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Global ecosystem changes have multiple drivers, including both natural variability and
anthropogenic climate and environmental change. Intensifying climate change, inclusive of increased
hydroclimate variability and extremes, temperatures, CO2 fertilization effects, and even changes in
cloud cover can produce competing vegetation responses, changes in underlying soil and land surface
health, and drive overall changes in ecosystem productivity [1–3]. Anthropogenic pressures also
extend beyond climate change to include the clearing of native forests and other vegetation for fuel,
fiber, food, increasing infrastructure and municipal development, as well as the intensive management
and expansion of agricultural lands and soils for crop production, which can result in vegetation and
ecosystem degradation and/or wholesale losses.

Furthermore, these individual climate and environmental drivers incite complex vegetation
and ecosystem interactions and feedbacks that can exacerbate each other and/or produce competing
effects that make identifying robust ecosystem changes challenging [4]. As one example, atmospheric
CO2 fertilization effects are known to decrease plant water demand via reductions in stomatal
conductance [5,6]. However, enhanced atmospheric CO2 can also increase leaf area index (LAI),
thereby increasing total evapotranspiration (ET) and offsetting the stomatal effects [7,8]. While this
can cool the surface, particularly in arid to semi-arid regions [9], enhanced ET may also exacerbate
soil moisture declines driven by extended dry seasons, reduced snowpack and more variable rainfall.
Such feedbacks may imperil greening trends, particularly in more water-limited regions, under future
climate and land use trajectories. To resolve these interactions, we must move beyond observations
of “greening” and “browning” (a decline in ecosystem productivity) alone towards more integrated
climate and vegetation information. It is thus important that ecosystem monitoring and evaluation
incorporate measures of the relative presence and influence of these feedbacks, in addition to tracking
changes in vegetation and greening/browning.

Of the numerous climate and environmental drivers, a substantial fraction of global greening has
been attributed to CO2 fertilization effects, with regional climate changes also driven partly by nutrient
deposition, and land management and change [2,10,11]. Nevertheless, there still remain outstanding
uncertainties in the drivers of greening vs. browning at regional and local scales. These uncertainties
stem from limitations in both the observational products, such as to identify specific vegetation types
and transitions, and in ecosystem models’ ability to represent complex vegetation processes and
competing biophysical responses, such as mortality and disturbances, changes in land use change and
management, time-varying vegetation changes under different forcing trajectories [7,12,13] and other
biotic factors like pests and diseases. Future climate changes and intensifying land management will
bring additional, interactive changes to natural and managed ecosystems. Managing these ecosystems
for current and future changes requires an improved understanding of these multiscale drivers of
vegetation dynamics, the mechanisms by which they operate, and how they change over time. This
special issue in Land draws together a collection of five articles covering geographic regions in Africa,
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Asia and North America [14–18]. Taken together, these articles encompass a wide range of study
spanning the biophysical drivers (e.g., hydrological) of vegetation change and dynamics and the
human impacts (e.g., perceptions of climate change effects) in both natural and managed ecosystems.

Ugbaje and Bishop [14] examine the relative importance of hydrological controls such as soil
moisture, precipitation and terrestrial water storage in determining vegetation greenness in Africa.
Using a multivariate analysis, the authors report that precipitation and soil moisture are the most
important predictors of vegetation greenness. However, anomalies in vegetation greenness were best
predicted by the anomalies in soil moisture and terrestrial water storage in most of Africa with a
diminished role of precipitation. The authors also note that predominantly positive trends in vegetation
greenness anomalies might be a result of factors other than water availability, such as atmospheric
fertilization, use of high yielding crop varieties, afforestation and an increase in growing season
length [14].

Globally, an encroachment of woody species into savanna biomes potentially threatens important
ecosystem attributes and functionality for both natural processes and human use. However, much
uncertainty remains in identifying key drivers of woody encroachment and their interactions with
key species, as well as in developing analytical techniques conducive to scaling these dynamics across
species and the larger ecosystem. Meyer et al. [15] focus on the Kalahari landscape in Botswana as
a test case to understand the environmental drivers determining woody species composition and
structure. Their work moves beyond single-species analyses to consider morphological groups, which
enable their findings to potentially be scaled across the greater ecosystem. They employ statistical
analysis techniques that are more suitable to the distributions that characterize ecological data, making
them more informative to land managers. Based on species identified, diversity and abundance data
collected at multiple transects, the authors find that precipitation largely explains species richness
and abundance when all morphological groups were considered together. However, precipitation
was often mediated by other key factors, such that low grazing and fire also contributed to higher
species richness. In contrast to previous studies, they also find that higher grazing, as indicated by
increased borehole density and cattle numbers, can lead to reduced woody species abundance due to
more frequent rotation of cattle and thus less soil disturbance [15].

Comer et al. [16] utilize an integrated exposure-sensitivity-adaptive capacity framework to
examine climate change vulnerability of 52 major vegetation types in the western United States.
The proposed framework aims to highlight the interactions between climate-induced stress and
other ecological stressors. Such interactions might force natural plant communities to transform in
unprecedented ways, due to their already reduced resilience. With a reproducible and transparent
Habitat Climate Change Vulnerability Index (HCCVI), the authors provide an early warning system
of elevated risks for natural plant species, especially valuable for the conservation practitioners. The
authors find that currently 50 out of 52 vegetation types have at least moderate vulnerability, while
no vegetation type exhibits very high vulnerability. Yet, when mid-21st century climate exposure
projections are considered, all but 19 vegetation types shift to the high vulnerability category. They
conclude that by measuring relative severity, this framework would be of particular use for gauging
risk of environmental degradation for the next several decades [16].

Ongoing changes in weather parameters, such as precipitation and temperature, are known to
impact crop yield in different ways. It is also well-documented that adaptation strategies in response
to such changes can limit negative impacts on crop yield. Rondhi et al. [17] examine the role of climate
change impact perception on farmer adaptation practices by analyzing household survey data from
87,330 farmers in Indonesia. The authors use an ordered probit regression model to analyze the effects
of 17 variables from a range of factors: economic, technical, institutional and climatic. All climatic
variables have a statistically significant positive impact on the farmers’ perceived impact, with floods
being identified as the most damaging climatic event, followed by drought, heavy rain and other
hazards such as landslides. While there is little evidence to indicate any difference between actual
impact and perceived impact, it is important to characterize farmers’ perceived impact and factors
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affecting it. An exaggerated perceived impact might lead to maladaptive outcomes, such as excessive
application of chemical fertilizer, which has implications for water and soil quality, and ultimately crop
health [17].

Improving characterizations of ecosystem responses to drought in East Africa is both urgent,
due to intensifying anthropogenic climate change and land use pressures, and challenging, owing
to limitations in ground-based measurement and observations. The emergence and proliferation of
satellite-based products can offer a variety of ways to monitor ecosystem change in the highly-variable
East African climate, but there is a need to better understand how these products capture important
ecosystem stress signals. To address this need, Robinson et al. [18] analyze how the normalized
difference vegetation index (NDVI) and the solar-induced chlorophyll fluorescence (SIF) capture one
of the more exceptional, recent drought periods in East Africa: the failure of both the 2010 “short”
and 2011 “long” rainy seasons. They further provide a mechanistic characterization of the drought’s
temporal evolution, contextualizing it within regional anthropogenic climate trends. They find that
despite constraints on its spatial resolution and lower energy, SIF does indeed capture vegetation
drought stress similar to NDVI, both instantaneously and at a lag, which gives confidence in its use as
an early indicator of regional drought conditions. Nevertheless, they stress that instruments designed
with the intention of capturing drought-induced ecosystem stress are critical to the improvement and
enhanced utility of SIF measurements. Robinson et al.’s analysis also highlights how reduced rainfall
in one season, in this case the 2010 short rains, can compound the effects of regional drought during the
subsequent long rains, exacerbating water-stress impacts to both natural and human ecosystems. This
is an important temporal dynamic to better understand and monitor, as the Indian Ocean continues to
warm and interact with other oceanic and atmospheric variability and change, thereby changing East
African regional atmospheric circulation patterns and moisture convergence [18].

The studies included in this special issue represent a diversity of global regions, scales of analysis
and analytical techniques, and highlight perspectives on both human and natural land system change.
Nevertheless, some common and key messages can be distilled from these works. Firstly, while
some ecosystem drivers, e.g., hydroclimate variability, emerge as being of primary importance, they
are also mediated by several other factors such as fire [15], and even gender [17]. Such interactions
underscore the complexity and dynamism of both natural and human ecosystem responses to global
environmental change, which must increasingly be accounted for in quantitative analysis techniques.
In addition, several of these studies highlight that key drivers of ecosystem change may themselves be
subject to time-varying trends that potentially influence their magnitude, timing, and/or interactions
with other drivers or different ecosystem components. Furthermore, all of these studies highlight the
importance of improved research, by way of data collection and analysis techniques, instrumentation
(e.g., satellite sensor) development, and indicators and metrics for future evaluations of global and
regional ecosystem change. These advances are critical to help inform and guide not only novel
research, but also more effective decision-making for landscape and ecosystem managers in an era of
increasing anthropogenic pressures.
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Abstract: Vegetation activity in many parts of Africa is constrained by dynamics in the hydrologic
cycle. Using satellite products, the relative importance of soil moisture, rainfall, and terrestrial water
storage (TWS) on vegetation greenness seasonality and anomaly over Africa were assessed for the
period between 2003 and 2015. The possible delayed response of vegetation to water availability
was considered by including 0–6 and 12 months of the hydrological variables lagged in time prior to
the vegetation greenness observations. Except in the drylands, the relationship between vegetation
greenness seasonality and the hydrological measures was generally strong across Africa. Contrarily,
anomalies in vegetation greenness were generally less coupled to anomalies in water availability,
except in some parts of eastern and southern Africa where a moderate relationship was evident. Soil
moisture was the most important variable driving vegetation greenness in more than 50% of the
areas studied, followed by rainfall when seasonality was considered, and by TWS when the monthly
anomalies were used. Soil moisture and TWS were generally concurrent or lagged vegetation by
1 month, whereas precipitation lagged vegetation by 1–2 months. Overall, the results underscore
the pre-eminence of soil moisture as an indicator of vegetation greenness among satellite measured
hydrological variables.

Keywords: vegetation activity; vegetation anomaly; random forest

1. Introduction

The hydrologic component of the climate system, as a vital driver of vegetation activity and
productivity across many terrestrial ecosystems, is a constraint to over half of the world’s primary
productivity [1]. Consequently, shifts and anomalies in the dynamics of the hydrologic cycle have
far-reaching impacts not only on vegetation but also on human livelihood and wildlife. There is,
therefore, the need for consistent monitoring of the hydrologic cycle in tandem with vegetation activity,
which is critical to the understanding of the influence of climate variability and change on natural and
agricultural systems. This is also important for early warning systems and attaining sustainable use of
water resources.

Recent advances in remote sensing, especially satellite tracking systems, have enabled the
consistent monitoring of vegetation dynamics. Thus, satellite-retrieved data on vegetation and
components of the hydrologic cycle is often used to probe the degree to which water availability
is coupled to vegetation dynamics. While the majority of these studies are focused on unraveling
the relationship between vegetation and precipitation (e.g., [2,3]), a few others compare the strength
of the relationship between vegetation-precipitation and vegetation-soil moisture, e.g., [4]. This

Land 2020, 9, 15; doi:10.3390/land9010015 www.mdpi.com/journal/land5
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comparison has recently been extended to vegetation-precipitation versus vegetation-terrestrial water
storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellites, e.g., [5,6].
However, the challenges with these studies are (i) the relative importance of the variables is drawn
from multi-temporal bivariate correlation analyses wherein the time series of vegetation and one of
the hydrological variables at various lags are assessed one at a time, rather than from a multivariate
analysis; (ii) prior to the analysis, seasonality in the time series is often removed by subtracting the
long-term monthly climatology from the corresponding monthly observations across the years. The
resulting time series is termed anomalies. The motivation for this is, in part, to allow the use of
parametric statistics in which the assumptions of stationarity and independence might be violated
by the presence of seasonality and autocorrelation in the time series. However, an analysis based
on anomalies alone will mask the impact of the hydrological measures on vegetation phenology in
ecosystems with markedly wet and dry season oscillations. All in all, these studies often assume a
linear relationship between vegetation greenness and the hydrological variables, thereby overlooking
the potential for interactions between the hydrological measures and their lag effects on vegetation
dynamics. To overcome this challenge would require the use of a more robust multivariate approach
in which simultaneous analysis and untangling of the relative importance of the hydrological variables
and their lags are carried out, regardless of whether the original observation or anomalies are used.

Given these gaps, the aim of this study is to perform a multivariate analysis using time series of
vegetation greenness as response variable and precipitation, soil moisture, and TWS at eight concurrent
or lead lags as predictor variables. The specific research questions associated with the objective of the
study are

(1) What was the spatiotemporal trend in vegetation greenness across Africa from 2003 to 2015?
(2) How well is the dynamics in vegetation greenness associated with the combined influence of

precipitation, soil moisture, and TWS, and what are their relative contributions?
The analysis was performed using either the original or anomalies of the monthly values of

the variables, and the model was estimated with the random forest algorithm. Random forest is a
non-parametric, distribution-free machine learning algorithm that is capable of modeling linear and
non-linear relationships between variables [7]. The study is focused on Africa, which is a continent with
considerable water-limited ecosystems [8,9] that severely affect livelihoods. In addition, many studies
that included soil moisture in assessing the eco-hydrological relationship between water availability
and vegetation greenness dynamics in Africa largely used modeled soil information [9–11], essentially
because of the paucity of in situ data. Thus, the use of independent satellite-observed datasets in this
study should offer new insights into the eco-hydrological relationships across Africa and ameliorate
the data paucity situation.

2. Materials and Methods

2.1. Study Area and Data

The study area encompasses the vegetative region of Africa, as shown by the land cover map in
Figure 1. Monthly time series of the Enhanced Vegetation Index (EVI), precipitation, soil moisture,
and GRACE TWS were used in this study (Table 1). Because GRACE TWS was first available in 2002
and we are interested in vegetation delayed response of up to 12 months to water availability (see
Section 2.3), the data span of available hydrological variables that was considered was from 2002 to
2015, whereas EVI was from 2003 to 2015. Thus, the latter period determined the temporal extent of
the analysis.

6
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Figure 1. The major land cover types across Africa aggregated from the University of Maryland (UMD)
MODIS land cover layer for 2013 (adapted from Ugbaje et al. [12]).

Table 1. General description of the research data.

Data Resolution Source/Citation

EVI

MODIS Collection 6
monthly EVI

Product-MOD13C2:
2002–2015

~0.05◦
National Aeronautics and Space Administration’s

Earthdata portal (ftp://ladsweb.nascom.nasa.gov, last
accessed July 2017). Didan [13]

Precipitation
CHIRPS Version 2

monthly precipitation
data: 2002–2015

~5 km

Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) portal

(http://chg.geog.ucsb.edu/data/chirps, last accessed
July 2017). Funk et al. [14]

Soil moisture ESA CCI daily soil
moisture ~0.25◦

European Space Agency Climate Change Initiative
data portal (http://www.esa-soilmoisture-cci.org, last

assessed July 2017). EODC [15]

Terrestrial Water Storage
Anomaly (TWSA) GRACE monthly TWSA ~1◦

National Aeronautics and Space Administration’s
GRACE data portal (http://grace.jpl.nasa.gov, last

accessed July 2017). Swenson and Wahr [16]; Landerer
and Swenson [17].

EVI, as a surrogate for vegetation greenness, has the advantages of being robust against background
and atmospheric noises, and, unlike the Normalized Difference Vegetation Index, it does not saturate
over high biomass regions [18]. For this study, EVI time series from the MOD13C2 (version 6) product,
which is a derivative of image acquisitions from the moderate resolution imaging spectroradiometer
(MODIS) sensor onboard the Terra satellite, was retrieved. MOD13C2 was derived from the MOD13A2
product, which is a 16-day composite at a 1-km spatial resolution.

Monthly precipitation data were obtained from the Climate Hazards Group InfraRed Precipitation
with Station data portal. CHIRPS are global, gridded precipitation datasets, derived from a blend
of satellite-observed infrared cold cloud duration and in situ gauge records [14]. The blending is
performed using a series of algorithms and interpolation techniques, which are described in Funk et
al. [14]. Validation of CHIRPS estimates against independent ground observations and some global
gridded precipitation products show CHIRPS to have a relatively low bias [14]. Further, with a
spatial resolution of 0.05◦, CHIRPS has one of the finest spatial resolution of all the currently available
long-term, global gridded precipitation products. The products, as an integral component of the
Famine Early Warning Systems Network, have been used for other applications as well, e.g., [12].
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Daily satellite observed soil moisture data were downloaded from the European Space Agency
Climate Change Initiative data portal. The merged product comprising retrievals from the active and
passive microwave soil moisture was used. This product represents the surface soil moisture not
deeper than 10 cm [19]. While the merging approach is described in Liu et al. [19,20] and Wagner
et al. [21] and the global validation with ground measurements is reported in Dorigo et al. [22], the
merging approach used in version 03.2 (this was used for this study) includes a weighted averaging
technique where the weights are proportional to the signal-to-noise ratio [15]. As this study is at a
monthly time step, we averaged the original daily observations into monthly values. However, the
tropical forest areas are masked out in this dataset [19] because of the difficulty of measuring soil
moisture over dense vegetation with microwave remote sensing [23]. We noted a number of gridded
soil moisture products with complete coverage of Africa, e.g., [24], but the soil moisture estimates are
modeled from other variables, including precipitation. Thus, we opted for the microwave satellite soil
moisture product, which is an independent set of measurements.

The GRACE system is made up of two satellites orbiting at identical orbital paths separated
at a distance of ~220 km [25]. GRACE provides monthly measurements of the Earth’s gravity field
variations, as a function of local landmasses. After accounting for atmosphere and ocean effects [26],
and taking into cognizance the relatively low contribution of vegetation biomass variations [27], the net
mass variation can be attributed to the redistribution of TWS. Thus, TWS is an integral of surface water,
soil moisture, and groundwater. In this study, we used an ensemble of average TWS from April 2002
to December 2015 computed from the GRACE data (release-5, level-2) independently pre-processed by
three research centers (NASA Jet Propulsion Laboratory (JPL), University of Texas Center for Space
Research (CSR), and the GeoForschungsZentrum (GFZ) Potsdam). However, GRACE’s original signal
is lost during pre-processing (e.g., filtering, de-stripping, and truncation). Hence, it is important
that an appropriate scaling factor is applied to restore the signal loss prior to using water-related
GRACE-TWS applications. For this reason, the scaling factor from the NCAR’s Community Land Model
4.0 (CLM4.0, [28]) was applied to correct and restore the GRACE original signal. Besides, CLM4.0 takes
into account the interaction between surface and groundwater in addition to accounting for human
activities such as irrigation and river diversion [17,28,29]. Consequently, the TWS used in this study is
measured in equivalent water height (EWH, in cm) at a spatial resolution of 1◦ and at a monthly time
step. In order to match the January 2002 starting point of the soil moisture and precipitation datasets,
the GRACE data was extended backward by replacing the three missing months (January, February,
and March) with their long-term means. It is not expected that this data interpolation will have a
significant impact on the result of this study. It is worth mentioning that the GRACE-TWS was derived
from subtracting the monthly observations from a historical mean (2004–2009), the output of which is
commonly referred to as terrestrial water storage anomalies (TWSA) in the GRACE user community.

The soil moisture, precipitation, and the GRACE datasets were resampled to co-register with
the MODIS EVI data. Each pixel of the soil moisture (0.25◦) and GRACE (1◦) datasets were first
disaggregated to 0.05◦ and then resampled by the nearest neighbor technique and then aligned to the
EVI dataset. These two approaches ensure minimum loss of information in the downscaling process.
However, the CHIRPS pixels were only resampled to match the MODIS EVI pixels using the nearest
neighbor approach. The two-step (disaggregation and nearest neighbor interpolation) approach used
here replicates the pixels without necessarily altering the original cell values.

We masked some pixels based on the following considerations. Any pixel missing more than
20% of data or where there are more than three consecutive months of missing data was masked out.
Otherwise, we filled the missing values using a spline interpolation algorithm [30]. Furthermore, to
focus the analysis on vegetated areas, pixels with time series having a mean EVI not exceeding 0.1
were masked out. EVI values below this threshold are indicative of bare soil or open water bodies [31].

A key focus of this study is to understand the relative importance of the hydrological measures as
drivers of vegetation greenness, based on original and anomalies values. For this reason, monthly
anomalies were computed by subtracting the climatology (long-term mean) of each calendar month
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from the corresponding monthly time series over the years covered in this study. The equation for this
is given by

Xanomaly(i, j) = X(i, j) − 1
n

n∑
j=1

X(i, j), (1)

where X is the monthly observed variable, i is the month, j is the year, and n is the number of the years
of the data. It should be noted that for the GRACE data, the computed monthly anomaly should not
be confused with the original GRACE data in which the long-term mean has been subtracted and is
referred to as TWSA. To avoid confusion, the original GRACE data will still be referred to as TWSA in
this paper.

2.2. Trend Analysis

Trend analysis was performed on the time series of the monthly anomalies of each of the variables:
EVI, precipitation, soil moisture, and TWSA over the period 2003 to 2015. The trend was estimated
using the Mann–Kendell (MK) trend test [32,33]. The MK test evaluates a series for the presence and
persistence of monotonic trend (increase/decrease) through pairwise comparison of observations. The
test outputs Kendall’s tau rank correlation coefficients (τ), which takes on values between −1 and 1 [33].
Positive, zero, or negative τ values, respectively, indicate an increasing, no trend, or a decreasing trend.
The test is non-parametric and is widely used in remote sensing time series analysis, e.g., [12]. The MK
test was used in this study because of its robustness to outliers and its capacity to handle short or noisy
series compared to parametric tests such as ordinary least squares regression. Finally, only Kendall’s τ
values where the estimated trend was significantly different from zero (p < 0.05) were retained.

2.3. Modeling the Relationship between Vegetation Greenness Dynamics and Water Availability

In cognizance of the possible vegetation response to water availability exhibiting time lags, the
relationship between vegetation greenness and the water availability was estimated with EVI as the
response variable and 0–6 and 12 months lagged measures of the hydrological variables as predictors.
Consequently, the time series of EVI for the period 2003 to 2015 was used, whereas the predictor
variables were drawn from the time series of the hydrological variables covering the period from 2002
to 2015. This resulted in 156 observations for each pixel for the response and the 24 predictor variables
(3 variables × 8 lags).

The relationship between EVI and the hydrological measures at the associated lags was estimated
with random forest (RF). We chose to use RF because it is a distribution-free, non-parametric algorithm
that can be used to model simple and complex relationships between response and predictor variables [7].
It has been widely used in many regression and classification problems [34,35]. In addition to being
robust in the presence of irrelevant features, RF estimates a metric for the relative importance of the
predictor variables to the prediction problem [7]. The variable importance (VIP) metric indicates the
decrease in prediction accuracy on an out-of-bag sample (test sample) in which the values of a variable
are randomly reshuffled as against the prediction accuracy on the same out-of-bag sample with no
reshuffle. The higher the decrease in prediction accuracy, the more is the predictive power of the
variable in the model. In this study, the RF model was estimated for each pixel with the number of
trees set to 500, above which there is no significant improvement of model performance. The default
values for the other parameters (e.g., mtry and node size) in the R statistical software implementation
of RF were used.

Model performance assessment: The strength of the model was assessed by comparing the
out-of-bag prediction of EVI against the observed values. The comparison was based on Lin’s
concordance correlation coefficient (LCCC) metric [36]. LCCC expresses the degree of agreement
between the predicted values with the observed values, with respect to the 1:1 line [36].
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3. Results

3.1. General Trends in EVI, Soil Moisture, TWSA, and Precipitation

Broadly speaking, there was a dominant positive trend in vegetation greenness anomalies in most
parts of Africa (Figure 2) over the study period. Nonetheless, large clusters of a negative trend in
greenness anomalies can be observed in Algeria, Tunisia, Libya, Niger, Nigeria, Ghana, Angola, and
in countries in the eastern flank of Africa, extending from Eretria southwards to South Africa, and
eastwards to Madagascar. Interestingly, the trajectories of vegetation greenness anomalies spatially
coincided with trends in one or more of the hydrological variables in some locations. For example, the
positive trend in greenness anomalies in southern Mali, in the region around the Sudan/South Sudanese
border, and in parts of Angola and South Africa, is matched by an upward trend in at least two of the
hydrological variables. However, a diverging direction of anomalies trends between vegetation and
particularly soil moisture and TWSA, can be observed in Libya, Egypt, and also in Zambia. Finally, an
important trend of ecological note is the pronounced clusters of a negative trend in precipitation and
TWSA anomalies in parts of the Congo Basin.

 

Figure 2. Trends in anomalies of EVI, precipitation, soil moisture, and TWSA over Africa from 2003 to
2015. The white areas are either no trend (p > 0.05), barren, no data, or water bodies.

3.2. Relationship between Vegetation Greenness Dynamics and Water Availability

Figure 3 shows the maps indicating the strength of the relationship between vegetation greenness
and the hydrological variables and their lags as modeled with values of original observations (Figure 3A)
and those of the monthly anomalies (Figure 3B). In the case of the original values, the relationship
was very strong for most of Africa (LCCC > 0.75), although moderate relationships (LCCC = 0.5–0.75)
were observed in Somalia, parts of Ethiopia and Kenya, southern Namibia, and Western South Africa,
and in the northern margins of the Sahel. On the other hand, anomalies in vegetation greenness were
generally less coupled to anomalies in water availability in many parts of Africa (LCCC < 0.25), notably
in areas quite north of the Equator, predominantly across the savanna zones from west Senegal to
the east coast of Eretria and Djibouti. However, in Namibia, Botswana, Kenya, Somalia and parts
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of Tanzania, Ethiopia, and South Africa, a moderate relationship between anomalies in vegetation
greenness and water availability was evident (LCCC = 0.5–0.75).

Figure 3. Spatial variability of the strength (LCCC) of vegetation greenness response to concurrent and
lagged precipitation, soil moisture, and TWSA for the period 2003 to 2015 based on monthly time series
of (A) original observations and (B) anomalies. The white areas are masked out either due to no data,
barren land, or water bodies.

Figure 4 summarizes the relationship between vegetation greenness and the hydrological variables
and their lags across the major land cover types. Again, the relationship was stronger for all land
cover types in the case of original values (Figure 4A) in comparison to the anomalies (Figure 4B).
Furthermore, relative to the other land cover types, the relationship was generally stronger in the
woodlands and croplands with the original values, whereas vegetation greenness anomalies were
more coupled with anomalies in water availability in the grasslands than in the other land cover types.
Regardless of which data type (original or anomaly values) was used, vegetation greenness in the
forest class was relatively less associated with water availability than in the other land cover types
(Figure 4A,B).

 
Figure 4. Relationship between vegetation greenness and concurrent and lagged precipitation, soil
moisture, and TWSA across major land cover types for the period 2003 to 2015 based on monthly time
series of (A) original observations and (B) anomalies.

3.3. Relative Importance of Soil Moisture, Precipitation, and TWSA as Drivers of Vegetation Greenness Dynamics

Figure 5 shows the two top-ranked predictor variables and their associated lags from the modeled
relationship between vegetation greenness and water availability for the original (Figure 5A) and
monthly anomalies (Figure 5B) data. Figure 6 further illustrates the proportion of pixels across
the five top-ranked predictors. Based on the original observations, precipitation and soil moisture
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were the most important predictors of vegetation greenness. The proportion of pixels where soil
moisture was ranked as the topmost VIP in predicting vegetation greenness was about 55% (Figure 6A).
This encompassed parts of west southern Africa, East Africa, and the western Maghreb (Figure 5A).
However, the proportion rapidly declined to about 30% in the fifth VIP. Precipitation, on the other
hand, was the most important hydrological variable driving vegetation greenness in the eastern flank
of southern Africa (Figure 5A). The proportion of pixels across Africa where precipitation was ranked
among the top five VIP was fairly constant (45%, Figure 6A). In terms of vegetation lag response to the
hydrological variables, and based on the first two important predictors, precipitation generally led
vegetation greenness by 1 to 2 months (e.g., in eastern South Africa), whereas soil moisture was more
concurrent with or led vegetation greenness by 1 month (e.g., in Namibia and Botswana).

 

 

Figure 5. Spatial distribution of the top two ranked VIPs of the hydrological variables and their
associated lags in (months) in modeling vegetation response to water availability in Africa based on
monthly time series of (A) original observations and (B) anomalies. The white areas are masked out
either due to no data, barren land, or water bodies.
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Figure 6. Summary of the first five ranked variable of importance of the hydrological variables and
their lags in driving vegetation response to water availability across Africa based on (A,B) original and
(C,D) anomalies monthly data.

Anomalies in soil moisture and TWSA were the dominant hydrological predictors of anomalies in
vegetation greenness in most of Africa, with the role of precipitation greatly diminished (Figure 6C).
Whereas soil moisture anomalies drive anomalies in vegetation greenness in virtually all parts of Africa,
anomalies in TWSA were more coupled to vegetation dynamics anomalies in the humid savanna zone
of Nigeria and the semi-arid region of Egypt (Figure 5B). Nonetheless, the proportion of pixels with
dominant soil moisture control of vegetation greenness anomalies decreased considerably from the
first (65%) to the fifth (30%) ranked VIP. This is in contrast to that of TWSA that increased from 25% to
50% (Figure 6D). Going by the first and second VIP results, vegetation anomalies lagged precipitation
and TWSA anomalies by 0 to 1 month, though the response was much delayed in some parts of North
Africa (Figure 5B).

4. Discussion

4.1. Trends in EVI and the Hydrological Variables

Some of the observed trends in vegetation greenness in this study are consistent with those
reported by more recent regional and continental studies. For example, the positive trend in vegetation
greenness observed in most parts of the Sahel has also been reported in recent studies by Leroux et
al. [37], which examined vegetation changes in the Sahel between 2000 and 2015, and by Ugbaje et
al. [12], which investigated the variability of vegetation productivity across Africa between 2000 and
2014. Additionally, the hotspot of declining vegetation greenness observed in southwestern Niger is
consistent with findings from many studies (e.g., [37,38]). This hotspot has been dubbed “a Sahelian
exception” because it stands in contrast to the dominant Sahelian greening [37]. Likewise, the negative
trend in greenness over Zambia is in line with the reported decline in vegetation productivity by
Ugbaje et al. [12] for the period between 2000 and 2014. Similarly, the clusters of a negative trend in
vegetation greenness in parts of Somalia, Kenya, and Tanzania correspond to those reported by [39]
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over the period 2000 to 2010. This indicates that vegetation activity in this region has continued to
decline even after 2010, up to 2015, as reported here.

Similar to the observed vegetation greenness trends, some of the trajectories of hydrological
variables are in line with those of other studies. For instance, the positive trend in soil moisture and
precipitation in southern Chad and South Sudan was also reported in a study by Huber et al. [9] which
analyzed vegetation greenness dynamics in relation to water availability in the Sahel over the period
of 1982 to 2007. Similarly, the general positive trend in soil moisture in southern Africa is in agreement
with the improvement in soil water content for the period of 1993 to 2012, observed by Wei et al. [40].
Thus, our results indicate that this positive trend in soil moisture and precipitation persisted up to
2015. Also, the observed decline in precipitation and TWSA in parts of the Congo basin has also been
reported by Zhou et al. [41] for the period covering 2000 to 2012.

However, the results here show a few notable areas of differences in trend directions from what is
reported by other studies. For example, in Ugbaje et al. [12], vegetation productivity in Angola was
largely stable, which is in contrast with a dominant positive trend in vegetation greenness observed in
this study (Figure 2). Similarly, contrary to Zhou et al. [41] who observed a corresponding decrease in
EVI following a decline in water availability in the Congo, here, EVI for most parts of the basin was
either stable or showed a positive trend (Figure 2). This may be due to improvement in non-water
related constraints like decreasing cloud cover and the concomitant increase in solar radiation [42].
Overall, the differences in the trajectories of vegetation dynamics between these studies and those in
this study may be linked to the contrast in the time interval considered for the trend analyses.

4.2. Spatiotemporal Variation of Vegetation Greenness in Relation to Water Availability

Unlike many studies that assessed the relationship of vegetation greenness and water availability
using one or more hydrological variables from remote sensing (e.g., [3,6,43]), this is the first study, to the
best of our knowledge, that has analyzed vegetation greenness dynamics in relation to precipitation, soil
moisture, and TWSA within a multivariate framework. The RF modeling results of water availability
were generally strongly coupled to vegetation greenness when the cyclic seasonal variation in the
analyzed time series is not removed. This is generally expected for Africa as the vegetation phenological
cycle is primarily driven by the wet–dry season cycle. However, the moderate relationship observed in
the semi-arid areas like in the Horn of Africa and the northern Sahel can be explained by their erratic
precipitation regime.

On the flip side, when the monthly means were removed from the time series, the strong
relationships between vegetation greenness and water availability was not as widespread across Africa.
Most notably, the observed relationship was weak in the savanna belt stretching from the West coast of
Africa to the east coast of Eretria and Djibouti. This result implies that the predominantly positive trend
in greenness anomalies observed in the region may be driven by factors other than water availability.
Such factors may include atmospheric fertilization, agricultural intensification including the use of
improved and high yielding crop cultivars, afforestation, and a positive trend in the growing season
length [44–46]. However, in eastern and southern Africa, south of Zambia, vegetation greenness
anomaly dynamics was more linked to anomalies in water availability compared to the relationship
observed in West Africa across to the east coast of Eretria and Djibouti. The relatively high proportion
of grass cover in most parts of eastern and southern Africa (see Figure 1) may, in part, explain this
difference in regional response to water availability. Because of their shallow rooting system, grasses
are generally more sensitive to fluctuations in near-surface soil moisture availability than most woody
plants [47], as can be seen from the relatively strong relationship obtained for the grassland cover type
(Figure 4B). Nonetheless, the sensitivity of grassland linked to moisture anomalies is also a reflection of
the increasing frequency and severity of water-related extreme events such as drought and flooding in
eastern and southern Africa [48,49]. Therefore, the dynamics in water availability related to anomalies
in one or more of the hydrological variables (soil moisture, TWSA, and rainfall) was to a large extent the
principal driver of trends in vegetation greenness anomalies observed in eastern and southern Africa.
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4.3. The Relative Roles of Precipitation, Soil Moisture and TWSA in Driving Vegetation Greenness

The dominance of soil moisture as the first ranked predictor of vegetation greenness dynamics in
substantial parts of Africa from the two RF models (original or monthly anomalies data) (Figure 5)
can be attributed to soil moisture being a better integral of the effects of topography and energy
on plant available water than precipitation and TWSA. This also confirms soil moisture as a vital
component of the hydrological cycle better linked with the vegetation phenological cycle [8]. However,
there are locations where precipitation and/or TWSA were better indicators of plant available water
than soil moisture. For example, with the original data, precipitation outranked soil moisture (and
TSWA) as a predictor of vegetation greenness dynamics in south-eastern Africa which contrasts
with south-western Africa where soil moisture exercised dominant control (Figure 5A). The better
performance of precipitation in south-eastern Africa can be attributed to the strong influence of the
adjacent Indian Ocean and ENSO events on the ecohydrological regime of the area [50].

Although precipitation is considered the primary climatic driver of vegetation phenology [8], here
monthly anomalies of precipitation were not as important as anomalies in soil moisture and TWSA in
explaining anomalies in vegetation canopy greening across Africa. This result is similar to the findings
in other studies that reported a better correlation between satellite-observed soil moisture and NDVI
anomalies (e.g., [4]) and between GRACE TWSA and NDVI anomalies (e.g., [6]). This result, therefore,
is in line with the understanding that the amount of water stored in the soil rather than the amount of
precipitation received determines the survival of plants to extreme events like drought.

Regardless of whether the original or anomalies time series was used for modeling, vegetation
greenness generally responded quicker (0–1 months) to changes in soil moisture and TWSA than to
precipitation (1–2 months). This is plausible especially if we consider precipitation as the source and
soil moisture and TWSA as the conduit of plant-available water. This premise is also supported by the
results of Chen et al. [4] and Yang et al. [6] which indicated a generally strong correlation between
vegetation greenness anomalies and soil moisture and TWSA anomalies over Australia at 0 to 1 months
of vegetation delayed response. On the global scale, Xie et al. [51] also observed a vegetation greenness
delayed response of 0- to 1-month to the TWSA. Additionally, Yang et al. [6] and Gessner et al. [3]
found NDVI to be strongly correlated with precipitation at time lags upwards of a month.

5. Conclusions and Outlook

Remote sensing observations of EVI, soil moisture, TWSA, and station-satellite blend precipitation
products were used to assess the impact/influence of the hydrological controls of vegetation greenness
dynamics over Africa for the period between 2003 and 2015. By using a multivariate approach with the
distribution-free RF algorithm, the relationships between these hydrological variables and vegetation
greenness, with and without monthly anomalies, were assessed. The advantage of this approach is that
it allows for the modeling of complex interactions between vegetation greenness and the hydrological
variables, including lag effects. This is a more robust way to assess the relative importance of the
hydrological variables and their lag effects on vegetation response to water availability.

In most parts of Africa, the RF model with the seasonal component present in the time series
(original data) generally performed better than the model driven by monthly anomalies of the variables.
These results indicate that water availability is a better driver of vegetation phenology than anomalous
vegetation greenness trends in most parts of Africa. This contrast in model performance is particularly
striking across West Africa and eastward to Eretria and Djibouti. With regards to the relative importance
of the three hydrological variables to vegetation greenness dynamics, soil moisture was the only variable
that consistently performed with both time series types and was ranked as the first important variable
in more than 50% of the pixels examined. Nonetheless, precipitation and TWSA had significant roles
in controlling vegetation greenness with the original and monthly anomaly time series, respectively.
Of particular note is the strong predictive power of precipitation in the eastern flank of south-eastern
Africa, which is a demonstration of the strong influence of the adjacent Indian Ocean on the vegetation
dynamics of the region. In terms of the response of vegetation greenness to changes in the hydrological
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measure, soil moisture, and TWSA were generally concurrent or led vegetation by 1 month, whereas
precipitation led vegetation by 1–2 months. This demonstrates that soil moisture and TWSA are direct
indicators of plant-available water than precipitation.

However, a key point to note is that soil moisture may have masked the strength of TWSA in
predicting vegetation greenness response to water since TWSA is a measure of water stored from
the surface to the boundary between the earth’s crust and the mantle, which is inclusive of soil
moisture. The soil moisture product used in this study represents measurements not deeper than 10 cm.
This relationship between soil moisture and TWSA explains why the total area where soil moisture was
important rapidly declined with a concomitant increase in the total area of TWSA influence across the
variable of importance ranking (Figure 6). Thus, there is the need to further partition GRACE TWSA
into the surface and groundwater components. However, because the current microwave sensors
measure only soil moisture at the top few centimeters, TWSA supplements these measurements in
areas where the root zone is deeper. Another possibility is to jointly assimilate the SMOS near-surface
soil moisture observations and TWSA into a hydrological model to better approximate the root zone
soil moisture, as demonstrated recently by Tian et al. [47], providing a better indicator of plant-available
water and better vegetation response.

All in all, our results illustrate the usefulness of remote sensing soil moisture and TWSA as
complementary data to precipitation in assessing and monitoring vegetation greenness dynamics,
despite their relatively low spatial resolution (>0.25◦). This is especially important in Africa,
where there is a dearth of in situ precipitation and soil moisture observations. Furthermore, the
relationships observed across the vegetation types in this study can be used in benchmarking coupled
vegetation-climate models. The generally low correlation between vegetation greenness anomalies
and the hydrological variables anomalies observed over most of Africa (Figure 3B) can be improved if
additional hydroclimatic variables such as vapor pressure deficit and evapotranspiration, as well as
root zone soil moisture estimates, are incorporated to the RF model.
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Abstract: Savannas are extremely important socio-economic landscapes, with pastoralist societies
relying on these ecosystems to sustain their livelihoods and economy. Globally, there is an increase of
woody vegetation in these ecosystems, degrading the potential of these multi-functional landscapes
to sustain societies and wildlife. Several mechanisms have been invoked to explain the processes
responsible for woody vegetation composition; however, these are often investigated separately at
scales not best suited to land-managers, thereby impeding the evaluation of their relative importance.
We ran six transects at 15 sites along the Kalahari transect, collecting data on species identity, diversity,
and abundance. We used Poisson and Tobit regression models to investigate the relationship among
woody vegetation, precipitation, grazing, borehole density, and fire. We identified 44 species across
78 transects, with the highest species richness and abundance occurring at Kuke (middle of the rainfall
gradient). Precipitation was the most important environmental variable across all species and various
morphological groups, while increased borehole density and livestock resulted in lower bipinnate
species abundance, contradicting the consensus that these managed features increase the presence of
such species. Rotating cattle between boreholes subsequently reduces the impact of trampling and
grazing on the soil and maintains and/or reduces woody vegetation abundance.

Keywords: conservation; fire; grazing; savanna; woody vegetation

1. Introduction

Unprecedented changes in climate, urbanization, and economic development are increasing the
pressures that societies are enforcing on ecosystems [1]. Developing sustainable ecosystem services is
subsequently a priority for conservation management, with savanna ecosystems a landscape of primary
concern. Savannas are mixed plant communities comprised of grasses and woody vegetation that cover
approximately a quarter of the Earth’s land surface, including roughly half of the African continent [2].
Savannas are an extremely important socio-economic landscape in Africa, with over 80% of savanna land
used to raise livestock [3], underpinning the economic stability of many countries [4,5]. The dynamic
nature of savannas means they are susceptible to changes, particularly shifts in plant community
composition associated with an increase in woody vegetation [6,7]. A particularly concerning aspect of
this increased density of woody vegetation is the reduction of grasses and herbs by encroaching woody
species. These negative impacts are occurring at an increasingly frequent rate worldwide [8–10], which
is a major threat to the ecosystem stewardship of these economically important landscapes.
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The transition of savanna ecosystems to open shrubland across Botswana, and in particular the
western part of the Kalahari, presents a considerable threat to the conservation of the economically
important ranching industry. In order to develop adaptive management strategies, the underlying
environmental drivers of woody vegetation species need to be better understood. By understanding the
environmental drivers responsible for the diversity and abundance of woody vegetation, we can develop
predictive models to identify ‘high-risk’ areas, and provide managers, farmers, and governments with
decision support across savanna landscapes. Previous research addressing the ecological processes
responsible for the observed vegetation patterns have often found conflicting results regarding the
importance and significance of these environmental drivers [11–15], thus limiting the use of this
knowledge as the basis for decision-making at a landscape scale. These differences will be discussed
below in the context of savanna ecosystems.

1.1. Precipitation

Rainfall affects water availability, and this factor has been described as the most important
determinant describing woody vegetation communities, particularly as it limits the amount of primary
productivity within an area [16–20]. For example, in a continental study of African savannas,
Sankaran et al. [16] identified that woody cover increased linearly with mean annual precipitation
(MAP) above 150 mm until maximum woody cover was reached at 650 mm. Similarly, in a pot
experiment studying the growth of Acacia (new Senegalia and Vachellia classifications) species, Kraaij
and Ward [19] found that rainfall frequency was the most important factor affecting both germination
and survival of seedlings. Joubert et al. [21] also found that at least two successive seasons of favorable
rainfall was required for seed recruitment in Senegalia mellifera. While precipitation intensities [22],
season lengths [23], and interactions with other factors (e.g., grazing [24]) all influence woody
vegetation cover, the consensus is that MAP is the primary factor contributing to woody vegetation
cover [10,16–20].

1.2. Grazing

The influence of grazing pressure as a driver for increased woody vegetation cover is a long
established theory. Walter’s [25] two-layered hypothesis proposes that in savannas, grasses dominate
the top-most soil layers, while tree roots dominate lower layers. When grazing removes the grass cover,
tree roots begin to dominate the upper layers and prevent the grasses from reestablishing. Studies
have proven inconclusive for the two-layer hypothesis, finding evidence both in support [26–28] and
in opposition [29–31]; however, while this theory is still accepted, the current consensus is that this
hypothesis is too simplistic to represent the complex dynamic savanna processes [17].

1.3. Trampling

Another explanation for the increased abundance of woody vegetation is the effect of trampling.
Trampling from the high frequency and density of pastoral farming causes significant declines in
cyanobacterial soil crust [32,33]. Savannas are characterized by low soil nutrient content [34–36],
although many areas have biological soil crusts that increase soil surface stability, thereby reducing
nutrient loss by erosion and atmospheric nitrogen fixation [33]. Studies have found that the soil crust
is greatly influenced by this pastoral trampling within 2 to 8 km of boreholes [37], and that Acacia (new
Senegalia and Vachellia classifications) species are often found in higher abundances within areas closer
to boreholes, due to their low palatability and the positive species-specific association between canopy
and soil crust development [38]. Boreholes are narrow shafts drilled into the ground in order to extract
water and are the primary source of water for livestock farmers in southern Africa. Furthermore,
cattle rarely stray more than 13–18 km from these water sources in Africa [39], meaning areas closer to
boreholes may have increased woody vegetation cover.
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1.4. Fire

Fire is a factor that restricts woody vegetation diversity and abundance, preventing the formation
of canopies [40–42] as well as removing seedlings and subsequently preventing the establishment of
new trees [43]. Furthermore, for certain species fire can also kill the larger trees [44,45]. Seymour and
Huyser [45] found that infrequent fires were enough to kill established Vachellia erioloba trees, which
are an important keystone species in the region, meaning an increase in fire frequency could have
implications on biodiversity. In unmanaged areas, the build-up of large quantities of grass biomass in the
understory results in high-intensity fires that are capable of destroying juvenile trees [46]. For example,
Sankaran et al. [11] studied the effect of fire return intervals on the percentage of woody cover in African
savannas and found that a shorter return interval reduced established woody cover, which kept the
community in a juvenile state by ‘top-killing’ seedlings. In managed landscapes, fires are not as frequent
or intense enough to have a discernible impact on mature trees [40], and a common feature of savannas is
the reduction of fires due to mitigation strategies [47]. However, Joubert et al. [48] note that fire is crucial
to disrupt transition from grassy savanna to thicket, and that managers who prevent fires at this stage
are likely to experience bush thickening in the future.

1.5. Research Gap and Questions

Variation in species characteristics is fundamental to understanding biogeographic patterns [49].
One reason for the possible lack of conclusive evidence explaining the main drivers of different
woody vegetation patterns in previous research is the variation in how vegetation has been measured
(e.g., single species, multiple species, richness, percent woody cover), as well as the differences in
spatial scales of the previous studies (ranging from garden experiments to coarse continental extents).
Assessing diversity as total species richness does not always adequately characterize the way in which
species differ from each other, and it is these differences in traits, which often indicate that species
respond in different ways to changes in the environment [50,51]. Alternatively, studying only one
species in isolation could lead to species-specific results that are not generalizable to the larger system
or to other species. Several mechanisms (outlined above) have been invoked to explain the processes
responsible for woody vegetation composition; however, these are often investigated separately at
scales not best suited to land-managers, thereby impeding the evaluation of their relative importance.

Subsequently, this study focuses on the vegetation composition of the Botswana Kalahari, with the
aim to investigate the relative influence of the environmental drivers of woody vegetation at a regional
scale. By classifying species into morphological groups based on shared physiological traits, the drivers
of woody vegetation richness and abundance can be interpreted more meaningfully at a regional
scale that is more appropriate for landscape management decisions. This study will explore three
main questions: (1) what is the woody vegetation composition of the Kalahari in western Botswana?
(2) What are the environmental drivers of woody species richness? and (3) what are the environmental
drivers of woody species abundance?

2. Materials and Methods

2.1. Study Area

We conducted our research in western Botswana between 2009 and 2011 (Figure 1). We created
a 950 km transect following the observed rainfall gradient along the western part of the Kalahari.
This transect ran from Shakawe in the northwest of the country to Bokspits in the southwest of the
country. Rainfall along the transect decreases from the north to south, ranging from a MAP of 550 mm
to 350 mm [52]. Along this transect, we identified 15 regions (Figure 1) where we conducted multiple
vegetation surveys. We selected regions on their accessibility and a minimum distance of 75 km to the
previous region.
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Figure 1. Location of the 15 regions along the Kalahari Transect where fieldwork was undertaken.

2.2. Data Collection

Vegetation was surveyed using the line interception transect (LIT) method. Within each region,
we fixed six 100 m transects radially from a center point. For the dry season, the direction of the first
transect was determined by a random number (between 0 and 360), and the further two transects were
offset by 120 degrees. Transects of the wet season were spaced exactly between dry season transects,
resulting in an offset of 60 degrees from the very first transect laid. Transects were placed 200 m
from the center point to avoid over-sampling a small area. See Krebs [53] for a further description
of the LIT methodology. We recorded all woody vegetation that was taller than 25 cm following the
nomenclature provided by Palgrave [54], whereby average height, distance covered over the transect
line, and distance and direction of the stem(s) were documented. Species richness and abundance
were recorded at all transects, and species identity were recorded at all sites, with the exception of
the wet season transects at Sites 1, 3, 4, and 5 due to uncertain species identification resulting from
missing leaves. The results of the vegetation survey meant we had data from 78 transects for use in the
statistical analysis.

Species were categorized into five morphological groups based on the classification guidelines
outlined by Meyer et al. [55]. Morphological group I consisted of species characterized by bipinnate
leaf structures and growth form ranging from multi-stemmed shrub like appearance to single-stemmed
trees. Morphological group II included broad leaf species forming dense canopy structures where the
majority of the growth form is either multi-stemmed (generally less than five stems) or single-stemmed.
Morphological group III contained multi-stemmed broad leaf shrubs with closed canopies, seldom
exceeding 2 m in height. In contrast, morphological group IV contained shrub species characterized by
open canopies. Morphological Group V included relatively short shrub species (<1.5 m) with small,
open canopies (<0.5 m in diameter). We also obtained data on precipitation, fire frequency, cattle
density, and borehole locations that represent the possible drivers of diversity and abundance of woody
vegetation (Table 1).
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Table 1. Description of the environmental drivers used to explore the diversity and abundance of
woody vegetation in western Botswana.

Variable Description Source

Mean Annual Precipitation
We derived mean annual precipitation (MAP) from the isopleth
vector data representing rainfall conditions across the Kalahari. [56]

Fire Frequency
We derived fire frequency using the MODIS direct broadcast burned

area product (MCD64A1) as described in Giglio et al. [57]. Fire
frequency product and generation outlined in Appendix A.

[58]

Grazing
We identified density of cattle using the latest available Department
of Wildlife and National Parks aerial counts of wildlife. This survey

was conducted during the dry season of 2005.
[59]

Borehole Density
We counted the number of boreholes within an eight-kilometer

(based on Dougill et al. [37]) radius. [60]

2.3. Data Analysis

We performed regression analysis in order to explore the environmental drivers of woody species
richness and species abundances. Environmental variables were checked for multicollinearity using
variance inflation factor, then standardized using z-scores in order to compare their relative influence
on the ecological indicators. We performed all regression analyses using R 3.3.0. [61]. We selected
regression analyses based on a preliminary evaluation of the data and their error distribution. Histogram
exploration identified a mixture of Poisson and censored Gaussian distributions. We subsequently
used a combination of generalized linear models with Poisson error distributions and Tobit regression
models to analyze our data. For data that had a Poisson distribution, a Generalized Linear Model
procedure with a Poisson error distribution and a log link function was used:

log(y) = β0 + β1X1 + . . .+ βnXn (1)

where y is the abundances, Xn is the nth predictor, and βn is the Poisson regression coefficient.
A censored Gaussian distribution represents a dataset that has a normal error distribution, but has

some limit, either from below or above. Ecological data is often collected with a large proportion of
the observations just above zero, while data cannot extend below zero or above certain thresholds
(e.g., percentage cover). Tobit regression overcomes this bias and has been shown to perform better
than ordinary least squares (OLS) (e.g., [62]) and is widely used in criminology (e.g., [63]) and land use
change research (e.g., [64]). Species richness of woody vegetation is censored at zero (i.e., there cannot
be a species richness of −1), and so any parameter estimates obtained by conventional OLS would
be biased. Developed by Tobin [65], the Tobit regression model fits a set of parameters to where the
dependent variable is left-censored at zero:

y∗i = xiβ+ εi (2a)

yi =

{
0 if y∗i ≤ 0
y∗i if y∗i > 0

(2b)

where the subscript i = 1, 2, 3 . . . n, indicates the observation, y∗i is an unobservable variable, xi is
a vector of explanatory variables, β is a vector of unknown parameters, and εi is the error term.
To estimate the censored regression models, we used the censReg [66] and MaxLik [67] packages.
Final models were selected based on Akaike Information Criterion (AIC) using both forwards and
backwards stepwise selection of models. We investigated third and fourth order interactions, but these
did not improve the final models. Therefore, our final models only include main effects and second
order interactions.
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3. Results

3.1. Woody Vegetation Surveys

We identified 44 woody plant species across the 78 transects where taxonomic information was
recorded. We recorded the highest diversity at Kuke (site 7), with 21 species found in all six transects in
the region (Figure 2a), and 13 species found along transect four during the wet season. In general, both
richness and abundance decreased as data collection moved southwards which follows the precipitation
gradient, although Kuke is the notable exception. We recorded the lowest total abundances for all six
transects at NG5 (Site 6) and Bokspits (Site 15) and the highest abundances at Quangwa (Site 4) and
Kuke (Site 7) (Figure 2b). Supplementary Information provides the data which includes geographic
location (WGS 1984), a list of species recorded, and their morphological classification. We recorded
eight species in Morphological Group I (bipinnate leaf structure), fourteen species in Morphological
Group II (tall dense canopies), fifteen species in Morphological Group III (small dense canopy species),
five species in Morphological Group IV (tall open canopies), and two species in Morphological Group
V (small open canopies). Due to the low number of species recorded in Morphological Group V, these
were withheld from the statistical analysis to prevent any generalization or over-fitting of the models.

Figure 2. Total (a) woody vegetation species richness and (b) woody vegetation species abundance
summed across the six transects at each of the 15 zones across the Kalahari Transect, plotted against
annual precipitation (mm). Sites listed (1) Shakawe, (2) Tsodilo, (3) Gumare, (4) Quangwa, (5) Drotsky’s
Caves, (6) Ng 5, (7) Kuke, (8) Ghanzi, (9) Ghanzi South, (10) Bere, (11) Tshane, (12) Tshane South,
(13) Mabuasehube, (14) Tsabong, and (15) Bokspits.
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3.2. Regression Analysis

Our results indicated a number of important drivers of woody vegetation species richness and
abundance (Table 2). Precipitation was the most important environmental variable when we considered
all species together for both richness and abundance with borehole density and fire included in the
final models. When species were deconstructed into morphological groups, we observed a variety of
significant environmental drivers and interactions between these variables (** significant at α < 0.01,
* significant at α < 0.05). The relative importance of each environmental driver often changed when
we compared the regression models for richness and abundance of the same morphological group,
indicating that the processes that determine diversity are different from those determining abundance.
Boreholes were the most important driver for morphological groups II abundance and III richness,
while livestock was the most important driver for morphological group IV abundance.

Table 2. Regression output for species richness (SR) and abundance (AB) for the four Morphological
Groups (MG). ** significant at α < 0.01, * significant at α < 0.05. Tobit (T) and Poisson (P) regression
analysis undertaken based on distribution of data.

Total SR Total AB
MG I

SR
MG I
AB

MG II
SR

MG II
AB

MG III
SR

MG III
AB

MG IV
SR

MG IV
AB

Regression T T T P T P T P P P

AIC 319.72 597.98 218.54 398.95 223.60 588.33 226.76 450.45 126.61 488.37

Intercept 5.66 ** 20.05 ** 0.92 ** −1.81 1.18 ** −0.05 1.00 0.34 −40.69 −4.67

PPT 1.32 ** 11.07 ** −0.40 ** 1.71 ** 3.51 ** 2.36 ** 0.92 ** −0.01 −27.03 −4.32

Boreholes −0.57 ** −1.85 ** −0.31 4.06 ** −1.65 ** −3.24 ** −2.78 ** −2.51 ** 51.60 −0.04

Livestock −12.97 1.14 ** 2.04 ** 1.62 ** 1.87 ** −132.0 −10.02

Fire −3.16 ** −0.20 −9.96 −0.60 ** −0.61 ** 0.39 −14.52 0.13

PPT * Boreholes 0.56 ** 5.80 ** −2.83 ** 56.83

PPT * Livestock −2.59 ** 4.17 ** 2.37 ** 0.79 1.68 ** −109.8 −8.30

PPT * Fire −0.46 ** 0.28 0.29 ** −2.44

Boreholes * Livestock −5.05 ** 1.86 ** 1.31 2.82 **

Boreholes * Fire −0.76 1.19 −27.79

Livestock * Fire −18.08

logSigma 0.57 ** 2.28 ** −0.01 0.27 ** 0.07

Precipitation and borehole density were included in all final models for every morphological
group, while livestock was not important when all species were considered together, but included for
all morphological groups (both richness and abundance) with the exception of morphological group I
richness. Similarly, fire frequency was included for most morphological groups, with the exception of
morphological group III and total species richness. Several two-way interactions were returned across
the different models, and these were often significant. Morphological groups I and III abundance
had the most interactions among all variables, suggesting these species have a complex and dynamic
relationship with the environment.

Precipitation was a significant variable in all final regression models for species richness and
abundance for all but three morphological groups, and it was the most important variable for total
species richness and abundance, and morphological group I richness (Table 2). Precipitation had
a positive relationship with species richness for morphological groups II and III, and abundance
for morphological group II. This relationship was expected since these groups are characterized by
dense canopy broad leaf species resulting in higher Leaf Area Index (LAI) and hence higher water
requirements [68]. A negative relationship for morphological group I (bipinnate species) richness
and rainfall was identified. This could be due to the fact that in xeric environments such species
outcompete the majority of broad-leaved vegetation due to their general morphological characteristics
and ecological traits (such as long root traps [69]), meaning the diversity of these species increases in
arid areas where other water-dependent species simply cannot survive.
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Livestock density was not included in the final model as selected by AIC when all species
were considered together, but it had a positive relationship with morphological groups II and III
(Table 2). Small dense canopy species such as Grewia spp, Rhus tenuivirus and Ziziphus mucronata notably
have relatively low palatability [70]. Thus, if these species were already established when grazing
increased in the area, they would not be affected by livestock. It was also the most important variable in
determining abundance of morphological group IV (tall open canopy), reporting a negative relationship.
Borehole density also had the most influence in determining both abundance of morphological group
II and richness of morphological group III, forming a negative relationship with both ecological
indicators. Boreholes also had a negative relationship with all response variables with the exception
of morphological group I abundance. However, the interaction between boreholes and livestock
density was significant for morphological group I abundance, indicating a negative relationship.
This interaction was also significant for morphological groups II and III (although positive). These
findings contradict previous research, and indicate that broad leaf species thrive in locations where
there are more cattle and boreholes, while bipinnate species decrease. Fire had a negative influence on
both richness and abundance at a regional scale (Table 2). Fire was generally negatively correlated to the
overall abundance of woody species, but had a positive relationship with abundance of morphological
groups III and IV, albeit not significant.

4. Discussion

Following the global trend in the conversion of savanna landscapes to woodier landscapes [7,27],
the aim of this research was to investigate the variables responsible for woody vegetation composition
in the western Kalahari, in particular those that cause high diversity and abundance of these species.
We identified a variety of environmental drivers that are responsible for high diversity and abundance
of woody vegetation, most notably precipitation, borehole density, grazing, and fire.

Our results generally agree with the observation that the rainfall gradient of the Kalahari is
associated with an increase in woody vegetation [16–20]. Interestingly, the highest species richness
was recorded at Kuke (Figure 1—Site 7), where the annual precipitation is 450 mm (in the middle of the
rainfall gradient). The substantially higher species richness at Kuke can be explained by the site being
located in an area buffering the Ghanzi farm-block to the south and the wildlife areas to the north.
Both livestock and wildlife numbers are low here, and furthermore, fires have not occurred in this area
due to both fire prevention strategies and the existence of the veterinary cordon fences acting as fire
breaks. Therefore, our results indicate that while rainfall has a strong influence on woody vegetation,
other factors also contribute significantly.

Our findings corroborate the positive association of bipinnate abundance (morphological group
I) in areas close to boreholes [38], as well as an overall reduction in woody vegetation cover [71].
The negative relationship with small dense species is intuitive, as trampling loosens the soil and
prevents these species from rooting. However, when grazing is high, the significant negative interaction
between borehole density and grazing with bipinnate abundance contradicts the existing theories
behind woody vegetation patterns. This relationship is a result of the fact that a higher number of
boreholes and cattle represent more managed commercial ranches where cattle are routinely rotated
between fields, and the regular use of multiple boreholes by the livestock negates the impact of
trampling on the soil. This subsequently reduces the rate of bush encroachment by the unpalatable and
thorny bipinnate species, and a positive relationship with other morphological groups is observed.

The negative relationship between fire frequency and woody vegetation corroborates observations
from other dryland ecosystems [9,41] and supports a mechanistic understanding of the effect of fires
in mixed tree-grass plant communities [40,72–74]. These findings support the observations at Kuke,
that absence of fire does increase vegetation diversity and abundance (particularly for smaller species),
and that the removal of fire from a landscape could increase bush thickening [49]. However, when fire
was included in the models, it was seldom the most important variable (Table 2), with the exception of
a positive interaction between livestock and fire when modelling morphological group I abundance
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(albeit not significant). While diversity and abundance did decrease, the lesser impact compared to
the other environmental variables suggests that frequent fires may not have such severe implications
on the ecosystem’s biodiversity as proposed [45]. However, the MODIS MCD64A1 product used in
this study ([57]; Appendix A) does not account for fire intensity which could still negatively impact
the landscape.

The deconstruction of species into morphological groups that are internally homogenous provided
an opportunity for an improved understanding of the processes that underlie the patterns [50]. Despite
this, in savanna ecosystems, research has focused on individual species (e.g., [21,24,45]) where findings
are generally not always scalable to the wider ecosystem as species do exhibit idiosyncratic responses
to the environment [75]. Subsequently, we feel that our analysis has related the importance of
environmental drivers on the structure and physiological properties of the species, while it is not so
specific that we cannot generalize processes to a scale that is useful for land managers.

It should also be noted that other factors may influence woody vegetation patterns. Topographic
heterogeneity [76], atmospheric carbon [46], and harvesting [77] have all been found to influence
woody vegetation communities. These factors were excluded due to the topographically homogenous
landscape under study, and the fact that regional data on carbon and harvesting are difficult to obtain;
however, future research should continue to explore the impact of these factors. We also investigated
time since last fire as a variable in the regression analysis; however, fire frequency was found to have
more influence on woody vegetation patterns and was subsequently the only fire variable retained
in the final models to prevent any issues of multicollinearity. Similarly, we measured grazing as
density of cattle recorded from aerial surveys, although grazing could be represented using intensity
(e.g., quantification of herbaceous tissue removal or an assessment of high, medium, or low). However,
available data on such features was not available to this study. Recently, the statistical effects of spatial
autocorrelation have been noted [78] and methods to incorporate and explore this into regression
models have become more common [79–81]. However, we made the decision not to incorporate spatial
autocorrelation in our analysis so that discussion could focus specifically on the environmental factors
across the transect.

We used a combination of generalized linear models with Poisson error distributions and Tobit
regression models to analyze our data. Biodiversity indicators such as species richness and abundance
often exhibit distributions that are unsuitable for a number of statistical techniques. The literature
surrounding the use of statistical analyses that do not account for lower limits to explore ecological
questions is perhaps part of the reason we still have ambiguity surrounding the drivers of woody
vegetation in savanna ecosystems. While our results corroborate the existence of well-established
biodiversity-environment relationships (e.g., positive relationship with MAP), we also identified several
novel biodiversity-environment relationships from the Tobit models (e.g., positive relationships with
livestock). Subsequently, research should continue to explore more suitable statistical methodologies
with which to analyze ecological data so that any management strategies implemented from findings
are better informed.

5. Conclusions

Savannas are an extremely important socio-economic landscape in Africa. These landscapes are
inherently multi-functional, balancing the needs of pastoral societies with conservation of these dynamic
ecosystems. Global trends of savanna to shrubland conversion [6,7] will have important ecological
and economic consequences. Here we investigated the impact of regional scale environmental drivers
(a scale that is more relevant to governments and land managers across Africa and beyond) on woody
vegetation diversity and abundance. Data on over 44 species was collected over a two-year period at
fifteen sites along the Kalahari transect. At each site, six 100 m transects recorded diversity ranging
from one species to thirteen species, and abundance ranging from two individuals to 62 individuals.
A mixture of Poisson and Tobit regression models identified that rainfall was the most important
environmental variable when all species were considered equally, corroborating previous research
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conducted at continental [11,16] and garden [17,19] scales. Interestingly, bipinnate species abundance
decreased with increasing boreholes and livestock. These results contradict the consensus that borehole
density and grazing increase the presence of such species, and suggest that by rotating cattle between
boreholes, the impact of trampling and grazing on the soil is reduced and savanna landscapes are
maintained. The deconstruction of species into different morphological groups provided better
insights into the differences in the ways woody vegetation responds to environmental factors, and
this deconstruction could aid in reconciling the divergent hypotheses surrounding woody vegetation
patterns in savanna ecosystems, as all variables had a significant relationship with richness and
abundance across all morphological groups. The results of this research should support land managers,
governments and researchers working in transitional savanna landscapes worldwide.
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Appendix A Derived Burned Area Product

The MODIS MCD64A1 (LP DAAC 2010b) burned area product as described by Giglio et al. (2009)
was used to determine the fire locations and fire frequency across Botswana from year 2001 to 2011.
Fire frequency was calculated on a per pixel basis based on MODIS derived fire events, with frequency
ranging from no fire to a maximum of eleven fires recorded for the northern part of the country along
the northern border with Namibia. Due to fire frequency having more influence on vegetation than
time since last fire, the estimated uncertainty in date of burn was not incorporated in the fire frequency
product as this does not impact the output. Figure A1 shows that most areas that burned have a fire
frequency between one fire and three fires for the observed time frame. Most of these areas are located
in the northern and central parts of the region. Across all field sites, fire frequency ranged from 0–6,
with a total of eight sites having been affected at least once during the time period. Return intervals for
fire occurrences seem to be higher at the northern site locations (sites 1–6) while all central to southern
sites (sites 7–15) with the exception the Bere and Tshane South (site 10 and 12) were unaffected by fire.

 
Figure A1. Fire frequency and burned area across Botswana from 2001 to 2011.
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Abstract: We applied a framework to assess climate change vulnerability of 52 major vegetation types
in the Western United States to provide a spatially explicit input to adaptive management decisions.
The framework addressed climate exposure and ecosystem resilience; the latter derived from analyses
of ecosystem sensitivity and adaptive capacity. Measures of climate change exposure used observed
climate change (1981–2014) and then climate projections for the mid-21st century (2040–2069 RCP 4.5).
Measures of resilience included (under ecosystem sensitivity) landscape intactness, invasive species,
fire regime alteration, and forest insect and disease risk, and (under adaptive capacity), measures for
topo-climate variability, diversity within functional species groups, and vulnerability of any keystone
species. Outputs are generated per 100 km2 hexagonal area for each type. As of 2014, moderate
climate change vulnerability was indicated for >50% of the area of 50 of 52 types. By the mid-21st
century, all but 19 types face high or very high vulnerability with >50% of the area scoring in these
categories. Measures for resilience explain most components of vulnerability as of 2014, with most
targeted vegetation scoring low in adaptive capacity measures and variably for specific sensitivity
measures. Elevated climate exposure explains increases in vulnerability between the current and
mid-century time periods.

Keywords: adaptive capacity; climate change vulnerability; exposure; resilience; sensitivity;
vegetation

1. Introduction

Climate change represents a globally pervasive stress on natural ecosystems. Temperature and
precipitation regimes drive ecosystem productivity and natural dynamics, such as the rate of plant
growth, the frequency of natural wildfire, and seasonal streamflow [1]. Paleoecological research has
shown that past episodes of climate change triggered transformation of natural communities at regional
and local scales with varying speed and magnitude [2,3]. As the rate of climate change increases,
substantial shifts in key ecological processes are likely to cascade through natural communities,
resulting in altered productivity, change in species composition, local extinctions, and many instances
of ecological degradation or collapse [4].

Conservation practitioners often lack a sufficient understanding of the many linkages between
changing climate and key ecological processes. Nor do they fully understand the many interactions of
climate-induced stress with other ecological stressors, such as those tied to land use, which may have
already reduced the resiliency of many natural communities [5]. However, because of the controlling
link between climate and many ecological processes, and the individualistic responses of component
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species, natural communities could transform in unprecedented ways [6,7]. Therefore, in any given
place, a transparent assessment of climate change vulnerability for natural communities is needed to
help quantify risk of ecological degradation or collapse.

A repeatable and transparent index of climate change vulnerability designed for natural
communities helps to determine those types that, in all or part of their distribution, are most at
risk of climate change impacts. It can provide an early warning of elevated risk for associated
species, and a baseline for developing scientifically grounded, ecosystem-based strategies for climate
change adaptation. This Habitat Climate Change Vulnerability Index (HCCVI) presented in this paper
integrates variables from other assessments and results in products that support practical decision
making and communication.

Vulnerability Assessment at Different Levels of Ecological Organization

Climate change vulnerability assessments may address different levels of ecological organization,
such as species, communities, or landscapes. The species level is the most common focus for
vulnerability assessment and consequently has received extensive attention in the literature [8–11].
Based in autecology, trait-based approaches examine projected climate change where the species occurs,
aspects of the genetic variation, natural history, physiology, and landscape context to assess sensitivity
and adaptive capacity [12].

Assessments of landscapes often produce spatially explicit results for interpretation at regional
scales. Evaluation of exposure may result in maps showing where climate stress is indicated to
be greatest, whereas examination of the potential climate-change effects on disturbance regimes or
invasive species can address aspects of sensitivity [13–15]. Adaptive capacity can be measured through
examination of the heterogeneity of topography, moisture gradients, or microclimates under the
assumption that more diverse landscapes provide more opportunities for organisms to find climate
refugia than homogeneous ones [16].

Assessing the vulnerability of natural community types can provide a useful complement to
both landscape and species assessments. Whereas landscape assessments indicate a high potential for
climate-change impacts in certain regions, analysis of component communities is based on synecology
and aims to more directly measure how climate change will impact species assemblages, ecological
processes, structure and function, and is a next logical step to identify practical adaptation strategies
where local management of vegetation is a common form of resource management [7].

Few examples exist for assessing vulnerability at the community level of organization. In two
examples, they assessed vulnerability of European forests [17], and coastal communities [18], but both
took conceptual approaches based on these socio-ecological systems at continental scales. They were
concerned mainly about ecosystem outputs of goods and services and aiming to inform societal
responses in forestry and fisheries sectors.

In one recent example focusing more squarely at natural community types themselves [19],
31 major vegetation types in California were assessed considering climate projections by the year 2100,
sensitivity and adaptive capacity estimates of dominant species for each type, and spatial disruption
that might inhibit species movement over time. They used a basin characterization model [20] to
express climate change exposure. Working at a global scale, assessment for terrestrial ecosystems [21]
emphasized the need to address all three factors of exposure, sensitivity, and adaptive capacity.

Here, we demonstrate a practical framework for climate change vulnerability assessment, focusing
on natural community types themselves. This current assessment builds upon prior efforts [22] to
address major vegetation types, such as sagebrush shrubland and pinyon-juniper woodlands [23],
with an initial focus on types that dominate lands managed by the Bureau of Land Management (BLM)
in the conterminous Western US. Several of these types also have extensive distributions in neighboring
Mexico or Canada. Below we explain our methods with the outputs of each step illustrated with one
common sagebrush shrubland type, and then summarize findings and discuss implications for all
52 types that extend over 3.2 million km2 of Western North America.
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We integrate measures of climate exposure with a series of measures for ecosystem resilience.
Our intent is to complete analysis of terrestrial ecosystems or natural community types conceptualized
at relatively local scales. Our approach facilitates the accumulation of results for many ecosystem types
occurring across countries and continents. Results from this form of ecologically based analysis can
then be applied to climate change adaptation in a variety of socio-ecological contexts across the range
of distribution of the natural community type.

2. Materials and Methods

2.1. Analytical Framework for Vulnerability Assessment

This index approach to vulnerability assessment aims to organize a series of sub-analyses in a
coherent structure that will shed light on distinct components of vulnerability, so that each can be
evaluated individually, or in combination. Our approach parallels related indexing of climate change
vulnerabilities for species [24]. The components of climate change vulnerability are organized into
primary categories of Exposure and Resilience. Resilience is further subdivided into subcategories of
Sensitivity and Adaptive Capacity (Figure 1). For the HCCVI, these terms are defined as follows:

Figure 1. Analytical framework for the habitat climate change vulnerability index.

Exposure refers to the rate, magnitude, and nature of climate-induced stress on the community.
Exposure encompasses trends in climate, such as changes in temperature and precipitation regimes,
and any predicted effects on ecosystem-specific processes. Analyses of exposure consider change in
climate variables themselves, or if possible, their resulting effects that cause increasing ecosystem
stress, changing dynamic processes such as wildfire or hydrological regimes, or coastal dynamics.
This definition of exposure aligns closely with other common applications to climate change
vulnerability assessments where changing climate is viewed as an extrinsic driver or pressure on the
system of interest [12].

Resilience encompasses intrinsic factors that are likely to affect ecological responses of the natural
community to changing climate. These include factors commonly described for ecological resilience,
as defined by Holling [25] and Gunderson [26]. Walker et al. [27] defined ecological resilience as
“the capacity of a system to absorb disturbance and reorganize while undergoing change and while
still retaining essentially the same function, structure, identity, and feedbacks.” Under the broader
measure of resilience, we include subcategories of Sensitivity and Adaptive Capacity.

• Sensitivity focuses on ecosystem stressors that are likely to affect ecological responses of the natural
community to climate change. These emphasize human alterations to characteristic patterns and
process that can be readily measured across the range of the community type, such as landscape
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fragmentation, effects of invasive species, or human alterations to other dynamic processes. These
alterations are considered independent of climate change, but once identified, are likely to interact
with changing climate.

• Adaptive Capacity includes natural characteristics that affect the potential for a natural community
to cope with climate change. Analyses might consider the natural geophysical variability in
climate for the type’s distribution. They might also consider functional roles that characteristic
species play, such as the relative vulnerabilities to climate change of individual species that
provide “keystone” functions, and relative taxonomic diversity within key functional groups
(e.g., C3- vs. C4-dominated communities) that characterize the type.

These definitions differ in part from those provided by the IPCC because here we emphasize synecology.
Whereas sensitivity in species vulnerability is based more strongly on life history characteristics,
natural communities encompass multiple species, each with differing tolerances. Here our sensitivity
definition aims to better account for human alterations that affect the community composition and
response to changing climate. Our adaptive capacity definition emphasizes natural characteristics of
the community type—both biotic (species composition) and abiotic (geophysical), that may (or may
not) contribute to resilience in the face of changing climate.

Drawing inspiration from Magness et al. [28] among others in structuring analyses with a logic
model, the index scores combine information in two stages, with the first analyses gauging relative
climate change resilience by combining scores from intrinsic factors of sensitivity and adaptive capacity.
Climate change exposure and resilience are then considered together (combining extrinsic and intrinsic
factors) to arrive at an overall gauge of climate change vulnerability (Figure 1).

The HCCVI uses component indicator values to ultimately arrive at a four-level series of scores,
i.e., Very High, High, Moderate, and Low vulnerability (Figure 1). These can be derived from
relative measures of both Resilience and Exposure. When using quantitative data for measurement,
numerical scores are normalized to a 0.0 to 1 scale, with 0.0 indicating ecologically “least favorable”
conditions, and 1 indicating “most favorable” conditions. Quartiles of each continuous measure may
be used as a starting point to determine the range falling into each of the Very High–Low categories
(e.g., ≥0.75 = Low, 0.5–0.75 =Moderate, 0.25–0.50 =High, and ≤0.25 =Very High overall vulnerability).
In this application of the framework, all indicators are weighted equally, and we used an arithmetic
mean for their combination. Different circumstances and datasets for component measures, or different
needs for reporting, may suggest alternative weightings or thresholds to delineate these categories.
See Tonmoy et al. [29] for a review of issues associated with indicator treatment in vulnerability
assessments. For this framework, we emphasize the need to standardize indicator data in some form
to enable combination with other component analysis results.

Very High climate change vulnerability results from combining high exposure with low resilience
(i.e., both trending toward “least favorable” scores). These are circumstances where climate change
stress and its effects are expected to be most severe, and relative resilience is lowest. Ecosystem
transformation is most likely to occur in these types.

High climate change vulnerability results from combining either high or moderate exposure with
low or medium resilience. Under either combination, climate change stress is anticipated to have
considerable impact.

Moderate climate change vulnerability results from a variety of combinations for exposure and
resilience; initially with circumstances where both are scored as moderate. However, this also results
where resilience is scored high, if combined with either high or medium exposure. Where both
resilience and exposure are low, some degree of climate change vulnerability remains.

Low climate change vulnerability results from combining low exposure with high resilience
(i.e., both trending toward “most favorable” scores). These are circumstances where climate change
stress and its effects are expected to be least severe or absent, and relative resilience is highest.
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2.2. Spatial and Temporal Dimensions for Documenting Vulnerability

Climate change vulnerability assessments need to be placed within explicit spatial bounds. For this
effort, we summarized component measurements by 100 km2 hexagon for the distribution of each
vegetation type, and then further summarized results within Level III of the Commission for Economic
Cooperation (CEC) ecoregions [30] for each vegetation type (Figure 2). These ecoregions provide an
appropriate and consistent spatial structure to systematically document climate change vulnerability
at national or regional scales.

Figure 2. Mapped distributions of 52 ecological system types (too numerous to list here) in Western
North America, centered on the USA, with boundaries of the Commission for Economic Cooperation
CEC ecoregions [30] used for reporting on vulnerability.

Similarly, climate change vulnerability assessments require a temporal dimension because the
magnitude of component measures could vary over time. For this effort, we based initial vulnerability
measures on emerging or “current” climate trends using observed climate data (as of 2014). Given
both uncertainties associated with climate projections, and the need to apply vulnerability assessments
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to decisions affecting resources in upcoming decades, climate projections over the upcoming 50-year
timeframe (e.g., between 2020 and 2070) provide subsequent realistic timeframes where climate trends
can be estimated within acceptable bounds of uncertainty. Therefore, we also assess vulnerability with
the mid-21st century timeframe (2040–2069).

2.3. Ecological Classification and Distribution

For this project, we used NatureServe’s terrestrial ecological systems classification to define
types [31]. The advantage of using this classification system is that it represents an established
classification of several hundred upland and wetland types that have been extensively described
and mapped by US federal and state resource managers [32,33] and extended into adjacent Canada,
Mexico, and across Latin America and the Caribbean [34]. The expected pre-Columbian, or “potential”,
distribution of each type, mapped at 90 m pixel resolution, was used as the base distribution for
assessment (Figure 2). Descriptions of each type can be found at http://explorer.natureserve.org/.
We completed additional literature review to further document each type with current knowledge
of key ecological processes and stressors, and potential measures for assessing climate change
resilience. We completed literature searches using individual communities/systems, common stressors,
and functional species groups (e.g., “cool season”) as key words using Google Scholar and Colorado
State University Library Prospector.

Below, we discuss measures for climate change exposure and resilience applied to each type for this
project. Appendix A includes a more detailed explanation of component measures used for ecosystem
resilience. For purposes of illustrating our methodology, we will use one example—Intermountain
Basins Big Sagebrush Shrubland to depict component steps of the HCCVI framework (Figures 3–7).

 

Figure 3. Change in Climate Suitability estimate for 2040–2070 timeframe for Intermountain Basins Big
Sagebrush Shrubland.
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Figure 4. Climate Exposure estimate for 2040–2070 timeframe as index scores (i.e., low–high climate
stress) summarized by 100 km2 hexagon for Intermountain Basins Big Sagebrush Shrubland.
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Figure 5. Sensitivity measure of landscape condition and index scores summarized by 100 km2 hexagon
for Intermountain Basins Big Sagebrush Shrubland.

42



Land 2019, 8, 108

 

Figure 6. Overall Resilience measure summarized by 100 km2 hexagon for Intermountain Basins Big
Sagebrush Shrubland.
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Figure 7. Overall Climate Change Vulnerability estimate for 2040–2070 summarized by 100 km2

hexagon for Intermountain Basins Big Sagebrush Shrubland.

2.4. Climate Change Exposure

We characterized the baseline climate niche for each vegetation type using historical climate
data for the mid-20th century and the potential historical distribution of the type (detail below).
This provides a baseline of suitable conditions from which to compare climate trends from subsequent
time periods to clarify the significance of measurable change. The entire potential distribution for each
community type was used to ensure that the entire range of possible suitable climate conditions was
represented for each type. Using distributions that have been affected by land conversion could skew
how we define climate suitability for a vegetation type and hence, how we measure climate exposure.
Kling et al. [35] provide additional detail on component model design and performance.

For every grid cell of each vegetation type we calculated a composite index of climate change
exposure as the sum of two distinct exposure measures: suitability change, which quantifies departure
from the historical range of spatial climate variability across the geographic range of that vegetation type,
and typicality, which quantifies departure from the historical range of year-to-year climate variability
at a given pixel location. Each component index ranges from 0.0 to 0.5; these are summed to derive the
final combined exposure index ranging from 0 (low climate exposure) to 1 (large climate exposure).

Exposure measures were calculated based on changes in 19 bioclimatic variables derived from
monthly temperature and precipitation variables [36]. Using a historical baseline period representing
typical 20th century climate (1948–1980), we estimated exposure for both recent observed climate
change (1981–2014) and projected future change (2040–2069, RCP 4.5). While related regional analyses
investigated differences between RCP 4.5 and 8.5 [37], and our methodology could accommodate either
here we utilized just RCP 4.5. These calculations were initiated in 2015, and so at that time 2014 was
the most recent climate data available. To maximize data quality across the full spatiotemporal extent
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of our analysis, we combined gridded climate datasets from several sources. Within the contiguous
US, for the baseline and recent periods, temperature data were sourced from TopoWx [38] whereas
precipitation data were sourced from PRISM version LT71 [39], both at 810 m resolution. Outside the
US, and for the future within the US, all variables were based on 1 km2 data from ClimateNA [40].

The suitability change metric uses niche modeling to estimate changes in a site’s climatic suitability
for a given vegetation type for a given timeframe. For each vegetation type we fit a random forest [41]
model using baseline means of the six most important (of 19) bioclimatic variables and 1,000 presence
and absence locations sampled from within the rectangular bounding box of the type’s geographic
extent. The top six differ among types, but six variables consistently explained a high proportion of
model variability. Our choice of RF over alternative Generalized Linear Models (GLM), Generalized
Additive Models (GAM), and MaxEnt algorithms, as well as our selection of variables for each type,
was based on extensive model performance testing using spatial block cross-validation [42] to control
the overfitting that comes from spatial non-independence. Variables were selected using recursive
feature elimination [43], with six judged as the best empirical tradeoff between performance and
parsimony. The fitted models were used to predict suitability for baseline, current, and future periods.
Suitability change was then calculated by subtracting suitability measures across these time periods,
and then rescaling these differences into a 0–0.5 index with 0 representing increasing or unchanged
suitability, and 0.5 representing a large decrease in suitability.

The typicality metric compares a site’s current or future mean climate to the mean and yearly
variation during a baseline period. For a given climate variable, typicality is calculated as the proportion
of baseline years whose absolute deviation from the baseline mean (e.g., in degrees C) is larger than
the absolute deviation of the recent mean from the baseline mean. A value of 0 indicates no change,
while a value of 1 indicates that the recent or future mean climate is more extreme, in either direction,
than any individual year in the baseline period. For each vegetation type we calculated typicality for
each of the same six climate variables used in the RF models, and then averaged them to derive a final
typicality index. Final typicality values were divided by two to rescale them to the 0.0 to 0.5 range.

Typicality (0.0 to 0.5) and Change in Climate Suitability (0.0 to 0.5) measures were then added
together to produce an overall exposure measure, resulting in per pixel values within a 0.0–1.0 range,
with 1.0 indicating high climate exposure and 0.0 indicating no measurable climate exposure.
These per-pixel values were subsequently inverted and averaged for one measure per 100 km2

hexagon. Figure 3 illustrates one example of mid-21st century estimates of increasing or decreasing
climate suitability for one major big sagebrush vegetation type. One can see where most substantial
decreases in climate suitability for this type are concentrated in such places as Southeastern Washington,
the Snake River Plain of Southern Idaho, Northwestern Nevada, the Big Horn Basin of Wyoming, and
the Uinta Basin of Utah.

Figure 4 depicts, for the same type, the result of combining typicality and change in suitability
estimates, and then summarizing those per-pixel values to 100 km2 hexagons. Darker blue areas are
forecasted to be least stressed (closer to 1) and yellow areas most stressed (closer to 0.0). This image
indicates where a substantial proportion of the range-wide extent scores into the high–very high range
of climate exposure.

2.5. Resilience—Ecosystem Sensitivity and Adaptive Capacity

Our measures of Resilience address predisposing conditions—such as extant ecosystem stressors,
or natural abiotic or biotic characteristics of the type—that are likely to affect ecological responses of
the natural community to changing climate. For example, if exposure measures indicate the need
for component species to migrate toward other elevations or latitudes, but the natural landscape is
fragmented by intensive land uses, the relative vulnerability of community types in that fragmented
landscape could increase [44]. Similarly, the introduction of non-native species may displace native
species and/or alter key dynamic processes such as wildfire regimes [45], and both could be exacerbated
by climate change. These factors would describe relative climate change sensitivity for a natural
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community type. This differs in approach from species vulnerability assessments, in that they tend to
focus on life-history traits of individual taxa.

Inherent adaptive capacity of natural communities could consider the natural geophysical
variability in climate for the type’s distribution or the functional roles of species in the community type.
Again, climate exposure might indicate a high level of climate stress, natural communities occurring
within topographically flat landscapes with potential to retain little variability in microclimates could
lack any built-in buffer effects for component species. Likewise, if certain ecosystem functions, such as
nitrogen fixation, are limited to one or a few species that characterize the natural community, this could
bring additional vulnerability due to the potential for their extirpation over time.

Upon completion of a literature review of each type, and evaluation of available spatial data,
we selected four primary indicators suitable for measuring relative sensitivity. To address effects of
landscape fragmentation, we used a spatial model for landscape intactness or condition. Since many
assessed types are known to be affected by invasive annual grass invasion, a model aiming to measure
relative invasion severity was selected. Similarly, since most assessed types have a characteristic
natural wildfire regime, a spatial model estimating fire regime departure was used. For forest types,
measures of elevated risk from insects or diseases were identified. Three measures of adaptive capacity
include both biotic and abiotic factors. Biotics factors included scoring of each type for diversity within
identified key functional species groups and relative vulnerability of any identified “keystone” species.
One measure of topo-climatic variability was applied for the distribution of each type.

In each of these cases involving spatial models, the model was overlain with the distribution of
each vegetation type and scores were transformed to indicate a relative degree of sensitivity or adaptive
capacity within a 0.0–1 range, again with 0.0 indicating most severely impacted, or least favorable,
conditions while 1 indicating highest integrity, or apparently unaltered, conditions. These scores
were each summarized to average values per 100 km2 hexagon. Figure 5 depicts results from one
sensitivity measure of landscape condition for Intermountain Big Sagebrush Shrubland. Darker blue
areas indicate apparently least fragmented areas and yellow areas most fragmented. One can see
where in substantial portions of this distribution, such as in Eastern Washington, across the Snake
River Plain, and south along the Wasatch Front of Utah, this sagebrush type occurs in landscape highly
fragmented by intensive land uses.

Again, Appendix A includes a detailed explanation of component measures used for
ecosystem resilience.

2.6. Overall Resilience Scores

Overall resilience scores were derived by averaging results for each measure of Sensitivity and for
Adaptive Capacity (Figure 1). This combination of up to four Sensitivity measures and up to three
Adaptive Capacity measures were averaged together per 100 km2 hexagon to establish an overall
score for resilience. As an example, Figure 6 depicts this overall measure for Intermountain Basins
Big Sagebrush Shrubland. One can again see the general pattern of moderate to low resilience in the
regional landscapes—such as the Snake River Plain of Southern Idaho—where most intensive land use
and effects of invasive plant species are concentrated.

2.7. Overall Climate Change Vulnerability

As noted in Figure 1, the combination of climate change exposure with resilience scores results in
the relative vulnerability estimate for a given timeframe. Figure 7 depicts this result as projected for
the mid-21st century for Intermountain Basins Big Sagebrush Shrubland. Patterns of vulnerability
in this type vary across its distribution, as depicted with 100 km2 hexagons, and are driven strongly
by climate change exposure measures, but are also substantially influenced by component measures
of resilience (e.g., Figure 4). While per hexagon outputs are summarized along the 0.0–1 continuum,
summary statistics for climate change vulnerability may be desirable with categories expressed as
“Very High” “High” Moderate” or “Low” (Figure 1). Here, we used default break-points with quartiles
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of each continuous measure to determine the range falling into each of the Very High-Low categories
(≥0.75 = Low, 0.5–0.75 =Moderate, 0.25–0.50 = High, and ≤0.25 = Very High overall vulnerability).
In the case of the Intermountain Basins Big Sagebrush Shrubland, nearly all its distribution is forecasted
to fall within the “Moderate” vulnerability as of 2014 and in the “High” range of vulnerability by the
mid-21st century.

3. Results

Results for the 52 vegetation types were arranged into 10 categories that reflect major ecological
gradients of the region, from high-elevation “Cool Temperate Subalpine Woodlands” down to
“Warm Desert Shrublands” (Table 1). This is a high-level summary of analysis scores and overall results
for each vegetation type, with proportions of their respective distributions falling in each category
(Low–Very High) of vulnerability. On the left are results pertaining to the current timeframe, using
climate exposure measure from observed climate trends for the 1981–2014 timeframe. On the right are
results using climate exposure measures for the 2040–2069 timeframe.

As of 2014, 50 of 52 types scored within the Moderate vulnerability score for>50% of the rangewide
extent. Seven types scored as High vulnerability with >10% of the range-wide extent in this category.
No type had >1% of their range scoring in extreme of Very High vulnerability. Of those scoring
currently as High Vulnerability, Sonora-Mojave Creosotebush Desert Scrub scored the highest, with 74%
of its area scoring as highly vulnerable. Other types currently scoring High are found in warm deserts
(Apacherian–Chihuahuan Semi-Desert Grassland and Steppe, Sonoran Paloverde-Mixed Cacti Desert
Scrub, Chihuahuan Mixed Desert and Thornscrub, and Western Great Plains temperate shrubland and
steppe landscapes (Northwestern Great Plains Mixedgrass Prairie, Rocky Mountain Foothill Limber
Pine–Juniper Woodland, Western Great Plains Sand Prairie, Northwestern Great Plains Shrubland)
(Table 1).

The primary result of considering projected climate exposure for the mid-21st century was an
apparent overall shift in vulnerability scores from Low–Moderate to High ranges (Table 1) for nearly
all 52 vegetation types. By the mid-21st century, all but 19 types face high climate change vulnerability
with >50% of the area scoring in these categories. This change in overall vulnerability is of course
driven by more severe climate exposure measures (into High and Very High categories). Fourteen
types scored with over 90% of their distribution in the high vulnerability category (Table 1).

Appendix B provides a more detailed breakdown of the results, summarizing proportional
range-wide area by type scoring for climate exposure (both current and mid-21st century timeframes)
and for overall resilience and its component scores for sensitivity and adaptive capacity; each with
proportions of range-wide extent falling into each of the four binned categories for relative vulnerability.
Again, one can see the relative contribution of elevated climate change exposure in the mid-21st century
timeframe, with 17 types having over 90% of their range within either the high or very high vulnerability
ranges for mid-21st century exposure. These extremes are concentrated in subalpine and montane
forests and woodlands, extending down to elevations supporting Ponderosa Pine Woodlands and
Savannas. A second concentration of types is in the cool semi-desert shrublands such as xeric sagebrush
and Mojave mid-elevation shrubland. Here we also see additional explanation of overall vulnerability
scores coming from component measures for resilience. Overall resilience scores were proportionally
often in moderate vulnerability, but with 10 types having >50% extent in high vulnerability from their
resilience scores. These types are concentrated at lower elevation woodland, shrubland, and grassland
types. Overall resilience scores appear to be most strongly driven by specific measures under both
sensitivity and adaptive capacity. While most proportional area of each type scored in low to moderate
ranges for the combined sensitivity measures, most scored in the high range for adaptive capacity.
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Components of sensitivity reflect common circumstances for these types found throughout some
of the more remote and undeveloped landscape in the Western United States; but that still include
substantial areas impacted by past and current ecological stressors. Relative vulnerability contributed
by degraded landscape condition varies considerably, with most area by type falling in the low to
moderate ranges. For range-wide summary statistics, seven of these vegetation types include >50%
of their area in the high to very high vulnerability ranges. Cool temperate grassland types, from the
Columbia Plateau east to the Western Great Plains are represented here. These types are found in
some of the most intensively cultivated regional landscapes of the types include in this study. Fire
regime departure is a substantial contributor to vulnerability, and 16 types include >50% of their
area in the high to very high vulnerability ranges. These types tend to be concentrated in lower
montane forests and woodlands, cool temperate grasslands, and cool semi-desert shrublands where
wildfire suppression policies have resulted in altered successional pathways. Invasive plant models
for this analysis primarily pertained to cool desert shrublands and cool temperate grassland types.
Several sagebrush and related vegetation types include substantial areas that are indicated as being in
the high or very high vulnerability ranges (e.g., Columbia Plateau Western Juniper Woodland and
Savanna—54%; Mojave Mid-Elevation Mixed Desert Scrub—33%; Inter-Mountain Basins Big Sagebrush
Steppe—30%; Inter-Mountain Basins Big Sagebrush Shrubland—27%), and the effects of invasive plants
interact with alterations to wildfire regimes in most of these vegetation types. Vulnerability stemming
from forest insect and disease risk applied only to forest and woodland types, and from a range-wide
perspective, appear to have contributed less than other factors, but for some types, rather substantial
area was measured within the moderate vulnerability range (e.g., Southern Rocky Mountain Mesic
Montane Mixed Conifer Forest and Woodland—32%; California Montane Jeffrey Pine-(Ponderosa Pine)
Woodland—28%).

Most notably among adaptive capacity measures, the topo-climatic variability is naturally quite
low for all but some of the montane forest and woodland types in this region, as most desert shrublands
and temperate grasslands occupy vast landscapes of relatively flat to gently rolling topography.
Therefore, for most types, most of their area scored within the high to very high vulnerability ranges.
Also, for many of these types that dominate the arid interior of Western North America, inherent species
diversity is low and recovery from surface disturbance is relatively slow when compared with montane
forests and shrublands. Functional species groups identified often centered on nitrogen fixation,
soil stability, and other common characteristics of vegetation in semi-arid regions. Relatively low
within-type diversity in one or more functional species group led to low scores for this component of
climate change vulnerability. As a result, 14 types scored within the very high vulnerability range, while
most others scored in the moderate range. Interestingly, only one “keystone” species was identified
associated with any of these 52 assessed types. The black-tailed prairie dog (Cynomys ludovicianus)
was associated with mixed-grass and shortgrass prairie types, but its individual climate change
vulnerability was considered to be relatively low.

While the outputs of the HCCVI are most relevant and applicable to analysis of individual
ecosystem types, and factors contributing to their relative vulnerability are differentially expressed
across their type distribution, one can also combine mapped results for major types to detect patterns
of relative vulnerability. Figure 8 depicts the combined results for all 52 types assessed here, by their
100 km2 hexagon summary unit. Since this set of types represent the predominant vegetation at
lower and middle elevations across the region, they can summarize overall patterns of ecosystem type
vulnerability for the region. With an extreme of 24 types occurring within a given hexagon, the figure
depicts three ways of summarizing vulnerability patterns, using (left) the lowest (least vulnerable)
scoring type per hexagon, (right) the highest (most vulnerable) scoring type, and (bottom) the average
score of all types present. These views highlight a range of moderate to very high relative vulnerability
across key regional landscapes, such as in the Mojave Desert, Columbia Basin, the Great Salt Lake
Basin, the Colorado Front Range, the Nebraska Sandhills, and West Texas.
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Figure 8. Overall Climate Change Vulnerability estimate for 2040–2070 summarized by 100 km2

hexagon for all 52 assessed types, with a minimum of one type and a maximum of 24 types occurring
within each hexagon, displayed scores include the least, most, and average vulnerability scores (left to
right to bottom).

4. Discussion

4.1. Vulnerability and Adaptative Vegetation Management

Here we have demonstrated an analytical framework to document relative climate-change
vulnerabilities among major upland vegetation types that dominate desert and montane forests of
the interior Western USA. While many of these types are well represented in protected and managed
public lands [46] that does not shield them from effects of climate change. By integrating available
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information, we identified types and places where signals of climate change stress are emerging,
and where they can be foreseen over upcoming decades. This effort drew inspiration from many
similar efforts on the overall structure, measurements used, and available data, but here our analysis is
based on synecology and facilitates practical application of results to vegetation at scales commonly
addressed in biodiversity conservation and natural resource management. By applying a systematic
framework to climate change vulnerability assessment, it generates actionable information targeted to
both policy-makers and land managers in support of natural resource conservation decisions.

While traditional natural resource management has tended to be ‘retrospective’—utilizing
knowledge of past and current conditions to inform today’s management actions—conservation
professionals are increasingly required to more rigorously forecast future conditions. This forecasting
strives to determine the nature and magnitude of change likely to occur, and then translate that
knowledge to current decision-making timeframes. It is no longer sufficient to assess “how are we
doing?” and then decide what actions should be prioritized for the upcoming 15-year management
plan. One must now ask “how is it changing, and by when?” and then translate that knowledge back
into actions to take within one or more planning horizons.

Climate change adaptation includes actions that enable ecosystems and people to better cope with
or adjust to changing conditions. Some have categorized major strategies into three areas, including
resistance, resilience, and facilitated transformation [47–49]. Where vulnerability assessments indicate
low vulnerability over upcoming decades, management can concentrate on resistance-based strategies;
aiming to prevent ecosystem degradation. Where moderate to high vulnerability is indicated, strategies
focused on restoring resilience are the priority. Where vulnerability is indicated as being very high
over upcoming decades, options for facilitated transformation need to be identified.

Results of this analysis suggest adaptation strategies that suit the character of the vegetation type.
For example, as described in the results, warm desert shrublands and semi-desert grassland types
already score into the high vulnerability range. It would be prudent for planners and managers to
evaluate current landscape patterns and identify zones where they can anticipate plant invasions from
neighboring vegetation [50]. Where degraded from prior land uses, restoration of native herb diversity
and nitrogen fixing taxa are also needed. Monitoring for pollinator population trends, invasive plant
expansion, and shrub regeneration, are also increasingly urgent.

Further north and upslope, pinyon-juniper woodlands currently tend to score in the low-moderate
range of vulnerability, but my mid-century, they score in the moderate to high range of vulnerability.
Actions to maintain or restore resilience in these forests are needed [51]. These could include protection
of remaining “old growth” stands while restoring natural wildfire regimes and tree canopy densities
in the surroundings. Over upcoming decades, as temperature and precipitation patterns change,
models of wildfire regimes will need to be updated and customized to local conditions. Monitoring for
invasive plant expansion, such as from cheatgrass (Bromus tectorum), effects of drought stress, and tree
regeneration will all increase in urgency.

Looking out to the upcoming decades towards the mid-21st century, nearly all types assessed
here would benefit from a set of resilience-based strategies, so these investments in the near-term may
limit needs for more extreme measures later in the century.

4.2. Methodological Issues

The HCCVI could be considered an Indicator-Based Vulnerability Assessment (IBVA), where a
series of indicators for exposure or resilience are measured and then combined to approximate relative
climate change vulnerability. Tonmoy et al. [29] completed a meta-analysis of vulnerability assessments
and provide useful insights into strengths and weaknesses in methods for IBVA design and indicator
aggregation. Our HCCVI could be categorized as a hybrid IBVA that combines simulation modeling
(e.g., for project climate conditions) with the present value of other indicators (e.g., for sensitivity
and adaptive capacity measures) to arrive at a vulnerability score. We normalized each indicator
and used an arithmetic mean for their combination. This approach to aggregation requires a high
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level of independence among component indicators and considerable knowledge of the relationship
between each indicator and overall vulnerability. While these vegetation types are well understood
and documented, and indicators used here reflect high-quality data, we still cannot presume all
assumptions have been fully met with regards to aggregation rules.

In contrast to some of the relatively few other assessment methods for natural community types,
we have limited our scope to well-described types characterized by native vegetation. Where others
have chosen to assess socio-ecological systems [17,18], the level of uncertainty increases considerably.
While we acknowledge the relative utility of formally integrating human dimensions into ecosystem
concepts, we feel that the introduced uncertainty is considerable. Our approach aims to limit this
uncertainty by first assessing the natural community type, and then in subsequent steps, these outputs
can be brought together with human dimensions affecting a given landscape of interest.

Also, in contrast to many other assessments, here we have emphasized measuring climate exposure
along a trend line from the mid-20th century baseline through recent conditions, and into the future
time frame of the upcoming decades. This trend-based approach helps to address the considerable
uncertainty associated with climate projections by first grounding “current” measures from already
observed climate change, and then by focusing on the upcoming decades though the mid-21st century.

One of the most significant methodological challenges to our framework is the application of the
climate exposure measure. We anticipate much additional effort to better tie climate trend data more
directly to driving ecological processes (e.g., biomass productivity, hydrologic regime, fire regime) to
provide more robust predictions. Similarly, some factors affecting resilience will change over upcoming
decades, and so the ability to create reliable forecasts of changing conditions, such as those resulting
from future development patterns or invasive species spread, will add precision to overall resilience
forecasts. Other challenges identified with this framework included the treatment of functional species
groups and “keystone” species. While both concepts for vulnerability measures are desirable and likely
provide important contributions, limits to current knowledge become apparent when one attempts to
identify and assess species for each category. In addition, locating data sets for component measures that
span the range of a given type will remain a challenge. A systematic and regional approach such as this
that we have taken can highlight needs for investments in data sets critical to addressing climate change.

5. Conclusions

This framework is intended for widespread application and accumulation of results for many
vegetation types. The summary spatial units chosen, including 100 km2 hexagons and ecoregion units,
appear to be practical for this purpose. Some of the input raster layers (30–800 m pixel resolution) are
also quite useful for subsequent application to decision making.

These outputs are also compatible with efforts to gauge the range-wide conservation status
or risk of range-wide ecosystem collapse. For example, under the IUCN Red List of Ecosystems
framework [52,53], Criterion C3 addresses environmental degradation over a 50-year timeframe
including the current time period where degradation is expressed in terms of relative proportional
extent of and ecosystem type affected at varying levels of relative severity. Since our results can express
relative severity (i.e., very high–low climate change vulnerability) in 100 km2 increments across the
range-wide extent of the type, they could apply directly to measuring C3 for red listing.

We believe that the framework illustrated provides a practical basis for accumulating spatially
explicit scores for climate change vulnerability of major vegetation types. It also includes sufficient
specificity to inform adaptive management responses. Continued investment in this type of analysis,
encompassing more types and across national and international scales, should yield benefits to natural
resource managers and conservation practitioners as they navigate the challenges posed by climate
change over the upcoming decades.

Supplementary Materials: The following are available online at https://databasin.org/galleries/
6704179ca499490bafd2e9080df1908a.
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Appendix A. Methods Detail for Resilience Measures

Individual measures for resilience were applied to each type. This appendix provides detailed
explanation of procedures used for each measurement.

Resilience—Ecosystem Sensitivity

Below are described specific measures of sensitivity, including Landscape Condition, Invasive
Plant Species, Fire Regime Departure, and Forest Insect and Disease Risk.

Sensitivity—Landscape Condition

Since human land uses, such as built infrastructure for transportation, urban development,
industry, agriculture and other vegetation alterations, are depicted in maps that are periodically
updated, they can be used in spatial models to make inferences about the status and trends in
human-induced stress and ecological condition of ecosystems and landscapes at regional to global
scales [54–57]. The spatial model of landscape condition used here [58] built on a growing body of
published methods and software tools for ecological effects assessment and spatial modeling; all of
which aim to characterize relative ecological condition of landscapes [59–61]. The model uses regionally
available spatial data to transparently express user knowledge regarding the relative effects of land
uses on natural ecosystems.

Values close to 1.0 indicate almost no measurable ecological impact from the land use at a given
pixel. As described in [57], model parameters were calibrated, and subsequently validated using tens
of thousands of field observations indicating relative ecological condition. The result is a map surface
that provides relative index scores per pixel between 0.0 and 1.0. Calibration of this model against over
50,000 field occurrences ranked as A = excellent, B = good, C = fair, and D = poor condition was used to
identify thresholds in the 0.0–1.0 scale for applications. In this instance, we used one standard deviation
above the mean of the index value for the D occurrences to determine the C. vs. D threshold. The overall
threshold value breaks are as follows; A-Rank ≥ 0.36, B-Rank ≥ 0.30, C-Rank ≥ 0.25, D-Rank < 0.25. Per
pixel scores were summarized to average values per vegetation type per 100 km2 hexagon for display.

Sensitivity—Invasive Plant Species

Among desert shrubland and steppe, the effects of invasive species on ecosystem integrity is
well known and there is considerable concern for their interactions with climate change [61]. Spatial
models depicting likely presence and abundance of invasive annual grasses provide an important
indication of vegetation condition, and therefore, relative sensitivity under the HCCVI framework.
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See [23] and [62] for further explanation of spatial models used here. Using the master database of over
20,000 invasive plant locality records with satellite imagery and a suite of environmental variables,
inductive modeling was completed using Random Forests [41]. The resultant independently evaluated
map surfaces represent invasive annual grass presence in five categories of expected absolute cover
(<5%, 5–15%, 16–25%, 26–45%, and >45%). The five models were then combined onto one surface
with higher predicted invasive cover classes taking precedence over lower cover classes on a per pixel
basis. These absolute cover values were translated to index scores to reflect “1.0 =most favorable” to
“0.0 = least favorable” index values as follows: <5% = 1.0, 5–15% = 0.80, 16–25% = 0.6, 26–45% = 0.4,
>45% = 0.2. These per pixel scores were then summarized to average values per vegetation type per
100 km2 hexagon. This measure applied to desert shrubland and grassland vegetation types where
invasive annual grasses have substantial impact.

Sensitivity—Fire Regime Departure

Using estimates of fire frequency and successional rates, fire regime models predict the relative
proportion of natural successional stages one might expect to encounter for a community type across
a given landscape. They are therefore useful for indicating ecosystem degradation due to wildfire
suppression or other human-caused alteration [63]. The US Interagency LANDFIRE program provides
both quantitative reference models of vegetation states (i.e., successional stages) and transitions, as well
as spatial models of wildfire regime departure (measured in percent of departure) that compare
observed vs. predicted aerial extent of each successional stage [33]. For each vegetation type treated
in this project, these percent departure values (in 10% increments) were translated to index scores
to reflect “1.0 = most favorable” to “0.0 = least favorable” index values as follows: FRCC 1 = 1.0,
FRCC 2 = 0.5, and FRCC 3 = 0.15. These per pixel scores were then summarized to average values per
vegetation type per 100 km2 hexagon.

Sensitivity—Forest Insect and Disease Risk

Forest insect and disease impacts on Western US forests and woodlands are becoming pronounced,
especially with increasing frequency of relatively mild winters [64]. With increasing rates of
overwintering survival of both native and introduced insects, as well as compounded effects of
drought [65] there is increasing potential for substantial disruption in forest stand structure, composition,
and interacting effects with other natural disturbance processes [66]. The National Insect and Disease
Risk Map defines forest areas where, “the expectation that, without remediation, at least 25% of standing
live basal area greater than one inches in diameter will die over a 15-year timeframe (2013–2027) due to insects
and diseases” [67]. The resultant 240 m pixel resolution map represents insect and disease risk along
a 0.0–1.0 ramp depicting low to high severity of predicted biomass loss (e.g., 0.05 = 5%, 0.25 = 25%,
0.35 = 35%, etc.). These index values were flipped in order to reflect our “1.0 = most favorable” to
“0.0 = least favorable” index values. These per pixel scores were then summarized to average values
per vegetation type per 100 km2 hexagon. This index was applied only to forest and woodland types
where forest insects and diseases have substantial impact.

Resilience—Ecosystem Adaptive Capacity

Below are described several measures of adaptive capacity, including diversity within functional
species groups, climate change vulnerability of “keystone species,” and topo-climate variability.

Diversity within Characteristic Functional Species Groups

Natural communities may include several functional groups, or groups of organisms that pollinate,
graze, disperse seeds, fix nitrogen, decompose organic matter, depredate smaller organisms, or perform
other functions [68,69]. Functional species groups (FSGs) form a link between key ecosystem processes
and structures and ecological resilience. Experimental evidence gathered over recent decades supports
the theoretical prediction that communities with functional groups made up of increasingly diverse
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members tend to be more resilient to perturbations [27]. Therefore, the more diverse the FSG
(as measured by taxonomic richness), the greater the likelihood that at least one taxon will have
characteristics that allow it to continue to perform its function in the community as climate changes.

Approaches to identifying FSGs for natural communities center on analysis of specific traits in
response to environmental constraints [70]. In this effort, environmental settings, dynamics processes,
species responses to those settings and processes, and key biotic interactions required for maintenance
of each vegetation type, were evaluated to identify the most critical ecological processes and their
related FSG. FSGs applicable to the vegetation types in this project included nitrogen fixers, biotic
pollinators, biotic seed dispersers, biological soil crusts, perennial cool season grasses, perennial warm
season graminoids, halophytes, xerophytes, and pyrophytes. Within each identified group, a listing of
characteristic species is included based on existing documentation for the type. Lists of functional
species groups used are described in the supporting information (Supplementary Materials).

In each instance, available literature was reviewed to document each group, and for each vegetation
type, score them along a 0.0 to 1.0 scale. Due to limited knowledge of variation in FSG composition
across the Western US, the same score was applied consistently across the entire distribution of each
vegetation type, and we scored FSG diversity in three categories of Low, Medium, or High. While
ranges varied by FSG, generally those groups with 1–5 species were scored as low (=0.15, 6–15 species
as medium (0.5), and >15 species as high (1.0). Where several FSGs were identified for a given
vegetation type, the lowest scoring FSG was applied to the type overall, as it would likely have a strong
controlling effect on resilience.

CC Vulnerability of Keystone Species

To assess community resilience, it is important to consider the relative climate change vulnerability
of species that play particularly important functional roles. We use the term “keystone species” here to
refer to any species that, due to their key functional role in the community, if extirpated or reduced in
abundance, could cause disproportionate effects on the populations of other species that characterize
the community. Determining the species that can be considered keystone requires an understanding of
the natural history of many species in the community being assessed. Although there are quantitative
means of identifying keystone species via food web analysis [71], these methods can be time and data
intensive. However, identification of potential keystone species may follow directly from the above
process “diversity within functional species groups”. That is, if an important ecosystem function
is represented by just one species, that species is likely providing some “keystone” function for the
purposed of this analysis. We reviewed all lists of species across our FSGs and identified a set of
keystone species for each vegetation type.

We assessed keystone species vulnerability using the NatureServe Climate Change Vulnerability
Index (CCVI), a trait-based tool that allows relatively rapid assessment of suites of species and is
applicable to all terrestrial and aquatic plant and animal species [24]. The CCVI places species on a
categorical scale from extremely vulnerable to those likely to benefit from climate change. For this effort,
the CCVI was applied to the distribution of each species within each of the primary ecoregions that
make up the distribution of the vegetation type. The CCVI categories were translated to a numerical
scale (0.0–1.0 scale) for combination with other adaptive capacity measures.

Topo-Climatic Variability

Natural communities occur across a range of both macro and micro-climates. For example, some
major temperate grassland types of the Western Great Plains form the upland ‘matrix’ of an ecoregion
and in topography of limited relief, while other woodland types occur in microclimates formed by
rugged canyons and low mountain ranges. Their current distributions are largely based on both
regional and local-scale responses to temperature and precipitation. The relative variability in climate
encompassed by the distribution of a given community can provide another useful indication of
adaptive capacity under changing climate [72]. The idea of climate change ‘velocity’ [73] has been
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proposed as a measure of climate change exposure, and it captures in part the interaction of changing
climate with topography. The measure is derived by dividing the rate of projected climate change in
units of ◦C per year by the rate of spatial climate variability, i.e., the temperature differential of adjacent
grid cells, measured in ◦C km−1. Areas with relatively rugged topography and elevational gradients
will support a greater diversity of microclimate conditions (re: low velocity) as compared with areas of
flat topography. Therefore, for the same increment of climate change and time-period, a given species
would be required to migrate a shorter distance in areas of rugged topography as compared with
expansive flat landscapes.

Since we provide for independent measures of climate change exposure with the HCCVI
framework, we used maps of terrain ruggedness to express the influence of topography on microclimate
variability. The terrain ruggedness index (TRI) provided by Riley et al. [74] was used with 90 m digital
elevation data of North America. TRI is the sum change in elevation between a given grid cell and its
eight neighboring grid cells. For example, a cell located at 200 m elevation, surrounded by four cells at
100 m and four more cells at 125 m would yield a TRI of 700 (400 + 500 − 200 = 700). The topo-climatic
variability map was derived by normalizing TRI scores to the 0.01–1.0 scale using extreme TRI estimates
as projected for North America (TRI = 6196). We overlaid this normalized map with distributions of
each vegetation type to arrive at per pixel scores and then summarized them by 100 km2 hexagon.

Appendix B. Proportional Area for All Component and Composite HCCVI Scores for 52 Major
Vegetation Types (Supplied as Separate File)

Again, the summarized results for overall climate change vulnerability of the 52 assessed types are
found in Appendix B. Type-specific map, text, and tabular summary information is accessible within
Supplementary Materials (see: https://databasin.org/galleries/6704179ca499490bafd2e9080df1908a).
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Abstract: Climate change (CC) is one of the primary threats to the agricultural sector in developing
countries. Several empirical studies have shown that the implementation of adaptation practices can
reduce the adverse effects of CC. The likelihood of farmers performing adaptation practices is mostly
influenced by the degree of CC impact that they perceive. Thus, we identified the characteristics of
farmers that affect the degree of the CC impact that they perceive. We used data from the Indonesian
Rice Farm Household survey consisting of 87,330 farmers. An ordered probit regression model was
used to estimate the effect of each variable on the degree of the perceived impact of CC. The results of
this study confirm those of previous empirical studies. Several variables that have been identified
as having a positive effect on farmer adaptation practices, such as farmer education, land tenure,
irrigation infrastructure, cropping system, chemical fertilizer application, access to extension services,
and participation in farmer groups, negatively affect the degree of the perceived impact of CC.
However, a different result was found in the estimation of the gender variable. We found that female
farmers have a higher CC resilience and ability to withstand climatic shocks and risks than male
farmers. Female farmers have a more positive perception of future farming conditions than male
farmers. We recommend the implementation of a national adaptation policy that use and expand the
channel of agricultural extension services to deliver the planned adaptation policy, and prioritizes
farmers with insecure land tenure. Additionally, we encourage the increasing of female involvement
in the CC adaptation practices and decision-making processes.

Keywords: climate change; perceived impact of climate change; climate change adaptation; ordered
probit regression; determinants of climate change impact

1. Introduction

Climate change (CC) is a global phenomenon that is harming climate-dependent activity such
as agricultural production. The negative impacts of CC on agriculture, both for crop and animal
production, have been well documented [1–4]. The degree of adverse impacts of CC on farmers is
determined by the vulnerability of those farmers to CC. Vulnerability is the propensity or predisposition
of a natural or human system to be adversely affected by CC, and encompasses a variety of concepts
and elements, including sensitivity or susceptibility and lack of capacity to cope and adapt [5].
Vulnerability, then, is a function of three aspects: Exposure to hazard, sensitivity to damage, and
ability to cope. Currently, there are no means to control the occurrence of natural hazards; increasing
the system’s adaptive capacity can reduce its sensitivity to damage caused by natural hazards [6].
Based on that definition, the implementation of an appropriate adaptation strategy can minimize a
farmer’s vulnerability.
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An appropriate adaptation strategy is required to moderate the adverse effects of CC [7]. There are
two types of adaptation: Autonomous and planned adaptation [8]. In the former, farmers independently
adapt their farming practices to the observed climatic change. In the latter, the government plans and
implements an adaptation policy. Several studies have reported that farmers in developing countries
have adjusted their farming practices in response to CC and found that the adaptation has a positive
effect on crop yield [9,10]. However, several barriers limit adaptation practices, such as financial
barriers (lack of financial resources and/or lack of supporting institutions, whether public or private,
to finance adaptation), social and cultural barriers (individuals and group perspectives, values, and
beliefs toward CC), and informational and cognitive barriers (individual perceptions, values, and
opinions about the risk of CC) [11]. This study focuses on the third barrier, and specifically individual
climate risk perception.

A farmer’s perception of climate risk is essential because it represents the degree of perceived impact
(P-I)—a measure of how a farmer personally feels about the impact of a particular occurrence [12,13].
Past exposure to climate-related disaster increases the degree of P-I, which in turn drives farmers
to undertake adaptation actions [14,15]. While some studies stressed the benefits of autonomous
adaptation, other studies reported that it ultimately results in unintended maladaptive outcomes, such
as increasing the farmer’s vulnerability to CC, shifting the vulnerability to other stakeholders or sectors,
and decreasing the quality of common pooled resources [16–19]. Thus, assessing a farmer’s P-I toward
CC is essential in two aspects: First, it provides valuable information about the efforts to encourage
autonomous adaptation; second, it provides crucial insight into the effort to avoid maladaptation
practices. As most developing countries have a national adaptation policy [20], this study contributes
to addressing the question of which farmers should be prioritized and through what channel the
content of a policy should be delivered. Figure 1 shows how climate risk perception is related to
autonomous adaptation and adaptation outcome.

Figure 1. The relationship between climate change risk perception, autonomous adaptation, and
adaptation outcome.

While CC is a global issue that impacts farmers in both developed and developing countries,
it causes more severe damage to those in developing countries [12,21], since the majority of these
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farmers are poor and less adaptable [22]. These farmers are often located in less favorable agricultural
areas, which increases their vulnerability [23]. The availability of adaptation instruments, whether of a
physical nature, such as stress-tolerant crops, or of an institutional nature, such as crop insurance, is
limited compared to those in developed countries [24]. Farmers, especially in developing countries,
treat CC as a threat to their farming only when they perceive that it significantly decreases crop
yield [25,26]. For example, the farmer who experiences crop yield loss due to CC may feel that the
impact is not significant because the loss is relatively small compared to their wealth, or due to other
reasons, and it is less likely that they will adopt any adaptation strategy. Conversely, a farmer who
perceives that the impact of CC is high is more likely to adjust their farming practices to minimize
the effect. Based on this reasoning, a farmer’s P-I of CC influences their likelihood of adopting an
adaptation strategy. The higher the P-I, the more likely the farmer is to adapt, and vice versa. Since
the degree of P-I is affected by many factors, including technical, social, economic, or institutional
factors [27–29], identifying factors influencing a farmer’s P-I of CC is essential. This information will
be useful to determine which farmers should be prioritized and targeted.

Extensive studies on the effect of CC on agriculture in developing countries have been conducted.
While CC affects almost all aspects of a developing country’s economy, agriculture is the most
substantially impacted [30,31]. However, few studies have analyzed the effects of CC using nationally
representative farm data [32–34]. Nationally representative studies on the impact of CC on agriculture
in developing countries often use aggregate data [21,35–38]; other times, individual farm data are
employed, and the study is limited to local and community levels [9,39,40]. Whereas the former is
useful in providing an overall view of the CC effect and the latter is useful in informing a detailed
picture of how a farmer is affected and manages to adapt, it is necessary to conduct a nationally
representative study on how farmers are affected by CC. Most of these studies assessed the actual
impact of CC on agriculture, which can be different from the farmer perception.

The role of climate risk perception in CC adaptation has received considerable attention. A study
in Bangladesh showed that farmer perceptions of CC are mostly aligned with observed meteorological
data and are correlated positively with the rate of adopted adaptation practices [15]. Similarly, a study
in French coastal populations showed that they perceive the local changes in climate, weather, coral,
and beaches, but they only regard it as a problem instead of a danger [41]. In contrast to the result from
France, a study on the peri-urban community in Mexico that experiences a risk of drought indicated
that the community perceives CC and treats it as a threat because their livelihood as brick producers is
severely impacted by climate change [42]. A study on Canadian bivalve aquaculture indicated the
importance of stakeholder perceptions of CC in adapting to these changes and further expanding the
industry [43]. A cross-country analysis in Europe indicated that the perception of CC is affected by
individual-level factors such as gender, age, political orientation, and education, but the size of the
effects of each variable varies across countries [44].

The general purpose of this study was to identify the determinants of farmers’ P-I of CC. Specifically,
we aimed to determine what factors, economic, social, technical, or institutional, affect whether farmers
perceive CC as a threat to their farming. The contribution of this study is two-fold. First, this study
provides nationally representative information on the farm-level impact of CC in developing countries.
While numerous efforts to study the effect of CC on developing countries have been made, few studies
have used nationally representative data. Second, we used a P-I measure of CC (whether a farmer
thinks they are not, less, or highly affected by CC), which was found to significantly drive adaptation
practices. This information is relevant to Indonesia, where a national adaptation policy is being
implemented. This study contributes to the growing discussion of climate risk perception.

2. Background: Climate Change and Its Impact on Indonesian Agriculture

Indonesia is the largest archipelagic country in the world with over 17,000 islands, with a total
land area of 190 million ha. Indonesia had 37 million ha of agricultural land in 2018, and rice fields
accounted for 8 million ha, of which 58.13% had irrigation infrastructure [45]. The rice fields are spread
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out over the major island in Indonesia, but most of them (3.1 million ha) are located on the island
of Java [45]. Rice is a vital food crop in Indonesia along with maize, soybean, green bean, cassava,
and sweet potato. The annual production of rice in Indonesia is 81 million tons of dry unhusked rice.
Beside food crops, Indonesian agriculture includes horticulture: Vegetables (shallot, chili, cayenne,
garlic, and potato), fruits (mango, banana, citrus, durian, pomelo, and mangosteen), and flowers
(chrysanthemum, rose, orchid, and tuberose). Additionally, Indonesia produces plantation crops,
medical crops, and livestock.

As in many developing countries, agriculture plays a vital role in the Indonesian economy.
Its production accounts for 13% of the Indonesian gross domestic product (GDP) [46], and it provides
a livelihood for 25 million farm households [45]. Among various crops cultivated in Indonesia, rice
is the primary food crop. Of the 25 million farm households, 17 million are rice farmers with an
average land possession of 0.6 ha [47]. As a smallholder farmer, the rice farmer is economically more
vulnerable to external shocks, such as those due to climatic change. In Indonesia, rice farming has
been severely impacted by climate change. The changing rainfall frequency and intensity, the increase
in temperature, and the rise in sea level have significantly contributed to declining rice productivity.
The frequency of occurrence of extreme events, such as flood and drought, is increasing, which causes
crop loss. Increasing temperature causes the proliferation of pests and diseases [48]. Thus, attempts to
mitigate and adapt to the risk of CC is required for the resilience of rice farming in Indonesia.

Resilience toward CC is defined as the ability to withstand climatic shocks and risks [49].
Forsyth [50] provides a comprehensive review of the definition of CC resilience. The early definition
stated that CC resilience is related mainly to the physical properties, such as infrastructure and
ecosystems, and its stability during an occurrence of shocks. The definition is then improved to
include not only physical properties but also socio-economic factors such as diverse access to sources
of livelihood. Finally, the definition of resilience is brought into a broader context of wider social
processes and transformation. For the sake of clarity, this paper defines a farmer’s resilience toward
CC as their ability to withstand and minimize the adverse impact of CC on their farming.

The study of CC in Indonesia has been extensive and covers a wide range of aspects such as
agriculture [48,51–55], natural disasters and management of coastal areas [56–58], the politics of climate
change [59–61], and the public perspective on climate change [62,63]. These studies stated that climate
change will affect many aspects of the Indonesian economy, and agriculture will be the hardest hit.
In response to this, the government created a National Action Plan (NAP) to mitigate the risk of and to
adapt to climate change. One of the primary targets of the NAP is to achieve economic resilience by
achieving food security. The primary objective in achieving food security is to reduce production loss
due to extreme climatic events and CC [64]. The primary strategy to reduce farm production loss is
applying a CC-resilient farming system and CC-adaptive farm technology. The government should
ensure that the farmer adopts both of these strategy. However, limited government resources and the
large number of farmers will limit the adoption rate of this strategy. Thus, it is essential to identify
farmers with a high probability to change and adapt, and to target the implementation of the NAP to
these farmers.

3. Methods

3.1. Variable Descriptions

3.1.1. Dependent Variable

The dependent variable is the P-I of climate change on farm yield. A farmer’s perception of
CC is a subjective measure that represents what impact they think CC has on their farm. Numerous
studies have stressed the importance of a farmer’s perception toward CC [13,65,66]. This variable
was recorded on an ordinal scale to represent the degree of yield loss caused by CC. “No impact”
(the farmer perceives no impact of CC on yield), “low impact” (the farmer believes that <50% of yield
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loss is due to CC), or “high impact” (the farmer believes that <50% of yield loss is due to CC) were
possible variables.

3.1.2. Independent Variables

Many factors, including social, economic, technical, institutional, or climatic, may affect the degree
of impact of CC on farm production. One factor might reduce the severity of effects because its
existence causes farm production to have a stronger resistance toward changing climate so that the
farmer can sustain the change without suffering significant yield loss. Alternatively, a factor might
reduce the severity of impact because it drives the farmer to take action to limit CC-caused damage.
This section briefly reviews the findings of the empirical literature on factors affecting the impact of CC.

The Social Factors

We define social factors as the personal characteristics of a farmer. These factors include the age,
education, and gender of the farm household head. Several studies have included these factors in
identifying how a farmer perceives and adapts to the impact of CC. Several studies have stated that
a farmer’s age is correlated positively with their resilience against CC. Older farmers have a greater
awareness of the impact of CC [67], and their vast farming experience enables them to implement less
costly adaptation methods while sustaining a relatively high level of farm productivity [9]. Similarly,
the educated farmer copes with CC better than the less educated one, since they can access better
information about CC and adaptation technology [9,65,67]. Finally, the issue of gender in CC has
received considerable attention because female farmers are more vulnerable to CC, but they have
limited access to resources that can be used to adapt [68,69]. Female farmers are less likely to adopt
soil conservation methods, cultivate more diverse crops, or plant trees to reduce the effects of CC [65].

The Economic Factors

The economic factors are asset-related. We include three variables in this group: Land tenure,
landholding, and the source of farm capital. Previous studies have shown that farmers with higher
wealth tend to better adapt to CC. Land tenure security is a critical factor for CC adaptation, since it
encourages farmers to exert more effort and investment in adaptation practices [70,71]. However, a
larger land size increases the cost of adaptation and reduces adaptation practices. Previous studies
have stated that farmers with access to credit institutions have a higher probability of adapting to
CC [9,65,67]. However, having access to credit institutions does not necessarily mean that a farmer
will use borrowed money to obtain a high farm budget. Thus, we use farm capital source instead of
mere access to credit institutions.

The Technical Factors

We define this category as the technical characteristics of rice farming, which include four variables:
Irrigation infrastructure, cropping systems, fertilizer applications, and annual cultivation frequency.
Irrigation infrastructure in particular, and agricultural water management in general, play a vital role
in mitigating the risk of CC [72–74]. The changing climate alters the frequency of rainfall and affects
water availability and crop requirements. Adequate irrigation infrastructure is crucial for the effective
distribution of water resources. The farming of mixed species rather than monoculture farming can
mitigate the adverse effects of CC [75]. Mixed-species cropping between crops with complementary
traits will, with proper management, produce biodiversity and economic advantages in the form
of increased productivity. Another significant factor in the technical aspect of farming with respect
to CC is fertilizer application [76]. Fertilizer is a primary farm input. However, the excessive use
of chemical fertilizer increases the amount of greenhouse gas emissions, which exacerbates CC [77].
The primary challenge of limiting the excessive use of chemical fertilizer is the farmer’s perception.
A farmer believes that fertilizer application is correlated positively with farm yield. Thus, it is essential
to identify how fertilizer application affects how a farmer regards the impact of CC. Similar to the
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previous variable, the amount of annual rice cultivation increases the amount of fertilizer usage.
Additionally, as the amount of cultivation increases, a farmer will be more exposed to the risk of being
impacted by CC. It is essential, then, to identify whether a farmer who cultivates rice more frequently
perceives a more severe impact.

The Institutional Factors

Several studies have shown the importance of institutional factors in reducing the impact of
CC and encouraging farmers to perform adaptation practices. We include three variables in this
category: Participation in farmer groups, access to extension services, and participation in farmer field
schools. Conceptually, a farmer group is an important tool for the government to distribute and deliver
agricultural policy content to farmers. Participation in a farmer group increases the productivity of
the farmer [78] and facilitates members to obtain farm input such as fertilizer and seed [79]. Thus,
participation in a farmer group has the potential to increase a farmer’s resiliency against climate
change. To deliver new information and technology, the government specifically established extension
services, and access to these services increases farm performance [80]. In the context of climate change,
extension services are the leading channel for the provision of information about climate change
and adaptation strategies and technology for farmers. Several studies have indicated that access to
extension services increases farmer awareness of CC and their adaptation practices [9,65,67]. Similar to
the previous institutions, a farmer field school (FFS) is a government-established service that facilitates
the dissemination of new knowledge and skills to farmers. A longitudinal study in East Africa stated
that participation in an FFS increases farm productivity by 61% and plays a critical role in reducing
poverty [81].

The Climatic Factors

Climate change alters the frequency and intensity of rainfall. In some areas, the intensity of
rainfall increases, which causes floods, whereas in mountainous areas, increasing rainfall intensity
causes landslides. In other areas, the intensity of rainfall decreases, which causes droughts. All of
this CC-caused disaster has a substantial impact on agriculture. Floods and landslides cause severe
economic damage including loss of crops, whereas drought reduces the amount of harvested farmland
and reduces yield [9,82]. Thus, in this category, we include four types of CC-caused disaster—flood,
drought, heavy rain, and other hazards (e.g., landslides)—to determine which disaster the farmer
perceives as having the most severe impact on their farming.

3.2. Data

We used a nationwide rice farming survey in Indonesia administered by the Indonesian Bureau of
Statistics (BPS). The survey was conducted from May 2014 through June 2016 and covered a sample
of 87,330 rice farm households (RFHs). The sample selection involved two-stage stratified random
sampling. In the first stage, the national BPS office randomly selected census blocks from a total of
844,946 blocks and obtained 8933 sample blocks. Only census blocks with 10 or more RFHs were
considered eligible for sample selection. In the second stage, the district BPS office stratified RFHs by
land size. Only RFHs with a land size no less than 550 m2 for lowland rice and 100 m2 for upland rice
were eligible for sample selection. Figure 2 shows, for each province in Indonesia, the distribution of
sample RFHs and the percentage of farmers who experienced the effects of CC.
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Figure 2. The distribution of the sample and the percentage of farmers who experienced effects of
climate change (CC) for each province in Indonesia.

Table 1 provides summary statistics, the expected signs of predictors, and the definition of each
variable.The outcome variable is the perceived impact severity of CC, which was measured by the
question: “Were you impacted by climate change? If yes, how much yield loss was caused by it?”
The responses consisted of 4 choices: <25% yield loss, 26–50% yield loss, 51–75% yield loss, and 75%
yield loss. The response was then converted into three categories: “no impact” for those who answered
‘no’ to the first question, “low impact” for those who reported less than 50% yield loss, and “high
impact” for those who reported greater than 50% yield loss. The purpose of this further recoding
was to clearly distinguish between low and high impact. The original impact category (consisting
of 4 groups) yielded a biased estimation between higher-low and lower-low impact and between
higher-high and lower-high impact. The data show that 66.2% (57,771 farmers) reported no impact,
29% (25,306 farmers) reported a low impact, and 4.9% (4253 farmers) reported a high impact.

The predictors included 17 variables, which were described in Section 3. The average age of
Indonesian rice farmers is 49.5 years, having only elementary schooling (5.81 years, six years of
elementary school), and most are male. The majority of farmers (70.7%) cultivate their land and
have an average landholding of 0.467 ha. Of rice farmers, 90% financed their farming, leaving only
9% who financed their farm with a loan. The irrigation infrastructure covered 45.3% of the rice
farmers in Indonesia, whereas the rest depended on non-technical (46.4%) and rain-fed irrigation
(7.9%). Ninety-six percent of farmers only cultivated rice and only 3.9% of farmers cultivated mixed
species. Chemical fertilizer is the primary input in rice farming; 91% of farmers apply it, while 8.7% of
farmers do not. The average cultivation frequency is twice annually. As with the institutional factors,
52% of farmers participate in a farmer group, 25% have access to extension services, and only 11.2%
have participated in a farmer field school. Finally, the climatic variables showed that 7.6% of farmers
experienced a flood, 18.9% of farmers experienced a drought, and 5.8% and 1.5% reported experiencing
heavy rain and other climate-induced hazards, respectively.
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Table 1. Summary statistics, the expected signs of predictors, and the definition of variables.

Variable Definition
Mean and
Frequency

S.D. Expected Sign

Response Variable

Perceived impact
of CC

Ordered dummy variable (0 = farmer perceives no impact of CC;
1 = farmer perceives a low impact of CC, production decreases
by ≤50%; 2 = farmer perceives a high impact of CC, production
decreases by >50%)

0:57,771 (66.2%) 0.579
1:25,306 (29%)
2:4253 (4.9%)

Social Variables
Age The age of the farm household head (year) 49.39 years 11.99 −
Education The years of formal training of the farm household head (year) 5.81 years 4.20 −
Gender Dummy variable (1 =male, 0 = female) 1:77,094 (88.3%) 0.322 −0:10,236 (11.7%)
Economic Variables

Land tenure Dummy variable (1 = owned land, 0 = other) 1:61,784 (70.7%) 0.453 −0:25,139 (28.8%)
Landholding The area of cultivated land (ha) 0.47 ha 0.51 +

Capital source A dummy variable, the source of used farm budget (1 = bank, 0 = other) 1:79,264 (90.8%) 0.290 −0:8066 (9.2%)
Technical Variables

Irrigation A dummy variable, the type of irrigation infrastructure
(1 = technical irrigation infrastructure, 0 = other)

1:39,530 (45.3%) 0.498 −0:47,800 (54.7%)

Cropping system A dummy variable, the type of cropping system applied
(1 =monoculture farming, 0 =mixed-species farming)

1:83,942 (96.1%) 0.193
+

0:3388 (3.9%)

Fertilizer
A dummy variable, the application of chemical fertilizer by the farmer
(1 = use chemical fertilizer, 0 = does not use chemical fertilizer)

1:79,744 (91.3%) 0.282
+

0:7586 (8.7%)
Cultivation
frequency The amount of rice cultivation in a year 1.64 0.696 +

Institutional
Variables

Farmer group Dummy variable, participation in a farmer group
(1 = participate, 0 = do not participate)

1:45,730 (52.4%) 0.499 −0:41,600 (47.6%)

Extension services
A dummy variable, access to extension services (1 = having access to
extension services, 0 = do not having access to extension services)

1:21,902 (25.1%) 0.433 −0:65,428 (74.9%)

Farmer field school A dummy variable, access to farmer field school (1 = having access to
FFS, 0 = do not having access to FFS)

1:9762 (11.2%)
0:77,568 (88.2%) 0.315 −

Climatic Factors

Flood
A dummy variable, experienced a flood
(1 = experienced, 0 = did not experience)

1:6635 (7.6%) 0.264
+

0:80,695 (92.4%)

Drought A dummy variable, experienced a drought
(1 = experienced, 0 = did not experience)

1:16,538 (18.9%) 0.392
+

0:70,792 (81.1%)

Heavy rain A dummy variable, experienced a heavy rain
(1 = experienced, 0 = did not experience)

1:5069 (5.8%) 0.233
+

0:82,261 (94.2%)

Other hazards
A dummy variable, experienced other hazards
(1 = experienced, 0 = did not experience)

1:1317 (1.5%) 0.121
+

0:8601 (98.5%)

Region A regional dummy variable (1 = Sumatera, 2 = Java, 3 = Bali and Nusa
Tenggara, 4 = Kalimantan, 5 = Sulawesi, 6 =Maluku and Papua)

1:23,379 (27.0%)
2:33,003 (38.2%)
3:8718 (10.1%)
4:9625 (11.1%)
5:10,556 (12.2%)
6:1156 (1.3%)

Note: − and + denote decreasing and increasing effect to farmers’ P-I, respectively.

3.3. Empirical Model

To estimate the effect of each predictor on the ordinal response variable, we used an ordered
probit regression. Ordered probit estimate can be used to estimate how each predictor determines the
probability that farmers perceive (whether high or low) an impact of CC on their rice farming. The use
of ordered-probit regression to analyze the effect of independent variables on the ordinal response was
favored to avoid false alarm (detecting a non-existent effect) and loss of power (failure to detect an
effect) problems [83]. Equation (1) specifies the model:

y∗i =
17∑

i=1

βxi + εi, i = 1, 2, . . . , N (1)

where y∗i is the response variable that represents the perceived impact of CC, β is the parameter to be
estimated, xi is the vector of predictors, εi is the error term, and N is the number of observations.
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4. Result and Discussion

4.1. Estimation Results

Of the 17 predictors analyzed in the ordered probit regression, 13 had a statistically significant
effect on the perceived impact of CC, 10 of these had the expected signs, 6 variables had a positive sign,
and 7 had a negative sign. However, since the climatic variables logically increase the degree of the
P-I, nine variables practically represent farmer characteristics that have a statistically significant effect.
The likelihood test ratio and the pseudo R2 indicated that the model is robust.

The estimation results of the social variables revealed that education and gender have a statistically
significant effect on P-I, having negative and positive effects, respectively. In the economic category,
only land tenure had a statistically significant adverse effect. The technical variables seem to primarily
affect the degree of P-I since all variables in this category have a statistically significant effect. Farmers
with access to technical irrigation, practicing monoculture farming, and applying chemical fertilizer
reported a lower degree of P-I. However, farmers with a higher cultivation frequency seem to have
experienced a greater impact of CC. The results of institutional variables suggest that participation in a
farmer group and having access to extension services reduce the degree of P-I. However, participation
in a farmer’s field school is not likely to have a significant effect in terms of decreasing the degree of P-I.

The purpose of incorporating climatic variables in the estimation was to identify which type of
climate-related hazard is perceived as causing the most severe damage. The estimation results revealed
that all variables in this category have a statistically significant positive effect on the degree of P-I. The
obtained coefficients indicated that farmers perceive flood as causing the most damage, followed by
drought, heavy rain, and other hazards. The estimation result for each variable is provided in Table 2.

Table 2. The estimation results.

Variable Name Estimate Sig.

Response Variable
Perceived impact of CC
Threshold low impact (1) −24.133 0.000 ***
Threshold high impact (2) −19.532 0.000 ***
Social Variables
Age −0.001 0.513 ns

Education −0.016 0.000 ***
Gender (Male) 0.071 0.011 **
Economic Variables
Land tenure (Own land) −0.039 0.050 **
Landholding −0.002 0.907 ns

Capital source (loan) 0.030 0.340 ns

Technical Variables
Irrigation (technical irrigation) −0.075 0.000 ***
Cropping system
(monoculture) −0.324 0.000 ***

Fertilizer (applying fertilizer) −0.098 0.000 ***
Cultivation frequency 0.030 0.042 **
Institutional Variables
Farmer group −0.034 0.091 *
Extension services −0.060 0.019 **
Farmer field school −0.001 0.980 ns

N 87,330
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Table 2. Cont.

Variable Name Estimate Sig.

Climatic Factors
Flood 7.271 0.000 ***
Drought 7.086 0.000 ***
Heavy rain 6.746 0.000 ***
Other hazards 6.682 0.000 ***
Regional Variables
Sumatera −0.577 0.000 ***
Java −0.394 0.000 ***
Bali and Nusa Tenggara −0.549 0.000 ***
Kalimantan −0.443 0.000 ***
Sulawesi −0.472 0.000 ***
Maluku and Papua −0.512 0.000 ***
Regression Robustness
Likelihoodtest ratio 135,205.866 0.000 ***
Pearson goodness of fit 28,051.967 1.000 ns

Deviance goodness of fit 22,696.188 1.000 ns

Cox and Snell R2 0.789
Nagelkerke R2 0.998
N 87,330

Note: ***, **, and * denote significant at 1%, 5%, and 10% levels, respectively. ns denotes a statistically not
significant effect.

4.2. Discussion

The identification of factors affecting the degree of a farmer’s P-I of CC was the primary purpose of
this study. The estimation results in Table 2 show the effect of each variable. The variables were further
classified into weakening and reinforcing factors. A reinforcing factor decreases the degree of P-I,
whereas a weakening factor increases it. Figure 3 summarizes the reinforcing and weakening factors.

Figure 3. The reinforcing and weakening factors of the climate change perceived impact.

4.2.1. Social Variables

The estimation results show that two out of three variables had a statistically significant effect.
Education and gender had significantly negative and positive effects, respectively, whereas age did not
have any statistically significant effect. The result suggests that farmers with higher levels of education
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better adapt to CC and thus perceive a lower degree of CC impact. Many studies have reported the role
of education in moderating the adverse effects of CC. A study on farmer use of CC adaptation practices
in Pakistan revealed that farmers with higher education are better at adjusting sowing time, using a
drought-tolerant crop, and practicing crop-shifting, and these practices have resulted in higher food
security [39]. Another study in Pakistan [67] and one in Kenya [84] that assessed farmer awareness
of CC also found a positive effect of education on adaptation ability. Similarly, a study in Ethiopia
found that education positively affects the probability of farmers adapting to CC via soil conservation
and changing planting dates [65]. These findings show that farmers with higher education perceive a
lower degree of CC impact because they are better at adapting to and have a higher awareness of CC.

The positive regression coefficient of gender indicates that male farmers perceived a higher
degree of impact than female farmers. The gender issue in the CC discussion has gained considerable
attention. In some studies, male farmers were reported to be better at adapting to CC. A higher
likeliness to undertake adaptation practices was found among male farmers in Ethiopia [65], and a
higher awareness of CC was found among male farmers in Kenya [84]. However, in a Pakistan study,
female farmers were found to be better at using adaptation practices and had a higher level of food
security [39]. A cross-European analysis of individual perceptions of CC revealed that women in most
European countries are more aware of CC, but the degree of awareness varied across countries [44].
Also, female representation in the national parliaments is related to the creation of stringent climate
change policies and lower CO2 emissions [85]. Furthermore, the theory of socialization stated that
female possesses stronger cooperation and carefulness, personal traits that are relevant to the success
of CC action, than male [86].

This finding suggests that the gender effect is context- and location-specific. In this study, female
farmers perceived a lower degree of impact. Based on the data, female farmers participate more
in crop insurance than male farmers. The participation rate of female farmers in crop insurance is
0.255%, whereas that of the male farmer is 0.192%. Women farmers have a more positive perception
regarding future farming conditions. Figure 4 shows the distribution of farmer perception of future
farming conditions.

Figure 4. Perception of female and male farmers on future farming conditions.

The regression result revealed that age has no statistically significant effect on the degree of P-I.
Age has often been associated with farming experience and increases the adoption of adaptation
practices [65] and awareness of CC [67,84]. However, another study suggested that younger farmers
are more likely to adopt adaptation practices [39]. A cross-European study obtained mixed results in
terms of the age effects on individual perception of CC [44]. Thus, the results in this study and of the
previous study indicate that, similar to gender, the age effect is location- and context-specific.
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4.2.2. Economics Factors

The results of this study revealed that land tenure decreases the degree of perceived climate
change impact. Landholding and farm capital source did not have statistically significant effects.
The effect of land tenure security on the rate of adaptation practices varies. A study in Ghana reported
that land ownership increases a farmer’s likeliness to undertake adaptation practices [87]. Conversely,
another study in Pakistan found that land ownership reduces it [88]. This study suggests that other
characteristics, such as education, household size, and resource access, might influence the identified
adverse effect of land ownership. Similarly, a study in Pakistan found an adverse effect of land
ownership, even after controlling for land size and wealth-related characteristics, but not for education,
which was found to have a strong positive effect [39]. These findings suggest that a stronger variable,
such as education, might offset the effect of land ownership. The results of this study indicate that land
ownership decreases the degree of P-I of CC.

Since we analyzed the P-I of CC on crop yield, the result indicates that farm owners are more willing
to adopt yield-enhancing adaptation strategies than farm tenants and sharecroppers. Farm owners
have a higher incentive to invest in adaptation practices [89]. A study in Pakistan and Indonesia found
that insecure land tenure decreases adaptation practices [90] and makes farmers less cautious in terms
of their farming, manifesting, for example, through an absence of soil conservation [91]. The positive
effect of secure land tenure on adaptation practices, however, has potential disadvantages when the
adaptation yielded unintended maladaptive outcomes. For example, a study on tomato growers in
Ghana revealed that the perception of climate variability drives farmer to use more agrochemicals to
retain crop production, and these chemicals cause the pollution of nearby water bodies and increase soil
acidity above the optimum crop requirements [18]. Similar practices have been identified in rural areas
of Indonesia, where watermelon farmers use excessive chemical pesticides to retain production, causing
groundwater pollution that damages the quality of water for consumption [92].1 Ultimately, adaptation
becomes maladaptation, which erodes sustainable development and shifts vulnerability to other actors.
Thus, it is essential to guide farmer’s adaptation practices to avoid unintended maladaptive outcomes.

4.2.3. Technical Factors

The probit estimation revealed that each variable in the technical category has a statistically
significant effect. The regression coefficient of the irrigation variable indicated that farmers with access
to technical irrigation perceive a lower degree of impact than farmers with non-technical and rain-fed
irrigation. Irrigation infrastructure is crucial for reducing the adverse effects of CC. The availability of
irrigation infrastructure (II) increases the efficiency of the distribution of limited water and decreases
crop yield loss due to drought. In some cases, II becomes a drainage facility that reduces crop damage
caused by flood. The establishment and improvement of II is a key framing device for CC adaptation
in a rice-based country such as Vietnam [94]. In Vietnam, II reduces water availability during the rainy
season and increases it during the dry season [95].

Technical irrigation in Indonesia has been developed since the 1970s with the support of the
Green Revolution program. The establishment of technical irrigation infrastructure has increased the
yields, cropping season, and cropping intensity of rice farming in Indonesia [73]. Conversely, both
non-technical and rain fed agriculture rely mainly on rainfall to supply irrigation. Hence, those in such
areas are vulnerable to drought occurrence and pay a higher cost of irrigation due to water scarcity.
Rice and agricultural productivity in this area are lower compared to areas with technical irrigation,
which means that farmers such areas are economically more vulnerable to CC.

The fertilizer variable demonstrated that the application of chemical fertilizer decreases the degree
of P-I. In line with the previous discussion, farmers often apply more agrochemicals to retain their crop

1 The example of data on extensive use of agrochemical in Indonesian farming can be found here [93].
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production. A study in Nepal identified that farmers adapt to CC by applying more chemical fertilizer
and this increases rice productivity [9]. This finding suggests that autonomous adaptation will likely
become maladaptive if a broader perspective is included. This is not surprising as the primary goal of
farmers is to increase crop yield or limit crop yield loss, and, in most cases, this is also the priority of
agricultural policy. Thus, a further adaptation policy should guide farmers to implement appropriate
adaptation practices to reduce unintended maladaptive outcomes.

The results also indicate that monoculture farming decreases the degree of perceived CC impact.
Monoculture is often regarded as a threat to biodiversity. Thus, multiculture farming is commonly
employed to reduce biodiversity loss in trees farming. However, monoculture in rice farming is less of
a threat to biodiversity since its temporal dimension is short [96], and the majority of farmers practice
crop rotation. The last variable, cultivation frequency, increases the degree of P-I. A higher cultivation
frequency prolongs exposure to CC, which increases the probability of farmers being affected by CC
and increases the degree of P-I.

4.2.4. Institutional Factors

The estimation results show that access to extension services and participation in a farmer group
significantly decrease the degree of P-I, whereas participation in a farmer’s field school does not.
Extension services are effective information channels used to raise farmer awareness of CC and
drive adaptation practices. The importance of extension services as a means of delivering accurate
information about CC has been addressed in many studies. A study of farm households in four
provinces in Pakistan demonstrated that access to extension services increases how likely a farmer is to
adapt to CC [39]. Similarly, a study on rice farmers in the Terai and Hill area of Pakistan indicated
that farmers who receive information from extension agents are more likely to adapt [9]. Extension
services have been the focus of studies in East Africa [97], Ethiopia [65], and Punjab, Pakistan [67], to
enhance a farmer’s resilience against CC. These finding indicate that information is crucial in shaping
and directing a farmer’s behavior with respect to CC. Access to timely and accurate information not
only increases a farmer’s awareness and adaptation to CC, but might also be used to inform farmers
about adaptation practices that yield maladaptive outcomes.

Indonesian farmers receive extension services from several sources, such as state agricultural
extension officers (PPL), a state pest-control officer (POPT), an officer from the office of agriculture
at the district level (Diperta), and private extension services. Figure 5 shows the number of farmers
who receive extension services based on the type of extension service officer. Only 25% of rice farmers
in Indonesia have access to these services. The primary extension agent is from the government.
The data shows that non-government extension agents vary in type, and these may be from a private
corporation (such as a pesticide and fertilizer factory), a non-governmental organization (NGO), or
may be associated with peer-farmer extension. Increasing the number and coverage of extension
agents is essential for CC adaptation policy in Indonesia, since the majority of farmers (41%) receiving
extension services are concentrated in Java, with 21.4% in Sumatera, 8.3% in Bali and Nusa Tenggara,
10.6% in Kalimantan, 14.4% in Sulawesi, and 1.2% and 1.9% in Maluku and Papua, respectively.
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Figure 5. The number of farmers who receive extension services based on the type of extension agents.

The government should encourage the establishment of farmer-to-farmer extension services given
the potential human resource in Indonesian rice farming. Currently, 82% of the rice farmer population
is 20–60 years of age, and 2% of rice farmers have a bachelor degree or higher. Of this educated group
(bachelor degree or higher), 87% are aged between 20 and 60 years, with 25% in 20–40 years, and 61%
in the 41–60 years old group. Facilitating the establishment of farmer-to-farmer extension provides
a strong foundation for sustainable agricultural extension. Farmer-to-farmer extension provides a
cost-effective training method for farmers, since trained farmers disseminate their useful knowledge to
the non-trained farmer, and the non-trained farmer is eager to adopt the technology used by the trained
farmer to increase yield and profit [98]. A strong positive effect of formal education on a farmer’s
resilience with respect to CC suggests that farmer-to-farmer extension provided by an educated farmer
potentially increases the resilience of the recipient.

The estimation results indicate that participation in a farmer group decreases the degree of P-I.
Participation in a farmer group is the primary requisite for obtaining farm inputs, extensions, and other
programs provided by the government [79]. Several studies have reported the importance of farmer
groups in increasing farmer adaptation to CC [65,97], awareness to CC [67], and farm productivity and
food security [39].

4.2.5. Climatic and Regional Factors

This category focuses on identifying the type of impact that a farmer perceives as most severely
damaging their farming. The category contains four variables: Flood, drought, heavy rain, and other
hazards (such as landslides). The estimation results show that farmers perceive floods as causing
the most severe impact, followed by drought, heavy rain, and other hazards. Flood and drought are
the primary consequences of changes in rainfall frequency and intensity. The occurrences of drought
and flood are the cause of agricultural yield loss in developing countries and generally affect large
areas [99,100]. Figure 6 shows the distribution of farmers who have experienced flood and drought
events in Indonesia. The distribution shows that more farmers have experienced droughts than they
have floods. Even in provinces with high rainfall intensity, droughts are more frequent than floods.
The spatial distribution of affected farmers shows that farmers outside Java are more vulnerable to
CC. This information is vital in the implementation of adaptation policies. The government should
prioritize the increase in the climate resiliency of farmers outside of Java Island. The increase in
resiliency can be achieved by expanding the coverage of agricultural extension services to farmers.
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Figure 6. The distribution of farmers experiencing flood and drought in each province of Indonesia
(the rainfall intensity unit is mm/year).

The regional variables demonstrate regions whose farmers perceive a higher degree of CC.
The estimation results indicate that farmers in Sumatera are likely to perceive the impact of CC.
Twenty-seven percent of Indonesian rice farmers are in Sumatera, so a large impact of CC on rice
farmers in Sumatera is perceived, since the national rice supply significantly decreased. Thirty-eight
percent of Indonesian rice farmers in Java perceive a low impact of CC. The agricultural infrastructure
in Java is more advanced than other regions in Indonesia. Physical and institutional infrastructure
have been established in Java since the 1970s. Thus, in the future, it is critical to emphasize agricultural
regions outside Java. The order of regions from the most vulnerable to the most resilient is as follows:
Sumatera, Bali and Nusa Tenggara, Maluku and Papua, Sulawesi, and Kalimantan.

4.2.6. Policy Implications

The primary purpose of an agricultural CC adaptation policy is to reverse its adverse effects.
Adaptation to CC limits agricultural yield loss and improves food security. In some cases, CC is
beneficial to agricultural production if proper adaptation practices are implemented [101,102]. Whereas
the majority of countries have formulated a specific adaptation strategy to be implemented at the
farm level, the remaining challenge is delivering the strategy so that it is adopted by many farmers.
The theory of risk perception suggests that individuals who perceive a higher degree of risk would
be willing to take any action required to remove the risk [27–29]. In the case of the CC impact on
agriculture, farmers will be more willing to adopt adaptation strategy if they individually perceive
CC damage. However, this high likeliness to adapt becomes a problem if a farmer’s autonomous
adaptation creates maladaptive outcomes. Thus, identifying the determinants of a farmer’s P-I is
crucial in the implementation of adaptation policy. This information can be used to increase the rate of
adaptation practices and limit maladaptation.

The results of this study show that the P-I of CC is affected by various factors. Female farmers
are shown to be more resilience in managing the impact of CC than male farmers. The theory of
socialization suggests that female possesses a stronger personal traits that are relevant to CC action
(mitigation and adaptation) than male. Hence, increasing female farmer participation in adaptation
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activity and in the CC-related decision-making process is crucial to increase farmer resilience toward
CC. Formal education and access to extension services have a strong effect in terms of reducing
the degree of P-I, and this strongly agrees with previous studies in many developing countries.
Therefore, information is crucial to increasing a farmer’s resilience with respect to CC. Thus, we suggest
strengthening information about CC as a primary policy. Information about CC can be strengthened in
two aspects: First, by increasing the coverage of current extension services and, second, by establishing
farmer-to-farmer extension, where educated farmers (those with a bachelor degree or higher) provide
education to their peers. Among other factors, land tenure is crucial in adaptation policy. Findings in
this study suggest that the security of tenure drives farmers to provide the investment and pay for the
running costs of adaptation. Economically, the security of tenure ensures that farmers are incentivized
to adopt of adaptation practices.

1. Policy implications that are suggested based on these findings are as follows: Female farmer are
better at managing the CC impact. It is essential to increase female farmer participation in CC
action (adaptation and mitigation) and in the CC-related decision making process. Additionally,
extension services are currently an effective method of delivering the substance of a policy to
the farmer. It is crucial to use current channels of agricultural extension to provide adaptation
strategies to farmers and to expand the coverage area of the extension services.

2. The government should facilitate farmer-to-farmer extension, which can be implemented by
identifying key farmers (farmers with a high degree of formal education), providing them with
intensive training, and facilitating the dissemination of their expertise. This strategy is feasible
because Indonesian rice farmers with a high degree of formal education are aged between 20 and
40 years and have a high potential to be a key farmer in this framework.

3. Efforts should be made to implement adaptation policies based on a farmer’s land tenure and
prioritize farmers who cultivate land under a lease or sharecropping contract. The security of
tenure affects a farmer’s incentive to adopt and conduct adaptation practices. The farmer who
cultivates land under a lease or sharecropping contract will put little effort and investment into
adaptation practices. Currently, 20% of Indonesian rice farmers are in this category; if they do not
practice adaptation strategies, the decrease in rice production will be substantial. In the context of
food security, the national rice supply will decrease.

5. Conclusions

We attempted to identify factors affecting the degree of P-I of CC on farm yield among rice farmers
in Indonesia. The P-I is a subjective measure of the impact of CC on farm yield. This subjective nature
of P-I is essential because it indicates how farmers will adapt to CC. The more severe the P-I of CC,
the more likely farmers are to adopt adaptation practices. In general, the results seem to support the
findings of previous empirical studies and that little difference exists between the actual and perceived
impact of CC. Higher education, secure land tenure, the existence of irrigation infrastructure, and
access to extension services decrease the degree of the P-I of CC. Previous empirical studies showed
that these variables improve how likely a farmer is to adopt CC adaptation practices. Since farmers
with a high value for these variables are likely to undertake adaptation practices, we conclude that
adaptation limits the adverse effects of CC on farm yield. Hence, the farmer perceives a lower impact
of CC.

However, since we measured the perceived impact of CC on farm yield, the existence of
maladaptation is suggested. A farmer’s primary objective is to retain their yield level, and it is likely
that adaptations are primarily aimed to limit yield loss. Consequently, such adaptation potentially
creates maladaptive outcomes. In Section 4.2.3, the application of chemical fertilizer was found to
decrease the degree of P-I. This suggests that farmers might use excessive chemical fertilizer (inputs) to
reduce yield loss. This excessive use will pollute nearby water bodies and decrease soil quality.

Finally, the information obtained from this study is nationally representative and is relevant for
the National Adaptation Policy in Indonesia. However, the current study is limited in providing
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the details of adaptation practices (the type and form of adaptation) in which farmers engage. Thus,
additional study that captures the detailed conditions and practices of Indonesian rice farming is
crucial in supporting the information in this study.

Thus, our results provide a basis for future research directions:

1. As extension services play a vital role in providing information to other farmers, an investigation
into the mechanism by which extension services improve the resilience of farmers with respect
to CC will provide essential information for improving the efficiency of extension services in
delivering timely information to the farmer.

2. The identification of which type of extension officer and what information contributes most to
increasing farmer resilience with respect to CC will yield vital information for increasing overall
resilience to CC.

3. The identification of the type and form of adaptation practices among Indonesian rice farmers
and their outcome is crucial for identifying whether a farmer’s practices will lead to appropriate
adaptation or maladaptive outcomes.
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Abstract: Characterizing the spatiotemporal patterns of ecosystem responses to drought is important
in understanding the impact of water stress on tropical ecosystems and projecting future land
cover transitions in the East African tropics. Through the analysis of satellite measurements
of solar-induced chlorophyll fluorescence (SIF) and the normalized difference vegetation index
(NDVI), soil moisture, rainfall, and reanalysis data, here we characterize the 2010–2011 drought in
tropical East Africa. The 2010–2011 drought included the consecutive failure of rainy seasons in
October–November–December 2010 and March–April–May 2011 and extended further east and south
compared with previous regional droughts. During 2010–2011, SIF, a proxy of ecosystem productivity,
showed a concomitant decline (~32% lower gross primary productivity, or GPP, based on an empirical
SIF–GPP relationship, as compared to the long-term average) with water stress, expressed by lower
precipitation and soil moisture. Both SIF and NDVI showed a negative response to drought, and SIF
captured the response to soil moisture with a lag of 16 days, even if it had lower spatial resolution and
much smaller energy compared with NDVI, suggesting that SIF can also serve as an early indicator
of drought in the future. This work demonstrates the unique characteristics of the 2010–2011 East
African drought and the ability of SIF and NDVI to track the levels of water stress during the drought.

Keywords: solar-induced chlorophyll fluorescence; drought; photosynthesis; East Africa; water
stress; NDVI

1. Introduction

Droughts impact not only ecosystem functions but also the well-being of affected human
populations [1,2]. The temporal and geospatial responses to drought are varied, and they threaten
regions that are less well-adapted to water stress. A better understanding of the relationship between
photosynthesis and water stress has broad reaching implications for our understanding of the global
carbon and hydrological cycles.

Roughly half of the global variability in terrestrial carbon cycling can be attributed to carbon
dioxide fluxes in tropical Africa, but the impact of drought on these fluxes is still modeled with
significant uncertainty [3]. Further research on continental carbon fluxes is limited by data availability
and characterization of regional productivity responses to drought [4,5]. The future of ecosystem
productivity in the tropics is limited by how well plants cope with water stress but the influence
of seasonal water stress on productivity, particularly in Africa’s tropical regions, has rarely been
characterized [6,7].

African climate is characterized by summer rainfall in the northern and southern tropics with
an equatorial bimodal regime in-between. Regional variations notwithstanding (Figure 1), rainfall
in tropical East Africa is delivered during the boreal spring and fall (Figure 2), accompanying local
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solar insolation maxima. The rainy season from March to May, known as the “long rains” in Kenya,
“Belg” in Ethiopia, and “Gu” in Somalia, includes the majority of annual regional rainfall. A second
rainy season occurs during the boreal fall and is referred to as the “short rains” in Kenya, “Keremt” in
Ethiopia, and “Deyr” in Somalia. For simplicity, Kenyan terminology is employed in this study along
with March, April, May (MAM) and October, November, December (OND) to refer to respective rainy
months. In the area of our interest (black boxes in Figure 1), annual mean precipitation is 439 mm/year;
this is a dry region where the two growing seasons (Figure 3) are susceptible to even small decreases
in precipitation.

Figure 1. Average annual mean precipitation from Global Precipitation Climatology Project (GPCP; left)
and Tropical Rainfall Measuring Mission Multisatellite (TRMM; right) climatology data, demonstrating
the variability in rainfall regimes in the area. For zonally averaged values, the drought region is defined
as the land area between 1.5◦ S and 4◦ N and 38.5◦ E to 46.5◦ E (black box).

Figure 2. The climatology of rainfall over the drought region as presented by the two precipitation
products used in this study, GPCP and TRMM.

Climate extremes on the African continent are well studied due to their potential to produce
far-reaching economic and social consequences. East Africa has faced at least one major drought
per decade over the last half century [8]. That said, regional droughts are typically isolated to only
one of the two rainy seasons; consecutive failed rains are uncommon phenomena given the differing
influences on precipitation for each rainy season. The successive failure of 2010 short rains and 2011
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long rains produced the worst East African drought in the last 60 years [9], causing humanitarian
crises in East Africa.

This study seeks to characterize the productivity response of tropical East Africa to water stress
while identifying the unique spatial and temporal characteristics of the 2010–2011 drought. Related
research on gross primary production (GPP) change in other tropical ecosystems and drought impacts
relies on satellite-derived measurements because in situ measurements there remain scarce, largely due
to operational constraints [10]. Here, we use relatively new satellite measurements of solar induced
chlorophyll fluorescence (SIF) [11] to study the change in East African productivity during the drought,
in conjunction with other atmospheric and terrestrial datasets. In Section 2, we describe the data and
methods that we used. The results and discussion are presented in Sections 3 and 4. We summarize
and conclude our study in Section 5.

2. Materials and Methods

2.1. Study Area

Our study area is the Horn of Africa region around the equator (Figure 1) where precipitation
has two maxima (Figure 2). The Horn of Africa region, including Kenya, Ethiopia, and Somalia,
collectively referred to as ‘East Africa’ (e.g., [12]), has been historically susceptible to droughts [13].
The El Niño Southern Oscillation (ENSO) significantly impacts OND precipitation [14]. The March and
April precipitation signal, on the other hand, is more influenced by the position of the Intertropical
Convergence Zone (ITCZ) (and thus the Indian Ocean warm pool temperatures [12]), and May rain is
heavily influenced by the divergent low-level winds of the Indian monsoon [15].

2.2. Atmospheric Datasets

We used satellite-derived rainfall estimates from the Tropical Rainfall Measuring Mission
Multisatellite (TRMM) Precipitation Analysis (TMPA) 3B43 product, averaged monthly from 1998
to 2013 at a 0.25-degree spatial resolution [16]. TRMM precipitation is calculated from the radiative
and emissive properties of cloud hydrometers at visible, infrared, and microwave wavelengths,
which serve as proxies for rainfall rate. The TRMM 3B43 dataset combines rain gauge, infrared,
passive-microwave, and precipitation radar estimates and is generally well correlated at a monthly
time scale with African rain gauge measurements across the continent [17] and over East Africa’s
complex topography [18]. To supplement TRMM data, we used the Global Precipitation Climatology
Project (GPCP 1979–2012) [19] dataset because it has a longer record, starting from 1979, and is thereby
valuable to compare the 2010–2011 drought with other historic droughts. GPCP data are derived from
rain gauge and satellite data. We note that the number of rain gauges has declined throughout this
region (40 in 1979 to 5 in 2010) [20].

Soil moisture data integrate precipitation anomalies in time and were used here to depict
the spatial distribution of contemporary African droughts. Soil moisture products retrieved from
Advanced Scatterometer (ASCAT) and Advanced Microwave Scanning Radiometer–Earth Observing
System (AMSR–E) represents soil moisture in the top 1–2 cm of soil at a spatial resolution of ~50 km,
sensitive to small precipitation events [21]. Land emissivity is a function of soil moisture; AMSR–E
employs a low-frequency passive microwave remote sensing approach to measure the brightness
temperature at Earth’s surface [21]. The ASCAT is an active microwave sensor that measures
backscatter from the surface, which is a function of soil moisture. This resulting soil moisture estimate
demonstrates potential for drought monitoring [22]. Remotely-sensed soil moisture measurements
are used in similar studies to monitor drought, including to characterize the spatial and temporal
distribution of the 2010–2011 East Africa drought [23]. This study differentiates itself from previous
research in that it characterizes the vegetation response to these conditions.

Reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) were
used to characterize the atmospheric and land surface conditions that led to the successive failure of
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the 2010–2011 East African monsoons [24]. Variables analyzed for drought monitoring extended from
January 1979 to present and were analyzed to assess different drought effects and dynamics. Two m
air temperature was selected due to its relationship to surface soil drying (as in [25]), its associated
role as a climate driver (as in [26]), and because higher temperatures reduce water use efficiency
during photosynthesis [27]; water vapor flux data were selected to monitor regional moisture transport.
Sea surface temperature (SST) data were from the HadISST [28].

2.3. Terrestrial Datasets

Data related to both canopy structure and plant physiological activities were included in this
study to characterize surface-level drought impacts. We used the normalized difference vegetation
index (NDVI) from the moderate resolution imaging spectrometer (MODIS) MOD13C2 product.
The resolution was 250 m, and we used data from 2007–2012 at 16-day, 0.05-degree resolution
to characterize the change in potential or accumulated productivity [29]. We used solar induced
chlorophyll fluorescence (SIF) as an indicator of actual photosynthetic activity from the Global Ozone
Monitoring Experiment-2 (GOME-2)) [11]. GOME-2 measures this fluorescence signal at 9:30 am local
time and provides global coverage every 1.5 days. The nadir footprint size is 40 km × 80 km; here we
used both monthly and weekly GOME-2 products from NASA at a spatial resolution of 0.5◦.

Fluorescence occurs when a solar photon is absorbed and is elevated to an excited state in the light
reaction of photosynthesis. Typically, between 2 and 5 percent of photons absorbed by chlorophyll are
re-emitted at longer wavelengths as fluorescence [30]. Canopy-level SIF measurements demonstrate
that fluorescence capture productivity decreases even when NDVI remains constant [31]. SIF retrievals
are also sensitive to seasonal dynamics of vegetation, independent from the structure of the canopy,
and have been employed for stress detection in ground [32], aircraft [33], drone [34], and satellite-based
instruments at wavelengths surrounding the oxygen A and B bands or Frauhoefer lines [35].

To assess the impact of the 2010–2011 drought on GPP, we scaled SIF to GPP using a linear
relationship between monthly SIF and a GPP product, Fluxnet Multi-Tree Ensemble (MTE) GPP [36]
during 2007–2011 (Figure 3). The Fluxnet GPP data were calculated using a machine-learning approach
with eddy covariance datasets from flux towers, climatic variables, and remote sensing products.
The dataset spanned from 1983 to 2011. The GOME-2 monthly SIF overlapped with Fluxnet–MTE over
the 2007–2011 period. We then calculated the difference between 2010–2011 SIF and SIF climatology
(2007–2012). We limited our analysis between 2007–2012 because GOME2 SIF showed a decreasing
trend after 2013, likely caused by a sensor drift [37]. We calculated the GPP reduction during the
drought period by using this relationship between SIF and GPP.

Figure 3. The relationship between solar-induced chlorophyll fluorescence (SIF) and gross primary
production (GPP): (top) spatiotemporally-averaged SIF and GPP for the black box region in Figure 1;
(bottom) the relationship between SIF and GPP.
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2.4. Analysis

Remotely-sensed proxies for terrestrial vegetation activity (SIF and NDVI) and atmospheric
reanalysis data were processed via the same methodology. These data were presented as standardized
anomalies (z-scores), calculated by removing climatological mean values and dividing by the standard
deviation of the mean. The resulting signal was therefore corrected for seasonal variability and the
differences in the magnitude of the anomaly among different variables. In this analysis, multi-year
means were calculated over as long a time period as the record permitted. For zonally averaged values,
the drought focus region was defined as the land area between 1.5◦ S to 4◦ N and 38.5◦ E to 46.5◦ E
(see black box in Figure 1), modified from [20].

In our analysis, the 2010–2011 drought was compared to previous droughts in East Africa as
recorded in the emergency events database EM-DAT: The International Disaster Database, consistent
with [38]. EM-DAT provides global historical drought records. In our study we included all
EM-DAT-recorded drought events in Kenya, Ethiopia, and Somalia with the exception of 1987, 1988,
and 1989, which were excluded because the drought season could not be determined. Previous regional
drought years in the Horn of Africa include 1980 (MAM), 1983 (OND), 1991 (OND), 1994 (MAM), 1997
(MAM), 1998 (OND), 1999 (MAM), 2000 (MAM), 2003 (MAM), 2004 (MAM), 2005 (OND), 2008 (MAM),
and 2009 (MAM). We note that 1998–1999 is the only other consecutive set of drought events before
the 2010–2011 drought in the past 30 years.

3. Results

3.1. Spatial and Temporal Patterns of the 2010–2011 Drought

During the 2010–2011 drought, regional reductions in rainfall were evident spatially and
temporally (Figures 4–6). The 2010–2011 drought, in fact, represented a significant reduction (as large as
three standard deviations less) in rainfall, not only as compared to the climatology (Figures 5D and 6D),
but also as compared to the region’s substantial drought history (as large as 1.5 standard deviations;
Figures 5F and 6F). During the previous drought years (a ‘drought climatology’ is presented in Figures
5B and 6B), a negative rainfall anomaly of the short rains (OND) was primarily between 40◦ E and
43◦ E, whereas the 2010 drought extended further east and with greatest intensity further westward
than the average of 41.5◦ E (Figure 5E,F and Figure 6E,F). The decrease of the ensuing long rains (MAM)
was one standard deviation below that of previous droughts (Figures 5B and 6B) in the southern
hemisphere, exacerbating drought started in the season of short rains. In both rainy seasons, the
2010–2011 drought extended further east than in previous drought events. The 2010–2011 drought was
spatially distinct from previous regional droughts.

The ITCZ does not extend over East Africa during the rainy seasons but its spatial coherence over
the West Indian Ocean can be considered as a proxy for moisture transport to East Africa because
the Indian Ocean temperature alters the local Walker Circulation [13]. East Indian Ocean SST is
warmer than West Indian Ocean SST (Figure 7), and this east–west gradient in the SST pattern has
been associated with droughts in East Africa [13]. A strong negative correlation exists between SSTs in
the tropical Indian and Pacific Oceans and East African rainfall [39].

In August and September of 2010, the precipitation that eventually became the southern maximum
of the West Indian Ocean double ITCZ was significantly reduced in intensity and showed a less robust
spatial integrity than was evident in the climatology (Figures 6 and 7). Anomalously low precipitation
over the western Indian Ocean in the months preceding the OND long rains yielded a reduced
westward extension of the southern ITCZ and correspondingly reduced water vapor transport to East
Africa. Ultimately, this resulted in less distinct double ITCZs over the West Indian Ocean and reduced
precipitation over East Africa.
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Figure 4. The 2010–2011 drought (red) represented a significant reduction of productivity (SIF and
NDVI, Normalized Difference Vegetation Index) as compared to the mean annual cycle (thick black
line) of different precipitation products averaged over the drought region.

Figure 5. The 2010–2011 drought was spatially and temporally unique. The left column represents
monthly rainfall climatology (GPCP) (A), drought climatology (alternatively referred to as a drought
composite—an average of previous regional droughts (B), and 2010–2011 rainfall (C). Cool colors
represent high rainfall. The right column represents average rainfall anomaly (B minus A) during
drought years (D), 2010–2011 rainfall anomaly (C minus A) (E), and drought anomaly (E minus D or
precipitation anomaly as compared to the drought composite average anomaly) (F). Brown values
represent anomalously low rainfall whereas blue values represent greater than expected (anomalously
high) rainfall. The anomaly was averaged along the longitude between 38.5◦ E and 46.5◦ E.
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Figure 6. Similar to Figure 5, but the anomaly was averaged along the latitude between 1.5◦ S and
4◦ N.

Figure 7. The climatology of sea surface temperature (HadISST, ◦C) and TRMM rainfall (mm/day)
over the Indian Ocean during both rainy seasons. The East Indian Ocean is warmer than the West
Indian Ocean. Moisture transport to East Africa is linked to this temperature gradient.

Failed formation of the double ITCZ over the West Indian Ocean continued into the MAM season,
a season with a typically weaker double ITCZ (Figure 7). Precipitation in the West Indian Ocean was
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anomalously low during MAM of 2011, particularly over the southern maxima of the double ITCZ
(Figure 8). Wind divergence from the southern ITCZ during January and February 2011, coupled with
reduced long rains over the same area (Figure 9), produced a significantly weakened southern ITCZ,
when compared to previous drought years. Water vapor for East African rainfall was heavily linked
to this precipitation, and a relationship between rainfall in West Indian Ocean and East Africa was
clear: strongly reduced rainfall in the West Indian Ocean resulted in (or was at least a strong proxy for)
decreased precipitation in East Africa (e.g., [13]).

Figure 8. The anomaly of sea surface temperature (HadISST, ◦C) and rainfall (mm/day) during
2010–2011 East African drought.

Figure 9. Anomalies of 2 m surface air temperature (filled colors) and 850 hPa wind (vectors).
Temperatures generally increased in East Africa during the 2010–2011 failed rains. This contributes to
but may also exist as a positive feedback with decreased photosynthetic activity: photosynthesis
decreases at higher temperatures, but surface temperatures increase with the resulting reduced
transpiration. OND is October, November, December; MAM is March, April, May.
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3.2. Photosynthetic Responses to the Drought

SIF captures the spatial distribution and severity of the 2010–2011 East African drought (Figure 10).
Anomalously low photosynthetic activity spatially correlated with soil moisture anomaly over the
duration of the drought. MODIS NDVI spatially (Figure 10) and temporally (Figure 11) approximated
the extent of the 2010–2011 drought, particularly within 10◦ of the equator.

Figure 10. Anomalies of NDVI, SIF, soil moisture, and precipitation during the 2011 drought. Both
SIF and NDVI approximate similar drought spatial extents. Anomalies calculated at highest available
temporal resolution from the onset of the drought in October 2010 through April 2011.

The temporal response of NDVI or SIF followed soil moisture (Figure 11). The relationship was
stronger with a lagged correlation (NDVI or SIF lags soil moisture) (Table 1), probably because the
response of the ecosystem productivity took time. A 16-day lagged correlation has higher coefficient
values (0.83 and 0.76 for NDVI and SIF) compared with no-lag correlation (0.56 and 0.35 for NDVI and
SIF,). Both SIF and NDVI values were sensitive to soil moisture or water stress (Figure 11).

The small signal of SIF (1–2% of total APAR), and the large footprint of the GOME-2 sensor
likely produced significant noise, as evidenced by the anomalies on the western extent of Figure 10.
The considerably greater spatial resolution of the MODIS product likely yielded spatial precision in
the MODIS NDVI panel of Figure 10.

As was demonstrated in previous studies [11,35], SIF scales well with GPP (Figure 3).
We calculated GPP reduction using the relationship between GOME 2 SIF and Fluxnet–MTE GPP. For
the long rain period, the total reduction in GPP was 117.47 gC m−2 (95% CI: 110.55, 124.40). For the
short rain period, the total reduction in GPP was 64.4 gC m2 (95% CI: 61.43, 67.38). The total reduction
of GPP during this drought accounted for 32.1% of annual mean GPP (mean annual GPP in this area is
565.6 gC m−2).

The spatial distribution of surface temperature anomalies calculated from ERAI monthly averages
since 1979 suggested that decreased photosynthetic activity was correlated with temperature increases
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of between 0.8 and 1.3 degrees Celsius in the fall of 2010. Temperature anomalies were less pronounced
in MAM 2011 (Figure 9).

Figure 11. Zonally averaged SIF and NDVI response to soil moisture in East Africa (a black box
in Figure 1. This figure was generated from 16-day average SIF from Global Ozone Monitoring
Experiment-2 (GOME-2) data (red), NDVI from moderate resolution imaging spectrometer (MODIS)
data (dark green), and daily soil moisture (blue) data.

Table 1. The relationship between soil moisture and NDVI or SIF from Figure 11. Lagged correlation is
calculated as NDVI or SIF is 16 days lagging soil moisture.

Correlation Coefficient p

No lag
Soil moisture and NDVI 0.56 0.02

Soil moisture and SIF 0.35 0.16

16-day lagged
Soil moisture and NDVI 0.83 p < 0.001

Soil moisture and SIF 0.76 p < 0.001

4. Discussion

The mean annual cycle of precipitation in East Africa is already difficult to characterize in modeled
results and interpolated data sets [40]. A dearth of regional climate data contributes to this problem:
precipitation estimates are limited by a low density of rain gauges and the short record of high spatial
resolution soil moisture data (SMOS data only dates back to 2010) [41]. Long term reductions to
the long rains are linked to rising SSTs in the western Indian Ocean, a trend likely to continue as a
consequence of anthropogenic climate change [12]. If the West Indian Ocean becomes warmer, long
rains are projected to fail with increased frequency, as is evident since 1999.

Intergovernmental Panel on Climate Change (IPCC) projections for the region suggest a future
characterized by increased episodic, extreme precipitation events, meaning there will be more rain and
more droughts [42]. Other studies project an increase of rainfall in East Africa during the short rains
in response to a large scale weakening of the Walker circulation [13]. Possible land-cover/land-use
change as a consequence of agricultural technology adaption further exacerbates this uncertainty and
are relevant to both natural ecosystems and agricultural regions, especially in food-insecure areas with
high population densities [43].
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Additionally, water stress is certain to have a substantial influence on natural ecosystems of
East Africa in the coming decades. Previous research in the Amazon basin documented the impacts
of drought on tropical ecosystems and was partially corroborated by this study [27]. Decreased
water availability causes plant stomata to close, effectively shutting down photosynthesis. Increased
temperature reduces the enzyme activity that enhances photosynthesis. Temperatures in East Africa
are projected to rise with global warming and therefore the positive temperature anomaly during
the OND 2010 drought offers insight into the productivity response of East Africa to this inevitable
trend. Rising temperatures increase potential evaporation, thereby decreasing effective moisture.
This mechanism is correlated with the drought stress influencing regional photosynthesis and suggests
that water stress exhibits a first order control on ecosystem productivity in East Africa. A temporal
analysis of surface temperature would be needed to corroborate this hypothesis and future work
decoupling the relationship between temperature, water stress, and regional productivity is critical to
an accurate projection of East Africa’s future amidst climate change.

Previous research established the impact of rising global sea surface temperatures on the
short rains: the dominant mode of variability in the tropical warm pool is related to global
temperatures [39]—increased temperatures are likely to further dry East Africa due to the strong
relationship between “short rains” and Indian Ocean sea surface temperatures. Efforts to link East
African spring rains with sea surface temperature indices in the Pacific and Indian Ocean [44] continue,
thus far suggesting that MAM rains are most sensitive to January sea surface temperatures (SSTs).

Both SIF and MODIS NDVI spatially approximated the extent of the 2010–2011 drought as
compared to soil moisture and previous analysis [45], and SIF captured the response almost as well
as did the NDVI, even if it has lower spatial resolution and much smaller energy, suggesting that
SIF can also serve as an early indicator of drought in the future. However, state-of-the-art retrievals
from GOME-2 are still limited by the sensor’s design; the satellite was intended to monitor ozone,
not SIF. Further, GOME-2 measurements occur at 0930 local time, well before the midday insolation
and accompanying light saturation that causes stomata to close and thus shut down photosynthesis;
vegetation may not be fully stressed at the time of SIF measurements. Taken together, these caveats
suggest that GOME-2 SIF data may have under-reported water stress during the 2010–2011 drought.
Measurements by an optimized sensor at peak insolation could serve as an improved record of
vegetation stress.

The spatial extent of the failed 2011 long rains was amplified by the reduced availability of water
resources following the failed short rains in the previous season. Failed rainy seasons amplify the
consequences of subsequent reductions in rainfall. The converse, however, was not true in 2010–2011:
anomalously high rainfall in MAM 2010 did not protect the region from the failed rains of OND 2010.

5. Conclusions

The failures of 2010 short rains (rainfall in OND) and subsequent long rains (rainfall in MAM) in
East Africa caused a pronounced decrease in productivity, leading to a humanitarian crisis. Here we
characterize the atmospheric and terrestrial response of tropical East Africa to the 2010–2011 drought.
The 2010–2011 drought was extraordinary in temporal, spatial, and intensity anomalies even as
compared to previous drought events. A stronger understanding of drought dynamics in East Africa
will contribute to improved drought predictions [46] with hopes that their impacts can be prepared for
in advance.

The successive failure of the rainy seasons in the 2010–2011 drought resulted in a devastating
humanitarian crisis in East Africa. The decreasing trend of the long rains [12], particularly when the
short rains fail as a result of the ENSO activity, could yield land cover changes and biome redistribution
while fomenting social unrest and food insecurity. Future work related to the 2010–2011 East Africa
drought will focus on determining the spatial variability of previous regional droughts to contextualize
the unique features of the 2010–2011 event. An improved understanding of the ecosystem productivity
response to water stress in these regions is critical due to the carbon impacts of increased drought
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incidence as a consequence of climate change. In the context of global changes in precipitation
seasonality [47], this analysis concludes that SIF is an effective tool to track the response of vegetation
to water stress. SIF responds to the water stress of the 2010–2011 East African drought, and it captures
the response almost as well as the NDVI even if it has lower spatial resolution and much smaller energy.
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