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Preface to “Current Trends in Symmetric Polynomials

with Their Applications II”

The special numbers and polynomials play an extremely important role in various applications

in such diverse areas as mathemaics, probability and statistics, mathematical physics, and

engineering. Due to their powerful expressions, the combinations of special numbers and

polynomials can be seen almost ubiquitously as the solutions of differential equations in the diverse

fields by orthogonality condition, generating functions, recurrence relations, bosonic and fermionic

p-adic integrals and etc.

Further, their importance can be also found in the developments of classical analysis, number

theory, mathematical analysis, mathematical physics, symmetric functions, combinatorics, and other

parts of the natural sciences.

In many years, a great amount of effort has been paid by many researchers to find new

representations of families of special functions and polynomials with its practical applications.

This special issue will be contributed to the fields of special functions and orthogonal

polynomials (or q-special functions and orthogonal polynomials) along the modern trends.

Taekyun Kim

Editor
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Abstract: Recently, Kim-Kim (2019) introduced polyexponential and unipoly functions. By using
these functions, they defined type 2 poly-Bernoulli and type 2 unipoly-Bernoulli polynomials and
obtained some interesting properties of them. Motivated by the latter, in this paper, we construct the
poly-Genocchi polynomials and derive various properties of them. Furthermore, we define unipoly
Genocchi polynomials attached to an arithmetic function and investigate some identities of them.

Keywords: polylogarithm functions; poly-Genocchi polynomials; unipoly functions; unipoly
Genocchi polynomials

MSC: 11B83; 11S80

1. Introduction

The study of the generalized versions of Bernoulli and Euler polynomials and numbers was
carried out in [1,2]. In recent years, various special polynomials and numbers regained the interest of
mathematicians and quite a few results have been discovered. They include the Stirling numbers of the
first and the second kind, central factorial numbers of the second kind, Bernoulli numbers of the second
kind, Bernstein polynomials, Bell numbers and polynomials, central Bell numbers and polynomials,
degenerate complete Bell polynomials and numbers, Cauchy numbers, and others (see [3–8] and the
references therein). We mention that the study of a generalized version of the special polynomials
and numbers can be done also for the transcendental functions like hypergeometric ones. For this,
we let the reader refer to the papers [3,5,6,8,9]. The poly-Bernoulli numbers are defined by means of
the polylogarithm functions and represent the usual Bernoulli numbers (more precisely, the values of
Bernoulli polynomials at 1) when k = 1. At the same time, the degenerate poly-Bernoulli polynomials
are defined by using the polyexponential functions (see [8]) and they are reduced to the degenerate
Bernoulli polynomials if k = 1. The polyexponential functions were first studied by Hardy [10] and
reconsidered by Kim [6,9,11,12] in view of an inverse to the polylogarithm functions which were
studied by Zagier [13], Lewin [14], and Jaonquière [15]. In 1997, Kaneko [16] introduced poly-Bernoulli
numbers which are defined by the polylogaritm function.

Recently, Kim-Kim introduced polyexponential and unipoly functions [9]. By using these
functions, they defined type 2 poly-Bernoulli and type 2 unipoly-Bernoulli polynomials and obtained
several interesting properties of them.

In this paper, we consider poly-Genocchi polynomials which are derived from polyexponential
functions. Similarly motivated, in the final section, we define unipoly Genocchi polynomials attached
to an arithmetic function and investigate some identities for them. In addition, we give explicit
expressions and identities involving those polynomials.

Symmetry 2020, 12, 1007; doi:10.3390/sym12061007 www.mdpi.com/journal/symmetry1
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It is well known, the Bernoulli polynomials of order α are defined by their generating function
as follows (see [1–3,17,18]): (

t
et − 1

)α

ext =
∞

∑
n=0

B(α)
n (x)

tn

n!
, . (1)

We note that for α = 1, Bn(x) = B(1)
n (x) are the ordinary Bernoulli polynomials. When x = 0,

Bα
n = Bα

n(0) are called the Bernoulli numbers of order α. The Genocchi polynomials Gn(x) are
defined by (see [19–24]).

2t
et + 1

ext =
∞

∑
n=0

Gn(x)
tn

n!
, (2)

When x = 0, Gn = Gn(0) are called the Genocchi numbers.
As is well-known, the Euler polynomials are defined by the generating function to be (see [1,4]).

2
et + 1

ext =
∞

∑
n=0

En(x)
tn

n!
, (3)

For n ≥ 0, the Stirling numbers of the first kind are defined by (see [5,7,25]),

(x)n =
n

∑
l=0

S1(n, l)xl , (4)

where (x)0 = 1, (x)n = x(x − 1) . . . (x − n + 1), (n ≥ 1). From (4), it is easy to see that

1
k!
(log(1 + t))k =

∞

∑
n=k

S1(n, k)
tn

n!
. (5)

In the inverse expression to (4), for n ≥ 0, the Stirling numbers of the second kind are defined by

xn =
n

∑
l=0

S2(n, l)(x)l . (6)

From (6), it is easy to see that

1
k!
(et − 1)k =

∞

∑
n=k

S2(n, k)
tn

n!
. (7)

2. The Poly-Genocchi Polynomials

For k ∈ Z, by (2) and (14), we define the poly-Genocchi polynomials which are given by

2ek(log(1 + t))
et + 1

ext =
∞

∑
n=0

G(k)
n (x)

tn

n!
. (8)

When x = 0, G(k)
n = G(k)

n (0) are called the poly-Genocchi numbers. From (8), we see that

G(1)
n (x) = Gn(x), (n ∈ N∪ {0}) (9)

are the ordinary Genocchi polynomials. From (2), (4) and (8) , we observe that

2
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∞

∑
n=0

G(k)
n

tn

n!

=
2ek(log(1 + t))

et + 1

=
2

et + 1

∞

∑
m=1

(log(1 + t))m

(m − 1)!mk

=
2

et + 1

∞

∑
m=0

(log(1 + t))m+1

m!(m + 1)k

=
2

et − 1

∞

∑
m=0

1
(m + 1)k−1

∞

∑
l=m+1

S1(l, m + 1)
tl

l!

=
2t

et + 1

∞

∑
m=0

1
(m + 1)k−1

∞

∑
l=m

S1(l + 1, m + 1)
l + 1

tl

l!

=

(
∞

∑
j=0

Gj
tj

j!

)
∞

∑
l=0

(
l

∑
m=0

1
(m + 1)k−1

S1(l + 1, m + 1)
l + 1

)
tl

l!

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
1

(m + 1)k−1
S1(l + 1, m + 1)

l + 1
Gn−l

)
tn

n!
. (10)

Therefore, by (10), we obtain the following theorem.

Theorem 1. For k ∈ Z and n ∈ N∪ {0}, we have

G(k)
n =

n

∑
l=0

l

∑
m=0

(
n
l

)
1

(m + 1)k−1
S1(l + 1, m + 1)

l + 1
Gn−l . (11)

Corollary 1. For n ∈ N∪ {0}, we have

G(1)
n = Gn =

n

∑
l=0

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

l + 1
Gn−l . (12)

Moreover,

n

∑
l=1

l

∑
m=0

(
n
l

)
S1(l + 1, m + 1)

l + 1
Gn−l = 0, (n ∈ N). (13)

Kim-Kim ([9]) defined the polyexponential function by (see [6,9–12,26]).

ek(x) =
∞

∑
n=1

xn

(n − 1)!nk , (14)

In [18], it is well known that for k ≥ 2,

d
dx

ek(x) =
1
x

ek−1(x). (15)

Thus, by (15), for k ≥ 2, we get

ek(x) =
∫ x

0

1
t1

∫ t1

0

1
t1

· · ·
∫ tk−2

0︸ ︷︷ ︸
(k−2)times

1
tk−1

(etk−1 − 1)dk−1tdtk−1 · · · dt1. (16)

3
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From (16), we obtain the following equation.

∞

∑
n=0

G(k)
n

xn

n!

=
2

ex + 1
ek(log(1 + x))

=
2

ex + 1

∫ x

0

1
(1 + t) log(1 + t)

ek−1(log(1 + t))dt

=
2

ex + 1

∫ x

0

1
(1 + t1) log(1 + t1)∫ t1

0

1
(1 + t2) log(1 + t2)

· · ·
∫ tk−2

0︸ ︷︷ ︸
(k−2)times

tk−1
(1 + tk−1) log(1 + tk−1)

dtk−1dtk−2 · · · dt1, (k ≥ 2). (17)

Let us take k = 2. Then, by (2) and (16), we get

∞

∑
n=0

G(2)
n

xn

n!
=

2
ex + 1

∫ x

0

t
(1 + t) log(1 + t)

dt

=
2

ex + 1

∞

∑
l=0

B(l)
l
l!

∫ x

0
tldt

=
2

ex + 1

∞

∑
l=0

B(l)
l

l + 1
xl+1

l!

=
2x

ex + 1

∞

∑
l=0

B(l)
l

l + 1
xl

l!

=

(
∞

∑
m=0

Gm
xm

m!

)(
∞

∑
l=0

B(l)
l

l + 1
xl

l!

)

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
B(l)

l
l + 1

Gn−l

)
xn

n!
. (18)

Therefore, by (18), we obtain the following theorem.

Theorem 2. Let n ∈ N∪ {0}, we have

G(2)
n =

n

∑
l=0

(
n
l

)
B(l)

l
l + 1

Gn−l . (19)

4
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From (3) and (16), we also get

∞

∑
n=0

G(2)
n

xn

n!
=

2
ex + 1

∫ x

0

t
(1 + t) log(1 + t)

dt

=
2

ex + 1

∞

∑
l=0

B(l)
l

xl+1

(l + 1)!

=
2

ex + 1

∞

∑
l=1

B(l−1)
l−1

xl

l!

=

(
∞

∑
m=0

Em
xm

m!

)(
∞

∑
l=1

B(l−1)
l−1

xl

l!

)

=
∞

∑
n=1

(
n

∑
l=1

(
n
l

)
B(l−1)

l−1 En−l

)
xn

n!
. (20)

Therefore, by (20), we obtain the following theorem.

Theorem 3. Let n ≥ 1, we have

G(2)
n =

n

∑
l=1

(
n
l

)
B(l−1)

l−1 En−l . (21)

From (8), we observe that

∞

∑
n=0

G(k)
n (x)

tn

n!
=

2ek(log(1 + t))
et + 1

ext

=

(
∞

∑
l=0

G(k)
l

tl

l!

)(
∞

∑
m=0

xm tm

m!

)

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
G(k)

l xn−l

)
tn

n!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
G(k)

n−l x
l

)
tn

n!
. (22)

From (22), we obtain the following theorem.

Theorem 4. Let n ∈ N, we have

G(k)
n (x) =

n

∑
l=0

(
n
l

)
G(k)

n−l x
l . (23)

5
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From (23), we observe that

d
dx

G(k)
n (x) =

n

∑
l=1

(
n
l

)
G(k)

n−l lx
l−1

=
n−1

∑
l=0

(
n

l + 1

)
G(k)

n−l−1(l + 1)xl

=
n−1

∑
l=0

n!
(l + 1)!(n − l − 1)!

G(k)
n−1−l(l + 1)xl

= n
n−1

∑
l=0

(n − 1)!
l!(n − 1 − l)!

G(k)
n−1−l x

l

= nG(k)
n−1(x). (24)

From (24), we obtain the following theorem.

Theorem 5. Let n ∈ N∪ {0} and k ∈ Z, we have

d
dx

G(k)
n (x) = nG(k)

n−1(x). (25)

3. The Unipoly Genocchi Polynomials and Numbers

Let p be any arithmetic function which is real or complex valued function defined on the set of
positive integers N. Then, Kim-Kim ([9]) defined the unipoly function attached to polynomials by

uk(x|p) =
∞

∑
n=1

p(n)xn

nk , (k ∈ Z). (26)

It is well known that

uk(x|1) =
∞

∑
n=1

xn

nk = Lik(x) (27)

is the ordinary polylogarithm function, and for k ≥ 2,

d
dx

uk(x|p) = 1
x

uk−1(x|p), (28)

and

uk(x|p) =
∫ x

0

1
t

∫ t

0

1
t
· · ·
∫ t

0︸ ︷︷ ︸
(k−2)times

1
t

u1(t|p)dtdt · · · dt (29)

By using (26), we define the unipoly Genocchi polynomials as follows:

2
et + 1

uk(log(1 + t)|p)ext =
∞

∑
n=0

G(k)
n,p(x)

tn

n!
. (30)

6
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Let us take p(n) = 1
(n−1)! . Then we have

∞

∑
n=0

G(k)
n,p(x)

tn

n!
=

2
et + 1

uk

(
log(1 + t)

∣∣∣∣ 1
(n − 1)!

)
ext

=
2

et + 1

∞

∑
m=1

(log(1 + t))m

mk(m − 1)!
ext

=
2ek(log(1 + t))

et + 1
ext

=
∞

∑
n=0

G(k)
n (x)

tn

n!
. (31)

Thus, by (31), we have the following theorem.

Theorem 6. If we take p(n) = 1
(n−1)! for n ∈ N∪ {0} and k ∈ Z, then we have

G(k)
n,p(x) = G(k)

n (x). (32)

From (4) and (30) with x = 0, we have

∞

∑
n=0

G(k)
n,p

tn

n!

=
2

et + 1

∞

∑
m=1

p(m)

mk (log(1 + t))m

=
2

et + 1

∞

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞

∑
l=m+1

S1(l, m + 1)
tl

l!

=
2

et + 1

∞

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞

∑
l=m

S1(l + 1, m + 1)
tl+1

(l + 1)!

=
2t

et + 1

∞

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞

∑
l=m

S1(l + 1, m + 1)
tl

(l + 1)!

=

(
∞

∑
j=0

Gj
tj

j!

)
∞

∑
l=0

(
l

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

S1(l + 1, m + 1)
l + 1

)
tl

l!

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(l + 1, m + 1)

l + 1
Gn−l

)
tn

n!
. (33)

Therefore, by comparing the coefficients on both sides of (33), we obtain the following theorem.

Remark 1. Let n ∈ N and k ∈ Z. Then, we have

G(k)
n,p =

n

∑
l=0

l

∑
m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(l + 1, m + 1)

l + 1
Gn−l . (34)

In particular,

G(k)
n, 1

(n−1)!
=

n

∑
l=0

l

∑
m=0

(
n
l

)
Gn−l

(m + 1)k−1
S1(l + 1, m + 1)

l + 1
(35)

arrives at (11).

From (30), we easily obtain the following theorem.

7
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Theorem 7. Let n ∈ N∪ {0} and k ∈ Z. Then, we have

G(k)
n,p(x) =

n

∑
l=0

(
n
l

)
G(k)

n−l,pxl . (36)

From (36), we easily obtain the following theorem.

Theorem 8. Let n ∈ N∪ {0} and k ∈ Z. Then, we have

d
dx

G(k)
n,p(x) = nG(k)

n−1,p(x). (37)

Finally, by (4) and (30), we observe that

∞

∑
n=0

G(k)
n,p

tn

n!

=
2

et + 1

∞

∑
m=1

p(m)

mk
m!
m!

(log(1 + t))m

=
2

et + 1

∞

∑
m=1

p(m + 1)
(m + 1)k

(m + 1)!
(m + 1)!

(log(1 + t))m+1

=
∞

∑
j=0

Ej
tj

j!

∞

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞

∑
l=m+1

S1(l, m + 1)
tl

l!

=
∞

∑
j=0

Ej
tj

j!

∞

∑
l=0

l

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞

∑
l=m

S1(l + 1, m + 1)
tl+1

(l + 1)!

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(l + 1, m + 1)

l + 1
En−l

)
tn

n!
. (38)

From (37) , we obtain the following theorem.

Theorem 9. Let n ∈ N and k ∈ Z, we have

G(k)
n,p =

n

∑
l=0

l

∑
m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(l + 1, m + 1)

l + 1
En−l . (39)

4. Conclusions

In 2019, Kim-Kim considered the polyexponential functions and poly-Bernoulli polynomials.
In the same view as these functions and polynomials, we defined the poly-Genocchi polynomials
(Equation (8)) and obtained some identities (Theorem 1 and Corollary 1). In particular, we observed
explicit poly-Genocchi numbers for k = 2 (Theorems 2, 3 and 4). Furthermore, by using the unipoly
functions, we defined the unipoly Genocchi polynomials (Equation (30)) and obtained some their
properties (Theorems 6 and 7). Finally, we obtained the derivative of the unipoly Genocchi polynomials
(Theorem 8) and gave the identity indicating the relationship of unipoly Genocchi polynomials and
Euler polynomials (Theorem 9). It is recommended that our readers look at references [27–31] if they
want to know the applications related to this paper.
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An Erdős-Ko-Rado Type Theorem
via the Polynomial Method

Kyung-Won Hwang 1,†, Younjin Kim 2,*,† and Naeem N. Sheikh 3,†

1 Department of Mathematics, Dong-A University, Busan 49315, Korea; khwang@dau.ac.kr
2 Institute of Mathematical Sciences, Ewha Womans University, Seoul 03760, Korea
3 School of Sciences and Engineering, Al Akhawayn University, 53000 Ifrane, Morocco; n.sheikh@aui.ma
* Correspondence: younjinkim@ewha.ac.kr; Tel.: +82-2-3277-6993
† These authors contributed equally to this work.

Received: 29 March 2020; Accepted: 16 April 2020; Published: 17 April 2020
��������	
�������

Abstract: A family F is an intersecting family if any two members have a nonempty intersection.
Erdős, Ko, and Rado showed that |F | ≤ (n−1

k−1) holds for a k-uniform intersecting family F of subsets
of [n]. The Erdős-Ko-Rado theorem for non-uniform intersecting families of subsets of [n] of size
at most k can be easily proved by applying the above result to each uniform subfamily of a given
family. It establishes that |F | ≤ (n−1

k−1) + (n−1
k−2) + · · · + (n−1

0 ) holds for non-uniform intersecting
families of subsets of [n] of size at most k. In this paper, we prove that the same upper bound of
the Erdős-Ko-Rado Theorem for k-uniform intersecting families of subsets of [n] holds also in the
non-uniform family of subsets of [n] of size at least k and at most n − k with one more additional
intersection condition. Our proof is based on the method of linearly independent polynomials.

Keywords: Erdős-Ko-Rado theorem; intersecting families; polynomial method

1. Introduction

Let [n] be the set {1, 2, · · · , n}. A family F of subsets of [n] is intersecting if F ∩ F′ is non-empty for
all F, F′ ∈ F . A family F of subsets of [n] is t-intersecting if |F ∩ F′| ≥ t holds for any F, F′ ∈ F . A family
F is k-uniform if it is a collection of k-subsets of [n]. In 1961, Erdős, Ko, and Rado [1] were interested
in obtaining an upper bound on the maximum size that an intersecting k-uniform family can have and
proved the following theorem which bounds the cardinality of an intersecting k-uniform family.

Theorem 1 (Erdős-Ko-Rado Theorem [1]). If n ≥ 2k and F is an intersecting k-uniform family of subsets of
[n], then

|F | ≤
(

n − 1
k − 1

)
.

Erdős-Ko-Rado Theorem is an important result of extremal set theory and has been an inspiration
for various generalizations by many authors for over 50 years. Erdős, Ko, and Rado [1] also proved
that there exists an integer n0(k, t) such that if n ≥ n0(k, t), then the maximum size of a t-intersecting
k-uniform family of subsets of [n] is (n−t

k−t). The following generalization of the Erdős-Ko-Rado Theorem
was proved by Frankl [2] for t ≥ 15, and was completed by Wilson [3] for all t. It establishes that the
generalized EKR theorem is true if n ≥ (k − t + 1)(t + 1).

Theorem 2 (Generalized Erdős-Ko-Rado Theorem [2,3]). If n ≥ (k − t + 1)(t + 1) and F is a
t-intersecting k-uniform family of subsets of [n], then we have

|F | ≤
(

n − t
k − t

)
.

Symmetry 2020, 12, 640; doi:10.3390/sym12040640 www.mdpi.com/journal/symmetry11
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The Erdős-Ko-Rado Theorem can be restated as follows.

Theorem 3 (Erdős-Ko-Rado Theorem [1]). If F is a family of subsets Fi of [n] with |Fi| = k and |Fi| ≤ n − k
that satisfies the following two conditions, for i �= j

(a) 1 ≤ |Fi ∩ Fj| ≤ k − 1
(b) 1 ≤ |Fi ∩ Fc

j | ≤ k − 1

then we have

|F | ≤
(

n − 1
k − 1

)
.

2. Results

The following EKR-type theorem for non-uniform intersecting families of subsets of [n] of size at most
k can be easily proved by applying Theorem 3 to each uniform subfamily of the given non-uniform family.

Theorem 4. If F is a family of subsets Fi of [n], with |Fi| ≤ k and n ≥ 2k, that satisfies the following two
conditions, for i �= j

(a) 1 ≤ |Fi ∩ Fj| ≤ k − 1
(b) 1 ≤ |Fi ∩ Fc

j | ≤ k − 1

then we have

|F | ≤
(

n − 1
k − 1

)
+

(
n − 1
k − 2

)
+ · · ·+

(
n − 1

0

)
.

In 2014, Alon, Aydinian, and Huang [4] gave the following strengthening of the bounded rank
Erdős-Ko-Rado theorem by obtaining the same upper bound under a weaker condition as follows.

Theorem 5 (Alon, Aydinian, and Huang [4]). Let F be a family of subsets of [n] of size at most k, 1 ≤ k ≤
n − 1. Suppose that for every two subsets A, B ∈ F , if A ∩ B = ∅, then |A|+ |B| ≤ k. Then we have

|F | ≤
(

n − 1
k − 1

)
+

(
n − 1
k − 2

)
+ · · ·+

(
n − 1

0

)
.

Since the bound (n−1
k−1) + (n−1

k−2) + · · ·+ (n−1
0 ) is much larger than (n−1

k−1), this leads to the following
interesting question: when is it possible to get the same bound as in the Erdős-Ko-Rado theorem for
uniform intersecting families for the non-uniform intersecting families? We answer this question in
the main result of this paper, where we prove that the same upper bound of the EKR Theorem for
k-uniform intersecting families of subsets of [n] also holds in the non-uniform family of subsets of [n]
of size at least k and at most n − k with one more additional intersection condition, as follows.

Theorem 6. If F is a family of subsets Fi of [n] with k ≤ |Fi| ≤ n − k that satisfies the following three
conditions, for i �= j

(a) 1 ≤ |Fi ∩ Fj| ≤ k − 1
(b) 1 ≤ |Fi ∩ Fc

j | ≤ k − 1
(c) 1 ≤ |Fc

i ∩ Fc
j | ≤ k − 1

then we have

|F | ≤
(

n − 1
k − 1

)
.

Please note that if we remove the third condition in Theorem 6, we get the same bound of the
Erdős-Ko-Rado theorem for k-uniform intersecting families under the same condition for subsets of [n]
that are of size at least k and at most n − k.
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Erdős-Ko-Rado Theorem is a seminal result in extremal combinatorics and has been proved by
various methods (see a survey in [5]). There have been many results that have generalized EKR in
various ways over the decades. The aim of this paper is to give a generalization of the EKR Theorem
to non-uniform families with some extra conditions. Our proof is based on the method of linearly
independent multilinear polynomials.

Our paper is organized as follows. In Section 3, we will introduce our main tool, the method of
linearly independent multilinear polynomials. In Section 4, we will give the proof of our main result,
Theorem 6.

3. Polynomial Method

The method of linearly independent polynomials is one of the most powerful methods for
counting the number of sets in various combinatorial settings. In this method, we correspond
multilinear polynomials to the sets and then prove that these polynomials are linearly independent in
some space. In 1975, Ray-Chaudhuri and Wilson [6] obtained the following result by using the method
of linearly independent polynomials.

Theorem 7 (Ray-Chaudhuri and Wilson [6]). Let l1, l2, · · · , ls < n be nonnegative integers. If F is a
k-uniform family of subsets of [n] such that |A ∩ B| ∈ L = {l1, l2, · · · , ls} holds for every pair of distinct
subsets A, B ∈ F , then |F | ≤ (n

s) holds.

In 1981, Frankl and Wilson [7] obtained the following nonuniform version of the
Ray-Chaudhuri-Wilson Theorem using the polynomial method. Their proof is given underneath.

Theorem 8 (Frankl and Wilson [7]). Let l1, l2, · · · , ls < n be nonnegative integers. If F is a family of
subsets of [n] such that |A ∩ B| ∈ L = {l1, l2, · · · , ls} holds for every pair of distinct subsets A, B ∈ F ,
then |F | ≤ ∑s

k=0 (
n
k) holds.

Proof. Let x be the n-tuple of variables x1, x2, · · · , xn, where xi takes the values only 0 and 1. Then all
the polynomials we will work with have the relation x2

i = xi in their domain. Let F1, F2, · · · , Fm be the
distinct sets in F , listed in non-decreasing order according to their sizes. We define the characteristic
vector vi = (vi1 , vi2 , · · · , vin) of Fi such that vij = 1 if j ∈ Fi and vij = 0 if j �∈ Fi. We consider the
following multilinear polynomial

fi(x) = ∏
l∈L, l<|Fi |

(vi · x − l)

where x = (x1, x2, · · · , xn).

Then we obtain that fi(vi) �= 0 and fi(vj) = 0 for j < i. As the vectors vi are 0 − 1 vectors,
we have an another multilinear polynomial gi(x) such that fi(x) = gi(x) holds for all x ∈ {0, 1}n

by substituting xk for the powers of xk, where k = 1, 2, · · · , n. Then it is easy to see that the
polynomials g1, g2, · · · , gm are linearly independent over R. Since the dimension of n-variable
multilinear polynomials of degree at most s is ∑s

k=0 (
n
k), we have

|F | ≤
s

∑
k=0

(
n
k

)

finishing the proof of Theorem 8.

In the same paper, Frankl and Wilson [7] obtained the following modular version of Theorem 7.
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Theorem 9 (Frankl and Wilson [7]). If F is a family of subsets of [n] such that |A ∩ B| ≡ l ∈ L (mod p)
holds for every pair of distinct subsets A, B ∈ F , then |F | ≤ ( n

|L|) holds.

In 1983, Deza, Frankl and Singhi [8] obtained the following modular version of Theorem 8.

Theorem 10 (Deza, Frankl and Singhi [8]). If F is a family of subsets of [n] such that |A ∩ B| ≡ l ∈ L (mod p)
holds for every pair of distinct subsets A, B ∈ F and |A| �≡ l (mod p) for every A ∈ F , then |F | ≤ ∑

|L|
i=0 (

n
i ) holds.

In 1991, Alon, Babai, and Suzuki [9] gave another modular version of Theorem 8 by replacing the
condition of nonuniformity with the condition that the members of F have r different sizes as follows.
Their proof was also based on the polynomial method.

Theorem 11 (Alon-Babai-Suzuki [9]). Let K = {k1, k2, · · · , kr} and L = {l1, l2, · · · , ls} be two disjoint
subsets of {0, 1, · · · , p− 1}, where p is a prime, and let F be a family of subsets of [n] whose sizes modulo p are in
the set K, and |A∩ B| (mod p) ∈ L holds for every distinct two subsets A, B in F , then the largest size of such a
family F is (n

s) + ( n
s−1) + · · ·+ ( n

s−r+1) under the conditions r(s − r + 1) ≤ p − 1 and n ≥ s + max1≤i≤r ki.

In the same paper, Alon, Babai, and Suzuki [9] also conjectured that the statement of Theorem 11
remains true if the condition r(s− r+ 1) ≤ p− 1 is dropped. Recently Hwang and Kim [10] proved this
conjecture of Alon, Babai and Suzuki (1991), using the method of linearly independent polynomials.
This result is as follows.

Theorem 12 (Hwang and Kim [10]). Let K = {k1, k2, · · · , kr} and L = {l1, l2, · · · , ls} be two disjoint
subsets of {0, 1, · · · , p − 1}, where p is a prime, and let F be a family of subsets of [n] whose sizes modulo p are
in the set K, and |A ∩ B| (mod p) ∈ L for every distinct two subsets A, B in F , then the largest size of such a
family F is (n

s) + ( n
s−1) + · · ·+ ( n

s−r+1) under the only condition that n ≥ s + max1≤i≤r ki.

The method of linearly independent polynomials has also been used to prove many intersection
theorems about set families by Blokhuis [11], Chen and Liu [12], Furedi, Hwang, and Weichsel [13],
Liu and Yang [14], Qian and Ray-Chaudhuri [15], Ramanan [16], Snevily [17,18], Wang, Wei,
and Ge [19], and others.

4. Proof of the Main Result

In this section, we prove Theorem 6. As we have mentioned before, our proof is based on the
polynomial method. Let x be the n-tuple of variables x1, x2, · · · , xn, where xi takes the values only 0
and 1. Then all the polynomials we will work with have the relation x2

i = xi in their domain.

Proof of Theorem 6. The result is immediate if |F | = 1. Suppose |F | > 1. Let F1, F2, · · · , Ff be
the distinct sets in F , listed in non-decreasing order of size. We define the characteristic vector
vi = (vi1 , vi2 , · · · , vin) of Fi such that vij = 1 if j ∈ Fi and vij = 0 if j �∈ Fi.

We consider the following family of multilinear polynomials

fi(x) =
k−1

∏
j=1

(vi · x − j)

where x = (x1, x2, · · · , xn).
Since |F1| ≤ |F2|, there exists some p ∈ F2 such that p �∈ F1. Let G = {G1, G2, · · · , Gg} be the

family of subsets of [n] with the size at most k − 2, which is listed in non-decreasing order of size,
and not containing p. Next, we consider the second family of multilinear polynomials

gi(x) = (xp − 1) ∏
j∈Gi

xj

14
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where 1 ≤ i ≤ g. Let H = {H1, H2, · · · , Hh} be the family of subsets of [n] with the size at most k − 1,
which is listed in non-decreasing order of size, and containing p. Then, we consider our third and last
family of multilinear polynomials

hi(x) = ∏
|Hi |−1
j=0 (wi · x − j)− ∑l:p �∈Fl

∏
|Hi |−1
j=0 (wi ·vc

l −j)

∏k−1
j=1 (v

c
l ·vc

l −j)
∏k−1

j=1 (v
c
l · x − j)

−∑l:p∈Fl

∏
|Hi |−1
j=0 (wi ·vl−j)

∏k−1
j=1 (vl ·vl−j)

∏k−1
j=1 (vl · x − j)

where wi is the characteristic vector of Hi.
We claim that the functions fi(x), gi(x), and hi(x) taken together are linearly independent.

Assume that
f

∑
i=1

αi fi(x) +
g

∑
i=1

βigi(x) +
h

∑
i=1

γihi(x) = 0 (1)

We substitute the characteristic vector vs of Fs containing p into Equation (1). Because of the
(xp − 1) factor, we have

gi(vs) = 0 for all 1 ≤ i ≤ g.

Let vc
l be the characteristic vector of Fc

l . Next, let us consider hi(vs) :

hi(vs) = ∏
|Hi |−1
j=0 (wi · vs − j)− ∑l:p �∈Fl

∏
|Hi |−1
j=0 (wi ·vc

l −j)

∏k−1
j=1 (v

c
l ·vc

l −j)
∏k−1

j=1 (v
c
l · vs − j)

− ∑l:p∈Fl

∏
|Hi |−1
j=0 (wi ·vl−j)

∏k−1
j=1 (vl ·vl−j)

∏k−1
j=1 (vl · vs − j).

Since 1 ≤ |Fl ∩ Fs| ≤ k − 1, we have ∏k−1
j=1 (vl · vs − j) = 0 except when s = l. Since |Fi| ≥ k for all

i, we have

−∑l:p∈Fl

∏
|Hi |−1
j=0 (wi ·vl−j)

∏k−1
j=1 (vl ·vl−j)

∏k−1
j=1 (vl · vs − j) = −∏

|Hi |−1
j=0 (wi ·vs−j)

∏k−1
j=1 (vs ·vs−j)

∏k−1
j=1 (vs · vs − j)

= −∏
|Hi |−1
j=0 (wi · vs − j).

Since 1 ≤ |Fc
l ∩ Fs| ≤ k − 1 for s �= l, we have ∏k−1

j=1 (v
c
l · vs − j) = ∏k−1

j=1 (|Fc
l ∩ Fs| − j) = 0.

Thus, we have

hi(vs) =
|Hi |−1

∏
j=0

(wi · vs − j)−
|Hi |−1

∏
j=0

(wi · vs − j) = 0 for all 1 ≤ i ≤ h.

Finally, we consider fi(vs). Since fs(vs) �= 0 and 1 ≤ |Fi ∩ Fs| ≤ k − 1 for i �= s, we get αs = 0
whenever p ∈ Fs.

Next, we substitute the characteristic vector vc
s of Fc

s into Equation (1), where p �∈ Fs. Because of
the (xp − 1) factor, we have

gi(vc
s) = 0 for all 1 ≤ i ≤ g.

Next, let us consider hi(vc
s). Since 1 ≤ |Fc

l ∩ Fc
s | ≤ k − 1, we have ∏k−1

j=1 (v
c
l · vc

s − j) = 0 except
when s = l. Since n − |Fi| ≥ k, we have

− ∑
l:p/∈Fl

∏
|Hi |−1
j=0 (wi · vc

l − j)

∏k−1
j=1 (v

c
l · vc

l − j)

k−1

∏
j=1

(vc
l · vc

s − j) = −
|Hi |−1

∏
j=0

(wi · vc
s − j).
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Since 1 ≤ |Fl ∩ Fc
s | ≤ k − 1 for s �= l, we have ∏k−1

j=1 (vl · vc
s − j) = ∏k−1

j=1 (|Fl ∩ Fc
s | − j) = 0. Thus,

we have

hi(vc
s) =

|Hi |−1

∏
j=0

(wi · vc
s − j)−

|Hi |−1

∏
j=0

(wi · vc
s − j) = 0 for all 1 ≤ i ≤ h.

Finally we consider fi(vc
s). Since 1 ≤ |Fi ∩ Fc

s | ≤ k − 1, by the hypothesis fi(vc
s) is also 0 except for

fs(vc
s). Since fs(vc

s) �= 0, we get αs = 0 whenever p �∈ Fs.
So Equation (1) is reduced to :

g

∑
i=1

βigi(x) +
h

∑
i=1

γihi(x) = 0 (2)

Next, we substitute the characteristic vector ws of Hs in order of increasing size into Equation (2).
Now we note that p ∈ Hs. Because of the (xp − 1) factor, we have gi(ws) = 0 for all 1 ≤ i ≤ g.
Since the size of Hi is at most k − 1 for all i, we have 1 ≤ |Fc

l ∩ Hs| ≤ k − 1 for p ∈ Fc
l . Thus, the

factor ∏k−1
j=1 (v

c
l · ws − j) is 0. Similarly, the factor ∏k−1

j=1 (vl · ws − j) is 0 for p ∈ Fl . Thus, we have

hi(ws) = ∏
|Hi |−1
j=0 (wi · ws − j). Since hs(ws) �= 0, and hi(ws) = 0 for i > s, we have ∑h

i=1 γihi(ws) =

∑s
i=1 γihi(ws).

Recall that we substitute the vector ws in order of increasing size. When we first plug w1 into
Equation (2), we have γ1h1(w1) = 0, and thus γ1 = 0. Next, we plug w2 into (2) after dropping γ1h1(w1)

term from (2). Then we have γ2h2(w2) = 0, and thus γ2 = 0. Similarly, we have γi = 0 for all i.
Thus, Equation (1) becomes

∑
i

βigi(x) = 0. (3)

Next, we substitute the characteristic vector ys of Gs in order of increasing size into Equation (3).
Thus, we have

gi(ys) = (ysp − 1) ∏
j∈Gi

ysj = − ∏
j∈Gi

ysj for all 1 ≤ i ≤ g.

Recall that we substitute the vector ys in order of increasing size. Please note that gi(0) is the empty
product, which is taken to be 1. When we first plug y1 into Equation (3), we have g1(y1) �= 0 and
gi(y1) = 0 for all i > 1, and thus β1 = 0. Next, we plug y2 into (3) after dropping β1g1(x) term from (3).
Then we have g2(y2) �= 0 and gi(y2) = 0 for all i > 2, and thus β2 = 0. Similarly, we have βi = 0 for all
i.

This concludes that all the polynomials fi(x), gi(x), and hi(x) are linearly independent. We found
|F |+ |G|+ |H| linearly independent polynomials. All these polynomials are of degree less than or
equal to k − 1. The space of these multilinear polynomials has dimension ∑k−1

i=0 (n
i ). We have

|F |+ |G|+ |H| ≤
k−1

∑
i=0

(
n
i

)
.

Since |G| = ∑k−2
i=0 (n−1

i ) and |H| = ∑k−2
i=0 (n−1

i ), we have |F | + 2 ∑k−2
i=0 (n−1

i ) ≤ ∑k−1
i=0 (n

i ). This
gives us

|F | ≤
(

n − 1
k − 1

)
finishing the proof of Theorem 6.

5. Conclusions

We have answered the following question: when is it possible to get the same bound of the
Erdős-Ko-Rado theorem for uniform intersecting families in the non-uniform intersecting families?
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Since the EKR-type bound for the non-uniform family of subsets of [n], which is (n−1
k−1) + (n−1

k−2) + · · ·+
(n−1

0 ), is much larger than (n−1
k−1), this question is interesting and deserves further study.

Please note that if we can delete the condition (c) in Theorem 6, we can get the same bound of the
Erdős-Ko-Rado theorem for k-uniform intersecting families under the same condition for non-uniform
intersecting families of size at least k and at most n − k. Another intriguing question motivated by our
result is the problem of getting the same bound of Theorem 6 without the condition (c) or finding a
better bound for the non-uniform intersecting families than the previous results by the others.
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Abstract: Recently, the parametric kind of some well known polynomials have been presented by
many authors. In a sequel of such type of works, in this paper, we introduce the two parametric
kinds of degenerate poly-Bernoulli and poly-Genocchi polynomials. Some analytical properties of
these parametric polynomials are also derived in a systematic manner. We will be able to find some
identities of symmetry for those polynomials and numbers.

Keywords: degenerate poly-Bernoulli polynomials; degenerate poly-Genocchi polynomials;
stirling numbers

1. Introduction

Special functions, polynomials and numbers play a prominent role in the study of many areas
of mathematics, physics and engineering. In particular, the Appell polynomials and numbers are
frequently used in the development of pure and applied mathematics related to functional equations
in differential equations, approximation theories, interpolation problems, summation methods,
quadrature rules and their multidimensional extensions (see [1] ).The sequence of Appell polynomials
Aj(z) can be signified as follows:

d
dz

Aj(z) = jAj−1(z), A0(z) �= 0, z = η + iξ ∈ C, j ∈ N, (1)

or equivalently

A(z)eηz =
∞

∑
j=0

Aj(η)
zj

j!
, (2)

where

A(z) = A0 + A1
z
1!

+ A2
z2

2!
+ · · ·+ Aj

zj

j!
+ · · · , A0 �= 0,

is a formal power series with coefficients Aj known as Appell numbers.

The well known degenerate exponential function is defined by (see [2])

eη
μ(z) = (1 + μz)

η
μ , eμ(z) = e1

μ(z), (μ ∈ R). (3)

Symmetry 2020, 12, 614; doi:10.3390/sym12040614 www.mdpi.com/journal/symmetry19
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In 1956 and 1979, Carlitz [3,4] introduced and investigated the following degenerate Bernoulli and
Euler polynomials:

z
eμ(z)− 1

eη
μ(z) =

z

(1 + μz)
1
μ − 1

(1 + μz)
η
μ =

∞

∑
s=0

βs(η; μ)
zs

s!
, (4)

and
2

eμ(z) + 1
eη

μ(z) =
2

(1 + μz)
1
μ − 1

(1 + μz)
η
μ =

∞

∑
s=0

Es(η; μ)
zs

s!
. (5)

Note that

lim
μ−→0

βs(η; μ) = Bs(η), lim
μ−→0

Es(η; μ) = Es(η),

where Bs(η) and Es(η) are the classical Bernoulli and Euler polynomials (see [5,6]).

Lim [7] introduced the degenerate Genocchi polynomials G(p)
j (η; μ) of order p by means of the

undermentioned generating function:

(
2z

eμ(z) + 1

)p
eη

μ(z) =

⎛
⎝ 2z

(1 + μz)
1
μ − 1

⎞
⎠p

(1 + μz)
η
μ =

∞

∑
j=0

Gj
(p)(η; μ)

zj

j!
, (6)

so that

G(p)
j (η; μ) =

j

∑
s=0

(
j
s

)
G(p)

s (μ)

(
η

μ

)
j−s

. (7)

From Equation (6), we note that

lim
μ−→0

∞

∑
s=0

G(p)
j (η; μ)

zj

j!
= lim

μ−→0

⎛
⎝ 2z

(1 + μz)
1
μ − 1

⎞
⎠p

(1 + μz)
η
μ

=

(
2z

ez + 1

)p
eηz =

∞

∑
j=0

G(p)
j (η)

zj

j!
,

where G(p)
j (η) are the generalized Genocchi polynomials of order p (see [8–11]).

The degenerate poly-Bernoulli and poly-Genocchi polynomials are defined by (see [12–14])

Lik(1 − e−z)

eμ(z)− 1
eη

μ(z) =
Lik(1 − e−z)

(1 + μz)
1
μ − 1

(1 + μz)
η
μ =

∞

∑
s=0

B(k)
s (η; μ)

zs

s!
, (k ∈ Z), (8)

and
2Lik(1 − e−z)

eμ(z) + 1
eη

μ(z) =
2Lik(1 − e−z)

(1 + μz)
1
λ + 1

(1 + μz)
η
μ =

∞

∑
s=0

G(k)
s (η; μ)

zs

s!
, (k ∈ Z). (9)

Here, we note that (see [5,15]).

lim
μ−→0

B(k)
s (η; μ) = B(k)

s (η), lim
μ−→0

G(k)
s (η; μ) = G(k)

s (η),

20
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The Stirling numbers of the first kind are given by (see, [16–18])

(a)s = a(a − 1) · · · (a − s + 1) =
s

∑
k=0

S(1)(s, k)ak, (k ≥ 0), (10)

and the Stirling numbers of the second kind are defined by (see [19,20])

as =
s

∑
k=0

S(2)(k, s)(a)k. (11)

The degenerate Stirling numbers of the of the second kind are defined by (see [10,21,22])

1
k!
(eμ(t)− 1)k =

∞

∑
k=s

S(2)
μ (k, s)

tk

k!
, (k ≥ 0). (12)

Note that limμ−→0 S(2)
μ (k, s) = S(2)(k, s), (s, k ≥ 0).

In the year (2017, 2018), Jamei et al. [23,24] introduced the two parametric kinds of exponential
functions as follows (see also [6,23–25]):

eηz cos ξz =
∞

∑
k=0

Ck(η, ξ)
zk

k!
, (13)

and

eηz sin ξz =
∞

∑
k=0

Sk(η, ξ)
zk

k!
, (14)

where

Ck(η, ξ) =
[ k

2 ]

∑
j=0

(
k
2j

)
(−1)jηk−2jξ2j, (15)

and

Sk(η, ξ) =
[ k−1

2 ]

∑
j=0

(
k
2j + 1

)
(−1)jηk−2j−1ξ2j+1. (16)

Recently, Kim et al. [2] introduced the following degenerate type parametric exponential functions:

eη
μ(z) cosξ

μ(z) =
∞

∑
k=0

Ck,μ(η, ξ)
zk

k!
, (17)

and

eη
μ(z) sinξ

μ(z) =
∞

∑
k=0

Sk,μ(η, ξ)
zk

k!
, (18)

where

Cr,μ(η, ξ) =
[ r

2 ]

∑
k=0

r

∑
q=2k

(
r
q

)
(−1)kμq−2kξ2kS1(q, 2k)(η)r−q,μ, (19)

and

Sr,μ(η, ξ) =
[ r−1

2 ]

∑
k=0

r

∑
q=2k+1

(
r
q

)
(−1)kμq−2k−1ξ2k+1S1(q, 2k + 1)(η)r−q,μ. (20)

Motivated by the importance and potential applications in certain problems in number theory,
combinatorics, classical and numerical analysis and physics, several families of degenerate Bernoulli
and Euler polynomials and degenerate versions of special polynomials have been recently studied
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by many authors, (see [3–5,11–13,16]). Recently, Kim and Kim [2] have introduced the degenerate
Bernoulli and degenerate Euler polynomials of a complex variable. By separating the real and
imaginary parts, they introduced the parametric kinds of these degenerate polynomials.

The main object of this article is to present the parametric kinds of degenerate poly-Bernoulli and
poly-Genocchi polynomials in terms of the degenerate type parametric exponential functions. We also
investigate some fundamental properties of our introduced parametric polynomials.

2. Parametric Kinds of the Degenerate Poly-Bernoulli Polynomials

In this section, we define the two parametric kinds of degenerate poly-Bernoulli polynomials
by means of the two special generating functions involving the degenerate exponential as well as
trigonometric functions.

It is well known that (see [2])

e(η+iξ)z = eηzeiξz = eηz(cos ξz + i sin ξz), (21)

The degenerate trigonometric functions are defined by (see [19])

cosμ z =
ei

μ(z) + e−i
μ (z)

2
, sinμ z =

ei
μ(z)− e−i

μ (z)
2i

. (22)

Note that, we have
lim
μ→0

cosμ z = cos z, lim
μ→0

sinμ z = sin z.

In view of Equation (8), we have

Lik(1 − e−z)

eμ(z)− 1
eη+iξ

μ (z) =
∞

∑
j=0

B(k)
j,μ (η + iξ)

zj

j!
, (23)

and
Lik(1 − e−z)

eμ(z)− 1
eη−iξ

μ (z) =
∞

∑
j=0

B(k)
j,μ (η − iξ)

zj

j!
. (24)

From Equations (23) and (24), we note that

Lik(1 − e−z)

eμ(z)− 1
eη

μ(z) cosξ
μ(z) =

∞

∑
j=0

⎛
⎝B(k)

j,μ (η + iξ) + B(k)
j,μ (η − iξ)

2

⎞
⎠ zj

j!
, (25)

and
Lik(1 − e−z)

eμ(z)− 1
eη

μ(z) sinξ
μ(z) =

∞

∑
j=0

⎛
⎝B(k)

j,μ (η + iξ)− B(k)
j,μ (η − iξ)

2i

⎞
⎠ zj

j!
. (26)

Definition 1. The degenerate cosine-poly-Bernoulli polynomials B(k,c)
p,μ (η, ξ) and degenerate sine-poly-Bernoulli

polynomials B(k,s)
p,μ (η, ξ) for nonnegative integer p are defined, respectively, by

Lik(1 − e−z)

eμ(z)− 1
eη

μ(z) cosξ
μ(z) =

∞

∑
p=0

B(k,c)
p,μ (η, ξ)

zp

p!
, (27)

and
Lik(1 − e−z)

eμ(z)− 1
eη

μ(z) sinξ
μ(z) =

∞

∑
p=0

B(k,s)
p,μ (η, ξ)

zp

p!
. (28)

For η = ξ = 0 in Equations (27) and (28), we get
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B(k,c)
p,μ (0, 0) = B(k)

p,μ, B(k,s)
p,μ (0, 0) = 0, (p ≥ 0).

Note that limμ−→0 B(k,c)
p,μ (η, ξ) = B(k,c)

p (η, ξ), limμ−→0 B(k,s)
p,μ (η, ξ) = B(k,s)

p (η, ξ), (p ≥ 0), where

B(k,c)
p (η, ξ) and B(k,s)

p (η, ξ) are the new type of poly-Bernoulli polynomials.

Based on Equations (25)–(28), we determine

B(k,c)
p,μ (η, ξ) =

B(k)
p,μ(η + iξ) + B(k)

p,μ(η − iξ)
2

, (29)

and

B(k,s)
p,μ (η, ξ) =

B(k)
p,μ(η + iξ)− B(k)

p,μ(η − iξ)
2i

. (30)

Theorem 1. Let k ∈ Z and j ≥ 0. Then

B(k)
j,μ (η + iξ) =

j

∑
q=0

(
j
q

)
B(k)

j−q,μ(η)(iξ)q,μ

=
j

∑
q=0

(
j
q

)
B(k)

j−q,μ (η + iξ)q,μ, (31)

and

B(k)
j,μ (η − iξ) =

j

∑
q=0

(
j
q

)
B(k)

j−q,μ(η)(−1)q(iξ)q,μ

=
j

∑
q=0

(
j
q

)
B(k)

j−q,μ(η − iξ)q,μ. (32)

Proof. From Equation (23), we have

∞

∑
j=0

B(k)
j,μ (η + iξ)

zj

j!
=

Lik(1 − e−z)

eμ(z)− 1
eη

μ(z)e
iξ
μ (z)

=

(
∞

∑
j=0

B(k)
j,μ (η)

zj

j!

)(
∞

∑
q=0

(iξ)q,μ
zq

q!

)

=
∞

∑
j=0

(
j

∑
q=0

(
j
q

)
B(k)

j−q,μ(η)(iξ)q,μ

)
zj

j!
. (33)

Similarly, we find

Lik(1 − e−z)

eμ(z)− 1
eη

μ(z)e
iξ
μ (z) =

(
∞

∑
j=0

B(k)
j,μ

zj

j!

)(
∞

∑
q=0

(η + iξ)q,μ
zq

q!

)

=
∞

∑
j=0

(
j

∑
q=0

(
j
q

)
B(k)

j−q,μ(η + iξ)q,μ

)
zj

j!
. (34)
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In view of Equations (33) and (34), we obtain our first claimed result shown in Equation (31).
Similarly, we can establish our second result shown in Equation (32).

Theorem 2. The following results hold true:

B(k,c)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)
B(k)

r,μ Cj−r,μ(η, ξ)

=
[

q
2 ]

∑
r=0

j

∑
q=2r

(
j
q

)
μq−2r(−1)rξ2rS(1)(q, 2r)B(k)

j−q,μ(η), (35)

and

B(k,s)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)
B(k)

r,μ Sj−r,μ(η, ξ)

=
[

q−1
2 ]

∑
r=0

j

∑
q=2r+1

(
j
q

)
μq−2r−1(−1)rξ2r+1S(1)(q, 2r + 1)B(k)

j−q,μ(η). (36)

Proof. From Equations (27) and (17), we see

∞

∑
j=0

B(k,c)
j,μ (η, ξ)

zj

j!
=

Lik(1 − e−z)

eμ(z)− 1
eη

μ(z) cosξ
μ(z)

=

(
∞

∑
r=0

B(k)
r,μ

zr

r!

)(
∞

∑
j=0

Cj,μ(η, ξ)
zj

j!

)

=
∞

∑
j=0

(
j

∑
r=0

(
j
r

)
B(k)

r,μ Cj−r,μ(η, ξ)

)
zj

j!
. (37)

Now, by using Equations (27) and (10), we find

Lik(1 − e−z)

eμ(z)− 1
eη

μ(z) cosξ
μ(z) =

∞

∑
j=0

B(k)
j,μ (η)

zj

j!

∞

∑
p=0

[
q
2 ]

∑
r=0

μl−2r(−1)ry2rS(1)(q, 2r)
zr

r!

=
∞

∑
j=0

⎛
⎝ j

∑
q=0

[
q
2 ]

∑
r=0

(
j
q

)
μq−2r(−1)rξ2rS(1)(q, 2r)B(k)

j−r,μ(η)

⎞
⎠ zj

j!

=
∞

∑
j=0

⎛
⎝ [

q
2 ]

∑
r=0

j

∑
q=2r

(
j
q

)
μq−2r(−1)rξ2rS(1)(q, 2r)B(k)

j−q,μ(η)

⎞
⎠ zj

j!
. (38)

Therefore, from Equations (37) and (38), we attain our needed result, Equation (35). Similarly, we can
obtain Equation (36).

Theorem 3. Each of the following identities holds true:

B(2,c)
r,μ (η, ξ) =

r

∑
q=0

(
r
q

)
q!Bq

q + 1
B(c)

r−q,μ(η, ξ), (39)
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and

B(2,s)
r,μ (η, ξ) =

r

∑
q=0

(
r
q

)
q!Bq

q + 1
B(s)

r−q,μ(η, ξ). (40)

Proof. In view of Equation (27), we have

∞

∑
r=0

B(k,c)
r,μ (η, ξ)

zr

r!
=

Lik(1 − e−z)

eμ(z)− 1
eη

μ(z) cosξ
μ(z)

=
eη

μ(z) cosξ
μ(z)

eμ(z)− 1

∫ z

0

1
eu − 1

∫ u

0

1
eu − 1

· · · 1
eu − 1

∫ u

0

u
eu − 1︸ ︷︷ ︸

(k−1)−times

du · · · du. (41)

Upon setting k = 2, we obtain

∞

∑
r=0

B(2,c)
r,μ (η, ξ)

zr

r!
=

eη
μ(z) cosξ

μ(z)
eμ(z)− 1

∫ z

0

u
eu − 1

du

=

(
∞

∑
q=0

Bqzq

(q + 1)

)
eη

μ(z) cosξ
μ(z)

eμ(z)− 1

=

(
∞

∑
q=0

q!Bqzq

(q + 1)q!

)(
∞

∑
r=0

B(c)
r,μ(η, ξ)

zr

r!

)
.

=
∞

∑
r=0

r

∑
q=0

(
r
q

)
q!Bq

q + 1
B(c)

r−q,μ(η, ξ)
zr

r!
,

which gives our required result, Equation (39). The proof of Equation (40) is similar; therefore, we omit
the proof.

Theorem 4. Let k ∈ Z, then

B(k,c)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)(
r+1

∑
q=1

(−1)q+r+1l!S2(r + 1, q)
qk(r + 1)

)
B(c)

j−r,μ(η, ξ), (42)

and

B(k,s)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)(
r+1

∑
q=1

(−1)q+r+1q!S2(r + 1, q)
qk(r + 1)

)
B(s)

j−r,μ(η, ξ). (43)

Proof. From Equations (27) and (11), we see

∞

∑
j=0

B(k,c)
j,μ (η, ξ)

zj

j!
=

(
Lik(1 − e−z)

z

)(
zeη

μ(z) cosξ
μ(z)

eμ(z)− 1

)
. (44)

Now
1
z

Lik(1 − e−z) =
1
z

∞

∑
q=1

(1 − e−z)q

qk

=
1
z

∞

∑
q=1

(−1)q

qk q!
∞

∑
r=l

(−1)rS2(r, q)
zr

r!

=
1
z

∞

∑
r=q

r

∑
q=1

(−1)q+r

qk q!S2(r, q)
zr

r!
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=
∞

∑
r=0

(
q+1

∑
q=1

(−1)q+r+1

qk l!
S2(r + 1, q)

r + 1

)
zr

r!
. (45)

On using Equation (45) in (44), we find

∞

∑
j=0

B(k,c)
j,μ (η, ξ)

zj

j!
=

∞

∑
r=0

(
r+1

∑
q=1

(−1)q+r+1

qk l!
S2(r + 1, q)

r + 1

)
zr

r!

(
∞

∑
j=0

B(c)
j,μ (η, ξ)

zj

j!

)
.

Replacing j by j− r in the right side of above expression and after equating the coefficients of zj, we
obtain our needed result, Equation (42). Similarly, we can derive our second result, Equation (43).

Theorem 5. The following recurrence relation holds true:

B(k,c)
j,μ (η + 1, ξ)− B(k,c)

j,μ (η, ξ)

=
j

∑
r=1

(
j
r

)(
r−1

∑
q=0

(−1)q+r+1

(q + 1)k (q + 1)!S2(r, q + 1)

)
Cj−r,μ(η, ξ), (46)

and
B(k,s)

j,μ (η + 1, ξ)− B(k,s)
j,μ (η, ξ)

=
j

∑
r=1

(
j
r

)(
r−1

∑
q=0

(−1)q+r+1

(q + 1)k (q + 1)!S2(r, q + 1)

)
Sj−r,μ(η, ξ). (47)

Proof. In view of Equation (27), we have

∞

∑
j=0

B(k,c)
j,μ (η + 1, ξ)

zj

j!
−

∞

∑
j=0

B(k,c)
j,μ (η, ξ)

zj

j!

=
Lik(1 − e−z)

eμ(z)− 1
e(η+1)

μ (z) cosξ
μ(z)− Lik(1 − e−z)

eμ(z)− 1
e(η)μ (z) cosξ

μ(z)

= Lik(1 − e−z)e(η)μ (z) cosξ
μ(z)

=
∞

∑
q=0

(1 − e−z)q+1

(q + 1)k e(η)μ (z) cosξ
μ(z)

=
∞

∑
r=1

(
r−1

∑
q=0

(−1)q+r+1

(q + 1)k (q + 1)!S2(r, q + 1)

)
zr

r!
e(η)μ (z) cosξ

μ(z)

=

(
∞

∑
r=1

(
r−1

∑
q=0

(−1)q+r+1

(q + 1)k (q + 1)!S2(r, q + 1)

)
zr

r!

)(
∞

∑
j=0

Cj,μ(η, ξ)
zj

j!

)
,

which upon replacing j by j − r in the right side of above expression and after equating the coefficients
of zj, yields our first claimed result, Equation (46). Similarly, we can establish our second result,
Equation (47).

Theorem 6. Let k ∈ Z and j ≥ 0, then we have

B(k,c)
j,μ (η + γ, ξ) =

j

∑
r=0

(
j
r

)
B(k,c)

j−r,μ(η, ξ)(γ)r,μ, (48)
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and

B(k,s)
j,μ (η + γ, ξ) =

j

∑
r=0

(
j
r

)
B(k,s)

j−r,μ(η, ξ)(γ)r,μ. (49)

Proof. On using Equation (27), we find

∞

∑
j=0

B(k,c)
j,μ (η + γ, ξ)

zj

j!
=

Lik(1 − e−z)

eμ(z)− 1
e(η+γ)

μ (z) cosξ
μ(z)

=

(
∞

∑
j=0

B(k,c)
j,μ (η, ξ)

zj

j!

)(
∞

∑
r=0

(γ)r,μ
zr

r!

)

=
∞

∑
j=0

(
j

∑
r=0

(
j
r

)
B(k,c)

j−r,μ(η, ξ)(γ)r,μ

)
zj

j!
.

By comparing the coefficients of zj on both sides, we obtain the result, Equation (48). The proof of
Equation (49) is similar to Equation (48).

Theorem 7. If k ∈ Z and j ≥ 0, then

B(k,c)
j,μ (η, ξ) =

j

∑
r=0

r

∑
q=0

(
j
r

)
(η)q S(2)

μ (r, q)B(k,c)
j−r,μ(0, ξ), (50)

and

B(k,s)
j,μ (η, ξ) =

j

∑
r=0

r

∑
q=0

(
j
r

)
(η)q S(2)

μ (r, q)B(k,s)
j−r,μ(0, ξ). (51)

Proof. From Equations (27) and (12), we find

∞

∑
j=0

B(k,c)
j,μ (η, ξ)

zj

j!
=

Lik(1 − e−z)

eμ(z)− 1
(eμ(z)− 1 + 1)η cosξ

μ(z)

=
Lik(1 − e−z)

eμ(z)− 1

∞

∑
q=0

(
η

q

)
(eμ(z)− 1)q cosξ

μ(z)

=
Lik(1 − e−z)

eμ(z)− 1
cosξ

μ(z)
∞

∑
q=0

(η)q

∞

∑
r=q

S(2)
μ (r, q)

zr

r!

=
∞

∑
j=0

B(k,c)
j,μ (0, ξ)

zj

j!

∞

∑
r=0

(
r

∑
q=0

(η)qS(2)
μ (r, q)

)
zr

r!

=
∞

∑
j=0

(
j

∑
r=0

r

∑
q=0

(
j
r

)
(η)qS(2)

μ (r, qB(k,c)
j−r,μ(0, ξ)

)
zj

j!
.

On comparing the coefficients of zj on both sides, we obtain our required result, Equation (50). The
proof of Equation (51) is similar to Equation (50).
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3. Parametric Kinds of Degenerate Poly-Genocchi Polynomials

In this section, we introduce the two parametric kinds of degenerate poly-Genocchi polynomials
by defining the two special generating functions involving the degenerate exponential as well as
trigonometric functions.

In view of Equation (9), we have

2Lik(1 − e−z)

eμ(z) + 1
eη+iξ

μ (z) =
∞

∑
j=0

G(k)
j,μ (η + iξ)

zj

j!
, (52)

and
2Lik(1 − e−z)

eμ(z) + 1
eη−iξ

μ (z) =
∞

∑
j=0

G(k)
j,μ (η − iξ)

zj

j!
. (53)

From Equations (52) and (53), we can easily get

2Lik(1 − e−z)

eμ(z) + 1
eη

μ(z) cosξ
μ(z) =

∞

∑
j=0

⎛
⎝G(k)

j,μ (η + iξ) + G(k)
j,μ (η − iξ)

2

⎞
⎠ zj

j!
, (54)

and
2Lik(1 − e−z)

eμ(z) + 1
eη

μ(z) sinξ
μ(z) =

∞

∑
j=0

⎛
⎝G(k)

j,μ (η + iξ)− G(k)
j,μ (η − iξ)

2i

⎞
⎠ zj

j!
. (55)

Definition 2. The degenerate cosine-poly-Genocchi polynomials G(k,c)
j,μ (η, ξ) and degenerate sine-poly-Genocchi

polynomials G(k,s)
j,μ (η, ξ) for nonnegative integer j are defined, respectively, by

2Lik(1 − e−z)

eμ(z) + 1
eη

μ(z) cosξ
μ(z) =

∞

∑
j=0

G(k,c)
j,μ (η, ξ)

zj

j!
, (56)

and
2Lik(1 − e−z)

eμ(z) + 1
eη

μ(z) sinξ
μ(z) =

∞

∑
j=0

G(k,s)
j,μ (η, ξ)

zj

j!
. (57)

On setting η = ξ = 0 in Equations (56) and (57), we get

G(k,c)
j,μ (0, 0) = G(k)

j,μ , G(k,s)
j,μ (0, 0) = 0, (j ≥ 0).

Note that limμ−→0 G(k,c)
j,μ (η, ξ) = G(k,c)

j (η, ξ), limμ−→0 G(k,s)
j,μ (η, ξ) = G(k,s)

j (η, ξ), (j ≥ 0), where

G(k,c)
n (η, ξ) and G(k,s)

j (η, ξ) are the new type of poly-Genocchi polynomials.
From Equations (54)–(57), we determine

G(k,c)
j,μ (η, ξ) =

G(k)
j,μ (η + iξ) + G(k)

j,μ (η − iξ)

2
(58)

and

G(k,s)
j,μ (η, ξ) =

G(k)
j,μ (η + iξ)− G(k)

j,μ (η − iξ)

2i
. (59)

Theorem 8. For k ∈ Z and j ≥ 0, we have

G(k)
j,μ (η + iξ) =

j

∑
q=0

(
j
q

)
G(k)

j−q,μ(η)(iξ)q,μ
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=
j

∑
q=0

(
j
q

)
G(k)

j−q,μ (η + iξ)q,μ, (60)

and

G(k)
j,μ (η − iξ) =

j

∑
q=0

(
j
q

)
G(k)

j−q,μ(η)(−1)q(iξ)q,μ

=
j

∑
q=0

(
j
q

)
G(k)

j−q,μ(η − iξ)q,μ. (61)

Proof. On using Equation (52), we see

∞

∑
j=0

G(k)
j,μ (η + iξ)

zj

j!
=

2Lik(1 − e−z)

eμ(z) + 1
eη

μ(z)e
iξ
μ (z)

=

(
∞

∑
j=0

G(k)
j,μ (η)

zj

j!

)(
∞

∑
q=0

(iξ)q,μ
zq

q!

)

=
∞

∑
j=0

(
j

∑
q=0

(
j
q

)
G(k)

j−q,μ(η)(iξ)q,μ

)
zj

j!
. (62)

Similarly, we find

2Lik(1 − e−z)

eμ(z) + 1
eη

μ(z)e
iξ
μ (z) =

(
∞

∑
j=0

G(k)
j,μ

zj

j!

)(
∞

∑
q=0

(η + iξ)q,μ
zq

q!

)

=
∞

∑
j=0

(
j

∑
q=0

(
j
q

)
G(k)

j−q,μ(η + iξ)q,μ

)
zj

j!
. (63)

By comparing the coefficients of zj on both sides in Equations (62) and (63), we obtain our desired
result, Equation (60). The proof of Equation (61) is similar to Equation (60).

Theorem 9. If k ∈ Z and j ≥ 0, then

G(k,c)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)
G(k)

r,μ Cj−r,μ(η, ξ)

=
[

q
2 ]

∑
r=0

j

∑
q=2r

(
j
q

)
μq−2r(−1)rξ2rS(1)(q, 2r)G(k)

j−q,μ(ξ), (64)

and

G(k,s)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)
B(k)

r,μ Sj−r,μ(η, ξ)

=
[

q−1
2 ]

∑
r=0

j

∑
q=2r+1

(
j
q

)
μq−2r−1(−1)rξ2r+1S(1)(q, 2r + 1)G(k)

j−q,μ(η). (65)

Proof. From Equations (56) and (10), we see

∞

∑
j=0

G(k,c)
j,μ (η, ξ)

zj

j!
=

2Lik(1 − e−z)

eμ(z) + 1
eη

μ(t) cosξ
μ(z)
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=

(
∞

∑
r=0

G(k)
r,μ

zr

r!

)(
∞

∑
j=0

Cj,μ(η, ξ)
zj

j!

)

=
∞

∑
j=0

(
j

∑
r=0

(
j
r

)
G(k)

r,μ Cj−r,μ(η, ξ)

)
zj

j!
. (66)

Similarly, we find

2Lik(1 − e−z)

eμ(z) + 1
eη

μ(z) cosξ
μ(z) =

∞

∑
j=0

G(k)
j,μ (η)

zj

j!

∞

∑
q=0

[
q
2 ]

∑
r=0

μq−2r(−1)rξ2rS(1)(q, 2r)
zr

r!

=
∞

∑
j=0

⎛
⎝ j

∑
l=0

[ l
2 ]

∑
m=0

(
j
l

)
μl−2m(−1)mξ2mS(1)(q, 2r)G(k)

j−q,μ(η)

⎞
⎠ zj

j!

=
∞

∑
j=0

⎛
⎝ [

q
2 ]

∑
r=0

j

∑
q=2r

(
j
q

)
μq−2r(−1)rξ2rS(1)(q, 2r)G(k)

j−q,μ(η)

⎞
⎠ zj

j!
. (67)

By comparing the coefficients of zj on both sides of Equations (66) and (67), we easily get our first
claimed result, Equation (64). Similarly, we can establish our second needed result, Equation (65).

Theorem 10. Let j ≥ 0. Then, we have

G(2,c)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)
r!Br

r + 1
G(c)

j−r,μ(η, ξ), (68)

and

G(2,s)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)
r!Br

r + 1
G(s)

j−r,μ(η, ξ). (69)

Proof. By using Equation (56), we determine

∞

∑
j=0

G(k,c)
j,μ (η, ξ)

zj

j!
=

2Lik(1 − e−z)

eμ(z) + 1
eη

μ(z) cosξ
μ(z)

=
2eη

μ(z) cosξ
μ(z)

eμ(z) + 1

∫ z

0

1
eu − 1

∫ u

0

1
eu − 1

· · · 1
eu − 1

∫ u

0

u
eu − 1︸ ︷︷ ︸

(k−1)−times

du · · · du. (70)

On setting k = 2 in Equation (70), we find

∞

∑
j=0

G(2,c)
j,μ (η, ξ)

zj

j!
=

2eη
μ(z) cosξ

μ(z)
eμ(z) + 1

∫ z

0

u
eu − 1

dz

=

(
∞

∑
r=0

r!Brzr

(r + 1)r!

)
2zeη

μ(z) cosξ
μ(z)

eμ(z) + 1

=

(
∞

∑
r=0

r!Brzr

(r + 1)r!

)(
∞

∑
j=0

G(c)
j,μ (η, ξ)

zj

j!

)
.
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On replacing j by j − r in the above equation, we obtain

=
∞

∑
j=0

j

∑
r=0

(
j
r

)
r!Br

r + 1
G(c)

j−r,μ(η, ξ)
zj

j!
.

Finally, by equating the coefficients of the like powers of z in the last expression, we get the result,
Equation (68). The proof of Equation (69) is similar to Equation (68).

Theorem 11. For k ∈ Z and j ≥ 0, we have

G(k,c)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)(
r+1

∑
q=1

(−1)q+r+1q!S2(r + 1, q)
qk(r + 1)

)
G(c)

j−r,μ(η, ξ), (71)

and

G(k,s)
j,μ (η, ξ) =

j

∑
r=0

(
j
r

)(
r+1

∑
q=1

(−1)q+r+1q!S2(r + 1, q)
qk(r + 1)

)
G(s)

j−r,μ(η, ξ). (72)

Proof. In view of Equations (56) and (11), we see

∞

∑
j=0

G(k,c)
j,μ (η, ξ)

zj

j!
=

(
2Lik(1 − e−z)

z

)(
zeη

μ(z) cosξ
μ(z)

eμ(z) + 1

)
. (73)

Now
1
z

Lik(1 − e−z) =
1
z

∞

∑
q=1

(1 − e−z)q

qk

=
1
z

∞

∑
q=1

(−1)q

qk q!
∞

∑
r=l

(−1)rS2(r, q)
zr

r!

=
1
z

∞

∑
r=1

r

∑
q=1

(−1)q+r

qk q!S2(r, q)
tr

r!

=
∞

∑
r=0

(
r+1

∑
q=1

(−1)q+r+1

qk q!
S2(r + 1, q)

q + 1

)
zr

r!
. (74)

Using Equation (74) in (73), we find

∞

∑
j=0

G(k,c)
j,μ (η, ξ)

zj

j!
=

∞

∑
r=0

(
r+1

∑
q=1

(−1)q+r+1

qk q!
S2(r + 1, q)

r + 1

)
zr

r!

(
∞

∑
j=0

G(c)
j,μ (η, ξ)

zj

j!

)
,

which on comparing the coefficients of zj on both sides, yields our desired result, Equation (71).
Similarly, we can derive our second result, Equation (72).

Theorem 12. Let k ∈ Z and j ≥ 0, then we have

1
2

[
G(k,c)

j,μ (η + 1, ξ) + G(k,c)
j,μ (η, ξ)

]

=
j

∑
r=1

(
j
r

)(
r−1

∑
q=0

(−1)q+r+1

(q + 1)k (q + 1)!S2(r, q + 1)

)
Cj−r,μ(η, ξ), (75)

and
1
2

[
G(k,s)

j,μ (η + 1, ξ) + G(k,s)
j,μ (η, ξ)

]
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=
j

∑
r=1

(
j
r

)(
r−1

∑
q=0

(−1)q+r+1

(q + 1)k (q + 1)!S2(r, q + 1)

)
Sj−r,μ(η, ξ). (76)

Proof. Taking
∞

∑
j=0

G(k,c)
j,μ (η + 1, ξ)

zj

j!
+

∞

∑
j=0

G(k,c)
j,μ (η, ξ)

zj

j!

=
2Lik(1 − e−z)

eμ(z) + 1
e(η+1)

μ (z) cosξ
μ(z) +

2Lik(1 − e−z)

eμ(z) + 1
e(η)μ (z) cosξ

μ(z)

= 2Lik(1 − e−z)e(η)μ (z) cosξ
μ(z)

=
∞

∑
q=0

(1 − e−z)q+1

(q + 1)k 2eη
μ(z) cos(ξ)μ (z)

=
∞

∑
r=1

(
r−1

∑
q=0

(−1)q+r+1

(q + 1)k (q + 1)!S2(r, q + 1)

)
zr

r!
2ex

μ(z) cos(ξ)μ (z)

= 2

(
∞

∑
r=1

(
r−1

∑
q=0

(−1)q+r+1

(q + 1)k (q + 1)!S2(r, q + 1)

)
zr

r!

)(
∞

∑
j=0

Cj,μ(η, ξ)
zj

j!

)
.

On replacing j by j − r in the right side of the above equation, and after comparing the coefficients
of zj on both sides, we acquire the desired result, Equation (75). Similarly, we can obtain the result,
Equation (76).

Theorem 13. For k ∈ Z and j ≥ 0, we have

G(k,c)
j,μ (η + α, ξ) =

j

∑
m=0

(
j
m

)
G(k,c)

j−m,μ(η, ξ)(α)m,μ, (77)

and

G(k,s)
j,μ (η + α, ξ) =

j

∑
m=0

(
j
m

)
G(k,s)

j−m,μ(η, ξ)(α)m,μ. (78)

Proof. By using Equation (56), we have

∞

∑
j=0

G(k,c)
j,μ (η + α, ξ)

zj

j!
=

2Lik(1 − e−z)

eμ(z) + 1
e(η+α)

μ (z) cos(ξ)μ (z)

=

(
∞

∑
j=0

G(k,c)
j,μ (η, ξ)

zj

j!

)(
∞

∑
m=0

(α)m,μ
zm

m!

)

=
∞

∑
j=0

(
j

∑
m=0

(
j
m

)
G(k,c)

j−m,μ(η, ξ)(α)m,μ

)
zj

j!
.

By comparing the coefficients of zj on both sides in the last expression, we acquire our desired result,
Equation (77). Similarly, we can derive our second result, Equation (78).

Theorem 14. If k ∈ Z and j ≥ 0, then

G(k,c)
j,μ (η, ξ) =

j

∑
r=0

r

∑
q=0

(
j
r

)
(η)lS

(2)
μ (r, q)G(k,c)

j−r,μ(0, ξ), (79)
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and

G(k,s)
j,μ (η, ξ) =

j

∑
r=0

r

∑
q=0

(
j
r

)
(η)lS

(2)
μ (r, q)G(k,s)

j−r,μ(0, ξ). (80)

Proof. From Equations (56) and (12), we have

∞

∑
j=0

G(k,c)
j,μ (η, ξ)

zj

j!
=

2Lik(1 − e−z)

eμ(z) + 1
(eμ(z)− 1 + 1)η cosξ

μ(z)

=
2Lik(1 − e−z)

eμ(z) + 1

∞

∑
q=0

(
η

q

)
(eμ(z)− 1)q cosξ

μ(z)

=
2Lik(1 − e−z)

eμ(z) + 1
cosξ

μ(z)
∞

∑
q=0

(η)q

∞

∑
r=q

S(2)
μ (r, q)

zr

r!

=
∞

∑
j=0

G(k,c)
j,μ (0, ξ)

zj

j!

∞

∑
r=0

(
r

∑
q=0

(η)q S(2)
μ (r, q)

)
zr

r!

=
∞

∑
j=0

(
j

∑
r=0

r

∑
q=0

(
j
r

)
(η)qS(2)

μ (r, q)G(k,c)
j−r,μ(0, ξ)

)
zj

j!
.

Finally, by comparing the coefficients of zj on both sides in the last expression, we arrive at our
claimed result, Equation (79). Similarly, we can establish our second result, Equation (80).

4. Conclusions

In the present article, we have considered the parametric kinds of degenerate poly-Bernoulli and
poly-Genocchi polynomials by making use of the degenerate type exponential as well as trigonometric
functions. We have also derived some analytical properties of our newly introduced parametric
polynomials by using the series manipulation technique. Furthermore, it is noticed that, if we consider
any Appell polynomials of a complex variable (as discussed in the present article), then we can easily
define its parametric kinds by separating the complex variable into real and imaginary parts.
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Abstract: In recent years, many mathematicians studied various degenerate versions of some special
polynomials for which quite a few interesting results were discovered. In this paper, we introduce
the type 2 degenerate Bernoulli polynomials of the second kind and their higher-order analogues,
and study some identities and expressions for these polynomials. Specifically, we obtain a relation
between the type 2 degenerate Bernoulli polynomials of the second and the degenerate Bernoulli
polynomials of the second, an identity involving higher-order analogues of those polynomials and
the degenerate Stirling numbers of the second kind, and an expression of higher-order analogues
of those polynomials in terms of the higher-order type 2 degenerate Bernoulli polynomials and the
degenerate Stirling numbers of the first kind.

Keywords: type 2 degenerate Bernoulli polynomials of the second kind; degenerate central factorial
numbers of the second kind

1. Introduction

In [1,2], Carlitz initiated study of the degenerate Bernoulli and Euler polynomials and obtained
some arithmetic and combinatorial results on them. In recent years, many mathematicians have
drawn their attention to various degenerate versions of some old and new polynomials and numbers,
namely some degenerate versions of Bernoulli numbers and polynomials of the second kind, Changhee
numbers of the second kind, Daehee numbers of the second kind, Bernstein polynomials, central Bell
numbers and polynomials, central factorial numbers of the second kind, Cauchy numbers, Eulerian
numbers and polynomials, Fubini polynomials, Stirling numbers of the first kind, Stirling polynomials
of the second kind, central complete Bell polynomials, Bell numbers and polynomials, type 2 Bernoulli
numbers and polynomials, type 2 Bernoulli polynomials of the second kind, poly-Bernoulli numbers
and polynomials, poly-Cauchy polynomials, and of Frobenius–Euler polynomials, to name a few [3–10]
and the references therein.

They have studied those polynomials and numbers with their interest not only in combinatorial
and arithmetic properties but also in differential equations and certain symmetric identities [7,9] and
references therein, and found many interesting results related to them [3–6,8,10]. It is remarkable that
studying degenerate versions is not only limited to polynomials but also extended to transcendental
functions. Indeed, the degenerate gamma functions were introduced in connection with degenerate
Laplace transforms [11,12].

Symmetry 2020, 12, 510; doi:10.3390/sym12040510 www.mdpi.com/journal/symmetry35
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The motivation for this research is to introduce the type 2 degenerate Bernoulli polynomials of
the second kind defined by

(1 + t)− (1 + t)−1

logλ(1 + t)
(1 + t)x =

∞

∑
n=0

b∗n,λ(x)
tn

n!
,

and investigate its arithmetic and combinatorial properties. The facts in Section 1 are some known
definitions and results that are needed throughout this paper. However, all of the results in Section 2
are new.

We will spend the rest of this section in recalling some necessary stuffs for the next section.
As is known, the type 2 Bernoulli polynomials are defined by the generating function [5,13]

t
et − e−t ext =

∞

∑
n=0

B∗
n(x)

tn

n!
. (1)

From (1), we note that

B∗
n(x) = 2n−1Bn

(
x + 1

2

)
, (n ≥ 0), (2)

where Bn(x) are the ordinary Bernoulli polynomials given by

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
.

Also, the type 2 Euler polynomials are given by [5,13]

extsecht =
2

et + e−t ext =
∞

∑
n=0

E∗
n(x)

tn

n!
. (3)

Note that

E∗
n(x) = 2nEn

(
x + 1

2

)
, (n ≥ 0), (4)

where En(x) are the ordinary Euler polynomials given by [14,15]

2
et + 1

ext =
∞

∑
n=0

En(x)
tn

n!
.

The central factorial numbers of the second kind are defined as [5,8]

xn =
n

∑
k=0

T(n, k)x[k], (5)

or equivalently as
1
k!
(e

t
2 − e−

t
2 )k =

∞

∑
n=k

T(n, k)
tn

n!
, (6)

where x[0] = 1, x[n] = x
(
x + n

2 − 1
) (

x + n
2 − 2

) · · · (x − n
2 + 1

)
, (n ≥ 1).

It is well known that the Daehee polynomials are defined by [16,17]

log(1 + t)
t

(1 + t)x =
n

∑
k=0

Dn(x)
tn

n!
. (7)

When x = 0, Dn = Dn(0) are called the Daehee numbers.
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The Bernoulli polynomials of the second kind of order r are defined by [15]

(
t

log(1 + t)

)r
(1 + t)x =

n

∑
k=0

b(r)n (x)
tn

n!
. (8)

Note that b(r)n (x) = B(n−r+1)
n (x+ 1), (n ≥ 0). Here B(r)

n (x) are the ordinary Bernoulli polynomials
of order r given by [8,15–18] (

t
et − 1

)r
ext =

n

∑
k=0

B(r)
n (x)

tn

n!
. (9)

It is known that the Stirling numbers of the second kind are defined by [8]

1
k!
(
et − 1

)k
=

∞

∑
n=k

S2(n, k)
tn

n!
, (10)

and the Stirling numbers of the first kind by [8]

1
k!

logk(1 + t) =
∞

∑
n=k

S1(n, k)
tn

n!
. (11)

For any nonzero λ ∈ R, the degenerate exponential function is defined by [11,12]

ex
λ(t) = (1 + λt)

x
λ =

∞

∑
n=0

(x)n,λ
tn

n!
, (12)

where (x)0,λ = 1, (x)n,λ = x(x − λ) · · · (x − (n − 1)λ), (n ≥ 1).
In particular, we let

eλ(t) = e1
λ(t) = (1 + λt)

1
λ . (13)

In [1,2], Carlitz introduced the degenerate Bernoulli polynomials which are given by the
generating function

t
eλ(t)− 1

ex
λ(t) =

∞

∑
n=0

βn,λ(x)
tn

n!
. (14)

Also, he considered the degenerate Euler polynomials given by [1,2]

2
eλ(t) + 1

ex
λ(t) =

∞

∑
n=0

En,λ(x)
tn

n!
. (15)

Recently, Kim-Kim considered the degenerate central factorial numbers of the second kind given
by [8,13]

1
k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
n=k

Tλ(n, k)
tn

n!
. (16)

Note that limλ→0 Tλ(n, k) = T(n, k).

2. Type 2 Degenerate Bernoulli Polynomials of the Second Kind

Let logλ t be the compositional inverse of eλ(t) in (13). Then we have

logλ t =
1
λ

(
tλ − 1

)
. (17)
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Note that limλ→0 logλ t = log t. Now, we define the degenerate Daehee polynomials by

logλ(1 + t)
t

(1 + t)x =
∞

∑
n=0

Dn,λ(x)
tn

n!
. (18)

Note that limλ→0 Dn,λ(x) = Dn(x), (n ≥ 0). In view of (8), we also consider the degenerate
Bernoulli polynomials of the second kind of order α given by(

t
logλ(1 + t)

)α

(1 + t)x =
∞

∑
n=0

b(α)n,λ(x)
tn

n!
. (19)

Note that limλ→0 b(α)n,λ(x) = b(α)n (x), (n ≥ 0). From (19), we have

(
λt

(1 + t)
λ
2 − (1 + t)− λ

2

)α

(1 + t)x− λα
2 =

∞

∑
n=0

b(α)n,λ(x)
tn

n!
. (20)

For α = r ∈ N, and replacing t by e2t − 1 in (20), we get

∞

∑
m=0

b(r)m,λ(x)
1

m!
(e2t − 1)m =

(
λt

etλ − e−tλ

)r 1
tr (e

2t − 1)re(2x−λr)t

=
∞

∑
k=0

B∗
k

(
2x
λ

− r
)

λktk

k!

∞

∑
m=0

S2(m + r, r)2m+r 1
(m+r

r )

tm

m!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
B∗

n−m

(
2x
λ

− r
)

λn−m S2(m + r, r)
(m+r

r )
2m+r

)
tn

n!
. (21)

On the other hand,

∞

∑
m=0

b(r)m,λ(x)
1

m!
(e2t − 1)m =

∞

∑
m=0

b(r)m,λ(x)
∞

∑
n=m

S2(n, m)2n tn

n!

=
∞

∑
n=0

(
n

∑
m=0

b(r)m,λ(x)2nS2(n, m)

)
tn

n!
. (22)

From (21) and (22), we have

n

∑
m=0

b(r)m,λ(x)S2(n, m) =
n

∑
m=0

(
n
m

)
B∗

n−m

(
2x
λ

− r
)

λn−m S2(m + r, r)
(m+r

r )
2m+r−n. (23)

Now, we define the type 2 degenerate Bernoulli polynomials of the second kind by

(1 + t)− (1 + t)−1

logλ(1 + t)
(1 + t)x =

∞

∑
n=0

b∗n,λ(x)
tn

n!
. (24)

When x = 0, b∗n,λ = b∗n,λ(0) are called the type 2 degenerate Bernoulli numbers of the second kind.
Note that limλ→0 b∗n,λ(x) = b∗n(x), where b∗n(x) are the type 2 Bernoulli polynomials of the second kind
given by

(1 + t)− (1 + t)−1

log(1 + t)
(1 + t)x =

∞

∑
n=0

b∗n(x)
tn

n!
.
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From (19) and (24), we note that

(1 + t)− (1 + t)−1

logλ(1 + t)
(1 + t)x =

t
logλ(1 + t)

(1 + t)x
(

1 +
1

1 + t

)

=
t

logλ(1 + t)
(1 + t)x +

t
logλ(1 + t)

(1 + t)x−1

=
∞

∑
n=0

(
b(1)n,λ(x) + b(1)n,λ(x − 1)

) tn

n!
. (25)

Therefore, we obtain the following theorem.

Theorem 1. For n ≥ 0, we have

b∗n,λ(x) = b(1)n,λ(x) + b(1)n,λ(x − 1).

Moreover,

n

∑
m=0

b(r)m,λ(x)S2(n, m) =
n

∑
m=0

(
n
m

)
B∗

n−m

(
2x
λ

− r
)

λn−m S2(m + r, r)
(m+r

r )
2m+r−n,

where r is a positive integer.

Now, we observe that

(1 + t)− (1 + t)−1

logλ(1 + t)
(1 + t)x =

∞

∑
l=0

b∗l,λ
tl

l!

∞

∑
m=0

(x)m
tm

m!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
b∗l,λ(x)n−l

)
tn

n!
, (26)

where (x)0 = 1, (x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1). From (24) and (26), we get

b∗n,λ(x) =
n

∑
l=0

(
n
l

)
b∗l,λ(x)n−l , (n ≥ 0). (27)

For α ∈ R, let us define the type 2 degenerate Bernoulli polynomials of the second kind of order α by

(
(1 + t)− (1 + t)−1

logλ(1 + t)

)α

(1 + t)x =
∞

∑
n=0

b∗(α)n,λ (x)
tn

n!
(28)

When x = 0, b∗(α)n,λ = b∗(α)n,λ (0) are called the type 2 degenerate Bernoulli numbers of the second
kind of order α.

Let α = k ∈ N. Then we have

∞

∑
n=0

b∗(k)n,λ (x)
tn

n!
=

(
(1 + t)− (1 + t)−1

logλ(1 + t)

)k

(1 + t)x. (29)
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By replacing t by eλ(t)− 1 in (29), we get

k!
tk

1
k!

(
eλ(t)− e−1

λ (t)
)k

ex
λ(t) =

∞

∑
l=0

b∗(k)l,λ (x)
1
l!
(eλ(t)− 1)l

=
∞

∑
l=0

b∗(k)l,λ (x)
∞

∑
n=l

S2,λ(n, l)
tn

n!

=
∞

∑
n=0

(
n

∑
l=0

b∗(k)l,λ (x)S2,λ(n, l)

)
tn

n!
, (30)

where S2,λ(n, l) are the degenerate Stirling numbers of the second kind given by [6]

1
k!

(eλ(t)− 1)k =
∞

∑
n=k

S2,λ(n, k)
tn

n!
. (31)

On the other hand, we also have

k!
tk

1
k!

(
eλ(t)− e−1

λ (t)
)k

ex
λ(t) =

k!
tk

1
k!

(
e2

λ(t)− 1
)k

ex−k
λ (t)

=
k!
tk

1
k!

(
e λ

2
(2t)− 1

)k
ex−k

λ (t)

=
∞

∑
m=0

S2, λ
2
(m + k, k)

2m+k

(m+k
k )

tm

m!

∞

∑
l=0

(x − k)l,λ
tl

l!

=
∞

∑
n=0

(
n

∑
m=0

(n
m)2

m+k

(m+k
k )

S2, λ
2
(m + k, k)(x − k)n−m,λ

)
tn

n!
. (32)

Therefore, by (30) and (32), we obtain the following theorem.

Theorem 2. For n ≥ 0, we have

n

∑
l=0

b∗(k)l,λ (x)S2,λ(n, l) =
n

∑
l=0

(n
l )2

l+k

(l+k
k )

S2, λ
2
(l + k, k)(x − k)n−l,λ.

In particular,

2n+kS2, λ
2
(n + k, k) =

(
n + k

k

) n

∑
l=0

b∗(k)l,λ (k)S2,λ(n, l).

For α ∈ R, we recall that the type 2 degenerate Bernoulli polynomials of order α are defined by [5,13](
t

eλ(t)− e−1
λ (t)

)α

ex
λ(t) =

∞

∑
n=0

β
∗(α)
n,λ (x)

tn

n!
. (33)

For k ∈ N, let us take α = −k and replace t by logλ(1 + t) in (33). Then we have

(
(1 + t)− (1 + t)−1

logλ(1 + t)

)k

(1 + t)x =
∞

∑
l=0

β
∗(−k)
l,λ (x)

1
l !
(
logλ(1 + t)

)l

=
∞

∑
l=0

β
∗(−k)
l,λ (x)

∞

∑
n=l

S1,λ(n.l)
tn

n!

=
∞

∑
n=0

(
n

∑
l=0

β
∗(−k)
l,λ S1,λ(n.l)

)
tn

n!
, (34)
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where S1,λ(n, l) are the degenerate Stirling numbers of the first kind given by

1
k!
(logλ(1 + t))k =

∞

∑
n=k

S1,λ(n, k)
tn

n!
. (35)

Note here that limλ→0 S1,λ(n, l) = S1(n, l). Therefore, by (26) and (34), we obtain the following theorem.

Theorem 3. For n ≥ 0 and k ∈ N, we have

b∗(k)n,λ (x) =
n

∑
l=0

β
∗(−k)
l,λ (x)S1,λ(n, l).

We observe that

1
k!

tk =
1
k!

(
(1 + t)

1
2 − (1 + t)−

1
2

)k
(1 + t)

k
2

=
1
k!

(
e

1
2
λ (logλ(1 + t))− e−

1
2

λ

(
logλ(1 + t)

))k
(1 + t)

k
2

=
∞

∑
l=k

Tλ(l, k)
1
l!
(logλ(1 + t))l

∞

∑
r=0

(
k
2

)
r

tr

r!

=
∞

∑
l=k

Tλ(l, k)
∞

∑
m=l

S1,λ(m, l)
tm

m!

∞

∑
r=0

(
k
2

)
r

tr

r!

=
∞

∑
m=k

m

∑
l=k

Tλ(l, k)S1,λ(m, l)
tm

m!

∞

∑
r=0

(
k
2

)
r

tr

r!

=
∞

∑
n=k

(
n

∑
m=k

m

∑
l=k

Tλ(l, k)S1,λ(m, l)
(

n
m

)(
k
2

)
n−m

)
tn

n!
. (36)

On the other hand,

1
k!

tk =

(
t

logλ(1 + t)

)k 1
k!
(
logλ(1 + t)

)k

=
∞

∑
l=0

b(k)l,λ
tl

l!

∞

∑
m=k

S1,λ(m, k)
tm

m!

=
∞

∑
n=k

(
n

∑
m=k

S1,λ(m, k)b(k)n−m,λ

(
n
m

))
tn

n!
. (37)

Therefore, by (36) and (37), we obtain the following theorem.

Theorem 4. For n, k ≥ 0, we have

n

∑
m=k

m

∑
l=k

Tλ(l, k)S1,λ(m, l)
(

n
m

)(
k
2

)
n−m

=
n

∑
m=k

S1,λ(m, k)b(k)n−m,λ

(
n
m

)
.

3. Conclusions

In this paper, we introduced the type 2 degenerate Bernoulli polynomials of the second kind
and their higher-order analogues, and studied some identities and expressions for these polynomials.
Specifically, we obtained a relation between the type 2 degenerate Bernoulli polynomials of the second
and the degenerate Bernoulli polynomials of the second, an identity involving higher-order analogues
of those polynomials and the degenerate Stirling numbers of second kind, and an expression of
higher-order analogues of those polynomials in terms of the higher-order type 2 degenerate Bernoulli
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polynomials and the degenerate Stirling numbers of the first kind.
In addition, we obtained an identity involving the higher-order degenerate Bernoulli polynomials

of the second kind, the type 2 Bernoulli polynomials and Stirling numbers of the second kind, and an
identity involving the degenerate central factorial numbers of the second kind, the degenerate Stirling
numbers of the first kind and the higher-order degenerate Bernoulli polynomials of the second kind.

Next, we would like to mention three possible applications of our results. The first one is their
applications to identities of symmetry. For instance, in [7] by using the p-adic fermionic integrals it
was possible for us to find many symmetric identities in three variables related to degenerate Euler
polynomials and alternating generalized falling factorial sums.

The second one is their applications to differential equations. Indeed, in [9] we derived an infinite
family of nonlinear differential equations having the generating function of the degenerate Changhee
numbers of the second kind as a solution. As a result, from those differential equations we obtained
an interesting identity involving the degenerate Changhee and higher-order degenerate Changhee
numbers of the second kind.

The third one is their applications to probability. For example, in [19,20] we showed that both the
degenerate λ-Stirling polynomials of the second and the r-truncated degenerate λ-Stirling polynomials
of the second kind appear in certain expressions of the probability distributions of appropriate random
variables.

These possible applications of our results require a considerable amount of work and they should
appear as separate papers. We have witnessed in recent years that studying various degenerate
versions of some special polynomials and numbers are very fruitful and promising [21]. It is our plan
to continue to do this line of research, as one of our near future projects.
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Abstract: The main purpose of this paper is to use the Hardy–Littlewood method to study the
solvability of mixed powers of primes. To be specific, we consider the even integers represented as
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1. Introduction and Main Result

Let N, k1, k2, . . . , ks be natural numbers which satisfy 2 � k1 � k2 � · · · � ks, N > s. Waring’s
problem of unlike powers concerns the possibility of representation of N in the form

N = xk1
1 + xk2

2 + · · ·+ xks
s . (1)

For previous literature, the reader could refer to section P12 of LeVeque’s Reviews in number theory
and the bibliography of Vaughan [1]. For the special case, k1 = k2 = · · · = ks, an interesting problem
is to determine the value for k � 2, called Waring’s problem, of the function G(k), the least positive
number s such that every sufficiently large number can be represented the sum of at most s k-th powers
of natural numbers. For this problem, there are only two values of the function G(k) determined
exactly. To be specific, G(2) = 4, by Lagrange in 1770, and G(4) = 16, by Davenport [2]. The majority
of information for G(k) has been derived from the Hardy–Littlewood method. This method has arised
from a celebrated paper of Hardy and Ramanujan [3], which focused on the partition function.

There are many authors who devoted to establish many kinds of generalisations of this classical
version of Waring’s problem. Among these results, it is necessary to illustrate some of the majority
variants. We begin with the most famous Waring–Goldbach problem, for which one devotes to
investigate the possibility of the representation of integers as sums of k-th powers of prime numbers.
In order to explain the associated congruence conditions, we denote by k a natural number and p a
prime number. We write θ = θ(k; p) as the integer with the properties pθ |k and pθ � k, and then define
γ = γ(k, p) by

γ(k, p) =

{
θ + 2, when p = 2 and θ > 0,

θ + 1, otherwise.

Symmetry 2020, 12, 367; doi:10.3390/sym12030367 www.mdpi.com/journal/symmetry45
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Also, we set
K(k) = ∏

(p−1)|k
pγ.

Denote by H(k) the smallest integer s, which satisfies every sufficiently large integer congruent
to s modulo K(k) can be represented as the sum of s k-th powers of primes . By noting the fact that
for (p − 1)|k, we have pθ(p − 1)|k, provided that ak ≡ 1 (mod pγ) and (p, a) = 1. This states the
seemingly awkward definition of H(k), because if n is the sum of s k-th powers of primes exceeding
k + 1, then it must satisfy n ≡ s (mod K(k)). Trivially, further congruence conditions could arise from
the primes p which satisfy (p − 1) � k. Following the previous investigations of Vinogradov [4,5],
Hua systematically considered and investigated the additive problems involving prime variables in
his famous book (see Hua [6,7]).

For the nonhomogeneous case, the most optimistic conjecture suggests that, for each prime p,
if the Equation (1) has p-adic solutions and satisfies

k−1
1 + k−1

2 + · · ·+ k−1
s > 1, (2)

then n can be written as the sum of unlike powers of positive integers (1) provided that n is sufficiently
large in terms of k. For s = 3, such an claim maybe not true in certain situations (see Jagy and
Kaplansky [8], or Exercise 5 of Chapter 8 of Vaughan [1]). However, a guide of application for the
Hardy–Littlewood method suggests that the condition (2) should ensure at least that almost all integers
satisfying the expected congruence conditions can be represented. Moreover, once subject to the
following condition

k−1
1 + k−1

2 + · · ·+ k−1
s > 2, (3)

a standard application of the Hardy–Littlewood method suggests that all the integers, which satisfy
necessary congruence conditions, could be written in the form (1). Meanwhile, a conventional argument
of the circle method shows that in situations in which the condition (2) does not hold, then every
sufficiently large integer can not be represented in the expected form.

Since the Hardy–Littlewood method, the investigation of Waring’s problem for unlike powers has
produced splendid progress in circle method, especially for the classical version of Waring’s problem.
Additive Waring’s problems of unlike powers involving squares, cubes or biquadrates offen attract
greater interest of many mathematicians than those cases with higher mixed powers, and the current
circumstance is quite satisfactory. For example, the reader can refer to references [9–19].

The Waring–Goldbach problem of mixed powers concerns the representation of N which
satisfying some necessary congruence conditions as the form

N = pk1
1 + pk2

2 + · · ·+ pks
s ,

where p1, p2, . . . , ps are prime variables.
In 2002, Brüdern and Kawada [20] proved that for every sufficiently large even integer N,

the equation
N = x + p2

2 + p3
3 + p4

4

is solvable with x being an almost–prime P2 and the pj (j = 2, 3, 4) primes. As usual, Pr denotes an
almost–prime with at most r prime factors, counted according to multiplicity. On the other hand,
in 2015, Zhao [21] established that, for k = 3 or 4, every sufficiently large even integer N can be
represented as the form

N = p1 + p2
2 + p3

3 + pk
4 + 2ν1 + 2ν2 + · · ·+ 2νt(k) ,

where p1, . . . , p4 are primes, ν1, ν2, . . . , νt(k) are natural numbers, and t(3) = 16, t(4) = 18, which
is an improvement result of Liu and Lü [22]. Afterwards, Lü [23] improved the result of Zhao [21]
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and showed that every sufficiently large even integer N can be represented as a sum of one prime,
one square of prime, one cube of prime, one biquadrate of prime and 16 powers of 2.

In view of the results of Brüdern and Kawada [20], Zhao [21], Liu and Lü [22] and Lü [23], it is
reasonable to conjecture that, for sufficiently large integer N satisfying N ≡ 0 (mod2), the following
Diophantine equation

N = p1 + p2
2 + p3

3 + p4
4

is solvable, here and below the letter p, with or without subscript, always denotes a prime number.
However, this conjecture may be out of reach at present with the known methods and techniques.

In this paper, we shall consider the exceptional set of the problem (4) and establish the
following result.

Theorem 1. Let E(N) denote the number of positive integers n, which satisfy n ≡ 0 (mod2), up to N,
which can not be represented as

n = p1 + p2
2 + p3

3 + p4
4. (4)

Then, for any ε > 0, we have
E(N) � N

61
144+ε.

We will establish Theorem 1 by using a pruning process into the Hardy–Littlewood circle method.
For the treatment on minor arcs, we will employ the argument developed by Wooley in [24] combined
with the new estimates for exponential sum over primes developed by Zhao [25]. For the treatment on
major arcs, we shall prune the major arcs further and deal with them respectively. The explicit details
will be given in the related sections.

Notation. In this paper, let p, with or without subscripts, always denote a prime number; ε always
denotes a sufficiently small positive constant, which may not be the same at different occurrences.
The letter c always denotes a positive constant. As usual, we use χ mod q to denote a Dirichlet
character modulo q, and χ0 mod q the principal character. Moreover, we use ϕ(n) and d(n) to denote
the Euler’s function and Dirichlet’s divisor function, respectively. e(x) = e2πix; f (x) � g(x) means
that f (x) = O(g(x)); f (x)  g(x) means that f (x) � g(x) � f (x). N is a sufficiently large integer
and n ∈ (N/2, N], and hence log N  log n.

2. Outline of the Proof of Theorem 1

Let N be a sufficiently large positive integer. By a splitting argument, it is sufficient to consider
the even integers n ∈ (N/2, N]. For the application of the Hardy–Littlewood method, it is necessary to
define the Farey dissection. For this purpose, we set the parameters as follows

A = 100100, Q0 = logA N, Q1 = N
1
6 , Q2 = N

5
6 , I0 =

[
− 1

Q2
, 1 − 1

Q2

]
.

By Dirichlet’s rational approximation lemma (for instance, see Lemma 12 on p.104 of [26],
or Lemma 2.1 of [1]), each α ∈ (−1/Q2, 1 − 1/Q2] can be represented in the form

α =
a
q
+ λ, |λ| � 1

qQ2
,
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for some integers a, q with 1 � a � q � Q2 and (a, q) = 1. Define

M(q, a) =
[

a
q
− 1

qQ2
,

a
q
+

1
qQ2

]
, M =

⋃
1�q�Q1

⋃
1�a� q
(a,q)=1

M(q, a),

M0(q, a) =
[

a
q
− Q100

0
qN

,
a
q
+

Q100
0

qN

]
, M0 =

⋃
1�q�Q100

0

⋃
1�a� q
(a,q)=1

M0(q, a),

m1 = I0 \M, m2 = M \M0.

Then we obtain the Farey dissection

I0 = M0 ∪m1 ∪m2. (5)

For k = 1, 2, 3, 4, we define
fk(α) = ∑

Xk<p�2Xk

e(pkα),

where Xk = (N/16)
1
k . Let

R(n) = ∑
n=p1+p2

2+p3
3+p4

4
Xi<pi�2Xi

i=1,2,3,4

1.

From (5), one has

R(n) =
∫ 1

0

( 4

∏
k=1

fk(α)

)
e(−nα)dα =

∫ 1− 1
Q2

− 1
Q2

( 4

∏
k=1

fk(α)

)
e(−nα)dα

=

{ ∫
M0

+
∫
m1

+
∫
m2

}( 4

∏
k=1

fk(α)

)
e(−nα)dα.

In order to prove Theroem 1, we need the two following propositions:

Proposition 1. For n ∈ (N/2, N], there holds

∫
M0

( 4

∏
k=1

fk(α)

)
e(−nα)dα =

Γ(2)Γ( 3
2 )Γ(

4
3 )Γ(

5
4 )

Γ( 25
12 )

S(n)
n

13
12

log4 n
+ O

(
n

13
12

log5 n

)
, (6)

where S(n) is the singular series defined in (10), which is absolutely convergent and satisfies

(log log n)−c∗ � S(n) � d(n) (7)

for any integer n satisfying n ≡ 0 (mod2) and some fixed constant c∗ > 0.

The proof of (6) in Proposition 1 follows from the well–know standard technique in the
Hardy–Littlewood method. For more information, one can see pp. 90–99 of Hua [7], so we omit
the details herein. For the properties (7) of singular series, we shall give the proof in Section 4.

Proposition 2. Let Z(N) denote the number of integers n ∈ (N/2, N] satisfying n ≡ 0 (mod2) such that

2

∑
j=1

∣∣∣∣∣
∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα

∣∣∣∣∣� n
13
12

log5 n
.
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Then we have
Z(N) � N

61
144+ε.

The proof of Proposition 2 will be given in Section 5. The remaining part of this section is devoted
to establishing Theorem 1 by using Proposition 1 and Proposition 2.

Proof of Theorem 1. From Proposition 2, we deduce that, with at most O
(

N
61
144+ε

)
exceptions,

all even integers n ∈ (N/2, N] satisfy

2

∑
j=1

∣∣∣∣∣
∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα

∣∣∣∣∣� n
13
12

log5 n
,

from which and Proposition 1, we conclude that, with at most O
(

N
61

144+ε
)

exceptions, for all even
integers n ∈ (N/2, N], R(n) holds the asymptotic formula

R(n) =
Γ(2)Γ( 3

2 )Γ(
4
3 )Γ(

5
4 )

Γ( 25
12 )

S(n)
n

13
12

log4 n
+ O

(
n

13
12

log5 n

)
.

In other words, all even integers n ∈ (N/2, N] can be represented in the form p1 + p2
2 + p3

3 + p4
4

with at most O
(

N
61
144+ε

)
exceptions, where p1, p2, p3, p4 are prime numbers. By a splitting argument,

we get

E(N) � ∑
0���log N

Z
(

N
2�

)
� ∑

0���log N

(
N
2�

) 61
144+ε

� N
61
144+ε.

This completes the proof of Theorem 1.

3. Some Auxiliary Lemmas

In this section, we shall list some necessary lemmas which will be used in proving Proposition 2.

Lemma 1. Suppose that α is a real number, and that |α − a/q| � q−2 with (a, q) = 1. Let β = α − a/q.
Then we have

fk(α) � dδk (q)(log x)c
(

X1/2
k

√
q(1 + N|β|) + X4/5

k +
Xk√

q(1 + N|β|)
)

,

where δk =
1
2 +

log k
log 2 and c is a constant.

Proof. See Theorem 1.1 of Ren [27].

Lemma 2. Suppose that α is a real number, and that there exist a ∈ Z and q ∈ N with

(a, q) = 1, 1 � q � X and |qα − a| � X−1.

If P2δ21−k � X � Pk−2δ21−k
, then one has

∑
P<p�2P

e
(

pkα
)� P1−δ21−k+ε +

P1+ε

q1/2
(
1 + Pk|α − a/q|)1/2 ,

where δ = 1/3 for k � 4.

Proof. See Lemma 2.4 of Zhao [25].
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Lemma 3. Suppose that α is a real number, and that there are a ∈ Z and q ∈ N with

(a, q) = 1, 1 � q � Q and |qα − a| � Q−1.

If P
1
2 � Q � P

5
2 , then one has

∑
P<p�2P

e
(

p3α
)� P1− 1

12+ε +
q− 1

6 P1+ε(
1 + P3|α − a/q|)1/2 .

Proof. See Lemma 8.5 of Zhao [25].

Lemma 4. For α ∈ m1, we have

f3(α) � N
11
36+ε and f4(α) � N

23
96+ε.

Proof. For α ∈ m1, we have Q1 � q � Q2. By Lemma 3, we get

f3(α) � X
11
12+ε
3 + X1+ε

3 Q− 1
6

1 � N
11
36+ε.

From Lemma 2, we obtain

f4(α) � X
23
24+ε

4 + X1+ε
4 Q− 1

2
1 � N

23
96+ε.

This completes the proof of Lemma 4.

For 1 � a � q with (a, q) = 1, set

I(q, a) =
[

a
q
− 1

qQ0
,

a
q
+

1
qQ0

]
, I =

⋃
1�q�Q0

2q⋃
a=−q
(a,q)=1

I(q, a). (8)

For α ∈ m2, by Lemma 1, we have

f3(α) � N
1
3 logc N

q
1
2−ε
(
1 + N|λ|)1/2 + N

4
15+ε = V3(α) + N

4
15+ε, (9)

say. Then we obtain the following Lemma.

Lemma 5. We have

∫
I
|V3(α)|4dα = ∑

1�q�Q0

2q

∑
a=−q
(a,q)=1

∫
I(q,a)

|V3(α)|4dα � N
1
3 logc N.
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Proof. We have

∑
1�q�Q0

2q

∑
a=−q
(a,q)=1

∫
I(q,a)

|V3(α)|4dα

� ∑
1�q�Q0

q−2+ε
2q

∑
a=−q
(a,q)=1

∫
|λ|� 1

Q0

N
4
3 logc N

(1 + N|λ|)2 dλ

� ∑
1�q�Q0

q−2+ε
2q

∑
a=−q
(a,q)=1

(∫
|λ|� 1

N

N
4
3 logc Ndλ +

∫
1
N �|λ|� 1

Q0

N
4
3 logc N
N2λ2 dλ

)

� N
1
3 logc N ∑

1�q�Q0

q−2+ε ϕ(q) � N
1
3 Qε

0 logc N � N
1
3 logc N.

This completes the proof of Lemma 5.

4. The Singular Series

In this section, we shall concentrate on investigating the properties of the singular series which
appear in Proposition 1. First, we illustrate some notations. For k ∈ {1, 2, 3, 4} and a Dirichlet character
χ mod q, we define

Ck(χ, a) =
q

∑
h=1

χ(h)e
(

ahk

q

)
, Ck(q, a) = Ck(χ

0, a),

where χ0 is the principal character modulo q. Let χ1, χ2, χ3, χ4 be Dirichlet characters modulo q. Set

B(n, q, χ1, χ2, χ3, χ4) =
q

∑
a=1

(a,q)=1

C1(χ1, a)C2(χ2, a)C3(χ3, a)C4(χ4, a)e
(
− an

q

)
,

B(n, q) = B
(
n, q, χ0, χ0, χ0, χ0),

and write

A(n, q) =
B(n, q)
ϕ4(q)

, S(n) =
∞

∑
q=1

A(n, q). (10)

Lemma 6. For (a, q) = 1 and any Dirichlet character χ mod q, there holds

|Ck(χ, a)| � 2q1/2dβk (q)

with βk = (log k)/ log 2.

Proof. See the Problem 14 of Chapter VI of Vinogradov [28].

Lemma 7. Let p be a prime and pα‖k. For (a, p) = 1, if � � γ(p), we have Ck(p�, a) = 0, where

γ(p) =

{
α + 2, if p �= 2 or p = 2, α = 0;

α + 3, if p = 2, α > 0.

Proof. See Lemma 8.3 of Hua [7].

For k � 1, we define

Sk(q, a) =
q

∑
m=1

e
(

amk

q

)
.
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Lemma 8. Suppose that (p, a) = 1. Then

Sk(p, a) = ∑
χ∈Ak

χ(a)τ(χ),

where Ak denotes the set of non–principal characters χ modulo p for which χk is principal, and τ(χ) denotes the
Gauss sum

p

∑
m=1

χ(m)e
(m

p

)
.

Also, there hold |τ(χ)| = p1/2 and |Ak| = (k, p − 1)− 1.

Proof. See Lemma 4.3 of Vaughan [1].

Lemma 9. For (p, n) = 1, we have∣∣∣∣∣
p−1

∑
a=1

( 4

∏
k=1

Sk(p, a)
p

)
e
(
− an

p

)∣∣∣∣∣ � 24p−
3
2 . (11)

Proof. We denote by S the left-hand side of (11). It follows from Lemma 8 that

S =
1
p4

p−1

∑
a=1

(
4

∏
k=1

(
∑

χk∈Ak

χk(a)τ(χk)

))
e
(
− an

p

)
.

If |Ak| = 0 for some k ∈ {1, 2, 3, 4}, then S = 0. If this is not the case, then

S =
1
p4 ∑

χ1∈A1

∑
χ2∈A2

∑
χ3∈A3

∑
χ4∈A4

τ(χ1)τ(χ2)τ(χ3)τ(χ4)

×
p−1

∑
a=1

χ1(a)χ2(a)χ3(a)χ4(a)e
(
− an

p

)
.

From Lemma 8, the quadruple outer sums have no more than 4! = 24 terms. For each of these terms,
there holds ∣∣τ(χ1)τ(χ2)τ(χ3)τ(χ4)

∣∣ = p2.

Since in any one of these terms χ1(a)χ2(a)χ3(a)χ4(a) is a Dirichlet character χ (mod p), the inner
sum is

p−1

∑
a=1

χ(a)e
(
− an

p

)
= χ(−n)

p−1

∑
a=1

χ(−an)e
(
− an

p

)
= χ(−n)τ(χ).

By noting the fact that τ(χ0) = −1 for principal character χ0 mod p, we derive that

∣∣χ(−n)τ(χ)
∣∣ � p

1
2 .

From the above arguments, we deduce that

|S| � 1
p4 · 24 · p2 · p

1
2 = 24p−

3
2 ,

which completes the proof of Lemma 9.

Lemma 10. Let L(p, n) denote the number of solutions of the congruence

x1 + x2
2 + x3

3 + x4
4 ≡ n (mod p), 1 � x1, x2, x3, x4 � p − 1.

52



Symmetry 2020, 12, 367

Then, for n ≡ 0 (mod2), we have L(p, n) > 0.

Proof. We have

p · L(p, n) =
p

∑
a=1

C1(p, a)C2(p, a)C3(p, a)C4(p, a)e
(
− an

p

)
= (p − 1)4 + Ep,

where

Ep =
p−1

∑
a=1

C1(p, a)C2(p, a)C3(p, a)C4(p, a)e
(
− an

p

)
.

By Lemma 8, we obtain

|Ep| � (p − 1)(
√

p + 1)(2
√

p + 1)(3
√

p + 1).

It is easy to check that |Ep| < (p − 1)4 for p � 7. Therefore, we obtain L(p, n) > 0 for p � 7.
For p = 2, 3, 5, we can check L(p, n) > 0 one by one. This completes the proof of Lemma 10.

Lemma 11. A(n, q) is multiplicative in q.

Proof. From the definition of A(n, q) in (10), it is sufficient to show that B(n, q) is multiplicative in q.
Suppose q = q1q2 with (q1, q2) = 1. Then we obtain

B(n, q1q2) =
q1q2

∑
a=1

(a,q1q2)=1

( 4

∏
k=1

Ck(q1q2, a)
)

e
(
− an

q1q2

)

=
q1

∑
a1=1

(a1,q1)=1

q2

∑
a2=1

(a2,q2)=1

( 4

∏
k=1

Ck(q1q2, a1q2 + a2q1)

)
e
(
− a1n

q1

)
e
(
− a2n

q2

)
. (12)

For (q1, q2) = 1, there holds

Ck(q1q2, a1q2 + a2q1) =
q1q2

∑
m=1

(m,q1q2)=1

e
(
(a1q2 + a2q1)mk

q1q2

)

=
q1

∑
m1=1

(m1,q1)=1

q2

∑
m2=1

(m2,q2)=1

e
(
(a1q2 + a2q1)(m1q2 + m2q1)

k

q1q2

)

=
q1

∑
m1=1

(m1,q1)=1

e
(

a1(m1q2)
k

q1

) q2

∑
m2=1

(m2,q2)=1

e
(

a2(m2q1)
k

q2

)

= Ck(q1, a1)Ck(q2, a2). (13)

Putting (13) into (12), we deduce that

B(n, q1q2) =
q1

∑
a1=1

(a1,q1)=1

( 4

∏
k=1

Ck(q1, a1)

)
e
(
− a1n

q1

) q2

∑
a2=1

(a2,q2)=1

( 4

∏
k=1

Ck(q2, a2)

)
e
(
− a2n

q2

)

= B(n, q1)B(n, q2).

This completes the proof of Lemma 11.

Lemma 12. Let A(n, q) be as defined in (10). Then

53



Symmetry 2020, 12, 367

(i) we have

∑
q>Z

|A(n, q)| � Z− 1
2+εd(n),

and thus the singular series S(n) is absolutely convergent and satisfies S(n) � d(n).

(ii) there exists an absolute positive constant c∗ > 0, such that, for n ≡ 0 (mod 2),

S(n) � (log log n)−c∗ .

Proof. From Lemma 11, we know that B(n, q) is multiplicative in q. Therefore, there holds

B(n, q) = ∏
pt‖q

B(n, pt) = ∏
pt‖q

pt

∑
a=1

(a,p)=1

( 4

∏
k=1

Ck(pt, a)
)

e
(
− an

pt

)
. (14)

From (14) and Lemma 7, we deduce that B(n, q) = ∏
p‖q

B(n, p) or 0 according to q is square–free or

not. Thus, one has
∞

∑
q=1

A(n, q) =
∞

∑
q=1

q square–free

A(n, q). (15)

Write

R(p, a) :=
4

∏
k=1

Ck(p, a)−
4

∏
k=1

Sk(p, a).

Then

A(n, p) =
1

(p − 1)4

p−1

∑
a=1

( 4

∏
k=1

Sk(p, a)
)

e
(
− an

p

)
+

1
(p − 1)4

p−1

∑
a=1

R(p, a)e
(
− an

p

)
. (16)

Applying Lemma 6 and noticing that Sk(p, a) = Ck(p, a) + 1, we get Sk(p, a) � p
1
2 , and thus

R(p, a) � p
3
2 . Therefore, the second term in (16) is � c1 p− 3

2 . On the other hand, from Lemma 9,
we can see that the first term in (16) is � 24 · 24p− 3

2 = 384p− 3
2 . Let c2 = max(c1, 384). Then we have

proved that, for p � n, there holds
|A(n, p)| � c2 p−

3
2 . (17)

Moreover, if we use Lemma 6 directly, it follows that

∣∣B(n, p)
∣∣ =
∣∣∣∣∣

p−1

∑
a=1

(
4

∏
k=1

Ck(p, a)

)
e
(
− an

p

)∣∣∣∣∣ �
p−1

∑
a=1

4

∏
k=1

∣∣Ck(p, a)
∣∣

� (p − 1) · 24 · p2 · 24 = 384p2(p − 1),

and therefore ∣∣A(n, p)
∣∣ = |B(n, p)|

ϕ4(p)
� 384p2

(p − 1)3 � 23 · 384p2

p3 =
3072

p
. (18)

Let c3 = max(c2, 3072). Then, for square–free q, we have

∣∣A(n, q)
∣∣ =
(

∏
p|q
p�n

∣∣A(n, p)
∣∣)(∏

p|q
p|n

∣∣A(n, p)
∣∣) �

(
∏
p|q
p�n

(
c3 p−

3
2
))(

∏
p|q
p|n

(
c3 p−1))

= cω(q)
3

(
∏
p|q

p−
3
2

)(
∏

p|(n,q)
p

1
2

)
� q−

3
2+ε(n, q)

1
2 .
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Hence, by (15), we obtain

∑
q>Z

|A(n, q)| � ∑
q>Z

q−
3
2+ε(n, q)

1
2 = ∑

d|n
∑

q> Z
d

(dq)−
3
2+εd

1
2 = ∑

d|n
d−1+ε ∑

q> Z
d

q−
3
2+ε

� ∑
d|n

d−1+ε
(Z

d

)− 1
2+ε

= Z− 1
2+ε ∑

d|n
d−

1
2+ε � Z− 1

2+εd(n).

This proves (i) of Lemma 12.
To prove (ii) of Lemma 12, by Lemma 11, we first note that

S(n) = ∏
p

(
1 +

∞

∑
t=1

A
(
n, pt)) = ∏

p

(
1 + A(n, p)

)

=

(
∏

p�c3

(
1 + A(n, p)

))(
∏

p>c3
p�n

(
1 + A(n, p)

))(
∏

p>c3
p|n

(
1 + A(n, p)

))
. (19)

From (17), we have

∏
p>c3
p�n

(
1 + A(n, p)

)
� ∏

p>c3

(
1 − c3

p3/2

)
� c4 > 0. (20)

By (18), we know that there are c5 > 0 such that

∏
p>c3
p|n

(
1 + A(n, p)

)
� ∏

p>c3
p|n

(
1 − c3

p

)
� ∏

p|n

(
1 − c3

p

)
� (log log n)−c5 . (21)

On the other hand, it is easy to see that

1 + A(n, p) =
p · L(p, n)

ϕ4(p)
.

By Lemma 10, we know that L(p, n) > 0 for all p with n ≡ 0 (mod 2), and thus 1 + A(n, p) > 0.
Therefore, there holds

∏
p�c3

(
1 + A(n, p)

)
� c6 > 0. (22)

Combining the estimates (19)–(22), and taking c∗ = c5 > 0, we derive that

S(n) � (log log n)−c∗ .

This completes the proof Lemma 12.

5. Proof of Proposition 2

In this section, we shall give the proof of Proposition 2. We denote by Zj(N) the set of integers n
satisfying n ∈ [N/2, N] and n ≡ 0 (mod 2) for which the following estimate∣∣∣∣∣

∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα

∣∣∣∣∣� n
13
12

log5 n
(23)
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holds. For convenience, we use Zj to denote the cardinality of Zj(N) for abbreviation. Also, we define
the complex number ξ j(n) by taking ξ j(n) = 0 for n �∈ Zj(N), and when n ∈ Zj(N) by means of
the equation ∣∣∣∣∣

∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα

∣∣∣∣∣ = ξ j(n)
∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα. (24)

Plainly, one has |ξ j(n)| = 1 whenever ξ j(n) is nonzero. Therefore, we obtain

∑
n∈Zj(N)

ξ j(n)
∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα =

∫
mj

(
4

∏
k=1

fk(α)

)
Kj(α)dα, (25)

where the exponential sum Kj(α) is defined by

Kj(α) = ∑
n∈Zj(N)

ξ j(n)e(−nα).

For j = 1, 2, set

Ij =
∫
mj

(
4

∏
k=1

fk(α)

)
Kj(α)dα.

By (23)–(25), we derive that

Ij � ∑
n∈Zj(N)

n
13
12

log5 n
� ZjN

13
12

log5 N
, j = 1, 2. (26)

By Lemma 2.1 of Wooley [24] with k = 2, we know that, for j = 1, 2, there holds

∫ 1

0

∣∣ f2(α)Kj(α)
∣∣2dα � Nε

(ZjN
1
2 +Z2

j
)
. (27)

It follows from Cauchy’s inequality, Lemma 4 and (27) that

I1 �
(

sup
α∈m1

| f3(α)|
)(

sup
α∈m1

| f4(α)|
)( ∫ 1

0
| f2(α)K1(α)|2dα

) 1
2
( ∫ 1

0
| f1(α)|2dα

) 1
2

� N
11
36+ε · N

23
96+ε ·

(
Nε
(Z1N

1
2 +Z2

1
)) 1

2 · N
1
2

� N
301
288+ε

(
Z

1
2

1 N
1
4 +Z1

)
� Z

1
2

1 N
373
288+ε +Z1N

301
288+ε. (28)

Combining (26) and (28), we get

Z1N
13
12 log−5 N � I1 � Z

1
2

1 N
373
288+ε +Z1N

301
288+ε,

which implies
Z1 � N

61
144+ε. (29)

Next, we give the upper bound for Z2. By (9), we obtain

I2 �
∫
m2

∣∣ f1(α) f2(α)V3(α) f4(α)K2(α)
∣∣dα

+ N
4
15+ε ·

∫
m2

∣∣ f1(α) f2(α) f4(α)K2(α)
∣∣dα

= I21 + I22, (30)
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say. For α ∈ m2, we have either Q100
0 < q < Q1 or Q100

0 < N|qα − a| < NQ−1
2 = Q1. Therefore,

by Lemma 1, we get

sup
α∈m2

∣∣ f4(α)
∣∣� N

1
4

log40A N
. (31)

In view of the fact that m2 ⊆ I , where I is defined by (8), Hölder’s inequality, the trivial estimate
K2(α) � Z2 and Theorem 4 of Hua (See [7], p. 19), we obtain

I21 �Z2 sup
α∈m2

| f4(α)| ×
( ∫ 1

0
| f1(α)|2dα

) 1
2
( ∫ 1

0
| f2(α)|4dα

) 1
4
( ∫

I
|V3(α)|4dα

) 1
4

�Z2 · N
1
4

log40A N
· N

1
2 · (N logc N)

1
4 · (N

1
3 logc N)

1
4 � Z2N

13
12

log30A N
. (32)

Moreover, it follows from (27), (31) and Cauchy’s inequality that

I22 � N
4
15+ε · sup

α∈m2

| f4(α)| ×
( ∫ 1

0
| f1(α)|2dα

) 1
2
( ∫ 1

0
| f2(α)K2(α)|2dα

) 1
2

� N
4
15+ε · N

1
4

log40A N
· N

1
2 ·
(

Nε
(Z2N

1
2 +Z2

2
)) 1

2

� N
61
60+ε
(Z 1

2
2 N

1
4 +Z2

)� Z
1
2

2 N
19
15+ε +Z2N

61
60+ε. (33)

Combining (26), (30), (32) and (33), we deduce that

Z2N
13
12

log5 N
� I2 = I21 + I22 � Z2N

13
12

log30A N
+Z

1
2

2 N
19
15+ε +Z2N

61
60+ε,

which implies
Z2 � N

11
30+ε. (34)

From (29) and (34), we have
Z(N) � Z1 +Z2 � N

61
144+ε,

which completes the proof of Proposition 2.
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1. Introduction

For any integer n ≥ 0, the Legendre polynomials {Pn(x)} are defined as follows:

Pn(x) =
2n − 1

n
xPn−1(x)− n − 1

n
Pn−2(x)

for all n ≥ 2, with P0(x) = 1 and P1(x) = x, see [1,2] for more information.
The first few terms of Pn(x) are P2(x) = 1

2
(
3x2 − 1

)
, P3(x) = 1

2
(
5x3 − 3x

)
,

P4(x) = 1
8
(
35x4 − 30x2 + 3

)
, P5(x) = 1

8
(
63x5 − 70x3 + 15x

)
, · · · .

In fact, the general term of Pn(x) is given by the formula

Pn(x) =
1
2n ·

[ n
2 ]

∑
k=0

(−1)k · (2n − 2k)!
k! · (n − k)! · (n − 2k)!

· xn−2k,

where [y] denotes the greatest integer less than or equal to y.
It is clear that Pn(x) is an orthogonal polynomial (see [1,2]). That is,

∫ 1

−1
Pm(x)Pn(x)dx =

⎧⎨
⎩

0, if m �= n;
2

2n + 1
, if m = n.

The generating function of Pn(x) is

1√
1 − 2xt + t2

=
∞

∑
n=0

Pn(x) · tn, |x| ≤ 1, |t| < 1. (1)

These polynomials play a vital role in the study of function orthogonality and approximation
theory, as a result, some scholars have dedicated themselves to studying their various natures and
obtained a series of meaningful research results. The studies that are concerned with this content can
be found in [1–20]. Recently, Shen Shimeng and Chen Li [3] give certain symmetry sums of Pn(x),
and proved the following result:
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For any positive integer k and integer n ≥ 0, one has the identity

(2k − 1)!! ∑
a1+a2+···+a2k+1=n

Pa1(x)Pa2(x) · · · Pa2k+1(x)

=
k

∑
j=1

C(k, j)
n

∑
i=0

(n + k + 1 − i − j)!
(n − i)!

· (
i+j+k−2

i )

xk−1+i+j · Pn+k+1−i−j(x),

where (2k− 1)!! = (2k− 1) · (2k− 3) · · · 3 · 1, and C(k, i) is a recurrence sequence defined by C(k, 1) = 1,
C(k + 1, k + 1) = (2k − 1)!! and C(k + 1, i + 1) = C(k, i + 1) + (k − 1 + i) · C(k, i) for all 1 ≤ i ≤ k − 1.

The calculation formula for the sum of Legendre polynomials given above is virtually a linear
combination of some Pn(x), and the coefficients C(k, i) are very regular. However, the result is in the
form of a recursive formula, in other words, especially when k is relatively large, the formula is not
actually easy to use for calculating specific values.

In an early paper, Zhou Yalan and Wang Xia [4] obtained some special cases with k = 3 and
k = 5. It is even harder to calculate their exact values for the general positive integer k, especially if k is
large enough.

Naturally, we want to ask a question: Is there a more concise and specific formula for the
calculation of the above problems? This is the starting point of this paper. We used the different
methods to come up with additional simpler identities. It is equal to saying that we have used the
analysis method and the properties of the first kind of Chebyshev polynomials, thereby establishing
the symmetry of the Legendre polynomial and symmetry relationship with the first kind of Chebyshev
polynomial, and proved the following three results:

Theorem 1. For any integers k ≥ 1 and n ≥ 0, we have the identity

∑
a1+a2+···+ak=n

Pa1(x) · Pa2(x) · · · Pak (x) =
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· Tn−2i(x),

where < x >0= 1, < x >k= x(x + 1)(x + 2) · · · (x + k − 1) for all integers k ≥ 1, and Tn(x) = T−n(x) =
1
2

((
x +

√
x2 − 1

)n
+
(

x +
√

x2 − 1
)n)

denotes Chebyshev polynomials of the first kind.

Theorem 2. Let q > 1 is an integer, χ is any primitive character mod q. Then for any integers k ≥ 1 and
n ≥ 0, we have the inequality∣∣∣∣∣ ∑

a1+a2+···+ak=n

q

∑
a=1

χ(a)Pa1

(
cos

2πa
q

)
· Pa2

(
cos

2πa
q

)
· · · Pak

(
cos

2πa
q

)∣∣∣∣∣
≤ √

q ·
(

n + k − 1
k − 1

)
.

Theorem 3. For any integer n ≥ 0 with 2 � n, we have the identity

∫ π
2

− π
2

(
∑

a1+a2+···+ak=n
Pa1 (sin θ) · Pa2 (sin θ) · · · Pak (sin θ)

)2

dθ

= 2π ·
[ n

2 ]

∑
i=0

(
< k

2 >i

i!
· <

k
2 >n−i

(n − i)!

)2

;

If n = 2m, then we have
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∫ π
2

− π
2

(
∑

a1+a2+···+ak=n
Pa1 (sin θ) · Pa2 (sin θ) · · · Pak (sin θ)

)2

dθ

= 2π ·
m

∑
i=0

(
< k

2 >i

i!
· <

k
2 >2m−i

(2m − i)!

)2

− π ·
(
< k

2 >m

m!

)4

.

Essentially, the main result of this paper is Theorem 1, which not only reveals the profound
properties of Legendre polynomials and Chebyshev polynomials, but also greatly simplifies the
calculation of the symmetry sum of Legendre polynomials in practice. We can replace the calculation of
the symmetric sum of the Legendre polynomial with the first single Chebyshev polynomial calculation,
which can greatly simplify the calculation of the symmetric sum.

Theorem 2 gives an upper bound estimate of the character sum of Legendre polynomials.
Theorem 3 reveals the orthogonality of the symmetry sum of Legendre polynomials, which is a
generalization of the orthogonality of functions. Of course, Theorems 2 and 3 can also be seen as the
direct application of Theorem 1 in analytical number theory and the orthogonality of functions. This is
of great significance in analytic number theory, and it has also made new contributions to the study of
Gaussian sums.

In fact if we taking k = 1, and note that the identity < 1
2>h
h! = 1

4h · (2h
h ), then from our theorems we

may immediately deduce the following three corollaries.

Corollary 1. For any integer n ≥ 0, we have the identity

Pn(x) =
1
4n

n

∑
i=0

(
2i
i

)(
2n − 2i

n − i

)
· Tn−2i(x),

where Tn(x) denotes Chebyshev polynomials of the first kind.

Corollary 2. Let q > 1 is an integer, χ is any primitive character modq. Then for any integer n ≥ 0, we have
the inequality ∣∣∣∣∣

q

∑
a=1

χ(a)Pn

(
cos

2πa
q

)∣∣∣∣∣ ≤ √
q.

Corollary 3. For any integer n ≥ 0 with 2 � n, we have the identity

∫ π
2

− π
2

P2
n (sin θ) dθ =

2π

42n

[ n
2 ]

∑
i=0

(
2i
i

)2(2n − 2i
n − i

)2
;

If n = 2m, then we have the identity

∫ π
2

− π
2

P2
n (sin θ) dθ =

2π

42n

[ n
2 ]

∑
i=0

(
2i
i

)2(2n − 2i
n − i

)2
− π

42n ·
(

2m
m

)4
.

2. Proofs of the Theorems

In this section, we will directly prove the main results in this paper by by means of the properties
of characteristic roots.

Proof of Theorem 1. First we prove Theorem 1. Let α = x +
√

x2 − 1 and β = x −√
x2 − 1 be two

characteristic roots of the characteristic equation λ2 − 2xλ + 1 = 0. Then from the definition and
properties of Chebyshev polynomials Tn(x) of the first kind, we have
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Tn(x) = T−n(x) =
1
2
(αn + βn) , n ≥ 0.

For any positive integer k, combining properties of power series and Formula (1) we have
the identity

(
1√

1 − 2xt + t2

)k
=

1

(1 − 2xt + t2)
k
2
=

1

(1 − αt)
k
2 (1 − βt)

k
2

=
∞

∑
n=0

(
∑

a1+a2+···+ak=n
Pa1(x) · Pa2(x) · Pa3(x) · · · Pak (x)

)
· tn. (2)

At the same time, we focus on the power series

1

(1 − x)
k
2
=

∞

∑
n=0

< k
2 >n

n!
· xn, |x| < 1, (3)

where < x >0= 1, < x >h= x(x + 1)(x + 2) · · · (x + h − 1) for all integers h ≥ 1.
So for any positive integer k, note that α · β = 1, from (3) and the symmetry properties of α and β

we have (
1√

1 − 2xt + t2

)k
=

1

(1 − αt)
k
2 (1 − βt)

k
2

=

(
∞

∑
n=0

< k
2 >n

n!
· αn · tn

)(
∞

∑
n=0

< k
2 >n

n!
· βn · tn

)

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· αi · βn−i

)
· tn

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· βn−2i

)
· tn

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· αn−2i

)
· tn

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· 1

2

(
αn−2i + βn−2i

))
· tn

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· Tn−2i(x)

)
· tn. (4)

Combining (2) and (4), and then by comparing the coefficients on both sides of the power series,
we can find

∑
a1+a2+···+ak=n

Pa1(x) · Pa2(x) · · · Pak (x) =
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· Tn−2i(x).

This proves Theorem 1.

Proof of Theorem 2. The proof of Theorem 2 is next. Let q > 1 be any integer, χ denotes any primitive
character mod q. Then from Theorem 1 with x = cos

(
2πa

q

)
and the identity Tn (cos θ) = cos(nθ),

we have
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∑
a1+a2+···+ak=n

q

∑
a=1

χ(a)Pa1

(
cos

2πa
q

)
· Pa2

(
cos

2πa
q

)
· · · Pak

(
cos

2πa
q

)

=
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
·

q

∑
a=1

χ(a) · cos
(

2πa(n − 2i)
q

)

=
1
2

n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
·

q

∑
a=1

χ(a)
(

e
(

a(n − 2i)
q

)
+ e
(−a(n − 2i)

q

))

=
τ(χ)

2

n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· (χ(n − 2i) + χ (−(n − 2i))) , (5)

where e(y) = e2πiy, and
q

∑
a=1

χ(a)e
(

na
q

)
= χ(n)τ(χ).

Note that for any primitive character χ mod q, from the properties of Gauss sums, we have
|τ(χ)| = √

q, and for any positive integer k ≥ 1, we have

1
(1 − x)k =

∞

∑
n=0

(
n + k − 1

k − 1

)
· xn =

1

(1 − x)
k
2
· 1

(1 − x)
k
2

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!

)
· xn

or (
n + k − 1

k − 1

)
=

n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
. (6)

Combining (5) and (6), there will be an estimation formula immediately deduced∣∣∣∣∣ ∑
a1+a2+···+ak=n

q

∑
a=1

χ(a)Pa1

(
cos

2πa
q

)
· Pa2

(
cos

2πa
q

)
· · · Pak

(
cos

2πa
q

)∣∣∣∣∣
=

√
q

2
·
∣∣∣∣∣

n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· [χ(n − 2i) + χ (−(n − 2i))]

∣∣∣∣∣
≤ √

q ·
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
=

√
q ·
(

n + k − 1
k − 1

)
.

Theorem 2 is proven completely.

Proof of Theorem 3. We prove Theorem 3 below. From the orthogonality of Chebyshev polynomials
of the first kind we know that

∫ 1

−1

Tm(x)Tn(x)√
1 − x2

dx =

⎧⎪⎨
⎪⎩

0, if m �= n;
π

2
, if m = n > 0,

π, if m = n = 0.

(7)

If integer n ≥ 1 with 2 � n, then for any integer 0 ≤ i ≤ n, we have n − 2i �= 0, note that
Tn(x) = T−n(x), so from (7) and Theorem 1 we have
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∫ 1

−1

1√
1 − x2

(
∑

a1+a2+···+ak=n
Pa1(x) · Pa2(x) · · · Pak (x)

)2

dx

=
∫ 1

−1

1√
1 − x2

(
n

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· Tn−2i(x)

)2

dx

= 4
∫ 1

−1

1√
1 − x2

⎛
⎝[ n

2 ]

∑
i=0

< k
2 >i

i!
· <

k
2 >n−i

(n − i)!
· Tn−2i(x)

⎞
⎠2

dx

= 2π ·
[ n

2 ]

∑
i=0

(
< k

2 >i

i!
· <

k
2 >n−i

(n − i)!

)2

. (8)

For n = 2m, if n − 2i = 0, then i = m. So from (7), Theorem 1 and the methods of proving (8)
we have

∫ 1

−1

1√
1 − x2

(
∑

a1+a2+···+ak=n
Pa1(x) · Pa2(x) · · · Pak (x)

)2

dx

=
∫ 1

−1

1√
1 − x2

⎛
⎝(< k

2 >m

m!

)2

+ 2
m−1

∑
i=0

< k
2 >i

i!
· <

k
2 >2m−i

(2m − i)!
· T2m−2i(x)

⎞
⎠2

dx

= π ·
(
< k

2 >m

m!

)4

+ 2π ·
m−1

∑
i=0

(
< k

2 >i

i!
· <

k
2 >n−i

(n − i)!

)2

= 2π ·
m

∑
i=0

(
< k

2 >i

i!
· <

k
2 >2m−i

(2m − i)!

)2

− π ·
(
< k

2 >m

m!

)4

. (9)

Let x = sin θ, then we have

∫ 1

−1

1√
1 − x2

(
∑

a1+a2+···+ak=n
Pa1(x) · Pa2(x) · · · Pak (x)

)2

dx

=
∫ π

2

− π
2

(
∑

a1+a2+···+ak=n
Pa1 (sin θ) · Pa2 (sin θ) · · · Pak (sin θ)

)2

dθ. (10)

Now Theorem 3 follows from (8), (9), and (10).

3. Conclusions

Three theorems and three inferences are the main results in the paper. Theorem 1 gives proof of
the symmetry of Legendre polynomials and the symmetry relationship with Chebyshev polynomials
of the first kind. This conclusion also improves the early results in [4], and also gives us a different
representation for the result in [3]. Theorem 2 obtained an inequality involving Dirichlet characters
and Legendre polynomials; this is actually a new contribution to the study of Legendre polynomials
and character sums mod q. Theorem 3 established an integral identity involving the symmetry sums
of the Legendre polynomials. The three corollaries are some special cases of our three theorems for
k = 1, and can not only enrich the research content of the Legendre polynomials, but also promote its
research development.
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Abstract: In this paper, a second-order nonlinear recursive sequence M(h, i) is studied. By using
this sequence, the properties of the power series, and the combinatorial methods, some interesting
symmetry identities of the structural properties of balancing numbers and balancing polynomials
are deduced.

Keywords: balancing numbers; balancing polynomials; combinatorial methods; symmetry sums

1. Introduction

For any positive integer n ≥ 2, we denote the balancing number by Bn and the balancer
corresponding to it by r(n) if

1 + 2 + · · ·+ (Bn − 1) = (Bn + 1) + (Bn + 2) + · · ·+ (Bn + r(n))

holds for some positive integer r(n) and Bn. It is clear that r(n) = Bn−Bn−1−1
2 , for example, r(2) = 2,

r(3) = 14, r(4) = 84, r(5) = 492. . .
It is found that the balancing numbers satisfy the second order linear recursive sequence Bn+1 =

6Bn − Bn−1 (n ≥ 1), providing B0 = 0 and B1 = 1 [1].
The balancing polynomials Bn(x) are defined by B0(x) = 1, B1(x) = 6x, B2(x) = 36x2 − 1,

B3(x) = 216x3 − 12x, B4(x) = 1296x4 − 108x2 + 1, and the second-order linear difference equation:

Bn+1(x) = 6xBn(x)− Bn−1(x), n ≥ 1,

where x is any real number. While n ≥ 1, we get Bn+1 = 6Bn − Bn−1 with Bn(1) = Bn+1. Such
balancing numbers have been widely studied in recent years. G. K. Panda and T. Komatsu [2] studied
the reciprocal sums of the balancing numbers and proved the following inequation holds for any
positive integer n:

1
Bn − Bn−1

<
∞

∑
k=n

1
Bk

<
1

Bn − Bn−1 − 1
.

G. K. Panda [3] studied some fascinating properties of balancing numbers and gave the following
result for any natural numbers m > n:

(Bm + Bn)(Bm − Bn) = Bm+n · Bm−n.

Other achievements related to balancing numbers can be found in [4–7].
It is found that the balancing polynomials Bn(x) can be generally expressed as

Bn(x) =
1

2
√

9x2 − 1

[(
3x +

√
9x2 − 1

)n+1 −
(

3x −
√

9x2 − 1
)n+1

]
,
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and the generating function of the balancing polynomials Bn(x) is given by

1
1 − 6xt + t2 =

∞

∑
n=0

Bn(x) · tn. (1)

Recently, our attention was drawn to the sums of polynomials calculating problem [8–11], which
is important in mathematical application. We are going to study the computational problem of the
symmetry summation:

∑
a1+a2+···+ah+1=n

Ba1(x)Ba2(x) · · · Bah+1(x),

where h is any positive integer. We shall prove the following theorem holds.

Theorem 1. For any specific positive integer h and any integer n ≥ 0, the following identity stands:

∑
a1+a2+···+ah+1=n

Ba1(x)Ba2(x) · · · Bah+1(x)

=
1

2h · h!
·

h

∑
j=1

M(h, j)
(3x)2h−j

n

∑
i=0

(n − i + j)!
(n − i)!

· Bn−i+j(x)
(3x)i ·

(
2h + i − j − 1

i

)
,

where M(h, i) is defined by M(h, 0) = 0, M(h, i) = (2h−i−1)!
2h−i ·(h−i)!·(i−1)!

for all positive integers 1 ≤ i ≤ h.

In particular, for n = 0, the following corollary can be deduced.

Corollary 1. For any positive integer h ≥ 1, the following formula holds:

h

∑
j=1

M(h, j) · j! · (3x)j · Bj(x) = 2h · h! · (3x)2h.

The formula in Corollary 1 shows the close relationship among the balancing polynomials. For
h = 2, the following corollary can be inferred by Theorem 1.

Corollary 2. For any integer n ≥ 0, we obtain

∑
a+b+c=n

Ba(x) · Bb(x) · Bc(x) =
1

216x3

n

∑
i=0

(n − i + 1)(i + 1)(i + 2) · Bn−i+2

(3x)i

+
1

72x2

n

∑
i=0

(n − i + 1)(n − i + 2)(i + 1) · Bn−i+3

(3x)i .

For x = 1, h = 2 and 3, according to Theorem 1 we can also infer the following corollaries:

Corollary 3. For any integer n ≥ 0, we obtain

∑
a+b+c=n

Ba+1 · Bb+1 · Bc+1 =
1

216

n

∑
i=0

(n − i + 1)(i + 1)(i + 2) · Bn−i+2

3i

+
1

72

n

∑
i=0

(n − i + 1)(n − i + 2)(i + 1) · Bn−i+3

3i .
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Corollary 4. For any integer n ≥ 0, we obtain:

∑
a+b+c+d=n

Ba+1 · Bb+1 · Bc+1 · Bd+1

=
1

3888

n

∑
i=0

(n − i + 1)(i + 1)(i + 2)(i + 3)(i + 4) · Bn−i+2

3i

+
1

1296

n

∑
i=0

(n − i + 1)(n − i + 2)(i + 1)(i + 2)(i + 3) · Bn−i+3

3i

+
1

1296

n

∑
i=0

(n − i + 1)(n − i + 2)(n − i + 3)(i + 1)(i + 2) · Bn−i+4

3i .

Corollary 5. For any odd prime p, we have the congruence M(p, i) ≡ 0(modp), 0 ≤ i ≤ p − 1.

Corollary 6. The balancing polynomials are essentially Chebyshev polynomials of the second kind, specifically
Bn(x) = Un(3x). Taking x = 1

3 x in Theorem 1, we can get the following:

∑
a1+a2+···+ah+1=n

Ua1(x)Ua2(x) · · ·Uah+1(x)

=
1

2h · h!
·

h

∑
j=1

(2h − j − 1)!
2h−j · (h − j)! · (j − 1)! · x2h−j

n

∑
i=0

(n − i + j)!
(n − i)!

· Un−i+j(x)
xi ·

(
2h + i − j − 1

i

)
.

Compared with [8], we give a more precise result for ∑a1+a2+···+ah+1=n Ua1(x)Ua2(x) · · ·Uah+1(x) with the
specific expressions of M(h, i). This shows our novelty.

Here, we list the first several terms of M(h, i) in Table 1 in order to demonstrate the properties of
the sequence M(h, i) clearly.

Table 1. Values of M(h, i).

M(h, i) i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

h=1 1
h=2 1 1
h=3 3 3 1
h=4 15 15 6 1
h=5 105 105 45 10 1
h=6 945 945 420 105 15 1
h=7 10,395 10,395 4725 1260 210 21 1
h=8 135,135 135,135 62,370 17,325 3150 378 28 1

2. Several Lemmas

For the sake of clarity, several lemmas that are necessary for proving our theorem will be given in
this section.

Lemma 1. For the sequence M(n, i), the following identity holds for all 1 ≤ i ≤ n:

M(n, i) =
(2n − i − 1)!

2n−i · (n − i)! · (i − 1)!
.

Proof. We present a straightforward proof of this lemma by using mathematical introduction. It is
obvious that

M(1, 1) =
0!

1 · 0! · 0!
= 1.
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This means Lemma 1 is valid for n = 1. Without loss of generality, we assume that Lemma 1
holds for 1 ≤ n = h and all 1 ≤ i ≤ h. Then, we have

M(h, i) =
(2h − i − 1)!

2h−i · (h − i)! · (i − 1)!
,

M(h, i + 1) =
(2h − i − 2)!

2h−i−1 · (h − i − 1)! · i!
.

According to the definitions of M(n, i), it is easy to find that

M(h + 1, i + 1) = (2h − 1 − i) · M(h, i + 1) + M(h, i)

= (2h − 1 − i) · 2(h − i)
(2h − i − 1)i

· M(h, i) + M(h, i)

=
2h − i

i
M(h, i) =

(2h − i)!
2h−i · (h − i)! · i!

=
(2(h + 1)− (i + 1)− 1)!

2h−i · (h − i)! · i!
.

Thus, Lemma 1 is also valid for n = h + 1. From now on, Lemma 1 has been proved.

Lemma 2. If we have a function f (t) = 1
1−6xt+t2 , then for any positive integer n, real numbers x and t with

|t| < |3x|, the following identity holds:

2n · n! · f n+1(t) =
n

∑
i=1

M(n, i) · f (i)(t)
(3x − t)2n−i ,

where f (i)(t) denotes the i-th order derivative of f (t), with respect to variable t and M(n, i), which is defined in
the theorem.

Proof. Similarly, Lemma 2 will be proved by mathematical induction. We start by showing that
Lemma 2 is valid for n = 1. Using the properties of the derivative, we have:

f ′(t) = (6x − 2t) · f 2(t),

or

2 f 2(t) =
f ′(t)

3x − t
= M(1, 1) · f ′(t)

3x − t
.

This is in fact true and provides the main idea to show the following steps. Without loss of
generality, we assume that Lemma 2 holds for 1 ≤ n = h. Then, we have

2h · h! · f h+1(t) =
h

∑
i=1

M(h, i) · f (i)(t)
(3x − t)2h−i . (2)

As an immediate consequence, we can tell by (2), the properties of M(n, i), and the derivative,
we get

2h · (h + 1)! · f h(t) · f ′(t) = 2h+1 · (h + 1)! · (3x − t) · f h+2(t)

=
h

∑
i=1

M(h, i)
(3x − t)2h−i · f (i+1)(t) +

h

∑
i=1

(2h − i)M(h, i)
(3x − t)2h−i+1 · f (i)(t)
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=
M(h, h)
(3x − t)h · f (h+1)(t) +

h−1

∑
i=1

M(h, i)
(3x − t)2h−i · f (i+1)(t) +

(2h − 1)M(h, 1)
(3x − t)2h · f ′(t)

+
h−1

∑
i=1

(2h − i − 1)M(h, i + 1)
(3x − t)2h−i · f (i+1)(t)

=
M(h + 1, h + 1)

(3x − t)h · f (h+1)(t) +
M(h + 1, 1)
(3x − t)2h · f ′(t) +

h−1

∑
i=1

M(h + 1, i + 1)
(3x − t)2h−i · f (i+1)(t)

=
M(h + 1, h + 1)

(3x − t)h · f (h+1)(t) +
M(h + 1, 1)
(3x − t)2h · f ′(t) +

h

∑
i=2

M(h + 1, i)
(3x − t)2h+1−i · f (i)(t)

=
h+1

∑
i=1

M(h + 1, i) · f (i)(t)
(3x − t)2h+1−i . (3)

Then, it is deduced that

2h+1 · (h + 1)! · (3x − t) · f h+2(t) =
h+1

∑
i=1

M(h + 1, i) · f (i)(t)
(3x − t)2h+1−i ,

or

2h+1 · (h + 1)! · f h+2(t) =
h+1

∑
i=1

M(h + 1, i) · f (i)(t)
(3x − t)2h+2−i .

Thus, Lemma 2 is also valid for n = h + 1. From now on, Lemma 2 has been proved.

Lemma 3. The following power series expansion holds for arbitrary positive integers h and k:

f (h)(t)
(3x − t)k =

1
(3x)k

∞

∑
n=0

(
n

∑
i=0

(n − i + h)!
(n − i)!

· Bn−i+h(x)
(3x)i ·

(
i + k − 1

i

))
tn,

where t and x are any real numbers with |t| < |3x|.

Proof. According to the definition of the balancing polynomials Bn(x), we have:

f (t) =
1

1 − 6xt + t2 =
∞

∑
n=0

Bn(x) · tn.

For any positive integer h, from the properties of the power series, we can obtain

f (h)(t) =
∞

∑
n=0

(n + h)(n + h − 1) · · · (n + 1) · Bn+h(x) · tn

=
∞

∑
n=0

(n + h)!
n!

· Bn+h(x) · tn. (4)

For all real t and x with |t| < |3x|, we have the following power series expansion:

1
3x − t

=
1

3x
·

∞

∑
n=0

tn

(3x)n ,

and
1

(3x − t)k =
1

(3x)k ·
∞

∑
n=0

(
n + k − 1

n

)
· tn

(3x)n , (5)
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with any positive integer k. Then, it is found that

f (h)(t)
(3x − t)k

=
1

(3x)k ·
(

∞

∑
n=0

(n + h)!
n!

· Bn+h(x) · tn

)(
∞

∑
n=0

(
n + k − 1

n

)
· tn

(3x)n

)

=
1

(3x)k

∞

∑
n=0

(
∑

i+j=n

(j + h)!
j!

· Bj+h(x) ·
(

i + k − 1
i

)
· 1
(3x)i

)
tn

=
1

(3x)k

∞

∑
n=0

(
n

∑
i=0

(n − i + h)!
(n − i)!

· Bn−i+h(x) ·
(

i + k − 1
i

)
· 1
(3x)i

)
tn,

where we have used the multiplicative of the power series. Lemma 3 has been proved.

3. Proof of Theorem

Based on the lemmas in the above section, it is easy to deduce the proof of Theorem 1. For any
positive integer h, we can derive

2h · h! · f h+1(t) = 2h · h! ·
(

∞

∑
n=0

Bn(x) · tn

)h+1

= 2h · h! ·
∞

∑
n=0

(
∑

a1+a2+···+ah+1=n
Ba1(x)Ba2(x) · · · Bah+1(x)

)
· tn. (6)

On the other hand, by the observation made in Lemma 3, it is deduced that

2h · h! · f h+1(t) =
h

∑
j=1

M(h, j) · f (j)(t)
(3x − t)2h−j

=
h

∑
j=1

M(h, j)
(3x)2h−j ·

(
∞

∑
n=0

(
n

∑
i=0

(n − i + j)!
(n − i)!

· Bn−i+j(x) ·
(

2h + i − j − 1
i

)
· 1
(3x)i

)
tn

)

=
∞

∑
n=0

(
h

∑
j=1

M(h, j)
(3x)2h−j

n

∑
i=0

(n − i + j)!
(n − i)!

· Bn−i+j(x)
(3x)i ·

(
2h + i − j − 1

i

))
· tn. (7)

Altogether, we obtain the identity:

2h · h! ∑
a1+a2+···+ah+1=n

Ba1(x)Ba2(x) · · · Bah+1(x)

=
h

∑
j=1

M(h, j)
(3x)2h−j

n

∑
i=0

(n − i + j)!
(n − i)!

· Bn−i+j(x)
(3x)i ·

(
2h + i − j − 1

i

)
.

This proves Theorem 1.

4. Conclusions

In this paper, a representation of a linear combination of balancing polynomials Bi(x) (see
Theorem 1) is obtained. Moreover, the specific expressions of M(h, i) is given by using mathematical
induction (see Lemma 1).

Theorem 1 can be reduced to various studies for the specific values of x, n, and h in the literature.
For example, if n = 0, our results reduce to Corollary 1. Taking h = 2, our results reduce to Corollary 2.
Taking x = 1, h = 2, 3, our results reduce to Corollary 3 and Corollary 4, respectively.
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Abstract: The purpose of this paper is to introduce and study type 2 degenerate q-Bernoulli
polynomials and numbers by virtue of the bosonic p-adic q-integrals. The obtained results are,
among other things, several expressions for those polynomials, identities involving those numbers,
identities regarding Carlitz’s q-Bernoulli numbers, identities concerning degenerate q-Bernoulli
numbers, and the representations of the fully degenerate type 2 Bernoulli numbers in terms of
moments of certain random variables, created from random variables with Laplace distributions. It is
expected that, as was done in the case of type 2 degenerate Bernoulli polynomials and numbers, we
will be able to find some identities of symmetry for those polynomials and numbers.

Keywords: type 2 degenerate q-Bernoulli polynomials; p-adic q-integral

MSC: 11S80; 11B83

1. Introduction

There are various ways of studying special polynomials and numbers, including generating
functions, combinatorial methods, umbral calculus techniques, matrix theory, probability theory,
p-adic analysis, differential equations, and so on.

In [1], it was shown that odd integer power sums (alternating odd integer power sums) can be
represented in terms of some values of the type 2 Bernoulli polynomials (the type 2 Euler polynomials).
In addition, some identities of symmetry, involving the type 2 Bernoulli polynomials, odd integer
power sums, the type 2 Euler polynomials, and alternating odd integer power sums, were obtained
by introducing appropriate quotients of bosonic and fermionic p-adic integrals on Zp. Furthermore,
in [1], it was shown that the moments of two random variables, constructed from random variables
with Laplace distributions, are closely connected with the type 2 Bernoulli numbers and the type 2
Euler numbers.

In recent years, studying degenerate versions of various special polynomials and numbers, which
began with the paper by Carlitz in [2], has attracted the interest of many mathematicians. For example,
in [3], the degenerate type 2 Bernoulli and Euler polynomials, and their corresponding numbers were
introduced and some properties of them, which include distribution relations, Witt type formulas,
and analogues for the interpretation of integer power sums in terms of Bernoulli polynomials, were
investigated by means of both types of p-adic integrals.

As a q-analogue of the Volkenborn integrals for uniformly differentiable functions, the bosonic
p-adic q-integrals were introduced in [4] by Kim. These integrals, together with the fermionic p-adic
integrals and the fermionic p-adic q-integrals, have proven to be very useful tools in studying many
problems arising from number theory and combinatorics. For instance, in [5], the type 2 q-Bernoulli

Symmetry 2019, 11, 914; doi:10.3390/sym11070914 www.mdpi.com/journal/symmetry75
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(q-Euler) polynomials were introduced by virtue of the bosonic (fermionic) p-adic q-integrals. Then,
it was noted, among other things, that the odd q-integer (alternating odd q-integer) power sums are
expressed in terms of the type 2 q-Bernoulli (q-Euler) polynomials.

In this short paper, we would like to introduce the type 2 degenerate q-Bernoulli polynomials
and the corresponding numbers by making use of the bosonic p-adic q-integrals, as a degenerate
version of and also as a q-analogue of the type 2 Bernoulli polynomials, and derive several basic results
for them. The obtained results are several expressions for those polynomials, identities involving
those numbers, identities regarding Carlitz’s q-Bernoulli numbers, identities concerning degenerate
q-Bernoulli numbers, and the representations of the fully degenerate type 2 Bernoulli numbers (q = 1
and x = 1 cases of the type 2 degenerate q-Bernoulli polynomials) in terms of moments of certain
random variables, created from random variables with Laplace distributions.

The motivation for introducing the type 2 degenerate q-Bernoulli polynomials and numbers is to
study their number-theoretic and combinatorial properties, and their applications in mathematics and
other sciences in general. One novelty of this paper is that they arise naturally by means of the bosonic
p-adic q-integrals so that it is possible to easily find some identities of symmetry for those polynomials
and numbers, as it was done, for example, in [1]. In the rest of this section, we recall what is needed in
the latter part of the paper.

Throughout this paper, p is a fixed odd prime number. We use the standard notations Zp, Qp, and
Cp to denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the
algebraic closure of Qp, respectively. The p-adic norm on Cp is normalized as |p|p = 1

p .
As is well known, the Bernoulli numbers are given by the recurrence relation

B0 = 1, (B + 1)n =

{
1, if n = 1,
0, if n > 1,

(1)

where, as usual, Bn are to be replaced by Bn (see [2,6,7]).
Additionally, the Bernoulli polynomials of degree n are given by

Bn(x) =
n

∑
l=0

(
n
l

)
Bl xn−l , (2)

(see [3,8,9]).

Let q be an indeterminate in Cp. For q ∈ Cp, we assume that |1 − q|p < p−
1

p−1 .
In [7], Carlitz considered the q-Bernoulli numbers which are given by the recurrence relation:

β0,q = 1, q(qβq + 1)n − βn,q =

{
1, if n = 1,
0, if n > 1,

(3)

where βn
q are to be replaced by βn,q, as usual.

In addition, he defined the q-Bernoulli polynomials as

βn,q(x) =
n

∑
l=0

(
n
l

)
[x]n−l

q qlxβl,q, (n ≥ 0), (4)

where [x]q = 1−qx

1−q , (see [7]).
Recently, the type 2 Bernoulli polynomials have been defined as

t
et − e−t ext =

∞

∑
n=0

bn(x)
tn

n!
, (5)

(see [1,3,8]).
When x = 0, bn = bn(0) are called the type 2 Bernoulli numbers.
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From (5), we note that

n−1

∑
l=0

(2l + 1)k =
1

k + 1
(bk+1(2n)− bk+1), (k ≥ 0). (6)

Let f be a uniformly differentiable function on Zp. Then, Kim defined the p-adic q-integral of f
on Zp as

Iq( f ) =
∫
Zp

f (x)dμq(x)

= lim
N→∞

1
[pN ]q

pN−1

∑
x=0

f (x)qx

= lim
N→∞

pN−1

∑
x=0

f (x)μq(x + pNZp),

(7)

(see [4]). Here, we note that μq(x + pNZp) = qx

[pN ]q
is a distribution but not a measure. The details

on the existence of the p-adic q-integrals for uniformly differentiable functions f on Zp can be found
in [4,10].

From (7), we note that

qIq( f1) = Iq( f ) + (q − 1) f (0) +
q − 1
log q

f ′(0), (8)

where f1(x) = f (x + 1).
By virtue of (8) and induction, we get

qn Iq( fn) = Iq( f ) + (q − 1)
n−1

∑
l=0

ql f (l) +
q − 1
log q

n−1

∑
l=0

ql f ′(l), (9)

where fn(x) = f (x + n), (n ≥ 1).
The degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ , (10)

(see [11]), where λ ∈ Cp with |λ|p < p−
1

p−1 .
For brevity, we also set

eλ(t) = e1
λ(t) = (1 + λt)

1
λ . (11)

Carlitz defined the degenerate Bernoulli polynomials as

t
eλ(t)− 1

ex
λ(t) =

∞

∑
n=0

Bn,λ(x)
tn

n!
, (12)

where Bn,λ = Bn,λ(0) are called the degenerate Bernoulli numbers.

From (12), we note that

n−1

∑
l=0

(l)k,λ =
1

k + 1
(Bk+1,λ(n)− Bk+1,λ), (n ≥ 0), (13)

where (l)0,λ = 1, (l)k,λ = l(l − λ) · · · (l − (k − 1)λ), (k ≥ 1).
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In the special case of λ = 1, the falling factorial sequence (also called the Pochammer symbol) is
given by

(l)0 = 1, (l)k = l(l − 1) · · · (l − (k − 1)), (k ≥ 1). (14)

In this paper, we study type 2 degenerate q-Bernoulli polynomials and investigate some identities
and properties for these polynomials.

2. Type 2 Degenerate q-Bernoulli Polynomials

Throughout this section, we assume that q ∈ Cp with |1 − q|p < p−
1

p−1 and λ ∈ Cp. Now, we
define the type 2 degenerate q-Bernoulli polynomials by

∞

∑
n=0

bn,q(x | λ)
tn

n!
=

1
2

∫
Zp

e
[x+2y]q
λ (t)dμq(y). (15)

By (15), we get
1
2

∫
Zp

(
[x + 2y]q

)
n,λ

dμq(y) = bn,q(x | λ), (n ≥ 0). (16)

When x = 1, bn,q(λ) = bn,q(1 | λ) are called the type 2 degenerate q-Bernoulli numbers.
We observe here that

lim
q→1

lim
λ→0

1
2

∫
Zp

(
[x + 2y]q

)
n,λ

dμq(y)

= lim
q→1

lim
λ→0

1
2

bn,q(x | λ) = bn(x − 1), (n ≥ 0).
(17)

The degenerate Stirling numbers of the first kind appear as the coefficients in the expansion

(x)n,λ =
n

∑
l=0

S1,λ(n, l)xl , (n ≥ 0), (18)

(see [12]).
Thus, by (18), we get

1
2

∫
Zp

(
[x + 2y]q

)
n,λ

dμq(y)

=
1
2

n

∑
l=0

S1,λ(n, l)
∫
Zp
[x + 2y]lqdμq(y)

=
n

∑
l=0

S1,λ(n, l)bl,q(x),

(19)

where bl,q(x) is the type 2 q-Bernoulli polynomials given by 1
2

∫
Zp
[x + 2y]nq dμq(y) = bn,q(x), (n ≥ 0),

(see [5]).
Therefore, by (16) and (19), we obtain the following theorem.

Theorem 1. For n ≥ 0, we have

bn,q(x | λ) =
n

∑
l=0

S1,λ(n, l)bl,q(x). (20)
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Now, we observe that

1
2

∫
Zp

(
[x + 2y]q

)
n,λ

dμq(y)

=
1
2

n

∑
l=0

S1,λ(n, l)
∫
Zp
[x + 2y]lqdμq(y)

=
1
2

n

∑
l=0

S1,λ(n, l)
1

(1 − q)l

l

∑
m=0

(
l
m

)
(−qx)m 2m + 1

[2m + 1]q
.

(21)

Therefore, by (21), we obtain the following theorem.

Theorem 2. For n ≥ 0, we have

bn,q(x | λ) =
1
2

n

∑
l=0

S1,λ(n, l)
(1 − q)l

l

∑
m=0

(
l
m

)
(−qx)m 2m + 1

[2m + 1]q
. (22)

From (16), we note that

∞

∑
n=0

bn,q(x | λ)
tn

n!
=

1
2

∞

∑
n=0

∫
Zp

(
[x + 2y]q

)
n,λ

dμq(y)
tn

n!

=
1
2

∫
Zp

(
1 + λt

) [x+2y]q
λ

dμq(y)

=
∞

∑
n=0

( n

∑
k=0

k

∑
m=0

(
k
m

)
qmx[x]k−m

q S1(n, k)λn−kbm,q

)
tn

n!
,

(23)

where S1(n, k) are the Stirling numbers of the first kind and bn,q are the type 2 q-Bernoulli numbers.
Therefore, by (23), we get the following theorem.

Theorem 3. For n ≥ 0, we have

bn,q(x | λ) =
n

∑
k=0

k

∑
m=0

(
k
m

)
qmx[x]k−m

q S1(n, k)λn−kbm,q. (24)

In particular,

bn,q(λ) =
n

∑
k=0

qkxS1(n, k)λn−kbk,q.

In [4], Kim expressed Carlitz’s q-Bernoulli polynomials in terms of the following p-adic q-integrals
on Zp: ∫

Zp
[x + y]nq dμq(y) = βn,q(x), (n ≥ 0). (25)
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From (9) and (25), we have

qnβm,q(n) =
∫
Zp

qn[x + n]mq dμq(x)

=
∫
Zp
[x]mq dμq(x) + (q − 1)

n−1

∑
l=0

ql [l]mq + m
n−1

∑
l=0

[l]m−1
q q2l

= βm,q + (q − 1)
n−1

∑
l=0

ql [l]mq + m
n−1

∑
l=0

[l]m−1
q q2l

= βm,q + (m + 1)
n−1

∑
l=0

q2l [l]m−1
q −

n−1

∑
l=0

ql [l]m−1
q ,

(26)

where n is a positive integer.
Therefore, we obtain the following theorem.

Theorem 4. For n ≥ 0, we have

qnβm,q(n)− βm,q = (m + 1)
n−1

∑
l=0

q2l [l]m−1
q −

n−1

∑
l=0

ql [l]m−1
q . (27)

Let us take f (x) =
(
[x]q

)
m,λ

, (m ≥ 1). From (9), we have

qn
∫
Zp

(
[x + n]q

)
m,λ

dμq(x)

=
∫
Zp

(
[x]q

)
m,λ

dμq(x) + (q − 1)
n−1

∑
l=0

ql
(
[l]q

)
m,λ

+
n−1

∑
l=0

( m−1

∑
k=0

1
[l]q − kλ

)(
[l]q

)
m,λ

q2l .

(28)

In [13], the degenerate q-Bernoulli polynomials are defined by Kim as

∫
Zp

e
[x+y]q
λ (t)dμq(y) =

∞

∑
n=0

βn,λ,q(x)
tn

n!
. (29)

In particular, the degenerate q-Bernoulli numbers are given by βn,λ,q = βn,λ,q(0).
From (29), we have

∫
Zp

(
[x + y]q

)
n,λ

dμq(y) = βn,λ,q(x), (n ≥ 0). (30)

By (28) and (30), this completes the proof for the next theorem.

Theorem 5. For m, n ∈ N, we have

qnβm,λ,q(n)− βm,λ,q

=(q − 1)
n−1

∑
l=0

ql
(
[l]q

)
m,λ

+
n−1

∑
l=0

( m−1

∑
k=0

1
[l]q − kλ

)(
[l]q

)
m,λ

q2l .
(31)
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Let us take f (x) =
(
[2x + 1]q

)
m,λ

, (m ≥ 1). From (9), we have

qn
∫
Zp

(
[2x + 2n + 1]q

)
m,λ

dμq(x)

=
∫
Zp

(
[2x + 1]q

)
m,λ

dμq(x) + (q − 1)
n−1

∑
l=0

ql
(
[2l + 1]q

)
m,λ

+ 2
n−1

∑
l=0

( m−1

∑
k=0

1
[2l + 1]q − kλ

)(
[2l + 1]q

)
m,λ

q3l+1.

(32)

From (16) and (32), we have

qnbm,q(2n + 1 | λ)− bm,q(λ)

=
q − 1

2

n−1

∑
l=0

ql
(
[2l + 1]q

)
m,λ

+
n−1

∑
l=0

( m−1

∑
k=0

1
[2l + 1]q − kλ

)(
[2l + 1]q

)
m,λ

q3l+1.
(33)

Therefore, by (33), we obtain the following theorem.

Theorem 6. For m, n ∈ N, we have

q − 1
2

n−1

∑
l=0

ql
(
[2l + 1]q

)
m,λ

+
n−1

∑
l=0

( m−1

∑
k=0

1
[2l + 1]q − kλ

)(
[2l + 1]q

)
m,λ

q3l+1

=qnbm,q(2n + 1 | λ)− bm,q(λ).

(34)

From (7), we can derive the following integral equation:

∫
Zp

f (x)dμq(x) = lim
N→∞

1
[pN ]q

pN−1

∑
x=0

f (x)qx

= lim
N→∞

1
[dpN ]q

dpN−1

∑
x=0

f (x)qx

= lim
N→∞

1
[dpN ]q

d−1

∑
a=0

pN−1

∑
x=0

f (a + dx)qa+dx

=
d−1

∑
a=0

qa 1
[d]q

lim
N→∞

1
[pN ]qd

pN−1

∑
x=0

f (a + dx)qdx

=
1

[d]q

d−1

∑
a=0

qa
∫
Zp

f (a + dx)dμqd(x),

(35)

where d is a positive integer.

Lemma 1. For d ∈ N, we have

∫
Zp

f (x)dμq(x) =
1

[d]q

d−1

∑
a=0

qa
∫
Zp

f (a + dx)dμqd(x). (36)

We obtain the following theorem from Lemma 1.
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Theorem 7. For n, d ∈ N, we have

bn,q(λ) = [d]n−1
q

d−1

∑
a=0

qabn,qd

(
2a + 1

d
| λ

[d]q

)
. (37)

Proof. Let us apply Lemma 1 with f (x) =
(
[2x + 1]q

)
n,λ

, (n ∈ N). Then, by virtue of (16), we have

∫
Zp

(
[2x + 1]q

)
n,λ

dμq(x) =
1

[d]q

d−1

∑
a=0

qa
∫
Zp

(
[2(a + dx) + 1]q

)
n,λ

dμqd(x)

=
1

[d]q

d−1

∑
a=0

qa[d]nq
∫
Zp

([
2a + 1

d
+ 2x

]
qd

)
n, λ

[d]q

dμqd(x)

=[d]n−1
q

d−1

∑
a=0

qa
∫
Zp

([
2a + 1

d
+ 2x

]
qd

)
n, λ

[d]q

dμqd(x)

=2[d]n−1
q

d−1

∑
a=0

qabn,qd

(
2a + 1

d
| λ

[d]q

)
.

3. Further Remarks

Assume that X1, X2, X3, · · · are independent random variables, each of which has the Laplace
distribution with parameters 0 and 1. Namely, each of them has the probability density function given
by 1

2 exp(−|x|).
Let Z be the random variable given by Z = ∑∞

k=1
Xk

2kπ . In addition, let bn be the type 2 Bernoulli
numbers defined by

t
et − e−t =

∞

∑
n=0

bn
tn

n!
. (38)

Then, it was shown in [1] that

∞

∑
n=0

E[Zn]
(it)n

n!
=

t

e
t
2 − e− t

2

=
∞

∑
n=0

(
1
2

)n−1

bn
tn

n!
.

(39)

Thereby, it was obtained that

inE[Zn] =

(
1
2

)n−1

bn. (40)

Before proceeding further, we recall that the Volkenborn integral (also called the p-adic invariant
integral) for a uniformly differentiable function f on Zp is given by

∫
Zp

f (y)dμ(y) = lim
N→∞

1
pN

pN−1

∑
y=0

f (y). (41)

Then, it is well known (see [14]) that this integral satisfies the following integral equation:
∫
Zp

f (y + 1)dμ(y) =
∫
Zp

f (y)dμ(y) + f ′(0). (42)
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When q = 1 and x = 1, by virtue of (41), (15) becomes

∞

∑
n=0

bn(λ)
tn

n!
=

1
2

∫
Zp

e1+2y
λ (t)dμ(y)

=
1
λ log(1 + λt)

eλ(t)− e−1
λ (t)

.

(43)

Here, bn(λ) may be called the fully degenerate type 2 Bernoulli numbers, even though they were
defined slightly differently in [3]. Replacing t with 2

λ log(1 + λt) in (39) and by making use of (43),
we have

∞

∑
m=0

E[Zm](2i)m 1
m!

(
log(1 + λt)

λ

)m

=
∞

∑
n=0

( n

∑
m=0

S1,λ(n, m)(2i)mE[Zm]

)
tn

n!

= 2
∞

∑
n=0

bn(λ)
tn

n!
.

(44)

Here, S1,λ(n, k) are the degenerate Stirling numbers of the first kind (see [12]) either given by

1
m

(
log(1 + λt)

λ

)m

=
∞

∑
n=m

S1,λ(n, m)
tn

n!
, (45)

or given by

(x)n,λ =
n

∑
m=0

S1,λ(n, m)xm =
n

∑
m=0

S1(n, m)λn−mxm. (46)

Thus, by (44), we have shown that

2bn(λ) =
n

∑
m=0

S1,λ(n, m)(2i)mE[Zm].

Here, we remark that we only considered q = 1 and x = 1 cases of (15), namely the fully
degenerate type 2 Bernoulli numbers. This is because we do not see how to express type 2 degenerate
q-Bernoulli polynomials or type 2 degenerate q-Bernoulli numbers in terms of the moments of some
suitable random variables, constructed from random variables with Laplace distributions. We leave
this as an open problem to the interested reader.

4. Conclusions

Studies on various special polynomials and numbers have been preformed using several different
methods, such as generating functions, combinatorial methods, umbral calculus techniques, matrix
theory, probability theory, p-adic analysis, differential equations, and so on.

One way of introducing new special polynomials and numbers is to study various degenerate
versions of some known special polynomials and numbers, which began with Carlitz’s paper
in [2]. Actually, degenerate versions were investigated not only for some polynomials but also for a
transcendental function, namely the gamma function. For this, we refer the reader to [11]. Another
way of introducing new special polynomials and numbers is to study various q-analogues of some
known special polynomials and numbers. The bosonic p-adic q-integrals, together with the fermionic
p-adic q-integrals, turned out to be very powerful and fruitful tools for naturally constructing such
q-analogues. They were introduced by Kim in [4] and have been widely used ever since their invention.
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In this paper, the type 2 degenerate q-Bernoulli polynomials and the corresponding numbers were
introduced and investigated as a degenerate version of and also as a q-analogue of type 2 Bernoulli
polynomials by making use of the bosonic p-adic q-integrals [1,3,5]. Here, as an introductory paper
on the subject, only very basic results were obtained. The obtained results are several expressions
for those polynomials, identities involving those numbers, identities regarding Carlitz’s q-Bernoulli
numbers, identities concerning degenerate q-Bernoulli numbers, and the representations of the fully
degenerate type 2 Bernoulli numbers (q = 1 and x = 1 cases of the type 2 degenerate q-Bernoulli
polynomials) in terms of moments of certain random variables, created from random variables with
Laplace distributions. We are planning to study more detailed results relating to these polynomials
and numbers in a forthcoming paper.
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Abstract: In this paper, we investigate some identities on Bernoulli numbers and polynomials
and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant
integrals on Zp. In particular, we derive various expressions for the polynomials associated with
integer power sums, called integer power sum polynomials and also for their degenerate versions.
Further, we compute the expectations of an infinite family of random variables which involve the
degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.
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invariant integral on Zp; integer power sums polynomials; Stirling polynomials of the second kind;
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1. Introduction

We begin this section by reviewing some known facts. In more detail, we recall the integral
equation for the p-adic invariant integral of a uniformly differentiable function on Zp and its
generalizations, the expression in terms of some values of Bernoulli polynomials for the integer power
sums, and the p-adic integral representaions of Bernoulli polynomials and of their generating functions.

Throughout this paper, Zp, Qp and Cp will denote the ring of p-adic integers, the field of p-adic
rational numbers and the completion of the algebraic closure of Qp, respectively. The p-adic norm is
normalized as |p|p = 1

p . Let f be a uniformly differentiable function on Zp. Then the p-adic invariant
integral of f (also called the Volkenborn integral of f ) on Zp is defined by

I0( f ) =
∫
Zp

f (x)dμ0(x) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x)

= lim
N→∞

pN−1

∑
x=0

f (x)μ0(x + pNZp).

(1)

Here we note that μ0(x + pNZp) =
1

pN is a distribution but not a measure. The existence of such
integrals for uniformly differentiable functions on Zp is detailed in [1,2]. It can be seen from (1) that

I0( f1) = I0( f ) + f ′(0), (2)

where f1(x) = f (x + 1), and f ′(0) = d f (x)
dx |x=0, (see [1,2]).
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In general, by induction and with fn(x) = f (x + n), we can show that

I0( fn) = I0( f ) +
n−1

∑
k=0

f ′(k), (n ∈ N), (3)

As is well known, the Bernoulli polynomials are given by the generating function (see [3–5])

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, (4)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers.
From (4), we note that (see [3–5])

Bn(x) =
n

∑
l=0

(
n
l

)
Bl xn−l , (n ≥ 0), (5)

and

B0 = 1,
n

∑
k=0

(
n
k

)
Bk − Bn =

{
1, if n = 1,
0, if n > 1,

Let (see [6–13])

Sp(n) =
n

∑
k=1

kp, (n, p ∈ N). (6)

The generating function of Sp(n) is given by

∞

∑
p=0

Sp(n)
tp

p!
=

n

∑
k=1

ekt =
1
t

(
t

et − 1

(
e(n+1)t − et

))

=
∞

∑
p=0

(
Bp+1(n + 1)− Bp+1(1)

p + 1

)
tp

p!
.

(7)

Thus, by (7), we get

Sp(n) =
Bp+1(n + 1)− Bp+1(1)

p + 1
, (n, p ∈ N). (8)

From (2), we have ∫
Zp

e(x+y)tdμ0(y) =
t

et − 1
ext =

∞

∑
n=0

Bn(x)
tn

n!
. (9)

By (9), we get (see [11,12])
∫
Zp
(x + y)ndμ0(y) = Bn(x), (n ≥ 0), (10)

From (8) and (10), we can derive the following equation.

∫
Zp
(x + k + 1)p+1dμ0(x)−

∫
Zp

xp+1dμ0(x) = (p + 1)
k

∑
n=1

np, (p ∈ N). (11)

Thus, by (6) and (11), and for p ∈ N, we get

Sp(k) =
1

p + 1

{ ∫
Zp
(x + k + 1)p+1dμ0(x)−

∫
Zp

xp+1dμ0(x)
}

. (12)
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The purpose of this paper is to investigate some identities on Bernoulli numbers and polynomials
and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant
integrals on Zp.

The outline of this paper is as in the following. After reviewing well- known necessary results
in Section 1, we will derive some identities on Bernoulli polynomials and numbers in Section 2.
In particular, we will introduce the integer power sum polynomials and derive several expressions for
them. In Section 3, we will obtain some identities on degenerate Bernoulli numbers and polynomials.
Especially, we will introduce the degenerate integer power sum polynomials, a degenerate version
of the integer power sum polynomials and deduce various representations of them. In the final
Section 4, we will consider an infinite family of random variables and compute their expectations to
see that they involve the degenerate Stirling polynomials of the second and some value of higher-order
Bernoulli polynomials.

2. Some Identities of Bernoulli Numbers and Polynomials

For p ∈ N, we observe that

(j + 1)p+1 − jp+1 =
p+1

∑
i=0

(
p + 1

i

)
ji − jp+1

= (p + 1)jp +
p−1

∑
i=1

(
p + 1

i

)
ji + 1.

(13)

Thus, we get

(n + 1)p+1 =
n

∑
j=0

{
(j + 1)p+1 − jp+1

}
= (p + 1)

n

∑
j=0

jp +
p−1

∑
i=1

(
p + 1

i

) n

∑
j=0

ji + (n + 1). (14)

From (14), we have

Sp(n) =
1

p + 1

{
(n + 1)p+1 − (n + 1)−

p−1

∑
i=1

(
p + 1

i

)
Si(n)

}
. (15)

Therefore, by (15), we obtain the following lemma.

Lemma 1. For n, p ∈ N, we have
∫
Zp
(x + n + 1)p+1dμ0(x)−

∫
Zp

xp+1dμ0(x)

=(n + 1)p+1 − (n + 1)−
p−1

∑
i=1

(
p + 1

i

)
1

i + 1

×
{ ∫

Zp
(x + n + 1)i+1dμ0(x)−

∫
Zp

xi+1dμ0(x)
}

.

(16)

From Lemma 1, we note the following.

Corollary 1. For n, p ∈ N, we have

Bp+1(n + 1)− Bp+1 = (n + 1)p+1 − (n + 1)−
p−1

∑
i=1

(
p + 1

i

)
1

i + 1

(
Bi+1(n + 1)− Bi+1

)
. (17)
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For n ∈ N0 = N∪ {0}, by (1), we get

∫
Zp

(
y + 1 − x

)n

dμ0(y) = (−1)n
∫
Zp
(y + x)ndμ0(y). (18)

From (18), we note that
Bn(1 − x) = (−1)nBn(x), (n ≥ 0). (19)

Now, we observe that, for n ≥ 1,

Bn(2) =
n

∑
l=0

(
n
l

)
Bl(1) = B0 +

(
n
1

)
B1(1) +

n

∑
l=2

(
n
l

)
Bl(1)

= B0 +

(
n
1

)
B1 + n +

n

∑
l=2

(
n
l

)
Bl = n +

n

∑
l=0

(
n
l

)
Bl

= n + Bn(1).

(20)

Thus we have completed the proof for the next lemma.

Lemma 2. For any n ∈ N0, the following identity is valid:

Bn(2) = n + Bn + δn,1, (21)

where δn,1 is the Kronecker’s delta.
For any n, m ∈ N with n, m ≥ 2, we have

∫
Zp

xm(−1 + x)ndμ0(x) =
n

∑
i=0

(
n
i

)
(−1)n−i

∫
Zp

xm+idμ0(x)

=
n

∑
i=0

(
n
i

)
(−1)n−iBm+i

= (−1)n−m
n

∑
i=0

(
n
i

)
Bm+i.

(22)

On the other hand,

∫
Zp

xm(x − 1)ndμ0(x) =
m

∑
i=0

(
m
i

) ∫
Zp
(x − 1)n+idμ0(x)

=
m

∑
i=0

(
m
i

)
(−1)n+i

∫
Zp
(x + 2)n+idμ0(x)

=
m

∑
i=0

(
m
i

)
(−1)n+i

(
Bn+i + n + i

)

=
m

∑
i=0

(
m
i

)
(−1)n+iBn+i

=
m

∑
i=0

(
m
i

)
Bn+i.

(23)

Therefore, by (22) and (23), we obtain the following theorem.

Theorem 1. For any m, n ∈ N with m, n ≥ 2, the following symmetric identity holds:

(−1)n
n

∑
i=0

(
n
i

)
Bm+i = (−1)m

m

∑
i=0

(
m
i

)
Bn+i. (24)
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From (5), we note that

Bn(1) =
n

∑
l=0

(
n
l

)
Bl , (n ≥ 0).

For n ≥ 2, we have

Bn = Bn(1) =
n

∑
l=0

(
n
l

)
Bl =

n

∑
l=0

(
n
l

)
Bn−l . (25)

Now, we define the integer power sum polynomials by

Sp(n|x) =
n

∑
k=0

(k + x)p, (n, p ∈ N0). (26)

Note that Sp(n|0) = Sp(n), (n ∈ N0, p ∈ N).
For N ∈ N0, we have

t
N

∑
k=0

e(k+x)t =
∫
Zp

e(N+1+x+y)tdμ0(y)−
∫
Zp

e(x+y)tdμ0(y). (27)

Then it is immediate to see from (27) that we have

N

∑
k=0

e(k+x)t =
∞

∑
n=0

1
n + 1

{ ∫
Zp
(N + 1 + x + y)n+1dμ0(y)−

∫
Zp
(x + y)n+1dμ0(y)

}
tn

n!
. (28)

Now, we see that (28) is equivalent to the next theorem.

Theorem 2. For n, N ∈ N0, we have

Sn(N|x) = 1
n + 1

{
Bn+1(x + N + 1)− Bn+1(x)

}
. (29)

Let � denote the difference operator given by

� f (x) = f (x + 1)− f (x). (30)

Then, by (30) and induction, we get

�n f (x) =
n

∑
k=0

(
n
k

)
(−1)n−k f (x + k), (n ≥ 0). (31)
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Now, we can deduce the Equation (32) from (27) as in the following:

N

∑
k=0

e(k+x)t =
1
t

ext(e(N+1)t − 1)
∫
Zp

eytdμ0(y)

=
1

et − 1

( N+1

∑
m=0

(
N + 1

m

)
(et − 1)m − 1

)
ext

=
1

et − 1

N+1

∑
m=1

(
N + 1

m

)
(et − 1)mext

=
N

∑
m=0

(
N + 1
m + 1

)
(et − 1)mext

=
∞

∑
n=0

{ N

∑
m=0

(
N + 1
m + 1

) m

∑
k=0

(
m
k

)
(−1)m−k(k + x)n

}
tn

n!

=
∞

∑
n=0

{ N

∑
k=0

N

∑
m=k

(
N + 1
m + 1

)(
m
k

)
(−1)m−k(k + x)n

}
tn

n!
.

(32)

Therefore, (31) and (32) together yield the next theorem.

Theorem 3. For n, N ≥ 0, we have

Sn(N|x) =
N

∑
m=0

(
N + 1
m + 1

)
�m xn =

N

∑
k=0

(k + x)nT(N, k), (33)

where T(N, k) = ∑N
m=k (

N+1
m+1)(

m
k )(−1)m−k.

In particular, we have

S0(N|x) =
N

∑
k=0

T(N, k) = N + 1.

We recall here that the Stirling polynomials of the second kind S2(n, k|x) are given by (see [14])

1
k!
(et − 1)kext =

∞

∑
n=k

S2(n, k|x) tn

n!
. (34)

Note here that S2(n, k|0) = S2(n, k) are Stirling numbers of the second kind. Then, we can show
that, for integers n, m ≥ 0, we have

1
m!

�m xn =

{
S2(n, m|x), if n ≥ m,
0, if n < m.

(35)

We can see this, for example, by taking λ → 0 in (51).

Remark 1. Combing (33) and (35), we obtain

Sn(N|x) =
min{N,n}

∑
m=0

(
N + 1
m + 1

)
m!S2(n, m|x).
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For any m, k ∈ N with m − k ≥ 2, we observe that
∫
Zp

xm−kdμ0(x) =
∫
Zp
(x + 1)m−kdμ0(x)

=
m−k

∑
j=0

(
m − k

m − k − j

) ∫
Zp

xm−k−jdμ0(x)

=
m

∑
j=k

(
m − k
m − j

) ∫
Zp

xm−jdμ0(x)

=
1
(m

k )

m

∑
j=k

(
m
j

)(
j
k

) ∫
Zp

xm−jdμ0(x).

(36)

Thus we have shown the following result.

Theorem 4. For any m, k ∈ N with m − k ≥ 2, the following holds true:(
m
k

) ∫
Zp

xm−kdμ0(x) =
m

∑
j=k

(
m
j

)(
j
k

) ∫
Zp

xm−jdμ0(x). (37)

From (10) and (37), we derive the following corollary.

Corollary 2. For m, k ∈ N with m − k ≥ 2, we have(
m
k

)
Bm−k =

m

∑
j=k

(
m
j

)(
j
k

)
Bm−j. (38)

3. Some Identities of Degenerate Bernoulli Numbers and Polynomials

In this section, we assume that 0 �= λ ∈ Cp with |λ|p < p−
1

p−1 . The degenerate exponential
function is defined as (see [3,13])

ex
λ(t) = (1 + λt)

x
λ .

Note that limλ→0 ex
λ(t) = ext. In addition, we denote (1 + λt)

1
λ = e1

λ(t) simply by eλ(t).
As is well known, the degenerate Bernoulli polynomials are defined by Carlitz as

t
eλ(t)− 1

ex
λ(t) =

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞

∑
n=0

βn,λ(x)
tn

n!
. (39)

When x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers, (see [3,15]).
From (39), we note that (see [3])

βn,λ(x) =
n

∑
l=0

(
n
l

)
(x)n−l,λβl,λ, (40)

where (x)0,λ = 1, (x)n,λ = x(x − λ) · · · (x − (n − 1)λ), (n ≥ 1).
By (39) and (40), we get

βn,λ(1)− βn,λ = δn,1. (41)
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Now, we observe that

N

∑
k=0

ek+x
λ (t) =

eN+1
λ (t)− 1
eλ(t)− 1

ex
λ(t) =

1
t

{
t

eλ(t)− 1

(
eN+1+x

λ (t)− ex
λ(t)
)}

=
1
t

∞

∑
n=0

(
βn,λ(N + 1 + x)− βn,λ(x)

)
tn

n!

=
∞

∑
n=0

(
βn+1,λ(N + 1 + x)− βn+1,λ(x)

n + 1

)
tn

n!
, (n ∈ N0).

(42)

On the other hand,
N

∑
k=0

ek+x
λ (t) =

∞

∑
n=0

( N

∑
k=0

(k + x)n,λ

)
tn

n!
. (43)

Let us define a degenerate version of the integer power sum polynomials, called the degenerate
integer power sum polynomials, by

Sp,λ(n|x) =
n

∑
k=0

(k + x)p,λ, (n ≥ 0). (44)

Note that limλ→0 Sp,λ(n|x) = Sp(n|x), (n ≥ 0).
Therefore, by (42) and (43), we obtain the following theorem.

Theorem 5. For n, N ∈ N0, we have

Sn,λ(N|x) = 1
n + 1

(
βn+1,λ(N + 1 + x)− βn+1,λ(x)

)
. (45)

Now, we observe that

N

∑
k=0

ex+k
λ (t) =

1
eλ(t)− 1

(
eN+1

λ (t)− 1
)

ex
λ(t)

=
1

eλ(t)− 1

(
(eλ(t)− 1 + 1)N+1 − 1

)
ex

λ(t)

=
1

eλ(t)− 1

N+1

∑
m=1

(
N + 1

m

)
(eλ(t)− 1)mex

λ(t)

=
N

∑
m=0

(
N + 1
m + 1

)
(eλ(t)− 1)mex

λ(t)

=
∞

∑
n=0

( N

∑
m=0

(
N + 1
m + 1

) m

∑
k=0

(
m
k

)
(−1)m−k(k + x)n,λ

)
tn

n!
.

=
∞

∑
n=0

( N

∑
k=0

N

∑
m=k

(
N + 1
m + 1

)(
m
k

)
(−1)m−k(k + x)n,λ

)
tn

n!
.

(46)

Therefore, (31) and (46) together give the next result.

Theorem 6. For any n, N ∈ N0, the following identity holds:

Sn,λ(N|x) =
N

∑
m=0

(
N + 1
m + 1

)
�m (x)n,λ =

N

∑
k=0

(k + x)n,λT(N, k), (47)
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where T(N, k) = ∑N
m=k (

N+1
m+1)(

m
k )(−1)m−k.

As is known, the degenerate Stirling polynomials of the second kind are defined by Kim as
(see [14])

(x + y)n,λ =
n

∑
k=0

S2,λ(n, k|x)(y)k, (48)

where (x)0 = 1, (x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1).
From (48), we can derive the generating function for S2,λ(n, k|x), (n, k ≥ 0), as follows:

1
k!
(eλ(t)− 1)kex

λ(t) =
∞

∑
n=k

S2,λ(n, k|x) tn

n!
. (49)

When x = 0, S2,λ(n, k|0) = S2,λ(n, k) are called the degenerate Stirling numbers of the
second kind.

By (49), we get

∞

∑
n=m

S2,λ(n, m|x) tn

n!
=

1
m!

(eλ(t)− 1)mex
λ(t)

=
1

m!

m

∑
k=0

(
m
k

)
(−1)m−kek+x

λ (t)

=
∞

∑
n=0

(
1

m!

m

∑
k=0

(
m
k

)
(−1)m−k(x + k)n,λ

)
tn

n!

=
∞

∑
n=0

(
1

m!
�m (x)n,λ

)
tn

n!
.

(50)

Now, comparison of the coefficients on both sides of (50) yield following theorem.

Theorem 7. For any n, m ≥ 0, the following identity holds:

1
m!

�m (x)n,λ =

{
S2,λ(n, m|x), if n ≥ m,
0, if n < m.

(51)

Remark 2. Combing (47) and (51), we obtain

Sn,λ(N|x) =
min{N,n}

∑
m=0

(
N + 1
m + 1

)
m!S2,λ(n, m|x).

From (30) and proceeding by induction, we have

(1 +�)k f (x) =
k

∑
m=0

(
k
m

)
�m f (x) = f (x + k), (k ≥ 0). (52)

By (52), we get
N

∑
k=0

(x + k)n,λ =
N

∑
k=0

(1 +�)k(x)n,λ. (53)

It is known that Daehee numbers are given by the generating function

log(1 + t)
t

=
∞

∑
n=0

Dn
tn

n!
, (see [1,4,6]). (54)
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From (2), we have

∫
Zp

ex+y
λ (t)dμ0(y) =

1
λ log(1 + λt)

eλ(t)− 1
ex

λ(t)

=
log(1 + λt)

λt
t

eλ(t)− 1
ex

λ(t)

=
∞

∑
l=0

Dl
λl tl

l!

∞

∑
m=0

βm,λ(x)
tm

m!

=
∞

∑
n=0

( n

∑
l=0

(
n
l

)
λl Dl βn−l,λ(x)

)
tn

n!
.

(55)

From (55), we have

∫
Zp
(x + y)n,λdμ0(y) =

n

∑
l=0

(
n
l

)
λl Dl βn−l,λ(x), (n ≥ 0).

4. Further Remark

A random variable X is a real-valued function defined on a sample space. We say that X is a
continuous random variable if there exists a nonnegative function f , defined on (−∞, ∞), having the
property that for any set B of real numbers (see [16,17])

P{X ∈ B} =
∫

B
f (x)dx. (56)

The function f is called the probability density function of random variable X.
Let X be a uniform random variable on the interval (α, β). Then the probability density function

f of X is given by

f (x) =

{
1

β−α , if α < x < β,
0, otherwise.

(57)

Let X be a continuous random variable with the probability density function f . Then the
expectation of X is defined by

E[X] =
∫ ∞

−∞
x f (x)dx.

For any real-valued function g(x), we have (see [16])

E[g(X)] =
∫ ∞

−∞
g(x) f (x)dx. (58)
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Assume that X1, X2, · · · , Xk are independent uniform random variables on (0, 1). Then we have

E[ex+X1+X2+···+Xk
λ (t)] = ex

λ(t)E[eX1
λ (t)]E[eX2

λ (t)] · · · E[eXk
λ (t)]

= ex
λ(t)

λ

log(1 + λt)
(eλ(t)− 1)× · · · × λ

log(1 + λt)
(eλ(t)− 1)︸ ︷︷ ︸

k−times

=

(
λt

log(1 + λt)

)k k!
tk

1
k!
(eλ(t)− 1)kex

λ(t)

=
k!
tk

∞

∑
l=0

B(l−k+1)
l (1)λl tl

l!

∞

∑
m=k

S2,λ(m, k | x)
tm

m!

=
k!
tk

∞

∑
n=k

( n

∑
m=k

(
n
m

)
S2,λ(m, k | x)B(n−m−k+1)

n−m (1)λn−m
)

tn

n!
,

(59)

where B(α)
n (x) are the Bernoulli polynomials of order α, given by (see [4,7,8])(

t
et − 1

)α

ext =
∞

∑
n=0

B(α)
n (x)

tn

n!
, (60)

and we used the well-known formula(
t

log(1 + t)

)n

(1 + t)x−1 =
∞

∑
k=0

B(k−n+1)
k (x)

tk

k!
. (61)

From (59), we note that(
n
k

)
E[(x + X1 + X2 + · · ·+ Xk)n−k,λ]

=
n

∑
m=k

(
n
m

)
S2,λ(m, k | x)B(n−m−k+1)

n−m (1)λn−m.
(62)

5. Conclusions

It is well-known and classical that the first n positive integer power sums can be given by an
expression involving some values of Bernoulli polynomials. Here we investigated some identities on
Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials,
which can be deduced from certain p-adic invariant integrals on Zp.

In particular, we introduced the integer power sum polynomials associated with integer power
sums and obtained various expressions of them. Namely, they can be given in terms of Bernoulli
polynomials, difference operators, and of the Stirling polynomials of the second kind. In addition,
we introduced a degenerate version of the integer power sum polynomials, called the degenerate
integer power sum polynomials and were able to find several representations of them. In detail, they
can be represented in terms of Carlitz degenerate Bernoulli polynomials, difference operators, and of
the degenerate Stirling numbers of the second kind.

In the final section, we considered an infinite family of random variables and proved that the
expectations of them are expressed in terms of the degenerate Stirling polynomials of the second and
some value of higher-order Bernoulli polynomials.
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Most of the results in Sections 1 and 2 are reviews of known results, other than that,
we demonstrated the usefulness of the p-adic invariant integrals in the study of integer power sum
polynomials. However, we emphasize that the results in Sections 3 and 4 are new. In particular,
we showed that the degenerate Stirling polynomials of the second kind, introduced as a degenerate
version of the Stirling polynomials of the second kind, appear naturally and meaningfully in the
context of calculations of an infinite family of random variables (see (62)). We also showed that they
appear in an expression of the degenerate integer power sum polynomials (Remark 2) which is a
degenerate version of the integer power sum polynomials (see (26)).

We have witnessed in recent years that studying various degenerate versions of some old and
new polynomials, initiated by Carlitz in the classical papers [3,15], is very productive and promising
(see [3,5,14,15,18,19] and references therein). Lastly, we note that this idea of considering degenerate
versions of some polynomials extended even to transcendental functions like the gamma functions
(see [19]).
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Abstract: The main aim of this paper is that for any second-order linear recurrence sequence, the
generating function of which is f (t) = 1

1+at+bt2 , we can give the exact coefficient expression of the
power series expansion of f x(t) for x ∈ R with elementary methods and symmetry properties. On the
other hand, if we take some special values for a and b, not only can we obtain the convolution formula
of some important polynomials, but also we can establish the relationship between polynomials
and themselves. For example, we can find relationship between the Chebyshev polynomials and
Legendre polynomials.

Keywords: Fibonacci numbers; Lucas numbers; Chebyshev polynomials; Legendre polynomials;
Jacobi polynomials; Gegenbauer polynomials; convolution formula

MSC: 11B83

1. Introduction

For any integer n ≥ 1 and any real number y, the Fibonacci polynomials Fn(y) and the Lucas
polynomials Ln(y) are defined by the second-order linear recurrence sequence

Fn+1(y) = yFn(y) + Fn−1(y)

and
Ln+1(y) = yLn(y) + Ln−1(y),

where the first two terms are F0(y) = 0, F1(y) = 1, L0(y) = 2 and L1(y) = y.

If we take α =
y+
√

y2+4
2 , β =

y−
√

y2+4
2 , according to the properties of the second-order linear

recurrence sequence, we have

Fn(y) =
αn − βn

α − β

and
Ln(y) = αn + βn.

For any integer n ≥ 0, the Fibonacci numbers Fn = Fn(1) can be defined by the generating function

1
1 − t − t2 =

∞

∑
n=0

Fntn.

Symmetry 2019, 11, 788; doi:10.3390/sym11060788 www.mdpi.com/journal/symmetry99
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For any integer n ≥ 0, the first and the second kind Chebyshev polynomials Tn(y) and Un(y) are
defined by the second-order linear recurrence sequence

Tn+2(y) = 2yTn+1(y)− Tn(y)

and
Un+2(y) = 2yUn+1(y)− Un(y),

where the first two terms are T0(y) = 1, T1(y) = y, U0(y) = 1 and U1(y) = 2y.
If we take α = y +

√
y2 − 1, β = y −√y2 − 1, according to the properties of the second-order

linear recurrence sequence, we have

Tn(y) =
αn + βn

2
and

Un(y) =
αn+1 − βn+1

α − β
.

On the other hand, the second kind Chebyshev polynomials Un(y) can be also defined by the
generating function

1
1 − 2yt + t2 =

∞

∑
n=0

Un(y)tn.

Besides Fibonacci polynomials, Lucas polynomials and Chebyshev polynomials, other orthogonal
polynomials have also been studied by interested scholars.

For example, the Legendre polynomials Pn(y) are defined by the generating function

(
1

1 − 2yt + t2

) 1
2
=

∞

∑
n=0

Pn(y)tn.

The Jacobi polynomials {P(α,β)
n (y)}0≤n<∞ are defined by the generating function

[
R(1 + R − t)α(1 + R + t)β

]−1
=

∞

∑
k=0

2−α−βP(α,β)
n (y)tn,

where R =
√

1 − 2yt + t2, |t| < 1, α, β > −1.
The Gegenbauer polynomials {Cλ

n (y)}0≤n<∞ are defined by the generating function

(
1

1 − 2yt + t2

)λ

=
∞

∑
n=0

Cλ
n (y)t

n,
(

λ > −1
2

)
.

It is well know that polynomials and sequence occupy indispensable positions in the research
of number theory. Especially, Fibonacci and Lucas numbers, Chebyshev and Legendre polynomials
and others. These polynomials and numbers are closely related and there are a variety of meaningful
results which have been researched by interested scholars until now. For example, the identities of
Chebyshev polynomials can be found in [1–9], and the contents about Fibonacci and Lucas numbers
in [10,11]. Some authors have a research which connects Chebyshev polynomials and Fibonacci or
Lucas polynomials (see [12–14]).

In particular, we can find many significant results in the aspect of studying the calculating problem
of one kind sums of some important polynomials. For example, Yuankui Ma and Wenpeng Zhang
have calculated one kind sums of Fibonacci Polynomials (see [15]) as follows.
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Let h be a positive integer, for any integer n ≥ 0, they proved

∑
a1+a2+···+ah+1=n

Fa1(x)Fa2(x) · · · Fah+1(x) =
1
h!

·
h

∑
j=1

(−1)h−j · S(h, j)
x2h−j

×
(

n

∑
i=0

(n − i + j)!
(n − i)!

·
(

2h + i − j − 1
i

)
· (−1)i · 2i · Fn−i+j(x)

xi

)
,

where the summation is over all h + 1-tuples with non-negative integer coordinates (a1, a2, · · · , ah+1
such that a1 + a2 + · · ·+ ah+1 = n, and S(h, i) is a second order non-linear recurrence sequence defined
by S(h, 0) = 0, S(h, h) = 1, and S(h + 1, i + 1) = 2 · (2h − 1 − i) · S(h, i + 1) + S(h, i) for all positive
integers 1 ≤ i ≤ h − 1.

Yixue Zhang and Zhuoyu Chen have researched the calculating problem of one kind sums of the
second kind Chebyshev polynomials (see [16]) as follows.

Let h be a positive integer, for any integer n ≥ 0, they proved

∑
a1+a2+···+ah+1=n

Ua1(x)Ua2(x) · · ·Uah+1(x)

=
1

2h · h!
·

h

∑
j=1

C(h, j)
x2h−j

n

∑
i=0

(n − i + j)!
(n − i)!

·
(

2h + i − j − 1
i

)
· Un−i+j(x)

xi ,

where C(h, i) is a second order non-linear recurrence sequence defined by C(h, 0) = 0, C(h, h) = 1,
C(h + 1, 1) = 1 · 3 · 5 · · · (2h − 1) = (2h − 1)!! and C(h + 1, i + 1) = (2h − 1 − i) · C(h, i + 1) + C(h, i)
for all 1 ≤ i ≤ h − 1.

Shimeng Shen and Li Chen have studied the calculating problem of one kind sums of Legendre
Polynomials (see [17]) as follows.

For any positive integer k and integer n ≥ 0, they proved

(2k − 1)!! ∑
a1+a2+···+a2k+1=n

Pa1(x)Pa2(x) · · · Pak (x)

=
k

∑
j=1

C(k, j)
n

∑
i=0

(n + k + 1 − i − j)!
(n − i)!

· (
i+j+k−2

i )

xk−1+i+j · Pn+k+1−i−j(x)

where(2k − 1)!! = 1 × 3 × 5 · · · (2k − 1) = 2k( 1
2 )k, and C(k, i) is a recurrence sequence defined by

C(k, 1) = 1, C(k + 1, k + 1) = (2k − 1)!! and C(k + 1, i + 1) = C(k, i + 1) + (k − 1 + i) · C(k, i) for all
1 ≤ i ≤ k − 1.

They have converted the complex sums of Fn(x) into a simple combination of Fn(x), the complex
sums of Un(x) into a simple combination of Un(x), and the complex sums of Pn(x) into a simple
combination of Pn(x).

Very recently, Taekyun Kim and other people researched the properties of Fibonacci numbers
through introducing the convolved Fibonacci numbers pn(x) by generating function as follows
(see [18]): (

1
1 − t − t2

)x
=

∞

∑
n=0

pn(x)
tn

n!
, (x ∈ R).

They researched some new and explicit identities of the convolved Fibonacci numbers for x ∈ N.
For example, for n ≥ 0 and r ∈ N, they have proved the recurrence relationship of pn(x) (see [18]):

pn(x) =
n

∑
l=0

pl(r)pn−l(x − r) =
n

∑
l=0

pn−l(r)pl(x − r).
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The convolved Fibonacci numbers pn(x) seems to be only connected with the simple power
square. In fact, it can establish the relationship between polynomials and themselves, so the further
research of pn(x) is very significant. They have provided us a new perspective to study the properties
of some vital polynomials. For example, Taekyun Kim and other people have proved the relationship
between pn(x) and the combination sums about Fibonacci numbers:

pn(r + 1)
n!

=
n

∑
l1=0

n−l1

∑
l2=0

· · ·
n−l1−···−lr−1

∑
lr=0

Fl1 Fl2 · · · Flr Fn−l1−l2−···−lr .

They have converted the complex sums of Fn(x) into a calculation problem of pn(x) and the
calculation method is easier and the expression is simpler.

Inspired by this article, in this paper, for any second-order linear recurrence sequence, the
generating function of which is f (t) = 1

1+at+bt2 , we can define

(
1

1 + at + bt2

)x
=

∞

∑
n=0

pn(x)
tn

n!
, (a, b, x ∈ R). (1)

Firstly, we give a specific computational formula of pn(x) for x ∈ R using the elementary methods.
After that for any polynomial or sequence, the generating function of which is f (t) = 1

1+at+bt2 , we can
obtain its convolved formula easily and directly.

Secondly, if we take some special values for a, b in f (t) and x in pn(x), we can find some
relationship between special polynomials and themselves. For example, we will establish the
relationship between the convolved Fibonacci numbers and Lucas numbers, the relationship between
the convolved formula of the second kind Chebyshev polynomials and the first kind Chebyshev
polynomials, and the relationship between Legendre polynomials and the first kind Chebyshev
polynomials and others.

At last, through the computational formula of pn(x), especially for x ∈ N, we can also convert
the complex sums of Fn into a liner combination of Ln; and express the complex sums of Un(y) as a
liner combination of Tn(y). More importantly, the forms are more common and the calculations are
easier than previous results.

We will prove the main results as follows:

Theorem 1. Let f (t) = 1
1−t−t2 , for any integer n ≥ 0 and x ∈ R, we can obtain

pn(x) =
1
2

n

∑
i=0

(−1)i
(

n
i

)
〈x〉i〈x〉n−iLn−2i,

where 〈x〉n = x(x + 1)(x + 2) · · · (x + n − 1) and (x)0 = 1.

Theorem 2. Let f (t) = 1
1−2yt+t2 , for any integer n ≥ 0 and x, y ∈ R, we can obtain

pn(x; y) =
n

∑
i=0

(
n
i

)
〈x〉i〈x〉n−iTn−2i(y).

From Theorem 1 we can deduce the following:
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Corollary 1. For any positive integer k, we have the identity

∑
a1+a2+···+ak=n

Fa1 Fa2 · · · Fak

=
1

2((k − 1)!)2

n

∑
i=0

(−1)i (k + i − 1)!(k + n − i − 1)!
i!(n − i)!

· Ln−2i.

From Theorem 2 we can deduce the following:

Corollary 2. For any positive integer k, we have the identity

∑
a1+a2+···+ak=n

Ua1(y) · Ua2(y) · · ·Uak (y)

=
1

((k − 1)!)2

n

∑
i=0

(k + i − 1)!(k + n − i − 1)!
i!(n − i)!

· Tn−2i(y).

Corollary 3. If x = 1
2 , we have the identity

Pn(y) =
1
2n

n

∑
i=0

(2i − 1)!!(2n − 2i − 1)!!
i!(n − i)!

· Tn−2i(y).

Corollary 4. If x = − 1
2 , we have the identity

R =
∞

∑
n=0

1
2n

n

∑
i=0

(2i − 3)!!(2n − 2i − 3)!!
i!(n − i)!

· Tn−2i(y) · tn.

Corollary 5. If x = λ > − 1
2 , we have the identity

Cλ
n (y) =

1
n!

n

∑
i=0

(
n
i

)
〈λ〉i〈λ〉n−iTn−2i(y).

Theorems 1 and 2 give the computational formula of pn(x) of some famous polynomials.
Especially, we know that polynomials are closely connected and they can be converted to each
other. According to these theorems, we can obtain the relationship between the polynomials easily. It
cannot only extend the application of orthogonal polynomials, but also make replacement calculations
according to its complexity. For example, if we make a calculation involving the Gegenbauer
polynomials, for simple calculations, we can convert it into Chebyshev polynomials according to
Corollary 5.

2. A Simple Lemma

In order to prove our theorems, we are going to introduce a simple lemma.

Lemma 1. For any integer n ≥ 0 and a, b, x ∈ R, we can obtain the equation

pn(x) =
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

⎛
⎝(−a +

√
a2 − 4b

2

)n−2i

+

(
−a −√

a2 − 4b
2

)n−2i
⎞
⎠ .

Proof. Firstly, according Equation (1), we have

∞

∑
n=0

pn(x)
tn

n!
=

(
1

1 + at + bt2

)x
= (1 − αt)−x(1 − βt)−x. (2)
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We can easily know that α + β = −a, αβ = b and α = −a+
√

a2−4b
2 , β = −a−√

a2−4b
2 are two roots of

1 + at + bt2 = 0.
Then, applying the properties of power series, we obtain

(1 − αt)−x =
∞

∑
n=0

(−x
n

)
(−1)n(αt)n =

∞

∑
n=0

(−x)n

n!
(−1)nαntn (3)

and

(1 − βt)−x =
∞

∑
n=0

(−x
n

)
(−1)n(βt)n =

∞

∑
n=0

(−x)n

n!
(−1)nβntn, (4)

where (x)n = x(x − 1)(x − 2) · · · (x − n + 1) and (x)0 = 1.
Combining Equations (2)–(4), we get

∞

∑
n=0

pn(x)
tn

n!
=

(
∞

∑
n=0

(−x)n

n!
(−1)nαntn

)(
∞

∑
n=0

(−x)n

n!
(−1)nβntn

)

=
∞

∑
n=0

(
n

∑
i=0

(−x)i(−1)iαiti

i!
· (−x)n−i(−1)n−iβn−itn−i

(n − i)!

)

=
∞

∑
n=0

(−1)n

n!

(
n

∑
i=0

(
n
i

)
(−x)i(−x)n−iα

iβn−i

)
tn. (5)

Similarly, according the symmetry of α and β, we can easily obtain

∞

∑
n=0

pn(x)
tn

n!
=

∞

∑
n=0

(−1)n

n!

(
n

∑
i=0

(
n
i

)
(−x)i(−x)n−iβ

iαn−i

)
tn. (6)

Then, combining Equations (5) and (6), we know that

∞

∑
n=0

pn(x)
tn

n!
=

1
2

∞

∑
n=0

(−1)n

n!

(
n

∑
i=0

(
n
i

)
(−x)i(−x)n−i(αβ)i

(
βn−2i + αn−2i

))
tn

=
1
2

∞

∑
n=0

1
n!

(
n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(
βn−2i + αn−2i

))
tn. (7)

Comparing the coefficients of tn in Equation (7), we get

pn(x) =
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(
αn−2i + βn−2i

)

=
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

⎛
⎝(−a +

√
a2 − 4b

2

)n−2i

+

(
−a −√

a2 − 4b
2

)n−2i
⎞
⎠ .

Now we have completed the proof of the Lemma 1.

3. Proof of the Theorem

Proof of Theorem 1. If we take a = −1 and b = −1 in Equation (1), we know that f (t) is the
generating function of Fibonacci number. That is,

f (t) =
1

1 − t − t2 =
∞

∑
n=0

Fntn.
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The convolved Fibonacci numbers pn(x) are defined by the generating function as [18]

f x(t) =
(

1
1 − t − t2

)x
=

∞

∑
n=0

pn(x)
tn

n!
. (8)

In this time, α = 1+
√

5
2 , β = 1−√

5
2 .

According to the Lemma 1 and Ln = αn + βn, we can get

pn(x) =
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

⎛
⎝(−a +

√
a2 − 4b

2

)n−2i

+

(
−a −√

a2 − 4b
2

)n−2i
⎞
⎠

=
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

⎛
⎝(1 +

√
5

2

)n−2i

+

(
1 −√

5
2

)n−2i
⎞
⎠

=
1
2

n

∑
i=0

bi
(

n
i

)
〈x〉i〈x〉n−i

(
αn−2i + βn−2i

)

=
1
2

n

∑
i=0

(−1)i
(

n
i

)
〈x〉i〈x〉n−iLn−2i. (9)

In this equation, pn(x) is expressed as a combined forms of Lucas number. The Proof of Theorem 1
has finished.

About the convolved Fibonacci numbers pn(x), Taekyun Kim and others have obtained its
some-recurrence formulae in reference [18]. Based on [18], we have given an exact computational
formula of pn(x) for any arbitrary x in Theorem 1. Compared with the results in [18], Theorem 1 is
more general and easier.

If we take x = k ∈ N in Equation (8), we get

∞

∑
n=0

pn(k)
tn

n!
=

(
1

1 − t − t2

)k
=

(
∞

∑
n=0

Fntn

)k

=

(
∞

∑
a1=0

Fa1 · ta1

)(
∞

∑
a2=0

Fa2 · ta2

)
· · ·
(

∞

∑
ak=0

Fak · tak

)

=

(
∞

∑
a1=0

∞

∑
a2=0

· · ·
∞

∑
ak=0

Fa1 · Fa2 · · · Fak · ta1+a2···+ak

)

=
∞

∑
n=0

(
∑

a1+a2+···+ak=n
Fa1 · Fa2 · · · Fak

)
· tn,

and then combining Equation (9), we can obtain

∑
a1+a2+···+ak=n

Fa1 · Fa2 · · · Fak

=
1

2n!

n

∑
i=0

(−1)i
(

n
i

)
〈k〉i〈k〉n−iLn−2i

=
1

2((k − 1)!)2

n

∑
i=0

(−1)i (k + i − 1)!(k + n − i − 1)!
i!(n − i)!

Ln−2i.

The proof of Corollary 1 has finished.
For every Fal (1 ≤ l ≤ k), ∑a1+a2+···+ak=n Fa1 · Fa2 · · · Fak is symmetry.
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Proof of Theorem 2. If we take a = −2y and b = 1 in Equation (1), we all know f (t; y) is the
generating function of the second-kind Chebyshev polynomials Un(y)

f (t; y) =
1

1 − 2yt + t2 =
∞

∑
n=0

Un(y)tn.

The convolved second-kind Chebyshev polynomials pn(x; y) are defined by the generating
function as [18]

f x(t; y) =
(

1
1 − 2yt + t2

)x
=

∞

∑
n=0

pn(x; y)
tn

n!
. (10)

In this time, α = y +
√

y2 − 1, β = y −√y2 − 1.
According to the Lemma 1 and Tn(y) = 1

2 (α
n + βn), we can get

pn(x; y) =
n

∑
i=0

(
n
i

)
〈x〉i〈x〉n−iTn−2i(y). (11)

In this equation, pn(x; y) is expressed as a combined form of the first-kind Chebyshev polynomials
Tn(x).

If we take x = k ∈ N in Equation (10), and combining Equation (11) we can easily prove the
Corollary 2.

Take x = 1
2 in Equation (10), we know f

1
2 (t; y) is the generating function of the Legendre

polynomials Pn(x) as follows:

f
1
2 (t) =

(
1

1 − 2yt + t2

) 1
2
=

∞

∑
n=0

Pn(y)tn =
∞

∑
n=0

pn

(
1
2

; y
)

tn

n!
.

According to Theorem 2, we can easily obtain

pn

(
1
2

; y
)

=
n

∑
i=0

(
n
i

)〈
1
2

〉
i

〈
1
2

〉
n−i

Tn−2i(y)

=
1

22n

n

∑
i=0

n!(2i)!(2(n − i))!
(i!)2((n − i)!)2 · Tn−2i(y)

=
n!
2n

n

∑
i=0

(2i − 1)!!(2n − 2i − 1)!!
i!(n − i)!

· Tn−2i(y).

In a word, we know the Legendre polynomials Pn(x) can be expressed as combined forms of the
first kind Chebyshev polynomials Tn(x) as follows:

Pn(y) =
1
2n

n

∑
i=0

(2i − 1)!!(2n − 2i − 1)!!
i!(n − i)!

· Tn−2i(y).

The proof of Corollary 3 has finished.
If we take x = − 1

2 in (10), then we can easily obtain

R =
∞

∑
n=0

p(−1
2

; y)
tn

n!
=

∞

∑
n=0

1
22n−2

n

∑
i=0

(2(i − 1))!(2(n − i − 1))!
i!(i − 1)!(n − i)!(n − i − 1)!

· Tn−2i(y) · tn

=
∞

∑
n=0

1
2n

n

∑
i=0

(2i − 3)!!(2n − 2i − 3)!!
i!(n − i)!

· Tn−2i(y) · tn.
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The proof of Corollary 4 has finished.
Taking x = λ > − 1

2 in Equation (10), we know f λ(t; y) is the generating function of the
Gegenbauer polynomials {Cλ

n (y)}0≤n<∞ as follows:

(
1

1 − 2yt + t2

)λ

=
∞

∑
n=0

Cλ
n (y)t

n = f λ(t; y) =
∞

∑
n=0

pn (λ; y)
tn

n!
.

According to Theorem 2, we can easily obtain

pn (λ; y) =
n

∑
i=0

(
n
i

)
〈λ〉i〈λ〉n−iTn−2i(y).

The proof of Corollary 5 has finished.
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Abstract: Here we would like to introduce the extended r-central incomplete and complete Bell
polynomials, as multivariate versions of the recently studied extended r-central factorial numbers
of the second kind and the extended r-central Bell polynomials, and also as multivariate versions of the r-
Stirling numbers of the second kind and the extended r-Bell polynomials. In this paper, we study several
properties, some identities and various explicit formulas about these polynomials and their connections
as well.

Keywords: extended r-central complete bell polynomials; extended r-central incomplete bell polynomials;
complete r-Bell polynomials; incomplete r-bell polynomials

1. Introduction

We begin this section by briefly recalling several definitions related to the central factorial numbers of
the second kind and the central Bell polynomials and also to their generalizations of the extended r-central
factorial numbers of the second kind and the extended r-central Bell polynomials (see [1]). The central
factorial x[n] is given by the generating function

(
t
2
+

√
1 +

t2

4

)2x

=
∞

∑
n=0

x[n]
tn

n!
. (1)

A proof of (1) can be found in [2], p. 215, Equations (27), (28) and (27a), (see also [1,3–5]).
It is well known that Formula (1) shows that

x[0] = 1, x[n] = x(x +
n
2
− 1) · · · (x − n

2
+ 1), (n ≥ 1), (2)

where x[n] is of degree n in x.
The central factorial numbers of the second kind T(n, k) are the coefficients in the expansion of xn in

terms of central factorials as follows:

xn =
n

∑
k=0

T(n, k)x[k], (3)

(see [6–11]) and it is known that T(2n, 2n − 2k) enumerates the number of ways to place k rooks on a
3D-triangle board of size (n − 1) (see [12,13]). The generating function of T(n, k) is given by

Symmetry 2019, 11, 724; doi:10.3390/sym11050724 www.mdpi.com/journal/symmetry
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1
k!

(
e

t
2 − e−

t
2

)k
=

∞

∑
n=k

T(n, k)
tn

n!
, (4)

which follows, for example, from (1) and (3).
Indeed, on the one hand by making use of (3) we have

ext =
∞

∑
n=0

xn tn

n!
=

∞

∑
k=0

( ∞

∑
n=k

T(n, k)
tn

n!

)
x[k]. (5)

On the other hand, by virtue of (1) we also have

ext =

⎛
⎝ e

t
2 − e− t

2

2
+

√
1 +

(e
t
2 − e− t

2 )

4

⎞
⎠

2x

=
∞

∑
k=0

1
k!
(e

t
2 − e−

t
2 )kx[k].

(6)

Now, it can be easily seen that Equation (4) follows from (5) and (6).

Kim-Kim in [11] introduced the central Bell polynomials by means of generating function as

e
x
(

e
t
2 −e−

t
2

)
=

∞

∑
n=0

B(c)
n (x)

tn

n!
. (7)

We note by making use of (4) that identity (7) implies (see [1,11])

B(c)
n (x) =

n

∑
k=0

T(n, k)xk, (n ≥ 0).

For a nonnegative integer r, Kim-Dolgy-Kim-Kim in a recent work [1] introduced the extended
r-central factorial numbers of the second kind given by the generating function:

1
k!

(
e

t
2 − e−

t
2

)k
ert =

∞

∑
n=k

T(r)(n + r, k + r)
tn

n!
. (8)

From (8), it is noted that (see [1])

(x + r)n =
n

∑
k=0

T(r)(n + r, k + r)x[k]. (9)

The extended r-central Bell polynomials [1] are defined by

e
x
(

e
t
2 −e−

t
2

)
ert =

∞

∑
n=0

B(c,r)
n (x)

tn

n!
, . (10)

By definition (10), it is also known that (see [1])

B(c,r)
n (x) =

n

∑
k=0

xkT(r)(n + r, k + r), (n ≥ 0). (11)
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The purpose of this paper is to introduce and study the extended r-central incomplete and complete
Bell polynomials, as multivariate versions of the recently studied the extended r-central factorial numbers
of the second and the extended r-central Bell polynomials (see [1]), and also as multivariate versions of
the r- Stirling numbers of the second kind and the extended r-Bell polynomials (see Section 2). Then we
investigate their properties, some identities and various explicit formulas related to these polynomials and
also their connections.

This paper is organized as follows. In Section 2, we introduce the incomplete and complete r-Bell
polynomials and give some of their simple properties. We observe that these polynomials are multivariate
versions of the r- Stirling numbers of the second kind and the extended r-Bell polynomials . In Section 3,
we introduce our object of study, namely the extended r-central incomplete and complete Bell polynomials,
and provide several properties, some identities and various explicit formulas for them. Finally, in Section 4,
brief summaries for the obtained results about newly defined polynomials are provided.

2. Preliminaries

The r-Stirling numbers S(r)
2 (n, k) of the second kind are defined by the generating function

(see [14–19])
1
k!
(
et − 1

)k ert =
∞

∑
n=k

S(r)
2 (n + r, k + r)

tn

n!
(12)

and they enumerate the number of partitions of the set {1, 2, · · · , n} into k nonempty disjoint subsets in
such a way that 1, 2, · · · , r are in distinct subsets.

The extended r-Bell polynomials are given by (see [15])

ertex(et−1) =
∞

∑
n=0

B(r)
n (x)

tn

n!
. (13)

One can show that Equations (12) and (13) imply

B(r)
n (x) =e−x

∞

∑
k=0

(k + r)n

k!
xk

=
n

∑
k=0

xkS(r)
2 (n + r, k + r), (n ≥ 0).

(14)

In particular x = 1, B(c,r)
n = B(c,r)

n (1) are called the extended r-Bell numbers.
The incomplete r-Bell polynomials are given by the generating function

1
k!

(
∞

∑
j=1

xj
tj

j!

)k ( ∞

∑
j=0

yj+1
tj

j!

)r

= ∑
n≥k

B(r)
n+r,k+r(x1, x2, · · · ; y1, y2 · · · ) tn

n!
. (15)

Thus, we have

B(r)
n+r,k+r(x1, x2, · · · ; y1, y2 · · · )

= ∑
(

n!
k1!k2! · · ·

( x1

1!

)k1
( x2

2!

)k2 · · ·
)(

r!
r0!r1!r2! · · ·

(y1

0!

)r0
(y2

1!

)r1
(y3

2!

)r2 · · ·
)

,
(16)

where the summation is over all integers k1, k2, · · · ≥ 0 and r0, r1, r2 · · · ≥ 0, such that
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∑
i≥1

ki = k, ∑
j≥0

rj = r, and (k1 + r1) + 2(k2 + r2) + 3(k3 + r3) + · · · = n.

Let a1, a2, · · · , and b1, b2, · · · be any sequences of nonnegative integers. Then, as was noted in [20],
B(r)

n+r,k+r(a1, a2, · · · ; b1, b2 · · · ) enumerates the number of partitions of a set with (n + r) elements into
(k + r) blocks satisfying:

• The first r elements are in different blocks,
• Any block of size i with no elements of the first r elements, can be colored with ai colors,
• Any block of size i with one element of the first r elements, can be colored with bi colors.

From (12) and (16), we note that

B(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · ) = S(r)

2 (n + k, k + r), (17)

B(r)
n+r,k+r(αx1, αx2, · · · ; αy1, αy2 · · · ) = αk+rB(r)

n+k,k+r(x1, x2, · · · ; y1, y2 · · · ), (18)

and
B(r)

n+r,k+r(αx1, α2x2, · · · ; y1, αy2, α2y3, · · · ) = αnB(r)
n+k,k+r(x1, x2, · · · ; y1, y2 · · · ), (19)

where α is a real number.
By using (15), we get

∞

∑
n=k

B(r)
n+r,k+r(x, 1, 0, 0, · · · ; 1, 0, 0, · · · ) tn

n!
=

1
k!

(
xt +

t2

2

)k

=tk 1
k!

k

∑
n=0

(
k
n

)(
t
2

)n
xk−n

=
k

∑
n=0

(n + k)!
k!

(
k
n

)(
1
2

)n
xk−n tn+k

(n + k)!
.

(20)

Also, it can be seen that

∞

∑
n=k

B(r)
n+r,k+r(x, 1, 0, 0, · · · ; 1, 0, 0, · · · ) tn

n!
=

∞

∑
n=0

B(r)
n+k+r,k+r(x, 1, 0, 0, · · · ; 1, 0, 0, · · · ) tn+k

(n + k)!
. (21)

Thus, by (20) and (21), we have the following equation given by

B(r)
n+k+r,k+r(x, 1, 0, 0, · · · ; 1, 0, 0, · · · ) =

⎧⎨
⎩

(n+k)!
k! (k

n)
(

1
2

)n
xk−n, if 0 ≤ n ≤ k,

0, if n > k.
(22)

By replacing n by n − k in (22), we get

B(r)
n+r,k+r(x, 1, 0, 0, · · · ; 1, 0, 0, · · · ) = n!

k!

(
k

n − k

)
x2k−n

(
1
2

)n−k
, (k ≤ n ≤ 2k). (23)

Now, we define the complete r-Bell polynomials by virtue of generating function as
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exp

(
∞

∑
i=1

xi
ti

i!

)(
∞

∑
j=0

yj+1
tj

j!

)r

=
∞

∑
n=0

B(r)
n (x1, x2, · · · ; y1, y2, · · · ) tn

n!
. (24)

From (15) and (24), we have

∞

∑
n=0

B(r)
n (x1, x2, · · · ; y1, y2, · · · ) tn

n!
=

∞

∑
k=0

1
k!

(
∞

∑
i=1

xi
ti

i!

)k ( ∞

∑
j=0

yj+1
tj

j!

)r

=
∞

∑
k=0

∞

∑
n=k

B(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ) tn

n!

=
∞

∑
n=0

n

∑
k=0

B(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ) tn

n!
.

(25)

Comparing both sides of (25) gives us the identity

B(r)
n (x1, x2, · · · ; y1, y2, · · · ) =

n

∑
k=0

B(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ). (26)

Now, we observe that

B(r)
n (x, x, · · · ; 1, 1, · · · ) =

n

∑
k=0

B(r)
n+r,k+r(x, x, · · · ; 1, 1, · · · )

=
n

∑
k=0

xkB(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · )

=
n

∑
k=0

xkS(r)
2 (n + r, k + r)

=B(r)
n (x), (n ≥ 0).

(27)

3. An Extended r-Central Complete and Incomplete Bell Polynomials

Recently, in [21], we initiated the study of central incomplete Bell polynomials Tn,k(x1, x2, · · · , xn−k+1)

and the central complete Bell polynomials B(c)
n (x|x1, x2, · · · , xn), respectively given by

1
k!

( ∞

∑
m=1

1
2m (xm − (−1)mxm)

tm

m!

)k
=

∞

∑
n=k

Tn,k(x1, x2, · · · , xn−k+1)
tn

n!
,

and

exp
(

x
∞

∑
i=1

1
2i (xi − (−1)ixi)

ti

i!

)
=

∞

∑
n=0

B(c)
n (x|x1, x2, · · · , xn)

tn

n!
,

and studied some properties and identities concerning these polynomials. It was observed, in particular,
that the number of partitioning a set with n elements into k blocks with odd sizes is given by the number
of monomials appearing in Tn,k(x1, 2x2, · · · , 2n−kxn−k+1), and that the number of partitioning a set with n
elements into a certain k blocks with odd sizes is the coefficient of the corresponding monomial appearing
in Tn,k(x1, 2x2, · · · , 2n−kxn−k+1).

Here we will consider ’r-extensions’ of the central incomplete and complete Bell polynomials. In light
of (15), we may define the extended r-central incomplete Bell polynomials by
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1
k!

(
∞

∑
m=1

(
1
2

)m
(xm − (−1)mxm)

tm

m!

)k ( ∞

∑
j=0

yj+1
tj

j!

)r

=
∞

∑
n=k

T(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ) tn

n!
(28)

for any k ∈ N∪ {0}. Then, for n, k ≥ 0 with n ≥ k, by (28), one can check that

T(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ) =∑

(
n!

k1!k3!k5! · · ·
( x1

1!

)k1
( x3

223!

)k3
( x5

245!

)k5 · · ·
)

×
(

r!
r0!r1!r2! · · ·

(y1

0!

)r0
(y2

1!

)r1
(y3

2!

)r2 · · ·
)

,
(29)

where the summation is over all integers k1, k3, k5 · · · ≥ 0 and r0, r1, r2 · · · ≥ 0, such that

∑
i≥1

k2i−1 = k, ∑
i≥0

ri = r, and ∑
i≥1

(2i − 1)k2i−1 + ∑
i≥1

iri = n. (30)

The extended r-central incomplete Bell polynomials have the following combinatorial interpretation.
This can be seen from (29). Let a1, a2, · · · , and b1, b2, · · · be any sequences of nonnegative integers.
Then T(r)

n+r,k+r(a1, 2a2, 22a3, · · · ; b1, b2, b3, · · · ) enumerates the number of partitions of a set with (n + r)
elements into k blocks of odd sizes and r blocks of any sizes satisfying:

• The first r elements are in different blocks,
• Any block of (odd) size i with no elements of the first r elements, can be colored with ai colors,
• Any block of size i with one element of the first r elements, can be colored with bi colors.

From (15), (16) and (29), we note that

T(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ) = B(r)

n+r,k+r(x1, 0,
x3

22 , 0, · · · ; y1, y2, y3 · · · ). (31)

Therefore, we obtain the following theorem.

Theorem 1. For n, k ≥ 0, with n ≥ k, we have

T(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ) = B(r)

n+r,k+r(x1, 0,
x3

22 , 0, · · · ; y1, y2, y3 · · · ).
From (28), we have

∞

∑
n=k

T(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · ) tn

n!
=

1
k!

(
∞

∑
m=1

(
1
2

)m
(1 − (−1)m)

tm

m!

)k ( ∞

∑
j=0

tj

j!

)r

=
1
k!

(
e

t
2 − e−

t
2

)k
ert

=
∞

∑
n=k

T(r)(n + r, k + r)
tn

n!
.

(32)

Therefore, by (32), we obtain the following corollary.
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Corollary 1. For n, k ≥ 0, with n ≥ k, we have

T(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · ) = T(r)(n + r, k + r), (r ∈ N∪ {0}).

Let n, k be nonnegative integers. Then, from (28), we get

∞

∑
n=k

T(r)
n+r,k+r(x, x2, x3, · · · ; 1, x, x2, · · · ) tn

n!
=

1
k!

(
xt +

x3

22
t3

3!
+

x5

24
t5

5!
+ · · ·

)k (
1 + xt +

x2

2
t2 + · · ·

)r

=
1
k!

(
e

xt
2 − e−

xt
2

)k
erxt

=
1
k!

k

∑
l−0

(
k
l

)
(−1)k−l e(l+r− k

2 )xt

=
∞

∑
n=0

xn

k!

k

∑
l=0

(
k
l

)
(−1)k−l

(
l + r − k

2

)n tn

n!
.

(33)

Therefore, comparing both sides of (33) yields the following theorem.

Theorem 2. For n, k ≥ 0, we have

xn

k!

k

∑
l=0

(
k
l

)
(−1)k−l

(
l + r − k

2

)n
=

{
T(r)

n+r,k+r(x, x2, x3, · · · ; 1, x, x2, · · · ), if n ≥ k,

0, otherwise.

In [10], Kim-Dolgy-Kim-Kim proved the following equation (34) given by

1
k!

k

∑
l=0

(
k
l

)
(−1)k−l

(
l + r − k

2

)n
=

{
T(r)(n + r, k + r), if n ≥ k,

0, otherwise,
(34)

where n, k ∈ Z with n, k ≥ 0. Therefore, by (34), the following corollary is established.

Corollary 2. For n, k ∈ N∪ {0}, with n ≥ k, we have

T(r)
n+r,k+r(x, x2, x3, · · · ; 1, x, x2, · · · ) = xnT(r)(n + r, k + r).

From (29) and Corollary 2 , one can also have the following identity.

Corollary 3. For n, k ≥ 0, with n ≥ k, we have

T(r)
n+r,k+r(x, x2, x3, · · · ; 1, x, x2, · · · ) = xnT(r)

n+r,k+r(1, 1, · · · ; 1, 1, · · · )
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and

T(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · ) =T(r)(n + r, k + r)

=B(r)
n+r,r(1, 0,

1
22 , 0,

1
24 , 0, · · · ; 1, 1, 1, · · · )

=∑
(

n!
k1!k3!k5! · · ·

(
1
1!

)k1
(

1
223!

)k3
(

1
245!

)k5

· · ·
)

×
(

r!
r0!r1!r2! · · ·

(
1
0!

)r0
(

1
1!

)r1
(

1
2!

)r2

· · ·
)

,

where the summation is over all integers k1, k3, k5 · · · ≥ 0 and r0, r1, r2 · · · ≥ 0, satisfying the conditions in (30).

For n, k ≥ 0, we have

∞

∑
n=k

T(r)
n+r,k+r(x, 1, 0, 0, · · · ; 1, 0, 0, · · · ) tn

n!
=

1
k!
(xt)k. (35)

By comparing the coefficients on both sides of (35), we have

T(r)
n+r,k+r(x, 1, 0, 0, · · · ; 1, 0, 0, · · · ) = xk

(
0

n − k

)
. (36)

Also, by (29), one can obtain that

T(r)
n+r,k+r(x, x, · · · ; y, y, · · · ) =xkyrT(r)

n+r,k+r(1, 1, · · · ; 1, 1, · · · )
=xkyrT(r)(n + r, k + r),

(37)

and
T(r)

n+r,k+r(αx1, αx2, · · · ; αy1, αy2, · · · ) =αk+rT(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ), (38)

where n, k are nonnegative integers with n ≥ k.
Now, we observe that

exp

(
x

∞

∑
i=1

(
1
2

)i (
xi − (−1)ixi

) ti

i!

)(
∞

∑
j=0

yj+1
tj

j!

)r

=
∞

∑
k=0

xk 1
k!

(
∞

∑
i=1

(
1
2

)i (
xi − (−1)ixi

) ti

i!

)k ( ∞

∑
j=0

yj+1
tj

j!

)r

=
∞

∑
k=0

xk
∞

∑
n=k

T(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ) tn

n!

=
∞

∑
k=0

n

∑
k=0

xkT(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ) tn

n!
.

(39)

Taking (24) into account, we may define the extended r-central complete Bell polynomials by

exp

(
x

∞

∑
i=1

(
1
2

)i (
xi − (−1)ixi

) ti

i!

)(
∞

∑
j=0

yj+1
tj

j!

)r

=
∞

∑
k=0

B(c,r)
n (x|x1, x2, · · · ; y1, y2, · · · ) tn

n!
. (40)

116



Symmetry 2019, 11, 724

In particular, when x = 1, B(c,r)
n (1|x1, x2, · · · ; y1, y2, · · · ) = B(c,r)

n (x1, x2, · · · ; y1, y2, · · · ) are called the
extended r-central complete Bell numbers.

For n ≥ 0, by (39) and (40), we get

B(c,r)
n (x1, x2, · · · ; y1, y2, · · · ) =

n

∑
k=0

T(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ) (41)

and

B(c,r)
n (x|x1, x2, · · · ; y1, y2, · · · ) =

n

∑
k=0

xkT(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ).

It is easily noted that B(c,r)
0 (x1, x2, · · · ; y1, y2, · · · ) = yr

1.
Hence, one can have the following theorem.

Theorem 3. For n ≥ 0, we have

B(c,r)
n (x|x1, x2, · · · ; y1, y2, · · · ) =

n

∑
k=0

xkT(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · )

and

B(c,r)
n (x1, x2, · · · ; y1, y2, · · · ) =

n

∑
k=0

T(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · ).

Please note that

B(c,r)
n (1, 1, , · · · ; 1, 1, · · · ) =

n

∑
k=0

T(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · )

=
n

∑
k=0

T(r)(n + r, k + r)

= B(c,r)
n ,

and

B(c,r)
n (x|1, 1, , · · · ; 1, 1, · · · ) =

n

∑
k=0

xkT(r)(n + r, k + r) = B(c,r)
n (x), (n ≥ 0).

By (39), we get

exp

(
∞

∑
i=1

(
1
2

)i (
xi − (−1)ixi

) ti

i!

)(
∞

∑
j=0

yj+1
tj

j!

)r

=
∞

∑
n=0

{
∑
(

n!
k1!k3!k5! · · ·

( x1

1!

)k1
( x3

223!

)k3
( x5

245!

)k5 · · ·
)

×
(

r!
r0!r1!r2! · · ·

(y1

0!

)r0
(y2

1!

)r1
(y3

2!

)r2 · · ·
)}

tn

n!
,

(42)

where the inner sum runs over all integers k1, k3, k5 · · · ≥ 0 and r0, r1, r2 · · · ≥ 0, such that

∑
i≥0

ri = r, and ∑
i≥1

(2i − 1)k2i−1 + ∑
i≥1

iri = n. (43)
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For n ≥ 0, we have

B(c,r)
n (x1, x2, · · · ; y1, y2, · · · ) =

n

∑
k=0

T(r)
n+r,k+r(x1, x2, · · · ; y1, y2, · · · )

= ∑
(

n!
k1!k3!k5! · · ·

( x1

1!

)k1
( x3

223!

)k3
( x5

245!

)k5 · · ·
)

×
(

r!
r0!r1!r2! · · ·

(y1

0!

)r0
(y2

1!

)r1
(y3

2!

)r2 · · ·
)

,

(44)

where the sum is over all integers k1, k3, k5 · · · ≥ 0 and r0, r1, r2 · · · ≥ 0, satisfying the conditions in (43).
Thus, the following theorem is established.

Theorem 4. For n ≥ 0, we have

B(c,r)
n (x1, x2, · · · ; y1, y2, · · · ) = ∑

(
n!

k1!k3!k5! · · ·
( x1

1!

)k1
( x3

223!

)k3
( x5

245!

)k5 · · ·
)

×
(

r!
r0!r1!r2! · · ·

(y1

0!

)r0
(y2

1!

)r1
(y3

2!

)r2 · · ·
)

,

where the sum is over all integers k1, k3, k5 · · · ≥ 0 and r0, r1, r2 · · · ≥ 0, satisfying the conditions in (43).
Now, we observe that

exp

(
x

∞

∑
i=1

(
1
2

)i (
1 − (−1)i

) ti

i!

)(
∞

∑
j=0

tj

j!

)r

=
∞

∑
k=0

xk 1
k!

(
∞

∑
i=1

(
1
2

)i (
1 − (−1)i

) ti

i!

)k ( ∞

∑
j=0

tj

j!

)r

=
∞

∑
k=0

xk
∞

∑
n=k

T(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · ) tn

n!

=
∞

∑
n=0

n

∑
k=0

xkT(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · ) tn

n!
.

(45)

Alternatively, the left hand side of (45) can be simplified in the following way:

exp

(
x

∞

∑
i=1

(
1
2

)i (
1 − (−1)i

) ti

i!

)(
∞

∑
j=0

tj

j!

)r

= e
x
(

e
t
2 −e−

t
2

)
ert =

∞

∑
n=0

B(c,r)
n (x)

tn

n!
. (46)

Comparing the coefficients in (45) and (46) gives the following identity.

Theorem 5. For n ≥ 0, we have

n

∑
k=0

xkT(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · ) = B(c,r)

n (x).

From (29), it is noted that

n

∑
k=0

xk+rT(r)
n+r,k+r(1, 1, · · · ; 1, 1, · · · ) =

n

∑
k=0

T(r)
n+r,k+r(x, x, · · · ; x, x, · · · )

= B(c,r)
n (x, x, · · · ; x, x, · · · ),

which yields the next corollary.
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Corollary 4. For n ≥ 0, we have

B(c,r)
n (x, x, · · · ; x, x, · · · ) = xrB(c,r)

n (x).

4. Conclusions

In recent years, studies on various old and new special numbers and polynomials have received
attention from many mathematicians. They have been carried out by several means, including generating
functions, combinatorial methods, umbral calculus, p-adic analysis, differential equations, probability and
so on.

In this paper, by making use of generating functions we introduced and studied the extended r-central
incomplete and complete Bell polynomials, as multivariate versions of the recently studied the extended
r-central factorial numbers of the second and the extended r-central Bell polynomials (see [1]), and also as
multivariate versions of the r- Stirling numbers of the second kind and the extended r-Bell polynomials
(see Section 2). Then we studied several properties, some identities and various explicit formulas related
to these polynomials and also their connections.

In Section 1 we briefly recalled, in more detail, definitions and basic properties about the central
factorial numbers of the second kind, the central Bell polynomials, the extended r-central factorial numbers
of the second kind and the extended r-central Bell polynomials. In Section 2 we introduced the incomplete
and complete r-Bell polynomials as multivariate versions of the r- Stirling numbers of the second kind and
the extended r-Bell polynomials and give some of their simple properties. In Section 3, we introduced
the extended r-central incomplete and complete Bell polynomials, and provided several properties,
some identities and various explicit formulas for them.

As our immediate next project, we would like to find some further results about the extended r-central
incomplete and complete Bell polynomials by virtue of umbral calculus and also some of their applications
associated with partition polynomials.
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Abstract: In this paper, we investigate some properties and identities for fully degenerate Bernoulli
polynomials in connection with degenerate Bernstein polynomials by means of bosonic p-adic
integrals on Zp and generating functions. Furthermore, we study two variable degenerate Bernstein
polynomials and the degenerate Bernstein operators.

Keywords: degenerate Bernoulli polynomials; degenerate Bernstein operators

1. Introduction

Let p be a fixed prime number. Throughout this paper, Z, Zp, Qp and Cp, will denote the ring of
rational integers, the ring of p-adic integers, the field of p-adic rational numbers and the completion of
algebraic closure of Qp, respectively. The p-adic norm |q|p is normalized as |p|p = 1

p .

For λ, t ∈ Cp with |λt|p < p−
1

p−1 and |t|p < 1, the degenerate Bernoulli polynomials are defined
by the generating function to be

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞

∑
n=0

βn(x|λ) tn

n!
, (1)

(See [1–3]). When x = 0, βn(λ) = βn(0|λ) are called the degenerate Bernoulli numbers. Note that
limλ→0 βn(x|λ) = Bn(x), where Bn(x) are the ordinary Bernoulli polynomials defined by

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, (2)

and Bn = Bn(0) are called the Bernoulli numbers. The degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ =

∞

∑
n=0

(x)n,λ
tn

n!
, (3)

where (x)0,λ = 1, (x)n,λ = x(x − λ)(x − 2λ) · · · (x − (n − 1)λ), for n ≥ 1. From (1), we get

βn(x|λ) =
n

∑
l=0

(
n
l

)
βl(λ)(x)n−l,λ. (4)
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Recentely, Kim-Kim introduced the degenerate Bernstein polynomials given by

(x)k,λ

k!
tk(1 + λt)

1−x
λ =

∞

∑
n=k

Bk,n(x|λ) tn

n!
, (5)

(See [4–6]). Thus, by (5), we note that

Bk,n(x|λ) =
{
(n

k)(x)k,λ(1 − x)n−k,λ, if n ≥ k,

0, if n < k.
(6)

where n, k are non-negative integers. Let UD(Zp) be the space of uniformly differentiable functions on
Zp. For f ∈ UD(Zp), the degenerate Bernstein operator of order n is given by

Bn,λ( f |λ) =
∞

∑
k=0

f
(

k
n

)(
n
k

)
(x)k,λ(1 − x)n−k,λ

=
∞

∑
k=0

f
(

k
n

)
Bk,n(x|λ),

(7)

(See [4–6]). The bosonic p-adic integral on Zp is defined by Volkenborn as

∫
Zp

f (x)dμ0(x) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x), (8)

(see [7]). By (8), we get ∫
Zp

f (x + 1)dμ0(x)−
∫
Zp

f (x)dμ0(x) = f ′(0), (9)

where d
dx f (x)

∣∣
x=0 = f ′(0).

From (8), Kim-Seo [8] proposed fully degenerate Bernoulli polynomials which are reformulated
in terms of bosonic p-adic integral on Zp as

∫
Zp
(1 + λt)

x+y
λ dμ0(y) =

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞

∑
n=0

Bn(x|λ) tn

n!
, (10)

and for x = 0, Bn(λ) = Bn(0|λ) are called fully degenerate Bernoulli numbers.
Note that the fully degenerate Bernoulli polynomial was named Daehee polynomials with

α-parameter in [9]. On the other hand,

∫
Zp
(1 + λt)

x+y
λ dμ0(y) =

∞

∑
n=0

∫
Zp
(x + y)n,λdμ0(y)

tn

n!
. (11)

By (10) and (11), we get
∫
Zp
(x + y)n,λdμ0(y) = Bn(x|λ), (n ≥ 0). (12)

Recall that the Daehee polynomials are defined by the generating function to be

log(1 + t)
t

(1 + t)x =
∞

∑
n=0

Dn(x)
tn

n!
, (13)

and for x = 0, Dn = Dn(0) are called the Daehee numbers (see [10,11]).
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Also, the higher order Daehee polynomials are defined by the generating function to be

(
log(1 + t)

t

)k
(1 + t)x =

∞

∑
n=0

D(k)
n (x)

tn

n!
, (14)

and for x = 0, D(k)
n = D(k)

n (0) are called the higher order Daehee numbers. From (10), we observe

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ

log(1 + λt)
λt

=

(
∞

∑
m=0

βm(x|λ) tm

m!

)(
∞

∑
l=0

Dl
(λt)l

l!

)

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
βm(x|λ)Dn−mλn−m

)
tn

n!
.

(15)

By (10) and (14), we get

Bn(x|λ) =
n

∑
m=0

(
n
m

)
βm(x|λ)Dn−mλn−m, (n ≥ 0). (16)

From (3) and (10), we observe that

∞

∑
n=0

Bn(x|λ) tn

n!
=

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ

=

(
∞

∑
m=0

Bm(λ)
tm

m!

)(
∞

∑
l=0

(x)l,λ
tl

l!

)

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
Bm(λ)(x)n−m,λ

)
tn

n!
.

(17)

By (17), we get

Bn(x|λ) =
n

∑
m=0

(
n
m

)
Bm(λ)(x)n−m,λ, (n ≥ 0). (18)

From (1) and (3), we note that

t =
(
(1 + λt)

1
λ − 1

) ∞

∑
m=0

βm(λ)
tm

m!

=

(
∞

∑
l=0

(1)l,λ
tl

l!

)(
∞

∑
m=0

βm(λ)
tm

m!

)
−

∞

∑
m=0

βm(λ)
tm

m!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
(1)n−m,λβm(λ)

)
tn

n!
−

∞

∑
n=0

βn(λ)
tn

n!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
(1)n−m,λβm(λ)− βn(λ)

)
tn

n!
.

(19)

Comparing the cofficients on both sides of (19), we get

n

∑
m=0

(
n
m

)
(1)n−m,λβm(λ)− βn(λ) = δ1,n, (n ≥ 0), (20)

where δk,n is the Kronecker’s symbol.
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By (4) and (20), we have
βn(1|λ)− βn(λ) = δ1,n. (21)

The generating function of fully degenerate Bernoulli polynomials introduced in (5) can be
expressed as bosonic p-adic integral but the generating function of degenerate Bernoulli polynomials
introduced in (1) is not expressed as a bosonic p-adic integral. This is why we considered the fully
degenerate Bernoulli polynomials, and the motivation of this paper is to investigate some identities of
them associated with degenerate Bernstein polynomials.

In this paper, we consider the fully degenerate Bernoulli polynomials and investigate some
properties and identities for these polynomials in connection with degenerate Bernstein polynomials
by means of bosonic p-adic integrals on Zp and generating functions. Furthermore, we study two
variable degenerate Bernstein polynomials and the degenerate Bernstein operators.

2. Fully Degenerate Bernoulli and Bernstein Polynomials

From (10), we observe that

∞

∑
n=0

Bn(1 − x|λ) tn

n!
=

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

(1 + λt)
1−x

λ

=

(
− 1

λ

)
(1 + (−λ)(−t))

(1 + (−λ)(−t))−
1
λ − 1

(1 + (−λ)(−t))−
x
λ

=
∞

∑
n=0

Bn(x| − λ)(−1)n tn

n!
.

(22)

From (22), we obtain the following Lemma.

Lemma 1. For n ∈ N∪ {0}, we have

Bn(1 − x|λ) = (−1)nBn(x| − λ). (23)

From (16) and (21), we get

Bn(1|λ)− Bn(λ) =
n

∑
m=0

(
n
m

)
(βm(1|λ)− βm(λ)) Dn−mλn−m

=
n

∑
m=0

(
n
m

)
δ1,mDn−mλn−m, (n ≥ 0).

(24)

From (1), we observe that

∞

∑
n=0

βn(x + 1|λ) tn

n!
= (1 + λt)

1
λ

(
∞

∑
m=0

βm(x|λ) tm

m!

)

=

(
∞

∑
l=0

(1)l,λ
tl

l!

)(
∞

∑
m=0

βm(x|λ) tm

m!

)

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
(1)n−m,λβm(x|λ)

)
tn

n!
.

(25)

By (25), we get

βn(x + 1|λ) =
n

∑
m=0

(
n
m

)
(1)n−m,λβm(x|λ). (26)
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By (26), with x = 1, we have

βn(2|λ) =
n

∑
m=0

(
n
m

)
βm(1|λ)(1)n−m,λ

=(1)n,λβ0(1|λ) + n(1)n−1,λβ1(1|λ) +
n

∑
m=2

(
n
m

)
βm(1|λ)(1)n−m,λ

=(1)n,λ + n(1)n−1,λ (β1(λ)− 1) +
n

∑
m=2

(
n
m

)
βm(λ)(1)n−m,λ

=(1)n,λ + n(1)n−1,λβ1(λ)− n(1)n−1,λ +
n

∑
m=2

(
n
m

)
βm(λ)(1)n−m,λ

=− n(1)n−1,λ +
n

∑
m=0

(
n
m

)
βm(λ)(1)n−m,λ

=− n(1)n−1,λ + βn(1|λ).

(27)

Therefore, by (27), we obtain the following theorem.

Theorem 1. For n ∈ N, we have

βn(2|λ) = −n(1)n−1,λ + βn(1|λ). (28)

Note that
(1 − x)n,λ = (−1)n(x − 1)n,−λ, (n ≥ 0). (29)

Therefore by (12), (23), and (29), we get
∫
Zp
(1 − x)n,λdμ0(x) = (−1)n

∫
Zp
(x − 1)n,−λdμ0(x) =

∫
Zp
(x + 2)n,λdμ0(x). (30)

Therefore, by (30) and Theorem 1, we obtain the following theorem.

Theorem 2. For n ∈ N, we have∫
Zp
(1 − x)n,λdμ0(x) =

∫
Zp
(x + 2)n,λdμ0(x) = n(1)n−1,λ(λ − 1)B1(λ) +

∫
Zp
(x)n,λdμ0(x). (31)

Corollary 1. For n ∈ N, we have

(−1)nBn(−1| − λ) = (1)n−1,λ (1 − nB1(λ)) + Bn(λ) = Bn(2|λ). (32)

By (17), we get

Bn(1 − x|λ) =
n

∑
m=0

(
n
m

)
Bm(λ)(1 − x)n−m,λ

=
n

∑
m=0

(
n
m

)
(x)m,λ(1 − x)n−m,λ

Bm(λ)

(x)m,λ

=
n

∑
m=0

Bm,n(x|λ)Bm(λ)
1

(x)m,λ
.

(33)
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In [8], we note that

1
(x)m,λ

=
1

x(x − λ)(x − 2λ) · · · (x − (m − 1)λ)

=
m−1

∑
k=0

(−1)k

(m − 1)!

(
m − 1

k

)
(−λ)1−m

x − kλ
, (m ∈ N).

(34)

By (33) and (34) we get

Bn(1 − x|λ) =
n

∑
m=0

Bm,n(x|λ)Bm(λ)
1

(x)m,λ

=(1 − x)n,λ +
n

∑
m=1

Bm,n(x|λ)Bm(λ)
1

(x)m,λ

=(1 − x)n,λ +
n

∑
m=1

Bm,n(x|λ)Bm(λ)
(−λ)1−m

(m − 1)!

m−1

∑
k=0

(−1)k
(

m − 1
k

)
1

x − kλ
.

(35)

Therefore, by (35), we obtain the following theorem.

Theorem 3. For n ∈ N∪ {0}, we have

Bn(1 − x|λ) = (1 − x)n,λ +
n

∑
m=1

Bm,n(x|λ)Bm(λ)
(−λ)1−m

(m − 1)!

m−1

∑
k=0

(−1)k
(

m − 1
k

)
1

x − kλ
. (36)

Corollary 2. For n ∈ N∪ {0}, we have

Bn(2|λ) = (2)n,λ +
n

∑
m=1

Bm,n(−1|λ)Bm(λ)
(−λ)1−m

(m − 1)!

m−1

∑
k=0

(−1)k+1
(

m − 1
k

)
1

1 + kλ
. (37)

For k ∈ N, the higher-order fully degenerate Bernoulli polynomials are given by the
generating function (

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

)k

(1 + λt)
x
λ =

∞

∑
n=0

B(k)
n (x|λ) tn

n!
, (38)

(See [8,12,13]). When x = 0, B(k)
n (λ) = B(k)

n (x|0) are called the higher-order fully degenerate
Bernoulli numbers. From (5) and (38), we note that

(
log(1 + λt)

λt

)k ∞

∑
n=k

Bk,n(x|λ) tn

n!
=(x)k,λtk(1 + λt)

1−x
λ

(
log(1 + λt)

λt

)k 1
k!

=

(
(1 + λt)

1
λ − 1

)k

(
(1 + λt)

1
λ − 1

)k (x)k,λ

(
1
λ

log(1 + λt)
)k

(1 + λt)
1−x

λ
1
k!

=(x)k,λ

k

∑
m=0

(
k
m

)
(−1)m−k(1 + λt)

m
λ

(
1
λ log(1 + λt)

(1 + λt)
1
λ − 1

)k

(1 + λt)
1−x

λ
1
k!

=(x)k,λ

k

∑
m=0

(
k
m

)
(−1)m−k

(
1
λ log(1 + λt)

(1 + λt)
1
λ − 1

)k

(1 + λt)
1−x+m

λ
1
k!

=(x)k,λ

k

∑
m=0

(
k
m

)
(−1)m−k

∞

∑
n=0

Bn(1 − x + m|λ) tn

n!
1
k!

=
∞

∑
n=0

(
(x)k,λ

k

∑
m=0

(
k
m

)
(−1)m−kBn(1 − x + m|λ) 1

k!

)
tn

n!
,

(39)
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and hence, we get

(
log(1 + λt)

λt

)k ∞

∑
m=k

Bk,m(x|λ) tm

m!
=

(
∞

∑
l=0

D(k)
l λl tl

l!

)(
∞

∑
m=k

Bk,m(x|λ) tm

m!

)

=
∞

∑
n=k

(
n

∑
l=0

D(k)
l λl Bk,n−l(x|λ)

)
tn

n!
.

(40)

Therefore, by (39) and (40), we obtain the following theorem.

Theorem 4. For k, n ∈ N, we have

1
k!
(x)n,λ

k

∑
m=0

(
k
m

)
(−1)m−kBn(1 − x + m|λ) =

{
∑n

l=0 D(k)
l λl Bk,n−l(x|λ), if n ≥ k,

0, if n < k.
(41)

Let f ∈ UD(Zp). For x1, x2 ∈ Zp, we consider the degenerate Bernstein operator of order
n given by

Bn,λ( f |x1, x2) =
n

∑
k=0

f
(

k
n

)(
n
k

)
(x1)k,λ(1 − x2)n−k,λ =

n

∑
k=0

f
(

k
n

)
Bk,n(x1, x2|λ), (42)

where Bn,k(x1, x2|λ) are called two variable degenerate Bernstein polynomials of degree n as followings
(see, [2–6,9,14–27]):

Bk,n(x1, x2|λ) =
(

n
k

)
(x1)k,λ(1 − x2)n−k,λ, (n ≥ 0). (43)

The authors [3] obtained the following:

∞

∑
k=0

Bk,n(x1, x2|λ) tn

n!
=

(x1)k,λ

k!
tke1−x2

λ (t). (44)

The authors [8] obtained the following:

Bk,n(x1, x2|λ) =
(

n
k

)
(1 − (1 − x1))n−(n−k),λ (1 − x2)n−k,λ

=Bn−k,n(1 − x2, 1 − x1|λ),
(45)

and

Bk,n(x1, x2|λ) = (1 − x2 − (n − k − 1)λ)Bk,n−1(x1, x2|λ)
+ (x1 − (k − 1)λ)Bk−1,n−1(x1, x2|λ).

(46)

From (42), we note that x1, x2 ∈ Zp, if f (x) = 1, then we have

Bn,λ(1|x1, x2) =
n

∑
k=0

Bk,n(x1, x2|λ)

=
n

∑
k=0

(
n
k

)
(x1)k,λ(1 − x2)n−k,λ

=(1 + x1 − x2)n,λ,

(47)

and if f (t) = t, then we have

Bn,λ(t|x1, x2) = (x1)1,λ(x1 + 1 − λ − x2)n−1,λ, (48)

and if f (t) = t2, then we have
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Bn,λ(t2|x1, x2) =
1
n
(x1)1,λ(x1 + 1 − λ − x2)n−1,λ +

n − 1
n

(x1)2,λ(1 + x2 − 2λ − x2)n−2,λ. (49)

The authors [3] obtained the following:

(x)1,λ =
1

(x1 + 1 − λ − x2)n−1,λ
Bn(t|x1, x2), (50)

and

(x)2,λ =
1

(x1 + 1 − 2λ − x2)n−2,λ

n

∑
k=2

(k
2)

(n
2)

Bk,n(x1, x2|λ), (51)

and

(x)i,λ =
1

(1 + x1 − x2 − iλ)n−i,λ

n

∑
k=i

(k
i)

(n
i )

Bk,n(x1, x2|λ). (52)

Taking double bosonic p-adic integral on Zp, we get the following equation:

∫
Zp

∫
Zp

Bk,n(x1, x2|λ)dμ0(x1)dμ0(x2) =

(
n
k

) ∫
Zp
(x1)k,λdμ0(x1)

∫
Zp
(1 − x2)n−k,λdμ0(x2). (53)

Therefore, by (53) and Theorem 2, we obtain the following theorem.

Theorem 5. For n, k ∈ N∪ {0}, we have
∫
Zp

∫
Zp

Bk,n(x1, x2|λ)dμ0(x1)dμ0(x2)

=

{
(n

k)Bn(λ) ((1)n−1,λn(λ − 1)Bn(λ) + Bn−k(λ)) , if n > k,

Bn(λ), if n = k.

(54)

We get from the symmetric properties of two variable degenerate Bernstein polynomials that for
n, k ∈ N with n > k,∫

Zp

∫
Zp

Bk,n(x1, x2|λ)dμ0(x1)dμ0(x2)

=
k

∑
m=0

(
n
k

)(
k
m

)
(−1)k+m(1)m,λ

×
∫
Zp

∫
Zp
(1 − x1)k−m,−λ(1 − x2)n−k,λdμ0(x1)dμ0(x2)

=

(
n
k

) ∫
Zp
(1 − x2)n−kdμ0(x2)

k

∑
m=0

(
n
k

)(
k
m

)
(−1)k+m(1)m,λdμ0(x2)

×
{
(1)k−m,−λ(k − m)(−λ − 1)B1(−λ) +

∫
Zp
(x1)k−m,−λdμ0(x1)

}

=

(
n
k

)
Bn−k,λ(2)

k

∑
m=0

(
n
k

)(
k
m

)
(−1)k+m(1)m,λ

× {(1)k−m,−λ(k − m)(−λ − 1)B1(−λ) + Bk−m,−λ(2)
}

(55)

Therefore, by Theorem 5, we obtain the following theorem.
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Theorem 6. For n, k ∈ N∪ {0}, we have the following identities:

1. If n > k, then we have

Bn ((1)n−1,λn(λ − 1)B1(λ) + Bn−k(λ))

= Bn−k,λ(2)
k

∑
m=0

(
n
k

)(
k
m

)
(−1)k+m(1)m,λ

× ((1)k−m,−λ(k − m)(−λ − 1)B1(−λ) + Bk−m,−λ(2)) .

(56)

2. If n = k, then we have

Bk(λ) =
k

∑
m=0

(
k
n

)
(1)k+m(1)k,λ ((1)k−m,−λ(k − m)(−λ − 1)B1(−λ) + Bk−m,−λ(2)) . (57)

3. Remark

Let us assume that the probability of success in an experiment is p. We wondered if we could
say the probability of success in the 9th trial is still p after failing eight times in a ten trial experiment,
because there is a psychological burden to be successful. It seems plausible that the probability
is less than p. The degenerate Bernstein polynomial Bn(x|λ) is used in the probability of success.
Thus, we give examples in our results as follows:

Example 1. Let n = 2, we have

B2(2|λ) =2(1)1,λ(λ − 1)B1(λ) + B2(λ)

= 2(λ − 1)
(
−1

2

)
+

λ

2
+

1
6

= −λ

2
+

7
6

.

Example 2. Let n = 1, we have

B1(1 − x|λ) =(1 − x)1,λ +
1

∑
m=1

Bm,1(x|λ)Bm(λ)
(−1)1−m

(m − 1)!

m−1

∑
k=0

(−1)k
(

m − 1
k

)
1

x − kλ

= (1 − x)1,λ + B1,1(x|λ)B1(λ)
1
x

= −x +
1
2

.

Example 3. Let n = 1, k = 2, we have

(x)1,λ

2

∑
m=0

(
2
m

)
(−1)m−2B1(1 − x + m|λ) = x (B1(1 − x|λ)− 2B1(2 − x|λ) + B1(3 − x|λ))

= −x
((

−x +
1
2

)
− 2
(
−x +

3
2

)
+

(
−x +

5
2

))
= 0.

4. Conclusions

In this paper, we studied the fully degenerate Bernoulli polynomials associated with degenerate
Bernstein polynomials. In Section 1, Equations (12), (18), (20) and (21) are some properties of them.
In Section 2, Theorems 1–3 are results of identities for fully degenerate Bernoulli polynomials in
connection with degenerate Bernstein polynomials by means of bosonic p-adic integrals on Zp
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and generating functions. Theorems 4–6 are results of higher-order fully Bernoulli polynomials in
connection with two variable degenerate Bernstein polynomials by means of bosonic p-adic integrals
on Zp and generating functions.
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1. Introduction

For any integer n ≥ 0, the famous Fibonacci polynomials {Fn(x)} and Lucas polynomials
{Ln(x)} are defined as F0(x) = 0, F1(x) = 1, L0(x) = 2, L1(x) = x and Fn+2(x) = xFn+1(x) + Fn(x),
Ln+2(x) = xLn+1(x) + Ln(x) for all n ≥ 0. Now, if we let α = x+

√
x2+4
2 and β = x−√

x2+4
2 , then it is

easy to prove that

Fn(x) =
1

α − β
(αn − βn) and Ln(x) = αn + βn for all n ≥ 0.

If x = 1, we have that {Fn(x)} turns into Fibonacci sequences {Fn}, and {Ln(x)} turns into Lucas
sequences {Ln}. If x = 2, then Fn(2) = Pn, the nth Pell numbers, they are defined by P0 = 0, P1 = 1
and Pn+2 = 2Pn+1 + Pn for all n ≥ 0. In fact, {Fn(x)} is a second-order linear recursive polynomial,
when x takes a different value x0, then Fn(x0) can become a different sequence.

Since the Fibonacci numbers and Lucas numbers occupy significant positions in combinatorial
mathematics and elementary number theory, they are thus studied by plenty of researchers,
and have gained a large number of vital conclusions; some of them can be found in
References [1–15]. For example, Yi Yuan and Zhang Wenpeng [1] studied the properties of the
Fibonacci polynomials, and proved some interesting identities involving Fibonacci numbers and Lucas
numbers. Ma Rong and Zhang Wenpeng [2] also studied the properties of the Chebyshev polynomials,
and obtained some meaningful formulas about the Chebyshev polynomials and Fibonacci numbers.
Kiyota Ozeki [3] got some identity involving sums of powers of Fibonacci numbers. That is, he
proved that

n

∑
k=1

F2m+1
2k =

1
5m

m

∑
j=0

(−1)j

L2m+1−2j

(
2m+1

j

) (
F(2m+1−2j)(2n+1) − F2m+1−2j

)
.

Helmut Prodinger [4] extended the result of Kiyota Ozeki [3].
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In addition, regarding many orthogonal polynomials and famous sequences, Kim et al. have
done a lot of important research work, obtaining a series of interesting identities. Interested readers
can refer to References [16–22]; we will not list them one by one.

In this paper, our main purpose is to care about the divisibility properties of the Fibonacci
polynomials. This idea originated from R. S. Melham. In fact, in [5], R. S. Melham proposed two
interesting conjectures as follows:

Conjecture 1. If m ≥ 1 is a positive integer, then the summation

L1L3L5 · · · L2m+1

n

∑
k=1

F2m+1
2k

can be written as (F2n+1 − 1)2 P2m−1 (F2n+1), where P2m−1(x) is an integer coefficients polynomial with degree
2m − 1.

Conjecture 2. If m ≥ 0 is an integer, then the summation

L1L3L5 · · · L2m+1

n

∑
k=1

L2m+1
2k

can be written as (L2n+1 − 1) Q2m (L2n+1), where Q2m(x) is an integer coefficients polynomial with degree 2m.

Wang Tingting and Zhang Wenpeng [6] solved Conjecture 2 completely. They also proved a
weaker conclusion for Conjecture 1. That is,

L1L3L5 · · · L2m+1

n

∑
k=1

F2m+1
2k

can be expressed as (F2n+1 − 1) P2m (F2n+1), where P2m(x) is a polynomial of degree 2m with integer
coefficients.

Sun et al. [7] solved Conjecture 1 completely. In fact, Ozeki [3] and Prodinger [4] indicated that
the odd power sum of the first several consecutive Fibonacci numbers of even order is equivalent
to the polynomial estimated at a Fibonacci number of odd order. Sun et al. in [7] proved that this
polynomial and its derivative both disappear at 1, and it can be an integer polynomial when a product
of the first consecutive Lucas numbers of odd order multiplies it. This presents an affirmative answer
to Conjecture 1 of Melham.

In this paper, we are going to use a new and different method to study this problem, and give
a generalized conclusion. That is, we will use the Girard and Waring formula and mathematical
induction to prove the conclusions in the following:

Theorem 1. If n and h are positive integers, then we have the congruence

L1(x)L3(x) · · · L2n+1(x)
h

∑
m=1

F2n+1
2m (x) ≡ 0 mod (F2h+1(x)− 1)2 .

Taking x = 1 and x = 2 in Theorem 1, we can instantly infer the two corollaries:

Corollary 1. Let Fn and Ln be Fibonacci numbers and Lucas numbers, respectively. Then, for any positive
integers n and h, we have the congruence

L1L3L5 · · · L2n+1

h

∑
m=1

F2n+1
2m ≡ 0 mod (F2h+1 − 1)2 .
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Corollary 2. Let Pn be nth Pell numbers. Then, for any positive integers n and h, we have the congruence

L1(2)L3(2)L5(2) · · · L2n+1(2)
h

∑
m=1

P2n+1
2m ≡ 0 mod (P2h+1 − 1)2 ,

where Ln(2) =
(

1 +
√

2
)n

+
(

1 −√
2
)n

is called nth Pell–Lucas numbers.

It is clear that our Corollary 1 gave a new proof for Conjecture 1.

2. Several Lemmas

In this part, we will give four simple lemmas, which are essential to prove our main results.

Lemma 1. Let h be any positive integer; then, we have(
x2 + 4, F2h+1(x)− 1

)
= 1,

where x2 + 4 and F2h+1(x)− 1 are said to be relatively prime.

Proof. From the definition of Fn(x) and binomial theorem, we have

F2h+1(x) =
1

22h+1
√

x2 + 4

2h+1

∑
k=0

(
2h + 1

k

)
xk
(

x2 + 4
) 2h+1−k

2

− 1

22h+1
√

x2 + 4

2h+1

∑
k=0

(
2h + 1

k

)
xk(−1)2h+1−k

(
x2 + 4

) 2h+1−k
2

=
1
4h

h

∑
k=0

(
2h + 1

2k

)
x2k
(

x2 + 4
)h−k

. (1)

Thus, from Equation (1), we have the polynomial congruence

4hF2h+1(x) =
h

∑
k=0

(
2h + 1

2k

)
x2k
(

x2 + 4
)h−k ≡ (2h + 1)x2h

≡ (2h + 1)
(

x2 + 4 − 4
)h ≡ (2h + 1)(−4)h mod (x2 + 4)

or

F2h+1(x)− 1 ≡ (2h + 1)(−1)h − 1 mod (x2 + 4). (2)

Since x2 + 4 is an irreducible polynomial of x, and (2h + 1)(−1)h − 1 is not divisible by (x2 + 4)
for all integer h ≥ 1, so, from (2), we can deduce that(

x2 + 4, F2h+1(x)− 1
)
= 1.

Lemma 1 is proved.

Lemma 2. Let h and n be non-negative integers with h ≥ 1; then, we have

(x2 + 4)F(2h+1)(2n+1)(x)− L2n(x)− L2n+2(x) ≡ 0 mod (F2h+1(x)− 1) .
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Proof. We use mathematical induction to calculate the polynomial congruence for n. Noting L0(x) = 2,
L1(x) = x, L2(x) = x2 + 2. Thus, if n = 0, then

(x2 + 4)F(2h+1)(2n+1)(x)− L2n(x)− L2n+2(x)

= (x2 + 4)F2h+1(x)− 2 − x2 − 2

= (x2 + 4) (F2h+1(x)− 1) ≡ 0 mod (F2h+1(x)− 1) .

If n = 1, then L2(x) + L4(x) = x2 + 2 + x4 + 4x2 + 2 = x4 + 5x2 + 4. Note that the identity F3
2h+1(x) =

1
x2+4

(
F3(2h+1)(x) + 3F2h+1(x)

)
, so we obtain the congruence

(x2 + 4)F(2h+1)(2n+1)(x)− L2n(x)− L2n+2(x)

= (x2 + 4)F3(2h+1)(x)− x4 − 5x2 − 4

= (x2 + 4)
[
(x2 + 4)F3

2h+1(x)− 3F2h+1(x)
]
− x4 − 5x2 − 4

= (x2 + 4)2
[

F3
2h+1(x)− F2h+1(x)

]
+ (x2 + 4)(x2 + 1)F2h+1(x)− x4 − 5x2 − 4

≡ (x2 + 4)2
(

F2
2h+1(x) + F2h+1(x)

)
(F2h+1(x)− 1) ≡ 0 mod (F2h+1(x)− 1) ,

which means that Lemma 2 is correct for n = 0 and 1.
Assume Lemma 2 is right for all integers n = 0, 1, 2, · · · , k. Namely,

(x2 + 4)F(2h+1)(2n+1)(x)− L2n(x)− L2n+2(x) ≡ 0 mod (F2h+1(x)− 1) , (3)

where 0 ≤ n ≤ k.
Thus, n = k + 1 ≥ 2, and we notice that

L2(2h+1)(x)F(2h+1)(2k+1)(x) = F(2h+1)(2k+3)(x) + F(2h+1)(2k−1)(x),

L2k+2(x) + L2k+4(x) = (x2 + 2)L2k(x) + (x2 + 2)L2k+2(x)− (L2k−2(x) + L2k(x))

and
L2(2h+1)(x) = (x2 + 4)F2

2h+1(x)− 2 ≡ x2 + 2 mod (F2h+1(x)− 1) .

From inductive assumption (3), we have

(x2 + 4)F(2h+1)(2n+1)(x)− L2n(x)− L2n+2(x)

= (x2 + 4)F(2h+1)(2k+3)(x)− L2k+2(x)− L2k+4(x)

= (x2 + 4)L2(2h+1)(x)F(2h+1)(2k+1)(x)− (x2 + 4)F(2h+1)(2k−1) − L2k+2(x)− L2k+4(x)

≡ (x2 + 4)(x2 + 2)F(2h+1)(2k+1)(x)− (x2 + 2)L2k(x)− (x2 + 2)L2k+2(x)

−(x2 + 4)F(2h+1)(2k−1)(x) + L2k−2(x) + L2k(x)

≡ (x2 + 2)
[
(x2 + 4)F(2h+1)(2k+1)(x)− L2k(x)− L2k+2(x)

]
−
[
(x2 + 4))F(2h+1)(2k−1)(x)− L2k−2(x)− L2k(x)

]
≡ 0 mod (F2h+1(x)− 1) .

Now, we have achieved the results of Lemma 2.
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Lemma 3. Let h and n be non-negative integers with h ≥ 1; then, we have the polynomial congruence

L1(x)L3(x) · · · L2n+1(x)
h

∑
m=1

[
F2m(2n+1)(x)− (2n + 1)F2m(x)

]
≡ 0 mod (F2h+1(x)− 1)2 .

Proof. For positive integer n, first note that αβ = −1, Ln(x) = αn + βn,

h

∑
m=1

F2m(2n+1)(x) =
1√

x2 + 4

h

∑
m=1

[
α2m(2n+1) − β2m(2n+1)

]

=
1√

x2 + 4

⎡
⎣α2(2n+1)

(
α2h(2n+1) − 1

)
α2(2n+1) − 1

−
β2(2n+1)

(
β2h(2n+1) − 1

)
β2(2n+1) − 1

⎤
⎦

=
1

L2n+1(x)

[
F(2h+1)(2n+1)(x)− F2n+1(x)

]
(4)

and

h

∑
m=1

F2m(x) =
1√

x2 + 4

h

∑
m=1

[
α2m − β2m

]
=

1
L1(x)

[
F(2h+1)(x)− 1

]
. (5)

Thus, from Labels (4) and (5), we know that, to prove Lemma 3, now we need to obtain the
polynomial congruence

L1(x)
(

F(2h+1)(2n+1)(x)− F2n+1(x)
)
− (2n + 1)L2n+1(x) (F2h+1(x)− 1)

≡ 0 mod (F2h+1(x)− 1)2 . (6)

Now, we prove (6) by mathematical induction. If n = 0, then it is obvious that (6) is correct.
If n = 1, we notice that L1(x) = x, F3(2h+1)(x) = (x2 + 4)F3

2h+1(x) − 3F2h+1(x) and F3
2h+1(x) ≡

(F2h+1(x)− 1 + 1)3 ≡ 3F2h+1(x)− 2 mod (F2h+1(x)− 1)2 we have

L1(x)F(2h+1)(2n+1)(x)− L1(x)F2n+1(x)− (2n + 1)L2n+1(x) (F2h+1(x)− 1)

= xF3(2h+1)(x)− xF3(x)− 3L3(x) (F2h+1(x)− 1)

= x(x2 + 4)F3
2h+1(x)− 3xF2h+1(x)− x(x2 + 1)− 3(x3 + 3x) (F2h+1(x)− 1)

≡ (x3 + 4x) (3F2h+1(x)− 2)− 3xF2h+1(x)− (x3 + x)− 3(x3 + 3x) (F2h+1(x)− 1)

≡ 3(x3 + 3x) (F2h+1(x)− 1)− 3(x3 + 3x) (F2h+1(x)− 1)

≡ 0 mod (F2h+1(x)− 1)2 .

Thus, n = 1 is fit for (6). Assume that (6) is correct for all integers n = 0, 1, 2, · · · , k. Namely,

L1(x)
(

F(2h+1)(2n+1)(x)− F2n+1(x)
)
− (2n + 1)L2n+1(x) (F2h+1(x)− 1)

≡ 0 mod (F2h+1(x)− 1)2 (7)

for all n = 0, 1, · · · , k.
Where n = k + 1 ≥ 2, we notice

L2(2h+1)(x)F(2h+1)(2k+1)(x) = F(2h+1)(2k+3)(x) + F(2h+1)(2k−1)(x)
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and

L2(2h+1)(x) = (x2 + 4)F2
2h+1(x)− 2 = (x2 + 4) (F2h+1(x)− 1 + 1)2 − 2

= (x2 + 4)
[
(F2h+1(x)− 1)2 + 2(F2h+1(x)− 1)

]
+ x2 + 2

≡ 2(x2 + 4)(F2h+1(x)− 1) + x2 + 2 mod (F2h+1(x)− 1)2 .

From inductive assumption (7) and Lemma 2, we have

xF(2h+1)(2n+1)(x)− xF2n+1(x)− (2n + 1)L2n+1(x) (F2h+1(x)− 1)

= xF(2h+1)(2k+3)(x)− xF2k+3(x)− (2k + 3)L2k+3(x) (F2h+1(x)− 1)

= xL2(2h+1)(x)F(2h+1)(2k+1)(x)− xF(2h+1)(2k−1)(x)− xF2k+3(x)

−(2k + 3)L2k+3(x) (F2h+1(x)− 1)

≡ 2x(x2 + 4)(F2h+1(x)− 1)F(2h+1)(2k+1)(x) + x(x2 + 2)F(2h+1)(2k+1)(x)

−xF(2h+1)(2k−1)(x)− x(x2 + 2)F2k+1(x) + xF2k−1(x)

−(x2 + 2)(2k + 1)L2k+1(x) (F2h+1(x)− 1) + (2k − 1)L2k−1(x) (F2h+1(x)− 1)

−2x (L2k(x) + L2k+2(x)) (F2h+1(x)− 1)

≡ 2x(F2h+1(x)− 1)
[
(x2 + 4)F(2h+1)(2k+1)(x)− L2k(x)− L2k+2(x)

]
+(x2 + 2)

[
xF(2h+1)(2k+1)(x)− xF2k+1(x)− (2k + 1)L2k+1(x) (F2h+1(x)− 1)

]
−
[

xF(2h+1)(2k−1)(x)− xF2k−1(x)− (2k − 1)L2k−1(x) (F2h+1(x)− 1)
]

≡ 2x(F2h+1(x)− 1)
[
(x2 + 4)F(2h+1)(2k+1)(x)− L2k(x)− L2k+2(x)

]
≡ 0 mod (F2h+1(x)− 1)2 .

Now, we attain Lemma 3 by mathematical induction.

Lemma 4. For all non-negative integers u and real numbers X, Y, we have the identity

Xu + Yu =
[ u

2 ]

∑
k=0

(−1)k u
u − k

(
u − k

k

)
(X + Y)u−2k (XY)k ,

in which [x] denotes the greatest integer ≤ x.

Proof. This formula due to Waring [15]. It can also be found in Girard [14].

3. Proof of the Theorem

We will achieve the theorem by these lemmas. Taking X = α2m, Y = −β2m and U = 2n + 1 in
Lemma 4, we notice that XY = −1, from the expression of Fn(x)

F2m(2n+1)(x) =
n

∑
k=0

(−1)k 2n + 1
2n + 1 − k

(
2n + 1 − k

k

)
(x2 + 4)n−kF2n+1−2k

2m (x)(−1)k

=
n

∑
k=0

2n + 1
2n + 1 − k

(
2n + 1 − k

k

)
(x2 + 4)n−kF2n+1−2k

2m (x). (8)
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For any integer h ≥ 1, from (8), we get

h

∑
m=1

[
F2m(2n+1)(x)− (2n + 1)F2m(x)

]

=
n−1

∑
k=0

2n + 1
2n + 1 − k

(
2n + 1 − k

k

)
(x2 + 4)n−k

h

∑
m=1

F2n+1−2k
2m (x). (9)

If n = 1, then, from (9), we can get

L1(x)L3(x)
h

∑
m=1

(F6m(x)− 3F2m(x)) = L1(x)L3(x)(x2 + 4)
h

∑
m=1

F3
2m(x). (10)

From Lemma 1, we know that (x2 + 4, F2h+1(x)− 1) = 1, so, applying Lemma 3 and (10), we
deduce that

L1(x)L3(x)
h

∑
m=1

F3
2m(x) ≡ 0 mod (F2h+1(x)− 1)2 . (11)

This means that Theorem 1 is suitable for n = 1.
Assume that Theorem 1 is correct for all integers n = 1, 2, · · · , s. Then,

L1(x)L3(x) · · · L2n+1(x)
h

∑
m=1

F2n+1
2m (x) ≡ 0 mod (F2h+1(x)− 1)2 (12)

for all integers 1 ≤ n ≤ s.
When n = s + 1, from (9), we obtain

h

∑
m=1

(
F2m(2s+3)(x)− (2s + 3)F2m(x)

)

=
s

∑
k=0

2s + 3
2s + 3 − k

(
2s + 3 − k

k

)
(x2 + 4)s+1−k

h

∑
m=1

F2s+3−2k
2m (x)

=
s

∑
k=1

2s + 3
2s + 3 − k

(
2s + 3 − k

k

)
(x2 + 4)s+1−k

h

∑
m=1

F2s+3−2k
2m (x)

+(x2 + 4)s+1
h

∑
m=1

F2s+3
2m (x). (13)

From Lemma 3, we have

L1(x)L3(x) · · · L2s+3(x)
h

∑
m=1

[
F2m(2s+3)(x)− (2s + 3)F2m(x)

]
≡ 0 mod (F2h+1(x)− 1)2 . (14)

Applying inductive hypothesis (12), we obtain

L1(x)L3(x) · · · L2s+1(x)
s

∑
k=1

2s + 3
2s + 3 − k

(
2s + 3 − k

k

)

×(x2 + 4)s+1−k
h

∑
m=1

F2s+3−2k
2m (x) ≡ 0 mod (F2h+1(x)− 1)2 . (15)
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Combining (13), (14), (15) and Lemma 3, we have the conclusion

L1(x)L3(x) · · · L2s+3(x) · (x2 + 4)s+1
h

∑
m=1

F2s+3
2m (x)

≡ 0 mod (F2h+1(x)− 1)2 . (16)

Note that
(
x2 + 4, F2h+1(x)− 1

)
= 1, so (16) indicates the conclusion

L1(x)L3(x) · · · L2s+3(x) ·
h

∑
m=1

F2s+3
2m (x) ≡ 0 mod (F2h+1(x)− 1)2 .

Now, we apply mathematical induction to achieve Theorem 1.
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Abstract: The main purpose of this paper is to give several identities of symmetry for type 2 Bernoulli
and Euler polynomials by considering certain quotients of bosonic p-adic and fermionic p-adic integrals
on Zp, where p is an odd prime number. Indeed, they are symmetric identities involving type 2 Bernoulli
polynomials and power sums of consecutive odd positive integers, and the ones involving type 2 Euler
polynomials and alternating power sums of odd positive integers. Furthermore, we consider two random
variables created from random variables having Laplace distributions and show their moments are given
in terms of the type 2 Bernoulli and Euler numbers.

Keywords: type 2 Bernoulli polynomials; type 2 Euler polynomials; identities of symmetry;
Laplace distribution

1. Introduction

In this section, we are going to review some known results. We first recall the definitions of Bernoulli
and Euler polynomials together with their type 2 polynomials. Then, we introduce the bosonic p-adic
integrals and the fermionic p-adic integrals on Zp that we need for the derivation of an identity of symmetry.
As is well known, the Bernoulli polynomials are defined by

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, (1)

(see [1,2]).
In particular, the Bernoulli numbers are the constant terms Bn = Bn(0) of the Bernoulli polynomials.

By making use of (1), we can deduce that

n−1

∑
l=0

lk =
1

k + 1
(Bk+1(n)− Bk+1), for k = 0, 1, 2, · · · . (2)

The type 2 Bernoulli polynomials are defined by generating function

t
et − e−t ext =

∞

∑
n=0

bn(x)
tn

n!
, (3)

Symmetry 2019, 11, 613; doi:10.3390/sym11050613 www.mdpi.com/journal/symmetry
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(see [3,4]).
In particular, bn = bn(0) are called type 2 Bernoulli numbers. From (3), it can be seen that

bn(x) =
n

∑
k=0

(
n
k

)
bkxn−k, (4)

(see [3,4]).
Analogously to (2), we observe that

n−1

∑
l=0

e(2l+1)t =
1

et − e−t (e
2nt − 1)

=
∞

∑
k=0

(
bk+1(2n)− bk+1

k + 1

)
tk

k!
.

(5)

Thus, by (5), we get

n−1

∑
l=0

(2l + 1)k =
1

k + 1
(bk+1(2n)− bk+1), k = 0, 1, 2, · · · . (6)

Let p be a fixed odd prime number. Throughout this paper, we will use the notations Zp,Qp,Cp,
and C to denote the ring of p-adic rational integers, the field of p-adic rational numbers, the completion of
an algebraic closure of Qp, and the field of complex numbers, respectively. The normalized valuation in
Cp is denoted by | · |p, with |p|p = 1

p . For a uniformly differentiable function f on Zp, the bosonic p-adic
integral on Zp (or p-adic invariant integral on Zp) is defined by

∫
Zp

f (x)dμ0(x) = lim
N→∞

pN−1

∑
x=0

f (x)μ0(x + pNZp) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x). (7)

Then, by (7), we easily get
∫
Zp

f (x + 1)dμ0(x)−
∫
Zp

f (x)dμ0(x) = f ′(0), (8)

(see [5,6]).
The fermionic integral on Zp is defined by Kim [6] as

∫
Zp

f (x)dμ−1(x) = lim
N→∞

pN−1

∑
x=0

f (x)μ−1(x + pNZp) = lim
N→∞

pN−1

∑
x=0

f (x)(−1)x. (9)

From (9), we can show that∫
Zp

f (x + 1)dμ−1(x) +
∫
Zp

f (x)dμ−1(x) = 2 f (0), (10)

(see [4,7–10]).
It is well known that the Euler polynomials are defined by

2
et + 1

ext =
∞

∑
n=0

E∗
n(x)

tn

n!
. (11)
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We denote the Euler numbers by E∗
n = E∗

n(0), (n ≥ 0). Clearly, we have

2
n−1

∑
l=0

(−1)l elt =
2

et + 1
(ent + 1), where n ≡ 1 (mod 2). (12)

From (11) and (12), we obtain that

2
n−1

∑
l=0

(−1)l lk = E∗
k (n) + E∗

k , (13)

where n is a positive odd integer.
Now, we consider the type 2 Euler polynomials which are given by

2
et + e−t ext = sech(t)ext =

∞

∑
n=0

En(x)
tn

n!
. (14)

In particular, when x = 0, En = En(0) are called the type 2 Euler numbers.
In this paper, we obtain some identities of symmetry involving the type 2 Bernoulli polynomials,

the type 2 Euler polynomials, power sums of odd positive integers and alternating power sums of odd
positive integers which are derived from certain quotients of bosonic p-adic and fermionic p-adic integrals
on Zp. In the following section, we will construct two random variables from random variables having
Laplace distributions whose moments are closely related to the type 2 Bernoulli and Euler numbers. All the
results in Sections 2 and 3 are newly developed. Finally, we note that the results here have applications in
such diverse areas as combinatorics, probability, algebra and analysis (see [11–13]).

2. Some Identities of Symmetry for Type 2 Bernoulli and Euler Polynomials

In virtue of (8), we readily see that

1
2

∫
Zp

e(2x+1)tdμ0(x) =
t

et − e−t . (15)

Hence, by (15), we get
1
2

∫
Zp
(2x + 1)ndμ0(x) = bn, (n ≥ 0). (16)

In addition, it follows from (15) that

1
2

∫
Zp

e(2y+x+1)tdμ0(y) =
t

et − e−t ext =
∞

∑
n=0

bn(x)
tn

n!
. (17)

Hence, by (17), we get

1
2

∫
Zp
(2y + x + 1)ndμ0(y) = bn(x), (n ≥ 0). (18)

Using (15) and (17), one can easily check that

1
2

(∫
Zp

e(2x+2n+1)tdμ0(x)−
∫
Zp

e(2x+1)tdμ0(x)
)
= t

n−1

∑
l=0

e(2l+1)t. (19)
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Next, we let Tk(n) =
n
∑

l=0
(2l + 1)k, (k ∈ N∪ {0}). Note that Tk(n) represents the kth power sums of

consecutive positive odd integers. By (19), we easily get

∫
Zp

e(2x+1+2n)tdμ0(x)−
∫
Zp

e(2x+1)tdμ0(x) =
2nt
∫
Zp

e(2x+1)tdμ0(x)∫
Zp

e2nxtdμ0(x)
. (20)

Let w1, w2 be positive integers. Then, we observe that

w1
∫
Zp

e(2x+1)tdμ0(x)∫
Zp

e2w1xtdμ0(x)
=

w1−1

∑
l=0

e(2l+1)t

=
∞

∑
k−0

w1−1

∑
l=0

(2l + 1)k tk

k!

=
∞

∑
k=0

Tk(w1 − 1)
tk

k!
.

(21)

Now, we consider the next quotient of bosonic p-adic integrals on Zp from which the identities of
symmetry for the type 2 Bernoulli polynomials follow:

I(w1, w2) =
w1w2

2

∫
Zp

∫
Zp

e(2w1x1+w1+2w2x2+w2+w1w2x)tdμ0(x1)dμ0(x2)∫
Zp

e2w1w2xtdμ0(x)
. (22)

From (22), we have

I(w1, w2) =
w2

2

∫
Zp

e(2x1+w2x+1)w1tdμ0(x)
w1
∫
Zp

e(2w2x2+w2)tdμ0(x2)∫
Zp

e2w1w2xtdμ0(x)

= w2

∞

∑
k=0

bk(w2x)
wk

1
k!

tk
∞

∑
l=0

Tl(w1 − 1)
wl

2
l!

tl

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
bk(w2x)Tn−k(w1 − 1)wk

1wn−k+1
2

tn

n!
.

(23)

We note from (22) that I(w1, w2) = I(w2, w1). Interchanging w1 and w2, we get

I(w2, w1) =
∞

∑
n=0

n

∑
k=0

(
n
k

)
bk(w1x)Tn−k(w2 − 1)wk

2wn−k+1
1

tn

n!
. (24)

Therefore, by (23) and (24), we obtain the following theorem.

Theorem 1. For w1, w2 ∈ N and n ∈ N∪ {0}, we have

n

∑
k=0

(
n
k

)
bk(w2x)Tn−k(w1 − 1)wk

1wn−k+1
2 =

n

∑
k=0

(
n
k

)
bk(w1x)Tn−k(w2 − 1)wk

2wn−k+1
1 .

Setting x = 0 in Theorem 1, we obtain the following corollary.
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Corollary 1. For w1, w2 ∈ N and n ∈ N∪ {0}, we have

n

∑
k=0

(
n
k

)
bkTn−k(w1 − 1)wk

1wn−k+1
2 =

n

∑
k=0

(
n
k

)
bkTn−k(w2 − 1)wk

2wn−k+1
1 .

Furthermore, let us take w2 = 1 in Corollary 1. Then, we have

n

∑
k=0

(
n
k

)
bkwn−k+1

1 =
n

∑
k=0

(
n
k

)
bkTn−k(w1 − 1)wk

1. (25)

Therefore, by (4) and (25), we obtain the following corollary.

Corollary 2. For w1 ∈ N and n ∈ N∪ {0}, we have

bn(w1) =
n

∑
k=0

(
n
k

)
bkTn−k(w1 − 1)wk−1

1 =
n

∑
k=0

(
n
k

)
bkwk−1

1

w1−1

∑
l=0

(2l + 1)n−k.

From (22), we observe that

I(w1, w2) =
w2

2
ew1w2xt

∫
Zp

e2w1x1t+w1tdμ0(x1)
w1
∫
Zp

e(2w2x2+w2)tdμ0(x1)∫
Zp

e2w1w2xtdμ0(x)

=
w2

2
ew1w2xt

∫
Zp

e(2w1x1+w1)tdμ0(x1)
w1−1

∑
l=0

e(2l+1)w2t

=
w2

2

w1−1

∑
l=0

∫
Zp

e
(

2x1+1+w2x+(2l+1) w2
w1

)
w1tdμ0(x1)

=
∞

∑
n=0

w2

w1−1

∑
l=0

bn

(
w2x + (2l + 1)

w2

w1

)
wn

1 tn

n!
.

(26)

By interchanging w1 and w2, we obtain the following equation:

I(w2, w1) =
∞

∑
n=0

w1

w2−1

∑
l=0

bn

(
w1x + (2l + 1)

w1

w2

)
wn

2 tn

n!
. (27)

As I(w1, w2) = I(w2, w1), the following theorem is immediate from (26) and (27).

Theorem 2. For w1, w2 ∈ N and n ∈ N∪ {0}, we have

wn
1 w2

w1−1

∑
l=0

bn

(
w2x + (2l + 1)

w2

w1

)
= wn

2 w1

w2−1

∑
l=0

bn

(
w1x + (2l + 1)

w1

w2

)
.

Example 1. We check the result in Theorem 2 in the case of n = 2, w1 = 3, and w2 = 7. We first note that
b2(x) = 1

2 (x2 − 1
3 ). This can be obtained from B2(x) = x2 − x + 1

6 and the relation bn(x) = 2n−1Bn(
x+1

2 ) which
follows from (1) and (3). Thus, we have to see that

2

∑
l=0

{(
7x +

7
3
(2l + 1)

)2 − 1
3

}
=

7
3

6

∑
l=0

{(
3x +

3
7
(2l + 1)

)2 − 1
3

}
. (28)
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Now, we can easily show that both the left and the right side of (28) are equal to 147x2 + 294x + 1706
9 .

Let us take w1 = 1. Then, by Theorem 2, we get

w2bn(w2x + w2) = wn
2

w2−1

∑
l=0

bn

(
x + (2l + 1)

1
w2

)
. (29)

Equivalently, by (29), we have

bn(w2x + w2) = wn−1
2

w2−1

∑
l=0

bn

(
x + (2l + 1)

1
w2

)
. (30)

Similarly to (13), we observe that

2
n−1

∑
l=0

(−1)l e(2l+1)t =
∞

∑
k=0

(Ek + Ek(2n))
tk

k!
, (31)

where n ∈ N with n ≡ 1 (mod 2). Thus, by (31), we get

2
n−1

∑
l=0

(−1)l(2l + 1)k = Ek + EK(2n), (32)

where k ∈ N∪ {0} and n ∈ N with n ≡ 1 (mod 2).
From (14), we easily note that

En(x) =
n

∑
k=0

(
n
k

)
Ekxn−k, (n ≥ 0). (33)

By (10), we get ∫
Zp

e(2y+x+1)tdμ−1(y) =
2

et + e−t ext =
∞

∑
n=0

En(x)
tn

n!
. (34)

Thus, we have ∫
Zp
(2y + x + 1)ndμ−1(y) = En(x), (n ≥ 0).

The next equation follows immediately from (10):

∫
Zp

e(2y+2n+1)tdμ−1(y) +
∫
Zp

e(2x+1)tdμ−1(x) = 2
n−1

∑
l=0

e(2l+1)t(−1)l , (35)

where n ∈ N with n ≡ 1 (mod 2).

Now, we let Ak(n) =
n
∑

l=0
(−1)l(2l + 1)k, (k ∈ N∪ {0}). Here we note that Ak(n) is the alternating kth

power sums of consecutive odd positive integers. From (35), we have

∫
Zp

e(2x+2n+1)tdμ−1(x) +
∫
Zp

e(2x+1)tdμ−1(x) =
2
∫
Zp

e(2x+1)tdμ−1(x)∫
Zp

e2nxtdμ−1(x)
. (36)
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Let a, b be positive integers with a ≡ 1 (mod 2) and b ≡ 1 (mod 2). Then, by using the fermionic
p-adic integral on Zp, we get

2
∫
Zp

e(2x+1)tdμ−1(x)∫
Zp

e2axtdμ−1(x)
=2

a−1

∑
l=0

e(2l+1)t(−1)l

=
∞

∑
k=0

2
a−1

∑
l=0

(2l + 1)k(−1)l tk

k!

=
∞

∑
k=0

2Ak(a − 1)
tk

k!
.

(37)

We now consider the next quotient of the fermionic p-adic integrals on Zp from which the identities
of symmetry for the type 2 Euler polynomials follow:

J(a, b) =

∫
Zp

∫
Zp

e(2ax1+a+2bx2+b+abx)tdμ−1(x1)dμ−1(x2)∫
Zp

e2abxtdμ−1(x)
. (38)

From (38), we can derive the following equation given by

J(a, b) =
1
2

∫
Zp

ea(2x1+1+bx)tdμ−1(x1)
2
∫
Zp

e(2bx2+b)tdμ−1(x2)∫
Zp

e2abxtdμ−1(x)

=
1
2

∞

∑
k=0

Ek(bx)
aktk

k!
2

∞

∑
l=0

Al(a − 1)
bltl

l!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
Ek(bx)An−k(a − 1)akbn−k tn

n!
.

(39)

We note from (38) that J(a, b) = J(b, a). Interchanging a and b, we get

J(b, a) =
∞

∑
n=0

n

∑
k=0

(
n
k

)
Ek(ax)An−k(b − 1)bkan−k tn

n!
. (40)

The following theorem is an immediate consequence of (39) and (40).

Theorem 3. For n ≥ 0, a, b ∈ N with a ≡ 1 (mod 2) and b ≡ 1 (mod 2), we have

n

∑
k=0

(
n
k

)
Ek(bx)An−k(a − 1)akbn−k =

n

∑
k=0

(
n
k

)
Ek(ax)An−k(b − 1)bkan−k.

The next corollary is now obtained by setting x = 0 in Theorem 3.

Corollary 3. For n ≥ 0, a, b ∈ N, with a ≡ 1 (mod 2) and b ≡ 1 (mod 2), we have

n

∑
k=0

(
n
k

)
Ek An−k(a − 1)akbn−k =

n

∑
k=0

(
n
k

)
Ek An−k(b − 1)bkan−k.

Taking b = 1 in Corollary 3 gives us the following identities.
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Corollary 4. For n ≥ 0, a ∈ N with a ≡ 1 (mod 2), we have

En(a) =
n

∑
k=0

(
n
k

)
Ek An−k(a − 1)ak

=
n

∑
k=0

(
n
k

)
Ekak

a−1

∑
l=0

(−1)l(2l + 1)n−k.

From (38), we have

J(a, b) =
eabxt

2

∫
Zp

e(2ax1+a)tdμ−1(x1)
2
∫
Zp

e(2bx2+b)tdμ−1(x2)∫
Zp

e2abxtdμ−1(x)

=
eabxt

2

∫
Zp

e(2ax1+a)tdμ−1(x1) 2
a−1

∑
l=0

(−1)l e(2l+1)bt

=
a−1

∑
l=0

(−1)l
∫
Zp

e(2x1+1+bx+(2l+1) b
a )atdμ−1(x1)

=
∞

∑
n=0

an
a−1

∑
l=0

(−1)lEn(bx + (2l + 1)
b
a
)

tn

n!
,

(41)

where a, b ∈ N with a ≡ 1 (mod 2) and b ≡ 1 (mod 2). Interchanging a and b, we get

J(b, a) =
∞

∑
n=0

bn
b−1

∑
l=0

(−1)lEn(ax + (2l + 1)
a
b
)

tn

n!
. (42)

As J(a, b) = J(b, a), by (41) and (42), we obtain the following theorem.

Theorem 4. For n ≥ 0, a, b ∈ N with a ≡ 1 (mod 2) and b ≡ 1 (mod 2), we have

an
a−1

∑
l=0

(−1)lEn(bx + (2l + 1)
b
a
) = bn

b−1

∑
l=0

(−1)lEn(ax + (2l + 1)
a
b
).

Let us take a = 1 in Theorem 4. Then, we have

En(bx + b) = bn
b−1

∑
l=0

(−1)lEn(x + (2l + 1)
1
b
).

Example 2. Here, we illustrate Theorem 2 in the case of n = 2, a = 7, and b = 3. First, we note that E2(x) =
x2 − 1. This follows from E∗

2 (x) = x2 − x and the relation En(x) = 2nE∗
n(

x+1
2 ) that can be deduced from (11) and

(14). Here, we need to show that

6

∑
l=0

(−1)l
{(

3x +
3
7
(2l + 1)

)2 − 1
}

=
(3

7
)2

2

∑
l=0

(−1)l
{(

7x +
7
3
(2l + 1)

)2 − 1
}

. (43)

Indeed, we can easily check that both the left- and right-hand side of (43) are equal to 9x2 + 18x + 824
49 .
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3. Further Remarks

For s ∈ C, the Riemann zeta function is defined by

ζ(s) =
∞

∑
n=1

1
ns , (Re(s) > 1),

(see [14–16]).
It is well known that

ζ(2n) = (−1)n−1 22n−1

(2n)!
π2nB2n, (n ≥ 0), (44)

(see [14,16]).
By (44), we get

z cot(z) = z
cos(z)
sin(z)

= z
eiz+e−iz

2
eiz−e−iz

2i

, (i =
√−1)

= iz
(

1 +
2

e2iz − 1

)

= iz +
∞

∑
k=0

Bk
(2iz)k

k!

= 1 +
∞

∑
k=1

B2k
(2k)!

22ki2kz2k

= 1 − 2
∞

∑
k=1

ζ(2k)
π2k z2k

= 1 − 2
∞

∑
n=1

(
∞

∑
k=1

z2k

(nπ)2k

)

= 1 − 2
∞

∑
n=1

( z
nπ

)2
(

1 −
( z

nπ

)2
)−1

.

(45)

Thus, by (45), we get

cot(z)− 1
z
= −

∞

∑
n=1

2z
(nπ)2

(
1 −
( z

nπ

)2
)−1

. (46)

From (39), we easily note that

d
dz

(log(sin(z))− log(z)) =
∞

∑
n=1

d
dz

(
log
(

1 −
( z

nπ

)2
))

. (47)

By (47), we easily get
sin(z)

z
=

∞

∏
n=1

(
1 −
( z

nπ

)2
)

. (48)

It is not difficult to show that

z cot(z)− 2z cot(2z) = z tan(z). (49)
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From (45) and (49), we have

z tan(z) = z cot(z)− 2z cot(2z)

= 2
∞

∑
n=1

(
2z
nπ

)2
(

1 −
(

2z
nπ

)2
)−1

− 2
∞

∑
n=1

( z
nπ

)2
(

1 −
( z

nπ

)2
)−1

.
(50)

By (50), we get

d
dz

(− log(cos(z))) = −
∞

∑
n=1

d
dz

(
log
(

1 − 4z2

(nπ)2

))
+

∞

∑
n=1

d
dz

(
log
(

1 −
( z

nπ

)2
))

. (51)

Thus, from (51), we have

sec(z) =
∞

∏
n=1

(
1 − ( z

nπ

)2

1 − ( 2z
nπ

)2

)
=

∞

∏
n=1

(
1 −
(

2z
(2n − 1)π

)2
)−1

, (52)

which is equivalent to

cos(z) =
∞

∏
n=1

(
1 −
(

2z
(2n − 1)π

)2
)

. (53)

A random variable has the Laplace distribution with positive parameter μ and b if its probability
density function is

f (x|μ, b) =
1
2b

exp
(
−|x − μ|

b

)
, (54)

(see [17]).
The shorthand notation X ∼ Laplace(μ, b) is used to indicate that the random variable X has the

Laplace distribution with positive parameters μ and b. If μ = 0 and b = 1, the positive half-time is exactly
an exponential scaled by 1

2 .
We assume that the independent random variables X1, X2, X3, · · · have the Laplace distribution with

parameters 0 and 1, (i.e., Xk ∼ Laplace(0, 1), k ∈ N). Let us put

Y =
∞

∑
k=1

Xk
(2k − 1)π

. (55)

Then, the characteristic function of Y is given by

∞

∑
n=0

E[Yn]
(2it)n

n!
= E
[ ∞

∑
n=0

Yn (2it)n

n!

]
= E[e2iYt]

= E
[
e(∑

∞
k=1

Xk
(2k−1)π )2it

]
=

∞

∏
k=1

E
[
e

Xk
(2k−1)π 2it

]
.

(56)
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Now, we observe that

E
[
e

Xk
(2k−1)π 2it

]
=
∫ ∞

−∞

1
2

e
(

2it
(2k−1)π

)
xe−|x|dx

=
1
2

∫ 0

−∞
e
(

2it
(2k−1)π

)
xexdx +

1
2

∫ ∞

0
e
(

2it
(2k−1)π

)
xe−xdx

=
1
2

1
1 + 2it

(2k−1)π

+
1
2

1
1 − 2it

(2k−1)π

=

(
1 +
(

2t
(2k − 1)π

)2
)−1

.

(57)

By (53), (56) and (57), we get

∞

∑
n=0

E[Yn]
(2it)n

n!
=

∞

∏
k=1

E
[
e
( Xk
(2k−1)π

)
2it
]

=
∞

∏
k=1

(
1 +
(

2t
(2k − 1)π

)2
)−1

=
2

et + e−t

=
∞

∑
n=0

En
tn

n!
.

(58)

Therefore, by comparing the coefficients on both sides of (58), we get

2ninE[Yn] = En, (n ≥ 0). (59)

Now, we assume that

Z =
∞

∑
k=1

Xk
2kπ

. (60)

Then, the characteristic function of Z is given by

∞

∑
n=0

E[Zn]
(it)n

n!
= E
[ ∞

∑
n=0

Zn (it)
n

n!

]
= E[eZit]

= E
[
e

∞
∑

k=1

( Xk
2kπ

)
it]

=
∞

∏
k=1

E
[
e
( Xk

2kπ

)
it
]
.

(61)
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Now, we note that

E
[
e
( Xk

2kπ

)
it
]
=

1
2

∫ ∞

−∞
e(

it
2kπ )xe−|x|dx

=
1
2

∫ 0

−∞
e(

it
2kπ )xexdx +

1
2

∫ ∞

0
e(

it
2kπ )xe−xdx

=
1
2

(
1

1 + it
2kπ

)
+

1
2

(
1

1 − it
2kπ

)

=
1

1 +
( t

kπ

)2 .

(62)

From (61) and (62), we have

∞

∑
n=0

E[Zn]
(it)n

n!
=

∞

∏
k=1

E
[
e
( Xk

2kπ

)
it
]

=
∞

∏
k=1

(
1 +
(

t
2kπ

)2
)−1

.

(63)

On the other hand, by (48), we get

∞

∏
n=1

(
1 +
(

t
nπ

)2
)−1

=
it

sin(it)
=

2t
et − e−t . (64)

By replacing t by t
2 , we have

∞

∏
n=1

(
1 +
(

t
2nπ

)2
)−1

=
t

e
t
2 − e− t

2

=
∞

∑
n=0

(
1
2

)n−1
bn

tn

n!
.

(65)

Therefore, by (63) and (65), we obtain the following equation

inE[Zn] =

(
1
2

)n−1
bn, (n ≥ 0). (66)

4. Conclusions

In this paper, we obtained several identities of symmetry for the type 2 Bernoulli and Euler
polynomials (see Theorems 1–4). Indeed, they are symmetric identities involving type 2 Bernoulli
polynomials and power sums of consecutive odd positive integers, and the ones involving type 2 Euler
polynomials and alternating power sums of odd positive integers. For the derivation of those identities, we
introduced certain quotients of bosonic p-adic and fermionic p-adic integrals on Zp, which have built-in
symmetries. We note that this idea of using certain quotients of p-adic integrals has produced abundant
symmetric identities (see [5,7,8,18–21] and references therein).

We emphasize here that, even though there have been many results on symmetric identities relating
to some special numbers and polynomials, this paper is the first one that deals with symmetric identities
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involving type 2 Bernoulli polynomials, type 2 Euler polynomials, power sums of odd positive integers
and alternating power sums of odd positive integers.

In [22,23], we derived some identities involving special numbers and moments of random variables
by using the generating functions of the moments of certain random variables. The related special numbers
are Stirling numbers of the first and second kinds, degenerate Stirling numbers of the first and second
kinds, derangement numbers, higher-order Bernoulli numbers and Bernoulli numbers of the second kind.

In this paper, we considered two random variables created from random variables having Laplace
distributions and showed that their moments are closely connected with the type 2 Bernoulli and Euler
numbers. Again, this is the first paper that interprets the type 2 Bernoulli and Euler numbers as the
moments of certain random variables.
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Abstract: In this paper, we introduce the extended degenerate r-central factorial numbers of the second
kind and the extended degenerate r-central Bell polynomials. They are extended versions of the
degenerate central factorial numbers of the second kind and the degenerate central Bell polynomials, and
also degenerate versions of the extended r-central factorial numbers of the second kind and the extended
r-central Bell polynomials, all of which have been studied by Kim and Kim. We study various properties
and identities concerning those numbers and polynomials and also their connections.

Keywords: extended degenerate r-central factorial numbers of the second kind; extended degenerate
r-central bell polynomials

1. Introduction

For λ ∈ R, we recall that the degenerate exponential function ex
λ(t) is defined by (see [1–7])

ex
λ(t) = (1 + λt)

x
λ (1)

When x = 1, we let eλ(t) = e1
λ(t). Note that lim

λ→0
ex

λ(t) = ext.

We use the notation (x)n to denote the falling factorial sequence (x)n, which is defined by (see [8–14])

(x)0 = 1, (x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1) (2)

More generally, for λ ∈ R, the λ-falling factorial sequence (x)n,λ is given by (see [4])

(x)0,λ = 1, (x)n,λ = x(x − λ)(x − 2λ) · · · (x − (n − 1)λ), (n ≥ 1) (3)

Obviously, it is noted that lim
λ→1

(x)n,λ = (x)n, lim
λ→0

(x)n,λ = xn, (n ≥ 0).

In Reference [4], the λ- binomial expansion is defined by

(1 + λt)
x
λ =

∞

∑
l=0

(
x
l

)
λ

tl =
∞

∑
l=0

(x)l,λ
tl

l!
, (4)
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where (
x
l

)
λ

=
(x)l,λ

l!
=

x(x − λ)(x − 2λ) · · · (x − (l − 1)λ)
l!

.

The central factorial sequence is given by

x[0] = 1, x[n] = x(x +
n
2
− 1)(x +

n
2
− 2) · · · (x − n

2
+ 1), (n ≥ 1).

One can then easily show that the generating function of central factorial x[n], (n ≥ 0), is given by
(see [3,15–20]) (

t
2
+

√
1 +

t2

4

)2x

=
∞

∑
n=0

x[n]
tn

n!
(5)

As is defined in [18], for any non-negative integer n, the central factorial numbers of the first kind are
given by

x[n] =
n

∑
k=0

t(n, k)xk. (6)

Then, from (5) and (6), we can show that the generating function of t (n, k) satisfies the following equation:

1
k!

(
2 log

( t
2
+

√
1 +

t2

4

))k

=
∞

∑
n=k

t (n, k)
tn

n!
.

As the inverse to the central factorial numbers of the first kind, the central factorial numbers of the
second kind are defined by (see [18,20–22])

xn =
n

∑
k=0

T2(n, k)x[k], (n ≥ 0) (7)

The generating function of T2(n, k) can be easily derived from (7), which is given by (see [18])

1
k!

(
e

t
2 − e−

t
2

)k
=

∞

∑
n=k

T2(n, k)
tn

n!
, (k ≥ 0) (8)

It can immediately be seen from (8) that

k!T2(n, k) =
k

∑
j=0

(
k
j

)
(−1)j(

1
2

k − j)n. (9)

In Reference [22] were introduced the central Bell polynomials defined by

e
x
(

e
t
2 −e−

t
2

)
=

∞

∑
n=0

B(c)
n (x)

tn

n!
. (10)

The Dobinski-like formula for B(c)
n (x) is given by (see [22])

B(c)
n (x) =

∞

∑
l=0

∞

∑
k=0

(
l + k

k

)
(−1)k 1

(l + k)!

(
l
2
− k

2

)l+1
(11)
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In Reference [3], the degenerate central factorial polynomials of the second kind are defined by

1
k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

ex
λ(t) =

∞

∑
n=k

T2,λ(n, k|x) tn

n!
, (k ≥ 0). (12)

When x = 0, T2,λ(n, k) = T2,λ(n, k|0), these are called degenerate central factorial numbers of the
second kind.

Let us recall that the degenerate central Bell polynomials are defined by (see [3])

e
x

(
e

1
2
λ (t)−e

− 1
2

λ (t)

)
=

∞

∑
n=0

B(c)
n,λ(x)

tn

n!
, (13)

In particular, B(c)
n,λ = B(c)

n,λ(1) are called the degenerate central Bell numbers.

Note that lim
λ→0

B(c)
n,λ(x) = B(c)

n (x), (n ≥ 0).

Carlitz [1] introduced the degenerate Stirling, Bernoulli, and Eulerian numbers as the first degenerate
special numbers. Broder [23] investigated the r-Stirling numbers of the first and second kind as the
numbers counting restricted permutations and restricted partitions, respectively. We recall here that the
r-Stirling numbers of the second kind are given by (see [23])

1
k!

ert(et − 1)k =
∞

∑
n=k

S(r)
2 (n + r, k + r)

tn

n!
, (14)

In this paper, we will introduce the extended degenerate r-central factorial numbers of the second
kind and the extended degenerate r-central Bell polynomials. Central analogues of Stirling numbers of
the second kind and Bell polynomials are, respectively, the central factorial numbers of the second kind
and the central Bell polynomials. Degenerate versions of the central factorial numbers of the second kind
and the central Bell polynomials are, respectively, the degenerate central factorial numbers of the second
kind and the degenerate central Bell polynomials. Extended versions of the degenerate central factorial
numbers of the second kind and the degenerate central Bell polynomials are, respectively, the extended
degenerate r-central factorial numbers of the second kind and the extended degenerate r-central Bell
polynomials. The central factorial numbers of the second kind have many applications in such diverse
areas as approximation theory [21], finite difference calculus, spline theory, spectral theory of differential
operators [24,25], and algebraic geometry [26,27]. For broad applications of the related complete and
incomplete Bell polynomials, we let the reader consult the introduction in [11]. Here, we will study various
properties and identities relating to those numbers and polynomials, and also their connections. Finally,
we note that the present paper can be useful in the area of non-integer systems and let the reader refer
to [28] for more research in this direction.

2. Extended Degenerate r-Central Factorial Numbers of the Second Kind and Extended Degenerate
r-Central Bell Polynomials

From (12) and (13), we note that

∞

∑
n=0

B(c)
n,λ(x)

tn

n!
=

∞

∑
k=0

xk
∞

∑
n=k

T2,λ(n, k)
tn

n!

=
∞

∑
n=0

n

∑
k=0

xkT2,λ(n, k)
tn

n!
.

(15)
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One can compare the coefficients on both sides of (15) to obtain

B(c)
n,λ(x) =

n

∑
k=0

T2,λ(n, k)xk, (n ≥ 0). (16)

Throughout this paper, we assume that r is a nonnegative integer. The following definition is motivated
by (14).

Definition 1. The extended degenerate r-central factorial numbers of the second kind T(r)
λ (n + r, k + r) are defined as

1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
n=k

T(r)
λ (n + r, k + r)

tn

n!
. (17)

Note that lim
λ→0

T(r)
λ (n + r, k + r) = T(r)(n + r, k + r), (n, k ≥ 0),

where T(r)(n + r, k + r) is the extended r-central factorial numbers of the second kind given by

1
k!

ert
(

e
t
2 − e−

t
2

)k
=

∞

∑
n=k

T(r)(n + r, k + r)
tn

n!
. (18)

Theorem 1. For n, k ∈ N∪ {0}, with n ≥ k, we have

T(r)
λ (n + r, k + r) =

n

∑
l=k

(
n
l

)
T2,λ(l, k)(r)n−l,λ.

Proof. By (17), we get

1
k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

er
λ(t) =

∞

∑
l=k

T2,λ(l, k)
tl

l!

∞

∑
m=0

(r)m,λ
tm

m!

=
∞

∑
n=k

n

∑
l=k

(
n
l

)
T2,λ(l, k)(r)n−l,λ

tn

n!
.

(19)

Therefore, by (17) and (19), we obtain the result.

We note that by taking the limit as λ tends to 0, we get

T(r)(n + r, k + r) =
n

∑
l=k

(
n
l

)
rn−lT2(l, k). (20)

Theorem 2. For n, k ≥ 0, with n ≥ k, we have

T(r)
λ (n + r, k + r) =

n

∑
m=k

m

∑
l=k

(
m
l

)
S1(n, m)T2(l, k)λn−mrm−l , (21)

where S1(n, m) are the signed Stirling numbers of the first kind.
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Proof. Replacing t by 1
λ log(1 + λt) in (18), we obtain

1
k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

er
λ(t) =

∞

∑
m=k

λ−mT(r)(m + r, k + r)
1

m!

(
log(1 + λt)

)m

=
∞

∑
m=k

λ−mT(r)(m + r, k + r)
∞

∑
n=m

S1(n, m)
λntn

n!

=
∞

∑
n=k

n

∑
m=k

λn−mS1(n, m)T(r)(m + r, k + r)
tn

n!
.

(22)

Now, by substituting the expression of T(r)(m + r, k + r) in (20) into (22), we finally get

1
k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

er
λ(t) =

∞

∑
n=k

n

∑
m=k

m

∑
l=k

(
m
l

)
S1(n, m)T2(l, k)λn−mrm−l tn

n!
,

from which the result follows.

Example 1. Here, we will illustrate the formula (21) for small values of n. The following values of T2(n, k) can be
determined, for example, from the formula in (9):

T2(n, n) = 1, T2(n, 0) = δn,0, T2(2, 1) = T2(3, 2) = T2(4, 1) = T2(4, 3) = 0, T2(3, 1) = 1
4 , T(4, 2) = 1. (23)

In addition, we recall the following values of S1(n, k):

S1(n, n) = 1, S1(n, 0) = δn,0, S1(2, 1) = −1, S1(3, 1) = 2,

S1(3, 2) = −3, S1(4, 1) = S1(4, 3) = −6, S1(4, 2) = 11.
(24)

Now, from (21), (23), and (24), we easily have

T(r)
λ (n + r, n + r) = 1, T(r)

λ (1 + r, r) = r, T(r)
λ (2 + r, r) = −λr + r2,

T(r)
λ (3 + r, r) = 2λ2r − 3λr2 + r3, T(r)

λ (4 + r, r) = −6λ3r + 11λ2r2 − 6λr3 + r4,

T(r)
λ (2 + r, 1 + r) = −λ + 2r, T(r)

λ (3 + r, 1 + r) = 2λ2 − 6λr + 3r2 +
1
4

,

T(r)
λ (3 + r, 2 + r) = −3λ + 3r, T(r)

λ (4 + r, 1 + r) = −6λ3 + 22λ2r − 18λr2 − 3
2

λ + 4r3 + r,

T(r)
λ (4 + r, 2 + r) = 11λ2 − 18λr + 6r2 + 1, T(r)

λ (4 + r, 3 + r) = −6λ + 4r.

Theorem 3. For n, k ≥ 0, with n ≥ k, we have

T(r)
λ (n + r, k + r) =

n−k

∑
m=0

(
m + k

m

)
m!
(

r
m

)
T2,λ(n, m + k|m

2
).
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Proof. Now, we observe that

1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
1
k!

e
r
2
λ (t)

(
e

1
2
λ (t)− e−

1
2

λ (t) + e−
1
2

λ (t)
)r (

e
1
2
λ (t)− e−

1
2

λ (t)
)k

=
1
k!

∞

∑
m=0

(
r
m

)(
e

1
2
λ (t)− e−

1
2

λ (t)
)m+k

e
m
2

λ (t)

=
∞

∑
m=0

(
r
m

)
(m + k)!

k!
1

(m + k)!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)m+k

e
m
2

λ (t)

=
∞

∑
m=0

(
r
m

)
m!
(

m + k
m

) ∞

∑
n=m+k

T2,λ(n, m + k|m
2
)

tn

n!

=
∞

∑
n=k

n−k

∑
m=0

(
r
m

)
m!
(

m + k
m

)
T2,λ(n, m + k|m

2
)

tn

n!
.

(25)

Therefore, by (17) and (25), we obtain the theorem.

One can easily show that the inverse function of eλ(t) is given by

logλ(t) =
tλ − 1

λ
, (t > 0),

so that eλ(logλ(t)) = logλ(eλ(t)) = t, lim
λ→0

logλ(t) = log(t).

If g(t) = e
1
2
λ (t)− e−

1
2

λ (t), then one can see that

g−1(t) = logλ

(
t
2
+

√
1 +

t2

4

)2

, (26)

where g ◦ g−1(t) = g−1 ◦ g(t) = t.

Theorem 4. For n ≥ 0, we have

(x + r)n,λ =
n

∑
k=0

T(r)
λ (n + r, k + r)x[k]

=
n

∑
k=0

T2,λ(n, k| k
2
+ r)(x)k.
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Proof. By (1) and (4), we get

ex+r
λ (t) = er

λ(t) (eλ(t)− 1 + 1)x

= er
λ(t)

∞

∑
k=0

(x)k
1
k!

(eλ(t)− 1)k

=
∞

∑
k=0

(x)k
1
k!

e
k
2+r
λ (t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
k=0

(x)k

∞

∑
n=k

T2,λ(n, k| k
2
+ r)

tn

n!

=
∞

∑
n=0

n

∑
k=0

(x)kT2,λ(n, k| k
2
+ r)

tn

n!
.

(27)

Now, from the observations in (26) and (5), we have

ex+r
λ (t) = er

λ(t)e
x
λ(t)

= er
λ(t)

⎛
⎝eλ

⎛
⎝logλ

(
g(t)

2
+

√
1 +

g(t)2

4

)2
⎞
⎠
⎞
⎠x

= er
λ(t)

(
g(t)

2
+

√
1 +

g(t)2

4

)2x

=
∞

∑
k=0

x[k]
1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
k=0

x[k]
∞

∑
n=k

T(r)
λ (n + r, k + r)

tn

n!

=
∞

∑
n=0

n

∑
k=0

x[k]T(r)
λ (n + r, k + r)

tn

n!
.

(28)

From (4), we note also that

ex+r
λ (t) =

∞

∑
n=0

(x + r)n,λ
tn

n!
. (29)

Therefore, by (27), (28), and (29), we have the desired result.

Note that, taking the limit as λ tends to 0, we have

(x + r)n =
n

∑
k=0

T(r)(n + r, k + r)x[k] =
n

∑
k=0

T2(n, k| k
2
+ r)(x)k .

Definition 2. The extended degenerate r-central Bell polynomials B(c,r)
n,λ (x) are defined by

er
λ(t)e

x

(
e

1
2
λ (t)−e

− 1
2

λ (t)

)
=

∞

∑
n=0

B(c,r)
n,λ (x)

tn

n!
. (30)

Specifically, B(c,r)
n,λ (1) = B(c,r)

n,λ are called the extended degenerate r-central Bell numbers.
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Theorem 5. For n ≥ 0, we have

B(c,r)
n,λ (x) =

n

∑
k=0

xkT(r)
λ (n + r, k + r).

Proof. From (30), we note that

er
λ(t)e

x

(
e

1
2
λ (t)−e−

1
2 (t)

)
=

∞

∑
k=0

xk 1
k!

(
e

1
2
λ (t)− e−

1
2 (t)
)k

er
λ(t)

=
∞

∑
k=0

xk
∞

∑
n=k

T(r)
λ (n + r, k + r)

tn

n!

=
∞

∑
n=0

n

∑
k=0

xkT(r)
λ (n + r, k + r)

tn

n!
.

(31)

Therefore, from (30) and (31), the theorem follows.

The central difference operator δ for a given function f is given by

δ f (x) = f (x +
1
2
)− f (x − 1

2
),

and by induction we can show

δk f (x) =
k

∑
l=0

(
k
l

)
(−1)k−l f (x + l − k

2
), (k ≥ 0). (32)

Theorem 6. Let n, k be nonnegative integers. Then, we have

1
k!

δk(r)n,λ =

{
0, if n < k,

T(r)
λ (n + r, k + r), if n ≥ k.

Proof. By the binomial theorem, we have

1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2 (t)
)k

=
1
k!

er− k
2

λ (t)
k

∑
l=0

(
k
l

)
(−1)k−l el

λ(t)

=
1
k!

k

∑
l=0

(
k
l

)
(−1)k−l er− k

2+l
λ (t)

=
∞

∑
n=0

1
k!

k

∑
l=0

(
k
l

)
(−1)k−l(r − k

2
+ l)n,λ

tn

n!
.

(33)

If we choose f (x) = (x)n,λ, (n ≥ 0) in (32), then we have

δk(r)n,λ =
k

∑
l=0

(
k
l

)
(r + l − k

2
)n,λ(−1)k−l . (34)
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From (33) and (34), the following equation is obtained.

1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
n=0

1
k!

δk(r)n,λ
tn

n!
. (35)

Therefore, by (17) and (35), we have the result.

From Theorem 4 and Theorem 5, we have

B(c,r)
n,λ (x) =

n

∑
k=0

T(r)
λ (n + r, k + r)xk

=
n

∑
k=0

xk 1
k!

δk(r)n,λ, (n ≥ 0).
(36)

Theorem 7. For n ≥ 0, we have

B(c,r)
n,λ (x) =

n

∑
m=0

(
n
m

)
(r)n−m,λB(c)
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Proof. From (30), we note that
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.

(37)

Therefore, by comparing the coefficients on both sides of (37), the desired result is achieved.

Theorem 8. For m, n, k ≥ 0, with n ≥ m + k, we have

(
m + k

m

)
T(r)

λ (n + r, m + k + r) =
n−k

∑
l=m

(
n
l

)
T(r)
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Proof. We further observe that
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(38)

where m, k are nonnegative integers. Alternatively, the left-hand side of (38) can be expressed by
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)m 1
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(39)
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Therefore, by (38) and (39), the desired identity is obtained.

3. Conclusions

In recent years, many researchers have studied a lot of old and new special numbers and polynomials
by means of generating functions, through combinatorial methods, umbral calculus, differential equations,
p-adic integrals, p-adic q-integrals, special functions, complex analyses, and so on.

The study of degenerate versions of special numbers and polynomials began with Carlitz [1]. Kim
and his colleagues have been studying degenerate versions of various special numbers and polynomials
by making use of the same methods. Studying degenerate versions of known special numbers and
polynomials can be very a fruitful research and is highly rewarding. For example, this line of study led
even to the introduction of degenerate Laplace transforms and degenerate gamma functions (see [4]).

In this paper, we introduced the extended degenerate r-central factorial numbers of the second kind
and the extended degenerate r-central Bell polynomials. We studied various properties and identities
relating to those numbers and polynomials and also their connections. This study was done by using
generating function techniques.

Central analogues of Stirling numbers of the second kind and Bell polynomials are, respectively, the
central factorial numbers of the second kind and the central Bell polynomials. Degenerate versions of
the central factorial numbers of the second kind and the central Bell polynomials are, respectively, the
degenerate central factorial numbers of the second kind and the degenerate central Bell polynomials.
Extended versions of the degenerate central factorial numbers of the second kind and the degenerate
central Bell polynomials are, respectively, the extended degenerate r-central factorial numbers of the
second kind and the extended degenerate r-central Bell polynomials. The central factorial numbers of the
second kind have many applications in diverse areas such as approximation theory [21], finite difference
calculus, spline theory, spectral theory of differential operators [24,25], and algebraic geometry [26,27].

For future research projects, we would like to continue to work on some special numbers and
polynomials and their degenerate versions, as well as try to explore their applications not only in
mathematics but also in the sciences and engineering [29].
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Abstract: An interesting regular increasing monotone (RIM) quantifier problem is investigated.
Amin and Emrouznejad [Computers & Industrial Engineering 50(2006) 312–316] have introduced the
extended minimax disparity OWA operator problem to determine the OWA operator weights. In this
paper, we propose a corresponding continuous extension of an extended minimax disparity OWA
model, which is the extended minimax disparity RIM quantifier problem, under the given orness
level and prove it analytically.

Keywords: fuzzy sets; RIM quantifier; extended minimax disparity; OWA model; RIM quantifier
problem

1. Introduction

One of the important topic in the theory of ordered weighted averaging (OWA) operators is
the determination of the associated weights. Several authors have suggested a number of methods
for obtaining associated weights in various areas such as decision making, approximate reasoning,
expert systems, data mining, fuzzy systems and control [1–18]. Researchers can easily see most of
OWA papers in the recent bibliography published in Emrouznejad and Marra [5]. Yager [16] proposed
RIM quantifiers as a method for finding OWA weight vectors through fuzzy linguistic quantifiers.
Liu [19] and Liu and Da [20] gave solutions to the maximum-entropy RIM quantifier model when the
generating functions are differentiable. Liu and Lou [21] studied the equivalence of solutions to the
minimax ratio and maximum-entropy RIM quantifier models, and the equivalence of solutions to the
minimax disparity and minimum-variance RIM quantifier problems. Hong [22,23] gave the proof of
the minimax ratio RIM quantifier problem and the minimax disparity RIM quantifier model when the
generating functions are absolutely continuous. He also gave solutions to the maximum-entropy RIM
quantifier model and the minimum-variance RIM quantifier model when the generating functions
are Lebesgue integrable. Liu [24] proposed a general RIM quantifier determination model, proved
it analytically using the optimal control method and investigated the solution equivalence to the
minimax problem for the RIM quantifier. However, Hong [11] recently provided a modified model for
the general RIM quantifier model and the correct formulation of Liu’s result.

Amin and Emrouznejad [1] have introduced the following the extended minimax disparity OWA
operator model to determine the OWA operator weights:

Minimize max
i∈{1,··· ,n−1}, j∈{i+1,··· ,n}

|wi − wj|

subject to orness(W) =
n

∑
i=1

n − i
n − 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.
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In this paper, we propose a corresponding extended minimax disparity model for RIM quantifier
determination under given orness level and prove it analytically. This paper is organized as follows:
Section 2 presents the preliminaries and Section 3 reviews some models for the RIM quantifier problems
and propose the extended minimax disparity model for the RIM quantifier problem. In Section 4,
we prove the extended minimax disparity model problem mathematically for the case in which the
generating functions are Lesbegue integrable functions.

2. Preliminaries

Yager [15] introduced a new aggregation technique based on the OWA operators. An OWA
operator of dimension n is a function F : Rn → R that has an associated weighting vector
W = (w1, · · · , wn)T of having the properties 0 ≤ wi ≤ 1, i = 1, · · · , n, w1 + · · · + wn = 1,
and such that

F(a1, · · · , an) =
n

∑
i=1

wibi,

where bj is the jth largest element of the collection of the aggregated objects {a1, · · · , an}. In [15], Yager
defined a measure of “orness” associated with the vector W of an OWA operator as

orness(W) =
n

∑
i=1

n − i
n − 1

wi,

and it characterizes the degree to which the aggregation is like an or operation.
The RIM quantifiers was introduced by Yager [16] as a method for obtaining the OWA weight

vectors via fuzzy linguistic quantifiers. The RIM quantifiers can provide information aggregation
procedures guided by a dimension independent description and verbally expressed concepts of the
desired aggregation.

Definition 1 ([14]). A fuzzy subset Q is called a RIM quantifier if Q(0) = 0, Q(1) = 1 and Q(x) ≥ Q(y)
for x > y.

The quantifier f or all is represented by the fuzzy set

Q∗(r) =
{

1, x = 1,

0, x �= 1.

The quantifier there exist, not none, is defined as

Q∗(r) =
{

0, x = 0,

1, x �= 0.

Both of these are examples of RIM quantifier. To analyze the relationship between OWA and RIM
quantifier, a generating function representation of RIM quantifier was proposed.

Definition 2. For f (t) on [0, 1] and a RIM quantifier Q(x), f (t) is called generating function of Q(x),
if it satisfies

Q(x) =
∫ x

0
f (t)dt

where f (t) ≥ 0 and
∫ 1

0 f (t)dt = 1.

If Q(x) is an absolutely continuous function, then f (x) is a Lesbegue integrable function; moreover,
f (x) is unique in the sense of “almost everywhere” in abbreviated form, a.e.
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Yager extended the orness measure of OWA operator, and defined the orness of a RIM
quantifier [16].

orness(Q) =
∫ 1

0
Q(x)dx =

∫ 1

0
(1 − t) f (t)dt.

As the RIM quantifier can be seen as the continuous form of OWA operator with generating
function, OWA optimization problem is extended to the RIM quantifier case.

The definitions of essential supremum and essential infimum [21] of f are as follows:

ess sup f = inf {t : |{x ∈ [0, 1] : f (x) > t}| = 0} ,

ess in f f = sup {t : |{x ∈ [0, 1] : f (x) < t}| = 0} ,

where |E| is the Lebesgue measure of the Lebesgue measurable set E.

3. Models for the RIM Quantifier Problems

Fullér and Majlender [8] proposed the minimum variance model, which minimizes the variance of
OWA operator weights under a given level of orness. Their method requires the proof of the following
mathematical programming problem:

Minimize D(W) =
1
n

n−1

∑
i=1

(
wi − 1

n

)2

subject to orness(W) =
n

∑
i=1

n − i
n − 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

Liu [19,24] extended the minimum variance problem for OWA operator to the RIM quantifier
problem case:

Minimize Df =
∫ 1

0
f 2(r)dr − 1

subject to
∫ 1

0
r f (r)dr = 1 − α, 0 < α < 1,∫ 1

0
f (r)dr = 1, f (r) ≥ 0.

Wang and Parkan [13] proposed the minimax disparity problem as follows:

Minimize max
i∈{1,··· ,n−1}

|wi − wi+1|

subject to orness(W) =
n

∑
i=1

n − i
n − 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

Similar to the minimax disparity OWA operator problem, Hong [11] proposed the minimax
disparity RIM quantifier problem as follows:

Minimize ess supt∈[0,1]
∣∣ f ′(t)∣∣

subject to
∫ 1

0
r f (r)dr = 1 − α, 0 < α < 1,∫ 1

0
f (r)dr = 1, absolutely continuous f (r) ≥ 0.
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Wang et al. [14] have introduced the following least squares deviation (LSD) method as an
alternative approach to determine the OWA operator weights.

Minimize
n−1

∑
i=1

(wi − wi−1)
2

subject to orness(W) =
n

∑
i=1

n − i
n − 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

Hong [25] proposed the following corresponding least squares disparity RIM quantifier problem
under a given orness level:

Minimize Df =
∫ 1

0
( f ′)2(r)dr

subject to
∫ 1

0
(1 − r) f (r)dr = α, 0 < α < 1,∫ 1

0
f (r)dr = 1,

f (r) > 0.

Recently, Amin and Emrouznejad [1] proposed a problem of minimizing the maximum disparity
of any distinct pairs of weights instead of adjacent weights. that is:

Minimize max
i∈{1,··· ,n−1}, j∈{i+1,··· ,n}

|wi − wj| (1)

subject to orness(W) =
n

∑
i=1

n − i
n − 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

We consider the following easy important fact.
Note

maxi∈{1,··· ,n−1}, j∈{i+1,··· ,n}|wi − wj| = max wi − min wi.

For this, first it is trivial that

maxi∈{1,··· ,n−1}, j∈{i+1,··· ,n}|wi − wj| ≤ max wi − min wi.

Next, suppose that max wi = wi0 , min wi = wj0 . If i0 < j0, then

max wi − min wi = wi0 − wj0

= |wi0 − wj0 |
≤ maxi∈{1,··· ,n−1}, j∈{i0+1,··· ,n}|wi − wj|

If i0 > j0, then

max wi − min wi = wi0 − wj0

= |wj0 − wi0 |
≤ maxi∈{1,··· ,n−1}, j∈{j0+1,··· ,n}|wi − wj|.

and hence the equality holds.
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Then the corresponding extended minimax disparity model for RIM quantifier problem with
given orness level can be proposed as follows:

Minimize ess sup f − ess in f f (2)

subject to
∫ 1

0
r f (r)dr = 1 − α, 0 < α < 1,∫ 1

0
f (r)dr = 1, f (r) ≥ 0.

4. Relation of Solutions between OWA Operator Model and RIM Quantifier Model

The following result is the solution of the extended minimax OWA operator problem given by
Hong [26].

Theorem 1 (n = 2k:even). An optimal weight for the constrained optimization problem (2) for a given level of
α = orness(W) should satisfy the following equation:

H(α) = Minimize

{
max

i∈{1,··· ,n−1}, j∈{i+1,··· ,n}
|wi − wj|

}
=

∣∣∣∣ (1 − 2α)(n − 1)
(n − m)m

∣∣∣∣
w∗

1 = w∗
2 = · · · = w∗

m, w∗
k+1 = w∗

k+2 = · · · = w∗
n,

where

w∗
1 =

m − (1 − 2α)(n − 1)
nm

and

w∗
m+1 =

n − m − (2α − 1)(n − 1)
n(n − m)

.

Here m satisfies the following:

m =

⎧⎪⎪⎨
⎪⎪⎩
�(1 − 2α)(n − 1)�, if 0 ≤ α ≤ n−2

4(n−1) ,

k, if n−2
4(n−1) ≤ α ≤ 3n−2

4(n−1) ,

n − �(2α − 1)(n − 1)�, if 3n−2
4(n−1) ≤ α ≤ 1.

where �x� = m + 1 ⇐⇒ m < x ≤ m + 1 for any integer m.

Can we get a hint about the solution of the extended minimax Rim quantifier problem? Here, we
suggest an idea.

For a given associated weighting vector Wn = (w1, · · · , wn) of having the property
w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, · · · , n, we define a generating function f (t)

fWn(x) = nwi, x ∈
[

i
n

,
i + 1

n

)
, i = 0, 1, · · · , n − 1,

having the property
∫ 1

0 f n
W(x)dx = 1 and let

f ∗(x) = lim
n→∞

= fWn(x).

Can this function f ∗(x) be a solution of the corresponding extended minimax Rim quantifier
problem? Maybe, yes! Let’s try to follow this idea.
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For given W∗
n = (w∗

1, · · · , w∗
n) from above Theorem 1, we have for 0 < α ≤ 1

4 ,

fW∗
n (x) =

⎧⎨
⎩

�(1−2α)(n−1)�−(1−2α)(n−1)
�(1−2α)(n−1)� , if x ∈

[
0, �(1−2α)(n−1)�

n

)
n−�(1−2α)(n−1)�−(2α−1)(n−1)

n−�(1−2α)(n−1)� , if x ∈
[ �(1−2α)(n−1)�

n , 1
]

.

for 1
4 ≤ α ≤ 3

4 ,

fW∗
n (x) =

⎧⎨
⎩

n/2−(1−2α)(n−1)
n/2 , if x ∈

[
0, 1

2

)
n/2−(2α−1)(n−1)

(n/2) , if x ∈
[

1
2 , 1
]

.

for 3/4 ≤ α ≤ 1,

fW∗
n (x) =

⎧⎨
⎩

n−�(2α−1)(n−1)�−(1−2α)(n−1)
n−�(2α−1)(n−1)� , if x ∈

[
0, 1 − �(1−2α)(n−1)�

n

)
�(2α−1)(n−1)�−(2α−1)(n−1)

�(2α−1)(n−1)� if x ∈
[
1 − �(1−2α)(n−1)�

n , 1
]

.

Let limn→∞ fW∗
n (x) = f ∗(x), then

1. for 0 < α ≤ 1
4 ,

f ∗(r) =
{

0, if r ∈ [0, 1 − 2α),
1

2α , if r ∈ [1 − 2α, 1].

2. for 1
4 ≤ α ≤ 3

4 ,

f ∗(r) =

⎧⎨
⎩4α − 1, if r ∈

[
0, 1

2

)
,

3 − 4α, if r ∈
[

1
2 , 1
]

.

3. for 3
4 < α ≤ 1,

f ∗(r) =

⎧⎨
⎩

1
2(1−α)

, if r ∈ [0, 2α],

0, elsewhere.

In the following section, we will show that f ∗ can be the solution of the extended minimax RIM
quantifier problem.

5. Proof of the Extended Minimax RIM Quantifier Problem

In this section, we prove the following main result.

Theorem 2. The optimal solution for problem (2) for given orness level α is the weighting function f ∗ such that

1. for 0 < α ≤ 1
4 ,

f ∗(r) =
{

0 a.e., if r ∈ [0, 1 − 2α),
1

2α a.e., if r ∈ [1 − 2α, 1].

2. for 1
4 ≤ α ≤ 3

4 ,

f ∗(r) =

⎧⎨
⎩4α − 1 a.e., if r ∈

[
0, 1

2

)
,

3 − 4α a.e., if r ∈
[

1
2 , 1
]

.
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3. for 3
4 < α ≤ 1,

f ∗(r) =

⎧⎨
⎩

1
2(1−α)

a.e., if r ∈ [0, 2α],

0 a.e., elsewhere.

and

H(α) = Minimize |ess sup f − ess in f f | =

⎧⎪⎪⎨
⎪⎪⎩

1
2α if 0 < α ≤ 1

4 ,

4|(1 − 2α)| if 1
4 ≤ α ≤ 3

4 ,
1

2α if 3
4 < α ≤ 1.

We need the following two lemma’s to prove the main result. We denote Df (x) =
∫ x

0 f (t)dt,

0 ≤ x ≤ 1 and E( f ) =
∫ 1

0 r f (r)dr.
The following result is known.

Lemma 1. E( f ) =
∫ 1

0 (1 − Df (t))dt.

Lemma 2. Let ess in f f = β0 ≥ 0 and ess sup f = β1 > 0 such that
∫ 1

0 f (r)dr = 1 and define a function
f0 as

f0(r) =

{
β0 a.e., if r ∈ [0, c0),

β1 a.e., if r ∈ [c0, 1].

for some c0 ∈ (0, 1) such that
∫ 1

0 f0(r)dr = 1. Then we have E( f ) ≤ E( f0) and the equality holds iff f = f0 a.e.

Proof. The result follows immediately from Lemma 1 if we show that Df0(x) ≤ Df (x), x ∈ [0, 1].
It is clear that Df0(x) ≤ Df (x), x ∈ [0, c0]. Suppose that there exists a point t0 ∈ (c0, 1) such that
Df0(t0) > Df (t0). Then

∫ 1

t0

β1dr =
∫ 1

t0

f0(r)dr = 1 − Df0(t0) < 1 − Df (t0) =
∫ 1

t0

f (r)dr

which implies ess sup(t0,1) f > β1. It is a contradiction.

Proof of Theorem 2. If α = 1
2 , we clearly have the optimal solution is f ∗(r) = 1 a.e. for r ∈ [0, 1].

Note that ess in f f ∗ < 1 < ess sup f ∗ for α ∈
(

0, 1
2

)
. Without loss of generality, we can assume

that α ∈
(

0, 1
2

)
, since if a weighting function f ∗(r) is optimal to problem (2) for some given level of

preference α ∈
(

0, 1
2

]
, then f ∗(1 − r) is optimal to the problem (2) for a given level of preference 1 − α.

Indeed, since Df = Df R ,
∫ 1

0 f (r)dr =
∫ 1

0 f R(r)dr and E( f R) = 1 − E( f ), where f R(r) = f (1 − r)
hence for α > 1

2 , we can consider problem (2) for the level of preference with index 1 − α, and then
take the reverse of that optimal solution. We can easily check that the weighting functions, f ∗, given
above are feasible for problem (2). We show that f ∗ is the unique optimal solution for a given α. Let
nonnegative function f satisfy 1 =

∫ 1
0 f (r)dr and E( f ) =

∫ 1
0 r f (r)dr = 1 − α. Let ess in f f = β0 and

ess sup f = β1.

Case (A): α ∈
(

0, 1
4

]
.
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We note that ess in f f ∗ − ess in f f ∗ = 1
2α . We will show that β1 − β0 ≥ 1

2α . To show this, we
define a function f0 as

f0(r) =

{
β0 if r ∈ [0, x0),

β1 if r ∈ [x0, 1],

for some x0 ∈ (0, 1) such that
∫ 1

0 f0(r)dr = 1. Then by Lemma 2, E( f ) ≤ E( f0). Suppose that
β1 − β0 < 1

2α and define another function f ∗0 as

f ∗0 (r) =
{

β0 if r ∈ [0, x∗0),
β0 +

1
2α if r ∈ [x∗0 , 1],

for some x∗0 ∈ (0, 1) such that
∫ 1

0 f ∗0 (r)dr = 1. Then E( f0) < E( f ∗0 ). We note that 1 = β0x∗0 + (1 −
x∗0)(β0 +

1
2α ). Then

x∗0 = 2αβ0 + 1 − 2α. (3)

We know that

E( f ∗0 ) = β0

∫ x∗0

0
xdx +

(
β0 +

1
2α

) ∫ 1

x∗0
xdx

=
β0

2
+

1
4α

− x∗0
2

4α

and

E( f ∗) =
1

2α

∫ 1

1−2α
xdx = 1 − α.

And we have

E( f ∗)− E( f ∗0 ) =
1
2

x∗0
2

2α
− 1

2
(1 − 2α)2

2α
− β0

2

=
1
2

[
1

2α
x∗0

2 − (1 − 2α)2

2α
− β0

]

=
1
2

[
1

2α
(2αβ0 + 1 − 2α)2 − (1 − 2α)2

2α
− β0

]

=
β0

2
[2αβ0 + 2(1 − 2α)− 1]

≥ 0

where the third equality comes from (3) and the last inequality comes from the facts that 1 − 2α ≥ 1
2 ,

β0 ≥ 0 and α > 0. This proves E( f ) < E( f ∗0 ) ≤ E( f ∗) = 1 − α, which is a contradiction. Hence f ∗ is

an optimal solution for the case of α ∈
(

0, 1
4

]
.

Case (B): α ∈
(

1
4 , 1

2

)
.

We note that ess in f f ∗ − ess in f f ∗ = 4(1 − 2α). We will show that β1 − β0 ≥ 4(1 − 2α). As in
the Case (A), we define a function f0 as

f0(r) =

{
β0 if r ∈ [0, x0),

β1 if r ∈ [x0, 1],
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for some x0 ∈ (0, 1) such that
∫ 1

0 f0(r)dr = 1. Then by lemma 2, E( f ) ≤ E( f0). Suppose that
β1 − β0 < 1

2α and define another function f ∗1 as

f ∗1 (r) =
{

β0 if r ∈ [0, x∗1),
β0 + 4(1 − 2α) if r ∈ [x∗1 , 1],

for some x∗1 ∈ (0, 1) such that
∫ 1

0 f ∗1 (r)dr = 1. Then, since x0 < x∗1, by lemma 2 E( f0) < E( f ∗1 ). We
note that 1 = β0x∗1 + (1 − x∗1)(β0 + 4(1 − 2α)). Then

x∗1 = 1 +
β0 − 1

4(1 − 2α)

and

x∗1
2 = 1 +

β0 − 1
2(1 − 2α)

+
(β0 − 1)2

16(1 − 2α)2 (4)

We know that

E( f ∗0 ) = β0

∫ x∗1

0
xdx + (β0 + 4(1 − 2α))

∫ 1

x∗1
xdx

=
1
2
[β0 + 4(1 − 2α)]− 2(1 − 2α)x∗1

2

and

E( f ∗) = (4α − 1)
∫ 1

2

0
xdx + (3 − 4α)

∫ 1

1
2

xdx

= 1 − α.

Then we have that

E( f ∗)− E( f ∗1 ) = 3α − 1 − β0

2
+ 2(1 − 2α)x∗1

2

=
(β0 − 1)2

8(1 − 2α)
+

β0

2
− α

=
[β0 − (4α − 1)]2

8(1 − 2α)

≥ 0

where the second equality comes from (4) and hence E( f ) < E( f ∗1 ) ≤ E( f ∗) = 1 − α, which is a
contradiction. This completes the proof.

6. Conclusions

Previous studies have suggested a number of methods for obtaining optimal solution of the RIM
quantifier problem. This paper proposes the extended minimax disparity RIM quantifier problem
under a given orness level. We completely prove it analytically.
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Abstract: Hong investigated the relationship between the minimax disparity minimum variance
regular increasing monotone (RIM) quantifier problems. He also proved the equivalence of their
solutions to minimum variance and minimax disparity RIM quantifier problems. Hong investigated
the relationship between the minimax ratio and maximum entropy RIM quantifier problems and
proved the equivalence of their solutions to the maximum entropy and minimax ratio RIM quantifier
problems. Liu proposed a general RIM quantifier determination model and proved it analytically
by using the optimal control technique. He also gave the equivalence of solutions to the minimax
problem for the RIM quantifier. Recently, Hong proposed a modified model for the general minimax
RIM quantifier problem and provided correct formulation of the result of Liu. Thus, we examine the
general minimum model for the RIM quantifier problem when the generating functions are Lebesgue
integrable under the more general assumption of the RIM quantifier operator. We also provide a
solution equivalent relationship between the general maximum model and the general minimax
model for RIM quantifier problems, which is the corrected and generalized version of the equivalence
of solutions to the general maximum model and the general minimax model for RIM quantifier
problems of Liu’s result.

Keywords: OWA operator; RIM quantifier; maximum entropy; minimax ratio; generating function;
minimal variability; minimax disparity; solution equivalence

1. Introduction

One of the important topics in the theory of ordered weighted averaging (OWA) operators is
the determination of the associated weights. Several authors have suggested a number of methods
for obtaining associated weights in various areas such as decision-making, approximate reasoning,
expert systems, data mining, fuzzy systems and control [1–22]. Yager [12] proposed RIM quantifiers
as a method for finding OWA weight vectors through fuzzy linguistic quantifiers. Liu [15] and Liu
and Da [16] gave solutions to the maximum-entropy RIM quantifier model when the generating
functions are differentiable. Liu and Lou [9] studied the equivalence of solutions to the minimax ratio
and maximum-entropy RIM quantifier models, and the equivalence of solutions to the minimax
disparity and minimum-variance RIM quantifier problems. Hong [17,18] gave the proof of the
minimax ratio RIM quantifier problem and the minimax disparity RIM quantifier model when the
generating functions are absolutely continuous. He also gave solutions to the maximum-entropy RIM
quantifier model and the minimum-variance RIM quantifier model when the generating functions are
Lebesgue integrable.

Based on these results, Hong [17,18] provided a relationship between the minimax disparity
and minimum-variance RIM quantifier problems. He also provided a correct relationship between
the minimax ratio and maximum-entropy RIM quantifier models. Liu [19] suggested a general RIM
quantifier determination model and proved it analytically using the optimal control methods. He also
studied the solution equivalence to the minimax problem for the RIM quantifier.

Symmetry 2019, 11, 455; doi:10.3390/sym11040455 www.mdpi.com/journal/symmetry181
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This paper investigates the general minimax model for the RIM quantifier problem for the case in
which the generating functions are absolutely continuous and a generalized solution to the general
minimum model for the RIM quantifier problem for the case in which the generating functions are
Lebesgue integrable. Moreover, this paper provides a solution equivalent relationship between the
general maximum model and the general minimax model for RIM quantifier problems and generalizes
the results of Hong [17,18]. In this paper, we improve and extend Liu’s theorems to be suitable
for absolutely continuous generating functions. We have corrected and improved Theorem 13 [19]
by using the absolutely continuous condition of generating functions and the absolute continuity
condition of F′ for the general minimax model for the RIM quantifier problem. Theorem 9 [19] has
been improved using the Lebesgue integrability condition of generating functions and the continuity
condition of F′ for the general maximum model for the RIM quantifier problem.

Based on these results, we give a correct relationship between the general minimum model and
the general minimax model for RIM quantifier problems.

2. Preliminaries

Yager [11] proposed a new aggregation technique based on OWA operators. An OWA operator of
dimension n is a mapping F : Rn → R that has an associated weight vector W = (w1, · · · , wn)T with
the properties w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, · · · , n, such that

F(a1, · · · , an) =
n

∑
i=1

wibi,

where bj is the jth largest element of the collection of the aggregated objects {a1, · · · , an}. In [11], Yager
introduced a measure of “orness” associated with the weight vector W of an OWA operator:

orness(W) =
n

∑
i=1

n − i
n − 1

wi.

This measure characterizes the degree to which the aggregation is like an OR operation.
Here, min, max, and average correspond to W∗, W∗ and WA respectively, where W∗ =

(1, 0, · · · , 0), W∗ = (0, 0, · · · , 1) and WA = (1/n, 1/n, · · · , 1/n). Clearly, orness(W∗) =

1, orness(W∗) = 0 and orness(WA) = 1/2.
Yager [12] introduced RIM quantifiers as a method for obtaining OWA weight vectors through

fuzzy linguistic quantifiers.

Definition 1 ([12]). A fuzzy subset Q on the real line is called a RIM quantifier if Q(0) = 0, Q(1) = 1 and
Q(x) ≥ Q(y) for x > y.

The quantifier f or all is represented by the fuzzy set

Q∗(r) =
{

1, if x = 1,

0, if x �= 1.

The quantifier there exists is defined as

Q∗(r) =
{

0, if x = 0,

1, if x �= 0.

Both of these are examples of the RIM quantifier. A generating function representation of
RIM quantifiers has been proposed for analyzing the relationship between OWA operators and
RIM quantifiers.
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Definition 2. For f (t) on [0, 1] and the RIM quantifier Q(x), f (t) is called the generating function of Q(x),
if it satisfies

Q(x) =
∫ x

0
f (t)dt,

where f (t) ≥ 0 and
∫ 1

0 f (t)dt = 1.

If the RIM quantifier Q(x) is smooth, then f (x) should be continuous; if Q(x) is a piecewise
linear function, then f (x) is a jump piecewise function of some constants; and if Q(x) is an absolutely
continuous function, then f (x) is a Lesbegue integrable function and unique in the sense of being
“almost everywhere” [23].

Yager extended the orness measure of OWA operators, and defined the orness of RIM
quantifiers [10] as:

orness(Q) =
∫ 1

0
Q(x)dx =

∫ 1

0
(1 − t) f (t)dt.

We see that Q∗ leads to the weight vector W∗, Q∗ leads to the weight vector W∗, and the ordinary
average RIM quantifier QA(x) = x leads to the weight vector WA. We also have orness(Q∗) =

1, rness(Q∗) = 0, and orness(QA) = 1/2.
As the RIM quantifier can be seen as a continuous form of OWA, an operator with a generating

function, the OWA optimization problem can be extended to the case of the RIM quantifier.

3. The General Model for the Minimax RIM Quantifier Problem

In this section, we consider the general model for the minimax RIM quantifier problem and
generalize some results of Hong [17,18]. Hong [7] provided a modified model for the minimax RIM
quantifier problem and the correct formulation of a result of Liu [19]. We summarize briefly.

∗ The minimax disparity RIM quantifier problem [15,17].

The minimax disparity RIM quantifier problem with a given orness level 0 < α < 1 consists of
finding a solution f : [0, 1] → [0, 1] to the following optimization problem:

Minimize max
t∈(0,1)

| f ′(t) |,

subject to
∫ 1

0
(1 − r) f (r)dr = α, 0 < α < 1,∫ 1

0
f (r)dr = 1,

f (r) ≥ 0.

∗ The minimax ratio RIM quantifier problem [9,18].

The minimax ratio RIM quantifier problem with a given orness level 0 < α < 1 consists of finding
a solution f : [0, 1] → [0, 1] to the following optimization problem:

Minimize max
t∈(0,1)

∣∣∣∣ f ′(t)
f (t)

∣∣∣∣,
subject to

∫ 1

0
(1 − r) f (r)dr = α, 0 < α < 1,∫ 1

0
f (r)dr = 1,

f (r) > 0.
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In regard to the above optimization problem, Liu [19] considered a general model for the minimax
RIM quantifier problem:

Minimize Mf = max
r∈(0,1)

∣∣F′′( f (r)) f ′(r)
∣∣,

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1, (1)∫ 1

0
f (r)dr = 1,

f (r) > 0,

where the generating functions are continuous and F is a strictly convex function on [0, ∞), which is
differentiable to at least the 2nd order.

The above two cases are special cases of this model with F(x) = x2 and F(x) = x ln x. Hong [7]
gave a corrected and modified general model for the minimax RIM quantifier problem as follows:

∗ The general model for the minimax RIM quantifier problem.

Minimize Mf = ess supr∈(0,1)
∣∣F′′( f (x)) f ′(x)

∣∣,
subject to

∫ 1

0
r f (r)dr = α, 0 < α < 1, (2)∫ 1

0
f (r)dr = 1,

f (r) > 0.

Theorem 1. Supposing that the generating functions are absolutely continuous, F is a strictly convex function
on [0, ∞), and F′ is absolutely continuous, then there is a unique optimal solution for problem (2), and that the
optimal solution has the form

f ∗(r) = max
{
(F′)−1 (a∗r + b∗) , 0

}
,

where a∗ and b∗ are determined by the constraints:⎧⎪⎪⎨
⎪⎪⎩
∫ 1

0 r f ∗(r)dr = α,∫ 1
0 f ∗(r)dr = 1,

f ∗(r) ≥ 0.

The next example shows that the condition of F′ being absolutely continuous on [0, ∞) in Theorem 1
is essential.

Example 1. Letting F1(x) =
∫ x

0 (C(r) + r)dr where C(x) is a Cantor function, then F′(x) = C(x) + x and
F′′

1 (x) = 1 a.e. but F′
1(x) �= ∫ x

0 F′′
1 (r)dr, that is, F′

1 is not absolutely continuous on [0, ∞). Let F2(x) =

(1/2)x2, then F′′
2 (x) = 1. Since

ess supr∈(0,1)
∣∣F′′

1 ( f (x)) f ′(x)
∣∣ = ess supr∈(0,1)

∣∣ f ′(x)
∣∣ = ess supr∈(0,1)

∣∣F′′
2 ( f (x)) f ′(x)

∣∣,
the optimal solution of problem (2) with respect to F1 and F1 are the same. However, since F′

1(x) �= F′
2(x),

the optimal solution of problem (2) with respect to F1 and F1 cannot be the same by Theorem 2, which is a
contradiction. This example shows the Theorem 2 is incorrect if F′ is not absolutely continuous on [0, ∞).
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4. The General Model for the Minimum RIM Quantifier Problem

In this section, we consider the general model for the minimum RIM quantifier problem.
We improve the results of Liu [19] and generalize Theorem 4 of Hong [17] and Theorem 5 of Hong [18].
Liu [19] obtained solutions to the general minimum RIM quantifier problem for the case in which the
generating functions are continuous and F is differentiable to at least the 2nd order by considering a
variational optimization problem using the Lagrangian multiplier method ([24], Chapter 2). In this
section, we consider a generalized result for this problem.

∗ The minimum variance RIM quantifier problem [17,18].

The minimum variance RIM quantifier problem under a given orness level is

Minimize Df =
∫ 1

0
f 2(r)dr,

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1,∫ 1

0
f (r)dr = 1,

f (r) > 0.

∗ The maximum entropy RIM quantifier problem [9,18].

The maximum entropy RIM quantifier problem with a given orness level 0 < α < 1 consists of
finding a solution f : [0, 1] → [0, 1] to the following optimization problem:

Maximize −
∫ 1

0
f (r) ln f (r)dr,

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1,∫ 1

0
f (r)dr = 1,

f (r) > 0.

Recently, Liu [19] considered the general model for the minimum variance and maximum entropy
RIM quantifier problems, under a given orness level formulated as follows:

∗ The general model for the minimum RIM quantifier problem.

Minimize Vf =
∫ 1

0
F( f (r))dr,

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1, (3)∫ 1

0
f (r)dr = 1,

f (r) > 0,

where F is a strictly convex function on [0, ∞), and differentiable to at least the 2nd order.
The above two cases are special cases of the model where F(x) = x2 and F(x) = xlnx.
Liu (Theorem 9, [19]) proved the following problem for the case in which generating functions

are continuous and F is differentiable to at least the 2nd order:

Theorem 2 (Theorem 9, [19]). There is a unique optimal solution for (3), and the optimal solution has the form
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f ∗(r) =
{
(F′)−1(a∗r + b∗), if (F′)−1(a∗r + b∗) ≥ 0,

0, elsewhere,

where a∗, b∗ are determined by the constraints:⎧⎪⎪⎨
⎪⎪⎩
∫ 1

0 r f ∗(r)dr = α,∫ 1
0 f ∗(r)dr = 1,

f ∗(r) ≥ 0.

Here, we consider a generalized result for Theorem 3 when f (x) is Lebesgue integrable and F′

is continuous.

Theorem 3. Suppose that the generating functions are Lebesgue integrable, F is a strictly convex function on
[0, ∞), and F′ is continuous. Then, there is a unique optimal solution for problem (3), and that optimal solution
has the form

f ∗(r) =
{
(F′)−1(a∗r + b∗) a.e., if (F′)−1(a∗r + b∗) > 0,

0 a.e., elsewhere,

where a∗ and b∗ are determined by the constraints:⎧⎪⎪⎨
⎪⎪⎩
∫ 1

0 r f ∗(r)dr = α,∫ 1
0 f ∗(r)dr = 1,

f ∗(r) ≥ 0.

Proof. As shown in Theorem 2, we consider the case where α ∈ (0, 1/2] and assume that {r < 1 :
f ∗(r) > 0} = [0, t) for some t ∈ (0, 1) and {r < 1 : f ∗(r) = 0} = [t, 1). We also note that for r ∈ [0, t],

F′( f ∗(r)) = a∗r + b∗

and for r ∈ (t, 1),
a∗r + b∗ < F′(0)

if F′(0) exists. Let the nonnegative function f satisfy 1 =
∫ 1

0 f (r)dr and
∫ 1

0 r f (r)dr = α. We set
f (r) = f ∗(r) + g(r), r ∈ [0, 1]. Then, noting that f (r) = g(r), r ∈ [t, 1], we have

∫ t

0
g(r)dr +

∫ 1

t
f (r)dr =

∫ 1

0
g(r)dr = 0, (4)

since 1 =
∫ 1

0 f (r)dr =
∫ 1

0 f ∗(r)dr +
∫ 1

0 g(r)dr = 1 +
∫ 1

0 g(r)dr. We also have

∫ t

0
rg(r)dr +

∫ 1

t
r f (r)dr =

∫ 1

0
rg(r)dr = 0, (5)

since α =
∫ 1

0 r f (r)dr =
∫ 1

0 r f ∗(r)dr +
∫ 1

0 rg(r)dr = α +
∫ 1

0 rg(r)dr. We now show that

∫ 1

0
F ( f (r)) dr ≥

∫ 1

0
F ( f ∗ (r)) dr.
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Since F(x)− F(x0) ≥ F′(x0)(x − x0) (the equality holds if and only if x = x0), we have that

∫ 1

0
F( f (r))dr −

∫ 1

0
F( f ∗(r))dr

=
∫ 1

0
F(( f ∗(r) + g(r)))dr −

∫ 1

0
F( f ∗(r))dr

≥
∫ 1

0
F′( f ∗(r))g(r)dr

=
∫ t

0
(a∗r + b∗)g(r)dr +

∫ 1

t
F′(0)g(r)dr

= a∗
∫ t

0
rg(r)dr + b∗

∫ t

0
g(r)dr +

∫ 1

t
F′(0)g(r)dr

= a∗(−
∫ 1

t
r f (r)dr) + b∗(−

∫ 1

t
f (r)dr) +

∫ 1

t
F′(0)g(r)dr

=
∫ 1

t
(F′(0)− a∗r − b∗) f (r)dr

≥ 0,

where the fourth equality comes from (4) and (5) and the second inequality comes from the fact that
a∗r + b∗ ≤ F′(0) a.e. for r ∈ [t, 1]. The equalities hold if and only if f ∗ = f a.e. This completes
the proof.

Combining Theorems 2 and 4, we now have a solution equivalent relationship between the general
minimum RIM quantifier problem and the general minimax RIM quantifier problem. This result
generalizes Theorem 6 of Hong [17] and Theorem 5 of Hong [18] and provides a corrected version of
Theorem 13 [19].

Theorem 4. Suppose that the generating functions are absolutely continuous and F′ is increasing and absolutely
continuous. Then, the general minimum RIM quantifier problem has the same solution as the general minimax
RIM quantifier problem.

5. Numerical Example

We consider a RIM quantifier operator F which is not differentiable to at least the second order,
but F′ is absolutely continuous, and find an optimal solution of two RIM quantifier problems.

Let a RIM quantifier operator F be

F(x) =

{
x2

2, if 0 ≤ x < 1
2 ,

x2 − 1
2 x + 1

8 , if 1
2 ≤ x ≤ 1.

Then,

F′(x) =

{
x, if 0 ≤ x < 1

2 ,

2x − 1
2 , if 1

2 ≤ x ≤ 1.

Hence, F(x) is strictly convex and F′(x) is absolutely continuous, but F(x) is not the second order
differentiable. Let

f ∗(r) =
{

(F′)−1(a∗r + b∗), if (F′)−1 (a∗r + b∗) > 0,
0, elsewhere ,

where a∗ and b∗ are determined by the constraints:
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⎧⎪⎨
⎪⎩
∫ 1

0 r f ∗(r)dr = α,∫ 1
0 f ∗(r)dr = 1,

f ∗(r) ≥ 0.
(6)

We consider the case for 0 < α ≤ 1/2. Then, a∗ ≤ 0 and b∗ > 0.

Case (1) (See Figure 1) There exists m, d ∈ [0, 1] such that m < d and

f ∗(r) =

⎧⎪⎨
⎪⎩

1
2 (a∗r + b∗) + 1

4 , if 0 ≤ r ≤ m,
a∗r + b∗, m < r ≤ d,
0, d < r ≤ 1.

Since a∗m + b∗ = 1
2 and a∗d + b∗ = 0, b∗ = −a∗m + 1

2 and d = m − 1
2a∗ . Hence,

f ∗(r) =

⎧⎪⎨
⎪⎩

1
2 a∗(r − m) + 1

2 , if 0 ≤ r ≤ m,
a∗(r − m) + 1

2 , m < r ≤ m − 1
2a∗ ,

0, m − 1
2a∗ < r ≤ 1.

From (6),

a∗ =
2m − 4 −√

2m2 − 16m + 16
2m2 ,

α = −4m3a∗3 − 12m2a∗2 + 6ma∗ − 1
48a∗2

hold. In addition, since a∗ < 0 and f ∗(1) < 0,

0 < m < 4 −
√

10, 0 < α <
17 − 4

√
10

12
.

Figure 1. The graph of f ∗ (0 < α < 17−4
√

10
12 ).
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Case (2) (See Figure 2) There exists m ∈ [0, 1] such that

f ∗(r) =
{

1
2 (a∗r + b∗) + 1

4 , if 0 ≤ r ≤ m,
a∗r + b∗, m < r ≤ 1.

Since a∗m + b∗ = 1
2 ,

f ∗(r) =
{

1
2 a∗(r − m) + 1

2 , if 0 ≤ r ≤ m,
a∗(r − m) + 1

2 , m < r ≤ 1.

From (6),

a∗ =
2

m2 − 4m + 2
,

α =
2m3 + 3m2 − 24m + 14

12(m2 − 4m + 2)

hold. In addition, since a∗ < 0 and f ∗(1) ≥ 0,

4 −
√

10 ≤ m ≤ 1,
17 − 4

√
10

12
≤ α ≤ 5

12
.

Figure 2. The graph f ∗ ( 17−4
√

10
12 ≤ α ≤ 5

12 ).

Case (3) (See Figure 3) For all 0 ≤ r ≤ 1,

f ∗(r) = 1
2
(a∗r + b∗) + 1

4
.

From (6),

a∗ = −12 + 24α,

b∗ =
15
2

− 12α
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hold. In addition, since a∗ ≤ 0 and f ∗(1) > 1
2 , 5

12 < α ≤ 1
2 .

Figure 3. The graph f ∗ ( 5
12 < α ≤ 1

2 ).

6. Conclusions

In this paper, we examined the general minimax model for the RIM quantifier problem for the case
in which the generating functions are absolutely continuous and a generalized solution to the general
minimum model for the RIM quantifier problem for the case in which the generating functions are
Lebesgue integrable. In addition, we provided a solution equivalent relationship between the general
maximum model and the general minimax model for RIM quantifier problems and generalizes results
of Hong based on these results. We also corrected Liu’s theorems from a mathematical perspective as
their theorems are not suitable for absolutely continuous generating functions.
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