presence of canopy is likely to have a higher
impact during early winter and melting period. Indeed, in those months, the presence of patchy snow
cover and the lower frequency of snowfall events intercepted by canopy make the snow mapping
more challenging, especially where dense forests are present. Furthermore, it is important to consider
that the 50%-thresholding of FSC derived from S-2 data (Section 3.2) is likely to affect the analysis
mainly during the transition periods, when patchy snow cover is present.

 

Figure 13. Evaluation metrics at tile scale in Italy.

 

Figure 14. Evaluation metrics at tile scale in Finland.
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Figure 15. Evaluation metrics at tile scale in Turkey.

 

Figure 16. Seasonal evaluation metrics in Italy, Finland, and Turkey.

The higher consistency between H10 product and S-2 snow masks over flat areas is confirmed
when assessing the evaluation metrics throughout the whole analysis period (Table 11). While
H10 product reveals satisfying evaluation metrics of the same ranges in Finland and in Turkey,
the Alpine complex topography strongly affects the snow mapping over this region, as proved by the
poorer scores.
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Table 11. Comparison between S-2-based snow masks and H10 product—Median values of evaluation
metrics throughout the whole analysis period. H10 product requirements for both flat/forested (i.e.,
Finland) and mountainous areas (i.e., Italian Alps, Turkey) (PODthr and FARthr) are reported [104].

Area PODthr FARthr POD FAR POFD ACC CSI HSS

Finland 0.80 0.20 0.98 0.10 0.07 0.95 0.89 0.90

Italian Alps
0.60 0.30

0.78 0.35 0.16 0.83 0.55 0.59

Turkey 0.91 0.13 0.08 0.92 0.80 0.83

4.3. Cross-Sensor Comparison of Effective Snow Cover Products

The agreement between the mapping of the FSC derived from S-2 imagery and H12 product has
been assessed according to the same pixel-to-pixel approach.

Like in the assessment of H10 data, the complex topography in mountainous areas affects the
consistency between the two analyzed datasets, especially over the Italian Alps, where RMSE values
are higher than the other case studies (Figure 17). However, RMSE scores are generally lower than 0.4,
except for the same tiles in Italy, in compliance with the product requirements [105].

 

Figure 17. RMSE at tile scale in Italy, Finland, and Turkey.

Figure 18 shows that during the winter period RMSE values are generally higher than in other
seasons. This issue is mainly due to overestimated classifications as full snow cover over the coarser
spatial resolution of H12 product with respect to that derived from 20-m S-2 imagery, especially in
mountainous regions.

The RMSE assessment over the whole analysis period confirms higher performances of H12
product over flat areas (i.e., Finland) than in mountainous regions (i.e., Italian Alps and Turkey)
(Table 12). However, the product target requirements [105] are generally satisfied over both
mountainous (RMSE ~ 30%) and flat (RMSE ~ 20%) areas.
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Figure 18. Seasonal RMSE in Italy, Finland, and Turkey.

Table 12. Overall RMSE values for the comparison between S-2-derived FSC maps and H12 product.
H12 product requirement for both flat (i.e., Finland) and mountainous areas (i.e., Italian Alps, Turkey)
(RMSEthr) is reported [105].

Region RMSEthr RMSE

Finland 0.40 0.15

Italian Alps
0.50

0.33

Turkey 0.21

Impact of Vegetation on Snow Detection

In order to properly assess the impact of the vegetation cover within the assessment of H12
product, the results obtained by filtering out the main classes V1 and V2 are individually evaluated
against the reference ones relying on all S-2 pixels. As expected, the vegetation cover has a negligible
impact on the comparison results in the Alpine region, since H12 and S-2 snow retrieval algorithms are
consistent over the mountain mask (Section 3.2.2). Conversely, in Finland and Turkey the comparison
procedure reveals a slight sensitivity to the different vegetation classes. While the snow detection is
more affected by V1-vegetation class (i.e., needle-leaved evergreen forest) in Finland, V2-vegetation
class (i.e., broadleaved deciduous forest) has a higher impact in Turkey. Figure 19 shows that by
filtering out V1-vegetation pixels, the RMSE value in Finland increases with respect to the all-pixels
analysis. The reduction in consistency between H12 and S-2 snow mapping suggests a good agreement
of the two datasets over dense forests mainly due to the long-lasting snow interception over canopy
during the winter season. Consistently, in Turkey the resulting RMSE slightly increases when filtering
V2-vegetation pixels.
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Figure 19. Impact of vegetation types on the comparison procedure of H12 product.

5. Conclusions

This study investigated the potential of using S-2 data to assess moderate-resolution EUMETSAT
H-SAF product of snow extent (H10) and FSC (H12) in Finland, the Italian Alps and Turkey. Snow
masks derived from S-2 imagery have revealed a significant consistency with both ground-based snow
measurements (POD = 0.82, FAR = 0.08,) and in-situ webcam photography, revealing a RMSE of about
12%, in terms of FSC. Hence the reliability of assuming this high-resolution dataset as a reference for
intercomparison purposes. The results obtained in this study reveal that S-2 data can be properly used
to continuously assess these medium resolution satellite snow products, which have been commonly
validated against in-situ data so far [53,56]. However, it is noteworthy to consider that under specific
conditions the snow mapping derived from S-2 data can be affected by critical flaws. Indeed, the
analysis of camera images in the Italian Alps has shown that dense cloud cover can undermine
the reliability of S-2 snow masks, mainly when patchy snow cover is present. Furthermore, during
melting period the widespread presence of meltwater over flat areas may lead to an overestimation of
snow cover.

The results of the cross-sensor comparison prove that the analyzed H-SAF snow products are
highly consistent with S-2 imagery in detecting snow, also in terms of FSC, generally in compliance
with the products requirements [104,105]. Nevertheless, the analyzed satellite datasets generally
reveal a higher agreement over flat/forested areas (PODH10 and RMSEH12 equal to 0.98 and 0.15,
respectively) than in mountainous regions (over Italian Alps, PODH10 and RMSEH12 equal to 0.78
and 0.33, respectively). Indeed, the local complex topography is likely to significantly hinder snow
detection over mountain sides at coarser satellite spatial resolution. Conversely, the vegetation cover
has turned out to have a less relevant impact on the consistency among remotely-sensed observations,
even in the presence of dense evergreen forest. In Finland the long-lasting snow interception on
vegetation canopy is expected to contribute to strengthening the agreement between S-2 snow maps
and H12 images during the winter season. However, further key issues need to be addressed in the
future. Primarily, a comparative study on different retrieval algorithms would allow an assessment of
the reliability of the snow mapping derived from S-2 imagery. Secondly, the impact of cloudiness on
the consistency among remotely-sensed observations should be investigated in more details through
the analysis of scenes with different cloud cover percentages.
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Nevertheless, these promising results currently encourage the effective use of the analyzed H-SAF
snow products for hydrological and climatological studies, since they provide reliable snow-related
information at large scale. Furthermore, thanks to their free availability at a daily scale, both H10 and
H12 products are recommended as particularly suited for operational applications.
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Abstract: The relation between the fraction of snow cover and the spectral behavior of the surface is a
critical issue that must be approached in order to retrieve the snow cover extent from remotely sensed
data. Ground-based cameras are an important source of datasets for the preparation of long time series
concerning the snow cover. This study investigates the support provided by terrestrial photography
for the estimation of a site-specific threshold to discriminate the snow cover. The case study is located
in the Italian Alps (Falcade, Italy). The images taken over a ten-year period were analyzed using
an automated snow-not-snow detection algorithm based on Spectral Similarity. The performance
of the Spectral Similarity approach was initially investigated comparing the results with different
supervised methods on a training dataset, and subsequently through automated procedures on the
entire dataset. Finally, the integration with satellite snow products explored the opportunity offered
by terrestrial photography for calibrating and validating satellite-based data over a decade.

Keywords: fractional snow cover; remote sensing; terrestrial photography; cold regions

1. Introduction

Snow cover is an important component of the cryosphere that plays a key role for climate dynamics
and the resources availability: the seasonality of the snow cover influences, in fact, weather patterns,
hydropower generation, agriculture, forestry, tourism, and aquatic ecosystems [1–3]. Remote sensing
is the most common tool for the routine estimation of the snow cover extent. However, two different
aspects must be considered for the enhancement of the final output: time and spatial resolutions. Both
components, using remotely sensed data, are connected to each other, since the higher the spatial
resolution (below hundreds of meters), the lower the revisit time interval (more than 1 week) [4].

The state-of-the-art snow products concerning the snow extent are remotely sensed and they
are based mainly on multispectral optical sensors. They can investigate the snow cover and give
information about the size and the shape of snow grains [5]; the presence of impurity soot; the age of
the snow; and the presence of depth hoars. Furthermore, the short-wave infrared signal can support
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the discrimination between snow and clouds [6]. The estimation of the snow extent from remotely
sensed multispectral images is based on the relation between the radiative behavior of the surface
and the Fractional Snow Cover (FSC). This parameter describes the percentage of surface covered
by snow [7] in a pixel element of a remotely sensed image. Considering that snow-covered surfaces
are highly reflective in the visible range and low reflective in the short-wave infrared (swir) [8], it is
possible to define an index that enhances the discrimination between snow and not snow in a single
pixel. This index, defined as Normalized Difference Snow Index (NDSI), is calculated as follows:

NDSI =
green − swir
green + swir

(1)

The green and the swir parameters are the bands available for each satellite sensor and their
selection includes generally wavelength ranges centered at 500–600 nm (green) and 1500–1600 nm
(swir). The relation between the FSC and the Normalized Difference Snow Index (NDSI) represents
the most common inference required by remote sensing studies. There are two options for estimating
the NDSI—FSC relation: the first one consists in combining satellite products with different spatial
resolution [9,10]; and the second one can be approached having a ground truth information. The first
solution is based on [8] combining Landsat and MODIS data and a NDSI to FSC relation is defined.

FSC = 1.45 × NDSI − 0.01 (2)

This knowledge is implemented in the SNOWMAP algorithm [11], which is the core of the
MODIS data chain for the definition of remotely sensed snow products. The second solution can
be approached defining an empirical reflectance-to-snow-cover model that requires a calibration
having a number of reference sites in the satellite image. The most important example is the so-called
Norwegian Linear Reflectance-to-snow-cover algorithm (NLR) [12] that is the core of the GlobSnow
Snow Extent (SE) data chain [13]. From this perspective, the availability of webcam networks is
an important data source for calibration and validation processes. The attention of the scientific
community of this proxy is increasing, and the literature about this topic is growing [9,14–17].
Furthermore, several tools (for example, FMIPROT and PRACTISE) can be considered for research
purposes [18–20]. The solutions available for the analysis of webcam imagery are commonly based
on two different processes: orthorectification and classification. While the geometrical issue is based
on the mathematical solution of the relationship between pixel elements and the ground surface, the
detection of snow cover represents the real cognitive gap. The classification issue can be approached,
following the applications available for the remote sensing imagery, using supervised, unsupervised
or object-oriented methods [21], depending on the number of images that must be processed.

The focus of this paper is to investigate the contribution of the terrestrial photography to define
site-specific thresholds useful for studying the snow cover with remotely sensed data. The expected
outcomes are: (i) the description of an automated procedure able to process long time series of
ground-based images; (ii) the comparison between automated approaches and supervised methods;
(iii) and the evaluation of the potential contribution of terrestrial photography to the snow cover
retrieval from remotely sensed data.

2. Methods

The purposes of this study required the investigation of different components and the integration
of different data sources (Figure 1). The accomplishment of the declared objectives was approached
selecting a study site where ground-based cameras were positioned for a decade. The first part of the
effort was devoted to the analysis of the available terrestrial dataset. In this case, the selection of the
most appropriate procedure was obtained considering the automated procedures and the supervised
methods in order to check the overall performance of automated solutions under different conditions
of illumination and snow coverage. Secondly, the collection of different satellite products provided
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the material useful for evaluating the potential impact of terrestrial photography on the estimation of
snow extent from remotely sensed data.

 

Figure 1. Description of the workflow followed in the manuscript. While the green boxes represent the
considered data sources, the other colored boxes constitute the final products obtained by the different
procedures required for the estimation of the Fractional Snow Cover.

2.1. Study Area

The considered study area (Figure 2) is located in the Italian northeastern Alps (Lago di Cavia,
Falcade, Italy). The webcam (46◦21′24” N, 11◦49′20” E, WGS84) was positioned in a ski resort at
2200 m above the sea level. The study site is characterized by a snow cover duration almost complete
from mid-November to late April, a melting season completed at the beginning of June and occasional
snowfall in the rest of the year [22]. The selection of the site for the camera setup was supported by the
topographic behavior of the location, which is an almost flat area with a soft slope where an artificial
water body is located. The presence of an important ski facility and the management of this water
resource outline the importance of this location.

2.2. Camera Setup

The webcam system was provided by Sistemi Video Monitoraggio S.r.l. (Romito Magra-SP) using
a digital camera (Olympus C765). The camera was deployed at 2 m above the ground. The camera
was featured by 4-megapixel sensor and a 1/2.5” CCD, the focal length was 6.3 mm and images were
saved in the jpeg data format with an 800 × 600 pixel resolution. Data logging and transmission were
provided by specific hardware placed into a waterproof case and the power supply was ensured by the
direct connection to the electric mains and by photovoltaic panels with a buffer battery. Data transfer
was performed using an intranet connection with the receiving station located in Arabba through
a mobile connection. The Veneto Regional Agency for Environmental Protection and Prevention
developed a webcam section in the website (www.arpa.veneto.it) that supported the near-real-time
availability of the images. The field of view defined by the camera perspective considered an area
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of about 5000 m2 with a maximum distance from the camera up to 180 m. The camera acquired
all-year-round images every 1 hour since 2004 to 2013. For this study, we considered a “complete”
dataset with about 8000 images where every melting season was included in order to have a large
range of snow cover and illuminating conditions. In addition of that, we defined a “small” dataset with
30 images dating back to 2008 and 2009, which included a large variability in terms of illuminating
conditions and snow cover.

 

Figure 2. The study site of Cima Pradazzo (a), close to Falcade (Italy). Panoramic view of the camera
(b) with the considered mask in red. The orthorectified views of the camera (c): the grey shaded area
with red contour shows the camera view projected on the ground; and the colored lines indicate the
pixel grids of the different satellite products.

2.3. Terrestrial Image Classification

Following the guidelines developed for the analysis of multispectral remotely sensed images,
the classification issue can be approached using different principles depending on the methods for
measuring the spectral matching or the spectral similarity: the deterministic-empirical methods and
the stochastic approaches [23]. The deterministic measures include the spectral angle, the Euclidean
distance and the cross-correlation of spectral vectors in the hyperspectral space. The stochastic
measures evaluate the statistical distributions of spectral reflectance values of the targeted region of
interests. Within this framework, a large variety of classification methods that can be grouped from
different perspectives [24].

2.3.1. Supervised Methods

The requirement for the automated solution is a “parametric” method, based on a “per-pixel”
classification about the presence of snow cover. The description of the pixel content must be definitive
and, consequently, a “hard” classifier is necessary. Furthermore, the classification process cannot be
iterative and specific for a single image. Consequently, the generalization for different images, under
different illumination conditions, can be obtained with a “supervised” classifier, which considers a
“training” Region Of Interest (ROIs) associated with the theoretical “white” snow. Looking at the
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supervised methods, we can include classifiers that are sensitive to the user experience during the
definition of the region of interests and to the selection of discriminant parameters between snow
and not snow. Some methods are associated with the threshold selection defined by the statistics
of the identified ROIs. This is the case, for example, of the Parallelepiped classifier (PA), where
the user defines a threshold based on the standard deviation. Some other approaches consider the
probability associated with a specific ROI [25], calculating the Euclidean distance for the Minimum
Distance (MD) method, the Mahalanobis distance for the Mahalanobis classifier (MA), and the
covariance-based discriminant function for the Maximum Likelihood method (ML). These algorithms
are all implemented in the commercial suite ENVI version 4.7 (Exelis Visual Information Solutions,
Boulder, Colorado).

2.3.2. Blue Thresholding

Within the group of automated methods, there is a well-established method that is currently in
use for snow-cover purposes with some limitations: it is a linear classifier based on thresholding of the
blue channel (BT) that was introduced by [26] in the Snow-noSnow software. The method is based
on the frequency counting of the blue component, and its hardness is associated with the definition
of snow-not-snow limit looking at increments in the blue-channel histogram. This method has been
used in several studies and it has shown some limitations. The illuminating conditions, the surface
roughness and the distance from the camera are critical issues that affect the performance on retrieving
snowed covers [27]. These limitations are the grounds of research for a higher performing method that
possibly increases the depth of analyzing RGB imagery.

2.3.3. Spectral Similarity

The approach proposed in this paper is based on measuring the spectral variations in a 3D
color space where reference endmembers are a theoretical “white” snow and a theoretical “black”
target. The parameters estimated in this vector system are the spectral angle defined by [28] and
the Euclidean distance [21], respectively calculated considering white and black references. While
the parameter based on the Spectral Similarity (SS) represents an independent spectral feature, the
Euclidean distance of the vector can be defined as a brightness-dependent feature. The involvement of
all the three-color components will support the increase of surface types that can be discriminated:
snow, shadowed snow and not snow. The proposed approach (Figure 1) was developed in the R
programming environment [29].

The first step consists of rearranging the three-color components of each pixel into a new
two-dimensional vector space, mathematically defined as follows:

θ = acos
PRRR + PGRG + PBRB√

P2
R + P2

G + P2
B

√
R2

R + R2
G + R2

B

(3)

The spectral angle θ in Equation (3) represents the relative proportion of the three-pixel
components (PR, PG and PB) in relationship to the reference composition (RR = 1, RG = 1
and RB = 1). The angle varies from zero, which can be associated with a “flat” behavior of colors
(R = G = B), to π

2 , referring to a very dissimilar behavior from the theoretical “white” reference.

Δ =
√

P2
R + P2

G + P2
B (4)

The spectral distance Δ in Equation (4) is conversely an estimation of the vector length in the RGB
space. It can range from 0 (black) to 1.73 (white) and it can be associated with the Euclidean distance
from a “black” reference RGB composition (RR = 0, RG = 0 and RB = 0). While this parameter is
sensitive to the brightness of colors, the spectral angle is invariant with brightness [23]. The outcome
of this step consists in the frequency counting of pixels considering the two spectral components with
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a 0.05 resolution. Furthermore, the total number of included pixels ( ftot) and the area included in the
cluster perimeter (Pf ) were estimated.

The second step of the procedure consists in discriminating clusters from the obtained frequency
distribution, and a watershed algorithm [30] can support this segmentation phase. Each cluster was
fitted with a normal distribution in order to retrieve modes (defined by μΔ and μθ) and deviations
(σΔ and σθ). If clusters are very close to each other, they can be combined in one larger group depending
on their probability to be discriminated using the Mahalanobis distance. The criteria adopted for the
definition of the cluster perimeter was based on the pixel frequency f (Δ′, θ′) higher than the Poisson
error of the adjacent pixel f (Δ, θ) (Equation (5)).

f (Δ′, θ′) >
√

f (Δ, θ) (5)

The procedure for the delimitation of the cluster perimeter was implemented using a per-pixel method
following [31].

The final step consists in the identification of the surface type (snow, not snow and shadowed
snow). This step was defined observing the frequency distributions of pixels in the defined spectral
space (Figure 3). It was possible to detect that snow covers were generally characterized by higher
θ angles and lower Δ values than not-snow covers. Snowed centroids (defined by μΔ and μθ) were
generally positioned where angles were higher than 0.9 and distances were lower than 0.1.

 
Figure 3. Examples of two different snow-not-snow mixtures. Colored polygons identified areas of
clusters in presence of two different situations: partial (a) and full (b) snow cover. Lower plots are
frequency distribution of pixels at the different spectral angles (θ) and spectral distances (Δ).

Furthermore, the range of cluster values (Δmax, Δmin, θmax and θmin) were characterized by short
distance variations compared to angles in the case of snow-covered surfaces. From this point of
view, clusters with limited perimeters (Pf < 0.04) and a high number of included pixels ( ftot > 50
of the analyzed pixels) described surfaces with homogeneous reflective behavior, as expected for
snow-covered surfaces. The second rule that can be considered includes clusters with limited
perimeters (Pf < 0.04) and consistent number of included pixels (10 < ftot < 50 of the analyzed pixels).
The optical behavior of those clusters must be coupled to their centroid position that must have low
spectral angles (μΔ < 0.5). These constraints describe, also in this case, clusters characterized by a
homogeneous spectral behavior coherent with a snow-covered surface. The third rule that completes
the classification procedure consisted on estimating the range of Δ between the defined clusters in the
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image and on defining a threshold (TΔ) that discriminates snow and other surface types. Two situations
can occur for defining clusters above the threshold as snow-covered surface: one with multiple clusters
(Equation (6)) and one with a single polygon (Equation (7)).

μΔ > maxΔmax − minΔmin (6)

μΔ > 0.8 (7)

Once performed the classification, the amount of snow-covered surface was obtained adding the
contribution of each cluster identified as snow covered. Furthermore, the quality of the final output
was checked by the target area over the 10-year series of images. From this perspective, the ground
control points were used to estimate eventually-induced shifting of the target view, and also to control
the occurrence of adverse meteorological conditions (fog, clouds, intense raining/snowing) that could
affect the image. Finally, the dataset was filtered from artifacts coupling this analysis to some basic
tests about the file corruption and the image resolution.

2.4. Orthorectification

The orthorectification module was based on the geometrical correction of the perspective view.
This step was implemented following [32]. The available digital elevation model [33], with a 5 m spatial
resolution and 1 m vertical resolution, provided about 300 topographic points that were projected
on the camera view (Figure 1c). The effectiveness of the correction was estimated considering eight
ground control points.

2.5. Satellite Snow Products

Several satellite products are available for the remote sensing of the cryosphere and for this study
we considered products obtained by optical sensors, characterized by different spatial resolutions:
high (below 100 m); intermediate (below 1 km); and low (higher than 1 km). The integration between
those products and ground-based imagery will be tested, in order to improve the dataset concerning
the snow cover over a decade.

2.5.1. Optical Remote Sensing with High Spatial Resolution

The available remotely sensed snow products with a higher spatial resolution (below 100 m) were
limited to Landsat missions, considering the studied time range (2004–2013). The selected sensors
included Landsat satellites from 5 to 8, taking some differences into account in terms of band spectral
ranges. All these data are now processed and available in the Swiss Data Cube [34]. The Landsat
satellites are characterized by a spatial resolution of 30 m and a revisit time of 16 days. The considered
data were geometrically and atmospherically corrected (Level 2A) using the Second Simulation of the
Satellite Signal in the Solar Spectrum (6S) algorithm available in the Atmospheric and Radiometric
Correction of Satellite Imagery (ARCSI) software [35]. The final estimation of NDSI was possible
considering Eq.1 and the first short-wave infrared band of Landsat sensors. The wavelength ranges
are specific for each sensor and they correspond to 520–600 nm and 1550–1755 nm for missions 5 and 7,
and 533–590 nm and 1566–1651 nm for mission 8 [36].

2.5.2. Optical Remote Sensing with Intermediate Spatial Resolution

The highest time resolution available for optical remote sensing at our latitudes is provided, in
the framework of the Earth Observing System (EOS) flagship, by NASA’s satellites Terra and Aqua.
Both platforms are equipped with the Moderate Resolution Imaging Spectroradiometer (MODIS) and
they provide the coverage of the Earth two times daily (Terra in the local morning and Aqua in the
local afternoon). The instrument is characterized by 36 bands with a spatial resolution of 250 m in the
visible range and 500 m in the short-wave infrared. The NASA’s data chain provides the retrieval of
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NDSI at the ground, and we considered the MOD10A1_006 and the MYD10A1_006 products, for Terra
and Aqua respectively, obtained using the National Snow and Ice Data Center services [11]. The NDSI
values, calculated using the MODIS bands 4 (545–565 nm) and 6 (1628–1652 nm) in Equation1, were
obtained in absence of clouds 2314 times over 6556 overpasses within the studied period.

2.5.3. Optical Remote Sensing with Low Spatial Resolution

The daily estimation of the snow cover extent is being provided, over the considered period, by
the European Space Agency as a component of the Data User Element. The GlobSnow Snow Extent
(SE) product covers the Northern Hemisphere and it is going to be extended to the Sentinel missions.
The GlobSnow SE processing system applies optical measurements in the visual and in the thermal part
of the electromagnetic spectrum acquired by the ERS-2 sensor ATSR-2 and the Envisat sensor AATSR.
The first step of the data chain is based on a cloud-cover retrieval algorithm (SCDA) where clouds,
as well as large water bodies (oceans, lakes and rivers) and glaciers, are masked out. This algorithm is
based on the brightness - temperature difference between 11 and 3.7 μm and on a set of additional
rules, useful for certain sky conditions. Furthermore, the snow cover information is retrieved for
not-vegetated areas by the NLR algorithm [37] where the band 2 (670 nm) is considered. This step is
based on a semi-empirical reflectance model, where reflectance from a target is expressed as a function
of the snow fraction. The Fractional Snow Cover can then be derived from the observed reflectance
based on the given reflectance constants and the transmissivity values. The product is provided daily
with a spatial resolution of 1 km and the data are available using the GlobSnow service [13].

2.6. Statistical Analysis

The statistical analysis performed on the available datasets was carried out using state-of-the-art
tools [38] that were implemented in the R-Project programming environment [29].

3. Results

Results will be presented separating the three objectives of the paper. The first part of the analysis
will consider a small dataset where different supervised and automated classifiers will be compared.
The second section will consider a ten-year dataset where about 8000 images will be processed using
automated solutions. Finally, the FSC estimated by terrestrial photography will be compared to the
output obtained by remotely sensed data.

3.1. Comparison between Supervised and Automated Classifiers

This first part of the analysis includes two steps: one dedicated to the orthorectification of the
panoramic view observed by the webcam; the other focused on the image classification performed
considering the color components associated with a RGB color space. The first process produced a
weighting mask applying a geometrical correction and all the considered classification algorithms used
this product successively. The classification step was operated on a small dataset of 30 images due to
the user intervention required by the supervised methods (ML, MD, MA and PD) for the definition of
snowed ROIs. This is a strong limitation for the analysis of long time series, and it outlines the need
of automated solutions since BT and SS algorithms, for example, did not require any user decision.
The results obtained by the BT method and the SS algorithm were preliminarily analyzed considering
the confusion matrix of each image and estimating the average overall accuracy as reported in Table 1.

Considering only two classes of cover (snow and not snow pixels), the comparison between
automated and supervised classifiers showed in general a good agreement with an overall accuracy
higher than 90%. Furthermore, SS showed a better performance compared to BT with an increased
average accuracy of about 1–2% in terms of pixel number. While BT reached the full agreement with
the supervised methods in 10% of images, SS matched the classifications obtained by the traditional
approaches in more than 30% of images. The goodness of the automated algorithms is confirmed by
the Cohen’s kappa coefficient, which increases from 0.89 for BT to 0.93 for SS. Both averages indicated
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very good agreements between supervised and automated solutions but they confirmed the increased
performance of the algorithm based on Spectral Similarity. Although these differences may seem
limited, the contribution of 2000–5000 pixels (in a masked part of the camera image of 250,000 pixels)
in terms of surface can be important, depending on the distance of each pixel. The projection of each
pixel on the surface could increase consistently from closer to faraway pixels. From this perspective,
the impact of omissions and false discoveries on the projected area could be higher than the overall
accuracy in terms of pixels and it should be analyzed case by case.

Table 1. Overall accuracy of automated algorithms, Blue Thresholding (BT) and Spectral Similarity
(SS), versus supervised classifiers: the Mahalanobis distance (MA); the Maximum Likelihood (ML); the
Minimum Distance (MD); and the Parallelepiped classifier (PD).

Overall Accuracy (%)

MA ML MD PD

BT 96.9 96.8 97.9 97.8
SS 97.9 98.5 99.2 98.6

3.2. Comparison between Automated Classifiers

The comparison between the estimated snow-covered areas obtained by the two automated
algorithms (Figure 4a and Figure S1 for one example) confirmed the trend on underestimating
the snow extent by BT compared to SS (see Table S1 for the raw data). The FSC estimated by
the two methods differed slightly (the non-parametric Kruskal-Wallis chi-squared test indicated
a non-significant statistical difference) and the Root Mean Squared Error (RMSE) was about 7.4%.
The relation between the two FSC estimations showed a good correlation (R2 close to 0.95) and the
slope of the regression was 0.91 with an intercept of 11.5%.

Figure 4. Performance of Blue Thresholding (BT) algorithm versus the Spectral Similarity (SS) method
considering only the test dataset (a). Comparison between the two methods considering the complete
dataset (b).

Although BT and SS estimations were almost consistent considering only the small dataset,
the complete dataset highlighted an improved performance of SS (Figure 4b). The Kruskal-Wallis
test indicated differences with a significance level higher than 99% and the RMSE was about 12%.
The relation between the two FSC estimations showed a limited correlation (R2 close to 0.87) compared
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to the small dataset, and the slope of the regression was 0.87 with an intercept of 14.5%. The detection
of snow-covered areas using SS was generally higher than that obtained by BT and in few occurrences,
it was completely missed by BT (see Table S2 for the raw data). The points closer to the left axis
were, in fact, situations where light conditions (low sun elevation or intense cloud cover) affected
the BT output. Those illumination conditions were important also in additional cases, where BT
underestimated the snow-covered area compared to SS.

3.3. Comparison between FSC Estimations Obtained by Terrestrial Photography and Remote Sensing

The comparison between satellite products and terrestrial photography retrievals was focused
on evaluating the relationship associated with the two data sources (see Table S3 for the raw data).
We considered remotely sensed data with different spatial resolutions and data chains. The Landsat
images available in the considered time range was 189, but 55 images were discarded due to the intense
cloud coverage. The MODIS values were obtained in absence of clouds 2314 times over 6556 overpasses
within the studied period. Finally, 289 GlobSnow data points were available during the considered
period. While Landsat and MODIS data were converted in FSC considering the state-of-the-art relation
described by [8], the GlobSnow product is ready-to-be-used considering the ground-truth support of
the calibration sites identified in the images.

The Landsat sensors provided 24 observations (Figure 5a) and 10 were characterized by NDSI
higher than 0.6, indicating the total coverage of snow in pixels. While two observations showed
coherent NDSI values with the camera estimates (when snow cover was absent, the NDSI was negative),
intermediate values were 3 times slightly above the expected results estimated using Equation (2)
and 9 times consistently higher (more than 30% of overestimation). Whereas illumination differences
can be related to the definition of a possible site-specific relation, heavy differences occurred when a
partial shadow of clouds on the ground was present during the satellite revisit. The non-parametric
Kruskal-Wallis chi-squared test indicated differences with a significance level of 80%, the RMSE was
about 21% and the correlation coefficient was 0.59.

The MODIS sensors provided 430 observations (Figure 5b) and 205 were characterized by NDSI
higher than 0.6, indicating the total coverage of snow in terms of pixels. The intermediate values were,
also in this case, generally above the expected results. A first group of 26 observations showed camera
FSC higher than expected NDSI-derived values with a difference higher than 30%; 33 observations
were up to 30% higher; and 15 times MODIS products didn’t detect any snow cover while the
camera measured FSC ranging between 10–60%. All of these situations occurred when the cloud
screening missed to identify partial cloud shadows on the ground while the satellite was overpassing.
This comparison, in addition to Landsat indications, showed negative estimations in eight cases.
These estimations (more than 20%) were artifacts associated with wrong cloud masking (there was
no snow on the ground and it was full of clouds in the sky). The non-parametric Kruskal-Wallis
chi-squared test indicated differences with a significance level of 99%, the RMSE was about 14% and
the correlation coefficient was 0.91.

Finally, the GlobSnow SE product provided 62 observations (Figure 5c) and the estimated output
was coherent 57 times (with full snow coverage at the ground), whereas the GlobSnow product
missed to detect the snow cover 5 times, compared to the camera observations. The non-parametric
Kruskal-Wallis chi-squared test indicated differences with a significance level of 99%, the RMSE
was about 18% and the correlation coefficient was 0.84. From a statistical point of view, all the
satellite products showed significant differences compared to the camera-based estimations even
if the correlation was good. This observation is influenced, of course, by the number of outliers
included in the available dataset composed by the different satellite revisits, which depends mostly on
cloud screening.
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Figure 5. Comparison between Fractional Snow Cover estimations obtained by terrestrial photography
and remote sensing. Plots refer to Landsat (a), MODIS (b) and GlobSnow (c).

4. Discussion

The first part of the results evidenced that automated solutions provide FSC estimations
compatible to the supervised solutions available in literature. The major advantage of automated
methods consists in the reduction of time consumption and, consequently, in the opportunity of
processing long time series of terrestrial images. We described an automated approach based on
the concept of Spectral Similarity [23], which could prevent artifacts under particular illuminating
conditions. While a small training dataset supported the training of an SS-based algorithm, the ten-year
dataset, with about 8000 images, showed a better performance compared to a state-of-the-art automated
method BT described by [26]. The trend of FSC underestimation (about 10%) outlined by the small
training dataset was confirmed by the large decadal comparison. The observed statistically significant
differences were limited in terms of pixel number (less than 1%), but these discrepancies were important
in terms of surface. The projection of each pixel on the surface could increase consistently from closer
to faraway pixels and from this perspective; the impact of omissions and false discoveries on the
projected area could be high. Furthermore, the ability to analyze the “difficult” conditions affecting
the BT performance [10] was confirmed by statistically significant differences detected between the
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two data series. The limitations of BT retrievals can be associated with poor illuminating conditions
(low Sun elevation or heavy cloud coverage) and surface roughness. While low Sun elevation can
occur in the early morning or in the late afternoon, surface roughness and cloud coverage are not time
dependent. Furthermore, while the illuminating conditions can alter the reflective behavior of snow in
response to a more blueish incident light, the roughness can imply the presence of shadowed surfaces
that BT cannot discriminate compared to SS. While BT tends to separate shadowed and illuminated
areas, SS can be trained to integrate both types since the spectral angle is similar and its only variation is
the spectral distance. While BT can generally provide good results between 11:00 am and 3:00 pm local
time, SS can enlarge the range of performing conditions in terms of both Sun elevation and cloud cover.
These preliminary results concerning the SS approach represent a first step towards the development of
a machine learning strategy aimed to analyze routinely ground-based images. Artifacts associated with
purely-BT classification [19,26,28], which are well documented in literature [19,27,28], were reduced
and the need to consider all the information present in a RGB composite image [27] was followed.
Differently from [27], which combined principal component analysis to BT, SS is independent from
BT and considers all the bands at the beginning of the classification step obtaining a discrimination
between surface types based directly on the spectral behavior of each classified feature. Furthermore,
SS considers the color variations induced by illumination conditions and the probability to separate
different surface types is associated with statistical measurements such as the Mahalanobis distance.

Finally, the FSC estimated by terrestrial photography and satellite products evidenced different
aspects to be considered: the spatial resolution and the cloud screening. The cloud screening is a
critical step present in all of the data chain considered in this study. Our data demonstrated, in fact,
that a large number of satellite omissions were associated with a wrong detection of clouds. In addition
to those exclusions, different situations evidenced an underestimation of FSC affected by the presence
of cloud shadows that reduce the reflection of light from the surface. Although the different data
chains [6,8,13] of course, consider these anomalies, the contribution of terrestrial photography, in this
case, could support for the validation of remotely sensed retrievals. Moving to the spatial resolution,
we considered data ranging from a 30 m resolution (Landsat), to 500 m (MODIS), to 1 km (GlobSnow
SE) in order to test different data chains with different spatial and time resolutions. The spatial
resolution had, of course, an impact and we found a more reliable relation with Landsat data than
with those characterized by a coarser resolution. While the projected area of the camera view is five
times the surface covered by a single Landsat pixel, it represents the 2% of a MODIS pixel the 0.5% of a
single GlobSnow grid element. This implies that the surface morphology can affect the final estimates
due to the presence of hills and small valleys.

This framework outlines the potentiality of facilities where different satellite snow products can
have a common term of comparison such as terrestrial cameras. Ground-based images represent
a good proxy, useful for validating the coherence between different products. On the one hand,
this data-source can support the reconstruction of long time series useful for climate change studies.
On the other one, this kind of proxy can assist the definition of site-specific relation between FSC and
the optical behavior of the surface.

5. Conclusions

The contribution of terrestrial photography for the definition of the relation between the Fractional
Snow Cover and the spectral behavior of the surface is a major issue. Ground-based cameras represent
a valuable proxy of data useful for investigating the snow cover extension over a long period. From
this perspective, terrestrial photography can be used as ancillary information and it supports the
integration among different multispectral remotely sensed datasets. The availability of an automated
procedure useful for the discrimination between snow and not-snow covered surfaces can support
the analysis of large datasets. The selected approach based on Spectral Similarity was compared with
supervised methods and with the Blue Thresholding procedure on a training dataset. Considering
the supervised methods as a reference, the Spectral Similarity approach showed better performance
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in estimating the snow cover area. Furthermore, expanding the dataset to a 10-year terrestrial image
record, the algorithm increased the capability to estimate the Fractional Snow Cover under a larger
range of conditions compared to the state-of-the-art method. The integration with three different
satellite snow products (Landsat, MODIS and GlobSnow) highlighted the potentiality to define a
site-specific relation and threshold useful for isolating the snow cover area from remotely sensed data.
Finally, the support provided by terrestrial photography enhanced the possibility to detect artifacts
associated with clouds and shadows.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/9/2/97/s1,
Figure S1: Example of comparison between output obtained by automated classifications on a terrestrial image,
Table S1: Training dataset composed by FSC estimated using supervised and automated methods (Figure 4a),
Table S2: Complete dataset composed by FSC estimated using only automated methods (Figure 4b), Table S3:
Complete dataset composed by FSC estimated using satellite products (Figure 5).
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2. Helmert, J.; Şensoy Şorman, A.; Alvarado Montero, R.; De Michele, C.; de Rosnay, P.; Dumont, M.; Finger, D.;
Lange, M.; Picard, G.; Potopová, V.; et al. Review of Snow Data Assimilation Methods for Hydrological,
Land Surface, Meteorological and Climate Models: Results from a COST HarmoSnow Survey. Geosciences
2018, 8, 489. [CrossRef]

3. Pirazzini, R.; Leppänen, L.; Picard, G.; Lopez-Moreno, J.I.; Marty, C.; Macelloni, G.; Kontu, A.; von Lerber, A.;
Tanis, C.M.; Schneebeli, M.; et al. European In-Situ Snow Measurements: Practices and Purposes. Sensors
2018, 18, 2016. [CrossRef]

4. Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow–A review of available methods. Int. J.
Remote Sens. 2011, 33, 4094–4134. [CrossRef]

5. Dozier, J.; Green, R.O.; Nolin, A.W.; Painter, T.H. Interpretation of snow properties from imaging
spectrometry. Remote Sens. Environ. 2009, 113, 525–537. [CrossRef]

6. Rodell, M.; Houser, P.R. Updating a land surface model with MODIS-derived snow cover. J. Hydrometeorol.
2004, 5, 1064–1075. [CrossRef]

7. Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow-covered
area and grain size from imaging spectrometer data. Remote Sens. Environ. 2009, 113, 868–879. [CrossRef]

8. Salomonson, V.V.; Appel, I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and
validation results. IEEE Trans. Geosci. Remote 2006, 44, 1747–1756. [CrossRef]

9. Yin, D.; Cao, X.; Chen, X.; Shao, Y.; Chen, J. Comparison of automatic thresholding methods for snow-cover
mapping using Landsat TM imagery. Int. J. Remote Sens. 2013, 34, 6529–6538. [CrossRef]

10. Härer, S.; Bernhardt, M.; Siebers, M.; Schulz, K. On the need for a time- and location-dependent estimation
of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales.
Cryosphere 2018, 12, 1629–1642. [CrossRef]

11. Hall, D.K.; Riggs, G.A. MODIS/[Terra/Aqua] Snow Cover Daily L3 Global 500m Grid, Version 6. NASA
National Snow and Ice Data Center Distributed Active Archive Center. Available online: https://nsidc.org/
data/modis/data_summaries (accessed on 1 October 2018).

49



Geosciences 2019, 9, 97

12. Solberg, R.; Amlien, J.; Koren, H. A Review of Optical Snow Cover Algorithms. Norwegian Computing
Center Note, SAMBA/40/06. 2006. Available online: https://www.nr.no/directdownload/4400/Solberg_-_
A_review_of_optical_snow_algorithms.pdf (accessed on 1 October 2018).

13. Metsämäki, S.; Pulliainen, J.; Salminen, M.; Luojus, K.; Wiesmann, A.; Solberg, R.; Böttcher, K.; Hiltunen, M.;
Ripper, E. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment.
Remote Sens. Environ. 2015, 156, 96–108. [CrossRef]

14. Arslan, A.N.; Tanis, C.M.; Metsämäki, S.; Aurela, M.; Böttcher, K.; Linkosalmi, M.; Peltoniemi, M. Automated
Webcam Monitoring of Fractional Snow Cover in Northern Boreal Conditions. Geosciences 2017, 7, 55.
[CrossRef]

15. Kepski, D.; Luks, B.; Migała, K.; Wawrzyniak, T.; Westermann, S.; Wojtuń, B. Terrestrial Remote Sensing of
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Abstract: Knowledge of the duration and distribution of seasonal snow cover is important for
understanding the hydrologic regime in mountainous regions within semi-arid climates. In the
headwater of the semi-arid Sugnugur catchment (in the Khentii Mountains, northern Mongolia),
a spatial analysis of seasonal snow cover duration (SCD) was performed on a 30 m spatial resolution
by integrating the spatial resolution of Landsat-7, Landsat-8, and Sentinel-2A images with the daily
temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) snow products
(2000–2017). Validation was achieved using in situ time series measurements from winter field
campaigns and distributed surface temperature loggers. We found a mean increase of SCD with
altitude at approximately +6 days/100 m. However, we found no altitude-dependent changes in
snow depth during field campaigns. The southern exposed valley slopes are either snow free or
covered by intermittent snow throughout the winter months due to high sublimation rates and
prevailing wind. The estimated mean SCD ranges from 124 days in the lower parts of the catchment
to 226 days on the mountain peaks, with a mean underestimation of 12–13 days. Snow onset and melt
dates exhibited large inter-annual variability, but no significant trend in the seasonal SCD was evident.
This method can be applied to high-resolution snow mapping in similar mountainous regions.

Keywords: snow; snow cover duration; persistent and intermittent snow; optical remote sensing;
northern Mongolia

1. Introduction

The duration and distribution of snow cover is an important governor of hydrologic and ecologic
processes and contributes a significant role in local and regional hydrologic regimes [1–3]. For basin
headwaters in arid or semi-arid regions, seasonal snow-melt sustains river discharge, contributing to
regional water resources during dry summer periods. Hence, accurate estimation of snow cover area
(SCA) is needed to evaluate the runoff from snowmelt. Snow cover also plays an important role in
permafrost distribution through its insulating effect on seasonal ground temperature [4]. In response
to recent accelerated warming, there has been an observed decrease in SCA and snow cover duration
(SCD) in the Arctic regions [5]. In the mid-latitudes of Central Asia, snow cover has been observed to
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accumulate later into the autumn season [6] whilst the spring melt period coincides with increasing
spring rainfall [7], reflecting mid-latitude extreme weather in winter months, coinciding with the
arctic amplification and the strengthening of the Siberian high (SH) [8,9]. The SH creates an extreme
continental climate that promotes low temperatures and longer seasonal snow cover extent, and is
centrally located over northern Mongolia [10]. Our understanding of the timing and characteristics of
snow cover is highly limited, yet it is critical, as Mongolia’s climate is semi-arid, largely governed by
the SH.

Snow cover can be accurately monitored using in situ measurements, including snow depth,
density, and snow water equivalent (SWE); however, such measurements are limited for broad spatial
analyses due to their sparse monitoring networks. In contrast, optical remote sensing applications are
capable of detecting SCA globally with frequent temporal coverage but are often limited by cloud
cover and winter time solar darkness.

Optical remote sensing data provide one of the best opportunities to characterize SCA and SCD
in the data scarce region of Mongolia due to a high number of clear sky days during winter, promoted
by the SH. The Moderate Resolution Imaging Spectroradiometer (MODIS) has provided daily snow
cover products with 500 m spatial resolution since 2000, including MODIS Terra (MOD10A1) and
Aqua (MYD10A1) [11–17]. In addition to MODIS, other popular optical sensors exist, including the
Landsat series and more recently, the Sentinel-2A series, providing a higher spatial resolution but at a
reduced temporal resolution [18], relative to MODIS. The combination of MODIS, Landsat, and Sentinel
images [19] have proven to be useful to retrieve SCA by applying different downscaling techniques
using air temperature, solar radiation, and topography [20–22]. However, the effectiveness in detecting
SCA and SCD by such optical sensors is challenged by landscape heterogeneity created by topography,
patchy snow cover, forest canopy, cloud coverage, and the spatial and temporal resolutions [13,23].

In this study, we combine the daily temporal resolution of MODIS Terra and Aqua with the
high spatial resolution of Landsat and Sentinel images to derive SCA and SCD at a 30 m spatial
resolution and at a daily temporal resolution over the Sugnugur catchment in northern Mongolia for
winters 2000/2001 to 2016/2017. The catchment area (495 km2) is located about 100 km northwest
of Ulaanbaatar in northern Mongolia (Figure 1), with elevations ranging from 960 to 2800 m.a.s.l.,
forming the headwaters of the Selenga River before it drains into Lake Baikal. The importance of
this small headwater catchment is highlighted for its snow-melt water contribution to regional water
resources and energy exchange balance. Approximately 30% of the annual precipitation occurs as
snowfall during the winter months [24,25], and 20% of annual evapotranspiration comes from snow
sublimation and snow-melt water [26,27]. North-west prevailing winds are dominant and bring the
majority of the precipitation, with a strong orographic effect. The lower elevations are defined by
shrubs with short grasslands, whilst the Siberian boreal forest is found on north-facing slopes and
higher elevations; yet about one third of this forest cover has been affected by wildfires [25].
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Figure 1. Sugnugur river catchment. Red points indicate the locations of snow field campaigns, as well
as the surface temperature measurements. The hydro-climatic station is located at elevation 1193 m.a.s.l.
UB is Ulaanbaatar.

We quantified the spatial distribution and timing of seasonal snow cover (i), introduced an
alternative correction method to account for elevation and land cover when detecting SCA and SCD
(ii), and reconstructed the snow cover development over the winter 2016/2017 (iii). We validated our
results using several in situ observations including surface temperature, snow field measurements,
and time-lapse photographs.

2. Materials and Methods

2.1. Materials

We used daily MODIS Terra (MOD10A1 V.006) and Aqua (MYD10A1 V.006) snow products
(i), a digital elevation model (DEM) with 30 m spatial resolution (ii), Landsat-7, Landsat-8, and
Sentinel-2A data (iii), a Landsat based land-cover classification map (iv), hydro-climatic data observed
with high frequency (v), iButton surface temperature measurements distributed in the catchment (vi),
and photographs from a time-lapse digital camera (vii). The datasets i–iv were used for reconstructing
SCA and SCD whereas v–vii were used to validate the results.

MODIS snow-cover data: Daily MODIS snow products (Version. 006) from the Aqua and Terra
satellites with 500 m spatial resolution were employed for the winters 2000/2001 to 2016/2017. These
products contain normalized difference snow index (NDSI) values 0–100 as percentages, as well as other
parameters, including cloud coverage. The MODIS snow products including the 8-day composite snow
product are also widely used in many regions of the world [28–38]. However, the main drawbacks of
these products are cloud coverage and coarse spatial resolution [39]. Therefore, we used the original
daily data rather than using 8-day snow product to minimize the uncertainties that may have resulted
from any cloud-filtering [15]. The data were obtained from the National Aeronautics and Space
Administration (NASA) Earth Observing System Data and Information System (EOSDIS) Reverb
platform [40].

Digital Elevation Model: We used a 30 m DEM derived from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) [41]. The DEM was used to derive the altitude-dependent
rate of SCD to aggregate MODIS data to 30 m resolution.
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Landsat and Sentinel data: Optical remote sensing data from the Landsat-7, Landsat-8,
and Sentinel-2A were used to generate the winter snow cover time series [42]. The Landsat-7/8
data have a spatial resolution of 30 m and a temporal resolution of 16 days (8 days when they are
combined). The Sentinel-2 has a spatial resolution of 20 m and a temporal resolution of 5 days. In total,
40 clear-sky day images (Table S1, Supplementary Materials) between the beginning of October 2016
(mid-autumn) and end of May 2017 (late spring) were processed. The Sentinel images were aggregated
to 30 m resolution to meet the same Landsat and DEM resolutions.

Land-cover: Land-cover classification for Sugnugur catchment was produced based on a
Landsat-7 image of the year 2011. We believed that this map was appropriate because there was
no significant change in land-cover since 2011. In total, five different land-covers were classified in the
Sugnugur catchment, including: forest, burned forest, short grassland, shrub, and rock. Areas with
forest and shrubs were used in this study for correcting snow distribution maps from the Landsat and
Sentinel images because of the low snow detection rate under canopy closure.

In-situ measurements: Snow depth (SD) has been observed using the Campbell SR50A-L sensor
since winter 2012/2013 in short grassland vegetation, as well as other climatic parameters such as
precipitation, air temperature, surface temperature, and albedo at our hydro-climatic station site
located near the entry of the catchment. The SD sensor measures the distance between the sensor
and the underlying surface. These data contain continuous SD measurements including records on
no-snow conditions with 1 h intervals. As the snow depth measurement at the hydro-climatic station
site cannot represent the areal distribution of snow in the catchment, we also conducted a series of snow
field measurements at 13 locations for two consecutive winters, 2016–2018, in order to understand the
spatial variability of snow distribution and SD. In addition to the snow field measurements, we also
observed surface temperatures for 2016–2017 using temperature iButtons at near surface (5 cm) depth
with a 3 h interval. The iButtons were placed at all the snow field measurement locations with altitudes
ranging from 1193 to 1612 m.a.s.l.

2.2. Methods

The main idea of the methodology applied in this study was to downscale the coarse resolution
MODIS data based on a combination of other freely available optical remote sensing images, as well as
ground measurements. An altitude-dependent SCD rate derived from MODIS data and DEM coupled
with snow cover area (SCA) derived from the combination of Landsat and Sentinel images were used
to produce annual SCD maps with 30 m spatial resolution from 2000–2017. We used the daily temporal
resolution of MODIS Aqua and Terra satellites for deriving the temporal distribution of snow over
the last 17 years, particularly the altitude dependent SCD rate, snow onset (So), and melt (Sm) dates.
The Landsat and Sentinel images, with high spatial resolutions, were used for constructing the spatial
distribution of snow in the study area. The abbreviations used in this study are shown in Table A1,
Appendix A, and the flowchart of the procedure can be found in Figure 2.
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Figure 2. Flowchart of the procedure to map snow cover duration (SCD) and snow cover area (SCA)
in the Sugnugur catchment. MODIS is Moderate Resolution Imaging Spectroradiometer. NDSI is
normalized difference snow index. GF and CA are gap-filling and conditional adjustments, respectively.
Ts and Ta denote daily mean ground surface temperature (GST) and daily mean air temperature,
respectively. SD and SWE are snow depth and water equivalent, respectively.

For all satellite images, we adopted the normalized difference snow index (NDSI) with a threshold
of ≥0.4 to denote snow cover [40,42–44].

NDSI =
Green − SWIR
Green + SWIR

(1)

where Green represents reflectance in a visible band and SWIR is reflectance in a short-wave
infrared band.

Estimating SCD from ground temperature: The timing characteristic of snow cover was studied at
the hydro-climatic station to understand the general snow accumulation and ablation processes in the
study area. SCD is commonly derived from SD, SWE, or satellite data. In this study, a daily mean
air temperature (Ta) of <0 ◦C and a daily mean albedo of ≥0.25 (unitless) were used to distinguish
snow from the existing vegetation (Figure 3). We assume a persistent snow cover (continuous) if
these two conditions are consistent for at least 14 days, otherwise it will be assigned as intermittent
(not continuous). Occasional autumn and spring (transition periods) snowfalls develop intermittent
snow cover lasting for a couple of days, whereas decreased air temperature towards the winter months
(DJF) allows the snow cover to become persistent. We classified snow duration for each year as the
sum of both intermittent SCD and persistent SCD.
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Figure 3. Snow depth (SD) collected from the SR50A-L sensor at the hydro-climatic station site by
coupling with daily air temperature and albedo. The values are shown as 5-day averages.

We also used surface temperatures collected from the hydro-climatic station as proxies to classify
persistent snow cover, such that if the daily mean surface temperature (Ts) remained below −1 ◦C for
at least 14 days, the snow cover was determined as persistent. These conditions were then applied to
our iButton measurements, which allowed us to validate our reconstructed SCD across the catchment.
We examined the sign and strength of the relationship between the persistent SCD determined from
the Ta and albedo and that approximated from Ts using Pearson’s correlation. We assumed that if a
positive and significant relationship existed, then persistent SCD may be reconstructed from Ts. Winter
2012/2013 was an exceptional year with relatively low temperatures in autumn, which led to a high
number of below −1 ◦C days. Therefore, we did a manual correction by selecting the days between
the date when first snowfall was observed after the surface temperature dropped below the threshold
and the date when albedo dropped to below 0.25.

MODIS derived snow metrics: The timing characteristic of snow over the study area was analyzed
using the daily MODIS Terra and Aqua data by determining snow onset (So) and snow melt (Sm) dates,
as well as SCD for snow seasons 2000–2017. We first separated the cloudy pixels, designated with
a value of 250, from the cloud free pixels and then detected the snow cover for the cloud free pixels
using the NDSI to create daily 500 m snow maps.

To reduce cloud coverage, we applied a series of cloud removal approaches to Terra and the
combination of Terra and Aqua data separately. First, we applied a 1-day backward and forward
gap-filling (temporal GF) approach, with a limit of 3 days, to both Terra and Aqua such that when a
pixel is cloudy, it goes one day backward and forward to test for a cloud free pixel [11,44]. Following
this temporal gap-filling, a conditional adjustment (CA), which takes spatial and seasonality corrections
into account, was applied. The CA assumes that if the given pixel after the temporal gap-filling is
still cloudy, it can be reclassified as snow or no-snow under certain circumstances; if two of the
8-neighboring pixels at lower elevation are cloud free and the day of year is within the range between
So and Sm dates of that certain pixel, we assigned snow. The So and Sm dates were determined for
each MODIS pixel as the first and the last day of the classified snow cover days within the hydrologic
year; it also defined the length of snow season for each pixel.

After adjusting for cloud cover, gap-filled images from both Terra and the combination data still
underestimated SCD over heterogeneous topography and forested areas because the coverage area
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of a single 500 × 500 m MODIS image includes a high range of elevations as well as both forested
north- and steep south-facing slopes. Thus, we generalized the annual number of SCD from the
MODIS data for each year over the study area based on annual SCD rates. To do so, 53 random points
were selected, either on mountain peaks or lowland areas where no forests or shrubs exist and the
topography is homogenous, in order to employ linear regression analysis between the SCD from the
improved MODIS data and DEM; later the regression parameters were used for deriving the SCD rate
for each year.

Trend analysis using linear least squares regression were also conducted for snow onset (So),
snowmelt (Sm) dates, and SCD from the improved MODIS daily snow-cover. Since air temperature is
one of the main parameters that drives the snow accumulation and ablation processes, we calculated a
trend analysis for monthly mean air temperature during the snow season, using observations from
the nearest long-term climate station at Chinggis Khan International Airport (60 km south from the
hydro-climatic station). The results can be found in Section 3.2.2.

Landsat and Sentinel images to correct for land-cover and topography: The generalized SCD is not
realistic because it includes the intermittent SCA, which mostly occurs on the steep south-facing slopes
and wind-blown surfaces. To identify these areas, we created a sequence of snow cover maps from the
combination of Landsat-7, Landsat-8, and Sentinel-2A images (40 images in total) taken on clear-sky
days. These time sequence maps are helpful in showing the development of SCA with high spatial
resolution in the study area. Although the spatial resolutions of the satellites are high, snow cover
below the forest canopy and dense shrub is difficult to detect [45]. Therefore, a correction method,
which considers altitude dependency and land-cover types, was applied to all Landsat and Sentinel
images to correct snow cover in those areas. More specifically, if a pixel from either a Landsat or
Sentinel image was classified as snow at the hydro-climatic station, the areas in higher elevations with
forests or shrubs were also classified as snow. If not, this assumption was ignored. By repeating this
correction for each image, the change detection analysis was completed for the snow season period
2016–2017, representing the development of SCA in the catchment. Based on the changes in SCA,
we separated the study area as persistent SCA (pixels classified as snow in >70% of the data) and
intermittent SCA (pixels classified as snow in <30% of the data). The result can be found in Section 3.3.
We assumed that the general spatial distribution of snow would be similar for each year to obtain the
mean SCD for winters 2000/2001 to 2016/2017 over the seasonal persistent SCA by using the empirical
altitude-dependent SCD rates that were found from the improved MODIS data.

Result assessment: To validate the results, we first compared the estimated total SCD with the
observed total SCD at the hydro-climatic station. Daily surface temperature measurements (Ts) from
the iButtons, distributed in the catchment, were also used by comparing the linear relationship, which
was found at the hydro-climatic station, to that between the estimated persistent SCD days and days
with <−1 ◦C of Ts from the iButtons (Figure 2). Photographs from the time-lapse camera and snow
field measurements were also used to verify the spatial distribution of snow visually.

3. Results

3.1. Seasonal Snow Cover from In Situ Measurements

In general, seasonal snow cover lasts from the beginning of October until the end of March
with strong variability during the transition period. This transition period refers to late autumn and
early spring with occasional intermittent snowfalls that develop a non-continuous snow cover that
is relatively thin and temporary. Observed snow depth derived with the combination of Ta < 0 ◦C
and albedo ≥ 0.25 showed that the total SCD ranged from 145 to 157 days with a mean depth of
12–25 cm/year from 2012–2017. The intermittent and persistent snow cover days were distinguished for
each year (Table 1). The duration of persistent snow cover was relatively stable while the intermittent
snow cover days showed strong variability ranging from 6 to 21 days. The maximum snow depths
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were observed in the second half of March before the main melt started. There was no clear relationship
between the variability of snow depth and the duration of snow cover.

Table 1. Intermittent and persistent snow cover days (SCD) during the observation period. 1 and 2

denote the persistent SCD derived from the combination of albedo and air temperature and below
−1 ◦C of daily mean surface temperature, respectively.

2012/13 2013/14 2014/15 2015/16 2016/17

Intermittent 13 12 13 21 6
Persistent 132 1/140 2 135 1/135 2 144 1/143 2 137 1/139 2 141 1/147 2

Total 145 146 157 156 147

As snow cover influences the surface energy balance significantly [46], the temperature at
the underlying surface can serve as a proxy of absence and presence of seasonal persistent snow
cover. Therefore, we validated persistent SCD using Ts at several locations, where snow cover was
underestimated from MODIS sensors, and which is demonstrated in Figure 4 by plotting snow depth
together with surface temperature measurements for each year at the hydro-climatic station.

 
Figure 4. An example of the discrimination of intermittent and persistent snow cover, determined
from the combination of albedo and air temperature measurements. The red and blue lines indicate
the observed daily mean surface temperature and the threshold of −1 ◦C, respectively. The black line
describes the typical snow accumulation during the snow season.

For the observation period at the hydro-climatic station, the distinguished persistent SCD showed
a moderate and positive correlation (r = 0.64, p < 0.05) with the persistent SCD determined from
the surface temperature record. These results suggest further that persistent SCD in other parts of
the catchment could be verified using the surface temperature iButton measurements. Snow field
measurements were conducted at each iButton location, and south-facing slopes were snow free while
both valley bottom and north-facing slopes had similar SD, indicating no changes with increasing
altitude (see details of the snow field measurements in Table S2, Supplementary Materials).
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3.2. Temporal Distribution of Snow

3.2.1. Cloud Reduction

To reduce cloud cover in the daily Terra and the combined Aqua and Terra images, the temporal
gap-filling (GF) and conditional adjustment (CA) were applied to both datasets. Figure 5 shows
the results as the mean cloud coverage. The most obvious decrease appeared after the temporal GF
filtering [47]. The relative percentage of cloud cover for the entire study area decreased up to 100%
from the initial MODIS data to the final CA filtering. The combination of the two initial data yielded
only slight improvements in reducing cloud coverage because the time difference between the two
overpasses was about 3 h; hence general atmospheric conditions remained similar. The difference
between Terra and the combined version after the final CA was not significant.

 
Figure 5. Changes in percent of cloud coverage after a series of cloud reduction steps applied
to daily MODIS snow products Aqua and Terra; Combined—The combination of both satellites;
Terra_GF—Gap-filling applied to only Terra; Comb_GF—Gap-filling applied to the combination;
Terra_CA—Conditional adjustment applied to Terra_GF; Comb_CA—Conditional adjustment applied
to Comb_GF.

3.2.2. SCD and Trend Analysis

Altitude, latitude, and solar radiation are known factors that govern SCD as well as their spatial
distribution [48,49]. Due to the study area’s relatively small size, stretched from east to west, the derived
SCD from the improved MODIS data showed an insignificant relationship with potential solar radiation
(p = 0.33); therefore, we ignored the influence of latitude and topography, and considered only
the altitude dependency for deriving the SCD rate (days/m). The mean annual SCD ranged from
124–226 days from the lowland plain area to the mountain peak, showing clear underestimation
over the forested and heterogeneous topography area (Figure 6). The mean increasing SCD rate was
+6 days/100 m with mean coefficient of determination r2 = 0.92 (ranging from 0.71–0.96) with the
probability value p < 0.001, and it agrees well with the result (+5.9 days/100 m) found in other Central
Asian mountains [7].
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Figure 6. Mean annual snow cover duration (SCD) for 2000–2017 from the improved MODIS-Terra and
the derived mean SCD rate (inset image). Green and blue dots denote the locations of hydro-climatic
station and selected random points, respectively. Areas with heterogeneous topography and forest
cover mostly in the middle part of the catchment demonstrate significant underestimation, such as
only 13 days, as shown in the scale.

The trend analyses of MODIS derived snow metrics (So, Sm, and SCD) and long-term air
temperature of snow season (from October to April) are shown in Figure 7. The So and Sm dates
exhibited large inter-annual variability with insignificant slightly increasing delays in both So (p = 0.53)
and Sm (p = 0.77) dates, indicating a slight shift in the snow season. To implement trend analysis for the
total SCD, we separated the study area into two parts (mountain and plain area) based on an elevation
threshold (2300 m.a.s.l) of the tree line [25], excluding the area that is always underestimated from the
MODIS data because of the forest canopies and topographic heterogeneity. Overall, the SCD over both
the mountains and the plains showed insignificant decreasing trends (p = 0.96 for plains and p = 0.41
for mountains). The mean change rates were −0.5 days/year for mountains and −0.04 days/year for
the plains, respectively. The mean SCD for mountain peaks dropped down to its minimum in winter
2014/2015 and increased to its maximum in winter 2012/2013. On the contrary, SCD in the plains
showed high variability between 2000 and 2008, and then it stabilized. The hydrologic year 2001/2002
had the shortest SCD in the plains due to late snow cover onset and early snow melt, and is in good
agreement with the other findings in Central Asia [50]. In addition, there was no decline in snow
cover over our study period, which is also in an agreement with other studies in the region, e.g., [1].
Nevertheless, the time series of 17 years may be relatively short to produce a trend analysis of these
snow metrics, and a longer time-series of data may be necessary for a more comprehensive analysis.
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Figure 7. Trend analysis for the mean snow onset, snow melt, and SCD for 2001–2017, as well as
monthly mean air temperature during snow season (ONDJFMA). Mountain peaks and plain areas
were separated for SCD analysis. The temperature trend was analyzed using daily mean values from
the nearest long-term observational site at the Chinggis Khan International Airport. There was no
significant trend in each snow metric, while a slightly decreasing trend (p < 0.05) in air temperature
was detected during the snow season, including intermittent and persistent snow periods.

Interestingly, the monthly mean air temperature during the snow seasons, including intermittent
and persistent snow periods, showed a decreasing trend over the last three decades. This decrease was
statistically significant (p < 0.05), but only for the mid-season months (DJF) (Table 2). Unlike in many
regions in the world, a decrease or no increase in winter air temperature has been observed since the
1990s, replacing the general increasing trend since the 1960s over Central Asia under the influence
of weakening SH [9,10,49]. The mean temperature of the snow season also showed an insignificant
negative relationship (r2 = 0.19, p = 0.07) with the SCD on the mountain top, indicating the decreasing
temperature may have played an important role in preventing SCD decrease.

Table 2. The significance of trend analysis in monthly mean air temperature over the last 31 years at
the Chinggis Khan International Airport (60 km from the study area).

r2 Slope Intercept p Value

October 0.002 −0.0092 −0.2744 0.78
November 0.053 −0.0721 −11.26 0.25
December 0.22 −0.142 −18.06 0.012 *

January 0.19 −0.14 −20.8 0.023 *
February 0.18 −0.15 −15.5 0.021 *

March 0.0009 −0.009 −7.82 0.09
April 0.03 0.0435 1.42 0.32

* Significant, when p < 0.05
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3.3. Spatial Distribution of Snow

For analyzing the spatial distribution of snow in the study area, we exploited the high spatial
resolutions of Landsat-7, Landsat-8, and Sentinel-2A images to create a sequence of snow cover maps
during the snow season 2016/2017 (Figure S1, Supplementary Materials). The first snow covered area
was captured on 11 October 2016 over mountain peaks by Landsat-7, and then decreased by 16 October
after 5 days as captured by Sentinel-2 during the autumn transition period. The percent of SCA in the
study area increased following several snow events and eventually reached 99.6% by 21 November,
including the hydro-climatic station site (Figure 8). The persistency of seasonal snow cover for the
Sugnugur catchment began after the heavy snow events from 6–7 November 2016.

 
Figure 8. Precipitation events, distinguished as rain or snow, observed at the hydro-climatic station
using the combination of albedo and air temperature measurements, and the inter-annual variability of
SCA detected by different satellites over the Sugnugur catchment for winter 2016/2017.

We were able to use 28 images (70% of the total data) to identify the spatial distribution of
seasonal persistent snow cover in 94.2% of the total area. The intermittent and snow free areas
were 5.3% and 0.5% of the catchment area during the winter 2016/2017, respectively. The different
spatial resolution of the two sensors may affect their combined use of time-series analysis [51] and
result in minor uncertainties, mostly in the intermittent SCA. The intermittent snow areas appeared
mostly on the steep south-facing slopes. Following several snow events, the south-facing slopes were
covered by snow, but shortly became snow free due to higher sublimation rates or blowing-wind [52].
However, the intermittent SCD on the south-facing slopes still remain unclear because of the coarse
spatial resolution of MODIS and non-daily coverage of the combined Landsat and Sentinel overpasses.
The absence of snow cover on south-facing slopes was captured by our time-lapse camera, and was also
visually inspected during the snow field campaigns (Figure S2 and Table S2, Supplementary Materials).

3.4. Mapping Snow Cover

Finally, we created a snow duration map (Figure 9) with 30 m resolution based on the findings
that included the combination of both ground measurements and various optical remote sensing
images. The map was produced only for seasonal persistent SCA because SCD for intermittent SCA
had higher uncertainty. The simple correction, which was applied to Landsat and Sentinel images
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using the supervised land-cover classification map, improved the spatial accuracy of SCA that was not
detectable or often underestimated by MODIS satellites.

Figure 9. The total snow cover duration (SCD) days in Sugnugur catchment calculated only for
persistent snow cover area. The intermittent and snow free areas were excluded due to their unknown
snow accumulation periods.

The mean altitude-dependent SCD rate +6 days/100 m was consistent with that found in the same
region [7]. The south-facing slopes were mostly snow free or with intermittent snow cover during
winter due to high sublimation rate, wind blowing, and slope steepness. The mean annual SCD ranged
from 124–226 days from the lowland plain area to the mountain peak (elevation difference of ~1700 m
and horizontal distance of ~35 km), or showing high variability for such a small scale. Therefore,
snow-melt water from the higher elevations with extended snow season is extremely important for
balancing the Sugnugur River discharge during spring and autumn dry seasons.

To match our temporal record of snow depth observations at the hydro-climatic station, we
compared the estimated SCD with the total observed SCD for the winters of 2012/2013 to 2016/2017.
There was a clear underestimation of satellite derived SCD and resulted in an error of 12–13 days/year
(Figure S3, Supplementary Materials). Previous studies have described MODIS snow products in
clear-sky conditions to return high accuracies of >93% for Terra and >90% for Aqua [28,53]. Assuming
these accuracies, our underestimation equates to 9% and is within the MODIS accuracy range.
Nevertheless, errors are likely propagated through the relatively weak snow detection rate of MODIS
sensors during the transition periods [13,54], the position of the hydro-climatic station relative to the
receipt of incoming solar radiation, as well as the accuracy of annual altitude-dependent SCD rate.

The absence of snow cover on the south-facing slopes was captured by the automated time-lapse
camera system, as well as was visually observed during fieldwork, which took place in the beginning
of March 2017 and 2018, or the accumulated persistent snow cover period. The photographs from
the camera showed a light snow event on 5 March 2017 together with the previous and following
days, indicating the south-facing slopes were snow-free before the event (Figure S2, Supplementary
Materials). The snow field measurements showed similar snow depths on both valley bottom and
north-facing slope without any altitude-dependent increase. Therefore, we speculate that snow depth
was homogeneous for the seasonal persistent SCA over the study area.

The days with below −1 ◦C of Ts at the hydro-climatic station showed a positive relationship with
the observed persistent SCD days. This suggests the possibility of validating the estimated SCD against
the days with Ts < −1 ◦C in the upper part of the catchment. For this analysis, surface temperature
measurements at the valley bottom and north-facing slopes in different land-cover types were used
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because the south-facing slopes were snow-free, and thus were excluded from the final SCD map.
The estimated SCD determined from Ts revealed good agreement with an r2 of 0.85 (p < 0.001) and
a mean bias of ±1 day compared to the hydro climatic station site. This would mean that the mean
altitude-dependent SCD rate is consistent for persistent snow cover areas where MODIS snow data are
contaminated by the topographic heterogeneity, forest, and shrubs.

4. Discussion

Detection of snow from MODIS data has proven to exceed 90% accuracy on clear-sky days [44,48,53],
but cloud coverage remains a major problem for all optical satellites. The temporal GF and CA (similar
to those in [11,44]) applied to the MODIS data resulted in promising cloud reductions of up to 100%.
This success is largely attributed to the SH, which enables a high number of clear-sky days over Mongolia
(Figure 5). The obtained So, Sm, and SCD did not indicate any significant trends since 2000, while
mid-season winter (DJF) air temperature showed a decreasing trend over the last three decades (Figure 7)
associated with the weakening of SH [8–10]. The SH starts to form in early autumn and causes early
forming snow cover due to its contribution to changes in temperature and precipitation [6,8,9]. Therefore,
the increased delay (statistically not significant) in So might be attributed to the seasonal strengthening
of the SH. However, more detailed investigations on extreme weather and precipitation events in
conjunction with the SH are necessary to draw strong conclusions.

In this study, we applied a simple alternative altitude-dependent correction to Landsat and
Sentinel images to produce a time series of snow distribution in the Sugnugur catchment. Results
showed the development of snow cover during the snow season in time and space and the classified
seasonal intermittent and persistent SCAs (Figure 9). Classifying persistent SCA from intermittent SCA
is important for more accurate hydrologic and water balance modelling. Since the temporal resolution
of the produced snow maps from Landsat and Sentinel images is still coarse, SCD for intermittent SCA
remains uncertain, and thus further investigations should also include the timing of intermittent snow
cover where ground measurements are not available.

We also demonstrated the altitude-dependent SCD rate to be +6 days/100 m and is in good
agreement with other rates across other Central Asian Mountains [7]. The overall accuracy of SCD was
~91% with the mean underestimation of ~12–13 days/year, which was probably caused by the reduced
MODIS snow detection rate for thin occasional intermittent snow cover that occurs in autumn and
spring months. The snow field measurements supported more comprehensive snow metrics, such as
SWE and SD in the study area. In general, no changes in SD with increasing elevation were evident over
the catchment. However, SD can vary at local scales because of forest interception, snow redistribution,
as well as different sublimation rates [55], and it should be studied in future investigations.

As snow cover contributes to the surface energy balance [56], it appears that the daily mean surface
temperature (Ts) of < −1 ◦C could be a good approximation of the overlaying existing persistent snow
cover. Nevertheless, the applicability of using Ts for defining seasonal persistent SCD might be limited
to certain spatial extents in cold regions because of the high climatic variability and characteristics of
snow cover in the high altitudes and latitudes of the Northern Hemisphere. The Ts from iButtons also
indicated that the changes in land-cover alter the timing of snow-melt processes, showing an earlier
Sm in burned forest relative to unburned forest [57]. Therefore, the consequent effect of the earlier
Sm in conjunction with energy exchange and long term snow monitoring, together with continuous
river discharge measurement, should be discussed in further studies for observing the contribution of
snow-melt water in the regional water resources.

5. Conclusions

The detailed spatio-temporal distribution of snow has not been previously studied in Mongolia.
In this study we examined snow cover in the Khentii Mountains, which is an important headwater
for Lake Baikal and is the origin of the Selenga River. The use of multi-source data provided us
essential information for understanding the timing and spatial characteristics of snow in the Sugnugur
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catchment within a semi-arid climate where snow plays an important role in the regional water
resources and surface energy balance.

The snow ground observation at the hydro-climatic station demonstrated strong variability in
the timing of snow, especially during the intermittent snow cover period, showing a duration of
6–21 days/year, while persistent SCD was relatively stable with 132–141 days. Daily mean surface
temperature of below −1 ◦C with continuation of at least 14 days could give a good proxy of seasonal
persistent snow cover. The manually measured SD at different elevations and land-cover types did not
indicate any variability during the two consecutive snow field measurements.

The combined MODIS, Landsat, and Sentinel retrievals with various spatial and temporal
resolutions gave us an opportunity to map snow cover and its duration in the mountainous region with
30 m resolution by applying a series of adjustments, including temporal gap-filling and conditional
adjustments. The derived SCD rate is similar to that found in other Central Asian Mountains.
The derived annual SCD shows high variations, but no significant trend since 2000. Overall,
the combination of snow ground observation, field measurements, and high resolution open source
optical remote sensing images with high temporal resolutions can be an option for understanding
snow distribution and duration in mid-latitude mountain regions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/9/1/53/s1,
Table S1. The acquisition dates of the satellite images that were used for producing the spatial distribution of snow.
All selected images were taken on cloud-free conditions. Table S2. The overview of snow field measurements
which were conducted on March 1, 2017 and 2018. Figure S1. Development of SCA for winter 2016-2017 from the
combination of Landsat and Sentinel retrievals. The light-blue color indicates snow cover. Figure S2. Typical snow
distribution in the Sugnugur catchment during the end of seasonal persistent snow cover period. Photographs
were taken using a normal digital camera with automatic time-lapse setting. Figure S3. Anomalies of the estimated
SCD for Terra and the combined version compared to the observed total SCD at the hydro-climatic station site for
winters 2012/2013 to 2016/2017.
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Appendix A

Table A1. Abbreviations used in the paper and their explanation.

Abbreviation Explanation Unit

SCD Snow cover duration days
SCD RATE Snow cover duration rate day/m

SCA Snow cover area %
SWE Snow water equivalent mm
SO Snow onset date
SM Snow melt date
SH Siberian high -

DEM Digital elevation model m
GF Gap-filling -
CA Conditional adjustment -

NDSI Normalized difference snow index -
TA Daily average air temperature ◦C
TS Daily average ground surface temperature ◦C
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Abstract: Continuous monitoring of glacier changes supports our understanding of climate related
glacier behavior. Remote sensing data offer the unique opportunity to observe individual glaciers
as well as entire mountain ranges. In this study, we used synthetic aperture radar (SAR) data to
monitor the recession of wet snow area extent per season for three different glacier areas of the
Rofental, Austria. For four glaciological years (GYs, 2014/2015–2017/2018), Sentinel-1 (S1) SAR data
were acquired and processed. For all four GYs, the seasonal snow retreated above the elevation
range of perennial firn. The described processing routine is capable of discriminating wet snow
from firn areas for all GYs with sufficient accuracy. For a short in situ transect of the snow—firn
boundary, SAR derived wet snow extent agreed within an accuracy of three to four pixels or 30–40 m.
For entire glaciers, we used optical remote sensing imagery and field data to assess reliability of
derived wet snow covered area extent. Differences in determination of snow covered area between
optical data and SAR analysis did not exceed 10% on average. Offsets of SAR data to results of annual
field assessments are below 10% as well. The introduced workflow for S1 data will contribute to
monitoring accumulation area extent for remote and hazardous glacier areas and thus improve the
data basis for such locations.

Keywords: SAR; transient snowline; annual AAR; mass balance; Rofental glaciers

1. Introduction

Changes in glacier mass balance are commonly used as indicators of global climate change [1].
However, contrary to central Europe or Scandinavia, regular glacier observations for most of Asia are
sparse to very sparse [2]. One parameter contributing to the annual mass balance of glaciers is the
amount of solid precipitation (snow) and the snow cover extent. Actually, most glaciers worldwide,
rely on the input of solid snow to grow glacier ice [3]. To measure and monitor temporal and spatial
changes of snow extent, remote sensing technology from space is considered as an optimum tool
(e.g., [4]).

In particular, optical systems are commonly applied to map temporal and spatial changes in
snow cover extent (SCE) (e.g., [5,6]). The lower limit of the SCE for glaciers or ice sheets is defined
as transient snowline, a measure of the extent of the snow-covered area at “any instant, particularly
during the ablation season” [7]. However, in mountainous areas, optical images are often of limited
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suitability due to cloud coverage or illumination. Space-borne synthetic aperture radar (SAR) sensors
provide data independent of prevailing weather and illumination.

Dry snow of up to few meters thickness is considered as transparent for SAR data at C-band [8]
frequencies. However, in wet snow conditions, the high attenuation characteristics [9] of water and
the significantly increased dielectric permittivity of melting snow (e.g., [10]) reduce the backscatter
coefficient significantly in comparison to dry snow or snow free conditions. Numerous studies used this
effect to monitor the extent of wet snow with SAR data for C-band (e.g., [4,8,9,11–14]). In opposition to
optical remote sensing data, which are capable of monitoring the SCE, SAR systems are solely sensitive
to the area being covered by wet snow, which restrict data to the wet snow covered area fraction
(WSCAF) per glacier. Several studies used the extent of wet snow to derive the transient snowline on
glaciers (e.g., [4,12–14]). The SCE has large impacts on the energy balance and, consequently, on the
mass balance (B) and runoff of a glacier [8]. However, previous studies (e.g., [12,13]) mentioned that the
discrimination of snow and firn for C-band SAR data is impossible for utilizing co-polarized channels.
In consequence, these studies failed at monitoring the temporal evolution of the accumulation area
ratio (AAR) once the transient snowline retreated above perennial firn areas. Such retreat occurs
primarily in years of strong negative mass balances. To overcome this deficit, it is possible to support
with optical data (e.g., [6,13]), which involves the named illumination and cloud problems. Utilizing
high winter scenes to analyze for retained liquid water in firn as proposed by Brown [15] does not
allow for discrimination of snow and perennial firn either. Hence, a robust method to derive the
transient snowline from active microwave remote sensing data—which do not have the restrictions of
optical sensors—is beneficial for increasing databases of ablation processes for alpine glaciers.

Several authors describe a direct relationship between annual AAR, the equilibrium line altitude
(ELA) and B (e.g., summarized by [16]). The prerequisite to establish this relationship are long-term
observations of AAR and B for each specific glacier or a general approximation for this relation.
Once the relationships have been established and evaluated, reliable AAR estimates from SAR data
enable predictions of B solely from remote sensing. Such data help to assess and quantify runoff from
glacierized catchments as snow, firn and ice have different surface albedos and, hence, melt rates are
varying [17].

This study introduces a two-step workflow for C-band SAR data enabling monitoring of the
WSCAF. We analyzed for backscatter distributions of SAR scenes, which were acquired during wet
snow conditions over entire elevation ranges. Multi-annual wet snow scenes allowed for correction
of topography-related signal effects and the determination of a wet threshold. If areas classified as
being wet fall below 50% of the entire glacier area, we further discriminated wet snow and firn by a
subsequent threshold. For quality assessment of determined transient snowlines, we used visible and
shortwave infrared data from Sentinel-2 (S2), Landsat-7 (L7) and Landsat-8 (L8) missions. Results of the
minimum seasonal wet snow extent were used as annual AAR. For Vernagtferner and Hintereisferner,
the thus identified relation between AAR and B were compared with the existing field observations.

2. Materials and Methods

2.1. Study Area and Data

For this study, we used SAR data for the Hinteres Ötztal, Tyrol, Austria acquired from January 2015
to October 2018. We included twelve individual glaciers within our analysis, namely: Gepatschferner
(GPF), Guslarferner, Hintereisferner (HEF), Hintereiswände, Kesselwandferner (KWF), Rofenberg
West and East, Vernagtferner (VF), Vernaglwandferner North and South and Weissseeferner (Figure 1).
Details for all individual glaciers are listed in Table 1. All twelve glaciers differ strongly in size, elevation
range, slope angle and exposition. Further details for all glaciers can be found in [18]. For simplicity
reasons and to prevent subpixel analysis of the SAR data, we summarized all individual glaciers
into three areas of interest (AOI) named after the largest glacier per AOI. Both Guslarferners, both
Vernaglwandferners, Weissseeferner and Hintereiswände were grouped together with Gepatschferner
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into the GPF AOI. The HEF AOI consists of both Rofenberg glaciers and Hintereisferner (Figure 1) and
VF consists just of Vernagtferner.

Figure 1. Study area Hinteres Ötztal with named glaciers. Area margins are color coded for the three
areas of interest Vernagtferner (VF), Hintereisferner (HEF) and Gepatschferner (GPF). The background
image is a Landsat-8 band 8 composite from September 2016. The red rectangle within the inset displays
the location of the study area. Coordinates are given in UTM with datum WGS 1984.

Table 1. Glacier names and elevation, exposition as well as size for all individual glaciers observed in
this study. Glacier data are taken from [18] with glacier margins from 2006.

Glacier Name Elevation [m a.s.l.] Exposition Size [km2]

Gepatschferner 2180–3507 NW–NE 16.6
Guslarferner gr. 2842–3479 NE–SE 1.4
Guslarferner mi. 2928–3317 NE 0.5
Hintereisferner 2484–3711 E–NE 7.5
Hintereiswände 3091–3428 SE 0.5

Kesselwandferner 2792–3492 NE–SE 3.8
Rofenberg E 2937–3173 NW 0.1
Rofenberg W 2885–3268 NW 0.4

Vernagelwandferner N 3003–3267 E 0.3
Vernaglwandferner S 2942–3429 SE 0.6

Vernagtferner 2828–3621 SE–W 8.3
Weissseeferner 2608–3502 N–NE 2.6

The remote sensing data basis for this study consists of 82 Sentinel-1A (S1A) and -1B (S1B) scenes
(Table A1), which were acquired in the Interferometric Wide Swath Mode (IW) with dual-polarization
(VV/VH). Scenes cover an area of 250 km × 200 km with ground resolution of 10 m × 10 m.
The absolute radiometric accuracy is given by 1 dB [19]. Further details are listed in Table 2. Not every
envisaged date of acquisition was achieved in 2015–2018. In addition, right after the launch of S1A
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and S1B, data acquisitions are usually sparse (Table A1). However, in summer 2017 and 2018, we were
able to download almost all theoretically possible S1 scenes with a return cycle of six days. In addition,
we collected eight optical and near infrared imagery during the ablation seasons in almost cloud
free conditions.

Table 2. Parameters of the acquired Sentinel-1 (S1) data. Values for the noise equivalent sigma zero
(NESZ) were derived from [19]. The inclination angle of the respective orbits vary for locations within
the areas of interest and consequently are given as approximate values.

Parameters S1

Band C
Repeat Pass 12 d, 6 d
Polarization VV, VH

Orbit Ascending 15, 117 (46◦, 37◦)
Orbit Descending 168 (39◦)
Acquisition Time 05:30 D/ 17:10 A

Acquisition Period 01/2015–10/2018
NESZ −22 dB

Number Scenes 82

To relate data interpretation from SAR scenes to prevailing meteorological conditions, we used
continuous ablation measurements and related meteorological observations from the monitoring
program of the Geodesy and Glaciology group of the Bavarian Academy of Sciences, Munich,
Germany [20]. On Vernagtferner, at 2930 m a.s.l., a ventilated thermometer records air temperature and
an ultrasonic ranger measures ablation and accumulation continuously. For this study, we made use of
the hourly data set. We used the ultrasonic data to determine whether new snow per day occurred.
In a first step, we calculated the mean ablation rate per season (1 June–1 September each year), which
for all four years is strongly negative. Next, we calculated the diurnal trend in surface height from
6:00 UTC to 6:00 UTC the subsequent day and divided each diurnal trend by the respective ablation
trend. To relate positive quotients to new snow events, we multiplied by −1 and set all negative trends
to zero. This results in a simple solid precipitation index with an indication of increases in surface
height per day (new snow event).

To compare mass balance projections with field data, we used the long-term records for mass
balances for VF (since 1965) and HEF (since 1952) [21,22]. The glaciological mass balance method
relies on stake observations at specific points [23]. Uncertainties for stake readings are rather small
(<3–5 cm). However, measurements have to be interpolated in between the stakes. Depending on the
number of stakes and interpolation techniques, errors for specific areas on the glaciers can become
significantly larger, especially for ice margins or areas difficult or impossible to probe (crevasse
zones, etc.). Zemp et al. [24] summarize numerous sources of errors for the the glaciological method
and present literature on uncertainties of 100 mm w. e. [25] to 600 mm w.e. [26]. Zemp et al. [1]
conclude that systematic errors in glaciological mass balance assessments are usually below 100 mm
w.e., while random deviations per year can reach values of “a few hundred mm w.e.”.

On 20 September 2018, we identified the transient snowline in situ over a length of about 300 m
separating wet snow and firn. This in situ transect represents only a small part of VF. Locations of
the transient snowline were recorded with a conventional handheld GPS. We compared this GPS
transect with derived snowlines from remote sensing data (SAR and optical results) by intersecting the
respective lines and calculating for average offsets.

2.2. SAR Data Workflow

For the complex terrain in the investigated area, it is important to discriminate backscatter
distributions for assumed homogeneous surface conditions from backscatter dependencies due to
various surface conditions such as wet snow cover, firn cover or bare ice. Under the assumption of dry
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snow being transparent for SAR data in C-band frequency ranges, the only period of homogeneous
glacier surface conditions are after melt affected upper elevation ranges and before the lowermost
glacier parts become snow free. Otherwise, contributing surfaces have different dielectric permittivities
(dry, wet snow, ice) and highly variable surface roughnesses. For the Alpine region discussed here,
complete wet snow coverage occurs usually in June each year followed by an upglacier retreat of the
SCE during the summer. In the following, we describe data processing for all acquired SAR scenes
including statistical analysis of homogeneous backscatter scenes. The workflow to derive transient
snowlines from acquired SAR scenes is displayed in Figure 2.

Figure 2. Workflow for the classification of wet and dry snow and firn based on Sentinel-1 data.
Grey shaded boxes indicate data processing.

2.2.1. Multi-SAR-System

All acquired SAR data were processed with a pre-processing framework called Multi-SAR-System.
The Multi-SAR-System enables processing of SAR data being acquired with different sensors within
the same system and output of the processed data in a uniform format. The pre-processing system is
implemented at the Earth Observation Center of the German Aerospace Center, Oberpfaffenhofen,
Germany. It contains geocoding, radiometric calibration and image enhancement. During geocoding,
radar image distortions induced by the side-looking geometry of SAR-systems are corrected using a
digital elevation model (DEM). The geometric quality of the geocoding depends on the height accuracy
and the resolution of the elevation model. We used an airborne laser scanning DEM with a spatial
resolution of 10 m generated between 2006–2010 (data source: Province of Tyrol—data.tirol.gv.at).
The next step, after geometric adjustments, was a coarse radiometric calibration. Local topographic
variations and sensor position affect not only location, but also the brightness of the radar return [27].
In mountainous terrain, this effect can be reduced with a gamma correction. This approach compares
the ratio of individual area parcels of a synthetic image derived from DEM and orbit information
with the illuminated SAR images. Due to the integration of backscatter over the area parcels, one S1
scene require about one full day of processing time. For regions with moderate slope angles such as
for the glacier areas investigated here, the approximation of the gamma correction based on the local
incidence angle using γ0 = β0tanΘ, γ0 the backscatter coefficient, β0 the backscatter in beta naught
and Θ the local incidence angle is sufficient. The processing time using the approximated gamma
correction reduces to about 20 min per scene. Our interpolation uses the cubic convolution method on
a 17 × 17 pixel raster. The last step of the Multi-SAR-System is the image enhancement to reduce the
influence of additive and multiplicative noise contribution. Compared to conventional speckle filtering
algorithms, the multi-scale, multi-looking approach applied here adapts the local number of looks to
the image content. For heterogeneous surfaces (i.e., mountainous areas), a minimal look number and,
consequently, the maximum geometric resolution is necessary to adequately describe surface features.
The choice of an appropriate look number is made by the help of a novel perturbation-based noise
model that combines both additive and multiplicative noise contributions and automatically adapts to
sensor and imaging mode characteristics via the delivered metadata. The result is a very smooth, but
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detail-preserving multi-looked SAR image representing the local optimal trade-off between geometric
resolution and radiometric accuracy. Finally, image values are converted to the standard unit decibel
(dB) [28,29].

As a next step, two different masks are applied. The first mask eliminates the radar shadow and
layover effects and the second mask removes non-glaciated areas (based on the glacier boundaries of
2009 derived from optical remote sensing data). As a result, we receive SAR data of just the respective
glaciated areas described in Figure 1.

2.2.2. Backscatter Variability of Wet Snow Scenes

To determine the variability in γ0 for homogenous wet snow surfaces, we calculated the coefficient
of variation (CV, CV = μ

σ , μ the arithmetic mean and σ the standard deviation) per June scene. A low
variability in backscatter distribution per glacier areas indicate homogeneous conditions. We set the
CV in backscatter to below 20% as criterion for data selection. Table 3 displays the determined CVs for
June scenes in cross- and co-polarization.

Almost all cross-polarized SAR scenes in Table 3 show a CV for June acquisitions of 15% or
less. The single exception is the S1 scene being recorded in ascending orbit in 2015. All co-polarized
scenes, however, result in a variation significantly higher than for cross-polarized acquisitions and
show a much larger range. Such larger ranges indicate less consistency. Consequently, we use only on
cross-polarized SAR scenes.

A secondary criterion for data selection is time of acquisition. During the main melt season in
August, glacier ice and firn surfaces are very much affected by surficial melt water streams during
the day, while early in the morning at 5:30 UTC (local time 7:30) nocturnal refreezing has peaked.
Unfortunately, all ascending scenes were acquired at 17:10 UTC (local time 19:10), when it is more
likely that strong surface wetting and meltwater runoff can lead to misinterpretation for the extent
of wet snow covered areas. Hence, in the following, we will present methodology and results only
for descending cross-polarized orbits, which were acquired at 5:30 UTC in the morning (Table 2). We
excluded the first S1 June scene in Figure 3b (recorded on 2 June 2015) despite a CV value of 14%
(Table 3). The median value of this scene is distinctly higher than for the remaining scenes (Figure 3).
We expect that higher elevation ranges for all glaciers were still covered by dry snow and, hence,
increase the median backscatter to higher values.

Table 3. Determined coefficients of variation for all acquired Sentinel-1 scenes in June between
2015–2018. Respective orbits are described in Table 2.

Platform Orbit Date VH VV

S1 168 2 June 2015 0.14 0.24
S1 168 8 June 2016 0.10 0.20
S1 168 3 June 2017 0.13 0.25
S1 168 9 June 2017 0.13 0.26
S1 168 15 June 2017 0.14 –
S1 168 21 June 2017 0.15 –
S1 168 4 June 2018 0.13 –
S1 168 10 June 2018 0.14 –
S1 168 16 June 2018 0.15 –
S1 168 28 June 2018 0.15 –
S1 117 10 June 2015 0.13 0.26
S1 117 22 June 2015 0.21 0.44
S1 117 3 June 2015 0.10 0.17
S1 15 15 June 2015 0.11 0.20
S1 15 27 June 2015 0.11 0.18
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Figure 3. Box plots of backscatter distributions of all recorded cross-polarized June acquisitions in
descending orbits with calculated coefficients of variation below 20% in Table 3. The red horizontal
lines within the boxes represent the median in γ0, the boxes frame the interquartile range and the
whiskers display extreme values not considered as outliers. Outliers are presented through red crosses.
The black horizontal line displays threshold β1 = −21.45 dB and the purple line displays threshold
β2 = −22.41 dB—for details, see Section 2.2.4.

2.2.3. Correction of Systematic Backscatter Offsets

However, cross-polarized wet snow scenes are very homogeneous (Figure 3), and topographic
effects very often bias interpretation of satellite data. In addition, very complex topographies, such
as mountain glacier regions with various slope aspects, are challenging for space borne acquisitions
to interpret. In addition, we relied on a DEM from 2006 for data processing. In particular, at glacier
tongues, topography has lowered significantly between time of acquisition and DEM generation. Since
we had several acquisitions in June with equal orbits during four years of data acquisition, we could
check whether variations to average γ0 per scene are fully random or very similar for consecutive years
and various melt progresses. We calculated for each June SAR scene deviations from the respective
median. Deviations in γ0 being constant in location and independent from melt progress can be
attributed as systematic due to topography and incidence angle. Next, we calculated the variance of
determined deviations for all June scenes for each pixel. Calculated variances for the nine wet snow
scenes below a value of 0.5 indicate that offsets from median are systematic and are corrected for.
Figure 4 displays the resulting constant deviations used as backscatter offset correction file. To prevent
misinterpretation of snow-free glacier tongues, we set corrections for the GPF and HEF glacier tongues
to zero. This file was subtracted from each single S1 scene as additional topography correction. Instead
of manually discarding snow-free glacier termini, one can apply automated detection algorithms
(e.g., [30]) to minimize influences of already snow free glacier parts. We consider platform effects such
as variations in perpendicular baseline or image frame as negligible for the here performed analysis.
However, in case such deviations would be significant, the effect per pixel would vary with different
baselines and, hence, the pixel variances of different scenes increase.
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Figure 4. Applied backscatter coefficient (γ0) correction in decibel (dB), which is subtracted from each
scene. Coordinates are given in UTM with datum WGS 1984.

2.2.4. Threshold Determination

The above selected nine wet snow scenes (Figure 3) are used to calculate wet snow thresholds.
We calculated for each scene the upper quartile (75% percentile, upper frame of the boxes (Figure 3) of
the backscatter distribution. The arithmetic mean of those upper quartiles is used to discriminate wet
snow and wet firn from dry snow and bare ice areas (threshold β1, black line in (Figure 3). In a second
step, we used solely the parts of the wet snow scenes with γ0 < β1 and calculated the 95% percentiles
per remaining part of the scenes. The arithmetic mean of those percentiles result in threshold β2

(purple line in (Figure 3). The resulting values are β1 = −21.45 dB (with standard deviation of 0.76 dB)
and β2 = −22.41 dB (with standard deviation of 0.18 dB). The determined standard deviations are
further used for sensitivity analyses.

For the applied two-step approach, we first analyze for glacier parts being classified as wet using
β1. After correction for systematic backscatter offsets, we subtracted β1 from each S1 scene resulting in
a classification as dry/bare ice (positive values) or wet (negative values). In case the classified wet area
is less than 50% of the glacier, we further discriminated for firn and wet snow utilizing β2. Here, we
used again the offset corrected S1 scenes, removed all dry parts classified with β1 and subtracted the
wet areas by β2. The resulting pixels were classified as wet snow (negative values) and firn (positive
values). The proportion of each glacier AOI being either wet or wet snow divided by the whole AOI
area results in the WSCAF. Glacier parts, which were covered by dry snow, cannot be distinguished
from bare ice areas. As a result, we interpret WSCAF per glacier AOI as accumulation area fraction.

78



Geosciences 2019, 9, 69

2.3. Processing of Optical and Near-Infrared Remote Sensing Data

Similar to, e.g., Nagler et al. [9] and many other authors, we used L7, L8 and S2 acquisitions to
assess the accuracy of the presented SAR workflow on capturing transient snowlines. From now on,
we use the term “optical” remote sensing data to abbreviate the usage of Landsat or Sentinel-2 data.

While the SAR data presented here are solely sensitive to wet snow, data within and close to the
optical frequency range display brightness differences at the surface. However, cloud coverage often
prevents data usage from optical instruments. For instance, in summer 2017, not a single Landsat
scene for the here described AOIs could be used for comparison with SAR data. Each Landsat scene
for this region was strongly influenced by clouds (a maximum of 20% cloud coverage per glacier
was set as cut-off criterion for data usage). For the other observed summer seasons, we were able
to make use of eight optical scenes. We used the normalized difference snow index (NDSI) [31–33]
for automatic classification of snow covered areas for Landsat data and the Level-2A algorithm for
Sentinel-2 data [34]. For L8 scenes, we used a threshold of 0.6 and for L7 this threshold had to be
increased to 0.88 to obtain reliable results for snow covered areas. Snow classification thresholds for S2
data were increased to 0.16 (2017) and 0.18 (2018) from the given 0.12 [34] to match best the visually
inspected snow boundaries. Since coincidences of optical sensor acquisitions and SAR imagery are
rare, the quantification of spatial deviations between both data interpretations is difficult. We defined
a range of four days prior and four days after each optical acquisition as being reasonable for direct
comparison. For the case of new snow events within this time range, data were not used for analysis.

2.4. Annual Minimum Wet Snow Covered Area Extent

For remote sensing data, fixed date acquisitions such as annual mass balance assessments per
glaciological year (GY) are difficult to achieve due to overpass rates and priority rankings by the
satellite operators. However, more importantly, conditions on the glacier can be very different from
year to year at fixed dates. In this study, we propose searching for local minimum in a wet snow extent
within a range of five weeks prior to 30 September each year and two weeks after that day. Within this
time range, we search for the local minimum in WSCAF for SAR scenes. However, recent new snow
falls shortly before a SAR acquisition influence the detected WSCAF drastically. A minimum by early
October could arise due to the fact that almost the entire glacier was covered by dry snow and, hence,
volume scattering drastically increased. To prevent misinterpretation of derived snowlines, we applied
a correction algorithm before minimum search based on observed firn and snowlines from optical
data. We used the fact that perennial firn is more resistant to melt than seasonal snow. For the last
analyzed S2 scene (16 September 2018), we decreased the snow threshold to 0.0 (instead of 0.18) and
determined the area per AOI for reflectivities larger than zero. These areas include, at least, a fraction
of the perennial firn coverage per AOI. Since those firn areas were formed in previous years from snow
reserves, it is impossible that the SAR detected firn and WSCAF (result of step 1) is below those optical
results. We defined that any SAR scene with lower “wet” areas than 75% of this optical reference scene
as being influenced by recent new snow. Hence, those scenes were excluded from annual minimum
snowline searches. The resulting minimum snowline is used as annual AAR from SAR scenes.

3. Results

3.1. Wet Snow Covered Area Extent

Figures 5 and 6 display the seasonality of backscatter distributions being above or below the
thresholds. For all four observed accumulation seasons (winter periods), snow surface conditions are
constantly dry and, hence, WSCAFs are at about zero. Since we determined no changes during periods
from January until early April in 2015 and 2016, we minimized data acquisition for this period for the
remaining years. From late April to May, the snow surface is starting to becoming wet and reaches
towards average WSCAFs in June of 80–90%. June 2015 is an exception, when only 60–70% are reached.
However, we could only analyze a single June scene in 2015, which was recorded at the very beginning
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of the month. After the launch of S1B in spring 2016 and the following commissioning phase, C-band
data were available with six days return cycles beginning in late September 2016. The ablation seasons
2017 and 2018 provide a much more detailed view on temporal and spatial changes of WSCAF for all
AOIs. WSCAF recession during the ablation season after June is usually very rapid with interruptions
by new snow events (Figure 6). New snow events during the ablation season can have a large effect
on B [35] due to the short term increase in albedo up to values of 0.9. In summer 2017, two snow fall
events can be directly related to sharp increases in WSCAF for all three AOIs. It is possible to detect
a peak in WSCAFs for 15 July 2017 for all three AOIs, while respective amplitudes are different. VF
decreases after 1 July 2017 from about 80% WSCAF to below 20%, the same occurs for HEF, whereas
GPF remains at 60%. The corresponding snow fall events were recorded for 6 and 7 July. However,
no increase in WSCAF as a consequence of this recent new snow is recognizable for the subsequent
SAR analysis on 9 July 2017. Temperatures remained low and, hence, this recent snow was not affected
by melt. Shortly before the following SAR image, snow melt changed γ0 resulting in a local peak of
derived WSCAF. The next peak in WSCAF observed at 20 August 2017 is related to new snow as well.
Again, amplitudes are significantly larger for GPF in comparison with VF and HEF. In summer 2018,
WSCAFs decrease to very low values for VF and HEF with only slight interruptions. Solely, the new
snow event in late August this summer has a remarkable effect on WSCAFs for those two AOIs. GPF,
however, is characterized by two additional peaks in July and mid August. At the Ultrasonic location
on VF, no snow fall could be recognized. At least for mid August, we noticed a liquid precipitation
event at lower elevations, while higher glacier regions received new snow. The mostly northerly
exposed GPF, which has a large flat plateau above 3100 m a.s.l., results in a WSCAF increase to above
30% for this SAR scene.

The applied two-step approach has an effect on sensitivity displayed through errorbars. Large
errorbars can—in most cases—be attributed to recent new snow precipitations (Figures 5 and 6). After
a snow fall event, the area extent of wet snow change across the criterion of 50% for the application of
the β2, which, as a consequence, can have a strong effect on determined WSCAFs. This is regularly the
case for GPF.

For comparison with optical remote sensing data, four SAR scenes were available, which fulfill
the requirements of a temporal offset of maximum ±4 days. The root mean square (RMS) deviation for
the four periods for VF and GPF and only two periods for HEF (due to cloud coverage) results in 8.5%
difference. This deviation is insensitive to subtraction of standard deviations from β1 and β2 (RMS
deviation of 7.8%) but increases to a RMS deviations of 18.1% when applying the higher threshold
range. Unfortunately, a new snow event during the night of 14 to 15 August 2018 above roughly
3200 m a.s.l. had a significant influence on the SAR detected WSCAF at 15 August in the morning.
This new snow was already melted before the acquisition of optical imagery the subsequent morning.
Discarding this SAR value from RMS analysis leads to deviations of only 4.9% with an sensitivity
range of 4.7–13.5%

We used changes in snow/ice height measured at the lower glacier tongue of VF as a proxy to
assess ice melt progress until the end of the respective GY. For all three analysed ablation seasons,
the depicted annual minimum in snowline from SAR data was before the respective end of the GY.
To relate ablation progress, we compare ice heights for these dates with 30 September each year. In 2016,
the ice surface lowered by −27 cm from 12 September until 30 September (to −2.66 m). The subsequent
year, the offset in ice surface reduced to 19 cm for an even longer time span (26 August–30 September)
with an annual ablation of −3.1 m at the end of the GY. Finally, in 2018, we observed a surface lowering
of 28 cm for only ten days between SAR minimum and end of GY (−4.53 m). All surface height values
are related to the start of the respective GY, which is set to a surface height of 0.0 m. No annual mass
balance assessment for GPF are conducted so far.

Offsets to estimates from field investigations are presented in Table 4. RMS deviation result in
8.2% for HEF and VF for a sample size of five.
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Figure 5. Wet snow covered area fraction for Sentinel-1 (S1) series per area of interest (AOI)
Vernagtferner (VF) (a), Hintereisferner (HEF) (b), Gepatschferner (GPF) (c) and results for the new
snow index (d) from January 2015–October 2016. Black rectangles display S1 scenes with error bars
for uncertainties in thresholds, red circles show field data determined accumulation area ratio (AAR)
and green diamonds display results for the normalized difference snow index (NDSI) from Landsat
images and snow classification results from Sentinel-2 data. Field data for the AOI GPF in (c) were
only acquired for Kesselwandferner.
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Figure 6. Wet snow covered area fraction for Sentinel-1 (S1) series per area of interest (AOI)
Vernagtferner (VF) (a), Hintereisferner (HEF) (b), Gepatschferner (GPF) (c) and results for the new
snow index (d) from January 2017–October 2018. Black rectangles display S1 scenes with error bars
for uncertainties in thresholds, red circles show field data determined accumulation area ratio (AAR)
and green diamonds display results for the normalized difference snow index (NDSI) from Landsat
images and snow classification results from Sentinel-2 data. Field data for the AOI GPF in (c) were
only acquired for Kesselwandferner.
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Table 4. Annual accumulation area ratio (AAR) estimates from field data and annual minimum in wet
snow covered area fraction determined from Sentinel-1 (S1) scenes with date of acquisition in brackets
per glaciological year (GY) and area of interest Vernagtferner (VF) and Hintereisferner (HF). All values
are presented in percent (%).

VF HEF

GY Field Data S1 Field Data S1

2015/16 20.0 6.2 (12 Sep.) 20.0 13.7
2016/17 12.0 3.9 (26 Aug.) 3.2 9.7
2017/18 – 3.9 (20 Sep.) 7.1 6.2

3.2. Discriminating Firn and Wet Snow

Only reliable discriminations between wet snow and firn enable derivation of annual AAR for
various glaciers. We analyze for accuracies in wet snow–firn discrimination by a short in situ GPS
transect for the transient snowline on VF. For this 303 m long transect discriminating firn from wet
snow, we determined an average offset for the SAR-derived transient snowline of 35 m and for
optical data this offset decreases to 19 m. In addition, 35 m correspond to about 3–4 pixels for a
10 m × 10 m SAR resolution. The respective S2 data providing optical data has the same ground
resolution. However, optical data have been recorded four days prior to ground truth and S1 data.
Apart from the short 300 m in situ line, qualitatively, we demonstrate agreement of optical data with
SAR data in Figure 7. It is inevitable that disagreement between optical data and SAR data occur, but,
in general, this overview confirms the 3–4 pixel accuracy determined for the in situ data.

3.3. From Minimum Wet Snow Extent to Mass Balances

For Vernagtferner and Hintereisferner, long-term summer and winter mass balance series exist
(VF: 1964/65–2016/17; HEF: 1952/53–2017/18; [21,22]) (e.g., [36]). We plotted relationships of AAR
and mass balance (B) for VF and HEF in Figure 8. It is clearly visible that a linear fit matches the relation
between B and AAR adequately. Coefficients of determination (R2) are high reaching R2 = 0.93 for
HEF with a sample size of 66 years and a range of 0% to above 80% in AAR. The R2 = 0.90 for VF is
slightly lower with a lower sample size of 53 years and a higher range from 0% to more than 90% in
AAR. Calculated RMS deviations to the linear approximation for both glaciers are at 212 mm w.e. for
VF and 154 mm w.e. for HEF.

Such long-term mass balance series with reliable relationships of AAR and B enable direct
conversion from SAR determined annual AAR to B (Figure 8, Table 5). Deviations to observed B values
from field data are highly variable from +435 mm w.e. to −73 mm w.e. for VF and from +248 mm w.e.
to −241 mm w.e. for HEF using S1 data. In absolute deviations, those numbers average to 254 mm w.e.
for VF and 231 mm w.e. for HEF. Such average offsets are above the given accuracy ranges of the linear
approximation (in RMS deviation); however, sample numbers are very low.

Instead of an individually derived linear relationship for each single glacier, Dyurgerov et al. [37]
used 99 index glaciers and came up with an average relationship for AAR and B. We included results
from this average formula in Table 5 and Figure 8, together with a relationship derived from just
Eastern Alpine glaciers (11 glaciers with B and AAR values) listed in [37]. For both glacier areas and
most observation years, offsets in mass balance values surpass the given uncertainty range for direct
measurements with the glaciological method significantly. Dyurgerov’s approximation result in an
average absolute offset for VF of 797 mm w.e.. However, the rather typically shaped valley glacier area
of HEF matches the general approach by Dyurgerov significantly better. Average absolute offsets sum
up to 190 mm w.e.. An approximation established just for Eastern Alpine glaciers does not decrease
offsets. Calculated average absolute deviations are 377 mm w.e. for VF and 367 mm w.e. for HEF.
The sample number for the Eastern Alps is very low with just 11 glaciers; however, the R2 of the linear
approximation reaches 0.79 and the RMS deviation for the 11 glaciers results in 179 mm w.e.
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Figure 7. Comparison of Sentinel-2 (S2) optical data showing firn and snow patches with Sentinel-1
(S1) derived wet snow covered area fraction maps for all areas of interest (AOIs) and for each AOI
respectively. The color coding is constantly displaying derived firn (red) and wet snow (blue) areas for
all presented S1 data. S2 imagery was recorded on 16 September 2018 and S1 data on 20 September
2018. S2 imagery (a), S1 analysis presenting all three AOIs (b), zoom for AOI Vernagtferner with optical
(c) and S1 data (d), zoom for AOI Hintereisferner with optical (e) and S1 data (f), zoom for a fraction of
AOI Gepatschferner with optical (g) and S1 data (h). Coordinates are given in UTM with datum WGS
1984. All maps are aligned equally.
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Figure 8. Mass balance (B) versus accumulation area ratio (AAR) distribution for 53 years of records
for Vernagtferner (VF) (a) and 66 years of records for Hintereisferner (b) (HEF). Black circles indicate
results from the linear approximation by Dyurgerov et al. [37]. Correlation coefficients and formulation
for the linear fit are presented.

Table 5. Annual mass balance (B) estimates from field data and annual minimum accumulation area
ratios (AAR) determined from Sentinel-1 (S1) scenes. For conversion from accumulation area ratio
(AAR) to B, we used the formulations of the linear fit for Vernagtferner (VF) and Hintereisferner (HEF)
displayed in Figure 8, Dyurgerov’s average relationship [37] (Dyu) for all glaciers and specified just for
the Eastern Alps (Dyu EAlps). All mass balance values are presented in millimeter water equivalent
(mm w.e.).

VF HEF

GY Field Data Linear Fit Dyu Dyu EAlps Field Data Linear Fit Dyu Dyu EAlps

2015/16 −781 −1216 −1814 −1406 −1263 −1511 −1547 −1223
2016/17 −1335 −1262 −1896 −1463 −1826 −1623 −1689 −1321
2017/18 – −1262 −1896 −1463 −1963 −1722 −1814 −1406

4. Discussion

4.1. Uncertainty Analysis and Limitations

All presented data on AAR and mass balances include uncertainties. It is difficult to quantitatively
assess the respective error per observation technique. The assessment of annual AAR is usually more
subject to uncertainties. For a glacier-wide estimate of AAR, peaks above the glacier or airplane
observations are beneficial to prevent misclassification of recent and perennial firn. For very small
accumulation areas left after a strong ablation summer, correct assessments depend on accumulation
stakes and direct observations. This is especially the case for a strong negative year in terms of
mass balance subsequent to a rather less negative year. Extrapolation for the whole glacier area and
interpolation in between observations is challenging.

The introduced two-step thresholding based on wet snow scenes (Section 2.2.4) does include
some local uncertainties. We observed areas that showed γ0 values below the respective threshold,
which certainly were snow free in late August and September (Figure 7f). Such areas usually were
present on HEF and GPF and, for both glaciers, limited to the glacier tongue regions. It appears from
comparing images with and without applied correction for systematic backscatter offsets (Section 2.2.3)
that these areas deviate strongly from median γ0 (Figure 4). The applied backscatter enhancement was

85



Geosciences 2019, 9, 69

probably not sufficient to correct for these deviations. In general, rough surfaces like bare glacier ice
increase the reflected backscatter [38] for SAR data due to enhanced diffusive scattering. We can only
speculate about the reasons of this amplification of the decline in γ0. Although the applied DEM does
not indicate layover and shadowing for those areas, we assume that the steep topography has some
effects, especially because the DEM used for SAR processing was generated up to more than ten years
prior to acquisition dates and the glacier surface lowered significantly within this time period.

In general, the presented RMS deviations of WSCAF to results from optical remote sensing
imagery are below 10%. However, sample sizes for comparison are low. We only found four optical
scenes, which were recorded shortly prior or after an S1 data acquisition. For the three analyzed
AOIs, the calculated RMS values represent not very resilient statistical values. An accuracy of below
10% is encouraging, however, considering the fact that conventional methods rely on data inter-
and extrapolation or are hampered by cloud coverage. Since for three consecutive years only very
few optical scenes were available during the ablation periods, SAR data offer a significant progress
in determination of annual and seasonal transient snowlines and, consequently, AAR. Six days of
overpass rates enabled already almost complete coverage for the ablation seasons 2017 and 2018 with
a high temporal resolution.

In addition, such a high temporal resolution demonstrates difficulties in data interpretation by
simple thresholding. The sensitivity of WSCAF results on deviations in thresholds is in most cases
very low. Derived uncertainty ranges are at ±2%, which corresponds to the sizes of data markers in
Figures 5 and 6. However, some errorbars cross the set 50% WSCAF criterion for different thresholding
and, consequently, sensitivity analysis are performed over more than 1 dB. Especially for GPF with
its flat plateau above 3100 m a.s.l., fluctuation in thresholding occurs more frequently. In most cases,
sensitivity increases shortly after a recent new snow event. New snow has two different effects on
WSCAF classification from SAR data. If the recent new snow coverage experiences melt, the WSCAF
will significantly increase. In addition, dry new snow increases volume scattering from the surface, and,
consequently, resulting backscatter values of former wet surfaces may reach above the set threshold
values. Hence, determined WSCAF decreases. Such occurrences can be observed for instance at the
end of each GY or shortly after 01 October. Here, WSCAFs reduce to roughly 0%. Disregarding this
effect would result in misclassification of minimal wet snow extents per ablation season. The applied
criterion for the search of minimal extents in wet snow each year seems to work properly to neglect
such dry snow covered minimum in WSCAF.

Since large large threshold sensitivities—displayed via errorbars—can be related to new snow
events or WSCAFs at about 50%, such values are prone to errors and uncertainties. For comparison
with optical remote sensing data or for determination of annual AAR values, we recommend focusing
on SAR data being insensitive to threshold variations. For S1 data with six days return cycles, this
would reduce seasonal coverage by one (2017) to four (2018) scenes for VF and limit the temporal
coverage for GPF to only half of the previously analyzed scenes.

4.2. Discrimination of Wet Snow and Firn

Not only do dielectric permittivities change backscatter emissivity of surfaces, but surface
roughness as well (e.g., [38]). Wet snow and wet firn have similar dielectric permittivities, if the
volumetric liquid water content (θw) is equal and impurities are negligible (s = snow, f = firn,
ρs = 360 kg/m3, θw = 0.04, ρ f = 500 kg/m3; εs = 2.8, ε f = 3.2). Concave furrows as a result
of melt and sublimation processes on the snow surface increase with continuing ablation, especially,
for the inner Alpine dry regions with intensified sublimation observed here. According to the Rayleigh
criterion, surfaces are considered as rough for SAR data, if h > λ/8cosδ [39] with h the height of the
surface features, δ the given incidence angles and λ the wavelength of the respective platform. This
leads to a roughness sensitivity of roughly h > 8 mm for C-band data. For soil surfaces, [40,41] found
that SAR backscatter increases are most sensitive to changes in surface roughness of 0 < Zs ≤ 0.4
with Zs = s2/l, the roughness parameter where s is the root mean square of surface height h and l the
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correlation length. For reasonable s and l values, we derive Zs as displayed in Figure 9. It is obvious
that backscatter increases are caused by increases in s between 0 cm to about 7 cm for correlation
lengths observed in the field. An increase in surface roughness up to 7 cm can usually be observed for
transitions from seasonal snow to firn (see Figure A1). For the short in situ transect separating firn and
wet snow recorded the same day as a SAR acquisition, we found sufficient agreement of 3–4 pixels.
However, the difference of the thresholds separating firn and snow is close to the given resolution
limits of S1 data.

Figure 9. Numerical simulation of variations of the roughness parameter Zs with changes in roughness
height s and correlation length l.

4.3. SAR Data for Application in Seasonal Mass Balance Estimates

It remains debatable to which degree field assessments of AAR are accurate. Usually, no
continuous snowline data are available for field assessments. Accumulation area ratios for alpine
glaciers are commonly estimated according to elevation ranges and stake readings. However, without
a long-term time series of direct measurements, no reliable AAR to B relationship can be established.

The long time series of mass balance observations for HEF and VF with data distributions from
0% to almost 100% in AAR enable for deriving a resilient formulation for the AAR to B correlation.
Inserting SAR based annual AAR in a linear fit results in average offsets of 200–300 mm w.e. This is
above given uncertainty ranges for systematic errors of direct mass balance measurements and above
the uncertainty of the linear approximation for each glacier. Two limiting factors reduce accuracy of
such an approach: (i) for both time series, the linear relationship resulted in average errors larger than
100 mm w.e. (RMS deviation VF 212 mm w.e., HEF 154 mm w.e.); and (ii) the date of SAR acquisition
is crucial. The approach by Dyurgerov et al. [37] with a generalized relationship over 99 glaciers is
not sufficient for the rather flat and southerly exposed VF to accurately determine B just from AAR
observations. For HEF, as a more typical valley glacier, this generalized approximation provides better
estimates on B for the three observed GYs. Reducing the globally derived glacier relationship of B and
AAR to the geographical region of the Eastern Alps provides larger deviations for HEF and decreases
the offset for VF. However, data used in [37] have a temporal extent until early 2000. Including the
strong ablation seasons within the last decade most likely will influence the derived relationship of
AAR and B.
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Observation of the temporal evolution of the transient snowline with SAR data is reliably possible
with the presented algorithm for the glaciers of the Rofental, Austria. Single scenes are very difficult to
interpret, since the respective acquisition can be biased by recent new snow precipitation. However,
data interpretation benefit from time series of SAR observations with high temporal resolution and
thus misinterpretation due to new snow events is limited. In addition, the applied criteria for the
search of annual minimum reliably exclude scenes covered by recent dry snow.

Whether the proposed two-step approach for discriminating wet snow and firn is applicable
for other areas in various latitudes or climatological regions remains unknown. For glaciers outside
middle latitudes without pronounced seasonality (e.g., high latitudes and very high altitudes), remote
sensing data only provide snapshots depending on the time of acquisition and prevailing weather
conditions. The derived data on WSCAF for such geographical regions has no or limited significance
on ablation progress. As a first step for each region, γ0 values for wet snow conditions have to be
analyzed for all acquired orbits and polarization channels. In case sufficient amounts of SAR scenes
fully covered by wet snow are available, the processing routines as described here can be implemented
into automatic data analysis resulting in an output of just WSCAF per acquisition.

However, such data analysis does not directly lead to surface mass balance per glacier area.
The relationship of annual AAR to B is usually significantly different for each glacier and relies on
individual topography, elevation range and aspect. Empirical approaches such as the one proposed by
Drolon et al. [42] are less influenced by individual glacier topographies and do not need long-term
data series. However, [42] focuses rather on large scale accuracies than on individual glaciers and use
optical satellite data with the named restrictions on visibility. In addition, presented uncertainties on
annual mass balance values are rather large.

Other SAR platforms using X- or L-band sensors are most likely applicable for such an analysis as
well (see [43]). Again, for proposed workflow described here, it is prerequisite that wet snow scenes
can be used to derive threshold values and to apply topographic corrections. The main disadvantage
for those platforms is the temporal resolution with return cycles of more than 10 days. For instance,
over several years of ALOS-PALSAR-1 and 2 data, we could only acquire three June scenes for the
region analyzed here.

5. Conclusions

This case study presents a two-step workflow using thresholds to discriminate wet snow and
firn for SAR data. In a first step, the workflow distinguishes dry and wet surfaces and subsequently
analyzes wet surfaces for wet snow and firn with a second threshold value. Deviations to the extent of
snow covered areas derived from visual and shortwave infrared channels are less than 10% (8.5%) in
area for C-band data. WSCAF is sensitive to increases in threshold values, which can lead to offsets up
to 18.1%. Average offsets of annual minimum in WSCAF from SAR data and field data on annual AAR
are at below 10% (8.2%) as well for three observed GYs and three different glacier areas. For analysis,
we included 12 individual glaciers covering a wide range of elevation and exposition as well as
area extent. All glaciers are located within the Rofental, Austria. For two glaciers within this study,
long-term mass balance series are available. We used these time series to establish linear relationships
between AAR and B and compared field measurements on B with outcomes for the relationships for
SAR derived AAR values. Deviations between field assessments of B and SAR derived values are
at 200–300 mm w.e. on average. Such results are not an improvement compared with conventional
measurements but enable mass balance estimates for regions not accessible or too dangerous for
conventional mass balance observations. Results are very encouraging and demonstrate the feasibility
of the proposed workflow to derive AAR from SAR data. In addition, we could show that glacier
surface conditions during the melt season can be quasi-continuously be monitored using S1 SAR data,
which is essential for glacier runoff modeling. Implementation of this workflow for other regions
worldwide has to be analyzed with extended SAR data acquisitions. However, apart from SAR data,
solely the availability of DEMs with sufficient accuracy is required to apply the proposed workflow.
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Abbreviations

The following abbreviations are used in this manuscript:

AAR Accumulation Area Ratio
AOI Area Of Interest
B Mass Balance
CV Coefficient of Variation
DEM Digital Elevation Model
GPF AOI Gepatschferner
GY Glaciological Year
HEF AOI Hintereisferner
NDSI Normalized Difference Snow Index
NESZ Noise Equivalent sigma-0
RMS Root Mean Square
S1 Sentinel-1
S1A Sentinel-1A
SAR Synthetic Aperture Radar
SCE Snow Cover Extent
SRTM Shuttle Radar Topography Mission
USGS United States Geological Survey
UTC Universal Time Coordinated
UTM Universal Transverse Mercator
VF AOI Vernagtferner
VH Vertical polarisation transmit and Horizontal polarisation receive
VV Vertical polarisation transmit and Vertical polarisation receive
WGS World Geodetic System
WSCAF Wet Snow Covered Area Fraction

Appendix A

Table A1. Date of all analyzed Sentinel-1 (S1) scenes for this study.

S1 S1 S1 S1

9 January 2015 21 January 2015 14 February 2015 26 February 2015
10 March 2015 22 March 2015 15 April 2015 27 April 2015

9 May 2015 21 May 2015 02 June 2015 20 July 2015
24 October 2015 05 November 2015 17 November 2015 29 November 2015

23 December 2015 04 January 2016 16 January 2016 28 January 2016
9 February 2016 21 February 2016 04 March 2016 16 March 2016
28 March 2016 09 April 2016 21 April 2016 03 May 2016
15 May 2016 27 May 2016 08 June 2016 14 July 2016
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Table A1. Cont.

S1 S1 S1 S1

26 July 2016 19 August 2016 31 August 2016 12 September 2016
24 September 2016 30 September 2016 4 April 2017 10 April 2017

16 April 2017 22 April 2017 28 April 2017 4 May 2017
10 May 2017 16 May 2017 28 May 2017 3 June 2017
9 June 2017 15 June 2017 21 June 2017 3 July 2017
9 July 2017 15 July 2017 21 June 2017 27 July 2017

2 August 2017 14 August 2017 20 August 2017 26 August 2017
5 January 2018 11 January 2018 17 January 2018 4 June 2018
10 June 2018 16 June 2018 28 June 2018 4 July 2018
10 July 2018 16 July 2018 22 July 2018 28 July 2018

3 August 2018 09 August 2018 15 August 2018 21 August 2018
27 August 2018 2 Sept. 2018 8 September 2018 14 September 2018

20 September 2018 26 September 2018 2 October 2018

Figure A1. Picture of snow and perennial firn on Vernagtferner recorded in September 2018. The pole
in the center is an accumulation stake, which used to be an ablation stake in summer 2018. See the
backpack and ski poles for roughness height estimates. The red surface color has been spread out in
previous years to detect the previous fall surface for winter field campaigns.
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Jürgen Helmert 1,*, Aynur Şensoy Şorman 2, Rodolfo Alvarado Montero 3, Carlo De Michele 4,

Patricia de Rosnay 5, Marie Dumont 6, David Christian Finger 7, Martin Lange 1, Ghislain Picard 8,

Vera Potopová 9, Samantha Pullen 10, Dagrun Vikhamar-Schuler 11 and Ali Nadir Arslan 12

1 Deutscher Wetterdienst (DWD), Offenbach 63067, Germany; Martin.Lange@dwd.de
2 Anadolu University, Faculty of Engineering, Department of Civil Engineering., Eskisehir 26555, Turkey;

asensoy@anadolu.edu.tr
3 Deltares, Operational Water Management Department, Delft 2600 MH, The Netherlands;

Rodolfo.AlvaradoMontero@deltares.nl
4 Politecnico di Milano, Department of Civil and Environmental Engineering, P.zza L. da Vinci 32, Milano

20133, Italy; carlo.demichele@polimi.it
5 European Centre for Medium-Range Weather Forecasts (ECMWF), Reading RG2 9AX, UK;

patricia.rosnay@ecmwf.int
6 Météo-France—CNRS, CNRM, UMR 3589, CEN, Saint Martin d’Hères F-38400, France;

marie.dumont@meteo.fr
7 School of Science and Engineering, Reykjavik University; Reykjavik, 101, Iceland; fingerd@gmx.net
8 UGA, CNRS, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble 38041, France;

ghislain.picard@univ-grenoble-alpes.fr
9 Department of Agroecology and Biometeorology, Czech University of Life Sciences Prague, Kamycka 129,

Prague 165 21, Czech Republic; potop@af.czu.cz
10 Met Office, FitzRoy Road, Exeter, Devon EX1 3PB, UK; samantha.pullen@metoffice.gov.uk
11 Norwegian Meteorological Institute, Oslo 0313, Norway; dagrun@met.no
12 Finnish Meteorological Institute, Helsinki FI-00560, Finland; ali.nadir.arslan@fmi.fi
* Correspondence: juergen.helmert@dwd.de; Tel.: +49-69-8062-2704

Received: 28 September 2018; Accepted: 7 December 2018; Published: 14 December 2018

Abstract: The European Cooperation in Science and Technology (COST) Action ES1404
“HarmoSnow”, entitled, “A European network for a harmonized monitoring of snow for the benefit
of climate change scenarios, hydrology and numerical weather prediction” (2014-2018) aims to
coordinate efforts in Europe to harmonize approaches to validation, and methodologies of snow
measurement practices, instrumentation, algorithms and data assimilation (DA) techniques. One of
the key objectives of the action was “Advance the application of snow DA in numerical weather
prediction (NWP) and hydrological models and show its benefit for weather and hydrological
forecasting as well as other applications.” This paper reviews approaches used for assimilation of
snow measurements such as remotely sensed and in situ observations into hydrological, land surface,
meteorological and climate models based on a COST HarmoSnow survey exploring the common
practices on the use of snow observation data in different modeling environments. The aim is to
assess the current situation and understand the diversity of usage of snow observations in DA,
forcing, monitoring, validation, or verification within NWP, hydrology, snow and climate models.
Based on the responses from the community to the questionnaire and on literature review the status
and requirements for the future evolution of conventional snow observations from national networks
and satellite products, for data assimilation and model validation are derived and suggestions are
formulated towards standardized and improved usage of snow observation data in snow DA. Results
of the conducted survey showed that there is a fit between the snow macro-physical variables required
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for snow DA and those provided by the measurement networks, instruments, and techniques. Data
availability and resources to integrate the data in the model environment are identified as the
current barriers and limitations for the use of new or upcoming snow data sources. Broadening
resources to integrate enhanced snow data would promote the future plans to make use of them in
all model environments.

Keywords: COST Action ES1404; HarmoSnow; snow measurements; snow models; data assimilation;
remote sensing

1. Introduction

As a major part of the cryosphere, snow is an important component of the hydrological cycle
and with its unique physical properties, it is an essential environmental variable directly affecting the
Earth’s energy balance. Proper description and assimilation of snow information into hydrological,
land surface, meteorological and climate models is therefore important to address the impact of snow
on various phenomena such as hydrological monitoring, avalanche forecast, and weather forecast,
to predict snow water resources and to warn about snow-related natural hazards [1–9].

Understanding the microstructural, macrophysical, thermal and optical properties of snowpack
is essential [10] and there is a great need for accurate snow data at different spatial and temporal
resolutions to address the challenges of changing snow conditions.

Distinctive snow properties are currently determined by traditional ground-based measurements
as well as remote sensing, over a range of scales, following considerable developments in instrument
technology over recent years. Snow measurements are becoming increasingly important for freshwater
management, mitigation of climate changes, adaptation to new climate conditions, and risk assessments
such as avalanches, floods [11], and droughts [12].

At the present time in situ measurements of the snowpack state are performed on the ground at
numerous stations (e.g., WMO synoptic stations) and during intensive field campaigns (e.g., [13–17]).
Simultaneous measurements of snow properties and soil properties are of further advantage [18] but
only available at selected stations. However, depending on the region, in situ measurements could
have a relatively coarse spatial coverage and are only representative of a limited area due to spatial
heterogeneities of snow [19–21]. An increase in the number of snow measurements from national
high-resolution weather networks integrated into the WMO GTS (Global Telecommunication System)
and WIS (WMO Information System) would thus provide a clear benefit [22]. With the implementation
of the Global Cryosphere Watch (GCW) in 2011, the WMO established a program that considers the
growing demand for authoritative information on past, present and future state of the world’s snow
and ice resources [23]. Although GCW is global in scope, the program needs activities at all scales,
including regional, national and local levels [24] and recognizes the requirements for assimilation,
model development and validation.

Space-born remote sensing data have the potential to provide estimates of certain snow
properties [25]. In the visible (VIS) and near infrared (NIR) spectral range space-borne remote sensors
(e.g., MODIS, AVHRR, Sentinel-2) can determine the snow cover extent (SCE) and snow cover fraction
(SCF) at a high spatial resolution and long time-series of these data exist (e.g., [26–33]). The observation
of snow cover area is of particular value in headwaters of mountainous regions [34–36] and one
can expect to obtain volume information thanks to recent advances in photogrammetry and in the
availability of stereo image [37]. In addition, remotely sensed daily SCE has been shown to improve
performance of hydrological models applied to various catchments in Austria [38,39], Italy [40,41],
Switzerland [8,42,43], Turkey [34,44–46], Iceland [47] and the USA [48].

Optically derived snow cover products are considerably limited by the presence of clouds [49],
which results in spatiotemporal gaps [25]. This limitation was quantified by [38], who found that,
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on average, clouds obscured 63 % of Austria in MODIS daily snow maps, from February 2000 to
December 2005. Similarly, [50] found that, on average, clouds obscured 55% (MODIS Aqua) and 50%
(MODIS Terra) of Po river basin (Northern Italy), for the period 2003-2012. Interestingly, they have
pointed out that in the Alpine region of the basin (>1000 m.a.s.l.), the presence of clouds increases
during the melting season when SCE and SCF products are most relevant: on average the percentage
of cloud obstruction is 70%. Thus, cloud removal procedures are necessary to mask clouds for the snow
product to be used or assimilated in hydrologic and land surface models. In the literature, different
cloud removal procedures were developed based on temporal and spatial filters, see, e.g., for MODIS
products [39,50–55]. In addition, digital imagery for snow extent monitoring [56] are conducted with
a newly developed system for acquisition, processing and visualization of image time series from
multiple camera networks [57]. These systems could connect in situ measurements and remote-sensing
products and could provide SCE information in overcast conditions.

Passive microwave sensors can measure snow mass (snow water equivalent, SWE) and are not
affected by illumination (night, clouds), which limits optical data during much of the high latitude
snow season [58–60]. However, the spatial resolution of passive microwave SWE data is currently too
coarse for many watershed-scale hydrological applications in mountainous regions [30,61], and point
gauge snow data have sparse and uneven spatial coverage [62] and their accuracy is sensitive to the
assumptions used, the topography, and properties of the snow pack (e.g., [63–71]). Alternatively,
active microwave sensors have the potential to determine snow depth or mass from space with higher
resolution but require spaceborne measurements at appropriate frequencies (Ku-band) [25] and the
time resolution is more limited than for passive microwave sensors. In addition, the signal is sensitive
to the snow layer properties, which complicates direct estimation of SWE from the satellite signal.
For example, based on the Synthetic Aperture Radar (SAR) Interferometry technique and Sentinel-1
data, Snow Water Equivalent (SWE) temporal variations with sub-centimeter measurement accuracy
can be retrieved with up to 20 m spatial resolution in any weather and sun illumination condition [72].

In addition to the determination of snow characteristics by in situ and remotely sensed
measurements, another approach to obtain snow properties is to use physical or conceptual
snow evolution modeling. Three major classes of snowpack models are employed for various
applications [73]: single-layer snow scheme (e.g., [74]), scheme of intermediate complexity (e.g., [75])
and detailed snowpack models, which differ in the description and the parameterization of the
properties inside the snowpack and the related processes [76–78]. Single-layer representations of
snow thermodynamics are still used in operational NWP models [20]. In more advanced land surface
schemes employed by operational models multi-layer snow options with fixed or variable numbers
of layers are available [20], e.g., HTESSEL at ECMWF [79], JULES at the Met Office [80], ISBA-ES
in SURFEX [81], and TERRA in the ICON model at DWD [82]. Detailed snowpack models include
in addition state variables for snow microstructure, namely grain sizes and shapes in layers [20,83].
However, continuous estimates of the snow state from numerical model predictions are still limited by
scarcity and uncertainties in meteorological forcing data (see [84] for an example) and model structural
problems for snow processes in land surface models [25,85–87].

Assimilation of remotely sensed snow-related observations and ground-based snow
measurements has been proven to be an effective method to improve hydrological and snow
model simulations [88–93]. Therefore, the potential of data assimilation methods to consistently
improve model simulations of the snow state by assimilation of measurements from in situ as well
as from remote sensing has received continuously increasing attention [25,59,88–102]. With data
assimilation (DA hereinafter) techniques, an improvement of the simulated snow properties from
numerical models can be obtained by the combination of observational datasets with numerical model
predictions and consideration of the uncertainties of observed and modeled variables [103]. Several
studies report the assimilation of in situ snow observations [62,101,103–105] even for operational
applications [2,106,107]. A number of snow DA experiments taking into account remotely sensed snow
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properties have been performed with different observational datasets, including snow covered area
and SWE [59,88,90,91,100,108,109].

However, visible or near-infrared observations do not allow assimilation updates under cloudy
conditions and the updates depend on the snow depletion curve used to relate SCE or SCF to SWE [25].
Direct assimilation of SWE from passive microwave remote sensing data exists [88,100,110] but radiance
assimilation may be more effective [25,111–118]. The latter approach is indeed able to overcome the
difficulty arising from the non-unique and complex relationship linking the passive microwave
signal and several snow properties (e.g., density, grain size/microstructure parameters, temperature
and wetness). To assimilate radiance, radiative transfer modeling is needed to play the role of
the ‘observation operator’ in the DA scheme, that is to relate the snow properties predicted by
the dynamical snow scheme to the remotely-sensed observed variables as well as to provide the
associated uncertainties [119]. Many such numerical models have been developed and evaluated
over the last decade for the passive microwave such as HUT [120], MEMLS [121], DMRT-QMS [122],
DMRT-ML [123]. Although their performances appear to be comparable (e.g., [124]), the formulations
and parameterizations used in each model are diverse. This apparent paradox is only partially
understood (e.g., [125,126]), which has motivated the development of a uniform, harmonized, modeling
platform called the Snow Microwave Radiative Transfer Model (SMRT, [127]). This new model is also
able to better represent the snow microstructure, which currently remains the main bottleneck for SWE
estimation [114,128].

The European Cooperation in Science and Technology (COST) promoted and funded the
Action ES1404 called “A European network for a harmonized monitoring of snow for the benefit of
climate change scenarios, hydrology, and numerical weather prediction,” or “HarmoSnow” for short.
The HarmoSnow project (2014-2018) coordinates efforts towards harmonized snow data processing and
handling practices by promoting new observing strategies, bringing together different communities,
facilitating data transfer, upgrading and enlarging knowledge through networking, exchange and
training, and linking them to activities in international agencies and global networks [129]. Due to
the large heterogeneity of methods and tools for manual measurement of snow and their assimilation
in numerical models one of the first activities of HarmoSnow was to carry out surveys to obtain
an updated picture of the existing variety of a) snow measurement practices and instrumentations,
and b) the data assimilation methods and snow data processing used in NWP, hydrology, and climate
studies by the European institutions. The results of the first survey are published in [11]. This paper
aims to assess the current situation and understand the diversity of usage of snow observations in
DA, forcing, monitoring, validation, or verification within NWP, hydrology, snow and climate models.
Our findings are based on the responses from the community to the second survey, on snow DA
methods and processing, and on literature review.

2. European Survey on Usage of Snow Observations in Data Assimilation, Forcing, Monitoring,
Validation, or Verification

The survey was conducted via an online questionnaire from September 2015 to December 2017
on the COST HarmoSnow website. This questionnaire (see Supplementary Material: COST ESSEM
1404 working group 3 survey: Questionnaire and results) was compiled by COST HarmoSnow
experts in snow modeling and data assimilation and distributed across the COST, EUMETSAT
H-SAF and GCW member networks. The questionnaire was answered by 51 participants from 31
countries. The survey consists of 32 questions in six sections and one text box for additional comments
(see Supplementary Material: COST ESSEM 1404 working group 3 survey: Questionnaire and results),
which are also available at the COST HarmoSnow website. Most questions used multiple choice
answers. This procedure ensures clear answers and space for further explanations was provided.
A weighting of the answers was not made, but we are aware of their heterogeneity in terms of
institutional representativeness and implications for the representativeness of our derived conclusions.
The evaluation was performed manually.
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3. Results

The results of the survey are presented in this section, grouped into sub-sections according to
the thematic topic that the survey questions address. Description and interpretation of the results is
therefore separated into: the range of participants in the survey; the modeling environments used
by participants, the data assimilation methods used; snow observations used in these DA methods;
treatment of background and observation errors; quality control methods used; data exchange policy
and requirements; and plans for future observation use.

3.1. Participating Countries and Institutions

The distribution of the number of answers among the countries is shown in Figure 1. It shows
that all responses were from countries from the northern hemisphere, with the majority from central
Europe (27). With the Nordic countries, Russian Federation, the USA and Canada, most countries in
the boreal forest belt answered the survey. These countries contain regions that always have seasonal
snow in northern hemisphere winter, while for countries in central and southern Europe the number
of days with snow cover is more variable and depends on several factors. For reporting countries
having relatively lower latitude and high altitudes, snow in the climatological mean is limited to
the mountains, however it is an important factor for meteorological and hydrological applications.
Most European countries involved in the COST action provided at least one answer, thus the dataset
of answers provides a solid base for analysis to obtain an overview on the utilization of snow data
in NWP systems, hydrological models, special snow models and treatment of snow in other model
environments (Figure 2).

Figure 1. Geographical distribution of number of responses in the survey.
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Figure 2. Distribution of modeling environment within the questionnaire.

In general, multiple responses from each country were not expected since most snow DA activity
takes place within the national met service of that country, which is a fairly standard situation in
most European countries. The national weather services in the countries with huge territories (Russia,
Canada and the USA) include regional institutions with their own capabilities to produce local
weather forecasts.

3.2. Modeling Environment, Model Domain and Resolution

The assessment results have been partitioned according to the type of modeling environment
that the respondent has identified as using. Among respondents, 16 institutes use numerical weather
prediction models (full or limited area) with DA, six without DA, 23 institutes use hydrological models
(e.g., conceptual, operational, snowmelt models, runoff models, etc.), 10 institutes use reanalysis and
four institutes employ special snow models. In eight institutes other (miscellaneous) models (e.g., snow
cover, land surface, multi-layer snow), with snow observations are used (Figure 2). In addition to
meteorological and hydrological services, 11 universities and two companies participated in the survey.
The resolutions of the models span from the global scales down to kilometer scale resolutions and
even to the river catchment areas according to the modeling environment, clearly proving the declared
importance of snow observations over a range of spatial scales.

3.3. Data Assimilation Methods

There are differences in the snow DA methods used by the various model environments
as well as in the update frequency of snow observations and the required time interval
for consideration of the measurement. Depending on their degree of complexity, DA
techniques are characterized by different performances. The sequential DA techniques are
widely used for real-time applications. They sequentially update the model state using
observational data as they become available [102]. Basic approaches are based on direct insertion
(DI) methods [104,108,130] or Cressman interpolation [2,131,132]. Other approaches include optimal
interpolation (OI) schemes [103,107,133,134] and the nudging method [135,136], which take into
account the observational uncertainty [102].

The Kalman filters [137] are approaches based on least-squares analysis method. The standard
version of the Kalman Filter (KF) [138] still depends on the assumption of system linearity since it
explicitly takes into account the dynamical nature of model and observation errors, which evolve with
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time, to produce a statistically optimal model state estimates for linear systems. The Extended Kalman
Filter (EKF) [139] allows consideration of nonlinear dynamic models using a linearized statistical
approach [59,110]. With the Ensemble Kalman Filter (EnKF) the inaccuracy of the linearization
procedure, which affects the filter performance due to possible strong model nonlinearities [140],
can be avoided [141]. An ensemble of possible model realizations is needed based on the
Monte Carlo approach [142] to determine the error estimates instead of a model linearization. Other,
more sophisticated methods, that include for example particle filter [143], are also used for snow data
assimilation in hydrology. Similar to the EnKF, the particle filter (PF) is a sequential Monte Carlo
simulation [43,90,97,117,143–147] and accounts for uncertainties in the forcing data, model structure
and observations. However, in contrast to the EnKF the PF does not depend on the assumptions
of Gaussian distribution of errors or the assumption of Gaussian joint probability density function
(PDF) on the state variables and observations [19,148]. This allows the PF to characterize the full
probability distribution of state variables and consequently their uncertainties more accurately by
resampling sets of state variables, i.e., particles with higher posterior weights, as opposed to the linear
model state updating of the EnKF [19]. Another DA approach is the variational Moving Horizon
Estimation (MHE), which optimizes an objective function within an assimilation window using
numerical approximations [149]. This type of methods is also applied in Model Prediction Control
applications when the assimilation window is shifted to the predictive horizon [150]. Recently, [151]
extended this approach to consider multi-parametric conditions in consideration with snow DA.

Despite the previous drawbacks, EnKF techniques have been widely implemented
to process snow observation data [19,20,62,88,111,152–156]. Also in snow hydrology,
an increasing number of studies confirm the advantages of EnKF as a data assimilation
method, which improves the accuracy of hydrological simulations through the assimilation
of snow-related observations [25,62,88,89,101,102,111,152,157–160]. Other studies have shown the
benefits of assimilation of snow using EKF [59,110] or PF [19], while [100] applied the MHE to evaluate
different satellite products, including snow observations, within the DA procedure.

The results of the survey show that the OI method and EnKF are the most commonly used
methods (Figure 3). The survey revealed that snow DA for NWP mostly relies on optimal interpolation
(OI) schemes [107] or Cressman interpolation [131], on the other hand Kalman filters [137] or
EnKF methods [141] are generally used for hydrological applications. Other answers in the survey
include Moving Horizon Estimation, Nudging, Asynchronous EnKF, Bias Detecting Ensemble,
simple exchange of initial values, and simple update method. However, it should be noted that
for complex multi-layered snow models, the application of conceptually simple DA schemes is not
straightforward due to possible model spin-up behavior resulting from physical inconsistencies among
state variables [97,161].

Figure 3. Data assimilation methods.
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The survey results confirm the existing gap of applied sophistication in DA methods for
operational NWP, i.e., the DA methods used for snow analyses in NWP are much simpler than
the state of the art in DA [20] and lag behind the level of sophistication used for the initialization of
other surface variables (e.g., soil moisture). Furthermore, operational NWP systems assimilate snow
depth from in situ ground measurements and satellite-derived snow extent [2,134,162] but SWE is not
considered during the assimilation cycle [20]. Recent effort to implement advanced techniques such as
the particle filter [163], show promising results, although the path toward operational use is long [97].

3.4. Snow Observations in Data Assimilation through Different Models

Snow observations from SYNOP and additionally ground-based measurements are the most
important data sources for NWP and hydrologic models (Figure 4). For the latter, ground-based remote
sensing data are also very important. The most important snow parameters used in DA are snow
depth and SWE, which are processed by incremental update for NWP or update of absolute values in
hydrologic and other snow models.

Figure 4. Snow observations and products used in the modeling system.

According to the answers, snow height (depth) is the most preferable information for DA in NWP
models. For these data, the importance of an active reporting of snow-free conditions (zero snow depth)
in the SYNOP messages together with the exchange of non-GTS stations data is crucial. For hydrologic
models, both snow height (depth) and SWE are popular for use in DA, as complementary products to
streamflow assimilation. For this group of models, forcing variables (precipitation, temperature) can
also be used in the assimilation process to update state variables. The main snow variable analyzed in
almost every type of model is SWE.

Most hydrologic model users that responded to the survey use ground-based remote sensing
measurements, while this is not the case for NWP or reanalysis users. The ground-based measurement
systems include ultrasonic or laser distance sensors, photogrammetry, COSMIC neutron sensors and
others. Further details on in situ snow measurements are given in the results of the parallel COST
HarmoSnow survey on in situ snow measurement practices and techniques, [11].

Preprocessed remote sensing satellite products are also often used in both NWP and hydrology.
Satellite radiances are used much less and climatological data are appropriated for hydrological
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applications. Additional data, used by survey participants include external snow analysis or
multi-sensor satellite products. Preprocessed snow products are used in all model environments
but these products have special importance in NWP without DA, reanalysis and miscellaneous models.
The used products are, e.g., from IMS snow cover, satellite (MODIS, SEVIRI, AVHRR), SAF (H-SAF,
LSA-SAF), NWP-based snow analysis or reanalysis.

The process of analyzing variables is mostly incremental update of first guess from model forecast
for NWP models and update of absolute values for hydrological models. However, the modelers use
both processes together in some applications. Model forecasts are the main background field used
in snow data assimilation for all model types. However, a very limited number of answers include
pre-analysis or external analysis and climatology as a background field.

Independently of the modeling environment most DA systems perform a snow analysis every
24 h (Figure 5). This is important for the assimilation of remote sensing data since not all satellite
products are available on a daily basis. Even daily products for SWE based on passive microwave
remote sensing data have a coarse resolution (in the order of tens of kilometers) while SWE products
from active microwave sensors can reach a resolution of tens of meters but are only available every
few days (e.g., 35 days with ERS and Environmental Satellite (ENVISAT) in the past decades and
nowadays six days with Sentinel 1).

y y )

 
(a) (b) 

Figure 5. Update frequency for snow data assimilation (a) and observation latency (b).

The observation data latency, i.e., the time from the measurement acquisition to the availability
in a numerical model is another important parameter, which has to be considered for time-critical
applications. More than 50% of the survey answers indicate that the observation latency should not
exceed 24 h. For research applications or in climate studies, a longer latency might be acceptable.
However, more than 25% of the answers show that the observations should be available within 3 h,
which is a strong constraint for the observation data processing and exchange.

3.5. Background and Observation Error Estimations Used in Snow Data Assimilation

The background error estimates are done either by distance weighting or taken as a fixed value in
most of the NWP models, the former is more commonly used compared to the latter. The variance
of ensembles is another method used in limited applications. A few institutes working on NWP
also indicated that background errors are not accounted for in their system. For the other model
communities, the answers are more varied and include no estimate, fixed value, distance weights,
stochastic noise, defined algorithms with clearly more emphasis on variance of ensembles, which is
most likely due to the choice of EnKF for DA methodology.

101



Geosciences 2018, 8, 489

According to the survey there is no standard approach for observation error estimates. Generally,
standard deviations or fixed values according to the measurement errors (in principle different for
different observation types) are used in NWP models. Some of the institutes do not use error estimates
assuming uncorrelated observed data except for the anomalous observations identified and rejected
by quality control procedures. In the other modeling environments, observation errors are defined by
measurement errors, standard deviations, confidence intervals, rough estimates, stochastic noise, error
covariance matrices, or error estimates are simply not accounted for.

Observation error specification has a large impact on DA efficiency. Figure 6 illustrates the
two-meter air temperature forecast (range 12-h and 3-day) difference from December 2016 to February
2017, between a test experiment, where the snow observation error was doubled in the ECMWF snow
DA, and a reference experiment, using the ECMWF operational system [134]. It shows generally colder
conditions in the northern hemisphere. Doubling the observation error gives relatively more weight
to the model background in the test experiment compared to the reference experiment. Since the
ECMWF model tends to overestimate snow, this results in more snow on the ground in the test than in
the reference experiment, and therefore generally lower air temperature forecasts. Slight and noisy
differences in non-snow-covered areas are non-significant and due to the fact that the test and the
control experiments differ.

 

Figure 6. Impact, shown as mean temperature difference in K (01 December 2016 to 28 February 2017),
of doubling snow observation error in the ECMWF snow data assimilation system used for NWP, on
two-meter air temperature 12-h and 72-h forecasts.

3.6. Quality Control of Snow Observations or Products

One of the important features of DA systems is the quality control of the data [164]. It is performed
by using previous model forecasts for comparison with observations. This allows identification
and elimination of spurious data. Furthermore, it is possible to calibrate observing systems and
identify biases or changes in observation system performance when this comparison is performed
repeatedly [165].

Quality control of snow observations and products is performed in the large majority of the
model environments used in this survey (Figure 7.). Filtering of outliers, manual and automatic
treatment of missing data or implausible values is used in all model environments with different levels
of sophistication. DA in NWP is used for this purpose, as some responses from the survey show.
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Figure 7. Quality control and consistency check of snow observations or products.

Consistency or sanity checks are used to examine whether the observation absolute value or rate
of change with time is physically realistic or not [165]. In addition, buddy checks are used for the
comparison of observations close together and background checks consider a realistic change of the
observation in comparison to the model prediction [165]. In comparison with a quality control, the
number of institutes performing a snow data consistency check is lower. For this data preprocessing
manual and automatic methods exist, based on basic physical principles, where the snow cover field
is of particular importance. Consistency of snow height with the existence of snow cover is one of
the commonly used checks, i.e., check if snow cover is present where observations of non-zero snow
depth exist.

3.7. Data Exchange Policy and Access Requirements for the Observations

The survey indicates that two thirds of all answers were positive towards the possibility of snow
data exchange with other groups. The NWP community seems more flexible compared to other
modeling groups in this sense. This should be moderated by the fact that a relatively higher spatial
resolution and catchment scale of hydrological applications could be a constraint on the feasibility of
data exchange. In most cases GTS for NWP models and FTP protocol for the other models is required
for data access, but web access or central data hubs are also used.

3.8. The Plans to Use the New or Upcoming Observation Sources

Concrete plans for using new or upcoming data sources of snow observations exist for all model
environments, in particular for NWP with DA, hydrology, and reanalysis. In detailed answers of the
survey, the use of more satellite data (optical, microwave) and also more ground-based remote sensing
data, GPS or COSMIC ray sensors, or additional non-SYNOP networks are of interest. Current barriers
and limitations for the use of these data are primarily data availability and lack of resources needed to
integrate the data into the model environment. Survey responses showed these barriers to be common
across model environments used.
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4. Summary and Discussion

According to the outcomes of the literature review, surveys and the action ES1404 itself together
with HarmoSnow field campaigns and from snow HarmoSnow DA school activities, the key messages
have been recognized and special attention is given to them in this section. These key items are
(i) using conventional snow observations from national networks for DA and model validation,
(ii) sustainable ways to create snow products for users by combining remote sensing and conventional
snow observations with modeling results and (iii) snow observations errors for data assimilation and
modelling systems.

4.1. How to Get and Use Conventional Snow Observations from National Networks for Data Assimilation and
Model Validation

Data assimilation systems employed in model environments for numerical weather prediction,
hydrology, or special snow models make extensive use of present-day measurement networks.
The range of measurement instruments and techniques in use is also indicated by the results of
the parallel considering COST HarmoSnow survey on in situ snow measurements [11]. The literature
review reveals the importance of conventional snow observations for DA and model calibration and
validation, and the potential benefits of obtaining additional observations from national networks,
according to the survey responses, concrete plans for using new or upcoming data sources of snow
observations exist for use in snow models of NWP, hydrology or other modeling environments.

Some strategies exist, or are underway, towards an improved and more extended usage of
conventional snow observations to include observations from high-resolution national networks
into NWP, hydrological and climate models, as the availability, and therefore use, of such data very
limited [22,134]. They include the following: (1) The WMO “Snow Watch” initiative, which recognises
the importance of near-real-time in situ observations of snow cover and snow depth to the global
observing system. The Snow Watch action has secured approval by Executive Council 69 for an
amendment to [166] in order to make daily reporting of snow cover and snow depth a mandatory
requirement for all stations with the capability to do so. Of particular note, this explicitly includes
the requirement to report values of zero snow depth, when snow is not present, in order to provide
valuable additional information for assimilation into weather forecasting models. (2) The ECMWF
data assimilation study with additional snow data [22,134], clearly demonstrates the benefits to NWP
forecast accuracy from assimilation of additional national network snow reports. (3) The monitoring of
SYNOP station snow depth reports to detect problems in the snow analysis. A continuous monitoring
allows also to identify progress in observation availability and frequency of reporting, which becomes
more important with a broader application of automatic snow measurements [167].

4.2. Sustainable Ways to Create Snow Products for Users by Combining Remote Sensing and Conventional
Snow Observations with Modeling Results

Until now, spaceborne derived snow products are not widely applied in operational NWP systems.
In situ measurements are used to retrieve snow height for data assimilation, since for SWE the satellite
products still not meet the requirements of DA in NWP. For SCE a number of combined and operational
products exist, which includes also in situ measurements [168] and can be used to constrain the model
SCE but SWE is the most interesting variable. Therefore, a number of blended satellite products have
been developed, which merge visible, near-infrared, and passive microwave observations [169–172]
and could be used for DA. Microwave satellite observations are combined with conventional in situ
observations in some products (H-SAF), while optical satellite observations together with conventional
in situ observations are assimilated into NWP models. The ESA GlobSnow project is another example
providing combined products for models. It was shown recently by [94] that the coarse resolution of
space-borne radiometers (in the order of tens of kilometers) for existing SWE products (H-SAF and
GlobSnow) can be improved by assimilation together with in situ observations of snow depth, where
the improved resolution enhances spatial details in the retrieved SWE. For hydrology, the DA is also
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very important for the implementation of spaceborne snow products used in streamflow forecasts.
A variational method based on Moving Horizon Estimation (MHE) is used in [16], in application to the
conceptual rainfall-runoff model HBV. Snow cover extent (SCE), snow water equivalent (SWE), soil
moisture (SM) and in situ measurements of streamflow data were assimilated using large assimilation
windows of up to one year. For the first time, H-SAF products were used for hydrological forecasting
systems and their added value was verified. Although blended satellite products could serve in filling
gaps of observation data or providing validation data, ideally, blending of products should happen
only within the DA process due to the preferred separation of observation sources. Furthermore,
blended products often contain information from models that have different assumptions than the
model, which uses these products in assimilation.

4.3. Snow Observations Errors for Data Assimilation and Modelling Systems

Snow observations and products are subject to quality control as well as consistency checks,
which are performed manually or automatically in the large majority of the model environments used
in this survey. Furthermore, the observation error of snow measurements consisting of instrument
error and representativeness error (e.g., [173,174] is an important parameter used in snow DA. Results
from the survey show that if an estimation of the observation error of snow measurements for DA is
used, a prescribed constant value is chosen in many cases. The observation error sensitivity study
performed with the ECMWF snow DA system showed the impact of this parameter on the global
NWP forecast skills (Section 3.5, Figure 6). Since the observation error consists of two components for
the derivation of this error from reported values in literature, the context of the measurements has to
be taken into account [159,175–178].

The detailed review and assessment of the survey carried out by measurement communities [11]
report on the quality of data and potential problems and provide valuable feedback for modelers on
instrument errors. For instance, the results from the COST HarmoSnow field campaign in Iceland [16]
showed that for SWE the observation error as relative standard deviation of 10% is possible if a suitable
amount of measurements (i.e., minimum 3) is performed. However, this only account for the instrument
error. In complex and windy terrains the total observation error can be much larger, which reflects the
limited representativeness of snow measurements.

5. Conclusions

Based on the practices of a number of countries, review of the literature, and evaluation of
the survey on use of snow observations in the modelling environment, conclusions can be drawn
on: (i) the status and future evolution of conventional snow observations from national networks
and satellite products for DA and model validation, including availability, error characteristics and
reliability, towards an improved usage of conventional snow observations from national networks
for data assimilation and model validation; (ii) the review of the methods to combine remote sensing
and conventional snow observations with modeling results for user applications; and (iii) snow
observations errors for data assimilation and modelling systems.

The results of the survey show that the measurement networks, instruments, and techniques are
exploited well by existing DA systems and used in model environments for NWP, hydrology, or special
snow models. The survey reveals that there is a fit between the snow macro-physical variables required
for DA and those provided by the measurement environment, since snow depth, snow presence, snow
density and SWE are the most measured variables. It is also important to take into consideration that
in many cases these variables are measured with different instruments and techniques, in particular
snow depth and SWE. On the other hand, developments in DA systems are necessary to exploit the
evolving capabilities of the observing systems, and vice versa. The increasing automation of the
measurements requires enhanced data management in the DA system (quality control, consistency).
There is a requirement for remotely sensed snow depth or SWE observations from satellite, to provide
snow data in regions with sparse measurement networks, but this necessitates developments in
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instrument technology (e.g., automatic measurement of snow microstructural properties) and also
development of DA systems in order to make use of such observations. There are also concrete future
plans on using enhanced snow observations for all model environments, in particular for NWP with
DA, hydrology, and reanalysis. Data availability and resources to integrate the data in the model
environment are the current barriers and limitations for the use of new or upcoming snow data sources
independent of the model environment used.

The further outcomes from the survey support new, innovative and upgraded observing strategies;
enhanced usage of snow data for scientific research and applications; a broader overview and easier
access to existing snow measurements and snow model data for the benefit of different applications,
such as NWP models, hydrological, climatology and climate change research. Further support of
these aims is provided by the related COST HarmoSnow activities of the parallel survey on snow
measurements and the training school on data assimilation in Europe [179]. The monitoring of
floods, droughts, snow avalanches and hydropower production could benefit from improved real-time
snow measurements for assimilation into operational prediction models to improve hydrological,
meteorological and climate forecasting while a further integration and harmonization of the European
snow network into global networks (e.g., WMO GCW) supports the strengthening WMO and
EUMETSAT activities on snow observations. The main scientific impact will emerge from improved
snow and weather products via better knowledge of snow properties and their evolution. It will
induce a lasting structural improvement of the interaction between participating communities,
thus very relevant for the Intergovernmental Panel on Climate Change (IPCC) and Copernicus (Global
Monitoring for Environment and Security). Policy and decision makers at all levels from local safety to
global environment policy will benefit from improved knowledge on current and future snow cover
and climate conditions.

Supplementary Materials: COST ESSEM 1404 working group 3 survey: Questionnaire and results are available
at http://www.harmosnow.eu/index.php?page=WG3.
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Abstract: Snow depletion curves (SDC) are functions that are used to show the relationship between
snow covered area and snow depth or water equivalent. Previous snow cover data assimilation
(DA) studies have used theoretical SDC models as observation operators to map snow depth
to snow cover fraction (SCF). In this study, a new approach is introduced that uses snow water
equivalent (SWE) observations and satellite-based SCF retrievals to derive SDC relationships for use
in an Ensemble Kalman filter (EnKF) to assimilate snow cover estimates. A histogram analysis is
used to bin the SWE observations, which the corresponding SCF observations are then averaged
within, helping to constrain the amount of data dispersion across different temporal and regional
conditions. Logarithmic functions are linearly regressed with the binned average values, for two
U.S. mountainous states: Colorado and Washington. The SDC-based logarithmic functions are used
as EnKF observation operators, and the satellite-based SCF estimates are assimilated into a land
surface model. Assimilating satellite-based SCF estimates with the observation-based SDC shows a
reduction in SWE-related RMSE values compared to the model-based SDC functions. In addition,
observation-based SDC functions were derived for different intra-annual and physiographic
conditions, and landcover and elevation bands. Lower SWE-based RMSE values are also found with
many of these categorical observation-based SDC EnKF experiments. All assimilation experiments
perform better than the open-loop runs, except for the Washington region’s 2004–2005 snow season,
which was a major drought year that was difficult to capture with the ensembles and observations.

Keywords: snow cover; snow depletion curve; MODIS; data assimilation; land surface model

1. Introduction

Snow depletion curves (SDC) define the relationship between changes in snow cover area (SCA)
and the snow pack, which can impact, for example, snow-albedo feedback in global climate models [1]
and the amount of water storage and melt for hydrological models [2,3]. SDCs typically involve
functions that are fit or tuned to a given set of snow-based observations or theoretical conditions.
Currently, many hydrological, land surface models (LSMs), and climate models use simple to complex
schemes to define this snow depth-cover relationship, with many models still using very simple
schemes, which do not account for even regional or temporal changes [4]. Some approaches to
estimating snow depth-snow cover relationships involve statistical approaches, from using simple
fitted functions to more shape and scale parameter-based gamma and beta distributions [4–8]. Much of
the snowpack depletion in mountainous regions relates to late winter and early spring peak snow
water equivalent (SWE) melt energy and radiation spatial variations (e.g., [2,9]), even though SWE can
decrease without decreasing areal snow cover.

Several SDC schemes have been used to map the predicted SWE or snow depth states to snow
cover fraction (SCF) (or vice versa) for different snow cover data assimilation (DA) approaches [10–12].

Geosciences 2018, 8, 484; doi:10.3390/geosciences8120484 www.mdpi.com/journal/geosciences115



Geosciences 2018, 8, 484

The SDC scheme can be used as the observation operator, which relates the model variables to
the observations. In this case, the SDC acts as the observation operator and converts snow-based
model estimates (e.g., SWE) to be in the same units and similar value range as the snow cover
observation estimates (e.g., snow cover fraction), for calculating the innovation and assimilation
update. The innovation step is simply the difference taken between model-generated snow cover and
the observed snow cover estimates. Some studies have utilized the Ensemble Kalman Filter (EnKF) to
assimilate snow cover fraction or area observations [10,13,14], as it has been shown to perform overall
better than simpler methods, e.g., direct insertion [15]. EnKF relies on an ensemble of model forecasts
generated using error covariances. Snow cover assimilation using the EnKF method has been applied at
different scales, including global [16], continental [13], and regional [10,14,15,17]. Other ensemble-based
snow cover DA studies have used the ensemble square-root filter [18] and the particle filter [19].

A variety of SDC functions have been used as the observation operator in these past snow-cover
DA studies. Cumulative density functions (CDFs) of beta distributions for varying conditions have
been applied regionally [10], or tuning of a hyperbolic tangent formulation, using shape parameters
and a snow density parameter [20], has been applied also for different scales [13,16]. Other studies have
used, for example, a two-parameter based lognormal probability distribution function, where snow
cover area was represented as a summation of areal SWE and the SDCs were tuned by varying different
coefficient of variation (CV) parameters for melt and accumulation periods [18]. Such SDC-based
observation operator schemes have accounted for varying conditions, such as elevation, vegetation and
accumulation and ablation phases [10,13,17]. Accounting for the accumulation and ablation phases, also
referred to as the hysteresis characteristic of snow, can be a very important aspect of the SDC scheme,
since different curves can represent these phases and are reflected in the curve parameters (e.g., [10,17]).

Previous studies that have assimilated satellite-based snow cover to improve model snow states
and other hydrological variables (e.g., streamflow) have utilized snow observations to tune the snow
depletion curves. Despite these previous efforts, many of the SDCs used in snow cover assimilation
may have been considered theoretically simplistic [12,14] or tuned with very coarse spatial scale
snow observations [20], and these SDCs may not be suitable enough for assimilating snow cover
data for finer scale, mountainous regions. Also, what if the snow observations themselves were
used to derive the snow depletion curves to be used as the observation operators for snow cover
assimilation? One recent study used satellite-based snow cover and five snow depth stations to derive
SDC functions, based on the hyperbolic tangent formulation, to derive such observation operators for
a mountainous catchment in China [17]. Xu et al. [17] generated curves separately for each station and
the two snow phases, accumulation and ablation. Assimilating snow cover into an LSM using these
highly tuned observational based observation operators improved the modeled snow depth states
at those few sites [17]. Another recent study, which focused on generating SDCs at different scales
by using observed SWE and satellite-based snow cover area, showed how using such observational
information can help estimate better SWE conditions (e.g., peak SWE) when 100% snow cover occurs
(for an area or grid cell), given the location or area being represented [2].

In this study, we present a new approach to estimating snow depletion curves and their application
for assimilating snow cover fraction observations, using an EnKF data assimilation approach and a
land surface model with a multi-layer snow physics scheme. Building upon these recent studies, we
use observed SWE and snow cover fraction estimates to derive new SDCs, using a larger array of
observations, spanning two different mountainous regions in the United States (U.S.). We refer to
these new SDC-type observation operators as “observation-based” and benchmark their skill against
the default, model-based SDC function. These new SDC observation-based observation operators
are hypothesized to improve the model-based SCF forecasts and snow state analysis. A secondary
goal in applying this SDC approach is to see how accounting for varying vegetation, elevation, and
temporal conditions may better capture heterogeneous features related to the snowpack and snow
cover patterns when assimilating snow cover observations. Finally, the new SDC-based observation
operators are used to derive the observational errors, which are used in the EnKF method. Accounting
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for different errors related to the varying conditions provides different weighting of the snow cover
observations against that of the model in the EnKF innovation and update steps.

The primary research question is: How do these new observation-based, SDC-type operational
operators perform relative to a default model-based scheme when assimilating snow cover estimates?
The secondary research question is: How does accounting for different temporal and physiographic
conditions in relation to the new observation-based SDC impact the assimilation of the snow cover
estimates? We address these questions throughout the paper within the following sections. Section 2
provides an overview of the study regions, and Section 3 provides several details of the snow
observations, the multi-layer snow model, and data assimilation method used in this study. Section 4
describes the method on how the new observation-based SDCs are derived and applied in the EnKF
assimilation approach, and Section 5 presents the results of the new SDCs applied as the observation
operator when assimilating the snow cover observations. Finally, we discuss the results, benefits and
challenges of this new SDC approach in the Discussion and Conclusions section.

2. Study Area

The study domains span the mountainous regions of Washington (WA) and Colorado (CO) states
within the United States. The spatial grid is on an equirectangular projection with a resolution of
0.01 degree (~1 km) with bounding coordinates of the lower left corner (45.005◦ N, −121.995◦ W) and
upper right corner (48.995◦ N, −116.995◦ W) for WA (400 latitudinal and 501 longitudinal points), and
lower left corner (37.005◦ N, −108.995◦ W) and upper right corner (40.995◦ N, −102.005◦ W) for CO
(400 latitudinal and 700 longitudinal points). The 0.01◦ gridcells are represented at the center of the
gridcell, as reflected in the bounding coordinates. Figure 1 highlights the WA and CO study areas,
depicting the areas’ high topographic variability (e.g., mountainous and low-land areas). The 0.01◦

elevation maps are derived from the 30 m U.S. Geological Survey (USGS) National Elevation Dataset
(NED; https://lta.cr.usgs.gov/NED). Also, these areas have a wide range of soil and vegetation
types (e.g., coniferous forests, grasslands, agricultural, etc.). The regions were selected to capture
not only the topographic variability, but also variability in surface snow amounts. Figure 1 also
shows each region’s associated in-situ U.S. Department of Agriculture’s (USDA) Natural Resources
Conservation Service (NRCS) SNOwpack TELemetry (SNOTEL) measurement networks used in this
study. After additional quality-control checks, 56 SNOTEL stations are identified as being within the
WA domain, and 98 SNOTEL stations are within the CO domain (represented by black triangles).
These stations are used in deriving and the new SDCs, as described in Section 4.1.
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Figure 1. Elevation maps of Washington and Colorado domains, from the U.S. Geological Survey (USGS)
National Elevation Dataset (NED) dataset. All SNOwpack TELemetry (SNOTEL) site (black triangles)
are used in generating the observation-based snow depletion curves (SDCs), and a reduced amount of
site locations are used only in the model experiments and validation (grey open circles).

3. Data and Model Sources

3.1. Observational Datasets Used

The Terra MODIS Level 3, collection 5 (MOD10A1), daily 500 m snow cover fraction (SCF)
product has been selected for the work presented here [21,22]. This product is derived from the
MODIS Normalized Difference Snow Index (NDSI) to estimate an SCF value for each 500 m pixel [21,
23]) The MODIS snow cover products are obtained from the National Snow and Ice Data Center
(NSIDC) in Boulder, Colorado, USA (http://nsidc.org/data/mod10a1) [24]. The 500 m MODIS
snow cover estimates have been shown to be sufficient in high mountain terrain [25]. The daily 500
m products come in a sinusoidal projection, which are resampled with the nearest neighbor using
the MODIS Reprojection Tool [26] to a 0.01◦ geographic coordinate system (GCS) for our model
and DA experiments. The original 500 m sinusoidal projection dataset is used for deriving the
observation-based SDCs and observational errors, which are further described in Section 4.

The main SWE observation dataset used in this study is the SNOTEL network dataset [27].
The daily SNOTEL SWE measurements are observed using snow pillow instruments. The SNOTEL
network is sometimes one of the only datasets available in mountainous areas in the U.S. to validate
model estimates [28], which provide important information, like streamflow, in key water supply areas
in the mountainous West [29]. The SNOTEL data used in this study include Water Years 2000–2010,
which overlap the Terra/MODIS data period selected. Note: A water year (WY) is used in many
hydrological studies and starts on October 1 and goes to September 30 of the following year, spanning
one full snow season cycle. The SNOTEL stations are point measurements, but applied here as a
representative over the gridcell (e.g., 0.01◦ cells). New SDCs are derived from the above MODIS SCF
and SNOTEL SWE observations (which is further described in Section 4).

3.2. Land Surface Model Description and Setup

The LSM used in this study is the Community Land Model, version 2.0 (CLM2) [30–32]. CLM2
is run in an off-line mode, uncoupled to any atmospheric or other modeling component, and driven
within the Land Information System (LIS) framework [33]. The use of LIS allows us to take advantage
of its many DA, observational, and model interface capabilities. At the time of this study, later
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versions of CLM were not available in LIS though CLM2 was already implemented and well tested.
The model contains ten soil layers with varying thickness, and a five-layer snow scheme, which
accounts for liquid, ice, and heat energy storages and changes within each layer. The water balance
equations are mass conserving with inputs provided mainly by precipitation and outputs associated
through evapotranspiration sources (e.g., vegetation and soil) and runoff. The snow parameterizations
are adapted mostly from other studies [34–36]. The snow scheme’s layers can grow and collapse,
with the number of layers and a layer’s thickness being dependent on snow depth. Any solid
precipitation (i.e., snowfall) is automatically integrated with surface snow or soil layers, and any
rainfall is incorporated after fluxes and temperatures are updated [32].

Snow cover fraction affects surface albedo, net shortwave radiation, and almost all subsequent
model energy and temperature calculations. Despite being such an important model component, it is
parameterized in CLM2 and other LSMs as a predicted variable, dependent mainly on total snow
depth (m). Therefore, any knowledge of snow cover from the previous timestep is only retained via the
depth of the snowpack. CLM2’s SCF calculation employs a single, nonlinear formula that is a function
of both the snow depth state and momentum of roughness parameter (m) for soil, which is set to a
default value of 0.01 m. The snow fraction value is then used in the overall direct and diffuse beam
ground albedo calculations and subsequent energy and moisture flux predictions. Comparison studies
have shown CLM2 to perform well in different regions and settings, especially for snow [31,37,38].
Subsequent versions of CLM (3.5 and greater) have incorporated additional updates to the snow
physics with varying improvement (e.g., [20,39]) and will be made available in future releases of LIS.

The meteorological forcing dataset used to drive the CLM2 simulations is from the North
American Land Data Assimilation System (NLDAS) [40]. The University of Maryland (UMD) land
classification dataset, derived from the Terra MODIS (collection 4) UMD land cover classification
product is used [41]. The CLM2’s plant function type classification scheme and parameters were
mapped to the UMD classification. For the elevation map, the 1 km NED elevation dataset is used.
For further details of the CLM2 model set up and its use for this study, please see Arsenault et al. [15].

3.3. Data Assimilation Method and Experiment Setup

To assimilate the MODIS snow cover fraction estimates into CLM2, the 1-D Ensemble Kalman
Filter (EnKF) method is used in this study, as adapted from Reichle et al. [42,43], which is also part
of the LIS DA framework [44]. The SWE and snow depth states are perturbed, along with forcing
fields that more effectively drive snow dynamics (e.g., precipitation, shortwave radiation), to generate
the ensemble of model forecast conditions with 12 members. The DA methods and parameters used
in this study are further outlined and described in De Lannoy et al. [14] and Arsenault et al. [15].
The MODIS SCF observations are also perturbed, as done with the EnKF method. The Terra MODIS
SCF product is assimilated into CLM2 close to its local overpass time near 10:00 am local overpass
time. Additional details of the snow cover assimilation, observation operators, and observation errors
are further described in Sections 4 and 5.

An open-loop (OL) simulation was generated, which is a baseline simulation where no observations
are assimilated, and is used as the benchmark experiment to compare the assimilated runs against.
The CLM2 OL and DA experiments include a spin-up time period from 30 September 1999, to 30
September 2003. For the OL and DA experiments, a slightly smaller number of stations were used, since
CLM2 was found to build “glacier-like” points (i.e., snowpack does not completely melt off during the
summer months), due to (1) a cold-bias in the NLDAS temperature field, especially when brought to
finer elevation scales (e.g., 1 KM); and (2) an absence of blowing snow represented in the model, which
can be a major snow removal process near mountain terrain peaks [45]. Eliminating these “glacier”
type points from the DA and analysis restricts the evaluation of the new SDC-based observation
operators to the more normally varying snow accumulation and melt grid points. The reduction in
stations resulted in a final 40 stations for WA and 78 for CO, versus the original 56 and 98, respectively,
used in deriving the observation-based SDCs. These final stations and corresponding gridcells are
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highlighted with open grey circles in Figure 1, and they are used for the DA experiments and statistical
results, shown in Section 5.

4. Methods

4.1. Deriving the Snow Depletion Curves from Snow Observations

To help capture the range of observed SWE and SCF relationships, a histogram analysis is
introduced that allows for reducing the dispersion of data and retaining most measurements within
the analysis. A binned scatterplot method is used where SNOTEL SWE observations (along the x-axis)
are grouped in to bins of equal length (e.g., 40 mm of SWE) and the corresponding MODIS SCF
observations are averaged within the given bin. This approach allows for highlighting relationships
that may otherwise be masked in a normal scatter plot (e.g., [46,47]). For each bin, a boxplot can be
produced to reflect the spread in MODIS SCF values for that given bin and be represented by that
bin’s statistics (mean, median, minimum/maximum, etc.). Figure 2 presents the full scatter across the
different SNOTEL SWE and MODIS SCF observation ranges and the SCF averages per 40 mm SWE
bin for the WA and CO domains. For this study, the average SCF (arithmetic mean) of each SWE bin
is used.

For the period of interest, WYs 2000–2010, two years were selected, WY2004 and 2005, for the
validation period, since they represent a range of snow conditions for the two domains. For both
CO and WA, WY2004 experienced slightly less than average annual SWE. However, for WY2005,
CO experienced above normal SWE and WA had very low SWE amounts. The years used for the
binning and SDC equations include WYs 2000–2003 and 2006–2010, which are considered the “training”
dataset. The WYs 2004–2005 are only included for the main DA experiments and validation period
(see Section 5).

Figure 2 shows the range of MODIS SCF values (y-axis) in relation to the SNOTEL SWE points
(x-axis) as scatter points. The large range of observed SCF and SWE values is noted here as a
representative of the different snowpack and cover conditions that can occur in mountainous regions,
e.g., low SWE amounts with high SCF during the accumulation phase. MODIS SCF values of 0% are
excluded, and zero-valued SWE values are not included in the 40 mm bins. Some bins are removed
from the curves if less than five MODIS SCF measurements were in a bin or were considered extreme
outliers, resulting in a total of four bins removed for WA region and one for the CO region. The WA
region scatterplot points (red) reveal much higher SNOTEL SWE values (greater than 2500 mm)
than the CO SWE points. Since the points are scattered and weighted in a logarithmic fashion,
logarithmic functions were fitted to the points to estimate relationships between the values. The WA
logarithmic-regression line (red) indicates less change in SCF as SWE increases than the CO regressed
line (green). Regression equations and coefficient of determination, R2, values are highlighted in the
lower right-hand corner boxes, where the red (green) box corresponds to WA (CO). The logarithmic
equations and R2 values shown here were generated within a Microsoft Excel Spreadsheet analysis.
For the binned average values, logarithmic functions are linearly regressed onto them, producing
high R2 values: 0.822 and 0.931 for WA and CO, respectively. With binning the SWE observations and
averaging the corresponding SCF values within each bin, much of the high data variability and spread
is reduced with the binned averages, thus providing a greater “signal”, as reflected with the R2 values.

To show the robustness of this approach, other histogram tests were applied to the data to see
if the relationships between the SWE bin and SCF average would change with different bin sizes or
input data. First, an equal number of SNOTEL SWE observations were grouped per bin (1000 per
bin) with SCF averaged across each new SWE bin. Another test was also applied where the SNOTEL
observation sites were separated into two separate groups, thus two groups of 23 for WA (56 total sites)
and 49 for CO (98 total) were set. These tests provided support for the use of the binned scatterplot
approach in deriving the SDC-type relationships between the SNOTEL SWE and Terra MODIS SCF
observations. For more details of these results, please see Section S1 of the Supplementary Material.
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Figure 2. The binned scatterplot bin averages for Washington (WA) (large red squares) and Colarado
(CO) (larger green triangles) imposed over all scatter plot points that are used in generating the bins.
Logarithmic functions are fitted here to the binned snow cover fraction (SCF) averages with the red
(green) line corresponding to the equation and R2 value in the lower right-hand side red (green) box
for WA (CO).

4.2. Applying the New Snow Depletion Curves as Observation Operators

In this section, the focus is on incorporating the logarithmic fitted functions, of the SWE-bin
averaged SCF values, as new observation operators within the EnKF method. The observation
operator used in the EnKF and other DA approaches, is typically represented with the symbol, H or
h, which is used here as a vector function to transform the model SWE or snow depth states into the
predicted SCF estimates, equivalent to the SCF observations. These two new annual-based, SDC-type
observation operators for both the WA and CO regions are considered observation-based and referred
to hereinafter as obs-h functions. We compare these new observation-based operators with the default,
CLM2 model-based snow depletion curve, referred to hereinafter as the model-h observation operator.
The 40 mm SWE binned SCF averages are plotted against predicted SCF values estimated with the
CLM2 function, which is used as the default model-based SDC or observation-operator. The default
CLM2 SDC function requires snow depth as the main input to calculate SCF. Thus, to compare it and
its shape against the new observation-based SDC logarithmic functions on the same plot, we convert
the 40 mm SWE bin values to snow depth, which requires a snow density estimate. Figure 3 compares
these different SDC observation operators over the range of the 40 mm SWE-bin values, used as inputs
to the model curve. For CLM2, three different bulk snow densities (100, 250, 400 kg m−3) were used to
derive snow depth values from the SWE bin inputs to show the impact on the predicted SCF values in
relation to the observation-based functions.
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Figure 3. Comparison of the different SDC-observation operators (h), including the Community
Land Model-based SDCs (CLM2 and CLM4-Niu and Yang (2007; NY07), and the observation-based
observation operators (obs-h) for WA (maroon dashes) and CO (orange dashes). The 40 mm snow
water equivalent (SWE) values are used in the CLM curves (model-h) to derive SCF estimates for this
comparison. For the CLM2 curve, three different snow densities are used to show snow-depth to SWE
(100, 250, 400 kg m−3) ranges in SCF estimates, and the NY07 curve for just the 250 kg m−3 snow
density value is used (navy blue diamonds).

In this comparison, the CLM2 range of density-dependent curves tend to have a greater rate of
change in SCF for the first 400 mm of SWE in relation to the range of observation-based points (for both
WA and CO). These differences translate into how model predicted SWE is converted into predicted
SCF for the EnKF updates. In addition to the default CLM2 SDC function, the CLM version 4 (CLM4)
SDC function, developed by Niu and Yang (2007; referred here as NY07), is included in Figure 3,
using its default settings that have been used in some global climate model simulations [17] and snow
cover DA studies [13]. For the CLM4 curve, only the bulk snow density of 250 kg m−3 was used, and
shown in Figure 3; however, observation-based snow densities have been estimated to be between
175 and 320 kg m−3 at coarser scales (at 1.0◦ × 1.0◦) by Niu and Yang [20]. For their data assimilation
experiments, Su et al. [13] tuned the melt factor shape parameter and set the minimum snow density
to 100 kg m−3. The main difference in the CLM4 equation and that used in CLM2 is that the CLM4
hyperbolic tangent function reaches a value of 1, whereas the CLM2 function only approaches 1. Other
studies have used the NY07 SDC type formulation for snow cover DA experiments, and either tuned
the parameters or used the default model formulation [16].

The CLM4 NY07 SDC function would predict very high SCF values, even overpredict, for higher
resolutions applications, such as used in this study with a 0.01◦ grid size. The CLM4 SDC was originally
tuned to coarser scale SCF and snow depth observations (e.g., 1.0◦ grid size), so the higher predicted
SCF values, shown in Figure 3, would not be as applicable to our high-resolution snow cover data
assimilation study. The observation-based SDC logarithmic functions do suggest lower predicted SCF,
with WA averages barely extending above 90% fractional snow coverage. Though it is argued here
that the observation-based SDCs may reflect more realistic SCF estimates, these curves do not take in
to account specific density changes, nor underestimation that can occur with the presence of dense
forests and highly variable terrain, both major issues that impact MODIS SCF detection. The noticeable
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differences between the WA and CO binned SCF averages is most likely a result of such detection
issues in WA, where there are especially much thicker and darker forest canopies than found in CO.

Next, we apply these different observation operators with the EnKF method and added new
options in LIS to handle the two new obs-h functions for WA and CO. These two functions are
considered representative of annually based climatologies and are therefore considered static in nature,
encompassing a range of snow conditions, similar to the CLM2 model-h curves. In Figure 2, the two
logarithmic functions shown were derived using a minimum of five observations per histogram bin.
To impose a slightly stricter constraint in generating these equations, a minimum of ten observations
per SWE bin was applied in generating the final SDC-type observation operator equations used in the
data assimilation step. The final two annual observation-based obs-h logarithmic equations are:

WA: SCFi
f = 5.7928 * ln(SWEi

f) + 43.0622, (1)

CO: SCFi
f = 6.8359 * ln(SWEi

f) + 45.8553, (2)

where f denotes the model forecast and i denotes the ensemble member. Though the slope intercepts
of these two logarithmic Equations (1) and (2), and what is shown in Figures 2 and 3, occur around
40 to 50% SCF when SWE is shown to be at the 0 value. However, when the model predicted SWE is
at 0., the predicted SCF is also set to 0. Thus, when the predicted SWE goes above 0, Equation (1) or
Equation (2), depending on the region, is applied as the observation operator in the DA innovation
step, when comparing with the MODIS SCF estimate.

4.3. Generating Temporal and Physiographic Varying Snow Depletion Curves

Physiographic conditions are known to be a major control on larger spatial patterns of snow
cover distribution, especially topography [2,3,48,49]. Also, snow cover patterns vary greatly throughout
the year with extensive (lower) snow cover and low (high) snowpack depths in fall (spring), affected
by snow accumulation (snowmelt) processes. As similarly derived for the annually representative
observation-based SDC equations (described in the two previous sections), additional obs-h SDC
relationships are derived and evaluated for different temporal and physiographic conditions,
e.g., elevation bands and vegetation type, for the two regions, Washington and Colorado. The
observation-based operators derived in the previous section will be referred to hereinafter as the
annual based obs-h operators, to distinguish them from the ones that are derived here for the
varying conditions.

Similar to the description in Section 4.1, the binned scatterplot approach is applied, but for
varying elevation bands, vegetation types, and calendar months for both WA and CO. The SNOTEL
SWE and MODIS SCF measurements are used in the same manner but binned for specific cases.
The scatter-bins and logarithmic functions are generated for each case (see Supplementary Material
for more information). For time of year, an obs-h curve is derived for each month, and separately
for each region. The summer months were found in different calculations to average near zero,
so no observed curves were fit for this season, and the CLM2 model-h curve is used instead when a
MODIS SCF observation is present. For vegetation type, only the vegetation types associated with the
MODIS-based UMD landcover map and collocated with a SNOTEL station (related to the equivalent
gridcell location) are included. For WA and CO, five overlapping UMD classes resulted from the group
of SNOTEL sites, so bins and curves were derived for those types. These five landcover types include
evergreen needleleaf, mixed forest, woodland, open shrub and grassland. For CO, there was also one
deciduous broadleaf case found collocated with a SNOTEL site. This was not included in the final DA
experiment and the mixed forest SDC was applied at this location.

For elevation bands, elevation ranges were based on SNOTEL elevation values with near average
mid-points of elevation taken as a cutoff value to distinguish higher versus lower elevation bands,
as similarly done in Andreadis and Lettenmaier [10] and Su et al. [13]. For WA, the average midpoint
elevation is about 1500 m and used to set the lower elevation range as 1000–1500 m and higher
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elevation range as 1501–2000 m. For CO, the two elevation band ranges are 2500–3000 m for the lower
and 3001–3600 m for the upper band. These two bands represent the range of elevation conditions
involving the SNOTEL sites, even though higher elevations extend above the highest SNOTEL station.
Applying the scatterbin plot approach to each group of elevation points, two sets of logarithmic curves
are generated like before for each region, one reflecting a lower and the other a higher elevation band.
Table 1 presents an overview of the different model experiments and naming conventions used.

Table 1. A summary table of the different baseline and data assimilation-based experiments and the
naming convention used for each experiment. Same experiments were conducted for both WA and CO
domains over the water years, 2004 and 2005.

Experiment Name Description

Open-loop (OL) The baseline ensemble model experiment with no snow cover
assimilation performed.

EnKF: Model-h Snow cover assimilation using EnKF and the default
model-based SDC as the observation operator.

EnKF: Annual obs-h Snow cover assimilation using EnKF and the annual
observation-based SDC as the observation operator.

EnKF: Month-based obs-h Snow cover assimilation using EnKF and the monthly-varying,
observation-based SDCs as the observation operator.

EnKF: Vegetation-based obs-h Snow cover assimilation using EnKF and the vegetation-type,
observation-based SDCs as the observation operator.

EnKF: Elevation band-based obs-h Snow cover assimilation using EnKF and the elevation-band,
observation-based SDCs as the observation operator.

Additional details, figures, and formulas for the newly fitted curves for the different conditions
and regions are provided in the Supplementary Material, Section S2, that accompany this paper. Please
refer to that published material for how the vegetation type, elevation band, and 12-month binned and
fitted SDC functions were derived.

4.4. Estimating the Observational Standard Errors

To estimate the total observational standard error, σtotal, associated with each of these SDC-based
observation operators, a method is followed that is similar to what is outlined in Arsenault et al. (2013).
Using SNOTEL SWE and MODIS SCF measurements for WYs 2000–2003 and WYs 2006–2010, the
new estimated σtotal values for the obs-h are: 33.04% for WA, and 28.67% for CO. For the model-h
estimated σtotal values, they are 37.60% for WA, and 27.3% for CO. Previous studies have used a static
10% observational standard error [10,13,16], while others used a more dynamic or calibrated set of
observational errors when assimilating MODIS snow cover [14,17]. It is hypothesized that by using
the MODIS SCF observations themselves to derive new SDC formulas for the EnKF approach, should
bring the model SCF predictions in line with the SCF observations. In a way, this is considered an
observation bias reduction approach for the filter, by using observation operators that more closely
match the observational averages.

For the different temporal and physiographic type observation-based operators, corresponding
observation standard errors, σtotal, were also estimated by using these new logarithmic curves along
with the available SNOTEL SWE and MODIS SCF observations for the period, WYs 2000–2003 and
2006–2010, which is outside of the data assimilation experiment window. The new σtotal values
are calculated for the different monthly, vegetation and elevation conditions and for each region by
inputting the SNOTEL SWE values in to the new logarithmic functions and then compared to the
MODIS SCF estimates. This is again to capture both the errors in the SCF detection rates and newly
derived observation operator functions. As shown in Figure 4, the results for both CO (blue bars on the
right) and WA (red bars on the left) are compared side-by-side to examine the regional differences in the
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estimated observation errors. CO-associated errors are lower overall than WA, especially during the
winter months. When these observational errors are lower, again more dependence on the observations
is given, and thus through the EnKF updates, the model will draw closer to the observations. Stronger
responses to the SCF observations are then expected in CO than in WA region for the DA results.

 

Figure 4. A bar plot of the varying observation standard error values, σtotal, (in % of SCF) for each given set
of derived observation-based observation operators, obs-h, including annual-based, monthly, vegetation
type and elevation band. Blue (red) bars indicate observation errors associated with CO (WA).

5. Results

5.1. Applying the SDC Observation Operators to the Data Assimilation Experiments

Using observations outside of the assimilation experiment period to derive the SDC formulas
should test the new observation operators’ ability to improve the snow state analysis. Here, the two
obs-h based logarithmic functions, derived for WA and CO, are applied with the EnKF algorithm and
compared with the model-h based EnKF experiments. As an initial comparison between these two
EnKF experiments, Figures 5 and 6 provide timeseries of spatially averaged SWE and RMSE of SWE
values (both in mm), respectively, across the SNOTEL validation points for the two regions and two
Water Years (2004, 2005). For all four cases, the obs-h EnKF experiment produces higher averaged
SWE conditions over the model-h EnKF run, especially for CO, bringing it in closer agreement with
the SNOTEL spatially averaged SWE (Figure 5). The patterns of averaged accumulation and melt are
similar to that of averaged SNOTEL SWE, just the magnitudes are lower for both the model-h and obs-h
experiments, relative to the open-loop (OL) run. In addition, greater reduction in spatially averaged
RMSE values corresponds to the obs-h based experiment (Figure 6), with most of the reduction in
RMSE shown for CO.
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Figure 5. Spatially averaged SWE comparison is made between SNOTEL observations (open circles),
the OL run (grey line), model-h EnKF experiment (red line), and obs-h EnKF (green line) experiments
for both (a) WA and (b) CO regions. Values given within the parentheses indicate the σtotal values for
the experiment.

Figure 6. Spatially averaged RMSE SWE values (in mm) for both (a) WA and (b) CO for the OL run
(grey line), model-h EnKF (red line) and obs-h EnKF (green line) experiments.

5.2. Annual- vs. Varying Conditions based Observation Operators

Previous snowcover DA studies have accounted for physiographic and seasonal-varying snow
differences in their observation operators, however, they did not explore their overall impact on
their EnKF experiments (e.g., [13]). In this section, the previously derived SDC logarithmic functions,
representing different physiographic and temporal conditions, are explored as observation-based
observation operators in a suite of EnKF experiments. Each group of physiographic- and temporal-varying
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conditions represents only a few categories (e.g., five UMD vegetation classes of thirteen total). The
SDC function parameters, slope and intercept, and observational errors are mapped to other classes or
bands similar in nature. For example, each vegetation class, like evergreen needleleaf forest, has its
own set of function parameters and errors to better represent each set of separate conditions (e.g., snow
conditions differ between leafless deciduous and needled conifer-based trees). Similarly, for elevation
bands, elevations lower than the lower band limit used (e.g., an 800 m elevation pixel below the 1000
m lower limit for WA) use the function parameters and errors for that lower elevation band. Again,
this might not truly reflect low elevation locations in mountainous areas, especially where MODIS
SCA pixels are not known to detect snow cover presence as well (e.g., [50]).

By investigating the different conditions, e.g., vegetation types separate from elevation bands,
we can see what individual impacts they may have versus all lumped together. For each region,
three additional EnKF experiments were generated that incorporate the monthly, vegetation class,
and elevation band type SDC functions, separately. Thus, for the EnKF experiment employing the
vegetation class function parameters, the EnKF analysis updates will reflect the effects of those varying
vegetation SDCs only. The same applies for the different months and elevation bands. To distinguish
the different EnKF experiment types, they are simply named by their characteristic and that they are
obs-h function types: Monthly, vegetation type (veg), and elevation (elev) obs-h, as highlighted in
Table 1. The three different experiments are run for WYs 2004–2005, and compared with the model-h
based EnKF experiments.

The first set of results are summarized in Table 2, which include overall means, standard deviation,
RMSE, and correlation coefficient values between the simulation SWE results and SNOTEL SWE
observations. These results are based on the reduced number of SNOTEL locations, 40 stations for
WA and 78 for CO, since CLM2 was found to produce “glacier-like” points (i.e., lack of snowmelt in
summer months) at the other 16 WA and 20 CO station gridcell locations. Table 2 shows lower RMSE
values for many of the obs-h EnKF experiments, especially for CO in both years and less of an impact
for WA, like WY2004. The lower RMSE values for CO’s WY2005, noted as an anomalously positive
snow year (from our eleven observation years), may be related to the curve parameters, especially for
the vegetation type obs-h EnKF experiment, which would be dominated by lower SCF average values
for CO. With it being a higher snow year than the 11-year average (2000–2010), higher MODIS SCF
values would then “add” more snow to the model SWE analysis, thus resulting in higher SWE values
and closer agreement to the observations.

To show how the RMSE values of each DA experiment relate to the open-loop run, Figure 7
shows each experiment’s SWE-based RMSE values normalized with respect to those of the open-loop
based on [51]. A normalized RMSE value less than one indicates the experiment may perform better
than its control run, which is the open-loop in this case [51]. All experiments perform better than the
open-loop runs, except for WA’s WY2005, which was a major drought year and difficult to capture
with the ensembles and observations. Also, the ±1 standard deviation values (inner yellow error bars) in
Figure 7 show smaller ranges for many of the obs-h experiments, especially the vegetation obs-h case for CO.

To see how this performance translates into EnKF metrics, the normalized innovation means and
standard deviations for each experiment and water year are provided in Table 3. The means tend
slightly closer to 0 for the obs-h than the model-h based experiments, indicating differences between the
individual MODIS SCF values and model predicted SCF values were overall smaller. This may suggest
that the obs-h curves predicted SCF values that were in slightly better agreement with the MODIS
observations. The exception again was WY2005 for WA where there were greater differences, indicated
by much higher negative mean values. This may relate to the shape of the curves and thus predicting
higher SCF forecast values than the MODIS estimates. For the normalized innovation standard
deviations, the values increase to near 1 with almost all the obs-h experiments, which may indicate
that the model errors and observational errors may be more consistent in the filter (e.g., [52]) than
those associated with the model-h EnKF experiments. This could possibly indicate better agreement in
MODIS SCF values with the model predicted SCF produced by the obs-h curves.
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Table 2. Comparison of summary SWE statistics for the period, October-June, between observation
operator experiments. Bold numbers indicate experiments with reduced RMSE values relative to the
open-loop and model-h EnKF experiments. SD refers to standard deviation.

Observation Operator Comparison Statistics

Average SD RMSE Correl Average SD RMSE Correl

(mm) (mm) (mm) (-) (mm) (mm) (mm) (-)

WA (40 Sites) 2004 2005

Observations 221.85 216.19 - - 61.19 66.56 - -
Open-loop 247.01 188.17 168.22 0.79 64.30 61.14 65.09 0.74

EnKF: Model-h 183.54 184.21 138.54 0.87 34.62 40.38 60.29 0.75
EnKF: Annual obs-h 194.09 191.40 140.13 0.87 40.11 45.38 57.46 0.75
EnKF: Month obs-h 191.09 191.31 145.33 0.85 37.27 42.89 58.29 0.74

EnKF: Veg. obs-h 195.79 192.18 140.28 0.87 40.60 45.77 57.31 0.75
EnKF: Elev. obs-h 199.91 193.46 142.41 0.87 40.80 46.07 57.83 0.75

CO (78 Sites) 2004 2005

Observations 132.74 127.26 - - 187.20 168.07 - -
Open-loop 143.75 115.63 107.00 0.72 180.14 132.52 127.97 0.79

EnKF: Model-h 94.01 92.34 81.57 0.89 119.57 109.58 116.57 0.89
EnKF: Annual obs-h 108.00 105.82 79.24 0.88 139.72 127.99 103.69 0.91
EnKF: Month obs-h 111.15 109.82 86.21 0.86 145.82 134.43 109.96 0.89

EnKF: Veg. obs-h 114.26 111.18 76.91 0.88 147.93 134.33 99.51 0.91
EnKF: Elev. obs-h 112.60 109.71 81.74 0.87 144.87 132.64 108.19 0.90

a) b)

c) d)

Figure 7. Comparison of each experiment’s SWE RMSE values normalized by the open-loop (OL)
RMSE values for the five experiments: Model-h EnKF run, and the annual, monthly, vegetation, and
elevation varying obs-h EnKF experiments for WA (a,b) and CO (c,d) for WY2004 (left) and WY2005
(right). Black open squares indicate the statistical mean, yellow error bar lines indicate ±1 stdev unit
from mean, and green error bar lines indicate the maximum and minimum extents of the normalized
statistic. Values below 1 suggest improvement over the OL run.
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Table 3. Table of normalized innovation values, including the mean and standard deviation (SD) for
the different observation operator, h, experiments.

Normalized Innovation Analysis

WA CO

2004 2005 2004 2005

Experiment Mean SD Mean SD Mean SD Mean SD
CLM2 mod-h −0.43 0.89 −0.39 0.81 −0.43 0.92 −0.37 0.87
Annual obs-h −0.41 0.99 −0.57 0.95 −0.42 0.98 −0.34 0.94
Monthly obs-h −0.41 0.97 −0.59 0.98 −0.38 1.02 −0.31 0.93

Veg. obs-h −0.41 1.02 −0.58 0.95 −0.39 1.01 −0.30 0.97
Elev. obs-h −0.41 1.00 −0.57 0.95 −0.41 1.02 −0.32 0.99

6. Discussion

In this study, we have explored how different observation-based snow depletion curve (SDC)
characteristics can be derived and used as observation-based observation operators in EnKF
assimilation updates when assimilating MODIS, or other satellite-based, snow cover fraction estimates.
Different SDC logarithmic functions, representing different physiographic and temporal conditions,
were also explored as observation-based observation operators in a full suite of EnKF experiments.
Using logarithmic functions with a y-axis intercept value, not set to 0, means that MODIS SCF values
may not be assimilated below that value (e.g., 40% SCF). In a way, this acts as a cutoff for lower MODIS
SCF values (e.g., less than 30%), which could contain contaminated SCF values, due to unresolved
patchiness in a pixel and NDSI algorithm pixel discrimination issues [53]. Also, the fact that many
of the logarithmic curves never fully reach 100% SCF could allow MODIS SCF pixels that are near
100% to have an impact on the snow analysis, when the model SCF forecasts are much lower than
100%. This situation can work well when the LSM consistently underestimates SWE, relative to
the in situ SWE observations. Therefore, for LSMs with a low SWE bias or precipitation input bias
(e.g., an undercatch issue), this SDC approach can partly compensate for the low bias, especially when
assimilating snow cover in higher mountain catchments locations. However, if an LSM or snow model
has a high SWE bias compared to the observations, then this observed type SDC could contribute to
overestimating and adding too much snow to the model.

In other snow cover data assimilation studies, most curves are designed to reach 100% SCF,
even for coarser grid scale experiments [13]. If model SWE forecast conditions remain high enough
that the predicted SCF ensemble forecasts remain at 100%, with little ensemble spread in SCF, then
there can be very little to no impact on the SWE analysis if the observed SCF is much less than
100%, e.g., partial coverage for the gridcell [14]. Another minor downside to having an SDC-type
observation operator reach 100% snow cover, like the case for many LSM curves, the EnKF-based
model SCF forecast ensemble can become underestimated, if perturbations force the members to fall
below 100%, even if both the MODIS and model predicted SCF were originally at 100%. This can also
occur when perturbing the MODIS SCF observations. When the observed SCF is at 100%, this can
also reduce that value when perturbed, leading to underestimated SWE analysis [14]. Rules can be
applied in the EnKF method as to how the ensemble members, e.g., within the observation-perturbed
ensemble, get distributed or updated near the 100% SCF point. This could include a set of rules for
reducing the SWE analysis by a certain fraction when there is a partial amount of observed SCF or by
modifying the observation error covariance, σtotal, that controls the ensemble or uncertainty spread
[based on 14]. One slight advantage to the SNOTEL-MODIS observation-based observation operators,
obs-h, is that they reflect an average SCF percentage of what the satellite detects for a given range of
conditions. Thus, if the predicted SCF is 80% and is the upper threshold in the SDC function, then 20%
of the area could be considered exposed vegetation cover or average SCF conditions, for say, lower
elevation regions.
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Based on the filter statistics shown in Tables 2 and 3, there still remains some large differences
between the magnitudes of the model predicted SCF and the MODIS SCF observations. One approach
to address these innovation biases would be to scale the MODIS SCF values to reflect higher ones,
bringing them into closer agreement with the predicted SCF values [54]. Another option would be to
place additional constraints on the observation operators or SCF observations themselves, or to further
tune the observations or the curves towards the other, so that the filter statistics reflect less bias between
observations and the model. In this study, by deriving the observation-based observation operators
with the MODIS SCF observations, it helps to bring the predicted SCF values closer in agreement to the
observations. With almost all data assimilation approaches, tuning may be the unavoidable course to
be taken, so the final analysis may reflect the best that both the model and observations have to offer.

7. Conclusions

In this study, we presented a new approach to estimating snow depletion curves and their
application for assimilating snow cover fraction observations, using an EnKF approach and a land
surface model with a multi-layer snow physics scheme. We use observed SWE and snow cover
fraction estimates to derive new SDCs, using a larger array of observations than previous studies,
spanning two different mountainous regions in the U.S., in Washington and Colorado. We refer to
these new SDC observation operators as “observation-based” and benchmarked their skill against
the default, model-based SDC function. The SDC observation-based observation operators showed
improvement over the default model-based SCF forecasts and snow state analysis. A secondary goal
of this study was to apply this SDC-type approach to see how accounting for varying vegetation,
elevation, and temporal conditions may better capture heterogeneous features related to the snowpack
and snow cover patterns when assimilating snow cover observations. Vegetation-based curves showed
improvement over the lumped annual observation-based SDC, especially for Colorado. Finally, the
new SDC-based observation operators are used to derive the observational errors, which were used in
the EnKF method’s snow cover observation perturbations. Accounting for different errors related to
the varying conditions provides different weighting of the snow cover observations against that of the
model in the EnKF innovation and update steps.

These results along with other previous SCA DA studies do show promise in that there are
positive impacts without much tuning, but additional testing with the observation operators, model,
and observations is still needed [10,18]. In future work, more a priori information about the MODIS
SCF predictions could be included to deriving and tuning functions, like the ones developed here for
this DA application. For example, determining error information with regard to MODIS SCF 100%
estimates in connection with the meteorological forcing fields, e.g., ability to estimate snowfall for
same observed 100% SCF events or the role that temperature can play in MODIS SCA errors [55]. Also,
more adaptive type SDC schemes, which could be more representative at a point, could be developed
that adjust relative to changing conditions. Different approaches could be applied to optimize these
observational based SDCs and improve the overall performance of the EnKF system.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/8/12/484/s1,
Figure S1: Presenting the binned scatterplots for the two mountain regions. Figure S2: Showing the robustness of
the scatterbin histogram approach for deriving the SDCs. Figure S3: Monthly SDC relationships derived from
binned scatterplot approach for the Washington state domain. Figure S4: Similar to Figure S3, but for Colorado
state domain. Figure S5: SDC relationships derived for two different elevation bands for Washington domain.
Figure S6: Similar to Figure S5, but for the Colorado domain. Figure S7: SDC relationships derived for different
vegetation types from binned scatterplot approach for Washington. Figure S8: Similar to Figure S7, but for
Colorado. Figure S9: Independent check on the snow water equivalent bins for different dominant vegetation
types and in relation to elevation, for Washington domain. Figure S10: Similar to Figure S9, but for Colorado.
Figure S11: Timeseries comparison of the experiments’ spatially averaged predicted SCF (in %) for the different
observation operators and SCF observations, presented for the melt season. Figure S12: Individual SNOTEL site
comparisons between different SDC-type observation operators.
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Abstract: The availability of in situ snow water equivalent (SWE), snowmelt and run-off
measurements is still very limited especially in remote areas as the density of operational stations
and field observations is often scarce and usually costly, labour-intense and/or risky. With remote
sensing products, spatially distributed information on snow is potentially available, but often lacks
the required spatial or temporal requirements for hydrological applications. For the assurance of
a high spatial and temporal resolution, however, it is often necessary to combine several methods
like Earth Observation (EO), modelling and in situ approaches. Such a combination was targeted
within the business applications demonstration project SnowSense (2015–2018), co-funded by the
European Space Agency (ESA), where we designed, developed and demonstrated an operational
snow hydrological service. During the run-time of the project, the entire service was demonstrated for
the island of Newfoundland, Canada. The SnowSense service, developed during the demonstration
project, is based on three pillars, including (i) newly developed in situ snow monitoring stations
based on signals of the Global Navigation Satellite System (GNSS); (ii) EO snow cover products on
the snow cover extent and on information whether the snow is dry or wet; and (iii) an integrated
physically based hydrological model. The key element of the service is the novel GNSS based in situ
sensor, using two static low-cost antennas with one being mounted on the ground and the other one
above the snow cover. This sensor setup enables retrieving the snow parameters SWE and liquid
water content (LWC) in the snowpack in parallel, using GNSS carrier phase measurements and signal
strength information. With the combined approach of the SnowSense service, it is possible to provide
spatially distributed SWE to assess run-off and to provide relevant information for hydropower plant
management in a high spatial and temporal resolution. This is particularly needed for so far non,
or only sparsely equipped catchments in remote areas. We present the results and validation of
(i) the GNSS in situ sensor setup for SWE and LWC measurements at the well-equipped study site
Forêt Montmorency near Quebec, Canada and (ii) the entire combined in situ, EO and modelling
SnowSense service resulting in assimilated SWE maps and run-off information for two different large
catchments in Newfoundland, Canada.

Keywords: snow; SWE; LWC; run-off modelling; hydropower application; GNSS; EO
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1. Introduction

The seasonal snow cover has an important role as hydrological storage for the Earth’s fresh
water resources. The amount of water stored in the snowpack as snow and ice is expressed as
snow water equivalent (SWE) and is a key variable in water resources management, which is an
essential component within the Earth’s climate system [1]. The amount of water, which is released
seasonally (or in events) as snowmelt in the rivers, as well as the timing of the water release, mainly in
spring, is relevant for numerous hydrological applications, such as hydropower production, irrigation,
and fresh water supply. In addition, knowledge about the snow situation is a concern of many
safety related institutions and businesses, such as avalanche warning centres and (re-)insurance
companies. The onset of snowmelt and its intensity are major drivers for flood forecasting, especially
in mountainous areas, and are, besides the knowledge on the total amount of water stored as snow,
a very valuable information for hydropower companies.

Regarding in situ snow measurements, until now, SWE is mainly measured manually by weighing
a given volume of snow, which is cut out of the snowpack with tubes [2]. This approach is reliable
but can provide only a snapshot in time and in space, and in addition, it is labour-intense and
destructive. Automatic SWE measurements are mainly performed by weighing systems like snow
pillows and snow scales [3]. These methods provide time series, but the instruments and their
installation and operation are quite costly, and their results might be affected by ice-bridging effects
of thermal fluxes resulting in potential over- or underestimations of SWE [4]. Alternative SWE in
situ observation systems make, e.g., use of cosmic rays or neutron rays [5] or apply a passive gamma
monitoring sensor (GMON) [6]. However, the reliability of those sensors depends strongly on the
underlying surface conditions, the measurements are limited to a certain amount of SWE and thus are
only applicable at certain locations [7].

As an alternative to the standard in situ methods, L-band Global Navigation Satellite (GNSS)
signals can be used to derive snow cover properties. Different methods were developed within the
last years. As an advantage, it is possible to apply these methods globally as the GNSS signals can be
tracked almost any place on Earth, they are non-destructive and can be used even for large amounts
of snow [8]. Snow height (HS), for example, can be determined by the reflection of GNSS signals
on the snow–air interface [9]. Liquid water content (LWC) can be derived by GNSS signal strength
attenuation through a snowpack of a given volume [10]. Henkel et al. [11] presented for the first time
the possibility to derive SWE for dry snow conditions using two low-cost GNSS sensors for a carrier
phase-based approach to detect signal changes within the snowpack. Steiner et al. [12] confirmed
this by using a similar technique with geodetic sensors and applying different ambiguity resolution
strategies and wideline combinations. Finally, we developed a novel approach combining GNSS signal
attenuation and time delay by combining information on GNSS carrier phases and signal strengths.
We accomplished deriving the three snow cover parameters SWE, LWC, and snow height in parallel,
as recently demonstrated in Koch et al. [8].

Spatially distributed snow information such as the snow cover extent, information weather the
snow is dry or wet, and dry snow SWE or snow height, can be derived from Earth Observation (EO)
data, based on different remote sensing techniques using active or passive microwaves, or optical,
infrared or thermal approaches. An overview is given, for example, by Hall [13] and Tedesco [14].
In recent years, especially the freely accessible Sentinel-1, -2 and -3 data are a useful source for
determining the above-mentioned snow parameters, like snow extent, or wet snow [15]. Besides ‘raw’
satellite data, also different, often project-based, internet portals like GlobSnow, CryoLand, Google
Earth Engine, or EUMETSAT H-SAF are providing already processed satellite-based snow parameter
products. However, in general, all remote sensing products are often not available in high-temporal
resolution or may lack the required spatial resolution. This is especially the case for optical images,
e.g., from MODIS, which face potential cloud cover issues [16–18]. Active microwave products are
often restricted due to foreshortening or layover effects, in particular in mountain regions and passive
microwave products are very coarse regarding their spatial resolution. Recent approaches tend to apply
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more and more multi-sensor techniques to overcome some of these limits, which is, e.g., currently a big
aim of the NASA SnowEx campaign [19]. Additionally, the combination of EO and hydrological model
approaches helps to increase the temporal and spatial availability of snow or run-off information as
e.g., presented by Cline et al. [20] and Immerzeel et al. [21].

In the current study, we present a comprehensive overview of a combined approach on using
in situ measurements, EO, and hydrological modelling to derive continuous information on snow
parameters and run-off. The applied methods and sensors of the in situ component as well as
hydrological services were designed, developed and demonstrated in the framework of the business
applications demonstration project SnowSense (2015–2018), which was co-funded by the European
Space Agency (ESA). The SnowSense service mainly targets snow hydrological applications and is
based on three pillars, including (i) a newly developed SnowSense in situ snow monitoring stations
based on GNSS signals, (ii) EO products of the snow cover extent and information if and where the
snow is dry or wet, and (iii) an integrated physically-based hydrological model.

The in situ and EO information are used to assimilate the input and the parameters of the
applied hydrological model PROMET (Processes of Mass and Energy Transfer) [22] to calculate SWE,
snowmelt onset, and river run-off in catchments as spatial layers. Those data layers contain the
relevant information for flood forecasts and hydropower plant management, particularly for so far
non- or sparsely equipped catchments in remote areas. Within the project demonstration phase,
we validated the GNSS in situ snow stations and the first run-off results of the combined approach
were already provided as an operational service for a commercial hydropower plant company and the
administration of the island of Newfoundland, Canada, being our first demo users.

2. Materials and Methods

2.1. The SnowSense Concept

The overall aim of the demonstration project SnowSense was to build up an integrated service
for run-off and hydropower assessment and forecast related to snow cover dynamics in remote areas.
The idea of the service concept encloses the integration of in total three components for the provision
of snow hydrological information. The service is based on the integration of (i) GNSS-based in situ
measurements, (ii) EO monitoring and (iii) a hydrological model, to generate SWE, snowmelt and
run-off products for remote areas in a temporal and spatial resolution, related to user’s operation
defaults. We chose one day as temporal and 1 km as spatial resolution. Furthermore, it is possible to
provide estimations and forecasts on hydropower generation (Figure 1).

Figure 1. The modular concept of SnowSense, integrating satellite technologies like Global Navigation
Satellite System (GNSS), satellite communication and Earth Observation (EO) as the basis for a service.
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In the following subchapters, the applied Canadian test sites and the description, development
and assimilation of the three basic components of the snow cover sub-system as well as the entire
service are presented.

2.2. SnowSense Testsites in Canada

2.2.1. The Island of Newfoundland

The main region of interest for the development of the SnowSense service was the remote
location of the island of Newfoundland (97,000 km2), which is a province of Newfoundland and
Labrador, Canada (Figure 2). The altitudinal gradient of this island ranges between 0 m and 800 m
a.s.l. Newfoundland is primarily characterized by having a subarctic and a humid continental climate,
with an annual precipitation ranging from 900 mm on the Northern Peninsula to 1700 mm in the
southwestern region of the island [23,24]. This environment, together with a low population, provides
the island of Newfoundland ideal conditions for taking advantage of using run-off for hydropower
and building up reservoirs. However, the entire region has so far an insufficient instrumentation with
only two functioning SWE measurement stations [25].

Figure 2. Overview on locations of SnowSense in situ stations (red triangles) and run-off stations
(purple diamonds), within the Humber, Exploits, and Gander catchments in Newfoundland, Canada.
Catchments are outlined with a red line. The locations of the two existing snow water equvalent (SWE)
stations are indicated as black dots. The background shows the modelled SWE, which was assimilated
by in situ stations and Earth Observation (EO) for the 15 March 2018.

As shown in Figure 2, we had access to several run-off gauges to validate our combined and
assimilated hydrological service. In this study, we focus on the Humber and the Exploits catchments
(Figure 2), which are of of most interest for the operations of the users. As marked in Figure 2, we set-up
seven SnowSense in situ stations in Newfoundland, where two are located in the Exploits catchment
and two in the Humber catchment. The hydrology of the catchment of the Humber River is influenced
by the large lakes Deer Lake, Grand Lake, Sandy Lake and Hindis Lake. The water flow from Hindis to
Grand Lake and to Deer Lake is regulated including the Deer Lake Power Plant (130 MW). Water flow
from the Upper Humber area to Reidville is more or less natural.
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The hydrology of the Exploits River catchment is strongly influenced by the Red Indian Lake
(537 km2), dividing the catchment into an upper and a lower part. The release of water from the lake at
the Millertown Dam is very dynamic (55–700 m3/s) and can be assessed from a downstream station.

In the framework of the demonstration project, we provided information gained from the
SnowSense in situ stations and the combined EO and modelling approach as service to two dedicated
demo users. Both demo users, namely Nalcor/NL Hydro and the Water Resources Management
Division in the Department of Municipal Affairs and Environment (WRMD), are active in hydropower
and flood forecast. During the project demonstration phase, they accessed, monitored and investigated
the SnowSense products based on their specific requirements, whereof we present a selection of the
results in this paper. For the two catchments as test sites, we set up the combined approach of in situ
measurements, EO, and modelling.

2.2.2. The Forêt Montmorency NEIGE Site near Quebec

The Forêt Montmorency is located 70 km north of the city of Quebec and is the largest teaching
and research forest in the world with an area of 412 km2. It is open to the public and the University
Laval operates in this forest the NEIGE test site (673 m a.s.l.). The Forêt Montmorency is drained by the
Montmorency River and one of its tributaries, the Black River. The annual rainfall exceeds 1500 mm
and in winter average snowfall is above 6 m.

As we had no possibility to validate SWE and LWC in the Humber and Exploit catchments in
Newfoundland, we additionally had the opportunity to install a SnowSense in situ station at the study
site NEIGE at Forêt Montmorency. At this location, numerous snow and meteorological instruments
are tested and in operation. This encompasses, for example, the CS725 sensor, which was developed by
Hydro Québec (Canada) in collaboration with Campbell Scientific (Logan, UT, USA) and which was
used for comparison with the GNSS in situ measurements in this study [6]. Moreover, manual snow
pit measurements, taken on a weekly basis, were available as further validation information on SWE.
The CS725/GMON sensor was located 25 m next to the GNSS sensors, and the manual measurement
are performed within a distance of less than 150 m. The site is a flat, sand/gravel surface area without
significant vegetation. The close-by meteorological station site is in a distance of less than 500 m with
an elevation difference less than 25 m. Since 2014, the University Laval is managing the NEIGE site,
which is following the World Meteorological Organisation’s (WMO) Canadian Solid Precipitation
Experiment’s (C-SPICE) objectives for solid precipitation measurements and comparisons of automatic
instruments. During the winter season 2017/2018, several sensors and manual measurements from
nine partners altogether took place at this location, which was a profound basis for comparing the
results of our GNSS in situ station with other sensors.

2.3. In Situ Station Design and Setup

For the in situ component, we made use of information gained by signal attenuation and signal
delay of GNSS signals passing through the snowpack to derive the snow cover properties SWE and
LWC [8]. In general, it is possible to use any kind of GNSS signals such as the signals of the Global
Positioning System (GPS), Galileo, GLONASS or Beidou for this approach. For this study, we used the
freely-available GPS L1-band signals at a frequency of 1.57542 GHz. Recently, the additional usage of
Galileo signals was integrated and will be applied in further studies [26]. The in situ GNSS sensor setup
is in general composed of two static antennas as presented in Henkel et al. [11] and Koch et al. [8],
whereof one antenna (GPS1) was mounted on the top of a mast system to be permanently above the
snow cover, and the other one (GPS2) was placed on the ground before the first snow fall. In winter,
when GPS2 was covered by a layer of snow, the received GPS signals were markedly influenced
by signal attenuation and time delay within the snowpack. For further information on the setup,
the algorithms, the detailed GNSS signal processing steps as well as their validation at a high-alpine
study site in Switzerland, we refer to [8,10,11].
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A large focus regarding the development and the design of the SnowSense in situ sensor system
for the study presented in this paper was to provide a practical and lightweight solution for the
retrieval of continuous snow cover properties like SWE and LWC. The setup is in particular suitable for
locations, which were so far not equipped with measurement sensors or which were difficult to access
and not regularly visited by field observations. Having this purpose in mind, we designed, produced
and tested an easily transportable solution consisting of a mast system with rigging. Regarding the
deployment of the sensor system, it is practically possible to carry all sensor components in a large
backpack, and two persons can install it within approx. two hours. Furthermore, the sensor system
consists of two multi-GNSS sensors (u-blox, Thalwil, Switzerland), which receive GPS and Galileo
signals, a processing unit capable for on-board processing of SWE and LWC as well as a power and
a communication management unit. The latter two units are described in detail in [26]. The on-board
processing is more power consuming than simply storing and transmitting raw data measurements.
However, we promote the on-board processing to reduce the amount of data to be transmitted and
to provide real-time data directly from the station to the client. The autonomous power supply for
the operation and processing is provided by a combination of a solar panel and a battery pack and is
controlled by the integrated power unit. As in many remote regions like in Newfoundland, the mobile
network is not available, and we used an Iridium satellite communication (SatCom) module to transmit
a daily or even sub-daily overview of the processed data. However, for regions with mobile networks,
the communication unit can also be replaced by this technique. Figure 3a,b shows examples of some
station components like the low-cost GNSS antennas and receivers as well as the microcontroller used
for processing. Figure 3 gives an example of an installed sensor system and the solar panels on a 3 m
high stable aluminum mast consisting of three pluggable segments.

Figure 3. (a) demo suitcase with the applied low-cost LEA-M8T GPS receivers (u-blox, Thalwil,
Switzerland), u-blox patch antennas and a small microcontroller and data storage; (b) examples of GPS
antennas of GPS1 mounted at a pole and of GPS2 laid out on the ground before snowfall; (c) example of
a SnowSense station including a mast system, a self-supplied power management (solar panels on top),
a processing unit (including battery pack), and a communication module installed near Millertown,
Newfoundland, Canada. GPS1 and the communication antenna are mounted at the top of the mast
and GPS2 is covered by snow.

2.4. EO and Data Processing

For wet-snow detection from space, we used Sentinel-1A and -1B EO data in interferometric wide
(IW) swath mode. IW mode is the main acquisition mode over land and satisfies the majority of service
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requirements. It acquires data with a 250 km swath at 5 m by 20 m spatial resolution [27]. The satellite
data is automatically downloaded from Copernicus Data Hub (https://scihub.copernicus.eu/),
and pre-processed using ESA Sentinel Toolbox for geometry and terrain corrections and it is spatially
resampled on a 100 m by 100 m grid [28]. Afterwards, the data is radiometrically calibrated and
corrected with regard to the elevation angle [29]. The wet-snow mapping is performed as proposed
by Nagler and Rott [30] with a fixed threshold of -3 dB from a reference scene. Here, we are using
a predefined reference data set with averaged standard backscatter values for different satellite
geometries according to Appel et al. [29].

The results are binary wet snow maps with a resolution of 1 km by 1 km, containing three classes:
wet snow, no information (which includes dry snow or snow free conditions), and no data. The maps
were used in a further step for the assimilation process (see Section 2.6) and as additional visualization
product, i.e., provided for the demo users in a password protected online portal (see Figure 4).

Figure 4. (a) Sentinel-1 IW mode composite for the Island of Newfoundland for 30 April 2017;
(b) derived map of wet snow area (blue) from Sentinel-1 data.

2.5. Processes of Mass and Energy Transfer—PROMET Model Component

For the retrieval of the spatially distributed snow information and forecast capabilities,
the hydrological part of the coupled land surface process model PROMET [22] was chosen.
It is a raster-based model that has been developed to spatially simulate the elements of the land
surface water balance including vegetation, soil moisture, snow cover, reservoirs, and river discharge.
PROMET incorporates a four-layer soil model and considers lateral flows along hill slopes. Due to its
raster-based architecture, the model allows for the assimilation of remote sensing data for distributed
hydrological applications [31]. PROMET solves the water and energy balance for hourly time steps
and calculates the run-off of river basins, while it strictly conserves mass and energy. It thus allows for
the validation of the complete process chain, from rainfall over soil-moisture dynamics to vegetation
controlled evapotranspiration and finally routed run-off, against measured discharges on the basin
and sub-basin scale.

PROMET has successfully been applied for a variety of hydrological studies in medium-to
large-sized watersheds [22,31–33]. Required input data consist of raster-based GIS information,
characterizing the spatial distribution of land use patterns, soil types and topographic features.
In addition, parameters describing the characteristics of the soil and land use or crop categories
are supplied through tabular input.

For the application on the island of Newfoundland, we set up a basic model environment based
on a freely available digital elevation model (DEM), from which the river network was automatically
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derived and lakes or reservoirs were inserted as structures. Land use information was derived
from EO data sources (GlobCover), as soil map the Harmonized Soil Map of the World [34] is used.
All spatial input data as well as the model grid itself have a resolution of 0.00833 degrees (<1 km2).
The parameterization of the catchment characteristics followed the internal standardized procedure
developed by VISTA, purely based on GIS and EO data. As the PROMET model is physically based,
it does not require a calibration. Further fine-tuning of parameters would be possible, but were,
however, not conducted due to missing information e.g., on reservoir management and limited
validation data.

PROMET can be driven by high resolution (1 h) time series of meteorological station network
records, using the measured meteorological parameters. However, due to the specific characterization
of our study area, only a sparse meteorological station network was available, which was not sufficient
for our service target. Moreover, even in case of a sufficient number of meteorological stations,
the amount of continuously provided information, e.g., on radiation and humidity or dew point are
often missing or inaccurate. To overcome the lack of meteorological station data, we used global
and regional climate model data as input, similar as presented by Zabel [35]. For the application in
Newfoundland, we used data provided by Government of Canada as part of their High Resolution
Deterministic Prediction System (HRDPS). This system is a set of nested limited-area model (LAM)
forecast grids from the non-hydrostatic version of the Global Environmental Multiscale (GEM) model
with a 2.5 km horizontal grid spacing.

The fields in the HRDPS high resolution data set are made available as GRIB2 for four times a day
for the Pan-Canadian domain for a 48-h forecast period [36]. Those data sets are consistent in temporal
(1 h) and spatial (2.5 km) resolution. We adapted the import routines for the meteorology and selected
the appropriate parameters for the model forcing to perform calculations of the snow and run-off
situation with hourly temporal resolution. Due to the architecture of PROMET, we are able to calculate
any periods, starting from previously stored status and recovery files, and provide all information on
the current snow and hydrological situation as spatial data sets in a 1 km by 1 km resolution with an
hourly timestep and as tabled point data.

2.6. Assimilation

In general, and as, e.g., presented in [37–42], data assimilation is likely to improve the accuracy of
the modelled snow parameters in a way that the modelled snow parameter or run-off results agree
better with the real situation. For the SnowSense data assimilation, we used information gathered
by the SnowSense GNSS in situ stations and the already existing online SWE measurement sites,
as well as information from EO data. Regarding the in situ locations, we used the SWE and LWC
(were available), regarding the EO sources, we used binary information whether the snow is dry
or wet from Sentinel-1. All information was then compared twice a week with the non-assimilated
output of SWE, LWC and the snow cover extent simulated by the PROMET model. In case of
significant differences between simulated and observed values, assimilation runs for the last calculation
period had been triggered. To adjust the model output to the observed in situ and EO information,
the following options were available [43]: Adjustments of (i) the precipitation gain for the amount of
snow/solid precipitation, (ii) the critical temperature for the transition of liquid and solid precipitation,
and (iii) the albedo parameter for the short wave energy fluxes controlling the ablation dynamic.
The sequence of the assimilation steps is following a decision tree based work-flow. After adjusting the
model parameterization, the model is re-calculating the required output parameters for an improved
agreement between model and reality. The adjustment of i,ii and iii is performed spatially. During the
winter 2017/2018 phase, the assimilation process was performed partly manual. For a future service
application, we will establish a more automated process.
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3. Results and Discussion

In the first part of this section, we present the results and the validation of the GNSS in situ
station for the well-equipped study site NEIGE at Forêt Montmorency. In the second part, we focus on
the results and the validation of the hydrological service of the combined and assimilated run-off at,
in total four, gauges of the Humber and Exploit catchments in Newfoundland.

3.1. Station Performance at the Forêt Montmorency NEIGE Site near Quebec

The SnowSense station was installed in October 2017 at the NEIGE site at Forêt Montmorency and
was operational during the entire snow-covered winter season 2017/18. The power supply and the
communication unit resisted the cold and windy environment without damage or failure. The station
delivered continuous daily SWE and LWC measurements without any significant discontinuities
(Figure 5a).

In general, the SWE values derived by the SnowSense GNSS in situ station are in good agreement
with the provided reference measurements by the two GMON CS725 sensors and the manual snow pit
measurements (Figure 5b).

The GMON sensor as well as the GNSS sensor are both non-destructive measurement methods
and are largely capable of deriving SWE. Both sensors were already validated against other sensors
like snow pillows and manual measurements (e.g., [7,11,44]). As stated by Choquette et al. [6],
at the observed study site NEIGE, an average error of 18% between manual measurements and the
GMON sensor is reasonable, and, for SWE levels less than 400 mm w.e., the estimation is inside the
5–10% range.

At the time the GNSS measurements started in early winter 2017, the GNSS-derived SWE as well
as the measurements of the two GMON sensors lay in a similar range at approximately 100 mm w.e.
At the end of April 2018, the maximum amount of SWE with approximately 500 mm w.e. was reached,
which was indicated by the GNSS solution as well as the manual measurements and one GMON sensor.
Comparing the two GMON sensors (blue solid and blue dashed line, Figure 5b), however, an offset of
the SWE measurement of up to 30% occurred between them. This offset was low in the beginning of
the time series and increased during the winter continuously. The reasons for this might originate in
different sensor locations e.g., with slightly different wind conditions, and are still under discussion,
but are out of the scope of this paper. The manual measurements were performed 16 times on a weekly
basis during the snow season. On each day, three to four snow pits were analyzed. The resulting
averaged SWE measurements from the snow pits lie well in between the range of the two GMON
sensors. The SWE results of the SnowSense GNSS station (black solid line) follows in the beginning of
the season the lower GMON sensor (CS725_TL, blue dashed line). Since 20 February, after a heavy
precipitation event, the GNSS derived SWE jumps to the level of the GMON sensor with the higher
SWE values (CS725_K, blue solid line). The coefficient of determination (R2) between the GNSS data
and the data from the GMON sensors is 0.53 for CS725_TL and 0.93 for CS725_K, respectively.

Throughout the entire season, the GNSS measurements agree very well with the manual
measurements from snow pits including their minimum and maximum values. Here, the coefficient
of determination (R2) is 0.64. For all R2 and root mean square errors (RMSE) errors of the validation
study, we refer to Table 1.

Table 1. Statistical comparison of SWE derived by GNSS, two GMON sensors (CS725_K and CS725_TL),
and manual snow pits on a weekly basis at the NEIGE testsite at Forêt Montmorency.

RMSE [mm w.e.] R2

GMON CS725_K, manual 71.94 0.71
GMON CS725_TL, manual 91.38 0.15

GMON CS725_K, GNSS 35.89 0.93
GMON CS725_TL, GNSS 68.22 0.53

manual, GNSS 65.98 0.64
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Figure 5. (a) daily GNSS-derived SWE and LWC values at the Forêt Montmorency NEIGE site
2017/2018; (b) daily GNSS-derived SWE values and reference measurements from two GMON
CS725 sensors and manual snow pit measurements of mean, minima and maxima SWE at the Forêt
Montmorency NEIGE site.

The range of the SWE validation results presented in this study for the Forêt Montmorency
are in good accordance with previously conducted studies validating the GNSS in situ SWE
component successfully at the high-alpine study site Weissfluhjoch in the Swiss Alps as presented in
Henkel et al. [11] and Koch et al. [8]. One key result of their validation is a very good performance
of the SWE determination capabilities of the in situ GNSS approach: the inter-comparison of the
SnowSense GNSS station with a snow pillow and manual measurements show a very high agreement
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indicated by the values of R2 close to 1 [11]. The root mean square errors (RMSE) between the
measurements from GNSS, snow pillow, and from snow pits fit very well; they lay in the range of
11–24 mm w.e. [11] but might be higher regarding wet snow conditions, e.g., due to an increase in
GNSS signal attenuation (approx. 45 mm w.e.) [8].

Until mid-April 2018, the snowpack was predominantly dry at the study site Forêt Montmorency.
In January, February and March, only single wet-snow events of up to two to three days occurred.
The occurrence of wet snow presented by the GNSS-derived LWC is shown in Figure 5a. As no further
sensors for a comparison with the GNSS-derived LWC were available at this site, we compared the
GNSS-derived LWC with meteorological parameters. In general, the measured LWC is in a good
temporal correspondence with rainfall events and goes along with warm air temperatures (Figure 6),
which was also demonstrated in Koch et al. [10]. However, as shown in other previous studies, we were
able to successfully validate the GNSS LWC measurements with other sensors like an upward-looking
ground-penetrating radar and capacity probes at the study site Weissfluhjoch [45].

Figure 6. Daily GNSS-derived LWC values at the Forêt Montmorency NEIGE site for the winter season
2017/2018 related to (a) rain and snowfall events and (b) air temperature development. Temperature and
precipitation measurements were conducted at the close-by provincial and federal station sites.
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3.2. SnowSense Service for the Island of Newfoundland

For the entire SnowSense service based on the GNSS in situ measurements, EO and modelling,
spatially-distributed maps of the SWE were generated and run-off estimates were derived for several
river locations in the two main catchments Humber River and Exploit River. Figure 2 gives an example
of a SWE map, which was modelled and assimilated for the entire island of Newfoundland for the
15 March 2018. Such a SWE map was provided for each day.

The simulated and assimilated run-off results were validated against four run-off gauge
measurements in total. Measurements (raw data) are made available by the Water Resources
Management Divisions. As for the catchments of the Humber River and the Exploits River, a strong
interest in flood forecast was predominating; the run-off results are presented for the gauge stations at
the lower parts of the two catchments.

3.2.1. Humber River

The run-off results for Humber Village for the winter season December 2017–May 2018 show very
good agreement with the measured run-off reference values (Figure 7). Assimilation of the in situ
information, mainly adjusting the solid precipitation, provide a perfect match of the volume of water.
For the entire region, the amount of water stored as snow was perfectly represented by the model.
The volume of total water released in the winter season 2017/18 was modelled by 95% (80% without
assimilation). The coefficient of determination (R2) reaches 0.90 at Humber Village. The results for
the upper part of the catchment down to Reidville also show a very reasonable accordance between
measured and modelled run-off behaviour (Figure 8). Due to invalid run-off measurements during the
first flood peak in January 2018, no full analyses of the period were performed. However, the volume of
total water released in up to Reidville was modeled by 90% (65% without assimilation). The coefficient
of determination (R2) reaches 0.80 at Reidville.

Figure 7. Daily run-off results from PROMET without (grey), with assimilation (blue) of stations and
EO against the values (dashed red) measured at Humber Village (catchment: 7600 km2) for the winter
season 2017/18.

146



Geosciences 2019, 9, 44

Figure 8. Daily run-off results from PROMET without (grey), with assimilation (blue) of stations and
EO against the values (dashed red) measured at Reidville (catchment: 2100 km2) for the winter season
2017/18.

3.2.2. Exploits River

The analyzed run-off results for the down-stream gauges “Below Noel Pauls Brook” and “Charlie
Edwards Point” at the Exploits River show a very notable agreement regarding timing and volume with
the measured values in the winter season from December 2017–May 2018 (Figures 9 and 10). Due to the
strong influence of the controlled water release at Millertown Dam, and the not daily adapted model
parameters during the demo, the results are a little below the ones for Humber River. The coefficient of
determination (R2) reaches 0.80 at Noel Paul Brook. For the downstream section of the Exploits River,
after the conjunction with Badger River, the occurrence of river ice impeded the full evaluation of the
results. Within the period of mid-December to late April, the measurement point was affected by ice
jams, which resulted in an increased water level and therefore a false determination of the run-off. Due
to the thawing in April, the flood peak from the snow melt could be well compared (Figure 10).

3.3. Advantages and Potential Limitations

Regarding the SnowSense in situ station, it is capable of measuring reliably SWE and LWC using
freely available GNSS signals and low- cost GNSS sensors. Besides the derivation of SWE and LWC,
Koch et al. [8] recently presented an approach to additionally derive snow height, which might
even extend the range of application, not only for hydrological targets. A great advantage of the
SnowSense in situ station is its light-weight design making an easy transportation and installation
possible, which is highly valuable especially for remote and difficult to access areas. In total, only two
people are needed for the set-up and all components can be carried in a big backpack. As the stations
have an integrated on-board-processing module and satellite communication capabilities, the results
can be transmitted (sub-)daily to the users. This makes the station autonomous and guarantees low
maintenance. In general, the in situ station can either be used as a stand-alone component for snow
cover property determination or can easily be integrated in the entire service encompassing the EO
and modelling components.
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Figure 9. Daily run-off results from PROMET without (grey), with assimilation (blue) of stations and
EO against the values (dashed red) measured at Noel Pauls Brook (catchment: 7400 km2) for the winter
season 2017/18.

Figure 10. Daily run-off results from PROMET without (grey), with assimilation (blue) of stations and EO
against the values (dashed red) measured at Charlie Edwards Point (catchment: 8850 km2) for the winter
season 2017/18. Due to river ice for the period mid-December to late April, the measurements have been
separated into measurements with ice cover (normal dashed line) and without (bold dashed line).

As GNSS signals are globally available, the application of such in situ stations is potentially
possible all over the world. However, a potential restriction of the in situ stations might be the
availability of satellite reception in extreme locations, e.g., in narrow alpine valleys or in dense forests,
with reduced GNSS signal reception. As presented in Lamm et al. [26], the integration of Galileo
satellites besides GPS satellites increases satellite availability markedly, which increases also the
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availability in potentially difficult areas. Further studies will focus in more detail on, e.g., tilted terrain
like avalanche-prone slopes, different climate and altitudinal ranges as well as more challenges on
the station design regarding its protection from wildlife or its mounting on top of bare rocks and ice.
Until now, we were able to test the GNSS SWE-derivation for quite huge amounts of snow with up
to 1000 mm w.e. in high alpine regions [8]. In this study, we reached SWE values of up to 500 mm
w.e. However, further studies on even more extreme amounts of snow and especially wet snow will
be conducted in the future, as the limited operational time span of the demonstration project did not
provide an opportunity to test the sensor performance for such extreme events performance. This is
also true for further tests on extreme temperatures for the entire sensor hardware, which is designed for
minimum temperatures of −40 ◦C, though temperatures down to −35 ◦C were reached in December
2017 and January 2018 at the NEIGE testsite at Forêt Montmorency (Figure 6b).

Regarding the different SWE measurement techniques applied at the NEIGE study site at
Forêt Montmorency, the GMON sensor is based on passive gamma rays, whereas the GNSS based
measurements are based on electromagnetic waves. Both techniques are capable of deriving SWE
in good accordance with standard measurement techniques like manual measurements or snow
pillows [6,8,46]. Of course, slight differences in the derivation of SWE might occur considering these
two relatively new sensors, however, as the sensors are not installed at the exact same place and are
located up to 25 m from each other and have a distance (up to 150 m) to the manual measurements.
The main differences might originate in different amounts of snow at each location, e.g., due to different
wind effects and the different physical principles of the measurements.

Regarding the spatially distributed components EO and the hydrological model, it is another
big advantage that both can also be potentially used worldwide and are often free of charge as,
e.g., the Sentinel data. Of course, remote sensing products might be restricted in temporal and spatial
resolution and face, depending on the wavelength and if the systems are active or passive, different
limitations as, e.g., cloud cover or foreshortening effects. Therefore, it is often more difficult to apply EO
in mountainous terrain. The applied hydrological model PROMET was already tested and validated
for various applications for small and large catchments (e.g., [22,32,33,47]) and also globally (e.g., [48])
in different temporal and spatial resolutions. Although there are a few limitations in the model setup
like, for example, the difficulty of implementing small-scale features regarding snow variability or the
run-off generation in extreme alpine surroundings, the modelled output provides very good results for
different scales, also in case of sparse input data as it is the case in Newfoundland. Especially in those
remote areas with sparse data, real-time information and forecasts of run-off, fresh water availability,
SWE, snow extent and the snowmelt onset can be significantly improved. Up to now, a limitation
in our hydrological model setup is the lake ice formation. In general, SWE is calculated from the
snow cover on the ground. However, until now, snow accumulation on top of frozen lakes is not
implemented, although this SWE also contributes to the run-off after the onset of snow- and ice-melt.
Moreover, we aim to describe river ice formation as an additional feature in the model since it can
build up to ice dams with a subsequent banking up of water masses. These two model improvements
will be implemented in the future, e.g. as suggested in [49,50].

The big advantage of the entire combined SnowSense service is that it picks up the advantages of
all three components to deliver a reliable, assimilated product of snow and hydrology. In case data of
one component is missing, the service can still rely on two other pillars and is therefore less vulnerable
to data losses or other failures. The service can be used as entire combined system relying on the three
pillars in situ measurements, EO, and hydrological modelling, but each of these pillars can also be
applied as a modular stand-alone solution if desired. It therefore enhances and combines existing
solutions and is, due to its modularity, a customer friendly approach.

3.4. Demo User Feedback

The feedback from the two demo users, Nalcor/NL Hydro and the Water Resources Management
Division in the Department of Municipal Affairs and Environment (WRMD) of the Government
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of Newfoundland and Labrador, confirmed the significant importance of snow and run-off
monitoring, which could be improved by using such a combined approach like the SnowSense
service. They underlined that this is especially important for remote locations, as many regions in
Newfoundland are only accessible by helicopter or snowmobiles and face limited access possibilities
due to poor weather conditions. From their experience, standard in situ measurements sometimes
fail, as the snowpack is often icy with a varying snow density and snow hardness, which makes
it difficult to measure SWE with manual snow core equipment. Normally, manual snow surveys
are performed three times per winter, which is expensive and is difficult to be completed under
bad weather conditions, and causes labour safety risks. Existing automatic instrumentation (GMON
sensors) is not providing enough information. The demo users state a need for accurate, reliable
SWE information for each hydrological watershed and runoff forecasting that affects the real-time
scheduling of hydrological assets and minimizes the use of thermal heat generation. From their
point of view, a network of stations across the island of Newfoundland and Labrador would be the
ideal scenario to give a province wide estimate of SWE for all users. In addition, they confirmed
that SnowSense has the potential to fill a gap regarding the provision of spatial and temporal data
at a high resolution by applying EO and modelling for spatial SWE maps of the entire region and
run-off information at specific points of interest for real-time and forecasts. The received products
matched with other sources of information, which they had for comparison and could even provide
insights in hydrological processes. Both users stated that the in situ stations are competitive in their
operation compared to other SWE monitoring technologies and therefore they have the potential to
replace existing SWE monitoring stations like snow pillows or manual field observations.

In general, the feedback provided by the demo users was very positive, which encourages us in
our further developments and improvements.

4. Conclusions

Within the ESA business applications demonstration project SnowSense (2015–2018),
we successfully demonstrated a large scale snow hydrological monitoring service, by combining
newly developed in situ stations based on signals of the Global Navigation Satellite System (GNSS),
Earth Observation (EO) and hydrological modelling. With this combined approach, we present
a reliable, and cost-efficient tool for the determination of snow cover properties like snow water
equivalent (SWE), snow liquid water content (LWC), snow extent as well as run-off assessment,
for real-time and forecast applications.

The GNSS in situ component was successfully applied and validated at the well-equipped
study site NEIGE at Forêt Montmorency, Quebec, Canada. Furthermore, the entire SnowSense
service providing modelled, in situ-, and EO-assimilated run-off was applied and validated at
four run-off gauges within the Humber River and the Exploit River catchments on the island of
Newfoundland, Canada.

The entire SnowSense service solution driven with an integrated numerical weather prediction
(NWP) model for its application in this study in Newfoundland is capable of providing detailed
knowledge on water stored as snow over large spatial scales. It is able to provide real-time and
forecasted snow and run-off information and, if desired, also on reservoir status, which might be of
great interest for hydropower plant operators. This information, which can be provided in various
time steps, e.g., hourly up to daily, is especially needed in regions or catchments where in situ stations
are only sparsely or non equipped catchments. The service is applicable at almost any location and was
especially designed for remote locations, where access is limited and snow and run-off measurements
were difficult up to now.

Within the project, the SnowSense service already reached a market dedicated design, based on
the identification of potential customers (i.e., hydropower plants) and use cases (i.e., weather and
climate observations, e.g., by national weather services).
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Abstract: Snow microstructure is an important factor for microwave and optical remote sensing of
snow. One parameter used to describe it is the specific surface area (SSA), which is defined as the
surface-area-to-mass ratio of snow grains. Reflectance at near infrared (NIR) and short-wave infrared
(SWIR) wavelengths is sensitive to grain size and therefore also to SSA through the theoretical
relationship between SSA and optical equivalent grain size. To observe SSA, the IceCube measures
the hemispherical reflectance of a 1310 nm laser diode from the snow sample surface. The recently
developed hand-held QualitySpec Trek (QST) instrument measures the almost bidirectional spectral
reflectance in the range of 350–2500 nm with direct contact to the object. The geometry is similar to the
Contact Probe, which was previously used successfully for snow measurements. The collected data
set includes five snow pit measurements made using both IceCube and QST in a taiga snowpack in
spring 2017 in Sodankylä, Finland. In this study, the correlation between SSA and a ratio of 1260 nm
reflectance to differentiate between 1260 nm and 1160 nm reflectances is researched. The correlation
coefficient varied between 0.85 and 0.98, which demonstrates an empirical linear relationship between
SSA and reflectance observations of QST.

Keywords: near-infrared reflectance; specific surface area; spectrometer; snow microstructure

1. Introduction

The microstructure of snow is an important parameter for the modelling of microwave emission
and optical reflectance [1–3], and it is therefore also important for remote sensing applications.
However, a parameter describing all snow properties, including size, shape, bonding, and the
orientation of snow grains, is not simple to define. The parameters most often used for that purpose
are traditional grain size [4], correlation length [3,5], optical grain size [6,7], and specific surface area
(SSA) [8,9]. Several methods exist to measure these directly or indirectly, but this study concentrates
only on the reflectance-derived, in-situ methods.

Snow reflectance at near infrared (NIR) and short-wave infrared (SWIR) wavelengths, especially
over 1000 nm, is dominated by grain size [6]. Optical effective grain size is defined as the diameter of
spheres having equal optical properties compared with the original grains [6,10]. SSA is defined as the
surface area of the air–ice interface per unit mass (unit m2 kg−1) [9,11]. Optical grain size and SSA are
related by Equation (1):

SSA =
6

ρice D0
(1)

where ρice is the density of ice and D0 is the optical grain size, which is derived based on equations
in [9,12] as presented by [13]. Grain shape has been shown to affect the reflectance-derived SSA in
many wavelengths [10,14,15], and [16] presented a modelling study concerning the influence of grain
shape on albedo-derived SSA, resulting in 20–25% error.
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DUal Frequency Integrating Sphere for Snow SSA (DUFISSS) was presented by [13]. It uses 1310
nm and 1550 nm lasers and an integrating sphere to measure hemispherical reflectance from the snow
sample surface, which was converted to SSA [13,17]. The error of the SSA measurement was 10% based
on [13]. The measurement method is similar to that of the IceCube, which is described in Section 2.2.
The Profiler of Snow Specific Surface area Using SWIR reflectance Measurement (POSSSUM) and
the Alpine Snow Specific Surface Area Profiler (ASSSAP) [18] are also based on the same principle.
A contact spectroscopy method is presented by [7] to observe the optical grain diameter from a vertical
profile of snowpack based on reflectance measurements of a band near 1030 nm by using a FieldSpec
FR and attached modified Contact Probe (ASD Inc., Longmont, CO, USA). The derivation of optical
grain size was based on an ice absorption model by [2]. The optical grain size and traditional grain
size had poor correlation with less robust results for rounded grains, which is assumed to relate to the
effect of grain shape. A review of past field experiments, where reflectance or albedo is compared to
some of those parameters describing snow microstructure, is presented next.

Near infrared photography at 850–1000 nm is a method to observe SSA from reflectance as
presented by [19]. The correlation between reflectance and SSA was reported to be 0.9 and the
inaccuracy of SSA 15%. A clear correlation between hemispherical reflectance derived from measured
nadir SWIR spectral reflectance of snow from FiedSpec FR 350–2500 nm (ASD Inc., Longmont, CO,
USA) and SSA measured with Brunauer Emmett Teller (BET) analysis [9,20] was presented by [8].
Additionally, they did not find any effect from grain shape on the results. A correlation between grain
size and a ratio of 1160 nm and 1260 nm hemispherical reflectance is showed by [21]. The accuracy of
average grain size estimation was presented to be ±0.2 mm. Spectral albedo was measured with the
Autosolexs instrument (400–1050 nm) to estimate SSA [22]. The accuracy of SSA depended on the solar
zenith angle and the leveling of the instrument, and error was presented to be 15%. The SSA derived
from Autosolexs had poor correlation with ASSSAP measurements; however, the wavelength and
vertical resolutions of the instruments were different. The Automatic Spectro-Goniometer is presented
for hemispherical–directional reflectance measurements [23]. The measurements were compared
with Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-Parallel Medium
(DISORT)-modelled reflectance by using spheres with radii equal to the surface-area-to-volume ratio
derived from stereological analysis, resulting in model underestimation with a maximum mean
root-mean-square error (RMSE) of 0.09% for 1300 nm. A study where albedo was modelled with
DISORT based on SSA measured with DUFISSS resulted in 1.1% difference to measured albedo
with FieldSpec pro JR (ASD Inc., Longmont, CO, USA) [24]. It is estimated that 1% error in albedo
corresponds approximately with 15 m2 kg−1 error in SSA [16]. In addition, the optical diameter of
snow grains with data derived from near infrared photography or FieldSpec (ASD Inc., Longmont,
CO, USA) spectral albedo or reflectance observations is researched by [25–29]. Grain size or size
distribution was measured traditionally or from image-processing of microphotography.

The presented methods from previous studies are primarily intended for measuring reflectance
from the surface of the snowpack, and they are not suitable for measuring vertical profiles except for
contact spectroscopy with the Contact Probe and near-infrared photography. Since solar radiation
is subject to variability, originating from, for example, zenith angle and cloud cover, it is beneficial
that the instrument used includes an internal light source for stable illumination. A newly developed
instrument, QST (ASD Inc., Longmont, CO, USA), was tested for performing rapid measurements
of vertical snow profiles. The hand-held instrument measures almost bidirectional reflectance with
similar optical geometry to that of the Contact Probe. The instrument was tested on taiga snowpack
in the Arctic Space Centre of the Finnish Meteorological Institute in Sodankylä in northern Finland.
QST has been used previously for other purposes such as the detection of ion concentrations in soil [30]
and heavy metal pollution in soil [31]. Snow measurements are more challenging due to the deeper
penetration depth of the radiation, the fragile structure of the snowpack, and melting of the snow.

Previous results of SSA measurements from a taiga snowpack in Sodankylä include the
comparison of SSA and optical grain size to modelling results. The optical grain size derived from SSA
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measurements of IceCube was compared to SNOWPACK [32–34] modelled optical grain size in [35,36].
SNTHERM [37,38], SNICAR [39], and MOSES [40] modelled optical grain sizes were compared to
IceCube-derived optical grain size by [37]. Moreover, the spectral reflectance of a taiga snowpack has
previously been measured with a portable Field Spec pro JR spectrometer in the Sodankylä area and
a similar mast-based spectrometer located at the same area as the measurements performed for this
study [41,42]. In addition, measurements of bidirectional reflectance factor have been performed with
a goniospectropolariphotometer [43,44].

The aim of this study was to test the suitability of the QST instrument for measuring the reflectance
of snow, and the main conclusion of the study was that an empirical relationship between SSA and
QST reflectance exists. The paper has the following structure: Section 2 presents field measurements
and methods, results are presented in Section 3, and discussion is made in Section 4.

2. Materials and Methods

Snow measurements have been performed at the Intensive Observation Area (IOA) in Sodankylä
in northern Finland since 2006 (Figure 1) for the calibration, validation, and development of remote
sensing instruments and interpretation algorithms. Vegetation in the cleared area among sparse
pine forests consists of lichen, moss, heather, crowberry, and lingonberry, whose growth rate is
approximately 0.4 cm per year in the snow pit area [45]. Typically, the average maximum snow depth
(~80 cm) occurs in late March. The average air temperature is below 0 ◦C from November to April,
and the average wind speed is low (1–2 m s−1) in the area as described in [35]. Several automated
instruments measuring snow, soil, radiation, and meteorological parameters are installed in the IOA, in
addition to manually recorded snow pit measurements [35]. The data set for this study was taken from
snow pit measurements made in spring 2017 (22 February, 7 March, 16 March, 21 March, and 3 April)
with clear or partially cloudy sky conditions.

  
(a) (b) 

Figure 1. (a) Location of Sodankylä in northern Finland; (b) snow pit measurement site in Sodankylä.

2.1. Layers, Traditional Grain Size, and Density

Horizontal layers of the snowpack were defined manually with a brush and toothpicks.
Layers were defined according to visual appearance, grain type, grain size, hardness, and wetness.
Macrophotography-based, traditional grain size, the largest extent of an average grain [4], was estimated
from macro-photographs taken against a 1 mm reference grid. The density profile was measured every
5 cm with a 10 cm × 10 cm × 5 cm rectangular sampler and digital scale with ±1 g accuracy. More detailed
information of the methods is presented by [35].
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2.2. SSA with IceCube

The reflectance and SSA was observed with IceCube manufactured by A2 Photonic Sensors,
Grenoble, France. IceCube measures the hemispherical reflectance of a 1310 nm laser from the snow
sample surface (Figure 2a). A photodiode observes diffuse radiation from the integrating sphere
originating from the laser and reflected from the sample. The snow sample is collected with a
spatula (or a specific tool), packed into the sample holder to reach a minimum density of 200 kg
m−3, and the surface is levelled (Figure 2b). The sample holder is 2.5 cm high and 6 cm in diameter.
Software provided by the manufacturer converts the observed voltage value to reflectance using the
calibration results. The instrument is calibrated for every measurement occasion using reference
plates of different reflectivity. The calibration curve is fitted to the six calibration measurements.
Determination of SSA from the reflectance is based on DISORT modelling and depends also on optical
parameters of the integrating sphere [13]. In this study, the SSA samples were taken in 3 cm intervals
from the vertical profile of the snowpack. A more detailed description of the IceCube measurement
procedure is presented in [35] and a discussion on measurement errors is presented in [46].

Additional testing of the measurement accuracy occurred on 21 March 2017. The measurement
of each sample from the profile was repeated three times with IceCube by rotating the sample in
the azimuth direction between measurements. In addition, three samples were taken from both the
surface layer and the depth hoar layer to test the effect of the sampling procedure and packing density.
Those samples were also weighed to determine the sample density.

  
(a) (b) 

  
(c) (d) 

Figure 2. (a) The IceCube measurement; (b) the IceCube sample; (c) the QualitySpec Trek (QST)
measurement from the snowpack vertical profile; (d) the QST measurement from sampled snow.

2.3. Reflectance with QualitySpec Trek

QST is a portable spectrometer manufactured by ASD Inc., Longmont, CO, USA (Figure 2c,d).
QST measures the almost bidirectional reflectance of NIR and SWIR radiation at 350–2500 nm
wavelengths with a spectral resolution of 9.8 nm at 1400 nm. The instrument has three detectors:
350–1000 nm (512-element silicon array), 1001–1785 nm (InGaAs photodiode), and 1786–2500 nm
(InGaAs photodiode). The instrument also has an internal light source and internal gray scale reference
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for optimization and wavelength calibration. The light source is a Quartz Tungsten Halogen bulb with
a color temperature of 2870 K ±33 K. Illumination and viewing geometry is presented in Figure 3.
The window of QST is approximately 1 cm in diameter, and the whole window is illuminated by
the internal light source. The window and materials inside the instrument are designed to minimize
specular reflections. The angle from the instrument window to the light source is 55◦ and the angle
to the fiber optic is 78◦. The fiber optic cable has a field of view of 25◦, which means that the field of
view is 0.82 cm on the window of the instrument. The Contact Probe [7] has the same measurement
geometry as QST. Additional calibration is made before every measurement occasion with a separate
white reference plate. The reference plate is attached in front of the instrument window with magnetic
plugs. It is important that the white reference plate is clean and that the manufacturer provides
information for cleaning and replacing the plate. Full-spectrum dark reference is measured also
during the start-up with an internal shutter, the light source is turned off, and the white reference is
plugged. The dark reference (background) value is subtracted from raw data prior to the reflectance
calculation. The sample count averaging time can be set to 1, 2, 5, or 10 s. The instrument scans
the entire wavelength range 10 times per second and produces an average of those. The sample is
set to physical contact with the instrument window (Figure 2c,d and Figure 3), so cleaning of the
window between the measurements is therefore required. A measurement is stored by pushing a
trigger button. Sound signals for starting and finishing the measurement notes when the instrument
needs to be in stationary position with the (snow) sample. The most recent data is shown on the
screen. Audio note recording is possible after the measurement. The instrument also stores coordinates
and elevation from the internal GPS for each sample. Automatic and manual data storage options
are available. The resulting reflectance is absolute reflectance (reflectance normalized with reference
reflectance). Since the instrument is commercial, calibration data and data from the single spectrums
before averaging are not available.

The measurement procedure included a white reference measurement, instrument setup (choosing
how many times the wavelength range is scanned for averaging), and snow measurement (repeated).
Cleaning of the window was rarely needed. Automatic data storage was used. The integration time
for a measurement was set to 1 or 2 s. A longer integration time meant more averaged spectrums and
therefore less noise for an acquisition. On the other hand, the instrument remained steadier in snow
with a shorter integration time. Two procedures related to how the instrument can be used are (1)
vertical reflectance profile from the snowpack of the snow pit wall and (2) reflectance from the snow
surface without digging a snow pit. The measurements were made with the first procedure from the
snowpack profile by pushing the instrument window steadily against the snow pit wall during the
measurement (Figure 2c). The window had physical contact to the snow so that the distance between
the snow and fiber optic cable was always constant and the measurement configuration did not change.
The measurements were made at approximately 2–5 cm intervals from the vertical profile. Some of
the IceCube samples were also measured with QST by pushing the window against the snow in the
middle of the sample surface (Figure 2d).
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Figure 3. Illumination and viewing configuration. Fiber optic and light source have the same azimuth
angle. Fiber optic cable has 25◦ field of view. Diameter of the window is approximately 1 cm.

2.4. Methods for Comparison of QST and IceCube Measurements

Reflectance profiles were measured with QST from both the snowpack and the sampled snow
on 21 March and 3 April 2017. The two profiles were measured with different height intervals,
and therefore both profiles were linearly interpolated for every centimeter (no extrapolation).
A comparison presented in Section 3.3 was made only for the heights where both interpolated
reflectance values existed.

The empirical relationship between SSA and reflectance was studied with 1160 and 1260 nm
reflectance-dependent coefficient Q, which is the ratio of reflectance at the bottom of the ice absorption
feature and the reflectance change in the ice absorption feature. The absorption coefficient of ice is
larger at 1260 nm than at 1160 nm. Q is calculated with Equation (2) as

Q =
R1260

R1160 − R1260
(2)

where R1160 is reflectance at 1160 nm and R1260 is reflectance at 1260 nm.
Similarly, interpolation was also needed to compare SSA and reflectance-derived Q from the same

heights of snow. Linear interpolation without extrapolation was made for SSA when the reflectance
profiles from the snowpack were studied. For 21 March, the values from the first of the three SSA
measurements of the same sample were used. The comparison presented in Section 3.4 was made with
interpolated SSA values from the same heights as the original reflectance profile measurements from
the snowpack. Interpolation was not needed in the case of the reflectance profile from sampled snow
because the same samples were measured with both instruments.

Clearly erroneous reflectance values measured with QST were removed from the analysis
(>0.1 difference to the closest value without fitting to other values around). One of those was from the
snowpack profile in 16 March (63 cm height), another one was from the snowpack profile in 21 March
(70 cm height), and the two last ones were from the sampled snow in 21 March (48 and 51 cm height).
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3. Results

The data set includes vertical profile measurements of reflectance, SSA, macrophotography-based
traditional grain size, and density from various snow types with varying grain size and density in a
taiga snowpack. The snow height of 0 cm was set to the ground surface. The height of the snow and
air temperature for spring 2017 are presented in Figure 4. An overview of all data used in the study is
presented in Figure 5.

3.1. Snowpack Properties

The height of snow increased before 21 March and melting had already started in 3 April, as shown
in Figure 4. The air temperature was close to zero or positive (in ◦C) on 16 March, 21 March, and 3 April.
Layer properties had temporal variations; however, there were some lasting similarities. The hard crust
layer at approximately 30 cm height (red in Figure 5c) was observed in all snow pits. The traditional
grain size was larger below than above that layer, which is typical, because grain growth is largest at
the bottom due to the higher temperature gradient. Between 30–40 cm height of snow, the grain shape
changed from round (pink in Figure 5c) to faceted (light blue in Figure 5c), and grain size increased
simultaneously. In mid-winter, the bottom layers consisted of smaller grains than in the layers above
those. Typically, traditional grain size was larger in faceted crystal and depth hoar layers than layers
with rounded grains, as expected based on the temperature gradient. Density was lowest in the top
5–15 cm of the snowpack. Maximum density was found in the 5–15 cm bottom layer of the snowpack,
and in the crust layer around 30–40 cm height. Based on those observations, the reflectance and SSA
measurements were made at differing air temperatures and snow conditions with variating grain size,
grain type, and density.

Figure 4. The height of snow (blue) and air temperature (green) measured at the Intensive Observation
Area (IOA). Vertical black lines indicate the measurements made with QST.
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Figure 5. Reflectance from QST, specific surface area (SSA) from IceCube, grain type,
macrophotography-based traditional grain size, and density profiles of snow are plotted in columns
(a–e) for all dates. Original SSA data are marked with circles and interpolated values with dots in
column (b). SSA for 21 March 2017 is plotted from the first measurement of three for every height.
Grain type abbreviations are described in [4].
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3.2. Repeatability of SSA Measurements

Repeatability of the SSA measurements with IceCube was tested to confirm the reliability of
observations for the following analysis. First, the measurement method was tested by repeating
measurements with the same sample; then, sampling was tested by sampling snow to different
densities. The repeatability of the IceCube measurement method was tested on 21 March 2017.
Every sample from the profile was measured three times with IceCube. The mean standard deviation
of the SSA was 0.34 m2 kg−1, which means a relative standard deviation (RSD) of 2.0%. RSD is
calculated by Equation (3)

RSD = 100 σ/μ (3)

where σ is the standard deviation and μ is the average. The repeatability of IceCube sampling was
also tested on 21 March 2017. Precipitation particles in the surface layer and faceted crystals in the
bottom of the snowpack were both sampled three times. The samples were taken next to each other so
that snow was as homogenous as possible for all the samples. The samples were packed to different
densities, measured with IceCube and weighed for density calculation. The average standard deviation
was 0.65 and RSD was 2.85% (Table 1). Since the total RSD was low (<5%), SSA is relied on as a truthful
value in the subsequent analysis.

Table 1. The SSA from three samples of precipitation particles at the surface and faceted crystals in
the bottom of the snowpack. Standard deviations (STD) and relative standard deviations (RSD) from
Equation (3) are calculated for both surface and bottom.

Density (kg m−3) SSA (m2 kg−1) STD RSD (%)

225.0 39.8
Surface 309.9 41.6 1.04 2.53

352.4 41.6

338.2 7.9
Bottom 409.0 8.2 0.25 3.17

394.9 7.7

Average 0.65 2.85

3.3. Comparison of QST Reflectance Profiles

Reflectance profiles were measured with QST from both the snowpack and the sampled snow
in 21 March and 3 April 2017. Both profiles were made next to each other at the same snow pit.
The reflectance profiles were compared with three wavelengths (1160, 1260, and 1310 nm), which are
used later in the study.

The comparison results showed a strong correlation between the reflectance profiles directly
from the snowpack and the sampled snow with a correlation coefficient of 0.92–0.94 (Table 2),
as was expected. Bias varied from −0.020 to 0.016 and RMSE varied from 0.022 to 0.040 (Table 2).
According to the results, IceCube sampling had only a small effect on the reflective properties of snow
(microstructure) at 1160, 1260, and 1310 nm wavelengths.

Table 2. Bias, root-mean-square error (RMSE) and correlation coefficient (R) for QST reflectances from
the snowpack profile and the sampled snow.

Date Wavelength (nm) Bias RMSE R

1160 −0.0204 0.040 0.92
21 March 2017 1260 −0.0202 0.031 0.94

1310 −0.0230 0.034 0.93

1160 0.0160 0.033 0.92
3 April 2017 1260 0.0055 0.022 0.92

1310 0.0068 0.023 0.92
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3.4. Empirical Relationship between SSA and Reflectance

Previously shown relationships between snow microstructural parameters and albedo or
hemispherical reflectance are described in the Section 1. Similarly, we hypothesized that reflectance
measured with QST could have an empirical connection to the SSA. The empirical relationship
between SSA and reflectance was studied with 1160 and 1260 nm reflectance-dependent coefficient Q
(see Section 2.4). Examples of the measured reflectance are presented in Figure 6, where the upper
part of an ice absorption feature was located close to 1160 nm and bottom of it close to 1260 nm.
The correlation between SSA and Q was high with correlation coefficients between 0.85 and 0.98
(Table 3). Linear fits are presented for measurements from the snowpack and the sampled snow in
Figure 7. The fit is better for the QST measurements from the snowpack (Figure 7a). Single outliers
existed for observations in 21 March from sampled snow, which are visible in the scatter plot of
Figure 7b. There is approximately 0.2 bias in the linear fits between QST measurements from the
snowpack and from the sampled snow. The results prove that an empirical relationship between SSA
and reflectance exists, although measurement of light, new snow and fragile depth hoar is challenging.

Figure 6. Example of reflectances measured on 7 March 2017 at heights of 73 cm (blue), 64 cm (cyan),
52 cm (magenta), and 34 cm (red). Vertical lines indicate wavelengths 1160 nm and 1260 nm.

Table 3. Correlation coefficient (R) between SSA and Q for the QST measurements from the snowpack
profile and profile of the sampled snow.

Date Profile R

22 February 2017 Snowpack 0.95
7 March 2017 Sampled Snow 0.98

16 March 2017 Snowpack 0.89
21 March 2017 Sampled Snow 0.89
21 March 2017 Snowpack 0.94
3 April 2017 Sampled Snow 0.96
3 April 2017 Snowpack 0.85
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(a) 

(b) 
Figure 7. Scatter plot of Q with Equation (2) (y-axis) and SSA (x-axis) from the QST measurements made
(a) directly from the snowpack profile and (b) the measurements from the sampled snow. Lines fitted
to the points are marked.

4. Discussion

Snow microstructure is an important parameter for microwave and optical remote sensing of snow.
Field observations are needed in the development and validation of retrieval algorithms. Therefore,
simple and accurate novel measurement methods are required. In this study, the newly developed
QST instrument for reflectance measurements was tested on taiga snow, and the empirical relationship
between QST reflectance and the microstructural parameter SSA was defined.

We tested the measurement accuracy of SSA to confirm the repeatability of the measurement
method. The accuracy was tested by repeating IceCube measurements (several measurements from
the same sample) and repeating IceCube sampling (several samples from the same height of snow).
The first one resulted in an error (relative standard deviation) of 2.0% and the second one resulted in
an error of 2.9%. However, the repeated sampling was made for two of the most difficult types of snow
to measure with IceCube with a relatively small set of observations. The total error was below 5%,
and measurements are therefore considered repeatable in the taiga snow conditions. We hypothesized
that snow sampling for IceCube measurements might change the microstructure of snow. However,
the correlation of the two QST reflectance profiles (one directly from the snowpack and one from the
sampled snow) was high, with correlation coefficients of 0.92–0.94. Based on this result, we assume that
the IceCube sampling procedure does not remarkably affect the optical properties and microstructure
of the snow in the sample. Analysis made from the IceCube and the QST measurements resulted in a
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strong correlation between SSA and Q, where Q is the ratio of reflectance at the bottom of the absorption
feature (1260 nm) and the reflectance change in the absorption feature (between 1160 and 1260 nm).
The reflectance profiles measured from both the snowpack and the sampled snow were used to calculate
the correlation coefficients, which had values 0.85–0.98. In Section 1, the presented correlations of
instruments measuring reflectance or albedo to SSA measurements are around 0.9. Compared to those
values, the correlation between SSA and Q is approximately similar or better. Lower values of Q from
the sampled snow compared to observations from the snowpack (bias of 0.2) originate likely from
absorption by the black sample holder. The outlier values of the sampled snow on 21 March originate
most likely from the melting of the snow samples due the longer measurement procedure, since the
samples were measured first three times with IceCube, then weighed and finally measured with QST.
Typically, the sampled snow was measured with QST directly after one IceCube measurement.

The QST measurements contain error arising from instrument metrics, the observer, and the
environmental conditions. As a heavy instrument (2.5 kg), QST is difficult to hold stably in a stationary
position with physical contact to the snow when it is not possible to lean the instrument on snow.
This is the case with newly fallen surface snow with a low density (around 100 kg m−3) and depth
hoar layer snow, which is coarse and therefore fragile. This could be avoided by using an appropriate,
assembled tripod or another support structure. On the other hand, adjusting the height of the tripod
between each measurement of a profile might slow down the measurements. Physical contact to the
snow is required so this needs to be confirmed when using external support. However, dense and
compact snow (rounded grains or faceted crystals with traditional grain size <1.25 mm and density
>200 km m−3) had no such problems. In surface snow, solar radiation penetrates the snowpack and
possibly causes some degree of error in the measurements. This could be avoided by covering the
snowpack, as presented in [7,19]. The sampled snow measurements with QST were made mostly in
the shade of the snow pit. The effect of different external illumination conditions was not studied.
Warming of the instrument window and plastic casing causes some melting of the snow, and probably
some inaccuracy to the measurements, especially during clear skies and positive air temperature
conditions. Definition of the exact point of measurement in the snow profile is difficult, with the
accuracy being approximately ±2 cm. The instrument size limits its ability to perform measurements
close to the ground, so that the bottom of the snowpack below approximately 10 cm is difficult to
measure. The clearly erroneous reflectance measurements, which were removed from the analysis,
were expected to originate from the wetness of the snow or scattering of the radiation to outside of the
field of view.

QST has similar optical geometry to the Contact Probe, and it uses the same range of wavelengths.
However, QST is a compact, hand-held instrument while the Contact Probe is attached to a
spectrometer. The hand-held instrument has no external spectrometer, laptop, and connecting cables,
so QST is therefore fast and simple to use compared to the Contact Probe. In addition, audio notes are
possible to record with QST. However, the Contact Probe has less direct contact with snow and the
light source is further from the snow, which may reduce additional warming and melting of the snow.
Reflectance from the Contact Probe is successfully used for calculation of optical grain size with the
Nolin–Dozier model [7]. Therefore, we assume that derivation of optical grain size or SSA from the
QST reflectance could be possible with a lookup table in the future, since the empirical relationship
between SSA and reflectance has been found. However, it would require a more comprehensive set of
observations and proper testing of the penetration depth of radiation and the lost portion of scattered
radiation, where field experiments with both QST and the Contact Probe would be beneficial.
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Abstract: When applied to a snow-covered surface, aerodynamic roughness length, z0, is typically
considered as a static parameter within energy balance equations. However, field observations
show that z0 changes spatially and temporally, and thus z0 incorporated as a dynamic parameter
may greatly improve models. To evaluate methods for characterizing snow surface roughness,
we compared concurrent estimates of z0 based on (1) terrestrial light detection and ranging derived
surface geometry of the snowpack surface (geometric, z0G) and (2) vertical wind profile measurements
(anemometric, z0A). The value of z0G was computed from Lettau’s equation and underestimated z0A
but compared well when scaled by a factor of 2.34. The Counihan method for computing z0G was
found to be unsuitable for estimating z0 on a snow surface. During snowpack accumulation in early
winter, z0 varied as a function of the snow-covered area (SCA). Our results show that as the SCA
increases, z0 decreases, indicating there is a topographic influence on this relation.

Keywords: aerodynamic roughness length; terrestrial lidar; snow surface topography; wind profile;
snow energy balance; snow accumulation

1. Introduction

In the Northern Hemisphere, a seasonal snowpack can cover over 50% of the land area with
the snow surface often the interface between the atmosphere and the earth [1]. The roughness of a
snow surface is an important control on air-snow heat transfer [2], and changes in the snow surface
can have substantial effects on the energy balance at this interface. Snow is a complicated surface
with rapidly evolving physical roughness characteristics due to changing atmospheric conditions,
the metamorphism of snow crystals, melting and freezing processes and redistribution by wind,
especially in open areas [3]. Roughness characteristics also influence the air-surface momentum transfer
on the snowpack due to wind [4]. The changes in wind momentum can reduce the energy budget,
influence the formation of roughness features, and affect the aeolian movement of snow [4]. Heat flux
modeling has typically used the aerodynamic roughness length (z0) as a static parameter, in hydrologic,
snowpack, and climate models [5,6], with z0 only varying as a function of land cover type. For example,
the Community Land Model version 4.0 (CLM4; http://www.cesm.ucar.edu/models/ccsm4.0/clm/)
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applies a single z0 value of 2.4 × 10−3 m to all snow-covered surfaces. However, z0 varies both
spatially [7] and temporally [8], which may result in variable estimates of turbulent heat fluxes not
captured by most models [9]. Wind velocity profile measurements are often used to calculate z0

estimates [6], but there are a limited number of sites that measure the wind profile over a snowpack
surface, making the spatio-temporal representation of z0 challenging.

Millimeter-scale variations in snow-surface roughness features have been estimated from a black
plate pushed partially into the snow [10–12], using two-dimensional photography, digital processing,
and automated post-processing software [13–16]. Snow surface elevation data are now available over
large areas at the resolution (±80 mm) of airborne light detection and ranging (lidar) [17–19], terrestrial
laser scanner (TLS) (resolution of ±5 mm) [20–26], and photogrammetry [25]. Although most lidar
and photogrammetry efforts have only focused on snow depth [26], only a few datasets have been
used to evaluate snow surface roughness at the meter-scale or sub-meter scale [27,28]. However, few of
these datasets have been applied to interpolate z0 and create a digital elevation model of the snowpack
surface for evaluating surface roughness [27]. Aerodynamic roughness length (z0) has been estimated
from the geometry of the snow surface [2,7,29–31]. However, this method is time consuming and
typically only applicable over smaller scales [13]. Also, Fassnacht et al. [27] have identified potential
errors with the different methods of computing z0 from the geometry of the surface that result in
values varying over 1–3 orders of magnitude and have suggested these methods need to be evaluated
for varying scales, resolutions, and environments.

This study used TLS-derived surface geometry and vertical wind profile measurements to
compare concurrent z0 estimates for changing snow surface features of shallow snowpacks. Here, we
asked the following questions: (1) How does the aerodynamic roughness length (z0) vary spatially and
temporally for a shallow snow environment? (2) How does z0 estimated from geometric measurements
(z0G) compare to z0 estimated from anemometric measurements (z0A), and (3) How does z0 vary with
snow-covered area based on the underlying terrain?

2. Materials and Methods

The capability of a rough surface to absorb momentum from a turbulent boundary layer can be
quantified by z0, which is a measure of the vertical turbulence that occurs when a horizontal wind flows
over a rough surface [32]. In general, z0 is a quantity that is computed from the Reynolds number and
the roughness geometry of the surface [29]. For rough, turbulent regimes occurring in the atmospheric
boundary layer, dependence on the Reynolds number vanishes and z0 is only a function of roughness
geometry [33]. Various relations have been found to relate the geometry of roughness elements with
z0 [2,29]. For example, the dependence of z0 on the size, shape, density, and distribution of surface
elements has been studied using wind tunnels, analytical investigations, numerical modeling, and field
observations [34,35]. Smith [36] provides a comprehensive review of the different approaches and
models developed to analyze surface roughness and highlights that almost all models were developed
for simplistic natural surfaces (i.e., regular arrays of roughness elements).The lack of a clear method
for calculating z0 as a function of surface roughness is due to the complexity of surfaces that exists in
nature and the direction, spatial, and temporal dependence.

The most robust approach for estimating z0 is from the anemometric method used to generate
a logarithmic wind profile and solve for z0 [32]. The anemometric method can be used for any
surface with any arrangement of roughness elements but requires a meteorological tower of at
least two vertically spaced wind, temperature, and humidity measurements that can be used to
approximate the respective gradients. The measurements integrate over a footprint area rather than
the single-point location of the sensors based on the distance from measurement source, elevation
of sensor, meteorological conditions, turbulent boundary layer, and atmospheric stability. All of
these factors can potentially create turbulent fluctuations affecting the downwind measurements of
the wind profile [37,38]. The anemometric method is also very sensitive to the wind measurement
heights; Munro [2] found that adding 0.1 m to any of the heights can alter z0 by an order of magnitude.
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In contrast, the geometric method uses algorithms relating z0 to characteristics of surface roughness
elements and thus does not require tower instrumentation but only a measure of the geometry of the
surface [29].

Anemometric data are used to estimate z0 from the logarithmic wind profile through an empirical
relation that describes the vertical distribution of horizontal wind speeds within the lowest portion of
the planetary boundary layer [39]. The wind speed (Uz in m/s) at height z (in m) above a surface is
given by:

Uz =
U∗

k
ln [

z
z0

+ ψ
(

z,
z
L

, L
)
] (1)

where U* is the friction velocity (m/s), k is the Von Kármán constant (~0.40), and ψ is a stability term,
and L is the Monin-Obukhov stability parameter. This equation is only valid through the hypothesis of
stationarity and horizontal homogeneity. Under neutral stability conditions, z/L tends towards zero,
and ψ can be neglected.

The most common geometric method for estimating z0 is simply a function of the height of
the elements:

z0 = f0zh (2)

where zh is the mean height of roughness elements in meters, and f 0 is an empirical coefficient derived
from observation [28]. The frontal area index, which combines mean height and breadth (all in meters),
and density of the roughness elements, is defined as roughness area density given by:

(λF) = Ly zh ρel (3)

where Ly is the mean breadth of the roughness elements perpendicular to the wind direction, and ρel
is the density or number (n) of roughness elements per unit area [40]. Lettau [29] developed a formula
for z0 based on the geometry of the surface for irregular arrays of reasonably homogenous elements:

z0 = 0.5 zh λ F (4)

In the Lettau formula, the coefficient 0.5 represents an average drag coefficient for the roughness
elements, which was determined experimentally. Other geometric methods have been developed,
especially to consider more regularly-shaped and distributed roughness elements, such as buildings in
an urban setting [41,42]. The Counihan equation provides a geometric estimate of z0 as:

z0 = zh(1.8
A f

Ad
− 0.08) (5)

where Af is the total area in square meters silhouetted by the roughness elements, and Ad is the total
area covered by roughness elements.

A meteorological tower was erected at Colorado State University Agricultural Research,
Development and Education Center (ARDEC) South (http://aes-ardec.agsci.colostate.edu/),
(40.629680, −104.99699) on a flat field that had no obstructions at least 100 m in the prevailing wind
direction. The fetch was 40 m wide with the tower placed in the middle, leaving 100 unobstructed,
homogenous meters upwind. Ten anemometers and five temperature and relative humidity sensors
were placed vertically at different heights on the tower. The accuracy of the air temperature and relative
humidity sensors (METER VP-3) was variable across a range of ±0.25–0.50 ◦C and ±4%, respectively
(see http://manuals.decagon.com/Manuals/14053_VP-3_Web.pdf for more information). The METER
Davis Cup Anemometers have a wind direction accuracy of ±7◦ and a speed accuracy within ±5%
(see http://manuals.decagon.com/Manuals/). Data were collected from February 2014 through
March 2015. In mid-March 2014, the flat field was plowed to create additional underlying roughness,
specifically furrows and troughs were formed perpendicular to the dominant wind direction at an
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approximate spacing of two meters. The approximate amplitude of the troughs and furrows was 25 cm
deep and 50 cm wide.

Meteorological data were recorded every five minutes based on the average of one-minute
observations. Anemometric data were evaluated for 153 instances when wind speeds were faster than
4 m/s to ensure neutral stability [8] and when the log-linear fit had an r2 greater than 0.95. The height
of the instruments was calculated based on the depth of snow, which did not exceed 10 cm.

This study estimated z0 values from anemometric measurements and used them as a reference
to evaluate concurrent geometric methods. The z0A values were calculated using Equation (1) from
logarithmic anemometer wind profile data. Surface elevation was measured using a FARO Focus3D
X 130 model TLS (https://www.faro.com/products/). This lidar tool generates a point cloud scan
of a given area with an error of ±2 mm and a resolution of approximately 7.5 mm. The TLS was
set up in 2–3 locations around the area of interest with 6 reference spheres to match the images
using the FARO Scene Software. The data were generated into a point cloud and interpolated to a
solid surface with 10 mm resolution with the kriging method using the Golden Software’s Surfer 8
(https://www.goldensoftware.com/products/surfer). The gridded data were de-trended in the x-y
plane to remove the bias in slope of the field or the angle of the lidar. Gaps in the scans tended to be
small (<100 mm), and the kriging interpolation eliminated them. Individual roughness elements were
identified and for each element the silhouette lot area and obstacle height were determined using a
MATLAB code (https://www.mathworks.com/products/matlab.html). This was required to compute
the Lettau formula (Equation (4)). The 1000-m2 area around the tower was scanned on 12 occasions
when the concurrent anemometric and geometric measurements were acquired. One concurrent
measurement set was made with no snow cover for each of the unplowed and plowed scenarios;
seven concurrent measurement sets were made with partial snow-covered area (SCA) and three with
complete snow cover. SCA was determined from digital photos taken from the TLS unit.

Both the Counihan and Lettau methods were used to calculate z0G (Equations (4) and (5),
respectively). The Counihan method was appropriate for this study because the roughness elements
(furrows) in this study site were semi-regular. During each concurrent anemometric and geometric
measurement set, the percentage of the area covered in snow, or SCA, was estimated from photographs.

3. Results

The unplowed versus plowed field yielded different z0A values (Figure 1). On average, the plowed
field was almost 20 times as rough as the unplowed field, yet the coefficient of variation (COV) was
essentially the same (0.67 and 0.62, respectively) (Figure 1). The smallest z0A values for the plowed
field were of the same magnitude as some of the largest z0A values for the unplowed field, in the range
of 1 to 3 × 10−3 m.

The Counihan method estimated z0G values that were 1.39 times larger and had greater variation
than the estimated z0A values (Figure 2). We used the Nash-Sutcliffe coefficient of efficiency (NSCE),
which is a performance statistic based on a comparison of the data fit to the 1:1 line, to evaluate
how estimates of z0G compared with z0A [43]. The NSCE of the Counihan z0G was −1.18, and the
Lettau z0G was 0.14, indicating the Lettau method compared more favorably with the z0A. A linear
regression between both z0G estimates (Counihan z0G and Lettau z0G) and z0A was fit through the
data origin to evaluate if the bias between the two methods could be removed through simple linear
scaling (Figure 2). When the Counihan z0G values were scaled by 0.721 (1/1.39), the NSCE value only
increased to 0.07. However, the NSCE increased to 0.88 when the Lettau z0G values were scaled by
2.34 (1/0.428).
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Figure 1. Histogram showing range and distribution of anemometric z0 (z0A) values for the unplowed
and plowed field from anemometric data, based on 28 and 125 wind-speed profiles, respectively.
The summary statistics (mean, standard deviation (std.dev.), and coefficient of variation (COV)) are
presented in the legend. A logarithmic scale is shown on the x-axis to highlight the large difference for
z0A values among fields with varying characteristics.

Figure 2. Comparison of Lettau and Counihan geometric methods to the anemometric method. A linear
regression between the geometric-based Lettau and Counihan methods (z0G) and the anemometric
method (z0A) fit through the origin are presented. The Nash-Sutcliffe coefficient of efficiency [43] fit
statistic is also presented. When the Lettau method is scaled by 2.34 (1/0.428), the NSCE increases to
0.88. For the Counihan comparison, when it is scaled by 0.721 (1/1.39), NSCE increases to 0.07.

The estimated z0 values were found to vary as a function of the amount of SCA present (Figure 3).
As SCA increases, z0 decreases, with variability based on the calculation method (Figure 3a). A linear
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regression between SCA and each of the z0 estimates showed r2 values that were 0.01, 0.7, and 0.88 for
the Counihan, anemometric, and Lettau methods of z0 calculation, respectively. There were noticeable
differences in z0 depending whether SCA was increasing because snow was accumulating versus when
SCA was decreasing because the snow was melting. For periods of snow accumulation, removing
snow measurements that were not immediately following a snow event (the yellow boxes in Figure 3b
that represent non-accumulation values) improved the linear relation between accumulating SCA and
z0 (R2 = 0.94).

Figure 3. Linear relation between z0 and snow-covered area (SCA as a %) for (a) all datasets (scaled
Lettau and Counihan geometry-based and anemometric-based) with anemometric-based z0 for the
pre-plowed (orange circles) and plowed fields (green triangles) highlighted, and (b) the scaled Lettau
geometry-based z0 using a factor of 2.34 (see Figure 2). Lettau geometry-based z0 measurements
with non-accumulation snow measurements were removed. Lines are based on the best-fit linear
regression of the data. Snow had been on the ground for numerous days prior to the two concurrent
measurements (yellow squares) taken on 22 March 2014 (SCA = 100%) and 13 April 2014 (SCA = 70%).
The snowfall was fresh for all other measurements.

4. Discussion

Geometrically estimated z0, although easier to measure, produced different values when
compared to the anemometric derived values. The Counihan method overestimated by a factor
of 0.721, whereas the Lettau method underestimated anemometric z0 (Figure 2) by a factor of 2.34.
The Lettau method (Equation (4)) has a constant of 0.5 based on the average drag coefficient of the
roughness characteristic of the silhouetted area of the average obstacle. By dividing the Lettau based
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z0 values by the 0.5 and thus eliminating the drag coefficient from the equation, we get a new NSCE of
0.856, with scatter in the data much closer to the 1:1 line (Figure 2). The removal of the drag coefficient
suggests that the geometric data generated from the lidar point cloud appears to account for spatial
and temporal variability in the roughness of a snow surface.

Lidar-based snow data are becoming more readily available [19,26]. The accuracy of the scans
from about 1 mm for terrestrial lidar to 10 cm for airborne lidar can account for fine-scale changes of
the snowpack [26], which enables the computation of z0 at any scale. Although anemometric data can
yield reliable estimates of z0, meteorological towers are expensive to set up and operate. In addition,
data from a single tower does not consider spatial variability as well as the geometric method [44].
Comparing the two methods does not consider the scale of the study area; the geometric measurement
is taken over the entire area near the meteorological tower whereas the anemometric measurement is
only influenced by the fetch area upwind of the sensors [29].

The roughness of the snowpack can vary substantially both spatially and temporally creating
many implications [13,14,45]. Roughness variations can be caused by heterogeneities in land cover,
vegetation, and meteorological conditions [46]; non-uniform distribution of snow cover during
accumulation and melt [45,46]; snow-canopy interactions [47]; and snow redistribution by wind [48].
This was apparent in differences between the estimated z0 for the plowed versus unplowed field
(Figure 1). Land cover varies throughout regions particularly those with a shallow snow environment,
and this creates variations that depend on the underlying topography [13,14,46]. Thus, there are
many different values of z0 in the literature [7] that are broader than our observed mean range of
0.2 to 10 × 10−3 m (Figure 1). For example, Miles et al. [31] found the z0 of a hummocky glacier (a
particularly rough underlying surface) to range between 5 to 500 × 10−3 m, whereas Brock et al. [7]
reported z0 values for fresh snow and older snow of 0.2 × 10−3 and 3.56 × 10−3 m, respectively.
Our results show that change in roughness between a plowed and unplowed field yielded a 20-fold
difference in z0. The results of this study can be applied to areas of similar climate and land cover,
which included flat, bare soil, and bare soil with small furrows (<1 m); and therefore, the results of this
study may not scale appropriately to different land cover types. Further studies of a shallow snowpack
in sagebrush steppe [49], farmland, or non-densely forested environments may be able to replicate
our study results and scale from 1000 m2 to a larger area. The z0 values observed here had a notable
change between flat soil and small furrows, so the changes in z0 values in different environments with
even minimal vegetation will have much larger effects on the z0 values.

The inverse relation of SCA and z0 (Figure 3) [50] is affected by the underlying terrain and size of
the roughness features. As the snow accumulation increases, the roughness elements become buried,
and the topography appears to be smooth [50,51]. This relation indicates that as snow accumulates
over topographic features the snow will begin to level out at a z0 height dependent scale. A hysteresis
can be noted, and it has been found that a single snowfall event on a hummocky glacier can alter the
micro-topography by up to 75% due to the shallow snowpack over the small scaled features [45,52].
The CLM4 uses a z0 value of 2.4 × 10−3 m, a value that falls near the mean of the unplowed field,
which is applicable for deep, flat snowpack surface with minimal influences from underlying terrain.
However, this is not typical for shallower snowpacks or in complex terrains.

Relations between z0 and SCA (Figure 3) can be used to improve snow-energy balance modeling
by estimating the percentage of SCA via remote sensing and applying z0 only to the portion of
area it accurately describes [46,53]. Currently, most models use 100% SCA even though many areas
will remain snow free due to complex terrain and can drastically change during periods of melt
and accumulation [13,53]. Aerodynamic roughness length is incorporated into many climate and
energy models, which require sub-grid snow distribution [54] and are still inadequate at representing
SCA [46,48]. A dynamic z0 based on SCA and land cover type can improve these on a sub-grid
scale. Another complication with these models is the lack of accountability for snowpack variability
throughout accumulation and melt [48,53,54].
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Resolution is an important factor to consider when discussing both SCA and z0G. The higher
the resolution of the measurements (lidar, satellite, etc.), the higher the z0-G accuracy. However,
lidar datasets are often large, especially those acquired with TLS, making them difficult and time
consuming to process. Lower resolution data from remote sensing or airborne lidar systems (ALS)
can cause problems when scaling [53]. Quincey et al. [52] found that z0G is typically underestimated
with a small area and coarse resolution and overestimated with a large area and fine resolution when
compared to anemometric data. Nonetheless, even with lower resolution, applying dynamic z0 values
may greatly improve models. Scaling can be an effective way to incorporate both an anemometric and
geometric z0 value. Based on a specific land cover type, a scaling factor can be applied to areas with
the same land cover. This can help to improve modeled z0 accuracy, once preliminary z0 values have
been established.

5. Conclusions

Aerodynamic roughness length within our study has shown variation spatially and temporally for
a shallow accumulating snow environment. This was apparent in our results that showed differences
in z0 mean values of about 14 × 10−3 m between the plowed and unplowed field. Thus, single-point
measurements of anemometric data may not account for z0 over a range of spatial and temporal scales.
Geometrically calculated z0 using the Lettau method has shown to be an effective and more robust
form of z0 estimation compared to the anemometric method and also producing similar, estimated
values. The anemometric, single-point measurements will also not account for the snow-covered area,
which changes based on its inverse relation with z0. However, SCA can be observed and estimated
from satellite imagery or airborne lidar systems to create a more accurate estimation of z0.
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