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Preface to “100 Years of Chronogeometrodynamics:  
The Status of the Einstein’s Theory of Gravitation in Its 
Centennial Year” 

Theoretical cosmology is a vastly developing science, bringing a fundamental link between particle 
physics, theoretical physics and astrophysics. Its recent success and huge increase of publications are related 
to the fact that we are living in the era of the so-called precision cosmology. Hence, more and more accurate 
bounds are obtained on the cosmological parameters through the whole cosmic history, starting from the 
Big Bang up to the currently observed Universe. Observational confirmations for the early and late 
accelerations come from data related to the cosmic microwave background, the large scale structure, the 
baryonic acoustic oscillations, the supernovae, the Hubble flow, the gravitational lensing, among others. 
The overall picture of the Universe is that of an accelerating dynamical system dominated by some cosmic 
fluids giving rise to the current ‘speed up’ (dark energy or cosmological constant), a dark matter component 
accounting for the clustering and the stability of structures, and some percentage of luminous matter, 
radiation and neutrinos.  

Several questions arise about the basic gravitational theory which governs the cosmic evolution. The 
above observations point out that either most of the Universe content is unknown (and then the problem of 
dark energy and dark matter should be solved from the particle physics side) or General Relativity should 
be reviewed in view of some extension, retaining the good results at local scales and addressing the 
ultraviolet and infrared problems at cosmic scales. At best, General Relativity is a reasonable approximation 
for the description of the Universe evolution at local scales. However, it should be qualitatively modified, 
especially at the very early (ultraviolet) scales and, eventually, at the current and even at the future epochs 
(infrared scales). This revision can be related to the three not yet understood components of the universe, 
specifically inflation, dark matter and dark energy. This is precisely the Modified Gravity Approach (for a 
review, see S. Nojiri and S.D. Odintsov, “Unified Cosmic History in Modified Gravity: from F(R) Theory to 
Lorentz Non-Invariant Models,” Phys. Rept. 505, (2011) 59 and S. Capozziello and M. De Laurentis, 
“`Extended Theories of Gravity,” Phys. Rept. 509 (2011) 167) which suggests the way to consider all the 
three dark components of the universe history under the standard of a single gravity theory. In such an 
approach, modified gravity acts in different ways at high curvature regime and at low curvature regime, so 
that it is capable of causing early-time inflation, formation of structures at intermediate epochs, as well as 
late-time acceleration. As some extra benefit, the modification of gravity could describe also dark matter 
(see S. Capozziello and M. De Laurentis “The Dark Matter Problem from f(R) Gravity Viewpoint” Annalen 
Phys. 524 (2012) 545). It is not surprising then that this current volume is devoted to these questions. The 
authors are specialists considering the deep issues of General Relativity, its validity, applications, and 
modifications. Specifically, in this volume, topics related to torsion gravity, dark energy, inflation and 
singularities are taken into account. The role of topology and non-zero cosmological constant are also 
discussed. The volume can represent a useful overview on the current status of General Relativity and the 
fundamental questions which are still open in theoretical cosmology and in the foundations of gravitational 
physics. It aims to be an overall and self-contained work that, without any claim of completeness, could be 
a useful research instrument. 

Salvatore Capozziello 
Università di Napoli “Federico II”, Italy 

Sergei D. Odintsov 
ICREA and Space Science Inst., CSIC, Barcelona, Spain 

July 2017 
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Abstract: The present Editorial introduces the Special Issue dedicated by the journal Universe to
the General Theory of Relativity, the beautiful theory of gravitation of Einstein, a century after its
birth. It reviews some of its key features in a historical perspective, and, in welcoming distinguished
researchers from all over the world to contribute it, some of the main topics at the forefront of the
current research are outlined.
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1. Introduction

This year marks the centenary of the publication of the seminal papers [1–3] in which Albert
Einstein laid down the foundations of his theory of gravitation, one of the grandest achievements
of the human thought which is the best description currently at our disposal of such a fundamental
interaction shaping the fabric of the natural world. It is usually termed “General Theory of Relativity”
(GTR, from Allgemeine Relativitätstheorie), often abbreviated as “General Relativity” (GR). It replaced the
Newtonian concept of “gravitational force” with the notion of “deformation of the chronogeometric
structure of spacetime” [4] due to all forms of energy weighing it; as such, it can be defined as a
chronogeometrodynamic theory of gravitation [5].

GTR is connected, in a well specific sense, to another creature of Einstein himself, with Lorentz [6]
and Poincaré [7,8] as notable predecessors, published in 1905 [9]: the so-called Special (or Restricted)
Theory of Relativity (STR). The latter is a physical theory whose cornerstone is the requirement of
covariance of the differential equations expressing the laws of physics (originally only mechanics and
electromagnetism) under Lorentz transformations of the spacetime coordinates connecting different
inertial reference frames, in each of which they must retain the same mathematical form. More
precisely, if

A(x, y, z, t), B(x, y, z, t), C(x, y, z, t), . . . (1)

represent the state variables of a given theory depending on spacetime coordinates x, y, z, t and are
mutually connected by some mathematical relations

f (A, B, C, . . .) = 0 (2)

Universe 2015, 1, 38–81 1 www.mdpi.com/journal/universe
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representing the theory’s fundamental equations, the latter ones can always be mathematically written
in a covariant form under a generic transformation from the old coordinates to the new ones as

f
′(

A
′(

x
′
, y

′
, z

′
, t

′)
, B

′(
x
′
, y

′
, z

′
, t

′)
, C

′(
x
′
, y

′
, z

′
, t

′)
, . . .

)
= 0 (3)

In general, the new functional relations f
′

connecting the transformed state variables A
′
, B

′
, C

′
, . . . are

different from the ones of f. If, as for the Lorentz transformations, it turns out

f
′
= f (4)

which does not necessarily implies that also the state variables A, B, C, . . . remain unchanged, then it is
said that the equations of the theory retain the same form. It is just the case of the Maxwell equations,
in which the electric and magnetic fields E, B transform in a given way under a Lorentz transformation
in order to keep the form of the equations connecting them identical, which, instead, is not retained
under Galilean transformations [10]. In the limiting case of the Galilean transformations applied to the
Newtonian mechanics, it turns out that the theory’s equations are even invariant in the sense that also
the state variables remain unchanged, i.e., it is

F
′ − ma

′
= 0 (5)

with
F
′
= F (6)

a
′
= a

As such, strictly speaking, the key message of STR is actually far from being: “everything
is relative”, as it might be seemingly suggested by its rather unfortunate name which, proposed
for the first time by Planck [11] (Relativtheorie) and Bucherer [12] (Relativitätstheorie), became
soon overwhelmingly popular (see also [13]). Suffice it to say that, in informal correspondence,
Einstein himself would have preferred that its creature was named as Invariantentheorie (Theory of
invariants) [14], as also explicitly proposed-unsuccessfully-by Klein [15]. Note that, here, the adjective
“invariant” is used, in a looser sense, to indicate the identity of the mathematical functional form
connecting the transformed state variables.

Notably, if the term “relativity” is, instead, meant as the identity of all physical processes in
reference frames in reciprocal translational uniform motion connected by Lorentz transformations,
then, as remarked by Fock [16], a name such as “Theory of Relativity” can, to some extent, be
justified. In this specific sense, relativity geometrically corresponds to the maximal uniformity of the
pseudo-Euclidean spacetime of Poincaré and Minkowski in which it is formulated. Indeed, given
a N−dimensional manifold, which can have constant curvature, or, if with zero curvature, can be
Euclidean or pseudo-Euclidean, the group of transformations which leave identical the expression
for the squared distance between two nearby points can contain at most (1/2)N(N + 1) parameters.
If there is a group involving all the (1/2)N(N + 1) parameters, then the manifold is said to have
maximal uniformity. The most general Lorentz transformations, which leave unchanged the coefficients
of the expression of the 4-dimensional distance between two nearby spacetime events, involve just
10 parameters. Now, in the pseudo-Riemannian spacetime of GTR the situation is different because,
in general, it is not uniform at all in the geometric sense previously discussed. Following Fock [16],
it can be effectively illustrated by a simple example whose conclusion remains valid also for the
geometry of the 4-dimensional spacetime manifold. Let us think about the surface of a sphere, which is
a 2-dimensional manifold of a very particular form. It is maximally uniform since it can be transformed
into itself by means of rotations by any angle about an arbitrary axis passing through the centre, so
that the associated group of transformations has just three parameters. As a result, on a surface of
a sphere there are neither preferred points nor preferred directions. A more general non-spherical
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surface of revolution has only partial uniformity since it can be transformed into itself by rotation
about an axis which is now fixed, so that the rotation angle is the only arbitrary parameter left. There
are privileged points and lines: the poles through which the axis passes, meridians, and latitude circles.
Finally, if we consider a surface of general form, there will be no transformations taking it into itself,
and it will possess no uniformity whatsoever. Thus, it should be clear that the generality of the form
of the surface is a concept antagonistic to the concept of uniformity. Returning now to the concept of
relativity in the aforementioned specified sense, it is related to uniformity in all those cases in which the
spacetime metric can be considered fixed. This occurs not only in the Minkowskian spacetime, but
also in the Einsteinian one, provided only that the physical processes one considers have no practical
influence on the metric. Otherwise, it turns out that relativity can, to a certain extent, still be retained
only if the non-uniformity generated by heavy masses may be treated as a local perturbation in infinite
Minkowskian spacetime. To this aim, let us think about a laboratory on the Earth’s surface [16]. If it
was turned upside down, relativity would be lost since the physical processes in it would be altered.
But, if the upset down laboratory was also parallel transported to the antipodes, relativity would be
restored since the course of all the processes would be the same as at the beginning. In this example, a
certain degree of relativity was preserved, even in a non-uniform spacetime, because the transformed
gravitational field g

′
in the new coordinate system

{
x
′}

has the same form as the old field g in the old
coordinates {x}, i.e.,

{x} �→
{

x
′}

(7)

g(x) �→ g
′(

x
′)

= g(x) (8)

Such considerations should have clarified that relativity, in the previously specified sense, either
does no exist at all in a non-uniform spacetime like the Einsteinian one, or else it does exist, but does
not go beyond the relativity of the Minkowskian spacetime. In this sense, the gravitational theory of
Einstein cannot be a generalization of his theory of space and time of 1905, and its notion of relativity along
with its related concept of maximal uniformity was not among the concepts subjected to generalization.
Since the greatest possible uniformity is expressed by Lorentz transformations, there cannot be a
more general principle of relativity than that discussed in the theory of 1905. All the more, there
cannot be a general principle of relativity having physical meaning which would hold with respect to
arbitrary frames of references. As such, both the denominations of “General Relativity” and “General
Theory of Relativity” are confusing and lead to misunderstandings. Furthermore, such adjectives
reflect also an incorrect understanding of the theory itself since they were adopted referring to the
covariance of the equations with respect to arbitrary transformations of coordinates accompanied
by the transformations of the coefficients of the distance between two events in the 4-dimensional
spacetime. But it turned out that such kind of covariance has actually nothing to do with the uniformity
or non-uniformity of spacetime [16,17]. Covariance of equations per se is just a merely mathematical
property which in no way is expression of any kind of physical law. Suffice it to think about the
Newtonian mechanics and the physically equivalent Lagrange equations of second kind which are
covariant with respect to arbitrary transformations of the coordinates. Certainly, nobody would state
that Newtonian mechanics contains in itself “general” relativity. A principle of relativity-Galilean or
Einsteinian-implies a covariance of equations, but the converse is not true: covariance of differential
equations is possible also when no principle of relativity is satisfied. Incidentally, also the the adjective
“Special” attached to the theory of 1905 seems improper in that it purports to indicate that it is a special
case of “General” Relativity.

In the following, for the sake of readability, we will adhere to the time-honored conventions
by using STR and GTR (or GR) for the Einsteinian theory of space and time of 1905 and for his
gravitational theory of 1915, respectively.

Of course, the previous somewhat “philosophical” considerations are, by no means, intended to
undermine the credibility and the reliability of the majestic theory of gravitation by Einstein, whose

3
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concordance with experiments and observations has been growing more and more over the latest
decades [18].

Below, some key features of GTR, to which the present Special Issue is meritoriously and timely
dedicated, are resumed in a historical perspective [19–21], without any pretence of completeness. It
is hoped that the distinguished researchers who will kindly want to contribute it will provide the
community of interested readers with the latest developments at the forefront of the research in this
fascinating and never stagnant field.

In the following, Greek letters μ, ν, � . . . denote 4-dimensional spacetime indexes running over
0, 1, 2, 3, while Latin ones i, j, k, . . ., taking the values 1, 2, 3, are for the 3-dimensional space.

2. The Incompatibility of the Newtonian Theory of Gravitation with STR

In the framework of the Newtonian theory of universal gravitation [22], the venerable force-law
yielding the acceleration a imparted on a test particle by a mass distribution of density ρ could be
formally reformulated in the language of the differential equations governing a field-type state variable
Φ, known as potential, through the Poisson equation [23]

∇2Φ = 4πGρ (9)

where G is the Newtonian constant of gravitation, so that

a = −∇Φ (10)

Nonetheless, although useful from a mathematical point of view, such a field was just a
non-dynamical entity, deprived of any physical autonomous meaning: it was just a different,
mathematical way of telling the same thing as the force law actually did [20]. It is so because,
retrospectively, in the light of STR, it was as if, in the Newtonian picture, the gravitational interaction
among bodies would take place de facto instantaneously, irrespectively of the actual distance separating
them, or as if gravity would be some sort of occult, intrinsic property of matter itself. Remarkably, such
a conception was opposed by Newton himself who, in the fourth letter to R. Bentley in 1692, explicitly
wrote [24]: “[ . . . ] Tis inconceivable that inanimate brute matter should (without the mediation of
something else which is not material) operate upon & affect other matter without mutual contact; as
it must if gravitation in the sense of Epicurus be essential & inherent in it. And this is one reason
why I desired you would not ascribe {innate} gravity to me. That gravity should be innate inherent &
{essential} to matter so that one body may act upon another at a distance through a vacuum without
the mediation of any thing else by & through which their action or force {may} be conveyed from
one to another is to me so great an absurdity that I believe no man who has in philosophical matters
any competent faculty of thinking can ever fall into it. Gravity must be caused by an agent {acting}
consta{ntl}y according to certain laws, but whether this agent be material or immaterial is a question I
have left to the consideration of my readers.”. In the previous quotation, the text in curly brackets { . . . }
is unclear in the manuscript, but the editor of the original document is highly confident of the reading.

In the second half of the nineteenth century, with the advent of the Maxwellian field theory
of electromagnetism [25] scientists had at disposal a mathematically coherent and empirically well
tested model of a physical interaction among truly dynamical fields which propagate as waves even
in vacuo at the finite speed of light c transferring energy, momentum and angular momentum from a
point in space to another. Now, STR is based on two postulates: The Principle of Relativity, extended
by Einstein to all physical interactions, and another principle that states that the speed of light is
independent of the velocity of the source. In this form, it retains its validity also in GTR. The latter
is an immediate consequence of the law of propagation of an electromagnetic wave front which is
straightforwardly obtained from the Maxwell equations obeying, by construction, the Principle of
Relativity itself since they turned out to be covariant under Lorentz transformations. It necessarily
follows [16] that there exists a maximum speed for the propagation of any kind of physical action.

4
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This is numerically equal just to the speed of light in vacuo. If there was no single limiting velocity
but instead different agents, e.g., light and gravitation, propagated in vacuo with different speeds,
then the Principle of Relativity would necessarily be violated as regards at least one of the the agents.
Indeed, it would be possible to choose an inertial frame traveling just at the speed of the slower
agent in which the differential equations governing its course would take a particular form with
respect to that assumed in all the other frames, thus predicting spurious, unphysical phenomena. It is
reminiscent of the famous first gedankenexperiment made by Einstein about STR around 1895–1896
described by himself as follows [26]: “[ . . . ] Wenn man einer Lichtwelle mit Lichtgeschwindigkeit
nachläuft, so würde man ein zeitunabhängiges Wellenfeld vor sich haben. So etwas scheint es aber
doch nicht zu geben!” [“If one goes after a light wave with light velocity, then one would have a
time-independent wavefield in front of him. However, something like that does not seem to exist!”]
Indeed, the Maxwell equations in vacuo, in their known form, do not predict stationary solutions. That
posed severe challenges to the Newtonian gravitational theory [8], which necessarily would have had
to abandon its strict force-law aspect in favor of a genuine field-type framework making the Poisson
equation covariant under Lorentz transformations [19,27].

Furthermore, as pointed out by Einstein himself [28], Newtonian universal gravitation did not fit
into the framework of the maximally uniform spacetime of SRT for the deepest reason that [16], while
in SRT the inertial mass mi of a material system had turned out to be dependent on its total energy, in
the Newtonian picture the gravitational mass mg, did not. At high speeds, when the change in the
inertia of a body becomes notable, this would imply a breakdown of the law of free fall, whose validity
was actually well tested, although only at non-relativistic regimes (see Section 3).

Finally, it can be remarked also that the required Lorentz covariance would have imposed,
in principle, also the existence of a new, magnetic-type component of the gravitational field so to
yield some sort of gravitational inductive phenomena and travelling waves propagating at the finite
speed of light in vacuo. Unfortunately, at the dawn of the twentieth century, there were neither
experimental nor observational evidence of such postulated manifestations of a somehow relativistic
theory of gravitation.

3. The Equivalence Principle and Its Consequences

3.1. The Equality of the Inertial and Gravitational Masses Raised to the Status of a Fundamental Principle
of Nature

Luckily, at that time, Einstein was pressed also by another need: The quest for a coherent
framework to consistently write down the laws of physics in arbitrary frames of references moving
according to more complicated kinematical laws than the simple uniform translation. In 1907 [29],
Einstein realized that the bridge across such two apparently distinct aspects could have been
represented by the equality of the inertial and gravitational masses, known at that time to a 5 × 10−8

accuracy level thanks to the Eötvös experiment [30].
That was an empirical fact well known since the times of Galilei thanks to the (likely) fictional [31–

33] tales of his evocative free fall experiments [34] allegedly performed from the leaning tower of Pisa
around 1590. Newton himself was aware of the results by Galilei, and made his own experiments with
pendulums of various materials obtaining an equality of inertial and gravitating masses to a 10−3 level
of relative accuracy. Indeed, in the Proposition VI, Theorem VI, Book III of his Principia [22] Newton
wrote [35]: “It has been, now for a long time, observed by others, that all sorts of heavy bodies [ . . . ]
descend to the Earth from equal heights in equal times; and that equality of times we may distinguish
to a great accuracy, by the help of pendulums. I tried experiments with gold, silver, lead, glass, sand,
common salt, wood, water, and wheat. I provided two wooden boxes, round and equal: I filled the one
with wood, and suspended an equal weight of gold (as exactly as I could) in the centre of oscillation of
the other. The boxes, hanging by equal threads of 11 feet, made a couple of pendulums perfectly equal
in weight and figure, and equally receiving the resistance of the air. And, placing the one by the other,
I observed them to play together forwards and backwards, for a long time, with equal vibrations. And
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therefore the quantity of matter in the gold (by Cors. I and VI, Prop. XXIV, Book II) was to the quantity
of matter in the wood as the action of the motive force (or vis motrix) upon all the gold to the action of
the same upon all the wood; that is, as the weight of the one to the weight of the other: and the like
happened in the other bodies. By these experiments, in bodies of the same weight, I could manifestly
have discovered a difference of matter less than the thousandth part of the whole, had any such been.”
Interestingly, in the Proposition VI, Theorem VI, Book III of his Principia [22], Newton looked also the
known motions of the natural satellites of Jupiter to make-from a phenomenological point of view -a
further convincing case for the equality of the inertial and gravitational masses. Indeed, if the ratios
of the gravitational to the inertial mass of Jupiter and of its satellites were different, the orbits of the
Jovian moons about their parent planet would be unstable because of an imperfect balancing of the
centrifugal acceleration and the Jupiter centripetal attraction caused by a residual, uncancelled force
due to the Sun’s attractions on either Jupiter and its moons themselves. Indeed, Newton wrote [36]: “[
. . . ] that the weights of Jupiter and of his satellites towards the Sun are proportional to the several
quantities of their matter, appears from the exceedingly regular motions of the satellites (by Cor. III,
Prop. LXV, Book I). For if some of those bodies were more strongly attracted to the Sun in proportion to
their quantity of matter than others, the motions of the satellites would be disturbed by that inequality
of attraction (by Cor. II, Prop. LXV, Book I). If, at equal distances from the Sun, any satellite, in
proportion to the quantity of its matter, did gravitate towards the Sun with a force greater than Jupiter
in proportion to his, according to any given proportion, suppose of d to e; then the distance between
the centres of the Sun and of the satellite’s orbit would be always greater than the distance between the
centres of the Sun and of Jupiter, nearly as the square root of that proportion: as by some computations
I have found. [ . . . ]” In principle, the Newtonian gravitational theory would have not lost its formal
consistency even if experiments-all conducted at low speeds with respect to c-would have returned a
different verdict about mi/mg. Nonetheless, one cannot help but notice as the very same name chosen
by Newton for the universally attractive force regulating the courses of the heavens, i.e., gravitation,
may point, somehow, towards a not so accidental nature of the equality of inertial and gravitating
masses. Indeed, it comes from the Latin word gravis (‘heavy’) with several Indoeuropean cognates [37],
all with approximately the same meaning related to the weight of common objects on the Earth’s
surface: Sanskrit, guruh. (‘heavy, weighty, venerable’); Greek, βάρoζ (‘weight’) and βαρύζ (‘heavy in
weight’); Gothic, kaurus (‘heavy’); Lettish, gruts (‘heavy’). It is tempting to speculate that, perhaps,
Newton had some sort of awareness of the fundamental nature of that otherwise merely accidental
fact. It seems not far from the position by Chandrasekhar who wrote [38]: “There can be no doubt
that Newton held the accurate proportionality of the weight ‘to the masses of matter which they contain’ as
inviolable”.

Whatever the case, Einstein promoted it to a truly fundamental cornerstone on which he erected
his beautiful theoretical building: the Equivalence Principle (EP). Indeed, the postulated exact equality
of the inertial and gravitational mass implies that, in a given constant and uniform gravitational
field, all bodies move with the same acceleration in exactly the same way as they do in an uniformly
accelerated reference frame removed from any external gravitational influence. In this sense, an
uniformly accelerated frame in absence of gravity is equivalent to an inertial frame in which a constant
and uniform gravitational field is present. It is important to stress that the need of making the
universality of the free fall, upon which the EP relies, compatible with the dictates of the SRT was not
at all a trivial matter [21] (cfr. Section 1), and the merit of keeping the law of free fall as a fundamental
principle of a viable relativistic theory of gravitation which could not reduce to a mere extension of
the Newtonian theory to the SRT must be fully ascribed to Einstein. To better grasp the difficulties
posed by such a delicate conceptual operation, let us think about an inertial reference frame K in which
two stones, differing by shape and composition, move under the action of a uniform gravitational
field starting from the same height but with different initial velocities; for the sake of simplicity, let us
assume that, while one of the two stones is thrown horizontally with an initial velocity with respect to
K, the other one falls vertically starting at rest [21]. Due to the universality of free fall, both the stones
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reach the ground simultaneously. Let us, now, consider an inertial frame K
′

moving uniformly at a
speed equal to the horizontal component of the velocity of the projectile; in this frame, the kinematics
of the two objects gets interchanged: the projectile has no horizontal velocity so that now it falls
vertically, while the stone at rest acquires an horizontal velocity making it move parabolically in the
opposite direction with respect to K

′
. According to the universality of the free fall, also in this case

they should come to the rest at the same time. But this is in disagreement with the relativity of the
simultaneity of the SRT. Moreover, another source of potential tension between the universality of the
free fall and the SRT is as follows [21]. According to the latter one, a change in the energy of a body
corresponds to a change also in its inertial mass, which acts as a “brake”. On the other hand, since the
inertial mass is equivalent to the gravitational mass, which, instead, plays the role of “accelerator”,
the correct relativistic theory of gravitation necessarily implies that also the gravitational mass should
depend in an exactly known way from the total energy of the body. Actually, other scientists like, e.g.,
Abraham [27] and Mie [39] were willing to discard the Galileo’s law of universality of free fall to obtain
a relativistic theory of gravitation.

The heuristic significance of the original form of the EP unfolded in the findings by Einstein that
identical clocks ticks at different rates if placed at different points in a gravitational potential, a feature
which was measured in a laboratory on the Earth’s surface in 1960 [40] by means of the Mössbauer
effect which has recently received a general relativistic interpretation [41], and the gravitational redshift
of the spectral lines emitted at the Sun’s surface with respect to those on the Earth, which was measured
only in the sixties of the last century [42] following the 1925 measurement with the spectral lines in the
companion of Sirius [43]. Furthermore, it turned out that the speed of light in a gravitational field is
variable, and thus light rays are deflected, as if not only an inertial mass but also a gravitational mass
would correspond to any form of energy. Einstein [28] was also able to calculate the deflection of the
apparent position of background stars due to the Sun’s gravitational potential, although the value he
found at that time was only half of the correct one later predicted with the final form of his GTR [44]
and measured in 1919 [45,46] (see Section 4). In 1912, he [47,48] explored the possibility of gravitational
lensing deriving the basic features of the lensing effect, which will be measured for the first time not
until 1979 [49]. It must be noted [19,21] that this theory of the constant and uniform gravitational
field went already beyond STR. Indeed, because of the dependence of the speed of light and the clock
rates on the gravitational potential, STR definition of simultaneity and the Lorentz transformation
themselves lost their significance (cfr. Section 1). In this specific sense, it can be said that STR can hold
only in absence of a gravitational field.

The existence of non-uniformly accelerated reference frames like, e.g., those rotating with a
time-dependent angular velocity Ω(t), naturally posed the quest for a further generalization of the
EP able to account for spatially and temporally varying gravitational fields as well. The extension
of the EP to arbitrarily accelerating frames necessarily implies, in principle, the existence of further,
non-uniform, non-static (either stationary and non-stationary) and velocity-dependent gravitational
effects, as guessed by Einstein [50–52]. They were later fully calculated by Einstein himself [53] and
others [54–60] with the final form of the GTR (see Section 4 and [61–63] for critical analyses of the
seminal works), which could not be encompassed by the gravito-static Newtonian framework. Indeed,
it must be recalled that the inertial acceleration experienced by a body (slowly) moving with velocity
v
′

with respect to a rotating frame K
′

is

a
′
Ω = 2Ω×v

′
+

.
Ω×r

′
+ Ω×

(
Ω×r

′)
(11)

At least to a certain extent, such new gravitational effects, some of which have been measured only a
few years ago [64–67], might be considered as reminiscent of the Machian relational conceptions of
mechanics [68–71].

Such a generalization of the EP to arbitrary gravitational fields lead Einstein to reformulate it
as follows: in any infinitesimal spacetime region (i.e., sufficiently small to neglect either spatial and
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temporal variations of gravity throughout it), it is always possible to find a suitable non-rotating
coordinate system K0 in which any effect of gravity on either test particle motions and any other
physical phenomena is absent. Such a local coordinate system can ideally be realized by a sufficiently
small box moving in the gravitational field freely of any external force of non-gravitational nature.
Obviously, it appeared natural to assume the validity of STR in K0 in such a way that all the reference
frames connected to it by a Lorentz transformation are physically equivalent. In this specific sense, it
could be said that the Lorentz covariance of all physical laws is still valid in the infinitely small.

At this point, still relying upon the EP, it remained to construct a theory valid also for arbitrarily
varying gravitational fields by writing down the differential equations connecting the gravitational
potential, assumed as state variable, with the matter-energy sources and requiring their covariance
with respect to a fully general group of transformations of the spacetime coordinates.

3.2. Predictions of the Equivalence Principle

A step forward was done in 1914 when, in collaboration with Grossmann, Einstein [72], on the
basis of the Riemannian theory of curved manifolds, was able to introduce the ten coefficients gμν of
the symmetric metric tensor g by writing down the square of the spacetime line element (ds)2 between
two infinitely near events in arbitrary curvilinear coordinates xμ as

(ds)2 = gμνdxμdxν (12)

As a consequence, the equations of motion of a test particle, the energy-momentum theorem
and the equations of the electromagnetism in vacuo were simultaneously written in their generally
covariant ultimate form. In particular, from the right-hand-side of the geodesic equation of motion of a
test particle

d2xα

ds2 = −Γα
β�

dxβ

ds
dx�

ds
(13)

where the Christoffel symbols

Γα
β�

.
=

1
2

gασ

(
∂gσβ

∂x� +
∂gσ�

∂xβ
− ∂gβ�

∂xσ

)
(14)

are constructed with the first derivatives of gμν, it was possible to straightforwardly identify the
components of g as the correct state variables playing the role of the Newtonian scalar potential Φ
Indeed, to a first-order level of approximation characterized by neglecting terms quadratic in v/c and
the squares of the deviations of the gμν from their STR values

η00= +1 (15)

ηij= −δij

the geodesic equations of motion for the spatial coordinates become

d2xi

dt2 = −c2Γi
00 (16)

Furthermore, if the gravitational field is assumed static or quasi-static and the time derivatives can be
neglected, the previous equations reduce to

d2xi

dt2 =
c2

2
∂g00

∂xi (17)

By posing

Φ .
= −1

2
c2(g00 − 1) (18)
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so that
g00 = 1 − 2Φ

c2 (19)

the Newtonian acceleration is obtained. The additive constant up to which the potential is defined is
fixed in such a way that Φ vanishes when g00 assumes its STR value η00. It is worthwhile remarking
that, to the level of approximation adopted, only g00 enters the equations of motion, although the
deviations of the other metric coefficients from their STR values may be of the same order of magnitude.
It is this circumstance that allows to describe, to a first order approximation, the gravitational field by
means of a single scalar potential.

In analogy with the geodesic equations of motion for a test particle, also those for the propagation
of electromagnetic waves followed. Indeed, the worldlines of light rays are, thus, geodesics curves of
null length

(ds)2= 0 (20)

d2xα

dλ2 = −Γα
β�

dxβ

dλ

dx�

dλ

where λ is some affine parameter.
The components of the metric tensor g are not assigned independently of the matter-energy

distributions, being determined by field equations.
A further consequence of EP and the fact that, to the lowest order of approximation, g00 is

proportional to the Newtonian potential Φ is that, in general, it is possible to predict the influence of
the gravitational field on clocks even without knowing all the coefficients gμν; such an influence is
actually determined by g00 through

dτ =
√

g00dt (21)

where τ is the reading of a clock at rest. Instead, it is possible to predict the behaviour of measuring
rods only knowing all the other coefficients g0i, gik. Indeed, it turns out that the square of the distance
dl between two nearby points in the 3-dimensional space is given by [73]

(dl)2 =

(
−gjh +

g0jg0h

g00

)
dxjdkh (22)

Thus, the field g determines not only the gravitational field, but also the behaviour of clocks and
measuring rods, i.e., the chronogeometry of the 4-dimensional spacetime which contains the geometry
of the ordinary 3-dimensional space as a particular case. Such a fusion of two fields until then
completely separated-metric and gravitation-should be regarded as a major result of GTR, allowing,
in principle, to determine the gravitational field just from local measurements of distances and
time intervals.

4. The Field Equations for the Metric Tensor and Their Physical Consequences

4.1. The Field Equations

The differential equations for the g tensor itself followed in 1915 [1–3].
The tortuous path [21] which lead to them can be sketchily summarized as follows [19]. According

to the EP, the gravitational mass of a body is exactly equal to its inertial mass and, as such, it is
proportional to the total energy content of the body. The same must, then, hold also in a given
gravitational field for the force experienced by a body which is proportional to its (passive) gravitational
mass. It is, thus, natural to assume that, conversely, only the energy possessed by a material system
does matter, through its (active) gravitational mass, as for as its gravitational field is concerned.
Nonetheless, in STR the energy density is not characterized by a scalar quantity, being, instead, the
00 component of the so-called stress-energy tensor T. It follows that also momentum and stresses
intervene on the same footing as energy itself. These considerations lead to the assumption that no
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other material state variables than the components Tμν of T must enter the gravitational field equations.
Moreover, in analogy with the Poisson equation, T must be proportional to a differential expression G

of the second order containing only the state variables of the gravitational field, i.e., the components of
the metric tensor g; because of the required general covariance, G must be a tensor as well. The most
general expression for it turned out to be

Gμν = c1Rμν + c2gμνR + c3gμν (23)

where R is the contracted curvature tensor whose components are

Rμν =
∂Γα

μα

∂xν
− ∂Γα

μν

∂xα
+ Γβ

μαΓα
νβ − Γα

μνΓβ
αβ (24)

and R is its invariant trace. The coefficients c1, c2, c3 were determined by imposing that the stress-energy
tensor satisfies the energy-momentum conservation theorem. By neglecting the third term in G, which
usually plays a negligible role in the effects which will be discussed in this Section (see Section 5 for
phenomena in which it may become relevant), the Einstein field equations became [1,2]

G = −T (25)

with
Gμν = Rμν − 1

2
gμνR (26)

and is a constant which is determined by comparison with the Newtonian Poisson equation.
By contraction, one gets

R = T (27)

where T is the trace of T, so that

Rμν = −
(

Tμν − 1
2

gμνT
)

(28)

This is the generally covariant form of the gravitational field equations to which, after many attempts,
Einstein came in 1915 [3].

The same field equations were obtained elegantly by Hilbert through a variational principle [74].
On the reciprocal influences between Einstein and Hilbert in the process of obtaining the GTR field
equations and an alleged priority dispute about their publication, see [75].

It should be noted [19] that GTR, per se, yields neither the magnitude nor the sign (attraction or
repulsion of the gravitational interaction) of which are, instead, retrieved from the observations.
For weak and quasi-static fields generated by pressureless, extremely slowly moving matter of density
ρ, the right-hand-side of the field equation for the 00 component becomes

− 1
2

c2ρ (29)

indeed, the only non-vanishing component of the matter stress-energy tensor is

T00 = ρc2 (30)

so that
T = −ρc2 (31)

Since the time derivatives and the products of the Christoffel symbols can be neglected, the 00
component of the Ricci tensor reduces to

R00 =
1
2
∇2g00 = −∇2Φ

c2 (32)
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Thus, it is

∇2Φ =
1
2

c4ρ (33)

the Poisson equation really holds. A comparison with the Newtonian equation tells that is positive,
being equal to

=
8πG

c4 = 2 × 10−43kg−1m−1s2 (34)

the spacetime can, thus, be assimilated to an extremely rigid elsatic medium.

4.2. First Predictions of the Theory and Confrontation with Observations

In the same year [44], Einstein readily employed his newborn theory to successfully explain
the long-standing issue of the anomalous perihelion precession of Mercury [76]. To this aim, and
also in order to derive the correct value of the deflection of a light ray grazing the Sun’s limb [44]
through the Fermat principle, it was necessary to know not only the coefficient g00 of the gravitational
field of a point mass, as in the Newtonian approximation, but also the other metric coefficients gij.
Since the spacetime outside a spherical body is isotropic, the off-diagonal metric coefficients g0i are
identically zero: otherwise, they would induce observable effects capable of distinguishing between,
e.g., two opposite spatial directions (see Section 3.2). Moreover, it was also required to approximate
g00 itself to a higher order. Einstein [44] solved that problem by successive approximations. The exact
vacuum solution was obtained one year later by Schwarzschild [77] and, independently, Droste [78];
their results are virtually indistinguishable from those of Einstein. Relevant simplifications were
introduced one year later by Weyl [79], who used cartesian coordinates instead of spherical ones, and
worked on the basis of the action principle instead of recurring to the differential equations for the
field g. Schwarzschild [80] extended the validity of his solution also to the interior of a material body
modelled as a sphere of incompressible fluid. Having in hand this exact solution of the Einstein field
equations revolutionized the successive development of GTR. Indeed, instead of dealing only with
small weak-field corrections to Newtonian gravity, as Einstein had initially imagined would be the case,
fully nonlinear features of the theory such as gravitational collapse and singularity formation could be
studied, as it became clear decades later. About the Schwarzschild solution, the Birkhoff’s Theorem [81]
was proved in 1923. According to it, even without the assumption of staticity, the Schwarzschild metric
is the unique vacuum solution endowed with spherically symmetry. As a consequence, the external
field of a spherical body radially pulsating or radially imploding/exploding is not influenced at all by
such modifications of its source.

The successful explanation of the anomalous perihelion precession of Mercury was a landmark
for the validity of GTR since, as remarked in [82,83], it was a successful retrodiction of an effect which
was known for decades. In particular, Weinberg wrote [83]: “It is widely supposed that the true test of
a theory is in the comparison of its predictions with the results of experiment. Yet, with the benefit of
hindsight, one can say today that Einstein’s successful explanation in 1915 of the previously measured
anomaly in Mercury’s orbit was a far more solid test of general relativity than the verification of his
calculation of the deflection of light by the sun in observations of the eclipse of 1919 or in later eclipses.
That is, in the case of general relativity a retrodiction, the calculation of the already-known anomalous
motion of Mercury, in fact provided a more reliable test of the theory than a true prediction of a new
effect, the deflection of light by gravitational fields.

I think that people emphasize prediction in validating scientific theories because the classic
attitude of commentators on science is not to trust the theorist. The fear is that the theorist adjusts his
or her theory to fit whatever experimental facts are already known, so that for the theory to fit to these
facts is not a reliable test of the theory.

But [ . . . ] no one who knows anything about how general relativity was developed by Einstein,
who at all follows Einstein’s logic, could possibly think that Einstein developed general relativity in
order to explain this precession. [ . . . ] Often it is a successful prediction that one should really distrust.
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In the case of a true prediction, like Einstein’s prediction of the bending of light by the sun, it is true
that the theorist does not know the experimental result when she develops the theory, but on the
other hand the experimentalist does know about the theoretical result when he does the experiment.
And that can lead, and historically has led, to as many wrong turns as overreliance on successful
retrodictions. I repeat: it is not that experimentalists falsify their data. [ . . . ] But experimentalists who
know the result that they are theoretically supposed to get naturally find it difficult to stop looking for
observational errors when they do not get that result or to go on looking for errors when they do. It is
a testimonial to the strength of character of experimentalists that they do not always get the results
they expect”.

The final work of Einstein on the foundations of GTR appeared in 1916 [84].
In the same year, de Sitter [85] was able to derive a further consequence of the static, spherically

symmetric spacetime of the Schwarzschild solution: the precession of the orbital angular momentum
of a binary system, thought as a giant gyroscope, orbiting a non-rotating, spherical body such as in
the case of the Earth-Moon system in the Sun’s field. Some years later, Schouten [86] and Fokker [87]
independently obtained the same effect by extending it also to spin angular momenta of rotating
bodies. Such an effect is mainly known as de Sitter or geodetic precession. It was measured decades
later in the field of the Sun by accurately tracking the orbit of the Earth-Moon system with the Lunar
Laser Ranging technique [88,89], and in the field of the Earth itself with the dedicated Gravity Probe B
(GP-B) space-based experiment [64] and its spaceborne gyroscopes.

In 1964 [90], Shapiro calculated a further prediction of the static Schwarzschild spacetime: The
temporal delay, which since then bears his name, experienced by travelling electromagnetic waves
which graze the limb of a massive body as the Sun in a back-and-forth path to and from a terrestrial
station after having been sent back by a natural or artificial body at the superior conjunction with our
planet. In its first successful test performed with radar signals [91], Mercury and Venus were used as
reflectors. Latest accurate results [92] relied upon the Cassini spacecraft en route to Saturn.

4.3. The General Approximate Solution by Einstein

In 1916 [93], Einstein, with a suitable approximation method, was able to derive the field generated
by bodies moving with arbitrary speeds, provided that their masses are small enough. In this case, the
gμν differ slightly from the STR values ημν, so that the squares of their deviations hμν with respect to
the latter ones can be neglected, and it is possible to keep just the linear part of the field equations.
Starting from their form [1,2]

Rμν − 1
2

gμνR = −Tμν (35)

working in the desired approximation, they can be cast into a linearized form in terms of the auxiliary
state variables

hμν
.
= hμν − 1

2
δν

μh (36)

where δν
μ is the Kronecker delta, and h is the trace of h which is a tensor only with respect to the Lorentz

transformations. A further simplification can be obtained if suitable spacetime coordinates, satisfying
the gauge condition

∂hαβ

∂xβ
= 0 (37)

known as Lorentz gauge (or Einstein gauge or Hilbert gauge or de Donder gauge or Fock gauge), are
adopted. The resulting differential equations for the state variables hμν are

�hμν = −2Tμν (38)
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which is the inhomogeneous wave equation; � is the STR form of the d’Alembertian operator.
The usual method of the retarded potentials allows to obtain

hμν =
2π

∫ Tμν

(
x
′
, y

′
, z

′
, t − r/c

)
r

dx
′
dy

′
dz

′
(39)

Among other things, it implies that the action of gravity propagates to the speed of light: a
quite important results which, some years ago, was the subject of dispute [94–96] boosted by the
interpretation of certain VLBI measurements of the time delay suffered at the limb of Jupiter by
electromagnetic waves from distant quasars [97,98].

4.3.1. Gravitational Waves

The form of the gravitational waves in empty regions follows from the Lorentz gauge condition
and the inhomogeneous wave equation by posing T = 0: it was studied by Einstein in [99], where
he also calculated the emission and the absorption of gravitational waves. It turned out that, when
oscillations or other movements take place in a material system, it emits gravitational radiation in such
a way that the total power emitted along all spatial directions is determined by the third temporal
derivatives of the system’s moment of inertia

Iij =
∫

ρxixjdx1dx2dx3 (40)

Instead, when a gravitational wave impinges on a material system whose size is smaller than the
wave’s wavelength, the total power absorbed is determined by the second temporal derivatives of its
moment of inertia [99].

Gravitational waves were indirectly revealed for the first time [100–102] in the celebrated
Hulse-Taylor binary pulsar PSR B1913+16 [103,104]. Direct detection (some of) their predicted
effects in both terrestrial [105–110] and space-based laboratories [111–117] from a variety of different
astronomical and astrophysical sources [118], relentlessly chased by at least fifty years since the first
proposals by Gertsenshtein and Pustovoit [119] of using interferometers and the pioneering attempts
by J. Weber [120] with its resonant bars [121], is one of the major challenges of the current research in
relativistic physics [122,123].

Conversely, by assuming their existence, they could be used, in principle, to determine key
parameters of several extreme astrophysical and cosmological scenarios which, otherwise, would
remain unaccessible to us because of lack of electromagnetic waves from them [124] by establishing
an entirely new “Gravitational Wave Astronomy” [122,125]. A recent example [126] is given by the
possibility that the existence of primordial gravitational waves may affect the polarization of the
electromagnetic radiation which constitutes the so-called Cosmic Microwave Background (CMB),
discovered in 1965 [127]. In this case, the polarizing effect of gravity is indirect since the field of the
gravitational waves does not directly impact the polarization of CMB, affecting, instead, the anisotropy
of the spatial distribution of CMB itself. Indeed, the polarization of CMB is a direct consequence
of the scattering of the photons of the radiation with the electrons and positrons which formed the
primordial plasma, existing in the primordial Universe at the so-called decoupling era [128]. At later
epochs, when the temperature fell below 3000 K◦, the radiation decoupled from matter, photons and
electrons started to interact negligibly, and the polarization got “frozen” to the values reached at
the instant of decoupling. Thus, mapping the current CMB’s polarization state has the potential of
providing us with direct information of the primordial Universe, not contaminated by the dynamics of
successive evolutionary stages. In particular, it turns out that the presence of metric fluctuations of
tensorial type, i.e., of gravitational waves, at the epoch in which the CMB radiation interacted with the
electrons of the cosmic matter getting polarized, may have left traces in terms of polarization modes
of B type [129,130]. They could be currently measurable, provided that the intensity of the cosmic
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background of gravitational waves is strong enough. An example of cosmic gravitational background
able to produce, in principle, such an effect is represented by the relic gravitational radiation produced
during the inflationary epochs. The gravitational waves produced in this way are distributed over
a very wide frequency band Δω(t) which is generally time-dependent. In order to characterize the
intensity of such relic gravitational waves, it turns out convenient to adopt the spectral energy density

εh(ω, t) .
=

dε(t)
d ln ω

(41)

defined as the energy density ε(t) per logarithmic interval of frequency, normalized to the critical
energy density εcrit (see Section 5.4), i.e., the dimensionless variable

Ωh(ω, t) .
=

1
εcrit

dε

d ln ω
(42)

The simplest inflationary models yield power-law signatures for it. In 2014 [131], the BICEP2
experiment at the South Pole seemed to have successfully revealed the existence of the B modes;
the measured values seemed approximately in agreement-at least in the frequency band explored
by BICEP2-with a cosmic gravitational radiation background corresponding to the aforementioned
power-law models. More recently [132], a joint analysis of data from ESA’s Planck satellite and the
ground-based BICEP2 and Keck Array experiments did not confirm such a finding.

4.3.2. The Effect of Rotating Masses

The previously mentioned solution hμν of the inhomogenous wave equation in terms of the
retarded potentials was used by Thirring [56,57,61] to investigate, to a certain extent, the relative nature
of the centrifugal and Coriolis fictitious forces arising in a rotating coordinate system with respect
to another one connected with the static background of the fixed stars. Indeed, according to a fully
relativistic point of view, they should also be viewed as gravitational effects caused by the rotation
of the distant stars with respect to a fixed coordinate system. At first sight, it may seem that such
a possibility is already included in the theory itself in view of the covariance of the field equations.
Actually, it is not so because the boundary conditions at infinite distance play an essential role in
selecting, de facto, some privileged coordinate systems, in spite of a truly “relativistic” spirit with which
the theory should be informed. In other words, although the equations of the theory are covariant, the
choice of the boundary conditions at spatial infinity, which are distinct from and independent of the
field equations themselves, would pick up certain coordinate systems with respect to others, which is
a conceptual weakness of an alleged “generally relativistic” theory. Thus, Thirring [56] did not aim
to check the full equivalence of the gravitational effects of the rotation of the whole of the distant
stars of the Universe with those due to the rotation of the coordinate system with respect to them,
assumed fixed. Indeed, he considered just a rotating hollow shell of finite radius D and mass M, so to
circumvent the issue of the boundary conditions at infinite distance by setting the spacetime metric
tensor there equal to the Minkowskian one. By assuming M small with respect to the whole of the fixed
stars, so to consider the departures of the gμν coefficients from their STR values ημν small inside the
shell, the application of the previously obtained Einsteinian expression for hμν to the shell yielded that
a test particle inside the hollow space inside it is affected by accelerations which are formally identical
to the centrifugal and Coriolis ones, apart from a multiplicative scaling dimensionless factor as little as

GM
c2D

(43)

This explains the failures by Newton [133] in attributing the centrifugal curvature of the free
surface of water in his swirling bucket to the relative rotation of the bucket itself and the water, and the
Friedländer brothers [134] who unsuccessfully attempted to detect centrifugal forces inside a heavy
rotating flywheel.
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Another application of the approximate solution hμν of the inhomogeneous wave equation
allowed to discover that, while in either GTR and the Newtonian theory the gravitational field of a
static, spherical body is identical to that of a point mass [81], it is not so-in GTR-if the body rotates.
Indeed, Einstein [53], Thirring and Lense [54] calculated the (tiny) precessions affecting the orbits
of test particles as natural satellites and planets moving in the field of rotating astronomical bodies
such as the Sun and some of its planets. Such a peculiarity of the motion about mass-energy currents,
universally known as “Lense-Thirring effect” by historical tradition (cfr. [62] for a critical historical
analysis of its genesis), was subjected to deep experimental scrutiny in the last decades [65–67].

In the sixties of the twentieth century, another consequence of the rotation of an astronomical
body was calculated within GTR: the precession of an orbiting gyroscope [135,136], sometimes dubbed
as “Pugh-Schiff effect”. The GP-B experiment [137], aimed to directly measure also such an effect in
the field of the Earth, was successfully completed a few years ago [64], although the final accuracy
obtained (∼19%) was worse than that expected (∼1% or better) .

4.4. Black Holes and Other Physically Relevant Exact Solutions of the Field Equations

4.4.1. The Reissner-Nordström Metric

In 1916, Reissner [138] solved the coupled Einstein-Maxwell field equations and found the metric
which describes the geometry of the spacetime surrounding a pointlike electric charge Q. One year
later, Weyl [79] obtained the same metric from a variational action principle. In 1918, Nordström [139],
generalized it to the case of a spherically symmetric charged body. The metric for a non-rotating charge
distribution is nowadays known as the Reissner-Nordström metric; in the limit Q → 0 , it reduces to
the Schwarzschild solution.

The physical relevance of the Reissner-Nordström metric in astronomical and astrophysical
scenarios depends on the existence of macroscopic bodies stably endowed with net electric charges.

4.4.2. Black Holes

One of the consequences of the vacuum Schwarzschild solution was that it predicts the existence
of a surface of infinite red-shift at

r = rg
.
=

2GM
c2 (44)

Thus, if, for some reasons, a body could shrink so much to reduce to such a size, it would disappear from
the direct view of distant observers, who would not be anymore able to receive any electromagnetic
radiation from such a surface, later interpreted as a spatial section of an “event horizon” [140–142].
A “frozen star”, a name common among Soviet scientists from 1958 to 1968 [143,144], would have, then,
formed, at least from the point of view of an external observer. In 1968 [143,145], Wheeler renamed
such objects with their nowadays familiar appellative of “black holes” [146].

In fact, both Eddington in 1926 [147] and Einstein in 1939 [148], although with arguments at
different levels of soundness, were firmly convinced that such bizarre objects could not form in
the real world. Instead, in 1939 [149], Oppenheimer and Snyder demonstrated that, when all the
thermonuclear sources of energy are exhausted, a sufficiently heavy star will unstoppably collapse
beyond its Schwarzschild radius to end in a spacetime singularity. The latter one is not to be confused
with the so-called “Schwarschild singularity” occurring in the Schwarzschild metric at r = rg, which
was proven in 1924 [150] to be unphysical, being a mere coordinate artifact; nonetheless, it took until
1933 for Lemaître to realize it [151]. In 1965, Penrose [152], in his first black hole singularity theorem,
demonstrated that the formation of a singularity at the end of a gravitational collapse was an inevitable
result, and not just some special feature of spherical symmetry. A black hole is the 4-dimensional
spacetime region which represents the future of an imploding star: it insists on the 2-dimensional
spatial critical surface determined by the star’s Schwarzschild radius. The 3-dimensional spacetime
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hypersurface delimiting the black hole, i.e., its event horizon, is located in correspondence of the critical
surface [142].

4.4.3. The Kerr Metric

In 1963, the third physically relevant exact vacuum solution of the Einstein field equations
was found by Kerr [153]. It describes the spacetime metric outside a rotating source endowed with
mass M and proper angular momentum J. It was later put in a very convenient form by Boyer and
Lindquist [154]. At that time, it was generally accepted that a spherical star would collapse to a black
hole described by the Schwarzschild metric. Nonetheless, people was wondering if such a dramatic
fate of a star undergoing gravitational collapse was merely an artifact of the assumed perfect spherical
symmetry. Perhaps, the slightest angular momentum would halt the collapse before the formation of
an event horizon, or at least before the formation of a singularity. In this respect, finding a metric for a
rotating star would have been quite valuable.

Contrary to the Schwarzschild solution [80], the Kerr one has not yet been satisfactorily extended
to the interior of any realistic matter-energy distribution, despite several attempts over the years [155].
Notably, according to some researchers [156–158], this limit may have no real physical consequences
since the exterior spacetime of a rotating physically likely source is not described by the Kerr metric
whose higher multipoles, according to the so-called “no-hair” conjecture [159,160], can all be expressed
in terms of M and J [161,162], which is not the case for a generic rotating star [163]. Moreover, the
Kerr solution does not represent the metric during any realistic gravitational collapse; rather, it yields
the asymptotic metric at late times as whatever dynamical process produced the black hole settles
down, contrary to the case of a non-rotating collapsing star whose exterior metric is described by the
Schwarzschild metric at all times. The Birkhoff’s Theorem [81] does not hold for the Kerr metric.

The enormous impact that the discovery by Kerr has had in the subsequent fifty years on every
subfield of GTR and astrophysics as well is examined in [158]; just as an example, it should be recalled
that, at the time of the Kerr’s discovery, the gravitational collapse to a Schwarzschild black hole had
difficulty in explaining the impressive energy output of quasars, discovered and characterized just
in those years [164,165], because of the “frozen star” behavior for distant observers. Instead, the
properties of the event horizon were different with rotation taken into account. A comparison of the
peculiar features of the Schwarzschild and the Kerr solutions can be found in [166].

4.4.4. The Kerr-Newman Metric

In 1965 [167], a new exact vacuum solution of the Einstein-Maxwell equations of GTR appeared:
the Kerr-Newman metric [168]. It was obtained from the Reissner-Nordström metric by a complex
transformation algorithm [169] without integrating the field equations, and is both the spinning
generalization of Reissner-Nordström and the electrically charged version of the Kerr metric. Such
solutions point towards the possibility that charged and rotating bodies can undergo gravitational
collapse to form black holes just as in the uncharged, static case of the Schwarzschild metric.

Leaving the issue of its physical relevance for astrophysics applications out of consideration, the
Kerr-Newman metric is the most general static/stationary black hole solution to the Einstein-Maxwell
equations. Thus, it is of great importance for theoretical considerations within the mathematical
framework of GTR and beyond. Furthermore, understanding this solution also provides valuable
insights into the other black hole solutions, in particular the Kerr metric.

5. Application to Cosmology

5.1. Difficulties of Newtonian Cosmologies

The birth of modern cosmology might be dated back to the correspondence between Newton
and Bentley in the last decade of the seventieth century [170], when the issue of the applicability of
Newtonian gravitational theory to a static, spatially infinite (Euclidean) Universe uniformly filled with
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matter was tackled. In four letters to R. Bentley, Newton explored the possibility that matter might
be spread uniformly throughout an infinite space. To the Bentley’ s suggestion that such an even
distribution might be stable, Newton replied that, actually, matter would tend to collapse into large
massive bodies. However, he apparently also thought that they could be stably spread throughout
all the space. In particular, in his letter of 10 December 1692, Newton wrote [171]: “it seems to me
that if [ . . . ] all the matter in the Vniverse was eavenly scattered throughout all the heavens, & every
particle had an innate gravity towards all the rest & the whole space throughout which this matter was
scattered, was but finite: the matter on the outside of this space would by its gravity tend towards all
the matter on the inside & by consequence fall down to the middle of the whole space & there compose
one great spherical mass But if the matter was eavenly diffused through an infinite space, it would
never convene into one mass but some of it convene into one mass & some into another so as to make
an infinite number of great masses scattered at great distances from one another throughout all that
infinite space.”

Connected with the possibility that matter would fill uniformly an infinite space, and, thus,
indirectly with the application of Newtonian gravitation to cosmology, there was also the so-called
Olbers paradox [172], some aspects of which had been previously studied also by Kepler [173],
Halley [174,175] and de Chéseaux [176]. According to it, although the light from stars diminishes as
the square of the distance to the star, the number of stars in spherical shells increases as the square of
the shell’s radius. As a result, the accumulated effect of the light intensity should make the night sky
as bright as the surface of the Sun. In passing, the Olbers paradox touched also other topics which will
become crucial in contemporary cosmology like the temporal infinity of the Universe and its material
content, and its spatial infinity as well. At the end of the nineteenth century, Seeliger [177] showed
that, in the framework of the standard Newtonian theory, matter cannot be distributed uniformly
throughout an infinite Universe. Instead, its density should go to zero at spatial infinity faster than
r−2; otherwise, the force exerted on a point mass by all the other bodies of the Universe would be
undeterminate because it would be given by a non-convergent, oscillating series. Later, Einstein [178]
critically remarked that, if the potential was finite at large distances as envisaged by Seeliger [177]
to save the Newtonian law, statistical considerations would imply a depopulation of the fixed stars
ensemble, assumed initially in statistical equilibrium. The possibility of an infinite potential at large
distances, corresponding to a finite or vanishing not sufficiently fast matter density, already ruled out
by Seeliger himself, was excluded also by Einstein [178] because it would yield unrealistically fast
speeds of the distant stars. Seeliger [179] demonstrated also that matter density could be different
from zero at arbitrary distances if the standard Poisson equation was modified as

∇2Φ − ΛΦ = 4πGρ (45)

It admits
Φ = −4πGρ

Λ
(46)

as a viable solution for a uniform matter density, thus making an evenly filled Universe stable.
For a discussion of the problems encountered by the Newtonian theory of gravitation to cosmology,
see, e.g., [180].

The inadequacy of Newtonian gravitation to cosmological problems can be also inferred in view of
the modern discoveries concerning the expansion of the Universe over the eons (see Section 5.2) which,
in conjunction with the finite value of c, yielded to the notion of observable Universe. As previously
recalled in Section 3.2, the gravitational interaction among macroscopic bodies can be adequately
described, to the first approximation, by the non-relativistic Newtonian model. Such an approximation
is applicable over spatial scales ranging from laboratory to planetary, stellar, and galactic systems.
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On the other hand [181], the Newtonian model cannot be applied, not even to the first approximation,
to correctly describe gravity over cosmological distances of the order the Hubble distance

DH
.
=

c
H0

∼ 1026m (47)

where [182]
H0 = (67.3 ± 1.2)kms−1Mpc−1 (48)

is the current value of the Hubble parameter (see Section 5.4), which fixes the maximum spatial
distance accessible to current observations (the radius of the observable universe is proportional to
DH through a numerical coefficient which, according to the present-day cosmological parameters, is
equal to 3.53). Indeed, the absolute value of the potential of the mass equivalent to the energy density
ε enclosed in a spherical volume of radius ∼ DH is

|ΦH| = 4
3

πGε

H2
0

(49)

The condition of validity of the Newtonian approximation is that, for any test particle of mass m, the
gravitational potential energy m|ΦH| resulting from the interaction with the cosmological mass of the
observable Universe is much smaller than its rest energy mc2. Instead, it turns out [181]

4
3

πGε

H2
0 c2

∼ 1 (50)

It follows that the Newtonian approximation is not valid at the Hubble scale, and a correct dynamical
description of the Universe to cosmological scales must necessarily rely upon a relativistic theory
of gravity.

5.2. Relativistic Cosmological Models

GTR, applied to cosmology for the first time in 1917 by Einstein himself [178], was able to put
such a fundamental branch of our knowledge on the firm grounds of empirical science.

In the following, we will try to follow the following terminological stipulations [183]. We will
generally use the word “Universe” to denote a model of the cosmological spacetime along with its
overall matter-energy content; as we will see, the relativistic Universe is the space woven by time and
weighed by all forms of energy (matter-either baryonic and non-baryonic-, radiation, cosmological
constant). As such, the Universe has neither center nor borders, neither inside nor outside. Instead, by
means of “universe” we will denote the observable portion of the cosmological spacetime delimited by
a cosmological horizon unavoidably set by the fact that all the physical means (electromagnetic and
gravitational radiation, neutrinos, cosmic rays) by which we collect information from objects around
us travel at finite speeds. Its spatial section is a centered on the Earth-based observer with a radius
equal to

3.53DH = 51.3Gly = 15.7Gpc (51)

5.2.1. The Static Einstein Model

In 1917, Einstein [178] showed that, following his field equations in their original form, it would
not be possible to choose the boundary conditions in such a way to overcome simultaneously the
depopulation and the observed small stellar velocities issues. Instead, in principle, it is mathematically
possible to modify them in as much as the same way as it was doable with the Poisson equation by
introducing a Λ term which yielded

Rμν + Λgμν = −
(

Tμν − 1
2

gμνT
)

(52)

18



Universe 2015, 1, 38–81

Some years later, Cartan [184] demonstrated that the most general form of the Einstein field equations
necessarily implies the Λ term. It turned out that a Universe uniformly filled with constant matter
density ρ and non-vanishing

ΛE =
4πGρ

c2 (53)

would rest in equilibrium. Moreover, since it would be spatially closed with

g00 = 1
g0i = 0

gij= −
[

δij +
xixj

S2−(x2
1+x2

2+x2
3)

] (54)

and radius S connected with Λ by

Λ =
1
S2 (55)

there would not be the need of choosing suitable boundary conditions at infinity, thus removing the
aforementioned “non-relativistic” drawback of the theory (see Section 4). It should be noted that if such
a 4−dimensional cylindrical Universe did not contain matter, there would not be any gravitational
field, i.e.,

Tμν = 0 (56)

would imply
gμν = 0 (57)

Thus, the postulate of the complete relativity of inertia would be met. In the Einstein spatially
hyperspherical model, the spacetime trajectories of moving bodies and light rays wind around spirals
on the surface of a cylinder in such a way that if one watched a spaceship moving away from her/him,
it first would diminish in size but then would come back beginning to magnify again. Thirteen years
later, Eddington [185] showed that the static Einsteinian model is, actually, unstable.

It may be interesting to note [20] how the Einstein’s Universe is, in fact, no less liable to the Olbers
paradox than the Newtonian one; indeed, the light emitted by a star would endlessly circumnavigate
the static spherical space until obstructed by another star.

5.2.2. The de Sitter Model

In 1917, de Sitter [186,187] found a solution for the modified Einstein field equations with Λ 	= 0
yielding a 4-dimensional hyperbolic Universe

gμν=
ημν(

1 − Λ
12 ηαβxαxβ

)2 (58)

Λ=
3
S2

with non-zero gravitational field even in absence of matter, thus differing from the Einstein model.
It allowed also a sort of spatial (and not material) origin of inertia, which would be relative to void
space: a hypothetical single test particle existing in the otherwise empty de Sitter Universe would have
inertia just because of Λ.

At the time of the Einstein and de Sitter models, there were not yet compelling means
to observationally discriminate between them [188], although their physical consequences were
remarkably different. Suffice it to say that the spacetime geometry of the de Sitter Universe implied
that, although static, test particles would have escaped far away because of the presence of the Λ term,
unless they were located at the origin. Such a recessional behaviour was known as “de Sitter effect”.
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As said by Eddington [189], “the de Sitter Universe contains motion without matter, while the Einstein
Universe contains matter without motion”.

After having lost appeal with the advent of the genuine non-stationary Fridman-Lemaître
solutions (see Section 5.2.3), the de Sitter model was somewhat revamped in the framework of the
inflationary phase characterized by an ultrafast expansion that it is believed to have occurred in the
early stages of the universe [190–192].

5.2.3. The Fridman-Lemaître-Robertson-Walker Expanding Models

In the twenties of the last century, the first truly non-static theoretical models of the Universe were
proposed by Fridman [193,194]. Indeed, he found new solutions of the Einstein field equations with Λ
representing spatially homogeneous and isotropic cosmological spacetimes filled with matter-energy
modeled as a perfect fluid generally characterized only by time-varying density ρ(t), and endowed
with an explicitly time-dependent universal scaling factor S(t) for the spatial metric having constant
curvature k = 0,±1 throughout all space. If k = +1, the 3-dimensional space is spherical and
necessarily finite (as the hypersphere); if k = 0, it is Euclidean; if k = −1, it is hyperbolic. Euclidean
and hyperbolic spaces can be either finite or infinite, depending on their topology [195,196] which,
actually, is not determined by the Einstein field equations governing only the dynamical evolution
of ρ(t), S(t). Importantly, viable solutions exist also in absence of the cosmological Λ term for all
the three admissible values of the spatial curvature parameter k. The Einstein and de Sitter models
turned out [193] to be merely limiting cases of an infinite family of solutions of the Einstein field
equations for a positive, time-varying matter density, any one of which would imply, at least for a
certain time span, a general recession-or oncoming, since the solutions are symmetric with respect
to time reversal-of test particle. According to their dynamical behaviour, the Fridman’s models are
classified as closed if they recollapse, critical if they expand at an asymptotically zero rate, and open if
they expand indefinitely. In this respect, a spherical universe can be open if Λ is positive and large
enough, but it cannot be infinite. Conversely, Euclidean or hyperbolic universes, generally open, can
be closed if Λ < 0; their finiteness or infiniteness depends on their topology, not on their material
content. Fridman’s simplifying assumptions were much weaker than those of either Einstein and de
Sitter, so that they defined a much likelier idealization of the real world [20], as it turned out years
later: indeed, the russian scientist was interested only in the mathematical aspects of the cosmological
solutions of the Einstein equations.

Approximately in the same years, a body of observational evidence pointing towards mutual
recessions of an increasingly growing number of extragalactic nebulae was steadily accumulating
[197–201] from accurate red-shifts measurements, probably unbeknownst to Fridman. In 1929,
Hubble [200] made his momentous claim that the line-of-sight speeds of the receding galaxies are
proportional to their distances from the Earth. If, at first, the de Sitter model, notwithstanding its
material emptiness, was regarded with more favor than the Einstein one as a possible explanation of
the observed red-shifts of distant nebulæ, despite the cautiousness by de Sitter himself [187], it would
have been certainly superseded by the more realistic Fridman ones, if only they had been widely
known at that time (Fridman died in 1925). It may be that a role was played in that by the negative
remark by Einstein about a claimed incompatibility of the non-stationary Fridman’s models with his
field equations [202], later retracted by the father of GTR because of an own mathematical error in his
criticism [203].

At any rate, in 1927, Lemaître [204], who apparently did never hear of the Fridman’s solutions,
rederived them and applied them to the physical universe with the explicit aim of founding a viable
explanation of the observed recessions of galaxies (the red-shifted nebulæ had been recognized as
extra-galactic objects analogous to our own galaxy in 1925 by Hubble [205]). Lemaître [204] also
showed that the static solution by Einstein is unstable with respect to a temporal variation of matter
density. Enlightened by the Hubble’s discovery [200], and, perhaps, also struck by the criticisms by
Lemaître [204] and Eddington [185] to his own static model, Einstein fully acknowledged the merits of
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the non-static Fridman-type solutions rejecting outright his cosmological Λ term as unnecessary and
unjustifiable [206].

Interestingly, in 1931, Lemaître [207] did not appreciate the disown by Einstein of his cosmological
constant Λ, which, instead, was retained by the belgian cosmologist an essential ingredient of the
physical Universe for a number of reasons, one of which connected also with quantum mechanics,
which, however, convinced neither Einstein nor the scientific community, at least until the end of
the nineties of the last century [208]. His “hesitating” model was characterized by positive spatial
curvature (k = +1), and a positive cosmological constant so that its perpetual expansion is first
decelerated, then it enters an almost stationary state, and finally it accelerates, thus resolving the
problem of the age of the Universe and the time required for the formation of galaxies.

The formal aspects of the homogeneous and isotropic expanding models were clarified and
treated in a systematic, general approach in the first half of the thirties of the last century by Robertson
[209–211] and Walker [212]. Today, the spacetime tensor g of standard expanding cosmologies is
commonly named as Fridman-Lemaître-Robertson-Walker (FLRW) metric (see Section 5.4).

5.3. The Einstein-de Sitter Model

In 1932, Einstein and de Sitter [213] published a brief note of two pages whose aim was to simplify
the study of cosmology. About their work, as reported by Eddington [214], Einstein would have told
him: “I did not think the paper very important myself, but de Sitter was keen on it”, while de Sitter
wrote to him: “You will have seen the paper by Einstein and myself. I do not myself consider the
result of much importance, but Einstein seemed to think that it was”. At any rate, such an exceedingly
simplified solution, characterized by dust-like, pressureless matter, k = 0, Λ = 0 and perpetual,
decelerating expansion, served as “standard model” over about six decades, to the point of curb
researches on other models. In it, mutual distances among test particles grow as t2/3. Such a behaviour
is unstable in the sense that it can only occur if k = 0 exactly; for tiny deviations from such a value,
the expansion would gradually depart from the trajectory of the Einstein-de Sitter model. Actually,
it represented the best description of the cosmic expansion as it was known for the next sixty years.
The fact that the observed behaviour of the physical universe was still so close to that particular
expansion rate suggested that the instability had not yet had the time to manifest itself significantly.
But, after all, the universe had been expanding for about several billions of years, as if it had started
just from the very spacial initial conditions of the Einstein-de Sitter model. This peculiar situation, later
known as “the flatness problem”, motivated, among other things, the studies on the cosmic inflation in
the eighties of the last century [190–192]. The Einstein-de Sitter model has now been abandoned, also
because it would imply a too short age of the Universe given by

t0 =
2
3

1
H0

= 9.6Gyr (59)

For a recent popular account on the panoply of possible Universes allowed by GTR, see [215].
In passing, let us note that the expanding cosmological models by GTR, along with the associated

finite age of the Universe, represent the framework to correctly solve the Olbers paradox [216,217].

5.4. Some Peculiar Characteristics of the FLRW Models

The assumptions of homogeneity and isotropy of the spatial sections of the FLRW models are of
crucial importance. It must be stressed that they are, in general, distinct requirements. Homogeneity
does not generally imply isotropy: for instance, think about a universe filled with galaxies whose axes
of rotation are all aligned along some specific spatial direction, or a wheat field where the ears grow all
in the same direction. Conversely, a space which is isotropic around a certain point, in the sense that
the curvature is the same along all the directions departing from it, may well not be isotropic in other
points, or, if some other points of isotropy exist, the curvature there can be different from each other:
an ovoid surface is not homogenous since its curvature varies from point to point, but the space is
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isotropic around its two “vertices”. Instead, the same vale of the curvature in all the directions, i.e., the
same amount of isotropy, around all points of space implies homogeneity [218]. As far as our location
is concerned, it can be said phenomenologically that isotropy about us holds in several physical aspects
to a high level of accuracy, as demonstrated, e.g., by the CMB which is isotropic at a 10−5 level. In
view of the Copernican spirit, it is commonly postulated that every other observer located everywhere
would see the same situation, thus assuring the homogeneity as well: it is the content of the so-called
Cosmological Principle. The fact that the curvature of the spatial parts of the FLRW models is the
same everywhere, and that they are expanding over time, according to the Weyl principle [219], admit
a peculiar foliation of the spacetime which allows for an unambiguous identification of the spatial
sections of simultaneity and of the bundle of time-like worldlines orthogonal to them as worldlines of
fundamental observers at rest marking a common, cosmic time. Thus, it is possible to describe the
spacetime of the Universe as the mathematical product of a 3−dimensional Riemannian space with the
temporal axis. In comoving dimensionless spatial coordinates r, θ, φ, the line element can be written as

(ds)2 = c2(dt)2 − S(t)

[
(dr)2

1 − kr2 + r2(dθ)2 + r2 sin2 θ(dφ)2

]
(60)

The Einstein field equations, applied to the FLRW metric with a pressureless cosmic fluid as
standard source with matter and radiation densities ρm, ρr, respectively, yield the Fridman equation

.
S

2
=

8
3

πG(ρm + ρr)S2 − kc2 +
1
3

Λc2S2 (61)

By defining the Hubble parameter as

H .
=

.
S
S

(62)

and the critical density as

ρcrit
.
=

3H2

8πG
(63)

it is possible to recast the Fridman equation in the form

Ωm + Ωr + ΩΛ + Ωk = 1 (64)

or also
Ωtot = 1 − Ωk (65)

by posing
Ωtot

.
= Ωm + Ωr + ΩΛ (66)

with the dimensionless parameters entering Equation (??) defined as

Ωm
.
=

8
3

πGρm

H2 > 0 (67)

Ωr
.
=

8
3

πGρr

H2 > 0

ΩΛ
.
=

1
3

Λc2

H2 � 0

Ωk
.
= − kc2

S2H2 � 0

At present epoch, Ωr,0 ∼ 0, so that the normalized Fridman equation reduces to
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Ωm,0 + ΩΛ,0 + Ωk,0 = 1 (68)

or also
Ωtot,0 = 1 − Ωk,0 (69)

Results collected in the last twenty years from a variety of observational techniques (e.g., SNe
Ia [220–222], Baryon acoustic oscillations [223], WMAP [224], Planck [182]), interpreted within a FRLW
framework, point towards an observable universe whose spatial geometry is compatible with an
Euclidean one (such a possibility, in view of the unavoidable error bars, is impossible to be proved
experimentally with certainty: on the contrary, it could be well excluded should the ranges of values
for Ωtot,0 did not contain 1), and whose dynamical behaviour is characterized by a small positive
cosmological constant Λ which makes it accelerating at late times. By assuming Ωtot,0 = 1 exactly, as
allowed by the experimental data and predicted by the inflationary paradigm, the values for the other
normalized densities are inferred by finding [182,224]

Ωm,0 ∼ 0.3, ΩΛ,0 ∼ 0.7 (70)

6. Summary

After its birth, GTR went to fertilize and seed, directly as well as indirectly, many branches of
disparate sciences as mathematics [225–230], metrology [231–234], geodesy [236–238], geophysics
[239–241], astronomy [242–247], astrophysics [248–252], cosmology [181,253–255], not to say about
the exquisite technological spin-off [256–270] due to the long-lasting efforts required to put to the
test various key predictions of the theory [18,271]. Moreover, once some of them have been or will
be successfully tested, they have or will become precious tools for determine various parameters
characterizing several natural systems, often in extreme regimes unaccessible with other means:
gravitational microlensing for finding extrasolar planets, even of terrestrial size [272,273], weak
and strong gravitational lensing to map otherwise undetectable matter distributions over galactic,
extragalactic and cosmological scales [274–276], frame-dragging to measure angular momenta of
spinning objects like stars and planets [277–280], gravitational waves to probe, e.g., quantum gravity
effects [281], modified models of gravity [282,283] and cosmic inflationary scenarios [131,132], to
characterize tight binary systems hosting compact astrophysical objects like white dwarves, neutron
stars and black holes [284–289], and to investigate extremely energetic events like, e.g., supernovæ
explosions [290].

However, GTR has its own limits of validity, and presents open problems [291]. At certain regimes,
singularities plague it [225,292–295]. Connected to this issue, there is also a major drawback of the
theory of gravitation of Einstein, i.e., its lingering inability to merge with quantum mechanics yielding
a consistent theory of quantum gravity [296–302]. Moreover, in view of the discoveries made in the
second half of the last century about the seemingly missing matter to explain the rotation curves of
galaxies [303–305] and the accelerated expansion of the Universe [220–222], it might be that GTR need
to be modified [306–311] also at astrophysical and cosmological scales in order to cope with the issue
of the so-called “dark” [312] components of the matter-energy content of the Universe known as Dark
Matter and Dark Energy.

We consider it appropriate to stop here with our sketchy review. Now, we give the word to the
distinguished researchers who will want to contribute to this Special Issue by bringing us towards
the latest developments of the admirable and far-reaching theory of gravitation by Einstein. At a
different level of coverage and completeness, the interested reader may also want to consult the recent
two-volume book [313,314].
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Abstract: For the last 100 years, General Relativity (GR) has taken over the gravitational theory
mantle held by Newtonian Gravity for the previous 200 years. This article reviews the status of GR
in terms of its self-consistency, completeness, and the evidence provided by observations, which
have allowed GR to remain the champion of gravitational theories against several other classes of
competing theories. We pay particular attention to the role of GR and gravity in cosmology, one of
the areas in which one gravity dominates and new phenomena and effects challenge the orthodoxy.
We also review other areas where there are likely conflicts pointing to the need to replace or revise
GR to represent correctly observations and consistent theoretical framework. Observations have long
been key both to the theoretical liveliness and viability of GR. We conclude with a discussion of the
likely developments over the next 100 years.

Keywords: General Relativity; gravitation; cosmology; Concordance Model; dark energy; dark
matter; inflation; large-scale structure

1. Perspective

Scientists have been fascinated by General Relativity ever since it was developed. It has been
described as poetic, beautiful, elegant, and, at times, as impossible to understand.

General Relativity is often described as a simple theory. It is hard to define simplicity in science.
One can always construct an entire theory encapsulated in one equation. Richard Feynman famously
demonstrated this in a thought experiment where he rewrote all the laws of physics as �U = 0,
where each element of �U contained the hidden structure [1]. His point was that simplicity does not
automatically bring truth.

An examination of the mathematical structure of General Relativity gives us a more sober
definition of “simplicity”. Under certain assumptions about the structure of physical theories, and of
the properties of the gravitational field, General Relativity is the only theory that describes gravity.
Alternative theories introduce additional interactions and fields.

General Relativity is also unique among theories of fundamental interactions in the Standard
Model. Like electromagnetism, but unlike the strong and weak interactions, its domain of validity
covers the entire range of length scales from zero to infinity. However, unlike the other forces, gravity
as described by General Relativity acts on all particles. This implies that the theory does not fail
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below the Planck scale. All gravitational phenomena, from infinitesimal scales to distances beyond
the observable universe, may be modelled by General Relativity. We may therefore formulate a
mathematically rigorous description of General Relativity: it is the most complete theory of gravity
ever developed.

All gravitational phenomena that have ever been observed can be modelled by General Relativity.
It describes everything from falling apples, to the orbit of planets, the bending of light, the dynamics
of galaxy clusters, and even black holes and gravitational waves. The domain of validity of the theory
covers a wide range of energy levels and scales. That is why it has survived so long, and that is why it
survives today, one hundred years after it was formulated, in an age in which the amount of data and
knowledge increases by orders of magnitude every few years.

CMB
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Figure 1. How we observe the universe. The lookback time is the difference between the age of the
universe now, and the age of the universe when photons from an object were emitted. The more
distant an object, the farther in its past we are observing its light. This distance in both space and
time is expressed by the cosmological redshift z. We obtain most of our astrophysical information
from the surface of our past light cone, because it is carried by photons. The only information from
within the cone come from local experiments and observations, such as geological records. The green
dotted line is the world-line of the atoms and nuclei providing the material for our geological data.
Local experiments are carried out along this bundle of world-lines. They provide a useful test of physical
constants. One example is the observation of the Oklo phenomenon [2]. The earliest information
we have collected so far comes from the cosmic microwave background (CMB). Earlier than the
CMB time-like slice is the cosmic neutrino background. We observe Big Bang nucleosynthesis (BBN)
indirectly, through observations of the abundances of chemical elements.

Why, then, are we still testing General Relativity? Why do we still develop, discuss, test and
fine-tune alternative theories? Because there are some very fundamental open questions in physics,
particularly in cosmology. Moreover, the big questions in cosmology happen to be the ones that are not
answered by General Relativity: the accelerated expansion of the universe, the presence of a mysterious
form of matter which cannot be observed directly, and the initial conditions in the early universe.
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The theoretical completeness described above is both a necessary and aesthetic feature of a
fundamental theory. However, it creates experimental difficulties, for it compels us to test the theory at
extreme scales, where experimental errors may be large enough to allow several alternative theories.

At extremely small scales below the Planck length, classical mechanics should break down.
This compels us to question whether General Relativity is still accurate at these scales, whether it
needs to be modified, and whether a quantum description of gravity can be formulated. At the other
end of the scale, at cosmological distances, we may question whether General Relativity is valid, given
that the universe cannot be modelled sufficiently accurately by General Relativity without invoking
either a cosmological constant, or some additional, unknown component of the universe. Finally, we
may question the accuracy of our solutions to the equations of General Relativity, which depend on
some approximation scheme. These approximations provided analytical solutions which enabled most
of the early progress in General Relativistic cosmology and astrophysics. However, one century after
the formulation of the theory, we now have a flood of data from increasingly accurate observations
(as shown in Figure 1), coupled with computing power which was hitherto unheard of. Tests of the
higher-order effects predicted by General Relativity and some of its competitors are now within reach.

The purpose of this review is to examine the motivation for the development of alternative
theories throughout the history of GR, to give an overview of the state of the art in General
Relativistic cosmology, and to look ahead. In the next few decades, some of the open questions
in cosmology may well be answered by a new generation of experiments, and GR may be challenged
by alternative theories.

2. A Brief History

Let us start this review by breaking our own rule about unscientific adjectives. General Relativity
is a beautiful theory of gravity. It has not only thrilled us, but has survived 100 years of challenges, both
by experimental tests and by alternative theories. The beauty of the theory was clear at the beginning,
but the initial focus was on whether it was right. When General Relativity provided an explanation for
the 43 seconds of arc per century discrepancy in the advance of the perihelion of Mercury [3], it got
the attention of the scientific community. However, it was the prediction and the observation of the
bending of light by the Sun [4] that confirmed GR’s place as the new reigning theory of gravity [5].

The setting at the Royal Society under the portrait of Newton for the report of the eclipse light
bending observations led by Arthur Eddington, and reported by the great writer Aldous Huxley,
was perfect to describe to the world the ascendancy of a new theory replacing Newton’s gravity
(see, e.g., [6]). From this point onwards, the scientific community started to take General Relativity
seriously, and theorists worked hard to understand this new theory, beguilingly simple but hard to
apply, and to advance its predictions.

Shortly after its publication, GR quickly became the framework for astrophysics, and for the
Standard or Concordance Model of cosmology. However, it was still challenged by alternative theories.
Initially, the alternatives were motivated by theoretical considerations. This early period led to a fuller
understanding of GR and its predictions. Some of the predictions, such as black holes and gravitational
waves, divided the scientific community. Did they exist as physical objects, or just as mathematical
artifacts of the theory?

By the time GR turned 50, the model of cosmology had been established, GR had been tested, and
things had started to stagnate. However, advances in observations led to new discoveries, which in
turn led to renewed challenges.

First came the missing mass in the universe. Could GR be modified to account for it? Then came
the theories about the very early universe, and the behaviour of the quantum-scale, tiny initial universe.
Finally, twenty years ago, came the confirmation of cosmic acceleration. This had a twofold effect.
On one hand, it spurred the development of a whole range of alternative theories of gravity. On the
other hand, it confirmed GR like never before, for General Relativity, with a cosmological constant,
can account for the observations perfectly.
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In 2015, on the 100th birthday of General Relativity, gravitational waves were observed for the
first time. This had been the last major untested prediction of General Relativity. It was a remarkable
achievement, and in many ways it heralds a new age of astrophysical observations. The experimental
capabilities and the computing power have finally caught up with the theory. Cosmology and
astrophysics have now entered the era of Big Data, and much of the theoretical effort is now driven
by data. However, the foundation for almost the entire scientific endeavour is still this theory of
chronogeometrodynamics, developed 100 years ago when today’s instruments and computers were
still a distant dream.

From Aristotle to Einstein

General Relativity is the basis for the Standard Model of physical cosmology, and here we shall
discuss the development of General Relativity (GR). The history of cosmology and GR are intertwined.
We shall discuss why the theory has been so successful, and the criteria that must be satisfied by any
alternative theory of physics, and by cosmological models.

Cosmology, in its broadest definition, is the study of the cosmos. It aims to provide an accurate
description of the universe. Throughout much of the history of science, the development of cosmology
was hampered by the lack of a universal physical theory. Observational tools were extremely
limited, and there was no mathematical formulation for physical laws. The cosmos was described in
metaphysical, rather than physical terms.

Discussions on the history of physics often refer to Karl Popper’s concept of ‘Falsifizierbarkeit’
(falsifiability) [7]. In this formalism, scientific discovery proceeds by successive falsifications of theories.
A falsifiable theory that covers observations, and that has not yet been proven false can be regarded
as provisionally acceptable. Yet we know that in reality it is not quite as straightforward. A theory
that is considered to be correct acquires this status by accumulation of evidence rather than by a
single falsification of a previous theory [8]. This is especially true in cosmology, where the selection of
theoretical models often depends on the outcome of statistical calculations.

The scientific revolution which brought about the development of a precise mathematical language
for physical theories heralded the scientific age of cosmology. Physical laws, tested here on Earth and
later in the Solar System, could be applied to the ‘entire universe’, and could thus provide a precise
physical description of the cosmos. Modern cosmology is based upon this epistemological framework.
Cosmology depends upon a fundamental premise. As a science, it must deal strictly with what can
be observed, but the observable universe forms only a fraction of the whole cosmos. One is forced
to make the fundamental but unverifiable assumption that the portion of the universe which can be
observed is representative of the whole, and that the laws of physics are the same throughout the
whole universe [9]. Once we make this assumption, we can construct a model of the universe based on
a description of its observable part.

Any cosmological model which assumes the universality of physical laws must be based upon
some physical theory. Since cosmology aims to describe the universe on the largest possible scales,
it must be based upon an application long-range physical interactions. Since the theory of gravitation
is the physical theory at the basis of standard cosmology, and is also at the centre of the big questions
facing modern cosmology, we shall give an overview of the development of theories of gravitation.

The development of physical theories of gravity was far from smooth, nor did it always conform
to Popper’s scheme. Before the logical tools (mathematics) for the phenomenological description
(physics) were invented, progress was rather haphazard.

According to Popper’s scheme, this development should be driven by the search for ever more
general principles. Yet Aristotelian theory, to take one example, considered itself to be general
enough—its claimed region of validity was the entire universe, except that rising smoke, floating
feathers, falling apples and orbiting celestial spheres each had their own rules.
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The real revolution came when it was realised that the behaviour of all bodies could be described
by a single rule—a universal theory of gravitation. This theory is a description of the long range forces
that electrically neutral bodies exert on one another because of their matter content.

Whether they choose to or not, scientists will always stand on the shoulders of giants. No theory is
invented in a scientific vacuum. This goes all the way back to the cosmology of the Euro-Mediterranean
Ancient World, codified in the Aristotelian teachings of the 4th century B.C. This Hellenic “natural
philosophy” provided qualitative rather than quantitative descriptions for what we would call
today the free parameters of the theory [10]. It stands to reason—the instruments had not yet
been invented that could test the theory of gravity to within numerical accuracy. Without accurate
timekeeping instruments, processes could at best be described as “slower than” or “faster than”.
However, instruments to measure the movement of the celestial bodies, such as sundials, quadrants
and astrolabes, were invented and improved upon, and measurements were carried out [11].
Astronomy flourished.

There is a certain logic to the development of physical theories from the Ancient World, to the
Middle Ages, and right up to the Renaissance [12–14]. The basic tenet of the physics of Aristotle
is that actions follow logically from causes. He distinguished between natural and violent motion.
Natural motion implies falling at a speed proportional to the weight of the object and inversely
proportional to the density of the medium. Violent motion happens whenever there is a force acting
on an object, and the speed of the object is proportional to this force. Strato of Lampsacus replaced
Aristotle’s explanation of ‘unnatural’ motion with one that is very close to the modern notion of inertia.
He identified natural motion as a form of acceleration, and demonstrated experimentally that falling
bodies accelerate. In the 14th century, Jean Buridan came up with the notion of impetus, where the
initial force imparts motion to the object, which gradually diminishes as gravity and air resistance
act against this initial force. Concurrently, Nicole Oresme was using a crude early form of graph to
describe motion, and unwittingly showing the complicated notions of differentiation and integration
in pictorial form[15,16].

The cosmological observations, limited to the innermost five planets of the Solar System (Mercury,
Venus, Mars, Jupiter, and Saturn) and the sphere of stars, seemed to confirm the Aristotelian-Ptolemaic
theory. Celestial bodies moved in regular patterns made up of repeating circles. Small discrepancies
were explained by circles within circles.

The fact that the theories were based on these regular patterns is no accident. Patterns are the
keyword in all of physics. Human beings are wired to recognise patterns. We can only build theories
because we recognise patterns in the universe. This characteristic of valid theories has been called
sloppiness. The patterns fall within some hyper-ribbon of stability in the theory [17].

The revolution in physics came with the development of mathematical, quantitative, models to
describe physical reality. Starting in the 1580 Galileo carried out a series of observations in which
he subjected kinematics to rigorous experiment, and showed that naturally-falling objects really do
accelerate. Crucially, he showed that the composition of the body has no effect whatsoever on this
acceleration. He also realised that for violent motion, the speed is constant in the absence of friction.
Galileo also took rigorous observations of astronomical objects. In 1610 he made the first observation
of Jupiter’s satellites, and the first observation of the phases of Venus, which is impossible according to
the Ptolemaic geocentric model. His observations were important in putting to rest the Aristotelian
theory of perfect and unchanging heavens.

By the time Newton came along, telescopes had been invented. Galileo had observed moons
orbiting the Solar System planets, and hundreds of stars invisible to the naked eye. His 1610 treatise,
aptly called Siderus Nuncius (“Starry Message”, or “Astronomical Report” in modern language) [18],
was the first scientific work based on observations through a telescope. Mechanical clocks had been
invented. The sphere of observed data had expanded [19]. Calculus provided the tool to make sense
of this new flood of data. Thus, physicists of Newton’s generation found a very different scientific
environment than the one in which Galileo had started off.

40



Universe 2016, 2, 23

In 1687, Isaac Newton published in his “Mathematical Principles of Natural Philosophy”, known
by its abbreviated Latin title as Principia [20]. This was a significant milestone in physics. Newton’s
model of gravitation was, in his own words, a “universal” law. It applied to all bodies in the universe,
whether it was cannonballs on Earth, or planets orbiting the Sun. For more than two centuries,
Newton’s theory, was the standard physical description of gravity. There was no other attempt to
find a different theory for the gravitational force, although the intervening years between Newtonian
gravity and Relativity produced some important physical concepts such as de Maupertuis’s “Principle
of Least Action” [21], further developed by Euler [22], Lagrange [23] and Hamilton [24,25]. The path
of each particle is assigned a number called an action, which is the integral of the Lagrangian.
In classical mechanics, the action principle is equivalent to Newton’s Laws. Lagrangian field theory
is an important cornerstone of modern physics. The Lagrangian of any physical interaction, when
subjected to an action principle, give us field equations and conservation laws for the theory. It is an
expression of the symmetries in physical laws.

Newtonian gravity was the great success story of nineteenth century physics, the golden age of
mathematical astronomy. It allowed astronomers to calculate the position of planets and asteroids
with ever greater precision, and to confirm their calculations by observation. Thus the size of the
known universe grew. Evidence started to accumulate suggesting that there might be other galaxies
in the universe besides our own. In 1845, the planet Neptune was discovered, after Urbain le Verrier
suggested pointing telescopes in a region of the Solar System which he predicted by Newtonian
calculations [26,27]. The search was motivated in the first place by an anomaly in the orbit of Uranus
which could not be otherwise explained using Newtonian theory [28]. The discovery of Neptune
showed that Newtonian theory was valid even in the very farthest limits of the Solar System.

There was another anomaly which could not be explained—the excessive perihelion precession of
Mercury by 43 arcseconds per century, confirmed by le Verrier himself. Urbain le Verrier thus holds
the distinction of being one of the few experimentalists to have confirmed Newton’s theory and then
disproved it. Astronomers attempted to explain this perihelion anomaly using Newtonian mechanics,
which led them to speculate on the existence of Vulcan, a hypothetical planet whose orbit was even
closer to the Sun [29].

The first doubts on Newtonian theory began to take shape just at the time when theorists were
examining the full implications of the theory for complex, multi-body dynamical systems such as the
Solar System. In 1890, Henri Poincaré published his magnum opus on the three-body problem [30],
a masterpiece of celestial mechanics. At the time, Poincaré was working on another open question in
physics: the aether. This led him to formulate a theory which was very close to Special Relativity [31],
but which did not quite fit with Maxwell’s electromagnetism [32], and was ultimately flawed.

By the end of the 19th century, the necessary mathematical tools were in place which would enable
the development of Special and then General Relativity. There is an intimate connection between
physics and the language of mathematics which is often overlooked. The former, especially in modern
times, depends on the latter. Could Aristotle have developed General Relativity? No. Because he had
not the mathematical language. Equations and mathematical formulations are relatively recent in the
history of physics. Even Newton, for all his fame as a mathematical genius, never wrote the equation
F = −GMm/r2. He wrote a series of statements implying this law in (Latin) words: “Gravitatem, quæ
Planetam unumquemque respicit, ese reciprocæ ut quadratum distantiæ locorum ab ipsius centro”, and so on.
It is hard to imagine how human beings could manipulate tensors and solve the field equations of
Relativity in anything but numbers and symbols. Theories and physics do not happen in a cultural and
scientific vacuum. They are human creations, and they depend intimately on tools for the transmission
and communication of human knowledge.

The physical theory of gravity—the laws that govern gravitational interactions—remained
unchanged until Einstein’s time. In 1905, Einstein published his Theory of Special Relativity (SR) [33].
Soon after, he turned to the problem of including gravitation within four-dimensional spacetime [34–37].
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Newton’s formulation of the gravitational laws is expressed by the equations:

d2xi

dt2 = − ∂Φ

∂xi , (1)

�Φ = 4πGρ , (2)

where Φ is the gravitational potential, G is the universal gravitational constant, ρ is the mass density,
and � = ∇2 is the Laplace operator. These equations cannot be incorporated into Special Relativity
as they stand. The equation of motion (1) for a particle is in three-dimensional form, so it must be
modified into a four-dimensional vector equation for d2xμ/ dτ2. Similarly, the field Equation (2) is
not Lorentz-invariant, since the three-dimensional Laplacian operator instead of the four-dimensional
d’Alembertian � = ∂μ∂μ means that the gravitational potential Φ responds instantaneously to changes
in the density ρ at arbitrarily large distances. The conclusion is that Newtonian gravitational fields
propagate with infinite velocity. In other words, instantaneous action in Newtonian theory implies
action at a distance when reconsidered in the light of Special Relativity. This violates one of the
postulates of SR. How do we reconcile gravity and Special Relativity?

3. The Development of General Relativity

3.1. From Special to General Relativity

The simplest relativistic generalisation of Newtonian gravity is obtained by representing the
gravitational field by a scalar Φ. Since matter is described in Relativity by the stress-energy tensor Tμν,
the only scalar with dimensions of mass density (which corresponds to ρ) is Tμ

μ . A consistent scalar
relativistic theory of gravity would thus have the field equation

�Φ = 4πGTμ
μ . (3)

However, when the equation of motion from this theory are applied to a static, spherically
symmetric field Φ, such as that of the sun, acting on an orbiting planet, they would result in a
negative precession, or retardation of the perihelion. Experimental evidence since the time of Le Verrier
and his observation of the orbit of Mercury [38] clearly shows that planets experience a prograde
precession of the perihelion. Moreover, in the limit of a zero rest-mass particle, such as a photon,
the equations of motion show that the particle experiences no geodesic deviation. The existence
of an energy-momentum tensor due to an electromagnetic field would also be impossible, since
(Telectromagnetic)

μ
μ = 0. The theory therefore allows neither gravitational redshift, nor deviation of light

by matter, both of which are clearly observable phenomena [39]. Another route to generalisation could
be to represent the gravitational field by a vector field Φμ, analogous to electromagnetism. Following
through with this strategy, the “Coulomb” law in this theory gives a repulsion between two massive
particles, which clearly contradicts observations. The theory also predicts that gravitational waves
should carry negative energy, and, like the scalar theory, predicts no deviation of light. Like the scalar
theory, then, the vector theory must be discarded.

What about a flat-space tensor theory? The gravitational field in this theory is described by a
symmetric tensor hμν = hνμ. The choice of the Lagrangian in this theory is dictated by the requirement
that hμν be a Lorentz-covariant, massless, spin-two field.

In the 1930s, Wolfgang Pauli and Markus Fierz [40] were the first to write down this Lagrangian
and investigate the resulting theory. The predictions of the theory for deviation of light agree with
those of General Relativity, and are consistent with observations. Since the field equations and gauge
properties are identical to those of Einsein’s linearised theory, the predictions for the properties of
gravitational waves, including positive energy, agree with those obtained using the linearised theory
in General Relativity. However, the theory differs from General Relativity in its predicted value for the
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perihelion precession, which is 4
3 of that given by GR. This disagrees with the value obtained from

observations of Mercury’s orbit.
The theory has an even worse deficiency. If two gravitating bodies (that is, not test particles) are

considered, and the field equations are applied to them, then the theory predicts that gravitating bodies
cannot be affected by gravity, since they all move along straight lines in a global Lorentz reference
frame. This holds for bodies made of arbitrary stress-energy, and since all bodies gravitate, then one
must conclude that no body can be accelerated by gravity, which is a obvious self-inconsistency in
the theory.

The only way in which a consistent theory of gravity can be constructed within Special
Relativity is to consider the geometry of spacetime as the gravitational field itself. In other words,
all matter moves in an effective Riemann space of metric gμν ≡ ημν + hμν, where ημν is the
Minkowski metric. The requirement of consistency leads us to universal coupling, which implies the
Equivalence Principle.

The existence of curved spacetime can be deduced from purely physical arguments. In 1911,
before he had fully developed General Relativity, Einstein [34] showed that a photon must be
affected by a gravitational field, using conservation of energy applied to Newtonian gravitation
theory. Schild [41–43] showed by a simple thought experiment, formulated within Special Relativity,
that a consistent theory of gravity cannot be constructed within this framework. His argument is
based upon a gravitational redshift experiment carried out in the field of the Earth, using a global
Lorentz frame tied to the Earth’s centre. Successive pulses of light rising to the same height should
experience a redshift, and therefore the pulse rate at the top should be slower than that at the bottom.
But light rays are drawn at 45 degrees in Minkowski spacetime diagrams, so that top and bottom
time intervals are equal, which is impossible if redshift occurs. Hence the spacetime must be curved.
One therefore concludes that in the presence of gravity, Special Relativity cannot be valid over any
sufficiently extended region.

General Relativity may be understood as a generalisation of Special Relativity over extended
regions. Since Special Relativity can comfortably be described using tensor calculus, it was only
natural to extend the flat Minkowski spacetime of Special Relativity to the curved spacetime of General
Relativity. This was a physical application of Riemannian geometry [44,45], which had been developed
in the second half of the 19th century. The idea of tensor calculus on curved manifolds was already
mathematically well-established. Einstein’s innovation lay in identifying the Einstein tensor, itself
related to the Riemann curvature tensor, as the “gravitational field” in the theory.

Einstein had been working on the problem for some years, starting in 1907. He arrived at the final,
correct form in 1915 [46,47]. He was well-aware of the significance of his publication, and he gave it
the succinct title of “The Field Equations of Gravitation” (Feldgleichungen der Gravitation). The correct
field equations for the theory contained in this publication served as the starting point or subsequent
derivations.

3.2. The Formalism of General Relativity

General Relativity is based on two independent but mutually supporting postulates.
The first postulate is sometimes referred to collectively as the Einstein Equivalence Principle:

• The Strong Equivalence Principle: The laws of physics take the same form in a freely-falling reference
frame as in Special Relativity

• The Weak Equivalence Principle: An observer in freefall should experience no gravitational field.
That is to say, an observer cannot determine from a local experiment whether the his laboratory is
being accelerated by a rocket of static at the surface of a gravitating body. Gravity is erased up to
tidal forces, which are determined by the size of the laboratory and its distance to the centre of
the gravitational attraction.

The Equivalence Principle allows us to construct the metric and the equation of motion by
transforming from a freely-falling to an accelerating frame. It can be mathematically expressed by
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the assuming that all matter fields are minimally coupled to a single metric tensor gμν. The distance
between two points in 4-dimensional spacetime, called events, is:

ds2 = c2 dτ2 = gμν dxμ dxν . (4)

Throughout the text, we follow the Einstein summation convention for repeated indices, so that

cixi =
n
∑

i=1
cixi for i = 1, . . . , n. Greek indices are used for space and time components, while Latin

indices are spatial ones only. We use the following metric signature: (−+++).
The metric defines lengths and times measured by laboratory rods and clocks. This metric implies

that the action for any matter field ψ is of the form

Smatter[ψ, gμν] , (5)

which gives us three important results. First, it implies the universality of freefall. Second, it implies
that all non-gravitational constants are spacetime independent. Third, it implies that the laws of physics
are isotropic. This equation defines how matter behaves in a given curved geometry, how light rays
propagate, how stars, planets and galaxies move, and gives us verifiable observational consequences.

The second postulate is related to the dynamics of the gravitational interaction. This is assumed
to be governed by the Einstein-Hilbert action:

Sgravity =
c3

16πG

∫
d4x

√−g∗R∗ (6)

where g∗μν is a massless spin-2 field called the Einstein metric. General Relativity identifies the Einstein
metric with the physical metric, that is: gμν = g∗μν. This implements the Strong Equivalence Principle.

The Einstein-Hilbert action defines the dynamics of gravity itself. Relativity is thus a geometrical
approach to fundamental interactions. These are realised though continuous classical fields which are
inseparably connected to the geometrical structures of spacetime, such as the metric, affine connection,
and curvature.

The General Relativistic equation of motion is simply parallel transport on curved spacetime.
It is given by

d2xμ

dτ2 + Γμ
αβ

dxα

dτ

dxβ

dτ
= 0 , (7)

where xμ is some set of coordinates for a point in spacetime. Γμ
αβ are the components of the affine

connection (or metric connection). The fundamental theorem of Riemannian geometry states that the
affine connection can be expressed entirely in terms of the metric:

Γα
λν =

1
2

gαν(gμν,λ + gλν,μ − gμλ,ν) , (8)

where the comma denotes a derivative, i.e., gμν,λ =
∂gμν

∂xλ .
We need to construct invariant quantities in GR (quantities that are the same for all observers).

To achieve this, we need to contract the covariant Aμ and contravariant Aμ components of a vector or
tensor A by using the metric to raise or lower indices: Aμ = gμν Aμ. Thus the equation of motion (7)
can be made covariant by recasting it as the covariant derivative of the 4-velocity Uμ = γ(c, v):

DμUμ

dτ
= 0 , (9)

where the covariant derivative is defined as

Dμ Aμ = dAμ + Γμ
αβ Aα dxβ . (10)
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The quantity γ is the Lorentz factor:

γ =
1√

1 − v2/c2
. (11)

The transformation from SR to GR is then carried out by mapping the Minkowski metric to a
general metric: η → g and by mapping ∂ → D.

In GR, freely-falling bodies travel along a geodesic. Geometrically, this is the shortest distance
between two points in spacetime. The path length along a geodesic is given by

S =
∫
(gμν dxμ dxν)1/2 . (12)

In cosmology, it is essential for us to be able to describe spacetime which is not “empty”. In the
presence of a perfect fluid (an inviscid fluid with density ρ and isotropic pressure p), the energy and
momentum of spacetime is described by the energy-momentum tensor (or stress-energy tensor)

Tμν =
(

ρ +
p
c2

)
UμUν − pgμν . (13)

Classical energy and momentum conservation are generalized in GR as the four conservation laws

DμTμν = 0 . (14)

In other words, the stress-energy tensor has a vanishing covariant divergence. In the absence of a
component possessing pressure or density, or both, the energy-momentum tensor is zero.

The central notion in General Relativity is that gravitation can be described by a metric. The Einstein
equations give us the relation between the metric and the matter and energy in the universe:

Gμν = −8πG
c4 Tμν. (15)

The left-hand side of this equation is a function of the metric: Gμν is the Einstein tensor, defined as:

Gμν = Rμν − 1
2

gμνR , (16)

where Rμν is the Ricci tensor, which depends on the metric and its derivatives, and the Ricci scalar R is
the contraction of the Ricci tensor (R = gμνRμν). The right-hand side of Equation (15) is a function of
the energy: G is Newton’s constant, and Tμν is the energy-momentum tensor.

Einstein’s Relativity has three main distinguishing characteristics:

• it agrees with experiment
• it describes gravity entirely in terms of geometry
• it is free of any “prior geometry”

These characteristics are lacking in most of the other theories [48,49]. Apart from the issue of
agreement with experiment, Einstein’s theory is unique in its physical simplicity.

Every other theory introduces auxiliary gravitational fields, or involves prior geometry.
Prior geometry is any aspect of the geometry of spacetime which is fixed immutably, that is, it cannot
be changed by changing the distribution of gravitating sources.

A rigorous mathematical definition of the unique simplicity of General Relativity is given by
Lovelock’s theorem [50–52]. This is a generalisation of an earlier theorem by Élie Cartan [53], and may
be formulated as follows:

In 4 spacetime dimensions, the only divergence-free symmetric rank-2 tensor constructed solely
from the metric g and its derivatives up to second differential order, and preserving diffeomorphism
invariance, is the Einstein tensor plus a cosmological term.
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In simple terms, the theorem states that GR emerges as the unique theory of gravity if the
conditions of the theorem are followed. In fact, Lovelock’s theorem provides a useful scheme for
classifying alternatives to General Relativity.

Einstein described both the demand for “no prior geometry” and for a “geometric,
coordinate-independent formulation of physics” by the single phrase “general covariance”, but the
two concepts are not quite the same.

While many physical theories can be formulated in a generally covariant way, General Relativity is
actually based on the “no prior geometry” demand. This distinction was not always made, especially in
the first decades after Einstein’s publications [54,55]. Erich Kretschmann’s famous objection in 1917 [56]
concerned this point, since he regarded general covariance merely as formal feature that any theory
could have, not as a special feature belonging to GR.

3.3. Newtonian Nostalgia: The First Wave of Alternative Theories

Newton’s theories had predicted observations of Solar System objects, comets and asteroids,
with astounding precision. Why should they be tampered with? The first wave of alternative
theories were driven more by theoretical considerations than by observations. Equations (1) and (2)
can be generalized so that they are consistent with the postulates of Special and General Relativity.
Several generalisations of this kind were attempted in the first few decades following the development
of GR, motivated by lingering resistance to any deviation from Newtonian gravity.

One early theory, involving prior geometry, was formulated by Nordstrøm in 1913 [57]. In this
theory, the physical metric of spacetime g is generated by a background flat spacetime metric η, and by
a scalar gravitational field φ. Stress-energy generates φ:

ηαβφ,αβ = −4πφηαβTαβ (17)

and g is constructed from φ and η:
gαβ = φ2ηαβ. (18)

Prior geometry cannot be removed by rewriting Nordstrøm’s equations in a form devoid of
η and φ [58]. Mass only influences one degree of freedom in the spacetime geometry, while the
other degrees of freedom are fixed a priori. This prior geometry, if it existed, could be detected by
physical experiments.

In the 1920s, Alfred North Whitehead [59] formulated a two-tensor theory of gravity in which
the prior geometry is quite different from later theories such as Ni’s [48]. Whitehead’s theory is
remarkable in that it agrees with Einstein’s in its predictions for the four standard tests (bending of
light, gravitational redshift, perihelion shift, and time delay). It was accepted as a viable alternative
for Einstein’s theory until Clifford Martin Will [60] showed that it predicts velocity-independent
anisotropies in the Cavendish constant (the gravitational constant G in Newtonian theory). This would
produce time-dependent Earth tides which are clearly contradicted by everyday observations.
Any valid theory of gravity must not only agree with relativistic experiments, but also with past
experiments in the Newtonian regime.

One theory which disagrees violently with non-relativistic experiments is due to George David
Birkhoff [61]. It was developed in the 1940s, and it predicts the same redshift, perihelion shift, deflection
and time-delay as General Relativity, but it requires that the pressure inside gravitating bodies should
be equal to the total density of mass-energy (p = ρ). This means that sound waves travel with the
speed of light. This clearly contradicts everyday experiments.

Most of the early alternative theories were abandoned either because they were contradicted by
observations, or because of internal inconsistencies in the theories themselves. One notable exception is
Dicke-Brans-Jordan theory, sometimes called Brans-Dicke, or Jordan-Fierz-Brans-Dicke theory [62,63],
developed in the 1960s by Robert H. Dicke and Carl H. Brans following earlier work by Pascual Jordan
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and Markus Fierz. The different names arise from the fact that the theory is a special case of Jordan’s,
with η = −1. An alternative mathematical representation of the theory is given by [64].

This theory introduced auxiliary gravitational fields. Brans and Dicke took the equivalence
principle as the starting point of their theory, and thus they describe gravity in terms of spacetime
curvature, but their gravitational field, unlike Einstein’s, is a scalar-tensor combination. In this way it
overcomes the difficulties associated with tensor or scalar-only theories mentioned earlier. The trace of
the energy-momentum tensor (TM)μν (representing matter) and a coupling constant λ generate the
long-range scalar field φ via the equation

�2φ = 4πλ(TM)
μ
μ. (19)

The scalar field φ fixes the value of G, which is therefore not a constant, but simply the
coupling strength of matter to gravity. The gravitational field equations relate the curvature to
the energy-momentum tensors of the scalar field and matter:

Rμν − 1
2 gμνR = − 8π

c4φ

[
(TM)μν + (TΦ)μν

]
, (20)

where (TM)μν is the energy-momentum tensor of matter and (TΦ)μν is the energy-momentum tensor
of the scalar field φ. For historical reasons, it is usual to write the coupling constant as

λ =
2

3 + 2ω
, (21)

where ω is the dimensionless ‘Dicke coupling constant’. In the limit ω → ∞, we have λ → 0, so φ is not
affected by the matter distribution, and can be set to a constant φ = 1/G. Hence Dicke-Brans-Jordan
theory reduces to Einstein’s theory in the limit ω → ∞.

The equivalence principle is satisfied in this theory since the special-relativistic laws are valid
in the local Lorentz frames of the metric g of spacetime. The scalar field does not exert any direct
influence on matter. It only enters the field equations that determine the geometry of spacetime. On a
conceptual level, Brans-Dicke theory can be seen as more fully Machian than Einstein’s theory. Einstein
himself attempted to incorporate Mach’s Principle into his theory, but in Einstein’s General Relativity,
the inertial mass of an object will always be independent of the mass distribution in the universe.
In Brans-Dicke theory, the long-range scalar field is an indirectly coupling field, so it does not directly
influence matter, but the Einstein tensor is determined partly by the energy-momentum tensor, and
partly by the long-range scalar field.

Dicke-Brans-Jordan theory is self-consistent and complete, but experimental evidence based on
Solar System tests, shows that ω ≥ 600 [65], as a conservative estimate. Some calculations raise this
limit even higher, with ω � 104 [66]. The Cassini mission set a comparable limit of ω > 40, 000 [67].
Recent cosmological data from the Planck probe show that ω ≥ 890 [68,69]. This is consistent with
the Solar System bounds. Future cosmological experiments and data from large-scale structure could
provide even better constraints [70].

Brans-Dicke theory is a special case of general scalar-tensor theories with ω(φ) = constant, where
φ is a value depending on the cosmological epoch. In these theories, the function ω(φ) could be such
that the theory is very different from GR in the early universe or in future epochs, but very close to GR
in the present. In fact, it has been shown that GR is a natural attractor for such scalar-tensor theories,
since cosmological evolution naturally drives the fields towards large values of ω [71,72].

3.4. Self-Consistency, Completeness, and Agreement with Experiment

Any viable theory must satisfy three fundamental criteria: self-consistency, completeness,
and agreement with past experiment.
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To be self-consistent, a theory must not contain any internal contradictions. The spin-two field
theory of gravity [40] is equivalent to linearised General Relativity but it is internally inconsistent
since it predicts that gravitating bodies should have their motion unaffected by gravity. When one
tries to remedy this inconsistency, the resulting theory is nothing but General Relativity. Another
self-inconsistent theory is due to Paul Kustaainheimo [73,74]. It predicts zero gravitational redshift
when the wave version of light (Maxwell theory) is used, and nonzero redshift when the particle
version (photon) is used.

To be complete, a theory must be able to analyse the outcome of any experiment. This means
that it must be compatible with other physical theories which describe any other forces that are
present in experiments. This can only be achieved if the theory is derived from first principles, since
the theoretical postulates must be as general as possible if the theory is to cover the widest range
of phenomena.

A viable theory must agree with past experiment, which includes experiments in the Newtonian
regime, and the standard tests of General Relativity. Its results must agree with those obtained from
Newtonian theory in the weak field limit, and with GR in relativistic situations. It also means that the
theory must agree with cosmological observations.

The experimental criterion also works the other way. Any alternative to General Relativity that
claims to have a smaller set of limiting cases must be experimentally distinguishable, perhaps by
future experiment. At some point, the divergence between GR and other theories must manifest itself
physically, in the form of predictions which can be verified by experiment. This is perhaps the greatest
challenge of current alternatives to GR.

3.5. Metric Theories and Quantum Gravity

Most theories of gravity incorporate two principles: spacetime possesses a metric; and that metric
satisfies the equivalence principle. Such theories are called metric theories. There are some exceptions.

Soon after the publication of the theory of General Relativity, it became apparent that its
formulation is incompatible with a Quantum Mechanical description of the gravitational field. It was
Einstein himself who pointed out that quantum effects must lead to a modification of General
Relativity [75]. Back then, the first successful applications of Quantum Mechanics to electromagnetism
were starting to give useful results. These developments led to the question of whether General
Relativity can be quantized.

This is a difficult question. First, Einstein’s field equations are much more complicated than
Maxwell’s equations, and in fact are nonlinear. The physical reason for this is that the gravitational
field is coupled to itself—the stress-energy tensor acts as the source for spacetime curvature, which
in general contributes to the stress-energy tensor. This means that the equations seem to violate the
superposition principle, which requires the existence of a linear vector space (see, e.g., [76,77]). This is
the mathematical expression of wave-particle duality—a central tenet of Quantum Theory.

Second, to quantize the gravitational field we would have to quantize spacetime itself.
The physical meaning of this is not completely clear.

Finally, there are experimental problems. Maxwell’s equations predict electromagnetic radiation,
which was first observed by Hertz [78]. Quantization of the field results in being able to observe
individual photons, and these were first seen in the photoelectric effect predicted by Einstein [79].
Similarly, Einstein’s equations for the gravitational field predict gravitational radiation [75], so there
should be, in principle, the possibility of observing individual gravitons, which are the quanta of
the field. The direct observation of gravitational waves was finally achieved in September 2015 by
the LIGO instrument [80]. The detection of individual gravitons is more difficult and is beyond the
capability of current experiments.

To develop a quantum theory of General Relativity, the fundamental interactions in GR would
have to follow quantum rules. In Quantum Theory, particle interactions are described by gauge
theories, so GR would have to follow the gauge principle. Although the gauge principle was first
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recognized in electromagnetism, modern gauge theory, formulated initially by Chen Ning Yang and
Robert Mills [81,82], emerged entirely within the framework of the quantum field programme. As more
particles were discovered after the 1940s, various possible couplings between those elementary particles
were being proposed. It was therefore necessary to have some principle to choose a unique form out of
the many possibilities suggested. The principle suggested by Yang and Mills in 1954 is based on the
concept of gauge invariance, and is hence called the gauge principle.

3.6. The Gauge Approach and Non-Metric Theories

The idea of gauge invariance, and the term itself, originated earlier, from the following
consideration due to Hermann Weyl in 1918 [83,84]. In addition to the requirement of General
Relativity that coordinate systems have to be defined only locally, so likewise the standard of length,
or scale, should only be defined locally. It is therefore necessary to set up a separate unit of length at
every spacetime point. Weyl called such a system of unit-standards a gauge system (analogous to the
standard width, or “gauge”, of a railway track).

The gauge principle therefore may be formulated as follows: If a physical system is invariant
with respect to some global (spacetime independent) group of continuous transformations G, then
it remains invariant when that group is considered locally (spacetime dependent), that is G 	→ G(x).
Partial derivatives are replaced by covariant ones, which depend on some new vector field.

In Weyl’s view, a gauge system is as necessary for describing physical events as a coordinate
system. Since physical events are independent of our choice of descriptive framework, Weyl maintained
that gauge invariance, just like general covariance, must be satisfied by any physical theory.

In Euclidean geometry, we know that translation of a vector preserves its length and direction.
In Riemannian geometry, the Christoffel connection [85] (or affine connection) guarantees length
preservation, but a vector’s orientation is path dependent. However, the angle between two vectors,
following the same path, is preserved under translation. Weyl wondered why the remnant of planar
geometry, length preservation, persisted in Riemannian geometry. After all, our measuring standards
(rigid rods and clocks), are known only at one point in spacetime. To measure lengths at another
point, we must carry our measuring tools along with us. Weyl maintained that only the relative lengths
of any two vectors at the same point, and the angle between them, are preserved under parallel
transport. The length of any single vector is arbitrary. To encode this mathematically, Weyl made the
following substitution:

gμν(x) 	→ λ(x)gμν(x), (22)

where the conformal factor λ(x) is an arbitrary, positive, smooth function of position. Weyl required
that in addition to GR’s coordinate invariance, formulae must remain invariant under the substitution
(Equation (22)). He called this a gauge transformation. The scale therefore becomes a local property of
the metric.

Weyl’s theory enabled him to unify gravity and electromagnetism, the only two forces known
at the time. However, Weyl’s original scale invariance was abandoned soon after it was proposed,
since its physical implications seemed to contradict experiments. In particular, if two identical clocks
C1 and C2 are transported on two different paths, which both end at the same point Q, the time-like
vectors l1 and l2 given by C1 and C2 at Q would be different in the presence of an electromagnetic
field. Therefore the two clock rates would differ. As Einstein (probably the only expert who could keep
an eye on Weyl’s theory at the time) pointed out, this concept meant that spectral lines with definite
frequencies could not exist, since the frequency of the spectral lines of atomic clocks would depend on
the atom’s location, both past and present. However, we know the atomic spectral lines to be definite,
and independent of spacetime position [86–89].

Despite its initial failures, Weyl’s idea of a local gauge symmetry survived, and acquired
new meaning with the development of Quantum Mechanics. According to Quantum Mechanics,
interactions are realized through quantum (that is, non-continuous) fields which underlie the local
coupling and propagation of field quanta, but which have nothing to do with the geometry of spacetime.
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The question is whether General Relativity can be formulated as a gauge theory. This question has
been discussed by ever since it was first posed [90–96].

If features of General Relativity could be recovered from a gauging argument, then that would
show that the two formulations are not inconsistent. The first to succeed in this was Kibble [91], who
elaborated on an earlier, unsuccessful attempt by Utiyama [90]. Kibble arrived at a set of gravitational
field equations, although not the Einstein equations, constructing a slightly more general theory,
known as “spin-torsion” theory. The inclusion of torsion in Einstein’s General Relativity had long been
theorized. In fact the necessary modifications to General Relativity were first suggested by Élie Cartan
in the 1920s [97–100], who identified torsion as a possible physical field.

The connection between torsion and quantum spin was only made later [91,101,102], once it
became clear that the stress-energy tensor for a massive fermion field must be asymmetric [103,104].
The Einstein-Cartan (1920s) and the Kibble-Sciama (late 1950s) developments occurred independently.
For historical reasons, spin-torsion theories are sometimes referred to as Einstein-Cartan-Kibble-Sciama
(ECKS) theories, but Einstein-Cartan Theory (ECT) is the term more commonly employed.

The Einstein-Cartan Theory of gravity is a modification of GR allowing spacetime to have
torsion in addition to curvature, and, more importantly, relating torsion to the density of intrinsic
angular momentum. This modification was put forward by Cartan before the discovery of quantum
spin, so the physical motivation was anything but quantum theoretic. Cartan was influenced by
the works of the Cosserat brothers [105] who considered a rotation stress tensor in a generalized
continuous medium besides a force tensor.

Cartan assumed the linear connection to be metric and derived, from a variational principle,
a set of gravitational field equations. However, Cartan required, without justification, that the covariant
divergence of the energy-momentum tensor be zero, which led to algebraic constraint equations, thus
severely restricting the geometry. This probably discouraged Cartan from pursuing his theory. It is now
known that the conservation laws in relativistic theories of gravitation follow from the Bianchi identities
and in the presence of torsion, the divergence of the energy-momentum tensor need not vanish.

In simple mathematical terms, a non-zero torsion tensor means that

Tμ
νσ = Γμ

νσ − Γμ
σν 
= 0 . (23)

Geometrically, it means that an infinitesimal geodesic parallelogram forms a non-closed loop.
Torsion is therefore a local property of the metric. The Lagrangian action of Einstein-Cartan theory
takes the usual Einstein-Hilbert form:

S =
∫

d4x
√−g

(
− gμνRμν(Γ)

16πG
+ Lm

)
, (24)

where Γ is a general affine connection and Lm is the matter Lagrangian. The theory differs from GR in
the structure of Γ, leading to a field theory with additional interactions.

Torsion vanishes in the absence of spin and the Einstein-Cartan field equation is then the classical
Einstein field equation. In particular, there is no difference between the Einstein and Einstein-Cartan
theories in empty space. Since practically all tests of relativistic theory are based on free space
experiments, the two theories are, to all effects, indistinguishable via the standard tests of GR.
The inclusion of torsion only results in a slight change in the energy-momentum tensor. Cartan’s
theory holds the distinction of being complete, self-consistent and in agreement with experiment, but
of being a non-metric theory of gravitation. The link between torsion and quantum spin means that it
could be possible to study the divergence between the GR and ECKS theories at the quantum level.
Such experiments have recently been proposed [106].

Kibble’s theory contains some features which were criticized [107]. It is now accepted that torsion
is an inevitable feature of a gauge theory based upon the Poincaré group. Classical GR must be
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modified by the introduction of a spin-torsion interaction if it is to be viewed as a gauge theory.
The gauge principle alone fails to provide a conceptual framework for GR as a theory of gravity.

In the 1990s, Anthony Lasenby, Chris Doran and Stephen Gull proposed an alternative formulation
of General Relativity which is derived from gauge principles alone [108–113]. Their treatment is very
different from earlier ones where only infinitesimal translations are considered [91,107]. There are a
few other theories similar in their approach to that of Lasenby, Doran and Gull (e.g., [114,115]).

4. Why Consider Alternative Theories?

The motivation for considering alternatives to GR comes mainly from theoretical arguments, like
scale invariance of the gravitational theory, additional scalar fields that emerge from string theories,
Dark Matter, dark energy or inflation, or additional degrees of freedom that arise in the framework of
brane-world theories.

In Table 1, we draw up a list of some of the more well-known alternatives to General Relativity.
This list is far from exhaustive, but it serves to highlight the major elements which differentiate these
theories. There are several works containing a more detailed listing and discussion of the various
alternative theories (e.g., [39,116,117]).

Table 1. A “comparative morphology” of some of the major alternatives to General Relativity,
in approximate chronological order. We have only listed the theories of particular historical significance.
The current landscape, in which cosmologists seek to explain Dark Matter, dark energy, and inflation,
offers far more theories. It is generally easier to incorporate the non-gravitational laws of physics within
metric theories, since other theories would result in greater complexity, rendering calculations difficult.
The only way in which metric theories significantly differ from each other is in their laws for the
generation of the metric. Abbreviations: Tensor (T), V (Vector), S (Scalar), P (Potential), Dy (Dynamic),
Einstein Equivalence Principle (EEP), i.e., uniqueness of freefall, Local Lorentz Invariance (LLI), Local
Position Invariance (LPI), param (Parameter), ftn (Function).

Theory Metric Other Fields Free Elements Status

Newton 1687 [20] Nonmetric P None Nonrelativistic, implicit action at a distance

Poincaré 1890s–1900s [31,118] Fails; does not mesh with electromagnetism

Nordstrøm 1913 [57] Minkowski S None Fails to predict observed light detection

General Relativity 1915 [46] Dy None None Viable

Whitehead 1922 [59] Violates LLI; contradiction by everyday observation of tides

Cartan 1922–1925 [98] ST Still viable; introduces matter spin

Kaluza-Klein 1920s [119,120] T S Extra
dimensions

Violates Equivalence Principle

Birkhoff 1943 [61] T Fails Newtonian test; demands speed of
sound equal to speed of light

Milne 1948 [121] Machian Incomplete; no gravitational redshift prediction;
background contradicts cosmological observations.

Thiry 1948 [122] ST Unlikely; extremely constrained by results on γPPN

Belifante-Swihart 1957 [123] Nonmetric T K param Violates EEP; contradicted by Dicke–Braginsky experiments

Brans–Dicke 1961 [63] Generic S Dy S Viable for ω > 500

Ni 1972 [48] Minkowski T, V, S 1 param, 3 ftns Violates LPI; predicts preferred-frame effects

Will-Nordtvedt 1972 [124] Dy T V Viable but can only be significant at high energy regimes

Barker 1978 [125] ST Unlikely; severely constrained.

Rosen 1973 [126,127] Fixed T None Contradicted by binary pulsar data

Rastall 1976 [128] Minkowski S, V None Contradicted by gravitational wave data

f (R) models 1970s [129,130] n + 1ST S Free ftn Consistent with Solar System tests;
viable but severely constrained

MOND 1983 [131–133] Nonmetric P Free ftn Nonrelativistic theory

DGP 2000 [134] ST/Quantum Appears to be contradicted by BAOs, CMB
and Supernovae Ia unless DE added

TeVeS 2004 [135] T,V,S Dy S Free ftn Highly unstable [136]; ruled out by SDSS data [137]
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5. From General Relativity to Standard Cosmology

When Einstein published his seminal GR papers it became almost immediately apparent that
the theory could be applied to the whole universe, under certain assumptions, to obtain a relativistic
cosmological description. If the content of the universe is known, then the energy-momentum tensor
can be constructed, and the metric derived using Einstein’s equations. Einstein himself was the first
to apply GR to cosmology in 1917 [138]. The first expanding-universe solutions to the relativistic
field equations, describing a universe with positive, zero and negative curvature, were discovered by
Alexander Friedmann [139,140]. This occurred before Edwin Hubble’s observations and the empirical
confirmation, in 1929, that the redshift of a galaxy is proportional to its distance. Hubble formulated
the law which bears his name: v = H0r, where H0 is the constant of proportionality [141]. The problem
of an expanding universe was independently followed up during the 1930s by Georges Lemaître [142],
and by Howard P. Robertson [143–145] and Arthur Geoffrey Walker [146].

These exact solutions define what came to be known as the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric, also referred to as the FRW, RW, or FL metric. This metric starts with the assumption of
spatial homogeneity and isotropy, allowing for time-dependence of the spatial component of the metric.
Indeed, it is the only metric which can exist on homogeneous and isotropic spacetime. The assumption
of homogeneity and isotropy, known as the Cosmological Principle, follows from the Copernican
Principle, which states that we are not privileged observers in the universe. This is no longer true
below a certain observational scale of around 100 Mpc (sometimes called the “End of Greatness”),
but it does simplify the description of the distribution of mass in the universe.

The FLRW metric describes a homogeneous, isotropic universe, with matter and energy uniformly
distributed as a perfect fluid. Using the definition of the metric in Equation (4), it is written as:

− ds2 = c dτ2 − R2(t)[dr2 + S0
k(r)(dθ2 + sin2 θ dφ2)] , (25)

where r is a time independent comoving distance, θ and φ are the transverse polar coordinates, and t
is the cosmic or physical time. R(t) is the scale factor of the universe. The function S0

k(r) is defined as:

S0
k(r) =

⎧⎪⎪⎨
⎪⎪⎩

sin(r) (k = +1)

r (k = 0)

sinh(r) (k = −1)

(26)

where k is the geometric curvature of spacetime, the values 0, +1, and −1 indicating flat, positively
curved, and negatively curved spacetime, respectively.

Another common form of the metric defines the comoving distance as S0
k(r) → r, so that

− ds2 = c dt2 − R2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2 θ dφ2)

]
, (27)

where t is again the physical time, and r, θ and φ are the spatial comoving coordinates, which label the
points of the 3-dimensional constant-time hypersurface.

The dimensionless scale factor a(t) is defined as

a(t) ≡ R(t)
R0

, (28)

where R0 is the present scale factor (i.e., a = 1 at present). The scale factor is therefore a function of
time, so it can be abbreviated to a. The metric can then be written in a dimensionless form:

− ds2 = c2 dτ2 = c2 dt2 − a2
[

dr2 + S2
k(r)(dθ2 + sin2 θ dφ2)

]
, (29)
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where Sk(r) can be redefined as

Sk(r) =

⎧⎪⎪⎨
⎪⎪⎩

R0 sin(r/R0) (k = +1)

r (k = 0)

R0 sinh(r/R0) (k = −1) .

(30)

Equivalently, using the definition in Equation (27),

− ds2 = c2 dt2 − a2
[

dr2

1 − k(r/R0)2 + r2(dθ2 + sin2 θ dφ2)

]
. (31)

The comoving distance is distance between two points measured along a path defined at the
present cosmological time. It means that for objects moving with the Hubble flow, the comoving
distance remains constant in time. The proper distance, on the other hand, is dynamic and changes in
time. At the current age of the universe, therefore, the proper and comoving distances are numerically
equal, but they differ in the past and in the future. The comoving distance from an observer to a distant
object such as a galaxy can be computed by the following formula:

χ =
∫ t

te
c

dt′

a(t′) (32)

where a(t′) is the scale factor, te is the time of emission of photons from the distant object, and t is the
present time.

The comoving distance defines the comoving horizon, or particle horizon. This is the maximum
distance from which particles could have travelled to the observer since the beginning of the universe.
It represents the boundary between the observable and the unobservable regions of the universe.

If we take the time at the Big Bang as t = 0, we can define a quantity called the conformal time η

at a time t as:

η =
∫ t

0

dt′

a(t′) . (33)

This is useful, because the particle horizon for photons is then simply the conformal time
multiplied by the speed of light c. The conformal time is not the same as the age of the universe. In fact
it is much larger. It is rather the amount of time it would take a photon to travel from the furthest
observable regions of the universe to us. Because the universe is expanding, the conformal time is
continuously increasing.

The concept of particle horizons is important. It defines causal contact. The only objects not in
causal contact are those for which there is no event in the history of the universe that could have sent a
beam of light to both. This is at the origin of some of the big questions about the universe associated
with the Big Bang model, which gave rise to the Inflationary paradigm (see [147]). We shall discuss
this later.

5.1. Cosmological Expansion and Evolution Histories

The FLRW metric relates the spacetime interval ds to the cosmic time t and the comoving
coordinates through the scale factor R(t). The scale factor is the key quantity of any cosmological
model, since it describes the evolution of the universe. The notion of distance is fairly straightforward in
Euclidean geometry. In General Relativity, however, where we work with generally curved spacetime,
the meaning of distance is no longer unique. The separation between events in spacetime depends on
the definition of the distance being used.
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By combining the GR field equation (Equation (15)) and the definition of the metric (Equation (31)),
we obtain two independent Einstein equations, known as the Friedmann equations:

(
ȧ
a

)2
+

kc2

a2 =
8πG

3
ρ (34)

and

2
(

ä
a

)
+

(
ȧ
a

)
+

kc2

a2 = −8πG
c2 p . (35)

The Friedmann equations relate the total density ρ of the universe, including all contributions,
to its global geometry. There exists a critical density ρc for which k = 0. By rearranging the Friedmann
equation and using the definition of the Hubble parameter we then obtain

ρc(t) =
3H2(t)

8πG
. (36)

A universe whose density is above this value will have a positive curvature, that is, it will be
spatially closed (k = +1); one whose density is less than or equal to this value will be spatially open
(k = 0 or k = −1).

A dimensionless density parameter for any fluid component of the universe (i.e., a component
for whose gravitational field is produced entirely by the mass, momentum, and stress density) can be
defined by

Ω(t) =
ρ(t)
ρc(t)

=
8πGρ(t)
3H2(t)

. (37)

The current value of the density parameter is denoted Ω0.
Subtracting Equation (34) from Equation (35) yields the acceleration equation:

ä
a
= −4πG

(ρ

3
+

p
c2

)
. (38)

The geodesic Equation (12) allows us to compute the evolution in time of the energy and
momentum of the various components particles which make up the universe. From this evolution,
we can construct the fluid equation, or continuity equation, which describes the relation between the
density and pressure:

ρ̇ + 3
ȧ
a

(
ρ +

p
c2

)
= 0 . (39)

This is valid for any fluid component of the universe, such as baryonic and nonbaryonic matter,
or radiation.

The foundations of the Concordance Model of cosmology depend on General Relativity.
Any modification to the theory that changes the Einstein equations will have solutions that differ
from the Friedmann equations.

The FLRW universe contains different mass-energy components which are assumed to evolve
independently. This is physically valid at late cosmological times, when the components are decoupled,
so the density evolutions are distinct. In Table 2, we give the equation of state and the evolution of
the density and scale factor for different components of the universe. The quantities in this table are
explained in detail in the following sections.
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Table 2. The evolution of the various cosmological components. The quantities are the equation of
state w ≡ p/ρc2, the density ρ, the pressure p, and the scale factor a(t).

Component w ρ = a3(1+w) a(t) = t2/3(1+w)

Radiation (photons and relativistic neutrinos) 1/3 ∼a−4 ∼t1/2

Dust (includes CDM, baryons and non-relativistic neutrinos) 0 ∼a−3 ∼t2/3

Curvature −1/3 ∼a−2 → a−4 t
Cosmic strings −1/3 ∼a−2 → a−4 t
Domain walls −2/3 a−1 ∼t2

Inflation → −1 1
2 φ̇2 + V(φ) ∼eHt

Vacuum energy −1 constant ∼eHt

5.2. Matter (Dust)

Matter which is pressureless is referred to as “dust”. This is a useful approximation for
cosmological structures which do not interact, such as individual galaxies. Substituting pm = 0
in the equation of state for dust shows that the density of this component scales as:

ρm(a) =
ρm,0

a3 , (40)

where ρm,0 is the current density. Assuming spatial flatness, the time evolution of the scale factor
is then

a(t) =
(

t
t0

)2/3
, (41)

which gives us

H(t) =
2
3t

. (42)

This is known as the Einstein-de Sitter (EdS) solution, and it describes the evolution of H in a
constant-curvature homogeneneous universe with a pressureless fluid as the only component. It was
first described by Einstein and Willem de Sitter in 1932 [148].

5.3. Radiation

In the early universe, the energy content was dominated by photons and relativistic particles
(especially neutrinos). The expansion of the universe dilutes the radiation fluid, and the wavelength is
increased by the expansion so that the energy decreases. From thermodynamics,

Erad = ρradc2 = αT4 , (43)

where T is the radiation temperature and α is the Stefan-Boltzmann constant. The equation of state for
radiation can then be derived from the fluid Equation (39):

ρrad(a) =
ρrad,0

a4 ; prad =
ρradc2

3
. (44)

Combining this with the Friedmann equations, and assuming flatness (k = 0), we obtain the time
dependence of the scale factor and the Hubble parameter:

a(t) =
(

t
t0

)1/2
; H(t) =

1
2t

. (45)
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6. The Components and Geometry of the Universe and Cosmic Expansion

How do we relate the expansion of the universe to its contents? The total density of the universe
in terms of its constituent components can be written as the sum of the densities of these components
at any given time or scale factor:

ρ = ρm + ρrad + ρDE , (46)

where the subscript “DE” denotes another component of the universe, called Dark Energy.

Figure 2. The density evolution of the main components of the universe. The early universe was
radiation-dominated, until the temperature dropped enough for matter density to being to dominate.
The energy density of dark energy is constant if its equation of state parameter w = 1. Because the
matter energy density drops as the scale factor increased, dark energy began to dominate in the recent
past. At the present time (a(t) = 1), we live in a universe dominated by dark energy. For dark
energy, the green band represents an equation of state parameter w = −1 ± 0.2, showing how a small
change in the value of this parameter can give very different evolution histories for dark energy. If the
Concordance Model is correct, the universe will be completely dominated by dark energy in future
epochs (shown by the dashed lines). The matter density will keep decreasing as the universe expands.
Our Milky Way will merge with the Andromeda Galaxy, and eventually, the entire Local Group will
coalesce into one galaxy. The luminosities of galaxies will begin to decrease as the stars run out of
fuel and the supply of gas for star formation is exhausted. In the very far future, this galaxy will be in
the only one in our Hubble patch, as all the other galaxies will pass behind the cosmological horizon.
The night sky, save for the stars in the Local Group, will be very dark indeed. Stellar remnants will
either escape galaxies or fall into the central supermassive black hole. Eventually, baryonic matter
may disappear altogether as all nucleons including protons decay, or all matter may decay into iron.
In either scenario, the universe will end up being dominated by black holes, which will evaporate
by Hawking radiation. The end result is a Dark Era with an almost empty universe, and the entire
universe in an extremely low energy state, with a possible heat death as entropy production ceases
(see, e.g., [149,150]) What happens after that is speculative.
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The total dimensionless density can then be written:

Ω = Ωm + Ωrad + ΩDE , (47)

where we have dropped the subscript for clarity, i.e., Ωm,0 = Ωm, etc. The Friedmann Equation (34)
can now be rewritten using the equations of state for the different components:

H2(a) =
8πG

3

(
ρma−3 + ρrada−4 + ρDEe−3

∫ 1
a [1+w(a′)]d ln a′

)
− kc2

a2 . (48)

This can be rearranged to give:

H2(a) = H2
0

[
Ωma−3 + Ωrada−4 + ΩDEe−3

∫ 1
a [1+w(a′)]d ln a′ + (1 − Ω)a−2

]
, (49)

or, in terms of redshift:

H2(z) = H2
0

[
Ωm(1 + z)3 + Ωrad(1 + z)a4 + ΩDEe−3

∫ z
0 [1+w(z′)]/(1+z′)d ln z′ + (1 − Ω)(1 + z)2

]
. (50)

The term 1 − Ω is sometimes replaced by Ωk, the density due to the intrinsic geometry of
spacetime. Equation (50) is of central importance since it relates the redshift of an object to the global
density components and geometry of the universe.

The density evolution of the various components of the universe is shown in Figure 2.

7. The Hot Big Bang

In the Standard Model, it is generally accepted that the universe arose from an initial singularity,
often termed the “Big Bang”, which occurred some 13.8 billion years ago (as measured by Planck [151]).
This is not discussed here, but it should be noted that there are several proposals for the mechanism
of this singularity. During this epoch, we are dealing with Planck scale physics, so most of these
mechanisms involve quantum gravity. Other proposals (such as some superstring and braneworld
theories) do away with the need for an initial singularity altogether.

7.1. The Cosmic Microwave Background

The radiation density ρrad ∝ a−4, so the temperature evolution of the universe from an initial T0 is:

T =
T0

a
. (51)

In other words, the universe cools down as it expands. Conversely, this means at early times,
when the scale factor was close to zero, the temperature was very high (hence the term “Hot Big
Bang”). The radiation left from the early hot universe, cooled by expansion, is known as the Cosmic
Microwave Background, or CMB.

The properties of atomic and nuclear processes in an expanding universe provided the first
clue for the existence of a hot Big Bang. This was a remarkable achievement of the Big Bang model,
because it provided an explanation for the observed abundances of chemical elements in terms of
nucleosynthesis. The processes that created nuclei and atoms could only have been possible in an
early universe in thermal equilibrium, with black-body spectrum which cooled down as the universe
expanded. This allowed Ralph Alpher, Robert Herman, Hans Bethe and George Gamow to predict the
existence and temperature of the CMB in 1948 [152–155]. The universe therefore has a thermal as well
as an expansion history. Hence the ‘Hot Big Bang’.

The first direct evidence for the Hot Big Bang came two decades later, with the observation of the
CMB by Arno Penzias and Robert Woodrow Wilson in 1964 [156].
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The confirmation of the thermal history of the universe, together with the discovery of charge
parity violation in 1964 [157], provided clues about baryogenesis and the observed matter-antimatter
imbalance in the universe. This inspired the first proposals for a mechanism for baryogenesis by Andrei
Sakharov in1967 [158], followed by electroweak symmetry breaking by Vadim Kuzmin in 1970 [159].

This is a remarkable demonstration of the success of the Concordance Model. The cosmological
model fits very well with the predictions of particle physics, which in turn can be tested by cosmological
observations. The Concordance Model of the structure and evolution of the universe requires a
mechanism for baryogenesis as well as an explanation for Dark Matter and dark energy. The challenge
for physical theories beyond (or within) the Standard Model is to explain the preference of matter over
antimatter, and to explain the magnitude of this asymmetry. Cosmological observations can be used to
address these challenges [160].

The CMB is an extremely isotropic source of microwave radiation, with a spectrum corresponding
to a perfect blackbody at a temperature T0 = 2.7260 ± 0.0013 K [161]. Using the current temperature
and Erad = ρradc2 = αT4, the radiation density today is given by:

Ωrad = 2.47 × 10−5h−2 . (52)

At some time in the early universe, the ambient radiation temperature corresponded to the
ionisation potential of hydrogen, which is 13.6 eV. During this epoch, the universe was filled with
a sea of highly energetic particles and photons—a hot ionised plasma. The particles were mainly
electrons and protons. Other fundamental particles (quarks) existed earlier when the ambient energy
corresponded to their rest mass. At some point, as the universe expanded and cooled, the energy
of the photons was no longer sufficient to ionise the hydrogen, and within a relatively short time,
all of the electrons and protons combined to form neutral hydrogen. The photons were then free to
move through the universe. This process is known as decoupling and it occurred at a temperature
of ∼2500 K, when the universe was approximately 380, 000 years old [162]. It is these decoupled
photons which make up the CMB. The surface on the sky from which these photons originate is known
as the surface of last scattering.

7.2. Matter-Radiation Equality

At the present epoch, neglecting dark energy, the universe is dominated by matter. This component
is characterised by the fact that the matter particles can be treated in a non-relativistic regime,
whereas photons and relativistic neutrinos both behave like radiation. The total contribution to
the energy density from non-relativistic components (matter) and relativistic components (radiation
and relativistic neutrinos) can be written as ΩNR and ΩR = Ωrad + Ων, respectively. Using the fact
that Ωm = Ωm,0a−3, the ratio of the contributions of the components is a function of the scale factor a:

ΩR

ΩNR
=

Ωrad + Ων

Ωm
=

4.15 × 10−5

Ωm,0h2a−3 , (53)

where we explicitly use the subscript 0 for the present-day values.
Then there must exist a scale factor for which the ratio is unity. This is given by:

aeq =
4.15 × 10−5

Ωm,0h2 , (54)

or, in terms of redshift,
1 + zeq = 2.4 × 104Ωm,0h2 . (55)

The epoch at which the matter energy density equals the radiation energy density is called
matter-radiation equality, and it has a special role in large-scale structure formation.
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7.3. Neutrinos

Neutrinos have particular properties which give rise to a distinct evolution history. They are
known to exist from the Standard Model of particle physics, and the Hot Big Bang model predicts
the amount of neutrinos in the universe. Neutrinos can be thought of as “dark” matter because of
their very small reaction cross-section, which implies negligible self-interaction. However, they are
not cold Dark Matter. They are simply extremely light particle that can stream out of high-density
regions. They therefore cause the suppression of perturbations on scales smaller than the free-streaming
scale. Unlike photons and baryons, cosmic neutrinos have not been observed. However, particle
physics allows us to chart the history of this particle during nucleosynthesis, and to relate the neutrino
temperature to the photon temperature today [163–165].

The scale on which perturbations are damped by neutrinos is determined by the comoving
distance that a neutrino can travel in one Hubble time at equality. For a neutrino mass ∼1 eV,
the average velocity, Tν/mν is of order unity at equality. This leads to a suppression of power on
all scales smaller than keq. Note that this phenomenon depends on the individual neutrino mass,
rather than the total neutrino mass. A lighter neutrino can free-stream out of larger scales, so the
suppression begins at lower k for the lighter neutrino species. Heavier neutrinos constitute more of the
total neutrino density, and so suppress small-scale power more than lighter neutrino species, which
means that we need at least two parameters to model massive neutrino phenomenology to sufficient
accuracy: the neutrino mass fraction Ων, or some expression of this quantity in terms of the total
neutrino mass ∑ mν, and the number of massive neutrino species Nν.

Neutrinos introduce a redshift and scale dependence in the transfer function. We know that the
perturbation modes of a certain wavelength λ can grow if they are greater than the Jeans wavelength.
Above the Jeans scale, perturbations grow at the same rate independently of the scale. For the baryonic
and cold Dark Matter components, the time and scale dependence of the power spectrum can therefore
be separated at low redshifts. This is not the case with massive neutrinos, which introduce a new
length scale given by the size of the comoving Jeans length when the neutrinos become non-relativistic.
In terms of the comoving wavenumber knr, this scale is given by:

knr = 0.026
( mν

1 eV

)1/2
Ω1/2

m h Mpc−1 (56)

for three neutrinos of equal mass, each with mass mν. The growth of Fourier modes with k > knr

is suppressed because of neutrino free-streaming. From the equation above, it is evident that
the free-streaming scale varies with the cosmological epoch (since there is a dependence on Ωm),
and therefore the scale and time dependence of the power spectrum cannot be separated.

Neutrinos are fermions, with a Fermi-Dirac distribution with assumed zero chemical potential.
When they decoupled from the plasma, their distribution remained Fermi-Dirac, with their temperature
falling as a−1. This decoupling occurred slightly before the annihilation of electrons and positrons,
which occurred when the cosmic temperature was of the order of the electron mass (T ≈ me). Neutrinos
decoupled when the cosmic plasma had a temperature of around 1 MeV. The energy associated
with this annihilation was therefore not inherited by the neutrinos, and the entropy was completely
transferred to the entropy of the photon background. Thus:

(Se + Sγ)before = (Sγ)after , (57)

where Se and Sγ are respectively the entropy of the electron-positron pairs and the photon background,
and ‘before’ and ‘after’ refer to the annihilation time.

The entropy per particle species, ignoring constant factors, is S ∝ gT3, where g is the statistical
weight of the species. For bosons, g = 1 and for fermions, g = 7/8 per spin state. According to
the Standard Model, the neutrino has one spin degree of freedom, each neutrino has an antiparticle,
and there are three generations of neutrinos, also called “families” or “species” (μ, τ and electron
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neutrinos). This means that the degeneracy factor of neutrinos is equal to 6. Before annihilation,
the fermions are electrons (2 spin states), positrons (2), neutrinos and antineutrinos (6 spin states).
The bosons are photons (2 spin states). We therefore have gbefore = 4(7/8) + 2 = 11/2, while after
annihilation g = 2 because only photons remain. Applying entropy conservation and counting
relativistic degrees of freedom, the ratio of neutrino and photon temperatures below me is therefore:

Tν

Tγ
=

(
4

11

)1/3
, (58)

so that the present neutrino temperature is

Tν,0 =

(
4
11

)1/3
TCMB = 1.945 K . (59)

The number density of neutrinos is then

nν =
6ζ(3)
11π2 T3

CMB , (60)

where ζ(3) ≈ 1.202, which gives nν ≈ 112 cm−3 at the present epoch [166]. In the early universe,
neutrinos are relativistic and behave like radiation. So they contribute to the total radiation energy
density ρrad, which includes the photon energy density ργ:

ρrad =

[
1 +

(
7
8

)(
4

11

)4/3
Neff

]
ργ , (61)

where Neff is the effective number of neutrino species. At late times, when massive neutrinos become
non-relativistic, their contribution to the mass density is mνnν, giving

Ων =
ρν

ρc
≈

Nν

∑
i

mν,i

93.14 eV h2 , (62)

where mν,i is the mass of individual neutrino species and Nν is the number of massive neutrino species.
This expression relates the total neutrino mass ∑ mν to the neutrino fraction Ων.

It can be seen from the above that this equation can be modified through a change in the effective
number of neutrino species by many factors: a non-zero initial chemical potential, or a sizeable
neutrino-antineutrino asymmetry, or even a fourth, ‘sterile’ neutrino [166–168]. The Standard Model
predicts a value of Neff = 3.046 for the effective number of neutrino species. This accounts for
the three neutrino families together with relativistic degrees of freedom, since neutrinos are not
completely decoupled at electron-positron annihilation and are subsequently slightly heated [169].
Any significant deviation from this value could be a signature of hidden physical effects, possibly
requiring a modification of General Relativity [170].

Neutrino oscillation experiments do not, at present, determine absolute neutrino mass scales,
since they only measure the difference in the squares of the masses between neutrino mass eigenstates.
Cosmological observations, on the other hand, can constrain the neutrino mass fraction, and can
distinguish between different mass hierarchies [166].

Observations of neutrino flavour oscillations in atmospheric and solar neutrinos, provide evidence
of a difference between the masses of the different species or flavours, as well as for a non-zero mass.
For three neutrino mass eigenstates m1, m2 and m3, the squared mass differences are [171]:
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|Δm2
21| = m2

2 − m2
1| ∼= 7.5 × 10−5 eV2

|Δm2
31| = |m2

3 − m2
1| ∼= 2.5 × 10−3 eV2

|Δm2
21|

|Δm2
31|

∼= 0.03 .

(63)

The ambiguity in the sign of the mass differences Δm allows for two possible mass hierarchies:
the normal hierarchy given by the scheme m3 � m2 > m1, or the inverted hierarchy m2 > m1 � m3.
Given Equation (63), constraining the total neutrino mass to a small enough maximum value could
exclude an inverted hierarchy. Conversely, a total neutrino mass mν∼2 eV is only possible with a
degenerate neutrino mass scheme. Hence the interest in finding cosmological neutrino mass bounds.

The fact that cosmological constraints could be stronger than constraints from particle accelerators
was noticed quite early (see [172]). The ‘closure limit’ gives us mν < 90 eV. This was first derived in the
late 1960s and 1970s [173–176]. Since then, cosmological neutrino bounds have improved significantly,
with different methods being used e.g., luminous red galaxies [177], CMB anisotropies [151,178],
or weak lensing [179–181].

Joint Planck CMB and BAO observations give us mν < 0.23 eV, but various data combinations
can change this figure, and strong priors on the value of the Hubble constant can provide tighter
constraints [151].

8. Inflation: The Second Wave of Alternative Theories

In the late 1970s, General Relativity had been largely accepted by the scientific community.
But a series of cosmological considerations led to renewed interest in alternative theories. These were
not so much attempt to solve problems in the theory itself, but to find explanations for observations
that were not explained by the theory.

General Relativity applied to the universe gave us the Hot Big Bang model: a universe expanding
out of an initial highly energetic, dense state. The Hot Big Bang model was successful in explaining
many interlinked phenomena which were subsequently confirmed by observation: the Hubble Law
and the expansion of the universe, the thermal history of the universe, primordial nucleosynthesis,
the existence of the cosmic microwave background, the relation between the temperature and scale
factor, and finally the blackbody nature of the CMB. The remarkable fact is that these phenomena
occur on extremely different scales, and are observed via different physical processes, and yet they all
fit neatly within one model.

However, there are some observations which the Hot Big Bang model fails to explain.
These cosmological problems are linked to the primordial universe, the most obvious being the
following (for details see [182–186], and references therein):

• The Horizon Problem
• The Flatness Problem
• The Monopole Problem

The horizon problem arises from the structure of spacetime. In the standard cosmological model
described by the FLRW equations, different regions of the universe observed today could have not been
in causal contact with because of the great distances between them which are greater than the distance
that could have been traversed by light since the Big Bang. The transfer of information (i.e., any
physical interaction) or energy can occur, at most, at the speed of light, but these regions have the
same temperature and other physical characteristics. In particular, we observe causally-disconnected
regions of the CMB to be in thermal equilibrium. How could this have happened?

The horizon problem was first identified in the late 1960s. This led to to early attempts to model
chaotic solutions to Einstein’s field equations near the initial singularity [187,188]. In the late 1970s,
Alexei Starobinsky noted that quantum corrections to General Relativity should be important in the
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very early universe. These corrections would lead to a modification of gravity, which induces an
inflationary phase [189]. Starobinsky’s was the first model of inflation.

The flatness problem is one the so-called “coincidence problems” of modern cosmology.
By the 1960s, observations had determined that the density of matter in the universe is comparable
to the critical density necessary for a flat universe. So the contribution of curvature had to be of
the same order of magnitude as the contribution of matter throughout the history of the universe.
This represents a fine-tuning problem. Observations of the CMB have confirmed that the universe is
spatially flat to within a few percent. Why is the global geometry of the universe so flat?

The magnetic monopole problem arises from the Hot Big Bang model. Grand Unified Theories
predict the production of a large number of magnetic monopoles [190,191] in the early, extremely hot
universe. Why have none ever been observed? If they exist at all, they are much more rare than the
Big Bang theory predicts. This was noted by Zel’dovich and others in the late 1970s [192,193].

Hot Big Bang Plus Inflation

This gave rise to the idea of a model in which the early universe undergoes a period of exponential
accelerated expansion. This theory, called “inflation”, was first formulated by Alan Guth in the
1980s [194] while he was trying to investigate why no magnetic monopoles are observed. It was
realised that inflation solves the horizon and flatness problems, as well as explaining the absence of
relic monopoles. Better still, it explains the origin of structure in the universe.

In the Standard ΛCDM Model, the initial perturbations from which structure evolved are assumed
to have been seeded by the inflationary potential. Reconstructing the primordial power spectrum
is no easy task, and poses two main problems. Observationally, we want to extract the amplitude
and scale variation from the data. Theoretically, we seek to explain the origin of the perturbations.
At present, the leading theoretical paradigm for the primordial fluctuations is inflation, which provides
initial conditions for both large-scale structure and the cosmic microwave background radiation.
The theory of inflation offers a plethora of models, each of which predicts a certain power spectrum of
primordial fluctuations P(k). Since the inflationary paradigm is linked to the theoretical description
of the primordial power spectrum, it is necessary to briefly explain some of the main concepts here
(for the full details, see [183,185]).

The precise definition of inflation is any period during which the scale factor of the universe is
accelerating, that is, ä > 0. This expression is equivalent to other definitions of inflation:

d
dt

H−1

a
< 0 =⇒ ε ≡ − Ḣ

H2 < 1 ⇐⇒ d2a
dt2 > 0 ⇐⇒ ρ + 3p < 0 . (64)

The first expression above has a remarkable physical interpretation. It means that the observable
universe becomes smaller during inflation.

The basic theory of inflation states that from the initial Big Bang singularity to approximately
10−37 s, there existed a set of highly energetic scalar fields. By definition, Ω is driven towards 1
during inflation. Inflationary theories assume that gravity is described by GR, which means that the
component driving inflation must satisfy ρ + 3P < 0. If for example, the universe was dominated
during the inflationary phase by a scalar field (or set of fields) φ with a self-interaction potential V(φ).
It is the form of this potential which differentiates the various inflationary theories. Most theories
assume a “Mexican hat” potential, with a single field, while chaotic inflation assumes a simple power
law potential with a slowly varying field [195]. The action for this potential is then [196]

S = −
∫

d4x
√−g

[
m2

PlR
16π

− 1
2
(∇φ)2 + V(φ)

]
, (65)
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where mPl is the Planck mass. As the universe cooled, the scalar field became trapped in a false vacuum,
so its energy density became constant. The potential energy, however, is nonzero, so the pressure is
negative. The scale factor during inflation has the de Sitter form:

a(t) = e(ΛI/3)1/2t , (66)

where ΛI represents the energy density of the inflationary field (sometimes called the inflaton).
Since the energy density of the inflaton field was very high, the associated magnitude of the

negative pressure would have been very large as well. The scale factor is thought to have increased
during inflation by ∼e65, and any point in the universe which found itself in a false vacuum state
would have undergone inflation. The accelerated expansion lasted until the field rolled down to a
minimum, when it decays into the familiar particles of the Standard Model, and the universe can then
be described by an FLRW model.

The inflationary paradigm provides an explanation for the origin of structure and for the observed
geometry of the universe, in addition to solving the aforementioned cosmological problems.

First, inflation solves the flatness problem. Using Equation (66), the evolution of Ω during
inflation can be written as:

|Ω(t)− 1| ∝ e−(4ΛI/3)1/2t , (67)

so that |Ω − 1| is driven very close to 0 as t increases. This explains why the universe is flat.
It also means that this value has not deviated significantly from its initial value right after expansion.
We can therefore safely assume spatial flatness throughout the history of the universe. Given the
observational difficulties, this provides a theoretical motivation for taking the idea of a large
ΩDE seriously.

Second, inflation solves the horizon problem (Figure 3). Regions of the universe which are
causally disconnected today evolved out of the same causally-connected region in the early universe.
The observed uniformity of the CMB is no longer a problem.

Third, inflation explains why we have never observed magnetic monopoles. Due to rapid
expansion of the universe during inflation, they become so rare in any given volume of space that
we would be very unlikely to ever encounter one. Nor would they have sufficient density to alter
the gravity and thereby the normal expansion of the universe following inflation. The problem of
magnetic monopoles motivated the Guth’s development of his theory in 1981 [194]. The solution of
the monopole problem, and problems related to other relics, was an early success of the inflationary
paradigm, and inspired similar theories [197,198].

Fourth, the inflationary scenario provides a natural explanation for the origin of structure,
providing a link between quantum mechanics and relativistic cosmological paradigm. This was
realised soon after the development of the theory of inflation, and the details were worked out in the
early 1980s [199–204].

An initially smooth background needs seed fluctuations around which gravitational collapse
can occur. The inflationary scenario attributes their origin to quantum fluctuations in the inflaton
field potential, so that the universe is not perfectly symmetric. Different points in the universe inflate
from slightly different points on the potential, separated by δφ. Inflation for these two points ends
at different times, separated by δt = δφ/φ̇. This induces a density fluctuation δ = Hδt (see [184]).
Since all the points undergoing inflation are part of the same potential field, the initial fluctuations are
nearly scale invariant. This means that the density amplitude on the horizon scale will also be constant:

δH = Hδt =
H2

2πφ̇
= constant . (68)

In summary, inflation solves the three cosmological problems listed above:

• The Horizon Problem. Solution: the entire universe evolved out of the same causally-connected region.
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• The Flatness Problem. Solution: any initial curvature is diluted by the inflationary epoch and
driven to zero.

• The Monopole Problem. Solution: the rapid expansion of the universe drastically reduces the
predicted density of magnetic monopoles, if they exist.

τ0

τrec

Conformal time

Big Bang singularity

Causal contact

Recombination

Past light cone

Particle horizon

In
fla

tio
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τinitial = −∞

0

Last scattering surface

Reheating

Figure 3. How inflation solves the horizon problem. The light cones on the causal diagram of an
inflationary FLRW model are at ±45◦. The worldlines of comoving matter are vertical on this kind of
diagram. The particle horizons are horizontal lines. Here we have shown the particle horizon for the
CMB. Without inflation, conformal time would only go back to τ0, and different regions of the CMB
which we observe today along our past light cone would never have been in causal contact. Because of
inflation, conformal time is extended to the Big Bang singularity, so these regions would have been in
causal contact at some point in our past light cone.

How long did inflation last? The answer is given by looking closely at Equation (67) above.
A convenient measure of expansion is the so-called e-fold number, defined as:

N ≡ ln
(

af
ai

)
=

∫ tf

ti

H dt . (69)

Here, ai and af are the values of the scale factor at the beginning and end of inflation, while ti

and tf are the corresponding proper times. The scale factor a is only physically meaningful up to a
normalisation constant, so the e-fold number is defined with respect to some chosen origin. The reason
is that in cosmology, what is fixed is not the initial condition, but the current expansion—we cannot
measure any H, but we measure H0 then extrapolate backwards.
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We can search for the minimum duration of inflation required to solve the horizon problem.
At the very least, we require that the observable universe today fits in the comoving Hubble radius at
the beginning of inflation:

(a0H0)
−1 < (ai Hi)

−1 . (70)

The condition is the same for the horizon and flatness problems.
If we assume that the universe was radiation-dominated since the end of inflation (giving us

H ∝ a−2), and ignore the relatively recent matter- and dark energy-dominated epochs, we obtain

af
ai

=
a0

af
. (71)

In the general case, the condition becomes:

af
ai

≥ a0

af
, (72)

or in terms of the number of e-folds,

Nf − Ni ≥ N0 − Nf . (73)

In other words, there should be as much expansion during inflation as after inflation.
The solution to the horizon problem is the same as the solution to the flatness problem. Taking into

account the present energy density of the universe, we need a minimum of about 50 to 60 e-folds. This
already gives us a useful criterion for realistic inflation models. The most recent Planck results show a
preference for a higher number of e-folds: 78 < N < 157 [205].

Most models of inflation are slow-roll models, in which the Hubble rate varies slowly [185,206,207].
This model was first developed by Andrei Linde in 1982 [208]. It solved a major problem in Guth’s
early theory. Instead of tunnelling out of a false vacuum state, inflation occurrs by a scalar field rolling
down a potential energy gradient. When the field rolls very slowly compared to the expansion of
the universe, inflation occurs. Hence the name “slow-roll inflation”. However, when the gradient
becomes steeper, inflation ends and reheating can occur. It is beyond the scope of this review to go
into the detail of the theory, but it is necessary for us to briefly refer to the link between this theory and
the spectral index of primordial fluctuations, which is an important observational parameter in the
Concordance Model of cosmology.

To quantify slow roll, cosmologists typically use two parameters ε and η which vanish in the limit
that φ becomes constant. The first parameter is defined as:

ε ≡ d
dt

(
1
H

)
=

−Ḣ
aH2 , (74)

which is always positive, since H is always decreasing. The second complementary variable which
defines how slowly the field is rolling is:

η ≡ 1
aHφ̇(0)

[
3aHφ̇(0) + a2V′

]
, (75)

where φ(0) is the zero-order field, and V is the potential.
The scalar spectral index can be defined in terms of some function, usually a polynomial, involving

the two slow-roll parameters ε and η. As an example we shall give two such parameterisations:
n = 1 − 4ε − 2η [209] and n = 1 − 6ε + 2η [206]. The rate of change of n can also be expressed in terms
of inflationary parameters: dn/ d ln k = 16εη + 24ε2 + 2ξ2 [210], where

ξ2 ≡ m4
Pl

V′(d3/ dφ3)

V2 , (76)
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mPl being the reduced Planck mass (4.342 × 10−6 g).
Therefore, by extracting the values of ε and η from the data, using methods such as weak lensing,

we can directly probe the potential of of the inflaton field. Likewise for the tilt or spectral index
of the primordial power spectrum. Slow-roll inflation predicts that the spectral index of primordial
fluctuations should be slightly less than 1. The reason for this is simple. For inflation to end, the Hubble
parameter H has to change in time. This time-dependence changes the conditions at the time when
each fluctuation mode exits the Hubble horizon and therefore gets translated into a scale-dependence.

Inflation accounts for the observed spatial flatness of the universe, and the absence of
magnetic monopoles. These predictions have been confirmed by various probes, most notably by
precision measurements of CMB anisotropies, starting with the Cosmic Background Explorer (COBE)
in 1992 [211–213], then with the Wilkinson Microwave Anisotropy Probe (WMAP) which ran for nine
years from 2001 to 2010. WMAP data placed tight constraints on the predicted burst of growth in the
very early universe, providing compelling evidence that the large-scale fluctuations are slightly more
intense than the small-scale ones, which is a subtle prediction of many inflation models [162,214–219].
Significantly, WMAP found evidence that the scalar spectral index is less than 1 (a 2σ deviation),
implying a deviation from scale invariance for the primordial power spectrum. As explained above,
this is a major prediction of inflation, and this observation reinforced the evidence in favour of the
theory. Conclusive proof of a scale-dependent primordial power spectrum (a 5σ deviation from ns = 1)
was provided by the Planck CMB anisotropy probe in 2013 [220,221] and confirmed in 2015 [151,205].

One current experimental challenge is to observe the B-modes of polarisation of the CMB caused
by primordial gravitational waves produced by inflation. Their detection by the BICEP2 experiment
was announced in early 2014. However, more accurate modelling of the signal over the next few
months, which allowed the observation to be explained by polarised dust emission in our Galaxy,
decreased the statistical confidence of the initial result [222]. This was confirmed by Planck data
in 2016 [223]. Upcoming large-scale structure surveys, such as the Euclid satellite mission, or 21-cm
radiation surveys such as the Square Kilometre Array, may measure the power spectrum with greater
precision than current CMB probes, and could provide further evidence in favour of the inflationary
paradigm [224–226].

9. The First Unknown Component: Dark Matter

The first evidence for Dark Matter came from astronomy rather than cosmology.
Newtonian physics and General Relativity both provide very precise rules for the dynamics of
galaxies: the mass determines the rotation velocity. Starting in the 1920s, stronomers noticed that
amount of visible matter in galaxies did not match the observed rotation curves. These curves relate
the tangential velocity of the constituent stars (or gas) about the centre of the galaxy to their radial
distance. Observations of the velocities of globular clusters about galaxies showed that at large radii
the velocities are approximately constant, implying that the amount of mass in the galaxies is much
higher than the visible mass.

The first suggestion of the existence of hidden matter, motivated by stellar velocities, was made by
Jacobus Kapteyn in 1922 [227]. Radio astronomy pioneer Jan Oort also hypothesized the existence of
Dark Matter in 1932 [228]. Oort was studying stellar motions in the local galactic neighbourhood and
found that the mass in the galactic plane must be greater than what was observed. This measurement
was later determined to be erroneous.

In 1933, Fritz Zwicky, who studied galactic clusters while working at the California Institute of
Technology, made a similar inference [229]. Zwicky applied the virial theorem to the Coma galaxy
cluster and obtained evidence of unseen mass that he called dunkle Materie in German, or “Dark
Matter”. Zwicky estimated its mass based on the motions of galaxies near its edge and compared that
to an estimate based on its brightness and number of galaxies. He estimated that the cluster had about
400 times more mass than was visually observable. The gravity effect of the visible galaxies was far too
small for such fast orbits, thus mass must be hidden from view. Based on these conclusions, Zwicky
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inferred that some unseen matter provided the mass and associated gravitation attraction to hold the
cluster together.

In 1937, Zwicky made the bold assertion that galaxies would be unbound without some form of
invisible matter [230]. Zwicky’s estimates were off by more than an order of magnitude, mainly due to
an obsolete value of the Hubble constant. The same calculation today shows a smaller fraction, using
greater values for luminous mass. However, Zwicky did correctly infer that the bulk of the matter
was dark.

More evidence started to accumulate for the existence of some non-emitting component which
was now being called Dark Matter [231]. In 1959, Kahn and Woltjer [232] pointed out that the
motion of Andromeda towards us implied that there must be Dark Matter in our Local Group of
galaxies. Dynamical evidence for massive Dark Matter halos around individual galaxies came later,
starting in the 1970s, when rotation curve data from multiple galaxies confirmed the Dark Matter halo
hypothesis [233–236]. Like baryonic matter, Dark Matter is a fluid with vanishingly small pressure.
Unlike baryonic matter, it has no interaction with photons, making it both dark and transparent. It also
has a vanishingly small self-interaction beside gravity. One result of this is that the Dark Matter halos
surrounding galaxies are rounder than the galaxies themselves [237] .

In the last few decades, cosmology has contributed one important piece of information: the amount
of Dark Matter. The observed value of the matter density in the universe is Ωm = 0.3089 ± 0.0062.
However, the density of baryonic matter is Ωb = 0.0486 ± 0.0010 [151]. The missing mass is made up of
Dark Matter.

The name “Dark Matter” is an indication of its nonbaryonic nature: it cannot be observed by
emission of photons, so observers need to find a way around this problem. Current evidence for the
existence of Dark Matter comes from a variety of sources besides galactic dynamics [231]. The two most
important ones are CMB anisotropies and gravitational lensing. In addition, Big Bang nucleosynthesis
provides evidence that some of the Dark Matter may be baryonic. The inventory of observed baryons
in the local universe falls short of the total anticipated abundance from Big Bang nucleosynthesis,
implying that most of the baryons in the universe are unseen [238].

Anisotropies in the CMB are related to anisotropies in the baryonic density field by the Sachs-Wolfe
effect [239]. This means that the baryon density field variation at the time of decoupling can be linked
to CMB anisotropies. If all matter were made of baryons, the amplitude of the density fluctuations
should have reached δ∼10−2 at the present epoch. However, we observe structures with δ � 1 at
the present epoch (e.g., galaxies and galaxy clusters). The discrepancy can only be explained by the
presence of additional matter, which created potential wells for the baryons to fall into after decoupling.
These potential wells would have had to be formed by a weakly interacting fluid that decoupled well
before baryons and began to cluster much earlier. Such a fluid would only interact via the gravitational
and possibly the weak nuclear force. As the baryons accumulated in the potential wells, their pressure
would have built up, leading to oscillations in the baryon fluid, termed “baryon acoustic oscillations”
(BAO) [240,241]. These oscillations leave an imprint on the CMB power spectrum, which has been
confirmed observationally, and which constrains the mass density, leading to a further confirmation of
the existence of this missing mass.

The phenomenon of gravitational lensing includes cosmic shear, weak lensing, cosmic
magnification. Although the theory of cosmic shear had been worked out from the 1960s to the
early 1990s [242], the first detection had to await the development of instruments sensitive enough to
make the required observations, and image analysis software to accurately correct for unwanted effects
when measuring the shapes of galaxies. In March 2000, four groups independently announced the first
discovery of cosmic shear [243–246]. Since then, cosmic shear has established itself as an important
technique in observational cosmology.

Gravitational lensing shows that the amount of lensing of galaxies around galaxy clusters is too
high to be caused by the visible matter. Apart from the stars themselves, a galaxy cluster also has a gas
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component, but X-ray observations show that this is still not enough to account for the extra mass.
The cluster must therefore have a non-emitting halo of Dark Matter around it.

Various Dark Matter candidates have been proposed [247–251]. However, all these candidates
have one common characteristic: a very small reaction cross-section, making them extremely difficult
to detect directly [252–255]. Experiments have, however, placed limits on the mass of Weakly Interacting
Massive Particles (WIMPs), which are the current best candidate for Dark Matter (together with axions).
WIMPs are an entire new class of fundamental particle outside of the Standard Model that result from
supersymmetry [256,257]. These results show that even the lightest Dark Matter particle should have a
mass which is not below ∼10 MeV. We also know that ΩCDM = 0.2589 ± 0.0057 [151]. The conclusion
is that Ων � Ωm, implying that hot Dark Matter (i.e., neutrinos) cannot account for the Dark Matter
density ΩCDM.

An alternative to Dark Matter is to explain the missing mass by means of a modification of
gravity at large distances or more specifically at small accelerations. In 1983, Morderhai Milgrom
proposed a phenomenological modification of Newton’s law which fits galaxy rotation curves [131–133].
The theory, known as Modified Newtonian Dynamics (MOND) automatically recovers the Tully-Fischer
law. The theory modifies the acceleration of a particle below a small acceleration a0∼10−10 ms−2, which
therefore enters the theory as a universal constant. The gravitational acceleration at large distances then
reads a =

√
GMa0/r at large distances, instead of the Newtonian law a =

√
GM/r2.

There are two main difficulties with MOND. First, it does not explain how galaxy clusters can
be bound without the presence of some hidden mass [258,259]. Second, attempts to derive MOND
from a consistent relativistic field theory have failed. One such attempt is the Tensor-Vector-Scalar
Theory (TeVeS) [135] is more successful and actually relativistic but not apparently necessary since it
still requires dark energy and Dark Matter. Many models are unstable [260], or require actions which
depend on the mass M of the galaxy, thereby giving a different theory for each galaxy. Moreover,
modified gravity theories have serious difficulties reproducing the CMB power spectrum and the
evolution of large-scale structure [261–263].

The greatest challenge to modified gravity theories, and also the clearest direct evidence of Dark
Matter, comes from observations of a pair of colliding galaxy clusters known as the Bullet Cluster [264]
in which the stars and Dark Matter separate from the substantial mass of ionised gas. The Dark Matter
follows the less substantial stars and not the more massive gas.

The modifications of gravity proposed as alternative to the Dark Matter paradigm illustrate the
need for tests of GR at large distances and low accelerations. They also illustrate the problems faced by
models which favour goodness of fit over parsimony. Modified gravity theories can give an excellent
phenomenological fit through an adjustment of the values of the extra parameters, but there is no
universal principle to determine these values. This requirement for simplicity and predictivity is met
by General Relativity.

10. The Second Unknown: Dark Energy and the New Wave Alternative Theories

The current motivation for alternative theories seems to be the search for an explanation of the
observed accelerating expansion of the universe. Let us consider the justification for the dark energy
paradigm within the inflationary ΛCDM model, and the process which led to its acceptance by the
scientific community (see [265]).

Round about the time that GR was developed, the universe was thought to be static. There was
no compelling reason to think otherwise. Einstein realised that his equations implied a non-static
universe, so in 1917 he revised his field equations of GR to read [138]:

Gμν − Λgμν = Gμν − 8πGρΛgμν = 8πGTμν (77)

where ρΛ = Λ/8πG is proportional to the cosmological constant Λ.
It can be seen from this equation that Einstein did not consider the cosmological constant to be

part of the stress-energy term. One could, of course, put ρΛgμν on the right-hand side of the equation
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and count it as part of the source term of the stress-energy tensor and simply consider ρΛ to be the
vacuum energy. This is not just a semantic distinction. When ρΛ takes part in the dynamics of the
universe, then the field equation is properly written with ρΛ, or its generalisation, as part of the
stress-energy tensor:

Gμν = 8πG(Tμν + ρΛgμν) . (78)

The equation describing gravity is then unchanged from its original form—there is no new
physical theory. Instead, there is a new component in the content of the universe.

This component must satisfy Special Relativity (that is, an observer can choose coordinates so that
the metric tensor has Minkowskian form). An observer moving in spacetime in such a way that the
universe is observed to be homogeneous and isotropic would measure the stress-energy tensor to be

Tμν =

⎛
⎜⎜⎜⎝

ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎟⎠ . (79)

This means that the new component in the stress-energy tensor looks like an ideal fluid with
negative pressure:

pΛ = −ρΛ. (80)

In modern concordance cosmology, this component is usually termed “dark energy”. If the
equation of state parameter of dark energy is constant, i.e., w(z) = −1, then its energy density will be
constant regardless of the expansion of the universe.

Einstein inserted the cosmological constant because he felt that the non-static universe predicted
by the formalism of GR was incorrect, given the data available in 1917 [138]. At the time, observations
of the universe were limited primarily to stars in our own galaxy, with observed low velocities, so there
was solid observational evidence justifying the assumption that the universe was static. Einstein’s
goal was to obtain a universe that satisfied Mach’s principle of the relativity of inertia. However,
observational evidence started to accumulate for another paradigm. In 1917, Vesto Slipher [266]
published his measurements of the spectra of spiral nebulae, which showed that most were shifted
towards the red. The breakthrough came when the linear redshift-distance relation was formulated by
Hubble [141], who showed that the universe was expanding. Einstein then dropped his support for
the cosmological constant.

In the FLRW cosmological model, the expansion history of the universe is determined by the
mass density of the different components, whose sum is normalised to unity:

Ωm,0 + Ωrad,0 + ΩX,0 + Ωk,0 = 1 , (81)

where the 0 subscript indicates the present epoch. We use the term ΩX to show that this equation does
not assume anything about the nature of the additional energy component (dark energy). In fact we
could have used ΩΛ or ΩDE in the current Concordance Model.

Big bang nucleosynthesis and observations of large scale structure provide a good determination of
the mass content of the universe, allowing Ωm and Ωrad to be fixed. However, observations in the 1980s
and 1990s started to show inconsistencies with the cosmological model at the time, which was a
matter-dominated, expanding universe with a present-epoch Hubble constant of H0 � 0.7 kms−1 Mpc
and ΩΛ = 0 [267,268]. This was the so-called “age problem”, where the predicted age of the universe
seemed to be younger than the age of the oldest stars. Angular-diameter distances to the last scattering
surface at z = 1100 measured from the CMB are in fact 1.7 times smaller than those predicted by
an isotropic and homogeneous universe containing only pressureless matter (see [269]). Since the
inflationary scenario, which by then was well established, predicts a flat Ωtotal = 1 universe, there was
a problem with the cosmological model.
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It was realised that one of the three assumptions of the cosmological model had to be wrong.
Either the universe contains exotic matter with a negative pressure, or standard General Relativity
is wrong, or the universe is not homogeneous and isotropic. The solution could also lie in some
combination of the three. Most of the research since the late 1990s has followed the first approach, and
the term “Concordance Model” refers to an FLRW universe, following General Relativistic cosmology,
containing dark energy.

Within the FLRW framework, two main proposals were put forward: one was ΛCDM, in which
there is a contribution to the energy density from a term similar to the cosmological constant (or the
cosmological constant itself), and the other was ν + CDM, where the missing mass came from massive
neutrinos (mν � 7eV) (e.g., [270,271]).

The first strong evidence of dark energy came in 1998 and 1999, when observations of the
luminosities of type Ia supernovae indicated that the expansion of the universe is accelerating [272,273].
Concurrently, other observations constrained the neutrino mass to mν � 7eV, thus discounting the
ν + CDM model and confirming ΛCDM as the Concordance Model (e.g., [265,274]). It is not clear
when the term “dark energy” was first used, but it seems to have been around 1998. The term is
analogous to “Dark Matter”, which had been in use for some time [275].

Since then, numerous observations have confirmed cosmic acceleration, including supernovae,
the cosmic microwave background, large-scale structure and baryon acoustic oscillations (see,
e.g., [276–278]). The values of the present epoch matter and radiation components are well established:

Ωm,0 ≡ 8πGρm,0

3H2
0

∼ 0.3, Ωrad,0 ≡ 8πGρrad,0

3H2
0

∼ 1 × 10−4 , (82)

where H0 is the present value of the Hubble parameter H(a = 1).
The data also indicate that the universe is currently nearly spatially flat:

|ΩK| � 1 . (83)

This is normally taken to imply that the spatial curvature K = 0, since

Ωk,0 = 0 ≡ −K
a2

0H2
0
∼ 0 . (84)

Thus it also justifies the inflationary paradigm. However, inflation only tells us that ΩK → 0,
so that the curvature may have had a nonzero value in the past. In the present universe, however,
the distinction is negligible. In any case, Equation (81) implies that there has to be a nonzero Λ
(a constant term added to the Einstein equation) such that

ΩΛ,0 ≡ Λ
3H2

0
∼ 0.7 . (85)

Inserting these values into the Friedmann equation leads to the dramatic conclusion that the
expansion of the universe is accelerating:

ä0 = H2
0

(
ΩΛ − 1

2
Ωm − Ωrad

)
> 0 , (86)

where a0 is the present value of the scale factor a(t).
Note that this conclusion only holds if the universe is homogeneous and isotropic (i.e.,

a Friedmann-Lemaître model). In such a universe, the distance to a given redshift z and the time
elapsed since that redshift are tightly related via the only free function, a(t). If the universe is isotropic
around us, but not homogeneous, that is, a non-Copernican Tolman-Bondi-Lemaître model [279],
then this relation would be lost and present data might not imply acceleration. A Copernican model
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where this relation again breaks down is the inhomogeneous universe, where the acceleration can be
produced via nonlinear averaging—the backreaction of inhomogeneities.

Dark energy is a fluid component whose equation of state is:

pDE = wc2ρDE . (87)

This is the equation of state in its most general form, since w can be any function of redshift, scale
factor or cosmic time, with the constraint that w ≤ 0 (i.e., the fluid has a negative pressure). Assuming
that w = w(a), we have the following density-scale relation:

ρDE(a) = ρDE,0e−3
∫ 1

a [1+w(a′)]d(ln a′) . (88)

It can be seen that in the special case of a constant w = −1, the fluid equation implies that the
density is constant.

If dark energy is a cosmological constant, it still leaves the question of its physical nature.
Its observed value of Λ ≈ 3 × 10−122c3/h̄G is so small that it is hard to interpret as the vacuum energy.

One possibility is that the final value of the cosmological constant is zero, and that cosmic
acceleration is due to the potential energy of a scalar field, with some sort of mechanism to dynamically
relax it to a small value. This notion leads to models of dark energy which invoke a slowly-rolling
cosmological scalar field to source accelerated expansion, smilar to cosmological inflation.

How can a scalar field drive cosmic acceleration? The action of a scalar field minimally coupled
to Einstein gravity is

S =
∫

d4x
√−g

(
m2

PlR
2

− 1
2
(∂φ)2 − V(φ)

)
. (89)

The stress-energy tensor for the scalar field is given by

Tφ
μν = ∂μφ∂νφ − gμν

(
1
2
(∂φ)2 + V(φ)

)
. (90)

For a homogeneous field such that φ = φ(t), a cosmological scalar acts like a perfect fluid with
equation of state w = P/ρ given by

wφ =
1
2 φ̇2 − V(φ)
1
2 φ̇2 + V(φ)

. (91)

The observed expansion leads us to a value of wφ � −1, which requires a very slowly-rolling
field: φ̇2 � V(φ). There has also been a lot of interest in constructing quintessence models which can
produce an equation of state of the “phantom” type (wφ < −1).

The equation of state of dark energy that has the potential to distinguish between dark energy
candidates. The most important distinction that can be made between different dark energy models is
whether the energy density of this component is constant, filling space homogeneously, or whether it is
some form of quintessence field whose energy density can vary in time and space. There is a multitude
of alternative models, such as f (R) [280–282], or Chameleon Models [283,284]. It is therefore useful to
consider the redshift evolution of w, so that w is an arbitrary function of redshift z. There are a number
of different parameterisations of w(z) ([285], and references therein).

The most common parameterisation is sometimes termed the Chevallier-Linder-Polarski (or CPL)
parameterisation [285,286]:

w(z) = w0 − dw
da

(1 − a) , (92)

where the scale factor a = 1/(1 + z). If we define

wa = − dw
a d ln a

, (93)
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then the equation becomes
w(a) = w0 + wa(1 − a) , (94)

which is the most commonly used form.
It has been shown that this parameterisation is stable and robust over large redshift ranges [287].

A wide range of functional forms of w(a) can be parameterised by the w0 − wa combination. However,
there are some dark energy models which it cannot reproduce (see [288–291]).

The problem with the dark energy paradigm, stated simply, is that the parameters are not
constrained well enough to rule out certain models. We have fairly good bounds on the dark energy
density, but the dark energy equation of state is still poorly constrained. Even for a constant w model,
corresponding to ΛCDM, the bounds are such that a time-varying w(a) could mimic a constant w,
thereby disguising underlying physics (see [292–294]).

11. The Evolution of Large-Scale Structure

After the epoch of matter-radiation equality, and before the onset of dark energy domination,
the mass-energy content of the universe became dominated by matter. From an initially smooth
background (as evidenced by CMB observations), structures have evolved to a scale of more than
100 Mpc, with the term “large scale structure” being used to refer to objects modelled on this scale.
At this scale, the mass-energy inhomogeneities can be modelled as perturbations on a homogeneous
and isotropic unperturbed background spacetime. Below this scale we observe galaxy clusters,
individual galaxies, and stars. The model of structure formation must be accurate enough to provide
an good description of the universe on a wide range of scales.

The standard model for the formation of structure assumes that at some early time there existed
small fluctuations, which grew by gravitational instability. The origins of these fluctuations are unclear,
but they are thought to arise from quantum fluctuations of the primordial universe, uncorrelated
and with Gaussian amplitudes, which were then amplified during a later inflationary phase [185].
The assumption that the amplitudes of the relative density contrasts is much smaller than unity means
that we can think of the primordial fluctuations as small perturbations on a homogeneous and isotropic
background density. This ensures that we can describe them using linear theory.

Heuristically, the mechanism of structure formation can be understood in terms of gravitational
self-collapse. Matter collapses gravitationally around initial mass overdensities. This increases the
relative density of that region, causing further collapse of more matter, and amplifying the effect.
The linear theory of structure formation needs to be relativistic, because the perturbations on any
length scale are comparable or larger than the horizon size at sufficiently early times. The horizon size
is defined as the distance ct which light can travel in time t since the Big Bang. Dissipative effects and
pressure also affect structure formation, as explained below (for details of the theory, see [295,296]).

The relative density is the density ρ at a particular point in space x relative to the mean ρ at some
time parameterised by the scale factor a, and can be expressed as a dimensionless density contrast:

δ(x, a) =
ρ(x, a)− ρ(a)

ρ(a)
. (95)

This quantity can be understood as the dimensionless density perturbation of some background
matter distribution.

There are two types of density perturbations that can occur within a matter-radiation fluid. If the
fluid could be compressed adiabatically in space, the perturbations have a constant matter-to-radiation
ratio everywhere. Since the energy density of radiation is proportional to T4, and the number density
is proportional to T3, the energy densities of radiation and matter are related by:

δrad =
4
3

δm . (96)
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Isocurvature perturbations occur when the entropy density is perturbed, but not the energy
density. Since the total energy density remains constant, there is no change in the spatial curvature and

ρradδrad = ρmδm . (97)

Perturbations can occur at different scales, or ‘modes’. The latter term is used when the amount
of perturbation on a particular scale is expressed using Fourier analysis. The Fourier transform pair of
δ(x) is:

δ̂(k) =
∫

d3xδ(x)eik.x ;

δ(x) =
∫ d3k

(2π)3 δ̂(k)e−ik.x, (98)

with each mode assumed to evolve independently. In the Einstein-de Sitter regime, linear adiabatic
perturbations scale with time as follows:

δ ∝

{
a(t)2 (radiation domination)

a(t) (matter domination)
(99)

while isocurvature perturbations are initially constant and then decline:

δ ∝

{
constant (radiation domination)

a(t)−1 (matter domination) .
(100)

In both cases, the overall shape of the spectrum of the perturbations over all modes is preserved,
while the amplitude changes with time. The evolution described above is affected on small scales by a
number of processes.

11.1. Evolution on Small Scales

During the radiation-dominated epoch the growth of certain modes is suppressed. This behaviour
can be modelled in terms of the horizon scale λH(a), which is the distance ct that light could have
travelled since the initial singularity (a comoving horizon size). A mode k is said to enter the horizon
when λ = λH(a), where λ = (2π)/k. If λ < λH(aeq) then a mode enters the horizon during the
radiation-dominated epoch. The time scale for collapse of matter during this epoch is larger than the
typical expansion time scale (t ∼ 1/H(a)) due to the relatively rapid expansion ρrad ∝ a−4. The growth
of these modes is therefore suppressed. After the epoch of matter-radiation equality (a = aeq), these
perturbations can then start to collapse gravitationally. We can define the suppression factor for a
particular mode as the factor by which the amplitude is reduced had it not entered the horizon:

fsup =

(
aenter

aeq

)2
=

(
k0

k

)2
(101)

where the mode evolves as ∝ a2 until it enters the horizon at aenter and is suppressed until aeq, when
its evolution resumes as ∝ a. The second equality in the above equation comes from applying an
Einstein-de Sitter approximation where k0 = 1/λH(aeq) (see [297]).

Pressure opposes gravitational collapse for modes with a wavelength less than the Jeans
length [298], sometimes called the free-streaming scale, defined as

λJ = cs

√
π

Gρ
. (102)
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During the radiation-dominated epoch, the sound speed cs = c/
√

3 and the Jeans length is always
close to the horizon size. The Jeans length then reaches a maximum at a = aeq and then begins to
decrease as the sound speed declines. This means that on scales larger than the comoving horizon size,
perturbations are only affected by gravity, and the spectrum starts to turn over at this point (where the
effects of pressure begin to dominate). The comoving horizon size at zeq is given by:

R0rH(zeq) ≈ 16.0
Ωmh2 Mpc . (103)

Another important scale occurs where photon diffusion erases perturbations in the
matter-radiation fluid. This process is termed Silk damping [299]. The scale at which it occurs is
characterised by the distance travelled by the photon in a random walk by the time of last scattering:

λS ≈ 16.3(1 + z)−5/4(Ω2
bΩmh6)−1/4Gpc . (104)

All of the effects mentioned above are particularly important where the behaviour of massive
neutrinos is concerned. Heuristically we can understand the complexity of their behaviour by
considering them as a component whose equation of state changes as the universe evolves. From a
component which behaves like photons (since the particles have a very small mass and relativistic
speeds), massive neutrinos lose energy and start behaving like baryonic matter [300,301].

11.2. Growth oF Perturbations in the Presence of Dark Energy

All of the above effects were described in an Einstein-de Sitter universe. In a universe with a
smooth non-clustering dark energy component below the horizon scale, the matter perturbation fields
evolves according to:

δ̈ + 2Hδ̇ − (3/2)H2Ωmδ = 0

δ′′ + (2 − q)a−1δ′ − (3/2)Ωma−2δ = 0, (105)

where a dot denotes a time derivative and a dash denotes a derivative with respect to a. The term q
is the deceleration parameter. This can be interpreted in the following way: the perturbations grow
according to a source term which involves the amount of matter (Ωm) but the growth is suppressed by
the friction term due to the expansion of the universe. The latter is also known as the Hubble drag.

If we define the growth as the ratio of the amplitude of a perturbation at a time a to some initial
amplitude, i.e.,

D(a) =
δ(a)

δ(ainitial)
, (106)

the equation becomes, for a general dark energy scenario where w = w(a) (see [302])

D′′ + 3
2

(
1 − w(a)

1 + X(a)

)
D′(a)

a
− 3

2

(
X(a)

1 + X(a)

)
D
a2 = 0 , (107)

where
X(a) =

Ωm

ΩDE
e−3

∫ 1
a d ln a′w(a′) (108)

is the ratio of the matter density to the dark energy density. For large X (i.e., Ωm ∼ 1 where
ΩDE ∼ 1 − Ωm) we recover the matter-dominated behaviour (D ∼ a). To parameterise deviations
from this behaviour we define the “normalised growth” as G = D/a. The evolution equation is then:

G′′ +
[

7
2
− 3

2

(
w(a)

1 + X(a)

)]
G′′

a
+

3
2

(
1 − w(a)
1 + X(a)

)
G
a2 = 0 . (109)
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This equation allows us to physically interpret the effects of dark energy. In the presence of
dark energy, the Hubble drag term is increased, so that growth is suppressed in a universe with an
accelerating expansion. This is similar to the suppression due to radiation dominance.

11.3. The Power Spectrum of Matter

In an FLRW universe, the homogeneity and isotropy assumption means that any statistical
properties must also be homogeneous and isotropic. The implication for the matter perturbation field
is that its Fourier modes must be uncorrelated (due to homogeneity). Usually, we assume that the mode
amplitudes are Gaussian. This assumption is well motivated since the theory for the seed fluctuations
assumes that they have a quantum origin. Due to the central limit theorem, the sum of a sufficiently
large number of mode amplitudes will tend towards a Gaussian distribution (see, e.g., [303,304]).

Such a field, with uncorrelated modes, and a Gaussian distribution of mode amplitudes is called
a Gaussian random field, and can be entirely described by its two-point correlation function:

〈δ(x)δ∗(y)〉 = Cδδ(|x − y|) . (110)

The angled brackets denote an ensemble average (an average over a multitude of realisations).
The value of δ at a given point in the universe will have a different value in each realisation, with a
variance 〈δ2〉. Since we can only observe one realisation of our universe (in other words, at most only
a finite region in this one universe), we apply the ergodic principle: The average over a sufficiently
large volume is equal to the ensemble average.

In Fourier space, the correlation function can be written as:

〈δ̂(k)δ̂∗(k′)〉 =
∫

d3xeik.x
∫

d3x′e−ik′ .x′ 〈δ(x)δ∗(x′)〉. (111)

Replacing x′ = x + y, and substituting Equation (110), this can be written as:

〈δ̂(k)δ̂∗(k′)〉 =
∫

d3xeik.x
∫

d3ye−ik′ .(x+y)Cδδ(|y|) (112)

= (2π)3δD(k − k′)
∫

d3ye−ik.(y)Cδδ(|y|) (113)

= (2π)3δD(k − k′)Pδ(|k|) . (114)

The power spectrum has been defined as the Fourier transform of the correlation function:

Pδ(|k|) =
∫

d3yeik.(y)Cδδ(|y|) . (115)

The standard convention in cosmology is to abbreviate Pδ(|k|) to P(k), where k = |k|. The power
spectrum can be expressed in dimensionless form as the variance per ln k, so that:

Δ2(k) =
k3P(k)

2π2 . (116)

11.3.1. Nonlinear Evolution

The power spectrum gives us the evolution of the initial matter density fluctuations. However,
the linear evolution breaks down at small scales, when complex structures begin to form,
and overdensities can no longer treated as perturbations on a smooth background. This is the
nonlinear regime of gravitational evolution. The scale above which nonlinearities cannot be ignored
is approximately set by Δ(kNL) � 1, which corresponds to kNL � 0.2 h Mpc−1 in most cosmological
models. The standard way to model nonlinear evolution is by using phenomenological fits based on
N-body simulations.
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One strategy is to build a models based on a stable clustering hypothesis [305–307], which assumes
that the nonlinear collapsed objects form isolated, virialised systems that are decoupled from the
expansion of the universe.

A different approach is used in the halo model [308]. Here, the density field is decomposed
into individual clumps of matter with some density profile and varying mass. By using this model
to calculate the number of clumps within a given volume, the galaxy halo profile can be calculated.
This is the equivalent of the power spectrum for these matter halos. A functional relation between
the linear power spectrum and this halo profile is then derived and calibrated using large N-body
simulations. This relation is then used to calculate the nonlinear power spectrum, using a fitting
formula, for instance (see, e.g., [309,310]).

Whichever approach is used, it must account for a range of small-scale physical processes, such as
baryonic physics, stellar formation, galactic magnetic fields, and Dark Matter and neutrino properties,
which have become more significant with the ability of future astrophysical experiments to probe the
nonlinear regime with ever increasing precision (see, e.g., [311–317]).

The need for realistic models of the universe has come to the fore in recent years, due the
massive improvement in the quality and volume of cosmological measurements. Most of the
N-body simulations rely on a perturbative approach. They use an FLRW cosmological background
(perfectly homogeneous and isotropic)), and assume that any sub-horizon inhomogeneous structure
of the universe will contribute to an average expansion on horizon-sized volumes driven by the
horizon-averaged density. With the next generation of cosmological probes, these may not be accurate
enough to model the universe realistically. There are several ongoing efforts to build fully relativistic,
nonlinear, inhomogeneous and asymmetric models using numerical methods [318–320]. This is a
significant contribution to the study of the backreaction effect and the question of the expansion rate of
the universe.

11.3.2. The Primordial Perturbations

In the very early universe, the tiny initial perturbations are thought to have formed a Gaussian
random field whose covariance function is diagonal and nearly scale-invariant. This form, known as
the Harrison-Peebles-Zel’dovich spectrum, was assumed in most cases within the Standard Model,
as it corresponds very closely to the observed power spectrum in the universe.

This type of spectrum was first proposed in the 1970s by Edward Robert Harrison [321],
Yakov Zel’dovich [322], and Phillip James Edwin Peebles [323], who were working independently,
as the spectrum for initial density fluctuations. This hypothesis was subsequently closely borne out
by observations. The defining characteristic of a Harrison-Peebles-Zel’dovich spectrum spectrum is
that it describes a fractal metric, where the degree of perturbation is the same on all scales (hence the
term “scale-invariant”), so that P(k) ∝ k. If we assume scale invariance for the power spectrum on
large scales, and combine this with Equation (101), this implies the following general shape for the
matter power spectrum in the Einstein-de Sitter scenario:

P(k) ∝

{
k for k � k0

k−3 for k � k0 .
(117)

The actual form of the spectrum depends in non-trivial ways on the parameters in the cosmological
model, including the ‘slope’ of the initial power spectrum ns, where P(k) ∝ kns . In a scale-invariant
spectrum in the linear regime, the fiducial value of ns is taken to be 1.

Cosmological observations were consistent with scale invariance up until the early data
releases from the Wilkinson Microwave Anisotropy Probe (WMAP) [214,324], but showed some tension.
Subsequent observations cast further doubts on scale invariance [216]. In 2013, the Planck probe,
mapping the anisotropies in the CMB, led to an important and conclusive result: it ruled out
scale invariance at over 5σ. The primordial power spectrum was found to be scale-dependent,
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with ns = 0.9603 ± 0.0073 [221]. This was confirmed by the 2015 data release, which found that
ns = 0.968 ± 0.006 [205]. This significant result is a powerful demonstration of the importance of
multiple sources of data, joint observations from different probes, and the increasing reliance on
complex statistical techniques for cosmological model selection [325–328].

Thus it can be seen that the current Concordance Model, consisting of ΛCDM with an inflationary
epoch in the early universe, was built in stages over the last 100 years. It is the result of a process of
accumulation of evidence and testing of competing models and theories. At each step, theory provides
the basis for adjustments to the model, and observations from different probes provided the evidence
(Figure 4). The current model should in no way be seen as “true”. It is merely the best model that fits all
the data available so far. Future data may very well require an adjustment to the Concordance Model.
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Figure 4. How the Concordance Model of Cosmology was developed. Theories and observations
motivated the development of cosmological models, which were adjusted as new observations
challenged the older models.

12. How Do We Test General Relativity?

The assumption of metric coupling given by Equation (5) has been tested accurately many
times over the last 100 years, at scales from 10−4 m in laboratories [329,330], up to 1014 m in the
Solar System [331]. These experiment test the implications of the metric coupling: the spacetime
independence of non-gravitational constants, the isotropy of the coupling of all matter field to a unique
metric tensor, the universality of free-fall, and gravitational redshift.

The standard way to test constraints on Sgravity and therefore the dynamics of General Relativity
is by using the parameterised post-Newtonian (PPN) formalism [65]. This assumes that gravity is
described by a metric over all scales. The idea is to write the most general form that gμν can take in
the presence of matter, when considering correction of order 1/c2 with respect to the Newtonian limit.
This method was first used in 1923 by Arthur Eddington [332]. In its simplest form, it provides
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us with two phenomenological parameters βPPN and γPPN entering the Schwarzchild metric in
isotropic coordinates:

g00 = −1 +
2Gm
rc2 + 2βPPN

(
2Gm
rc2

)2
and gij =

(
1 + 2γPPN 2Gm

rc2

)
δij . (118)

According to General Relativity, βPPN = γPPN = 1. The experimental constraints on these
parameters are summarised in Table 3.

Table 3. Some constraints on parameterised post-Newtonian (PPN) parameters from recent tests.

Method Constraint Experiment

Shift of perihelion of Mercury |2γPPN − βPPN − 1| < 3 × 10−3 Data to 1990 [333]

Lunar laser ranging |4βPPN − γPPN − 3| = (4.4 ± 4.5)× 10−4 Data to 2004 [334,335]

Very long baseline interferometry |γPPN − 1| = 4 × 10−4 Data from 1979 to 1999 [336]

Time-delay variation γPPN − 1 = (1.2 ± 2.3)× 10−5 Cassini spacecraft [67]

Planetary perihelion precessions βPPN − 1 = (−2 ± 3)× 10−5 Solar System
γPPN − 1 = (4 ± 6)× 10−5 ephemerides to 2013 [337]

It should be noted that the PPN formalism assumes that there is no characteristic length
scale for the gravitational interaction, and therefore it does not allow testing of finite-range effects.
These too have been constrained to be very close their General Relativistic value of zero. The deviation
of amplitude α from a Newton potential on a characteristic scale λ is typically α < 10−2 on scales
ranging from a few millimetres to Solar System size [329]. This implies no deviation from GR over
more than 15 orders of magnitude in length scale.

The Solar System tests constrain Eddington’s two PPN parameters to a tiny region very close
to 1. The formalism has been generalized to include eight additional phenomenological parameters [65]
to describe any possible deviation from GR at the first post-Newtonian order. They have all been
constrained to be very close to their General Relativistic values. The latest data use Solar System
ephemerides, which include perihelion measurements for Mercury and the other planets, as well as
lunar ephemerides. Independent teams of astronomers have estimated corrections to the standard
first-order post-Newtonian General Relativistic formalism to be all statistically compatible with
zero [337,338]. This leads us to conclude that General Relativity is the only theory consistent with Solar
System experiments at the post-Newtonian order.

It should be noted that, so far, it is only the first-order post-Newtonian, static, Schwarzschild-like
part of the spacetime metric that has been modelled and tested using Solar System dynamics.
The first-order post-Newtonian gravitomagnetic or Lense-Thirring part of the spacetime metric has
neither been modelled nor tested yet in the Solar System. However, it has recently been pointed out
that this could be possible in the next few years by focussing on particular models (Sun and planets,
planets and spacecraft, or planets and planets) [339]. This would open the field to the possibility of
constraining the PPN parameters using a more complete model of General Relativistic effects.

What about larger or smaller scales? The size of the universe was around 10−35 m in the
beginning, and the present size is around 1026 m. GR remains untested at these extreme scales.
But one fundamental assumption of GR is that it describes gravity at all scales (i.e., the theory assumes
the analytical continuity of solutions).

The evolution of the universe itself therefore provides a useful test of General Relativity.
The challenge lies in testing a wide range of potentials (weak and strong field regimes) over cosmological
scales. The strong field regime is tested using compact objects. However, over cosmological scales, the
kind of objects that would produce gravitational potentials approaching the strong field regime simply
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do not exist. One solution is to observe the evolution of the universe and check whether the evolution
of large-scale structure corresponds to the predictions of General Relativity.

13. Cosmological Tests

General Relativity has been submitted to 100 years of Solar System tests, which it has passed with
flying colours. The discoveries of the last two decades: cosmic acceleration, the scale dependence of
the primordial power spectrum, and also the open question of Dark Matter, have made it clear that GR
must also be tested at astrophysical and cosmological scales.

This presents a serious challenge. We derive our knowledge of the universe from measurements
of distances and times, and statistical properties like the distribution of matter. The main difficulty in
extending the Solar System tests to cosmological scales is that these measurements depends strongly
on the construction of cosmological models.

These models depend on four hypotheses:

(1) A theory of gravitational interactions.
(2) A description of the matter in the universe and the non-gravitational interactions such as

electromagnetic emissions.
(3) A hypothesis on the symmetry.
(4) A hypothesis on the topology, or the global structure of the universe.

Some of the hypotheses are hard to verify, and some have unverifiable implications. Assuming
the symmetry of our solutions means that we also assume the laws of physics are the same throughout
the universe, including its unobservable part outside the cosmological horizon (delimited by a radius
of around 15.7 Gpc). This is a very strong assumption, but one that is unverifiable.

Any cosmological model needs all four hypotheses. The first two are the physical theories, but
their equations cannot be solved without some kind of assumption on the symmetry of the solutions,
given by the third hypothesis. The fourth hypothesis is then an assumption on the global properties of
these solutions.

The simplest ΛCDM Concordance Model assumes that gravity is described by General Relativity
(Hypothesis 1), and that the universe contains the particles and fields of the Standard Model of particle
physics [171], together with Dark Matter and a cosmological constant (Hypothesis 2). The Einstein
equations require an effective stress-energy tensor averaged out on large scales, so the model requires
an extra assumption on the averaging procedure. This averaging and the validity or otherwise of this
assumption is the subject of research on the backreaction effect. The model assumes the Copernican
Principle (Hypothesis 3), and the continuity of the solutions of Einstein equations across all spatial
sections (Hypothesis 4).

The number of alternative cosmological models proposed, especially since the 1990s, is too
numerous to list here. Many of them are impossible to rule out simply by fitting them to the data,
because their predictions are so close to those of ΛCDM. It is easier to test the four hypotheses rather
than trying to test the observables predicted by the models. As with any null test, a significant violation
would indicate the need to modify one or more hypotheses.

As far as tests of GR (the theory of gravity in ΛCDM) are concerned, many experiments test more
than one assumption. We list the main experiment types, and the assumptions they test, in Table 4.
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Table 4. What we are actually testing. Experimental tests of General Relativity (GR) often probe more
than one assumption, and isolating the effects is a challenge in itself.

Experiment Assumption Tested

Solar System tests Metric coupling
Quadrupolar shift of nuclear energy levels Isotropy [340–342]
Lunar laser ranging and orbiting gyroscopes Universality of freefall [343] and structure of metric
Space-borne clocks Gravitational redshift [344]
Shift in perihelion of planets Structure of metric [345]
Time invariance of physical constants Metric coupling [346]
Detection of gravitational waves Lorenz gauge condition and inhomogeneous wave equation

13.1. Testing the Description of Matter and Non-Gravitational Interactions

General Relativity can be tested by measuring the fundamental constants of the theory [346–349].
Any variation would require a modification of GR [350,351]. A local measurement of a fundamental
constant, such as a determination of the fine-structure constant from the Oklo phenomenon [352–354],
is actually a cosmological-scale measurement along the time dimension. Astrophysical probes such as
21-cm radiation [355] or the cosmic microwave background [356], can be used to test the constancy of
the fine-structure constant α, or to constrain simultaneous variations of α and Newton’s gravitational
constant G [357]. A non-constant G would have serious implications both for Newtonian physics and
for General Relativity. This motivates ongoing efforts to devise new methods to measure this quantity,
and to push the limits of experimental accuracy in order to test the constancy of G [358–362].

13.2. Testing the Assumption of Symmetry

The assumption of symmetry can be tested by checking for any deviations from isotropy.
This requires statistical ensembles of data, so the best observables are the CMB, and, on a smaller scale,
large-scale structure [363–365].

13.3. Testing the Gravitational Interactions

The gravitational interactions have been tested many times at laboratory scales and all the way
up to Solar System scales. The challenge today is to test them at cosmological scales.

Tests of General Relativity may be placed in three broad categories: laboratory, astrophysical, and
cosmological. Experiments cannot span all length scales, and so they cannot test all theories. We are
forced to design experiments which can test alternative theories, or the effects of GR, at particular
length scales (Table 5).

Laboratory tests probe effects from sub-millimetre scales to a few hundred metres. Galileo’s
experiments on weights dropped from the Leaning Tower of Pisa [366] are one example of a
laboratory-scale test. The torsion balance experiments of Cavendish and Eötvös [367], and their
modern versions [368–371], are another.

Astrophysical tests probe gravity from Solar System scales all the way up to galactic cluster scales.
They include experiments such as laser ranging off the Moon (lunar laser ranging) and several of
the Earth’s artificial satellites [372–375], and proposals to extend laser ranging to other planets in
the Solar System (planetary laser ranging) [376–380], radar astrometry on near-Earth objects [381],
observations of the precession of the perihelion as well as higher-order effects for Mercury and
other planets [338,382,383], observations of spacecraft in the Solar System [337], actual or proposed
measurements of the acceleration of the Pioneer [384–386] and New Horizons probes [387–389],
observations of the orbits of compact objects such as neutron stars [390–392], and measurements of
galaxy rotation curves [393,394]. In the last decade, observations of extrasolar planetary systems have
been proposed and used in order to test GR [395–404]. All of these systems are characterised by their
spherical symmetry. Many can be approximated by a test object orbiting at a distance r around a
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central mass M. The gravitational field of the more massive central object is then probed by observing
the orbit of the test body.

Table 5. Bridging the length scales to test the cosmological model. Experimental tests of gravity and
dark sector couplings, at their typical length scales. Massive gravity (MG) screening mechanisms
would show up at short ranges, while smooth dark energy manifests itself at cosmological scales. We
give the experimental accuracy from current and future experiments planned over the next decade.
The comparison between growth and expansion history comes from combined BAO, supernova, weak
lensing, redshift distortion, cosmic microwave background (CMB) lensing, and cluster data. Lensing
effects and dynamical mass comparisons can be carried out over a range of scales: inside galaxies,
using strong lensing and stellar velocities, and on cosmological scales, using cross-correlations. This is
a route to testing screening effects in alternative theories. Laboratory and Solar System tests can also
probe dark sector couplings besides short-range effects, but many of the constraints obtained depend
on the cosmological model.

Test Length Scale Theories Probed Current Status (and Future)

Growth vs. expansion history 100 Mpc − 1 Gpc GR with smooth dark energy 10% accuracy (2%–4%)
Lensing vs. Dynamical mass 0.01 – 100 Mpc Test of GR 20% accuracy (5%)
Astrophysical tests 0.01 AU – 1 Mpc MG screening mechanisms ∼10% (Up to 10 times improvement)

Laboratory and Solar System tests 1 mm – 1 AU PPN parameters in MG Constraints are model dependent
(Up to a tenfold improvement)

For such systems, the deviation of the metric from the Minkowski form is characterised by the
magnitude of the Newtonian gravitational potential

ε =
GM
rc2 . (119)

The strongest gravitational fields accessible to an observer occur in the limit ε → O(1). In this
limit, the central object is a black hole and the test object is close to the event horizon.

We know that the Riemann curvature tensor is an essential quantity in General Relativity.
The approximate magnitude of this tensor is expressed by the Kretschmann scalar (the fully contracted
Ricci scalar) for the Schwarzchild metric:

ξ ∝
GM
r3c2 . (120)

Note that this expression is more complicated for rotating objects [405]. For the purposes of our
description, however, we may use this simple expression, which we call the curvature.

The third broad category is the cosmological tests. First, the measurements are made on a
statistical ensemble. The masses must be treated as power spectra. Second, the gravitational field
assigned to each wavenumber k is very weak. The description of the system often depends on the
cosmological model. At this scale, the description must take into account the background perturbations
and the expansion of the universe.

The position of the various systems on a potential-curvature parameter space is shown in Figure 5.
The potential accessible to observers is bounded by the line ε � 1. There is no limit to the maximum
curvature that can be observed except for the Planck limit, where r � 1.6 × 10−33 cm. This lies many
orders of magnitude above the boundaries of the figure. General Relativity is a complete theory, and
does not fail below the Planck scale. To test or even probe GR below the Planck scale is a different
matter, and a goal that has not yet been achieved. Many alternative theories of gravity that attempt to
explain cosmic acceleration do so through modifications to GR at the Planck scale, so it is important to
explore ways in which GR can be tested at these scales.
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Figure 5. The parameter space for quantifying the strength of a gravitational field. The horizontal axis
measures the potential. The vertical axis measures the spacetime curvature of the gravitational field at
a radius r away from a central object of mass M. Regions of this parameter space with potential greater
than 1 represent distances from a gravitating object that are smaller than the event horizon radius and
are therefore inaccessible to observers. The red vertical line on the right-hand side of the plot marks
the horizon limit. This is a schematic plot, and in no way do we show an exhaustive list of objects
and systems that have been used or could be used to test GR. The region of Solar System-scale tests is
broadly bounded by the Moon, Gravity probe B [406,407], Mercury, and the Pioneer and New Horizons
spacecraft. We have included the Voyager spacecraft in the diagram, even though, unlike the Pioneer
probe, it was never suitable for tests of GR. The famous Hulse-Taylor binary pulsar [408], although a
neutron star binary, is also roughly in the region of Solar System tests. Black holes and neutron stars
are in the strong field regime, and the former are at at the limit of the event horizon boundary. Adapted
from [409].

What is the minimum curvature? The unperturbed FLRW metric is isotropic, and the unperturbed
Kretschmann scalar is a function of time only. The curvature for the homogeneous universe drops as the
universe expands. The present universe has a curvature which is just above the boundary of the region
marked ‘Dark energy’, since dark energy is not yet completely dominant over pressureless matter.
However, the curvature will approach this limit asymptotically. In this paradigm, this represents a
fundamental minimum curvature scale. It is shown in the figure by the region labelled “Dark energy”.

Galaxies are astrophysical probes of GR. Their innermost regions can be modelled as test particles
orbiting a central supermassive black hole. Galactic rotation curves, which can only be explained by
introducing Dark Matter, describe galaxy velocities up to the outermost regions. Systems below a
constant acceleration scale of approximately 1.2 × 10−10 ms−2 cannot be modelled without adding
a contribution to the gravitational filed in the form of Dark Matter. This constant acceleration is the
diagonal boundary of the region labelled “Dark matter” in the figure.
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Note that the regions of parameter space occupied by Dark Matter and dark energy overlap—there
is a degeneracy between these two unknown components of the cosmological model. However, it is
not impossible to distinguish between their effects, since their properties are different. In particular,
Dark Matter forms clumps just like baryonic matter, while dark energy does not.

GR has not been tested in the region between curvatures of ∼10−40 and ∼10−50. This corresponds
to the region between Solar System scales and cosmological scales probed by galaxy surveys and the
CMB. The challenge lies in finding systems which span these scales. In theory they do exist, in the form
of galaxies, clusters and superclusters. Their rotation curves transition from Schwarzchild orbits in
their innermost regions, to outer regions dominated by Dark Matter. However, our observations are
hampered by the fact that we are limited by the resolution of our telescopes, so we can only observe
the outer regions. In addition, the untested region is situated between a region where GR is extremely
well-constrained (by Solar System tests), and a region where Dark Matter and dark energy have
to be invoked, and where we must take the cosmological model into account, because the effect of
large-scale structure on background dynamics becomes non-negligible. It has been suggested that this
backreaction effect may be at the origin of the observed cosmic acceleration.

Cosmological tests of General Relativity may be broadly classified as follows:

• Tests of the consistency between the expansion history and the growth of structure. A discrepancy
in the equation of state parameter of dark energy w, inferred from the two approaches can indicate
a breakdown of the GR-based smooth dark energy cosmological paradigm.

• Detailed measurements of the linear growth factor across different scales and redshifts.
• Comparison of the cosmological mass distribution inferred from different probes, especially

redshift space distortions and lensing.

14. Possible Modifications of GR and Cosmological Implications

It is useful to identify the regimes in which modifications to GR may appear. This enables us to
get a clearer picture of the capabilities and limitations of current and future experiments to tests these
alternative theories.

14.1. Weak and Strong-Field Regimes

In order to test gravity in the strong-field regime, we need to observe compact objects with a very
high density [410–412]. Black holes are good candidates. Their compactness and mass takes GM/rc2

close to the maximum limit of unity. However, they have a serious drawback. Because of the “no hair
theorem”, they are not characterised by any coupling to a scalar field and therefore cannot be used to
test for this effect, and to discriminate between scalar-tensor theories and GR.

Neutron stars, on the other hand, are still very compact bodies, but they can be strongly
coupled to a hypothetical scalar field. This property has been used to test relativistic parameters by
observing the Hulse-Taylor binary pulsar PSR B1913+16 [413], and the neutron star–white dwarf binary
PSR J1141-6545 [414]. Gravitational time delay has been tested using other binary pulsars [415–419], and
pulsars have also been suggested as ideal probes of the Lense-Thirring effect [420,421]. General
Relativity passes these tests with flying colours.

14.2. Small and Large Distances

Distance-dependent modifications can be induced by a massive degree of freedom, which will
cause a Yukawa-like coupling. General Relativity is very well constrained on the size of the Solar
System, and there are several tests constraining Yukawa interactions at Solar System scales [422–424],
but there are no constraints on scales larger than 10 h Mpc−1, at least without assuming some
cosmological model. Some theories put forward to explain cosmic acceleration, such as Chameleon
mechanisms [425], are essentially modifications of GR at cosmological distance scales.
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14.3. Low and High Accelerations

Galaxy rotation curves and galaxy dynamics motivated the Dark Matter paradigm. The Tully-Fischer
law [426] tells us that Dark Matter cannot be explained by a modification of General Relativity at a
fixed distance. MOND instead explains it by modifying gravity at low accelerations below the typical
acceleration a0∼10−8 cm · s−2.

14.4. Low and High Curvature

Curvature R is important in distinguishing possible extensions of the Einstein-Hilbert action.
A curvature-dependent may become important even if the potential Φ remains small. In the Solar
System, the curvature R� ∼ 4 × 10−28 cm−2. The curvature of the homogeneous universe according to
the Friedmann equation is

RFLRW(z) = 3H2
0

(
Ωm(1 + z)3 + 4ΩΛ

)
, (121)

from which we can see that the curvature of the universe evolved with time, from ∼10−33 cm−2

at the time of nucleosynthesis, to ∼10−56 cm−2 at z = 1. The curvature scale associated with the
cosmological constant is RΛ = (1/6)Λ, so the phenomenology of the cosmological constant occurs in
low curvature regime

R < RΛ ∼ 1.2 × 10−30R� . (122)

This is of particular interest to paradigms which seek to explain cosmic acceleration through the
backreaction effect. For cosmological-scale perturbations, we are always in the weak field regime.
However, the curvature perturbation associated with large-scale structure becomes of the order of the
background curvature at redshift z∼0, even if we are still in the weak field limit. This means that the
effect of large-scale structure on the background dynamics may be non-negligible [427].

In summary, in order to explain the dark energy or Dark Matter problem by modifying General
Relativity, the modifications have to be either at large scales (typically Hubble scales), low accelerations
(typically below a0, or small curvatures (typically RΛ). The regions corresponding to dark energy and
Dark Matter curvature and potentials are shown in Figure 5.

14.5. Cosmological Probes

The idea of testing General Relativity using large-scale structure was first proposed in 2001 [428].
This relies on the ingenious idea that if gravity is well-described by General Relativity, and the universe
well-described by ΛCDM, then on sub-Hubble scales, and considering only scalar perturbations,
the spacetime metric can be written as

ds2 = −(1 + 2Φ)dt2 + (1 − 2Ψ)a2(t)γij dxi dxj (123)

where Φ and Ψ are the two potentials, and γij is the metric of the spatial section [429–431]. The Einstein
equations reduce to the Poisson equation

�Ψ = 4πGρmattera2δmatter (124)

and
Ψ − Φ = 0 , (125)

since the matter anisotropic stress is negligible. The spectrum of the two gravitational potentials has to
be proportional to the matter power spectrum. The scale dependence of the gravitational potential PΦ

and of the matter distribution P(k) are related by:

k4PΦ(k, a) =
9
4

ΩmH2a−2P(k, a) . (126)
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If the Poisson equation is modified by some modification of gravity, the matter power
spectrum changes shape according to the cosmological model assumed, so the above relation is not
model-independent. However, the fact that the two spectra differ is independent of the cosmological
model. It therefore provides a test of the underlying gravitational theory. Such a test can be carried out
by comparing weak lensing data to galaxy surveys.

Various similar approaches have been proposed [432]. This approach allows us to test
various classes of alternative theories by means of large-scale structure. Some of these theories
include Dvali-Gabadadze-Porrati models [134,433,434], quintessence [435–439], and scalar-tensor
theories [440–443]. The difficulty lies in finding a parameterisation of the perturbation equations which
is consistent with the one used for the background evolution, since both assume the same theory for
gravitational interactions.

The cosmic microwave background is another potential testing ground for General Relativity.
The amplitude and position of the peaks of the cosmic microwave background allows us to probe
the potential wells present during the recombination era by extracting information on the primordial
power spectrum created during inflation. Planck data, alone or in combination with weak lensing has
been used to test GR [444,445] and modified gravity [446–448].

Despite the fact that GR is extremely well tested on laboratory and Solar System scales, cosmology
provides plenty of scope for alternatives to General Relativity. Let us consider cosmic acceleration,
which is now a confirmed observation. It requires an explanation. The cosmological constant paradigm
rests on three assumptions: that the observations are correct, that GR is the correct theory of gravity,
and that our FLRW model of the universe is correct.

More than two decades of precision measurements have removed any doubt that the observed
acceleration may be due to incorrect modelling of experimental errors. So in order to do away with the
cosmological constant, we must seek possible answers in the other two assumptions.

Backreaction is an “alternative” to the alternative theories, or to the Dark Matter paradigm. It is
firmly within the General Relativity paradigm, and seeks to explain cosmic acceleration by modelling
the universe and the structures within it, and therefore its expansion history, in more detail than is the
case with the FLRW model. It keeps the first and last assumption, but does away with the assumption
of an FLRW universe. However, is it enough to explain the observed acceleration?

If GR is assumed to be the correct theory together with the other two assumptions, cosmological
measurements are usually interpreted as providing evidence for Dark Matter and a nonzero
cosmological constant or dark energy. This poses conceptual problems. Why is the observed value
of the cosmological constant so small in Planck units? It also poses a coincidence problem. Why is
the energy density of the cosmological constant so close to the present matter density? No dynamical
solution of the cosmological constant problem is possible within GR—the cosmological constant is not
the attractor of some dynamical function.

This opens the field to possible modifications of GR. Should GR be modified at low and high
energies? This is a serious challenge for theorists. Einstein’s theory is the unique interacting theory of
a Lorentz-invariant massless spin-2 particle. New physics in the gravitational sector must introduce
additional degrees of freedom. These additional degrees of freedom must modify the theory at low
or high energies, or both, while being consistent with GR in the intermediate-energy regime, that is,
at length scales 1μ � � � 1011 m, where the theory is extremely well tested.

Figure 6 illustrates some of the difficulties in testing the completeness of General Relativity.
There is an obvious “scale desert” between Solar System scales, and cosmological scales. At the other
end of the scale, there is a gap which is often overlooked: between sub-millimetres scales, which is the
current limit where GR has been tested, and the Planck scale. A modification of gravity at very small
scales would be apparent in this regime. Even ignoring quantum effects, it is a serious challenge to test
gravity in a regime in which vastly stronger forces come into play.
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Figure 6. The parameter space for experiments. The horizontal axis is the typical length scale of
the object in question. The vertical axis measures the gravitational potential. The red vertical line
on the left-hand side marks the Planck scale. The vertical line on right-hand side of the plot marks
radius of the observable universe, or Hubble radius. Experimental verification of GR is impossible
beyond these limits. The radius of the surface of last scattering is only slightly smaller than our Hubble
radius. Assuming GR implies assumptions far beyond the range that has been experimentally tests.
For instance, if we define the Planck mass as mPlanck =

√
h̄c/G, we are assuming that the gravitational

constant remains constant down to the Planck length. This extrapolates the inverse square law over
a scale of more than 1030 from what ha s been tested. The green region is where Solar System tests
have been carried out. Beyond ∼100 Mpc, assumption of a homogeneous and isotropic metric becomes
accurate enough to use in physical models. The blue region shows length scales at which the FLRW
metric is valid. By way of comparison to this parameter space, the nonlinear regime for perturbation
theory, which gives use the matter power spectrum, covers ∼1022 to ∼1023 m, the linear, quasi-static
regime covers ∼1023 to ∼1025 m, and beyond that is the superhorizon regime. These length scales
ranging from 1 Mpc to above 1 Gpc fit on a tiny part of the horizontal axis above, shown by the thick
blue horizontal line.

15. The Nature of Dark Energy and the Implications for General Relativity

The Concordance Model of cosmology assumes that General Relativity is correct, an assumption
which is justified by the tests which GR has undergone. Within this model, ∼95% of the content
of the universe is unaccounted for. Dark matter, which makes up around 25% of the mass-energy
of the universe is a matter-like component which is cold (sub-relativistic) and weakly interacting.
The discrepancy between the observed acceleration of the expansion of the universe and the predictions
of GR leads to the conclusion that there must be a cosmological component with a negative equation
of state parameter making up around 70% of the mass-energy content of the universe: dark energy.

But the dark energy paradigm does not fix the nature of this component. There exist many theories
which attempt to explain its nature. In particular, one can ask whether the basic assumptions of the
Concordance Model—homogeneity and isotropy—are correct.
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If the universe is not homogeneous and isotropic, the FLRW equations are no longer valid.
Over the last decade, one line of research has attempted to explain the accelerated expansion by
exploring the implications of an inhomogeneous universe on a General Relativistic cosmology. This
effect is the backreaction. This approach does away with dark energy.

There are various ongoing investigations on the effect of the backreaction due to an
inhomogeneous universe [269,427,449–455], with different lines of research offering different
interpretations of the Buchert equations, where the Friedmann equations are supplemented by an
additional backreaction term [456]. Whether one can explain all of the observed expansion history of
the universe as a consequence of the growth of inhomogeneities without invoking some additional
fluid component is the subject of ongoing debate [452,457]. The backreaction, even if it turns out to be
incapable of replacing the dark energy paradigm, is still a subject worth investigating, if anything as a
correction to the homogeneity assumption, which obviously breaks down at small scales.

If we assume that the Copernican Principle holds, then the universe is well described by a
Friedmann-Robertson-Walker spacetime. The dynamics of the background expansion are determined
by the content of the universe: the list of fluids (perfect fluids, due to the assumption of the Copernican
Principle), with their equations of state. Within the dark energy paradigm, we can distinguish two
main strategies for formulating hypotheses:

(1) there is some new kind of component in the universe, or
(2) there is some new property of gravity.

Let us first recall that General Relativity rests on two assumptions: the gravitational interaction is
described by a massless spin-2 field, and matter is minimally coupled to the metric, which implies the
weak equivalence principle. The Einstein-Hilbert action described by Equation (6) implies that

Sgravity =
c3

16πG

∫
R
√−g d4x + Smatter[matter; gμν] , (127)

where R is the Ricci scalar of the metric tensor gμν, and Smatter[matter; gμν] is the action of the matter
fields. If we only consider field theories, this gives us a useful classification scheme for the different
theories that seek to explain the nature of dark energy.

The first strategy listed above assumes that gravitation is described by General Relativity, and
introduces new forms of gravitating components beyond the Standard Model of particle physics.
This adds a new term SDE[ψ; gμν] to the action in Equation (127) while keeping the Einstein-Hilbert
action of all the standard and Dark Matter unchanged.

The second strategy modifies gravity, and therefore extends the action, either by modifying the
Einstein-Hilbert action of the coupling of matter. These theories also involve new forms of matter.

A cosmological constant Λ is the simplest modification which can be made to gravity, and it is
equivalent to dark energy with a constant equation of state. To explain the observed acceleration,
the new form of matter must have an equation of state w < −1/3. Dark energy can also be attributed
to the energy of the vacuum, although the energy predicted by the Standard Model of particle physics
is either 0 (using super-symmetry), or 10120 orders of magnitude larger than the observed cosmological
value [458]. There are ongoing attempts to solve this ‘fine-tuning problem’ using string theory [459–461],
causal sets [462,463], or by using anthropic arguments [464,465] .

The other approach is to attribute dark energy to a scalar field whose potential has evolved in
some way that it currently exerts a negative pressure. Such fields, in theories within the framework
of GR, are termed Quintessence. Their distinguishing feature is that they allow the equation of state
of dark energy to evolve. Alternatives to Quintessence within the same approach include K-essence,
Phantom Fields, or the Chaplygin Gas [466–469].

Another strategy is to depart from General Relativity and modify the laws of gravity and posit
dark energy as the manifestation of an effect arising from extra dimensions, or higher-order corrections.
Within this category, the more successful theories have been of two types. Dvali-Gabadadze-Porrati
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(DGP) dark energy considers the universe as a 4D brane within a 5D Minkowskian bulk [134].
The weakness of gravity relative to the other forces is explained by gravity “leaking” into the higher
dimensions as it acts through the bulk [470], whereas the other forces act within the brane. The other
class of theories is f (R) gravity, where the Ricci scalar R in the Lagrangian is replaced by some function
f (R). Such theories correspond to scalar-tensor gravity with vanishing Brans-Dicke parameter [471].

We can therefore identify four main classes of theories, as shown in Figure 7. Classes 1 and 2
assume GR and introduce new forms of gravitating matter, the difference being that in class 2, the
distance-duality relationship may be violated due to mechanisms such as photon decay. Classes 3 and
4 modify gravity in some way. In class 3, a new field introduces a long-range force so that gravity
is no longer described by a massless spin-2 graviton. In this class, there may be a variation of the
fundamental constants. Class 4 includes theories in which there may exist an infinite number of
new degrees of freedom, such as brane models or multidimensional models. These models predict
a violation of the Poisson equation on large scales. The constraints which may be placed on these
theories, and the experiments to test them, correspond to the regimes in which gravity is modified, as
summarised in Section 14.

An exhaustive list of dark energy or cosmic acceleration theories is beyond the scope of this
review. We simply note that most of them give different predictions for the equation of state of dark
energy, its evolution, or the expansion history of the universe . To distinguish between these proposals
we need to track the evolution of these parameters throughout the history of the universe.

Gravity: Assume GR Gravity: Modify GR

New fields dominate 
the matter content of 
the Universe at low 
redshift

SDE[DE; gμν ]

SField[Field; gμν ] → SNewField[NewField; gμν ]

SMatter[Matter; gμν ] → SMatter[Matteri;A
2
i (φ)gμν ]

Extra dimensions

e.g. quintessence e.g. scalar-tensor theories

e.g. photon-axion mixing,Chameleon models e.g. brane-induced gravity, multigravity

1

2

3

4

Figure 7. The four main classes of dark energy theories, within the two broad strategies, classified
as modifications of the General Relativistic action. Classes 1 and 2 assume the gravitational metric
coupling of GR, whereas classes 3 and 4 modify this metric coupling, and are therefore modifications
of gravity. In the upper line of classes (1 and 3), new fields dominate the matter content of the recent
universe. Adapted from [431].

16. The Current Status of General Relativity

General Relativity has been subjected to a multitude of tests in its 100 years of existence. As of 2016,
the main predictions of GR have been tested and confirmed. Whereas it is sufficient for most purposes at
ordinary accelerations and energy scales to use Newtonian calculations, General Relativity has found its
way into daily life, in the Global Positioning System and geodesy. The postulates of General Relativity
have been confirmed with ever-increasing accuracy. Deviations from the Einstein Equivalence Principle
are now constrained to below ∼10−14, deviations from Local Lorentz Invariance down to ∼10−20, and
deviations from Local Position Invariance down to ∼10−6.

General Relativity has been probed down to scales of ∼ 10−6 metres in laboratories, and up to
1000 AU in space-based experiments and observations. Astrophysical and cosmological observations
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have probed GR at scales from 1 Mpc up to gigaparsec scales. In the Solar System, the dynamics of GR
have been tested with radar and laser-ranging. We can track the ephemerides of the planets in the Solar
System, right up to the minor outlying planets (such as Sedna, with an aphelion just short of 1000 AU).
The farthest objects whose trajectory has been followed from the moment they were “thrown” are
now outside the Solar System. They are the Pioneer 10 and 11 spacecraft, and are now around 70 AU
distant, and Voyager 1, which is at a distance of 135 AU, making it the only object to have reached
interstellar space. Communication with the Pioneer spacecraft ceased in 2003. The Pioneer spacecraft
exhibited an anomalous constant acceleration towards the Sun which could not be explained using GR.
This prompted a reexamination of all the recorded data. It is now generally accepted that the anomaly
is caused by thermal radiation, and that once this is accounted for, there is no remaining anomalous
acceleration [472].

Gravitational waves, among the last untested predictions of GR, were first detected in late 2015,
ushering a whole new era of observational astrophysics, in which the strong field regime can be probed
and where the predictions of GR can be tested.

The evidence for General Relativity is extremely strong. The theory has passed all tests in the
weak-field limit at Solar System scales, including tests of the assumptions (the Equivalence Principle)
and the predictions specific to GR (frame-dragging, gravitational time dilation), and in the strong field
with the observation of a binary black hole merger and the resulting gravitational waves. We give a
summary of the experimental milestones in Table 6. However, there are still issues that allow room
for speculation.

The first is the question of the completeness of GR. Is it valid at all scales? There is a scale gap in
our tests of GR between laboratory, Solar System and galactic scales, and cosmological ones. This gives
rise to a multitude of domains of validity for different alternative theories, whereas ideally we should
seek a universal theory that can explain phenomena at all scales.

The second issue is the accuracy of our approximations. General Relativity may be conceptually
simple in that it is based on a minimum number of postulates. But the resulting field equations,
when applied to real physical systems, can be very hard to solve. We get around this by making
approximations such as spherical symmetry, or homogeneous and isotropic perfect fluids, which allows
us to obtain analytical solutions. However, the accuracy of these approximations may not always
be good enough. This is evident in the case of cosmological perturbations and large-scale structure.
At which scales is it valid to use a Friedmann-Lemaître-Robertson-Walker metric? Can the backreaction
explain some or all of the observed cosmic acceleration? For smaller systems such as aspherical
collapsing bodies, we still need accurate models in order to match theory and observation. Such
questions have spurred the development of numerical methods in General Relativity. Physicists now
have the necessary computing power to go far beyond simple first-order approximations.

The remaining open questions are of a cosmological nature: Dark Matter and dark energy,
and inflation. Dark matter and dark energy account for around 25% and 70% of the mass-energy
content of the universe, respectively. They are not a problem for the theory of gravity itself, but it
does mean that we do not know the nature of 95% of the content of the universe. Inflation solves
a number of cosmological problems, but whatever theory we choose to explain inflation, we still need
to introduce new physics beyond GR.
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17. Future Developments

The current Concordance Model of cosmology was built in successive (and sometimes concurrent)
steps. General Relativity applied to a spacetime under the Copernican Principle, filled with pressureless
matter, produced the Einstein-de Sitter model. Motivated by the observed Hubble expansion, it
resulted in the Big Bang model. Clues from element abundances, baryon assymmetry, and knowledge
of nucleosynthesis from the Standard Model of particle physics meant that the universe had to have a
thermal history, which resulted in the Hot Big Bang Model. When evidence for missing mass became
incontrovertible, cold Dark Matter had to be added to the inventory of cosmic components. This
model worked well, but not well enough. It could not explain the observed homogeneity of the
universe across regions which were causally disconnected, nor its flatness. So Inflation was introduced.
Observations of an accelerated cosmic expansion motivated a search for explanations within the then
current paradigm, which resulted in various hypotheses: a curved geometry, supermassive neutrinos,
or perhaps a particular cosmological topology. In the end, the paradigm had to be shifted yet again
with the introduction of dark energy.

The Concordance Model can explain the observations with just six parameters: the physical
baryon density parameter Ωbh2, where h is the Hubble parameter, the physical Dark Matter density
parameter Ωch2, the age of the universe t0, the scalar spectral index ns, the curvature fluctuation
amplitude Δ2

R, and the reionisation optical depth τ. That such a degree of fit is offered by such a simple
model is remarkable.

The success of the Concordance Model has been its ability to include physical effects at
extremely different scales, from primordial nucleosynthesis to large-scale structure evolution,
in one coherent theory. However, this does not allow us to state that the ΛCDM model is correct.
It merely implies that deviations from ΛCDM are too small compared to the current observational
uncertainties to be inferred from cosmological data alone. This leaves room for some very fundamental
open questions, which we have described in this review.

The science of cosmology finds itself at a critical point where it has to make sense of the vast
quantity of data that has become available. Different probes have allowed us to piece together
interlocking information which, so far, confirms the Concordance Model. The cosmic microwave
background has provided conclusive evidence of a flat geometry, super-horizon features, the correct
harmonic peaks, adiabatic fluctuations, Gaussian random fields, and most recently, a departure from
scale invariance. We have not yet observed primordial inflationary gravitational waves. Large-scale
structure observations, which probe the recent universe, provide firm evidence in favour of the
Concordance Model’s explanation of the evolution of density perturbations and the growth of
structure, and provide a bridge between the effects of long-range gravitational interactions and
shorter-range forces.

The recent detection of gravitational waves in two events (possibly three), one hundred years
after they were predicted by Einstein, directly validates General Relativity in several ways. It shows
that GR is correct in the strong-field regime, that black holes really exist, and black hole binaries too,
and it proves that gravitational waves are a real physical phenomenon, and not just a mathematical
artefact of GR.

We are fast approaching the point where cosmological observations will be limited only by cosmic
variance, i.e., no more data will be available from our Hubble patch [508]. What does that imply for
the development of new theories? How do we test the predictivity of these theories without new data?

We will have to look for new effects in old data, and for new correlations in future data. Large-scale
structure is extremely useful in testing General Relativity and cosmological models, but the future
may bring other observational windows. In particular, the next fifty to one hundred years may see
the development of a gravitational wave astronomy. This is likely to be an even more significant
development than even CMB astronomy. The observation of primordial gravitational waves would
provide vital information on the inflationary epoch [509,510]. B-mode polarisation of the CMB offers
an indirect pathway to the observation of this gravitational wave background [511,512]. The second
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major development could be the observation of a cosmic neutrino background [513], which is the
result of neutrino decoupling in the lepton era. This would push the observations along our past light
cone even further back in redshift, providing information on the universe before recombination and
the CMB.

17.1. Plausible Conclusions from Incomplete Information

The statistical questions facing cosmologists pose some particular problems. We observe a finite
region of our universe, which is itself a single realisation of the cosmological theory. We can only
observe whatever is on or inside our past light cone, as shown in Figure 1. Not only are we limited by
cosmic variance, we also have just a single data point for the cosmological model.

There exist several alternatives to GR and to ΛCDM that have not been ruled out by experiment.
Constructing viable physical models is not just a question of fitting the model to the data. It is a question
of model selection, which requires robust statistical techniques that allow us to make sensible decisions
using our incomplete information. Bayesian inference provides a quantitative framework for plausible
conclusions [514,515]. We can identify three levels of Bayesian inference.

(1) Parameter inference (estimation). We assume that a model M is true, and we select a prior for the
parameters θ, or the Prob(θ|M).

(2) Model comparison. There are several possible models Mi. We find the relative plausibility of each
in the light of the data D, that is we calculate the ratio Prob(D|Mi)/Prob(D|M0).

(3) Model averaging. There is no clear evidence for a best model. We find the inference on the
parameters which accounts for the model uncertainty.

At the first level of Bayesian inference, we can estimate the allowed parameter values of the theory.
If we assume General Relativity as our theory, we still need to fix the values of the various constants.
This is the rationale behind ongoing efforts to measure quantities like Newton’s constant G ever more
accurately, despite the fact that the parameter has been around for three centuries. What are the energy
densities of the various components of a ΛCDM universe? If we include a dark energy equation of
state parameter w, what value does it take?

Next, we can ask which parameters we should include in the theory. Should we include a
cosmological constant in General Relativity? Or should we include dynamical dark energy parameter?
Although current data are consistent with the six-parameter ΛCDM model based on GR, there are
more than twenty candidate parameters which might be required by future data (see [516]). We cannot
simply include all possible parameters to fit the data, since each one will give rise to degeneracies
that weaken constraints on other parameters, including the ΛCDM parameter set (e.g., [517–519]).
The landscape of alternative cosmological models is even larger if we relax our assumptions on the
theory of gravity [520].

The goal in data analysis is usually to decide which parameters need to be included in order
to explain the data. For physicists, those extra parameters must be physically motivated. That is,
we need to know the physical effects to which our data are sensitive, so that we can relate these effects
to physics. At the current state of knowledge, we have to acknowledge the possibility of more than
one model. We therefore require a consistent method to discard or include parameters. This is the
second level of Bayesian inference—model selection.

Bayesian model selection penalises models which introduce wasted parameter space. We can
always construct a theory that fits the data perfectly, even better than GR, but we would need to
introduce extra free parameters (e.g., extra fields or couplings between matter and the metric). This is
the mathematical equivalent of Occam’s razor. We seek a balance between goodness of fit (the degree
of complexity) and predictive power (consistency with prior knowledge). General Relativity fits all the
data with the minimum number of parameters. In cosmology, ΛCDM is the best model because it only
involves one new parameter and no new fields.

The problem of model selection in relation to GR is as old as the theory itself. But only recently
have cosmologists have started to use Bayesian methods for cosmological model selection (e.g.,
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[521–524]), when the astrophysical data began to have the necessary statistical power to enable model
testing. Bayesian techniques are starting to be applied to General Relativity itself [525]. With the next
generation of astrophysical probes in the pipeline, model selection is likely to grow in importance [514].

Bayesian model selection cannot be completely free of assumptions. In cosmology, there is some
model structure which depends on a number of unverifiable hypotheses about the nature of the
universe. The Copernican Principle is one such hypothesis [9,526,527].

The third level of Bayesian inference is model averaging. In the current scenario, there is firm
evidence for General Relativity as the best model for gravitational interactions. However, it is still
useful to quantify our degree of certainty (or doubt), for one simple reason: we do not have the final
list of alternative theories. In other words, when we choose GR against any number of alternative
theories, we have no knowledge about other alternatives outside that list (such as theories yet to be
developed, for example). At best, we know which alternatives are ruled out by the data. This level of
Bayesian inference is the application of a principle that has been called ‘Cromwell’s Rule’ [528]: even if
all the data show our theory to be correct, we should allow a non-zero probability, even if tiny, that the
theory is false.

The utility of alternative theories becomes evident when we apply Bayesian model selection.
For science to advance by falsification, it is not enough to claim that the present theory is false. We need
to know which alternative theory is favoured instead. Newtonian gravity would have likely have
survived the 1919 eclipse if General Relativity had not been formulated.

17.2. Experimental Progress

There has been rapid progress in constraining cosmological parameters and models over
the last two decades, with a multitude of experiments observing the CMB, large-scale structure,
galaxies and supernovae. We will just provide a summary of the most recent data sets.

The first are anisotropies in the CMB, where the main statistic is the angular power spectrum
of fluctuations C�, and polarisation of the CMB. The most recent and current are: WMAP
(http://map.gsfc.nasa.gov), Planck (http://www.cosmos.esa.int/web/planck), Atacama Cosmology
Telescope (ACT) (http://act.princeton.edu), South Pole Telescope (SPT) (https://pole.uchicago.
edu), Atacama Cosmology Telescope polarisation-sensitive receiver (ACTPol) [529], SPTPol, Spider
(http://spider.princeton.edu), Polarbear (http://bolo.berkeley.edu/polarbear), Background Imaging
of Cosmic Extragalactic Polarization (BICEP2) (http://bicepkeck.org,https://www.cfa.harvard.edu/
CMB/bicep2), Keck Array (http://bicepkeck.org,https://www.cfa.harvard.edu/CMB/keckarray).

The second source of data are surveys cataloguing the angular positions and redshifts of
individual galaxies, leading to the power spectrum of fluctuations P(k, z), or the two-point correlation
function ξ(r). The recent and current experiments are: Baryon Oscillation Spectroscopic Survey
(BOSS) using Sloan Digital Sky Survey (SDSS) data (http://www.sdss3.org/surveys/boss.php), Dark
Energy Survey (DES) (https://www.darkenergysurvey.org), Weave (http://www.ing.iac.es/weave/
science.html), Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) (http://www.hetdex.org),
Extended Baryon Oscillation Spectroscopic Survey (eBOSS) (https://www.sdss3.org/future/eboss.
php), Mid-Scale Dark Energy Spectroscopic Instrument (MS-DESI) (https://www.skatelescope.org),
Canadian Hydrogen Intensity Mapping Experiment (CHIME) (http://chime.phas.ubc.ca), Baobab,
MeerKAT (http://www.ska.ac.za/science-engineering/meerkat), and ASKAP (http://www.atnf.csiro.
au/projects/askap/index.html).

The third source of data are weak lensing, which use the fact that images of distant galaxies are
distorted and correlated by intervening gravitational potential wells to produce statistics such as the
convergence power spectrum Cκ

� [530,531]. Some current experiments are: Dark Energy Survey (DES)
(https://www.darkenergysurvey.org), Red Cluster Sequence Lensing Survey (RCSLens) (http://www.
rcslens.org), Canada-France Hawaii Telescope Lensing Survey (CFHTLenS) (http://www.cfhtlens.org),
New Instrument of Kids Arrays (NIKA2) (http://ipag.osug.fr/nika2), and Hyper Suprime-Cam (HSC)
(http://hsc.mtk.nao.ac.jp/ssp).
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The final source of data are catalogues of peculiar velocities. By measuring redshifts and
radial distances of galaxies and clusters it is possible to reconstruct a radially projected map of
large-scale motions. Progress in this field will come from all three data sets above.

The main science goal of the next generation of cosmological probes is to test the Concordance
Model of cosmology. Some major experiments will be operational in the next decade.

Planck, decommissioned in 2013, marked a major milestone in CMB experiments. Its proposed
successor is the ground-based programme CMB-S4 [532], which should reach sensitivities below
10−3μ K whose main aim is to achieve higher resolutions, probe larger scales, and measure new
observables such as polarisation.

There are various future experiments to map the mass-energy content of the universe
(including baryons and Dark Matter), either in the planning phase, or close to completion. The Large
Synoptic Space Telescope (LSST) (https://www.lsst.org), which should achieve first light in 2019,
is a ground-based telescope which will map the entire sky.

The Euclid space telescope (http://www.euclid-ec.org), due for launch in 2020, will map galaxies
and large-scale structure over the whole sky at visible and near-infrared wavelengths, providing
a catalogue of 12 billion sources at 50 million . Euclid will probe the recent universe, when galaxies
have formed and dark energy starts to dominate. Its main scientific objective is to understand the origin
of the accelerated expansion of the universe by probing the nature of dark energy using weak-lensing
observables (which include cosmic shear, higher-order distortions, and cosmic magnification), and
galaxy-clustering observations [225].

The Square Kilometre Array (SKA) (https://www.skatelescope.org), which will begin operations
in 2020, is a multi-wavelength radio telescope, built across multiple sites to achieve the largest collecting
area ever [70,533]. It should provide the highest resolution images of the radio sky, thus providing
maps of large-scale structure, and observing pulsars which should provide direct tests of General
Relativity. The SKA will observe the epoch between the emission of the CMB and the formation of
the first galaxies. Neutral hydrogen surveys (or 21 cm intensity mapping) [534], offer yet another
promising probe, as do galaxy redshift surveys [535].

Joint observables will be key in the next generation of experiments. These include the Sachs-Wolfe
effect, and the Sunyaev-Zel’dovich effect [536]. We will also need to extract more observables from the
CMB. We need information on in order to constrain inflationary models.

As experiments probe larger scales at better resolutions (low � and high �), the data analysis
and the cosmological tests (dark energy, Dark Matter, the properties of cosmic neutrinos) will require
accurate calculations on the growth of large-scale structure, which can only be achieved using N-body
simulations [537–544].

At the other end of the length scale, there is particle physics. The Very Large Hadron Collider,
the successor to the Large Hadron Collider (https://home.cern/topics/large-hadron-collider)
(which can achieve energies around 14 TeV), is still in its conceptual phase. It could, if built,
probe energies around 100 TeV, allowing it to test physics beyond the Standard Model, possibly
including Supersymmetry and Grand Unified Theories, and thus provide clues on the nature of Dark
Matter and dark energy (see, e.g., [545]).

Tremendous progress is also being made in Milky Way astrophysics. With the launch on 2013 of
the Gaia mission (http://www.cosmos.esa.int/web/gaia), we will soon have improved data on Solar
System ephemerides, and on the orbits and tidal streams in the Milky Way. This will allow precise
tests of GR at Galactic scales. In particular, tidal streams provide an opportunity to probe GR at late
cosmological times and to close the gap between astronomical and cosmological scales.

Now that gravitational waves have been detected, gravitational wave physics is set to become
an established branch of astrophysics. The Laser Interferometer Gravitational-Wave Observatory
(LIGO) (https://www.ligo.caltech.edu), Advanced LIGO (aLigo) (https://www.advancedligo.mit.edu)
and Virgo (http://www.virgo-gw.eu) will subject GR to a battery of test in the strong regime.
Also targeting the regime of strong curvatures and potentials, the planned Event Horizon Telescope
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(http://www.eventhorizontelescope.org) is a network of millimetre and sub-millimetres telescopes
being used for very-long baseline interferometry to directly image supermassive black holes in
galactic centres.

17.3. Theoretical and Computational Progress

On the theoretical front, there are four main lines of development in theories of gravity. They are
all motivated by current open questions in physics. The ongoing attempt to find a Grand Unified
Theory continues to motivate the development of string theory [546] as a framework for gravity.
Aside from the theoretical difficulties of a mathematically complex theory, the challenge for string
theory is to produce physical predictions which can be experimentally tested. The second approach
is brane theories or supergravity, in which spacetime has more than four dimensions. The resulting
field theory combines Supersymmetry (from particle physics) and General Relativity [547]. The third
approach is quantum gravity [548], in which spacetime, as a dynamical field, is a quantum object.
This implies a violation of Lorentz Invariance near the Planck scale, which in turn means that some
particle decays forbidden by Special Relativity are allowed, and possibly charge-parity-time violations
too. This motivates the search for signatures of quantum gravity in particle physics experiments.

The final approach, which is closer to the theoretical framework of the Concordance Model of
cosmology, is a phenomenological use of General Relativity. This includes the various alternative
theories that seek to explain cosmic acceleration and the missing mass, and also the various theories
which provide dark energy and Dark Matter candidates.

The early alternatives to General Relativity were motivated by theoretical considerations.
The current alternatives are mainly motivated by the open questions in cosmology. Cosmology is now
in the age of Big Data. In the last decade, the data finally caught up with the theory, and we are now in
a position to test many of the current alternative theories using statistical techniques.

The principles that underpin statistical techniques are simple enough. Under minimal
assumptions about signal and noise, it is simply a question of maximising the Gaussian likelihoods.
However, in practice they are extremely complex. The foreground contamination, the signal, the
possibly non-Gaussian noise and the systematics all have to be modelled. This requires data simulation,
so the number of maps that is generated is far larger than the number that is actually observed by the
instrument (see, e.g., [549–554]).

A low signal-to-noise ratio, and higher-resolution observations of fainter signals over a larger
frequency range, result in massively big data sets. For statistical probes such as the CMB and large-scale
structure, these data sets have to be analysed as a whole, in order to correlate data. In addition to
the volume of data collected, this generates a huge amount of computational data, and requires the
appropriate computing power to carry out multiple complex calculations. We are witnessing a Moore’s
Law in cosmology, where the data volume of experiments increases by a factor of around 1000 every
ten years, as shown in Figure 8.

In addition to the data volume challenge, we have an algorithmic challenge. The number
of computations for cosmological data analysis depends on four main factors: the number of
observations Nt, the number of pixels Np, the number of multipoles (a function of the resolution
and frequency range) N�, and the number of iterations Ni. The first three quantities determine the
data volume. The data simulation scales at least as O(Nt). The map-making scales as O(NiNt log Nt).
The maximum-likelihood power spectrum estimation scales as O(NiNlN3

p).
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Figure 8. The growing data volume of experiments. The data volume of each experiment is shown as an
order-of-magnitude multiple of the data volume of the 1965 Bells Labs experiment which detected the
CMB. The labels show the year of ‘first light’ for each experiment. CMB surveys are marked by blue dots,
while red dots show large-scale structure surveys. A first light date for CMBPol (light blue triangle)
has not yet been fixed. Note that the vertical axis is logarithmic: the date volume increases about a
thousandfold every ten years (grey dashed line). Note too that we plot CMB, large-scale structure,
space and ground-based probes on the same graph. Ground-based probes will always tend to have a
larger data volume than space-borne probes, due to the bandwidth limit on data transmission from
spacecraft. Longer-running experiments will also have a larger data volume.

Planck marked a milestone in data science. It was the first CMB experiment in which the whole
data treatment process was parallelised, and where Monte Carlo methods were used in order to cut
down on the number of data realisation iterations that were carried out.

There are two main considerations in data analysis: the amount of data, and the complexity of
the theory. Future experiments will require sophisticated techniques, and considerable computing
power to process the vast amounts of data. Gaia is already collecting data [555], while Euclid, the SKA,
Enhanced LIGO, and CMB-S4 will soon be operational. Farther ahead, the Evolved Laser Interferometer
Space Antenna (eLISA) (https://www.elisascience.org), due for launch in 2034, will also generate huge
volumes of data, and will require the necessary computing power to test GR directly, by comparing
the data to simulated black hole collapse, inspiralling binaries.

What direction will experimental cosmology take over the coming decade? Extracting fainter
signals, such as CMB polarisation, or going to very high resolutions requires larger data volumes to
provide a higher signal-to-noise ratio, and it requires more complex models to control fainter systematic
effects. Even the Solar System tests of General Relativity will depend upon vastly greater data volumes
and computational complexity to get the full relativistic ephemerides, given the ever-increasing number
of objects being tracked in the Solar System and the significantly greater precision of the data for
each object.
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This enables us to make a sensible prediction on future developments. The science we are able
to extract from present and future data sets will be determined by the limits on our computational
capability, and our ability and willingness to exploit it.

17.4. Conclusions

GR may well survive for another 100 years. After all, Newtonian gravity was around for 200 years.
GR has just reached its peak, when data and computing power have caught up with the theory. We are
at a pivotal moment in the history of GR. We are on the point of confirming beyond reasonable doubt
all its predictions throughout its entire domain of validity.

We have seen how modern cosmology is faced with big questions which touch the very
foundations of physics. What is this form of matter which interacts only with gravity and apparently
with nothing else? Why is the expansion of the universe accelerating? What caused the universe
to undergo a period of rapid expansion soon after the Big Bang? These questions, motivated by
cosmological observations, lead to questions about fundamental physics. Are there forces and
interactions besides the four we know of, that is, gravity, electromagnetism, and the strong and weak
nuclear forces? Are there particles beyond the Standard Model? What determines the value of the
fundamental constants of nature? What is the real structure of spacetime? Are there extra dimensions?

Science needs data, so each of these questions must be addressed through careful experiment.
The challenge of modern experimental physics is to probe nature at extreme distances and energies,
well outside the capabilities of the instruments that were available to Einstein. It has certainly come a
long way, as shown by the detection of gravitational waves in 2015, a feat which was thought to be
impossible by many of Einstein’s contemporaries.

General Relativity is not the final theory of gravity, for there is no such thing. As General Relativity
turns 100, we would do well to celebrate it with a healthy does of scientific scepticism. Long live
General Relativity, and a big welcome to its eventual replacement, whether in our lifetime or not.
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Abbreviations

The following abbreviations are used in this work:

AU Astronomical Unit
CDM Cold Dark Matter
CMB Cosmic Microwave Background
EEP Einstein Equivalence Principle
ECKS Einstein-Cartan-Kibble-Sciama
eV electronvolt
FLRW Friedmann-Lemaître-Robertson-Walker
GR General Relativity
Gy Gigayear (109 years)
ΛCDM Λ Cold Dark Matter
LLI Local Lorentz invariance
LLR Lunar laser ranging
LPI Local position invariance
Mpc Megaparsec
PPN Parameterised post-Newtonian
SR Special Relativity
TeV teraelectronvolt (1012 electronvolts)
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1. Introduction

Einstein’s General Theory of Relativity, published in November 1915, led to the prediction of the
existence of gravitational waves that would be so faint and their interaction with matter so weak that
Einstein himself wondered if they could ever be discovered. Even if they were detectable, Einstein also
wondered if they would ever be useful enough for use in science. However, exactly 100 years after his
theory was born, on 14 September 2015, these waves were finally detected and are going to provide
scientific results.

In fact at 11:50:45 a.m. CET on 14 September 2015 Marco Drago—a postdoc—was seated in front
of a computer monitor at the Max Planck Institute for Gravitational Physics in Hanover, Germany,
when he received an e-mail, automatically generated three minutes before from the monitors of LIGO
(for its acronym Laser Interferometer Gravitational wave Observatory). Marco opened the e-mail,
which contained two links. He opened both links and each contained a graph of a signal similar to that
recorded by ornithologists to register the songs of birds. One graph came from a LIGO station located
at Hanford, in Washington State, and the other from Livingston Station in the state of Louisiana [1].

Marco is a member of a team of 30 physicists working in Hanover, analyzing data from Hanford
and Livingston. Marco’s duty is to be aware of and analyze the occurrence of an “event” that records
the passage of a gravitational wave, in one of the four lines that automatically track the signals from
the detectors in the two LIGO observatories on the other side of the Atlantic.

Marco noticed that the two graphs were almost identical, despite having been registered
independently in sites separated by 1900 km (see Figure 1a); for comparison we include sonograms
from animals (see Figure 1b,c). The time that elapsed between the two signals differed by about
7 milliseconds. These almost simultaneous records of signals coming from sites far away from each
other, the similarity of their shapes and their large size, could not be anything but, either: a possible
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record of a gravitational wave traveling at the speed of light or, a “signal” artificially “injected” to
the detectors by one of the four members of the LIGO program who are allowed to “inject” dummy
signals. The reason why artificial signals are injected to the system is to the test whether the operation
of the detectors is correct and if the duty observers are able to identify a real signal.

Figure 1. Cont.
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Figure 1. (a) Waveforms from LIGO sites [2] and their location and sonograms. Figure from
https://losc.ligo.org/events/GW150914/. The gravitational-wave event GW150914 observed by the
LIGO Hanford (H1, left column panels) and Livingston (L1, right column panels) detectors. Times
are shown relative to 14 September 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz band-pass filter to suppress large fluctuations outside the detectors’ most sensitive
frequency band, and band-reject filters to remove the strong instrumental spectral lines; (b) Chirping
Sparrow (Spizella passerina) song: frequency versus time (in seconds), showing a song made up of a
series of chirps; (c) A Pipistrelle bat call for echolocation. Bats use ultrasound for “seeing” and for social
calls. This spectrogram is a graphic representation of frequencies against time. The color represents
the loudness of each frequency. This spectrogram shows a falling call, which becomes a steady note.
The yellow and green blotches are noise. This is nearly a time reverse of black hole merger sonograms.

Following the pre-established protocols, Marco tried to verify whether the signals were real or the
“event” was just a dummy injected signal. Since aLIGO was still in engineering mode, there was no
way to inject fake signals, i.e., hardware injections. Therefore, everyone was nearly 100% certain that
this was a detection. However, it was necessary to go through the protocols of making sure that this
was the case.

Marco asked Andrew Lundgren, another postdoc at Hanover, to find out if the latter was the case.
Andrew found no evidence of a “dummy injection.” On the other hand, the two signals detected were
so clear, they did not need to be filtered to remove background noise. They were obvious. Marco and
Andrew immediately phoned the control rooms at Livingston and Hanford. It was early morning in
the United States and only someone from Livingston responded. There was nothing unusual to report.
Finally, one hour after receiving the signal, Marco sent an e-mail to all collaborators of LIGO asking if
anyone was aware of something that might cause a spurious signal. No one answered the e-mail.

Days later, LIGO leaders sent a report stating that there had not been any “artificial injection”.
By then the news had already been leaked to some other members of the world community of
astrophysicists. Finally after several months, the official news of the detection of gravitational waves was
given at a press conference on 11 February 2016, after the team had ascertained that the signals were not
the result of some experimental failure, or any signal locally produced, earthquake, or electromagnetic
fluctuation. This announcement is the most important scientific news so far this century. Gravitational
waves were detected after 60 years of searching and 100 years since the prediction of their existence.
The scientific paper was published in Physical Review Letters [2]. This discovery not only confirmed one
of the most basic predictions of General Relativity but also opened a new window of observation of
the universe, and we affirm without exaggeration that a new era in astronomy has been born.
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In what follows we shall narrate the journey experienced in search of gravitational waves,
including their conception in the early twentieth century, their prediction by Einstein in 1916,
the theoretical controversy, efforts towards detection, and the recent discovery.

2. Lost and Found Gravitational Waves

On 5 July 1905 the Comptes Rendus of the French Academy of Sciences published an article written
by Henri Poincare entitled “Sur la dynamique d’ l’électron”. This work summarized his theory of
relativity [3]. The work proposed that gravity was transmitted through a wave that Poincaré called a
gravitational wave (onde gravifique).

It would take some years for Albert Einstein to postulate in 1915 in final form the Theory of
General Relativity [4]. His theory can be seen as an extension of the Special Theory of Relativity
postulated by him 10 years earlier in 1905 [5]. The General Theory explains the phenomenon of gravity.
In this theory, gravity is not a force—a difference from Newton’s Law—but a manifestation of the
curvature of space–time, this curvature being caused by the presence of mass (and also energy and
momentum of an object). In other words, Einstein’s equations match, on the one side, the curvature
of local space–time with, on the other side of the equation, local energy and momentum within
that space–time.

Einstein’s equations are too complicated to be solved in full generality and only a few very specific
solutions that describe space–times with very restrictive conditions of symmetry are known. Only with
such restrictions it is possible to simplify Einstein’s equations and so find exact analytical solutions.
For other cases one must make some simplifications or approximations that allow a solution, or there
are cases where equations can be solved numerically using computers, with advanced techniques in
the field called Numerical Relativity.

Shortly after having finished his theory Einstein conjectured, just as Poincaré had done, that there
could be gravitational waves similar to electromagnetic waves. The latter are produced by accelerations
of electric charges. In the electromagnetic case, what is commonly found is dipolar radiation produced
by swinging an electric dipole. An electric dipole is formed by two (positive and negative) charges
that are separated by some distance. Oscillations of the dipole separation generate electromagnetic
waves. However, in the gravitational case, the analogy breaks down because there is no equivalent to
a negative electric charge. There are no negative masses. In principle, the expectation of theoretically
emulate gravitational waves similar to electromagnetic ones faded in Einstein’s view. This we know
from a letter he wrote to his colleague, Karl Schwarzschild, on 19 February 1916. In this letter, Einstein
mentioned in passing:

“Since then [November 14] I have handled Newton’s case differently, of course, according to the
final theory [the theory of General Relativity]. Thus there are no gravitational waves analogous to
light waves. This probably is also related to the one-sidedness of the sign of the scalar T, incidentally
[this implies the nonexistence of a “gravitational dipole”] [6]

However, Einstein was not entirely convinced of the non-existence of gravitational waves; for a few
months after having completed the General Theory, he refocused efforts to manipulate his equations to
obtain an equation that looked like the wave equation of electrodynamics (Maxwell’s wave equation),
which predicts the existence of electromagnetic waves. However, as mentioned, these equations are
complex and Einstein had to make several approximations and assumptions to transform them into
something similar to Maxwell’s equation. For some months his efforts were futile. The reason was that
he used a coordinate system that hindered his calculations. When, at the suggestion of a colleague,
he changed coordinate systems, he found a solution that predicted three different kinds of gravitational
waves. These three kinds of waves were baptized by Hermann Weyl as longitudinal-longitudinal,
transverse-longitudinal, and transverse-transverse [7].

These approaches made by Einstein were long open to criticism from several researchers and even
Einstein had doubts. In this case Einstein had manipulated his field equations into a first approximation
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for wave-emitting bodies whose own gravitational field is negligible and with waves that propagate in
empty and flat space.

Yet the question of the existence of these gravitational waves dogged Einstein and other notable
figures in the field of relativity for decades to come. By 1922 Arthur Eddington wrote an article
entitled “The propagation of gravitational waves” [8]. In this paper, Eddington showed that two of
the three types of waves found by Einstein could travel at any speed and this speed depends on the
coordinate system; therefore, they actually were spurious waves. The problem Eddington found in
Einstein’s original calculations is that the coordinate system he used was in itself a “wavy” system and
therefore two of the three wave types were simply flat space seen from a wavy coordinates system;
i.e., mathematical artifacts were produced by the coordinate system and were not really waves at all.
So the existence of the third wave (the transverse-transverse), allegedly traveling at the speed of light,
was also questioned. Importantly, Eddington did prove that this last wave type propagates at the
speed of light in all coordinate systems, so he did not rule out its existence.

In 1933 Einstein emigrated to the United States, where he had a professorship at the Institute for
Advanced Study in Princeton. Among other projects, he continued to work on gravitational waves
with the young American student Nathan Rosen.

In 1936 Einstein wrote to his friend, renowned physicist Max Born, “Together with a young
collaborator [Rosen], I arrive at the interesting result that gravitational waves do not exist, though they
have been assumed a certainty to the first approximation” (emphasis added) [9] (p. 121, Letter 71).

That same year, Einstein and Rosen sent on 1 June an article entitled “Are there any gravitational
waves?” to the prestigious journal Physical Review, whose editor was John T. Tate [10]. Although the
original version of the manuscript does not exist today, it follows from the abovementioned letter to
Max Born that the answer to the title of the article was “they do not exist”.

The editor of the Physical Review sent the manuscript to Howard Percy Robertson, who carefully
examined it and made several negative comments. John Tate in turn wrote to Einstein on 23 July,
asking him to respond to the reviewer’s comments. Einstein’s reaction was anger and indignation;
he sent the following note to Tate [10]:

July 27, 1936

Dear Sir.

“We (Mr. Rosen and I) had sent you our manuscript for publication and had not authorized
you to show it to specialists before it is printed. I see no reason to address the—in any case
erroneous—comments of your anonymous expert. On the basis of this incident I prefer to publish
the paper elsewhere.”

Respectfully

Einstein

P.S. Mr. Rosen, who has left for the Soviet Union, has authorized me to represent him in this matter.

On July 30th, John Tate replied to Einstein that he very much regretted the withdrawal of the
article, saying “I could not accept for publication in The Physical Review a paper which the author was
unwilling I should show to our Editorial Board before publication” [10].

During the summer of 1936 a young physicist named Leopold Infeld replaced Nathan Rosen as
the new assistant to Einstein. Rosen had departed a few days before for the Soviet Union. Once he
arrived at Princeton, Infeld befriended Robertson (the referee of the Einstein–Rosen article). During
one of their encounters the topic of gravitational waves arose. Robertson confessed to Infeld his
skepticism about the results obtained by Einstein. Infeld and Robertson discussed the point and
reviewed together the Einstein and Rosen manuscript, confirming the error. Infeld in turn informed
Einstein about the conversation with Robertson.

An anecdote illustrating the confused situation prevailing at that time is given in Infeld’s
autobiography. Infeld refers to the day before a scheduled talk that Einstein was to give at Princeton on
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the “Nonexistence of gravitational waves”. Einstein was already aware of the error in his manuscript,
which was previously pointed out by Infeld. There was no time to cancel the talk. The next day
Einstein gave his talk and concluded, “If you ask me whether there are gravitational waves or not, I must
answer that I don’t know. But it is a highly interesting problem” [10].

After having withdrawn the Einstein–Rosen paper from the Physical Review, Einstein had
summited the very same manuscript to the Journal of the Franklin Society (Philadelphia). This journal
accepted the paper for publication without modifications. However, after Einstein learned that the
paper he had written with Rosen was wrong, he had to modify the galley proofs of the paper. Einstein
sent a letter to the editor on 13 November 1936 explaining the reasons why he had to make fundamental
changes to the galley proofs. Einstein also renamed the paper, entitling it “On gravitational waves”,
and modified it to include different conclusions [10]. It should be noted that this would not have
happened if Einstein had accepted in the first instance Robertson’s valid criticisms. Tellingly, the new
conclusions of his rewritten article read [11]:

“Rigorous solution for Gravitational cylindrical waves is provided. For convenience of the reader
the theory of gravitational waves and their production, known in principle, is presented in the first
part of this article. After finding relationships that cast doubt on the existence of gravitational fields
rigorous wavelike solutions, we have thoroughly investigated the case of cylindrical gravitational
waves. As a result, there are strict solutions and the problem is reduced to conventional cylindrical
waves in Euclidean space”.

Furthermore, Einstein included this explanatory note at the end of his paper [11],

“Note—The second part of this article was considerably altered by me after the departure to Russia
of Mr. Rosen as we had misinterpreted the results of our formula. I want to thank my colleague
Professor Robertson for their friendly help in clarifying the original error. I also thank Mr. Hoffmann
your kind assistance in translation.”

In the end, Einstein became convinced of the existence of gravitational waves, whereas
Nathan Rosen always thought that they were just a formal mathematical construct with no real
physical meaning.

3. Pirani’s Trip to Poland; the Effect of a Gravitational Wave

To prove the existence of a gravitational wave it becomes necessary to detect its effects. One of
the difficulties presented by the General Theory of Relativity resides in how to choose the appropriate
coordinate system in which one observer may calculate an experimentally measurable quantity,
which could, in turn, be compared to a real observation. Coordinate systems commonly used in past
calculations were chosen for reasons of mathematical simplification and not for reasons of physical
convenience. In practice, a real observer in each measurement uses a local Cartesian coordinate system
relative to its state of motion and local time. To remedy this situation, in 1956 Felix A. E. Pirani
published a work that became a classic article in the further development of the Theory of Relativity.
The article title was “On the physical significance of the Riemann tensor” [12]. The intention of this
work was to demonstrate a mathematical formalism for the deduction of physical observable quantities
applicable to gravitational waves. Curiously, the work was published in a Polish magazine. The reason
for this was that Pirani, who at that time worked in Ireland, went to Poland to visit his colleague
Leopold Infeld, of whom we have already spoken; the latter had returned to his native Poland in 1950
to help boost devastated Polish postwar physics. Because Infeld went back to Poland, and because of
the anti-communist climate of that era, Infeld was stripped of his Canadian citizenship. In solidarity
Pirani visited Poland and sent his aforementioned manuscript to Acta Physica Polonica. The importance
of Pirani’s Polish paper is that he used a very practical approach that got around this whole problem
of the coordinate system, and he showed that the waves would move particles back and forth as they
pass by.
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4. Back and Forth as Waves Pass by

One of the most famous of Einstein’s collaborators, Peter Bergmann, wrote a well-known popular
book The Riddle of Gravitation, which describes the effect a gravitational wave passing over a set of
particles would have [13]. Following Bergmann, we shall explain this effect.

When a gravitational wave passes through a set of particles positioned in an imaginary circle and
initially at rest, the passing wave will move these particles. This motion is perpendicular (transverse)
to the direction in which the gravitational wave travels. For example, suppose a gravitational pulse
passes in a direction perpendicular to this page, Figure 2 shows how a set of particles, initially arranged
in a circle, would sequentially move (a, b, c, d).

Figure 2. (a,b,c,d) Sequential effect of a gravitational wave on a ring of particles. In the image of
Figure 2a is observed as the particles near horizontal move away from each other while those are near
vertical move together to reach finally the next moment as shown in (Figure 2b). At that moment all
the motions are reversed and so on. This is shown in Figure 2c,d. All these motions occur successively
in the plane perpendicular (transverse) to the direction of wave propagation.

At first sight the detection of gravitational waves now seems very simple. One has to compare
distances between perpendicularly placed pairs of particles and wait until a gravitational wave transits.
However, one has to understand in detail how things happen. For instance, a ruler will not stretch,
in response to a gravitational wave, in the same way as a free pair of particles, due to the elastic
properties of the ruler, c.f. note 11, p. 19 in [14]. Later it was realized that changes produced in such
disposition of particle pairs (or bodies) can be measured if, instead of the distances, we measure the time
taken by light to traverse them, as the speed of light is constant and unaltered by a gravitational wave.

Anyway, Pirani’s 1956 work remained unknown among most physicists because scientists were
focusing their attention on whether or not gravitational waves carry energy. This misperception
stems from the rather subtle matter of defining energy in General Relativity. Whereas in Special
Relativity energy is conserved, in General Relativity energy conservation is not simple to visualize.
In physics, a conservation law of any quantity is the result of an underlying symmetry. For example,
linear momentum is conserved if there is spatial translational symmetry, that is, if the system under
consideration is moved by a certain amount and nothing changes. In the same way, energy is conserved
if the system is invariant under time. In General Relativity, time is part of the coordinate system, and
normally it depends on the position. Therefore, globally, energy is not conserved. However, any curved
space–time can be considered to be locally flat and, locally, energy is conserved.

During the mid-1950s the question of whether or not gravitational waves would transmit energy
was still a hot issue. In addition, the controversy could not be solved since there were no experimental
observations that would settle this matter. However, this situation was finally clarified thanks to the
already mentioned work by Pirani [12], and the comments suggested by Richard Feynman together
with a hypothetical experiment he proposed. The experiment was suggested and comments were
delivered by Feynman during a milestone Congress held in 1957 in Chapel Hill, North Carolina.
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We will come back to this experiment later, but first we shall speak about the genesis of the Chapel
Hill meeting.

5. What Goes Up Must Come Down

The interest in the search for gravitational waves began at a meeting occurred in Chapel Hill,
North Carolina in 1957. The meeting brought together many scientists interested in the study of gravity.
What is unusual is that this meeting would not have been possible without the funding of an eccentric
American millionaire named Roger W. Babson.

On 19 January 1949 Roger W. Babson founded the Gravity Research Foundation (GRF), which still
exists today. Babson’s motivation for establishing the foundation was a “debt” that he thought he
owed to Newton’s laws—which, according to his understanding, led him to become a millionaire [15].
Babson earned the greatest part of his fortune in the New York Stock Exchange by applying his own
version of Newton’s Gravity law, “What goes up must come down”. Thus he bought cheap shares on
their upward route and sold them before their price collapsed. His ability to apply the laws of Newton
was surprising because he anticipated the 1929 Wall Street crash. “To every action there is a reaction”,
he used to preach.

Babson’s interest in gravity arose when he was a child, following a family tragedy. Babson’s
older sister drowned when he was still an infant. In his version of the unfortunate accident, he
recalls, “... she could not fight gravity.” The story of this eccentric millionaire is detailed on the website
of the GRF foundation [15]. Babson became obsessed with finding a way to control the force of
gravity and therefore he established the aforementioned foundation, which had as its main activity
arranging a yearly essay contest that dealt with “the chances of discovering a partial insulation,
reflector, or absorber of gravity”. An annual award of $1000 (a considerable amount at the time)
was offered to the best essay. The essays submitted for the competition were limited to 2000 words.
This annual award attracted several bizarre competitors and was awarded several times to risible
submissions. However, in 1953 Bryce DeWitt, a young researcher at Lawrence Livermore Laboratory
in California, decided to write an essay and enter the contest because he needed the money to pay his
home’s mortgage.

The essay presented by DeWitt in the 1953 competition was a devastating critique of the belief that
it is possible to control gravity. In DeWitt’s own words, his writing “essentially nagged [the organizers]
for that stupid idea” [16]. To his surprise, his essay was the winner despite having been written in one
night. DeWitt notes those were “the faster 1000 dollars earned in my whole life!” [16].

But DeWitt never imagined he would earn many thousands more dollars than he won with his
essay. The reason for it might be found in the final paragraph of his essay,

“In the near future, external stimuli to induce young people to engage in gravitational physics
research, despite its difficulties, are urgently needed” [16].

This final paragraph of DeWitt’s essay echoed in Babson’s mind. Perhaps, he thought, why not
focus my philanthropy to support serious studies of gravitation? Perhaps he thought his GRF could
refocus its activities onto the scientific study of gravitation.

Babson shared this new enthusiasm with a friend, Agnew Bahnson, also a millionaire and also
interested in gravity. Bahnson was a little more practical than Babson and convinced him to found
an independent institute separate from GRF. Thus arose the idea of founding a new Institute of Field
Physics (IOFP), whose purpose would be pure research in the gravitational fields. The idea of founding
the IOFP was clever because the old GRF was severely discredited among the scientific community.
For example, one of the promotional brochures GRF mentioned as an example of the real possibility of
gravity control the biblical episode where Jesus walks on water. Such was the ridicule and vilification
of the GRF in scientific circles that a famous popularizer of mathematics, Martin Gardner, devoted
an entire chapter of one of his books to ridiculing the GRF. In this work Gardner claims that the GRF
“is perhaps the most useless project of the twentieth century” [17]. So Bahnson knew that to research on
gravity in the discredited GRF had very little chance of attracting serious scientists. We must mention
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that today GRF enjoys good prestige and many well-known scientists have submitted their essays to
its annual competition. That proves that it is worth trying for a thousand dollars.

In order to start the new IOFP institute off on the right foot, Bahnson contacted a famous Princeton
physicist, John Archibald Wheeler, who supported the idea of hiring Bryce DeWitt to lead the new
institute, whose headquarters would be established in Chapel Hill, NC, Bahnson’s hometown and
headquarters of the University of North Carolina. Wheeler, knowing the vast fortune of the couple of
millionaires, hastened to send a telegram to DeWitt. In one of his lines the telegram said “Please do
not give him a ‘no’ for answer from the start” [16]. That’s how DeWitt won more than one thousand
dollars, actually much more. In January 1957 the IOFP was formally inaugurated, holding a scientific
conference on the theme “The role of gravitation in Physics”. As we shall review below, the Chapel
Hill conference rekindled the crestfallen and stagnant study of gravitation prevailing in those days.

6. The Chapel Hill Conference 1957

The 1957 Chapel Hill conference was an important event for the study of gravity. Attendance
was substantial: around 40 speakers from institutions from 11 countries met for six days, from 18 to
23 January 1957 on the premises of the University of North Carolina at Chapel Hill. Participants
who attended the meeting were predominantly young physicists of the new guard: Feynman,
Schwinger, Wheeler, and others. During the six-day conference, discussions focused on various topics:
classical gravitational fields, the possibility of unification of gravity with quantum theory, cosmology,
measurements of radio astronomy, the dynamics of the universe, and gravitational waves [18].

The conference played a central role in the future development of classical and quantum gravity.
It should be noted that the Chapel Hill 1957 conference today is known as the GR1 conference. That is,
the first of a series of GR meetings that have been held regularly in order to discuss the state of the
art in matters of Gravitation and General Relativity (GR = General Relativity). The conference has
been held in many countries and possesses international prestige. The last was held in New York City
in 2016.

In addition to the issues and debates on the cosmological models and the reality of gravitational
waves, during the conference many questions were formulated, including ideas that are topical even
today. To mention a few, we can say that one of the assistants, named Hugh Everett, briefly alluded to
his parallel universes interpretation of quantum physics. On the other hand, DeWitt himself pointed
out the possibility of solving gravitation equations through the use of electronic computers and warned
of the difficulties that would be encountered in scheduling them for calculations, thus foreseeing
the future development of the field of Numerical Relativity. However, what concerns us here is
that gravitational waves were also discussed at the conference; chiefly, the question was whether
gravitational waves carrying energy or not.

Hermann Bondi, a distinguished physicist at King’s College London, presided over session III
of Congress entitled “General Relativity not quantized”. In his welcome address to the participants
he warned “...still do not know if a transmitter transmits energy radiation ...” [18] (p. 95). With these
words Bondi marked the theme that several of the speakers dealt with in their presentations and
subsequent discussion. Some parts of the debate focused on a technical discussion to answer the
question about the effect a gravitational pulse would have on a particle when passing by, i.e., whether
or not the wave transmits energy to the particle.

During the discussions, Feynman came up with an argument that convinced most of the audience.
His reasoning is today known as the “sticky bead argument”. Feynman’s reasoning is based on

a thought experiment that can be described briefly as follows: Imagine two rings of beads on a bar
(see Figure 3, upper part). The bead rings can slide freely along the bar. If the bar is placed transversely
to the propagation of a gravitational wave, the wave will generate tidal forces with respect to the
midpoint of the bar. These forces in turn will produce longitudinal compressive stress on the bar.
Meanwhile, and because the bead rings can slide on the bar and also in response to the tidal forces, they
will slide toward the extreme ends first and then to the center of the bar (Figure 3, bottom). If contact
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between the beads and the bar is “sticky”, then both pieces (beads and bar) will be heated by friction.
This heating implies that energy was transmitted to the bar by the gravitational wave, showing that
gravitational waves carry energy [18].

Figure 3. Sketch of the “sticky bead argument”.

In a letter to Victor Weisskopf, Feynman recalls the 1957 conference in Chapel Hill and says,
“I was surprised to find that a whole day of the conference was spent on this issue and that ‘experts’
were confused. That’s what happens when one is considering energy conservation tensors, etc. instead
of questioning, can waves do work?” [19].

Discussions on the effects of gravitational waves introduced at Chapel Hill and the “sticky bead
argument” convinced many—including Hermann Bondi, who had, ironically, been among the skeptics
on the existence of gravitational waves. Shortly after the Chapel Hill meeting Bondi issued a variant of
the “sticky bead argument” [20].

Among the Chapel Hill audience, Joseph Weber was present. Weber was an engineer at the
University of Maryland. He became fascinated by discussions about gravitational waves and decided
to design a device that could detect them. Thus, while discussions among theoretical physicists
continued in subsequent years, Weber went even further because, as discussed below, he soon began
designing an instrument to make the discovery.

7. The First Gravitational Wave Detector

The year following the meeting at Chapel Hill, Joseph Weber began to speculate how he could
detect gravitational waves. In 1960 he published a paper describing his ideas on this matter [21].
Basically he proposed the detection of gravitational waves by measuring vibrations induced in a
mechanical system. For this purpose, Weber designed and built a large metal cylinder as a sort of
“antenna” to observe resonant vibrations induced in this antenna that will eventually be produced by
a transit of a gravitational wave pulse. This is something like waiting for someone to hit a bell with a
hammer to hear its ring.

It took his team several years to build the “antenna”, a task that ended by the mid-sixties. In 1966,
Weber, in a paper published in Physical Review, released details of his detector and provided evidence
of its performance [22]. His “antenna” was a big aluminum cylinder about 66 cm in diameter and
153 cm in length, weighing 3 tons. The cylinder was hanging by a steel wire from a support built to
isolate vibrations of its environment (see Figure 4). In addition, the whole arrangement was placed
inside a vacuum chamber. To complete his instrument, Weber placed a belt of detectors around the
cylinder. The detectors were piezoelectric crystals to sense cylinder vibrations induced by gravitational
waves. Piezoelectric sensors convert mechanical vibrations into electrical impulses.
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Figure 4. Sketch of Weber’s cylinder detector and photo of Joseph Weber at the antenna.

Weber built two detectors. The first one was at the University of Maryland and the other was
situated 950 km away, in Argonne National Laboratory near Chicago. Both detectors were connected
to a registration center by a high-speed phone line. The idea of having two antennas separated by a
large distance allowed Weber to eliminate spurious local signals, that is, signals produced by local
disturbances such as thunderstorms, cosmic rays showers, power supply fluctuations, etc. In other
words, if a detected signal was not recorded simultaneously in both laboratories, the signal should be
discarded because it was a local signal and therefore spurious.

For several years, Weber made great efforts to isolate his cylinders from spurious vibrations,
local earthquakes, and electromagnetic interference, and argued that the only significant source of
background noise was random thermal motions of the atoms of the aluminum cylinder. This thermal
agitation caused the cylinder length to vary erratically by about 10−16 meters, less than the diameter of
a proton; however, the gravitational signal he anticipated was not likely to get much greater than the
threshold stochastic noise caused by thermal agitation.

It took several years for Weber and his team to begin detecting what they claimed were
gravitational wave signals. In 1969 he published results announcing the detection of waves [23].
A year later, Weber claimed that he had discovered many signals that seemed to emanate from the
center of our galaxy [24]. This meant that in the center of the Milky Way a lot of stellar mass became
energy (E = mc2) in the form of gravitational waves, thus reducing the mass of our galaxy. This “fact”
presented the problem that a mass conversion into energy as large as Weber’s results implied involved
a rapid decrease of the mass that gravitationally keeps our galaxy together. If that were the case, our
galaxy would have already been dispersed long ago. Theoretical physicists Sciama, Field, and Rees
calculated that the maximum conversion of mass into energy for the galaxy, so as not to expand
more than what measurements allowed, corresponded to an upper limit of 200 solar masses per
year [25]. However, Weber’s measurements implied that a conversion of 1000 solar masses per year
was taking place. Something did not fit. Discussions took place to determine what mechanisms could
make Weber’s measurements possible. Among others, Charles Misner, also from the University of
Maryland, put forward the idea that signals, if stemming from the center of the Milky Way, could
have originated by gravitational synchotron radiation in narrow angles, so as to avoid the above
constraints considered for isotropic emission. Some others, like Peter Kafka of the Max Planck Institute
in Munich, claimed in an essay for the Gravity Research Foundation’s contest in 1972 (in which he
won the second prize) that Weber’s measurements, if they were isotropically emitted, and taking into
account the inefficiency of bars, would imply a conversion of three million solar masses per year in the
center of the Milky Way [26]. It soon became clear that Weber’s alleged discoveries were not credible.
Weber’s frequent observations of gravitational waves related to very sporadic events and raised many
suspicions among some scientists. It seemed that Weber was like those who have a hammer in hand
and to them everything looks like a nail to hit.

128



Universe 2016, 2, 22

Despite Weber’s doubtful measurements, he began to acquire notoriety. In 1971, the famous
magazine Scientific American invited him to write an article for their readers entitled “The detection of
gravitational waves” [27].

Whether it was the amazing—for some—findings of Weber, or doubtful findings of others, or the
remarks made by Sciama, Field, Rees, and Kafka, the fact is that many groups of scientists thought it
was a good idea to build their own gravitational wave detectors to repeat and improve on Weber’s
measurements. These first-generation antennas were aluminum cylinders weighing about 1.5 tons and
operating at room temperature [28]. Joseph Weber is considered a pioneer in experimental gravitation
and therefore he is honored by the American Astronomical Society, which awards every year the
Joseph Weber Award for Astronomical Instrumentation.

By the mid-seventies, several detectors were already operative and offered many improvements
over Weber’s original design; some cylinders were even cooled to reduce thermal noise.
These experiments were operating in several places: at Bell Labs Rochester-Holmdel; at the University
of Glasgow, Scotland; in an Italo-German joint program in Munich and Frascati; in Moscow; in Tokyo;
and at the IBM labs in Yorktown Heights [28]. As soon as these new instruments were put into
operation, a common pattern emerged: there were no signals. In the late seventies, everyone except
Weber himself agreed that his proclaimed detections were spurious. However, the invalidation of
Weber’s results urged other researchers to redouble the search for gravitational waves or devise indirect
methods of detection.

At that time great pessimism and disappointment reigned among the “seekers” of gravitational
waves. However, in 1974 an event occurred that raised hopes. In that year Joseph Hooten Taylor
and Alan Russell Hulse found an object in the sky (a binary pulsar) that revealed that an accelerated
mass radiated gravitational energy. While this observation did not directly detect gravitational waves,
it pointed to their existence. The announcement of the detection of gravitational radiation effects was
made in 1979 [29].

This announcement sparked renewed interest in the future discovery of gravitational waves,
and urged other researchers to redouble the search for the lost waves and devise other methods of
detection. Some were already trying the interferometric method (see Figure 5).

 

Figure 5. Binary Pulsar Advance of the Periastron (point of closest approach of the stars) versus
Time. General Relativity predicts this change because of the energy radiated away by gravitational
waves. Hulse and Taylor were awarded the Nobel Prize for this observation in 1993. Figure taken from
(Living Rev.Rel.11:8, 2008).
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To proceed with the description of the method that uses interferometers, it is necessary to know
the magnitude of the expected effects of a gravitational wave on matter. This magnitude is properly
quantified by the “h” parameter.

8. The Dimensionless Amplitude, h

The problem with gravitational waves, as recognized by Einstein ever since he deduced for the
first time their existence, is that their effect on matter is almost negligible. Among other reasons,
the value of the gravitational constant is very, very small, which makes a possible experimental
observation extremely difficult.

Furthermore, not all waves are equal, as this depends on the phenomenon that generates them;
nor is the effect of a wave on matter has the same intensity. To evaluate the intensity of the effect
that a particular wave produces on matter, a dimensionless factor, denoted by the letter “h,” has been
defined. The dimensionless amplitude “h” describes the maximum displacement per unit length that
would produce waves on an object. To illustrate this definition we refer to Figure 6. This figure shows
two particles represented by gray circles. The pair is shown originally spaced by a distance “l” and
locally at rest.

Figure 6. Definition of dimensionless amplitude h = Δl/L.

By impinging a gravitational wave perpendicularly on the sheet of paper, both particles are
shifted respective to the positions marked by black circles. This shift is denoted by Δl/ 2, which
means a relative shift between the pair of particles is now equal to Δl/L ≈ h, where Δl is the change
in the spacing between particles due to gravitational wave, l is the initial distance between particles,
and h is the dimensionless amplitude. In reality the factor h is more complex and depends upon the
geometry of the measurement device, the arrival direction, and the frequency and polarization of the
gravitational wave [14]. Nature sets a natural amplitude of h~10−21.

This factor h is important when considering the design of a realistic gravitational wave detector.
We must mention that the value of h depends on the kind of wave to be detected and this in turn
depends on how the wave was produced and how far its source is from an observer. Later we shall
return to the subject and the reader shall see the practicality of the factor h.

To identify the sources that produce gravitational waves it is important to consider their temporal
behavior. Gravitational waves are classified into three types: stochastic, periodic, and impulsive
(bursts) [28]. Stochastic waves contribute to the gravitational background noise and possibly have their
origin in the Big Bang. There are also expected stochastic backgrounds due to Black Hole-Black Hole
coalescences. These types of waves fluctuate randomly and would be difficult to identify and separate
due to the background noise caused by the instruments themselves. However, their identification
could be achieved by correlating data from different detectors; this technique applies to other wave
types too [14]. The second type of wave, periodic, corresponds to those whose frequency is more or less
constant for long periods of time. Their frequency can vary up to a limit (quasiperiodic). For example,
these waves may have their origin in binary neutron stars rotating around their center of mass, or from
a neutron star that is close to absorb material from another star (accreting neutron star). The intensity
of the generated waves depends on the distance from the binary source to the observer. The third
type of wave comes from impulsive sources such as bursts that emit pulses of intense gravitational
radiation. These may be produced during the creation of Black Holes in a supernova explosion or
through the merging of two black holes. The greater the mass, the more intense the signal. They radiate
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at a frequency inversely proportional to their mass. Such sources are more intense and are expected to
have higher amplitudes. Figure 7 shows various examples of possible sources of gravitational waves
in which the three different wave types appear in different parts of the spectrum.

Figure 7. Gravitational wave spectrum showing wavelength and frequency along with some
anticipated sources and the kind of detectors one might use. Figure credit: NASA Goddard Space
Flight Center.

Different gravitational phenomena give rise to different gravitational wave emissions. We expect
primordial gravitational waves stemming from the inflationary era of the very early universe.
Primordial quantum fields fluctuate and yield space–time ripples at a wide range of frequencies.
These could in principle be detected as B-mode polarization patterns in the Cosmic Microwave
Background radiation, at large angles in the sky. Unsuccessful efforts have been reported in recent
years, due to the difficulty of disentangling the noisy dust emission contribution of our own galaxy,
the BICEP2 and PLANCK projects. On the other hand, waves of higher frequencies but still very long
wavelengths arising from the slow inspiral of massive black holes in the centers of merged galaxies will
cause a modified pulse arrival timing, if very stable pulsars are monitored. Pulsar timing also places
the best limits on potential gravitational radiation from cosmic string residuals from early universe
phase transitions. Other facilities are planned as space interferometers, such as the Laser Interferometer
Space Antenna (LISA), which is planned to measure frequencies between 0.03 mHz and 0.1 Hz. LISA
plans to detect gravitational waves by measuring separation changes between fiducial masses in three
spacecrafts that are supposed to be 5 million kilometers apart! The expected sources are merging of
very massive Black Holes at high redshifts, which corresponds to waves emitted when the universe
was 20 times smaller than it is today. It should also detect waves from tens of stellar-mass compact
objects spiraling into central massive Black Holes that were emitted when the universe was one half
of its present size. Last but not least, Figure 7 shows terrestrial interferometers that are planned to
detect waves in the frequency from Hertz to 10,000 Hertz. The most prominent facilities are those of
LIGO in the USA, VIRGO in Italy, GEO600 in Germany, and KAGRA in Japan, which are all running
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or expected to run soon. They are just beginning to detect Black Hole mergings, as was the case of the
14 September event [2]. We will go into detail about the interferometric technique later.

9. The Origin of the Interferometric Method

It is not known for sure who invented the interferometer method to detect gravitational waves,
possibly because the method had several precursors. After all, an idea can arise at the same time
among various individuals and this indeed seems to be the case here. However, before going into
detail about the historical origins of the method, we shall briefly discuss the basics of this technique.

Figure 8 shows a very simplified interferometer. It consists of a light source (a laser), a pair of
reflective mirrors attached to a pair of test masses (not shown in the figure), a beam splitter (which can
be a semi-reflecting mirror or half-silvered mirror), and a light detector or photodetector.

 
Figure 8. Schematic of an interferometer for detecting gravitational waves.

The laser source emits a beam of monochromatic light (i.e., at a single frequency) that hits the
beam splitter surface. This surface is partially reflective, so part of the light is transmitted through to
the mirror at the right side of the diagram while some is reflected to the mirror at the upper side of
the sketch (Figure 8(1)). Then, as seen in Figure 8(2), both beams recombine when they meet at the
splitter and the resulting beam is reflected toward the detector (Figure 8(3)). Finally, the photodetector
measures the light intensity of the recombined beam. This intensity is proportional to the square of the
height of the recombined wave.

Initially, both reflecting mirrors are positioned at nearly the same distance from the beam splitter.
In reality what is needed is that the interferometer is locked on a dark fringe. Deviations from a dark
fringe are then measured with the passage of a gravitational wave.

If the distance between one of the mirrors to the light splitter varies by an amount Δl with respect
to distance to the same splitter of the second mirror, then the recombined beam will change its intensity.
From measuring the intensity change of the recombined light beam, it is possible to obtain Δl.

When a gravitational wave passes through the interferometer at a certain direction, for example
perpendicular to the plane where the pair of mirrors lies, both mirrors shift positions. One of the mirrors
slightly reduces its distance to the beam splitter, while the second mirror slightly increases its distance to
the splitter (see Figure 8(4)). The sum of the two displacements is equal to Δl. The photodetector records
a variation in the intensity of the recombined light, thereby detecting the effect of gravitational waves.
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A very important specific feature of the interferometer effectiveness is given by the length of
its arms. This is the distance “l” between the wave splitter and its mirrors. On the other hand,
the wavelength of the gravitational wave sets the size of the detector L needed. The optimal size of
the arms turns out to be one-fourth of the wavelength. For a typical gravitational wave frequency of
100 Hz, this implies L = 750 km, which is actually too long to make except by folding the beams back
and forth via the Fabry–Pérot technique, which helps to achieve the desired optimal size. In practice it
is of the utmost importance to have an interferometer with very long arms matching the frequencies
one plans to observe.

The importance of a long arm “l” is easy to explain if we remember the definition of the
dimensionless amplitude h = Δl/L, which we already discussed above (see Figure 6). If a gravitational
wave produces a displacement Δl for the distance between the mirrors, according to the definition of h,
the resulting change Δl will be greater the longer the interferometer arm l is, since they are directly
proportional (Δl = L × h). Therefore, the reader can notice that interferometric arm lengths must be
tailored depending on what type of gravitational source is intended for observation. The explanation
just given corresponds to a very basic interferometer, but in actuality these instruments are more
complex. We will come back to this.

10. Genesis of the Interferometer Method (Or, Who Deserves the Credit?)

Let us now turn our attention to the origin of the interferometer method. The first explicit
suggestion of a laser interferometer detector was outlined in the former USSR by Gertsenshtein and
Pustovoid in 1962 [30]. The idea was not carried out and eventually was resurrected in 1966 behind
the “Iron Curtain” by Vladimir B. Braginskiı̆, but then again fell into oblivion [31].

Some year before, Joseph Weber returned to his laboratory at the University of Maryland after
having attended the 1957 meeting at Chapel Hill. Weber came back bringing loads of ideas. Back at his
university, Weber outlined several schemes on how to detect gravitational waves. As mentioned, one
of those was the use of a resonant “antenna” (or cylinder), which, in the end, he finally built. However,
among other various projects, he conceived the use of interferometer detectors. He did not pursue this
conception, though, and the notion was only documented in the pages of his laboratory notebook [28]
(p. 414). One can only say that history produces ironies.

By the end of 1959 Weber began the assembly of his first “antenna” with the help of his students
Robert L. Forward and David M. Zipoy [32]. Forward would later (in 1978) turn out to be the first
scientist to build an interferometric detector [33].

In the early seventies Robert L. Forward, a former student of Joseph Weber at that time working
for Hughes Research Laboratory in Malibu, California, decided, with the encouragement of Rainer
Weiss, to build a laboratory interferometer with Hughes’ funds. Forward’s interest in interferometer
detectors had evolved some years before when he worked for Joseph Weber at his laboratory in the
University of Maryland on the development and construction of Weber’s antennas.

By 1971 Forward reported the design of the first interferometer prototype (which he called a
“Transducer Laser”). In his publication Forward explained, “The idea of detecting gravitational
radiation by using a laser to measure the differential motion of two isolated masses has often been
suggested in past5” The footnote reads, “To our knowledge, the first suggestion [of the interferometer
device] was made by J. Weber in a telephone conversation with one of us (RLF) [Forward] on
14 September 1964” [34].

After 150 hours of observation with his 8.5-m arms interferometer, Robert Forward reported
“an absence of significant correlation between the interferometer and several Weber bars detectors,
operating at Maryland, Argonne, Glasgow and Frascati”. In short, Robert Forward did not observe
gravitational waves. Interestingly, in the acknowledgments of his article, Forward recognizes the
advice of Philip Chapman and Weiss [33].

Also in the 1970s, Weiss independently conceived the idea of building a Laser Interferometer,
inspired by an article written by Felix Pirani, the theoretical physicist who, as we have already
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mentioned, developed in 1956 the necessary theory to grow the conceptual framework of the
method [12]. In this case it was Weiss who developed the method. However, it was not only
Pirani’s paper that influenced Weiss; he also held talks with Phillip Chapman, who had glimpsed,
independently, the same scheme [35]. Chapman had been a member of staff at MIT, where he worked
on electro-optical systems and gravitational theory. He left MIT to join NASA, where he served from
1967 to 1972 as a scientist–astronaut (he never went to space). After leaving NASA, Chapman was
employed as a researcher in laser propulsion systems at Avco Everett Research Laboratory in Malibu,
California. It was at this time that he exchanged views with Weiss. Chapman subsequently lost interest
in topics related to gravitation and devoted himself to other activities.

In addition, Weiss also held discussions with a group of his students during a seminar on General
Relativity he was running at MIT. Weiss gives credit to all these sources in one of his first publications
on the topic: “The notion is not new; It has appeared as a gedanken experiment in F.A.E. Pirani’s studies
of the measurable properties of the Riemann tensor. However, the realization that with the advent of
lasers it is feasible to detect gravitational waves by using this technique [interferometry], grew out of
an undergraduate seminar that I ran at MIT several years ago, and has been independently discovered
by Dr. Phillip Chapman of the the National Aeronautics and Space Administration, Houston” [35].

Weiss recalled, in a recent interview, that the idea was incubated in 1967 when he was asked by
the head of the teaching program in physics at MIT to give a course of General Relativity. At that time
Weiss’s students were very interested in knowing about the “discoveries” made by Weber in the late
sixties. However, Weiss recalls that “I couldn’t for the life of me understand the thing he was doing”
and “I couldn’t explain it to the students”. He confesses “that was my quandary at the time” [36].

A year later (in 1968) Weiss began to suspect the validity of Weber’s observations because other
groups could not verify them. He thought something was wrong. In view of this he decided to spend a
summer in a small cubicle and worked the whole season on one idea that had occurred to him during
discussions with his students at the seminar he ran at MIT [36].

After a while, Weiss started building a 1.5-m long interferometer prototype, in the RLE (Research
Laboratory of Electronics) at MIT using military funds. Some time later, a law was enacted in the
United States (the “Mansfield amendment”), which prohibited Armed Forces financing projects that
were not of strictly military utility. Funding was suddenly suspended. This forced Weiss to seek
financing from other U.S. government and private agencies [36].

11. Wave Hunters on a Merry-Go-Round (GEO)

In 1974, NSF asked Peter Kafka of the Max Planck Institute in Munich to review a project.
The project was submitted by Weiss, who requested $53,000 in funds for enlarging the construction of
a prototype interferometer with arms nine meters in length [37]. Kafka agreed to review the proposal.
Being a theoretician himself, Kafka showed the proposal documents to some experimental physicists
at his institute for advice. To Kafka’s embarrassment, the local group currently working on Weber bars
became very enthusiastic about Weiss’s project and decided to build their own prototype [38], headed
by Heinz Billing.

This German group had already worked in collaboration with an Italian group in the construction
of “Weber antennas”. The Italian–German collaboration found that Weber was wrong [36]. The Weiss
proposal fell handily to the Germans as they were in the process of designing a novel Weber antenna
that was to be cooled to temperatures near absolute zero to reduce thermal noise in the new system.
However, learning of Weiss’s proposal caused a shift in the research plans of the Garching group.
They made the decision to try the interferometer idea. Germans contacted Weiss for advice and they
also offered a job to one of his students on the condition that he be trained on the Weiss 1.5-m prototype.
Eventually Weiss sent David Shoemaker, who had worked on the MIT prototype, to join the Garching
group. Shoemaker later helped to build a German 3-m prototype and later a 30-m interferometer [39].
This interferometer in Garching served for the development of noise suppression methods that would
later be used by the LIGO project.
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It is interesting to mention that Weiss’s proposal may seem modest nowadays (9-m arms), but he
already had in mind large-scale interferometers. His prototype was meant to lead to a next stage
featuring a one-kilometer arm length device, which his document claimed it would be capable of
detecting waves from the Crab pulsar (PSR B0531 + 21) if its periodic signal were integrated over a
period of months. Furthermore, the project envisaged a future development stage where long baseline
interferometers in outer space could eventually integrate Crab pulsar gravitational waves in a matter
of few hours.

NSF then supported Weiss’s project and funds were granted in May 1975 [37,38].
At that time Ronald Drever, then at the University of Glasgow, attended the International School

of Cosmology and Gravitation in Erice, La Città della Scienza, Sicily in March 1975. There, a lecture
entitled “Optimal detection of signals through linear devices with thermal source noises, an application
to the Munich–Frascati Weber-type gravitational wave detectors” was delivered by the same Peter
Kafka of Munich [40]. His lecture was again very critical of Weber’s results and went on to showing
that the current state of the art of Weber bars including the Munich–Frascati experiment, was far from
the optimal sensitivity required for detection. In fact, the conclusion of his notes reads: “It seems
obvious that only a combination of extremely high quality and extremely low temperature will bring
resonance detectors [Weber bars] near the range where astronomical work is possible. Another way
which seems worth exploring is Laser interferometry with long free mass antennas” (emphasis ours) [40].

Ronald Drever was part of Kafka’s lecture audience. The lecture probably impressed him as he
started developing interferometric techniques on his return to Glasgow. He began with simple tasks,
a result of not having enough money. One of them was measuring the separation between two massive
bars with an interferometer monitoring the vibrations of aluminum bar detectors. The bars were given
to him by the group at the University of Reading, United Kingdom. The bars were two halves of the
Reading group’s split bar antenna experiment [41]. By the end of the 1970s he was leading a team at
Glasgow that had completed a 10-meter interferometer. Then in 1979 Drever was invited to head up
the team at Caltech, where he accepted a part-time post. James Hough took his place in Glasgow.

Likewise, in 1975 the German group at Munich (Winkler, Rüdiger, Schilling, Schnupp,
and Maischberger), under the leadership of Heinz Billing, built a prototype with an arm length
of 3 m [42]. This first prototype displayed unwanted effects such as laser frequency instabilities, lack of
power, a shaky suspension system, etc. The group worked hard to reduce all these unwanted effects by
developing innovative technologies that modern-day gravitational interferometers embraced. In 1983
the same group, now at the Max Planck Institute of Quantum Optics (MPQ) in Garching, improved
their first prototype by building a 30 m arm length instrument [43]. To “virtually” increase the optical
arm length of their apparatus, they “folded” the laser beam path by reflecting the beam backwards
and forwards between the mirrors many times, a procedure that is known as “delay line.” In Weiss’s
words, “the Max Planck group actually did most of the very early interesting development. They came
up with a lot of what I would call the practical ideas to make this thing [gravitational interferometers]
better and better” [44].

After a couple of years of operating the 30-m model, the Garching group was prepared to go for
Big-Science. In effect, in June 1985, they presented a document “Plans for a large Gravitational wave
antenna in Germany” at the Marcel Grossmann Meeting in Rome [45]. This document contains the
first detailed proposal for a full-sized interferometer (3 km). The project was submitted for funding
to the German authorities but there was not sufficient interest in Germany at that time, so it was
not approved.

In the meantime, similar research was undertaken by the group at Glasgow, now under Jim Hough
after Drever’s exodus to Caltech. Following the construction of their 10-m interferometer, the Scots
decided in 1986 to take a further step by designing a Long Baseline Gravitational Wave Observatory [46].
Funds were asked for, but their call fell on deaf ears.

Nevertheless, similar fates bring people together, but it is still up to them to make it happen.
So, three years later, the Glasgow and the Garching groups decided to unite efforts to collaborate
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in a plan to build a large detector. It did not take long for both groups to jointly submit a plan for
an underground 3-km installation to be constructed in the Harz Mountains in Germany, but again
their proposal was not funded [47]. Although reviewed positively, a shortage of funds on both ends
(the British Science and Engineering Research Council (SERC) and the Federal Ministry of Research
and Technology (Bundesministerium für Forschung und Technologie BMFT)) prevented the approval.
The reason for the lack of funds for science in Germany was a consequence of the German re-unification
(1989–1990), as there was a need to boost the Eastern German economy; since private, Western funds
lagged, public funds were funneled to the former German Democratic Republic. Incidentally the Harz
Mountains are the land of German fairy tales.

In spite of this disheartening ruling, the new partners decided to try for a shorter detector and
compensate by employing more advanced and clever techniques [48]. A step forward was finally
taken in 1994 when the University of Hanover and the State of Lower Saxony donated ground to build
a 600-m instrument in Ruthe, 20 km south of Hanover. Funding was provided by several German and
British agencies. The construction of GEO 600 started on 4 September 1995.

The following years of continuous hard work by the British and Germans brought results.
Since 2002, the detector has been operated by the Center for Gravitational Physics, of which the
Max Planck Institute is a member, together with Leibniz Universität in Hanover and Glasgow and
Cardiff Universities.

The first stable operation of the Power Recycled interferometer was achieved in December 2001,
immediately followed by a short coincidence test run with the LIGO detectors, testing the stability
of the system and getting acquainted with data storage and exchange procedures. The first scientific
data run, again together with the LIGO detectors, was performed in August and September of 2002.
In November 2005, it was announced that the LIGO and GEO instruments began an extended joint
science run [49]. In addition to being an excellent observatory, the GEO 600 facility has served as a
development and test laboratory for technologies that have been incorporated in other detectors all
over the world.

12. The (Nearly) . . . Very Improbable Radio Gravitational Observatory—VIRGO

In the late 70s, when Allain Brillet was attracted to the detection of gravitational waves, the field
was ignored by a good number of his colleagues after the incorrect claims of Joe Weber. However,
Weiss’s pioneering work on laser interferometers in the early 1970s seemed to offer more chances of
detection beyond those of Weber bars.

Brillet’s interest in the field started during a postdoc stay at the University of Colorado, Boulder
under Peter L. Bender of the Laboratory of Astrophysics, who, together with Jim Faller, first proposed
the basic concept behind LISA (the Laser Interferometer Space Antenna). Brillet also visited Weiss
at MIT in 1980 and 1981 where he established good links with him that produced, as we shall see,
a fruitful collaboration in the years to come.

Upon Brillet’s return to France in 1982 he joined a group at Orsay UPMC that shared the same
interests. This small group (Allain Brillet, Jean Yves Vinet, Nary Man, and two engineers) experienced
difficulties and had to find refuge in the nuclear physics department of the Laboratoire de Physique de
l’Institute Henri Poincaré, led by Philippe Tourrenc [50].

On 14 November 1983 a meeting on Relativity and Gravitation was organized by the Direction des
Etudes Recherches et Techniques de la Délégation Générale pour l’Armement. One of the objectives of
the meeting was the development of a French project of gravitational wave detectors [51]. There, Brillet
gave a lecture that advocated for the use of interferometers as the best possible detection method [52].
His lecture raised some interest, but French agencies and academic departments were not willing to
invest money or personnel in this area. The technology was not yet available, mainly in terms of power
laser stability, high-quality optical components, and seismic and thermal noise isolation. In addition,
at that point in time there was no significant experimental research on gravitation in France.
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However, interest in gravitational wave detection began to change when Hulse and Taylor
demonstrated the existence of gravitational waves. It was at the Marcel Grossman meeting of 1985
in Rome that Brillet met Adalberto Giazotto, an Italian scientist working at the Universita di Pisa on
the development of suspension systems. At that meeting Giazotto put forward his ideas and the first
results of his super-attenuators, devices that serve as seismic isolators to which interferometer mirrors
could be attached. During the same meeting Jean-Yves Vinet (Brillet’s colleague) gave a talk about his
theory of recycling, a technique invented by Ronald Drever to reduce by a large factor the laser power
required by gravitational interferometers. Conditions for a partnership were given.

Both scientists then approached the research leaders of a German project (the Max Planck Institute
of Quantum Optics in Garching), hoping to collaborate on a big European detector, but they were told
that their project was “close to being financed” and the team at Garching did not accept the idea of
establishing this international collaboration, because it “would delay project approval” [50].

So they decided to start their own parallel project, the VIRGO Interferometer, named for the
cluster of about 1500 galaxies in the Virgo constellation about 50 million light-years from Earth. As no
terrestrial source of gravitational wave is powerful enough to produce a detectable signal, VIRGO
must observe far enough out into the universe to see many of the potential source sites; the Virgo
Cluster is the nearest large cluster.

At that time Brillet was told that CNRS (Le Centre National de la Recherche Scientifique) would
not be able to finance VIRGO’s construction on the grounds that priority was given to the Very Large
Telescope in Chile. Even so, both groups (Orsay and Pisa) did not give in to dismay and continued
their collaboration; in 1989 they were joined by the groups of Frascati and Naples. This time they
decided to submit the VIRGO project to the CNRS (France) and the INFN (Istituto Nazionale di Fisica
Nucleare, Italy) [50].

The VIRGO project was approved in 1993 by the French CNRS and in 1994 by the Italian INFN.
The place chosen for VIRGO was the alluvial plain of Cascina near Pisa. The first problem INFN
encountered was persuading the nearly 50 land title holders to cooperate and sell their parcels to the
government. Gathering the titles took a long time. The construction of the premises started in 1996.
To complicate matters further, VIRGO’s main building was constructed on a very flat alluvial plain,
so it was vulnerable to flooding. That took additional time to remedy [53].

From the beginning it was decided to use the VIRGO interferometer as its own prototype,
in contrast to LIGO, which used MIT and Caltech and the German–British (Geo 600) installations to
test previous designs before integrating them into the main instrument. This strategy was decided on
the grounds that it would be faster to solve problems in actual size directly, rather than spend years on
a smaller prototype and only then face the real difficulties.

Between 1996 and 1999, VIRGO had management problems as the construction was handled
by an association of separate laboratories without a unified leadership, so it was difficult to ensure
proper coordination [42]. As a result, in December 2000 the French CNRS and the Italian INFN
created the European Gravitational Observatory (EGO consortium), responsible for the VIRGO site,
the construction, maintenance, and operation of the detector, and its upgrades.

The construction of the initial VIRGO detector was completed in June 2003 [54]. It was not
until 2007 that VIRGO and LIGO agreed to join in a collaborative search for gravitational waves.
This formal agreement between VIRGO and LIGO comprises the exchange of data, and joint analysis
and co-authorship of all publications concerned. Several joint data-taking periods followed between
2007 and 2011.

Even though a formal cooperation has been established, continued informal cooperation has
been running for years ever since Alain Brillet visited the MIT laboratories back in 1980–1981. As a
matter of fact, VIRGO and LIGO have exchanged a good number of students and postdocs. Just to
name one, David Shoemaker, the current MIT LIGO Laboratory Director, received his PhD on the
Nd-YAG lasers and recycling at Orsay before joining LIGO. Also, in 1990 Jean Yves Vinet provided
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LIGO with a computer simulation program necessary to specify its optical system. LIGO adapted this
computer code.

The year 2016 will be an important milestone for the construction of the advanced VIRGO detector.
After a months-long commissioning period, the advanced VIRGO detector will join the two advanced
LIGO detectors (“aLIGO”) for a first common data-taking period that should include on the order
of one gravitational wave event per month. With all three detectors operating, data can be further
correlated and the direction of the gravity waves’ source should be much more localized.

13. The Origin of the LIGO Project

In the summer of 1975 Weiss went to Dulles Airport in Washington, D.C. to pick up Kip Thorne,
a renowned theoretical physicist from Caltech. The reason for visiting Washington was attending a
NASA meeting on uses of space research in the field of cosmology and relativity. (One of us, GFS,
attended this meeting as a young postdoc and remembers a presentation by a tired Rai Weiss on the
concept of a “Laser Interferometer Space Array” for detecting gravitational waves. It was a very naïve
and ambitious space project presentation and only in about 2035 (60 years later) does it appear likely
to be a working realization. The meeting did open up to me the idea of doing science in space.) Weiss
recalls, “I picked Kip up at the airport on a hot summer night when Washington, D.C., was filled with
tourists. He did not have a hotel reservation so we shared a room for the night” [37].

They did not sleep that night because both spent the night discussing many topics, among them
how to search for gravitational waves.

Weiss remembers that night “We made a huge map on a piece of paper of all the different areas in
gravity. Where was there a future? Or what was the future, or the thing to do?” [55]. Thorne decided
that night that the thing they ought to do at Caltech was interferometric gravitational wave detection.
However, he would need help from an experimental physicist.

Thorne first thought of bringing to the United States his friend Vladimir B. Braginskiı̆, a Russian
scientist who had closely worked with him and, moreover, had already acquired experience in the
search for gravitational waves [56]. However, the Cold War prevented his transfer. Meanwhile, Weiss
suggested another name, Ronald Drever. Weiss had only known Drever from his papers, not in person.
Drever was famous for the Hughes–Drever Experiments, spectroscopic tests of the isotropy of mass
and space confirming the Lorentz invariance aspects of the theory of Relativity, and had also been
the leader of the group that built a “Weber cylinder” at the University of Glasgow [57]. At that time
Drever was planning the construction of an interferometer.

In 1978 Thorne offered a job to Drever at Caltech for the construction of an interferometer. Drever
accepted the offer in 1979, dividing his time between the Scottish university and Caltech. Hiring
Drever half-time soon paid dividends because in 1983 he had already built his first instrument at
Caltech, an interferometer whose “arms” measured 40 m. The instrument was noisier than expected
and new ingenious solutions ranging from improving seismic isolation and laser power increase to
stabilization were attempted. In 1983 Drever began full-time work at Caltech with the idea of gradually
improving and increasing the size of the prototype as it was built and run. In contrast to the Caltech
apparatus, as already mentioned, at MIT Weiss had built a modest 1.5-m prototype with a much
smaller budget than the Californian instrument. In late 1979 the NSF granted modest funds to the
Caltech interferometer group and gave a much smaller amount of money to the MIT team. Soon
Drever and Weiss began to compete to build more sensitive and sophisticated interferometers.

The sensitivity of the interferometers can be enhanced by boosting the power of the lasers and
increasing the optical path of the light beam as it travels through the interferometer arms.

To increase the sensitivity of the interferometer, Weiss put forward the use of an optical delay
line. In the optical delay method, the laser light passes through a small hole in an adjacent wave
divider mirror and the beam is reflected several times before emerging through the inlet port. Figure 9
shows a simplified diagram of the method. In this figure only a couple of light “bounces” are shown
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between the mirrors to maintain clarity of the scheme, but in reality the beam is reflected multiple
times. This method effectively increases the length of the interferometer.

Figure 9. Optical delay method.

In the meantime Drever developed an arrangement that utilized “Fabry–Pérot cavities.” In this
method the light passes through a partially transmitting mirror to enter a resonant cavity flanked at
the opposite end by a fully reflecting mirror. Subsequently, the light escapes through the first mirror,
as shown in Figure 10.

Figure 10. Fabry–Pérot method.

As already mentioned, Weiss experimented with an interferometer whose two L-shaped “arms”
were 1.5 m long. Drever, meanwhile, had already built and operated a 40-m interferometer. With the
Caltech group appearing to be taking the lead, Weiss decided in 1979 to “do something dramatic”.
That year Weiss held talks with Richard Isaacson, who at the time served as program director of the
NSF Gravitational Physics division. Isaacson had a very strong professional interest in the search for
gravitational waves as he had developed a mathematical formalism to approximate gravitational waves
solutions from Einstein’s equations of General Relativity in situations where the gravitational fields are
very strong [58]. Weiss offered to conduct a study in collaboration with industry partners to determine
the feasibility and cost of an interferometer whose arms should measure in kilometers. In turn Isaacson
receive a document to substantiate a device on a scale of kilometers, with possible increased funding
from the NSF. The study would be funded by NSF. The study by Weiss and colleagues took three years
to complete. The produced document was entitled “A study of a long Baseline Gravitational Wave
Antenna System,” co-authored by Peter Saulson and Paul Linsay [59]. This fundamental document is
nowadays known as the “The Blue Book” and covers very many important issues in the construction
and operation of such a large interferometer. The Blue Book was submitted to the NSF in October 1983.
The proposed budget was just under $100 million to build two instruments located in the United States.
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Before “The Blue Book” was submitted for consideration to the NSF, Weiss met with Thorne and
Drever at a Relativity congress in Italy. There they discussed how they could work together—this
was mandatory, because the NSF would not fund two megaprojects on the same subject and with the
same objective. However, from the very beginning it was clear that Drever did not want to collaborate
with Weiss, and Thorne had to act as mediator. In fact, the NSF settled matters by integrating the MIT
and Caltech groups together in a “shotgun wedding” so the “Caltech–MIT” project could be jointly
submitted to the NSF [55].

14. The LIGO Project

The Caltech–MIT project was funded by NSF and named the “Laser Interferometer
Gravitational-Wave Observatory”, known by its acronym LIGO. The project would be led by a
triumvirate of Thorne, Weiss, and Drever. Soon interactions between Drever and Weiss became
difficult because, besides the strenuous nature of their interaction, both had differing opinions on
technical issues.

During the years 1984 and 1985 the LIGO project suffered many delays due to multiple discussions
between Drever and Weiss, mediated when possible by Thorne. In 1986 the NSF called for the
dissolution of the triumvirate of Thorne, Drever, and Weiss. Instead Rochus E. Vogt was appointed as
a single project manager [60].

In 1988 the project was finally funded by the NSF. From that date until the early 1990s, project
progress was slow and underwent a restructuring in 1992. As a result, Drever stopped belonging to the
project and in 1994 Vogt was replaced by a new director, Barry Clark Barish, an experimental physicist
who was an expert in high-energy physics. Barish had experience in managing big projects in physics.
His first activity was to review and substantially amend the original five-year old NSF proposal. With
its new administrative leadership, the project received good financial support. Barish’s plan was to
build the LIGO as an evolutionary laboratory where the first stage, “initial LIGO” (or iLIGO), would
aim to test the concept and offer the possibility of detecting gravitational waves. In the second stage
(“aLIGO” or advanced LIGO), wave detection would be very likely (see Figure 11).

 
Figure 11. Advanced LIGO interferometer design concept. Figure made after T.F. Carruthers and
D.H. Reitze, “LIGO”, Optics & Photonics News, March 2015.
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Two observatories, one in Hanford in Washington State and one in Livingston, Louisiana, would
be built. Construction began in late 1994 and early 1995, respectively, and ended in 1997. Once the
construction of the two observatories was complete, Barish suggested two organizations to be funded:
the laboratory LIGO and scientific collaboration LIGO (LIGO Scientific Collaboration (LSC)). The first
of these organizations would be responsible for the administration of laboratories. The second
organization would be a scientific forum headed by Weiss, responsible for scientific and technological
research. LSC would be in charge of establishing alliances and scientific collaborations with Virgo
and GEO600.

Barish’s idea to make LIGO an evolutionary apparatus proved in the end to pay dividends.
The idea was to produce an installation whose parts (vacuum system, optics, suspension systems,
etc.) could always be readily improved and buildings that could house those ever-improving
interferometer components.

In effect, LIGO was incrementally improved by advances made in its own laboratories and those
due to associations with other laboratories (VIRGO and GEO600). To name some: Signal-recycling
mirrors were first used in the GEO600 detector, as well as the monolithic fiber-optic suspension system
that was introduced into advanced LIGO. In brief, LIGO detection was the result of a worldwide
collaboration that helped LIGO evolve into its present remarkably sensitive state.

15. Looking Back Over the Trek

The initial LIGO operated between 2002 and 2010 and did not detect gravitational waves.
The upgrade of LIGO (advanced LIGO) began in 2010 to replace the detection and noise suppression
and improve stability operations at both facilities. This upgrade took five years and had contribution
from many sources. For example, the seismic suspension used in aLIGO is essentially the design that
has been used in VIRGO since the beginning. While advanced VIRGO is not up and running yet,
There have been many technological contributions from both LSC scientists on the European side
and VIRGO.

aLIGO began in February 2015 [61]. The team operated in “engineering mode”—that is, in test
mode—and in late September began scientific observation [62]. It did not take many days for LIGO to
detect gravitational waves [2]. Indeed, LIGO detected the collision of two black holes of about 30 solar
masses collapsed to 1300 million light years from Earth.

Even the latest search for gravitational waves was long and storied. The upgrade to aLIGO cost
$200 million, and preparing it took longer than expected, so the new and improved instrument’s start
date was pushed back to 18 September 2015.

16. The Event: 14 September 2015

On Sunday September 13th the LIGO team performed a battery of last-minute tests. “We yelled,
we vibrated things with shakers, we tapped on things, we introduced magnetic radiation, we did all
kinds of things”, one of the LIGO members said. “And, of course, everything was taking longer than
it was supposed to”. At four in the morning, with one test still left to do—a simulation of a truck
driver hitting his brakes nearby—we stopped for the night. We went home, leaving the instrument
to gather data in peace and quiet. The signal arrived not long after, at 4:50 a.m. local time, passing
through the two detectors within seven milliseconds of each other. It was four days before the start of
Advanced LIGO’s first official run. It was still during the time meant for engineering tests, but nature
did not wait.

The signal had been traveling for over a billion years, coming from a pair of 30-solar mass black
holes orbiting around their common center of mass and slowly drawing into a tighter and tighter orbit
from the energy being lost by gravitational radiation. The event was the end of this process —formed
from final inspiral, the merger of the black holes to form a larger one, and the ring down of that new
massive black hole. All of this lasted mere thousandths of a second, making the beautiful signals
seen by both aLIGO detectors which immediately answered several questions: Are there gravitational
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waves and can we detect them? Is General Relativity likely right for strong fields? Are large black
holes common?

The waveform detected by both LIGO observatories matched the predictions of General Relativity
for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of
around 36 and 29 solar masses and the subsequent “ringdown” of the single resulting black hole.
See Figures 12 and 13 for the signals and GR theoretical predictions.

Figure 12. Showing the phases: binary orbits inspiraling, black holes merging, and final black hole
ringing down to spherical or ellipsoidal shape [2].

Figure 13. LIGO measurement of the gravitational waves at the Livingston (right) and Hanford (left)
detectors, compared with the theoretical predicted values from General Relativity [2].

The signal was named GW150914 (from “Gravitational Wave” and the date of observation).
It appeared 14 September 2015 and lasted about 0.2 s. The estimated distance to the merged black
holes is 410 +160 −180 Mpc or 1.3 billion light years, which corresponds to a redshift of about z = 0.09.
The interesting thing is that the estimated energy output of the event in gravitational waves is about
(3.0 +/− 0.5) M� × c2. That is three times the rest mass of our sun converted into energy.

More recently, the aLIGO team announced the detection and analysis of another binary black
hole merger event, GW151226. This event is apparently the merger of a 14 solar mass black hole
with a 7.5 solar mass black hole, again at a distance of about 440 Mpc (about 1.4 billion light years).
An interesting feature is that one of the black holes is measured to have significant spin, s = 0.2. There is
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also a report of a candidate event that occurred between the two confirmed events and had black
holes and energy intermediate to the two confirmed events. These additional reports also show the
beginning of measuring rates and the distribution of black hole binary systems. It has long been
expected that as aLIGO improves its design sensitivity (about three times better than this first run),
that a stable set of events would include the merger of binary neutron stars, for whose inventory we
have better estimates. These early events predict that there will be a whole distribution of gravitational
wave events observed in the future, from neutron star mergers, black hole mergers, and even neutron
star–black hole mergers, see Figure 14.

 

Figure 14. Showing the initial range of LIGO and the anticipated range of aLIGO. The volume is much
greater and the anticipated rate of events and detections are expected to scale up with the volume.
Note the large number of galaxies included in the observational volume. The anticipated factor of 3 in
sensitivity should correspondingly increase the event rate by up to nine times.

Albert Einstein originally predicted the existence of gravitational waves in 1916, based upon
General Relativity, but wrote that it was unlikely that anyone would ever find a system whose behavior
would be measurably influenced by gravitational waves. He was pointing out that the waves from
a typical binary star system would carry away so little energy that we would never even notice that
the system had changed—and that is true. The reason we can see it from the two black holes is that
they are closer together than two stars could ever be. The black holes are so tiny and yet so massive
that they can be close enough together to move around each other very, very rapidly. Still, to get
such a clear signal required a very large amount of energy and the development of extraordinarily
sensitive instruments. This clearly settles the argument about whether gravitational waves really exist;
one major early argument was about whether they carried any energy. They do! That was proved
strongly and clearly.

Some analyses have been carried out to establish whether or not GW150914 matches with a binary
black hole configuration in General Relativity [63]. An initial consistency test encompasses the mass
and spin of the end product of the coalescence. In General Relativity, the final black hole product of
a binary coalescence is a Kerr black hole, which is completely described by its mass and spin. It has
been verified that the remnant mass and spin from the late-stage coalescence deduced by numerical
relativity simulations, inferred independently from the early stage, are consistent with each other,
with no evidence for disagreement from General Relativity. There is even some data on the ring
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down phase, but we can hope for a better event to provide quality observations to test this phase of
General Relativity.

GW150914 demonstrates the existence of black holes more massive than �25M�, and establishes
that such binary black holes can form in nature and merge within a Hubble time. This is of some
surprise to stellar theorists, who predicted smaller mass black holes would be much more common.

17. Conclusions

This observation confirms the last remaining unproven prediction of General Relativity
(GR)—gravitational waves—and validates its predictions of space–time distortion in the context
of large-scale cosmic events (known as strong field tests). It also inaugurates the new era of
gravitational-wave astronomy, which promises many more observations of interesting and energetic
objects as well as more precise tests of General Relativity and astrophysics. While it is true that we can
never rule out deviations from GR at the 100% level, all three detections so far agree with GR to an
extremely high level (>96%). This will put constraints on some non-GR theories and their predictions.

With such a spectacular early result, others seem sure to follow. In the four-month run, 47 days’
worth of coincident data was useful for scientific analysis, i.e., this is data taken when both LIGOs
were in scientific observation mode. The official statement is that these 47 days’ worth of data have
been fully analyzed and no further signals lie within them. We can expect many more events once the
detectors are running again.

For gravitational astronomy, this is just the beginning. Soon, aLIGO will not be alone. By the end
of the year VIRGO, a gravitational-wave observatory in Italy, should be operating to join observations
and advanced modes. Another detector is under construction in Japan and talks are underway to create
a fourth in India. Most ambitiously, a fifth, orbiting, observatory, the Evolved Laser Interferometer
Space Antenna, or e-LISA, is on the cards. The first pieces of apparatus designed to test the idea of
e-LISA are already in space and the first LISA pathfinder results are very encouraging.

Together, by jointly forming a telescope that will permit astronomers to pinpoint whence the
waves come, these devices will open a new vista onto the universe. (On the science side, the data
is analyzed jointly by members of both LIGO and VIRGO, even though these data only come from
LIGO. This is due to the analysis teams now being fully integrated. As this is not widely known,
people do not realize that there is a large contribution from VIRGO scientists to the observations and
to the future.) As technology improves, waves of lower frequency—corresponding to events involving
larger masses—will become detectable. Eventually, astronomers should be able to peer at the first
380,000 years after the Big Bang, an epoch of history that remains inaccessible to every other kind of
telescope yet designed.

The real prize, though, lies in proving Einstein wrong. For all its prescience, the theory of
relativity is known to be incomplete because it is inconsistent with the other great 20th-century theory
of physics, quantum mechanics. Many physicists suspect that it is in places where conditions are most
extreme—the very places that launch gravitational waves—that the first chinks in relativity’s armor
will be found, and with them we will get a glimpse of a more all-embracing theory.

Gravitational waves, of which Einstein remained so uncertain, have provided direct evidence
for black holes, about which he was long uncomfortable, and may yet yield a peek at the Big Bang,
an event he knew his theory was inadequate to describe. They may now lead to his theory’s unseating.
If so, its epitaph will be that in predicting gravitational waves, it predicted the means of its own demise.
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Abstract: In the last decade, the study of the overall shape of the universe, called Cosmic Topology,
has become testable by astronomical observations, especially the data from the Cosmic Microwave
Background (hereafter CMB) obtained by WMAP and Planck telescopes. Cosmic Topology involves
both global topological features and more local geometrical properties such as curvature. It deals with
questions such as whether space is finite or infinite, simply-connected or multi-connected, and smaller
or greater than its observable counterpart. A striking feature of some relativistic, multi-connected
small universe models is to create multiples images of faraway cosmic sources. While the last CMB
(Planck) data fit well the simplest model of a zero-curvature, infinite space model, they remain
consistent with more complex shapes such as the spherical Poincaré Dodecahedral Space, the flat
hypertorus or the hyperbolic Picard horn. We review the theoretical and observational status of
the field.
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1. Introduction

The idea that the universe might have a non-trivial topology and, if sufficiently small in extent,
display multiple images of faraway sources, was first discussed in 1900 by Karl Schwarzschild (see [1]
for reference and English translation). With the advent of Einstein’s general relativity theory (see, e.g.,
the recent historical overview in [2]) and the discoveries of non-static universe models by Friedmann
and Lemaître in the decade 1922–1931, the face of cosmology definitively changed. While Einstein’s
cosmological model of 1917 described space as the simply-connected, positively curved hypersphere
S3, de Sitter in 1917 and Lemaître in 1927 used the multi-connected projective sphere P3 (obtained
by identifying opposite points of S3) for describing the spatial part of their universe models. In 1924,
Friedmann [3] pointed out that Einstein’s equations are not sufficient for deciding if space is finite or
infinite: Euclidean and hyperbolic spaces, which in their trivial (i.e., simply-connected) topology are
infinite in extent, can become finite (although without an edge) if one identifies different points—an
operation which renders the space multi-connected. This opens the way to the existence of phantom
sources, in the sense that at a single point of space an object coexists with its multiple images. The whole
problem of cosmic topology was thus posed, but as the cosmologists of the first half of 20th century
had no experimental means at their disposal to measure the topology of the universe, the vast majority
of them lost all interest in the question. A revival of interest in multi-connected cosmologies arose
in the 1970s, under the lead of theorists who investigated several kinds of topologies (see [4] for an
exhaustive review and references, in which the term “Cosmic Topology” was coined). However, most
cosmologists either remained completely ignorant of the possibility, or regarded it as unfounded, until
the 1990s when data on the CMB provided by space telescopes gave access to the largest possible
volume of the observable universe. Since then, hundreds of articles have considerably enriched the
field of theoretical and observational cosmology.
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2. A Theoretical Reminder

At very large scale our Universe seems to be correctly described by one of the Friedmann-Lemaître
(hereafter FL) models, namely homogeneous and isotropic solutions of Einstein’s equations, of which
the spatial sections have constant curvature. They fall into three general classes, according to the sign of
curvature. In most cosmological studies, the spatial topology is assumed to be that of the corresponding
simply-connected space: the hypersphere, Euclidean space or 3D-hyperboloid, the first being finite and
the other two infinite. However, there is no particular reason for space to have a trivial topology: the
Einstein field equations are local partial differential equations which relate the metric and its derivatives
at a point to the matter-energy contents of space at that point. Therefore, to a metric element solution
of Einstein field equations, there are several, if not an infinite number, of compatible topologies, which
are also possible models for the physical universe. For example, the hypertorus T3 and the usual
Euclidean space E3 are locally identical, and relativistic cosmological models describe them with the
same FL equations, even though the former is finite in extent while the latter is infinite. Only the
boundary conditions on the spatial coordinates are changed. The multi-connected FL cosmological
models share exactly the same kinematics and dynamics as the corresponding simply-connected ones;
in particular, the time evolutions of the scale factor are identical.

In FL models, the curvature of physical space (averaged on a sufficiently large scale) depends
on the way the total energy density of the universe may counterbalance the kinetic energy of the
expanding space. The normalized density parameter Ω0, defined as the ratio of the actual energy
density to the critical value that strictly Euclidean space would require, characterizes the present-day
contents (matter, radiation and all forms of energy) of the universe. If Ω0 is greater than 1, then the
space curvature is positive and the geometry is spherical; if Ω0 is smaller than 1, the curvature is
negative and geometry is hyperbolic; eventually Ω0 is strictly equal to 1 and space is locally Euclidean
(currently said flat, although the term can be misleading).

Figure 1. The Illusion of the Universal Covering Space. In the case of a 2D torus space, the fundamental
domain, which represents real space, is the interior of a rectangle, whose opposite edges are identified.
The observer O sees rays of light from the source S coming from several directions. He has the illusion
of seeing distinct sources S1, S2, S3, etc., distributed along a regular canvas which covers the UC
space—an infinite plane.

Independently of curvature, a much discussed question in the history of cosmology (and also
philosophy) is to know whether space is finite or infinite in extent. Of course no physical measure can
ever prove that space is infinite, but a sufficiently small, finite space model could be testable. Although
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the search for space topology does not necessarily solve the question of finiteness, it provides many
multi-connected universe models of finite volume.

The effect of a non-trivial topology on a cosmological model is equivalent to considering the
observed space as a simply-connected 3D-slice of space-time, known as the “universal covering space”
(hereafter UC) being filled with repetitions of a given shape, the “fundamental domain”, which is finite
in some or all directions, for instance a convex polyhedron; by analogy with the two-dimensional case,
we say that the fundamental domain tiles the UC space.

There is a subgroup of isometries acting on the UC which produces its tiling by these copies (for
such group action, see the basic works [5,6]). Physical fields repeat their configuration in every copy
and thus can be viewed as defined on the UC space, but subject to periodic boundary conditions,
which are the matching rules between neighbouring tiles. The copies around a fixed one carry the
multiple images of objects from the cosmos. By analogy with crystallography, the UC plays the role
of the macroscopic crystal, the cosmos plays the role of the fundamental unit (see Figure 1). But in
contrast to crystallography, the UC in topology can be Euclidean, spherical or hyperbolic. For the
flat and hyperbolic geometries, there are infinitely many copies of the fundamental domain; for the
spherical geometry with a finite volume, there are a finite number of tiles.

Figure 2. The Poincaré Dodecahedral Space can be described as the interior of a spherical ball whose
surface is tiled by 12 curved regular pentagons. When one leaves through a pentagonal face, one
returns to the ball through the opposite face after having turned by 36˝. As a consequence, the space is
finite but without boundaries, therefore one can travel through it indefinitely. One has the impression
of living in a UC space 120 times larger, paved with dodecahedra that multiply the images like a hall
of mirrors. The return of light rays that cross the walls produces optical mirages: a single object has
several images. This numerical simulation calculates the closest phantom images of the Earth, which
would be seen in the UC space (Image courtesy of J. Weeks).

There are seventeen multi-connected Euclidean spaces (for an exhaustive study, see [7]), the
simplest of which being the hypertorus T3, whose fundamental domain is a parallelepiped of which
opposite faces are identified by translations. Seven of these spaces have an infinite volume, ten are of
finite volume, six of them being orientable hypertori. All of them could correctly describe the spatial
part of the flat universe models, as they are consistent with recent observational data which constrain
the space curvature to be very close to zero. Note that in current inflationary scenarios for the big bang,
one can always have a nearly flat universe at present without fine-tuning the initial value of the spatial
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curvature, while considering exactly flat models corresponds to fine-tuning the initial curvature to be
strictly zero.

In spaces with non-zero curvature, the presence of a length scale (the curvature radius)
precludes topological compactification at an arbitrary scale. The size of the space must now reflect its
curvature, linking topological properties to the total energy density Ω0. All spaces of constant positive
curvature are finite whatever be their topology. The reason is that the universal covering space—the
simply-connected hypersphere S3—is itself finite. There is a countable infinity of spherical spaceforms
(for a complete classification, see [8]), but there is only a finite set of “well-proportioned” topologies, i.e.,
those with roughly comparable sizes in all directions, which are of a particular interest for cosmology.
As a now celebrated example, let us mention the Poincaré Dodecahedral Space (hereafter PDS),
obtained by identifying the opposite pentagonal faces of a regular spherical dodecahedron after
rotating by 36˝ in the clockwise or counterclockwise direction around the axis orthogonal to the face,
depending on which handedness the physical nature favors [9], see Figure 2. Its volume is 120 times
smaller than that of the hypersphere with the same curvature radius.

Eventually there is also an infinite (but non countable) number of hyperbolic manifolds, with
finite or infinite volumes. Their classification is not well understood, but the volumes of the compact
hyperbolic space forms are bounded below by V = 0.94271 (in units of the curvature radius), which
correspond to the so-called Weeks manifold.

The computer program CurvedSpaces [10] is especially useful to depict the rich structure of
multi-connected manifolds with any curvature.

3. Probing Cosmic Topology

The observable universe is the interior of a sphere centered on the observer and whose radius
is that of the cosmological horizon—roughly the radius of the last scattering surface (hereafter LSS),
presently estimated at 14.4 Gpc. Cosmic Topology aims to describe the shape of the whole universe.
One could think that the whole universe is necessarily greater than the observable one, as it would
obviously be the case if space was infinite, for instance the simply-connected flat or hyperbolic space.
Then the observable universe would be an infinitesimal patch of the whole universe and, although it
has long been the standard “mantra” of many theoretical cosmologists, this is not and will never be a
testable hypothesis.

The whole universe can also be finite (without an edge), e.g., a hypersphere or a closed
multi-connected space, but greater than the observable universe. In that case, one easily figures
out that if whole space widely encompasses the observable one, no signature of its finiteness will show
in the experimental data. But if space is not too large, or if space is not globally homogeneous (as
is permitted in many space models with multi-connected topology), and if the observer occupies a
special position, some imprints of the space finiteness could be observable.

Surprisingly enough, the whole space could be smaller than the observable universe, due to the
fact that space can be both multi-connected, have a small volume and produce topological lensing.
This is the only case where there are a lot of testable possibilities, whatever the curvature of space.

The present observational constraints on the Ω0 parameter favor a spatial geometry that is nearly
flat with a 0.4% margin of error [11]. Note that the constraints on the curvature parameter can be
looser if we consider a general form of dark energy (not the cosmological constant), which leaves
rooms to consider positively or negatively curved cosmological models that are usually regarded
as being excluded. However, even with the curvature so severely constrained by cosmological data,
there are still possible multi-connected topologies that support positively curved, negatively curved,
or flat metrics. Sufficiently “small” universe models would generate multiple images of some light
sources, in such a way that the hypothesis of multi-connected topology can be tested by astronomical
observations. The smaller the space, the easier it is to observe the multiple images of luminous
sources in the sky (generally not seen at the same age, except for the CMB spots). Note, however, the
coincidence problem that occurs in order to get an observable non-trivial topology: for flat space, we

151



Universe 2016, 2, 1

need to have the topology scale length near the horizon scale, while for curved spaces, the curvature
radius needs to be near the horizon scale. However, there are so many other, non-explained coincidence
problems in standard cosmology that it should not deviate our attention from the possibility of a
detectable topology.

How do the present observational data constrain the possible multi-connectedness of the universe
and, more generally, what kinds of tests are conceivable (see [12] for a non-technical book about all
aspects of topology and its applications to cosmology)?

Different approaches have been proposed for extracting information about the topology of the
universe from experimental data. One approach is to use the 3D distribution of astronomical objects
such as galaxies, quasars and galaxy clusters: if the whole universe is finite and small enough, we
should be able to see “all around” it because the photons might have crossed it once or more times.
In such a case, any observer might recognize multiple images of the same light source, although
distributed in different directions of the sky and at various redshifts, or to detect specific statistical
properties in the distribution of faraway sources. Various methods of “cosmic crystallography”, initially
proposed in [13], have been widely developed by other groups ([14] and references therein). However,
for plausible small universe models, the first signs of topological lensing would appear only at pretty
high redshift, say z « 2. The main limitation of cosmic crystallography is that the presently available
catalogs of observed sources at high redshift are not complete enough to perform convincing tests for
topology. For instance, looking for nontoroidal topological lensing, [15] applied the crystallographic
method to the SDSS quasar sample; though they found no robust signature, cosmological interpretation
of the result was prohibited by the data incompleteness and by the uncertainty in quasar physics.
On the other hand, [16] proposed to use deep surveys of distant (at redshifts z ~ 6) starburst galaxies
for an independent test of the cubic hypertorus model. Their calculation showed that even photometric
redshifts would suffice in this purpose, which makes their strategy a realistic and interesting one.

The other approach uses the 2D CMB maps (for a review, [17]). The last scattering surface (LSS)
from which the CMB is released represents the most distant source of photons in the universe, hence
the largest scales with which the topology of the universe can be probed.

The idea that a small universe model could lead to a suppression of power on large angular
scales in the fluctuation spectrum of the CMB had been proposed in the 1980s [18]: in some way, space
would be not big enough to sustain long wavelengths. After the release of COBE data in 1992 and
the higher resolution and sensitivity of WMAP (2003), there were indeed indications of low power
on large scales which could have had a topological origin, and many authors used it to constrain the
models. The best fits between theoretical power spectra computed for various topologies and the
observed one were obtained with the positively curved Poincaré Dodecahedral Space [9,19,20] and the
flat hypertorus [21]. In addition, it was shown [22] that the low-order multipoles tended to be relatively
weak in “well-proportioned” spaces, i.e., whose dimensions are approximately equal in all directions.
Some globally inhomogeneous topologies can also reproduce the large-angle CMB power suppression if
the location of the observer is so adjusted that his fundamental domain becomes well-proportioned [23].
However, this possibility was not borne out by detailed real- and harmonic-space analyses in two
dimensions, so that the arguments based on the angular power spectrum and favoring small universe
models failed [24]. In any case, to gain all the possible information from the correlations of CMB
anisotropies, one has to consider the full covariance matrix rather than just the power spectrum.

Indeed the main imprint of a non trivial topology on the CMB is well-known in the case when the
characteristic topological length scale (called the injectivity radius) is smaller than the radius of the
LSS: the crossings of the LSS with its topological images give rise to pairs of matched circles of equal
radii, centered at different points on the CMB sky, and exhibiting correlated patterns of temperature
variations [25], see Figure 3. For instance, the PDS model predicts six pairs of antipodal circles with an
angular radius comprised between 5˝ and 55˝ (sensitively depending on the cosmological parameters)
and a relative phase of 36˝.
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Figure 3. The circles-in-the-sky method is illustrated here in a 2D torus space. The fundamental domain
is a square (with a dotted outline), all of the red points are copies of the same observer. The two large
circles (which are normally spheres in a three-dimensional space) represent the last scattering surfaces
(LSS) centered on two copies of the same observer. One is in position (0,0), its copy is in position (3,1)
in the universal covering space. The intersection of the circles is made up of the two points A and B (in
three dimensions, this intersection is a circle). The observers (0,0) and (3,1), who see the two points
(A,B) from two opposite directions, are equivalent to a unique observer at (0,0) who sees two identical
pairs (A,B) and (A1,B1) in different directions. In three dimensions, the pairs of points (A,B) and (A1,B1)
become a pair of identical circles, whose radius r31 depends on the size of the fundamental domain
and the topology.

4. Results and Discussion

Such “circles-in-the-sky” searches have been looked for in WMAP maps by several groups,
using various statistical indicators and massive computer calculations, and interpreting their results
differently. Some authors [26] claimed that most of non-trivial topologies, including PDS and T3, were
ruled out: they searched for antipodal or nearly antipodal pairs of circles in the WMAP data and found
no such circles. However, their analysis could not be applied to more complex topologies, for which
the matched circles deviate strongly from being antipodal. On the other hand, other groups claimed to
have found hints of multi-connected topology, using different statistical indicators [27–29].

Most studies have emphasized searches for fundamental domains with antipodal correlations.
The search for matched circle pairs that are not back-to-back has nevertheless been carried out recently,
with no obvious topological signal appearing in the seven-year WMAP data [30]. The statistical
significance of such results still has to be clarified. In any case, a lack of nearly matched circles does
not exclude a multi-connected topology on scale less than the horizon radius: detectable topologies
may produce circles of small radii which are statistically hard to detect and current analysis of CMB
sky maps could have missed even antipodal matching circles, because various effects may damage or
even destroy the temperature matching.

Other methods for experimental detection of non-trivial topologies have thus been proposed and
used to analyze the experimental data, such as the multipole vectors and the likelihood (Bayesian)
method. The latter ameliorates some of the spoiling effects of the temperature correlations such as the
integrated Sachs-Wolfe and Doppler contributions [31].

The most up-to-date study based on CMB temperature correlations used the Planck 2013 intensity
data [32]. In that work, they applied two techniques: first, a direct likelihood calculation of (a very
few) specific topological models; second, a search for the expected repeated “circles in the sky”,
calibrated by simply-connected simulations. Both of these showed that the scale of any possible
topology must exceed roughly the comoving distance to the LSS, χrec. For the cubic torus, they found
that the radius of the largest sphere inscribed in the topological fundamental domain must be Ri > 0.92
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χrec. The matched-circle limit on topologies predicting back-to-back circles larger than 15˝ in angular
radius and assuming that the relative orientation of the fundamental domain and mask allows its
detection was Ri > 0.94 χrec at the 99% confidence level.

Finally, it is now widely understood that the polarization of the CMB can provide a lot of
additional informations for reconstructing the cosmological model. Riazuelo et al. [33] were the first to
show how the polarization could also be used to put additional constraints on space topology and a
little bit tighter than those coming from temperature intensity. Maps of CMB polarization from the
2015 release of Planck data [34] provided the highest-quality full-sky view of the LSS available to date.
However their study specialized only to flat spaces with cubic toroidal (T3) and slab (T1) topologies.
These searches yield no detection of a compact topology with a scale below the diameter of the LSS.
More precisely, Ri > 0.97 χrec for the T3 cubic torus and Ri > 0.56 χrec for the T1 slab.

5. Conclusions

The overall topology of the universe has become an important concern in astronomy and
cosmology. Even if particularly simple and elegant models such as the PDS and the hypertorus
are now claimed to be ruled out at a subhorizon scale, many more complex models of multi-connected
space cannot be eliminated as such. In addition, even if the size of a multi-connected space is larger
(but not too much) than that of the observable universe, we could still discover an imprint in the
CMB, even while no pair of circles, much less ghost galaxy images, would remain. The topology
of the universe could therefore provide information on what happens outside of the cosmological
horizon [35].

Whatever the observational constraints, a lot of unsolved theoretical questions remain. The most
fundamental one is the expected link between the present-day topology of space and its quantum
origin, since classical general relativity does not allow for topological changes during the course of
cosmic evolution. Theories of quantum gravity should allow us to address the problem of a quantum
origin of space topology. For instance, in quantum cosmology, the question of the topology of the
universe is completely natural. Quantum cosmologists seek to understand the quantum mechanism
whereby our universe (as well as other ones in the framework of multiverse theories) came into being,
endowed with a given geometrical and topological structure. We do not yet have a correct quantum
theory of gravity, but there is no sign that such a theory would a priori demand that the universe
have a trivial topology. Wheeler first suggested that the topology of space-time might fluctuate at a
quantum level, leading to the notion of a space-time foam [36]. Additionally, some simplified solutions
of the Wheeler-de Witt equations for quantum cosmology show that the sum over all topologies
involved in the calculation of the wavefunction of the universe is dominated by spaces with small
volumes and multi-connected topologies [37]. In the approach of brane worlds in string/M-theories,
the extra-dimensions are often assumed to form a compact Calabi-Yau manifold; in such a case, it
would be strange that only the ordinary, large dimensions of our 3-brane would not be compact like
the extra ones. However, still at an early stage of development, string quantum cosmology can only
provide heuristic indications on the way multi-connected spaces would be favored.
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Abstract: We review results about the development and asymptotic nature of singularities in
“brane–bulk” systems. These arise for warped metrics obeying the five-dimensional Einstein equations
with fluid-like sources, and including a brane four-metric that is either Minkowski, de Sitter, or Anti-de
Sitter. We characterize all singular Minkowski brane solutions, and look for regular solutions with
nonzero curvature. We briefly comment on matching solutions, energy conditions, and finite Planck
mass criteria for admissibility, and we briefly discuss the connection of these results to ambient theory.
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1. Introduction

The singularity problem in the setup of brane cosmological models is concerned with the existence
and nature of the dynamical singularities that may arise when one considers the evolution of metrics
and fields propagating in spaces with “large extra dimensions” containing certain lower-dimensional
slices. Such systems obey higher-dimensional Einstein (or possibly similar string gravity) equations,
with the standard interactions usually confined in a four-dimensional slice (the brane) sitting in
a five-(or higher-)dimensional spacetime (the bulk). Such “brane–bulk” systems are used in an essential
way as a means to overcome the hierarchy problem [1–3], and in a crucial way in approaches to solve
the cosmological constant problem [4,5].

In this paper we provide a concise overview of the various ramifications and results that have
been obtained in recent years about the singularity problem in such contexts, basically using the
methods developed in References [6–9]. Previous work on this subject can be found in [10]. We also
briefly discuss the connection of these results with the ambient approach to the singularity problem
towards the end of this work.

We write the bulk metric in the form,

g5 = a2(Y)g4 + dY2, (1)

where g4 represents the brane metric, taken to be either Minkowski, de Sitter (dS) or anti-de Sitter (AdS),

g4 = −dt2 + f 2
k g3, (2)

with
g3 = dr2 + h2

k g2, g2 = dθ2 + sin2 θdϕ2, (3)
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where fk = cosh(Ht)/H or cos(Ht)/H (H−1 is the de Sitter (or AdS) curvature radius) and hk = sin r
or sinh r, for dS or AdS respectively.

There are two interesting interpretations of the metric (1) that are relevant in the present
context. The first is of course the standard one; namely, to view the brane as a domain wall solution,
a hypersurface in the five-space, the bulk. This is the most common interpretation of the geometric
setup, across the entire braneworld literature (cf. [11] and references therein). There is, however, a
different one that is useful in certain contexts (cf. especially the discussion towards the end of the
present paper), namely, to view the metric (1) as a cone metric, or a warped product metric [12,13].

Whatever the geometric interpretation, we impose the five-dimensional Einstein equations on the
metric (1),

GAB = κ2
5TAB, (4)

where we shall usually take the energy–momentum tensor to be that of an analog of a five-dimensional
(5d) fluid (with the Y coordinate playing the role of time), or a combination of fluids, possibly
exchanging energy. In fact, it is an interesting result that our 5d-fluid must by necessity be an anisotropic
pressure fluid (such fluids have recently emerged as important instability factors in other contexts
in string cosmology, for example in the possible disruption of the isotropic fluid stability of simple
ekpyrotic cyclic models [14]). To see this, we start with the standard energy–momentum tensor for the
5d-fluid in the form,

TAB = (ρ + P)uAuB − PgAB, (5)

where A, B =1, 2, 3, 4,5 and uA = (0, 0, 0, 0, 1), with the fifth coordinate corresponding to Y, and seek
an anisotropic pressure form,

TAB = (ρ0 + p0)u0
Au0

B + p0gαβδα
Aδ

β
B + pYg55δ5

Aδ5
B, (6)

where u0
A = (a(Y), 0, 0, 0, 0) and α, β = 1, 2, 3, 4. When we combine (5) with (6), we find that the

5d-fluid has an anisotropic energy–momentum tensor of the form [7,9],

TAB = −Pgαβδα
Aδ

β
B +

P
γ

g55δ5
Aδ5

B, (7)

when P = γρ. We see that isotropic fluids in this context correspond to the limiting case of
a cosmological constant-like equation of state, γ → −1. We can then satisfy the various energy
conditions by restricting γ to take values in certain intervals [7,9].

It is important to further point out that in this work—except for a fixation of the braneworld
four-geometry (either Minkowski, dS, or AdS, respecting 4d maximal symmetry)—we do not fix the
bulk five-geometry other than take it to be of the above warped type near the (presumed) singularity.
Hence, only the asymptotic geometry of the bulk is found and dictated by the five-dimensional Einstein
equations with the fluid source discussed above. Away from such an open neighborhood around
the singularity, the bulk space geometry remains compatible with that requirement. This is in sharp
contrast with other approaches, such as in [15], where the bulk is fixed rigidly to be of some preassigned
form (e.g., AdS5).

2. Flat Branes

The prototype case for the evolution of the brane–bulk system near its finite-distance singularities
is when the brane is described by Minkowski space and there is a single free scalar field φ in the bulk.
In this case, the five-dimensional Einstein Equation (4) in the bulk with source φ can be symbolically
written as an autonomous dynamical system in the form,

Ẋ = f (X). (8)
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All solutions of this system then become the integral curves of the three-dimensional,
non-polynomial vector field [6],

f (X) =
(

y,−λAz2x,−4yz/x
)

, (9)

subject to the constraint,
y2

x2 =
Aλ

3
z2. (10)

Here, X = (x, y, z), A, λ are constraints, while we have introduced new variables by setting

x = a, y = a′, z = φ′, (11)

with a prime denoting differentiation with respect to the extra dimension Y. Then, we have the
following result ([6], Section 2.1).

Theorem 1 (Minkowski brane-massless dilaton). With the setup of a flat three-brane in a five-dimensional
bulk spacetime filled with a free scalar field as described above, let Ys denote the position of the finite-distance
singularity from the brane position. Then, there is only one possible asymptotic behaviour of the solutions of the
field equations towards singularity, given by,

a → 0, a′ → ∞, φ′ → ∞, (12)

as Y → Ys.

This result means that all solutions asymptote towards a state wherein the flat brane collapses
after “traveling” a finite distance in the bulk, starting from its initial position, with the energy of
the scalar field blowing up there. This implies that any initial configuration involving a Minkowski
three-brane coupled to a bulk massless dilaton satisfying the five-dimensional Einstein equations will
gradually evolve to the collapse state described in the Theorem above. This result completely fixes
the nature of the singularity in this simple case and the behaviour of all solutions near the singularity.
(An exact particular solution with these properties was first found in [4,5]. One may view the result
contained in the Theorem above as implying that the exact solution found in those references is a
stable one in the sense that all other solutions of the system approach this form asymptotically towards
the singular point.)

However, one naturally wonders whether the above result has some degree of genericity; in
other words, whether and how the existence and nature of the singularity in this simplest Minkowski
brane model persists when one passes on to more general ones, while keeping the flatness assumption
(the extension to branes with curvature is separately discussed in the next section of this paper).
There are at least three ways to treat the flat brane problem in a more general setting:

• Add self-interaction to the dilaton
• Add a perfect fluid in the bulk
• Add a mixture of a fluid and a (possibly interacting) dilaton field.

When we turn to a Minkowski brane-fluid bulk system instead of a massless dilaton bulk, is
that although the existence of the finite-distance singularity remains (except perhaps moved on to
the envelope—see below), its nature depends on the range of the equation of state fluid parameter γ

defined by the equation P = γρ. For a Minkowski brane, the Einstein Equation (8) gives

f =

(
y,−2A

(1 + 2γ)

3
wx,−4(1 + γ)

y
x

w
)

, (13)
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subject to the constraint,
y2

x2 =
w
δ

, δ = 3/2A, (14)

with A = κ2
5/4, and where for the new variables of this problem we introduce the definitions

x = a, y = a′, w = ρ, (15)

with ρ being the fluid energy density. Then we have the following result ([6], Section 3)

Theorem 2 (Minkowski brane-Single bulk fluid). With the setup of a flat three-brane in a five-dimensional
bulk spacetime filled with a fluid as described above, let Ys denote the position of the finite-distance singularity.
Then, the possible asymptotic behaviours of the solutions of the field equations are all singular, have the required
number of arbitrary constants to qualify as corresponding to a general solution, and are given by,

• Collapse-type I: γ > −1/2
a → 0, a′ → ∞, ρ → ∞, (16)

• Collapse-type II: γ = −1/2
a → 0, a′ → const., ρ → ∞, (17)

• Big rip: γ < −1
a → ∞, a′ → −∞, ρ → ∞, (18)

• At envelope: γ ∈ (−1,−1/2)
a → 0, a′ → 0, ρ → ∞, (19)

as Y → Ys.

Generally speaking, this result implies that the situation described by Theorem 1 is still valid when
we pass to the more general fluid content of Theorem 2: Minkowski brane-fluid systems are generically
singular and behave basically like the massless dilaton case. For example, item 1 in Theorem 1 means
that the runaway situation of the Theorem 2 remains valid for any fluid having γ > −1/2. A slightly
milder singularity is approached by the flat brane-fluid systems when γ = −1/2, the singular point
is attained with bounded speed. The approach to the singularity at a finite distance from the brane
changes its nature to that of a big rip when the bulk fluid is phantom-like.

The last item in Theorem 2 requires a separate more involved analysis based on the observation
that when solutions of a differential equation have an envelope, the dominant balance picks the
envelope and not the general solution, and therefore instead of looking at enveloping solutions from
the general solution, we may proceed to construct such solutions directly from the field equations [7].
Equation (19) then implies that all solutions of the field equations having γ ∈ (−1,−1/2) asymptote
to the singular first component Σ1 of an “enveloping brane” defined as a disjoint (we use the term
“disjoint” because their common element—namely, (0, 0, 0), is not a realizable state asymptotically)
union (cf. [7], Section 2, where this result is proved),

Σ = Σ1
⊔

Σ2, (20)

where
Σ1 : x = 0, y = ±H

√
k, (21)

Σ2 : y = ±H
√

k, w = 0. (22)

The impossibility of regular solutions away from a Minkowski brane with a massless dilaton or
single fluid as sources in the bulk prompts us to search for such solutions further, by considering mixtures
of the two in the bulk. This is an on-going project with many open problems, the non-interacting,
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co-existing fluid case is treated in detail in Reference [8]. For the massless scalar, we then take an
energy–momentum tensor of the form T1

AB = (ρ1 + P1)uAuB − P1gAB, where A, B = 1, 2, 3, 4, 5,
uA = (0, 0, 0, 0, 1) and ρ1, P1 are its density and pressure, which we take as P1 = ρ1 = λφ′2/2, with λ

a parameter. For the second fluid, we assume that T2
AB = (ρ2 + P2)uAuB − P2gAB, and an equation

of state of the form P2 = γρ2. Here ρ1, ρ2, and P1, P2 are functions of the fifth dimension Y only. The
five-dimensional Einstein field Equation (4) in the case of a flat (Minkowski) brane assume a more
complicated form, basically a neat problem in bifurcation theory. Namely,

x′ = y (23)

y′ = −Aλz2x − 2
3

A(1 + 2γ)wx (24)

z′ = −
(

4 +
ν

2

) yz
x

+
σ

λ

yw
xz

(25)

w′ = −(4(γ + 1) + σ)
yw
x

+
λν

2
yz2

x
, (26)

with the constraint,
y2

x2 =
Aλ

3
z2 +

2A
3

w. (27)

We write (x, y, z, w) = (a, a′, φ′, ρ2), and the new system has four parameters λ, γ, σ, ν, the last
two describing the possible exchange of energy between the two components, no exchange of energy
corresponding to the case ν = σ = 0. This is the main case analyzed in Reference [8]. The main result
in this case is this.

Theorem 3 (Minkowski brane: Non-interacting pair of massless dilaton–fluid). With the setup as
described above, let Ys denote the position of the finite-distance singularity. Then, the possible asymptotic
behaviours of the solutions of the field equations are all singular, have the required number of arbitrary constants
to qualify as corresponding to a general solution, and are given by,

• Collapse-type I: any γ

a → 0, a′ → ∞, φ′ → ∞, ρ2 → 0, ρs, ∞, (28)

• Big rip: γ < −1
a → ∞, a′ → −∞, φ′ → 0, ρ2 → ∞. (29)

as Y → Ys.

We observe that in these asymptotic solutions the final states are characterized by the asymptotic
dominance of the dilaton over the fluid component. This is the reason why we obtain singularities for
all possible asymptotic balances but of a similar character as the massless dilaton case. In particular,
there cannot be any stable asymptotic situation wherein the fluid attains some finite asymptotic value
with vanishing dilaton. This is reminiscent of the generic early behaviour of scalar–tensor cosmologies
where there is a complete dominance of the scalar field over matter.

The inclusion of an interacting pair of dilaton–fluid could in principle lead to regular solutions
away from the Minkowski brane. In Reference [8], it was noticed that suitably choosing the exchange
parameters ν, σ, and analyzing the resulting dynamical system has the effect of moving these singular
points to infinity. There is an intricate structure of the eigenvalues of the asymptotic matrix that controls
the behaviour of the solutions in this case, and this structure leads to the interesting result that for the
same interval of the fluid parameter as in the massless dilaton case—namely, γ ∈ (−1,−1/2)—the
singularities are seen to move to infinity. However, we expect that they are just moved to the singular
envelope as before, therefore not being true regular solutions. The generic problem, however, is entirely
open at present.
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3. Curved Branes

Making the brane positively or negatively curved has the apparent effect of moving the
singularities to infinite distance away from the original brane position. However, this may just mean
that we are looking at the enveloping brane. The problem then is to determine the precise extent of
the singular and regular parts of the enveloping set. This may be an intricate problem. Below, we call
a solution regular if the scale factor is non-collapsing or divergent in a finite distance away from the
brane. This does not exclude the density from having a singularity at the envelope.

With just a massless dilaton support in the bulk, one may indeed get regular curved brane
solutions with a decaying dilaton. However, to get this, one has to sacrifice an arbitrary constant,
ending up with a family that does not correspond to a general solution of the field equations—at least
for de Sitter branes, (for AdS branes there may be no such restriction) cf. [6], Section 2.2.

However, there is one case where we generically reach the regular part of the envelope, as
described by the following result.

Theorem 4 (dS or AdS brane: Single bulk fluid with γ ≥ −1/2). In the above setup, there are two possible
nonsingular asymptotic behaviours corresponding to general (three arbitrary constants) solutions of the field
equations, having the following properties:

• γ > −1/2

x = αΥ + c−1 1 − Aα/3c−2 3Υ−1 + · · · , (30)

y = α + Aα/3c−2 3Υ−2 + · · · , (31)

w = c−2 3Υ−4 + · · · , (32)

where c−1 1 and c−2 3 are arbitrary constants. For Υ → ∞, we see that this is on Σ2 given by Equation
(22).

• γ = −1/2

x = αΥ + c−1 1 · · · , (33)

y = α · · · , (34)

w = c−2 3Υ−2 + · · · , (35)

where c−1 1 and c−2 3 are arbitrary constants. Taking Υ → ∞ demonstrates that this is on Σ2, given by
Equation (22).

This result has two parts. The asymptotic behaviour was found in Reference [6], Section 3.5.
The envelope was derived in Reference [7], App. A. We see that these universes look emptier at long
distances into the bulk.

Further, there are curved brane solutions with regular support in the bulk coming not from the
enveloping set, but from the general solution of the field equations. The following result is shown in
complete detail in Reference [9].

Theorem 5. No collapse singularity can arise in any brane model that comprises either

• a de Sitter brane in a single bulk fluid with negative energy density and γ > −1/2, or
• an Anti de Sitter brane in a single bulk fluid with positive energy density and γ ∈ (−1,−1/2),

as the bulk scale factor is bounded from below and never vanishes.

We note that this result does not exclude the possibility of a big rip singularity in a finite distance
from the brane position where the scale factor diverges.
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However, whether or not such solutions are singular one may arrange for those solutions that
allow for a jump discontinuity on the first derivative of the scale factor across the brane and satisfy
the null energy condition, to match for certain ranges of γ producing non-singular universes [9].
Unfortunately, the γ-ranges for the existence of such universes do not quite match other conditions on
the fluid to localize gravity on the brane by requiring finiteness of the Planck mass there. This problem
lies in the frontier of the singularity problem for such models.

There are a host of other regular asymptotic solutions describing a curved brane sitting in a bulk
with a coexisting—even slightly interacting—dilaton–fluid system, cf. [8]. It is an open problem to
identify the structure of the enveloping brane in all these solutions, and so we do not discuss them any
further here.

Another problem that is beyond our present results is what types of global bulk geometry are
compatible with the asymptotic forms discussed here. If we suppose that away from the singularity
the bulk space metric g′5 is a kind of perturbation of the metric form assumed here; for instance,

g′5 = g5 + δg5, (36)

with g5 given by Equation (1), then what are the types of geometries which tend to the present
ones discussed in previous sections? This is somewhat reminiscent of the isotropization problem in
inflationary cosmology.

Finally, we briefly comment about a different approach to the singularities in general brane–bulk
systems. There is a basic issue of principle involved in any discussion of singularities in the
geometric context of a braneworld embedded in extra dimensions, because the singularities present
in the bulk away from the position of the brane—whose existence and nature we discussed in this
paper—appear to be totally disconnected from the standard spacetime singularities predicted by
the standard singularity theorems for the general relativistic metrics g4. The same unconnectedness
also holds for the cosmic censorship hypothesis (presumably valid on the brane) which, in a truly
higher-dimensional theory, ought to be perhaps an emerging property from structures which do not
have a four-dimensional counterpart. A way to connect the two is to extend the brane–bulk geometry
in such a way as to allow our universe to be the conformal infinity of a certain five-dimensional
geometry—the ambient cosmological metric. One then finds that the existence of the four-dimensional
spacetime singularities is constrained by the long-term, asymptotic properties of the ambient
cosmological metric, while cosmic censorship holds true provided that ambient space remains
non-degenerate. For more details of this theory, we invite the reader to consult the recent review [16]
(which also includes the original papers).

Author Contributions: Both authors are equally responsible for the main text of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Arcani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The hierarchy problem and New Dimensions at a millimeter.
Phys. Lett. B 1998, 429, 263–272.

2. Arcani-Hamed, N.; Antoniadis, I.; Dimopoulos, S.; Dvali, G.R. New dimensions at a millimeter to a fermi
and superstrings at a TeV. Phys. Lett. B 1998, 436, 257–263.

3. Antoniadis, I. A new approach to supersymmetry breaking in superstring models. Phys. Lett. B 1990, 246,
377–384.

4. Arkani-Hamed, N.; Dimopoulos, S.; Kaloper, N.; Sundrum, R. A small cosmological constant from a large
extra dimension. Phys. Lett. B 2000, 480, 193–199.

5. Kachru, S.; Schulz, M.; Silverstein, E. Bounds on curved domain walls in 5d gravity, Phys. Rev. D 2000, 62, 085003.
6. Antoniadis, I.; Cotsakis, S.; Klaoudatou, I. Brane singularities and their avoidance. Class. Quantum Gravity

2010, 27, 235018.

163



Universe 2017, 3, 11

7. Antoniadis, I.; Cotsakis, S.; Klaoudatou, I. Enveloping branes and braneworld singularities. Eur. Phys. J. C
2014, 74, 3192.

8. Antoniadis, I.; Cotsakis, S.; Klaoudatou, I. Brane singularities with mixtures in the bulk. Fortschr. Phys. 2013,
61, 20–49.

9. Antoniadis, I.; Cotsakis, S.; Klaoudatou, I. Curved branes with regular support. Eur. Phys. J. C 2016, 76, 511.
10. Gubser, S.S. Curvature singularities: The good, the bad, and the naked. Adv. Theor. Math. Phys. 2000, 4,

679–745.
11. Gasperini, M. Elements of String Cosmology; Cambridge University Press: Cambridge, UK, 2007; Chapter 10.
12. Peterson, P. Riemannian Geometry; Springer: New York, NY, USA, 2006.
13. O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press: New York, NY, USA, 1983.
14. Barrow, J.D.; Yamamoto, K. Anisotropic Pressures at Ultra-stiff Singularities and the Stability of Cyclic

Universes. Phys. Rev. D 2010, 82, 063516.
15. Randall, L.; Sundrum, S. An alternative to compactification. Phys. Rev. Lett. 1999, 83, 4960.
16. Antoniadis, I.S.; Cotsakis, S. The large-scale structure of the ambient boundary. In Proceedings of the

Fourteenth Marcel Grossman Meeting on General Relativity, Rome, Italy, 12–18 July 2015; Bianchi, M.,
Jantzen, R.T., Ruffini, R., Eds.; World Scientific: Singapore, 2017.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

164



universe

Review

Tests of Lorentz Symmetry in the Gravitational Sector

Aurélien Hees 1,*, Quentin G. Bailey 2, Adrien Bourgoin 3, Hélène Pihan-Le Bars 3,

Christine Guerlin 3,4 and Christophe Le Poncin-Lafitte 3

1 Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
2 Physics Department, Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA; baileyq@erau.edu
3 SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06,

LNE, 61 avenue de l’Observatoire, 75014 Paris, France; adrien.bourgoin@obspm.fr (A.B.);
helene.pihan-lebars@obspm.fr (H.P.-L.B.); christine.guerlin@obspm.fr (C.G.);
christophe.leponcin@obspm.fr (C.L.P.-L.)

4 Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités,
Collège de France, 75005 Paris, France

* Correspondence: ahees@astro.ucla.edu; Tel.: +1-310-825-8345

Academic Editors: Lorenzo Iorio and Elias C. Vagenas
Received: 15 October 2016; Accepted: 22 November 2016; Published: 1 December 2016

Abstract: Lorentz symmetry is one of the pillars of both General Relativity and the Standard Model
of particle physics. Motivated by ideas about quantum gravity, unification theories and violations
of CPT symmetry, a significant effort has been put the last decades into testing Lorentz symmetry.
This review focuses on Lorentz symmetry tests performed in the gravitational sector. We briefly
review the basics of the pure gravitational sector of the Standard-Model Extension (SME) framework,
a formalism developed in order to systematically parametrize hypothetical violations of the Lorentz
invariance. Furthermore, we discuss the latest constraints obtained within this formalism including
analyses of the following measurements: atomic gravimetry, Lunar Laser Ranging, Very Long
Baseline Interferometry, planetary ephemerides, Gravity Probe B, binary pulsars, high energy cosmic
rays, . . . In addition, we propose a combined analysis of all these results. We also discuss possible
improvements on current analyses and present some sensitivity analyses for future observations.

Keywords: experimental tests of gravitational theories; Lorentz and Poincaré invariance;
modified theories of gravity; celestial mechanics; atom interferometry; binary pulsars

1. Introduction

The year 2015 was the centenary of the theory of General Relativity (GR), the current paradigm for
describing the gravitational interaction (see e.g., the Editorial of this special issue [1]). Since its creation,
this theory has passed all experimental tests with flying colors [2,3] ; the last recent success was the
discovery of gravitational waves [4], summarized in [5]. On the other hand, the three other fundamental
interactions of Nature are described within the Standard Model of particle physics, a framework based
on relativistic quantum field theory. Although very successful so far, it is commonly admitted that
these two theories are not the ultimate description of Nature but rather some effective theories.
This assumption is motivated by the construction of a quantum theory of gravitation that has not been
successfully developed so far and by the development of a theory that would unify all the fundamental
interactions. Moreover, observations requiring the introduction of Dark Matter and Dark Energy also
challenge GR and the Standard Model of particle physics since they cannot be explained by these two
paradigms altogether [6]. It is therefore extremely important to test our current description of the four
fundamental interactions [7].

Lorentz invariance is one of the fundamental symmetry of relativity, one of the corner stones
of both GR and the Standard Model of particle physics. It states that the outcome of any local
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experiment is independent of the velocity and of the orientation of the laboratory in which the
experiment is performed. If one considers non-gravitational experiments, Lorentz symmetry is part of
the Einstein Equivalence Principle (EEP). A breaking of Lorentz symmetry implies that the equations
of motion, the particle thresholds, etc. . . may be different when the experiment is boosted or rotated
with respect to a background field [8]. More precisely, it is related to a violation of the invariance under
“particle Lorentz transformations” [8] which are the boosts and rotations that relate the properties of
two systems within a specific oriented inertial frame (or in other words they are boosts and rotations
on localized fields but not on background fields). On the other hand, the invariance under coordinates
transformations known as “observer Lorentz transformations” [8] which relate observations made
in two inertial frames with different orientations and velocities is always preserved. Considering the
broad field of applicability of this symmetry, searches for Lorentz symmetry breaking provide a
powerful test of fundamental physics. Moreover, it has been suggested that Lorentz symmetry
may not be a fundamental symmetry of Nature and may be broken at some level. While some
early motivations came from string theories [9–11], breaking of Lorentz symmetry also appears in
loop quantum gravity [12–15], non commutative geometry [16,17], multiverses [18], brane-world
scenarios [19–21] and others (see for example [22,23]).

Tests of Lorentz symmetry have been performed since the time of Einstein but the last decades have
seen the number of tests increased significantly [24] in all fields of physics. In particular, a dedicated
effective field theory has been developed in order to systematically consider all hypothetical violations
of the Lorentz invariance. This framework is known as the Standard-Model Extension (SME) [8,25] and
covers all fields of physics. It contains the Standard Model of particle physics, GR and all possible
Lorentz-violating terms that can be constructed at the level of the Lagrangian, introducing a large
numbers of new coefficients that can be constrained experimentally.

In this review, we focus on the gravitational sector of the SME which parametrizes deviations
from GR. GR is built upon two principles [2,26,27]: (i) the EEP; and (ii) the Einstein field equations
that derive from the Einstein-Hilbert action. The EEP gives a geometric nature to gravitation allowing
this interaction to be described by spacetime curvature. From a theoretical point of view, the EEP
implies the existence of a spacetime metric to which all matter minimally couples [28]. A modification
of the matter part of the action will lead to a breaking of the EEP. In SME, such a breaking of the EEP is
parametrized (amongst others) by the matter-gravity coupling coefficients āμ and c̄μν [29,30]. From a
phenomenological point of view, the EEP states that [2,27]: (i) the universality of free fall (also known
as the weak equivalence principle) is valid; (ii) the outcome of any local non-gravitational experiment
is independent of the velocity of the free-falling reference frame in which it is performed; and (iii) the
outcome of any local non-gravitational experiment is independent of where and when in the universe
it is performed. The second part of Einstein theory concerns the purely gravitational part of the action
(the Einstein-Hilbert action) which is modified in SME to introduce hypothetical Lorentz violations in
the gravitational sector. This review focuses exclusively on this kind of Lorentz violations and not on
breaking of the EEP.

A lot of tests of GR have been performed in the last decades (see [2] for a review). These tests
rely mainly on two formalisms: the parametrized post-Newtonian (PPN) framework and the fifth
force formalism. In the former one, the weak gravitational field spacetime metric is parametrized by
10 dimensionless coefficients [27] that encode deviations from GR. This formalism therefore provides
a nice interface between theory and experiments. The PPN parameters have been constrained by a
lot of different observations [2] confirming the validity of GR. In particular, three PPN parameters
encode violations of the Lorentz symmetry: the α1,2,3 PPN coefficients. In the fifth force formalism,
one is looking for a deviation from Newtonian gravity where the gravitational potential takes the form
of a Yukawa potential characterized by a length λ and a strength α of interaction [31–34]. These two
parameters are very well constrained as well except at very small and large distances (see [35]).

The gravitational sector of SME offers a new framework to test GR by parametrizing deviations
from GR at the level of the action, introducing new terms that are breaking Lorentz symmetry. The idea
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is to extend the standard Einstein-Hilbert action by including Lorentz-violating terms constructed by
contracting new fields with some operators built from curvature tensors and covariant derivatives
with increasing mass dimension [36]. The lower mass dimension (dimension 4) term is known as
the minimal SME and its related new fields can be split into a scalar part u, a symmetric trace
free part sμν and a traceless piece tκλμν. In order to avoid conflicts with the underlying Riemann
geometry, the Lorentz violating coefficients can be assumed to be dynamical fields and the Lorentz
violation to arise from a spontaneous symmetry breaking [37–42]. The Lorentz violating fields therefore
acquire a non-vanishing vacuum expectation value (denoted by a bar). It has been shown that in the
linearized gravity limit the fluctuations around the vacuum values can be integrated out so that only
the vacuum expectation values of the SME coefficients influence observations [39]. In the minimal SME,
the coefficient ū corresponds to a rescaling of the gravitational constant and is therefore unobservable
and the coefficients t̄κλμν do not play any role at the post-Newtonian level, a surprising phenomenon
known as the t-puzzle [43,44]. The s̄μν coefficients lead to modifications from GR that have thoroughly
been investigated in [39]. In particular, the SME framework extends standard frameworks such as the
PPN or fifth force formalisms meaning that “standard” tests of GR cannot directly be translated into
this formalism.

In the last decade, several measurements have been analyzed within the gravitational sector of
the minimal SME framework: Lunar Laser Ranging (LLR) analysis [45,46], atom interferometry [47,48],
planetary ephemerides analysis [49,50], short-range gravity [51], Gravity Probe B (GPB) analysis [52],
binary pulsars timing [53,54], Very Long Baseline Interferometry (VLBI) analysis [55] and Čerenkov
radiation [56]. In addition to the minimal SME, there exist some higher order Lorentz-violating
curvature couplings in the gravity sector [43] that are constrained by short-range experiments [57–59],
Čerenkov radiation [30,56] and gravitational waves analysis [60,61]. Finally, some SME experiments
have been used to derive bounds on spacetime torsion [62,63]. A review for these measurements can be
found in [30]. The classic idea to search for or to constrain Lorentz violations in the gravitational sector
is to search for orientation or boost dependence of an observation. Typically, one will take advantage
of modulations that will occur through an orientation dependence of the observations due to the
Earth’s rotation, the motion of satellites around Earth (the Moon or artificial satellites), the motion of
the Earth (or other planets) around the Sun, the motion of binary pulsars, . . . The main goal of this
communication is to review all the current analyses performed in order to constrain Lorentz violation
in the pure gravitational sector.

Two distinct procedures have been used to analyze data within the SME framework. The first
procedure consists in deriving analytically the signatures produced by the SME coefficients on some
observations. Then, the idea is to fit these signatures within residuals obtained by a data analysis
performed in pure GR. This approach has the advantage to be relatively easy and fast to perform.
Nevertheless, when using this postfit approach, correlations with other parameters fitted in the data
reduction are completely neglected and may lead to overoptimistic results. A second way to analyze
data consists in introducing the Lorentz violating terms directly in the modeling of observables and in
the global data reduction. In this review, we highlight the differences between the two approaches.

In this communication, a brief theoretical review of the SME framework in the gravitational sector
is presented in Section 2. The two different approaches to analyze data within the SME framework
(postfit analysis versus full modeling of observables within the SME framework) are discussed and
compared in Section 3. Section 4 is devoted to a discussion of the current measurements analyzed
within the SME framework. This discussion includes a general presentation of the measurements,
a brief review of the effects of Lorentz violation on each of them, the current analyses performed with
real data and a critical discussion. A “grand fit” combining all existing analyses is also presented.
In Section 5, some future measurements that are expected to improve the current analyses are
developed. Finally, our conclusion is presented in Section 6.
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2. The Standard-Model Extension in the Gravitational Sector

Many of the tests of Lorentz and CPT symmetry have been analyzed within an effective
field theory framework which generically describes possible deviations from exact Lorentz and
CPT invariance [8,25] and contains some traditional test frameworks as limiting cases [64,65].
This framework is called, for historical reasons, the Standard-Model Extension (SME). One part
of the activity has been a resurgence of interest in tests of relativity in the Minkowski spacetime context,
where global Lorentz symmetry is the key ingredient. Numerous experimental and observational
constraints have been obtained on many different types of hypothetical Lorentz and CPT symmetry
violations involving matter [24]. Another part, which has been developed more recently, has seen the
SME framework extended to include the curved spacetime regime [37]. Recent work shows that there
are many ways in which the spacetime symmetry foundations of GR can be tested [29,39].

In the context of effective field theory in curved spacetime, violations of these types can be
described by an action that contains the usual Einstein-Hilbert term of GR, a matter action, plus a series
of terms describing Lorentz violation for gravity and matter in a generic way. While the fully general
coordinate invariant version of this action has been studied in the literature, we focus on a limiting
case that is valid for weak-field gravity and can be compactly displayed. Using an expansion of the
spacetime metric around flat spacetime, gμν = ημν + hμν, the effective Lagrange density to quadratic
order in hμν can be written in a compact form as

L = LEH +
c3

32πG
hμν s̄αβGαμνβ + ..., (1)

where LEH is the standard Einstein-Hilbert term, Gαμνβ is the double dual of the Einstein
tensor linearized in hμν, G the bare Newton constant and c the speed of light in a vacuum.
The Lorentz-violating effects in this expression are controlled by the 9 independent coefficients in
the traceless and dimensionless s̄μν [39]. These coefficients are treated as constants in asymptotically
flat cartesian coordinates. The ellipses represent additional terms in a series including terms that
break CPT symmetry for gravity; such terms are detailed elsewhere [43,56,60] and are part of the
so-called nonminimal SME expansion. Note that the process by which one arrives at the effective
quadratic Lagrangian (1) is consistent with the assumption of the spontaneous breaking of local Lorentz
symmetry, which is discussed below.

Also of interest are the matter-gravity couplings. This form of Lorentz violation can be realized in
the classical point-mass limit of the matter sector. In the minimal SME the point-particle action can be
written as

SMatter =
∫

dλ c
(
−m

√
−(gμν + 2cμν)uμuν − aμuμ

)
, (2)

where the particle’s worldline tangent is uμ = dxμ/dλ [29]. The coefficients controlling local Lorentz
violation for matter are cμν and aμ. In contrast to s̄μν, these coefficients depend on the type of point
mass (particle species) and so they can also violate the EEP. When the coefficients s̄μν, cμν, and aμ

vanish perfect local Lorentz symmetry for gravity and matter is restored. It is also interesting to
mention that this action with fixed (but not necessarily constant) aμ and cμν represents motion in a
Finsler geometry [66,67].

It has been shown that explicit local Lorentz violation is generically incompatible with Riemann
geometry [37]. One natural way around this is assumption of spontaneous Lorentz-symmetry breaking.
In this scenario, the tensor fields in the underlying theory acquire vacuum expectation values through
a dynamical process. Much of the literature has been devoted to studying this possibility in the last
decades [9,38,68–78], including some original work on spontaneous Lorentz-symmetry breaking in
string field theory [10,11]. For the matter-gravity couplings in Equation (2), the coefficient fields cμν,
and aμ are then expanded around their background (or vacuum) values c̄μν, and āμ. Both a modified
spacetime metric gμν and modified point-particle equations of motion result from the spontaneous
breaking of Lorentz symmetry. In the linearized gravity limit these results rely only on the vacuum
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values c̄μν, and āμ. The dominant signals for Lorentz violation controlled by these coefficients are
revealed in the calculation of observables in the post-Newtonian limit.

Several novel features of the post-Newtonian limit arise in the SME framework. It was shown
in Ref. [39] that a subset of the s̄μν coefficients can be matched to the PPN formalism [2,27], but others
lie outside it. For example, a dynamical model of spontaneous Lorentz symmetry breaking can be
constructed from an antisymmetric tensor field Bμν that produces s̄μν coefficients that cannot be reduced
to an isotropic diagonal form in any coordinate system, thus lying outside the PPN assumptions [78].
We can therefore see that the SME framework has a partial overlap with the PPN framework,
revealing new directions to explore in analysis via the s̄μν, c̄μν, and āμ coefficients. The equations of
motion for matter are modified by the matter-gravity coefficients for Lorentz violation c̄μν and āμ,
which can depend on particle species, thus implying that these coefficients also control EEP violations.
One potentially important class of experiments from the action (2) concerns the Universality of Free Fall
of antimatter whose predictions are discussed in [29,79]. In addition, the post-Newtonian metric itself
receives contributions from the matter coefficients c̄μν and āμ. So for example, two (chargeless) sources
with the same total mass but differing composition will yield gravitational fields of different strength.

For solar-system gravity tests, the primary effects due to the nine coefficients s̄μν can be obtained
from the post-Newtonian metric and the geodesic equation for test bodies. A variety of ground-based
and space-based tests can measure these coefficients [80–82]. Such tests include Earth-laboratory tests
with gravimeters, lunar and satellite laser ranging, studies of the secular precession of orbital elements in
the solar system, and orbiting gyroscope experiments, and also classic effects such as the time delay and
bending of light around the Sun and Jupiter. Furthermore, some effects described by the Lagrangian (1)
can be probed by analyzing data from binary pulsars and measurements of cosmic rays [56].

For the matter-gravity coefficients c̄μν and āμ, which break Lorentz symmetry and EEP,
several experiments can be used for analysis in addition to the ones already mentioned above including
ground-based gravimeter and WEP experiments. Dedicated satellite EEP tests are among the most
sensitive where the relative acceleration of two test bodies of different composition is the observable of
interest. Upon relating the satellite frame coefficients to the standard Sun-centered frame used for the
SME, oscillations in the acceleration of the two masses occur at a number of different harmonics of
the satellite orbital and rotational frequencies, as well as the Earth’s orbital frequency. Future tests of
particular interest include the currently flying MicroSCOPE experiment [83,84].

While the focus of the discussion to follow are the results for the minimal SME coefficients s̄μν,
recent work has also involved the nonminimal SME coefficients in the pure-gravity sector associated
with mass dimension 5 and 6 operators. One promising testing ground for these coefficients is sensitive
short-range gravity experiments. The Newtonian force between two test masses becomes modified in
the presence of local Lorentz violation by an anisotropic quartic force that is controlled by a subset of
coefficients from the Lagrangian organized as the totally symmetric (k̄eff)jklm, which has dimensions
of length squared [43]. This contains 14 measurable quantities and any one short-range experiment
is sensitive to 8 of them. Two key experiments, from Indiana University and Huazhong University
of Science and Technology, have both reported analysis in the literature [57,58] . A recent work
combines the two analyses to place new limits on all 14, a priori independent, (k̄eff)jklm coefficients [59].
Other higher mass dimension coefficients play a role in gravitational wave propagation [60] and
gravitational Čerenkov radiation [56].

To conclude this section, we ask: what can be said about the possible sizes of the coefficients for
Lorentz violation? A broad class of hypothetical effects is described by the SME effective field theory
framework, but it is a test framework and as such does not make specific predictions concerning the
sizes of these coefficients. One intriguing suggestion is that there is room in nature for violations
of spacetime symmetry that are large compared to other sectors due to the intrinsic weakness of
gravity. Considering the current status of the coefficients s̄μν, the best laboratory limits are at the
10−10–10−11 level, with improvements of four orders of magnitude in astrophysical tests on these
coefficients [56]. However, the limits are at the 10−8 m2 level for the mass dimension 6 coefficients
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(k̄eff)jklm mentioned above. Comparing this to the Planck length 10−35 m, we see that symmetry
breaking effects could still have escaped detection that are not Planck suppressed. This kind of
“countershading” was first pointed out for the āμ coefficients [85], which, having dimensions of mass,
can still be as large as a fraction of the electron mass and still lie within current limits.

In addition, any action-based model that breaks local Lorentz symmetry either explicitly or
spontaneously can be matched to a subset of the SME coefficients. Therefore, constraints on SME
coefficients can directly constrain these models. Matches between various toy models and coefficients
in the SME have been achieved for models that produce effective s̄μν, c̄μν, āμ, and other coefficients.
This includes vector and tensor field models of spontaneous Lorentz-symmetry breaking [29,39,75–78],
models of quantum gravity [12,65] and noncommutative quantum field theory [17]. Furthermore,
Lorentz violations may also arise in the context of string field theory models [86].

3. Postfit Analysis Versus Full Modeling

Since the last decade, several studies aimed to find upper limits on SME coefficients in the
gravitational sector. A lot of these studies are based on the search of possible signals in post-fit residuals
of experiments. This was done with LLR [45], GPB [52], binary pulsars [53,54] or Solar System planetary
motions [49,50]. However, two new works focused on a direct fit to data with LLR [46] and VLBI [55],
which are more satisfactory.

Indeed, in the case of a post-fit analysis, a simple modeling of extra terms containing SME
coefficients are least square fitted in the residuals, attempting to constrain the SME coefficients of a
testing function in residual noise obtained from a pure GR analysis, where of course Lorentz symmetry
is assumed. It comes out correlations between SME coefficients and other global parameters previously
fitted (masses, position and velocity. . . ) cannot be assessed in a proper way. In others words, searching
hypothetical SME signals in residuals, i.e., in noise, can lead to an overestimated formal error on SME
coefficients, as illustrated in the case of VLBI [55], and without any chance to learn something about
correlations with other parameters, as for example demonstrated in the case of LLR [46]. Let us consider
the VLBI example to illustrate this fact. The VLBI analysis is described in Section 4.2. Including the SME
contribution within the full VLBI modeling and estimating the SME coefficient s̄TT altogether with the
other parameters fitted in standard VLBI data reduction leads to the estimate s̄TT = (−5 ± 8)× 10−5.
A postfit analysis performed by fitting the SME contribution within the VLBI residuals obtained after a
pure GR analysis leads to s̄TT = (−0.6 ± 2.1)× 10−8 [55]. This example shows that a postfit analysis
can lead to results with overoptimistic uncertainties and one needs to be extremely careful when using
such results.

4. Data Analysis

In this section, we will review the different measurements that have already been used in order to
constrain the SME coefficients. The different analyses are based on quite different types of observations.
In order to compare all the corresponding results, we need to report them in a canonical inertial
frame. The standard canonical frame used in the SME framework is a Sun-centered celestial equatorial
frame [64], which is approximately inertial over the time scales of most observations. This frame is
asymptotically flat and comoving with the rest frame of the Solar System. The cartesian coordinates
related to this frame are denoted by capital letters

XΞ = (cT, XJ) = (cT, X, Y, Z) . (3)

The Z axis is aligned with the rotation axis of the Earth, while the X axis points along the direction
from the Earth to the Sun at vernal equinox. The origin of the coordinate time T is given by the time
when the Earth crosses the Sun-centered X axis at the vernal equinox. These conventions are depicted
in Figure 2 from [39].
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In the following subsections, we will present the different measurements used to constrain the
SME coefficients. Each subsection contains a brief description of the principle of the experiment,
how it can be used to search for Lorentz symmetry violations, what are the current best constraints
obtained with such measurements and eventually how it can be improved in the future.

4.1. Atomic Gravimetry

The most sensitive experiments on Earth searching for Lorentz Invariance Violation (LIV) in the
minimal SME gravity sector are gravimeter tests. As Earth rotates, the signal recorded in a gravimeter,
i.e., the apparent local gravitational acceleration g of a laboratory test body, would be modulated in the
presence of LIV in gravity. This was first noted by Nordtvedt and Will in 1972 [87] and used soon after
with gravimeter data to constrain preferred-frame effects in the PPN formalism [88,89] at the level of 10−3.

This test used a superconducting gravimeter, based on a force comparison (the gravitational
force is counter-balanced by an electromagnetic force maintaining the test mass at rest).
While superconducting gravimeters nowadays reach the best sensitivity on Earth, force comparison
gravimeters intrinsically suffer from drifts of their calibration factor (with e.g., aging of the system).
Development of other types of gravimeters has evaded this drawback: free fall gravimeters. Monitoring
the motion of a freely falling test mass, they provide an absolute measurement of g. State-of-the art free
fall gravimeters use light to monitor the mass free fall. Beyond classical gravimeters that drop a corner
cube, the development of atom cooling and trapping techniques and atom interferometry has led to a
new generation of free fall gravimeters, based on a quantum measurement: atomic gravimeters.

Atomic gravimeters use atoms in gaseous phase as a test mass. The atoms are initially trapped
with magneto-optical fields in vacuum, and laser cooled (down to 100 nK) in order to control their
initial velocity (down to a few mm/s). The resulting cold atom gas, containing typically a million atoms,
is then launched or dropped for a free fall measurement. Manipulating the electronic and motional state
of the atoms with two counterpropagating lasers, it is possible to measure, using atom interferometry,
their free fall acceleration with respect to the local frame defined by the two lasers [90]. This sensitive
direction is aligned to be along the local gravitational acceleration noted ẑ; the atom interferometer
then measures the phase ϕ = kaẑT2, where T is half the interrogation time, k � 2(2π/λ) with λ the
laser wavelength, and aẑ is the free fall acceleration along the laser direction. The free fall time is
typically on the order of 500 ms, corresponding to a free fall distance of about a meter. A new “atom
preparation—free fall—detection” cycle is repeated every few seconds. Each measurement is affected
by white noise, but averaging leads to a typical sensitivity on the order of or below 10−9 g [91–93].

Such an interferometer has been used by H. Müller et al. in [47] and K. Y. Chung et al. in [48] for
testing Lorentz invariance in the gravitational sector with Caesium atoms, leading to the best terrestrial
constraints on the s̄μν coefficients. The analysis uses three data sets of respectively 2.5 days for the
first two and 10 days for the third, stretched over 4 years, which allows one to observe sidereal and
annual LIV signatures. The gravitational SME model used for this analysis can be found in [39,47,48];
its derivation will be summarized hereunder. Since the atoms in free fall are sensitive to the local phase
of the lasers, LIV in the interferometer observable could also come from the pure electromagnetic
sector. This contribution has been included in the experimental analysis in [48]. Focusing here on the
gravitational part of SME, we ignore it in the following.

The gravitational LIV model adjusted in this test restricts to modifications of the Earth-atom
two-body gravitational interaction. The Lagrangian describing the dynamics of a test particle at a
point on the Earth’s surface can be approximated by a post-Newtonian series as developed in [39].
At the Newtonian approximation, the two bodies Lagrangian is given by

L =
1
2

mV2 + GN
Mm

R

(
1 +

1
2

s̄ JK
t R̂J R̂K − 3

2
s̄TJ VJ

c
− s̄TJ R̂J VK

c
R̂k

)
, (4)
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where R and V are the position and velocity expressed in the standard SME Sun-centered frame and
R̂ = R/R with R = |R|. In addition, we have introduced GN the observed Newton constant measured by
considering the orbital motion of bodies and defined by (see also [39,50] or Section IV of [52])

GN = G
(

1 +
5
3

s̄TT
)

, (5)

and the 3-dimensional traceless tensor

s̄ JK
t = s̄ JK− 1

3
s̄TTδJK . (6)

From this Lagrangian one can derive the equations of motion of the free fall mass in a laboratory
frame (see the procedure in Section V.C.1. from [39]). It leads to the modified local acceleration in the
presence of LIV [39] given by

aẑ = g
(

1 − 1
6

i4 s̄TT +
1
2

i4 s̄ẑẑ
)
− ω2⊕R⊕ sin2 χ − gi4 s̄Tẑβẑ⊕ − 3gi1 s̄TJ βJ

⊕ , (7)

where g = GN M⊕/R2⊕, ω⊕ is the Earth’s angular velocity, β⊕ = V⊕
c ∼ 10−4 is the Earth’s boost,

R⊕ is the Earth radius, M⊕ is the Earth mass and χ the colatitude of the lab whose reference frame’s
ẑ direction is the sensitive axis of the instrument as previously defined here. This model includes
the shape of the Earth through its spherical moment of inertia I⊕ which appears in i⊕ = I⊕

M⊕R2⊕
,

i1 = 1 + 1
3 i⊕ and i4 = 1 − 3i⊕. In [48], Earth has been approximated as spherical and homogeneous

leading to i⊕ = 1
2 , i1 = 7

6 and i4 = − 1
2 .

The sensing direction of the experiment precesses around the Earth rotation axis with sidereal
period, and the lab velocity varies with sidereal period and annual period. At first order in V⊕ and
ω⊕ and as a function of the SME coefficients, the LIV signal takes the form of a harmonic series with
sidereal and annual base frequencies (denoted resp. ω⊕ and Ω) together with first harmonics. The time
dependence of the measured acceleration aẑ from Equation (7) arises from the terms involving the ẑ
indices. It can be decomposed in frequency according to [39]

δaẑ

aẑ = ∑
l

Cl cos (ωl t + φl) + Dl sin (ωl t + φl) . (8)

The model contains seven frequencies l ∈ {Ω, ω⊕, 2ω⊕, ω⊕ ± Ω, 2ω⊕ ± Ω}. The 14 amplitudes
Cl and Dl are linear combinations of 7 s̄μν components: s̄ JK, s̄TJ and s̄XX − s̄YY which can be found in
Table 1 of [48] or Table IV from [39].

In order to look for tiny departures from the constant Earth-atom gravitational interaction, a tidal
model for aẑ variations due to celestial bodies is removed from the data before fitting to Equation (8).
This tidal model consists of two parts. One part is based on a numerical calculation of the Newtonian
tide-generating potential from the Moon and the Sun at Earth’s surface based on ephemerides. It uses
here the Tamura tidal catalog [94] which gives the frequency, amplitude and phase of 1200 harmonics of
the tidal potential. These arguments are used by a software (ETGTAB) that calculates the time variation
of the local acceleration in the lab and includes the elastic response of Earth’s shape to the tides, called
“solid Earth tides”, also described analytically e.g., by the DDW model [95]. A previous SME analysis
of the atom gravimeter data using only this analytical tidal correction had been done, but it led to a
degraded sensitivity of the SME test [47]. Indeed, a non-negligible contribution to aẑ is not covered
by this non-empirical tidal model: oceanic tide effects such as ocean loading, for which good global
analytical models do not exist. They consequently need to be adjusted from measurements. For the
second analysis, reported here, additional local tidal corrections fitted on altimetric data have been
removed [96] allowing to improve the statistical uncertainty of the SME test by one order of magnitude.
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After tidal subtraction, signal components are extracted from the data using a numerical Fourier
transform (NFT). Due to the finite data length, Fourier components overlap, but the linear combinations
of spectral lines that the NFT estimates can be expressed analytically. Since the annual component
ωl = Ω has not been included in this analysis, the fit provides 12 measurements. From there, individual
constraints on the 7 SME coefficients and their associated correlation coefficients can be estimated by a
least square adjustment. The results obtained are presented in Table 1.

Table 1. Atom-interferometry limits on Lorentz violation in gravity from [48]. The correlation
coefficients can be derived from Table III of [48].

Coefficient

s̄TX (−3.1 ± 5.1)× 10−5

s̄TY (0.1 ± 5.4)× 10−5

s̄TZ (1.4 ± 6.6)× 10−5

s̄XX − s̄YY (4.4 ± 11)× 10−9

s̄XY (0.2 ± 3.9)× 10−9

s̄XZ (−2.6 ± 4.4)× 10−9

s̄YZ (−0.3 ± 4.5)× 10−9

Correlation Coefficients

1
0.05 1
0.11 −0.16 1

−0.82 0.34 −0.16 1
−0.38 −0.86 0.10 −0.01 1
−0.41 0.13 −0.89 0.38 0.02 1
−0.12 −0.19 −0.89 0.04 0.20 0.80 1

All results obtained are compatible with null Lorentz violation. As expected from boost
suppressions in Equation (7) and from the measurement uncertainty, on the order of a few 10−9 g [97],
typical limits obtained are in the 10−9 range for purely spatial s̄μν components and 4 orders of
magnitude weaker for the spatio-temporal components s̄TJ . It can be seen e.g., with the purely spatial
components that these constraints do not reach the intrinsic limit of acceleration resolution of the
instrument (which has a short term stability of 11 × 10−9 g/

√
Hz) because the coefficients are still

correlated. Their marginalized uncertainty is broadened by their correlation.
Consequently, improving the uncertainty could be reached through a better decorrelation,

by analyzing longer data series. In parallel, the resolution of these instruments keeps increasing
and has nowadays improved by about a factor 10 since this experiment. However, increasing the
instrument’s resolution brings back to the question of possible accidental cancelling in treating “postfit”
data. Indeed, it should be recalled here that local tidal corrections subtracted prior to analysis are
based on adjusting a model of ocean surface from altimetry data. In principle, this observable would
as well be affected by gravity LIV; fitting to these observations thus might remove part of SME
signatures from the atom gravimeter data. This was mentioned in the first atom gravimeter SME
analysis [47]. The adjustment process used to assess local corrections in gravimeters is not made
directly on the instrument itself, but it always involves a form of tidal measurement (here altimetry
data, or gravimetry data from another instrument in [98]). All LIV frequencies match to the main
tidal frequencies. Further progress on SME analysis with atom gravimeters would thus benefit from
addressing in more details the question of possible signal cancelling.

4.2. Very Long Baseline Interferometry

VLBI is a geometric technique measuring the time difference in the arrival of a radio wavefront,
emitted by a distant quasar, between at least two Earth-based radio-telescopes. VLBI observations are
done daily since 1979 and the database contains nowadays almost 6000 24 h sessions, corresponding
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to 10 millions group-delay observations, with a present precision of a few picoseconds. One of the
principal goals of VLBI observations is the kinematical monitoring of Earth rotation with respect
to a global inertial frame realized by a set of defining quasars, the International Celestial Reference
Frame [99], as defined by the International Astronomical Union [100]. The International VLBI Service
for Geodesy and Astrometry (IVS) organizes sessions of observation, storage of data and distribution of
products, in particular the Earth Orientation parameters. Because of this precision, VLBI is also a very
interesting tool to test gravitation in the Solar System. Indeed, the gravitational fields of the Sun and
the planets are responsible of relativistic effects on the quasar light beam through the propagation of
the signal to the observing station and VLBI is able to detect these effects very accurately. By using the
complete VLBI observations database, it was possible to obtain a constraint on the γ PPN parameter at
the level of 1.2 × 10−4 [101,102]. In its minimal gravitational sector, SME can also be investigated with
VLBI and obtaining a constrain on the s̄TT coefficient is possible.

Indeed, the propagation time of a photon emitted at the event (cTe, Xe) and received at the position
Xr can be computed in the SME formalism using the time transfer function formalism [103–107] and is
given by [39,80]

T (Xe, Te, Xr) = Tr − Te =
Rer
c + 2 GN M

c3

[
1 − 2

3 s̄TT − s̄TJ NJ
er

]
ln Re−Ner .Xe

Rr−Ner .Xr

+GN M
c3

(
s̄TJ PJ

er − s̄ JK NJ
erPK

er

)
Re−Rr
ReRr

+ GN M
c3

[
s̄TJ NJ

er + s̄ JK P̂J
er P̂K

er − s̄TT
]
(Nr.Ner − Ne.Ner)

(9)

where the terms a1 and a2 from [80] are taken as unity (which corresponds to using the harmonic
gauge, which is the one used for VLBI data reduction), Re = |Xe|, Rr = |Xr|, Rer = |Xr − Xe| with the
central body located at the origin and where we introduce the following vectors

K =
Xe

Re
, Nij ≡

Xij

Rij
=

Xj − Xi

|Xij| , Ni =
Xi
|Xi| , Per = Ner × (Xr × Ner), and P̂er =

Per

|Per| , (10)

and where GN is the observed Newton constant measured by considering the orbital motion of bodies
and is defined in Equation (5). This equation is the generalization of the well-known Shapiro time
delay including Lorentz violation. The VLBI is actually measuring the difference of the time of arrival
of a signal received by two different stations. This observable is therefore sensitive to a differential
time delay (see [108] for a calculation in GR). Assuming a radio-signal emitted by a quasar at event
(Te, Xe) and received by two different VLBI stations at events (T1, X1) and (T2, X2) (all quantities
being expressed in a barycentric reference frame), respectively, the VLBI group-delay Δτ(SME) in SME
formalism can be written [55]

Δτ(SME) = 2
GN M

c3 (1 − 2
3

s̄TT) ln
R1 + K.X1

R2 + K.X2
+

2
3

GN M
c3 s̄TT (N2.K − N1.K) , (11)

where we only kept the s̄TT contribution (see Equation (7) from [55] for the full expression) and we use
the same notations as in [108] by introducing three unit vectors

K =
Xe

|Xe| , N1 =
X1

|X1| , and N2 =
X2

|X2| . (12)

Ten million VLBI delay observations between August 1979 and mid-2015 have been used to
estimate the s̄TT coefficient. First, VLBI observations are corrected from delay due to the radio wave
crossing of dispersive media by using 2 GHz and 8 GHz recordings. Then, we used only the 8 GHz
delays and the Calc/Solve geodetic VLBI analysis software, developed at NASA Goddard Space
Flight Center and coherent with the latest standards of the International Earth Rotation and Reference
Systems Service [109]. We added the partial derivative of the VLBI delay with respect to s̄TT from
Equation (11) to the software package using the USERPART module of Calc/Solve. We turned to a

174



Universe 2016, 2, 30

global solution in which we estimated s̄TT as a global parameter together with radio source coordinates.
We obtained

s̄TT = (−5 ± 8)× 10−5 , (13)

with a postfit root mean square of 28 picoseconds and a χ2 per degree of freedom of 1.15. Correlations
between radio source coordinates and s̄TT are lower than 0.02, the global estimate being consistent
with the mean value obtained with the session-wise solution with a slightly lower error.

In conclusion, VLBI is an incredible tool to test Lorentz symmetry, especially the s̄TT coefficient.
This coefficient has an isotropic impact on the propagation speed of gravitational waves as can be
noticed from Equation (27) below (or see Equation (9) from [56] or Equation (11) from [60]). The analysis
performed in [55] includes the SME contribution in the modeling of VLBI observations and includes
the s̄TT parameter in the global fit with other parameters. It is therefore a robust analysis that produces
the current best estimate on the s̄TT parameter. In the future, the accumulation of VLBI data in
the framework of the permanent geodetic monitoring program leads us expect improvement of
this constraint.

4.3. Lunar Laser Ranging

On 20 August 1969, after ranging to the lunar retro-reflector placed during the Apollo 11 mission,
the first LLR echo was detected at the McDonald Observatory in Texas. Currently, there are five stations
spread over the world which have realized laser shots on five lunar retro-reflectors. Among these
stations four are still operating: Mc Donald Observatory in Texas, Observatoire de la Côte d’Azur in
France, Apache point Observatory in New Mexico and Matera in Italy while one on Maui, Hawaii has
stopped lunar ranging since 1990. Concerning the lunar retro-reflectors three are located at sites of the
Apollo missions 11, 14 and 15 and two are French-built array operating on the Soviet roving vehicle
Lunakhod 1 and 2.

LLR is used to conduct high precision measurements of the light travel time of short laser pulses
emitted at time t1 by a LLR station, reflected at time t2 by a lunar retro-reflector and finally received at
time t3 at a station receiver. The data are presented as normal points which combine time series of
measured light travel time of photons, averaged over several minutes to achieve a higher signal-to-noise
ratio measurement of the lunar range at some characteristic epoch. Each normal-point is characterized
by one emission time (t1 in universal time coordinate—UTC), one time delay (Δtc in international
atomic time—TAI) and some additional observational parameters as laser wavelength, atmospheric
temperature and pressure etc. According to [110], the theoretical pendent of the observed time delay
(Δtc = t3 − t1 in TAI) is defined as

Δtc =
[

T3 − Δτt(T3)
]
−

[
T1 − Δτt(T1)

]
, (14)

where T1 is the emission time expressed in barycentric dynamical time (TDB) and Δτt is a relativistic
correction between the TDB and the terrestrial time (TT) at the level of the station. The reception time
T3 expressed in TDB is defined by the following two relations

T3 = T2 +
1
c
∥∥Xo′(T3)− Xr(T2)

∥∥+ ΔT(grav) + Δτa, (15a)

T2 = T1 +
1
c
∥∥Xr(T2)− Xo(T1)

∥∥+ ΔT(grav) + Δτa, (15b)

with T2 the time in TDB at the reflection point Xo and Xo′ are respectively the barycentric position vector
at the emitter and the reception point, Xr is the barycentric position vector at the reflection point, ΔT(grav)
is the one way gravitational time delay correction and Δτa is the one way tropospheric correction.

LLR measurements are used to produce the Lunar ephemeris but also provide a unique
opportunity to study the Moon’s rotation, the Moon’s tidal acceleration, the lunar rotational
dissipation, etc. [111]. In addition, LLR measurements have turn the Earth-Moon system into a
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laboratory to study fundamental physics and to conduct tests of the gravitation theory. Nordtvedt was
the first to suggest that LLR can be used to test GR by testing one of its pillar: the Strong Equivalence
Principle [112–114]. He showed that precise laser ranging to the Moon would be capable of measuring
precisely the ratio of gravitational mass to inertial mass of the Earth to an accuracy sufficient to
constrain a hypothetical dependence of this ratio on the gravitational self-energy. He concluded that
such a measurement could be used to test Einstein’s theory of gravity and others alternative theories
as scalar tensor theories. The best current test of the Strong Equivalence Principle is provided by a
combination of torsion balance measurements with LLR analysis and is given by [115–117]

η = (4.4 ± 4.5)× 10−4 , (16)

where η is the Nordtvedt parameter that is defined as mG/mI = 1+ ηU/mc2 with mG the gravitational
mass, mI the inertial mass and U the gravitational self-energy of the body. Using the Cassini constraint
on the γ PPN parameter [118] and the relation η = 4β− γ− 3 leads to a constraint on β PPN parameter
at the level β − 1 = (1.2 ± 1.1)× 10−4 [116].

In addition to tests of the Strong Equivalence Principle, many other tests of fundamental physics
were performed with LLR analysis. For instance, LLR data can be used to search for a temporal
evolution of the gravitational constant Ġ/G [115] and to constrain the fifth force parameters [119].
In addition, LLR has been used to constrain violation of the Lorentz symmetry in the PPN framework.
Müller et al. [119] deduced from LLR data analysis constraints on the preferred frame parameters α1

and α2 at the level α1 = (−7 ± 9)× 10−5 and α2 = (1.8 ± 2.5)× 10−5.
Considering all the successful GR tests performed with LLR observations, it is quite natural to use

them to search for Lorentz violations in the gravitation sector. In the SME framework, Battat et al. [45]
used the lunar orbit to provide estimates on the SME coefficients. Using a perturbative approach,
the main signatures produced by SME on the lunar orbit have analytically been computed in [39].
These computations give a first idea of the amplitude of the signatures produced by a breaking of
Lorentz symmetry. Nevertheless, these analytical signatures have been computed assuming the lunar
orbit to be circular and fixed (i.e., neglecting the precession of the nodes for example). These analytical
signatures have been fitted to LLR residuals obtained from a data reduction performed in pure GR [45].
They determined a “realistic” error on their estimates from a similar postfit analysis performed in the
PPN framework. The results obtained by this analysis are presented in Table 2. It is important to
note that this analysis uses projections of the SME coefficients into the lunar orbital plane s̄11, s̄22, s̄0i

(see Section V.B.2 of [39]) while the standard SME analyses uses coefficients defined in a Sun-centered
equatorial frame (and denoted by capital letter s̄I J).

Table 2. Estimation of Standard-Model Extension (SME) coefficients from Lunar Laser Ranging
(LLR) postfit data analysis from [45]. No correlations coefficients have been derived in this analysis.
The coefficients s̄ij are projections of the s̄I J into the lunar orbital plane (see Equation (107) from [39])
while the linear combinations s̄Ω⊕c and s̄Ω⊕s are given by Equation (108) from [39].

Coefficient

s̄11 − s̄22 (1.3 ± 0.9)× 10−10

s̄12 (6.9 ± 4.5)× 10−11

s̄01 (−0.8 ± 1.1)× 10−6

s̄02 (−5.2 ± 4.8)× 10−7

s̄Ω⊕c (0.2 ± 3.9)× 10−7

s̄Ω⊕s (−1.3 ± 4.1)× 10−7
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However, as discussed in Section 3 and in [46,55], a postfit search for SME signatures into
residuals of a data reduction previously performed in pure GR is not fully satisfactory. First of all,
the uncertainties obtained by a postfit analysis based on a GR data reduction can be underestimated by
up to two orders of magnitude. This is mainly due to correlations between SME coefficients and others
global parameters (masses, positions and velocities, . . .) that are neglected in this kind of approach.
In addition, in the case of LLR data analysis, the oscillating signatures derived in [39] and used in [45] to
determine pseudo-constraints are computed only accounting for short periodic oscillations, typically at
the order of magnitude of the mean motion of the Moon around the Earth. Therefore, this analytic
solution remains only valid for few years while LLR data spans over 45 years (see also the discussions
in footnote 2 from [50] and page 22 from [39]).

Regarding LLR data analysis, a more robust strategy consists in including the SME modeling in
the complete data analysis and to estimate the SME coefficients in a global fit along with others
parameters by taking into account short and long period terms and also correlations (see [46]).
In order to perform such an analysis, a new numerical lunar ephemeris named “Éphéméride Lunaire
Parisienne Numérique” (ELPN) has been developed within the SME framework. The dynamical model
of ELPN is similar to the DE430 one [120] but includes the Lorentz symmetry breaking effects arising
on the orbital motion of the Moon. The SME contribution to the lunar equation of motion has been
derived in [39] and is given by

aJ
SME = GN M

r3

[
s̄ JK

t rK− 3
2 s̄KL

t r̂Kr̂LrJ + 2 δm
M

(
s̄TKv̂KrJ − s̄TJ v̂KrK

)

+ 3s̄TKV̂KrJ − s̄TJV̂KrK − s̄TKV̂ JrK + 3s̄TLV̂Kr̂Kr̂LrJ
]
,

(17)

where GN is the observed Newtonian constant defined by Equation (5), M is the mass of the
Earth-Moon barycenter, δm is the difference between the Earth and the lunar masses; r̂ J being the unit
position vector of the Moon with respect to the Earth; v̂J = vJ/c with vJ being the relative velocity
vector of the Moon with respect to the Earth; V̂ J = VJ/c with VJ being the Heliocentric velocity
vector of the Earth-Moon barycenter and the 3-dimensional traceless tensor defined by Equation (6).
These equations of motion as well as their partial derivatives are integrated numerically in ELPN.

In addition to the orbital motion, effects of a violation of Lorentz symmetry on the light travel
time of photons is also considered. More precisely, the gravitational time delay ΔT(grav) appearing in
Equation (14) is given by the gravitational part of Equation (9) [80].

Estimates on the SME coefficients are obtained by a standard chi-squared minimization: the LLR
residuals are minimized by an iterative weighted least squares fit using partial derivatives previously
computed from variational equations in ELPN. After an adjustment of 82 parameters including the
SME coefficients a careful analysis of the covariance matrix shows that LLR data does not allow to
estimate independently all the SME coefficients but that they are sensitive to the following three
linear combinations:

s̄XX − s̄YY , s̄TY + 0.43s̄TZ, s̄XX + s̄YY − 2s̄ZZ − 4.5s̄YZ. (18)

The estimations on the 6 SME coefficients derived in [46] is summarized in Table 3. In particular, it is
worth emphasizing that the quoted uncertainties are the sum of the statistical uncertainties obtained
from the least-square fit with estimations of systematics uncertainties obtained with a Jackknife
resampling method [121,122].
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Table 3. Estimation of SME coefficients from a full LLR data analysis from [46] and associated
correlation coefficients.

Coefficient Estimates

s̄TX (−0.9 ± 1.0)× 10−8

s̄XY (−5.7 ± 7.7)× 10−12

s̄XZ (−2.2 ± 5.9)× 10−12

s̄XX − s̄YY (0.6 ± 4.2)× 10−11

s̄TY + 0.43 s̄TZ (6.2 ± 7.9)× 10−9

s̄XX + s̄YY − 2s̄ZZ − 4.5 s̄YZ (2.3 ± 4.5)× 10−11

Correlation Coefficients

1
−0.06 1
−0.04 0.29 1

0.58 −0.12 −0.16 1
0.16 −0.01 −0.09 0.25 1
0.07 −0.10 −0.13 −0.10 0.03 1

In summary, LLR is a powerful experiment to constrain gravitation theory and in particular
hypothetical violation of the Lorentz symmetry. A first analysis based on a postfit estimations of
the SME coefficients have been performed [45] which is not satisfactory regarding the neglected
correlations with other global parameters as explained in Section 3. A full analysis including the
integration of the SME equations of motion and the SME contribution to the gravitational time delay
has been done in [46]. The resulting estimates on some SME coefficients are presented in Table 3.
In addition, some SME coefficients are still correlated with parameters appearing in the rotational
motion of the Moon as the principal moment of inertia, the quadrupole moment, the potential Stockes
coefficient C22 and the polar component of the velocity vector of the fluid core [46]. A very interesting
improvement regarding this analysis would be to produce a joint GRAIL (Gravity Recovery And Interior
Laboratory) [123–125] and LLR data analysis that would help in decorrelating the SME parameters from
the lunar potential Stockes coefficients of degree 2 and therefore improve marginalized estimations of
the SME coefficients. Finally, in [45,46], the effects of SME on the translational lunar equations of motion
are considered and used to derive constraints on the SME coefficients. It would be also interesting to
extend these analyses by considering the modifications due to SME on the rotation of the Moon. A first
attempt has been proposed in Section V. A. 2. of [39] but needs to be extended.

4.4. Planetary Ephemerides

The analysis of the motion of the planet Mercury around the Sun was historically the first
evidence in favor of GR with the explanation of the famous advance of the perihelion in 1915.
From there, planetary ephemerides have always been a very powerful tool to constrain GR and
alternative theories of gravitation. Currently, three groups in the world are producing planetary
ephemerides: the NASA Jet Propulsion Laboratory with the DE ephemerides [120,126–131], the French
INPOP (Intégrateur Numérique Planétaire de l’Observatoire de Paris) ephemerides [132–137] and
the Russian EPM ephemerides [138–142]. These analyses use an impressive number of different
observations to produce high accurate planetary and asteroid trajectories. The observations used to
produce ephemerides comprise radioscience observations of spacecraft that orbited around Mercury,
Venus, Mars and Saturn, flyby tracking of spacecraft close to Mercury, Jupiter, Uranus and Neptune
and optical observations of all planets. This huge set of observations have been used to constrain the
γ and β post-Newtonian parameter at the level of 10−5 [136,137,141–143], the fifth force interaction
(see [32] and Figure 31 from [143]), the quantity of Dark Matter in our Solar System [144], the Modified
Newtonian Dynamics [131,145–147], . . .
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A violation of Lorentz symmetry within the gravity sector of SME induces different types of effects
that can have implications on planetary ephemerides analysis: effects on the orbital dynamics and
effects on the light propagation. Simulations using the Time Transfer Formalism [104,106,107] based
on the software presented in [148] have shown that only the s̄TT coefficients produce a non-negligible
effect on the light propagation (while it has impact only at the next post-Newtonian level on the
orbital dynamics [29,39]). On the other hand, the other coefficients produce non-negligible effects
on the orbital dynamics [39] and can therefore be constrained using planetary ephemerides data.
In the linearized gravity limit, the contribution from SME to the 2-body equations of motion within
the gravitational sector of SME are given by the first line of Equation (17) (i.e., for a vanishing Vk).
The coefficient s̄TT is completely unobservable in this context since absorbed in a rescaling of the
gravitational constant (see the discussion in [39,52]).

Ideally, in order to perform a solid estimation of the SME coefficients using planetary ephemerides,
one should include the full SME equations in the integration of the planets motion and fit them
simultaneously with the other estimated parameters (positions and velocities of planets, J2 of the
Sun, . . . ). This solid analysis within the SME formalism has not been performed so far.

As a first step, a postfit analysis has been performed [49,50]. The idea of this analysis is to
derive the analytical expression for the secular evolution of the orbital elements produced by the SME
contribution to the equations of motion. Using the Gauss equations, secular perturbations induced by
SME on the orbital elements have been computed in [39] (see also [49] for a similar calculations done
for the s̄TJ coefficients only). In particular, the secular evolution of the longitude of the ascending node
Ω and the argument of the perihelion ω is given by

〈
dΩ
dt

〉
=

n
sin i(1 − e2)1/2

[
ε

e2 s̄kP sin ω +
(e2 − ε)

e2 s̄kQ cos ω − δm
M

2naε

ec
s̄k cos ω

]
, (19a)

〈
dω

dt

〉
= − cos i

〈
dΩ
dt

〉
− n

[
− ε2

2e4 (s̄PP − s̄QQ) +
δm
M

2na(e2 − ε)

ce3(1 − e2)1/2 s̄Q
]

, (19b)

where a is the semimajor axis, e the eccentricity, i the orbit inclination (with respect to the ecliptic),
n = (GNm	/a3)1/2 is the mean motion, ε = 1 − (1 − e2)1/2, δm the difference between the two masses
and M their sum (in the cases of planets orbiting the Sun, one has M ≈ δm). In all these expressions,
the coefficients for Lorentz violation with subscripts P, Q, and k are understood to be appropriate
projections of s̄μν along the unit vectors P, Q, and k, respectively. For example, s̄k = kis̄Ti, s̄PP = PiPjs̄ij.
The unit vectors P, Q and k define the orbital plane (see [39] or Equation (8) from [50]).

Instead of including the SME equations of motion in planetary ephemerides, the postfit analysis
uses estimations of supplementary advances of perihelia and nodes derived from ephemerides
analysis [135,140,144] to fit the SME coefficients through Equation (19). In [50], estimations of
supplementary advances of perihelia and longitude of nodes from INPOP (see Table 5 from [135])
are used to fit a posteriori the SME coefficients. This analysis suffers from large correlations due to
the fact that the planetary orbits are very similar to each other: nearly eccentric orbit and very low
inclination orbital planes. In order to deal properly with these correlations a Bayesian Monte Carlo
inference has been used [50]. The posterior probability distribution function can be found on Figure 1
from [50]. The intervals corresponding to the 68% Bayesian confidence levels are given in Table 4 as
well as the correlation matrix. It is interesting to mention that a decomposition of the normal matrix in
eigenvectors allows one to find linear combinations of SME coefficients that are uncorrelated with the
planetary ephemerides analysis (see Equation (15) and Table IV from [50]).
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Table 4. Estimations of the SME coefficients from a postfit data analysis based on planetary ephemerides
from [50]. The uncertainties correspond to the 68% Bayesian confidence levels of the marginal posterior
probability distribution function. The associated correlation coefficients can be found in Table III from [50].

Coefficient

s̄XX − s̄YY (−0.8 ± 2.0)× 10−10

s̄XX + s̄YY − 2 s̄ZZ (−0.8 ± 2.7)× 10−10

s̄XY (−0.3 ± 1.1)× 10−10

s̄XZ (−1.0 ± 3.5)× 10−11

s̄YZ (5.5 ± 5.2)× 10−12

s̄TX (−2.9 ± 8.3)× 10−9

s̄TY (0.3 ± 1.4)× 10−8

s̄TZ (−0.2 ± 5.0)× 10−8

Correlation coefficients

1
0.99 1
0.99 0.99 1
0.98 0.98 0.99 1

−0.32 −0.24 −0.26 −0.26 1
0.99 0.98 0.98 0.98 −0.32 1
0.62 0.67 0.62 0.59 0.36 0.60 1

−0.83 −0.86 −0.83 −0.81 −0.14 −0.82 −0.95 1

In summary, planetary ephemerides offer a great opportunity to constrain hypothetical
violations of Lorentz symmetry. So far, only postfit estimations of the SME coefficients have been
performed [49,50]. In this analysis, estimations of secular advances of perihelia and longitude of nodes
obtained with the INPOP planetary ephemerides [135] are used to fit a posteriori the SME coefficients
using the Equations (19). The 68% marginalized confidence intervals are given in Table 4. This analysis
suffers highly from correlations due to the fact that the planetary orbits are very similar. A very
interesting improvement regarding this analysis would be to perform a full analysis by integrating the
planetary equations of motion directly within the SME framework and by fitting the SME coefficients
simultaneously with the other parameters fitted during the ephemerides data reduction.

4.5. Gravity Probe B

In GR, a gyroscope in orbit around a central body undergoes two relativistic precessions with
respect to a distant inertial frame: (i) a geodetic drift in the orbital plane due to the motion of the
gyroscope in the curved spacetime [149]; and (ii) a frame-dragging due to the spin of the central
body [150]. In GR, the spin of a gyroscope is parallel transported, which at the post-Newtonian
approximation gives the relativistic drift

R =
dŜ
dt

= ΩGR × S , (20a)

ΩGR =
3GM
2c2r3 r × v +

3r̂(r̂.J)− J
c2r3 , (20b)

where Ŝ is the unit vector pointing in the direction of the spin S of the gyroscope, r and v are the
position and velocity of the gyroscope, r̂ = r/r and J is the angular momentum of the central
body. In 1960, it has been suggested to use these two effects to perform a new test of GR [151,152].
In April 2004, GPB, a satellite carrying 4 cryogenic gyroscopes was launched in order to measure
these two precessions. GPB was orbiting Earth on a polar orbit such that the two relativistic drifts are
orthogonal to each other [153]: the geodetic effect is directed along the NS direction (North-South,
i.e., parallel to the satellite motion) while the frame-dragging effect is directed on the WE direction
(West-East, see [52,153] for further details about the axes conventions in the GPB data reduction).
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A year of data gives the following measurements of the relativistic drift: (i) the geodetic drift
RNS = −6601.8 ± 18.3 mas/yr (milliarcsecond per year) to be compared to the GR prediction of
−6606.1 mas/yr; and (ii) the frame-dragging drift RWE = −37.2 ± 7.2 mas/yr to be compared with
the GR prediction of −39.2 mas/yr. In other word, the GPB results can be written as a measurement of
a deviation from GR given by

ΔRNS = 4.3 ± 18.3 mas/yr and ΔRWE = 2 ± 7.2 mas/yr . (21)

Within the SME framework, if one considers only the s̄μν coefficients, the equation of parallel
transport in term of the spacetime metric is not modified (see Equation (143) from [39]). Nevertheless,
the expression of the spacetime metric is modified leading to a modification of the relativistic drift
given by Equation (150) from [39]. In order to focus only on the dominant secular part of the evolution
of the spin orientation, the relativistic drift equation has been averaged over a period. The SME
contribution to the precession can be written as [39]

ΔΩJ =
GN M

r2 v
[(

−4
3

s̄TT − 9
8

ĩ(−5/3) s̄
JK
t σ̂J σ̂K

)
σ̂J +

5
4

ĩ(−3/5) s̄
JK
t σ̂K

]
, (22)

where GN is the effective gravitational constant defined by Equation (5), the coefficients ĩ are defined
by ĩ(β) = 1 + βI⊕/(M⊕r2), σ̂J is a unit vector normal to the gyroscope orbital plane, r and v are the

norm of the position and velocity of the gyroscope and s̄ JK
t is the traceless part of s̄ JK as defined by

Equation (6). Using the geometry of GPB into the last equation and using Equation (20a), one finds
that the gyroscope anomalous drift is given by

ΔRNS = 5872s̄TT + 794
(

s̄XX − s̄YY
)
− 317

(
s̄XX + s̄YY − 2s̄ZZ

)
− 1050s̄XY , (23a)

ΔRWE = −368(s̄XX − s̄YY)− 1112s̄XY + 1269s̄XZ + 4219s̄YZ , (23b)

where the units are mas/yr. These are the SME modifications to the relativistic drift arising from
the modification of the equations of evolution of the gyroscope axis (i.e., modification of the parallel
transport equation due to the modification of the underlying spacetime metric).

In addition to modifying the evolution of the spin axis, a breaking of Lorentz symmetry will
impact the orbital motion of the gyroscope. As a result, the position and velocity of the gyroscope will
depend on the SME coefficients and therefore also impact the evolution of the spin axis through the GR
contribution given by Equation (20b). The best way to deal with this effect is to use the GPB tracking
measurements (GPS) in order to constrain the gyroscope orbital motion and eventually constrain the
SME coefficients through the equations of motion. In [52], these tracking observations are not used
and only the gyroscope drift is used in order to constrain the SME contributions coming from both the
modification of the parallel transport and from the modification of GPB orbital motion. In order to
do this, the contribution of SME on the evolution of the orbital elements given by Equations (19)
and (26) are used, averaged over a period and in the low eccentricity approximation. This secular
evolution for the osculating elements is introduced in the relativistic drift equation for the gyroscope
from Equation (20b) and averaged over the measurement time using Equation (20a). Using the GPB
geometry, this contribution to the relativistic drift is given by

ΔR′
NS = 5.7 × 106(s̄XX − s̄YY) + 1.7 × 107 s̄XY − 1.9 × 107 s̄XZ − 6.6 × 107 s̄YZ , (24a)

ΔR′
WE = −1.89 × 107(s̄XX − s̄YY)− 5.71 × 107 s̄XY − 5.96 × 106 s̄XZ − 1.98 × 107 s̄YZ , (24b)

with units of mas/yr.
The sum of the two SME contributions to the gyroscope relativistic drift given by Equations (23) and (24)

can be compared to the GPB estimations given by Equation (21). The result is given in Table 5. The main
advantage of GPB comes from the fact that it is sensitive to the s̄TT coefficient. The constraint on this
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coefficient is at the level of 10−3, a little bit less good than the one obtained with VLBI or with binary
pulsars but relying on a totally different type of observations. The constraints on the spatial part
of the SME coefficients (s̄I J) are at the level of 10−7 and are superseded by the other measurements.
The constraints on these coefficients come mainly from the contribution arising from the orbital
dynamics of GPB and not from a direct modification of the spin evolution. Constraining the orbital
motion from GPB by using the gyroscope observations only is not optimal and tracking observations
may help to improve the corresponding constraints (in this case, a dedicated satellite may be more
appropriate as discussed in Section 5.3).

Table 5. Estimations of the SME coefficients from a postfit data analysis based on Gravity Probe B
(GPB) [52].

Coefficient

s̄(1)GPB = s̄TT + 970
(
s̄XX − s̄YY)− 0.05

(
s̄XX + s̄YY − 2s̄ZZ)

(0.7 ± 3.1)× 10−3
+2895 s̄XY − 3235 s̄XZ − 11 240 s̄YZ

s̄(2)GPB = s̄XX − s̄YY + 3.02 s̄XY + 0.32 s̄XZ + 1.05 s̄YZ (−1.1 ± 3.8)× 10−7

In summary, the GPB measurement of a gyroscope relativistic drifts due to geodetic precession or
frame-dragging can be used to search for a breaking of Lorentz symmetry. The main advantage of
this technique comes from its sensitivity to s̄TT . As already mentioned, this coefficient has an isotropic
impact on the propagation velocity of gravitational waves as can be noticed from Equation (27) below
(see also Equation (9) from [56] or Equation (11) from [60]). A preliminary result based on a post-fit
analysis performed after a GR data reduction of GPB measurements gives a constraint on s̄TT at the
level of 10−3 [52]. This should be investigated further since the Earth’s quadrupole moment has been
neglected and Lorentz-violating effects on the aberration terms can also change slightly the results.
In addition, impacts from Lorentz violations on frame-dragging arising in other contexts such as
satellite laser ranging (see Section 5.3) or signals from accretion disks around collapsed stars [154]
would also be interesting to consider.

4.6. Binary Pulsars

The discovery of the first binary pulsars PSR 1913+16 by Hulse and Taylor in 1975 [155] has
opened a new window to test the theory of gravitation. Observations of this pulsar have allowed
one to measure the relativistic advance of the periastron [156] and more importantly to measure the
rate of orbital decay due to gravitational radiation [157]. Pulsars are rotating neutron stars that are
emitting very strong radiation. The periods of pulsars are very stable which allows us to consider
them as “clocks” that are moving in an external gravitational field (typically in the gravitational field
generated by a companion). The measurements of the pulse time of arrivals can be used to infer several
parameters by fitting an appropriate timing model (see for example Section 6.1 from [2]): (i) non-orbital
parameter such as the pulsar period and its rate of change; (ii) five Keplerian parameters; and (iii) some
post-Keplerian parameters [158]. In GR, the expressions of these post-Keplerian parameters are related
to the masses of the two bodies and to the Keplerian parameters. If more than 2 of these post-Keplerian
parameters can be determined, they can be used to test GR [159]. Nowadays, more than 70 binary
pulsars have been observed [160]. A description of the most interesting binary pulsars in order to test
the gravitation theory can be found in Section 6.2 from [2] or in the supplemental material from [53].

The model fitted to the observations is based on a post-Newtonian analytical solution to the
2 body equations of motion [161] (see also [162]) and includes contribution from the Einstein time delay
(i.e., the transformation between proper and coordinate time), the Shapiro time delay, the Roemer
time delay [158]. The model also corrects for several systematics like atmospheric delay, Solar system
dispersion, interstellar dispersion, motion of the Earth and the Solar System, . . . (see for example [163]).
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Pulsars observations provide some of the best current constraints on alternative theories of
gravitation (for a review, see [164,165]). In addition to the Hulse and Taylor pulsar, the double
pulsar [166] now provides the best measurement of the pulsar orbital rate of change [165]. In addition,
the post-Keplerian modeling has been fully derived in tensor-scalar theories [167–169] such that
pulsars observations have provided some of the best constraints on this class of theory [165,170,171].
It is important to mention that non perturbative strong field effects may arise in binary pulsars system
and needs to be taken into account [169,172].

In addition, binary pulsars have also been successfully used to test Lorentz symmetry.
For example, analyses of the pulses time of arrivals provide a constraint on the α1,2,3 PPN parameters.
Since non perturbative strong field effects may arise in binary pulsars system (see for example [173]
for strong field effects in Einstein-Aether theory), the obtained constraints are interpreted as strong
field version of the PPN parameters denoted by α̂i. Estimates of these parameters should be compared
carefully to the standard weak field constraints since they may depend on the gravitational binding
energy of the neutron star. The best current constraint on α̂1 = −0.4+3.7

−3.1 × 10−5 is obtained by
considering the orbital dynamics of the binary pulsars PSR J1738+0333 [174,175]. The best current
constraint on α̂2 takes advantage from the fact that this parameter produces a precession of the spin
axis of massive bodies [176]. The combination of observations of two solitary pulsars lead to the best
current constraints on |α̂2| < 1.6 × 10−9 [177]. Finally, the parameter α̂3 produces a violation of the
momentum conservation in addition to a violation of the Lorentz symmetry. This parameter will
induce a self-acceleration for rotating body that can be constrained using binary pulsars [178]. The best
current constraint uses a set of 5 pulsars (4 binary pulsars and one solitary pulsar) and is given by
α̂3 < 5.5 × 10−20 [179].

Furthermore, specific Lorentz violating theories have also been constrained with binary pulsars.
In [72,73], binary pulsars observations are used to constrain Einstein-Aether and khronometric theory.
In these theories, the low-energy limit Lorentz violations can be parametrized by four parameters:
the α1 and α2 PPN parameters and two other parameters. It has been shown [72,73,173] that the orbital
period decay depends on these four parameters. Assuming the solar system constraints on α1 and
α2 [2], measurements of the rate of change of the orbital period of binary pulsars have been used to
constrain the two other parameters (see for example Figure 2 from [72]). In this work, strong field
effects have been taken into account by solving numerically the field equations in order to determine
the neutron stars sensitivity [73].

Finally, binary pulsars have been used in order to derive constraints on the SME coefficients.
As in the PPN formalism, constraints obtained from binary pulsars need to be considered as constraints
on strong-field version of the SME coefficients that may include non perturbative effects. Two different
types of effects have been used to determine estimates on the SME coefficients: (i) tests using the spin
precession of solitary pulsars and (ii) tests using effects on the orbital dynamics of binary pulsars [53].
The SME contribution to the precession rate of an isolated spinning body has been derived in [39] and
is given by

Ωk
SME =

π

P
s̄kjŜj , (25)

where P is the spin period and Ŝj is the unit vector pointing along the spin direction. The effects from
the pulsar spin precession on the pulse width can be found in [177,180]. Two solitary pulsars have
been used to constrain the SME coefficients with this effect. The second type of tests come from the
orbital dynamics of binary pulsars. As mentioned in Sections 4.3 and 4.4, the SME will modify the
two-body equations of motion by including the term from Equation (17). At first order in the SME
coefficients, this will produce several secular effects that have been computed in [39]. In particular,
an additional advance in the argument of periastron and of the longitude of the nodes has been
mentioned in Equation (19) and used to constrain the SME with planetary ephemerides. For binary
pulsars, it is possible to constrain a secular evolution of two other orbital elements: the eccentricity
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and the projected semi-major axis x. The secular SME contributions to these quantities have been
computed in [39,53,54] and are given by

〈
de
dt

〉
= −n

√
1 − e2

[
ε2

e3 s̄PQ − 2
δm
M

naε

e2 s̄P
]

, (26a)〈
dx
dt

〉
= n

mC
mP + mC

a cos i
ε

e2
√

1 − e2

[
s̄kP cos ω −

√
1 − e2 s̄kQ sin ω + 2

δm
M

naes̄k cos ω

]
,(26b)

where mP is the mass of the pulsar, mC is the mass of the companion and all others quantities have
been introduced after Eqs. (19). For each binary pulsar, in principle 3 tests can be constructed by using
ω̇, ė, ẋ. In [53], 13 pulsars have been used to derive estimates on the SME coefficients. The combination
of the observations from the solitary pulsars and from the 13 binary pulsars are reported in Table 6.
Both orbital dynamics and spin precession are completely independent of s̄TT whose constraint will be
discussed later.

Table 6. Estimation of SME coefficients from binary pulsars data analysis from [53,54]. No correlations
coefficients have been derived in this analysis. These estimates should be considered as estimates on
the strong field version of the SME coefficients that may include non perturbative strong field effects
due to the gravitational binding energy.

Coefficient∣∣s̄TT
∣∣ < 2.8 × 10−4

s̄XX − s̄YY (0.2 ± 9.9)× 10−11

s̄XX + s̄YY − 2s̄ZZ (−0.05 ± 12.25)× 10−11

s̄XY (0.05 ± 3.55)× 10−11

s̄XZ (0.0 ± 2.0)× 10−11

s̄YZ (0.0 ± 3.3)× 10−11

s̄TX (0.05 ± 5.25)× 10−9

s̄TY (0.5 ± 8.0)× 10−9

s̄TZ (−0.05 ± 5.85)× 10−9

Several comments can be made about this analysis. First of all, it can be considered as a postfit
analysis done after an initial fit performed in GR (or within the post-Keplerian formalism). In particular,
correlations between the SME coefficients and other parameters (e.g., orbital parameters) are neglected.
Secondly, for most of the pulsars, ẋ ω̇ and ė are not directly measured from the pulse time of arrivals
but rather estimated from the uncertainties on x, ω and e divided by the time span of the observations.
Further, it is important to mention that effects of Lorentz violations have been considered only for
the orbital dynamics but never on the Einstein delay or on the Shapiro time delay in this analysis.
The full timing model within SME can be found in Section V.E.3 from [39] (see also [181] for a similar
derivation with the matter-gravity couplings). In addition, some parameters are not measured like for
example the longitude of the ascending node Ω or the azimuthal angle of the spin. These parameters
have been marginalized by using Monte Carlo simulations. It is unclear what type of prior probability
distribution function has been used in this analysis and what is the impact of this choice. Nevertheless,
the results obtained by this analysis (which does not include the s̄TT parameter) are amongst the
best ones currently available demonstrating the power of pulsars observations. The main advantages
of using binary pulsars come from the fact that their orbital orientation vary which allows one to
disentangle the different SME coefficients and to end up with low correlations. Furthermore, they are
so far the only constraints on the strong field version of the SME coefficients.

In addition, a different analysis has been performed to constrain the parameter s̄TT alone [54].
While the orbital dynamics and the spin precession is completely independent of s̄00 (i.e., the time
component of s̄μν in a local frame), the boost between the Solar System and the binary pulsar frame
makes appear explicitly the s̄TT coefficient. In [54], the assumption that there exists a preferred frame
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where the s̄μν tensor is isotropic is made, which makes the results specific to that case (although the
analysis can be done without this assumption). The analysis requires the knowledge of the pulsar
velocity with respect to the preferred frame as well as the velocity of the Solar System with respect
to the same frame. Three pulsars have their radial velocity measured, which combined with proper
motion in the sky can be used to determine their velocity. The velocity of the Solar System is taken as its
velocity with respect to the Cosmic Microwave Background (CMB) frame w	 (with |w	| = 369 km/s).
The analysis is completely similar to the ones performed for the other SME coefficients (see the
discussion in the previous paragraph). It is known that s̄TT has a strong effect on the propagation
of the light neglected in [54], which may impact the result. In addition, all correlations between s̄TT

and the other SME coefficients are neglected. Finally, two different scenarios have been considered
regarding the preferred frame: (i) a scenario where the preferred frame is assumed to be the CMB
frame and (ii) a scenario where the orientation of the preferred frame is left free and is marginalized
over but the magnitude of the velocity of the Solar System with respect to that frame is still assumed
to be the 369 km/s. The general case corresponding to a completely free preferred frame has not been
considered. If the CMB frame is assumed to be the preferred frame, the constraint on s̄TT is given by∣∣s̄TT

∣∣ < 1.6 × 10−5 which is a bit better than the one obtained with VLBI (see Equation (13)) although
the VLBI analysis does not assume any preferred frame. The scenario where the orientation of the
preferred frame is left as a free parameter leads to an upper bound on

∣∣s̄TT
∣∣ < 2.8 × 10−4.

In summary, observations of binary pulsars are an incredible tool to test the gravitation theory.
These tests are of the same order of magnitude (and sometimes better) than the ones performed
in the Solar System. Moreover, observations of binary pulsars are sensitive to strong field effects.
Observations of the pulse arrival times have been used to search for a breaking of Lorentz violation
within the PPN framework by constraining the strong field version of the αi parameters. The parameter
α̂1 is constrained at the level of 10−5, α̂2 at the level of 10−9 and α̂3 at the level of 10−20 [164]. In addition,
constraints on Einstein-Aether and khronometric theory have also been done by combining Solar
System constraints with binary pulsars observations [72,73]. Finally, within the SME framework,
a postfit analysis has been done by considering the spin precession of solitary pulsars and the orbital
dynamics of binary pulsars. The obtained results are given in Table 6 and constrain the strong field
version of the SME coefficients. The main advantage of using binary pulsars comes from the fact that
they proved an estimate of all the SME coefficients with reasonable correlations. It has to be noted
that the modification of the orbital period due to gravitational waves emission has not been computed
so far in the SME formalism. In addition, the constraint on s̄TT suffers from the assumption of the
existence of a preferred frame. Moreover, the corresponding analysis has neglected all effects on the
timing delay that may also impact the results and has neglected the other SME coefficients that may
also impact this constraint.

4.7. Čerenkov Radiation

Gravitational Čerenkov radiation is an effect that occurs when the velocity of a particle exceeds
the phase velocity of gravity. In this case, the particle will emit gravitational radiation until the
particle loses enough energy to drop below the gravity speed [56]. In modified theory of gravity, the
speed of gravity in a vacuum may be different from the speed of light and Čerenkov radiation may
occur and produces energy losses for particles traveling over long distances. Observations of high
energy cosmic rays that have not lost all their energy through Čerenkov radiation can be used to put
constraints on models of gravitation that predicts gravitational waves that are propagating slower than
light. This effect has been used to constrain some alternative gravitation theories [182,183]: a class of
tensor-vector theories [184], a class of tensor-scalar theories [185], extended theories of gravitation [186]
and some ghost-free bigravity [187].
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The propagation of gravitational waves within the SME framework has been derived in [56,60]
(including nonminimal SME contributions). In particular, in the minimal SME, the dispersion relation
for the gravitational waves is given by [56]

l2
0 = |l|2 + s̄μνlμlν , (27)

where lα is the 4-momentum of the gravitational wave. A similar expression including nonminimal
higher order SME terms can be found in [56,60]. If the minimal SME produces dispersion-free
propagation, the higher order terms lead to dispersion and birefringence [60]. As can be directly
inferred from the last equation, gravitational Čerenkov radiation can arise when the effective refractive
index n is

n2 = 1 − s̄μν l̂μ l̂ν > 1 , (28)

where l̂μ = lμ/ |l|. The expression for the energy loss rate due to Lorentz-violating gravitational
Čerenkov emission has been calculated from tree-level graviton emission for photons, fermions and
scalar particles and is given by [56]

dE
dt

= −Fw(d)G
(

s̄(d)(p̂)
)2 |p|2d−4 , (29)

where d is the dimension of the Lorentz violating operator (d = 4 for the minimal SME), Fw(d) is
a dimensionless factor depending on the flavor w of the particle emitting the radiation, p is the
particle incoming momentum (with p̂ = p/ |p|) and s̄(d) is a direction-dependent combination of SME
coefficients. In the minimal SME, s̄(4)(p̂) is decomposed on spherical harmonics as

s̄(4)(p̂) = ∑
jm

Yjm( p̂)s̄(SH)
jm , (30)

where we explicitly indicated the (SH) to specify that these coefficients are spherical harmonic
decomposition of the SME coefficients. The calculation of the dimensionless factor Fw(d) for scalar
particles, fermions and photons has been done in [56]. The integration of Equation (29) shows that if a
cosmic ray of specie w is observed on Earth with an energy Ef after traveling a distance L along the
direction p̂, this implies the following constraint on the SME coefficients

s̄(d)(p̂) <

√√√√ Fw(d)
GE2d−5

f L
, (31)

where Fw(d) = (2d − 5)/Fw(d) is another dimensionless factor dependent on the matrix element of
the tree-level process for graviton emission.

Using data for the energies and angular positions of 299 observed cosmic rays from different
collaborations [188–195], Kostelecký and Tasson [56] derived lower and upper constraints on 80 SME
coefficients, including the nine coefficients from the minimal SME whose constraints are given by
the Table 7. In their analysis, they consider the coefficients from the different dimensions separately
and did not fit all of them simultaneously. In addition, in the minimal SME, they did a fit for the
s̄TT parameter alone and another fit for the other 8 coefficients. The number of sources and their
directional dependence across the sky allow one to disentangle the SME coefficients and to derive
two-sided bounds from the Equation (31). The only coefficient that is one sided is s̄TT because it
produces isotropic effects. The bounds are severe for these coefficients, on the order of 10−13. However,
this analysis assumes that the matter sector coefficients vanish. Furthermore, several assumptions have
been made in order to derive the bounds from Table 7. It is assumed that the cosmic ray primaries are
nuclei of atomic weight N = 56 (iron), that the Čerenkov radiation is emitted by one of the fermionic
partons in the nucleus that carries 10 % of the cosmic ray energy and that the travel distance of the
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cosmic ray is 10 Megaparsec (Mpc) [56]. Although only conservative assumptions are used for the
astrophysical processes involved in the production of high-energy cosmic rays, the observations rely
on the sources on the order of 10 Mpc distant, and thus the analysis is of a different nature than a
controlled laboratory or even Solar-System test.

Table 7. Lower and upper limits on the SME coefficients decomposed in spherical harmonics derived
from Čerenkov radiation [56].

Coefficient Lower Bound Upper Bound

s̄(SH)
00 −3 × 10−14

s̄(SH)
10 −1 × 10−13 7 × 10−14

Re s̄(SH)
11 −8 × 10−14 8 × 10−14

Im s̄(SH)
11 −7 × 10−14 9 × 10−14

s̄(SH)
20 −7 × 10−14 1 × 10−13

Re s̄(SH)
21 −7 × 10−14 7 × 10−14

Im s̄(SH)
21 −5 × 10−14 8 × 10−14

Re s̄(SH)
22 −6 × 10−14 8 × 10−14

Im s̄(SH)
22 −7 × 10−14 7 × 10−14

For the sake of completeness and to allow an easy comparison with the estimations of the other
standard cartesian s̄μν coefficients, the following relations give the links between the spherical harmonic
decomposition and the standard cartesian decomposition of the SME coefficients:

s̄(SH)
00 =

4
3

√
4π s̄TT , (32a)

s̄(SH)
10 = −

√
16π

3
s̄TZ , Re s̄(SH)

11 =

√
8π

3
s̄TX , Im s̄(SH)

11 = −
√

8π

3
s̄TY , (32b)

s̄(SH)
20 = −

√
4π

5
1
3

(
s̄XX + s̄YY − 2s̄ZZ

)
, Re s̄(SH)

21 = −
√

8π

15
s̄XZ , Im s̄(SH)

21 =

√
8π

15
s̄YZ , (32c)

Re s̄(SH)
22 =

√
2π

15

(
s̄XX − s̄YY

)
, Im s̄(SH)

22 = −2

√
2π

15
s̄XY . (32d)

In summary, observations of cosmic rays allow one to derive some stringent boundaries on the SME
coefficients. The idea is that if Lorentz symmetry is broken, these high energy cosmic rays would have
lost energy by emitting Čerenkov radiation that has not been observed. The boundaries on the spherical
harmonic decomposition of the SME coefficients are given in the Table 7 (in order to compare these
boundaries to other constraints, they have been transformed into boundaries on standard cartesian
SME coefficients in Table 8). For the minimal SME, one can limit the isotropic s̄TT (one sided bound)
or the other eight other coefficients in s̄μν, but not all the nine simultaneously. These boundaries
are currently the best available in the literature at the exception of s̄TT whose constraint is only one
sided. Nevertheless, several assumptions have been made in this analysis and the observations rely on
sources located at very high distances. This analysis is therefore of a different nature than the other
ones where more control on the measurements is possible.
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Č

e
re

n
k

o
v

ra
d

.
[5

6
]

L
o

w
e

r
B

o
u

n
d

U
p

p
e

r
B

o
u

n
d

s̄T
T

<
2.

8
×

10
−4

−6
×

10
−1

5
<

s̄X
X
−

s̄Y
Y

(4
.4
±

11
)
×

10
−9

(0
.6
±

4.
2 )

×
10

−1
1

(−
0.

8
±

2.
0)

×
10

−1
0

(0
.2
±

9.
9)

×
10

−1
1

−9
×

10
−1

4
<

<
1.

2
×

10
−1

3

s̄X
X
+

s̄Y
Y
−

2
s̄Z

Z
(−

0.
8
±

2.
7)

×
10

−1
0

(−
0.

05
±

12
.2

5)
×

10
−1

1
−1

.9
×

10
−1

3
<

<
1.

3
×

10
−1

3

s̄X
Y

(0
.2
±

3.
9 )

×
10

−9
(−

5.
7
±

7.
7 )

×
10

−1
2

(−
0.

3
±

1.
1)

×
10

−1
0

(0
.0

5
±

3.
55
)
×

10
−1

1
−3

.9
×

10
−1

4
<

<
6.

2
×

10
−1

4

s̄X
Z

(−
2.

6
±

4.
4 )

×
10

−9
(−

2.
2
±

5.
9 )

×
10

−1
2

(−
1.

0
±

3.
5)

×
10

−1
1

(0
.0
±

2.
0)

×
10

−1
1

−5
.4
×

10
−1

4
<

<
5.

4
×

10
−1

4

s̄Y
Z

(−
0.

3
±

4.
5 )

×
10

−9
(5

.5
±

5.
2)

×
10

−1
2

(0
.0
±

3.
3)

×
10

−1
1

−3
.9
×

10
−1

4
<

<
6.

2
×

10
−1

4

s̄T
X

(−
3.

1
±

5.
1 )

×
10

−5
(−

0.
9
±

1.
0 )

×
10

−8
(−

2.
9
±

8.
3)

×
10

−9
(0

.0
5
±

5.
25
)
×

10
−9

2.
8
×

10
−1

4
<

<
2.

8
×

10
−1

4

s̄T
Y

(0
.1
±

5.
4 )

×
10

−5
(0

.3
±

1.
4)

×
10

−8
(0

.5
±

8.
0)

×
10

−9
3.

1
×

10
−1

4
<

<
2.

4
×

10
−1

4

s̄T
Z

(1
.4
±

6.
6 )

×
10

−5
(−

0.
2
±

5.
0)

×
10

−8
(−

0.
05

±
5.

85
)
×

10
−9

1.
7
×

10
−1

4
<

<
2.

4
×

10
−1

4

s̄T
Y
+

0.
43

s̄T
Z

(6
.2
±

7.
9 )

×
10

−9
s̄X

X
+

s̄Y
Y
−

2s̄
Z

Z
−

4.
5

s̄Y
Z

(2
.3
±

4.
5 )

×
10

−1
1

V
L

B
I

[5
5

]
G

P
B

[5
2

]

s̄T
T

(−
5
±

8)
×

10
−5

s̄T
T
+

97
0
( s̄X

X
−

s̄Y
Y
) −

0.
05

( s̄X
X
+

s̄Y
Y
−

2s̄
Z

Z
) +

28
95

s̄X
Y
−

32
35

s̄X
Z
−

11
24

0
s̄Y

Z
(0

.7
±

3.
1)

×
10

−3
s̄X

X
−

s̄Y
Y
+

3.
02

s̄X
Y
+

0.
32

s̄X
Z
+

1.
05

s̄Y
Z

(−
1.

1
±

3.
8)

×
10

−7

188



Universe 2016, 2, 30

4.8. Summary and Combined Analysis

To summarize, several measurements have already successfully been used to constrain the
minimal SME in the gravitational sector (i.e., the s̄μν coefficients):

• Atom interferometry [47,48].
• Lunar Laser Ranging [45,46].
• Planetary ephemerides [49,50].
• Very Long Baseline Interferometry [55].
• Gravity Probe B [52].
• Pulsars timing [53,54].
• Čerenkov radiation [30,56].

A detailed description of all these analyses is provided in the previous subsections and the Table 8
summarizes the current estimates. It is also interesting to combine all these estimations together to
provide the best estimates on the SME coefficients. In order to do this, we perform a large least-square
fit including all the results from the Table 8 including the covariance matrices quoted in the previous
subsections. The results from the Čerenkov radiation are not included since they rely on a very
different type of observations. Two combined fits are presented: one without including the pulsars
results and one including the pulsars results. This is due to the fact that pulsars are sensitive to
a strong version of the SME coefficients that may include non perturbative strong field effects as
described in Section 4.6. If this is the case, then the pulsars results cannot be directly combined with
the weak gravitational field estimates on the SME coefficients. If no non perturbative strong field effect
arises, then the right column from Table 9 presents a combined fit that includes these observations
as well. The results from Table 9 include all the information currently available in the literature on
the s̄μν (estimations and correlation matrices). It can also be noted that the pulsars results improve
significantly the marginalized estimations on s̄TY and s̄TZ by reducing strongly the correlation between
these two coefficients.

In addition, several measurements have been used to constrain the non-minimal SME sectors:

• Short gravity experiment [57–59].
• Čerenkov radiation [56].
• Gravitational waves analysis [60].

A review of these measurements can be found in [30].

Table 9. Estimation of SME coefficients resulting from a fit combining results from: atomic gravimetry
(see Table 1), VLBI (see Equation (13)), LLR (see Table 3), planetary ephemerides (see Table 4), Gravity
Probe B (see Table 5). The correlation matrices from all these analyses have been used in the combined
fit. The right column includes the pulsars results from Table 6 as well. The three estimates on s̄ J J are
obtained by using the traceless condition s̄TT = s̄XX + s̄YY + s̄ZZ.

Coefficient Without Pulsars With Pulsars

s̄TT (−5. ± 8.)× 10−5 (−4.6 ± 7.7)× 10−5

s̄XX − s̄YY (−0.5 ± 1.9)× 10−11 (−0.5 ± 1.9)× 10−11

s̄XX + s̄YY − 2s̄ZZ (1.6 ± 3.1)× 10−11 (0.8 ± 2.5)× 10−11

s̄XY (−1.5 ± 6.8)× 10−12 (−1.6 ± 6.6)× 10−12

s̄XZ (−1.0 ± 4.1)× 10−12 (−0.8 ± 3.9)× 10−12

s̄YZ (2.6 ± 4.7)× 10−12 (1.1 ± 3.2)× 10−12

s̄TX (−0.1 ± 1.3)× 10−9 (−0.1 ± 1.3)× 10−9

s̄TY (0.5 ± 1.1)× 10−8 (0.4 ± 2.3)× 10−9

s̄TZ (−1.2 ± 2.7)× 10−8 (−0.6 ± 5.5)× 10−9

s̄XX (−1.7 ± 2.7)× 10−5 (−1.5 ± 2.6)× 10−5

s̄YY (−1.7 ± 2.7)× 10−5 (−1.5 ± 2.6)× 10−5

s̄ZZ (−1.7 ± 2.7)× 10−5 (−1.5 ± 2.6)× 10−5
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5. The future

In addition to all the improvements related to existing analysis suggested in the previous sections,
there are a couple of sensitivity analyses that have been done within the SME framework. First of all,
a thorough and detailed analysis of a lot of observables related to gravitation can be found in [39].
In addition, we will present in the next subsections a couple of analyses and ideas that may improve
the SME coefficients estimates in the future.

5.1. The Gaia Mission

Launched in December 2013, the ESA Gaia mission [196] is scanning regularly the whole celestial
sphere once every 6 months providing high precision astrometric data for a huge number (≈1 billion)
of celestial bodies. In addition to stars, it is also observing Solar System Objects (SSO), in particular
asteroids. The high precision astrometry (at sub-mas level) will allow us to perform competitive tests
of gravitation and to provide new constraints on alternative theories of gravitation.

First of all, the Gaia mission is expected to provide an estimate of the γ PPN parameter at the level
of 10−6 [197] by measuring the deflection of the light on a 5 years timescale. Furthermore, in addition
to this global determination of a global PPN parameter from observations of light deflection, it has been
proposed to use Gaia observations to map the deflection angle in the sky and to look for a dependence
of the γ PPN parameter with respect to the Sun impact parameter [198–202]. Such a dependence of
the gravitational deflection with respect to the observation geometry is also a feature predicted by
SME as shown in [82]. Therefore, the global mapping of the light deflection with Gaia can also be
efficiently used to constrain some SME coefficients. A first sensitivity analysis can be found in [82] and
is reported on Table 10. Note that proposals observations and missions like AGP [203] or LATOR [204]
can in the long term improve these estimates further by improving the light deflection measurement.

Table 10. Sensitivity of the SME coefficients to the measurement of the light deflection by several space
missions or proposals (these estimates are based on Table I from [82]).

Mission s̄TT s̄T J s̄I J

Gaia [196] 10−6 10−6 10−5

AGP [203] 10−7 10−7 10−6

LATOR [204] 10−8 10−8 10−7

In addition to gravitation tests performed by measuring the light deflection, Gaia also provides a
unique opportunity to test gravitation by considering the orbital dynamics of SSO. One can estimate
that about 360,000 asteroids will be regularly observed by Gaia at the sub-mas level, which will allow
us to perform various valuable tests of gravitation [205,206]. In particular, realistic simulations of more
than 250,000 asteroids have shown that Gaia will be able to constrain the β PPN parameter at the level
of 10−3 [205]. The main advantage from Gaia is related to the huge number of bodies that will be
observed with very different orbital parameters as illustrated on Figure 1. As a consequence, the huge
correlations appearing in the planetary ephemerides analysis (see Section 4.4) will not appear when
considering asteroids observations and the marginalized confidence intervals will be highly improved
compared to planetary ephemerides analysis.

190



Universe 2016, 2, 30

Figure 1. This figure represents the distribution of the orbital parameters for the Solar System Objects
(SSOs) expected to be observed by the Gaia satellite. The red stars represent the innermost planets of
the Solar System.

A realistic sensitivity analysis of Gaia SSOs observations within the SME framework has been
performed (see also [206] for preliminary results). In this analysis, 360,000 asteroids have been
considered over the nominal mission duration (i.e., five years) and a match between the SSO trajectories
with the Gaia scanning law is performed to find the observation times for each SSO. Simultaneously
with the equations of motion, we integrate the variational equations, the simulated SSO trajectories
being transformed into astrometric observables as well as their partial derivatives with respect to
the parameters considered in the covariance analysis. The covariance analysis leads to the estimated
uncertainties presented in Table 11. These uncertainties are incredibly good, which is due to the variety
of the asteroids orbital parameters as discussed above. Using our set of asteroids, the correlation
matrix for the SME parameters is very reasonable: the most important correlation coefficients are 0.71,
−0.68 and 0.46. All the other correlations are below 0.3. Therefore, Gaia offers a unique opportunity
to constrain Lorentz violation through the SME formalism. Finally, the Gaia mission is likely to be
extended to 10 years, therefore doubling the measurements baseline which will also impact significantly
the expected uncertainties. Finally, it is worth mentioning that the Gaia dataset can be combined with
radar observations [207] that are complementary in the time frame and orthogonal to astrometric
telescopic observations.

Table 11. Sensitivity of the SME coefficients to the observations of 360,000 asteroids by the Gaia satellite
during a period of 5 years.

SME Coefficients Sensitivity (1 − σ)

s̄XX − s̄YY 3.7 × 10−12

s̄XX + s̄YY − 2s̄ZZ 6.4 × 10−12

s̄XY 1.6 × 10−12

s̄XZ 9.2 × 10−13

s̄YZ 1.7 × 10−12

s̄TX 5.6 × 10−9

s̄TY 8.8 × 10−9

s̄TZ 1.6 × 10−8

In summary, the Gaia space mission offers two opportunities to test Lorentz symmetry in the
Solar System by looking at the deflection of light and by considering the orbital dynamics of SSO.
The second type of observations is extremely interesting in the sense that the high number and the
variety of orbital parameters of the observed SSO leads to decorrelate the SME coefficients.
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5.2. Analysis of Cassini Conjunction Data

The space mission Cassini is exploring the Saturnian system since July 2004. During its
cruising phase while the spacecraft was on its interplanetary journey between Jupiter and Saturn,
a measurement of the gravitational time delay was performed [118]. This measurement occurred
during a Solar conjunction in June 2002 and was made possible thanks to a multi-frequency radioscience
link (at X and Ka-band) which allows a cancellation of the solar plasma noise [118]. The related data
spans over 30 days and has been analyzed in the PPN framework leading to the best estimation of the
γ PPN parameter so far given by (2.1 ± 2.3)× 10−5 [118].

The exact same set of data can be reduced within the SME framework and is expected to improve
our current s̄TT estimation. The time delay within the SME framework has been derived in [80] and is
given by Equation (9).

A simulation of the Cassini link during the 2002 conjunction within the full SME framework has
been realized using the software presented in [148] (see also [208,209]). The signature produced by
the s̄TT coefficients on the 2-way Doppler link during the Solar conjunction is illustrated on Figure 2.
In [80], a crude estimate of attainable sensitivities in estimate of the SME coefficients using the Cassini
conjunction data is given (see Table I from [80]). It is shown that some combinations of the s̄I J

coefficients can only be constrained at the level of 10−4, which is 7 to 8 orders of magnitude worse than
the current best constraints on these coefficients. It is therefore safe to neglect these and to concentrate
only on the s̄TT coefficient. A realistic covariance analysis performed over the 30 days of the Solar
conjunction and assuming an uncertainty of the Cassini Doppler of 3 μm/s [210,211] shows that the s̄TT

parameter can be constrained at the level of 2 × 10−5 using the Cassini data allowing an improvement
of a factor 4 with respect to the current best estimate coming from VLBI analysis (see Equation (13)).
Therefore, a reanalysis of the 2002 Cassini data within the SME framework would be highly valuable.

Figure 2. Doppler signature produced by s̄TT = 2× 10−5 on the 2-way Doppler link Earth-Cassini-Earth
during the 2002 Solar conjunction.

5.3. Satellite Laser Ranging (LAGEOS/LARES)

Searching for violations of Lorentz symmetry by using the orbital motion of planets
(see Section 4.4), binary pulsars (see Section 4.6), the Moon (see Section 4.3) and asteroids
(see Section 5.1) has turned out to be highly powerful. It is therefore logical to consider the motion of
artificial satellite orbiting around Earth to search for Lorentz violations. In particular, laser ranging
to the two LAGEOS and to the LARES satellites has successfully been used to test GR by measuring
the impact of the Schwarzschild precession on the motion of the satellites [212–214]. It has also
been claimed that the impact of the frame-dragging (or Lense-Thirring effect) due to the Earth’s
spin on the orbital motion of the satellites has been measured [215–220] although this claim remains
controversial [221–226]. Similarly, the LAGEOS/LARES satellites can also be used to search for Lorentz
violations. A sensitivity analysis has been done in [49] and it has been shown that the LAGEOS satellites
are sensitive at the level of 10−4 to the s̄TJ coefficients. Using LARES should improve significantly
this value. Further numerical simulations are required in order to determine exactly the SME linear
combinations to which the ranging to these satellites is sensitive to. A data analysis within the full
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SME framework (i.e., including the integration of the SME equation of motion and including the SME
coefficients with the other global parameters in the fit) would also be highly interesting. In addition,
similar tests of Lorentz symmetry can also be included within the scientific goals of the LAser RAnged
Satellites Experiment (LARASE) project [227] or within the OPTIS project [228].

5.4. Gravity-Matter Coefficients and Breaking of the Einstein Equivalence Principle

All the measurements mentioned in Section 4 can be analyzed by considering the gravity-matter
coupling coefficients āμ and c̄μν [29] that are breaking the EEP. Some atomic clocks measurements
have already provided some constraints on the āμ coefficients [229–231]. In addition, in [50] the
planetary ephemerides analysis is interpreted by considering the āμ coefficients and the atomic
interferometry results from [48] and the LLR results from [45] are also reinterpreted by considering
the gravity-coupling coefficients. Clearly this is a preliminary analysis that needs to be refined by
more solid data reductions. Considering the increasing number of fitted parameters, it is of prime
importance to increase the number of measurements used in the analysis and to produce combined
analysis with as many types of observations as possible. The measurements developed in Section 4
are a first step in order to reach this goal. The gravity-coupling coefficients can also be constrained
by more specific tests related to the EEP like for example tests of the Universality of Free Fall with
MicroSCOPE [83,84], tests of the gravitational redshift with GNSS satellites [232], with the Atomic
Clocks Ensemble in Space (ACES) project [233], or with the OPTIS project [228], . . .

6. Conclusions

Lorentz symmetry is at the heart of both GR and the Standard Model of particle physics.
This symmetry is broken in various scenarios of unification, of quantum gravity and even in some
models of Dark Matter and Dark Energy. Searching for violations of Lorentz symmetry is therefore a
powerful tool to test fundamental physics. The last decades have seen the number of tests of Lorentz
invariance arise dramatically in all sectors of physics [24]. In this review, we focused on searches
for Lorentz symmetry breaking in the pure gravitational sector. Mainly two frameworks exist to
parametrize violations of Lorentz invariance in the gravitation sector. First of all, the three α1,2,3

PPN parameters phenomenologically encode a violation of Lorentz symmetry at the level of the
spacetime metric [2]. These parameters are constrained by LLR (see Section 4.3) and by pulsars timing
measurements (see Section 4.6). In addition, it is interesting to notice that the corresponding PPN metric
parametrizes also Einstein-Aether and Khronometric theories in the weak gravitational field limit [72]
while these theories have a more complex strong field limit (and can show non perturbative effects)
that have been constrained by pulsars observations (see Section 4.6 and [72,73]).

In addition to the PPN formalism, the SME formalism has been developed by including
systematically all possible Lorentz violations terms that can be constructed at the level of the action.
In the pure gravitational sector, the gravitational action within the SME formalism contains the usual
Einstein-Hilbert action but also new Lorentz violating terms constructed by contracting new fields
with some operators built from curvature tensors and covariant derivatives with increasing mass
dimension [36]. The lower mass dimension term is known as the minimal SME. In the limit of
linearized gravity, the observations within the minimal SME formalism depend on 9 coefficients,
the s̄μν symmetric traceless tensor. This formalism offers a new opportunity to search for deviations
from GR in a framework different from the standard PPN formalism. We reviewed the different
observations that have been used so far to constrain the SME coefficients. The main idea is to search
for a signature (usually periodic) that arises from a dependence on the orientation of the system
measured (the dependence on the orientation is typically due to the Earth’s rotation, the orbital motion
of the planets around the Sun, etc. . . ) or from a dependence on the boost of the system observed
(so far, only the binary pulsars s̄TT constraint comes from this type of dependence [54]). Most of SME
analyses are postfit analyses in the sense that analytical signatures due to SME are fitted in residuals
noise obtained in a previous data reduction performed in pure GR. In Section 3, we showed that this
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approach can sometimes lead to overoptimistic constraint on the SME coefficients and that one should
be careful in interpreting results obtained using such an approach.

In Section 4, we discussed in details the different measurements used so far to constrain
the s̄μν coefficients: atomic gravimetry (Section 4.1), VLBI (Section 4.2), LLR (Section 4.3), planetary
ephemerides (Section 4.4), Gravity Probe B (Section 4.5), pulsars timing (Section 4.6) and Čerenkov
radiation (Section 4.7). In each of these subsections, we describe the current analyses performed in
order to constrain the SME coefficients and provide a critical discussion from each of them. We also
provide a summary of these constraints on Table 8. In addition, we used all these results to produce
a combined analysis of the SME coefficients. This fit is done by taking into account the correlation
matrices for each individual analysis. The results of this combined fit are presented in Table 9 and
are the current best estimates of the SME coefficients that are possible to derive with all available
analyses. In addition to the minimal SME, there exists higher order Lorentz violating terms that have
been considered and constrained by short-range gravity experiments [57–59], gravitational waves
analysis [60] and Čerenkov radiation [30,56].

In Section 5, we discussed some opportunities to improve the current constraints on the SME
coefficients. In particular, the European space mission Gaia offers an excellent opportunity to probe
Lorentz symmetry through the measurement of light deflection and through the orbital motion of
asteroids. The Cassini conjunction data also offers a way to constrain the s̄TT coefficient that impacts
severely the propagation of light. Finally, existing satellite laser ranging data can also be analyzed
within the SME framework.

In addition, as mentioned in Section 5.4, all the analyses presented in this review can include
gravity-matter coefficients [29]. While considering these, the number of coefficients fitted increase
significantly and it becomes crucial to produce a fit combining several kinds of experiments.
A preliminary analysis considering these coefficients for planetary ephemerides, LLR and atomic
gravimetry has been performed in [50] but needs to be refined. In addition, some atomic clocks
experiments have already been used to constrain matter-gravity coefficients [229–231].

In conclusion, though no violation of Lorentz symmetry has been observed so far, an incredible
number of opportunities still exists for additional investigations. There remains a large area of
unexplored coefficients space that can be explored by improved measurements or by new projects
aiming at searching for breaking of Lorentz symmetry. In addition, the increasing number of
parameters fitted (by including the gravity-matter coupling coefficients simultaneously with the
pure gravity coefficients in the analyses) will deter the marginalized estimates of each coefficient.
This verdict emphasizes the need to increase the types of measurements that can be combined together
to explore the vast parameters space as efficiently as possible. The current theoretical questions
related to the quest for a unifying theory or for a quantum theory of gravitation suggests that Lorentz
symmetry will play an important role in the search for new physics. Hopefully, future searches for
Lorentz symmetry breaking will help theoreticians to unveil some of the mysteries about Planck-scale
physics [22].
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Abbreviations

The following abbreviations are used in this manuscript:

CMB Cosmic Microwave Background
ELPN Éphéméride Lunaire Parisienne Numérique
GPB Gravity Probe B
GR General Relativity
GRAIL Gravity Recovery And Interior Laboratory
INPOP Intégrateur Numérique Planétaire de l’Observatoire de Paris
IVS International VLBI Service for Geodesy and Astrometry
LARASE LAser RAnged Satellites Experiment
LLR Lunar Laser Ranging
LIV Lorentz Invariance Violation
mas milliarcsecond
Mpc Megaparsec
NFT Numerical Fourier Transform
PPN Parametrized Post-Newtonian
SME Standard-Model Extension
SSO Solar System Object
TAI International Atomic Time
TDB Barycentric Dynamical Time
TT Terrestrial Time
UTC Universal Time Coordinate
VLBI Very Long Baseline Interferometry
yr year
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1. Introduction

Physical geodesy is the study of the gravity field and of the figure of the Earth. One classical way
to describe the “figure of the Earth” is to study the geoid, which is defined as one of the equipotentials
of the Earth’s gravity (Newtonian) potential, which best coincides with the (mean) surface of the
oceans. Therefore, heights are both physically and geometrically defined, and the objects of study
of physical geodesy are both the physical Earth (underground masses, Earth and ocean topography,
Earth rotation, etc.) and the gravitational field it generates. It implies a high intricacy between the
three main pillars of geodesy—the determination of variations of Earth’s rotation, the geometric shape
of the Earth and the spatial and temporal variations of its gravity field—but also with geodynamics
and geophysics. Therefore, the International Association of Geodesy (IAG) established a “flagship”
project named GGOS (Global Geodetic Observing System); it aims at connecting different communities
in order to have a global understanding of the Earth system and to develop a common theoretical
framework of high accuracy, which has to be based consistently (whenever this is necessary with
respect to the measurement accuracy goal) on Einstein special and general relativity.

Many different techniques are used to monitor the Earth’s system: space geodetic techniques
(VLBI, SLR/LLR, GNSS, DORIS, altimetry, InSAR and gravity missions), as well as terrestrial
techniques (leveling, absolute and relative gravimetry, gradiometry and tide gauges). Moreover, the
advent of space and ground transportable atomic clocks [1,2] will bring a completely new observable
in geodesy: the direct measurement of gravity potential differences [3–5]. The high accuracy of most of
these techniques necessitates their description in a relativistic framework. A review of several space
geodetic techniques in a relativistic framework can be found in [6], as well as a detailed relativistic
model for VLBI observations in [7].

In this article, we develop a general framework for relativistic geodesy with a focus on relativistic
gravimetry, gradiometry and chronometric geodesy. An extensive review of these scientific fields is
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given in Section 2. In Section 3, we introduce some theoretical tools necessary to do the calculation of
relativistic geodesy observables: the local frame, the geodesic equation and a theoretical description of
the observables of relativistic gravimetry, gradiometry and chronometric geodesy. In Section 4, we
calculate these observables for the special case of a parameterized post-Newtonian (PPN) metric of a
stationary spacetime. Finally, in Section 5, we apply further our calculations to the case of a static clock
relative to the Earth surface and give orders of magnitude.

2. Review of Past Work in Relativistic Gravimetry, Gradiometry and Chronometric Geodesy

Probably the first author who began the theoretical investigation of relativistic effects in gravimetry
was Will [8]. He determined the Newtonian gravitational constant G as measured locally by means
of Cavendish experiments in a parametrized post-Newtonian (PPN) framework [9–11], showing that
in such a theoretical framework, an anisotropy appears in the locally measured G. This anisotropy
implies a variation in gravimeter readings, such that Δg/g = α(ΔG/G), which have periods of 12 h
sidereal time. By comparing with gravimeter data (measurements of “Earth tides”), he was able to rule
out Whitehead’s theory, which predicted an effect 200-times larger than the experimental limit, as well
as putting an upper limit on the parameter combination (Δ2 + ξ − 1) to within three percent.

2.1. Chronometric Geodesy

The next application of relativistic geodesy to be explored, and probably the most interesting and
promising, is the use of clocks to determine the spacetime metric. Indeed, the gravitational redshift
effect discovered by Einstein must be taken into account when comparing the frequencies of distant
clocks. Instead of using our knowledge of the Earth gravitational field to predict frequency shifts
between distant clocks, one can revert the problem and ask if the measurement of frequency shifts
between distant clocks can improve our knowledge of the gravitational field. To do simple orders of
magnitude estimates, it is good to have in mind some correspondences:

1 meter ↔ Δν

ν
∼ 10−16 ↔ ΔW ∼ 10 m2·s−2 (1)

where one meter is the height difference between two clocks, Δν is the frequency difference in a
frequency transfer between the same two clocks and ΔW is the gravity potential difference between
the locations of these clocks.

From this correspondence, we can already recognize two direct applications of clocks in geodesy: if
we are capable to compare clocks to 10−16 accuracy, we can determine height differences between clocks
with one-meter accuracy (leveling) or determine geopotential differences with 10-m2·s−2 accuracy.

The first article to explore seriously this possibility was written in 1983 [12]. The article is named
“chronometric leveling”. The term “chronometric” seems well suited for qualifying the method of
using clocks to determine directly gravitational potential differences, as “chronometry” is the science
of the measurement of time. However, the term “leveling” seems too restrictive with respect to all of
the applications one could think of for using the results of clock comparisons. Therefore, we will use
the term “chronometric geodesy” to name of the scientific discipline that deals with the measurement
and representation of the Earth, including its gravitational field, with the help of atomic clocks. It is
sometimes named “clock-based geodesy” or “relativistic geodesy”. However, this last designation is
improper as relativistic geodesy aims at describing all possible techniques (including, e.g., gravimetry
and gradiometry) in a relativistic framework. The natural arena of chronometric geodesy is the
four-dimensional space-time. At the lowest order, there is proportionality between relative frequency
shift measurements, corrected from the first order Doppler effect, and (Newtonian) gravity potential
differences. To calculate this relation, one does not need the theory of general relativity, but only
to postulate local position invariance. Therefore, if the measurement accuracy does not reach the
magnitude of the higher order terms, it is perfectly possible to use clock comparison measurements,
corrected for the first order Doppler effect, as a direct measurement of (the differences of) the gravity
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potential that is considered in classical geodesy. Comparisons between two clocks on the ground
generally use a third clock in space. In this article, we calculate explicitly the higher order terms in the
PPN formalism.

In his article, Martin Vermeer explores the “possibilities for technical realization of a system for
measuring potential differences over intercontinental distances” using clock comparisons [12]. The two
main ingredients are of course accurate clocks and a means to compare them. He considers hydrogen
maser clocks. For the links, he considers a two-way satellite link over a geostationary satellite, or GPS
receivers in interferometric mode. He has also to consider a means to compare the proper frequencies
of the different hydrogen maser clocks. Today, this can be overcome by comparing primary frequency
standards (PFS), which have a well-defined proper frequency based on a transition of cesium 133,
used for the definition of the second. Secondary frequency standards, i.e., standards based on a
transition other than the defining one, may nevertheless be used if the uncertainty in systematic effects
has been fully evaluated, in the same way as for a PFS. It often happens that this evaluation can be
done more accurately than for the defining transition. This is one of the purposes of the European
project “International timescales with optical clocks” [13] (projects.npl.co.uk/itoc), where optical clocks
based on different atoms are compared to each other locally and to the PFS. It is planned also to do a
proof-of-principle experiment of chronometric geodesy, by comparing two optical clocks separated
by a height difference of around 1 km using an optical fiber link. For more information about atomic
clock relativistic time and frequency transfer, see [3,14].

Few authors have seriously considered chronometric geodesy. Following the Vermeer idea, the
possibility of using GPS observations to solve the problem of the determination of geoid heights has
been explored in [15]. They consider two techniques based on frequency comparisons and direct clock
readings. However, they leave aside the practical feasibility of such techniques. The value and future
applicability of chronometric geodesy has been discussed in [16], including direct geoid mapping on
continents and joint gravity-geopotential surveying to invert for subsurface density anomalies. They
find that a geoid perturbation caused by a 1.5-km radius sphere with a 20 percent density anomaly
buried at a 2-km depth in the Earth’s crust is already detectable by atomic clocks of achievable accuracy.
The potentiality of the new generation of atomic clocks has been shown in [17], based on optical
transitions, to measure heights with a resolution of around 30 cm.

The possibility of determining the geopotential at high spatial resolution thanks to chronometric
geodesy is thoroughly explored and evaluated in [18]. The authors consider the Alps-Mediterranean
area, which comprises high reliefs and a land/sea transition, leading to variations of the gravitational
field over a range of spatial scales. In such type of region, the scarcity of gravity data is an important
limitation in deriving accurate high resolution geopotential models. Through numerical simulations,
the contribution of clocks comparisons data in the geopotential recovery is assessed in combination
with ground gravity measurements. It is shown that adding only a few clock data (around 30
comparisons) reduces the geopotential recovery bias significantly and improves the standard deviation
by a factor of three. The effect of the data coverage and data quality are explored, as well as the
trade-off between the measurement noise level and the number of data.

2.2. The Chronometric Geoid

Arne Bjerhammar in 1985 gave a precise definition of the “relativistic geoid” [19,20]:

“The relativistic geoid is the surface where precise clocks run with the same speed and the
surface is nearest to mean sea level”

This is an operational definition, which has been translated in the context of post-Newtonian
theory [21,22]. A different operational definition of the relativistic geoid has been introduced based on
gravimetric measurements: a surface orthogonal everywhere to the direction of the plumb-line and
closest to mean sea level. They call the two surfaces obtained with clocks and gravimetric measurements
respectively the “u-geoid” and the “a-geoid”. They prove that these two surfaces coincide in the case
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of a stationary metric. In order to distinguish the operational definition of the geoid from its theoretical
description, it is less ambiguous to give a name based on the particular technique to measure it. The
term “relativistic geoid” is too vague, as Soffel et al. have defined two different ones. The names
chosen by Soffel et al. are not particularly explicit, so instead of “u-geoid” and “a-geoid”, one can call
them “chronometric geoid” and “gravimetric geoid”, respectively. There can be no confusion with the
geoid derived from satellite measurements, as this is a quasi-geoid that does not coincide with the
geoid on the continents [23]. Other considerations on the chronometric geoid can be found in [6,24,25].

We notice that the problem of defining a reference isochronometric surface is closely related to the
problem of realizing terrestrial time (TT). This is developed in more detail in Section 3.4.

Recently, extensive work has been done aiming at developing an exact relativistic theory of Earth’s
geoid undulation [26], as well as developing a theory of the reference level surface in the context
of post-Newtonian gravity [27,28]. This goes beyond the problem of the realization of a reference
isochronometric surface and tackles the tough work of extending all concepts of classical physical
geodesy (see, e.g., [23]) in the framework of general relativity.

2.3. Gravimetry and Gradiometry

Following Will’s work, a PPN theory of gravimetric measurements was developed [21] taking
into account only PPN parameters γ and β [11], with an accuracy of 10−11 g. In particular, they
take into account the influence of all bodies in the Solar System and show that the relative second
order corrections to gravimetric measurements (of order c−2) are of the form (γ + 2β − 2)U⊕/c2 and
(γ − 4β + 3)U∗/c2, where U⊕ and U∗ are respectively potentials related to the Earth and to all other
Solar System bodies. It is claimed in [29] that it is impossible to measure the second order corrections
to gravimetric measurements with two measurements, one at the South Pole and another one at the
Equator, because of the errors induced by the uncertainty in the Earth’s flatness and mean equatorial
radius. However, the study could go further and consider using more points at different latitudes.

In parallel, a theory of gradiometry measurements was developed, with a particular emphasis on
measurements on-board a satellite and the feasibility of such measurements with superconducting
gradiometers [30–35]. Recently, a test of the Chern–Simons modified gravity has been proposed with
such an experiment [36], as well as a test of post-Newtonian physics of semi-conservative metric
theories [37].

3. Theoretical Tools of Relativistic Geodesy

The theoretical background for relativistic geodesy is general relativity. We consider the spacetime
as a Lorentzian manifold (M, g) of dimension four. We consider the components of the metric gμν to
be given in an initial coordinate system (xμ), defined in an open subset U . The infinitesimal interval
ds2 = gμνdxμdxν between two neighboring events is invariant under coordinate transformation.

All of the theoretical tools introduced in this section can be applied to any initial metric g,
which is an exact or approximate solution of the Einstein equations and the components of which
are given in any coordinate system. For applications in the vicinity of the Earth or in the Solar
System, the International Astronomical Union (IAU) recommends to use respectively the GCRSor
the BCRS, which both use harmonic coordinates. Explicit expressions of the metric components in
these coordinate systems are given in [38]. Other approaches exist in this context based on generalized
Fermi coordinates [39–41], or a perturbed Schwarzschild metric [42]. In the different context of a
slowly-rotating astronomical object, the Kerr metric is used in [35].

The goal of this section is to describe a local experiment, such as a gravimeter, a gradiometer or a
clock. To do so, we need to introduce a local frame and local coordinates adapted to the apparatus.
There are several ways of introducing a local frame and coordinates [43]. From the principle of general
covariance, any coordinate system can be used to describe the local measurements. Here, we use
Fermi normal coordinates, which have the advantage of displaying “beautiful ties” to the Riemann
curvature tensor, as well as to the physical acceleration and rotation of the observer. Indeed, the metric
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components in the Fermi normal coordinates can be expressed with the help of the Riemann tensor,
as well as the accelerations and rotations measured by the observer. The metric components are the
same as the ones of special relativity up to the first order in the local coordinates, such that they are “as
Minkowskian as possible” [44,45]. As a consequence, the Fermi normal frame can be spatially fixed
w.r.t. to an observer in any kinematical state.

The use of Fermi coordinates is not adapted for a self-gravitating body, the mass-energy of which
contributes to the determination of the initial metric g when solving the Einstein equations. For this
reason, harmonic coordinates are preferred and recommended for the definition and realization of
relativistic celestial reference systems [25,38,46,47], where the frame origin can be centered on the
center-of-mass of a massive body. However, a local apparatus is a test body that does not contribute
to the background metric. Therefore, the definition of the Fermi coordinates is not a problem in this
context. On the contrary, they have the advantage of separating the problem of the determination of
the background metric and the observer trajectory in the initial coordinate system, on the one hand,
and from the definition, description and modelization of the observables of the local experiment, on
the other hand.

When using Fermi normal coordinates, unlike the harmonic coordinates approach, no matching
procedure between the initial frame and the local frame is required in order to obtain the metric in
the local frame, and the explicit coordinate transformations from the initial coordinate system to the
local one are not required. Moreover, all frames obtained from a spatial rotation of the Fermi normal
frame are still Fermi normal frames. This is not the case for the harmonic frame, as the harmonic
gauge condition does not admit the rigidly rotating frames of [25] (Chapter 8). Therefore, obtaining a
harmonic frame with a spatially-fixed axis w.r.t. the apparatus is a priori not possible. For all these
reasons, we believe that using a Fermi frame and corresponding Fermi coordinates is a better choice in
order to describe a local experiment. When possible, we will compare the results from both approaches:
the Fermi normal frame and the harmonic frame.

3.1. Notations and Conventions

In this work, the signature of the Lorentzian metric g is (+,−,−,−). Greek indices run from
zero to three, and Latin indices run from one to three. The partial derivative of A will be noted
A,α = ∂A/∂xα. We use the summation rule on repeated indices (one up and one down). ηαβ are the
components of the Minkowski metric. The convention for the Riemann tensor is:

Rμ
ανβ = Γμ

αν,β − Γμ
αβ,ν − Γμ

νσΓσ
αβ + Γμ

βσΓσ
αν

In this section, the indices for tensor components in the proper reference frame and the Fermi
frame are denoted with a hat, i.e., Aα̂ ≡ (A0̂, Aı̂), as well as the partial derivative in the Fermi frame,
i.e., Aα̂

, ĵ = ∂Aα̂/∂X ĵ.

3.2. The Local Frame

Let C be the observer world line; this world line is a timelike path (ds2 > 0). We call τ, the proper
time, that is the integral value

∫
dτ ≡ ∫ √

ds2/c2 along C between a chosen origin O and an arbitrary
event P along C. The observer world line is parameterized with the proper time:

C : xμ = f μ(τ) (2)

The four-velocity is uμ = d f μ/dτ, and the four-acceleration is γμ = Duμ/Dτ, where D/Dτ is the
covariant differentiation along the world line C.
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The Proper Reference Frame

We define the proper reference frame with coordinates (Xα̂) as in [45]. It is entirely determined
by these two conditions:

1. On the observer world line, the temporal coordinate X0̂/c of the proper reference frame is equal
to the proper time τ of the observer, and the spatial coordinates Xı̂ are constant.

2. At first order in the new coordinates Xα̂, we want to recover the metric of an accelerated and
rotating observer in special relativity [44].

The new coordinate system (Xα̂) is defined in an ad-hoc subset UC ⊂ U , so that C is included in
UC . We select P an event along C, so that xμ

P = f μ(τ). From Condition (1) we infer:

X0̂
P = cτ (3)

where c is the velocity of light in vacuum.
The origin O is defined so that xμ

O = f μ(0), without loss of generality. The coordinate
transformation from (Xα̂) to (xμ) is a diffeomorphism Y : Xα̂(UC) → xμ(UC) . The partial derivatives
of Y at point P are defined by the components of the Jacobian matrix:

eβ
α̂ =

{
xβ

,α̂

}
P
≡ xβ

,α̂ (4)

where xβ = xβ(Xα̂) are the components of Y , and the bar stands for the value of a function at point P
(as P is arbitrary along the world line C, then the bar stands for the value of the function all along C,
which means that all quantities with the bar over them are functions of the proper time τ). The inverse
transformations follow:

eβ̂
μeμ

α̂ = δ
β̂
α̂

(5)

eβ̂
μeν

β̂
= δν

μ (6)

where δ is the Kronecker delta. We note that eμ

0̂
= uμ/c.

For the sake of simplicity, Xı̂(C) = 0, i.e., the world line constitutes the spatial origin of the proper
reference frame. The vector eμ

0̂
is determined by the observer world line, while the vectors eμ

ĵ are

chosen, such that
(

eμ
α̂

)
constitutes a basis of the tangent space for each event along C. (eμ

ĵ ) is the spatial
frame of the observer at event P. The transformation relations of the metric tensor are:

gα̂β̂ = gμνxμ
,α̂xν

,β̂ (7)

where gα̂β̂ are the components of the metric tensor in the proper reference frame. For simplicity, we

choose the vectors eμ
α̂ , so that they form an orthonormal basis, so-called a tetrad, such that:

gα̂β̂(C) ≡ ηα̂β̂ = gμν(C)eμ
α̂ eν

β̂
(8)

where ηα̂β̂ is the Minkowski metric.
Then, it is shown in [45] that the metric in the proper reference frame can be written, up to first

order in the new coordinates (Xα̂):

ds2 =
[
1 − 2γĵX ĵ +O

(
X2

)]
c2dτ2 +

[
2Ωm̂ ĵX ĵ +O

(
X2

)]
dXm̂cdτ +

[
ηl̂m̂ +O

(
X2

)]
dXl̂dXm̂ (9)
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where Ωα̂β̂ is the antisymmetric rotation matrix defined with:

Ωα̂β̂ =
1
2

gμν

(
eμ

α̂

Deν
β̂

Dτ
− eμ

β̂

Deν
α̂

Dτ

)
(10)

and γĵ = Ω ĵ0̂ = gμν(C)eμ
ĵ γν. The function Ωα̂β̂(τ) defines the tetrad transport along the observer

trajectory:
Deμ

β̂

Dτ
= Ωα̂

β̂eμ
α̂ (11)

where Ωα̂
β̂ = gσ̂α̂Ωσ̂β̂.

Moreover, we define the vector Ωk̂, so that Ωı̂ ĵ = ε ı̂ ĵk̂Ωk̂, with ε ı̂ ĵk̂ the Levi–Civita symbol. Ωk̂ is

the rotation of the observer spatial frame (eμ
ĵ ), as it can be measured with three gyroscopes. γk̂ is the

acceleration vector of the observer, as it can be measured with accelerometers. If Ωk̂ = 0, the frame is
Fermi–Walker transported; if Ωk̂ = 0 and γk̂ = 0, the frame is parallel transported (i.e., C is a geodesic).

The Fermi Normal Frame

Up to the second order in the coordinates, there is a certain choice of freedom to prolongate the
coordinates lines of the proper reference frame. For the sake of mathematical simplicity, what is usually
done is to define the Fermi normal frame, where the coordinate lines are taken as geodesics [45]. In the
Fermi normal frame, the metric can be written:

ds2 =
[
1 − 2γĵX ĵ +

(
Ωα̂ĵΩα̂

k̂ + R0̂ ĵ0̂k̂

)
X ĵXk̂ +O(

X3)]c2dτ2

+
[
2Ωm̂ ĵX ĵ + 4

3 R0̂ ĵm̂k̂X ĵXk̂ +O(
X3)]dXm̂cdτ

+
[
ηl̂m̂ + 1

3 Rl̂ ĵm̂k̂X ĵXk̂ +O(
X3)]dXl̂dXm̂

(12)

A different approach is used in [24,25], where harmonic coordinates are used to build the local
frame, named the topocentric reference frame. We prefer to name it the harmonic frame here as a
reference to the corresponding harmonic coordinates. As a result, the metric components are very
different when using harmonic coordinates (HC) [25] (see Equations (8.40) to (8.42)) from the ones
using Fermi normal coordinates (FNC). The cross-component of the metric has no first order term in
the HC, while in the FNC, the first order term depends on the observer rotation as in special relativity.
Indeed, the harmonic frame is dynamically non-rotating [24,48], and therefore, it cannot be adapted to
rotating observers. As in special relativity, there is no first order term in the spatial component of the
metric in the FNC, while there is one when using the HC. The metric calculated in the HC in [24,25]
is an expansion in both the local coordinates and c−1 (post-Newtonian approach), while there in no
post-Newtonian expansion in the approach presented here. Finally, as a consequence of the equivalence
principle, the metric components in the FNC do not depend on the chosen initial coordinate system,
while the metric components in the HC do through the matching procedure. Moreover, the metric
components in the FNC are expressed in terms of the Riemann tensor, acceleration and rotation of the
observer, while in the HC, the metric components are expressed with non-tensorial quantities to be
determined through the matching procedure.

3.3. Geodesic Equation in the Local Frame

The gravimetric and gradiometric observables can be deduced from the general dynamical
equation of a test body written in the local frame:

d2Xα̂

dλ2 + c2Γα̂
0̂0̂

(
dτ

dλ

)2
+ 2cΓα̂

0̂ı̂
dτ

dλ

dXı̂

dλ
+ Γα̂

ı̂ ĵ
dXı̂

dλ

dX ĵ

dλ
=

Fα̂

m
≡ Γα̂ (13)
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where λ is an affine parameter along the test body trajectory.
From [49], we can write it in all generality. We will consider the gravimeter/gradiometer to be

made of components that are at rest with respect to the local frame, i.e., dXı̂/dλ = d2Xı̂/dλ2 = 0,
thanks to some local forces voluntarily applied to the apparatus components. In the local frame, we
decompose a four-vector as (V0̂, Vı̂) ≡ (V0̂, V). Therefore, we deduce from [49] (Equation (25)):

Γı̂ = γı̂ + [Ω × (Ω × X)]ı̂ + (η× X)ı̂ + c2Xl̂ R0̂ı̂0̂l̂

+ 1
c2

[
(γ·X)γı̂ − (b·X)(Ω × X)ı̂ − 2γ·(Ω × X)(Ω × X)ı̂

]
− 1

3 γk̂Rı̂l̂k̂m̂Xl̂Xm̂ − 2cXl̂(Ω × X)k̂R0̂l̂ ı̂k̂ + 2Xl̂(γ·X)R0̂ı̂0̂l̂

+ c2

2

(
Rı̂l̂m̂0̂;0̂ + Rı̂0̂l̂0̂;m̂

)
Xl̂Xm̂ +O(

X3)
(14)

where b = dγ
dτ + Ω × γ and η = dΩ

dτ .
The geodesic equation using harmonic coordinates can be found in [24,25]. As the harmonic frame

is dynamically non-rotating, all terms depending on rotation are absent. Moreover, the coefficients of
the equation are found through the matching procedure; therefore, they depend on the choice of the
initial metric and coordinate system. Then, it is not possible to compare the terms with Equation (14)
here, which is more general.

3.3.1. Gravimetric Observables

We suppose that we apply a force to the gravimeter mass to keep it at the center of the local frame.
Therefore, Equation (14) reduces to:

Γı̂ = γı̂ (15)

which is simply the physical acceleration of the local frame. We emphasize that here we suppose
that the mass of the gravimeter is kept fixed at the center of the local frame. Therefore, the measured
quantity is the force vector F applied to the mass in order to be still, such that Γı̂ = Fı̂/m.

3.3.2. Gradiometric Observables

Suppose now that we have a two masses located in the direction e ĵ of the spatial part of the local
frame basis, at a distance l/2 and −l/2 from the center of the frame. The local distance l is supposed to
be constant here, e.g., by putting both accelerometers on a rigid structure. We define the local distance

as the Euclidean distance calculated in terms of the coordinates of the local frame: l =
√

∑ı̂(Xı̂)
2.

Then, we define the quantities measured by the differential accelerometer, or gradiometer, with:

Γı̂
ĵ =

1
l

[
Γı̂
(

τ,
l
2

e ĵ

)
− Γı̂

(
τ,− l

2
e ĵ

)]
(16)

By doing this, we suppose that the geometrical center of the gradiometer is at the origin of the
local frame. From Equation (14), we deduce:

Γı̂
ĵ =

[
Ω × (Ω × e ĵ)

]ı̂
+ (η× e ĵ)

ı̂ + c2R0̂ı̂0̂ ĵ +
1
c2 γı̂γĵ +O

(
l2
)

(17)

In case of a free-falling and non-rotating gradiometer, one simply has:

Γı̂
ĵ = c2R0̂ı̂0̂ ĵ +O

(
l2
)

(18)

3.4. Clock Frequency Comparisons and Syntonization

The principle of clock frequency comparison is to measure the frequency of an electromagnetic
signal with the help of the emitting clock, A, and then with the receiving clock, B. We obtain
respectively two measurements νA and νB. However, in general, one measures the time of flight
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of the electromagnetic signal between emission and reception. Then, the ratio νA/νB can be obtained
by deriving the time of flight measurements with respect to the time of reception.

Let S(xα) be the phase of the electromagnetic signal emitted by clock A. It can be shown that light
rays are contained in hypersurfaces of constant phase. The frequency measured by A/B is:

νA/B =
1

2π

dS
dτA/B

(19)

where τA/B is the proper time along the world line of clock A/B. We introduce the wave vector
kA/B

α = (∂αS)A/B to obtain:

νA/B =
1

2π
kA/B

α uα
A/B (20)

where uα
A/B = dxα

A/B/dτ is the four-velocity of clock A/B. Finally, we obtain a fundamental relation
for frequency transfer:

νA
νB

=
kA

α uα
A

kB
α uα

B
(21)

This formula does not depend on a particular theory and then can be used to perform tests of
general relativity. It is needed in the context of relativistic geodesy, in order to calculate the gravitational
potential difference between two clocks from the measurement of the ratio of the frequencies νA/νB.

Introducing vi = dxi/dt and k̂i = ki/k0, it is usually written as:

νA
νB

=
u0

A
u0

B

kA
0

kB
0

1 + k̂A
i vi

A
c

1 + k̂B
i vi

B
c

(22)

From Equation (19), we deduce that:

νA
νB

=
dτB
dτA

=

(
dt
dτ

)
A

dtB
dtA

(
dτ

dt

)
B

(23)

In the case of propagation in free space, if we suppose that the space-time is stationary, i.e.,
∂0gαβ = 0, then it can be shown that k0 is constant along the light ray, meaning that kA

0 = kB
0 . Then,

from Equations (22) and (23), we deduce that:

dtB
dtA

=
1 + k̂A

i vi
A

c

1 + k̂B
i vi

B
c

(24)

This term depends on how the signal propagates from A to B. For a free propagation in a vacuum,
it is calculated up to order c−3 in [50], for the more general metric GCRS. Up to second order, it does
not depend on the gravitational field, but only on the relative motion of the two clocks. It is simply
the first order Doppler effect of order v

c . At third order, there is a term of order Gm
rc2

v
c . It is less than

3.6 × 10−14 for a satellite and around 2.2 × 10−15 on the ground. In [51], the term (24) is calculated for
the metric given later in Equations (27) to (29) up to the fourth order. It is stressed that the J2 term of
the expansion (30) in the third order term can amount to 1.3 × 10−16 for a satellite in low orbit.

If the signal propagates in an optical fiber, the term (24) has been calculated up to order c−3

in [52]. Up to second order, it does not depend on the gravitational field, as for the free propagation in
vacuum. The first order term is due to the variation of the fiber length (e.g., due to thermal expansion)
and of its refractive index. For a 1000-km fiber with refractive index n = 1.5, this term is equal to
3.6 × 10−14. The second order term is the derivative of the Sagnac effect, which is of order 10−19 or
less for a 1000-km fiber. Finally, the third order term is of the order of 10−22 for a 1000-km fiber.
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Syntonization is a different problem and is needed for the realization of coordinate time scales
(such as TAI (Temps Atomique International)). It depends on the particular coordinate system chosen
as a reference and is given by the derivative of proper time with respect to coordinate time. In a metric

theory, one has cdτ =
√

gαβdxαdxβ, so that:

dτ

dt
≡

(
u0

)−1
=

[
g00 + 2g0i

vi

c
+ gij

vivj

c2

]−1/2

(25)

where we defined the coordinate velocity vi = dxi/dt.
In the context of relativistic geodesy, this quantity is needed for the realization of the chronometric

geoid. An isochronometric surface is a surface where all clocks beat at the same rate with respect to
a reference coordinate time, such that the quantity (25) is constant. This reference coordinate time
is usually taken as TT (terrestrial time), for which TAI is a realization, or TCG (Temps Coordonné
géocentrique). The chronometric geoid is a reference isochronometric surface that should coincide up
to some level with the classical geoid—a level surface of the gravity potential closest to the topographic
mean sea level—so that a possible definition is:

dτ

d(TT)
= 1 (26)

TT is itself defined with respect to TCG with d(TT)/d(TCG) = 1 − LG, where LG is a defining
constant [38], chosen such that the reference isochronometric surface defined from TT (26) coincides
with some level with the classical geoid.

An interesting problem is that the chronometric geoid will differ in the future from the classical
geoid. Indeed, the value of the potential on the geoid, W0, depends on the global ocean level, which
changes with time. In addition, there are several methods to realize that the geoid is “closest to
the mean sea level”, so that there is yet no adopted standard to define a reference geoid and W0

value (see, e.g., the discussion in [53]). Several authors have considered the time variation of W0 (see,
e.g., [54,55]), but there is some uncertainty in what is accounted for in such a linear model. A recent
estimate over 1993 to 2009 is dW0/dt = −2.7 × 10−2 m2·s−2·year−1, mostly driven by the sea level
change of +2.9 mm/year [55]. However, the rate of change of the global ocean level could vary during
the next few decades, and predictions are highly model dependent [56]. Nevertheless, to state an
order of magnitude, considering a systematic variation in the sea level of order 2 mm/year, different
definitions of a reference surface for the gravity potential could yield differences in the frequency
of order 2 × 10−18 in a decade. Comparisons of accurate clocks could therefore help in the future to
establish a worldwide vertical datum.

4. Application to a Stationary PPN Metric Tensor

4.1. PPN Metric of an Isolated, Axisymmetric Rotating Body

In order to calculate the observables of relativistic geodesy with respect to the initial coordinate
system and evaluate the higher order terms, we simplify the Earth metric. We consider that the
Earth is a body in uniform rotation, isolated and axisymmetric. Moreover, in order to assess the
potential of relativistic geodesy for general relativity tests, we generalize the metric to the so-called
Will–Nordtvedt formalism [10,11]. This formalism contains ten parameters γ, β, ξ, α1, . . . , α3, ζ1, . . . ,
ζ4. The parameters α and γ are the usual Eddington–Robertson–Schiff parameters used to describe
the classical tests of general relativity (=1 in GR), while other parameters measure preferred-location
and preferred-frame effects and the violation of the conservation of total momentum. They are all
zero in GR. Theories that possess conservation laws for total momentum, called “semi-conservative”,
have five free PPN parameters (γ, β, ξ, α1, α2). The PPN parameter γ has been constrained to
|γ − 1| ≤ 2.3 × 10−5 using the Cassini spacecraft [57], β to |β − 1| ≤ 3 × 10−5 thanks to planetary
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ephemeris [58] and α1 and α2 to |α1|≤ 6×10−6 and |α2|≤ 3.5×10−5 thanks to refined values of Solar
System planetary precessions [59]. Many other constraints have been put on PPN parameters, and a
summary of these constraints can be found in, e.g., [11,60].

The assumptions done in this article to write the metric are simplistic, and for the analysis of
a particular experiment, one should use a complete description of the metric around the Earth (see,
e.g., [38,61]). This has been done in particular in the context of the detection of the Lense–Thirring
effect in the Solar System (see, e.g., [62,63] and the references therein).

For the sake of simplicity, the only PPN parameters used here are γ, β and α1.
→
w is the speed of

the Earth center of mass with respect to a preferred rest frame, if one exists. We use a non-rotating
geocentric reference system with initial coordinate system

(
ct; xi) ≡

(
ct;

→
x
)

. This case has been
rigorously studied in [51]; the metric is stationary, and it is given by:

g00

(→
x
)
= 1 − 2

c2 W
(→

x
)
+ 2β

c4 W2
(→

x
)
+ Õ6 (27)

g0j

(→
x
)
= 2

c3

[(
1 + γ + α1

4
)→
W

(→
x
)
+ 1

4 α1W
(→

x
)→

w
]
+ Õ5 (28)

gij

(→
x
)
= −δij

(
1 + 2γ

c2 W
(→

x
))

+ Õ4 (29)

where:

W
(→

x
)

= GM
r

[
1 − ∞

∑
n=2

Jn

(
R
r

)n
Pn(cos θ)

]
, (30)

→
W

(→
x
)

= GI
→
ω×→

x
2r3

[
1 − ∞

∑
n=1

Kn

(
R
r

)n
P′

n+1(cos θ)

]
, (31)

r =‖→x ‖, θ is the angle between
→
x and the axis of rotation of the Earth,

→
ω its angular velocity,

assumed constant, R its equatorial radius, the Pn the Legendre polynomials, and the coefficients M,
J2, . . . , Jn, . . . and I, K1, . . . , Kn, . . . are the multipole moments of the multipolar expansion of the

potentials W and
→
W, for which convergence is assumed. The angular momentum of the central body is

→
J = I

→
ω. The order of the metric expansion is:

Õn =

(
GM
rc2

)n/2
(32)

This is a practical notation: the term Õn, when it is at the end of a sum, means O(Õn).

4.2. Clock Observables

From Equations (25) and the given metric (27) to (29), we calculate:

(
u0)−1 ≡ dτ

dt = 1 − 1
c2

(
W + 1

2 v2
)

+ 1
c4

[(
β − 1

2

)
W2 −

(
γ + 1

2

)
Wv2 − 1

8 v4

+2
(
γ + 1 + α1

4
)→
W·→v + 1

2 α1W
→
v ·→w

]
+O

(
1
c6

) (33)

where v =|d→
x /dt| is the coordinate velocity; from which we deduce that:
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(u0)A
(u0)B

= 1 + 1
c2

(
WA − WB + 1

2 v2
A − 1

2 v2
B

)
+ 1

c4

[
(γ + 1)

(
WAv2

A − WBv2
B
)
+ 3

8 v4
A − 1

8 v4
B − 1

4 v2
Av2

B

+2
(
γ + 1 + α1

4
)(→

WB·→v B −
→
WA·→v A

)
+ 1

2 α1
→
w·

(→
v BWB −→

v AWA

)
1
2 (WA − WB)

(
WA − WB + 2(1 − β)(WA + WB) + v2

A − v2
B
)]

+O
(

1
c6

)

(34)

This result coincides with the one of [51] when putting α1 = 0.

4.3. Gravimetry Observables

We find a tetrad that satisfies eα
0̂
= uα/c and Equation (8) for the metric (27) to (29), valid for a

general trajectory with coordinate velocity vi:

e0
0̂

= 1 + 1
c2

(
W + 1

2 v2
)

+ 1
c4

[−(
β − 3

2
)
W2 +

(
γ + 3

2
)
Wv2 + 3

8 v4

−2
(
γ + 1 + α1

4
)→
W·→v − 1

2 α1W
→
v ·→w

]
+O

(
1
c6

) (35)

ei
0̂=

1
c

vie0
0̂

(36)

e0
ĵ =

1
c

vj +
1
c3 vj

(
(γ + 2)W +

1
2

v2
)
− g0j +O

(
1
c5

)
(37)

ei
ĵ= δij +

1
c2

(
1
2

vivj − δijγW
)
+O

(
1
c4

)
(38)

where δij is the Kronecker symbol and g0j is given by (28). This tetrad coincides with the results found
elsewhere for the the GR case, e.g., [47] (Equation (5.21)). Here, the tetrad is chosen such that it is
identity at zeroth order: the spatial part is non-rotating with respect to distant stars as for the initial
coordinate system. The case of a rotating tetrad does not change the gravimetry observable, as it is
defined as a local quantity. However, it will be studied for the gradiometry observable.

As in Section 3.3, a four-vector is decomposed in the local frame defined in (35) to (38) as

(V0̂, Vı̂) ≡ (V0̂, V), while it is decomposed as (V0, Vi) ≡ (V0,
→
V) in the initial coordinate system.

Then, we calculate the antisymmetric rotation matrix with Formula (10). We deduce from this
matrix the physical acceleration experienced by the observer:

γ =
→
a −

→
∇W

+ 1
c2

[
(γ + 2β − 2)W

→
∇W + 2

(
γ + 1 + α1

4
)→

v × (
→
∇×

→
W)

−(γ + 1)v2
→
∇W + 2

(
γ + 3

4
)
(
→
v ·

→
∇W)

→
v +

(
v2 + (γ + 2)W

)→
a

+ 1
2 α1

(→
∇W

(→
v ·→w

)
−→

w(
→
v ·

→
∇W)

)
+ 1

2

(→
v ·→a

)→
v
]
+O

(
1
c4

)
(39)

where
→
a = d

→
v /dt, and its rotation as measured with gyroscopes:

Ω = ΩLT + ΩdS + ΩTh +O
(

1
c4

)
(40)
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where:

ΩLT = − 1
2c2

→
∇×→

g = − 1
c2

[(
1 + γ + α1

4
)→∇×

→
W + α1

4

→
∇W ×→

w
]

(41)

ΩdS = − 1
c2

(
γ + 1

2

)→
v ×

→
∇W (42)

ΩTh = 1
2c2

→
v × γ (43)

where
(→

g
)j ≡ c3g0j. This result coincides with the results found elsewhere (see, e.g., [64] (Equation

(3.4.38)) for α1 = 0 and [65] (Equations (5) to (7))).

4.4. Gradiometry Observables

Now, we consider a gradiometer fixed to the surface of the Earth and rotating together with the
Earth. In this paper, we suppose a uniform rotation of the Earth and a stationary metric. Irregularities
in the Earth rotation are not included here. We define a tetrad eμ

(α)
fixed to the gradiometer, such that

the axes of the gradiometer are in the direction of the tetrad axes. This tetrad is related to the tetrad
(35) to (38) aligned with the GCRS system by the following relations:

eμ

(0) = eμ

0̂
= uμ/c (44)

eμ

(i) = Λ ĵ

(i)e
μ
ĵ (45)

i.e., the spatial part is rotated by a matrix Λ ĵ

(i) ∈ SO(3). This matrix is a function of a parameter

along the gradiometer path, e.g., Λ ĵ

(i)(t) with t being the GCRS coordinate time. The gradiometer
rotates together with the Earth surface, i.e., in cylindrical coordinates (ct, ρ, φ, z) related to the GCRS
coordinates

(
ct,

→
x
)
= (ct, x, y, z) as x = ρ cos φ, y = ρ sin φ; its points move along orbits of the vector

field ∂t + ω∂φ where ω = dφ/dt is the angular velocity of the Earth surface. The tetrad eμ

(α)
is then Lie

transported (to the order of interest) by this vector field. We obtain:

Λ ĵ

(i)(t) = B(k)
(i) A ĵ

(k)(t) (46)

with:

A ĵ

(k)(t) =

⎛
⎜⎝ cos ω(t − t0) − sin ω(t − t0) 0

sin ω(t − t0) cos ω(t − t0) 0
0 0 1

⎞
⎟⎠,

(47)
This leads to:

dΛ ĵ

(i)

dt
= −Λk̂

(i)ε
ĵ
k̂l̂ω

l̂ (48)

with ω l̂ = (0, 0, ω).
We can calculate the vector Ω(j) based on Formula (10) for the rotating tetrad eμ

(α)
. We obtain

Ω(j) =
(

Λ−1
)(j)

ı̂
Ωı̂ = Λı̂

(j)Ω
ı̂ with:

Ω = ω +
1
c2

(
W +

1
2

v2
)

ω + ΩLT + ΩdS + ΩTh + O
(

1
c4

)
(49)

where ΩLT, ΩdS and ΩTh are defined respectively in (41) to (43).
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Here, a four-vector is decomposed in the rotating local frame defined in (44) to (45) as
(V(0), V(i)) ≡ (V(0), Ṽ). For the first term of (17), we then obtain:

[
Ω̃ ×

(
Ω̃ × ẽ(n)

)](m)
=

(
Λ−1

)(m)

ı̂
Λ ĵ

(n)[Ω × (Ω × e ĵ)]
ı̂ = Λı̂

(m)Λ
ĵ

(n)[Ω × (Ω × e ĵ)]
ı̂ (50)

with:

[Ω × (Ω × e ĵ)]
ı̂ = [ω × (ω × e ĵ)]

ı̂
(

1 + 1
c2

(
2W + v2))

+2ω(ı̂Ω ĵ)
LT − 2δı̂

ĵ

+2ω(ı̂Ω ĵ)
dS − 2δı̂

ĵ

+2ω(ı̂Ω ĵ)
Th − 2δı̂

ĵ

+O
(

1
c4

)
(51)

= [ω × (ω × e ĵ)]
ı̂
(

1 + 1
c2

(
2W + v2))

+ 1
c2 (ω

(ı̂εj)mn − δı̂
ĵωk̂εkmn)

((
2γ + 2 + α1

2
)
Wm,n +

α1
2 wmW,n

)
+ 1

c2 (ω
(ı̂εj)mn − δı̂

ĵωk̂εkmn)vm(an − (2γ + 2)W,n)

+O
(

1
c4

) (52)

The second term of (17) containing the angular acceleration is non-vanishing due to the term
with vector

→
w in the Lense–Thirring part of the angular velocity, which is not axially symmetric. The

angular acceleration η̃ = dΩ̃
dτ is given as η(j) =

(
Λ−1

)(j)

ı̂
η ı̂ = Λı̂

(j)η
ı̂ with the components η ı̂ given by:

η =
1
c2

α1

4

(
(
→
w·

→
∇W)ω − (ω·

→
∇W)

→
w
)
+ O

(
1
c4

)
(53)

For the second term of (17), we then obtain:

(
η̃× ẽ(n)

)(m)
=

(
Λ−1

)(m)

ı̂
Λ ĵ

(n)(η× e ĵ)
ı̂ = Λı̂

(m)Λ
ĵ

(n)(η× e ĵ)
ı̂. (54)

The third term of (17) can be obtained based on Formula (2.26) of [32]. This formula was derived

for the metric (27) to (29) with
→
w = 0 and general functions W

(→
x
)

and
→
W

(→
x
)

(U∗(xi) and Vj
(

xi) in

the notation of [32]) and using the tetrad (35) to (38). The terms with
→
w can be added by substitution of

a corresponding function for Vj. Thus, we get R(0)(m)(0)(n) = Λı̂
(m)Λ

ĵ

(n)R0̂ı̂0̂ ĵ with:
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1
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+
(
2γ + 2 + α1

2
)(

vkWk,ij − vkW(i,j)k
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+ α1

2
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+ O

(
1
c4

)
(55)

The last term of (17) can be expressed as γ(m)γ(n) =
(

Λ−1
)(m)

ı̂

(
Λ−1

)(n)
ĵ

γı̂γĵ = Λı̂
(m)Λ

ĵ

(n)γ
ı̂γĵ,

where using (39), we obtain:

1
c2 γı̂γĵ =

1
c2

(
ai − W,i

)(
aj − W,j

)
+ O

(
1
c4

)
(56)
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with ai being the centrifugal acceleration (circular motion is considered) of the center of the gradiometer
with GCRS coordinates xc, yc given as ai = −ω2(xc, yc, 0).

5. Orders of Magnitudes

Let us take a clock that is on the surface of the Earth, at rest in the rotating Earth frame. Then, in
usual spherical coordinates (r, θ, φ), one has:

→
v= vφ

→
u φ = Rω sin θ

→
u φ (57)

→
a= ar

→
u r + aθ

→
u θ = −Rω2 sin θ

(
sin θ

→
u r + cos θ

→
u θ

)
(58)

where R and ω are the Earth radius and angular velocity. Assuming that W = W(r, θ),
→
W = Wφ(r, θ)

→
u φ,

γ = β = 1 and α1 = 0, we deduce from (39):

γr= ar

[
1 +

1
c2

(
v2

φ + 3W
)]

− W,r

[
1 +

1
c2

(
2v2

φ − W
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+
4
c2

vφ

r
∂
(
rWφ

)
∂r

(59)

γθ= aθ

[
1 +

1
c2

(
v2

φ + 3W
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− W,θ

r

[
1 +

1
c2

(
2v2

φ − W
)]

+
4
c2

vφ

r sin θ

∂
(
Wφ sin θ

)
∂θ

(60)

γφ= 0 (61)

We take into account the gravitational potential up to second order:

W(r, θ) =
GM

r

(
1 − J2

(
R
r

)2
P2(θ)

)
(62)

where P2(θ) =
1
2
(
3 cos2 θ − 1

)
is the Legendre function and J2 ∼ 1.083 × 10−3 is the Earth’s flatness.

Moreover, we take into account only the monopole of the gravitational potential vector:

→
W(r, θ) =

G
→
J ×→

r
2r3 (63)

where
→
J = I

→
ω is the Earth angular momentum. Attempts to measure the monopole of the gravitational

potential vector with orbiting gyroscopes and satellites were performed in recent years (see, e.g., [66–68]
and the references therein).

The order of magnitude of the fourth order relativistic effect in the absolute clock observable (33)
is 2 × 10−19, which is below the current clock accuracy. In terms of geoid height, it corresponds to 2
mm, which is also below the actual accuracy of the geoid determination (which is around 1 to 10 cm).
The different contributions of non-linear terms to the geoid height are given in more detail in [6].

The second order contribution to the local acceleration γ is shown in Figure 1. One can see that
the relativistic effects are below or just at the μGal level (1 Gal = 10−2 m·s−2), which is the accuracy of
the best absolute gravimeters nowadays.

For gradiometry, the contribution of the relativistic effect is of the order of a few μE (1 E = 1 eotvos
= 10−9 s−2), when the accuracy of the best gradiometers to date is of the order of a few 100 μE. However,
it has been claimed that by integrating the effect over one year, it could become observable [32,69].
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Figure 1. Second order (c−2) contributions to the local acceleration γ.

6. Conclusions

We have reviewed the literature of relativistic geodesy. We introduced the theoretical tools of
relativistic geodesy and applied them for a stationary PPN metric. We applied the calculation to the
case of a stationary clock on the Earth. Some interesting conclusions concerning post-Newtonian
corrections are that:

• differences between the chronometric geoid and the Newtonian geoid are of order 2 mm;
• post-Newtonian corrections for gravimeters are below or just at the level of current accuracy of

the best absolute gravimeters, which is about 1 μGal;
• post-Newtonian corrections for gradiometers are below current accuracy, a few μE, but could be

measurable by integrating for a long time.
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Abstract: The relativity experiment is part of the Mercury Orbiter Radio science Experiment (MORE)
on-board the ESA/JAXA BepiColombo mission to Mercury. Thanks to very precise radio tracking
from the Earth and accelerometer, it will be possible to perform an accurate test of General Relativity,
by constraining a number of post-Newtonian and related parameters with an unprecedented level
of accuracy. The Celestial Mechanics Group of the University of Pisa developed a new dedicated
software, ORBIT14, to perform the simulations and to determine simultaneously all the parameters
of interest within a global least squares fit. After highlighting some critical issues, we report on the
results of a full set of simulations, carried out in the most up-to-date mission scenario. For each
parameter we discuss the achievable accuracy, in terms of a formal analysis through the covariance
matrix and, furthermore, by the introduction of an alternative, more representative, estimation of the
errors. We show that, for example, an accuracy of some parts in 10−6 for the Eddington parameter β

and of 10−5 for the Nordtvedt parameter η can be attained, while accuracies at the level of 5 × 10−7

and 1 × 10−7 can be achieved for the preferred frames parameters α1 and α2, respectively.

Keywords: general relativity and gravitation; experimental studies of gravity; Mercury; BepiColombo
mission

1. Introduction

BepiColombo is a mission for the exploration of the planet Mercury, jointly developed by the
European Space Agency (ESA) and the Japan Aerospace eXploration Agency (JAXA). The mission
is scheduled for launch in April 2018 and for orbit insertion around Mercury at the end of 2024.
The science mission consists of two separated spacecraft, which will be inserted in two different orbits
around the planet: the Mercury Planetary Orbiter (MPO), devoted to the study of the surface and
internal composition [1], and the Mercury Magnetospheric Orbiter (MMO), designed for the study of
the planet’s magnetosphere [2]. In particular, the Mercury Orbiter Radio science Experiment (MORE)
is one of the experiments on-board the MPO spacecraft.

Thanks to the state-of-the-art on-board and on-ground instrumentation [3], MORE will enable
a better understanding of both Mercury geophysics and fundamental physics. The main goals of
the MORE radio science experiment are concerned with the gravity of Mercury [4–8], the rotation of
Mercury [9–11] and General Relativity (GR) tests [12–16]. The global experiment consists in determining
the value and the formal uncertainty (as defined in Section 2.2) of a number of parameters of general
interest, with the addition of further parameters characterizing each specific goal of the experiment.
The quantities to be determined can be partitioned as follows:
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(a) spacecraft state vector (position and velocity) at given times (Mercurycentric orbit determination);
(b) spherical harmonics of the gravity field of Mercury [17] and tidal Love number k2 [18], in order

to constrain physical models of the interior of Mercury (gravimetry experiment);
(c) parameters defining the model of the Mercury’s rotation (rotation experiment);
(d) digital calibrations for the Italian Spring Accelerometer (ISA) [19,20];
(e) state vector of Mercury and Earth-Moon Barycenter (EMB) orbits at some reference epoch, in order

to improve the ephemerides (Mercury and EMB orbit determination);
(f) post-Newtonian (PN) parameters [12,13,21,22], together with some related parameters, like the

solar oblateness factor J2�, the solar gravitational factor μ� = GM�, where G is the gravitational
constant and M� the Sun’s mass, and its time variation, ζ = (1/μ�) dμ�/dt, in order to test
gravitational theories (relativity experiment).

A good initial guess for each of the above parameters will also be necessary: for example, for the
PN parameters we use the GR values, while for gravimetry we refer to the most recent MESSENGER
results as nominal values in simulations [23].

To cope with the extreme complexity of MORE and its challenging goals, the Celestial Mechanics
Group of the University of Pisa developed (under an Italian Space Agency commission) a dedicated
software, ORBIT14, which is now ready for use. The software enables the generation of the simulated
observables and the determination of the solve-for parameters by means of a global least squares fit.

In this paper, the results of a full set of simulations are discussed, carried out in the most up-to-date
mission scenario [24], focusing on the parameters of interest for the relativity experiment. The paper is
organized as follows: in Section 2 we describe in details the structure of the ORBIT14 software, while
in Section 3 we introduce the mathematical models adopted to perform a full relativistic and coherent
analysis of the observations. The simulation scenario and the adopted assumptions are detailed in
Section 4, while the results are presented in Section 5, together with a comprehensive discussion on the
achievable accuracies. Finally, conclusions are drawn in Section 6.

2. The ORBIT14 Software

The ORBIT14 software system has been developed by the Celestial Mechanics Group of the
University of Pisa starting since 2007 as a new dedicated software for the MORE experiment. In Section
2.1 we describe the global structure of the software, while in Section 2.2 we briefly recall the non-linear
least squares method. Details on the adopted multi-arc strategy are given in Section 2.3.

2.1. Global Structure

The global structure of the code is outlined in Figure 1. The main programs belong to two
categories: data simulator (short: simulator) and differential corrector (short: corrector). Code is
written in Fortran90 language. The simulator is needed to predict possible scientific results of the
experiment. It generates simulated observables (range and range-rate, accelerometer readings) and the
nominal value for orbital elements of the Mercurycentric orbit of the spacecraft, of Mercury and of the
EMB orbits. The program structure of the simulator is quite simple if compared with the differential
corrector, the most demanding part being the implementation of the dynamical, observational and
error models.

The actual core of the code is the corrector, which solves for all the parameters u which can be
determined by a least squares fit (possibly constrained and/or decomposed in a multi-arc structure).
The corrector structure has been designed in order to exploit parallel computing, especially for the
most computationally expensive portion of the processing. An outline of the steps involved in a single
corrector’s iteration is shown in Figure 2.
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Figure 1. Block diagram of the ORBIT14 code: simulation and differential corrections stages.
Green arrows refer to simulator inputs/outputs and orange arrows to corrector inputs/outputs. The
input option files for simulator and corrector are similar and include, for example, the state vector of the
spacecraft at the initial epoch, the number of considered arcs, the time steps for the orbit propagation
of the spacecraft, Mercury and EMB, the time sampling for range, range-rate and accelerometer data.

Figure 2. Block diagram of a differential corrector decomposed in three steps: (1) in “cor_par_setup”
all the input options are read, data are split for the following parallel computation and the orbits of
Mercury and EMB are propagated; (2) “cor_par_arc” contains most of the computationally expensive
processing and is parallelized, by executing multiple copies of the same code, without need for
interprocess communication; at this stage, the orbit of the spacecraft is propagated at each arc, the
light-time computation is performed and residuals and normal matrix are given as output for the next
step; (3) in “cor_solve” the covariance matrix and the LS solution are computed.
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2.2. Non-Linear Least Squares Fit

Following a classical approach (see, for instance, [25]—Chapter 5), the non-linear least squares
(LS) fit leads to compute a set of parameters u which minimizes the following target function:

Q(u) =
1
m

ξT(u)Wξ(u) =
1
m

m

∑
i=1

wiξ
2
i (u), (1)

where m is the number of observations and ξ(u) = O−C(u) is the vector of residuals, i.e., the difference
between the observed O and the predicted quantities C(u), computed following suitable mathematical
models and assumptions. In our case, O are tracking data (range, range-rate and non-gravitational
accelerations from the accelerometer), while C(u) are the results of the light-time computation (see
[22] for details) as a function of all the parameters u. Finally, wi is the weight associated to the i-th
observation. Among the parameters u, the ones introduced in Section 1 in (a), (b), (c) and (d) occur in
the equation of motion of the Mercurycentric orbit of the spacecraft, while those in e) and f) occur in
the equations of the orbits of Mercury and the Earth-Moon barycenter with respect to the Solar System
Barycenter (SSB). Other information required for such orbit propagations are supposed to be known:
positions and velocities of the other planets of the Solar System are obtained from the JPL ephemerides
DE421 [26], while the rotation of the Earth is provided by the interpolation table made public by the
International Earth Rotation Service (IERS: http://www.iers.org.) and the coordinates associated with
the ground stations are expected to be available.

The procedure to compute u∗, the set of parameters which minimizes Q(u), is based on a modified
Newton’s method known in the literature as differential corrections method. All the details can be found
in [25]—Chapter 5. Let us define:

B =
∂ξ

∂u
(u) , C = BTWB,

which are called design matrix and normal matrix, respectively. Then, the correction

Δu = C−1D with D = −BTWξ

is applied iteratively until either Q does not change meaningfully from one iteration to the other or Δu

becomes smaller than a given tolerance. Introducing the inverse of the normal matrix, Γ = C−1, we
always adopt the probabilistic interpretation of Γ as the covariance matrix of the vector u, considered as
a multivariate Gaussian distribution with mean u∗ in the space of parameters.

2.3. Pure and Constrained Multi-Arc Strategy

The tracking measurements from the Earth to the spacecraft are not continuous because of
the mutual geometric configuration between the observing station and the antenna on the probe.
The following visibility conditions are defined to account for: (i) the occultation of the spacecraft
behind Mercury as seen from the Earth; (ii) the elevation of Mercury above the horizon at the observing
station (the data received when Mercury is below a minimum elevation of 15◦ from the horizon are
discarded because they are too noisy and could degrade the results); (iii) the angle between Mercury
and the Sun as seen from the Earth. As a result, the observations are split in arcs, with a duration of
∼24 h. Considering two observing stations (see Section 4), the adopted visibility conditions provide
tracking sessions with an average duration of 15–16 h, called observed arcs, followed by a period of
some hours without observations.

In orbit determination, the estimation approach consists of a combined solution called multi-arc

strategy (see, e.g., [25]). According to this method, every single arc of observations has its own
set of initial conditions (position and velocity at the reference central epoch of the considered time
interval), as it belongs to a different object. In this way, due to lack of knowledge in the dynamical
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models, the actual errors in the orbit propagation can be reduced by an over-parameterization of
the initial conditions. A different choice has been made in ORBIT14, implementing the so called
constrained multi-arc strategy [10,14,27]. The method is based on the idea that each observed arc
belongs to the same object (the spacecraft). First of all, an extended arc is defined as the observed
arc broadened to half the preceding and to half the following periods without tracking, as shown in
Figure 3. The orbits of two consecutive extended arcs should coincide at the connection time in the
middle of the non-observed interval. We refer to [10,27] for a complete description of the constrained
multi-arc strategy.

t
1

t
2

observed arc 2 

extended arc 2 

t
3

t
4

Figure 3. Schematic representation of observed and extended arc. The times ti (i = 1, .., 4) are the
central epoch of each arc; the black bars correspond to dark intervals, without tracking from Earth. See
the text for more explanation.

In the constrained multi-arc approach, the parameters u can be classified, depending on the arc
they refer to, as:

• Global Parameters (g): parameters that affect the dynamical equations of every observed
(and extended) arc. The PN parameters and the spherical harmonic coefficients of Mercury
are an example.

• Local Parameters (lk): parameters that affect the dynamical equations of a single observed
arc k. The state vector of the Mercurycentric orbit associated with the arc and the desaturation
manoeuvres applied during the tracking are few examples.

• Local External Parameters (lek,k+1): parameters that affect only the dynamical equations in the
period without tracking between two subsequent observed arcs k and k + 1. These are the
desaturation maneuvres taking place out of the observed arcs.

To implement the constrained multi-arc strategy in the framework of the LS fit described in
Section 2.2, we define the discrepancy vector between the k and k + 1 arcs, dk,k+1, as:

dk,k+1 = Φ(tk
c ; tk+1

0 , Xk+1
0 )− Φ(tk

c ; tk
0, Xk

0) ,

where tk
0 and tk+1

0 denote the central time of the k and k + 1 arc, respectively, tk
c is the connection time

between the two extended k and k + 1 arcs, Xk
0 and Xk+1

0 are the state vector at tk
0 and tk+1

0 , respectively,
and Φ(tk

c ; tk+1
0 , Xk+1

0 ) is the image of (tk+1
0 , Xk+1

0 ) under the flow of the vector field associated with the
Mercurycentric orbit at time t = tk

c (analogously for Φ(tk
c ; tk

0, Xk
0)). Thus, we have:

dk,k+1 = dk,k+1(g, lk, lek,k+1, lk+1),

where g, lk, lek,k+1 are the parameters u included in the LS fit, classified, respectively, as global (g), local
(lk) for the k-th arc and local external (lek,k+1) between the k-th and (k + 1)-th arcs. The constrained
multi-arc strategy consists in minimizing the target function:

Q(u) =
1

m + 6(n − 1)

m

∑
i=1

wiξ
2
i +

+
1
μ

1
m + 6(n − 1)

n−1

∑
k=1

dk,k+1 · Ck,k+1dk,k+1,
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where n is the total number of extended arcs, μ is a penalty parameter and Ck,k+1 is a weight matrix
for the discrepancy vectors. Two possible approaches can be followed. The first is called internally

constrained multi-arc strategy. In this case, we consider the confidence ellipsoids associated with
Xk

0 and Xk+1
0 at tk

0 and tk+1
0 , respectively, and we propagate them to tk

c through the corresponding
state transition matrices. This means that we expect dk,k+1 to be normally distributed with mean
Φ(tk

c ; tk+1
0 , Xk+1

0 )− Φ(tk
c ; tk

0, Xk
0) and covariance

Γc := (Ck)−1 + (Ck+1)−1,

where Ck and Ck+1 are the 6 × 6 normal matrices associated with Xk
0 and Xk+1

0 at tk
0 and tk+1

0 and
propagated to tk

c , respectively. It follows that

Ck,k+1 = Γ−1
c and μ = 1 .

The second approach is called apriori constrained multi-arc strategy and it takes care of the
degeneracy in orbit determination due to the orbit geometry (details can be found in [28]). In particular,
we deal with an approximated version of the exact symmetry described in [28], where the small
parameter of the perturbation is the angle of displacement of the Earth-Mercury vector in an inertial
frame. In this case, the normal matrix has one eigenvalue significantly smaller than the others. As a
consequence of this weakness, the confidence ellipsoid associated with the discrepancy and defined by
Ck,k+1 could be very elongated. The basic idea of this approach is to constrain the discrepancy dk,k+1

inside a sphere of given radius, that can be suitably shrunk by varying μ. This can be interpreted
as adding apriori observations. On the contrary, in the internally constrained multi-arc strategy, the
discrepancy is constrained inside the intersection of the two ellipsoids propagated from tk

0 and tk+1
0 .

All the details are extensively explained in [27]. For the results presented in this review, we will always
adopt an apriori constrained multi-arc strategy. Finally, it can be noted that in the multi-arc method
the residuals ξ depend only on global and local parameters, and this applies to the target function Q
defined in Equation (1) as well.

3. Mathematical Models

The purpose of the MORE relativity experiment is to perform a test of General Relativity
comparing theory with experiment. The majority of the Solar System tests of gravitation can be
set in the context of the slow-motion, weak field limit [29], usually known as the post-Newtonian
approximation. In this limit, the space-time metric can be written as an expansion about the Minkowski
metric in terms of dimensionless gravitational potentials. In the parametrized PN formalism, each
potential term in the metric is expressed by a specific parameter, which measures a general property of
the metric. The basic idea of the MORE relativity experiment is to investigate the dependence of the
equation of motion from the PN parameters. By isolating the effects of each parameter on the motion,
it is possible to constrain the parameters values within some accuracy threshold, testing the validity of
GR predictions.

The PN parameters of interest for our analysis are the following:

• the Eddington parameters β and γ. β accounts for the modification of the non-linear three-body
general relativistic interaction and γ parametrizes the velocity-dependent modification of the
two-body interaction and accounts also for the space-time curvature through the Shapiro
effect [30]. These are the only non-zero PN parameters in GR (they are both equal to unity);

• the Nordtvedt parameter η. The effect of η in the equations of motion is to produce a polarization
of the Mercury and Earth orbits in the gravitational field of the other planets and it is related to
possible violations of the Strong Equivalence Principle (see, e.g., the discussion in [31]);

• the preferred frame effects parameters α1 and α2. They phenomenologically describe the effects due to
the presence of a gravitationally preferred frame; we follow the standard assumption to identify
the preferred frame with the rest frame of the cosmic microwave background [32].
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Beside the five PN parameters mentioned above, we consider a few additional parameters.
These do not properly produce relativistic effects, but the uncertainty in their knowledge generates
orbital effects at least comparable with the perturbations expected from the tested relativistic
parameters. We consider two kinds of “Newtonian” orbital effects: a small change in the Sun’s
gravity oblateness J2� and a small change in the Sun’s gravitational factor μ� = GM�, where G is
the gravitational constant and M� is the Sun’s mass. Regarding the second quantity, since many
alternative theories of gravitation allow for a possible time variation of the gravitational constant, we
included in the solve-for parameters the time derivative of μ� described by the parameter ζ = 1

μ�
dμ�
dt .

Indeed, within the MORE experiment we cannot discriminate between a time variation of M� or G,
but assuming an independent estimate for the rate of M�, it could be possible to draw information on
the time rate of G.

The effects linked to each PN parameter, corresponding to modifications of the space-time metric,
affect both the propagation of the tracking signal (range and range-rate) and the equations of motion.
In the following we describe the mathematical models adopted in our analysis: in Section 3.1 we
define the computed tracking observables in a coherent relativistic background and in Section 3.2 we
present the Langrangian formulation of the planetary dynamics in the context of the first-order PN
approximation. Finally, in Section 3.3 we define the Mercurycentric dynamical model.

3.1. Computation of Observables

In a radio science experiment, the observational technique is complicated by many factors
(for example plasma reduction) but in simulations it can be merely considered as a tracking from
an Earth-based station, giving range and range-rate information (see, e.g., [3]). In order to compute
the range distance from the ground station on the Earth to the spacecraft around Mercury (or in an
interplanetary trajectory), and the corresponding range-rate, we introduce the following state vectors,
each one evolving according to a specific dynamical model (see Figure 4):

• the Mercurycentric position of the spacecraft, xsat;
• the SSB positions of Mercury and of the EMB, xM and xEM;
• the geocentric position of the ground antenna, xant;
• the position of the Earth barycenter with respect to the EMB, xE.

They can be combined to define the range distance using the following formula, as a first
approximation:

r = |r| = |(xsat + xM)− (xEM + xE + xant)| . (2)

Figure 4. Vectors involved in the multiple dynamics for the tracking of the spacecraft from the Earth.

As explained in [22], Equation (2) corresponds to model the space as a flat arena (r is the Euclidean
distance) and the time as an absolute parameter. Obviously, this is not a suitable assumption, since
it is clear that beyond some threshold of accuracy, as expected for the BepiColombo radio science
experiment, space and time must be formulated in the framework of General Relativity. Moreover, we
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have to take into account the different times at which the events have to be computed: the transmission
of the signal at the transmitting time (tt), the signal at the Mercury orbiter at the time of bounce (tb)
and the reception of the signal at the receiving time (tr). Equation (2) can be used as a starting point to
construct a correct relativistic formulation, containing not all the possible relativistic effects, but the
ones which are measurable in the experiment.

The five vectors in Equation (2) have to be computed at their own time, which corresponds to
the epoch of different events: e.g., xant, xEM and xE are computed at both the antenna transmission
time tt and receiving time tr of the signal, while xM and xsat are computed at the bounce time tb (when
the signal has reached the orbiter and is sent back, with correction for the delay of the transponder).
To perform the vectorial sums and differences, these vectors must be converted to a common space-time
reference system, the only possible choice being some realization of the BCRS (Barycentric Celestial
Reference System). We adopt a realization of the BCRS that we call SSB (Solar System Barycentric)
reference frame in which the time is a re-definition of the TDB (Barycentric Dynamic Time), according
to the IAU 2006 Resolution B3 (https://www.iau.org/static/resolutions/IAU2006_Resol3.pdf). Other
possible choices, such as TCB (Barycentric Coordinate Time), can only differ by linear scaling. The
TDB choice of the SSB time scale entails also the appropriate linear scaling of space-coordinates and
planetary masses as described, for instance, in [33,34].

The vectors xM, xE, and xEM are already in the SSB reference frame as provided by numerical
integration and external ephemerides, while the vectors xant and xsat must be converted to SSB from
the geocentric and Mercurycentric systems, respectively. Of course, the conversion of reference systems
implies also the conversion of the time coordinate. There are three different time coordinates to be
considered. The currently published planetary ephemerides are provided in TDB. The observations
from the Earth are based on averages of clock and frequency measurements on the Earth surface:
this defines another time coordinate called TT (Terrestrial Time). Thus for each observation the times
of transmission tt and reception tr need to be converted from TT to TDB to find the corresponding
positions of the planets. This time conversion step is necessary for the accurate processing of each set
of interplanetary tracking data. The main term in the difference TT-TDB is periodic, with period 1 year
and amplitude �1.6 ×10−3 s, while there is essentially no linear trend, as a result of a suitable definition
of the TDB. Finally, the equation of motion of the spacecraft orbiting Mercury has been approximated,
to the required level of accuracy, following what done in [35] for the case of a near-Earth spacecraft
in a geocentric frame of reference. We consider the Newtonian dynamics in a local Mercurycentric
frame assuming as independent variable a suitably defined time coordinate. Moreover, we add the
relativistic perturbative acceleration from the one-body Schwarzschild isotropic metric for Mercury
and the acceleration due to the geodesic precession, as explained in [10]. Thus, for MORE we have
defined a new time coordinate TDM (Mercury Dynamic Time), as described in [13], containing terms
of 1-PN order depending mostly upon the distance from the Sun and velocity of Mercury.

In general, the differential equation giving the local time T (in our case TT or TDM) as a function
of the SSB time t, which we are currently assuming to be TDB, is the following:

dT
dt

= 1 − 1
c2

[
U +

v2

2
− L

]
, (3)

where U is the gravitational potential (the list of contributing bodies depends upon the required
accuracy: in our implementation we use Sun, Mercury to Neptune, Moon) at the planet center and v is
the velocity with respect to the SSB of the same planet. The constant term L is used to perform the
conventional rescaling motivated by removal of secular terms [36].
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The space-time transformations needed to coherently compute the vector xant involve essentially
the position of the antenna and of the orbiter. The geocentric coordinates of the antenna should be
transformed into TDB-compatible coordinates [34]. The transformation is expressed by:

xTDB
ant = xTT

ant

(
1 − U

c2 − LC

)
− 1

2

(
vTDB

E · xTT
ant

c2

)
vTDB

E ,

where U is the gravitational potential at the geocenter (excluding the Earth mass), LC =

1.48082686741 × 10−8 is a scaling factor given as definition [37], supposed to be a good approximation
for removing secular terms from the transformation and vTDB

E is the barycentric velocity of the Earth.
The following equation contains the effect on the velocities of the time coordinate change, which
should be consistently used together with the coordinate change:

vTDB
ant =

[
vTT

ant

(
1 − U

c2 − LC

)
− 1

2

(
vTDB

E · vTT
ant

c2

)
vTDB

E

] [
dT
dt

]
.

Note that the previous formula contains the factor dT/dt (expressed by Equation (3)) that deals
with a time transformation: T is the local time for Earth, that is TT, and t is the corresponding TDB
time. To compute the coordinates of the orbiter (vector xsat) we adopt similar equations, as discussed
in [22], where we neglected the terms of the SSB acceleration of the planet center [38], because they
contain, beside 1/c2, the additional small parameter distance from planet center divided by planet distance
to the Sun, which is of the order of 10−4 even for a Mercury orbiter.

In Figure 5 the behaviour of the range and range-rate observable, computed with and without the
just explained relativistic corrections, is shown. It is quite evident that the differences are significant,
at a signal-to-noise ratio S/N � 1 for range, much larger for range-rate, with an especially strong
signature from the orbital velocity of the Mercurycentric orbit (with S/N > 50).
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Figure 5. Cont.
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Figure 5. The difference in the observables range and range-rate for one pass of Mercury above the
horizon for a ground station, by using an hybrid model in which the position and velocity of the orbiter
have not been transformed to TDB-compatible quantities and a correct model in which all quantities
are TDB-compatible. Gaps of the signal are due to spacecraft passage behind Mercury as seen for
the Earth station. (Top): for a hybrid model with the satellite position and velocity not transformed
to TDB-compatible; (Bottom): for a hybrid model with the position and velocity of the antenna not
transformed to TDB-compatible.

3.2. Dynamical Relativistic Models

To constrain the PN and related parameters, we need to determine the orbit of Mercury.
A relativistic model for the motion of the planet is necessary. We choose to start from a Lagrangian
formulation (see, e.g., [21]) in order to compute the terms of accelerations to be included in the
right-hand side of the differential equations for Mercury and EMB (the dynamics of the other planets,
as well as the relative EMB-Earth position, are given by the JPL ephemerides). In particular, let us
assume that the motion of the considered planets is described by the sum of different Lagrangians:

L = LNew + LGR + (γ − 1)Lγ + (β − 1)Lβ + ζ Lζ + J2�LJ2� + α1Lα1 + α2Lα2 + ηLη , (4)

where LNew is the Lagrangian of the Newtonian N-body problem, LGR is the corrective term taking
into account General Relativity in the post-Newtonian approximation, Lγ and Lβ are the terms taking
into account the PN parameters γ and β, respectively, Lζ is the Lagrangian for the time variation of
the gravitational parameter of the Sun μ� = GM�, LJ2� takes into account the effect of the oblateness
of the Sun, Lα1 , Lα2 describe the preferred-frame effects through the parameters α1, α2, and, finally,
Lη checks for possible violations of the strong equivalence principle (see [12,13,31]).

To express the Lagrangian terms, we follow the notation of [35] and we introduce two parameters:
the total mass of EMB, μEMB, which is the sum of the gravitational parameter of the Earth and the
Moon, and the mass ratio, μ̄, defined as the ratio of the gravitational parameter of the Earth over that
of the Moon; both quantities μEMB and μ̄ are assumed to be fixed, hence we do not solve for them.
Defining μE = μ̄/(1 + μ̄) and μMoon = 1/(1 + μ̄), we have:

rEM = μE rEarth + μMoon rMoon

with analogous expressions for velocity and acceleration.
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Notice that the usual Lagrangians are multiplied by G, so that only μi = G Mi appear in the
overall Lagrangian. Indeed, the gravitational constant cannot be determined from any form of orbit
determination (apart artificial systems). In the following we give the explicit expressions for each
Lagrangian term in Equation (4).

• N-body Newtonian Lagrangian:

LNew =
1
2 ∑

i
μi v2

i +
1
2 ∑

i
∑
j �=i

μiμj

rij
.

• Post-Newtonian General Relativistic Lagrangian:

LGR =
1

8 c2 ∑
i

μiv4
i −

1
2 c2 ∑

i
∑
j �=i

∑
k �=i

μi μj μk

rij rik
+

+
1
2 ∑

i
∑
j �=i

μi μj

rij

[
3

2c2 (v
2
i + v2

j )−
7

2 c2 (vi · vj)− 1
2 c2 (nij · vi)(nij · vj)

]
.

• Lagrangian for PN parameter γ:

Lγ =
1

2 c2 ∑
i

∑
j �=i

μi μj

rij
(vi − vj)

2 .

• Lagrangian for PN parameter β:

Lβ = − 1
c2 ∑

i
∑
j �=i

∑
k �=i

μi μj μk

rij rik
.

• Lagrangian for parameter ζ:

Lζ describes the effect of a time variation of the gravitational parameter of the Sun, μ�:

μ� = μ�(t0) + μ̇�(t0)(t − t0) + . . . ;

defining

ζ =
μ̇�(t0)

μ�(t0)
=

d
dt

ln μ�(t0) ,

we have:
Lζ = (t − t0) ∑

i �=0

μ�μi
r0i

.

• Lagrangian for J2� effect:

LJ2� = −1
2 ∑

i �=0

μ0 μi
r0i

(
R�
r0i

)2
[3(n0i · e0)

2 − 1] ,

where R� is the radius of the Sun, n0i = r0i/r0i is the heliocentric position of body i and e0 is
the unit vector along the rotation axis of the Sun. The unit vector e0 is given in standard
equatorial coordinates with equinox J2000 at epoch J2000.0 (JD 2451545.0 TCB): α0 = 286.13◦,
δ0 = 63.87◦ [39].

• Lagrangian for preferred frame effects, PN α1 and α2:

Lα1 = − 1
4 c2 ∑

j
∑
i �=j

μi μj

rij

(
zi · zj

)
,
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Lα2 =
1

4 c2 ∑
j

∑
i �=j

μi μj

rij

[(
zi · zj

)− (
ni j · zi

) (
ni j · zj

)]
,

where zi = w + vi and w is the velocity of the considered reference system with respect to the PN
preferred reference frame, which is a reference frame whose outer regions are at rest with respect
to the universe rest frame (see [21]). In the case of the SSB reference frame, that could be the one
of cosmic microwave background, |w| = 370 ± 10 km/s, in the direction (α, δ) = (168◦, 7◦) in
the Equatorial J2000 reference frame (see [12]). Notice that we can combine the two previous
Lagrangians and the parameters α1 and α2 obtaining an unique Lagrangian for the preferred
frame effects:

Lα = α1 Lα1 + α2 Lα2 =
α2 − α1

4 c2 ∑
j

∑
i �=j

μi μj

rij
(vi + w) · (vj + w) +

− α2

4 c2 ∑
j

∑
i �=j

(rj i · (vj + w)) (rj i · (vi + w))
μi μj

r3
ij

.

• Lagrangian for possible violation of the equivalence principle, PN η:

With the Lagrangian multiplied by G, the Newtonian kinetic energy is:

T =
1
2 ∑

i
μi v2

i ,

where we assume that the inertial mass and the gravitational mass are the same (or, at least, exactly
proportional). If some form of mass has a different gravitational coupling, there are, for each body
i, two quantities μi and μI

i , one appearing in the gravitational potential (including the relativistic
part) and the other appearing in the kinetic energy. If there is a violation of the strong equivalence
principle involving body i, with a fraction Ωi of its mass due to gravitational self-energy (for the
moment we are using the approximation of constant density: Ωi = −3μi/5Rc2; notice that Ωi is
O(c−2)):

μi = (1 + ηΩi) μI
i ⇐⇒ μI

i = (1 − ηΩi) μi +O(η2)

with η the PN parameter for this violation. Neglecting O(η2) terms (and also O[η (γ − 1)], ..) this
is expressed by a Lagrangian term η Lη , where:

Lη = −1
2 ∑

i
Ωi μi v2

i .

Considering an inertial reference system, the equations of motion for the i-th body are described
by the Lagrangian equations:

d
d t

∂L
∂vi

=
∂L
∂ri

,

which in general give an implicit expression for the acceleration of the form f (ai) = g(ri, vi). However,
since the main term is the N-body Newtonian acceleration aNew

i and the other terms are small
perturbations, we can use the following approximation for the total acceleration of the i-th body:

μiai = μia
New
i +

∂(L − LNew)

∂ri
−

[
d

d t
∂(L − LNew)

∂vi

] ∣∣∣ai=aNew
i

.

If we call Y = [r1, rEM, v1, vEM]T the 12-dimensional state vector (for Mercury and EMB) we want
to propagate, we can write the equations of motion in the more complete form:
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d
d t

Y =

⎛
⎜⎜⎜⎝

v1

vEM
a1

aEM

⎞
⎟⎟⎟⎠ = F(r1, rEM, v1, vEM, ...) .

The reference system for these dynamics is centered in the SSB, and it is inertial in the PN
approximation. On the other hand, if we consider possible violations, as it happens in the case of
parameterized PN formalism, we need to reassess the total linear momentum conservation theorem.
Using Noether’s theorem we can compute the integral of the total linear momentum of the system:

d
d t

P = 0 , where P = ∑
i

∂L
∂vi

.

Since Lβ, Lζ , LJ2� do not depend on velocities and, because of the antisimmetry, we have that

∑i
∂Lγ

∂vi
= 0 and Lγ does not contribute; thus, the total linear momentum of the system reads:

P = ∑
i

∂(LNew + LGR + Lα + ηLη)

∂vi
.

In the PN approximation the total linear momentum is simply:

P = ∑
i

∂(LNew + LGR)

∂vi
=

= ∑
i

μivi

[
1 +

1
2c2 v2

i −
1

2 c2 ∑
k �=i

μk
rik

]
− 1

2 c2 ∑
i

∑
k �=i

μiμk
rik

(nik · vk) nik ,

and the vector:

R = ∑
i

μiri

(
1 +

1
2c2 v2

i −
1

2 c2 ∑
k �=i

μk
rik

)

is such that:
d
dt

R = P ,

to the O(c−2) level of accuracy. Thus R (rescaled by the total mass) plays the role of the barycenter of
the Solar System and can be used to eliminate the Sun from the equations of motion:

r0 = −
∑i �=0 μiri

(
1 + v2

i
2 c2 − Ui

2 c2

)

μ�
(

1 + v2
0

2 c2 − U0
2 c2

) , Ui = ∑
k �=i

μk
rik

.

If we now take into account the PN parameters effects, we can write the linear momentum as:

P = P0 + Pα , P0 = ∑
j

∂(LNew + LGR + η Lη)

∂vj
, Pα = ∑

j

∂Lα

∂vj
.

In this way, defining the center of mass of the system (rescaled by the total mass) as:

R = ∑
i

μi(1 − ηΩi)ri

(
1 +

1
2c2 v2

i −
1

2 c2 ∑
k �=i

μk
rik

)
,
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we have
d
dt

R = P0 ,

and the position of the Sun in this barycentric system is now:

r0 = −
∑i �=0 μi(1 − ηΩi)ri

(
1 + v2

i
2 c2 − Ui

2 c2

)

μ�(1 − ηΩ0)

(
1 + v2

0
2 c2 − U0

2 c2

) .

Finally, since we have:
Ṗ = 0 =⇒ Ṗ0 = −Ṗα =⇒ R̈ = −Ṗα ,

it means that the barycentric reference frame is accelerated. Thus, the equations of motion for the i-th
body in this reference frame need to be corrected by the acceleration of the barycenter B, keeping the
O(c−2) level of accuracy:

ai = aNew
i +

1
μi

∂(L − LNew)

∂ri
−

[
d
dt

∂(L − LNew)

∂vi

] ∣∣∣ai=aNew
i

− B̈ ,

where:
B =

R

∑i μi (1 − η Ωi)

(
1 + v2

i
2 c2 − Ui

2 c2

) .

3.3. Mercurycentric Dynamical Model

In this Section we briefly describe the models adopted to compute the Mercurycentric position of
the spacecraft xsat, introduced in Section 3.1 in the expression for the range distance r.

3.3.1. Mercury Gravity Field (Static Part)

The motion of the satellite around Mercury is dominated by the gravity field of the planet. In a
Mercurycentric reference frame and using spherical coordinates (r, θ, λ), the gravitational potential of
the planet, intended as a static rigid mass, can be expanded in a spherical harmonics series as (see, e.g.,
[25]—Chapter 13):

V(r, θ, λ) =
GMM

r
+

+∞

∑
�=2

GMMR�
M

r�+1

�

∑
m=0

P�m(sin θ)[C�m cos mλ + S�m sin mλ] , (5)

where r > 0 is the distance from the center of the planet, −π/2 < θ < π/2 the latitude and
0 ≤ λ < 2π the longitude, MM and RM are Mercury’s mass and mean radius, respectively, P�m the
Legendre associated functions, C�m, S�m the spherical harmonics coefficients and the summation starts
from � = 2 because the potential is referred to the center of Mercury.

3.3.2. Tidal Perturbations

Mercury cannot be exhaustively described as a rigid body. The gravitational field of the Sun exerts
solid tides on Mercury with the tidal bulge oriented in the direction of the Sun. This deformation can
be described by adding to the Newtonian potential of Equation (5) a quantity VL called Love potential
[18,40,41]:

VL =
GM�k2R5

M
r3

Sr3

(
3
2

cos2 ψ − 1
2

)
,
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where rS is the Mercury-Sun distance and ψ is the angle between the Mercurycentric position of
the spacecraft, r, and the Sun Mercurycentric position. The Love number k2 is the elastic constant
characterizing the effect.

3.3.3. Sun and Planetary Perturbations

The solar and planetary gravitational effects on the spacecraft that orbits around Mercury can be
computed as a “third-body” perturbative acceleration athird−body in a local Mercurycentric reference
frame. The N bodies acting in the perturbation are: Sun, Venus, Earth-Moon, Mars, Jupiter, Saturn,
Uranus and Neptune:

athird−body =
N−1

∑
i=0

GMi

(
di

d3
i
− ri

r3
i

)
,

where di is the position of the i-th body of mass Mi with respect to the spacecraft and ri is its position
with respect to Mercury (see, e.g., [35,42])

3.3.4. Rotational Dynamics

The gravity field development given by Equation (5) is valid in a body-fixed reference frame,
like the Mercury body-fixed frame of reference, ΨBF, defined by the principal inertia axes, with the
x-axis along the minimum inertia axis, assumed as rotational reference meridian (see [10] for details).
If we define the space-fixed Mercurycentric frame, ΨMC, in which writing the equation of motion
of the spacecraft, then we need to compute the rotation matrix R to convert the probe coordinates
from ΨBF to ΨMC. To this aim, we adopt the semi-empirical model defined in [9]. Referring to
that paper for an exhaustive discussion, we recall that the rotation matrix can be decomposed as
R = R3(φ)R1(δ2)R2(δ1), where Ri(α) is the matrix associated with the rotation by an angle α about
the i-th axis (i = 1, 2, 3), (δ1, δ2) define the space-fixed direction of the rotation axis in the ΨMC frame
and φ is the rotation angle around the rotation axis, assuming the unit vector along the longest axis of
the equator of Mercury (minimum momentum of inertia) as the rotational reference meridian.

The fundamental assumptions to describe the rotational state of Mercury in the adopted
semi-empirical model are the following, as defined in [43,44]: (i) the Cassini state theory, defining
the obliquity η with respect to the orbit normal as cos η = cos δ2 cos δ1, assumed to be constant over the
mission time span; (ii) addition in the description of two librations in longitude terms, the amplitude ε1

of 88 days forced librations and the amplitude ε2 of the Jupiter forced librations, possibly near-resonant
with the free libration frequency (see, e.g., [45,46]).

3.3.5. Non-Gravitational Perturbations

The spacecraft around Mercury is perturbed significantly by non-gravitational forces such as
the direct radiation pressure from the Sun, the indirect emission from the planet surface, the thermal
re-emission from the spacecraft itself. The non-gravitational effects on the Mercurycentric orbit of the
spacecraft are so intense that, if not properly taken into account, they would lead to a significantly
biased orbit determination. Due to the general difficulty of modeling these effects, an accelerometer
(ISA—Italian Spring Accelerometer) will be placed on board the spacecraft [20]. This instrument is
able to measure differential accelerations between a sensitive element and its rigid frame (cage) and
thus to give accurate information on the non-gravitational accelerations. During the scientific phase of
the mission, the accelerometer readings will be available nearly continuously at the rate of 1 Hz.

For the purpose of simulations, we introduce a simplified model of non-gravitational
perturbations in order to include the accelerometer readings among the observables. We account
for the effect of direct solar radiation pressure arad assuming a spherical satellite with coefficient 1
(i.e., we neglect diffusive terms). The shadow of the planet is computed accurately, taking into account
the penumbra effects. Moreover, we include the acceleration due to the thermal radiation from the
planet, ath, assuming a zero relaxation time for the thermal re-emission of Mercury (details on the
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model, supplied by D.Vokrouhlicky, Charles University of Prague, can be found in [10]). The whole
non-gravitational perturbations experienced by the spacecraft are, then, ang = arad + ath. We need
to stress out that this model, although simplified, is accurate enough for the purpose of simulations.
As will be detailed in Section 4.1.2, the key issue is that the accelerometer readings suffer from both
random and systematic errors, which are the critical terms to deal with. We can write the accelerometer
contribution to the equation of motion as: aISA = −ang + ε, where ε represents the contribution of all
the error sources in the ISA readings. As already highlighted, one of the main goals of the radio science
experiment is to perform a very accurate orbit determination of the Mercurycentric motion of the
spacecraft. To this aim, what really matters is to remove in the most suitable way any bias introduced
in the accelerometer readings by instrumental errors. For this reason, in our analysis we mainly focus
on the techniques to handle these error terms instead of accurately modeling the non-gravitational
perturbations themselves.

4. Simulation Scenario and Assumptions

In the following section, we outline the observational and dynamical scenario of the numerical
simulations of the relativity experiment. The latest mission scenario provides for a one year orbital
phase starting from 28 March 2025. The initial Mercurycentric orbit is polar and near-circular (480 ×
1500 km) with the pericenter located at ∼15◦ N. The orbital period of the spacecraft is about 2.3
h. We assume that two ground stations are available for tracking, one at the Goldstone Deep Space
Communications Complex in California (USA), providing observations in the Ka band, and one located
at the Cebreros station in Spain, supplying only X band observations. An average of 15–16 h of tracking
per day is expected, with an average of 8 h in the Ka band. Range and range-rate measurements
are simulated every 120 and 30 s, respectively. The propagation of the Mercurycentric dynamics
in simulation stage is based on the gravity field of Mercury measured by MESSENGER [23], up to
degree and order 25, with the addition of the Sun tidal effects described by the Love number k2 and on
the semi-empirical model for the planet rotation outlined in Section 3.3.4. For the Love number we
adopted the value k2 = 0.45 measured by MESSENGER [23]. For the rotational parameters we used
the following values: the orientation of the rotation axis is defined, in our semi-empirical model, by
the arbitrary angles δ1 = 3 arcmin and δ2 = 1 arcmin; the amplitudes of the librations in longitude are
ε1 = 38.9 arcsec, as measured by MESSENGER [47], and ε2 = 40 arcsec [45]. Concerning the relativity
parameters, we adopted the GR values for the PN parameters: β = γ = 1, η = 0, α1 = α2 = 0. The
values of μ� and J2� are taken from the DE421 ephemerides and we assume ζ = 0. In the case of γ,
we added the apriori γ = 1 ± 5 × 10−6 in differential correction stage. In fact, the PN parameter γ

appears both in the equations of motion for Mercury and EMB and in the equations for radio waves
propagation. The delay of light propagation due to the space-time curvature, called Shapiro effect [30],
is enhanced during a solar superior conjunction. Thus, a Superior Conjunction Experiment (SCE) is
devised during BepiColombo cruise phase [12], with the aim of updating the constraint provided by
the Cassini-Huygens mission [48]. The adopted apriori value on γ has been obtained from dedicated
SCE simulations [49].

4.1. Observables Error Models

The observables we are dealing with are the tracking data (range and range-rate) and the
non-gravitational accelerations, measured by the on-board accelerometer. To perform simulations in a
realistic scenario, we need to properly add some measurement error to each observable.

4.1.1. Range and Range-Rate

According to [3], a nominal white noise can be associated to each tracking observation.
Defining the simulated one-way range and range-rate observables as two-way measurements divided
by 2 and assuming top accuracy performances of the transponder, we add a Gaussian error of σr = 23.7
cm to the 120 s range observables and σṙ = 8.7 × 10−4 cm/s to the 30 s range-rate measurements [6].
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These values represent the optimal performances in the Ka band, while for the X band we assume 10
times larger errors.

From a comparison of the accuracies in the range and range-rate, it turns out that σr/σṙ ∼ 105 s
(according to Gaussian statistics, the standard deviations can be rescaled in order to be compared over
the same integration time). Range measurements are, hence, more accurate than range-rate when we
are observing phenomena with a period longer than 105 s, while the opposite is true for range-rate.
We can conclude that the relativity experiment, which involves long-term periodicity phenomena, is
mainly performed through the range tracking data, while gravimetry and rotation experiments mainly
with the range-rate (we recall that the Mercurycentric orbital period is less than 104 s).

At the level of accuracy provided by the MORE relativity experiment, it could be necessary to
account for additional sources of uncertainty in the range measurements. Indeed, instrumental related
effects, such as residual signatures from the calibrator or residual biases after ground system calibration,
can affect the observations in a non-negligible way. To account for these spurious effects, we add to the
range Gaussian noise a generic systematic term, described by a bias of 3 cm and a sinusoidal trend (as
already done in [12]) which reaches an amplitude of 3 cm after one year of observations. The choice of
this functional behavior can be replaced by other assumptions, as done in [50]; it merely accounts for a
possible scenario, which is the purpose of our simulations.

4.1.2. Accelerometer Readings and Calibration Strategy

As outlined in Section 3.3.5, we write the accelerometer contribution to the Mercurycentric motion
of the spacecraft as aISA = −ang + ε, where ang is computed according to our simplified model.
Concerning the error term ε, we assume the model provided by ISA team (private communications).
It consists of a random background with some periodic terms superimposed: the main ones are a
thermal term, resulting in a sinusoid at Mercury sidereal period (7.6 × 106 s) and a resonant term,
resulting in a sinusoid at the orbital period of the spacecraft (8.3 × 103 s). All the details on the adopted
model and the effects of the main components on the Mercurycentric orbit determination are described
in [10].

The key issue in dealing with the accelerometer error term is that if we simply add it to the
right hand side of the equation of motion, its detrimental effect causes a downgrading of the orbit
determination of the spacecraft by orders of magnitude, vanifying the radio science experiment. In fact,
this spurious instrumental effect is absorbed by the solve for parameters (like the state vector of
the spacecraft at each arc) just like any other physical effect, resulting in a totally biased solution.
To overcome this problem, the basic idea is to add to the right hand side of the equation of motion an
additional term c(ψ; t), function of a further set of parameters ψ, to be added in the solve for list, and
of time, such that ε(t)− c(ψ; t) � 0. In such a way, the calibration function c(ψ; t) absorbs most of the
accelerometer error and the physical parameters of interest for the radio science experiment are, in
principle, not anymore biased. In the ORBIT14 software we implemented a novel calibration strategy,
in which the calibration function is represented by a C1 cubic spline. All the details can be found in [19].
As a consequence, six additional parameters per arc (two per direction) are determined. We point out,
as extensively discussed in [10], that this calibration strategy is able to absorb the low frequencies (i.e.,
longer than one day) error terms and the random component; in fact, the coefficients of the spline
polynomials are computed once per arc, hence features with a periodicity lower than one day cannot
be accounted for. This means that the resonant term, which shows a periodicity significantly lower
than one day (about 2.3 h), is not absorbed by calibration at all. While this term results highly critical
for what concerns the gravimetry and rotation experiments, we will see that its amplitude is not
significantly detrimental for the relativity experiment.

4.2. Desaturation Maneuvres

Additional sources of perturbation on the orbit of the spacecraft around Mercury are the reaction
wheels desaturation manoeuvres. We will assume as a general scenario to have one dump maneuvre
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during tracking and one dump maneuvre in the periods without tracking, hence a maximum amount of
two dump manoeuvres per arc, as specified by the mission requirements. Each desaturation maneuvre,
needed to maintain the desired attitude of the spacecraft, affects the precise Mercurycentric orbit
determination. The result is a significant velocity change in the radial and out-of-plane directions
and a linear momentum transfer in the transversal direction. To guarantee the expected level of
accuracy in the orbit determination, these effects need to be modeled and removed from the estimation
of the parameters. Each maneuvre appears in the spacecraft equation of motion as an additional
acceleration acting on the probe. The downgrading effect on the spacecraft orbit determination can be
significant, up to tens of meters in the range observations (see, e.g., [27]). For this reason, the velocity
change Δv due to each maneuvre is added to the list of solve-for parameters, removing most of the
downgrading effect from the orbit determination. The values for Δv adopted in simulations, along
with all the details on the modelization and implementation of the maneuvres scenario, are given
in [27]. The presence of orbital maneuvres, which are in general much larger than the desaturation
maneuvres, is not considered here.

4.3. Metric Theories of Gravitation

A critical issue of the MORE relativity experiment, already discussed in [12], is that the Eddington
parameter β and the Sun oblateness J2� show a near 1 correlation, as it appears from the covariance
matrix obtained through the LS fit. This effect can be interpreted from a geometrical point of view
considering that the main orbital effect of β is a precession of the argument of perihelion, which is
a displacement taking place in the plane of the orbit of Mercury, while J2� affects the precession of
the longitude of the node, thus producing a displacement in the plane of the solar equator. The angle
between these two planes is only θ = 3.3◦, hence, being cos θ � 1, we can expect such a high correlation
between the two parameters. The consequence is a significant deterioration of the formal accuracies
of both parameters. Since, unavoidably, the geometrical configuration cannot be changed, a possible
solution to determine both parameters without a significant loss in accuracy is to add a suitable
constraint on one of the involved parameter. A meaningful possibility is to link the PN parameters
through the Nordtvedt equation [51]:

η = 4(β − 1)− (γ − 1)− α1 − 2
3

α2 .

In such a way, the knowledge on β is determined from the value of η: the correlation between
β and η becomes almost 1, but that between β and J2� is greatly reduced. The introduction of the
Nordtvedt equation is justified if we assume that gravitation must be described by a metric theory.
In the following this becomes a basic assumption of our scenario.

4.4. Rank Deficiencies in the Mercury and EMB Orbit Determination Problem

As already stated, to perform the MORE relativity experiment we need to determine the orbit of
Mercury and the EMB, that is to compute their state vector (position and velocity) at a given reference
epoch. In practice, we find that we cannot solve for all the 12 components of the 2 state vectors without
running into a significant deterioration of the results. The issue arises from the fact that this orbit
determination problem, including simultaneously Mercury and the Earth, shows an approximate rank
deficiency of order 4 (see, e.g., [12] for details).

An approximate rank deficiency of order 3 results from the breaking of an exact symmetry of
the problem with respect to the full rotation group SO(3). If there were only the Sun, the Earth and
Mercury and if the Sun was exactly spherically symmetric (i.e., J2� = 0), there would be an exact
symmetry for rotation in determining both the orbits of Mercury and the Earth and therefore an exact
rank deficiency of order 3. Due to the coupling with the other planets and to the asphericity of the Sun,
the exact symmetry is broken but only by a small parameter (of the order of the relative size of the
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mutual perturbations by the other planets on the orbits of Mercury and the Earth and of the size of
J2�), bringing a residual approximate rank deficiency of order 3 in the problem.

A further exact symmetry would be present, if there were only the Sun, the Earth and Mercury.
Changing all the lengths by a factor L, all the masses by a factor M and all the time intervals by a
factor T, provided that the scaling factors are related by L3 = T2M (Kepler’s third law), the equation
of motion of the gravitational 3-body problem would remain unchanged. Again, this symmetry is
broken by a small parameter, and an approximate rank deficiency of order 1 remains, leading to a total
rank deficiency of order 4.

The standard solution already adopted in [12] is to solve for only 8 of the 12 components of the
state vectors, assuming the remaining 4 as consider parameters. In the following we adopt the same
assumption and we do not solve for the three position components of the EMB orbit (xEM, yEM, zEM)
and for the EMB velocity component perpendicular to the EMB orbital plane (żEM). The adopted
technique is called descoping. A different approach to a problem of rank deficiency of order d is to add
d constraint equations as apriori observations, instead of removing d parameters from the solve for list
(see [25]—Chapter 6 for details). This is the technique we apply, for example, assuming the validity
of the Nordtvedt equation in order to remove the degeneracy between β and J2�. In ORBIT14 we
have implemented also the possibility of determining all the 12 state vectors components, by adding 4
apriori constraints between the state vectors components and the Sun’s mass μ� in order to remove
the degeneracy. A detailed discussion on this topic will be presented in a future paper by our group.
In the following we assume to determine only 8 out of the 12 components.

5. Results

In this Section we will present and discuss the results of our simulations. In this review, we are
mainly interested in the MORE relativity experiment: the results concerning PN and related parameters
will be given in Section 5.1. For completeness, we will discuss the results concerning gravimetry and
rotation in Section 5.2.

At each iteration of the differential correction process we solve for the following parameters:

• Global dynamical:

– PN parameters: β, γ, η, α1, α2;
– other parameters of interest for the relativity experiment: μ�, ζ, J2�;
– the state vectors of Mercury and EMB (8 components): (xM, yM, zM; ẋM, ẏM, żM); (ẋEM, ẏEM);
– normalized harmonic coefficients of the gravity field of Mercury up to degree and order 25

and the Love number k2;
– rotational parameters: δ1, δ2, ε1, ε2;
– six accelerometer calibration coefficients for each arc, plus 6+6 boundary conditions;

• Local dynamical:

– state vector of the Mercurycentric orbit of the spacecraft, in the Ecliptic J2000 inertial
reference frame, at the central time of each observed arc;

– three dump manoeuvre components, Δv, taking place during tracking, for each observed
arc;

• External local dynamical:

– three dump manoeuvre components, Δv, taking place in the period without tracking
between each pair of consecutive observed arcs.

5.1. The Relativity Experiment Results

The results for the PN and related parameters of interest for the relativity experiment are shown in
Table 1. For each parameter we report the following quantities: (i) the formal uncertainty; (ii) the true
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error; (iii) the true-to-formal (T/F) error ratio; (iv) the current accuracy with which the parameter is
presently known.

Table 1. Simulation results for the parameters of interest in the MORE relativity experiment (errors on
μ� are in cm3/s2, on ζ in y−1).

Parameter Formal Error True Error T/F Error Ratio Current Accuracy

β 7.3 × 10−7 2.6 × 10−6 3.6 7 × 10−5 [52]
γ 9.3 × 10−7 1.1 × 10−6 1.2 2.3 × 10−5 [48]
η 2.2 × 10−6 1.1 × 10−5 4.9 4.5 × 10−4 [53]
α1 4.9 × 10−7 4.9 × 10−7 1.0 6.0 × 10−6 [54]
α2 8.3 × 10−8 1.0 × 10−7 1.2 3.5 × 10−5 [54]
μ� 4.2 × 1013 4.2 × 1013 1.0 1016, 8 × 1015 [55,56]
ζ 2.3 × 10−14 3.6 × 10−14 1.5 4.3 × 10−14 [57]

J2� 4.1 × 10−10 4.1 × 10−10 1.0 1.2 × 10−8 [52]

The formal error is obtained from the diagonal terms of the covariance matrix. The main limitation
of formal analysis is that it does not account at all for any error that is non-Gaussian, like systematic
errors, or time-correlated, unless they are in some way calibrated introducing further parameters in the
solve-for list. Besides the formal analysis, we introduce a second quantity, which we call “true” error, to
assess the expected accuracies in a more realistic way. This quantity is defined for each parameter as the
difference between the nominal value of the parameter (used in simulations) and the value determined
at convergence of the differential correction process. In such a way, the systematic effects are included
in the computation of the accuracies. The true errors shown in Table 1 have been obtained as rms
values over a number of runs carried out by changing the seed of the random numbers generator. We
found that ∼10 runs are adequately representative to quantify systematic errors. The ideal situation
would occur when T/F error ratios follow Gaussian statistics, which means either that no systematic
effects are present at all or that they are accounted for, through calibration parameters, in the formal
analysis. In practice, this ratio is almost always greater than 1, but what does matter is that it is limited
within a maximum of T/F∼ 3. Any higher value would be representative of a wrong or lacking
modelization of some effects.

Analyzing the two sources of systematic effects included in simulation, i.e., the error model for
accelerometer readings and the spurious effects from the ranging system, we found that T/F values
higher than 1 for the relativity parameters can be only partially ascribed to non-perfectly calibrated
long term components in the accelerometer error model, which are not fully absorbed by the C1 spline
calibration. The main downgrading effect turns out to be the presence of systematic terms in the range
error model, which are not calibrated at all. The effect is particularly detrimental for the determination
of β and η. We remind that the range error model includes a bias term of 3 cm and a sinusoidal trend
up to 3 cm after one year. Analyzing individually the two error terms, we found that the bias term is
responsible for most of the deterioration in estimating β and η. Adding the linear term does not further
deteriorate true errors in a significant way. Moreover, as extensively discussed in [50], increasing the
adopted value for the bias term results in a corresponding increase of the true errors of all the PN
parameters.

A possible approach to the problem would be to introduce in the solve-for list an additional
global parameter, that is a bias in modeling the range observables. Estimating the bias, it could be
possible in principle to absorb most of the spurious effect in range, leading to a better estimate of
the PN parameters in terms of T/F error ratios. This approach has a disadvantage that immediately
appears when we take correlations into account. The correlations between PN and related parameters
are shown in Table 2. As expected, the correlation between β and η is almost one. In fact we adopted
the Nordvedt relation as an apriori constraint between PN parameters and we included an apriori
constraint on γ from the SCE simulations during cruise phase. As a consequence, η is deduced from β
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and their correlation is very high. If we add a bias in range to the solve-for list, the correlation between
the bias term and, especially, β and η turns out to be almost one. This would lead to a worsening
in the formal error of both β and η by more than one order of magnitude. This result would not be
compliant with the scientific goals expected from MORE in terms of accuracies. In fact, the goal is to
determine η at a level of, at least, 10−5 and β at a level of some parts in 10−6 [3,6,12]. In conclusion,
if the systematic effects due to the ranging system remain at the level of few cm, the downgrading effect
on the accuracies is still acceptable, as can be envisaged comparing the present results with current
accuracies. Conversely, if the systematic terms, especially a spurious bias in the range measurements,
become more significant, some suitable calibration strategy would be mandatory. As sketched in
Section 4.4, the different approach of estimating all the 12, instead of only 8, components of Mercury
and the EMB state vectors by adding some apriori constraints is under analysis. Preliminary attempts
have shown that in such a case the correlation between the bias term in range and η and β would
significantly decrease. We will report our conclusions in a future work.

Table 2. Correlations between PN and related parameters (values higher than 0.7 are highlighted
in bold).

β γ η α1 α2 μ� ζ J2�
J2� 0.15 0.21 0.11 0.90 0.29 0.89 0.10 –
ζ <0.1 0.28 <0.1 <0.1 0.17 <0.1 –

μ� 0.20 0.14 0.14 0.84 <0.1 –
α2 0.35 0.28 0.36 0.27 –
α1 0.35 0.12 0.22 –
η 0.96 0.60 –
γ 0.77 –
β –

A critical issue in the MORE relativity experiment, already remarked in [12] (p. 17), concerns
the effects of a lacking knowledge of the Solar System model. In our simulations, we assumed that
all the parameters of the SS model not included in the solve-for list (for example, the masses of the
planets) are known from the ephemerides well enough that no spurious effects are introduced in the
parameters estimation. An extensive discussion on this approximation has been carried out in [31] and
the issue is still controversial.

Finally, we point out that the Lense-Thirring effect on the Mercury’s orbit due to the Sun’s
angular momentum has been neglected. This choice has presently been made in order to simplify
the development and implementation of the dynamical models. However, the effect is expected to
be relevant [58], hence in future work we will investigate on its possible impact on the relativity
parameters determination.

5.2. Results for Gravimetry and Rotation

In Section 4.1.1, we introduced one of the basic issues of the BepiColombo radio science experiment.
Comparing the expected accuracies of range and range-rate, it turns out that range-rate measurements
are more accurate than range data when observing phenomena with periodicity shorter than ∼105 s,
while the opposite is true for long-term periodicity phenomena. As a consequence, gravimetry and
rotation experiments are mainly performed by means of range-rate data, while the relativity experiment
by means of range. MORE is a comprehensive experiment in which all the parameters are solved
simultaneously in the non-linear LS fit, but the expected independence between gravimetry/rotation
on one side and relativity on the other suggests that, for the purpose of simulations, we can perform
the experiments individually or all together and achieve the same results. We checked the validity of
this statement by performing additional simulations. Referring to the solve-for list in Section 4, we ran
the following simulations:
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• relativity simulations: we removed from the solve-for list the gravimetry and rotational parameters,
i.e. the gravity field spherical harmonic coefficients, Love number k2, the angles (δ1, δ2), the
libration amplitudes ε1, ε2;

• gravimetry and rotation simulations: we removed from the solve-for list the PN and related
parameters.

These are mandatory tests since the chance that any further unforeseen rank deficiency between
relativity and gravimetry/rotation parameters appears in the global fit needs to be verified. The results
confirmed our expectations. The accuracies of PN and related parameters achieved in the global
simulation, discussed in Section 5.1, and in the relativity simulations are equivalent, and the same
is true for gravimetry and rotation. We have already extensively reported in [10] on the results
for the MORE gravimetry and rotation experiments, together with a discussion on the achievable
accuracy in the orbit determination. Therefor, we do not duplicate here the same results and we refer
to that paper for a discussion on these topics. We point out that in the simulations described here
we did not include among the observables the optical data from the high resolution camera HRIC,
part of the SIMBIO-SYS payload [59]. In fact, camera observations significantly support range-rate
measurements in the determination of the rotational parameters, while they do not contribute at all to
the relativity experiment.

6. Discussion and Conclusions

In this review, we summarized all the issues concerning the BepiColombo relativity experiment.
After recalling the global structure of the ORBIT14 software and the techniques to determine the
parameters of interest, we detailed the essential mathematical models on which the experiment is
based and the fundamental assumptions adopted. We finally presented the results of a full cycle of
simulations carried out in the latest mission scenario.

At the beginning of 2000’s our group performed a similar set of simulations, whose results are
reported in [12], with the specific aim of dictating the mission and instrumentation requirements in
order to make the BepiColombo relativity experiment feasible. Several underlying issues concerning
the experiment have since been reconsidered and updated and the software has undergone significant
revision. The formal results of the present paper are compared with the formal errors obtained in
2002 in [12] in Table 3, where the results reported in [6], representing the goal accuracies required for
the MORE relativity experiment, have also been included. We refer to Experiment D in [12], where
Nordtvedt equation has been assumed to link PN parameters. In the comparison we did not consider
the ζ parameter because in [12] the quantity Ġ/G was included instead of ζ.

Table 3. Comparison between the results in Schettino & Tommei (2016) (this paper) and previous
results of the relativity experiment (μ� in cm3/s2).

Parameter Schettino & Tommei (2016) Milani et al. (2002) [12] Iess et al. (2009) [6]

β 7.3 × 10−7 9.2 × 10−7 2 × 10−6

γ 9.3 × 10−7 2 × 10−6 (SCE) 2 × 10−6

η 2.2 × 10−6 3.3 × 10−6 8 × 10−6

α1 4.9 × 10−7 7.1 × 10−7 –
α2 8.3 × 10−8 1.9 × 10−7 –
μ� 4.2 × 1013 4.1 × 1013 –
J2� 4.1 × 10−10 6.2 × 10−10 2 × 10−9

It can be seen that a slight improvement of the 2002 expectations [12] has been achieved. It can be
remarked that in both cases formal errors turn out to be significantly lower than the goal accuracies of
MORE. A quantitative comparison with the 2015 results in [15] is difficult because the mission time
span scenario is different and, furthermore, the assumption of a metric theory of gravitation was not
included in [15].
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At this stage, the spacecraft is almost ready for launch and no significant modification of the
mission can be addressed anymore. The aim of the set of simulations described in this review is, hence,
clear: assuming the performances expected and tested for each instrument and the revised launch
scenario, we want to establish the feasibility of the relativity experiment and provide the results that
can be achieved in terms of accuracies. Two key issues were pointed out already during the past
years: the impact on the solution from the errors in the accelerometer readings and from the aging of
the transponder. Concerning the first issue, the main downgrading source was found in the thermal
effects which produce periodic spurious signatures, with the periodicity of both the orbital period of
the spacecraft around Mercury and the sidereal period of Mercury around the Sun. These signatures
mainly affect the Mercurycentric orbit determination. An extensive discussion on the potentially
downgrading effects for the gravimetry and rotation experiments have been recently discussed by
our group in [10]. The results shown in Table 1 and the discussions presented in [14,50] lead us to the
conclusion that, if the accelerometer error model is compliant to the one adopted, the effects on the
relativity experiment are not detrimental. More critical is the question on how the ranging system
affects the results. In [12] it was shown that, describing the transponder aging with a sinusoidal trend
up to some tens of cm after one year, the effect was highly detrimental for the relativity parameters
estimation. This issue has been tackled by introducing an on-board calibrator to account for the aging
of the transponder. Nevertheless, residual spurious effects due, e.g., to the calibrator itself or to the
on-ground instrumentation can still lead to a systematic error of a few cm. In our simulations, we
assumed a bias of 3 cm and a sinusoidal trend up to 3 cm after one year. In such a case, the detrimental
effects on the parameters are restrained, but in an unfavorable scenario in which they exceed the value
of 5 cm on the one-way range, the solution would be significantly downgraded, as shown in [50].
In such a case, we envisage the need of a calibration strategy within the LS fit. In any case, in the
realistic scenario presented here, we can conclude that the accuracies achievable by the BepiColombo
relativity experiment for each of the PN parameter, compared with current accuracies, would represent
a significant improvement of our knowledge of gravitational theories.
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Abstract: The second law of thermodynamics, in the presence of gravity, is known to hold
at small scales, as in the case of black holes and self-gravitating radiation spheres. Using the
Friedmann–Lemaître–Robertson–Walker metric and the history of the Hubble factor, we argue
that this law also holds at cosmological scales. Based on this, we study the connection between the
deceleration parameter and the spatial curvature of the metric, Ωk, and set limits on the latter, valid
for any homogeneous and isotropic cosmological model. Likewise, we devise strategies to determine
the sign of the spatial curvature index k. Finally, assuming the lambda cold dark matter model is
correct, we find that the acceleration of the cosmic expansion is increasing today.

Keywords: mathematical cosmology; spatial curvatur; thermodynamics

1. Introduction

The validity of the second law of thermodynamics for systems dominated by gravity should
not be taken for granted. Gravity is a long-ranged interaction while the formulation of the second
is based on the observation of ordinary systems, i.e., those dominated by short-ranged interactions.
In actual fact, its validity for the former systems was studied only recently, notably in the case of black
holes and self-gravitating radiation spheres. In the former case, Bekenstein demonstrated that the
black-hole entropy, in addition to the entropy of the black-hole exterior, never decreases [1,2]. In the
latter, it was shown that the static stable configurations of a sphere of self-gravitating radiation are
those that maximize the radiation entropy [3,4]. Both instances correspond to small scale systems.
Although different authors assumed it to be in order to constrain the evolution of cosmological
models (see, e.g., [5] and references therein), as far as we know, the validity of the said law at
large (i.e., cosmic) scales has not been explored as yet. The main purpose of this work is to fill this
gap. Our study analysis rests on the simplest realistic large-scale space-time metric, namely, the
Friedmann–Lemaître–Robertson–Walker (FLRW) one alongside a selected set of observational data
about the history of cosmic expansion.

Homogeneous and isotropic universe models are usually described by the FLRW metric

ds2 = −c2dt2 + a2(t)
{

dr2

1 − kr2 + r2
(

dθ2 + sin2 θ dφ2
)}

, (1)

coupled to the sources of the gravitational field. This metric relies on the cosmological principle [6–8]
whose validity, at large scales, has not been contradicted thus far [9] and it looks rather robust [10–12].
The curvature index, k, is either 0,+1, or −1 depending on whether the spatial part of the metric is
flat, positively curved (closed), or negatively curved (hyperbolic), respectively.

Universe 2016, 2, 27 250 www.mdpi.com/journal/universe



Universe 2016, 2, 27

This constant index, like the scale factor a(t), is not a directly observable quantity. In principle,
however, it can be determined through the knowledge of the dimensionless, fractional curvature
density, Ωk ≡ −k/(a2H2), which is accessible to observation, albeit indirectly. As usual,
H = c d ln a/dt denotes the Hubble factor. Current measurements of Ωk only indicate that its present
absolute value is small (| Ωk0 | � 10−3 [13,14]). Note that this constraint was obtained under the
assumption that the universe is accurately described by the ΛCDM model. Thus the sign of k
remains unknown.

The aim of this research is fourfold: (i) To determine whether the second law of thermodynamics
is fulfilled at cosmological scales and; if so, (ii) constrain Ωk as much as possible and (iii) determine the
sign of k; finally, (iv) to derive a thermodynamic constraint relating the present value of the deceleration
and jerk parameters. For the first three objectives, neither a cosmological model nor theory of gravity
will be assumed. We shall just use the FLRW metric, the history H(z) of the Hubble factor and the
second law of thermodynamics. For the fourth objective, we will assume Einstein gravity and the
ΛCDM model. As is customary, a subindex zero attached to any quantity means that the latter should
be evaluated at present time.

2. Cosmological Consequences of the Second Law

Given the strong connection between gravity and thermodynamics [1,2,15–17], it is natural to
expect that the universe behaves as a normal thermodynamic system; it therefore must tend to a state
of maximum entropy in the long run [18,19].

For comoving observers, FLRW models entail “normal”, “trapped” and “anti-trapped” regions.
In the first one, the expansion of outgoing null geodesic congruences, normal to the spatial two-sphere
of radius r̃(= ra(t)) centered at the origin (i.e., at the position of the observer), is positive, and negative
for ingoing null geodesic congruences. In the trapped region, both kind of geodesic congruences
have negative expansion. By contrast, in the anti-trapped region the expansion of both congruences
is positive. The boundary hyper-surface of the space-time anti-trapped region is called the apparent
horizon; its radius is r̃A = [(H/c)2 + ka−2]−1/2. Since the observer has no information about what
might be going on beyond the horizon, the latter has an entropy, namely: SA = kBπr̃2

A/�2
pl, where �pl

is Planck’s length. For details, see [20]. (Bear in mind that r̃ and H have dimensions of length and
length−1, respectively, k of length−2, and a is dimensionless.)

A rather reasonable assumption concerning the entropy of the observable universe is that it is
dominated by the entropy of the cosmic horizon. In the current universe, the entropy of the horizon
exceeds that of supermassive black holes, stellar black holes, relic neutrinos and CMB photons by
18, 25, 33 and 33 orders of magnitude, respectively [21]. There are several possible choices for the
cosmic horizon: the particle horizon, the event horizon, the apparent horizon and the Hubble horizon.
Given that the first one does not exist for accelerating universes and the second only exists if the
universe accelerates forever in the future, we take the apparent horizon, which, on the one hand,
always exists, both for ever-expanding and ever-contracting universes, and, on the other hand, by
contrast to the other mentioned possibilities, the laws of thermodynamics are fulfilled on it [22].
The Hubble horizon is a particular case of the apparent horizon when k = 0.

To support the above claim that the entropy of the horizon dominates over the entropy of any
form of energy inside the horizon, especially at late times, we shall consider the entropy of pressureless
matter. The latter is given by Sm = kB n Vk [23], with n = n0a−3, being n0 the present number density
of matter particles, and

Vk = 2πa2
[√

| k | a sin−1(
√
| k |a−1r̃A) − k r̃2

AH
]

(2)
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the volume enclosed by the apparent horizon for k = +1 and −1 (for the flat case, Vk=0 = (4π/3) r̃3
A).

For k = −1 one follows Sm(a � 1) → 2kB n0 πa−1r̃2
AH. Hence, when a � 1 the ratio SA/Sm results

proportional to a/H. For k = +1 one has Sm(a � 1) → 2kB n0 a−1
(

1 −
√

1 − r̃2
Aa−1

)
, hence

SA
Sm

∝
a r̃2

A

1 −
√

1 − r̃2
A
a

.

Accordingly, in all three cases (k = 0,+1,−1) the entropy of the horizon overwhelms that of the
matter inside it, especially at late times.

Recalling that SA ∝ A with A = 4π(H2 + k a−2)−1 the area of the horizon (henceforward we set
c = 1), the second law of thermodynamics S′

A ≥ 0 leads to

A′ = −A2

2π

(
HH′ − k

a3

)
≥ 0 ⇒ HH′ ≤ k

a3 , (3)

where the prime means d/da.
The second inequality tells us that if H′ is or has been positive at any stage of cosmic expansion

(excluding, possibly, the pre-Planckian era), then k = +1 and that, in principle, any sign of k is
compatible with H′ < 0. Multiplying the said inequality by −aH−2 produces −aH′/H ≥ Ωk,
which can be recast in terms of the redshift as

(1 + z)
d ln H

dz
≥ Ωk . (4)

Thus, if dH/dz > 0 for all z ≥ 0, then both k = +1 and k = 0 are consistent with the second law of
thermodynamics at large scales. However, given the present ample uncertainties in the observational
data regarding the Hubble history, if k were −1, then the said law could break down at cosmic scales.
To explore this, we set k = −1 in Equation (4) and integrate the resulting expression in the interval
z1 ≤ z ≤ z2 to get

H2
2 − H2

1 ≥ 2(z2 − z1) + (z2
2 − z2

1). (5)

Therefore, if this relationship failed for whatever pair of points (zi, Hi), with i = 1, 2, it should
mean that the choice k = −1 would not be consistent with the second law at the said scales.

We use Equation (5) alongside the 28 experimental data H vs. z, in the interval 0.1 ≤ z ≤ 2.36,
with their 1σ error bars, compiled by Farook et al. [24] and listed in Table 1 (see also Figure 1) for the
reader convenience, to draw Figure 2. The latter suggests that, given the experimental uncertainties,
the possibility k = −1 also appears compatible with the inequality S′

A ≥ 0. While wider compilations
of H(z) are available, we believe this one is preferable because it does not include any obviously
correlated data, nor does it contain older, less reliable data, some with much weight from anomalously
small error bars.

Equation (4) can alternatively be written as

1 + q ≥ Ωk , (6)

where q = −ä/(aH2) is the dimensionless deceleration parameter. The last equation, like (4), imposes
an upper bound (that depends on redshift) on Ωk. In the radiation dominated era q was close to 1;
a result that, in spite of having been derived for spatially flat universes described by general relativity,
should hold irrespective of the sign of the curvature and the gravity theory employed. Notice that
even a mild deviation of q 	 1 at that time would conflict with the observational results about the
primordial nucleosynthesis of light elements [25]. This suggests an easily verifiable test on modified
gravity theories, namely, that they should be consistent with the bound Ωk ≤ 2 at the radiation era.
However, if general relativity is the right theory of gravity, the first Friedmann equation implies the
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stronger bound Ωk < 1 at all epochs. Nevertheless, even if one uses general relativity, Equation (6)
might provide a useful bound when q < 0.

Table 1. Hubble Parameter vs. Redshift Data.

z H(z) (km·s−1·Mpc−1) Reference

0.100 69 ± 12 [26]
0.170 83 ± 8 [26]
0.179 75 ± 4 [27]
0.199 75 ± 5 [27]
0.270 77 ± 14 [26]
0.320 79.2 ± 5.6 [28]
0.352 83 ± 14 [27]
0.400 95 ± 17 [26]
0.440 82.6 ± 7.8 [29]
0.480 97 ± 62 [30]
0.570 100.3 ± 3.7 [28]
0.593 104 ± 13 [27]
0.600 87.9 ± 6.1 [29]
0.680 92 ± 8 [27]
0.730 97.3 ± 7 [29]
0.781 105 ± 12 [27]
0.875 125 ± 17 [27]
0.880 90 ± 40 [30]
0.900 117 ± 23 [26]
1.037 154 ± 20 [27]
1.300 168 ± 17 [26]
1.363 160 ± 33.6 [31]
1.430 177 ± 18 [26]
1.530 140 ± 14 [26]
1.750 202 ± 40 [26]
1.965 186.5 ± 50.4 [31]
2.340 222 ± 7 [32]
2.360 226 ± 8 [33]

Figure 1. 28 H(z) data points with their 1σ uncertainty.
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Figure 2. Left-hand side vs. right-hand side of Equation (5) for all possible i > j combinations of the
data shown in Table 1. The error bars denote 1σ confidence level.

We can draw further consequences from the thermodynamic bound (6). To this end, we first
apply the model independent Gaussian process (GP) introduced by Seikel et al. [34] to smooth the
28 observational H(z) data depicted in Figure 1. Figure 3 shows the outcome.

Figure 3. Gaussian process reconstruction of the history of the Hubble factor from the raw H(z) data
depicted in Figure 1, as well as here for convenience of the reader. The blue shaded region shows the
1σ uncertainty.
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Inspection of the latter suggests that dH/dz ≥ 0 in the redshift range be considered. If this gets
confirmed by future H(z) data of much higher quality, any sign of the curvature scalar index k will be
consistent with the second law of thermodynamics. The following analysis, based on the smoothed
data shown in Figure 3, allows the quantification of the gap between 1 + q and Ωk.

The quantity 1 + q alongside its 1σ, uncertainty is obtained by computing the quantity in the
left-hand side of (4) using the smoothed H(z) data, and similarly Ωk by computing −k(1 + z)2/H2(z)
using the same data. Figures 4 and 5 summarize the results for k = +1 and −1, respectively. It is
apparent that, whatever the sign of k, the second law is fulfilled by a generous margin. Likewise,
inspection of the left panels of the aforesaid figures indicates that Ωk0 ≤ 0.64. Obviously, this upper
bound is much more loose than the one obtained in [14] (6.5 × 10−3 ≤ Ωk0 ≤ −6.6 × 10−3), but the
latter is based on a particular (though so far successful) cosmological model—the ΛCDM—that rests
on a number of assumptions, some of which can be justified only a posteriori. By contrast, this other
rests just on the FLRW metric and the second law of thermodynamics. Combining the readings on the
vertical axes of the right panels of the same figures yields the constraint 2× 10−4 ≤ Ωk0 ≤ −2.6× 10−4.

Figure 4. Left panel: 1 + q vs. redshift after smoothing the 28 H(z) data as depicted in Figure 3.
Also shown is Ωk for k = +1. Clearly, the latter is practically zero. Right panel: Zoom of Ωk and its 1σ

uncertainty interval.

Figure 5. Same as Figure 4 but for k = −1.

Regrettably, as hinted above, the quality of the available sets of H(z) data is not good enough to
directly constrain Ωk into a small range, much less to discriminate the sign of k. One has to apply some
smoothing procedure to the data of the Hubble history (the GP process in our case) to downsize the
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error bars and thus obtain a tighter constraint. However, one should not be fully confident about the
outcome since the said procedure, though efficient, is not exempt of potential shortcomings.

Nevertheless, the situation is expected to improve greatly in the not so distant future thanks to
the Sandage–Loeb (SL) test [35,36] based on the Mc-Vittie formula [37]

H(zs) = H0[1 + zs(t0)] − Δzs

Δt0
(7)

that governs the drift of the redshift. Here, zs stands for the redshift of the source (e.g., quasar, globular
cluster, HI region, ...). With the use of high precision spectrographs, such as CODEX [38], and extremely
large telescopes, as the ELT [39], the SL test will provide us accurate H(z) data sets at different redshift
intervals. These data will be free of any assumption whatsoever about the spatial curvature, gravity
theory or cosmological model.

Observational data in the 0 < z < 1.0 interval will be provided by the square kilometer array (SKA)
radio-telescope [40], likewise the wide radio-sky survey PARKES will scan 21-cm radio-sources [41] as
well as the experiment CHIME in the 0.8 < z < 2.5 interval [42]. To collect a useful sample of H(z) data
will take between one and four decades, approximately. Details can be found in References [43,44].

If the data revealed that, in some redshift, interval H decreased with increasing z, it would
immediately imply k = +1. On the contrary, if H always increased in every z interval, the application
of (4) would require more effort, but in any case it will (hopefully) permit one to discern the sign of k.

If the above strategy would fail, for instance if the data would indicate different signs for Ωk
in separate intervals, it would mean either that the second law of thermodynamics does fail at large
scales or that the FLRW metric should not be trusted after all.

3. The Jerk Parameter

By expanding the scale factor in terms of its successive derivatives we can write

a(t) = a0

{
1 + H0 (t − t0) − 1

2 q0H2
0(t − t0)

2 + 1
6 j0H3

0(t − t0)
3 + 1

24 s0H4
0(t − t0)

4 + O([t − t0]
5)
}

, (8)

where j =
...
a /(aH3) and s = (aH4)−1d4a/dt4 are the dimensionless jerk and snap parameters,

respectively.
Here, we shall focus on the current value of the jerk parameter of a universe dominated by

pressureless matter and the cosmological constant (subindexes m and Λ, respectively). Thus far, we
did not specialize to any cosmological model nor theory of gravity. In what follows, to constrain the
theoretical value of j0, we adopt general relativity and the ΛCDM model because they are the simplest
theory and model, respectively, that comply, at least at the background level, with the observational
data [14]. In this model, the Hubble factor, as well as the deceleration and jerk parameters, read in
terms of the redshift

H(z) = H0

√
Ωm0(1 + z)3 + ΩΛ0 + Ωk0(1 + z)2 , (9)

q(z) =
1
2

Ωm0(1 + z)3 − 2ΩΛ0

Ωm0(1 + z)3 + ΩΛ0 + Ωk0(1 + z)2 , (10)

j(z) = 1 − Ωk0(1 + z)2

Ωm0(1 + z)3 + ΩΛ0 + Ωk0(1 + z)2 , (11)

where the various Ωi0, with i = m, Λ, and k, stand for the current values of the fractional energy densities.
Bearing in mind the Friedmann constraint Ωm + ΩΛ + Ωk = 1 we readily get

j0 = 1 − Ωk0 (12)

from Equation (11). Thereby if future accurate measurements show that j0 deviates from unity, we will
know that our universe (modulo the FLRW metric and the ΛCDM are correct) is not spatially flat,
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and the deviation will coincide with minus the present value of the spatial curvature. Unfortunately,
current measurements of j0 come along only with great latitude, −7.6 ≤ j0 ≤ 8.5 [45]. However,
this wide observational uncertainty gets substantially reduced after combining (12) with Equation (6),
specialized to the ΛCDM model. It readily yields q0 + j0 ≥ 0. For instance, using the experimental
constraint on q0 of Daly et al. [46], q0 = −0.48 ± 0.11, we find (within 1σ)

j0 ≥ 0.37. (13)

The simple fact that, observationally, q0 is negative [24,46–48], renders j0 positive in the said
model; i.e., cosmic acceleration should be increasing nowadays.

4. Concluding Remarks

The validity of the second law, in the presence of gravity, is well supported at small scales by
the thermodynamics of astrophysical-sized collapsed objects, in particular of black holes [1,2], and of
self-gravitating radiation spheres [3,4] but, to the best of our knowledge, this law had not been tested
at cosmological scales thus far. Here, assuming the correctness of the FLRW metric at large scales
and using the history of the Hubble factor—see Equations (4) and (5) and Figure 2—we found that
the second law likely holds at these scales as well. However, due to the sizable error bars of the H(z)
data, the thermodynamic constraint on | Ωk0 | is rather loose. As we have shown, the situation greatly
improves by applying the GP procedure of Reference [34] to these data. Then, | Ωk0 |∼ 10−4—see the
right-hand panel of Figures 4 and 5. However, although the procedure rests on very reasonable
assumptions, these are hard to test. On the other hand, we could not determine the sign of k.
Nevertheless, we suggested that by means of Mc Vittie formula, Equation (7) of the drift of the
redshift [37] and the use of advanced telescopes and spectrographs that will be in service soon, it will
be possible to obtain accurate H(z) data capable of discerning it. Further, in the context of the ΛCDM
model, we demonstrated a very simple relationship, Equation (12), between the present value of the jerk
parameter and Ωk0. Finally, we showed that the second law drastically reduces the ample uncertainty
about the current value of the jerk and using current constraints on q0 sets a lower bound on it.
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Abstract: I show here that there are some interesting differences between the predictions of warm and
cold inflation models focusing in particular upon the scalar spectral index ns and the tensor-to-scalar
ratio r. The first thing to be noted is that the warm inflation models in general predict a vanishingly
small value of r. Cold inflationary models with the potential V = M4 (φ/MP)

p and a number of
e-folds N = 60 predict δnsC ≡ 1 − ns ≈ (p + 2) /120, where ns is the scalar spectral index, while the
corresponding warm inflation models with constant value of the dissipation parameter Γ predict
δnsW = [(20 + p) / (4 + p)] /120. For example, for p = 2 this gives δnsW = 1.1δnsC. The warm
polynomial model with Γ = V seems to be in conflict with the Planck data. However, the warm
natural inflation model can be adjusted to be in agreement with the Planck data. It has, however,
more adjustable parameters in the expressions for the spectral parameters than the corresponding
cold inflation model, and is hence a weaker model with less predictive force. However, it should
be noted that the warm inflation models take into account physical processes such as dissipation of
inflaton energy to radiation energy, which is neglected in the cold inflationary models.

Keywords: General relativity; Cosmology; The inflationary era

1. Introduction

In the usual (cold) inflationary models, dissipative effects with decay of inflaton energy into
radiation energy are neglected. However, during the evolution of warm inflation dissipative effects
are important, and inflaton field energy is transformed to radiation energy. This produces heat and
viscosity, which make the inflationary phase last longer. Warm inflation models were introduced and
developed by Berera and coworkers [1–14]. However, even earlier inflation models with dissipation
of inflaton energy to radiation and particles had been considered [15–22]. Introductions to warm
inflation models and references to works prior to 2009 on warm inflation are found in [8] and [23].
For later works, see [9] and [24] and references in these articles. Further developments are found in the
articles [25–43].

In this scenario, there is no need for a reheating at the end of the inflationary era. The universe
heats up and becomes radiation dominated during the inflationary era, so there is a smooth transition
to a radiation dominated phase (Figure 1).

In the present work, I will review the foundations of warm inflation and some of the most recent
phenomenological models of this type, focusing in particular on the comparison with the experimental
measurements of the scalar spectral index ns and the tensor to scalar ratio r by the Planck observatory.

The article is organized as follows. In Section 2, the definition and current measurements of
these quantities are given. Then, the optical parameters in the warm inflation scenario are considered.
We go on and study some phenomenological models in the subsequent sections: monomial-, natural-
and viscous inflation. The models are compared in Section 7, and the results are summarized in the
final section.

Universe 2016, 2, 20 260 www.mdpi.com/journal/universe
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Figure 1. Illustration of the difference between cold inflation and warm inflation (Berera et al. (2009)).

2. Definition and Measured Values of the Optical Parameters

We shall here briefly review a few of the mathematical quantities that are used to describe
the temperature fluctuations in the CMB. The power spectra of scalar and tensor fluctuations are
represented by [44]

PS = AS (k∗)
(

k
k∗

)nS−1+(1/2)αSln(k/k∗)+···
, PT = AT (k∗)

(
k

k∗

)nT+(1/2)αT ln(k/k∗)+···
,

AS = V
24π2εM4

P
=

(
H2

2π
.
φ

)2
, AT = 2V

3π2 M4
P
= ε

(
2H2

π
.
φ

)2 (2.1)

Here, k is the wave number of the perturbation which is a measure of the average spatial extension
for a perturbation with a given power, and k∗ is the value of k at a reference scale usually chosen as the
scale at horizon crossing, called the pivot scale. One often writes k =

.
a = aH, where a is the scale factor

representing the ratio of the physical distance between reference particles in the universe relative to
their present distance. The quantities AS and AT are amplitudes at the pivot scale of the scalar- and
tensor fluctuations, and nS and nT are the spectral indices of the corresponding fluctuations. We shall
represent the scalar spectral index by the quantity δns ≡ 1 − nS. The quantities nS and nT are called
the tilt of the power spectrum of curvature perturbations and tensor modes, respectively, because they
represent the deviation of the values δns = nt = 0 that represent a scale invariant spectrum.

The quantities αS and αT are factors representing the k-dependence of the spectral indices. They are
called the running of the spectral indices and are defined by

αS =
dnS
dlnk

, αT =
dnT
dlnk

(2.2)

They will, however, not be further considered in this article.
As mentioned above, if nS = 1 the spectrum of the scalar fluctuations is said to be scale invariant.

An invariant mass-density power spectrum is called a Harrison-Zel’dovich spectrum. One of the
predictions of the inflationary universe models is that the cosmic mass distribution has a spectrum
that is nearly scale invariant, but not exactly. The observations and analysis of the Planck team [45]
have given the result nS = 0.968 ± 0.006. Hence, we shall use nS = 0.968 as the preferred value of nS.
Different inflationary models will be evaluated against the Planck 2015 value of the tilt of the scalar
curvature fluctuations, δns = 0.032.

The tensor-to-scalar ratio r is defined by

r ≡ PT (k∗)
PS (k∗)

=
AT
AS

(2.3)

As noted by [46], the tensor-to-scalar ratio is a measure of the energy scale of inflation,
V1/4 = (100r)1/4 1016GeV. From Equations (2.1) and (2.3), we have

r = 16ε (2.4)

The Planck observational data have given r < 0.11.
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3. Optical Parameters in Warm Inflation

During the warm inflation era, both the inflaton field energy with density ρφ and the
electromagnetic radiation with energy density ρr are important for the evolution of the universe.
The first Friedmann equation takes the form

H2 =
κ

3
(
ρφ + ρr

)
(3.1)

We shall here use units so that κ = 1/M2
P where MP is the reduced Planck mass. In these models,

the continuity equations for the inflaton field and the radiation take the form

.
ρφ + 3H

(
ρφ + pφ

)
= −Γ

.
φ

2
,

.
ρr + 4Hρr = Γ

.
φ

2
(3.2)

respectively, where the dot denotes differentiation with respect to cosmic time, and Γ is a dissipation
coefficient of a process which transforms inflaton energy into radiation. In general, Γ is temperature
dependent. The density and pressure of the inflaton field are given in terms of the kinetic and potential
energy of the inflaton field as

ρφ =

.
φ

2

2
+ V , pφ =

.
φ

2

2
− V (3.3)

During warm inflation, the dark energy predominates over radiation, i.e., ρφ >> ρr, and H , φ

and Γ are slowly varying so that the production of radiation is quasi-static,
..
φ << H

.
φ,

.
ρr << 4Hρr and

.
ρr << Γ

.
φ

2
. Note that in the slow roll era the kinetic energy of the inflaton field energy can be neglected

compared to its potential energy. Then, the inflaton field obeys the equation of state pφ ≈ −ρφ.
Also, in this era, the second of Equation (3.2) gives ρr = 0 in the case of vanishing dissipation, Γ = 0,
i.e., in the warm inflation model all of the radiation is produced by dissipation of the inflaton energy.
Then, the first Friedmann equation and the equation for the evolution of the inflaton field take the form

3H2 = κρφ = κV , (3H + Γ)
.
φ = −V′ (3.4)

respectively. Here, a prime denotes differentiation with respect to the inflaton field φ.
Defining the so-called dissipative ratio by

Q ≡ Γ/3H (3.5)

the last of Equation (3.4) may be written as

3H (1 + Q)
.
φ = −V′ (3.6)

The quantity Q represents the effectiveness at which inflaton energy is transformed to radiation
energy. If Q >> 1 one says that there is a strong, dissipative regime, and if Q << 1 there is a weak
dissipative regime.

During warm inflation, the second of the Equation (3.2) reduces to

ρr = (3/4) Q
.
φ

2
(3.7)

In the warm inflation scenario, a thermalized radiation component is present with T > H, where
both T and H are expressed in units of energy. Then, the tensor-to-scalar ratio defined in Equation (2.3),
is modified with respect to standard cold inflation, so that [12]

rW =
H/T

(1 + Q)5/2 r (3.8)
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Hence, the tensor-to-scalar ratio is suppressed by the factor (T/H) (1 + Q)5/2 compared with the
standard cold inflation.

Hall, Moss and Berera [9] have calculated the spectral index in warm inflation for the strong
dissipative regime with Q >> 1 or Γ >> 3H. We shall here follow Visinelli [47] and permit arbitrary
values of Q. Differentiating the first of the Equation (3.4) and using Equation (3.6) gives

.
H = − (κ/2) (1 + Q)

.
φ

2
(3.9)

Hence
.

H < 0.
We define the potential slow roll parameters ε and η by

ε ≡ 1
2κ

(
V′

V

)2

, η ≡ 1
κ

V′′

V
(3.10)

These expressions are to be evaluated at the beginning of the slow roll era. Using Equations (3.4),
(3.6) and (3.9) and the first of Equation (3.10) we get

ε = − (1 + Q)

.
H
H2 (3.11)

Differentiation of Equation (3.6) and using that
( .

φ
)′

=
..
φ/

.
φ gives

V ′′ =
Γ′V′

Γ + 3H
− 3H (1 + Q)

..
φ
.
φ
− 3

.
H (3.12)

Dividing by κV and using the first of Equation (3.4) in the two last terms leads to

η =
Q

1 + Q
1
κ

Γ′V′

ΓV
− 1 + Q

H

..
φ
.
φ
−

.
H
H2 (3.13)

Defining

β ≡ 1
κ

Γ′V′

ΓV
(3.14)

and using Equation (3.12) we get

..
φ

H
.
φ
= − 1

1 + Q

(
η − β +

β − η

1 + Q

)
(3.15)

in agreement with Equation (3.14) of Visinelli [47] .
It follows from Equation (3.6) that

d
dφ

= −3H (1 + Q)

V′
d
dt

(3.16)

From Equation (3.5) and the first of Equation (3.4) we have

HΓ = κVQ (3.17)

Using Equations (3.14), (3.16) and (3.17) can be written as

.
Γ

HΓ
= − β

1 + Q
(3.18)
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During slow roll the second of the Equation (3.2) reduces to

4Hρr = Γ
.
φ

2
(3.19)

Differentiation gives
.
ρr

Hρr
=

.
Γ

HΓ
+ 2

..
φ

H
.
φ
−

.
H
H2 (3.20)

Inserting Equations (3.11), (3.15) and (3.18) into Equation (3.20) gives

.
ρr

Hρr
= − 1

1 + Q

(
2η − β − ε + 2

β − ε

1 + Q

)
(3.21)

We now define δns ≡ 1 − ns, where ns is the scalar spectral index. Visinelli [48] has deduced

δns = 4

.
H
H2 − 2

..
φ

H
.
φ
−

.
ω

H (1 + ω)
(3.22)

where

ω =
T
H

2
√

3πQ√
3 + 4πQ

(3.23)

Since ρr ∝ T4 we have that

ω ∝
ρ1/4

r Q
H
√

3 + 4πQ
(3.24)

Differentiating this we get

.
ω

Hω
=

1
4

ρr

Hρr
−

.
H
H2 +

3 + 2πQ
3 + 4πQ

.
Q

HQ
(3.25)

Differentiating Equation (3.5) gives

.
Q

HQ
=

.
Γ

HΓ
−

.
H
H2 (3.26)

Using Equations (3.11) and (3.18) then leads to

.
Q

HQ
=

ε − β

1 + Q
(3.27)

Inserting Equations (3.11), (3.21) and (3.27) into Equation (3.25) gives

.
ω = − Hω

1 + Q

[
2η − β − 5ε

4
+

1
2

β − ε

1 + Q
+

3 + 2πQ
3 + 4πQ

(β − ε)

]
(3.28)

Visinelli has rewritten this as follows

.
ω = − Hω

1 + Q

[
2η + β − 7ε

4
+

6 + (3 + 4π) Q
(1 + Q) (3 + 4πQ)

(β − ε)

]
(3.29)

Inserting the expressions (3.11), (3.15) and (3.29) into Equation (3.22) gives

δns =
1

1+Q

[
4ε − 2

(
η − β + β−ε

1+Q

)
+ ω

1+ω

(
2η+β−7ε

4 + 6+(3+4π)Q
(1+Q)(3+4πQ) (β − ε)

)]
(3.30)
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The usual cold inflation is found in the limit Q → 0 and T << H, i.e., ω → 0 . Then,

δns → 2 (3ε − η) (3.31)

In the strong regime of warm inflation, Q >> 1, ω >> 1 we get

δns =
3

2Q

[
3
2
(ε + β)− η

]
(3.32)

In the weak regime, Q << 1, Equation (3.16) leads to

δns = 2 (3ε − η)− ω/4
1 + ω

(15ε − 2η − 9β) (3.33)

It may be noted that in warm inflation the condition for slow roll is that the absolute values of
ε , η and β are much smaller than 1 + Q.

Visinelli has found that the tensor-to-scalar ratio in warm inflation is

r =
16ε

(1 + Q)2 (1 + ω)
(3.34)

In the cold inflation limit, this reduces to

r → 16ε (3.35)

In the strong dissipation regime warm inflation gives in general

r → 16
Q2ω

ε << ε (3.36)

Hence, all the warm inflation models predict an extremely small tensor-to-scalar-ratio in the
strong dissipation regime with Q >> 1 and ω >> 1.

4. Warm Monomial Inflation

Visinelli [48] has investigated warm inflation with a polynomial potential which we write in
the form

V = M4 (φ/MP)
p (4.1)

since the potential and the inflaton field have dimensions equal to the fourth and first power of energy,
respectively. Here, M represents the energy scale of the potential when the inflaton field has Planck
mass. Furthermore he assumes that the dissipative term is also monomial

Γ = Γ0 (φ/MP)
q/2 (4.2)

He considered models with p > 0 and q > p. However, in the present article, we shall also
consider polynomial models with p < 0. From Equations (3.3) and (3.4) we have

Q = Q0

(
φ

MP

) q−p
2

, Q0 =
Γ0MP√

3M2
(4.3)

The constant Q0 represents the strength of the dissipation. For q = p the dissipative ratio
is constant, Q = Q0. We shall here consider the strong dissipative regime where Q >> 1.
Then, the second of Equation (3.3) reduces to

.
φ = −V′

Γ
(4.4)
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Inserting Equations (4.1) and (4.2) gives

.
φ = − pM4

Γ0MP

(
φ

MP

)p− q
2−1

(4.5)

Integration leads to

φ (t) =

[
4 + q − 2p

2

(
K − pM4

Γ0Mp− q
2

t

)] 2
4+q−2p

, q > 2 (p − 2) (4.6)

where K is a constant of integration. The initial condition φ (0) = 0 gives K = 0.
The special cases (i) Γ = V/M3

P, i.e., Γ0 = M4/M3
P , q = 2p and (ii) Γ = Γ0, i.e., q = 0, both with

the initial condition φ (0) = 0, i.e., K = 0, have been considered by Sharif and Saleem (2015). For these
cases, the condition φ (t) > 0 requires p < 0. In the first case, Equation (3.6) reduces to

φ = MP
√−2pMPt (4.7)

Note that the time has dimension inverse mass with the present units, so that MPt
is dimensionless.

Visinelli, however, has considered polynomial models with p > 0. Then, we have to change the
initial condition. The corresponding solution of Equation (4.5) with q = 2p and the inflaton field equal
to the Planck mass at the Planck time gives

φ = MP

√
1 − 2pMP (t − tP) (4.8)

It may be noted that q = 2 (p − 2) gives a different time evolution of the inflaton field.
Then, Equation (3.5) with the boundary condition φ (tP) = MP has the solution

φ = MPexp

[
− pM4

Γ0M2
P
(t − tP)

]
(4.9)

In this case, the inflaton field decreases or increases exponentially, depending upon the sign of p.
Inserting Equations (4.1) and (4.2) into Equations (3.9) and (3.13), the slow-roll parameters are

ε =
p2

2

(
MP
φ

)2
, η =

2 (p − 1)
p

ε , β =
q
p

ε (4.10)

With these expressions Equation (3.32) valid in the regime of strong dissipation, Q >> 1, gives

δns =
3 (4 + 3q − p)

4p
ε

Q
(4.11)

The slow-roll regime ends when at least one of the parameters (4.10) is not much smaller than
1 + Q. In the strong dissipative regime Q >> 1 and ε f = Q f . Using Equations (4.3) and (4.10) we
then get

φ f = MP

(
p2

2Q0

) 2
4+q−p

(4.12)

The number of e-folds, N, in the slow roll era for this model has been calculated by Visinelli [48] .
It is defined by

N = ln
a f

a
=

t f�
t

Hdt =
φ f�
φ

H
.
φ

dφ (4.13)
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Using Equations (3.3) and (3.5) we get

N =
1

M2
P

φ�
φ f

(1 + Q)
V
V′ dφ (4.14)

Inserting the potential (4.1), performing the integration and considering the strong dissipative
regime gives

N ≈ 2Q0

p (4 + q − p)

⎡⎣(
φ

MP

) 4+q−p
2 −

(
φ f

MP

) 4+q−p
2

⎤⎦ (4.15)

The time dependence of the inflaton field is given by Equation (4.6) when p < 0 showing that
φ f > φ in this case, and by Equation (4.8) when p > 0 implying φ f < φ in that case, showing that
N > 0 in both cases (not dot here)

φ

MP
≈

(
p (4 + q − p) N

2Q0

) 2
4+q−p

(4.16)

Inserting this into the first of Equations (4.10) and (4.3) gives

ε ≈ p2

2

[
2Q0

p (4 + q − p) N

] 4
4+q−p

, Q ≈ Q0

[
p (4 + q − p) N

2Q0

] q−p
4+q−p

(4.17)

Inserting these expressions into Equation (4.11) gives

δns ≈ 3 (4 + 3q − p)
4 (4 + q − p)

1
N

(4.18)

Note that with q = 0, i.e., a constant value of the dissipation parameter Γ, Equation (4.18)
reduces to

δns =
3

4N
(4.19)

for all values of p. Then N = 60 gives δns = 0.012 which is smaller than the preferred value from the
Planck data, δns = 0.032. Inserting q = 2p in Equation (4.18) and solving the equation with respect
to p gives,

p =
4 (4Nδns − 3)

15 − 4Nδns
(4.20)

The Planck values δns = 0.032 , N = 60 give p = 2.56 and q = 5.11.
Panotopoulos and Videla [24] have investigated the tensor-to-scalar ratio in warm in inflation for

inflationary models with an inflaton field given by the potential

V = (M/MP)
4 φ4 (4.21)

where M is the energy scale of the potential when the inflaton field has Planck mass, MP. Let us
choose p = q = 4 in the monomial models above. Inserting this in Equation (3.18) gives δns = 9/4N.
With δns = 0.032 we get N = 70.

In this case δns = 2/N for cold inflation. For δns = 0.032 this corresponds to N ≈ 62 which is
an acceptable number of e-folds. Then, the tensor-to-scalar ratio is r = 0.32, which is much larger
than allowed by the Planck observations [45]. Panotopoulos and Videla found the corresponding
δns, r− relation in warm inflation with Γ = aT, where a is a dimensionless parameter. They considered
two cases.
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(A) The weak dissipative regime. In this case Q << 1 and Equation (3.7) reduces to rW = (H/T) r.
They then found

rW ≈ 0.01√
a

δns (4.22)

With the Planck values δns = 0.032 and rW < 0.12 this requires a > 7·10−6. However, they also
found that in this case δns = 1/N giving N = 31 which is too small to be compatible with the standard
inflationary scenario.

(B) The strong dissipative regime. Then, R >> 1 and rW ≈
(

H/TR5/2
)

r. They then found

δns =
45

28N
, rW =

3.8·10−7

a4 δns (4.23)

Then N = 50 and a > 1.8·10−2, so this is a promising model.

5. Warm Natural Inflation

Visinelli [47] has also investigated warm natural inflation with the potential

V (φ) = V0
(
1 + cosφ̃

)
= 2V0cos2 (φ̃/2

)
(5.1)

where φ̃ = φ/M, and M is the spontaneous symmetry breaking scale, and M > MP in order for
inflation to occur. The constant V0 is a characteristic energy scale for the model. The potential V has
a minimum at φ̃ = π. Inserting the potential (5.1) into the expressions (3.9) we get

ε =
b
2

1 − cosφ̃i

1 + cosφ̃i
, η = ε − b

2
, b =

(
MP
M

)2
(5.2)

From Equation (3.3) with the potential (5.1) we have

H =
√
(κ/3)V0

(
1 + cosφ̃

)
(5.3)

Equations (3.4) and (5.3) then give

Q =
ΓMP√

3V0
(
1 + cosφ̃

) (5.4)

During the slow roll era we must have ε << R. Using the expressions (5.2) and (5.4) we find that
this corresponds to

1 − cosφ̃√
1 + cosφ̃

<< 1/β , β =

√
6V0

ΓMP
b (5.5)

Inserting Equations (5.2) and (5.4) into Equation (3.31) with β = 0 gives in the strong
dissipative regime

δns =
3

4α

3 + cosφ̃i√
1 + cosφ̃i

(5.6)

We shall now express the δns in terms of the number of e-folds of expansion during the slow
roll era for this inflationary universe model, again following Visinelli. Assuming that the dissipation
parameter Γ is independent of φ, i.e., that β = 0, the number of e-folds is given by

N = −Γ
φ f�
φi

H (φ)

V′ (φ)
dφ (5.7)
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Differentiating the potential (5.1) and inserting Equation (5.3) we get

N =
α

2

φ̃ f�
φ̃i

√
1 + cosx
sinx

dx =
α√
2

ln
tan

(
φ̃ f /4

)
tan

(
φ̃i/4

) (5.8)

Hence,

tan
φ̃i
4

= tan
φ̃ f

4
exp

(
− βN

2

)
(5.9)

Visinelli has argued that
φ̃ f = π − β (5.10)

giving

tan
φ̃ f

4
=

1 − tan (β/4)
1 + tan (β/4)

(5.11)

Inserting this into Equation (5.9) gives

tan
φ̃i
4

= γexp
(
− βN

2

)
, γ =

1 − tan (β/4)
1 + tan (β/4)

(5.12)

Applying the trigonometric identity

√
1 + cosθ =

√
2

1 − tan2 (θ/4)
1 + tan2 (θ/4)

(5.13)

in the expression (5.12) and inserting the result into Equation (5.6) we finally arrive at

δns =
3
8

β
exp (2βN) + γ4

exp (2βN)− γ4 (5.14)

Here, we must have β << 1 in order to give the Planck value δns = 0.032 for N = 60.
Hence, Equation (5.12) gives γ ≈ 1. A good approximation for δns is therefore

δns ≈ (3/8) βcoth (βN) (5.15)

Inserting δns = 0.032 and N = 60 gives β = 0.08.
Visinelli (2011) further found that the tensor-to-scalar ratio for this inflationary model is

r = 128κ

√
π

Γ

.
φ

2

T
√

H
(5.16)

Differentiating the expression (5.3) gives

.
H = −κV0

6M
sφ

.
φ

H
, sφ ≡ sinφ̃ (5.17)

Combining this with Equation (3.8) in the strong dissipative regime and using Equation (3.4) gives

.
φ =

3V0sφ

MΓ
(5.18)

The energy density of the radiation is

ργ = aT4 (5.19)
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where a = 7.5657 × 10−16 J·m−3·K−4 = 4.69 × 10−6 GeV·m−3·K−4 is the radiation constant. Combining
with Equation (3.6) we get

T =

(
Γ

4aH

)1/4 .
φ

1/2
(5.20)

Equations (5.15), (5.18) and (5.19) give

r = B
s3/2

φ(
1 + cosφ̃

)1/8 , B =
384·35/8κ7/8

√
6πV11/8a1/4

M3/2Γ9/4 (5.21)

Visinelli [47] has evaluated the constant B and concluded that for this type of inflationary universe
model the expected value of r is extremely low. If observations give a value r > 10−14 this model
has to be abandoned. On the other hand, the predictions of this model are in accordance with the
observations so far.

6. Warm Viscous Inflation

As noted by del Campo, Herrera and Pavón [29], it has been usual, for the sake of simplicity,
to study warm inflation models containing an inflaton field and radiation, only, (comma here) ignoring
the existence of particles with mass that will appear due to the decay of the inflaton field. However,
these particles modify the fluid pressure in two ways: (i) The relationship between pressure and energy
density is no longer p = (1/3) ρ as it is for radiation. A simple generalization is to use the equation of
state p = wρ, where w is a constant with value 0 ≤ w ≤ 1; (ii) Due to interactions between the particles
and the radiation there will appear a bulk viscosity so that the effective pressure takes the form

pe f f = p − 3ςH (6.1)

where ς is a coefficient of bulk viscosity.
We shall now consider isotropic universe models corresponding to the anisotropic models

considered by Sharif and Saleem [37]. Equation (3.8) can be written

.
φ = ±MP

√
−2

.
H/ (1 + Q) (6.2)

For these models, the time dependence of the scale factor during the inflationary era may
be written

a (t) = a0exp
(

t
t1

)β

, 0 < β ≤ 1, (6.3)

where a0 is the value of the scale factor at t = 0 before the slow roll era has started, and t1 is the Hubble
time of the corresponding De Sitter model having β = 1. The Hubble parameter and its rate of change
with time is

H =
β

t1

(
t
t1

)β−1
,

.
H =

β (β − 1)
t2
1

(
t
t1

)β−2
(6.4)

Note that
.

H < 0 for β < 1. Inserting the second expression into Equation (6.2) gives

.
φ = ±MP

t1

√
2β (1 − β)

1 + Q

(
t
t1

) β
2 −1

(6.5)

Sharif and Saleem considered two cases. In the first one Γ = Γ (φ) = κV (φ) /MP. Equations (3.3)
and (3.4) then gives Q = H/MP. Furthermore, for several reasons, they restricted their analysis to the
strong dissipative regime where Q >> 1. Equation (6.5) then reduces to

.
φ = ±MP

√
2MP (1 − β)t−1/2 (6.6)
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Integrating with the initial condition φ (0) = 0 and assuming that φ (t) > 0 we get

φ (t) = 2MP

√
2MP (1 − β) t (6.7)

Hence, φ is an increasing function of time. Inserting the first of the expressions (6.4) into the first
of the Equation (3.3) gives

V (t) = 3
(

βMP
t1

)2 ( t
t1

)2(β−1)
(6.8)

Combining this with Equation (6.7) leads to

V (φ) = 3
(

βMP
t1

)2
(

φ

2MP
√

2 (1 − β) MPt1

)4(β−1)

(6.9)

Sharif and Saleem used the Hubble slow roll parameters,

εH ≡ −
.

H
H2 =

1
2 (1 + Q)

(
V′

V

)2

, ηH ≡ −
..
H

2H
.

H
=

1
1 + Q

[
V ′′

V
− 1

2

(
V′

V

)2
]

(6.10)

Note that εH = 1 + q, where q is the deceleration parameter. In the present case and in the strong
dissipative regime, we can replace 1+ Q by H =

√
κV/3. Then εH = (1/Q) ε and ηH = (1/Q) (η − ε).

Differentiating the expression (6.9) then gives

εH = 1−β
β

(
φ

2MP
√

2(1−β)MPt1

)−2β

, ηH = 3−2β
2β

(
φ

2MP
√

2(1−β)MPt1

)−2β

= 3−2β
2(1−β)

εH (6.11)

The slow roll era ends when the inflaton field has a value φ f so that εH

(
φ f

)
= 1, corresponding

to ε
(

φ f

)
= Q, which gives (

φ f

2MP
√

2 (1 − β) MPt1

)2β

=
1 − β

β
(6.12)

The number of e-folds is given by Equation (4.15), which in the present case takes the form

N =
1√

3MP

φ�
φ f

V3/2

V′ dφ (6.13)

Inserting the potential (6.9) and integrating gives

N =

(
φ f

2MP
√

2(1−β)MPt1

)2β

−
(

φ

2MP
√

2(1−β)MPt1

)2β

= 1−β
β −

(
φ

2MP
√

2(1−β)MPt1

)2β

(6.14)

Hence (
φ

2MP
√

2 (1 − β) MPt1

)2β

=
1 − β

β
− N (6.15)

Since the left hand side is positive, this requires that N < (1 − β) /β or β < 1/ (N + 1).
For N > 50 this means that 0 < β < 0.02.

Sharif and Saleem have calculated the scalar spectral index with the result

δns =
3β − 2

β

(
φ

2MP
√

2 (1 − β) MPt1

)−2β

(6.16)
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Using Equation (6.15) we get

δns =
3β − 2

1 − β − βN
≈ 2 − 3β

β

1
N

(6.17)

This equation can be written

β ≈ 2
3 + Nδns

(6.18)

Inserting the Planck value δns = 0.032 and N = 60, give β = 0.41 corresponding to p = −2.36.
This value of β is not allowed by Equation (6.15).

In the second case, Sharif and Saleem assumed that Γ = Γ0. Equations (3.3) and (3.4) then give
Q = Γ0/3H. Using Equations (6.2) and (6.4) and integrating with the initial condition φ (0) = 0,
leads to

φ (t) = λ

(
t
t1

)β−1/2
, V (φ) = 3

(
βMP

t1

)2 (φ

λ

) 4(1−β)
2β−1

, λ =
2βMP
2β − 1

√
6 (1 − β)

t1Γ0
(6.19)

In this case εH and ηH becomes

εH =
1 − β

β

(
φ

λ

)− 2β
2β−1

, ηH =
2 − β

β

(
φ

λ

)− 2β
2β−1

=
2 − β

1 − β
εH (6.20)

The final value of φ f is given by

(
φ f

λ

) 2β
2β−1

=
1 − β

β
(6.21)

The number of e-folds is

N =

(
φ

λ

) 2β
2β−1 −

(
φ f

λ

) 2β
2β−1

=

(
φ

λ

)2β

− 1 − β

β
(6.22)

Hence (
φ

λ

) 2β
2β−1

= N +
1 − β

β
(6.23)

The scalar spectral index is

δns =
4 + β

2β

(
φ

λ

)− 2β
2β−1

=
4 + β

2 (βN + 1 − β)
≈ 4 + β

2β

1
N

(6.24)

which can be written
β =

4
2Nδns − 1

(6.25)

Inserting the Planck value δns = 0.032 and N = 60 gives β = 1.4 outside the range β < 1 which
requires N > 78. However, in the anisotropic case considered by Sharif and Saleem, one may obtain
agreement with the Planck data for β < 1. As noted above, the tensor to scalar ratio has a very small
value in these models. The time evolution of the inflaton field is given by Equation (6.7).

7. Comparison of Models

The models of Sharif and Saleem are a class of the monomial models. Comparing Equations (4.1)
and (6.9) we have p = 4 (β − 1) or β = 1 + p/4. Hence, for β < 1 we must have p < 0 while Visinelli
considered models with p > 0. Furthermore, in the first case of Sharif and Saleem with Γ = V we have
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q = 2p and in the case with Γ = Γ0 we have q = 0. Also, it should be noted that Visinelly has deduced
the expression for the spectral parameters from the potential slow roll parameters, while Sharif and
Saleem have used the Hubble slow roll parameters, and they have got slightly different expressions.

Let us consider an isotropic monomial model with scale as given in Equation (6.3). Then, we have
two formulae for the potential—Equations (4.1) and (6.9). Hence

t1 =
(√

3β
) 1

β
[8 (1 − β)]

1−β
β

(
MP
M

)2/β

tP (7.1)

where tP = 1/MP is the Planck time. As mentioned above in Sharif and Saleem’s first case
Γ = Γ (φ) = κV (φ) /MP. Combining this with the first Equation (3.3) we get Γ = 3H2/MP.
Furthermore they considered the strong dissipative regime with Γ >> 3H. Hence H >> MP.
The slow roll era begins at a point of time, ti, when the inflaton field is given by Equation (6.23).
This leads to

ti =

(
N +

1 − β

β

)1/β

t1 (7.2)

The Hubble parameter is given by the first equation in (6.4) with a maximal value at the beginning
of the inflationary era. Hence, the condition H >> MP requires that

ti =

(
β

MPt1

) 1
1−β

t1 (7.3)

Inserting the expression (7.2) for t1 we arrive at

ti << (βN + 1 − β) tP (7.4)

Hence in this model with for example β = 1/2 and N = 60 the inflationary era begins much
earlier than at around 30 Planck times. Inserting the inequality (7.4) into Equation (7.1) we get

M >>

√√
3 [8 (1 − β)]1−β (βN + 1 − β)MP (7.5)

Hence M >> MP, so these models are large field inflation models.
V. Kamali and M. R. Setare [49] have considered warm viscous inflation models in the context

of brane cosmology using the so-called chaotic potential (3.1) with p = 2, i.e., β = 3/2. We have
considered the corresponding models in ordinary (not brane) spacetime which corresponds to taking
the limit that the brane tension λ → ∞ in their equations. They first considered the case Γ = Γ0,
i.e., q = 0. Then, the time evolution of the inflaton field is given by Equation (4.9) with p = 2. As noted
above, in this case δns = 0.012 which is smaller than the preferred value from the Planck data. It may
be noted that Kamali and M. R. Setare got a different result. Letting λ → ∞ in their Equation (68)
gives δns = 0, i.e., a scale invariant spectrum.

Next, they considered the case Γ = Γ (φ) = αV (φ). With α = 1 this corresponds to the first case
considered by Sharif and Saleem [37].

8. Conclusions

Warm inflation is a promising model of inflation, taking account of dissipative processes that
are neglected in the usual, cold inflationary models. In warm inflation, radiation is produced by
dissipation of the inflaton field, and reheating is not necessary. This type of inflationary model was
introduced and developed initially by Berera and coworkers. Also, interactions between the inflaton
field and the radiation provide a mechanism for producing viscosity.

In this article, I have given a review of some recent models with particular emphasis on their
predictions of optical parameters, making it possible to evaluate the models against the observational

273



Universe 2016, 2, 20

data obtained by the Planck team. In particular, power law potential inflation, PI, and natural inflation,
NI, in the warm inflation scenario have been considered.

I have emphasized that there are some interesting differences between the predictions of these
models and the corresponding cold inflation models. The first thing to be noted is that the warm
inflation models in general predict a vanishingly small value of the tensor-to-scalar ratio, r. I the
present paper I have parametrized the scalar spectral index ns by δns = 1 − ns. The Planck data favor
the value δns = 0.032, r < 0.11 and a number of e-folds N = 60.

Cold PI with the potential (4.1) predicts δns =
2(p+2)
p+4N and r = 16p

p+4N . Inserting δns = 0.032 and
N = 60 gives p = 1.8 and r = 0.12. The corresponding warm PI model with constant value of
the dissipation parameter Γ predicts, according to Equation (6.24), δns = 20+p

4+p
1

2N giving p = 2.8.

The corresponding model with Γ = Γ (φ) = V (φ) predicts δns = − 4+3p
4+p

1
N giving p = −2.36. However,

according to Equation (6.15), this model is only consistent for −4 < p < −3.92. Hence, this model is in
conflict with the Planck data.

Cold natural inflation predicts

δns = b
(2 + b) ebN + b
(2 + b) ebN − b

, r =
8b2

(2 + b) ebN − b
, b =

(
MP
M

)2
(8.1)

Inserting δns = 0.032 and N = 60 gives b = 0.032 or M = 5.5MP, giving r = 0.0006. Since
M > MP this is large field inflation according to the standard definition of this classification (Lyth [50],
Dine and Pack [51]). The corresponding warm natural inflation model has two parameters, Γ and V0,
contained in β in the expression for δns. Hence, some assumption concerning the relationship between
Γ and V0, is needed to make a prediction of the value of δns in this model.
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Abstract: The “Mitra paradox” refers to the fact that while the de Sitter spacetime appears
non-static in a freely falling reference frame, it looks static with reference to a fixed reference frame.
The coordinate-independent nature of the paradox may be gauged from the fact that the relevant
expansion scalar, θ =

√
3Λ, is finite if Λ > 0. The trivial resolution of the paradox would obviously

be to set Λ = 0. However, here it is assumed that Λ > 0, and the paradox is resolved by invoking the
concept of “expansion of space”. This is a reference-dependent concept, and it is pointed out that the
solution of the Mitra paradox is obtained by taking into account the properties of the reference frame
in which the coordinates are co-moving.

Keywords: general theory of relativity; exact solutions; spherical symmetry; physical interpretation

PACS: 04.20-q; 04.20.Cv; 04.20.Jb

1. Introduction

Abhas Mitra [1] has recently discussed an interesting problem concerning the physical
interpretation of the de Sitter spacetime. He has pointed out that seemingly there is a contradiction
between the static form of the de Sitter metric and the non-static, expanding representation of
this spacetime as a Friedmann-Lemaitre-Robertson-Walker universe model of the steady state type.
This will here be called the Mitra paradox.

Mitra writes that there is a physical or at least interpretational self-contradiction between the
original static interpretation of the de Sitter metric and the present day non-static de Sitter view.
Furthermore he writes that a metric represents a physical point of view, and due to the principle of
covariance, the essential physical picture should not depend on the choice of coordinates. He also
points out that that there has not been any attempt for physical resolution to reconcile the static and
non-static versions of for example the de Sitter metric. In this paper I will provide such a reconciliation.

Since there is a similar conflict between the Minkowski spacetime and the Milne universe
model [2,3], I will start the present discussion by considering the corresponding Mitra paradox for
these metrics. Then the de Sitter spacetime will be considered and finally the Schwarzschild and the
Schwarschild-de Sitter spacetime.

Write Schutz [4] writes that we define a static spacetime to be one in which we can find a time
coordinate t with two properties: (i) all metric components are independent of t; and (ii) the geometry
is unchanged by time reversal, t → − t . A spacetime with the property (i) but not (ii) is said to
be stationary. This definition can be formulated in terms of Killing vectors. A static spacetime is
a spacetime, which has a time-like Killing vector field that is hypersurface orthogonal. This is a
coordinate-independent characterization of a static spacetime. If any coordinate system exists in
which none of the metric components depend upon time, there exists a time-like Killing vector in
the spacetime. In this case the actual physical geometry of the spacetime is unchanging with time.
Although the geometry of a stationary spacetime does not change in time, it can rotate. If the spacetime
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does not permit a time coordinate so that all the metric components are independent of t it is non-static
and non-stationary. In this case the spacetime has no time-like Killing vector field.

The somewhat surprising fact is that even a static spacetime can have a time-dependent metric.
The Mitra paradox is concerned with finding the proper physical meaning of this fact.

2. The Connection between the Global Minkowski Metric and the Milne Universe

It is well known that the Minkowski and Milne metrics are connected by a change of reference
frame [5–8]. This will here be utilized to shed some light upon the Mitra paradox. We consider
Minkowski spacetime with spherical coordinates (R, θ, ϕ) and a time coordinate T so that the line
element takes the form

ds2 = − dT2 + dR2 + R2dΩ2 , dΩ2 = dθ2 + sin2θ dϕ2 (1)

where we have used units so that c = 1. Then we introduce new coordinates (t, r) by the transformation

t =
√

T2 − R2 , r =
t0R√

T2 − R2
(2)

The inverse transformation is

T = t

√
1 +

r2

t2
0

, R =
r t
t0

(3)

where t0 is the present age of the universe. It follows from this transformation that

R =
r√

1 + r2/t2
0

T
t0

, T2 − R2 = t2 (4)

We see that the world-lines of the reference particles defining the reference frame in which
(t, r) are co-moving, i.e., r = constant, are straight lines, and the simultaneity curves t = constant
are hyperbolae.

It is seen that while the coordinates (T, R) are co-moving in a static reference frame,
the coordinates (t, r) are co-moving in an expanding reference frame. A reference particle with
r = constant in the expanding frame has a coordinate velocity

vR =
r/t0√

1 + r2/t2
0

=
R
T

(5)

in the rigid frame. In the expanding frame the line element of the Minkowski spacetime takes the form

ds2 = − dt2 +

(
t
t0

)2
(

dr2

1 + r2/t2
0
+ r2dΩ2

)
(6)

This is the line element of an empty, expanding universe model with negative spatial
curvature—the Milne universe.

The Minkowski coordinates (T, R) are the co-moving coordinates of a rigid inertial reference
frame of an arbitrarily chosen reference particle P in the expanding cloud of particles defining the
Milne universe model. The time T is the private time of P. The time t is measured on clocks following
all of the reference particles. As seen from the first of Equation (4) the space T = constant has a finite
extent, Rmax = lim

r→∞
R = T. This space is the private space of an observer following the particle P.

The space t = constant is represented by a hyperbola given in the second of Equation (4) as shown in
the Minkowski diagram of the P observer. It is defined by simultaneity of the clocks carried by all

278



Universe 2016, 2, 26

the reference particles, and is called the public space or simply the space of the universe model. It has
infinite extension in spite of the fact that the Big Bang has the character of a point event in the Milne
universe model.

In the inertial and rigid Minkowski coordinate system the velocity of a reference particle with
co-moving coordinates is less than c for all values of. However, in the expanding cosmic frame it is
different. Here the velocity of the reference particles as defined by an observer at the origin is given by
Hubble’s law. Hence the reference particles have superluminal velocity at sufficiently great distances
from the observer. According to special relativistic kinematics, superluminal velocity is problematic
because the particles cannot move through space with a velocity greater than c. However, according to
the general relativistic interpretation, the reference particles define the public space of the universe
model, and there is no limit to how fast space itself can expand.

The metric (1) is static and the metric (6) not. The Mitra paradox is concerned with a reconciliation
of these properties of two metrics that are connected by a coordinate transformation, and hence that
represent one and the same spacetime.

The Mitra paradox makes it clear that one cannot define a static spacetime as a spacetime where
the metric is independent of time. The metric is coordinate-dependent, and may be independent of
time in one coordinate system, but dependent on it in another, while the static property of a spacetime
is invariant.

3. Proposal for a Solution of the Mitra Paradox

An important point when we try to solve the Mitra paradox is to distinguish between
coordinate-dependent quantities and coordinate-independent physical quantities. The term metric
is usually taken to mean the functions that appear in the line element multiplied by the coordinate
differentials. Hence the metric is understood to mean the components of the metric tensor. This means
that the metric is a coordinate-dependent quantity. It is natural, therefore, that at least in some cases,
one and the same spacetime can be represented by both a static and a non-static metric.

Another important distinction is the difference between a coordinate system and a reference
frame. In four-dimensional spacetime, a coordinate system provides a region of spacetime with a
continuum of 4-tuples so that each event in spacetime is marked with a 4-tuple, different events with
different 4-tuples. A coordinate system is a mathematical quantity. A reference frame is a continuum
of world-lines representing reference particles with specified motions. This is a physical quantity.
Co-moving coordinates in a reference frame are coordinates so that the reference particles of the frame
have constant spatial coordinates.

The Mitra paradox is not only concerned with the metric, but also with 3-space. Hence it is
important to distinguish between a coordinate 3-space and a coordinate-independent physical 3-space.
Here we meet an important difficulty of the Mitra paradox. The 3-space has two very different
qualities. On the one hand, it is a set of simultaneous events measured by clocks at rest in the chosen
reference frame. Again this is coordinate-dependent or better, reference-dependent, due to the relativity
of simultaneity.

It follows from Friedmann’s 1. equation for a flat universe, H =
√

8πGρ/3, that if the Minkowski
spacetime is perceived as the limit of the Friedmann-Lemaitre-Robertson-Walker universe model with
empty space, the Hubble parameter vanishes, and the 3-space is static. In a similar way, the De Sitter
spacetime is then the limit of empty space with a cosmological constant, Λ, having a positive, constant
Hubble parameter, H =

√
Λ/3, and the 3-space of the de Sitter spacetime is non-static and expanding.

However, both of these spacetimes have maximal symmetry and have a time-like hyper surface
orthogonal Killing vector, meaning that these spacetimes are static. Hence it is important to note the
difference between a static 3-space and a static spacetime. The Mitra paradox is concerned with 3-space.

We considered the globally flat spacetime above. In the standard coordinates co-moving with a
static reference frame with time-independent distances between the reference points, the 3-space is
static. But as described in terms of coordinates co-moving in an expanding reference frame, the 3-space
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is not static, but expands. The flat, static spacetime then looks like an expanding universe—the Milne
universe model.

This seems strange. So far we have defined 3-space as a set of simultaneous events. There is no
motion involved in this definition. Hence the definition of a 3-space should be supplied by a second
quality permitting space to expand. We can then supply the definition of a 3-space: A 3-space is made
up of a set of reference particles at a given point of time. The 3-space of a reference frame is defined by
identifying the reference particles of the 3-space with the reference particles of the frame. The most
simple mathematical description of the 3-space is obtained by using coordinates co-moving with the
reference frame of the 3-space. The 3-space is said to be stationary if the physical distances between the
reference points does not change. In this case the reference frame can be said to be rigid. If these physical
distances change, the 3-space is non-stationary. If the rotation of the velocity field of the reference
particles of a stationary 3-space vanishes, the 3-space is said to be static.

It is then clear that whether a 3-space appears static or non-static depends upon the reference frame
it is associated with. This means that the static or non-static character of a 3-space is a coordinate-dependent
quality of the spacetime. It will be made clear below that this is an important ingredient in the solution of
the Mitra paradox.

One may wonder whether this means that physical 3-space does not exist. It is then important
to make one more distinction: between physical and invariant. A quantity is said to be invariant if it
has the same value in every reference frame or coordinate system. A physical property need not be
invariant. For example a 3-velocity of a particle is a physical property, but it is not invariant. It can
even be transformed away by going into the rest frame of the particle.

We should not talk about the 3-space of Minkowski spacetime. We should talk about a 3-space.
Minkowki spacetime can have a static 3-space and equally well a non-static 3-space. Although the
property of a 3-space of being static is a physical property, its static character is not invariant. This is
the proposed solution of the Mitra paradox, which will be further worked out below.

4. Static and Expanding 3-Space

Let us first consider a static spacetime as described in the co-moving coordinates of a rigid
reference frame, RF, so that the metric is static and has the form

ds2 = − f (R) dt2 +
dR2

f (R)
+ R2dΩ2 (7)

Here the radial coordinate is chosen so that the invariant area of a spherical surface with radius R
is equal to 4πR2. This radial coordinate is sometimes called the curvature radius or alternatively the
area coordinate. The 3-space of simultaneous events as measured by clocks carried by the reference
particles of RF, is static. This is the preferred 3-space of spacetimes with a localized mass distribution,
such as the Schwarzschild spacetime.

Assume that there exists a surface with coordinate radius R = R0 so that a particle permanently
at rest on this surface has vanishing 4-acceleration, i.e., a free particle instantaneously at rest at this
surface will remain at rest on the surface. The radial component of the 4-acceleration of a particle at
rest in the coordinate system is according to the geodesic equation given in terms of certain Christoffel
symbols and the time component of the 4-velocity as

aR = ΓR
T T

(
uT
)2

= (1/2) f ′(R) (8)

Hence the radius R0 is given by f ′ (R0) = 0. Let us now consider the 3-space of simultaneous
events as shown by clocks carried by free particles starting their movements from a state of rest at
R = R0. These particles make up a locally inertial frame, IF. Hence this 3-space may be called an
inertial 3-space. This is the preferred 3-space of the relativistic universe models. In [9] it was shown that
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the 3-velocity of the inertial 3-space as given with respect to the orthonormal basis of an observer at
rest in RF is

v3−space =

(
dx̂R

dτ

)
3−space

= ±
√

1 − f (R)
f (R0)

(9)

In the case of the Minkowski metric (1) this gives v3−space = 0, and the inertial 3-space is then at
rest in an arbitrary rigid frame in flat spacetime.

Let us now describe the 3-space with reference to an expanding reference frame in which the
metric is of the Friedmann-Lemaitre-Robertson-Walker type. Then the reference frame consists of a set
of freely moving particles expanding together with the cosmic fluid. Let t be the proper time of clocks
co-moving with the reference particles of this frame, and r a co-moving radial coordinate following the
cosmic fluid. Then the line element has the form

ds2 = − dt2 + [a (t)]2
(

dr2

1 − k r2 + r2dΩ2
)

(10)

where k is a constant, which can have the values k =
{− 1/t2

0 , 0 , 1/t2
0
}

, and a (t) is the scale factor.
If it is normalized to a (t0) = 1 at the present time t0, it represents the ratio of the cosmic distances
between the reference particles at an arbitrary point of time and their present distances. In this
coordinate system the 3-space has an expansion, θ = 3

.
a/a. Hence the 3-space is not static in this frame

if
.
a �= 0.

So the 3-space of the Minkowski spacetime may be pictured as either static or non-static depending
upon the reference frame that is used. This freedom of point of view is due to the Lorentz invariance
of this solution of Einstein’s field equations. It is not typical of the solutions of the field equations
in general. But there are two other solutions that share this property of Lorentz invariance with the
Minkowski spacetime, and those are the de Sitter and anti-de Sitter spacetimes. Let us consider the de
Sitter spacetime.

5. The de Sitter Spacetime

We consider the de Sitter spacetime with spherical coordinates (R, θ, ϕ) and a time coordinate T,
so that the line element takes the form

ds2 = −
(

1 − H2R2
)

dT2 +
dR2

1 − H2R2 + R2dΩ2 (11)

for R < RH = 1/H, where H =
√

Λ/3, and the cosmological constant Λ = 8πGρΛ represents the
constant density ρΛ of a Lorentz Invariant Vacuum Energy, LIVE, with stress pΛ = − ρΛ. It should
be noted that the coordinate clocks showing T go with a position-independent rate equal to that of a
standard clock at R = 0.

We introduce new coordinates (t, r) by the transformation

t = T +
1

2H
ln
√

1 − H2R2 , r =
R√

1 − H2R2
e− HT (12)

The inverse transformation is

T = t − (1/2H) ln
√

1 − H2r2e2 H t , R = r eH t (13)

Differentiating the second of Equation (12) with respect to T with constant r gives the coordinate
velocity of a reference particle in the (t, r)-system with respect to the (T, R)-system

vR = H eH t =
√

1 − H2R2 eH T (14)
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Hence the (t, r) coordinates are co-moving in an expanding reference frame relative to the rigid
(T, R)-system. In the coordinates (t, r) the line element has the form

ds2 = − dt2 + e2H t
(

dr2 + r2dΩ2
)

(15)

The (t, r)-coordinates are co-moving with free particles, as is the case for all the FLRW-universe
models. Equation (14) shows that the free particles in this spacetime move outwards with an
accelerated motion.

It follows from Equation (8) that for the metric (11) the 4-acceleration of a particle fixed in the
rigid reference frame, is

aR = H2R (16)

Hence a free particle at rest in the rigid reference frame must be at the position R0 = 0. The 3-space
made up of simultaneous events as measured by clocks carried by these particles is the inertial 3-space.
In this case the velocity of inertial 3-space as given by Equation (9) is

v3−space = H R (17)

Even if the metric (11) is static, the velocity of the inertial 3-space obeys the Hubble lav. There is
an expansion equal to 3H. Hence the 3-space expands in accordance with the Hubble law. This is often
called the Hubble flow. The inertial 3-space flows with the velocity of light at R = RH = 1/H and with
superluminal velocity for R > RH . There is a horizon at R = RH .

The coordinate time t is shown on standard clocks following the freely falling reference particles
of the 3-space, and the coordinate r is co-moving with those particles. That is the reason for the time
dependence of the metric (15) in this coordinate system. Hence there is no contradiction between the
static form of the line element (11) and the non-static form (15). The first form reflects the rigidity of the
reference frame in which the coordinates T , R are co-moving, and the second reflects the expansion of
the reference frame in which the coordinates t , r are co-moving. This solves the Mitra paradox.

However, there is something strange about the metric (11). There is a coordinate singularity at
RH = 1/H. Note that lim

R→1/H
r = ∞, and that v3−space (RH) = 1. Hence the 3-space is flowing with the

velocity of light at this surface.
Consider radially moving light in the metric (11). The coordinate velocity of light is the same in

the inwards and outwards direction, and is equal to

(dR/dT)L = ±
(

1 − H2R2
)

(18)

which vanishes at R = RH . Hence in this coordinate system the light cone collapses at R = RH .
In order to have open light cones at R = RH one may introduce a new time coordinate. There are

several related such coordinates, and it may be useful to compare the description of the light cones
in three of them. All of them are given by an internal coordinate transformation in the sense that the
coordinate clocks are at rest in the same reference frame as those showing T.

We first consider a light cone coordinate, T, used by Spradlin, Strominger and Volovich [10],
given by the coordinate transformation

T = T − 1
2H

ln
1 + H R
1 − H R

(19)

By using L’Hopital’s rule we get lim
H→0

T = T − R showing that T reduces to an ordinary light cone

coordinate in Minkowski spacetime. Differentiating we have

dT = dT − dR
1 − H2R2 (20)
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Hence the coordinate clocks showing T have another simultaneity than those showing T. With the
new time coordinate the line element of the de Sitter spacetime takes the form

ds2 = −
(

1 − H2R2
)

dT2 − 2dT dR + R2dΩ2 (21)

For light moving radially we have ds2 = dΩ2 = 0 and hence,

2dT dR = −
(

1 − H2R2
)

dT2 (22)

For light moving outwards dR > 0, which is not permitted by Equation (22). However, for light
moving outwards, Equations (16) and (18) give dT = 0, which is permitted. Hence T is a light cone
coordinate for outgoing light. For light moving inwards, Equation (22) gives the coordinate velocity(

dR
dT

)
L−

= −1
2

(
1 − H2R2

)
(23)

which vanishes at R = RH . The “inwards directed” velocity of light changes sign at R = RH and
becomes outwards directed for R > RH .

Another time coordinate TP called the Painlevé-de Sitter coordinate, was used by Parikh [11] and
is given by the transformation

TP = T + (1/2 H) ln
(

1 − H2R2
)

(24)

Comparing with equation the first of the Equation (12) we see that TP = t. Hence the Paainlevé-de
Sitter time is the same as the cosmic time, which is measured by standard clocks following freely
moving particles. Differentiating gives

dTP = dT − HR
1 − H2R2 dR (25)

Inserting this into Equation (11) we find that the line element takes the form

ds2 = −
(

1 − H2R2
)

dT2
P − 2HR dTP dR + dR2 + R2dΩ2 (26)

The coordinate velocity of outgoing and ingoing light is

(dR/dTP)+ = 1 + HR , (dR/dTP)− = − (1 − HR) (27)

At the horizon (dR/dTP)+ = 2, (dR/dTP)− = 0. The velocity of the ingoing light changes sign
at the horizon, and moves outwards outside the horizon. This is an effect of the repulsive gravity
due to the LIVE, which fills this spacetime and causes an accelerated expansion of the inertial 3-space.
Note that in this context “accelerated” means non-vanishing 3-acceleration. The 4-acceleration of the
reference particles of the inertial 3-space vanishes, since the particles are freely falling.

Finally a time coordinate corresponding to the ingoing Eddington-Finkelstein coordinate in the
Schwarzshild spacetime is defined by the condition that the coordinate velocity of outgoing light is
equal to 1. This was used by Braeck and Grøn [9] and is given by

T̃ = T +
1

2H
ln

1 − HR
1 + HR

+ R (28)

Differentiation gives

dT̃ = dT − H2R2

1 − H2R2 dR (29)
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With this time coordinate the line element takes the form

ds2 = −
(

1 − H2R2
)

dT̃2 − 2H2R2 dT̃ dR +
(

1 + H2R2
)

dR2 + R2dΩ2 (30)

The coordinate velocity of outgoing and ingoing light is

(
dR/dT̃

)
+
= 1,

(
dR/dT̃

)
−
= − 1 − H2R2

1 + H2R2 (31)

At the horizon
(

dR/dT̃
)
+
= 1,

(
dR/dT̃

)
−
= 0. Again the velocity of the ingoing light changes

sign at the horizon, i.e., the light cones turn outwards, implying that nothing can enter the horizon
from the outside region.

All of the line elements (21), (26) and (30) are stationary, although they are not static. The stationary
character shows that the coordinate R is co-moving in a rigid reference frame. The reason that they are
not static is that the coordinate clocks are not Einstein synchronized. Their simultaneity is not that of
Einstein synchronized clocks at rest in the rigid reference frame.

The de Sitter spacetime is static since there exists a coordinate system where the metric is static
and the time-like basis vector is a Killing vector.

Nevertheless this spacetime is filled with vacuum energy that expands. This energy causes
repulsive gravity, which acts back upon the energy itself and makes the expansion accelerate. It should
be noted that in a homogeneous universe there is no pressure gradient, so the accelerated expansion is
not a pressure effect, but a gravitational effect. The negative pressure, p = − ρc2, contributes to the
effective gravitational mass density, ρgrav = ρ + 3p/c2, making it negative, which means that gravity is
repulsive [12]. Hence there is energy with accelerated expansion in this spacetime. Is it then reasonable
to say that it is static?

Compare 3-space with a river, and consider the river now and an hour later, assuming that there
is the same amount of water in the river at these points of time. In this situation, the river has not
changed. The river is static. But the water is not static. It flows. Similarly spacetime is static, but 3-space
is expanding.

In spacetime the river corresponds to the geometry of space at a certain position, and the flowing
water corresponds to the flowing reference particles constituting the 3-space. In the de Sitter spacetime
the geometry of space is unchanged at a fixed position in a rigid reference frame. Hence it is a static
spacetime; but the 3-space is flowing. It is not static. The metric in a coordinate system co-moving
with the reference particles of the 3-space is not static, but depends upon time as in the metric of
Equation (15).

6. The Schwarzschild Spacetime

Outside the Schwarzschild radius the Schwarzschild spacetime has a time-like Killing vector field
that is hypersurface orthogonal. Hence it is static and there exists a coordinate system in which the
metric is independent of time and the line element has no product terms where a spatial differential
is multiplied by a time differential. One such coordinate system is the standard so-called curvature
coordinates where the invariant area of a surface with coordinate radius R around the origin is 4πR2 .
In this coordinate system the line element takes the form

ds2 = − (1 − RS/R) dT2 +
dR2

1 − RS/R
+ R2dΩ2 (32)

where RS = 2GM is the Schwarzschild radius of the central mass. Inside the Schwarzschild radius the
Killing vector field is spacelike, and in this region the Schwarzschild spacetime is not static.

Consider now an observer moving with the inertial 3-space in this spacetime, i.e., he is falling
freely from a state of rest infinitely far away from the central mass. The co-moving radius of this
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observer is r and he carries with him a standard clock showing t. The new coordinates are given by
transformation [13–15]

T = t + RSln
√

R/RS + 1√
R/RS − 1

− 2
√

RSR , R3/2 = − (3/2)
√

RS (t + r) (33)

In terms of the co-moving coordinates of the inertial 3-space the line element of the Schwarzschild
spacetime takes the form

ds2 = − dt2 +

(
2
3

RS
t + r

)2/3
dr2 +

(
3
2

√
RS (t + r)

)4/3
dΩ2 (34)

An observer with r = r0 has initially a large negative value of t, which increases towards
− r0 − (2/3) RS as the observer passes the Schwarzschild horizon. Hence the line element (34)
corresponds to that of an inhomogeneous universe with an anisotropic and position-dependent scale
factor, and the inertial 3-space expands in the radial direction and contracts in the tangential direction.
In these coordinates the metric of the Schwarzschild spacetime is not static. These geometrical changes
with time of the inertial 3-space are due to tidal forces becoming stronger at the position of the reference
particles co-moving with the inertial 3-space, as they approach the central mass.

The coordinate transformation is well defined only for R > RS. This is due to the rigid character
of the reference frame in which the coordinates (T, R) are co-moving, which is physically possible
only outside the Schwarzschild horizon. However the line element (34) has no coordinate singularity
at the Schwarzschild horizon. The coordinates t and r are well defined in all of spacetime outside the
central singularity, also inside the horizon, and the line element gives a singularity-free description
of the Schwarzschild spacetime in the whole of this region. This illustration shows that a static
spacetime, which is usually expressed so that 3-space is static, may also be expressed so that the
3-space is non-static.

7. The Schwarzschild-de Sitter Spacetime

This is a static spacetime in which the line element may be written

ds2 = −
(

1 − RS
R

− H2R2
)

dT2 +
dR2

1 − RS
R − H2R2

+ R2dΩ2 (35)

In this spacetime the inertial 3-space has a rather interesting behavior. At the surface with

R0 =
(

RSR2
H/2

)1/3
(36)

the 4-acceleration of a particle permanently at rest vanishes [9]. Hence the reference particles of the
inertial 3-space are at rest at this surface. But the inertial 3-space diverges at this surface. It expands
outside this surface and contracts inside it.

8. Static Form of the FLRW Metric

Mitra has recently deduced an interesting form of the Friedmann-Lemaitre-Robertson-Walker
metric in curvature coordinates [16] and used this to investigate when an expanding universe can look
static [17]. The FLRW-metric is first written in the usual form (10). Mitra then found that the metric
can be written in curvature coordinates as follows

ds2 = −
(

∂t
∂T

)2 1 − k (R/a)2 − ( .
a/a

)2 R2

1 − k (R/a)2 dT2 +
dR2

1 − k (R/a)2 − ( .
a/a

)2 R2
+ R2dΩ2 (37)
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where
R = r a (t) (38)

He then showed that essentially only the Milne universe and the de Sitter and anti-de Sitter
universe models can be written in static form using curvature coordinates.

As an illustrating example we will here consider only the first model studied by Mitra. It is the de
Sitter universe model with negative spatial curvature, k = −1 and Λ > 0. For this model the solution
of the Friedmann equations gives the scale factor

a (t) = (1/H) sinh (H t) (39)

where H =
√

Λ/3. This universe model is filled by vacuum energy with constant density and stress
given by

pΛ = − ρΛ = −Λ/8πG (40)

Inserting Equations (38) and (39) into Equation (37), the line element takes the form

ds2 = −
(

∂t
∂T

)2 1 − H2R2

1 + r2 dT2 +
dR2

1 − H2R2 + R2dΩ2 (41)

Comparing with Equation (11) we obtain

∂t
∂T

=
√

1 + r2 (42)

Mitra has shown that Equations (38), (39) and (42) lead to the transformation

HR = r sinh (Ht) , tanh (HT) =
√

1 + r2tanh (Ht) (43)

The inverse transformation may be written

sinh (H t) =
√

sinh2 (HT)− H2R2cosh2 (HT), r =
HR√

sinh2 (HT)− H2R2cosh2 (HT)
(44)

Differentiating the first of these equations partially with respect to T and using the second
equation, we get

∂t
∂T

=

√
1 − H2R2

tanh2 (HT)− H2R2
tanh (HT) =

√
1 + r2 (45)

in agreement with Equation (42). Furthermore, by taking the differentials of the transformation (43)
and inserting the expressions into Equation (11) one finds that (43) transforms the static metric (11) to
the line element of the expanding de Sitter universe model with a negatively curved 3-space,

ds2 = − dt2 + sinh2 (Ht)
(

dr2

1 + r2 + r2dΩ2
)

(46)

Equation (38) shows that the value of R increases with time for a fixed value of r. Again we
see that the reconciliation of the static and non-static forms of the line element for one and the same
spacetime is in recognizing the motion of the reference frames in which the radial coordinates are
co-moving. The radial coordinate of the time-dependent metric is co-moving with an expanding
reference frame, and the radial coordinate of the static metric is co-moving with a rigid reference frame.
This is the solution of the Mitra paradox as applied to the present spacetime.
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9. Energy Conservation

Writing the line element of the de Sitter spacetime in terms of coordinates co-moving with free
particles, i.e., in the form (15), Mitra deduced that the vacuum energy inside a radius r is

U = (Λ/6 G) r3e3Ht (47)

Mitra concluded: “Thus the total energy of the de Sitter model increases in an exponential manner.
Such a bad violation of the “Principle of Conservation of Energy” in the co-moving frame is in sharp
contrast with the corresponding nice behavior in the Schwarzschild frame”. (He uses units in which
the gravitational constant is G = 1, but I have kept G in the formulae.)

The solution of this seeming paradox is as follows. The Friedmann equations lead to

dU + pΛdV = 0 (48)

where V = (4π/3) a3, U = ρΛ V, and a is the scale factor of Equation (37). Equation (49) is the 1.
Law of thermodynamics for adiabatic expansion as applied to a co-moving region with radius r = 1
around an observer. It expresses the law of energy conservation. Heat is defined as transport of
energy due to temperature difference. In a homogeneous universe there are no large scale temperature
differences, and this is the reason that the universe expands adiabatically.

Using ρΛ = Λ/8πG and a = eH t, we get dU = ρΛ4πa2da = (ΛH/2G) e3Htdt, which is the same
as we get by taking the differential of U in Equation (47). The volume work performed at the boundary
of the region is dW = pΛdV = − ρΛ4πa2da. Hence the energy conservation equation is obeyed in spite
of the fact that the amount of vacuum energy is increasing inside the co-moving surface. The reason is
that there is a negative work at the boundary, which transfers energy from the outside region to the
inside region. Imagining that the region is extended so that the boundary is infinitely far from the
observer, one may say that the density of the vacuum energy is kept constant in spite of the expansion
by extracting energy from an infinitely far region. This shows that global energy conservation is indeed
a problematic concept at least for a universe with infinitely great spatial extension.

10. Results and Discussion

Mitra has pointed out that there seems to be an interpretational self-contradiction between the
static interpretation of the de Sitter metric and the non-static de Sitter universe model. This has here
been called the Mitra paradox. He also writes that there has not been any attempt for a physical
resolution to reconcile the static and non-static versions of for example the de Sitter metric.

Both the problem and the resolution are of a conceptual nature of great significance for a proper
way of teaching the general theory of relativity. A theory is much more than some rules for calculating
physical effects, making it possible to falsify the theory. The theory also provides us with concepts
representing the foundations of our world picture. As said by Einstein: It is the theory that tells what
we observe.

Hence it is extremely important to obtain a proper physical interpretation of the general theory of
relativity, free of contradictions. This also means that interpretational problems such as that formulated
by Mitra, should not be neglected. The present article has been an effort to give a constructive
discussion of this problem—and to solve it. I have here provided a resolution by focusing upon
the difference between 3-space and spacetime and pointing out the significance of the motion of the
reference frames in which different coordinate systems are co-moving.

11. Conclusions

The Mitra paradox is concerned with the physical reconciliation of two metrics, where one is
static and the other time-dependent, that are connected by a coordinate transformation, and hence that
represent one and the same spacetime.
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The Mitra paradox makes it clear that one cannot define a static spacetime as a spacetime where
the metric is independent of time. The metric is coordinate-dependent, and may be independent of
time in one coordinate system, but dependent on it in another, while the static property of a spacetime
is invariant and characterized by the existence of a hypersurface orthogonal Killing vector.

The solution of the Mitra paradox lies in recognizing that the metric is not determined by the
geometric properties of the spacetime. In general there are ten independent components of the metric
tensor and only six independent field equations, leaving the freedom of choosing the coordinate
system. By choosing coordinates in a given spacetime as co-moving with a rigid reference frame one
obtains a time-independent metric—otherwise a time-dependent one.

These general properties of the solution to the Mitra paradox have been illustrated in the present
paper by considering several cases, the first of which being flat spacetime. With coordinates co-moving
in a rigid inertial frame one obtains the usual Minkowski metric, and with coordinates co-moving in
an expanding reference frame one obtains the time-dependent Milne metric. Secondly, the de Sitter
spacetime has been considered. Again, by using coordinates co-moving in a rigid frame one obtains a
static metric and using coordinates co-moving with freely moving particles that make up a system
that expands due to repulsive gravity in this spacetime, one obtains a time-dependent metric. Thirdly,
we have discussed the Schwarzschild spacetime. Again the metric is static in a rigid frame. But using
coordinates co-moving with a system of freely falling particles one obtains a time-dependent metric,
still representing the Schwarzschild spacetime.

Finally, as shown by Mitra, and interpreted physically here, a similar result is obtained for just
three different Friedmann-Lemaitre Robertson-Walker universe models, the Milne universe and the de
Sitter and anti-de Sitter universe models. All these models are solutions of Einstein’s equations for
empty space, the first one without a cosmological constant and the two latter ones with a positive and
negative cosmological constant, respectively.

The universe models with matter or radiation energy are solutions of the field equations with a
time-dependent energy-momentum tensor. Hence Mitra’s result implies that universe models with a
time-dependent energy-momentum tensor cannot be represented globally by a line element with a
time-independent metric. This should be formulated in a coordinate-independent way.

For a perfect fluid with energy-momentum tensor

Tμν = (ρ + p) uμuν + pgμν (49)

we may define the energy-momentum scalar

TμνTμν = ρ2 + 3p2 (50)

Hence we may conclude by formulating Mitra’s result for the FLRW-universe models in the
following way: The line element cannot be written in a globally time-independent way for a universe
model with a time-dependent energy-momentum scalar.
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Abstract: The existence of singularities alerts that one of the highest priorities of a centennial
perspective on general relativity should be a careful re-thinking of the validity domain of Einstein’s
field equations. We address the problem of constructing distinguishable extensions of the smooth
spacetime manifold model, which can incorporate singularities, while retaining the form of the
field equations. The sheaf-theoretic formulation of this problem is tantamount to extending the
algebra sheaf of smooth functions to a distribution-like algebra sheaf in which the former may be
embedded, satisfying the pertinent cohomological conditions required for the coordinatization of all
of the tensorial physical quantities, such that the form of the field equations is preserved. We present
in detail the construction of these distribution-like algebra sheaves in terms of residue classes of
sequences of smooth functions modulo the information of singular loci encoded in suitable ideals.
Finally, we consider the application of these distribution-like solution sheaves in geometrodynamics
by modeling topologically-circular boundaries of singular loci in three-dimensional space in terms of
topological links. It turns out that the Borromean link represents higher order wormhole solutions.

Keywords: general relativity; sheaf cohomology; abstract differential geometry; singularities;
geometrodynamics; distributions; generalized functions; nowhere dense algebras; algebra sheaves;
topological links; wormholes; Borromean rings

1. Introduction

One hundred years after Einstein’s initial conception and formulation of the general theory of
relativity, it still remains a vibrant subject of intense research and formidable depth. In this way,
during all of these years, our understanding of gravitation in differential geometric terms is being
continuously refined. We believe that one of the highest priorities of a centennial perspective on
general relativity should be a careful re-examination of the validity domain of Einstein’s field equations.
These equations constitute the irreducible kernel of general relativity and the possibility of retaining
the form of Einstein’s equations, while concurrently extending their domain of validity is promising
for shedding new light on old problems and guiding toward their effective resolution. These problems
are primarily related to the following perennial issues: (a) the smooth manifold background of the
theory; (b) the existence of singular loci in spacetime where the metric breaks down or the curvature
blows up; and (c) the non-geometric nature of the second part of Einstein’s equations involving the
energy-momentum tensor. It turns out that these problems are intrinsically related to each other
and require a critical re-thinking of the initial assumptions referring to the domain of validity of
Einstein’s equations.

In this communication, first of all, we would like to consider the problem of constructing
distinguishable extensions of the smooth spacetime manifold solution space of Einstein’s equations
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incorporating singularities by taking into account recent developments in differential geometry.
These developments pertain to the possible generalization of the technical framework of differential
manifolds, on which the formalism and interpretation of general relativity is based on, to non-smooth
or singular topological spaces by applying concepts and methods of sheaf theory and sheaf
cohomology. In a nutshell, it turns out that all of the usual local constructions of differential geometry,
re-interpreted sheaf-theoretically, do not require the notion of a global smooth manifold, but are based
on much weaker conditions of an essentially cohomological nature. The physical interpretation of
these findings, referring to appropriate extensions of Einstein’s equations over singular domains,
is tantamount to the viable possibility of extending the covariant formulation of Einstein’s equations
using continuous distribution-like or even non-smooth sheaves of coefficients for all of the involved
tensorial physical quantities.

Second, we would like to show explicitly how certain generalized distribution-like solutions
of partial differential equations, which fit appropriately in the above-mentioned sheaf-theoretic
framework of differential geometry, bear significance in relation to obtaining singularity-free solutions
of Einstein’s equations in extended domains. We scrutinize the generation of these distribution-like
algebra sheaves of coefficients from a physical perspective and explain the means of their construction
in terms of residue classes of sequences of smooth functions modulo the information of singular loci
encoded in suitable ideals.

Finally, we consider the application of these distribution-like solution sheaves in geometrodynamics.
The geometrodynamical formalism is very instructive in relation to the proposed extensions because
it leads to the conclusion that active positive gravitational mass may emerge from purely topological
considerations taking into account the constraints imposed by Einstein’s field equations in the vacuum.
In this manner, we may re-assessfruitfully Wheeler’s insights referring to “mass without mass”
and “charge without charge”, as well as re-evaluate the notion of wormhole solutions from a
cohomological point of view. In this context, we propose to model topologically-circular boundaries of
singular loci in three-dimensional space in terms of topological links. It turns out that there exists a
universal topological link bearing the connectivity property of the Borromean rings. The cohomological
expression of the Borromean link points to its physical interpretation as a higher order wormhole
solution of the field equations.

2. General Relativity from the Perspective of Sheaf Theory

In the standard formulation of general relativity, the spacetime event structure is represented
by means of a connected, four-dimensional real smooth manifold X. The chronogeometric relations
on the event manifold X are expressed in terms of a pseudo-Riemannian metric of the Lorentzian
signature, called the spacetime metric. The chronogeometric relations are not fixed kinematically
a priori, like in all predecessor classical field theories, but they should be obtained dynamically in
terms of the metric as a solution of Einstein’s field equations depending on the energy-momentum
matter field distributions. In this manner, all of the pertinent chronogeometric relations defined
on a four-dimensional smooth manifold, endowing it with the structure of a spacetime manifold,
become variable. The dynamical constitution of these relations by means of the field equations requires
the imposition of a compatibility requirement relating the metric tensor, which represents the spacetime
geometry, with the affine connection, which represents the differential evolution of the gravitational
field. A spacetime manifold is considered to be without singularities if the coefficients of the metric
tensor field are smooth and the manifold X is geodesically complete with respect to the metric. In this
case, all timelike geodesic curves can be extended to arbitrary length in the smooth spacetime manifold
X. From a physical viewpoint, according to the above requirements, the notion of localization at a
spacetime point-event is sensible only if the coefficients of the metric tensor field are smooth in an
open neighborhood of this point.

Algebraically speaking, a real smooth manifold X can be reconstructed entirely from the R-algebra
C∞(X) of smooth real-valued functions on it, and in particular, the points of X are derived from
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the algebra C∞(X) as the R-algebra homomorphisms C∞(X) → R. This important observation
in relation to general relativity has been first proposed and explicated by Geroch in the form of
Einstein algebras [1]. From a modern mathematical perspective, it is a consequence of the Gelfand
representation theorem applied to the case of smooth manifolds [2,3]. In this way, manifold points
constitute the R-spectrum of the algebra of smooth functions C∞(X), being isomorphic with the
maximal ideals of this algebra. Notice that the R-algebra C∞(X) is a commutative topological algebra
that contains the field of real numbers R as a distinguished subalgebra, encapsulating the predominant
physical assumption that our means of characterizing events is conducted by evaluations in the field
of real numbers R.

The algebraic viewpoint is instructive because it makes clear that in the standard differential
geometric setting of general relativity, all of the tensorial physical quantities are coordinatized by
means of the commutative R-algebra of globally-defined smooth real-valued functions C∞(X). Hence,
the background of the theory remains fixed as the R-spectrum of the commutative topological algebra
C∞(X), supplying smooth coefficients for the coordinatization of physical quantities. The points of the
manifold X, although not dynamically localizable degrees of freedom in general relativity, serve as the
semantic information carriers of spacetime events. More precisely, the points are marked on a smooth
manifold in terms of global evaluations of the smooth algebra C∞(X) in the field of real numbers.
The subtlety of general relativity is exactly that manifold points are not dynamically localizable entities
in the theory. More precisely, manifold points assume an indirect reference as indicators of spacetime
events, only after the dynamical specification of chronogeometrical relations among them, as particular
solutions of the generally covariant field equations. Clearly, the existence of singular loci in spacetime
where the metric breaks down in terms of smooth function coefficients forbids the association of
smooth manifold points with spacetime events. What remains is an emergent notion of an event
horizon of a singular locus where spacetime information may be encoded appropriately.

The dynamical variability of the coefficients coordinatizing all tensorial physical quantities
requires the action of a covariant differential operator to be applied upon them. This takes place
via the notion of an affine connection, which is expressed as a covariant derivative acting on these
smooth coefficients. The result of differentiation is encoded in C∞(X)-modules over the algebra
C∞(X), called modules of differential forms Ω and their duals Ξ = Hom(Ω,C∞(X)), as well as their
higher powers constructed by means of exterior algebra.

In the same algebraic context, the role of a metric geometry on a smooth manifold, as related to the
above modules of differential forms and their duals in general relativity, pertains to the representability
of spacetime events by points of the manifold, which in turn necessitates their coordinatization in
terms of real numbers. This is tantamount to the requirement that all types of differentially-variable
quantities should possess uniquely-defined dual types, such that their point-event representability
can be made possible by means of real numbers. This is precisely the role of a geometry induced by a
metric. Concretely, the spacetime metric assigns a unique dual to each differentially-variable quantity,
by effecting an isomorphism between the modules Ω and Ξ := Hom(Ω,C∞(X)), that is g : Ω � Ξ,
such that d f �→ v f := g(d f ).

The important thing to notice is that all of these constructions can be performed strictly locally,
that is by using only sections defined in the neighborhood of points. This is an implication that
differential geometric constructions should be expressed not in terms of global algebra coefficients,
but in terms of sheaves of coefficients defined locally. Then, the task is to study the maximal
extendibility of these constructions from the local to the global level, which is technically expressed via
the theory of sheaf cohomology.

In the context of general relativity, the modeling of the dynamical variability, caused by the
gravitational field by means of the Levi–Civita connection, from a local sheaf-theoretic perspective, is
becoming even more relevant in view of the spacetime metric compatibility of this connection and the
associated solution space of the theory. Einstein’s equations are formulated in terms of non-linear partial
differential equations involving smooth functions, playing the role of local coefficients coordinatizing
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the metric tensor, the Ricci tensor and the scalar curvature. The solution of these equations in terms of
the spacetime metric determines the local metrical properties of the spacetime manifold around any
point, depending on the energy-momentum tensor. Notwithstanding this, all of the global cosmological
predictions of the theory are obtained not from these local solutions of the field equations per se, but
from the possibility of the continuation of some local solution to an extended region. The method of
the continuation or extension of some solution from the local to the global level is mathematically of a
sheaf-theoretic nature.

In view of the problem of singularities in general relativity, this is a clear warning that
distribution-like sheaves of coefficients may be more appropriate for the continuation of some local
solution over extended regions when the smooth ones become ill-defined over singular loci. It is a
natural requirement that these sheaves of coefficients contain the standard smooth ones as a subalgebra,
or equivalently, there is an algebra sheaf embedding of the smooth coefficients into the generalized
ones. It is expected that distribution-like sheaves of coefficients can prevent the breaking down of
the metric at singularities and, therefore, provide the means to extend the domain of validity of the
field equations, under the proviso that the same tensorial equations can be re-expressed covariantly in
terms of these generalized sheaves of coefficients.

3. Cohomological Conditions for Extending the Smooth Sheaf of Coefficients in General Relativity

Cohomology theory constitutes a sophisticated algebraic-topological method of assigning global
invariants to a topological space in a homotopy-invariant way. The cohomology groups measure the
global obstructions for extending sections from the local to the global level, for instance extending local
solutions of a differential equation to a global solution. The differential geometric mechanism of
smooth manifolds is essentially based on the set-up of the de Rham complex in terms of locally-defined
smooth coefficients. In particular, de Rham cohomology measures the extent that closed differential
forms fail to be exact and, thus, the obstruction to integrability. In this context, the central role is
played by the lemma of Poincaré, according to which every closed differential form is locally exact in
terms of smooth coefficients. The de Rham theorem asserts that the homomorphism from the de Rham
cohomology ring to the differentiable singular cohomology ring, given by the integration of closed
forms over differentiable singular cycles, is a ring isomorphism. The sheaf-theoretic understanding of
this deep result came after the realization that both the de Rham cohomology and the differentiable
singular cohomology are actually special isomorphic cases of sheaf cohomology. In particular, it has
been also crystallized that the de Rham cohomology of a differential manifold depends only on the
property of paracompactness of the underlying topological space. In turn, the paracompactness
property, which is required in the definition of a differential manifold, can be also characterized
cohomologically via the acyclic behavior of soft sheaves, like the sheaf of smooth functions. In other
words, soft sheaves, namely sheaves whose sections over any closed subset can be extended to a global
section, are acyclic over a paracompact topological space.

The re-interpretation and generalization of the standard de Rham cohomology theory on
manifolds in sheaf-cohomological terms is physically significant, because it provides an intrinsic
way to set up and solve differential equations expressing the dynamical variability of physical
quantities. The concepts and technical tools of sheaf cohomology have been developed through
the ground-breaking work of Grothendieck in geometry [4,5]. What should be initially kept in mind
for physical applications is that the natural argument of a cohomology theory is a pair consisting of
a topological space together with a sheaf of commutative algebras defined over it, rather than just
a space.

It is instructive to include the basic definition characterizing the notion of a sheaf of sets on a
topological space X, which also gives rise in a direct way to the notion of a sheaf of commutative
algebras over X that we will employ in the sequel:

A presheaf F of sets on a topological space X, consists of the following information:

(I) For every open set U of X, a set denoted by F(U), and
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(II) For every inclusion V ↪→ U of open sets of X, a restriction morphism of sets in the
opposite direction:

r(U|V) : F(U) → F(V) (1)

such that:

(a) r(U|U) = identity at F(U) for all open sets U of X.
(b) r(V|W) ◦ r(U|V) = r(U|W) for all open sets W ↪→ V ↪→ U. Usually, the following

simplifying notation is used: r(U|V)(s) := s|V .

A presheaf F of sets on a topological space X is defined to be a sheaf if it satisfies the following
two conditions, for every family Va, a ∈ I, of local open covers of V, where V open set in X, such that
V = ∪aVa:

(1) Local identity axiom of sheaf:

Given s, t ∈ F(V) with s|Va = t|Va for all a ∈ I, then s = t.
(2) Gluing axiom of sheaf:

Given sa ∈ F(Va), sb ∈ F(Vb), a, b ∈ I, such that:

sa|Va∩Vb = sb|Va∩Vb , (2)

for all a, b ∈ I, then there exists a unique s ∈ F(V), such that: s|Va = sa ∈ F(Va) and
s|Vb = sb ∈ F(Vb).

As a basic example, if F denotes the presheaf that assigns to each open set U ⊂ X the commutative
algebra of all real-valued continuous functions on U, then F is actually a sheaf. This is intuitively clear
since the specification of a topology on X is solely used for the definition of the continuous functions
on X. Thus, the continuity of each function can be determined locally. This means that continuity
respects the operation of restriction to open sets and, moreover, that continuous functions can be
amalgamated together in a unique manner, as is required for the satisfaction of the sheaf condition.

The realization that the natural argument of a cohomology theory is not only a space, but it
is actually a pair consisting of a topological space together with a sheaf of commutative algebras
localized over it, has given rise to the notion of a commutative locally R-algebraized space, defined by
means of a pair (X,A) consisting of a topological space X and a sheaf of commutative R-algebras A
on X, such that the restriction Ax is a local commutative R-algebra for any point x ∈ X. Regarding
the possibility of extending consistently all of the standard local differential geometric constructions
in the context of smooth manifolds to singular spaces, in terms of locally R-algebraized spaces,
where a suitable sheaf of commutative R-algebras A on X substitutes the smooth sheaf of R-algebras
C∞(X)), a full-grown theory has been recently developed, called Abstract Differential Geometry
(ADG). This theory has shown that the standard differential-analytic tools of locally-Euclidean spaces
and smooth manifolds leading to the formulation and solution of differential equations can be
actually re-produced and generalized to non-smooth or singular topological spaces by means of
sheaf cohomology. Equivalently, the suitability of a sheaf of commutative R-algebras A on an abstract
topological space X for expressing the differential geometric mechanism in terms of these coefficients
instead of the smooth ones is entirely determined only by the satisfaction of precise cohomological
conditions pertaining to the characterization of the algebra sheaf A. We note, in passing, that for the
economy of symbols, we denote algebra sheaves by the same symbols as we used for the algebras
before, since the difference is clear from the context.

The mathematical theory of ADG has been built rigorously by Mallios [6,7] (see also [8]), based on
critical prior work of Selesnick [9]. The significance of ADG for physics has been also shown by an
explicit reconstruction and generalization of the framework of the Maxwell and Yang–Mills gauge field
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theories in sheaf cohomological terms [10,11]; see also [12–14]. An exposition of the basic didactics of
ADG in relation to its physical applications has been presented by Raptis in [15]. The basic method
introduced for the generalization of the standard analytic tools of Classical Differential Geometry
(CDG) consists of the following: Initially, a concept of CDG is suitable for the extension to a broader
differential context (beyond the context of smooth manifolds) if it is liable to a process of sheaf-theoretic
localization [16]. In CDG, all of the differential geometric constructions require that the base space
is a smooth manifold. The underlying reason is that the means of differentiation are lifted locally
from the structure of a Euclidean space. In this way, the de Rham complex is fixed with respect to
smooth coefficients, and all tensorial quantities are coordinatized in smooth terms. In ADG, the base
space provides merely a topological basis of sheaf-theoretic localization, such that all of the pertinent
differential geometric constructions can take place locally, whereas the latter are not subordinate to this
topological basis, meaning that they are not dependent on any particular localization basis. Thus, the
object of primary significance in ADG is not the base space itself, but the algebra sheaf of coefficients
localized over it. The differentiation structure is built in the algebra sheaf of coefficients by means of
the notion of a connection defined independently of any locally-Euclidean considerations. In this way,
the associated de Rham complex can be satisfied by various possible algebra sheaves of coefficients
modulo some well-defined cohomological conditions. We emphasize that the prominent role in the
context of ADG is played by the algebra sheaf of coefficients, interpreted as a “functional coordinate
arithmetic” [14,17] (see also [18–22]), meaning that all geometric objects involved in the formalism are
locally expressed in terms of its sections. In this way, an algebra sheaf of coefficients is not constrained
ab initio to be a smooth one, restricting the geometric solution space within the spectrum of a smooth
manifold. More generally, a suitable algebra sheaf of coefficients turns out to be an algebra sheaf
of generalized functions, including distributions, defined by Rosinger in the context of solutions to
non-linear partial differential equations [23,24].

Concerning general relativity, which is formulated using the CDG of smooth manifolds,
the possibilities offered by ADG bear a remarkable physical significance. In particular, there arises
the possibility of re-assessing the global problems of general relativity related to the existence
of singularities, where the metric breaks down, from the perspective of appropriate generalized
algebra sheaves of coefficients. In this manner, the validity of Einstein’s equations may be extended
beyond differential manifolds, under the condition that the covariance properties of all tensorial
physical quantities are maintained under these extensions, expressed in terms of the new sheaves
of coefficients. From a physical viewpoint, this approach would allow one to obtain solutions in
terms of distribution-like sheaves corresponding to non-punctual localization properties, which would
nevertheless still satisfy the field equations. This clearly vindicates the following critical remark of
Weyl [25]: “While topology has succeeded fairly well in mastering continuity, we do not yet understand
the inner meaning of the restriction to differential manifolds. Perhaps one day physics will be able to
discard it”.

The possibility of obtaining extended admissible solution spaces in terms of generalized algebra
sheaves of coefficients is based on the fact that the validity of the de Rham complex, in its sheaf-theoretic
guise, is not restricted exclusively to the coordinatization of the tensorial physical quantities by
smooth coefficients C∞, as is actually the case when the R-spectrum of the coefficients is a smooth
manifold. Thus, we may consider distribution-like sheaves of coefficients satisfying the validity of the
de Rham complex and, therefore, formulate and solve the field equations in terms of these distribution
coefficients instead of the smooth ones. More precisely, this is the case if the following sequence of
R-linear sheaf morphisms:

A → Ω1(A) → . . . → Ωn(A) → . . . (3)

is a complex of R-vector space sheaves, identified as the sheaf-theoretic de Rham complex of A.
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In this case, if the cohomological condition expressing the Poincaré Lemma, Ker(d0) = R is
satisfied with respect to the algebra sheaf A and requiring that A is a soft algebra sheaf, viz. any section
over any closed subset of X can be extended to a global section, we obtain that the sequence:

0 → R → A → Ω1(A) → . . . → Ωn(A) → . . . (4)

is an exact sequence of R-vector space sheaves. Thus, the sheaf-theoretic de Rham complex of the
algebra sheaf A constitutes an acyclic resolution of the constant sheaf R.

The physical interpretation of this fact is the following: First of all, the essential feature of the
localization method, utilizing coefficients from algebra sheaves instead of global algebras, is that the
sheaf-theoretic de Rham complex is actually an acyclic resolution of the constant sheaf of the reals
coordinatizing the events. For instance, referring to the CDG of smooth manifolds, the de Rham
complex, expressed in terms of local smooth coefficients and their differential forms of higher orders,
provides such an acyclic resolution of the constant sheaf R. What has been uncovered by ADG is that
the smooth algebra sheaf C∞(X)) is not unique in this respect. More concretely, any other soft algebra
sheaf A constituting an acyclic resolution of the constant sheaf R is a viable source of coefficients for
the coordinatization of the tensors, maintaining at the same time all of their covariance properties
in terms of the new local coefficients. This crucial fact essentially questions the uniqueness of the
role of local smooth coefficients for formulating the means of dynamical variability. In other words,
it questions the unique role of smooth manifold geometric spectrums as domains of validity of the
field equations.

The idea to address the problem of singularities from the perspective of ADG has been proposed
already, for instance in [11,12]. More concretely, in particular relation to the issue of spacetime
singularities, Mallios and Rosinger [23,24] have applied ADG using as an algebra sheaf of coefficients,
a variety of the so-called “spacetime foam algebras”, and by Raptis [26], building up on prior work by
Mallios and Raptis [27], using as a sheaf of coefficients “differential incidence algebras” defined over a
locally-finite poset substitute of a continuous manifold.

Our present proposal constitutes a twist of perspective in comparison to these works, which
is actually implemented by physical criteria of suitability going beyond the satisfaction of the
cohomological conditions. Our quest is related to the possibility of using a particular type of a
“spacetime foam algebra” as a kind of a distribution-like sheaf of coefficients, distinguished on physical
grounds, for extending the domain of validity of Einstein’s field equations. For this purpose, from the
whole variety of “spacetime foam algebras”, we distinguish only the “nowhere dense generalized
function algebra” as bearing physical significance in relation to the field equations of general relativity.
This is based on a physical criterion determining which properties should be characterized as intrinsic
to the gravitational field and eventually deciding what should be generic with respect to its function or
not. This physical criterion refers to the viable possibility of expressing the gravitational field sources
via the instantiation of these generalized algebra sheaves of coefficients. Our rationale is based on
the idea that in an intrinsically dynamically-variable theory, like general relativity, it should be the
pertinent physical conditions or the sources of the field themselves that determine the type of these
extensions as solutions to the field equations.

4. Coping with Spacetime Singularities: Conceptual and Technical Aspects

In the classical differential geometric formulation of general relativity, spacetime is represented
as a connected, paracompact and Hausdorff four-dimensional C∞ manifold X, endowed with a
pseudo-Riemannian metric of the Lorentzian signature, which is obtained as a solution of Einstein’s
field equations. A spacetime manifold is considered to be without singularities if the coefficients
of the metric tensor field are at least of class C2 and X is geodesically complete with respect to
the metric, meaning that all timelike geodesic curves can be extended to arbitrary length [28,29].
Consequently, a spacetime manifold is considered to be singular if there exist incomplete geodesic
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curves, or equivalently finite affine length geodesics that cannot be extended. A spacetime singularity
delimits a locus where the behavior of the metric tensor coefficients become ill-defined with respect
to the smooth characterization of the manifold. Usually, the singular locus is identified as a locus
where the spacetime curvature blows up. We note that the localization at a spacetime point-event is
meaningful if the metric coefficients are smooth, or at least of class C2 in a neighborhood of this point.

The usual way to cope with a spacetime singularity is to consider it as a singular spacetime
boundary rather than a locus within spacetime. For instance, a spacetime boundary may be defined in
terms of a set of incomplete curves S. This takes place by the imposition of an appropriate equivalence
relation ∼ on the set S, such that the quotient set S/ ∼:= ∂X is interpreted as the singular boundary
of X. The criterion of equivalence is determined by the choice of those equivalence classes, which are
forced to play the role of ideal points in the extension of X by ∂X. There have been proposed various
possible choices, for example Geroch’s “g-boundary” or Schmidt’s “b-boundary”, but it is always
assumed that X is topologically dense in X

⊔
∂X [30,31]. Following this approach, Heller and Sasin

have shown that Einstein’s field equations can be formulated in the extension of X by ∂X, that is on
X

⊔
∂X defined as an “Einstein structured space” [32]. Actually, this is the Gelfand spectrum of a

sheaf of Einstein algebras, which constitutes the sheaf-theoretic localization of an Einstein algebra,
a notion proposed initially by Geroch in his attempt to re-formulate general relativity in algebraic
terms without invoking directly a spacetime manifold background [1]. In particular, it has been proven
that the closed Friedmann world model and the Schwarzschild solution, combined with Schmidt’s
“b-boundary” construction, fit nicely in the sheaf-theoretic context of an “Einstein structured space”.
In turn, this has been a first indication that the validity of Einstein’s equations may be extended to
bigger domains incorporating singular loci, which are not smooth manifolds anymore. It has been
also pointed out that some sorts of singularities can also appear when there exists a transition to the
quantum gravity regime. More concretely, the smooth manifold structure of spacetime can break
down, and the possible validity of Einstein’s equations should be sought for in further extended and
generalized non-smooth spectrums of appropriate sheaves of algebras, where the singularities are not
necessarily forced to some type of spacetime boundary.

From a broader conceptual perspective, the issue of singularities in general relativity as
impossibilities of extending smooth metric solutions of Einstein’s equations necessitates the
coordinatization of all of the tensorial quantities by distributional coefficients effecting a type of
topological coarse-graining over singular loci and, thus, localizing the point-event stratum in their
terms. Under the proviso that these distributional coefficients form algebra sheaves fulfilling all of the
required cohomological conditions, the means of extending local distributional solutions generalizes the
standard method of extending timelike geodesic curves in a smooth manifold. The physical significance
of this generalization is that the domain of validity of the field equations can be extended beyond
the notion of a smooth manifold. Not only this, but additionally, these distinguishable extensions
may be associated intrinsically with the gravitational field, under the constraint that sources of the
field itself giving rise to singularities can be expressed topologically in the terms of distribution-like
algebra sheaves.

In this state of affairs, the smoothness assumption can be retained, at best, only locally and
certainly far from singular loci. Mathematically, there should exist an embedding of the algebra sheaf
of smooth functions into a distribution-like algebra sheaf of coefficients qualified as a solution of the
extended field equations. An illuminating way to think of the proposed approach in non-technical terms
is that coping efficiently with singularities requires a process of folding out of the smooth point-event
manifold background. This viewpoint has been emphasized by von Müller [33], according to whom
the process of folding out into a “statu-nascendi” level should be considered in the context of a whole
new categorical apparatus qualifying its intrinsic characteristics in contradistinction to the event
stratum. In this manner, we suggest that the existence of a distribution-like sheaf of coefficients as
a solution of the field equations within an appropriately-extended domain characterized by some
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generic gravitational criterion paves the way for understanding the precise nature of this folding out
of the smooth point-event stratum.

The possibility of extending the formulation of Einstein’s equations in the case of non-smooth
spectrums using the sheaf-theoretic technique of localization in the context of ADG is of major
significance. We note that non-smooth spectrums of algebra sheaves do not require the consideration
of singularities as ideal points on the boundary of a smooth manifold. In other words, singular loci
are allowed to be located, according to specific topological criteria, within a manifold. Of course, a
natural requirement should be that the exclusion of singular loci would recast Einstein’s equation
in the familiar form in terms of smooth coefficients. However, clearly in the case that Einstein’s
equations become meaningfully extended over singular loci, then the coefficients of the metric and
curvature tensors cannot be smooth any more. Therefore, from a smooth perspective, a singularity
functions as an obstruction to the extension of a local solution to the field equations expressed in
terms of smooth coefficients. Thus, more precisely, a singular locus plays the role of a cohomological
obstruction to the extendibility of a local smooth solution. This criterion incorporates and generalizes
sheaf-cohomologically the initial definition of singular behavior in terms of non-extendibility of
geodesics. Essentially, the reason is that the notion of extendibility of local solutions is of a
sheaf-theoretic nature, recalling for instance the well-known procedure of analytic continuation.

There are two important physical consequences emanating from the possibility of formulating
Einstein’s equations in terms of generalized non-smooth sheaves of coefficients. The first is related to
the natural question concerning the criterion of depicting a particular sheaf of algebras for this purpose.
The second is related to a possible re-evaluation of the status of the energy-momentum source term in
Einstein’s equations, which currently is not implemented by any process of geometrization.

Regarding the first, the required physical condition is the following: Since the formulation
of Einstein’s equations can be extended over singular loci, it should precisely be the nature and
specification of these singular loci that would determine the appropriate sheaf of coefficients, such that
a solution can be expressed eventually in terms of these coefficients. In the non-singular case, we know
already that a solution can be expressed in terms of smooth coefficients. In other words, we already
know that if no singularity is present, the spacetime metric, obtained as a particular solution of
the vacuum Einstein equations, for example, is always expressible in terms of smooth coefficients,
i.e., in terms of the sheaf of algebras C∞(X). Hence, we expect that in the presence of a particular
type of a singular locus over which Einstein’s equations hold in terms of a distribution-like sheaf
of coefficients, there exists a metric solution expressed in terms of these coefficients. Not only this,
but additionally, since the knowledge of the metric solution is completely expressible in terms of
these coefficients, considered as unknowns when plugged into the equations, the specification of a
singular locus should force a corresponding algebra sheaf as the solution. In other words, the nature
of a singular locus should determine the differentiability properties of a metric solution in the case
that Einstein’s equations can be extended over this locus. As we stressed previously, the physical
association of singular loci with sources of the gravitational field itself, giving rise to distinguishable
extensions of the standard smooth manifold spacetime model of general relativity, implies that sources
can be expressed topologically after all, if solutions of the field equations are expressed in terms of
appropriate distribution-like algebra sheaves.

In this context, the physical significance of ADG is that it determines rigorously the criteria that
these algebra sheaves of coefficients have to satisfy, such that Einstein’s equations can be satisfied over
various sorts of singular loci, expressed in terms of these coefficients. Not surprisingly, these criteria
are of a cohomological nature. Essentially, they determine viable algebra sheaves of coefficients by the
requirement that they are soft, and thus acyclic, such that the validity of the de Rham complex remains
intact. In turn, the basic idea is that the Poincaré lemma should remain in force, viz. closed differential
forms expressed in these generalized coefficients should be locally exact as in the smooth case, so that
the differential geometric mechanism can be extended over singularities without breaking down.
We will present a general form of these algebra sheaves consisting of distribution-like coefficients
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in the sequel. According to Clarke, the answer to many of the problems related to singularities
“involve detailed considerations of distributional solutions to Einstein’s equations, leading into an
area that is only starting to be explored . . . ” [28]. We propose that the extension of the validity of
Einstein’s equations over singular loci in terms of appropriate sheaves of algebras, which are generally
non-smooth, sheds new light on the problem of singular behavior in general relativity.

Regarding the second physical consequence, it is instructive to remind that the energy-momentum
source term in the smooth formulation of Einstein’s equations is not of any geometric nature.
The energy-momentum tensor attributes the source of curvature entirely to matter (including the
cosmological dark energy), as it does not incorporate the stress-energy associated with the gravitational
field itself. There is an underlying assumption that spacetime is somehow empty unless it is filled in
by matter, expressed in terms of the smooth coefficients of the energy-momentum tensor. This is the
reason that when the energy-momentum part is zero, then the equations are called vacuum equations.
Now, the validity of Einstein’s equations over singular domains in terms of generalized non-smooth
algebra sheaves casts serious doubts on this assumption. Namely, the form of Einstein’s equations with
the vanishing non-geometric second part may turn out to be the fundamental form of these equations.
The reason is that sources of the gravitational field itself might be implemented in terms of non-smooth
algebra sheaves, and thus, what is called a vacuum is not empty at all, precisely because it engulfs
these sources. This idea is not actually as controversial as it sounds, if we take seriously into account
that all classical experimental tests of general relativity involve a vanishing energy-momentum tensor,
and thus, what they really verify is the equation Rμν = 0. This issue has been also pointed out and
argued for extensively, from a non sheaf-theoretic point of view, by Vishwakarma [34], who conducted
a careful analysis based on the observational tests of the theory. In the sequel, we will discuss this issue
in more detail from a geometrodynamical perspective in light of the particular form of distribution-like
algebra sheaves.

5. Spacetime Extensions in Terms of Singularity-Free Distributional Algebra Sheaves

It is physically reasonable to expect that an admissible commutative algebra sheaf of coefficients in
terms of which Einstein’s equations may be extended over a singular locus should be distribution-like.
For example, we may think of a matter distribution confined to a submanifold of spacetime whose
density is integrable over this submanifold. In the context of a linear field theory, this should be
naturally modeled in terms of a linear distribution. Unfortunately, this is not possible in the context of
general relativity, which is a non-linear theory. In other words, Schwarz’s linear distributions are not
suitable candidates for expressing the information of singular loci.

The unsuitability of linear distributions rests on the fact that the space D′ they form is only a
linear space, but it is not an algebra. This is characterized as the “Schwarz impossibility” and may be
formulated as follows: There is no symmetric bilinear morphism:

◦ : D′ (V)×D
′ (V) � (S, T) → S ◦ T ∈ D

′ (V)

so that S ◦ T is the usual point-wise product of continuous functions, when S, T ∈ C0 (V). Equivalently,
D′ (V) is not closed under any multiplication that extends the usual multiplication of continuous
functions, where V is an open subset X. Since all of the involved arguments are of a local character,
without loss of generality, we may simply consider V as an open subset of R4.

A physically natural way to bypass “Schwarz impossibility” is to assume the existence of an
embedding morphism D′(V) ↪→ A (V), which embeds the vector space of distributions D′ (V) as a
vector subspace in A (V), where A (V) is the quotient algebra:

A (V) = K(V)/I, (5)

and K(V) is a subalgebra in C∞ (V)Λ, for some index set Λ, whereas I is an ideal in K(V).
This approach was initiated by Rosinger [35,36] and developed further in [37–40].
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We will restrict ourselves to a certain subclass of this type of algebras, namely the unital,
associative and commutative algebras of generalized functions, whose suitably-defined ideals can
engulf algebraically the information of singular loci. These algebras, introduced by Rosinger [36],
have been formed in such a way as to express generalized solutions of non-linear partial differential
equations. We may describe the generation of these algebras locally as follows:

Let V ⊆ R4 be an open set and L = (Λ,≤) be a right-directed partial order on some specified
index set Λ. That is, for all λ, μ ∈ Λ, there exists ν ∈ Λ, such that λ,μ ≤ ν. With respect to the usual
componentwise operations, C∞ (V)Λ is a unital and commutative algebra over the reals. We define
the following ideal IL in C∞ (V)Λ, whose physical meaning will be described in the sequel:

IL (V) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ = (φλ)λ∈Λ

∃ Γ ⊂ V closed nowhere dense :
∀ x ∈ [V \ Γ] being dense :
∃ λ ∈ Λ :
∀ μ ∈ Λ, μ ≥ λ :

φμ (x) = 0, ∂pφμ (x) = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)

In the above definition, we think of Γ as a singular locus in R4, characterized as a closed and
nowhere dense subset relative to the open set V ⊆ R4, such that its complement V \ Γ in V is dense.
The unital and commutative algebra C∞ (V)Λ contains smooth functions φλ indexed by the set Λ
and defined over V, to be thought of as diagrams or sequences of Λ-indexed smooth functions.
The requirement of the right-directed partial order on the specified index set Λ, which is denoted by
L = (Λ,≤), is technically necessary in order that the above set forms actually an ideal in C∞ (V)Λ.
Now, the ideal IL (V) in C∞ (V)Λ includes all of these sequences of smooth functions φλ that vanish
asymptotically outside the singular locus Γ together with all of their partial derivatives. Therefore,
intuitively speaking, the ideal of the form IL (V) incorporates all of these sequences of smooth functions
indexed by Λ whose support covers the singular locus Γ, whereas they vanish outside it. In this manner,
the information of the singular locus Γ is encoded in the ideal IL (V) in C∞ (V)Λ. Hence, the quotient
commutative algebra AL (V) = C∞ (V)Λ /IL (V) is an algebra of residues of sequences of smooth
functions modulo the singular information ideal IL (V).

A natural question in the above context refers to the requirement that the complement V \ Γ of
the singular locus Γ in V should be dense. The necessity of this requirement can be understood by the
fact that we wish to obtain an embedding ι of the algebra of smooth functions C∞ (V) into the algebra
of generalized functions AL (V):

ι : C∞ (V) ↪→ AL (V) =
C∞ (V)Λ

IL (V)
(7)

such that:

ϕ ↪→ ι(ϕ) = Δ(ϕ) + [IL (V)] (8)

where ΔΛ |V : C∞ (V) → C∞ (V)Λ is the diagonal morphism with respect to Λ, defined for an open set
V as follows:

ΔΛ(ϕ) |V=
{

Δ (ϕ) = (ϕλ)λ∈Λ | ϕλ = ϕ, ∀λ ∈ Λ, ϕ ∈ C
∞ (V)

}
.

Hence, for every smooth function ϕ in C∞ (V), the diagonal image Δ (ϕ) of ϕ in C∞ (V)Λ is a
sequence of smooth functions all identical to ϕ, indexed by Λ. The embedding ι is feasible according
to the above, if and only if the ideal IL (V) satisfies the off diagonality condition:

IL (V) ∩ ΔΛ |V= {0}. (9)
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Therefore, it remains to show that if the complement V \ Γ of the singular locus Γ in V is dense,
according to the specification in (6), then the ideal IL (V) actually satisfies the above off diagonality
condition. Therefore, we suppose that V \ Γ is dense in V and consider a smooth function χ in C∞ (V).
If ΔΛ(χ) |V := Δ(χ) belongs to the ideal IL (V), then the asymptotic vanishing condition in (6) implies
that χ = 0 in V \ Γ, and therefore, we must have χ = 0 in V because V \ Γ is dense in V by hypothesis.
Thus, it follows that the ideal IL (V) satisfies the off diagonality condition (9), as required.

Conclusively, there exists a canonical injective homomorphism of commutative algebras,
or equivalently, an embedding ι of the algebra of smooth functions C∞ (V) into the algebra of
generalized functions AL (V):

ι : C∞ (V) ↪→ AL (V) =
C∞ (V)Λ

IL (V)
(10)

Furthermore, in view of (6), it follows immediately that the partial differential operators:

∂p : C∞ (V)Λ � φ = (φλ) �→ ∂pφ = (∂pφλ) ∈ C
∞ (V)Λ

satisfy the inclusion:

∂p (IL (V)) ⊆ IL (V) . (11)

Thus, the standard partial derivative operators on C∞ (V) extend to AL (V):

∂p : AL (V) � [φ + IL (V)] �→ [∂pφ + IL (V)] ∈ AL (V) , (12)

We conclude that the embedding of commutative algebras (10) extends to an embedding of
differential algebras. Therefore, the following diagram commutes:

C∞ (V) � C∞ (V)
∂p

� �
AL (V) � AL (V)

∂p

We emphasize that the embedding (10) preserves not only the algebraic structure of C∞ (V),
but also its differential structure. The off diagonality condition (9) implies also the existence of an
injective, linear morphism:

D
′ (V) ↪→ AL (V) . (13)

Therefore, the differential algebra AL (V) contains the space of distributions as a linear subspace;
see [38] (pp. 234–244), where those algebras that admit linear embeddings of distributions are
characterized in terms of such off diagonality conditions. However, in contradistinction with (10),
the embedding (13) does not commute with partial derivatives, and thus, the partial derivatives on
AL (V) do not, in general, coincide with distributional derivatives, when restricted to D′ (V).

Finally, it is crucial to observe that a subset of a topological space is closed and nowhere dense
if and only if it satisfies this condition locally. This is the key idea used to prove that the algebras
of generalized functions AL (V) form actually sheaves of commutative algebras, which additionally,
are soft and flasque or flabby [23,24]. Thus, they are characterized as cohomologically-appropriate
sheaves of coefficients according to ADG. More precisely, the distribution-like soft algebra sheaves of
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the form AL constitute an acyclic resolution of the constant sheaf of the reals coordinatizing the events.
Thus, we conclude that the de Rham complex can be rigorously expressed in terms of these coefficients
instead of the smooth ones, and consequently, Einstein’s equations can be formulated with respect to
coefficients from the algebra sheaf AL instead of the smooth ones from C∞. Consequently, the validity
of Einstein’s equations can be extended over singular loci in a covariant manner by utilizing coefficients
from the sheaf AL for expressing all involved differential geometric tensorial quantities. Reciprocally,
according to the intended physical interpretation of these algebra sheaves, pertaining to expressing
sources of the gravitational field in terms of closed and nowhere dense subsets, the presence of a
singular locus forces an algebra sheaf of the form AL as coefficients with respect to which Einstein’s
equations retain their validity over this locus and do not break down, like in the case of insisting to use
indiscriminately-smooth coefficients.

For the sake of completeness, it is instructive to remind that the softness property of the sheaves
of the form AL means that any section over any closed subset can be extended to a global section. Thus,
these types of sheaves characterize cohomologically the topological property of paracompactness
by means of acyclicity. Equivalently, soft sheaves are acyclic over a paracompact topological space.
Moreover, sheaves of the form AL are not only soft, but they are flasque or flabby, as well, which is
a local property. This means that the restriction morphism of sections in the sheaf definition is an
epimorphism. Hence, in this case, we can always extend any local section by zero to obtain a global
section of AL.

We may recapitulate by pointing out that the first basic idea involved in the construction of
distribution-like algebra sheaves of coefficients, in their role to coordinatize solutions of non-linear
partial differential equations, is to model a singular locus Γ in R4 as a closed and nowhere dense subset
relative to an open set V ⊆ R4, such that its complement V \ Γ in V is dense. The second basic idea is
to express such a closed and nowhere dense singular locus as an ideal in an algebra sheaf constructed
as an extension of the smooth one over a partially-ordered set. In this manner, the ideal expressing
algebraically a singular locus contains diagrams of locally-defined smooth functions indexed by Λ
whose support covers the singular locus Γ, whereas they vanish outside it. Then, it can be shown that
the quotient commutative algebra sheaf AL (V) = C∞ (V)Λ /IL (V) is an algebra sheaf of residues of
diagrams of smooth functions modulo the closed nowhere dense singular ideal IL (V).

It is instructive to emphasize that the algebra of global sections of the sheaf AL (V) contains
the space of Schwarz distributions D′ (V) only as a linear subspace and not as a commutative
subalgebra. For example, Dirac’s delta, considered as a distribution, is represented in terms of a
generalized function whose pertinent closed and nowhere dense set is an one-point set. It is well
known that the square of the delta distribution is not a distribution itself, since the operation of
point-wise multiplication of distributions is not well-defined in D′ (V). Notwithstanding this fact,
the representative generalized function may be unproblematically squared providing a legitimate
generalized function without being a linear distribution itself. Clearly, by the rules of the construction
of these commutative algebras of generalized functions, arbitrary nonlinear continuous operations
may be applied to a generalized function giving another generalized function in the same algebra. In
passing, it is also worth pointing out that the linear space of Schwarz distributions does not give rise
to a flasque vector sheaf in contradistinction to the case of the embedding sheaf AL (V), a property
that is crucial for the global extendibility of all standard local differential geometric constructions.

In the sequel, we are going to propose a concrete class of closed and nowhere dense sets modeling
the boundaries of singular loci and forming a topological link in 3D space. Conceptually, this essentially
means that the semantics of folding out a local smooth event stratum into a singular domain may be
associated with the formation of some topological link configuration and its concomitant algebraic
expression in terms of an algebra sheaf of the type AL. At the final stage, we have to examine if this
algebra sheaf satisfies the cohomological conditions necessary for expressing the differential geometric
mechanism of general relativity in these terms instead of the globally-smooth ones. This turns out to
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be actually the case, and therefore, algebra sheaves of the type AL can be used legitimately to express
the metric solution of Einstein’s field equations extended now over singularities.

The important consequence is that we can retain not only the validity, but not the form and
covariance property of Einstein’s equations even over singular loci. The reason is that all physical
quantities can be still transformed according to a tensor law for any arbitrary admissible coordinate
transformation. The difference in comparison to the smooth case is that the coordinates are allowed to
be non-standard or non-smooth, while at the same time, all of the machinery of differential geometry
can be applied with respect to them. In particular, while the coefficients of the tensorial physical
quantities are non-smooth, all of the usual differential-geometric constructions can be carried out as in
the smooth case. The only price to be paid for this generalization is the rejection of the fixed absolute
smooth manifold background of the theory. We consider this fact as physically non-disturbing, since
the essence of general relativity is in the covariant formulation and validity of Einstein’s equations
and not on the existence of a smooth background manifold. In particular, what we gain from such a
generalization is not only that Einstein’s equations can be extended covariantly over singular loci, but
also that the solution of these equations in terms of coefficients from a sheaf of the form AL are free of
singularities.

6. Topological Links in Geometrodynamics

According to the paradigm of geometrodynamics [41], we may foliate a spacetime manifold
X into three-dimensional spacelike leaves Σt by utilizing an one-parameter family of embeddings
εt : Σ ↪→ X, such that εt(Σ) = Σt. In the geometrodynamical formulation, the three-dimensional
Riemannian manifold (Σ, h) is thought of as dynamically evolving, where the corresponding metric
at time t, ht = εt

∗g, is derived by pulling back the spacetime metric g via εt. It is implicitly assumed
that all three-dimensional spacelike leaves Σt are mutually disjoint, such that the Lorentzian manifold
(R× Σ, ε∗g) represents X, where the leaves of the considered foliation correspond to the constant time
hypersurfaces.

The geometrodynamical picture is instructive for our purposes because it shows that active
gravitational mass may emerge from purely topological considerations taking into account the
constraints imposed by Einstein’s field equations in the vacuum [42]. From a physical perspective,
this may be interpreted in a novel way according to Wheeler’s insight referring to “mass without
mass” [43,44] as follows: Localized configurations of topologically-singular loci in open sets of
a spacetime manifold restricted to closed nowhere dense subsets amount to active gravitational
mass/energy in their complementary open dense subsets. In particular, if we consider that the
Lorentzian manifold (R × Σ, ε∗g) represents X, the singular loci may be localized within the
three-dimensional manifold Σ. In this context, if Σ has a non-trivial topology, Gannon’s theorem [45]
implies that spacetime is geodesically incomplete and, thus, singular. The simplest way to implement a
non-trivial topology on Σ is via the hypothesis of non-simple connectivity. More precisely, the existence
of singular loci in Σ, localized in closed nowhere dense subsets makes Σ a multiple-connected
topological space and, thus, topologically different from R3. We may recapitulate our conclusion up to
now by asserting that the existence of singular loci in closed nowhere dense subsets of Σ, making it a
multiply-connected topological space, implies active gravitational mass/energy in the complementary
open dense subsets. Moreover, according to the “positive mass theorem” considered in the vacuum
case, this gravitational mass/energy is non-zero and strictly positive. In passing, we would like to stress
that Gannon’s theorem should be conceived of as a significant generalization of the Penrose–Hawking
singularity theorems [29], in the sense of replacing the usual geometric hypothesis of closed trapped
surfaces in Σ by the more general applicable topological hypothesis of the non-simple connectivity
of Σ.

In the same vein of ideas, we may also consider the system of Einstein–Maxwell equations
without sources for the Maxwell field and, in this way, address from our perspective the alternative
Wheeler’s insight referring to “charge without charge” [43,44]. This has been originally tied to the
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assumption that Σ is orientable and bears the standard wormhole topology, that is homotopically
equivalent to S1 × S2 − {point}, such that the magnetic flux lines thread through the wormhole. In this
case, the homology class of all two-spheres containing both of the wormhole mouths has zero charge,
whereas the two individual wormhole mouths may be considered as having equal and opposite
charges. In this context, a wormhole may be thought of in terms of a one-dimensional homology class
in spacetime. From the general results of low-dimensional geometric topology [46], we know that every
homology class of a four-dimensional spacetime can be represented by an embedded submanifold.
Using the geometrodynamic foliation, we may restrict this representation to Σ. In this manner,
we can instantiate a higher-order wormhole solution, for example by considering an appropriate
two-dimensional homology class.

We are going to outline a general method of generating these types of solutions guided by the
form of the algebra sheaves AL incorporating gravitational properties defined on dense open sets
of X and by restriction to dense open sets of Σ. For this purpose, we may consider a singular locus
with boundary in R3 or in its compactification S3, which is excised from R3 or S3. We consider a
singular locus as a singular disk cut off from S3, which may be visualized in terms of a cone whose
apex is at infinity and whose base lies at the boundary of the singular locus. A singular disk of this
form excised from S3 gives rise to a two-dimensional relative homology class of S3, which may be
interpreted according to the above as a two-dimensional embedded compact submanifold. The circular
boundary of this singular disk is a closed and nowhere dense subset with respect to an open set of
S3. Analogously, we may consider the excision of more than one singular disks from S3, such that
their circular boundaries collectively define a closed and nowhere dense subset of an open set of S3.
We propose to think of these circular singular boundaries as giving rise to topological links.

The notion of a topological link is based on the underlying idea of connectivity among a collection
of topological circles, called simply loops [47]. We consider that a loop is a tame closed curve.
The property of tameness means that a closed curve can be deformed continuously and without
self-intersections into a polygonal one, that is a closed curve formed by a finite collection of straight-line
segments. Given this qualification, a loop is characterized by the following properties: First, it is
a one-dimensional object. Second, it is bounded, meaning that it is contained in some sphere of
sufficiently large radius. Third, a single cut at a point cannot separate a loop into two pieces, whereas
any set of two cuts at two different points does separate a loop into two pieces. Moreover, a loop is
called knotted if it cannot be continuously deformed into a circle without self-intersection. We only
consider unknotted tame closed curves. A topological N-link is a collection of N loops, where N
is a natural number. Regarding the connectivity of a collection of N loops, the crucial property is
the property of the splittability of the corresponding N-link. We say that a topological N-link is
splittable if it can be deformed continuously, such that part of the link lies within B and the rest of
the link lies within C, where B, C denote mutually-exclusive solid spheres (balls). Intuitively, the
property of splittability of an N-link means that the link can come at least partly apart without cutting.
Complete splittability means that the link can come completely apart without cutting. On the other
side, non-splittability means that not even one of the involved loops, or any pair of them, or any
combination of them, can be separated from the rest without cutting.

According to our hypothesis, a collection of circular singular boundaries defining a closed and
nowhere dense subset of an open set of S3 gives rise to a topological link in S3. We may now replace
the loop components of such a topological link by open non-intersecting tubular neighborhoods such
that the complement of the link in S3 can be given by the structure of a three-dimensional compact and
oriented manifold with a boundary. Clearly, this space is homologically equivalent to the original one
since it is just its deformation retracted. Next, we may consider an ordering of the loops l1, l2, . . . lN
constituting the link, or equivalently, an ordering of their tubular neighborhoods λ1, λ2, . . . λN . Then, if
we take λi, λj, together with their ordering, we define the relative homology class σij that is represented
by the compact oriented embedded submanifold whose two boundary components lie on the total
boundary, that is the first one in ∂λi and the second in ∂λj. The orientation is defined as being negative
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on the first boundary component and positive on the second, so that we have a path from λi to λj in
this case.

7. The Borromean Rings as a Universal Nowhere Dense Singular Link

According to the formalism of geometrodynamics, we consider the Lorentzian manifold
(R× Σ, ε∗g) as a representative of X, where the singularities are localized within the three-dimensional
manifold Σ. We remind that, according to Gannon’s theorem, if Σ is multiple-connected as a topological
space, then spacetime is geodesically incomplete. According to our previous analysis, a collection of
circular singular boundaries defining a closed and nowhere dense subset of an open set of S3 gives
rise to a topological link in S3. Moreover, this implies the existence of active gravitational mass/energy
in the complementary open dense subsets, which is non-zero and strictly positive.

In this context, it is important to examine if there exists a universal way via which we can
obtain the three-dimensional manifold Σ by the information incorporated in a topological link in S3

representing the singular boundaries, forming collectively a closed and nowhere dense subset. This
sheds more light on the role of the algebra sheaves AL utilized to express gravitational properties
defined on dense open sets of X and by restriction to dense open sets of Σ and is guiding in our quest
of exploring generalized wormhole-types of solutions based on topological links and their associated
homology classes.

It turns out that a universal way to obtain Σ by using a topological link in S3 representing the
singular boundaries, according to the above, actually exists and is based on the notion of a universal
topological link. In view of the type of solutions we are interested in, such a universal link is defined
by the Borromean rings. In particular, using methods of geometric topology, it can be shown that any
compact oriented three-dimensional manifold Σ without boundary can be obtained as the branched
covering space of the three-sphere S3 with the branch set the Borromean rings [48]. In this manner,
the Borromean rings constitute a universal topological link.

The notion of a branched covering space is a generalization of the standard notion of a covering
space, characterized as a local homeomorphism bearing the unique path lifting and homotopy lifting
property [49]. More precisely, a branched covering space of the three-sphere S3 is considered as a
map from Σ to S3 such that this map is a covering space after we delete or exclude a locus of points,
called the branched locus. The universality property says that Σ can be obtained in this way if the
branched locus is formed by the Borromean rings, considered as a closed and nowhere dense set
with respect to an open set in S3 in our setting. In a well-defined sense, this branched covering space
provides the geometric representation of an algebra sheaf of the form AL restricted to the three spatial
dimensions, where the closed and nowhere dense subset formed by the Borromean rings is localized.
We may extend this closed and nowhere dense subset to four dimensions by considering a timelike axis
perpendicular to the Borromean rings, which plays the role of a three-fold symmetry axis of rotation.

The Borromean rings consist of three rings localized in S3, which are linked together in such a
way that each of the rings lies completely over one of the other two, and completely under the other,
as is shown in the pictures below:

This particular type of topological linking displayed by the Borromean rings is called the
Borromean link and is characterized by the following distinguishing property: if any one of
the rings is removed from the Borromean link, the remaining two come completely apart. It is
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important to emphasize that the rings should be modeled in terms of unknotted tame closed curves
and not as perfectly circular geometric circles. The adjective topological means that they can be
deformed continuously under the constraint that the particular type of linkage forming the Borromean
configuration is preserved.

From the viewpoint of the theory of topological links, the Borromean link constitutes an
interlocking family of three loops, such that if any one of them is cut at a point and removed, then the
remaining two loops become completely unlinked [47,49–52]. In more precise terms, the Borromean
link is characterized topologically by the property of splittability as follows: The Borromean link is
a non-splittable three-link (because it consists of three loops), such that every two-sub-link of this
three-link is completely splittable. It is clear that it is a non-splittable three-link because not even one
of the three loops, or any pair of them, can be separated from the rest without cutting. A two-sub-link
is simply any sub-collection of two loops obtained by erasing the loop that does not belong to this
sub-collection. Since the Borromean link is characterized by the property that if we erase any one
of the three interlocking loops, then the remaining two loops become unlinked, it is clear that every
two-sub-link of the non-splittable three-link is completely splittable.

In our context, we conclude that if a triad of circular singular boundaries defining a closed and
nowhere dense subset of an open set of S3 are connected in the form of the Borromean topological link,
then Σ as a compact oriented three-dimensional manifold can be obtained as the branched covering
space of the three-sphere S3 with the branch set these Borromean-linked boundaries. Based on these
findings, we would like to explore their semantics in relation to the instantiation of a higher-order
wormhole solution. For this purpose, we remind that the standard wormhole solution is thought of in
terms of a one-dimensional homology class in a space homotopically equivalent to S1 × S2 − {point}.
In our framework, we do not need to impose a particular topology on Σ ab initio, since it can now be
derived universally as the branched covering space of S3 over the branch nowhere dense subset of
singular boundaries forming a Borromean link. The fact that the Borromean link is a non-splittable
three-link, such that every two-sub-link of this three-link is completely splittable, is characterized in
homology theory by a non-vanishing triple Massey product, where all pairwise intersection products
of one-dimensional homology classes vanish, reflecting the fact that the components of the Borromean
link are not pairwise linked. If we denote the components of the Borromean link B by λ1, λ2, λ3,
the triple Massey product [49] is expressed as a two-dimensional cohomology class in the dense
complement of B in S3, that is it defines a non-trivial class in H2(S3\(λ1 � λ2 � λ3)).

8. Conclusions

The main purpose of this communication, one hundred years after Einstein’s formulation of
the general theory of relativity, has been an invitation to re-think the validity domain of the field
equations. The primary motivations emanate from three distinct sources: The first comes from Clarke’s
assertion concerning the problem of singularities, according to which, the answers “involve detailed
considerations of distributional solutions to Einstein’s equations, leading into an area that is only
starting to be explored . . . ”. The second comes from Weyl’s critical remark regarding the role of a
background differential manifold, according to which, “while topology has succeeded fairly well in
mastering continuity, we do not yet understand the inner meaning of the restriction to differential
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manifolds. Perhaps one day physics will be able to discard it”. The third comes from Wheeler’s ideas
regarding the notions of “mass without mass” and “charge without charge” in the vacuum, which can
be given a more precise mathematical formulation in topological terms.

The sheaf-theoretic re-formulation of the usual differential geometric framework of smooth
manifolds points to the conclusion that there exist distinguishable extensions of the standard smooth
manifold spacetime model of general relativity, which are utilized by appropriate extensions of the
sheaf of coefficients parameterizing all tensorial physical quantities of the theory. The criteria of the
suitability of these extensions are determined by sheaf-cohomological means and maintain the standard
covariance properties of the theory in domains, including singular loci. We have presented and
discussed in detail a concrete distribution-like sheaf of coefficients incorporating singularities in closed
and nowhere dense subsets of an open set of a four-dimensional spacetime. An instructive way to think
of these generalized algebra sheaves of coefficients refers to the role of a singularity as an obstruction
to the existence of a solution to the field equations, expressed in terms of smooth coefficients. Thus,
more generally, a singular locus may be thought of as a cohomological obstruction to the extendibility
of a local smooth solution. This criterion incorporates and generalizes sheaf-cohomologically the initial
definition of singular behavior in terms of the non-extendibility of geodesics. Essentially, the reason is
that the notion of the extendibility of some local solution is of a sheaf-theoretic nature.

At a further stage involving the formalism of geometrodynamics, the existence of singular loci
in closed and nowhere dense subsets of a spatial hypersurface, making it a multiply-connected
topological space, implies active gravitational mass/energy in the complementary open dense subsets.
Moreover, according to the “positive mass theorem” considered in the vacuum case, this gravitational
mass/energy is non-zero and strictly positive. We show that it is enough for this purpose to consider
singular boundaries forming closed and nowhere dense subsets and forcing a multiple-connected
topology, which in turn implies that spacetime is geodesically incomplete. In view of expressing
generalized wormhole solutions in this context, we propose that closed singular boundaries may
form topological links. In this manner, using the results of geometric topology, we point out that
the Borromean topological link is characterized as a universal link. Since this link is characterized
cohomologically by a higher order invariant, it may be associated with a generalized wormhole model,
which reinforces Wheeler’s ideas in geometrodynamics.

Finally, we express the hope that the proposed approach paves the way for a further technical and
semantical refinement of the following two of Einstein’s fundamental insights in building up general
relativity, which have not been addressed in satisfactory completeness up to the present:

“Under the influence of the ideas of Faraday and Maxwell the notion developed that the
whole of physical reality could perhaps be represented as a field whose components depend
on four space-time parameters. If the laws of this field are in general covariant, that is,
are not dependent on a particular choice of coordinate system, then the introduction of an
independent (absolute) space is no longer necessary. That which constitutes the spatial
character of reality is then simply the four-dimensionality of the field. There is then no
“empty” space, that is, there is no space without a field.” [53]

“A field theory is not yet completely determined by the system of field equations. Should
one admit the appearance of singularities? . . . It is my opinion that singularities must be
excluded. It does not seem reasonable to me to introduce into a continuum theory points
(or lines etc.) for which the field equations do not hold . . .” [54]

In a nutshell, regarding the first, the utilization of distribution-like sheaves of coefficients
extending the smooth one over singularities, and thus, extending the domain of validity of the
field equations beyond globally-smooth manifolds, shows in agreement with geometrodynamics
that active gravitational mass/energy may emerge from purely topological considerations taking into
account the constraints imposed by the field equations in the vacuum. These topological considerations
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pertain to the modeling of singularities in terms of closed and nowhere dense sets, such that their
complements who bear the induced active gravitational mass/energy are open and dense. In this
manner, the vacuum can be legitimately considered as a structural quality of the field itself. Regarding
the second, it is indeed unreasonable to consider singular loci in a continuum theory, where the field
equations do not hold. The existence of distribution-like sheaves of coefficients provides precisely the
means to bypass this problem by coordinatizing all of the tensorial quantities in their terms, extending
the smooth ones and, therefore, extending the domain of validity of the field equations.
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Abstract: An alternative approach to Einstein’s theory of General Relativity (GR) is reviewed, which is
motivated by a range of serious theoretical issues inflicting the theory, such as the cosmological
constant problem, presence of non-Machian solutions, problems related with the energy-stress
tensor Tik and unphysical solutions. The new approach emanates from a critical analysis of these
problems, providing a novel insight that the matter fields, together with the ensuing gravitational
field, are already present inherently in the spacetime without taking recourse to Tik. Supported by
lots of evidence, the new insight revolutionizes our views on the representation of the source of
gravitation and establishes the spacetime itself as the source, which becomes crucial for understanding
the unresolved issues in a unified manner. This leads to a new paradigm in GR by establishing
equation Rik = 0 as the field equation of gravitation plus inertia in the very presence of matter.

Keywords: gravitation; general relativity; fundamental problems and general formalism; Mach’s principle

1. Introduction

The year 2015 marks the centenary of the advent of Albert Einstein’s theory of General Relativity
(GR), which constitutes the current description of gravitation in modern physics. It is undoubtedly one
of the towering theoretical achievements of 20th-century physics, which is recognized as an intellectual
achievement par excellence.

Einstein first revolutionized, in 1905, the concepts of absolute space and absolute time by
superseding them with a single four-dimensional spacetime fabric, which only had an absolute
meaning. He discovered this in his theory of Special Relativity (SR), which he formulated by postulating
that the laws of physics are the same in all non-accelerating reference frames and the speed of light in
vacuum never changes. He then made a great leap from SR to GR through his penetrating insight that
the gravitational field in a small neighborhood of spacetime is indistinguishable from an appropriate
acceleration of the reference frame (principle of equivalence), and hence gravitation can be added to
SR (which is valid only in the absence of gravitation) by generalizing it for the accelerating observers.
This leads to a curved spacetime.

This dramatically revolutionized the Newtonian notion of gravitation as a force by heralding
that gravitation is a manifestation of the dynamically curved spacetime created by the presence of
matter. The principle of general covariance (the laws of physics should be the same in all coordinate
systems, including the accelerating ones) then suggests that the theory must be formulated by using
the language of tensors. This leads to the famous Einstein equation:

Gik ≡ Rik − 1
2

gikR = −8πG
c4 Tik (1)
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which represents how geometry, encoded in the left-hand side (which is a function of the spacetime
curvature), behaves in response to matter encoded in the energy-momentum-stress tensor Tik.
[Here, as usual, gik is the contravariant form of the metric tensor gik representing the spacetime
geometry, which is defined by ds2 = gikdxidxk. Rik is the Ricci tensor defined by Rik = ghjRhijk in
terms of the Riemann tensor Rhijk. R = gikRik is the Ricci scalar and Gik the Einstein tensor. Tik is the
energy-stress tensor of matter (which can very well absorb the cosmological constant or any other
candidate of dark energy). G is the Newtonian constant of gravitation and c the speed of light in
vacuum. The Latin indices range and sum over the values 0, 1, 2, 3 unless stated otherwise.] This, in a
sense, completes the identification of gravitation with geometry. It turns out that the spacetime
geometry is no longer a fixed inert background, rather it is a key player in physics, which acts on
matter and can be acted upon. This constitutes a profound paradigm shift.

The theory has made remarkable progress on both theoretical and observational fronts [1–5]. It is
remarkable that, born a century ago out of almost pure thought, the theory has managed to survive
extensive experimental/observational scrutiny and describes accurately all gravitational phenomena
ranging from the solar system to the largest scale—the Universe itself. Nevertheless, a number of
questions remain open. On the one hand, the theory requires the dark matter and dark energy—two of
the largest contributions to Tik—which have entirely mysterious physical origins and do not have
any non-gravitational or laboratory evidence. On the other hand, the theory suffers from profound
theoretical difficulties, some of which are reviewed in the following. Nonetheless, if a theory requires
more than 95% of “dark entities” in order to describe the observations, it is an alarming signal for us to
turn back to the very foundations of the theory, rather than just keep adding epicycles to it.

Although Einstein, and then others, were mesmerized by the ‘’inner consistency” and elegance of
the theory, many theoretical issues were discovered even during the lifetime of Einstein which were
not consistent with the founding principles of GR. In the following, we provide a critical review of the
historical development of GR and some ensuing problems, most of which are generally ignored or
not given the proper attention they deserve. This review will differ from the conventional reviews in
the sense that, unlike most of the traditional reviews, it will not recount a well-documented story of
the discovery of GR, rather it will focus on some key problems which insinuate an underlying new
insight on a geometric theory of gravitation, thereby providing a possible way out in the framework of
GR itself.

2. Issues Warranting Attention: Mysteries of the Present with Roots in the Past

Mach’s Principle: Mach’s principle, akin to the equivalence principle, was the primary motivation
and guiding principle for Einstein in the formulation of GR. (The name “Mach’s principle” was coined
by Einstein for the general inspiration that he found in Mach’s works on mechanics [6], even though
the principle itself was never formulated succinctly by Mach himself.) Though in the absence of a clear
statement from Ernst Mach, there exist a number of formulations of Mach’s principle, in essence the
principle advocates to shun all vestiges of the unobservable absolute space and time of Newton in
favor of the directly observable background matter in the Universe, which determines its geometry
and the inertia of an object.

As the principle of general covariance (non-existence of a privileged reference frame) emerges as a
consequence of Mach’s denial of absolute space, Einstein expected that his theory would automatically
obey Mach’s principle. However, it turned out not to be so, as there appear several anti-Machian
features in GR. According to Mach’s principle, the presence of a material background is essential
for defining motion and a meaningful spacetime geometry. This means that an isolated object in an
otherwise empty Universe should not possess any inertial properties. However, this is clearly violated
by the Minkowski solution, which possesses timelike geodesics and a well-defined notion of inertia in
the total absence of Tik. Similarly, the cosmological constant also violates Mach’s principle (if it does
not represent the vacuum energy, but just a constant of nature—as is believed by some authors) in
the sense in which the geometry should be determined completely by the mass distribution. In the
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same vein, there exists a class of singularity-free curved solutions, which admit Einstein’s equations
in the absence of Tik. Furthermore, a global rotation, which is not allowed by Mach’s principle (in
the absence of an absolute frame of reference), is revealed in the Gödel solution [7], which describes a
Universe with a uniform rotation in the whole spacetime.

After failing to formulate GR in a fully Machian sense, Einstein himself moved away from Mach’s
principle in his later years. Nevertheless, the principle continued to attract a lot of sympathy due to its
aesthetic appeal and enormous impact, and it is widely believed that a viable theory of gravitation
must be Machian. Moreover, the consistency of GR with SR, which abolishes the absolute space akin
to Mach’s principle, also persuades us that GR must be Machian. This characterization has however
remained just wishful thinking.

Equivalence Principle: The equivalence principle—the physical foundation of any metric theory
of gravitation—first expressed by Galileo and later reformulated by Newton, was assumed by Einstein
as one of the defining principles of GR. According to the principle, one can choose a locally inertial
coordinate system (LICS) (i.e., a freely-falling one) at any spacetime point in an arbitrary gravitational
field such that within a sufficiently small region of the point in question, the laws of nature take
the same form as in unaccelerated Cartesian coordinate systems in the absence of gravitation [8].
As has been mentioned earlier, this equivalence of gravitation and accelerated reference frames
paved the way for the formulation of GR. Since the principle rests on the conviction that the equality
of the gravitational and inertial mass is exact [8,9], one expects the same to hold in GR solutions.
However, the inertial and the (active) gravitational mass have remained unequal in general.
For instance, for the case of Tik representing a perfect fluid:

Tik = (ρ + p)uiuk − pgik (2)

various solutions of Equation (1) indicate that the inertial mass density (=passive gravitational mass
density) = (ρ + p)/c2, while the active gravitational mass density = (ρ + 3p)/c2, where ρ is the energy
density of the fluid (which includes all the sources of energy of the fluid except the gravitational field
energy) and p is its pressure. The binding energy of the gravitational field is believed to be responsible
for this discrepancy. However, why the contributions from the gravitational energy to the different
masses are not equal, has remained a mystery.

Tik and Gravitational Energy: Appearing as the source term in Equation (1), Tik is expected to
include all the inertial and gravitational aspects of matter, i.e., all the possible sources of gravitation.
However, this requirement does not seem to be met on at least two counts. Firstly, Tik fails to support,
in a general spacetime with no symmetries, an unambiguous definition of angular momentum,
which is a fundamental and unavoidable characteristic of matter, as is witnessed from the subatomic
to the galactic scales. While a meaningful notion of the angular momentum in GR always needs the
introduction of some additional structure in the form of symmetries, quasi-symmetries, or some other
background structure, it can be unambiguously defined only for isolated systems [10,11].

Secondly, Tik fails to include the energy of the gravitational field, which also gravitates.
Einstein and Grossmann emphasized that, akin to all other fields, the gravitational field must also have
an energy-momentum tensor which should be included in the ‘’source term” [9]. However, after failing
to find a tensor representation of the gravitational field, Einstein then commented that “there may
very well be gravitational fields without stress and energy density" [12] and finally admitted that “the
energy tensor can be regarded only as a provisional means of representing matter” [13]. Alas, a century-long
dedicated effort to discover a unanimous formulation of the energy- stress tensor of the gravitational
field, has failed concluding that a proper energy-stress tensor of the gravitational field does not
exist. [It can be safely said that despite the century-long dedicated efforts of many luminaries, like
Einstein, Tolman, Papapetrou, Landau-Lifshitz, Möller and Weinberg, the attempts to discover a
unanimous formulation of the gravitational field energy has failed due to the following three reasons:
(i) the non-tensorial character of the energy-stress ‘complexes’ (pseudo tensors) of the gravitational field;
(ii) the lack of a unique agreed-upon formula for the gravitational field pseudo tensor in view of various
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formulations thereof, which may lead to different distributions even in the same spacetime background.
Moreover, a pseudo tensor, unlike a true tensor, can be made to vanish at any pre-assigned point by
an appropriate transformation of coordinates, rendering its status rather nebulous; (iii) according to
the equivalence principle, the gravitational energy cannot be localized.] Since then, neither Einstein
nor anyone else has been able to discover the true form of Tik, although it is at the heart of the current
efforts to reconcile GR with quantum mechanics.

It is an undeniable fact that the standards of Tik, in terms of elegance, consistency and
mathematical completeness, do not match the vibrant geometrical side of Equation (1), which is
determined almost uniquely by pure mathematical requirements. Einstein himself conceded this fact
when he famously remarked: “GR is similar to a building, one wing of which is made of fine marble, but the
other wing of which is built of low grade wood”. It was his obsession that attempts should be directed to
convert the ‘’wood” into ‘’marble”.

The doubt envisioned by Einstein about representing matter by Tik, is further strengthened by a
recent study which discovers some surprising inconsistencies and paradoxes in the formulation of
the energy-stress tensor of the matter fields, concluding that the formulation of Tik does not seem
consistent with the geometric description of gravitation [14]. This is reminiscent of the view expressed
about four decades ago by J. L. Synge, one of the most distinguished mathematical physicists of the
20th Century: “the concept of energy-momentum (tensor) is simply incompatible with general relativity" [15]
(which may seem radical from today’s mainstream perspective).

Unphysical Solutions: Since its very inception, GR started having observational support which
substantiated the theory. Its predictions have been well-tested in the limit of the weak gravitational
field in the solar system, and in the stronger fields present in the systems of binary pulsars. This has
been done through two solutions—the Schwarzschild and Kerr solutions.

However, there exist many other ‘vacuum’ solutions of Equation (1) which are considered
unphysical, since they represent curvature in the absence of any conventional source. The solutions
falling in this category are the de Sitter solution, Taub-NUT Solution, Ozsváth–Schücking solution
and two newly discovered [16,17] solutions (given by Equations (6) and (7) in the following).
(Another solution, which falls in this category, is the Gödel solution which admits closed
timelike-curves and hence permits a possibility to travel in the past, violating the concepts of causality
and creating paradoxes: “what happens if you go back in the past and kill your father when he was a
baby!”) Hence the theory has been supplemented by additional ‘’physical grounds” that are used to
exclude otherwise exact solutions of Einstein’s equation.

This situation is very reminiscent of what Kinnersley wrote about the GR solutions, “most of the
known exact solutions describe situations which are frankly unphysical" [18].

This is however misleading because not only does it reject a priori the majority of the exact
solutions claiming ‘’unphysical” and ‘’extraneous”, but also mars the general validity of the theory
and introduces an element of subjectivity in it. Perhaps we fail to interpret a solution correctly and
pronounce it unphysical because the interpretation is done in the framework of the conventional
wisdom, which may not be correct [14,19].

Interior Solutions: As mentioned earlier, GR successfully describes the gravitational field outside
the Sun in terms of the Schwarzschild (exterior) and Kerr solutions. Nevertheless, the theory has not
been that successful in describing the interior of a massive body.

Soon after discovering his famous and successful (exterior) solution (with Tik = 0),
Schwarzschild discovered another solution of Equation (1) (with a non-zero Tik) representing the
interior of a static, spherically symmetric non-rotating massive body, generally called the Schwarzschild
interior solution. SInce then, many other, similar interior solutions have been discovered with different
matter distributions. It appears, however, that the picture the conventional interiors provide is not
conceptually satisfying. For example, the Schwarzschild-interior solution assumes a static sphere
of matter consisting of an incompressible perfect fluid of constant density (in order to obtain a
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mathematically simple solution). Hence, the solution turns out to be unphysical, since the speed of
sound = c

√
dp/dρ becomes infinite in the fluid with a constant density ρ and a variable pressure p.

The Kerr solution, representing the exterior of a rotating mass, has remained unmatched to any
known non-vacuum solution that could represent the interior of a rotating mass. It seems that we have
been searching for the interior solutions in the wrong place [17].

Dark Matter and Dark Energy: Soon after formulating GR, Einstein applied his theory to model
the Universe. At that time, Einstein believed in a static Universe, perhaps guided by his religious
conviction that the Universe must be eternal and unchanging. As Equation (1) in its original form
does not permit a static Universe, he inserted a term—the famous ‘cosmological constant Λ’ to force
the equation to predict a static Universe. However, it was realized later that this gave an unstable
Universe. It was then realized that a naive prediction of Equation (1) was an expanding Universe,
which was subsequently found consistent with the observations. Realizing this, Einstein retracted the
introduction of Λ terming it his ‘’biggest blunder”.

The cosmological constant has however reentered the theory in the guise of dark energy. As has
been mentioned earlier, in order to explain various observations, the theory requires two mysterious,
invisible, and as yet unidentified ingredients—dark matter and dark energy—and Λ is the principal
candidate of dark energy.

One the one hand, the theory predicts that about 27% of the total content of the Universe is
made of non-baryonic dark matter particles, which should certainly be predicted by some extension
of the Standard Model of particles physics. However, there is no indication of any new physics
beyond the Standard Model which has been successfully verified at the Large Hadron Collider.
Curious discrepancies also appear to exist between the predicted clustering properties of dark matter
on small scales and observations. Obviously, the dark matter has eluded our every effort to bring it
out of the shadows.

On the other hand, the dark energy is believed to constitute about 68% of the total content of the
Universe. The biggest mystery is not that the majority of the content of Tik cannot be seen, but that it
cannot be comprehended. Moreover, the most favored candidate of dark energy—the cosmological
constant Λ—poses serious conceptual issues, including the cosmological constant problem—“why does
Λ appear to take such an unnatural value?" That is, “why is the observed value of the energy associated
with Λ so small (by a factor of ≈10−120!) compared to its value (Planck mass) predicted by the quantum
field theory?” and the coincidence problem—“why is this observed value so close to the present
matter density?”.

The cosmological constant problem in fact arises from a structural defect of the field Equation (1).
While in all non-gravitational physics, the dynamical equations describing a system do not change if
we shift the ‘’zero point” of energy, this symmetry is not respected by Equation (1) wherein all sources
of energy and stress appear through Tik and hence gravitate (i.e., affect the curvature). As the Λ-term
can very well be assimilated in Tik, adding this constant to Equation (1) changes the solution. It may be
noted that no dynamical solution of the cosmological constant problem is possible within the existing
framework of GR [20].

Horizon Problem: Why does the cosmic microwave background (CMB) radiation look the same
in all directions despite being emitted from regions of space failing to be causally connected? The size
of the largest coherent region on the last scattering surface, in which the homogenizing signals passed
at sound speed, can be measured in terms of the sound horizon. In the standard cosmology, this
implies, however, that the CMB ought to exhibit large anisotropies (not isotropy) for angular scales of
theorder of 1◦ or larger—a result contrary to what is observed [8]. Hence, it seems that the isotropy
of the CMB cannot be explained in terms of some physical process operating under the principle of
causality in the standard paradigm.

Inflation comes to the rescue. It is generally believed that inflation made the Universe smooth and
left the seeds of structures, on the surface of the last scatter, of the order of the Hubble distance at that
time. However, inflation has its own problems either unsolved or fundamentally unresolvable. There is
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no consensus on which (if any) the inflation model is correct, given that there are many different
inflation models. A physical mechanism that could cause inflation is not known, though there are many
speculations. There are also difficulties on how to turn off the inflation once it starts—the ‘’graceful
exit” problem.

Flatness Problem: In the standard cosmology, the total energy density ρ in the early Universe
appears to be extremely fine-tuned to its critical value ρc = 3H2/(8πG), which corresponds to a flat
spatial geometry of the Universe, where H is the Hubble parameter. Since ρ departs rapidly from ρc

over cosmic time, even a small deviation from this value would have had massive effects on the nature
of the present Universe. For instance, the theory requires ρ at the Planck time to be within one part in
1057 of ρc in order to meet the observed uncertainties in ρ at present! That is, the Universe was almost
flat just after the Big Bang—but how?

If a theory predicts a fine-tuned value for some parameter, there should be some underlying
physical symmetry in the theory. In the present case however, this appears just an unnatural and ad hoc
assumption in order to reproduce observation. Inflation comes to the rescue again. Irregularities in the
geometry were evened out by inflation’s rapid accelerated expansion causing space to become flatter
and hence forcing ρ toward its critical value, no matter what its initial value was.

However, it should also be mentioned that flatness and horizon problems are not problems of GR.
Rather, they are problems concerned with the cosmologist’s conception of the Universe, very much in
the same vein as was Einstein’s conception of a static Universe.

Scale Invariance: It is well-known that GR, unlike the rest of physics, is not scale invariant in
the field Equation (1) [21]. As scale invariance is one of the most fundamental symmetries of physics,
any physical theory, including GR, is desired to be scale invariant.

3. A New Perspective on Gravity

Hence, with a substantial amount of anomalies, paradoxes and unexplained phenomena, one
would question whether the pursued approach to GR is correct. It appears that we have misunderstood
the true nature of a geometric theory of gravitation because of the way the theory has evolved. Taken at
face value, these problems insinuate that our understanding of gravitation in terms of the conventional
GR is grossly incomplete (if not incorrect) and we need yet another paradigm shift.

Science advances more from what we do not understand than by what we do understand. From a
careful re-examination of the above-mentioned problems, a new insight with deeper vision of a
geometric theory of gravitation emerges, which appears as the missing piece of the theory. It may
appear surprising at first sight though that these seemingly disconnected problems can lead to any
coherent, meaningful solution. Nevertheless, as we shall see in the following, the analysis develops
drastic revolutionary changes in our conventional views of GR and offers an enlightened view wherein
all the above-mentioned difficulties disappear.

3.1. Revisiting Mach’s Principle

Guided by the principle of covariance, GR has been formulated in the language of tensors. As the
principle of covariance results as a consequence from Mach’s principle, one naturally expects the
theory to be perfectly Machian, as Einstein did. Then, why do some of the solutions of GR contradict
Mach’s philosophy? Perhaps we have missed the real message these solutions want to convey.
Particularly, the curious presence of the timelike geodesics and a well-defined notion of inertia in the
solutions of Equation (1) obtained in the absence of Tik must not be just coincidental and there must be
some source.

In order to witness this, let us try to impose the philosophy of Mach on the existing framework of
GR by quantifying Mach’s principle with a precise formulation in which matter and geometry appear
to be in one-to-one correspondence. The key insight is the observation that not only inertia, but also
space and time emerge from the interaction of matter. As space is an abstraction from the totality
of distance-relations between matter, it follows that the existence of matter (fields) is a necessary
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and sufficient condition for the existence of spacetime. This idea can be formulated in terms of the
following postulate:

Postulate: Spacetime cannot exist in the absence of fields.

The postulate posits that spacetime is not something to which one can ascribe a separate existence,
independently of the matter fields, and the very existence of spacetime signifies the presence of the
matter (fields). This is very much in the spirit of Mach’s principle which implies that the existence of a
spacetime structure has any meaning only in the presence of matter, which is bound so tightly to the
former that one can not exist without the other.

Inspired by this, Einstein had envisioned that “space as opposed to ‘what fills space’, has no separate
existence" [22] thought he could not implement it in his field Equation (1), wherein the ‘’space”
(represented in the left-hand side of the equation) and ‘’what fills space” (represented by its right-hand
side) do have separate existence: as has been mentioned earlier, there exist various meaningful
spacetime solutions of Equation (1) in the total absence of Tik. The adopted postulate, on the other
hand, emphasizes that spacetime has no independent existence without a material background, which
is present universally regardless of the geometry of the spacetime.

As the matter field is always accompanied by the ensuing gravitational field and since the latter
also gravitates, an important consequence of the adopted postulate is that the geometry of the resulting
spacetime should be determined by the net contribution from the two fields. Thus, the metric field is
entirely governed by considered matter fields, as one should expect from a Machian theory.

3.2. Fields without Tik: An Inescapable Consequence of Mach’s Principle

The theoretical appeal of the above-described hypothesis is that it is naive, self evident and
plausible. However, more than that, it has potential to shape a theory and gives rise to a new vision of
GR with novel, dramatic implications. For instance, it makes a powerful prediction that the resulting
theory should not have any bearing on the energy-stress tensor Tik in order to represent the source
fields. [The source of curvature in a solution of Einstein’s field Equation (1), in the absence of Tik,
is conventionally attributed to a singularity. This prescription is however rendered nebulous by the
presence of various singularity-free curved solutions of Equation (1) in the absence of Tik]. Let us recall
that Equation (1) does admit various meaningful spacetime solutions in the absence of the ‘’source”
term Tik.

According to the postulate, as fields are present universally in all spacetimes irrespective of their
geometry, the flat Minkowskian spacetime should not be an exception, and it must also be endowed
with the matter fields and the ensuing gravitational field. Now let us recall that the Minkowski
spacetime appears as a solution of Einstein’s field Equation (1) only in the absence of Tik, in which
case the effective field equation yields

Rik = 0 (3)

However, if the fields can exist in the Minkowski spacetime (as asserted by the founding postulate)
in the absence of Tik, they can also exist in other spacetimes in the absence of Tik. Hence, the
requirement of uniqueness of the field equation of a viable theory dictates that Tik must not be the
carrier of the source fields in a theory resulting from the adopted postulate, and, thus, the canonical
Equation (3) emerges as the field equation of the resulting theory in the very presence of matter. In fact,
this is what happens if we accept, at their face value, the implications of Mach’s principle applied
to GR.

This novel feature that GR would acquire—that the spacetime solutions of Equation (3),
including the Minkowskian one, are not devoid of fields—provides an appealing first principle
approach and a linchpin to understand various unsolved issues in a unified scheme. It becomes
remarkably decisive for the theory on Machianity. It was the earlier-mentioned characteristic of the
Minkowski and other solutions of Equation (3) to possess timelike geodesics and a well-defined
notion of inertia, that pronounced these solutions non-Machian, as they are conventionally regarded
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to represent empty spacetimes. The new insight, however, renders them perfectly Machian and
physically meaningful by bestowing a matter-full dignity on them. Moreover, this novel feature of
the Minkowski solution also explains another so-far unexplained issue: It has been noticed that the
Noether current associated with an arbitrary vector field in the Minkowski solution is non-zero in
general [23], which remains unexplained in the conventional ‘empty’ Minkowskian spacetime.

Though the proposed scheme of having matter fields in the absence of Tik may sound surprising
and orthogonal to the prevailing perspective, it seems to have many advantages over the conventional
approach, as we shall see in the following. The issue is whether it can be made realistic. That is,
if Equation (3) is claimed to constitute the field equation of a viable theory of gravitation in the very
presence of matter, its solutions must possess some imprint of this matter. Thus, do we have any
evidence of such imprints in the solutions of Equation (3)? The answer is, yes.

3.3. Evidence of the Presence of Fields in the Absence of Tik

As Mach’s principle denies unobservable absolute spacetime in favor of the observable quantities
(the background matter) which determine its geometry, the principle would expect the source of
curvature in a solution to be attributable entirely to some directly observable quantity, such as
mass-energy, momentum, and angular momentum or their densities. Thus, if GR is correct and
it must be Machian, these quantities are expected to be supported by some dimension-full parameters
appearing in the curved spacetime solutions in such a way that the parameters vanish as the observable
quantities vanish, reducing the solutions to the Minkowskian form.

Interestingly, it has been shown recently [16,17] that it is always possible to write a curved solution
of Equation (3) in a form containing some dimension-full parameters, which appear in the Riemann
tensor generatively and can be attributed to the source of curvature. The study further shows that these
parameters can support physical observable quantities such as the mass-energy, momentum or angular
momentum or their densities. For instance, the source of curvature in the Schwarzschild solution

ds2 =

(
1 +

K
r

)
c2dt2 − dr2

(1 + K/r)
− r2dθ2 − r2 sin2 θ dφ2 (4)

can be attributed to the mass m (of the isotropic matter situated at r = 0) through the parameter
K = −2Gm/c2. Similarly, the dimension-full parameters present in the Kerr solution can be attributed
to the mass and the angular momentum of the source mass; those in the Taub-NUT solution to the
mass and the momentum of the source; and the parameters in the Kerr-NUT solution to the mass,
momentum and angular momentum [16,17].

A remarkable piece of evidence of the presence of fields in the absence of Tik is provided by
the Kasner solution, which exemplifies that even in the standard paradigm, all the well-known
curved solutions of Equation (3) do not represent space outside a gravitating mass in an empty space.
[It is conventionally believed that only those curved solutions of Equation (3) are meaningful which
represent space outside some source matter, otherwise the solutions represent an empty spacetime.
However, Equation (3) cannot decipher just from the symmetry of a solution that it necessarily belongs
to a spacetime structure in an empty space outside a mass, since the same symmetry can also be shared
by a spacetime structure inside a matter distribution.] Although the Kasner solution in its standard
form does not contain any dimension-full parameter that can be attributed to its curvature, the solution
can however be transformed to the form

ds2 = c2dt2 − (1 + nt)2p1 dx2 − (1 + nt)2p2 dy2 − (1 + nt)2p3 dz2 (5)

where n is an arbitrary constant parameter (which is dimension-full) and the dimensionless parameters
p1, p2, p3 satisfy p1 + p2 + p3 = 1 = p2

1 + p2
2 + p2

3.
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A dimensional analysis suggests that, in order to meet its natural dimension (which is of
the dimension of the inverse of time), the parameter n can support only the densities of the
observables energy, momentum or angular momentum and not the energy, momentum or angular
momentum themselves [such that Equation (5) becomes Minkowskian when the observables vanish].
However, the energy density and the angular momentum density vanish here: while the symmetries of
Equation (5) discard any possibility for the angular momentum density, the energy density disappears
as it is canceled by the negative gravitational energy [17,24]. That is, the parameter n in Equation (5)
can be expressed in terms of the momentum density P as n = γ

√
GP/c, where γ is a dimensionless

constant. This indicates that Equation (5) results from a (uniform) matter distribution (throughout
space) and not from a spacetime outside a point mass as in the cases of the Schwarzschild and Kerr
solutions. Thus, the Kasner solution represents a homogeneous distribution of matter expanding
and contracting anisotropically (at different rates in different directions), which can give rise to a net
non-zero momentum density represented through the parameter n serving as the source of curvature,
thus demystifying the solution.

This new insight on the source of curvature is authenticated by two new solutions of Equation (3)
discovered in [16,17] whose discovery is facilitated by the new insight. The first solution, whose source
of curvature cannot be explained with the conventional wisdom (as it is singularity-free), provides a
powerful support to the Machian strategy of representing the source in terms of the dimension-full
source-carrier parameters (here �). The solution is given by

ds2 =

(
1 − �2x2

8

)
c2dt2 − dx2 − dy2 −

(
1 +

�2x2

8

)
dz2 + �x(cdt − dz)dy +

�2x2

4
cdt dz (6)

which has been derived by defining the parameter � in terms of the angular momentum density J via
� = GJ /c3 [16]. The fact that the parameter � can support only the density of angular momentum
and not the angular momentum itself asserts that Equation (6) results from a rotating matter distribution
(confined to − 2

√
2

|�| < x < 2
√

2
|�| ) and not from a spacetime outside a point mass as are the cases of the

Schwarzschild and Kerr solutions. This is in perfect agreement with the founding postulate that the
fields are not different from the spacetime.

Equation (6) as a new solution of field Equation (3) is important in its own right.
Moreover, it illuminates the so far obscure source of curvature in the well-known Ozsváth–Schücking
solution, which would otherwise be in stark contrast with the new strategy in the absence of any free
parameter. It has been shown in [16] that the Ozsváth-Schücking solution results from Equation (6) by
assigning a particular value to the parameter �.

Following the new insight, another new solution of Equation (3) has been discovered recently
in [17], whose curvature is supported by the energy density (the author recently came to know that
solution Equation (7) has also been reported in [25]). The solution is given by:

ds2 =
(1 + 4μz2)

(1 + μr2)2 c2dt2 − dr2

(1 + μr2)4 − r2dφ2 − dz2

(1 + 4μz2)(1 + μr2)2 (7)

which represents a inhomogeneous axisymmetric distribution of matter, with the parameter μ given
in terms of the energy density E as μ = GE/c4. As Equation (7) is curved but singularity-free for all
finite values of the coordinates, it provides, in the absence of any conventional source there, a strong
support to the new strategy of source representation.

3.4. A New Vision of Gravity in the Framework of GR: Spacetime Becomes a Physical Entity

What does the presence of these dimension-full parameters we witness in the solutions of the field
Equation (3) signify? As the physical observable quantities sustained by the parameters—i.e., energy,
momentum, angular momentum and their densities have any meaning only in the presence of matter,
the presence of such parameters in the solutions of Equation (3) must not be just a big coincidence,

318



Universe 2016, 2, 11

and, at face value, their ubiquitous presence in the solutions of Equation (3) insinuates that fields are
universally present in the spacetime in Equation (3).

Not only does this provide a strong support to the founding postulate establishing GR as a
Machian theory, but also establishes, on firm grounds, Equation (3) as the field equation of a feasible
theory of gravitation in the very presence of fields. More than that, there emerges a radically new
vision of a geometric theory of gravitation through drastic revolutionary changes in our views on
the representation of the source of gravitation, which must be through the geometry and not through
Tik. By reconceptualizing our previous notions of spacetime, this constitutes a paradigm shift in GR
wherein the spacetime itself becomes a physical entity, we may call it the ‘’emergent matter” in a
relativistic/geometric theory of gravitation. From the ubiquitous presence of fields in all geometries,
it becomes clear that there is no empty space solution in the new paradigm, as one should expect from
a Machian theory. The same was also envisioned by Einstein (though could not be achieved).

One may wonder how the properties of matter can be incorporated into the dynamical equations
of the new theory without taking recourse to Tik. This can be achieved by applying the conservation
laws and symmetry principles to the new conviction that all spacetimes harbor fields, inertial and
gravitational, whose net contribution determines their geometry. For instance, by assuming that
the sum of the gravitational and inertial energies in a uniform matter distribution should be
vanishing [17,24], it has been shown recently that the homogeneous, isotropic Universe in the new
paradigm leads to the Friedmann equation of the standard ‘’concordance” cosmology [17]. This should
not be a surprise, as the Friedmann equation for dust can also be derived in Newtonian cosmology or
in a kinematic theory (like the Milne model) by using the continuity equation and the Navier–Stokes
equation of fluid dynamics [26,27].

3.5. Equivalence Principle in the New Perspective

The perfect equivalence between gravitational and inertial masses, first noted by Galileo and
Newton, was more or less accidental. For Einstein, however, this served as a key to a deeper
understanding of inertia and gravitation. From his valuable insight that the kinematic acceleration and
the acceleration due to gravity are intrinsically identical, he was able to unearth a hitherto unknown
mystery of nature—that gravitation is a geometric phenomenon.

It however seems that the full implications of the equivalence principle have not yet been
appreciated. If gravitation is a geometric phenomenon, then through the (local) equivalence of
gravitation and inertia, the inertia of matter should also be considered geometrical in nature, at least
when it appears in a geometric theory of gravitation. A purely geometrical interpretation of gravitation
would be impossible unless the gravitational as well as the inertial properties of matter are intrinsically
geometrical. This would, however, have revolutionary implications. Considering Tik (which represents
the inertial fields) of a purely geometric origin, Equation (1) would imply

Gik +
8πG

c4 Tik ≡ χik = 0 (8)

where χik appears a tensor of purely geometric origin. This would however be nothing else but the
Ricci tensor Rik (with a suitable gik), since the only tensor of rank two having a purely geometric origin
(emerging from the Riemann tensor), is the Ricci tensor. That is, Equation (8) would reduce to the
field Equation (3)! In this way, the consequences of the equivalence principle would be in perfect
agreement with the adopted Machian postulate—that spacetime has no separate existence from matter,
i.e., the parameters of the spacetime geometry determine entirely the combined effects of gravitation
and inertia.

Therefore, the consequence of the equivalence principle—that the gravitational and inertial fields
are entirely geometrical by nature—takes GR to its logical extreme in that the spacetime emerges from
the interaction of matter. This reconceptualizes the previous notion of spacetime by establishing it as
the very source of gravitation. The matter is in fact more intrinsically related to the geometry than is
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believed in the conventional GR and all the aspects of matter fields (including the ensuing gravitational
field) are already present inherently in the spacetime geometry. This establishes Equation (3) as a
competent field equation of gravitation plus inertia. This is well-supported by our observation that
while the gravitational field is present in the Schwarzschild, Kerr and Taub-NUT solutions (as these
represent the spacetimes outside the source mass), the inertial as well as the gravitational fields are
present in Equations (5)–(7) including the Minkowskian one, which represent matter distribution.

A precise specification of the fields, which are being claimed to be present in the spacetime,
is possible only when a precise formulation thereof is available. Nevertheless, in view of the newly
gained insight, at least this much can be declared that the matter fields present in the geometry of
Equation (3) are those which are attempted to be introduced in Equation (1) or (8) via Tik (which has
now been absorbed in Equation (3)).

4. A Closer Look at the Conventional Four-Dimensional Formulation of Matter

Modeling matter by Tik in Equation (1) has modified at the deepest level the way we used to
think about the source of gravitation. As mass density is the source of gravitation in Newtonian theory,
the energy density was expected to take over this role in the relativistic generalization of Poisson’s
equation. To our surprise, however, all ten (independent) components of Tik become contributing
sources of gravitation. We need not doubt this novelty, as new theories originated from innovative
ideas are expected to have innovative features. However, the way the non-conventional sources appear
in the dynamical equations, appears to create inconsistencies and paradoxes, which warrants a second
look at the relativist formulation of matter given by Tik.

Everyone will agree that, like the conservation of momentum, the conservation of energy of
an isolated system is an absolute symmetry of nature and this fundamental principle is expected to
be respected by any physical theory. Nonetheless, the principle is violated in GR in many different
situations including the cosmological scenarios (see, for example, [28]). The blame rests with the
energy of the gravitational field, which has been of an obscure nature and a controversial history, as has
been mentioned earlier. We shall, however, see that the gravitational energy is not to be blamed for the
trouble. This is ascertained beyond a doubt in the following analysis by filtering out the gravitational
energy from the equations.

4.1. Problems with Tik

As is well-known, the formulation of the energy-stress tensor Tik given by Equation (2) is
obtained by first deriving it in the absence of gravity in SR, by considering a fluid element in a
small neighborhood of an LICS, which exists admittedly at all points of spacetime (by courtesy of the
principle of equivalence). Then, the expression for the tensor in the presence of gravity is imported,
from SR to GR, through a coordinate transformation. It would be insightful to reconsider the same
LICS to understand the mysterious implications of Tik, since the subtleties of gravitation and the
gravitational energy disappear locally in this coordinate system. Let us then study the divergence
of Tik in the considered LICS, which is known for describing the mechanical behavior of the fluid.
Through the vanishing divergence of Gik, Equation (1) implies that Tij

;j = 0, which, in the chosen
coordinates, reduces to

∂Tij

∂xj = 0 (9)

For the case of a perfect fluid given by Equation (2), it is easy to show that Equation (9), in the
chosen LICS, yields [29]

∂p
∂x

+
(ρ + p)

c2
dux

dt
= 0 (10)

for the case i = 1, where dux/dt is the acceleration of the considered fluid element in the x-direction.
As any role of gravity and gravitational energy is absent in this equation, it can be interpreted as
the relativistic analogue of the Newtonian law of motion: the fluid element of unit volume, which
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moves under the action of the force applied by the pressure gradient ∂p/∂x, has got the inertial
mass (ρ + p)/c2. Let us, however, recall that the term ρ in Equation (2) includes in it, by definition,
not only the rest mass of the individual particles of the fluid but also their kinetic energy, internal
energy (for example, the energy of compression, energy of nuclear binding, etc.) and all other sources
of mass-energy [11]. Therefore, the additional contribution to the inertial mass entering through the
term p, appears to violate the celebrated law of the conservation of energy. Though Equation (10) is
usually interpreted as a momentum conservation equation, an alternative (but viable) interpretation is
not expected to defy the energy conservation.

Similar problems seem to afflict the temporal component of Equation (9) for i = 0, which can be
written as the following [29]:

d
dt
(ρδv) + p

d
dt
(δv) = 0 (11)

where δv is the proper volume of the fluid element. The usual interpretation to this equation says:
the rate of change in the energy of the fluid element is given in terms of the work done against the
external pressure. This seems reasonable at first sight, but cracks seem to appear in it after a little
reflection. The concern, as also noticed by Tolman [29], is that the fluid of a finite size can be divided
into similar fluid elements and the same Equation (11) can be applied to each of these elements,
meaning that the proper energy (ρδv) of every element is decreasing when the fluid is expanding or
increasing when the fluid is contracting. This leads to a paradoxical situation that the sum of the proper
energies of the fluid elements which make up an isolated system, is not constant. Tolman overlooked
this problem by assuming a possible role of the gravitational energy in it. We note, however, that no
such possibility exists as Equation (11) has been derived in an LICS.

The total energy E, including the gravitational energy, of an isolated time-independent fluid
sphere comprised of perfect fluid given by Equation (2) and occupying volume V of the three-space
x0 = constant, is given by the Tolman formula [29]:

E =
∫

V
(ρ + 3p)

√
|g00| dV (12)

which measures the strength of the gravitational field produced by the fluid sphere. The formula
is believed to be consistent, for the case of the disordered radiation (p = ρ/3), with the observed
deflection of starlight (twice as much as predicted by a heuristic argument made in Newtonian gravity),
when it passes the Sun. Ironically, this expectation is contradicted by the weak-field approximation
of the same Equation (12). In a weak field, like that of the Sun, where Newtonian gravitation can be
regarded as a satisfactory approximation, Equation (12) can be written, following Tolman (see page 250
of [29]), as E =

∫
ρdV + (1/2c2)

∫
ρψdV, where ψ is the Newtonian gravitational potential. As ψ is

negative, we note that the general relativistic active gravitational mass E/c2 of the gravitating body,
here the Sun, is obviously less than its Newtonian value (1/c2)

∫
ρdV and is expected to give a lower

value for the gravitational deflection of light than the corresponding Newtonian value. (Let us recall
that the correct interpretation of the observations of the bending of starlight, when it passes past the
Sun, comes from the correct geometry around Sun resulting from the Schwarzschild solution.

As has been mentioned earlier, the (active) gravitational and inertial mass are in general unequal
in GR solutions (the discrepancy thereof is supposed to be accounted by the gravitational energy).
Thus, in an LICS, which nullifies gravitation and hence gravitational mass locally, we expect a unique
value for the mass in the equations. To check this, let us calculate the Tolman integral Equation (12)
(density) in the considered LICS wherein it reduces to

E =
∫
(ρ + 3p) dV (13)

which may now be valid for a sufficiently small volume of the fluid. Surprisingly, we still encounter
different unequal values of mass (density) in Equations (10), (11) and (13). [Equation (11) can be
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written alternatively as δv dρ/dt + (ρ + p)d(δv)/dt = 0.] While Equations (10) and (11) give this value
as (ρ + p)/c2, Equation (13) provides a different value (ρ + 3p)/c2. Perhaps the origin of the problem
is not in the gravitational energy but in Tik itself.

Given this backdrop, it thus appears that the relativistic formulation of matter given by Tik

suffers from some subtle inherent problems. The point to note is that there is no role of the notorious
(pseudo) energy of the gravitational field in these problems. It would not be correct to conclude
that the above-analysis advocates denial of fluid pressure in GR (as the problems are evaded in the
absence of pressure). Rather it insinuates that the four-dimensional description of matter in terms
of Tik is not compatible with the geometric description of gravitation. It is perhaps not correct
to patchwork a four-dimensional tensor from two basically distinct kinds of three-dimensional
quantities—(i) the energy density, a non-directional quantity and (ii) the momenta and stresses,
directional quantities. The tensor, however, treats them on equal footing by recognizing a component
Tik as a scalar (irrespective of the values of i and k) linked with the surface specified by i and k in the
hypothetical four-dimensional fluid, in the same way as the component Gik is linked with the curvature
of the same surface. This leads to sound mathematics, and we do not notice any inconsistency until we
relate the tensor Tik with the real fluid, which is three-dimensional and not four-dimensional.

Does it then mean that Einstein’s ‘’wood” is not only low grade compared to the standards of
his ‘’marble” but it is also infested? It should be noted that the relativistic formulation of the matter,
in terms of the tensor Tik, has never been tested in any direct experiment. It may be recalled that the
crucial tests of GR, which have substantiated the theory beyond doubt, are based on the solutions of
Equation (3) only, viz. the Schwarzschild and Kerr solutions.

It thus becomes increasingly clear that the development of GR was led astray by formulating
matter in terms of Tik. This is corroborated by the fact that whenever the theory takes recourse to Tik

in Equation (1), trouble shows up in the form of either the dark energy or the inviabilities of Godel’s
solution and Schwarzschild’s interior solution, etc. In view of the new finding, this assertion acquires a
new meaning—we have been searching for the matter in the wrong place. The correct place to search
for it is the geometry. We have seen in innumerable examples that matter is already present in the
geometry of Equation (3) without taking recourse to Tik. That is, the ‘’wood” is already included into
the ‘marble’, dramatically fulfilling Einstein’s obsession.

5. Successes of the Novel Gravity Formulation

5.1. Observational Support for the New Paradigm

The last words on a putative theory have to be spoken by observations and experiments.
The consistency of the field Equation (3) with the local observations in the solar system and binary
pulsars, has already been established in the standard tests of GR—the only satisfactory testimonial of
the theory among the conventional tests, which do not require any epicycle of the dark sectors.

Interestingly, as has been shown recently [27], all the cosmological observations can also be
explained successfully in terms of a homogeneous, isotropic solution of Equation (3). This solution can
be obtained by solving Equation (3) for the Robertson–Walker metric, yielding

ds2 = c2dt2 − c2t2
(

dr2

1 + r2 + r2dθ2 + r2 sin2 θ dφ2
)

(14)

which represents the homogeneous, isotropic Universe in the new paradigm. It may be mentioned
that solution Equation (14) (which is generally recognized as the Milne model), wherein the Universe
appears dynamic in terms of the comoving coordinates and the cosmic time t, can be reduced to the
Minkowskian form by using the locally defined measures of space and time [27].

The observational tests considered in [27] include the observations of the high-redshift supernovae
(SNe) Ia, the observations of high-redshift radio sources, observations of starburst galaxies, the CMB
observations and compatibility of the age of the Universe with the oldest objects in it (for instance,
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the globular clusters) for the currently measured values of the Hubble parameter. It may also be
mentioned that, by preforming a rigorous statistical test on a much bigger sample of SNe Ia, (by taking
account of the empirical procedure by which corrections are made to their absolute magnitudes),
a recent study has found only marginal evidence for an accelerated expansion, and the data are quite
consistent with the Milne model [30].

One may wonder how the new model, which does not possess dark energy (and hence is not
an accelerated expansion), manages to reconcile with the observations. The mystery lies in the
special expansion dynamics of the model at a constant rate throughout the evolution, as is clear from
Equation (14), wherein the Robertson–Walker scale factor S = ct. We note that, unlike the standard
cosmology, Equation (14) provides efficiently different measures of distances without requiring any
input from the matter fields. For instance, the luminosity distance dL of a source of redshift z, in the
present case, is given by

dL = cH−1
0 (1 + z) sinh[ln(1 + z)] (15)

where H0 represents the present value of the Hubble parameter H = Ṡ/S. As has been shown
in Figure 1, the luminosity distance of an object of redshift z in the new cosmology is almost the
same as that in the standard cosmology for z∼< 1.3. This explains why both models are equally
consistent with the SNe Ia data wherein the majority of the SNe belong to this range of redshift.
However, for z > 1.3, the new model departs significantly from the standard cosmology, as is
clear from the figure. Hence, observations of more SNe Ia at higher redshifts will be decisive for
both paradigms.
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Figure 1. Luminosity distance in the new model (continuous curve) is compared with that in the
Λ CDM concordance model Ωm = 1 − ΩΛ = 0.3 (broken curve). Distances shown on the vertical axis
are measured in units of cH−1

0 . The two models significantly depart for z∼> 1.3.

5.2. Different Pieces Fit Together

As the dark energy can be assimilated in the energy-stress tensor, and since the latter is
absent from the dynamical equations in the new paradigm (wherein the fields appear through the
geometry), the dark energy and its associated problems, for instance the cosmological constant problem
(which appears due to a conflict between the energy-stress tensor Tik in Equation (1) and the energy
density of vacuum in the quantum field theory) and the coincidence problem, are evaded in the
new paradigm.
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For the same reason, the flatness problem is circumvented due to the absence of the energy-stress
tensor in the new paradigm.

As has been mentioned earlier, the observed isotropy of CMB cannot be explained in the standard
paradigm in terms of some homogenization process that has taken place in the baryon-photon plasma
operating under the principle of causality, since a finite value for the particle horizon

dPH(t) = cS(t)
∫ t

0 dt′/S(t′) (the largest distance from which light could have reached the present
observer) exists in the theory. As dPH = ∞ always for S = ct, no horizon exists in the new paradigm,
and the whole Universe is always causally connected, which explains the observed overall uniformity
of CMB without invoking inflation [19].

As the Big Bang singularity is a breakdown of the laws of physics and the geometrical structure
of spacetime, there have been attempts to discover singularity-free cosmological solutions of Einstein
equations, which are usually achieved by violating the energy conditions.

Although Equation (14), which represents the cosmological model in the new paradigm, has
well-behaved metric potentials at t = 0, the volume of the spatial slices vanishes there, resulting
in a blowup in the accompanied matter density. However, this is just a coordinate effect which can
be removed in the Minkowskian form of solution Equation (14) by considering the locally defined
coordinates of space and time.

Moreover, as the locally defined time scale τ is related with the cosmic time t through the
transformation τ = t0 ln(t/t0) [27], the epoch corresponding to the Big Bang, is pushed back to the
infinite past giving an infinite age to the Universe which can accommodate even older objects than
the standard cosmology can. Interestingly, even in terms of the cosmic time t, wherein the Universe
appears dynamic, the age of the Universe appears higher than that in the standard paradigm [27].

As has been mentioned earlier, the conventional ‘source’ term Tik in Equation (1) fails to include
the energy, momentum or angular momentum of the gravitational field. Remarkably, these quantities,
akin to the matter fields, are inherently present in the geometry of Equation (3), substantiating the
new strategy of the new paradigm to represent the source through geometry. For instance, the term
K/r = −2Gm/(c2r) in the Schwarzschild solution Equation (4) contains the gravitational energy at the
point r. It perfectly agrees with the Newtonian estimate of the gravitational energy given by −Gm/r,
indicating that the term −2Gm/(c2r) is just its relativistic analogue. Assigning the gravitational energy
to K/r is also supported by the locality of GR, which becomes an intrinsic characteristic of the theory
as soon as the Newtonian concept of gravitation as a force (action-at-a-distance) is superseded by the
curvature. Being a local theory, GR then assigns the curvature present at a particular point, to the
source present at that very point. Thus, the agent responsible for the curvature in Equation (4) must
be the gravitational energy, since matter exists only at r = 0, whereas Equation (4) is curved at all
finite values of r. Hence, the presence of curvature in the Schwarzschild solution implies that the
gravitational energy does gravitate just as does every other form of energy, and the gravitational field
is obviously present in the geometry of Equation (3).

Similarly, the angular momentum of the gravitational field, arising from the rotation of the mass
m, is revealed through the geometry of the Kerr solution, and its momentum in the Taub-NUT solution.
Thus, the long-sought-after gravitational field energy-momentum-angular momentum of GR is already
present in the geometry.

It may be interesting to note that new interior solutions, based on the solutions of Equation (3), have
been formulated in the new paradigm that forms the Schwarzschild interior and the Kerr interior [17].
The new interiors are conceptually satisfying and free from the earlier mentioned problems.

As the Newtonian theory of gravitation provides excellent approximations under a wide range of
astrophysical cases, the first crucial test of any theory of gravitation is that it reduces to the Newtonian
gravitation in the limit of a weak gravitational field. In this context, it has been shown recently [17]
that the new paradigm consistently admits the Poisson equation in the case of a slowly varying weak
gravitational field when the concerned velocities are considered much less than c, provided we take
into account the inertial as well as the gravitational properties of matter, as should correctly be expected
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in a true Machian theory. The standard paradigm on the other hand fails to fulfill this requirement as
Equation (1), in the limit of the weak field, does not reduce to the Poisson equation in the presence of
a non-zero Λ (or any other candidate of dark energy), which becomes unavoidable in the standard
paradigm. In addition, it would not be correct to argue that a Λ as small as ≈10−56 cm−2 (as inferred
from the cosmological observations) cannot contribute to the physics appreciably in the local problems.
It has been shown recently that even this value of Λ does indeed contribute to the bending of light and
to the advance of the perihelion of planets [31].

Interestingly, the new paradigm becomes scale invariant, since the new field Equation (3) is
manifestly scale invariant. This becomes a remarkable achievement in the sense that one of the most
common ways for a theory with continuous field to be renormalizable is for it to be scale-invariant.

Since the Universe in the new paradigm is flat, the symmetries of its Minkowskian form make it
possible to validate the conservation of energy, solving the long-standing problems associated with the
conservation of energy. As has been shown by Noether, it is the symmetry of the Minkowskian space
that is the cause of the conservation of the energy momentum of a physical field [32,33].

5.3. Geometrization of Electromagnetism in the New Paradigm

How can the electromagnetic field be added to the new paradigm? While the equivalence
principle renders the gravitational and inertial fields essentially geometrical (owing to the fact that
the ratio of the gravitational and inertial mass is strictly unity for all matter), this is not so in the case
of the electromagnetic field (since the ratio of electric charge to mass varies from particle to particle).
Hence, the addition of the electromagnetic energy tensor Eik to Equation (1), results in

Rik = −8πG
c4 Eik (16)

since Tik is absorbed in the geometry (as we have noted earlier), and gikEik = 0 reduces R = 0
identically. The tensor Ei

k is given, in terms of the skew-symmetric electromagnetic field tensor Fik,
as usual:

Eik = ν
[− gk�FijF�j +

1
4

gikF�jF�j] (17)

where ν is a constant. It has already been shown that Equation (16), taken together with the ‘source-free’
Maxwell equations,

∂Fik

∂x�
+

∂Fk�

∂xi +
∂F�i

∂xk = 0

∂

∂xk (
√−gFik) = 0

⎫⎪⎪⎬
⎪⎪⎭ , g = det((gik)) (18)

consistently represents the electromagnetic field in the presence of gravitation [17]. As the existence of
charge is intimately related with the existence of the charge-carrier matter, and since the new paradigm
claims the inherent presence of matter in the geometry, it is reasonable to expect the charge also to
appear through the geometry. This view is indeed supported not only by the Reissner–Nordstrom
and Kerr–Newman solutions, but also by the cosmological solutions—the so-called ‘’electrovac
universes” [17], wherein the charge does appear through the geometry. [Let us note that unlike
the Reissner–Nordstrom and Kerr–Newman solutions (which represent the field outside the charged
matter), the electrovac solutions are not expected to contain any ‘’outside” where the charge-carrier
matter can exist.]

Thus, Equations (16)–(18) of restricted validity in the standard paradigm [wherein they are
believed to represent the electromagnetic field in vacuum, very much in the same vein as Equation (3)
is believed to represent the gravitational field in vacuum] get full validity and represent a unified
theory of gravitation, inertia and electromagnetism.
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Interestingly, Misner and Wheeler also expressed similar views long ago and advocated to
represent “gravitation, electromagnetism, unquantized charge and unquantized mass as properties of curved
empty space” [34]. Although they failed to realize the presence of fields in the flat spacetimes;
nonetheless, they also realized that Equations (16)–(18) provide a unified theory of electromagnetism
and gravitation. [The removal of charge (by switching off Eik from Equation (16), in which case
the ‘’electrovac universes” become flat) does not mean that mass (which was carrying charge) must
necessarily disappear from these solutions.]

6. Summary and Conclusions: What Next?

GR is undoubtedly a theory of unrivaled elegance. The theory indoctrinates that gravitation is a
manifestation of the spacetime geometry—one of the most precious insights in the history of science.
It has emerged as a highly successful theory of gravitation and cosmology, predicting several new
phenomena, most of them have already been confirmed by observations. The theory has passed every
observational test ranging from the solar system to the largest scale, the Universe itself.

Nevertheless, GR ceases to be the ultimate description of gravitation, an epitome of a perfect
theory, despite all these feathers in its cap. Besides its much-talked-about incompatibility with quantum
mechanics, the theory suffers from many other conceptual problems, most of which are generally
ignored. If in a Universe where, according to the standard paradigm, some 95% of the total content is
still missing, it is an alarming signal for us to turn back to the very foundations of the theory. In view
of these problems (discussed in the paper), we are led to believe that the historical development of GR
was indeed on the wrong track, and the theory requires modification or at least reformulation.

By a critical analysis of Mach’s principle and the equivalence principle, a new insight with a
deeper vision of a geometric theory of gravitation emerges: matter, in its entirety of gravitational,
inertial and electromagnetic properties, can be fashioned out of spacetime itself. This revolutionizes
our views on the representation of the source of curvature/gravitation by dismissing the conventional
source representation through Tik and establishing spacetime itself as the source.

This appears as the missing link of the theory and posits that spacetime does not exist without
matter, the former is just an offshoot of the latter. The conventional assumption that matter only fills the
already existing spacetime, does not seem correct. This establishes the canonical equation Rik = 0 as the
field equation of gravitation plus inertia in the very presence of matter, giving rise to a new paradigm
in the framework of GR. Though there seems to exist some emotional resistance in the community to
tinkering with the elegance of GR, the new paradigm dramatically enhances the beauty of the theory in
terms of the deceptively simple new field equation Rik = 0. Remarkably, the new paradigm explains
the observations at all scales without requiring the epicycle of dark energy.

This review provides an increasingly clear picture that the new paradigm is a viable possibility in
the framework of GR, which is valid at all scales, avoids the fallacies, dilemmas and paradoxes, and
answers the questions that the old framework could not address.

Though we have witnessed numerous evidences of the presence of fields in the solutions of
the field Equation (3), however, the challenge to discover, from more fundamental considerations,
a concrete mathematical formulation of the fields in purely geometric terms is still to be met.
This formulation is expected to use the gravito-electromagnetic features of GR in the new paradigm
and is expected to achieve the following:

1. It should explain the observed flat rotation curves of galaxies without requiring the ad-hoc
dark matter.

2. The net field in a homogeneous and isotropic background must be vanishing.
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7. Gödel, K. An example of a new type of cosmological solution of Einstein’s field equations of gravitation.

Rev. Mod. Phys. 1949, 21, 447–450.
8. Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity;

John Wiley & Sons: New York, NY, USA, 1972.
9. Einstein, A.; Grossmann, M. Outline of a generalized theory of relativity and of a theory of gravitation.

Z. Math. Phys. 1913, 62, 225–261.
10. Jaramillo, J.L.; Gourgoulhon, E. Mass and angular momentum in general relativity. In Mass and Motion in

General Relativity; Springer: Dordrecht, The Netherlands, 2011.
11. Misner, C.W., Thorn, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman and Company: New York, NY, USA, 1970.
12. Einstein, A. Note on E. Schrödinger’s Paper: The energy components of the gravitational field. Phys. Z. 1918,

19, 115–116.
13. Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1922.
14. Vishwakarma, R.G. On the relativistic formulation of matter. Astrophys. Space Sci. 2012, 340, 373–379.
15. Cooperstock, F.I.; Dupre, M.J. Covariant energy-momentum and an uncertainty principle for general

relativity. Ann. Phys. 2013, 339, 531–541.
16. Vishwakarma, R.G. A new solution of Einstein’s vacuum field equations. Pramana J. Phys. 2015, 85, 1101–1110.
17. Vishwakarma, R.G. A Machian approach to General Relativity. Int. J. Geom. Methods Mod. Phys. 2015,

12, 1550116.
18. Kinnersley, W. Recent progress in exact solutions. In Proceedings of the 7th International Conference on

General Relativity and Gravitation (GR7), Tel-Aviv, Israel, 23–28 June 1974.
19. Vishwakarma, R.G. Mysteries of Rik = 0: A novel paradigm in Einstein’s theory of gravitation. Front. Phys.

2014, 9, 98–112.
20. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23.
21. Hoyle, F.; Burbidge, G.; Narlikar, J.V. The basic theory underlying the Quasi-Steady-State cosmology. Proc. R.

Soc. Lond. A 1995, 448, 191–212.
22. Einstein, A. Relativity: The Special and the General Theory; Create Space Independent Publishing Platform:

London, UK, 2015.
23. Padmanabhan, T. Momentum density of spacetime and the gravitational dynamics. Gen. Relativ. Grav. 2016,

48, 4.
24. Hawking, S.; Milodinow, L. The Grand Design; Bantam Books: New York, NY, USA, 2010.
25. Giardino, S. Axisymmmetric empty space: Light propagation, orbits and dark matter. J. Mod. Phys. 2014, 5,

1402–1411.
26. Narlikar, J.V. An Introduction to Cosmology; Cambridge University Press: Cambridge, UK, 2002.
27. Vishwakarma, R.G. A curious explanation of some cosmological phenomena. Phys. Scripta 2013, 87, 5.
28. Harrison, E.R. Mining Energy in an Expanding Universe. Astrophys. J. 1995, 446, 63.
29. Tolman, R. C. Relativity, Thermodynamics and Cosmology; Oxford University Press: Oxford, UK, 1934.
30. Nielsen, J.T.; Guffanti, A.; Sarkar, S. Marginal evidence for cosmic acceleration from Type Ia supernovae.

2015, arXiv:1506.01354.
31. Ishak, M.; Rindler, W.; Dossett, J.; Moldenhauer, J.; Allison, C. A new independent limit on the cosmological

constant/dark energy from the relativistic bending of light by galaxies and clusters of galaxies. Mom. Not. R.
Astron. Soc. 2008, 388, 1279–1283.

327



Universe 2016, 2, 11

32. Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186–207;
33. Baryshev, Y.V. Energy-momentum of the gravitational field: Crucial point for gravitation physics and

cosmology. Pract. Cosmol. 2008, 1, 276–286.
34. Misner, C.W.; Wheeler, J.A. Classical physics as geometry: Gravitation, electromagnetism, unquantized

charge, and mass as properties of empty space. Ann. Phys. 1957, 2, 525–603.

c© 2016 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

328



universe

Article

Virial Theorem in Nonlocal Newtonian Gravity

Bahram Mashhoon

Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA;
mashhoonb@missouri.edu

Academic Editors: Lorenzo Iorio and Elias C. Vagenas
Received: 6 April 2016; Accepted: 11 May 2016; Published: 30 May 2016

Abstract: Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of
gravitation in which the past history of the gravitational field is taken into account. In this theory,
nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of
nonlocal gravity theory is derived and its consequences for “isolated" astronomical systems in virial
equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby
galaxy in virial equilibrium, the galaxy’s baryonic diameter D0—namely, the diameter of the smallest
sphere that completely surrounds the baryonic system at the present time—is predicted to be larger
than the effective dark matter fraction fDM times a universal length that is the basic nonlocality length
scale λ0 ≈ 3 ± 2 kpc.

Keywords: nonlocal gravity; celestial mechanics; dark matter

1. Introduction

In the standard theory of relativity, physics is local in the sense that a postulate of locality
permeates through the special and general theories of relativity. First, Lorentz invariance is extended in
a pointwise manner to actual, namely, accelerated, observers in Minkowski spacetime. This hypothesis
of locality is then employed crucially in Einstein’s local principle of equivalence to render observers
pointwise inertial in a gravitational field [1]. Field measurements are intrinsically nonlocal, however.
To go beyond the locality postulate in Minkowski spacetime, the past history of the accelerated observer
must be taken into account. The observer in general carries the memory of its past acceleration.
The deep connection between inertia and gravitation suggests that gravity could be nonlocal as well,
and, in nonlocal gravity, the gravitational memory of past events must then be taken into account.
Along this line of thought, a classical nonlocal generalization of Einstein’s theory of gravitation has
recently been developed [2–13]. In this theory, the gravitational field is local but satisfies partial
integro-differential field equations. Moreover, a significant observational consequence of this theory is
that the nonlocal aspect of gravity appears to simulate dark matter. The physical foundations of this
classical theory, from nonlocal special relativity theory to nonlocal general relativity, sets it completely
apart from purely phenomenological and ad hoc approaches to the problem of dark matter.

Dark matter is currently required in astrophysics for explaining the gravitational dynamics
of galaxies as well as clusters of galaxies [9], gravitational lensing observations [10] and structure
formation in cosmology [13]. We emphasize that only some of the implications of nonlocal gravity
theory have thus far been confronted with observation [9,12]. It is also important to mention here
that many other approaches to nonlocal gravitation theory exist that are, however, inspired by
developments in quantum field theory. The consideration of such theories is well beyond the scope of
this purely classical work.

In this paper, we are concerned with the Newtonian regime of nonlocal gravity, where Poisson’s
equation of Newtonian gravity is modified by the addition of a certain average over the gravitational field.
This nonlocal term involves a kernel function q whose functional form can perhaps be derived from
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a future more complete theory, but, at the present stage of the development of nonlocal gravity, must be
determined using observational data. It is necessary that a unique kernel be eventually chosen in this
way, but kernel q at the present time could be either q1 or q2 [6]. Each of these kernels is spherically
symmetric in space and contains three length scales a0, λ0, and μ−1

0 such that a0 < λ0 < μ−1
0 . The basic

scale of nonlocality is a galactic length λ0 of order 1 kpc, while a0 is a short-range parameter that
controls the behavior of q(r) as r → 0. At the other extreme, r → ∞, q(r) decays exponentially
as exp(−μ0 r), indicating the fading of spatial memory with distance. The short-range parameter
a0 is necessary in dealing with the gravitational physics of the Solar System, globular clusters and
isolated dwarf galaxies; however, it may be safely neglected in dealing with larger systems such
as clusters of galaxies. When a0 = 0, q1 and q2 reduce to a single kernel q0, q1 = q2 = q0, and the
remaining parameters (λ0 and μ0) have been determined from a comparison of the theory with the
astronomical data regarding a sample of 12 spiral galaxies from the THINGS catalog—see reference [9]
for a detailed treatment. The results can be expressed, for the sake of convenience, as λ0 ≈ 3 kpc and
μ−1

0 ≈ 17 kpc. Moreover, lower limits have been placed on a0 from the study of the precession of
perihelia of planetary orbits in the Solar System [12,14,15].

It is interesting to explore the implications of the virial theorem for nonlocal gravity. In general,
the virial theorem of Newtonian physics establishes a simple linear relation between the time averages
of the kinetic and potential energies of an isolated material system for which the potential energy
is a homogeneous function of spatial coordinates. For an isolated gravitational N-body system,
the significance of the virial theorem has to do with the circumstance that the kinetic energy is
a sum of terms each proportional to the mass of a body in the system, while the potential energy is a
sum of terms each proportional to the product of two masses in the system. Thus, under favorable
conditions, the virial theorem can be used to connect the total dynamic mass of an isolated relaxed
gravitational system with its average internal motion.

The main purpose of the present paper is to discuss, within the Newtonian regime of nonlocal
gravity, the consequences of the extension of the virial theorem to nonlocal gravity. Though such
an extension is technically straightforward, it is nevertheless physically quite significant as it allows
the possibility of making predictions regarding the effective dark-matter content of cosmologically
nearby isolated N-body gravitational systems in virial equilibrium.

2. Modification of the Inverse Square Force Law

It can be shown [12] that, in the Newtonian regime of nonlocal gravity, the force of gravity on
point mass m due to point mass m′ is given by:

F(r) = −Gmm′ r̂

r2

{
[1 − E(r) + α0]− α0 (1 +

1
2

μ0 r) e−μ0 r
}

(1)

where r = xm − xm′ , r = |r| and r̂ = r/r. The quantity in curly brackets is henceforth denoted by 1 +N,
where N is the contribution of nonlocality to the force law and depends upon three parameters, namely,
α0, μ0 and a short-range parameter a0 that is contained in E ; in fact, E = 0 when a0 = 0. We will show
in the next section that N starts out from zero at r = 0 with vanishing slope and monotonically increases
toward an asymptotic value of about 10 as r → ∞. Thus, the gravitational force in Equation (1) is
always attractive; moreover, this force is central, conservative and satisfies Newton’s third law of motion.

Nonlocal gravity is in the early stages of development and, depending on whether we choose
kernel q1 or kernel q2, E(r) at the present time can be either

E1(r) =
a0

λ0
ep
[

E1(p)− E1(p + μ0r)
]

(2)
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or

E2(r) =
a0

λ0

{
− r

r + a0
e−μ0r + 2ep

[
E1(p)− E1(p + μ0r)

]}
(3)

respectively, where p = μ0 a0, λ0 = 2/(α0 μ0) and E1(u) is the exponential integral function [16]:

E1(u) =
∫ ∞

u

e−t

t
dt (4)

For u : 0 → ∞, E1(u) > 0 monotonically decreases from infinity to zero. In fact, near u = 0,
E1(u) behaves like − ln u and as u → ∞, E1(u) vanishes exponentially. Furthermore,

E1(x) = −C − ln x −
∞

∑
n=1

(−x)n

n n!
(5)

where C = 0.577 . . . is Euler’s constant. It is useful to note that

e−u

u + 1
< E1(u) ≤ e−u

u
(6)

(see Equation 5.1.19 in reference [16]).
It is clear from Equation (1) that α0 is dimensionless, while μ−1

0 , λ0 and a0 have dimensions
of length. In fact, we expect that a0 < λ0 < μ−1

0 ; moreover, the short-range parameter a0 and E may
be neglected in Equation (1) when dealing with the rotation curves of spiral galaxies and the internal
gravitational physics of clusters of galaxies. In this way, α0 and μ0 have been tentatively determined
from a detailed comparison of nonlocal gravity with observational data [9]:

α0 = 10.94 ± 2.56 , μ0 = 0.059 ± 0.028 kpc−1 (7)

Hence, we find λ0 = 2/(α0 μ0) ≈ 3 ± 2 kpc. It is important to mention here that λ0 is the
fundamental length scale of nonlocal gravity at the present epoch; indeed, for λ0 → ∞, N → 0 and
Equation (1) reduces to Newton’s inverse square force law. In what follows, we usually assume
α0 ≈ 11 and μ−1

0 ≈ 17 kpc for the sake of convenience. Furthermore, we expect that p = μ0 a0 is such
that 0 < p < 1

5 . In reference [12], preliminary lower limits have been placed on a0 on the basis of current
data regarding planetary orbits in the Solar System. For instance, using the data for the orbit of Saturn,
a preliminary lower limit of a0 � 2 × 1015 cm can be established if we use E1, while a0 � 5.5 × 1014 cm
if we use E2.

Let us note that
dE1

dr
=

a0

λ0

1
a0 + r

e−μ0 r (8)

and
dE2

dr
=

a0

λ0

a0 + 2r + μ0 r(a0 + r)
(a0 + r)2 e−μ0 r (9)

Therefore, E1(r) and E2(r) start from zero at r = 0 and monotonically increase as r → ∞;
furthermore, they asymptotically approach E1(∞) = E∞ and E2(∞) = 2 E∞, respectively, where

E∞ =
1
2

α0 p epE1(p) (10)

It is a consequence of (6) that E∞ < α0/2, so that, in the gravitational force in Equation (1),

α0 − E(r) > 0 (11)
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In the Newtonian regime, where we formally let the speed of light c → ∞, retardation effects
vanish and gravitational memory is purely spatial. The resulting gravitational force in Equation (1)
thus consists of two parts: an enhanced attractive “Newtonian” part and a repulsive fading spatial
memory (“Yukawa”) part with an exponential decay length of μ−1

0 ≈ 17 kpc. Equation (1) is such that it
reduces to Newton’s inverse square force law for r → 0, as it should [17–21], and on galactic scales, it is
a generalization of the phenomenological Tohline-Kuhn modified gravity approach to the flat rotation
curves of spiral galaxies [22–25]. An excellent review of the Tohline-Kuhn work is contained in the
paper of Bekenstein [26].

For r � μ−1
0 , the exponentially decaying (“fading memory") part of Equation (1) can be neglected and

F(r) ≈ −Gmm′ [1 + α0 − E(∞)]

r2 r̂ (12)

so that m′ [α0 − E(∞)] has the interpretation of the total effective dark mass associated with m′. For
a0 = 0, the net effective dark mass associated with point mass m′ is simply α0 m′, where α0 ≈ 11 [9].
On the other hand, for a0 �= 0, the corresponding result is α0 ε(p)m′, where

ε1(p) = 1 − 1
2

p ep E1(p) , ε2(p) = 1 − p ep E1(p) (13)

depending on whether we use E1 or E2, respectively. The functions in Equation (13) start from unity at
p = 0 and decrease monotonically to ε1(0.2) ≈ 0.85 and ε2(0.2) ≈ 0.70 at p = 0.2; they are plotted in
Figure 1 of reference [12] for p : 0 → 0.2. If a0 turns out to be just a few parsecs or smaller, for instance,
then ε1 ≈ ε2 ≈ 1.

A detailed investigation reveals that it is possible to approximate the exterior gravitational force
due to a star or a planet by assuming that its mass is concentrated at its center [12]. In this connection,
we note that the radius of a star or a planet is generally much smaller than the length scales a0,
λ0 and μ−1

0 that appear in the nonlocal contribution to the gravitational force. Therefore, one can
employ Equation (1) in the approximate treatment of the two-body problem in astronomical systems
such as binary pulsars and the Solar System, where possible deviations from general relativity may
become measurable in the future.

Consider, for instance, the deviation from the Newtonian inverse square force law, namely,

δ F(r) = − Gmm′ r̂

r2 N(r) (14)

For r < a0, it is possible to show via an expansion in powers of r/a0 that [12]

δ F1(r) = −1
2

Gmm′

λ0 a0
(1 + p) r̂ +

1
3

Gmm′

λ0 a0
(1 + p + p2)

r
a0

r̂ + · · · (15)

if E1 is employed, or

δ F2(r) = −1
3

Gmm′

λ0 a0
(1 + p)

r
a0

r̂ + · · · (16)

if E2 is employed. Perhaps dedicated missions, such as ESA’s Gaia mission that was launched in 2013,
can measure the imprint of nonlocal gravity in the Solar System [27,28]. In this connection, we note that

1
2

G M�
λ0 a0

(1 + p) ≈
(1018 cm

a0

)
10−14 cm s−2 (17)

which, combined with lower limits on a0 established in reference [12], is at least three orders of
magnitude smaller than the acceleration involved in the Pioneer anomaly (∼ 10−7 cm s−2). It follows
from these results that nonlocal gravity is consistent with the gravitational physics of the Solar System.
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3. Virial Theorem

Consider an idealized isolated system of N Newtonian point particles with fixed masses mi,
i = 1, 2, . . . , N. We assume that the particles occupy a finite region of space and interact with each
other only gravitationally such that the center of mass of the isolated system is at rest in a global
inertial frame and the isolated system permanently occupies a compact region of space. The equation
of motion of the particle with mass mi and state (xi, vi) is then

mi
d vi
dt

= −∑
j

′ G mi mj (xi − xj)

|xi − xj|3 [1 +N(|xi − xj|)] (18)

for j = 1, 2, . . . , N, but the case j = i is excluded in the sum by convention. In fact, a prime over the
summation sign indicates that in the sum j �= i. Here, 1 +N(r) is a universal function that is inside the
curly brackets in Equation (1) and the contribution of nonlocality, N(r), is given by

N(r) = α0

[
1 − (1 +

1
2

μ0 r) e−μ0 r
]
− E(r) (19)

Consider next the quantities

I =
1
2 ∑

i
mi x2

i ,
d I
dt

= ∑
i

mi xi · vi (20)

where xi = |xi| and
d2 I

dt2 = ∑
i

mi v2
i + ∑

i
mi xi · d vi

dt
(21)

It follows from Equation (18) that

∑
i

mi xi · d vi
dt

= −∑
i,j

′ G mi mj (xi − xj) · xi

|xi − xj|3 [1 +N(|xi − xj|)] (22)

Exchanging i and j in the expression on the right-hand side of Equation (22), we get

∑
i

mi xi · d vi
dt

= ∑
i,j

′ G mi mj (xi − xj) · xj

|xi − xj|3 [1 +N(|xi − xj|)] (23)

Adding Equations (22) and (23) results in

∑
i

mi xi · d vi
dt

= −1
2 ∑

i,j

′ G mi mj

|xi − xj| [1 +N(|xi − xj|)] (24)

Using this result, Equation (21) takes the form

d2 I

dt2 = ∑
i

mi v2
i −

1
2 ∑

i,j

′ G mi mj

|xi − xj| [1 +N(|xi − xj|)] (25)

Let us recall that the net kinetic energy and the Newtonian gravitational potential energy of the
system are given by

T =
1
2 ∑

i
mi v2

i , WN = −1
2 ∑

i,j

′ G mi mj

|xi − xj| (26)

Hence,
d2 I

dt2 = 2T+WN +D (27)
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where

D = −1
2 ∑

i,j

′ G mi mj

|xi − xj| N(|xi − xj|) (28)

and N is given by Equation (19).
Finally, we are interested in the average of Equation (27) over time. Let < f > denote the time

average of f , where

< f > = lim
τ→∞

1
τ

∫ τ

0
f (t) dt (29)

Then, it follows from averaging Equation (27) over time that

2 < T > = − < WN > − < D > (30)

since d I/dt, which is the sum of m x · v over all particles in the system, is a bounded function of
time and hence the time average of d2 I/dt2 vanishes. This is clearly based on the assumption that
the spatial coordinates and velocities of all particles indeed remain finite for all time. Equation (30)
expresses the virial theorem in nonlocal Newtonian gravity.

It is important to digress here and re-examine some of the assumptions involved in our derivation
of the virial theorem. In general, any consequence of the gravitational interaction involves the whole
mass-energy content of the universe due to the universality of the gravitational interaction; therefore,
an astronomical system may be considered isolated only to the extent that the tidal influence of
the rest of the universe on the internal dynamics of the system can be neglected. Moreover, the
parameters of the force law in Equation (1) refer to the present epoch and hence the virial theorem
in Equation (30) ignores cosmological evolution. Thus, the temporal average over an infinite period
of time in Equation (30) must be reinterpreted here to mean that the relatively isolated system under
consideration has evolved under its own gravity such that it is at the present epoch in a steady
equilibrium state. That is, the system is currently in virial equilibrium. Finally, we recall that a point
particle of mass m in Equation (30) could reasonably represent a star of mass m as well, where the mass
of the star is assumed to be concentrated at its center.

The deviation of the virial theorem in Equation (30) from the Newtonian result is contained in
< D >, where D is given by Equation (28). More explicitly, we have

D = −1
2 ∑

i,j

′ G mi mj

|xi − xj|
[
α0 − α0 (1 +

1
2

μ0 |xi − xj|) e−μ0 |xi−xj | − E(|xi − xj|)
]

(31)

It proves useful at this point to study some of the properties of the function N, which is the
contribution of nonlocality that is inside the square brackets in Equation (31). The argument of this
function is |xi − xj| > 0 for i �= j; therefore, |xi − xj| varies over the interval (0,D0], where D0 is the
largest possible distance between any two baryonic point masses in the system. Thus, N(r), in the
context of the virial theorem, is defined for the interval 0 < r ≤ D0, where D0 is the diameter of
the smallest sphere that completely encloses the baryonic system for all time. In general, however,
N(0) = 0 and N(∞) = α0 − E(∞) > 0, where E(∞) = E∞ or 2 E∞, depending on whether we use E1

or E2, respectively. Moreover, dN(r)/dr is given by

d
dr

N1(r) =
1
2

α0 μ0
r [1 + μ0 (a0 + r)]

a0 + r
e−μ0 r (32)

if we use E1 or
d
dr

N2(r) =
1
2

α0 μ0
r2 [1 + μ0 (a0 + r)]

(a0 + r)2 e−μ0 r (33)

if we use E2. Writing exp (μ0 r) = 1 + μ0 r +R, where R > 0 represents the remainder of the power
series, it is straightforward to see that for r ≥ 0 and n = 1, 2, . . . ,
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eμ0 r (a0 + r)n > rn [1 + μ0 (a0 + r)] (34)

This result, for n = 1 and n = 2, implies that the right-hand sides of Equations (32) and (33),
respectively, are less than α0 μ0/2. Therefore, it follows that, in general,

d
dr

N(r) <
1
2

α0 μ0 (35)

Moreover, for r > 0, (35) implies:

N(r) =
∫ r

0

dN(x)
dx

dx <
1
2

α0 μ0 r (36)

We conclude that N is a monotonically increasing function of r that is zero at r = 0 with a slope
that vanishes at r = 0. For r � μ−1

0 , N(r) asymptotically approaches a constant α0 ε := α0 − E(∞).
Here, ε(p) is either ε1(p) or ε2(p) depending on whether we use E1 or E2, respectively. The functions
ε1(p) and ε2(p) are defined in Equation (13).

4. Dark Matter

Most of the matter in the universe is currently thought to be in the form of certain elusive particles
that have not been directly detected [29–32]. The existence and properties of this dark matter have thus
far been deduced only through its gravity. We are interested here in dark matter only as it pertains
to stellar systems such as galaxies and clusters of galaxies [33–39]. We mention that dark matter is
also essential in the explanation of gravitational lensing observations [40,41] and in the solution of the
problem of structure formation in cosmology [13,42]; however, these topics are beyond the scope of
this work.

Actual (mainly baryonic) mass is observationally estimated for astronomical systems using the
mass-to-light ratio M/L. However, it turns out that the dynamic mass of the system is usually larger
and this observational fact is normally attributed to the possible existence of nonbaryonic dark matter.
Let M be the baryonic mass and MDM be the mass of the nonbaryonic dark matter needed to explain
the gravitational dynamics of the system. Then,

fDM =
MDM

M
(37)

is the dark matter fraction and M + MDM = M (1 + fDM) is the dynamic mass of the system.
In observational astrophysics, the virial theorem of Newtonian gravity is interpreted to be

a relationship between the dynamic (virial) mass of the entire system and its average internal motion
deduced from the rotation curve or velocity dispersion of the bound collection of masses in virial equilibrium.
Therefore, regardless of how the net amount of dark matter in galaxies and clusters of galaxies is
operationally estimated and the corresponding fDM is thereby determined, for sufficiently isolated
self-gravitating astronomical systems in virial equilibrium, we must have

2 < T > = −(1 + fDM) < WN > (38)

That is, virial theorem Equation (38) is employed in astronomy to infer in some way the total
dynamic mass of the system. Indeed, Zwicky first noted the need for dark matter in his application of
the standard virial theorem of Newtonian gravity to the Coma cluster of galaxies [33,34].

5. Effective Dark Matter

A significant physical consequence of nonlocal gravity theory is that it appears to simulate dark
matter [9]. In particular, in the Newtonian regime of nonlocal gravity, the Poisson equation is modified
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such that the density of ordinary matter ρ is accompanied by a term ρD that is obtained from the
folding (convolution) of ρ with the reciprocal kernel of nonlocal gravity. Thus, ρD has the interpretation
of the density of effective dark matter and ρ + ρD is the density of the effective dynamic mass.

The virial theorem makes it possible to elucidate in a simple way the manner in which nonlocality
can simulate dark matter. It follows from a comparison of Equations (30) and (38) that nonlocal gravity
can account for this “excess mass” if

< D > = fDM < WN > (39)

where WN and D are given in Equations (26) and (28), respectively.
It is interesting to apply the virial theorem of nonlocal gravity to sufficiently isolated astronomical

N-body systems. The configurations that we briefly consider below consist of clusters of galaxies with
diameters D0 � μ−1

0 ≈ 17 kpc, galaxies with D0 ∼ μ−1
0 and globular star clusters with D0 � μ−1

0 .
The results presented in this section follow from certain general properties of the function N(r) and
are completely independent of how the baryonic matter is distributed within the astronomical system
under consideration.

We emphasize that, after setting the short-range parameter a0 = 0, the parameters α0 and μ0,
and hence λ0, were originally determined from the combined observational data for the rotation curves
of a sample of 12 nearby spiral galaxies from the THINGS catalog [9]. These tentative values are given
in Equation (7). These parameter values were then found to be in reasonable agreement with the
internal dynamics of a sample of 10 rich nearby clusters of galaxies from the Chandra X-ray catalog [9].
In the present paper, we use these parameter values to make predictions about all nearby isolated
N-body gravitational systems that are in virial equilibrium.

5.1. Clusters of Galaxies: fDM ≈ α0 ε(p)

Consider, for example, a cluster of galaxies, where nearly all of the relevant distances are much
larger than μ−1

0 ≈ 17 kpc. In this case, μ0 r � 1 and hence N approaches its asymptotic value, namely,

N ≈ α0 ε(p) (40)

where ε = ε1 or ε2, defined in Equation (13), depending on whether we use E1 or E2, respectively.
Hence, Equation (28) can be written as:

< D >≈ α0 ε(p) < WN > (41)

It then follows from Equation (39) that, for galaxy clusters,

fDM ≈ α0 ε(p) (42)

in nonlocal gravity. We recall that ε is only weakly sensitive to the magnitude of a0. It follows from
α0 ≈ 11 that fDM for galaxy clusters is about 10, in general agreement with observational data [9].
This theoretical result is essentially equivalent to the work on galaxy clusters contained in reference [9],
except that Equation (42) takes into account the existence of the short-range parameter a0.

Nonlocal gravity thus predicts that the effective dark matter fraction fDM has approximately the
same constant value of about 10 for all isolated nearby clusters of galaxies that are in equilibrium.

5.2. Galaxies: fDM < D0/λ0

Consider next a sufficiently isolated galaxy of diameter D0 in virial equilibrium. In this case,
we recall that N(r) is a monotonically increasing function of r, so that for 0 < r ≤ D0, Equation (36) implies

N(r) ≤ N(D0) <
1
2

α0 μ0 D0 (43)
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Therefore, it follows from Equation (28) that, in this case,

D > (
1
2

α0 μ0 D0)WN (44)

The virial theorem for nonlocal gravity in the case of an isolated galaxy is then

2 < T > + < WN > < − (
1
2

α0 μ0 D0) < WN > (45)

which means, when compared with Equation (38), that

fDM <
1
2

α0 μ0 D0 (46)

Let us note that
1
2

α0 μ0 =
1

λ0
(47)

where λ0 is the basic nonlocality length scale. Its exact value is not known; however, from the results
of reference [9], we have λ0 ≈ 3 ± 2 kpc. If we formally let λ0 → ∞, then (46), namely, fDM < D0/λ0,
implies that in this case nonlocality and the effective dark matter both disappear, as expected. Therefore,
for a sufficiently isolated galaxy in virial equilibrium, the ratio of its baryonic diameter to dark matter
fraction fDM must always be above a fixed length λ0 of about 3 ± 2 kpc; that is,

D0

fDM
> λ0 (48)

To illustrate (48), consider, for instance, the Andromeda Galaxy (M31) with a diameter D0 of
about 67 kpc. In this case, we have fDM ≈ 12.7 [43,44], so that for this spiral galaxy

D0

fDM
(Andromeda Galaxy) ≈ 5.3 kpc (49)

More recently, the distribution of dark matter in M31 has been further studied in reference [45].
Similarly, for the Triangulum Galaxy (M33), we have D0 ≈ 34 kpc and fDM ≈ 5 [46], so that

D0

fDM
(Triangulum Galaxy) ≈ 6.8 kpc (50)

Turning next to an elliptical galaxy, namely, the massive E0 galaxy NGC 1407, we have D0 ≈ 160 kpc
and fDM ≈ 31 [47], so that

D0

fDM
(NGC 1407) ≈ 5.2 kpc (51)

Moreover, for the intermediate-luminosity elliptical galaxy NGC 4494, which has a half-light
radius of Re ≈ 3.77 kpc, the dark matter fraction has been found to be fDM = 0.6± 0.1 [48]. Assuming that
the baryonic system has a radius of 2 Re, we have D0 = 4 Re ≈ 15 kpc and fDM ≈ 0.6; hence,

D0

fDM
(NGC 4494) ≈ 25 kpc (52)

Let us note that the results presented here are essentially for the present epoch in the expansion of
the universe. Observations indicate, however, that the diameters of massive galaxies can increase with
decreasing redshift z. For a discussion of such massive compact galaxies, see reference [49].

Finally, it is interesting to consider fDM at the other extreme, namely, for the case of globular star
clusters and isolated dwarf galaxies. The diameter of a globular star cluster is about 40 pc. We can
therefore conclude from (48) with λ0 ≈ 3 kpc that for globular star clusters:
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fDM (globular star cluster) � 10−2 (53)

Thus, according to the virial theorem of nonlocal gravity, less than about one percent of the mass
of a globular star cluster must appear as effective dark matter if the system is sufficiently isolated and
is in virial equilibrium. It is not clear to what extent such systems can be considered isolated. It is
usually assumed that observational data are consistent with the existence of almost no dark matter
in globular star clusters. However, a recent investigation of six galactic globular clusters has led to
the conclusion that fDM ≈ 0.4 [50]. The resolution of this discrepancy is beyond the scope of the
present work.

Isolated dwarf galaxies with diameters D0 � μ−1
0 would similarly be expected to contain

a relatively small percentage of effective dark matter. There is a significant discrepancy here as well,
see reference [51]; again, the resolution of this difficulty is beyond the scope of this paper. In dwarf
systems that are not isolated, the tidal influence of a much larger neighboring galaxy on the dynamics
of the dwarf spheroidal galaxy cannot be ignored [52–54].

6. Discussion

Nonlocal gravity theory predicts that the amount of effective dark matter in a sufficiently isolated
nearby galaxy in virial equilibrium is such that fDM has an upper bound, D0/λ0, that is completely
independent of the distribution of baryonic matter in the galaxy. However, it is possible to derive
an improved upper bound for fDM, which does depend on how baryons are distributed within the galaxy.
To this end, we note that Equation (28) for D and N(r) < r/λ0 imply:

D > −1
2 ∑

i,j

′ G mi mj

λ0
(54)

If follows from this result together with Equation (39) that

< WN > fDM > −1
2 ∑

i,j

′ G mi mj

λ0
(55)

Let us define a characteristic length, Rav, for the average extent of the distribution of baryons in
the galaxy via

Rav < WN >= −1
2 ∑

i,j

′ G mi mj (56)

Then, it follows from (55) and Equation (56), that

fDM <
Rav

λ0
(57)

Clearly, Rav depends upon the density of baryons in the galaxy. In the Newtonian gravitational
potential energy in Equation (56), 0 < |xi − xj| ≤ D0; therefore, in general, Rav ≤ D0; hence, we
recover from the new inequality, namely, fDM < Rav/λ0, our previous less tight but more general
result fDM < D0/λ0.
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Abstract: After exactly a century since the formulation of the general theory of relativity, the
phenomenon of gravitational lensing is still an extremely powerful method for investigating in
astrophysics and cosmology. Indeed, it is adopted to study the distribution of the stellar component
in the Milky Way, to study dark matter and dark energy on very large scales and even to discover
exoplanets. Moreover, thanks to technological developments, it will allow the measure of the physical
parameters (mass, angular momentum and electric charge) of supermassive black holes in the center
of ours and nearby galaxies.

Keywords: gravitational lensing

1. Introduction

In 1911, while he was still involved in the development of the general theory of relativity
(subsequently published in 1916), Einstein made the first calculation of light deflection by the Sun [1].
He correctly understood that a massive body may act as a gravitational lens deflecting light rays
passing close to the body surface. However, his calculation, based on Newtonian mechanics, gave a
deflection angle wrong by a factor of two. On 14 October 1913, Einstein wrote to Hale, the renowned
astronomer, inquiring whether it was possible to measure a deflection angle of about 0.84′′ toward
the Sun. The answer was negative, but Einstein did not give up, and when, in 1915, he made the
calculation again using the general theory of relativity, he found the right value φ = 2rs/b (where
rs = 2GM/c2 is the Schwarzschild radius and b is the light rays’ impact parameter) that corresponds
to an angle of about 1.75′′ in the case of the Sun. That result was resoundingly confirmed during the
Solar eclipse of 1919 [2].

In 1924, Chwolson [3] considered the particular case when the source, the lens and the observer
are aligned and noticed the possibility of observing a luminous ring when a far source undergoes the
lensing effect by a massive star. In 1936, after the insistence of Rudi Mandl, Einstein published a paper
on science [4] describing the gravitational lensing effect of one star on another, the formation of the
luminous ring, today called the Einstein ring, and giving the expression for the source amplification.
However, Einstein considered this effect exceedingly curious and useless, since in his opinion, there
was no hope to actually observe it.

On this issue, however, Einstein was wrong: he underestimated technological progress and did
not foresee the motivations that today induce one to widely use the gravitational lensing phenomenon.
Indeed, Zwicky promptly understood that galaxies were gravitational lenses more powerful than
stars and might give rise to images with a detectable angular separation. In two letters published
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in 1937 [5,6], Zwicky noticed that the observation of galaxy lensing, in addition to giving a further
proof of the general theory of relativity, might allow observing sources otherwise invisible, thanks
to the light gravitational amplification, thereby obtaining a more direct and accurate estimate of the
lens galaxy dynamical mass. He also found that the probability to observe lensed galaxies was much
larger than that of star on star. This shows the foresight of this eclectic scientist, since the first strong
lensing event was discovered only in 1979: the double quasar QSO 0957+561 a/b [7], shortly followed
by the observation of tens of other gravitational lenses, Einstein rings and gravitational arcs. All of
that plays today an extremely relevant role for the comprehension of the evolution of the structures
and the measure of the parameters of the so-called cosmological standard model.

Actually, there are different scales in gravitational lensing, on which we shall briefly concentrate
in the next sections, after a short introduction to the basics of the theory of gravitational lensing
(Section 2). Generally speaking, gravitational lens images separated by more than a few tenths of
arcsecs are clearly seen as distinct images by the observer. This was the case considered by Zwicky,
and the gravitational lensing in this regime is called strong (or macro) lensing (see Section 3), which also
includes distorted galaxy images, like Einstein rings or arcs. If instead, the distortions induced by the
gravitational fields on background objects are much smaller, we have the weak lensing effect (see Section
4). On the other side, if one considers the phenomenology of the star-on-star lensing (as Einstein did),
the resulting angular distance between the images is of the order of a few μas, generally not separable
by telescopes. Gravitational lensing in this regime is called, following Paczyǹski [8], microlensing, and
the observable is an achromatic change in the brightness of the source star over time, due to the relative
motion of the lens and the source with respect to the line of sight of the source (see Section 5). In all of
these regimes, the gravitational field can be treated in the weak field approximation. Another scale on
which gravitational lensing applies is that involving black holes. In particular, when light rays come
very close to the event horizon, they are subject to strong gravitational field effects, and thereby, the
deflection angles are large. This effect is called retro-lensing, and we shall discuss it in Section 6. The
observation of retro-lensing events is of great importance also because the general theory of relativity
still stands practically untested in the strong gravitational field regime (see [9] for a very recent review),
apart from gravitational waves [10]. A short final discussion is then offered in Section 7.

2. Basics of Gravitational Lensing

In the general theory of relativity, light rays follow null geodesics, i.e., the minimum distance paths
in a curved space-time. Therefore, when a light ray from a far source interacts with the gravitational
field due to a massive body, it is bent by an angle approximately equal to αS(b) = 2rs/b. By looking at
Figure 1, assuming the ideal case of a thin lens and noting that αSDLS = (θ − θS)DS, one can easily
derive the so-called lens equation:

θS = θ − θ2
E
θ

, (1)

where θS indicates the source position and:

θE =

(
4GM

c2
DLS

DSDL

)1/2
(2)

is the Einstein ring radius, which is the angular radius of the image when lens and source are perfectly
aligned (θS = 0). Therefore, one can see that two images appear in the source plane, whose positions
can be obtained by solving Equation (1).

More generally (see for details [11]), the light deflection between the two-dimensional position of
the source θS and the position of the image θ is given by the lens mapping equation:

θS = θ−∇φ(θ), (3)
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where φ = 2DLSΦ2D
N /(DSc2) is the so-called lensing potential and Φ2D

N is the two-dimensional
Newtonian projected gravitational potential of the lens. We also note, in turn, that the ratio DLS/DS
depends on the redshift of the source and the lens, as well as on the cosmological parameters
ΩM = ρM/ρc and ΩΛ = ρΛ/ρc, being ρc = 3H2

0 /(8πG), ρM and ρΛ the critical, the matter and
the dark energy densities, respectively. The transformation above is thus a mapping from the source
plane to the image plane, and the Jacobian J of the transformation is given by:

J =
dθS
dθ

= A−1 =

(
1 − φ,11 −φ,12

−φ,12 1 − φ,22

)
=

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
, (4)

where the commas are the partial derivatives with respect to the two components of θ. Here, κ is the
convergence, which turns out to be equal to Σ/2Σcr, where:

Σcr = c2DS/(4πGDLDLS) (5)

is the critical surface density, γ = (γ1, γ2) is the shear and A is the magnification matrix. Thus, the
previous equations define the convergence and shear as second derivatives of the potential, i.e.,

κ =
1
2
(∂1∂1 + ∂2∂2)φ =

1
2
∇2φ, γ1 = (∂1∂1 − ∂2∂2)φ, γ2 = ∂1∂2φ. (6)

From the above discussion, it is clear that gravitational lensing may allow one to probe the total
mass distribution within the lens system, which reproduces the observed image configurations and
distortions. This, in turn, may allow one to constrain the cosmological parameters, although this is a
second order effect.

Figure 1. Schematics of the lensing phenomenon.

3. Strong Lensing

Quasars are the brightest astronomical objects, visible even at a distance of billions of parsecs.
After the identification of the first quasar in 1963 [12], these objects remained a mystery for quite a
long time, but today, we know that they are powered by mass accretion on a supermassive black
hole, with a mass billions of times that of the Sun. The first strong gravitational lens, discovered in
1979, was indeed linked to a quasar (QSO 0957+561 [7]), and although the phenomenon was expected
on theoretical grounds, it left the astronomers astonished. The existence of two objects separated by
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about 6′′ and characterized by an identical spectrum led to the conclusion that they were the doubled
image of the same quasar, clearly showing that Zwicky was perfectly right and that galaxies may
act as gravitational lenses. Afterwards, also the lens galaxy was identified, and it was established
that its dynamical mass, responsible for the light deflection, was at least ten-times larger than the
visible mass. This double quasar was also the first object for which the time delay (about 420 days)
between the two images [13], due to the different paths of the photons forming the two images, has
been measured. This has also allowed obtaining an independent estimate of the lens galaxy dynamical
mass. Observations can also show four images of the same quasar, as in the case of the so-called
Einstein Cross, or when the lens and the source are closely aligned, one can observe the Einstein ring,
e.g., in the case of MG1654-1346 [14]. The macroscopic effect of multiple images’ formation is generally
called strong lensing, which also consists of the formation of arcs, as those clearly visible in the deep
sky field images by the Sloan Digital Sky Survey (SDSS; see, e.g., [15]). The sources of strong lensing
events are often quasars, galaxies, galaxy clusters and supernovae, whereas the lenses are usually
galaxies or galaxy clusters. The image separation is generally larger than a few tenths of an arcsec,
often up to a few arcsecs.

Over the years, many strong lensing events have been found in deep surveys of the sky, such as
the CLASS [16], the Sloan ACS [17], the SDSS, one of the most successful surveys in the history of
astronomy (see, e.g., [18] and references therein), the SQLS (the Sloan Digital Sky Survey for Quasar
Lens Search) [19], and so on.

Strong gravitational lensing is nowadays a powerful tool for investigation in astrophysics and
cosmology (see, e.g. [20,21]). As already mentioned in the previous section, strong lensing gives a
unique opportunity to measure the dynamical mass of the lens object using, for example, the mass
estimator M(< RE) = πΣcrθ2

E, which directly gives the mass within RE, using Equation (5) in this
regime. The result is that masses obtained in this way are almost always larger than the visible mass of
the lensing object, showing that galaxy and galaxy cluster masses are dominated by dark matter. In
any case, accurately constraining the mass distribution of the lens system (e.g., a galaxy cluster) is a
generally degenerate problem, in the sense that there are several mass distributions that can fit the
observables; thus, the best way to solve it is to use multiple images (see, e.g., [22]).

Another important application of strong lensing is the study of dark matter halo substructures.
Indeed, sometimes flux ratio anomalies in the lensed quasar images are detected (see, e.g., [23,24]), and
while smooth mass models of the lensing galaxy may generally explain the observed image positions,
the prediction of such models of the corresponding fluxes is frequently violated. Especially in the
radio band observations, since the quasar radio emitting region is quite large, the observed radio
flux anomalies are explained as being due to the presence of substructures of about 106 − 108 M�
along the line of sight. After some controversy regarding whether ΛCDM (cold dark matter plus
Cosmological Constant) simulations predict enough dark matter substructures to account for the
observations (for example, in [25], some indication is found of an excess of massive galaxy satellites),
more recent analysis, taking also into account the uncertainty in the lens system ellipticity, finds results
consistent with those predicted by the standard cosmological model [26,27]. However, at present, the
list of multiply-imaged quasars observed in the radio and mid-IR bands is quite short, and further
observational and theoretical work would be very helpful in this respect. Another indication of dark
matter halo substructures comes from detailed analysis of galaxy-galaxy lensing. Although the results
obtained are generally consistent with ΛCDM simulations, more data should be analyzed in order to
get strong constraints [28,29]. Strongly lensed quasars have been observed to show a certain variability
of one image with respect to the others. This can be often attributed to microlensing (see Section 5)
by the stars throughout the lens galaxy. This effect, and in particular its variation with respect to the
wavelength, has provided an opportunity to study in detail the central engine of the source quasar,
and the magnitude of the microlensing variability has allowed astrophysicists to constrain the stellar
density in the lens galaxy [30–32].
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Strong gravitational lensing may be used as a natural telescope that magnifies dim galaxies,
making them easier to be studied in detail. For this reason, mass concentrations, like galaxies and
clusters of galaxies, can be effectively used as cosmic telescopes to study faint sources that would not
be possible to detect in the absence of gravitational lensing (see, e.g., [33,34]). At present, there is also
an event of a high magnified supernova multiply imaged and also seen exploding again, being lensed
by a galaxy in the cluster MACS J1149.6+2223 [35,36].

The ultimate goal of strong lensing is not only to get information on the large-scale structure of
the Universe, but also to constrain the cosmological parameters. For instance, analyzing the time delay
among the lensed source images, it is possible to estimate also the value of the Hubble constant H0.
Indeed, the time delay is given by the difference of the light paths from the images and is inversely
proportional to H0, as first understood by Refsdal [37] (see also the review in [38]). At present, one of
the most accurate measurement of the Hubble constant using a gravitational lens is provided in [39].
There is also a project (COSMOGRAIL) particularly devoted to the time delay measurements of doubly-
or multiply-lensed quasars (see [40] and the references therein). Moreover, the measure of both the
frequency of occurrence and the redshift of multiple images in deep sky surveys may allow one to
constrain the values of ΩM and ΩΛ in an independent way with respect to other methods, such as
those coming from SN Ia or the CMB (Cosmic Microwave Background) power spectrum.

4. Weak Lensing

In addition to the macroscopic deformations discussed in the previous section, in the deep field
surveys of the sky, also arclets (i.e., single distorted images with an elliptical shape) and weakly
distorted images of galaxies, with an almost invisible individual elongation, have been detected. This
effect is known as weak lensing and is playing an increasingly important role in cosmology.

The weak lensing’s main feature is the shape deformation of background galaxies, whose light
crosses a mass distribution (e.g., a galaxy or a galaxy cluster) that acts as a gravitational lens. Actually,
as discussed in Section 2, gravitational lensing gives rise to two distinct effects on a source image:
convergence, which is isotropic, and shear, which is anisotropic. In the weak lensing regime, the
observer makes use of the shear, that is the image deformation (sometimes related to the galaxy
orientation), while the convergence effect is not used, since the intrinsic luminosity and the size of the
lensed objects are unknown. For a complete and in-depth review on the basics of weak gravitational
lensing, with full mathematical details of all the most important concepts, we refer the reader to [41].

The first weak lensing event was detected in 1990 as statistical tangential alignment of galaxies
behind massive clusters [42], but only in 2000, coherent galaxy distortions were measured in blind
fields, showing the existence of the cosmic shear (see, e.g., [43,44]). Here, we remark that the weak
lensing cannot be measured by a single galaxy, but its observation relies on the statistical analysis of
the shape and alignment of a large number of galaxies in a certain direction.

Therefore, the game is to measure the galaxy ellipticities and orientations and to relate them to
the surface mass density distribution of the lens system (generally a galaxy cluster placed in between).
There are at least two major issues in weak lensing studies, one mainly relying on the theory, the other
one on observations: the former concerns finding the best way to reconstruct the intervening mass
distribution from the shear field γ = (γ1, γ2), the latter with looking for the best way to determine
the true ellipticity of a faint galaxy, which is smeared out by the instrumental point spread function
(PSF). To solve these issues, several approaches have been proposed, which can be distinguished
into two broad families: direct and inverse methods. On the theoretical side, the direct approaches
are: the integral method, which consists of expressing the projected mass density distribution as the
convolution of γ by a kernel (see, e.g., [45]), and the local inversion method, which instead starts
from the gradient of γ (see, e.g., [46] and the references therein). The inverse approaches work on
the lensing potential φ (see Equation 3), and they include the use of the maximum likelihood [47,48]
or the maximum entropy methods [49] to determine the most likely projected mass distribution that
reproduces the shear field. The inverse methods are particularly useful since they make it possible to
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quantify the errors in the resultant lensing mass estimates, as, for instance, errors deriving from the
assumption of a spherical mass model when fitting a non-spherical system [50,51].

The inverse methods allow one also to derive constraints from external observations, such as
X-ray data on galaxy clusters’ strong lensing or CMB lensing. In particular, one can compare mass
measurements from weak lensing and X-ray observations for large samples of galaxy clusters [52].
In this respect, [53] used a large sample of nearby clusters with good weak lensing and X-ray
measurements to investigate the agreement between mass estimates based on weak lensing and
X-ray data, as well as studied the potential sources of errors in both methods. Moreover, a combination
of weak lensing and CMB data may provide powerful constraints on the cosmological parameters,
especially on the Hubble constant H0, the amplitude of fluctuations σ8 and the matter cosmic density
Ωm [54,55]. We also mention, in this respect, that one way to determine the fluid-mechanical properties
of dark energy, characterized by its sound speed and its viscosity apart from its equation of state, is to
combine Planck data with galaxy clustering and weak lensing observations by Euclid, yielding one
percent sensitivity on the dark energy sound speed and viscosity [56] (see the end of this section).

On the observational side, the first priority is to use a telescope with a wide field of view,
appropriate to probe the large-scale structure distribution at least of a galaxy cluster. On the other
hand, it is also necessary to minimize the source of noise in the determination of the ellipticity of very
faint galaxies, so that the best-seeing conditions for a ground-based telescope or, better, a space-based
instrument, are extremely useful.

Very promising results have been obtained with the weak lensing technique so far, as, for example,
the best measure, until today, of the existence and distribution of dark matter within the famous
Bullet cluster [57] (actually constituted by a pair of galaxy clusters observed in the act of colliding).
Astronomers found that the shocked plasma was almost entirely in the region between the two clusters,
separated from the galaxies. However, weak lensing observations showed that the mass was largely
concentrated around the galaxies themselves, and this enabled a clear, independent measurement of
the amount of dark matter.

With the major aim to map, through the weak lensing effect, the mass distribution in the Universe
and the dark energy contribution by measuring the shape and redshift of billions of very far away
galaxies (for a review, see [58]), the European Space Agency (ESA) is planning to launch the Euclid
satellite in the near future. Also ground-based telescopes will allow one to detect an enormous number
of weak and strong lensing events. An example is given by the LSST (Large Synoptic Survey Telescope)
project, located on the Cerro Pachón ridge in north-central Chile, which will become operative in 2022.
Its 8.4-meter telescope uses a special three-mirror design, creating an exceptionally wide field of view,
and has the ability to survey the entire sky in only three nights. The effective number density neff of
weak lensing galaxies (which is a measure of the statistical power of a weak lensing survey) that will
be discovered by LSST is, conservatively, in the range of 18–24 arcmin−2 (see Table 4 in [59]). The very
large (about 1.5 × 104 square degrees) and deep survey of the sky that will be performed by Euclid
will allow astrophysicists to address fundamental questions in physics and cosmology about the nature
and the properties of dark matter and dark energy, as well as in the physics of the early Universe and
the initial conditions that provided the seeds for the formation of cosmic structure. Before closing
this section, we also mention that strong systematics may be present in weak lensing surveys. For
example, the intrinsic alignment of background sources may mimic to an extent the effects of shear
and may contaminate the weak lensing signal. However, these systematics may be controlled if also
the galaxy redshifts are acquired, and this fully removes the unknown intrinsic alignment errors from
weak lensing detections (for further details, see [60,61]).

5. Microlensing

Let us consider now the microlensing scale of the lensing phenomenon that occurs when θE is
smaller than the typical telescope angular resolution, as in the case of stars lensing the light from
background stars (for a review on gravitational microlensing and its astrophysical applications, we
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refer to, e.g., [62]). As is clear from the discussion in Section 2, by solving the lens Equation (1), one
can determine the angular positions of the primary (I1) and secondary (I2) images. In Figure 2, these
positions are shown for four different values of the impact parameter θS in the case of a point-like source.
If the source and the lens are aligned (first panel on the left), the circular symmetry of the problem
leads to the formation of a luminous annulus having radius θE around the lens position. Otherwise,
increasing the θS value, the secondary image gets closer to the lens position, while the primary image
drifts apart from it, and in the limit of θS � θE, the microlensing phenomenon tends to disappear.
However, observing multiple images during a microlensing event is practically impossible with the
present technology. For instance, in the case in which the phenomenon is maximized, corresponding
to the perfect alignment, for a star in the galactic bulge (about 8 kpc away), one has Δθ = 2θE � 1 μas,
which is well below the angular resolving power, even of the Hubble Space Telescope (about 43 mas at
500 nm); see, e.g., http://www.coseti.org/9008-065.htm.

Figure 2. Angular positions of the primary (I1) and secondary (I2) images for four different values of
the source impact parameter θS in the case of a point-like source.

When a source is microlensed, its images do not have the same luminosity; therefore, the observer
receives a total flux (or magnitude) different from that of the unlensed source. The flux difference
can be described very simply in terms of the light magnification and the law of the conservation
of the specific intensity I, which represents the energy, with frequency in the range dν crossing the
surface dA during the time interval dt in the solid angle dΩ around the direction orthogonal to the
surface. Indeed, the light specific intensity turns out to be conserved in the absence of absorption
phenomena, interstellar scattering or Doppler shifts. This is also a consequence of Liouville’s theorem,
which claims that the density of states in the phase space remains constant if the interacting forces
are non-collisional (and gravitation fulfills this condition due to its weak coupling constant), and
the propagating medium is approximately transparent (as is the case for interstellar space). This
effect can produce a magnification or a de-magnification of the images of an extended light source
(see Figure 3). If the image is magnified, it means that it certainly subtends a wider angle with respect
to that subtended by the source in the absence of the lens. In microlensing, the source disk size should
not be neglected in general. Within the framework of the finite source approximation for a source with
flux FS and assuming θE ≤ θS, one can show that the magnification A of an image at angular position
θ is given by (1 − θ4

E/θ4)−1. As a consequence, the observed flux corresponds to F = AFS. Of course,
when the source star disk gradually moves away from the line of sight, the magnification decreases,
and the unlensed FS flux is then recovered.
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Figure 3. As in Figure 2, but with a conformal transformation of the source boundary, considered
extended and with radius ρS, by a point-like lens. Each point of the source disk behaves as a point-like
source. The black circle represents the source disk, while the red and yellow arcs are the deformed
primary and secondary images.

As already anticipated, the observer cannot see, in the microlensing case, well-separated images,
but, instead, detects a single image made by the overlapping of the primary and the secondary images.
In this case, one can easily obtain the classical magnification factor A by summing up the individual
magnifications, i.e., A = (u2 + 2)/

√
u2(u2 + 4), where u = θS/θE is the impact factor. If there is a

relative movement between the lens and the source, u changes with time, and a standard Paczyǹski
curve [8] does emerge.

An important role in gravitational microlensing is played by the caustics, the geometric loci of
the points belonging to the lens plane where the light magnification of a point-like source becomes
infinite, and by the corresponding critical curves in the source plane. In the case of a single lens, the
caustic is a point coinciding with the lens position; therefore, the magnification diverges when the
impact parameter approaches zero. However, real sources are not point-like, so we always have finite
magnifications that can be calculated by an average procedure:

〈A〉 =
∫

A(y)I(y)d2y∫
I(y)d2y

, (7)

where A(y) is the point-like source magnification, I(y) is the brightness profile of the stellar disk (the
limb darkening profile) and the integral is extended over the source star disk.

Observations show that about half of all stars are in binary systems, and moreover, thousands
of exoplanets are being discovered around their host stars by different techniques and instruments.
Therefore, it is worth considering binary and multiple systems as lenses in microlensing observations. In
this case, the lens equation, obviously, becomes more complicated, but it can still be solved by numerical
methods in order to obtain the magnification map where caustics take on distinctive shapes depending on
the specific geometry of the system. In Figure 4, we show the magnification map and the resulting light
curve for a simulated microlensing event due to a binary lens with mass ratio q = M1/M2 � 0.01 (e.g., a
solar mass as the primary component and a Jupiter-like planet as the secondary one). In these cases, the
resulting light curve may be rather different with respect to the typical Paczyǹski one, depending on the
system parameters. The study of these anomalies in the microlensing light curves behavior is becoming
more and more important nowadays, since it allows one to estimate some of the parameters of the
lensing system (see, e.g., [63]). The main advantage of this technique, compared to the other methods
adopted by the exoplanets hunters (e.g., radial velocity, direct imaging, transits), is the possibility to
detect even very small planets orbiting their own star at enormous distances from Earth. It also allows
one to discover the so-called free-floating planets (FFPs), otherwise hardly detectable [64]. By studying
the PA99-N2 microlensing event, detected in 1999 by the French-British collaboration POINT-AGAPE
[66], Ingrosso et al. [65] revealed in 2009 that the anomaly observed was compatible with the presence
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of a super-Jupiter with a mass of � 5MJ around a star lying in the Andromeda galaxy (see Figure 5),
thus finding the first putative exoplanet in another galaxy.

Figure 4. Magnification map for a binary lens system characterized by two objects separated by a
projected distance of 1RE and mass ratio q = 0.01. The green and red closed lines indicate the critical
and caustic curves obtained by solving the lens equation in Equation (1). The black line indicates the
trajectory of the source star, which has a radius of 0.03RE. The simulated light curve is shown in the
lower panel.

Figure 5. Light curve in three different bands (g, r and i) of the PA99-N2 event detected in 1999 toward
the Andromeda galaxy.

5.1. Astrometric Microlensing

During an ongoing microlensing event, the centroid of the multiple images and the source star
positions move in the lens plane giving rise to a phenomenon known as astrometric microlensing (see,
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e.g., [67,68] and the references therein). In the simplest case of a point-like lens, for a source at angular
distance θS, the position θ of the images with respect to the lens can be obtained by solving the lens
Equation (1). Since the Einstein radius RE = DLθE defines the scale length on the lens plane, the lens
equation reads:

d2 − ddS − R2
E = 0, (8)

where dS and d are the linear distances, in the lens plane, of the source and images from the gravitational
lens, respectively. Moreover, using the dimensionless source-lens distances u = θS/θE and ũ = θ/θE,
the previous relation can be further simplified as:

ũ2 − uũ − 1 = 0. (9)

Denoting with u+ and u− the solutions of this equation, one notes that, in the lens plane, the +

image resides always outside the circular ring centered on the lens position with radius equal to the
Einstein angle, while the − image is always within the ring. As the source-lens distance increases, the
+ image approaches the source position, while the − one (becoming fainter) moves towards the lens
location. For a source moving in the lens plane with transverse velocity v⊥ directed along the ξ axis (η
is perpendicular to it), the projected coordinates of the source result in being:

ξ(t) =
t − t0

tE
, η(t) = u0. (10)

where tE = RE/v⊥ and u0 is the impact parameter (in this case, lying on the η axis). Since u2 = ξ2 + η2

is time dependent, the two images move in the lens plane during the gravitational lensing event.
By weighting the + and − image position with the associated magnification [69], one gets:

ū ≡ ũ+μ+ + ũ−μ−
μ+ + μ−

=
u(u2 + 3)

u2 + 2
. (11)

Finally, the observable is defined as the displacement of the centroid with respect to the source,

Δ ≡ ū − u =
u

2 + u2 . (12)

Note that the centroid shift may be viewed as a vector:

Δ =
u

2 + u2 (13)

with components along the axes:

Δξ =
ξ(t)

2 + u2 , Δη =
u0

2 + u2 . (14)

Here, we remind that all of the angular quantities are given in units of the Einstein angle θE,
which, for a source at distance DS � DL, results in being:

θE � 2
(

M
0.5 M�

)1/2 ( DL
kpc

)−1/2
mas, (15)

which fixes the scale of the phenomenon.
It is straightforward to show (see [69]) that during a microlensing event, the centroid shift Δ traces

(in the Δξ , Δη plane) an ellipse centered in the point (0, b). The ellipse semi-major axis a (along Δη) and
semi-minor axis b (along Δξ) are:
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a =
1
2

1√
u2

0 + 2
, b =

1
2

u0

u2
0 + 2

. (16)

Then, for u0 → ∞, the ellipse becomes a circle with radius 1/(2u0), while it degenerates into a straight
line of length 1/

√
2 for u0 approaching zero. Note also that Equation (16) implies:

u2
0 = 2(b/a)2

[
1 − (b/a)2

]−1
, (17)

so that by measuring a and b, one can determine the event impact parameter u0.
As observed in [67], Δ falls more slowly than the magnification, implying that the centroid shift

may be an interesting observable also for large source-lens distances, i.e., far from the light curve
peak. In fact, in astrometric microlensing, the threshold impact parameter uth (i.e., the value of the
impact parameter that gives an astrometric centroid signal larger than a certain quantity δth) is given
by uth =

√
Tobsv⊥/(δthDL), where Tobs is the observing time and v⊥ the relative velocity of the source

with respect to the lens. For example, the Gaia satellite should reach an astrometric precision σG � 300
μas (for objects with visual magnitude � 20) in five years of observation [70]. Then, assuming a
threshold centroid shift δth � σG, one has uth � 60 for a lens at a distance of 0.1 kpc and transverse
velocity v⊥ � 100 km s−1. For comparison, the threshold impact parameter for a ground-based
photometric observation is � 1. Consequently, the cross-section for an astrometric microlensing
measurement is much larger than the photometric one, since it scales as u2

th. Hence, in the absence
of finite-source and blending effects, by measuring a and b, one can directly estimate the impact
parameter u0.

A further advantage of the astrometric microlensing is that some events can be predicted in
advance [71]. In fact, by studying in detail the characteristics of stars with large proper motions,
Proft et al. [72] identified tens of candidates to measure astrometric microlensing by the Gaia satellite,
an European Space Agency (ESA) mission that will perform photometry, spectroscopy and high
precision astrometry (see [70]).

5.2. Polarization and Orbital Motion Effects in Microlensing Events

Gravitational microlensing observations may also offer a unique tool to study the atmospheres
of far away stars by detecting a characteristic polarization signal [73]. In fact, it is well known that
the light received from stars is linearly polarized by the photon scattering occurring in the stellar
atmospheres. The mechanism is particularly effective for the hot stars (of A or B type) that have a
free electron atmosphere giving rise to a polarization degree increasing from the center to the stellar
limb [74]. By a minor extent, polarization may be also induced in main sequence F or G stars by the
scattering of star light off atoms/molecules and in evolved, cool giant stars by photon scattering on
dust grains contained in their extended envelopes.

Following the approach in [74], the polarization P in the direction making an angle χ = arccos(μ)
with the normal to the star surface is P(μ) = [Ir(μ)− Il(μ)]/[Ir(μ) + Il(μ)], where Il(μ) is the intensity
in the plane containing the line of sight and the normal, and Ir(μ) is the intensity in the direction
perpendicular to this plane. Here, μ =

√
1 − (r/R)2, where r is the distance of a star disk element

from the center and R the star radius, and we are assuming that light propagates in the direction r × l.
For isolated stars, a polarization signal has been measured only for the Sun for which, due to the

distance, the projected disk is spatially resolved. Instead, when a star is significantly far away and can
be considered as point-like, only the polarization 〈P〉 averaged over the stellar disk can be measured,
and usually 〈P〉 = 0, since the flux from each stellar disk element is the same. A net polarization of
the light appears if a suitable asymmetry in the stellar disk is present (caused by, e.g., eclipses, tidal
distortions, stellar spots, fast rotation, magnetic fields). In the microlensing context, the polarization
arises since different regions of the source star disk are magnified differently during the event. Indeed,
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during an ongoing microlensing event, the gravitational lens scans the disk of the background star,
giving rise not only to a time-dependent light magnification, but also to a time-dependent polarization.

This effect (see also [75]) is particularly relevant in the microlensing events where: (1) the
magnification turns out to be significant; (2) the source star radius and the lens impact parameter
are comparable; (3) the source star is a red giant, characterized by a rather low surface temperature
(T ≤ 3000 K), around which the formation of dust grains is possible. This occurs beyond the distance
Rh from the star center at which the gas temperature in the stellar wind becomes lower than the grain
sublimation temperature (� 1400 K). The intensity of the expected polarization signal relies on the dust
grain optical depth τ and can reach values of 0.1%–1%, which could be reasonably observed using,
for example, the ESO VLTtelescope (see [76]). In Figure 6, we show some typical polarization curves,
expected in bypass (continuous curves) and transit events (dashed curves), in which the lens trajectory
approaches or passes through the source regions where the dust grains are present. In Figure 7, the
distribution of the peak polarization values (given in percent) as a function of the intrinsic source star
color index (V − I)int (i.e., the de-reddened color of the unlensed source star) is shown for a sample of
OGLE-type microlensing events generated by a synthetic stellar catalog simulating the bulge stellar
population. As one can see, red giants with (V − I)int ≤ 3, which corresponds to the events inside the
regions delimited by dashed lines, have Pmax ≤ 1 percent values. These are the typical events observed
by the OGLE-III microlensing campaign. There are, however, a few events with 1 ≤ Pmax ≤ 10 percent,
characterized by (V − I)int ≥ 3, corresponding to source stars in the AGB phase. These stars, which
are rather rare in the galactic bulge, have not been sources of microlensing events observed in the
OGLE-III campaign, but they are expected to exist in the galactic bulge. In this respect, the significant
increase in the event rate by the forthcoming generation of microlensing surveys towards the galactic
bulge, both ground-based, like KMTNet [77], and space-based, like EUCLID [78] and WFIRST [79],
opens the possibility to develop an alert system able to trigger polarization measurements in ongoing
microlensing events.

Another way to study the atmosphere of the source star is to analyze the amplification curve
and look for dips and peaks, typically due to the presence of stellar spots on the photosphere of the
star [80,81]. These features may be easily confused, however, with the signatures of a binary lensing
system. When the source star has a relevant rotation motion during the lensing event, there is the
possibility to really detect the stellar spots on the source’s surface and to estimate the rotation period
of the star [82]. A new generation of networks of telescopes dedicated to microlensing surveys, like
KMTNet [83], will provide high-precision and high-cadence photometry that will enable us to observe
spots on the source’s surface. We remark that also multicolor observations of the event would help to
disentangle the aforementioned degeneracy, as the ratio between the brightness of the spot and the
surrounding photosphere strongly depends on the frequency of the observation. It has been shown that
stellar spots can be detected also through polarimetric observations of microlensing caustic-crossing
events [84].

Under certain circumstances, binary lens systems are characterized by the close-wide degeneracy:
if the two objects are separated by a projected distance s or 1/s, the resulting caustics have the same
structure, and also, the observed light curves will appear the same [85,86]. This happens, for example,
in systems with small mass ratio q, like planetary systems [87]. It is possible to resolve this degeneracy
in the case of short-period binary lenses, the so-called rapidly rotating lenses, as the orbital motion
induces repeating features in the amplification curve that can be exploited to estimate important
physical parameters of the lensing systems, including the orbital period, the projected separation and
the mass [88,89].
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Figure 6. Assuming parameter values u0 = 0.09, tE = 60 day and Rh/RS = 5, the P(t)/τ polarization
curves are shown as a function of (t − t0)/tE, for increasing values of Rh/u0 = 0.35, 0.75, 1.5, 2.5,
corresponding to the curves labeled (a), (b) (c) and (d), respectively. Continuous curves, (a) and (b),
are bypass events; dotted lines, (c) and (d), are transit events. Here, Rh is the minimum distance for the
formation of dust grains, and RS is the source star radius.

Figure 7. Distribution of the peak value of the polarization signal as a function of the intrinsic color
index (V − I)int of the source star for simulated transit (triangles) and bypass (purple squares) events.
The dashed lines indicate the region in which the events observed by the OGLECollaboration are
expected to lie.

6. Retro-Lensing: Measuring the Black Hole Features

Gravitational lensing at the scales considered in the previous sections can be treated in the weak
gravitational field approximation of the general theory of relativity, since in those cases, photons are
deflected by very small angles. This is not the case when one considers black holes, for which it may
happen that photons get very close to the event horizon of these compact objects.

Black holes are relatively simple objects. The no-hair theorem postulates that they are completely
described by only three parameters: mass, angular momentum (generally indicated by the spin
parameter a) and electric charge; any other information (for which hair is a metaphor) disappears
behind the event horizon, and it is therefore inaccessible to external observers. Depending on the
values of these parameters, black holes can be classified into Schwarzschild black holes (non-rotating
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and non-charged), Kerr black holes (rotating and non-charged), Reissner–Nordström black holes
(non-rotating and charged) and Kerr–Newman black holes (rotating and charged).

Even though they appear so simple, black holes are mathematically complicated to describe (see,
e.g., [90]). Nowadays, we know that black holes are placed at the center of the majority of galaxies,
active or not, and in many binary systems emitting X-rays. Moreover, they are the engine of gamma-ray
bursts (GRBs) and play an essential role in better understanding stellar evolution, galaxy formation
and evolution, jets and, in the end, the nature of space and time. One goal astrophysicists have been
pursuing for a long time is to probe the immediate vicinity of a black hole with an angular resolution
as close as possible to the size of the event horizon. This kind of observations would give a new
opportunity to study strong gravitational fields, and as we will see at the end of this section, we think
we are very close to reaching this goal.

How do we measure the mass, angular momentum and electric charge of a black hole? One
possibility, rich with interesting consequences, was suggested by Holz and Wheeler [91], who
considered a phenomenon that was already known to be possible around black holes. They used the
Sun as the source of light rays and a black hole far from the solar system. As shown in Figure 8, some
photons would have the right impact parameter to turn around the black hole and come back to Earth.
Other photons, with a slightly smaller impact parameter, can even rotate twice around the black hole,
and so on. A series of concentric rings should then appear if the observer, the Sun and the black hole
are perfectly aligned. The two authors also suggested to do a survey and look for concentric rings in
the sky in order to discover black holes. Unfortunately, there are two problems with this idea. First, it
is unlikely that the Sun, Earth and a black hole are perfectly aligned, and in any case, Earth moves
around the Sun, so that the alignment can occur only for a short time interval. The second and most
important problem is that the retro-image of the Sun is so dim, that even using the Hubble Space
Telescope (HST), only a black hole with a mass larger than 10 M� within 0.01 pc from the Earth could
be observed with the proposed technique. Moreover, we already know that such an object cannot be
so close to the solar system without causing observable perturbations in the planet orbits.

Figure 8. Retro-lensing of the Sun light by a black hole as seen from Earth. On the right-hand side, the
series of rings around the black hole’s event horizon an observer would observe in the case of perfect
alignment. For clarity, only two rings are shown.

A better approach to test the idea proposed by Holz and Wheeler is to consider a well-known
supermassive black hole and a bright star around it. Of course, the brighter the source star, the brighter
will be the retro-image. Some of us [92] soon proposed to consider retro-lensing around the black hole
at the galactic center, and in particular, the retro-lensing image of the closest star orbiting around it.
Indeed, it is known that at the center of our galaxy, there is a supermassive black hole, with mass
about (4.2 ± 0.2)× 106 M�, identified by studying the orbits of several bright stars orbiting around it
(see [93,94] and the references therein). A method to determine the mass and the angular momentum
of this black hole could then be to measure the periastron or apoastron shifts of some of the stars
orbiting around it. Another method to estimate the black hole spin a is based on the analysis of the
quasi-periodical oscillations towards Sgr A*. Recently, the analysis of the data in the X-ray and IR
bands have allowed some astrophysicists to find that a = 0.65 ± 0.05 [94,95]. However, there is a
drawback in this approach: periastron and apoastron shift of orbits depend not only on the black
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hole parameters, but also on how stars are distributed around the black hole and on the mass density
profile of the dark matter possibly present in the region surrounding the black hole. It is possible to
understand the difficulty of the measure by noting that the difference of the periastron shift of the S2
star (the closest one to the black hole at the center of our galaxy) induced by a Schwarzschild black
hole or a Kerr black hole with spin parameter a = 1 (and the same mass of the Schwarzschild one) is
only of � 10 μas (for the dependance of the periastron shift on the black hole spin orientation see [96]).
Then, even if one had succeeded in measuring the periastron shift of the closest star to the central black
hole, it would be unlikely to derive the amount of the black hole angular momentum. Our goal could
be achieved anyway by measuring the periastron shift of many stars orbiting around the center of the
Galaxy. The measure of the periastron shift could give, in turn, also an estimate of the parameters
of the dark matter concentration expected to lie towards the Sgr A∗ region [97], as well as to test
different modifications of the general theory of relativity [98–100] (see also [101] for the constraints
on Rn theories by Solar System data)). However, this is anything but easy [102]. An important step
forward in this direction has been provided recently by near-infrared astrometric observations of many
stars around Sgr A∗ with a precision of about 170 μas in position and � 0.07 mas· yr−1 in velocity
[103]. A further improvement, hopefully in the near future, would make possible the direct detection
of relativistic effects in the orbits of stars orbiting the central black hole.

Retro-lensing images of bright stars retro-lensed by the black hole at the galactic center might give
an alternative method to estimate the Sgr A* black hole parameters. Even though in general it is difficult
to calculate the retro-lensing images, since this requires integrating with high precision the trajectories
followed by the light, it is possible to numerically do these calculations not only for a Schwarzschild
black hole, but also for Kerr and Reissner–Nordström black holes. As discussed in several papers (see,
e.g., [104] and the references therein), one finds that the shape of the retro-lensing image depends
on the black hole spin (see Figure 9), and then, in principle, a single precise enough observation of
the retro-lensing image of a star could allow one to unambiguously estimate the parameters of the
black hole in Sgr A*. It is possible to show that also the electric charge of a Reissner–Nordström
black hole can be obtained [105]. In fact, although the formation of a Reissner–Nordström black hole
may be problematic, charged black holes are objects of intensive investigations, and the black hole
charge can be estimated by using the size of the retro-lensing images that can be revealed by future
astrometrical missions. The shape of the retro-lensing (or shadow) image depends in fact also on the
electric charge of the black hole, and it becomes smaller as the electric charge increases. The mirage
size difference between the extreme charged black hole and the Schwarzschild black hole case is about
30%, and in the case of the black hole in Sgr A*, the shadow typical angular sizes are about 52 μas for
the Schwarzschild case and about 40 μas for a maximally charged Reissner–Nordström black hole.
Therefore, a charged black hole could be, in principle, distinguished by a Schwarzschild black hole
with RADIOASTRON, at least if its charge is close to the maximal value. We also mention that the
black hole spin gives rise also to chromatic effects (while for non-rotating lenses, the gravitational
lensing effect is always achromatic), making one side of the image bluer than the other side [104].

Can we really hope to observe these retro-lensing images towards Sgr A*? Despite what one
could think, we are not so far from this goal. The successor of the Hubble Space Telescope, the James
Webb Space Telescope (JWST), scheduled for launch in October 2018, has the sensitivity to observe the
retro-lensing image of the S2 star produced by the black hole at the galactic center with an exposure
time of about thirty hours. In Figure 10, we show the magnification (upper panel) and the magnitude
(bottom panel) light curves (in K band) of the retro-lensing image of the S2 star produced by the black
hole at the galactic center (see also [106]). Unfortunately, JWST has not the angular resolution necessary
to provide information about the shape of the retro-lensing image. The right angular resolution could
be gained with the next generation of radio interferometers. In fact, the diameter of the retro-lensing
image around the central black hole should be of about 30 μas, and already in 2008, Doeleman and his
collaborators [107] managed to achieve an angular resolution of about 37 μas, very close to the required
one, by using interferometrically different radio telescopes with a baseline of about 4500 km. Progress
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in this field is so fast, that it is not hard to think we can eventually reach this aim in the near future
by, e.g., the EHT (Event Horizon Telescope) project, or by the planned Russian space observatory,
Millimetron (the spectrum-M project), or by combined observations with different interferometers,
such as the Very Large Array (VLA) and ALMA (Atacama Large Millimeter Array).

Figure 9. Retro-lensing images of a source by a Schwarzschild black hole (dotted circle), a Kerr black
hole with spin parameter a = 0.5 (dashed line) and a maximally spinning black hole with a = 1
(continuous line). The line of sight of the observer is perpendicular to the spin axis of the black hole.

Figure 10. Upper panel: amplification as a function of time for the primary (upper curve) and secondary
(lower curve) retro-lensing images of the S2 star by the black hole in the Galaxy center. Lower panel:
light curve in K-band magnitude of the two retro-lensing images (adapted from [106]). The standard
interstellar absorption coefficient towards the Galaxy center has been assumed.
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7. Conclusions

In the paper, we have discussed the various scales in which gravitational lensing manifests itself
and that may lead us to obtain valuable information about a great variety of astronomical issues
ranging from the star distribution in the Milky Way, the study of stellar atmospheres, the discovery
of exoplanets in the Milky Way and also in nearby galaxies, the study of far away galaxies, galaxy
clusters and black holes. Gravitational lensing, in particular in the strong and weak lensing regime,
may also allow scientists to answer, in the near future, fundamental questions in cosmology related
to the nature of dark matter, why the Universe is accelerating and what is the nature of the source
responsible for the acceleration, which physicists refer to as dark energy.
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Abstract: We analyse the effect of the cosmological expansion on the deflection of light caused
by a point mass, adopting the McVittie metric as the geometrical description of a point-like lens
embedded in an expanding universe. In the case of a generic, non-constant Hubble parameter, H,
we derive and approximately solve the null geodesic equations, finding an expression for the bending
angle δ, which we expand in powers of the mass-to-closest approach distance ratio and of the impact
parameter-to-lens distance ratio. It turns out that the leading order of the aforementioned expansion
is the same as the one calculated for the Schwarzschild metric and that cosmological corrections
contribute to δ only at sub-dominant orders. We explicitly calculate these cosmological corrections
for the case of the H constant and find that they provide a correction of order 10−11 on the lens
mass estimate.

Keywords: McVittie metric; gravitational lensing; cosmology
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1. Introduction

The effect of the cosmological constant Λ (and thus, by extension, of cosmology) on the bending
of light is an issue which has raised interest since a pioneering work by Rindler and Ishak in 2007 [1].
The common intuition is that Λ cannot have any local effect on the deflection of light because it is
homogeneously distributed in the universe, thus not forming lumps which may act as lenses. Moreover,
General Relativity (GR) is assumed as the fundamental theory of gravity, and the Kottler metric is
considered [2] (We use throughout this paper G = c = 1 units):

ds2 = f (r)dt2 − f−1(r)dr2 − r2dΩ2 , (1)

where dΩ2 = dθ2 + sin2 θdφ2 and:

f (r) ≡ 1 − 2M
r

− Λr2

3
, (2)

as the description of a point mass M embedded in a de Sitter space. It turns out that Λ does not appear
in the null geodesic trajectory equation, cf. e.g., Equation (17) of Ref. [3]. Indeed:

d2u
dφ2 + u = 3Mu2 , (3)

where u = 1/r is the inverse of the radial distance from the lens. Therefore, one may conclude that Λ
does not affect the bending of light, which is then entirely due to the presence of the point mass M.

On the other hand, in Ref. [1], the authors point out that the bending angle cannot be calculated
as the angle between the asymptotic directions of the light ray, since these do not exist. Indeed,
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from Equation (2), one sees that r ≤ √
3/Λ, i.e., a cosmological horizon exists. In other words,

the effect of Λ enters into the boundary conditions that we choose when solving Equation (3).
Thus, the authors of Ref. [1] find that Λ enters the definition of the deflection angle in the following

way (cf. their Equation (17)):

ψ0 ≈ 2M
R

(
1 − 2M2

R2 − ΛR4

24M2

)
, (4)

where R is the closest approach distance. Twice ψ0 is the deflection angle. Therefore, one identifies the
well-known Schwarzschild contribution 4M/R, weighed by Λ, which tends to thwart the deflection.

After Ref. [1], many authors confirmed with their calculations that Λ does enter the formula for
the deflection angle, although sometimes in a way different from the one in Equation (4). See e.g.,
Refs. [4–12].

On the other hand, there are a few works that do not agree with the above-mentioned results
(see e.g., [13–16]). The main criticism is that the Hubble flow is not properly taken into account,
i.e., the relative motion among source, lens and observer is neglected. In particular, the authors
of Ref. [15] argue that the Λ contribution in Equation (4) is cancelled by the aberration effect due to the
cosmological relative motion. Another interesting remark made in Ref. [15] is that the contribution of
Λ to the deflection angle does not vanish for M → 0 in Equation (4). In this respect, consider also e.g.,
Equation (25) of Ref. [10]:

δ = 4M
b − Mb

(
1
r2

S
+ 1

r2
O

)
+ 2MbΛ

3 − bΛ
6 (rS + rO)− b3Λ

12

(
1
rS
+ 1

rO

)
+ Mb3Λ

6

(
1
r2

S
+ 1

r2
O

)
+ · · · . (5)

Here, b is the impact parameter and rS and rO are the radial distances from the lens to the source
and to the observer, respectively. Taking the limit M → 0 in the above equation does not imply δ → 0.

This seems to be odd since we do not expect lensing without a lens. However, this is the result that
one obtains when the Hubble flow is not taken into account. Indeed, the author of Ref. [16] constructs
“by hand” cosmological observers in the Kottler metric and finds that Λ has no observable effect on the
deflection of light.

Therefore, according to the results of Refs. [13–16], the standard approach to gravitational
lensing does not need modifications. For the sake of clarity, the standard approach to gravitational
lensing consists of using the result on the deflection angle obtained from the Schwarzschild metric
(which models the lens) together with the cosmological angular diameter distances calculated from
the Friedmann–Lemaître-Robertson–Walker (FLRW) metric. See e.g., Ref. [17].

In Ref. [18], we also tackled the investigation of whether a cosmological constant might affect the
gravitational lensing by adopting the McVittie metric [19] as the description of the lens. The McVittie
metric is an exact spherically symmetric solution of Einstein equations in presence of a point mass
and a cosmic perfect fluid. See e.g., Refs. [20–28] for mathematical investigations of the geometrical
properties of McVittie metric. In Ref. [18], we considered a constant Hubble factor, thus the geometry
involved is the very Kottler one considered by most of the authors cited in this paper, but written in a
different reference frame. Our results corroborate those of Refs. [13–16].

In the present paper, we generalise the results of Ref. [18] to the case of a generic time-dependent H.
See also Ref. [29]. This is necessary in order to make contact with the current standard model
of cosmology, the ΛCDM model, in which pressure-less matter prevents H to be a constant.
In particular, Friedmann equation for the spatially-flat ΛCDM model reads:

H2

H2
0
= Ωma−3 + ΩΛ , (6)

where H0 is the Hubble constant, a is the scale factor, Ωm is the present density parameter of
pressure-less matter and ΩΛ = 1 − Ωm is the present density parameter of the cosmological constant.
The time-derivative of H can be easily computed as:
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Ḣ
H2

0
= −3

2
Ωma−3 . (7)

Since Ωm ≈ 0.3, one can see that Ḣ0 and H2
0 are of the same order at present time. Moreover,

|Ḣ| ≥ H2 for 1 + z ≥ 3
√

2ΩΛ/Ωm. This gives a redshift z > 1.67. Many of the observed sources
and lenses have redshifts larger than this limit (see e.g., the CASTLES survey, https://www.cfa.
harvard.edu/castles/); therefore, the above calculation shows that assuming H constant is a very
bad approximation and if one plans to make contact with observation, it is necessary to go beyond
the static case of the Kottler metric. The McVittie metric with a generic, non-constant H provides an
opportunity to do this.

Very recently, the deflection of light in a cosmological context with a generic H(t) has been
considered in Ref. [30]. The main result is the following, cf. Equation (11) of Ref. [30]:

Δϕ̃ =
4M̃MSH

R̃
− 2H2R̃2 , (8)

where M̃MSH is the Misner–Sharp–Hernandez mass [31,32] contained in a radius R̃ = a(t)r. Hence,
it turns out that the effect of cosmology on the gravitational lensing depends on whether one takes
into account the total contribution (local plus cosmological) to the mass or just the local one. However,
in both cases, M̃MSH can be decomposed in the local m contribution plus the cosmological one, which
is cancelled by the −2H2R̃2 in the above Equation (8). Thus, it appears that the net result is that the
cosmic fluid does not contribute directly to the gravitational lensing.

As a final remark, we must stress that the McVittie metric is an oversimplified model of an
actual lens, which has a more complicated structure than that of a point. However, the results of our
investigation may shed an important light and give valuable insights for future research that takes
into account a more complex structure of the lens. As far as we know, lenses with structures different
from a point have been considered only by Ref. [10].

The present paper is structured as follows. In Section 2, we present the McVittie metric and its
principal features. In Section 3, we obtain the null geodesic equations and calculate the deflection angle.
In Section 4, we focus on the case of a constant H and calculate exactly the subdominant contribution
to the deflection angle, estimating a relative correction on the mass determination of about 10−11,
due to the Hubble flow. In Section 5, we present our conclusions. Throughout the paper, we use
G = c = 1 units.

2. The McVittie Metric

The McVittie metric [19] can be written in the following form:

ds2 = −
(

1 − μ

1 + μ

)2
dt2 + (1 + μ)4a(t)2(dρ2 + ρ2dΩ2) , (9)

where a(t) is the scale factor, dΩ2 = dθ2 + sin2 θdφ2 and

μ ≡ M
2a(t)ρ

, (10)

where M is the mass of the point. One can check that for a = constant, the Schwarzschild metric in
isotropic coordinates is recovered, whereas for M = 0, the FLRW metric is recovered.

When μ � 1, the McVittie metric (9) can be approximated by:

ds2 = − (1 − 4μ) dt2 + (1 + 4μ)a(t)2(dρ2 + ρ2dΩ2) , (11)
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i.e., it takes the form of a perturbed FLRW metric in the Newtonian gauge with gravitational
potential 2μ. Since there is only a single gravitational potential, then no anisotropic pressure is
present [17,33].

Since null geodesics are conformally invariant, the scale factor a(t) can be written as a conformal
factor in front of Equation (11), replacing the cosmic time with the conformal time. The time
dependence of the photon trajectory appears then only in μ which, from Equation (10), represents
an effective mass decreasing inversely proportional to the cosmic expansion. We are going to show
that most of the deflection takes place at the closest approach distance to the lens. Therefore, we
can already estimate that at this moment the effective mass of the lens would be M/aL, where aL is
the scale factor evaluated at the moment of closest approach. Therefore, the bending angle shall be
proportional to M/aL, and this is indeed our result from Equation (47).

Note also that the gravitational potential 2μ = M/(aρ) resembles the Newtonian one but with an
effective mass that reduces with time or a gravitational radius that increases with time. On the other
hand, we know from cosmological linear perturbation theory that, in the matter-dominated epoch,
the gravitational potential is time-independent. Therefore, the McVittie metric cannot offer a realistic
model of a gravitational lens.

Calculating the Einstein tensor from the McVittie line element (9), one gets:

Gt
t = 3H2 , Gr

r = Gθ
θ = Gφ

φ = 3H2 +
2Ḣ(1 + μ)

1 − μ
, (12)

from which one deduces that the pressure of the cosmological medium has the following form:

P = − 1
8π

[
3H2 +

2Ḣ(1 + μ)

1 − μ

]
, (13)

i.e., it is not homogeneous and diverging when μ = 1. If H = constant, then there is no divergence
and the pressure is also a constant. This is the case of the Schwarzschild–de Sitter space, described by
the Kottler metric [2]. When Ḣ 	= 0, far away from the point mass, i.e., for μ � 1, one gets the usual
result of cosmology:

P = − 1
8π

(
3H2 + 2Ḣ

)
+O(μ) = −ρ − Ḣ

4π
+O(μ) , (14)

i.e., the acceleration equation. Isotropy is preserved since Gr
r = Gθ

θ = Gφ
φ, i.e., there is no anisotropic

pressure, as we already mentioned.
Following Faraoni [28], but also Park [13], the McVittie metric (9) can be reformulated in terms of

the areal radius
R = aρ(1 + μ)2 , (15)

and gets the following form:

ds2 = −
(

1 − 2M
R

− H2R2
)

dt2 +
dR2

1 − 2M
R

− 2HR√
1 − 2M

R

dtdR + R2dΩ2 . (16)

Changing the time coordinate to

F(r, t)dT = dt +
HR√

1 − 2M
R (1 − 2M

R − H2R2)
dR , (17)

the above line element (16) can be finally cast as
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ds2 = −
(

1 − 2M
R

− H2R2
)

F2dT2 +
dR2

1 − 2M
R − H2R2

+ R2dΩ2 . (18)

If H is constant, then F can be set to unity and we recover the Kottler metric. Using Equation (18)
and calculating the Misner–Sharp–Hernandez mass [31,32] of a sphere of proper radius R,
one finds [28]:

mMSH = M +
H2R3

2
= M +

4π

3
ρR3 , (19)

which contains the time-independent contribution M from the point mass plus the mass of the cosmic
fluid contained in the sphere. Therefore, M has indeed the physical meaning of the mass of the point.
In the Kottler case, one can also define a Komar integral, or Komar mass, and verify that it is indeed
equal to M [34].

3. The Bending of Light in the McVittie Metric

We now revisit the calculation for the bending angle performed in Ref. [18], but take into account
a general non-constant Hubble factor H(t). We perform the calculations in two different ways: the one
in this section is also used in Ref. [18] and is based on the approach usually adopted to study weak
lensing (see e.g., Ref. [33,35]). In this approach, the origin of the coordinate system is occupied by the
observer. The second way is the one in which the lens is put at the origin of the coordinate system and
it is employed in Appendix A.

We adopt μ as perturbative parameter and work at the first order approximation in μ.
The observed angle of a lensed source is of the order of the arc second, which corresponds to
θO ≈ 10−6 radians. See e.g., the CASTLES survey lens database (https://www.cfa.harvard.edu/
castles/). At least for Einstein ring systems, the bending angle is of order δ ≈ 10−6, i.e., it is of the
same order as the observed deflection angle. However, at the same time, the bending angle is of the
same order of μ. Therefore, we draw the conclusion that μ ≈ 10−6 and the truncation error, when
working at first order in μ, is O(10−12).

The geometry of the lensing process is depicted in Figure 1. In this scheme, the observer stays at the
origin of the spatial coordinate system and x is the comoving coordinate along the observer-lens axis.

x

y

yS

O
L

S

xS

xL

Figure 1. Scheme of lensing.

The observer has spatial position (0, 0, 0) and the lens has spatial position (xL, 0, 0). The McVittie
metric (9) written in Cartesian spatial coordinates is the following:

ds2 = −
(

1 − μ

1 + μ

)2
dt2 + (1 + μ)4a(t)2δijdxidxj . (20)

Note that the spherical symmetry of the McVittie metric implies rotational symmetry about the
observer-lens axis. Therefore, we set z = 0 without losing generality and the source has thus spatial
position (xS, yS, 0).
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Since in metric (9) the lens lays at the origin of the coordinate system, we have to perform a
translation along the x axis in the Cartesian coordinates of metric (20), so that μ gets the following form:

μ =
M

2a(t)
√
(x − xL)2 + y2 + z2

. (21)

Introducing an affine parameter λ and the four-momentum Pμ = dxμ/dλ, we can derive from
metric (20) the following relation:

gμνPμPν = 0 ⇒ P0 =
1 + μ

1 − μ
p ∼ (1 + 2μ)p , (22)

where p2 = gijPiPj is the proper momentum. The above equation represents the usual gravitational
redshift experienced by a photon passing through the potential well generated by the point mass.
Note that this potential well is not static since μ is time-dependent.

Now, we calculate the geodesic equations for the photon propagating in the McVittie metric (20):

d2xν

dλ2 + Γν
αβ

dxα

dλ

dxβ

dλ
= 0 . (23)

The geodesic equation for ν = 0 has the following form:

dP0

dλ
= 2μ̇(P0)2 + 4μ,iP0Pi − p2[H(1 + 4μ) + 2μ̇] . (24)

Using Equation (22) and the fact that, from Equation (10), μ̇ = −Hμ, one finds:

p
dp
dt

= −Hp2 + 2Hμp2 + 4μ,iPi p . (25)

The zeroth-order term Hp2 represents the usual cosmological redshift term. The spatial geodesics
equations have the form:

dPi

dλ
=

4δilμ,l p2

a2 − 2HpPi − 4PiPkμ,k . (26)

We now look for an equation for the quantity dy/dx ≡ tan θ, which represents the slope of the
line tangent to the photon trajectory. Note that θ is a physical angle because of the isotropic form of
metric (20).

Since we can invert x(λ) to λ(x), being it a monotonic function, we can rewrite Equation (26) for
y and change the variable to x:

Px d
dx

(
Px dy

dx

)
= 4μ,y[(Px)2 + (Py)2]− 2Ha(1 + 2μ)

√
(Px)2 + (Py)2Px dy

dx − 4 dx
dz Px[Pyμ,y + Pxμ,x] , (27)

where we used the fact that
p2 = a2(1 + 4μ)[(Px)2 + (Py)2] . (28)

Expanding the left-hand side and using Py/Px = dy/dx, we obtain:

d2y
dx2 +

1
Px

dPx

dx
dy
dx

= 4μ,y

[
1 +

(
dy
dx

)2
]
− 2Ha(1 + 2μ)

√
1 +

(
dy
dx

)2 dy
dx

− 4
dy
dx

(
dy
dx

μ,y + μ,z

)
. (29)

In order to determine the second term on the left-hand side, we use Equation (26) for x:

1
Px

dPx

dx
= 4μ,x

[
1 +

(
dy
dx

)2
]
− 2Ha(1 + 2μ)

√
1 +

(
dy
dx

)2
− 4

(
dy
dx

μ,y + μ,z

)
. (30)
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Combining the two Equations (29) and (30), we finally find:

d2y
dx2 = 4μ,y

[
1 +

(
dy
dx

)2
]
− 4μ,x

[
1 +

(
dy
dx

)2
]

dy
dx

. (31)

Let’s discuss a little about the spatial derivative of μ. From Equation (21), we get:

μ,y = −μ
y√

(x − xL)2 + y2
, (32)

and

μ,x = −μ
(x − xL)√

(x − xL)2 + y2
. (33)

Notice that, when μ = 0, Equation (31) becomes:

d2y
dx2 = 0 , (34)

i.e., the zeroth-order trajectory is, as expected, a straight line in comoving coordinates.
We now make a second approximation: we assume dy/dx = tan θ to be small. From the CASTLES

survey we know that the observed angle θO is of the order of the arc second, which corresponds to
θO ≈ 10−6 radians. The latter is larger that the actual angular position of the source, say θS, because of
the lensing geometry, see e.g., Figure 2. For this reason, we can assume dy/dx to be small along all
the trajectory. Since dy/dx = tan θ, then dy/dx = θ + θ3/3 + · · · . The truncation error is then of order
O(θ3) ∼ 10−18.

O
L

Sδ

θS θO

yS

Figure 2. The thin-lens approximation.

We consider Equation (31) up to the lowest order term, i.e.,

d2y
dx2 = 4μ,y +O(μθ) , (35)

where O(μθ) ∼ 10−12. Using Equation (32) for the derivative μ,y, the above equation becomes:

d2y
dx2 = − 2My

a(x) [(x − xL)2 + y2]
3/2 . (36)

Note that a is a function of time, but inverting x(t), we can write a as a function of x. For simplicity,
we normalise x, y and 2M to xL, thus obtaining:

d2Y
dX2 = −α

Y

a(X) [(X − 1)2 + Y2]
3/2 , (37)
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where Y ≡ y/xL, X ≡ x/xL and α ≡ 2M/xL. The above equation was already found in Ref. [18].
Since dY/dX = tan θ and tan θ ∼ θ, we can cast the above equation in the following form:

dθ

dX
= −α

Y

a(X) [(X − 1)2 + Y2]
3/2 . (38)

We define the bending angle as follows:

δ ≡
∫ θO

θS

dθ = −α
∫ 0

XS

Y(X)dX

a(X) [(X − 1)2 + Y(X)2]
3/2 , (39)

i.e., as the variation of the slope of the trajectory between the source and the observer.
We shall solve the above equation keeping the first order in α. The order of magnitude of α can be

estimated as follows:
α ≡ 2M

xL
≈ 2MH0/zL , (40)

where we assumed a small redshift zL. The above approximation becomes an exact result in the case of
a constant Hubble parameter (see e.g., (51)).

Therefore, α is proportional to the ratio between the Schwarzschild radius of the lens and the
Hubble radius. This is H0M ∼ 10−12 for a galaxy of 1010 M� and H0M ∼ 10−9 for a cluster of 103

galaxies each of mass 1010 M�.
We now devote a small paragraph to the zeroth-order solution.

3.1. The Zeroth-Order Solution

The zeroth-order solution (i.e., the one for α = 0) of Equation (37) is a straight line in
comoving coordinates:

y = θS(x − xS) + yS , (41)

where θS � 1 is the slope of the trajectory and (xS, yS) are the comoving coordinates of the source.
See Figure 3.

x

y

yS

O

S

xS

yS − θSxS

Figure 3. Zeroth-order solution.

When we pass from comoving to proper distances by multiplying by the scale factor a(x)
we obtain:

yp = θSxp +
a(xp)

aS
(ypS − θSxpS) , (42)

where we used a subscript p to indicate the proper distance. The above is not a straight line trajectory,
as also noticed by the authors of Ref. [15]. It is bent because of the a(xp) factor on the right-hand side,
whose effect vanishes only for ypS = θSxpS. The latter condition, when substituted in Equation (41),
represents the ray which gets to y = 0 when x = 0, i.e., the observed ray. See Figure 4.
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xp

yp

ypS

O

S

Figure 4. Zeroth-order solution, using proper distances.

The Hubble flow seems to bend away the trajectories such that we cannot detect any light.
This happens isotropically, i.e., no observer could ever detect a bent ray but just the straight one
coming directly from the source.

On the other hand, let’s speculate about the following. If a cosmologically bent ray passes
sufficiently close to a lens, then its trajectory could be bent back by the gravitational field of the lens,
possibly allowing us to detect it. See Figure 5.

xp

yp

ypS

O
L

S

Figure 5. A cosmologically bent ray, bent back. The “back-bending”.

This “back-bending” seems to suggest that the bending angle must increase and therefore
cosmology must somehow enter the gravitational lensing phenomenon.

3.2. Calculation of the Bending Angle

We now integrate Equation (39) retaining the first order only in α. For this reason, the Y(X)

entering the integral is the zeroth-order solution, which we discussed in the previous subsection.
Since we are working at the first order in α, we can assume without losing generality that the

zeroth-order trajectory is horizontal, i.e., Y(0) = YS ≡ yS/xL.
The equation for the slope, i.e., Equation (38), becomes

dθ

dX
= − αYS

a(X)
[
(X − 1)2 + Y2

S
]3/2 . (43)

In order to determine a(X), we take advantage of metric (20) and write:

dx2 =
1 − 8μ

1 + (dy/dx)2
dt2

a2 , (44)

which is a very complicated integration to perform, since it includes the very trajectory we want to
determine. On the other hand, we are staying at the lowest possible order of approximation; therefore:

dx = −dt
a

, (45)

i.e., all the contributions coming from μ and θ of Equation (44) are of negligible order in Equation (43).
Now, write Equation (43) as follows:

dθ = − αdX

a(X)Y2
S

[
1 + (X−1)2

Y2
S

]3/2 . (46)
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When (X − 1)2  Y2
S , the above integration, whatever function a might be of X, is O(YS). On the

other hand, when (X − 1)2 � Y2
S , the above integration is O(1/Y2

S).
Therefore, the main contribution comes from X = 1 and spans the interval 1 − YS < X < 1 + YS.

That is, most of the deflection takes place very close to the lens, as it happens for the case of the
Schwarzschild metric. For this reason, we also approximate a(X) with aL, which is the scale factor
when x = xL.

Therefore, we end up with the following bending angle:

δ = − α

aLY2
S
(−2YS) =

2α

aLYS
=

4M
aLyS

. (47)

The above formula is general, valid for any kind of Hubble flow. We derive it using another
method in Appendix A and prove its validity in the case of a dust-dominated universe, for which an
exact calculation is possible, in Appendix B.

Now we apply Equation (47) in the lens equation. Let us refer to Figure 2. The geometry of this
figure is justified by the fact that, as we showed earlier, the bending happens predominantly at the
closest approach distance to the lens.

In Figure 2, θS is the angular position of the source, so that θSDS is the proper transversal position
of the source, where DS is the angular-diameter distance from the observer to the source. The angle
θO is the angular apparent position of the source, so that θODS is the transversal apparent position of
the source.

Therefore, the lens equation in the thin-lens approximation can be written as:

θODS = θSDS + δDLS , (48)

where DLS is the angular-diameter distance between lens and source. Using the result of Equation (47),
we get

θO − θS =
4M
aLyS

DLS
DS

. (49)

In the standard lens equation, one has the closest approach distance to the lens, let’s call it R,
in place of aLyS. One then writes R = θODL and thus finds the usual formula, see e.g., [17].

Now, since we found that the deflection occurs almost completely at the closest position to the lens,
we can approximate yS ≈ yL. Moreover, one also has yL = θOxL and DL = aLxL, from the definition of
the angular-diameter distance to the lens. Thus, aLyS ≈ aLθOxL = θODL, and we recover the usual
well-known formula:

θO(θO − θS) =
4M
DL

DLS
DS

. (50)

Therefore, we can conclude that cosmology does not modify the bending angle at the leading order
of the expansion in powers of μ and θ. The cosmological “drift” discussed earlier for the zeroth-order
solution is already taken into account when using angular-diameter distances so that the final result
does not change.

However, sub-dominant terms do carry a cosmological signature, as we show in the next section.
Here, we address the simple case of a cosmological constant-dominated universe, where analytical
calculations are possible.

4. Next-to-Leading Order Contributions to the Bending Angle in the Case of a Cosmological
Constant-Dominated Universe

As we saw in Equation (47), the leading contribution in the expansion for the bending angle
calculated in the McVittie metric is the same as the one calculated for the Schwarzschild metric.
Therefore, it is interesting to check if next-to-leading orders do carry a signature of the cosmological
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embedding of the point lens. We tackle this issue here in the case of a cosmological constant-dominated
universe, for which exact calculations are possible, and leave a more general treatment as a future work.

When H = H0 = constant, one can find an analytic expression for a(x):

x =
∫ 1

a

da′

H0a2 =
1

H0

(
1
a
− 1

)
=

z
H0

, (51)

where in the last equality we introduced the redshift. The scale factor as function of the comoving
distance is thus:

1
a(x)

= H0x + 1 = H0XxL + 1 = zLX + 1 , (52)

and Equation (43) becomes:
dθ

dX
= − αYS(zLX + 1)[

(X − 1)2 + Y2
S
]3/2 . (53)

As we anticipated, this equation can be solved exactly and the bending angle, as we defined it in
Equation (39), is the following:

δ =
α

YS

⎡
⎣1 + zL + zLY2

S√
1 + Y2

S

+
(XS − 1)(1 + zL)− zLY2

S√
(XS − 1)2 + Y2

S

⎤
⎦ . (54)

Expanding this solution for a small impact parameter YS, one gets:

δ =
2α(1 + zL)

YS

[
1 + Y2

S
2(zL − 1) + XS[2 + XS(zL − 1)− 4zL]

4(zL + 1)(XS − 1)2

]
, (55)

where we have already truncated O(Y4
S) terms and put in evidence the leading order contribution

2α(1 + zL)/YS (see Equation (47)).
Recovering the physical quantities YS = yS/xL, XS = xS/xL, α = 2M/xL and using Equation (51)

in order to express x as the redshift, we get:

δ =
4M(1 + zL)

yS

[
1 +

y2
S

x2
L

2z2
L(zL − 1) + zS[2zL + zS(zL − 1)− 4z2

L]

4(zL + 1)(zS − zL)2

]
. (56)

We already showed in the discussion leading to Equation (50) that yS ≈ θOxL, so that:

δ =
4M

θODL

[
1 + θ2

O
2z2

L(zL − 1) + zS[2zL + zS(zL − 1)− 4z2
L]

4(zL + 1)(zS − zL)2

]
, (57)

and in the lens equation:

θO(θO − θS) =
4MDLS
DLDS

[
1 + θ2

O
2z2

L(zL − 1) + zS[2zL + zS(zL − 1)− 4z2
L]

4(zL + 1)(zS − zL)2

]
. (58)

Let’s focus on Einstein ring systems, i.e., θS = 0. We have in this case the mass estimate (it is
actually an estimate on the product H0M, due to the presence of the angular-diameter distances,
see Ref. [17])):

4MDLS
DLDS

= θ2
O

[
1 − θ2

O
2z2

L(zL − 1) + zS[2zL + zS(zL − 1)− 4z2
L]

4(zL + 1)(zS − zL)2

]
. (59)
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The next-to-leading order correction is O(θ4
O) and depends on the redshifts of the lens and of

the source.
Consider, for example, the Einstein ring Q0047-2808 of the CASTLES survey, for which θO = 2.7′′,

zS = 3.60 and zL = 0.48. Substituting these numbers in Equation (59), the correction on the mass
estimate is therefore

4MDLS

θ2
ODLDS

= 1 + 0.12 θ2
O = 1 + 2.03 · 10−11 . (60)

This is an extremely small correction which nonetheless depends on cosmology. Note that it is
only one order of magnitude larger than the terms O(μ2) that we have neglected in our calculations.

5. Conclusions

We investigated whether cosmology affects the gravitational lensing caused by a point mass.
To this purpose, we used McVittie metric as the description of the point-like lens embedded in an
expanding universe. The reason for this choice is to use a metric which properly takes into account
the Hubble flow to which source, lens and observer are subject. We considered the general case in
which the Hubble factor is a generic function of time and find that no contribution coming from
cosmology enters the bending angle at the leading order (see Equation (47)), thus strengthening the
results obtained by [13–16].

We addressed the sub-dominant contributions to the bending angle in the special case of a constant
Hubble factor H = H0, for which exact calculations are possible. We found that in this case cosmology
does affect the bending of light, through a combination of the lens and source redshifts, given in
Equation (58). This correction is of order 10−11 for the Einstein ring Q0047-2808.

We conclude that the standard approach to gravitational lensing on cosmological distances,
which consists of patching together the results coming from the Schwarzschild metric (which models
the lens) and Friedmann–Lemaître-Robertson–Walker (FLRW) metric (which serves to calculate the
cosmological angular diameter distances), does not require modifications.

Future developments of this investigation should address the entity subdominant orders of
the expansion for the bending angle in a model-independent way. We expect the latter to depend
on HL, i.e., the Hubble parameter evaluated at the lens redshift. If these corrections were measurable,
they might provide a new cosmological probe for determining the value of the Hubble parameter at
different redshifts.

Finally, we must stress that McVittie metric is a particular and oversimplified description of the
geometry of a lens, this being a galaxy or a cluster of galaxies. Therefore, another improvement would
be that of tackling the analysis of the gravitational lensing and of the bending angle by constructing
for the lens a density profile more realistic than a Dirac delta (i.e., the one used here for a point mass).
We expect that different lens density profiles would lead to different results in the mass estimates
also from the point of view of the cosmological corrections, as shown in Ref. [10] for the case of the
Kottler metric.
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D. Bacon, V. Marra, H. Velten and the anonymous referees for stimulating discussions and suggestions.
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Appendix A. Standard Approach to Gravitational Lensing

We now place the lens at the origin of the reference frame and use polar coordinates,
as in Figure A1.
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L
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ρL

ρS φS

Figure A1. Scheme of lensing, with the lens at the origin of the coordinate system.

Again, we work at first order in μ. For a photon, metric (11) with θ = π/2 gives:

0 = −(1 − 4μ)ṫ2 + (1 + 4μ)a2ρ̇2 + (1 + 4μ)a2ρ2φ̇2 , (A1)

where the dot denotes derivation with respect to the affine parameter λ. Since ξ(φ) = δ
μ
φ∂μ is a Killing

vector, there exists the following conserved quantity:

L = gμνPμξν
(φ) = (1 + 4μ)a2ρ2φ̇ , (A2)

where Pμ is the photon four-momentum. The geodesic equation for t, cf. Equation (24), can be cast
as follows:

(1 − 4μ)ẗ − 4
∂μ

∂ρ
ṫρ̇ +

1
a

da
dt

(1 − 4μ)ṫ2 = 0 , (A3)

and written in the following compact form:

d
dλ

[(1 − 4μ)aṫ ] + 4aμ̇ṫ2 = 0 . (A4)

Recalling the definition of μ in Equation (10), i.e., μ = M/(2aρ), one can easily determine that
μ̇ = −Hμ. We neglect this contribution since indeed the ratio between the gravitational radius of the
lens and the Hubble radius must be very small, as we discussed after Equation (40).

Therefore, neglecting HM, Equation (A4) can be exactly integrated, giving the following result:

(
1 − 2M

aρ

)
ṫ =

E
a
+O(HM) , (A5)

where E is an integration constant. We found a mixture of the known results for the Schwarzschild
metric and for the FLRW one. Indeed, if H = 0, then a is an unimportant constant that we can
incorporate into the definitions of ρ and E, and we recover the result for the Schwarzschild metric.
On the other hand, with M = 0, we recover the usual cosmological decay of the energy of a photon,
which is inversely proportional to the scale factor.

Combining Equation (A1) with Equation (A5), we can write the following equation for ρ:

a4

E2 ρ̇2 = 1 − D2

ρ2 (1 − 8μ) , (A6)

where D ≡ L/E is a parameter associated to the closest approach distance ρL, defined as the one for
which ρ̇L = 0, i.e.,

ρL = D(1 − 4μL) , (A7)

where μL is μ evaluated at the closest approach distance, i.e., μL = M/(2aLρL).
We use now the definition of the bending angle proposed by Rindler and Ishak in Ref. [1], based on

the following formula:

tan ψ =

√gφφ√gρρ

∣∣∣∣dφ

dρ

∣∣∣∣ , (A8)

374



Universe 2016, 2, 25

which represents the angle between the radial and the tangential directions of the photon trajectory
(see Figure A2). Using Equations (A2) and (A6) we find:

tan ψ =
D
ρ

1 − 4μ√
1 − D2

ρ2 (1 − 8μ)
. (A9)

This expression can be rewritten in terms of the closest approach radius ρL as follows:

tan ψ =
ρL/ρ√

1 − ρ2
L/ρ2

(
1 − 2M

aρ
+

2M
aLρL

)
. (A10)

For M = 0, we obtain from Equation (A10) that

tan ψ =
ρL/ρ√

1 − ρ2
L/ρ2

= tan φ , (A11)

i.e., we recover the straight trajectory. Therefore, at any given position along the trajectory, ψ − φ gives
the local bending angle, i.e., the deviation from the straight-line trajectory. See Figure A2.

O
L

S

ρL

φ

φ

ψ

Figure A2. Schematic definition of the angle ψ, defined in Equation (A8). See also Figure 2 of Ref. [1].

The total bending angle is given by:

δ = ψS + ψO − φS − φO . (A12)

If we assume ρS and ρO are much larger than ρL, then the contributions from ψS and ψO are
very small and practically negligible. Therefore, the dominant contribution to δ comes from φS + φO.
In order to determine this sum, we must analyse the equation for the trajectory, i.e.,

dρ

dφ
= ±ρ

(
1 +

4μ − 4μL

1 − ρ2
L/ρ2

)√
ρ2

ρ2
L
− 1 . (A13)

For ρ  ρL, one can simplify this equation as follows:

dρ

dφ
= ± ρ2

ρL
(1 − 4μL) , (A14)

where we have considered only the leading-order correction to the equation for the straight line.
The above equation tells us that the trajectory still is a straight line, far away from the lens, but tilted of
an angle 4μL from each side with respect to the horizontal. Therefore, the bending angle is

δ = 8μL =
4M
aLρL

, (A15)

which is identical to the result of Equation (47) and also valid for a time-dependent H.
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Appendix B. Bending Angle in a Matter-Dominated Universe

We check here Formula (47) in the case of a matter-dominated universe, described by the
Friedmann equation H2 = H2

0 /a3. The scale factor as a function of the comoving distance x can
be calculated as follows:

x =
∫ 1

a

da′

H(a′)a2 =
2

H0
(1 −√

a) , (B1)

which implies a(x) = (1 − H0x/2)2. With this a(x), Equation (43) can be solved exactly and the
bending angle is the following:

δ =
2α

YS

4
(H0xL − 2)2 +O(YS) =

2α

aLYS
+O(YS) , (B2)

i.e., the same result found in Equation (47).
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Abstract: We revisit the role of the cosmological constant Λ in the deflection of light by means of
the Schwarzschild–de Sitter/Kottler metric. In order to obtain the total deflection angle α, the time
transfer function approach is adopted, instead of the commonly used approach of solving the geodesic
equation of photon. We show that the cosmological constant does appear in expression of the deflection
angle, and it diminishes light bending due to the mass of the central body M. However, in contrast to
previous results, for instance, that by Rindler and Ishak (Phys. Rev. D. 2007), the leading order effect
due to the cosmological constant does not couple with the mass of the central body M.

Keywords: light deflection; cosmological constant; time transfer function; relativity
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1. Introduction

The cosmological constant problem is the old one concerning closely the general theory of
relativity (See reviews by, e.g., [1,2]). After establishing the general theory of relativity by Einstein
in 1915–1916, he introduced the cosmological constant Λ to describe the static universe since the
original Einstein equation cannot represent the picture of static universe. Though the discovery of the
cosmic expansion by Hubble made a denial of Einstein’s first purpose, the cosmological constant is
realized again because of the find of accelerating expansion of the Universe [3–5], and it is popularly
considered that the cosmological constant Λ or dark energy generally has the highest potential for
explaining the observed accelerating expansion of the Universe. However, its details are still far from
clear; therefore, this hypothesis must be verified through not only cosmological observations but also
other astronomical/astrophysical measurements.

Among such efforts, the most straightforward approach is to investigate the role of Λ in the
classical tests of general relativity, such as the perihelion advance of planetary orbits and the bending
of light rays. Thus far, it was found that the cosmological constant Λ contributes to the perihelion shift
in principle even though this contribution is presently difficult to detect because of its very small effect
(See [6–8] and the references therein, and corresponding topic to perihelion advance [9–12]).

While in the case of bending of light under the Schwarzschild–de Sitter/Kottler spacetime (see
Equation (12)), contrary to the expectation, the second-order geodesic equation of a photon does not
contain Λ,

d2u
dφ2 = −u +

3
2

rgu2, rg =
2GM

c2 , u =
1
r

(1)

then, as a consequence, it is considered that the deflection angle in the Schwarzschild–de Sitter or
Kottler metric coincides with that of Schwarzschild case. However, recently, Rindler and Ishak [13]
reported that Λ does affect the bending of light by means of the Schwarzschild–de Sitter or Kottler
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metric and the invariant formula for the cosine. Subsequently, many authors have argued its appearance
in many different ways and the generality of these arguments advocated the appearance of Λ in the
deflection angle α. Nevertheless, presently, it seems that a conclusion has not yet been reached, for
instance, on whether the leading order effect due to Λ is coupled with the mass of the central body
M or not. See [14] for a review and also [15–25]. In addition, for the cosmological constant and
cosmological lensing equation, see, e.g., [17,18,26,27].

As we assess the circumstances, the origin of confusion, e.g., the appearance/disappearance of Λ
or the coupling/uncoupling with the mass of the central body M, is essentially attributable to the use
of the standard geodesic equation of a photon to obtain light deflection due to Λ, because Λ does not
appear. Therefore, it is worthy to revisit this problem using another theoretical approach.

In this paper, we will revisit the role of the cosmological constant Λ in terms of the time transfer
function recently proposed in [28,29], which is originally related to Synge’s world function Ω(xA, xB)

and which enables us to circumvent the integration of the null geodesic equation. In Section 2, we will
briefly summarize the time transfer function method. In Section 3, the effect of Λ on light deflection
will be re-investigated. Section 4 is devoted to a short summary of this paper.

2. Outline of the Time Transfer Function

Before calculating the light deflection due to the cosmological constant Λ, let us briefly summarize
the time transfer function method presented in [28,29].

Synge’s world function is defined by [30]

Ω(xA, xB) ≡ 1
2
(λB − λA)

∫ λB

λA

gμν
dxμ

dλ

dxν

dλ
dλ (2)

where gμν is a metric tensor of spacetime; xA = (x0
A = ctA, xi

A = �xA) and xB = (x0
B = ctB, xi

B = �xB)

are the coordinates of the two end-points A and B, respectively, on the geodesic world-line; and λ is
the affine parameter. Then, the world function Ω(xA, xB) is defined as the half length of the world-line
between A and B.

It is generally difficult to acquire the form of the world function concretely. Nonetheless, in the
case of the Minkowskian flat spacetime, the world function is easily obtained using the parameter
equation x(λ) = (xB − xA)λ + xA and by setting λA = 0 and λB = 1 [28,30],

Ω(0)(xA, xB) =
1
2

ημν(xμ
B − xμ

A)(xν
B − xν

A) (3)

where xμ (μ = 0, 1, 2, 3) are the Minkowskian coordinates with respect to the Minkowski metric
ημν = diag(−1, 1, 1, 1).

For the null geodesic, the world function Ω(xA, xB) satisfies the condition

Ω(xA, xB) = 0 (4)

because ds2 = 0. Hence, from Equations (3) and (4), the travel time between A and B, namely tB − tA,
in the Minkowskian flat spacetime becomes

c2(tB − tA)
2 = δij(xi

B − xi
A)(xj

B − xj
A) = R2

AB (5)

where δij is Kronecker’s delta, and c is the speed of light in vacuum. The time transfer function starts
from Equation (5), and the weak-field approximation is developed recursively with respect to the
gravitational constant G.

If the metric has the form

gμν = ημν + hμν, |hμν| � 1 (6)
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where hμν is a perturbation to ημν, the time transfer functions that yield the travel time of the light ray
are formally expressed as follows:

tB − tA = Te(tA,�xA,�xB) =
1
c
[RAB + Δe(tA,�xA,�xB)] (7)

= Tr(�xA, tB,�xB) =
1
c
[RAB + Δr(�xA, tB,�xB)] (8)

where Te(tA,�xA,�xB) is the emission time transfer function for the spatial coordinates �xA,�xB and signal
emission time tA; Tr(�xA, tB,�xB) is the reception time transfer function for the spatial coordinates �xA,�xB
and signal reception time tB; RAB = |�xB − �xA|; and Δe and Δr are called the emission time delay
function and reception time delay function, respectively. Δe and Δr characterize the gravitational
time delay. RAB in Equations (7) and (8) comes from Equation (5). Henceforth, A corresponds to the
emission and B corresponds to the reception.

In general, the time transfer function depends on either the emission time tA or reception time
tB, and this dependence feature is applied to obtain the gravitational time delay in the McVittie
spacetime [31]. However, if the spacetime is static, the first order formulae reduce to

Δ(1)(�xA,�xB) = −RAB
2

∫ 1

0

[
g00
(1) − 2Ni

ABg0i
(1) + Ni

ABNj
ABgij

(1)

]
dμ (9)

where �NAB = Ni
AB = (xi

B − xi
A)/RAB. The above equation is integrated along the parameter equation

�x(μ) =�xA + μ(�xB −�xA) on the Minkowskian spacetime. From Equation (9), the time delay is calculated
with the remaining form of the metric gμν, though the weak-field approximation is presumed.

Once the time transfer function T is determined, the direction of the light ray can be obtained by

(k0)A = −1, (ki)A = −c
∂T
∂xi

A
(10)

(k0)B = −1, (ki)B = c
∂T
∂xi

B
(11)

Equations (10) and (11) enable us to calculate light deflection directly from the time transfer
function T .

We note that Equations (9)–(11) have an opposite sign with respect to the corresponding equations
given in [28,29], as we now adopt the signature of Minkowski metric as (−,+,+,+) and because of
which, the time transfer function should essentially be a positive value, T > 0.

3. Effect of the Cosmological Constant on Light Deflection

Now, let us revisit the contribution of Λ to the light deflection with consideration of the time
transfer function T . To this end, we adopt the Schwarzschild–de Sitter or Kottler metric [32];

ds2 = −
(

1 − rg

r
− Λ

3
r2
)

c2dt2 +

(
1 − rg

r
− Λ

3
r2
)−1

dr2 + r2dΩ2

= −
(

1 − rg

r
− Λ

3
r2
)

c2dt2

+

(
1 +

rg

r
+

Λ
3

r2 +O(r2
g, Λ2)

)
dr2 + r2dΩ2 (12)

where rg = 2GM/c2 is the Schwarzschild radius, dΩ2 = dθ2 + sin2 θdφ2, and the dr2 component is
linearized from the first line to the second.

Here, we consider the validity and limitation of weak-field approximation supposed in Equation (12),
The bending of light due to the point mass M is characterized by rg/r; on the other hand, the bending
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due to the cosmological constant Λ is derived from Λr2/3 term. Therefore, it may be suitable to
estimate the validity of approximation by

Λ
3

r2 <
rg

b
,

rg

b
� 1 (13)

where b is the impact parameter. Then, r should range b < r < d and d is estimated from the relation
rg/b ∼ Λd2/3. As an example of a deflector or lens object, let us choose the Sun (M ≈ M� =

2.0 × 1030 [kg], b ≈ R� = 7.0 × 108 [m]) and the galaxy (M ≈ 1012M�, b ≈ Rgalaxy ≈ 105 [ly]); it
is found that d ∼ 1023 [m] ∼ 10 [Mpc] in both cases (we assumed Λ ≈ 10−52 [m−2]). This value is
comparable with the distance from our galaxy to the Virgo Cluster but one or two orders of magnitude
smaller than the distance from our galaxy to quasars, the typical range of which is from 100 [Mpc] to
1000 [Mpc].

It is beneficial to transform the spherical coordinates into rectangular ones since it is easy to set up
the rectilinear line as the first approximation of the light path (straight line in flat spacetime). However,
it is difficult to transform the standard Schwarzschild–de Sitter/Kottler metric into the isotropic form;
hence, employing the approach used in [33], we recast Equation (12) in rectangular form. By the
coordinate transformation,

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ (14)

Equation (12) is rewritten as

ds2 = −
(

1 − rg

r
− Λ

3
r2
)

c2dt2

+

[
δij +

(
rg

r
+

Λ
3

r2
)

xixj

r2 +O(r2
g, Λ2)

]
dxidxj (15)

in which indices i, j run from 1 to 3 (spatial coordinates). We presume that the light travels in x-y
plane; that is, �xA = (xA, yA),�xB = (xB, yB), and from Equations (9) and (15), the time transfer function
T (�xA,�xB) can be obtained as

T =
1
c
(RAB + ΔT ) (16)

ΔT =
rg

2
ln

RB +�xB · �NAB

RA +�xA · �NAB

+
1
2

[
(Nx

AB)
2(xB − xA)

2 + 2Nx
ABNy

AB(xB − xA)(yB − yA) + (Ny
AB)

2(yB − yA)
2
]

×
{

rg

[
1

R2
AB

ln
RB +�xB · �NAB

RA +�xA · �NAB

− (�xA · �NAB)[2�xA ·�xB − RA(RA + RB)]− RABR2
A

RB{[�xA · (�xB −�xA)]2 − R2
ABR2

A}

]
+

Λ
9

}

+
[
(Nx

AB)
2xA(xB − xA) + 2Nx

ABNy
AB(xByA + xAyB − 2xAyA) + (Ny

AB)
2yA(yB − yA)

]

×RAB

[
rg

�xA · (�xB −�xA)RA(RB − RA)

RB
{
[�xA · (�xB −�xA)]2 − R2

ABR2
A
} +

Λ
6

]

+
[
(Nx

AB)
2x2

A + 2Nx
ABNy

ABxAyA + (Ny
AB)

2y2
A

]

×RAB
2

[
rg
(RB − RA)[�xA · (�xB −�xA)]− R2

ABRA

RARB
{
[�xA · (�xB −�xA)]2 − R2

ABR2
A
} +

Λ
3

]
(17)

381



Universe 2016, 2, 5

in which RA = |�xA|, RB = |�xB|, �NAB = (Nx
AB, Ny

AB). The slightly complicated expression in

Equation (17) originates from gij
(1) in Equation (15). We are interested in how Λ modulates the

total deflection angle in the Schwarzschild case, αGR = 4GM/(c2b), where b is the impact parameter.
Then, in order to extract the influence of Λ on the bending angle of light rays, let us re-define the
coordinate system in such a way that the emission point A and the reception point B have the same
value of the y coordinate, namely, yA = yB = b. Further, let us assume that the source and the observer
are at rest with respect to the lens (deflector), the light is emitted at xA and received at xB and that
xA < xB holds, then Nx

AB = 1, |�xB −�xA| = xB − xA > 0, and so on. Then, Equation (17) reduces to a
simple form,

T =
1
c
(RAB + ΔTGR + ΔTΛ) (18)

ΔTGR =
GM
c2

⎡
⎣2 ln

xB +
√

x2
B + b2

xA +
√

x2
A + b2

−
⎛
⎝ xB√

x2
B + b2

− xA√
x2

A + b2

⎞
⎠
⎤
⎦ (19)

ΔTΛ =
Λ
18

[
2(x3

B − x3
A) + 3b2(xB − xA)

]
(20)

From Equations (18)–(20), the direction of light at the emission point A and reception point B are
computed using Equations (10) and (11).

Since we are now choosing the emission point A and reception point B as being located upon
the line y = b and xA < xB, then RAB = |�xB −�xA| = xB − xA, �NAB = ((xB − xA)/RAB, 0) = (1, 0);
the photon may travel along this straight-line with the minimum value of the coordinate r = b (the
impact parameter) if the light ray were un-deflected in the absence of central mass M and cosmological
constant Λ. Thus, let us define the angle θA as that between �NAB and�kA and angle θB as that between
�NAB and�kB. Further, we suppose that θA and θB have a small value, θA � 1, θB � 1, then the direction
vectors�kA and�kB can be expressed by the following form

�kA =

(
cos θA
sin θA

)
�

(
1

θA

)
= �NAB + δ�kA =

(
1
0

)
+

(
δkxA
δkyA

)
(21)

�kB =

(
cos θB
sin θB

)
�

(
1
θB

)
= �NAB + δ�kB =

(
1
0

)
+

(
δkxB
δkyB

)
(22)

Hence, we may obtain θA and θB from the y components of δ�kA and δ�kB, namely, δkyA and
δkyB, respectively.

Let us take the deflection angle α in such a way that α > 0. As a consequence, the deflection angle
α is given by

α ≡ θA − θB = αGR + αΛ +O(r2
g, Λ2) (23)

αGR =
GM
c2 b

⎛
⎝ 2

xA

√
x2

A + b2 + x2
A + b2

− 2

xB

√
x2

B + b2 + x2
B + b2

+
xA√

x2
A + b2

3 − xB√
x2

B + b2
3

⎞
⎟⎠ (24)

αΛ = −2Λ
3

b(xB − xA) (25)

Again, we note xB > xA in our case. The Equation (25) is similar and comparable with previous
results, that is, the third term of Equation (13) in [20], and the fourth term of Equation (25) in [22].
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The reason why O(mΛ) term disappear in our result comes from the fact that present calculation
is first (linear) order with respect to ε ∼ rg ∼ Λ, see Equations (9) and (15). If we extend to second
order O(ε2), O(mΛ) terms appear. See, e.g., Equation (41) in [29].

In the case of Schwarzschild spacetime, the total deflection angle αGR is obtained for the limit
r → ∞; however, in the case of Schwarzschild–de Sitter/Kottler spacetime, we cannot impose this limit
since the term (1 − rg/r − Λr2/3)−1dr2 in Equation (12) diverges at r =

√
3/Λ and the coordinate

value r does not range r >
√

3/Λ (here we assume rg/r � 1). Then we shall define the total deflection
angle due to Λ, αΛ, in such a way that xA = −√

3/Λ and xB =
√

3/Λ. Hence, inserting these values
into Equation (25), we have,

αΛ = −4
√

3Λ
3

b (26)

We note that the transformation from coordinate distance into angular distance is discussed, e.g.,
in [34].

It is worthwhile to show that Equation (24) can result in αGR = 4GM/(c2b) when Λ = 0.
Equation (24) is rewritten as

αGR =
GM
c2b

[
2(cos φB − cos φA) + sin2 φB cos φB − sin2 φA cos φA

]
(27)

where we introduced

sin φA =
b√

x2
A + b2

, cos φA =
xA√

x2
A + b2

(28)

sin φB =
b√

x2
B + b2

, cos φB =
xB√

x2
B + b2

(29)

For φA → π (the emission point A is located at −∞) and φB → 0 (the reception point B is located
at +∞), Equation (29) gives

αGR =
4GM
c2b

(30)

thus replicating the light deflection in the Schwarzschild case.
It should be mentioned that the time transfer function Equation (9), which is used to determine

the defection, is justified as long as the zeroth-order straight line that joins �xA and �xB does not intersect
an event horizon such as the Schwarzschild horizon. This implies that |φB − φA| < π is a necessary
condition to apply the method. However, this condition may be violated if�xA and/or�xB are sufficiently
far from the mass center. To avoid this difficulty, it may be a much more satisfactory procedure to
introduce the periapsis �xP of the light ray, calculate the defection angle between �xA and �xP as well as
that between �xP and �xB, and finally add these two contributions.

4. Summary

We revisited the effect of the cosmological constant Λ on light deflection by means of the
Schwarzschild–de Sitter or Kottler metric. To obtain the deflection angle α, we adopted the time
transfer function approach, instead of solving the geodesic equation of photon. We showed that the
cosmological constant appears in the deflection angle α, and it diminishes the light bending due to the
mass of the central body M.

We list in Table 1 the expressions of bending angle due to the cosmological constant
previously obtained [14–25], and estimate the numerical value using c = 3.0 × 108 [m/s],
G = 6.674 × 10−11 [m3 · kg−1 · s−2], Mass of galaxy M ≈ 1012M� = 2.0 × 1042 [kg], Λ ≈ 10−52 [m−2],
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b, R, r0, B ∼ 105 [ly] ∼ 1021 [m] (typical radius of galaxy), rs, ro, dOL, dLS, rS, robs, xB,−xA ∼ 10 [Mpc] ∼ 1023 [m].
R1 in [24] is calculated 1/R1 = 2GM/c2B2 + 15π(GM)2/8c4B3. The underline indicates the leading
order term.

Table 1. Comparison with previous results.. We estimate the numerical value using c = 3.0× 108 [m/s],
G = 6.674 × 10−11 [m3 · kg−1 · s−2], Mass of galaxy M ≈ 1012 M� = 2.0 × 1042 [kg], Λ ≈ 10−52 [m−2],
b, R, r0, B ∼ 105 [ly] ∼ 1021 [m] (typical radius of galaxy), rs, ro, dOL, dLS, rS, robs, xB,−xA ∼
10 [Mpc] ∼ 1023 [m]. R1 in [24] is calculated 1/R1 = 2GM/c2B2 + 15π(GM)2/8c4B3. The underline
indicates the leading order term.

Authors Deflection Due to Λ Numerical Value [rad]

Rindle & Ishak [13,14] − c2ΛR3

6GM −1.1 × 10−5

Park [15] Not contribute -
Khriplovich & Pomeransky [16] Not contribute -
Sereno [17,18] + 2GMbΛ

3c2 + b3Λ
6

(
1
rs
+ 1

ro

)
+3.3 × 10−13

Simpson et al. [19] Not contribute -
Bhadra et al. [20] 2GMΛb

3c2 − Λb
6 (dOL + dLS) +

Λb3

6

(
1

dOL
+ 1

dLS

)
−3.3 × 10−9

Miraghaei et al. [21] −
√

2Λ
3 R −8.2 × 10−6

Biressa et al. [22] + 2GMbΛ
3c2 − bΛ

6 (rS + robs)

− b3Λ
12

(
1
rS
+ 1

robs

)
+ GMb3Λ

6c2

(
1
r2

S
+ 1

r2
obs

)
−3.3 × 10−9

Arakida & Kasai [23] Not contribute -

Hammad [24] −
√

2
3 Λ

√
GMR3

1
c2 −1.1 × 10−5

Batic et al. [25] − 2√
3

r0
√

Λ − 2
√

Λ√
3

2GM
c2 −

√
3Λ
4

(2GM)2

c4r0
− 5

√
Λ

8
√

3
(2GM)3

c6r2
0

−1.1 × 10−5

Present Paper − 2Λ
3 b(xB − xA) −1.3 × 10−8

Our result seems to be similar and comparable with the third term of Equation (13) in [20], and
the fourth term of Equation (25) in [22]. Also, as [13,14,20–22,24,25], the cosmological constant leads to
diminishing the bending angle due to the mass of the central body M.

However, contrary to previous results such as [13,14,17,18,20,22,24,25], in our case the bending
angle due to Λ does not couple with the mass of the central body M. As mentioned in Section 3,
it comes from the fact that our calculation is first (linear) order with respect to ε ∼ rg ∼ Λ, (see
Equations (9) and (15)), then if we extend to second order O(ε2), the coupling term O(mΛ) appears.
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Abstract: In the recently introduced Relativistic Quantum Geometry (RQG) formalism, the possibility
was explored that the variation of the tensor metric can be done in a Weylian integrable manifold
using a geometric displacement, from a Riemannian to a Weylian integrable manifold, described
by the dynamics of an auxiliary geometrical scalar field θ, in order that the Einstein tensor (and the
Einstein equations) can be represented on a Weyl-like manifold. In this framework we study jointly
the dynamics of electromagnetic fields produced by quantum complex vector fields, which describes
charges without charges. We demonstrate that complex fields act as a source of tetra-vector fields
which describe an extended Maxwell dynamics.

Keywords: Relativistic Quantum Geometry; Quantum Complex Fields

1. Introduction

The consequences of non-trivial topology for the laws of physics has been a topic of perennial interest
for theoretical physicists [1], with applications to non-trivial spatial topologies [2] like Einstein-Rosen
bridges, wormholes, non-orientable spacetimes, and quantum-mechanical entanglements.

Geometrodynamics [3,4] is a picture of general relativity that studies the evolution of the spacetime
geometry. The key notion of the Geometrodynamics was the idea of charge without charge. The Maxwell
field was taken to be source free, and so a non-vanishing charge could only arise from an electric flux
line trapped in the topology of spacetime. With the construction of ungauged supergravity theories it
was realised that the Abelian gauge fields in such theories were source-free, and so the charges arising
therein were therefore central charges [5] and as consequence satisfied a BPS bound [6] where the
embedding of Einstein-Maxwell theory into N = 2 supergravity theory was used. The significant
advantages of geometrodynamics, usually come at the expense of manifest local Lorentz symmetry [7].
During the 70s and 80s decades a method of quantization was developed in order to deal with some
unresolved problems of quantum field theory in curved spacetimes [8–10].

In a previous work [11] the possibility was explored that the variation of the tensor metric must
be done in a Weylian integrable manifold using a geometric displacement, from a Riemannian to a
Weylian integrable manifold, described by the dynamics of an auxiliary geometrical scalar field θ, in
order that the Einstein tensor (and the Einstein equations) can be represented on a Weyl-like manifold.
An important fact is that the Einstein tensor complies with the gauge-invariant transformations studied
in a previous work [12]. This method is very useful because can be used to describe, for instance,
nonperturbative back-reaction effects during inflation [13]. Furthermore, the relativistic quantum
dynamics of θ was introduced by using the fact that the cosmological constant Λ is a relativistic

Universe 2016, 2, 13 386 www.mdpi.com/journal/universe
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invariant. In this letter, we extend our study to complex charged fields that act as the source of vector
fields Aμ.

2. RQG Revisited

The first variation of the Einstein-Hilbert (EH) action I (Here, g is the determinant of the covariant
background tensor metric gμν, R = gμνRμν is the scalar curvature, Rα

μνα = Rμν is the covariant Ricci
tensor and Lm is an arbitrary Lagrangian density which describes matter. If we deal with an orthogonal
base, the curvature tensor will be written in terms of the connections: Rα

βγδ = Γα
βδ,γ − Γα

βγ,δ +

Γε
βδΓα

εγ − Γε
βγΓα

εδ).

I =
∫

V
d4x

√−g
[

R
2κ

+ Lm

]
(1)

is given by

δI =
∫

d4x
√−g

[
δgαβ

(
Gαβ + κTαβ

)
+ gαβδRαβ

]
(2)

where κ = 8πG, G is the gravitational constant and gαβδRαβ = ∇αδWα, where δWα = δΓα
βγgβγ −

δΓε
βεgβα = gβγ∇αδΨβγ. When the flux of δWα that cross the Gaussian-like hypersurface defined

in an arbitrary region of the spacetime, is nonzero, one obtains in the last term of Equation (2),
that ∇αδWα = δΦ(xα), such that δΦ(xα) is an arbitrary scalar field that takes into account the flux
of δWα across the Gaussian-like hypersurface. This flux becomes zero when there are no sources
inside this hypersurface. Hence, in order to make δI = 0 in Equation (2), we must consider the
condition: Gαβ + κTαβ = Λ gαβ, where Λ is the cosmological constant. Additionally, we must require
the constriction δgαβΛ = δΦ gαβ. Then, we propose the existence of a tensor field δΨαβ, such that
δRαβ ≡ ∇βδWα − δΦ gαβ ≡ �δΨαβ − δΦ gαβ = −κ δSαβ (We have introduced the tensor Sαβ =

Tαβ − 1
2 T gαβ, which takes into account matter as a source of the Ricci tensor Rαβ), and hence δWα =

gβγ∇αδΨβγ, with ∇αδΨβγ = δΓα
βγ − δα

γδΓε
βε. Notice that the fields ¯δWα and ¯δΨαβ are gauge-invariant under

transformations:
¯δWα = δWα −∇αδΦ, ¯δΨαβ = δΨαβ − δΦ gαβ (3)

where the scalar field δΦ complies �δΦ = 0. On the other hand, we can make the transformation

Ḡαβ = Gαβ − Λ gαβ (4)

and the transformed Einstein equations with the equation of motion for the transformed gravitational
waves, hold

Ḡαβ = −κ Tαβ, (5)

� ¯δΨαβ = −κ δSαβ (6)

with �δΦ(xα) = 0 and δΦ(xα) gαβ = Λ δgαβ. The Equation (5) provides us the Einstein equations
with cosmological constant included, and Equation (6) describes the exact equation of motion for
gravitational waves with an arbitrary source δSαβ on a closed and curved space-time. A very important
fact is that the scalar field δΦ(xα) appears as a scalar flux of the tetra-vector with components δWα

through the closed hypersurface ∂M. This arbitrary hypersurface encloses the manifold by down and
must be viewed as a 3D Gaussian-like hipersurface situated in any region of space-time. This scalar
flux is a gravitodynamic potential related to the gauge-invariance of δWα and the gravitational waves
¯δΨαβ. Another important fact is that since δΦ(xα) gαβ = Λ δgαβ, the existence of the Hubble horizon is

related to the existence of the Gaussian-like hypersurface. The variation of the metric tensor must be
done in a Weylian integrable manifold [11] using an auxiliary geometrical scalar field θ, in order to the
Einstein tensor (and the Einstein equations) can be represented on a Weyl-like manifold, in agreement
with the gauge-invariant transformations Equation (3). If we consider a zero covariant derivative of the
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metric tensor in the Riemannian manifold (we denote with ”; ” the Riemannian-covariant derivative):
Δgαβ = gαβ;γ dxγ = 0, hence the Weylian covariant derivative gαβ|γ = θγ gαβ, described with respect
to the Weylian connections (To simplify the notation we shall denote θα ≡ θ,α).

Γα
βγ =

{
α

β γ

}
+ gβγθα (7)

will be nonzero
δgαβ = gαβ|γ dxγ = − [

θβgαγ + θαgβγ

]
dxγ (8)

2.1. Gauge-Invariance and Quantum Dynamics

From the action’s point of view, the scalar field θ(xα) is a generic geometrical transformation that
leads invariant the action

I =
∫

d4x
√−ĝ

[
R̂
2κ

+ L̂
]
=

∫
d4x

[√−ĝe−2θ
] {[

R̂
2κ

+ L̂
]

e2θ

}
(9)

where we shall denote with a hat, ˆ, the quantities represented on the Riemannian manifold. Hence,
Weylian quantities will be varied over these quantities in a Riemannian manifold so that the dynamics
of the system preserves the action: δI = 0, and we obtain

− δV
V

=
δ
[

R̂
2κ + L̂

]
[

R̂
2κ + L̂

] = 2 δθ (10)

where δθ = −θμdxμ is an exact differential and V =
√−ĝ is the volume of the Riemannian manifold.

Of course, all the variations are in the Weylian geometrical representation, and assure us gauge
invariance because δI = 0. Using the fact that the tetra-length is given by S = 1

2 xνÛν and the Weylian
velocities are given by

uμ = Ûμ + θμ
(

xεÛε
)

(11)

can be demonstrated that

uμuμ = 1 + 4S
(

θμÛμ − 4
3

Λ S
)

(12)

The components uμ are the relativistic quantum velocities, given by the geodesic equations

duμ

dS
+ Γμ

αβuαuβ = 0 (13)

such that the Weylian connections Γμ
αβ are described by Equation (7). In other words, the quantum

velocities uμ are transported with parallelism on the Weylian manifold, meanwhile Ûμ are transported
with parallelism on the Riemann manifold. The quantum velocities uμ (given by Equation (11)), must
be considered as nondeterministic because they depend on θμ, so that the only quantity that has
classical sense is its quantum expectation value on the classical Riemannian background manifold:

〈B|uμ|B〉 = Ûμ + 〈B|θμ|B〉 (
xεÛε

)
(14)

If we require that uμuμ = 1, we obtain the gauge

∇̂μ Aμ = 4
dΦ
dS

=
2
3

Λ2 S(xμ) (15)
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where Aμ is given by [11,12]

Aμ =
δWα

δS
=

δΓα
βγ

δS
gβγ −

δΓε
βε

δS
gβα (16)

Hence, we obtain the important result

dΦ =
1
6

Λ2 S dS (17)

or, after integrating

Φ(xμ) =
Λ2

12
S2(xμ) (18)

such that dΦ(xμ) = −Λ
2 dθ(xμ). Hence, from Equation (9) we obtain that the quantum volume is given

by
Vq =

√−ĝ e−2θ =
√−ĝ e

1
3 ΛS2

(19)

where ΛS2 > 0. This means that Vq ≥ √−ĝ, for S2 ≥ 0, Λ > 0 and θ < 0. This implies a signature
for the metric: (−,+,+,+) in order for the cosmological constant to be positive and a signature
(+,−,−,−) in order to have Λ ≤ 0. Finally, the action Equation (9) can be rewritten in terms of both
quantum volume and the quantum Lagrangian density Lq =

[
R̂
2κ + L̂

]
e2θ

I =
∫

d4x Vq Lq (20)

As was demonstrated in [11] the Einstein tensor can be written as

Ḡαβ = Ĝμν + θα;β + θαθβ +
1
2

gαβ

[
(θμ);μ + θμθμ

]
(21)

and we can obtain the invariant cosmological constant Λ

Λ = −3
4
[
θαθα + �̂θ

]
(22)

so that we can define a geometrical Weylian quantum action W =
∫

d4x
√−ĝ Λ, such that the

dynamics of the geometrical field, after imposing δW = 0, is described by the Euler-Lagrange equations
which take the form

∇̂αΠα = 0, or �̂θ = 0 (23)

where the momentum components are Πα ≡ − 3
4 θα and the relativistic quantum algebra is given

by [11]
[θ(x), θα(y)] = −iΘα δ(4)(x − y), [θ(x), θα(y)] = iΘα δ(4)(x − y) (24)

with Θα = ih̄ Ûα and Θ2 = ΘαΘα = h̄2Ûα Ûα for the Riemannian components of velocities Ûα.

2.2. Charged Geometry and Vector Field Dynamics

In order to extend the previous study we shall consider that the scalar field θ is given by

θ(xα) = φ(xα) e−iθ(xα), or θ(xα) = φ∗(xα) eiθ(xα) (25)

where φ(xα) is a complex field and φ∗(xα) its complex conjugate. In this case, since
θα = eiθ (∇̂α + iθα

)
φ∗, the Weylian connections hold

Γα
βγ =

{
α

β γ

}
+ eiθ gβγ

(∇̂α + i θα
)

φ∗ ≡
{

α

β γ

}
+ gβγ eiθ (Dαφ∗) (26)
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where we use the notation Dαφ∗ ≡ (∇̂α + iθα
)

φ∗. The Weylian components of the velocity uμ and the
Riemannian ones Uμ, are related by

uμ = Ûμ + eiθ (Dμφ∗)
(

xεÛε
)

(27)

Furthermore, using the fact that

δgαβ = e−iθ [(∇̂β − iθβ

)
Ûα +

(∇̂α − iθα

)
Ûβ

]
φ δS (28)

we can obtain from the constriction Λδgαβ = gαβδΦ, that

δΦ =
Λ
4

gαβ δgαβ (29)

so that, using Equation (28), the flux of Aμ across the Gaussian-like hypersurface can be expressed in
terms of the quantum derivative of the complex field:

δΦ
δS

≡ dΦ
dS

=
Λ
2

eiθÛα (Dαφ∗) (30)

Using the fact that ∇̂αδWα = δΦ, it is easy to obtain

∇̂μ Aμ =
Λ
2

eiθÛα (Dαφ∗) (31)

where we have defined Aμ = δWμ

δS . Notice that the velocity components Ûα of the Riemannian observer
define the gauge of the system. Furthermore, due to the fact that δWα = gβγ∇̂αδΨβγ, hence we obtain
that

δWα

δS
≡ Aα = gβγ∇̂αχβγ ≡ ∇̂αχ (32)

where χβγ are the components of the gravitational waves:

∇̂α Aα = gβγ∇̂α∇̂αχβγ ≡ �̂χ (33)

3. Quantum Field Dynamics

In this section we shall study the dynamics of charged and vector fields, in order to obtain their
dynamical equations.

3.1. Dynamics of the Complex Fields

The cosmological constant Equation (22) can be rewritten in terms of φ = θ eiθ and φ∗ = θe−iθ

Λ = −3
4
[(∇̂νφ

) (∇̂νφ∗)+ θν Jν
]

(34)

where the current due to the charged fields is

Jν = i
[
δν

ε

(∇̂εφ
)

φ∗ − (∇̂νφ∗) φ − iθν (φφ∗)
]

(35)

The important fact in Equation (34) is that the geometrical current Jμ interacts with the geometrical
Weylian manifold. In other words, the cosmological constant can be viewed in this context as due to a
purely quantum excitation (of charged fields), of the Riemannian (classical) background.

As can be demonstrated, ∇̂ν Jν = − 8
3

∫
dθ =

( 2
3 Λ S

)2
, so that we obtain the condition

φ∗ ei (θ− π
2 ) = φ e−i (θ− π

2 ) (36)
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The zeroth-component of the current is

J0 = i
[
δ0

ε

(∇̂εφ
)

φ∗ −
(
∇̂0φ∗

)
φ − iθ0 (φφ∗)

]
(37)

which represents the density of electric charge, so that the charge is

Q =
∫

d3x
√
|det[gij]| J0 (38)

once we require that ∇̂i Ji =
( 2

3 Λ S
)2

, and consequently ∇̂0Q = 0.
The second equation in Equation (23) results in two different equations

(
�̂+ iθμ∇̂μ +

4
3

Λ
)

φ∗ = 0 (39)(
�̂− iθμ∇̂μ +

4
3

Λ
)

φ = 0 (40)

where the gauge equations are

−
[

iθμ∇̂μ +
3
4

Λ
]

φ∗ =
3
4

Λ e−i(θ− π
2 ) (41)[

iθμ∇̂μ − 3
4

Λ
]

φ =
3
4

Λ ei(θ− π
2 ) (42)

so that finally we obtain the equations of motion for both fields

�̂φ∗ = 3
4

Λ e−i(θ− π
2 ) (43)

�̂φ =
3
4

Λ ei(θ− π
2 ) (44)

Notice that the functions e±i(θ− π
2 ) are invariant under θ = 2 nπ (n- integer) rotations, so that the

complex fields are vector fields of spin 1. Using the expressions Equation (26) to find the commutators
for the complex fields, we obtain that

[φ∗(x), Dμφ∗(y)] =
4
3

iΘμ δ(4)(x − y),
[
φ(x), Dμφ(y)

]
= −4

3
iΘμ δ(4)(x − y) (45)

where Dμφ∗ ≡ (∇̂μ + i θμ
)

φ∗ and Dμφ ≡ (∇̂μ − i θμ

)
φ.

3.2. Dynamics of the Vector Fields

On the other hand, if we define Fμν ≡ ∇̂μ Aν − ∇̂ν Aμ, such that Aα is given by Equation (32), we
obtain the equations of motion for the components of the electromagnetic potentials Aν: ∇̂μFμν = Jν

�̂Aν − ∇̂ν
(∇̂μ Aμ

)
= Jν (46)

where Jν being given by the expression Equation (35) and from Equation (15) we obtain that
∇̂μ Aμ = −Λ

2 θμÛμ = 2
3 Λ2 S(xμ) = 4 dΦ

dS determines the gauge that depends on the Riemannian frame
adopted by the relativistic observer. Notice that for massless particles the Lorentz gauge is fulfilled,
but it does not work for massive particles, where S 	= 0.

4. Final Remarks

We have studied charged and electromagnetic fields from relativistic quantum geometry. In this
formalism, the Einstein tensor complies with gauge-invariant transformations studied in a previous

391



Universe 2016, 2, 13

work [12]. The quantum dynamics of the fields is described on a Weylian manifold which comes
from a geometric extension of the Riemannian manifold, on which is defined the classical geometrical
background. The connection that describes the Weylian manifold is given in Equation (26) in terms
of the quantum derivative of the complex vector field with a Lagrangian density described by the
cosmological constant Equation (34). We have demonstrated that vector fields Aμ describe an extended
Maxwell dynamics (see Equation (46)), where the source is provided by the charged fields current
density Jμ, with a nonzero tetra-divergence. Furthermore, the gauge of Aμ is determined by the
relativistic observer: ∇̂μ Aμ = Λ

2 θμÛμ. Finally, it is important to notice that the cosmological constant
appears as a Riemannian invariant, but not a Weylian one. It can be viewed in this context as due to a
purely quantum excitation. In this paper these excitations of a Riemannian (classical) background, are
driven by charged complex fields.

Author Contributions: Both authors contributed in the paper. Both authors have read and approved the
final version.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Weyl, H. Philosophy of Mathematics and Natural Science; Princeton University Press: Princeton, UK, 1949.
2. Cvetic, M.; Gibbons, G.W.; Pope, C.N. Super-geometrodynamics. J. High Energy Phys. 2015, 2015, 029.
3. Wheeler, J.A. On the nature of quantum geometrodynamics. Ann. Phys. 1957, 2, 604–614.
4. Wheeler, J.A. Superspace and the Nature of Quantum Geometrodynamics. In Battelle Rencontres, 1967 Lectures

in Mathematics and Physics; De Witt, C.M., Wheeler, J.A., Eds.; W.A. Benjamin: New York, NY, USA, 1968.
5. Gibbons, G.W. Soliton States and Central Charges in Extended Supergravity Theories. Lect. Notes Phys. 1982,

160, 145–151.
6. Gibbons, G.W.; Hull, C.M. A bogomolny bound for general relativity and solitons in N=2 supergravity. Phys.

Lett. B 1982, 109, 190–194.
7. Rácz, I. Cauchy problem as a two-surface based ‘geometrodynamics’. Class. Quantum Gravity 2015,

32, 015006.
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Abstract: The Poisson structure of intrinsic time gravity is analysed. With the starting point
comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results
upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index)
traceless momentric. This latter choice unitarily implements the fundamental commutation relations,
which now take on the form of an affine algebra with SU(3) Lie algebra amongst the momentric
variables. The resulting relations unitarily implement tracelessness upon quantization. The associated
Poisson brackets and Hamiltonian dynamics are studied.

Keywords: intrinsic time; quantum gravity; canonical; quantization; symmetry

1. Introduction

A crucially important question in the quantization of gravity in 3+1 dimensions, as for any theory,
is the choice of the fundamental dynamical variables of the classical theory, which upon quantization
become promoted to quantum operators. In Loop Quantum Gravity (LQG) [1] the starting point for
the classical theory are the Ashtekar variables, where a SU(2) gauge connection and a densitized triad
form a canonically conjugate pair. This choice of variables turns the initial value constraints of GR
from intractable non polynomial phase space functions, as they appear in the Arnowitt Deser Misner
(ADM) theory [2], into polynomial form at the expense of an additional set of constraints related to the
SU(2) gauge symmetry inherent in the theory. It is hoped that the polynomial form of the constraints
in LQG make the constraints more tractable for quantization and the construction of a physical Hilbert
space. The actual configuration variable in LQG which is subject to the quantization procedure is not
the connection itself, but rather the holonomy of the connection, since the latter is well-defined in the
quantum theory whereas the connection fails to exist [3]. Furthermore, the transformation properties of
the holonomy more aptly are representative, at the kinematical level, of the symmetry properties of the
theory [4]. Consequently, upon quantization in LQG all constraints and quantities must be rewritten in
terms of the holonomies and the densitized triad, which themselves no longer form a canonical pair.

In LQG there exists only a manifold structure with no metric, and the metric is no longer
fundamental, but becomes a derived quantity in terms of more fundamental variables. A main
difficulty in LQG is the construction of a physical Hilbert space from solution of the Hamiltonian
constraint. Whether one utilizes the self-dual version of the connection or its real counterparts as in
the Barbero variables [5], the solution to the Hamiltonian constraint and its subsequent delineation
of the physical Hilbert space, is a long and standing unresolved problem [2]. Consequently, the
quantization of LQG remains complete only at the kinematical level (which is more suitably adapted
to the fundamental variables), and the physical dynamics of gravity remain to be completely encoded
within this procedure [4]. LQG can be contrasted with the standard ADM approach [4], wherein the
fundamental variables are the spatial three metric and its conjugate momentum, constructed from the
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extrinsic curvature of the spatial slice of four-dimensional spacetime upon which the quantization
must be performed. The corresponding initial value constraints are intractable due to various technical
issues particularly related to ultraviolet divergences associated with operator products, which in
LQG are absent. The choice of fundamental variables in the ADM approach poses the problem that
as canonically conjugate variables, the momentum generates translations of the spatial three metric.
Since the spectrum of both variables is the real line, then the positivity of the metric in the quantum
theory cannot be guaranteed while having self-adjoint variables. Positivity of the spatial three metric is
a crucially important condition that any quantum theory of gravity must satisfy, since spatial distances
as measured by the theory must always be positive.

The theory of Intrinsic time quantum gravity (ITQG) [6] presented in this paper is driven by
the motivation to solve all of the above difficulties. The choice of the configuration space variable in
ITQG will be a unimodular spatial three metric metric and a momentum variable (ultimately known
as a momentric) which generates dilations (more precisely SU(3) and SL(3,R) transformations of the
metric). The importance of this choice of fundamental variables is that they will be self-adjoint in the
quantum theory, while preserving the positivity and the unimodularity of the spatial three metric
forming the configuration space variable. A common misconception of the price for such a result
is that the variables cannot be canonically related, resulting in complications in their quantization.
However, in the case of ITQG we will see that it is precisely their non canonical nature that makes
them perfectly suited for quantization, and admits a group-theoretical interpretation as such, which
resolves all of the aforementioned difficulties in the LQG and ADM approaches in one stroke.

In [6], a new formulation for quantization of the gravitational field in ITQG, is presented. The basic
idea, as introduced in [7] and [8], is the concept of a new phase space for gravity which breaks the
paradigm of four-dimensional spacetime covariance, shifting the emphasis to three dimensional spatial
diffeomorphism invariance combined with a physical Hamiltonian which generates evolution with
respect to intrinsic time. Through the constructive interference of wavefronts, classical spacetime
emerges from the formalism, with direct correlation between intrinsic time intervals and proper time
intervals of spacetime. In the present paper we will take a step back to analyse the motivations and
canonical structure of ITQG, and then construct the fundamental variables and their commutation
relations of the theory. These relations are noncanonical, which lead to the uncovering of an inherent
SU(3) structure for gravity. This presents certain advantages from the standpoint of quantization.
The paper is thus structures as follows: Section 2 discusses the Poisson structure of the barred classical
variables, Section 3 highlights the prelude to the quantum theory, Section 4 discusses the momentric
operators and the SU(3) Lie algebra, Section 5 revisits the classical theory, and then lastly, Section 6
concludes the paper with some recommendations for similar future work in this direction.

2. Poisson Structure of the Barred Classical Variables

Let qij, π̃ij denote the spatial 3-metric and its conjugate momentum defined on a spatial slice Σ of
a four dimensional spacetime of topology M = Σ × R. In the ADM metric theory, the basic variables
provide a canonical one form

ΘADM =
∫

Σ
d3x π̃ij(x)δqij(x). (1)

Starting from this canonically conjugate pair, let us define as fundamental classical variables
the following barred quantities q̄ij, a unimodular metric with detqij = 1, and a traceless momentum

variable πij via the relations [7,8]

qij = q−1/3qij; πij = q1/3(π̃ij − 1
3

qijπ̃
)
, (2)

where π̃ = qijπ̃
ij with qijπ

ij = 0. From Equation (2) we get the following cotangent space decomposition

δqij = q1/3(qijδlnq1/3 + δqij
) −→ δqij = Pkl

ij δqkl (3)
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where we have defined the traceless projector Pij
kl =

1
2
(
δi

kδ
j
l + δ

j
kδi

l
)− 1

3 qijqkl , with Pij
klq

kl = qijP
ij
kl = 0.

So we have qijδqij = 0, namely that the cotangent space elements δqij are traceless. The inverse relations

qij = q1/3qij; π̃ij = q−1/3(πij +
1
3

qijπ̃
)

(4)

take us from the barred back to the unbarred variables. Substitution of the left side of the arrow
of Equation (3) into Equation (1) provides a clean separation of the barred gravitational degrees of
freedom with canonical one-form [7]

Θ =
∫

Σ
d3xπ̃ijδqij =

∫
Σ

d3x
(
π̃δlnq1/3 + πijδqij

)
, (5)

where we have used πijqij = qijδqij = 0. Equation (5) yields a corresponding symplectic two-form

Ω = δΘ =
∫

Σ
d3x

(
δπ̃ ∧ δlnq1/3 + δπij ∧ δqij

)
. (6)

While this may be the case, as we will see, the Poisson brackets which can arise from (6) are not
unique, on account of subtleties due to the implementation of tracelessness of πij.

A necessary condition for a consistent canonical quantization of the theory is that the correct
Poisson brackets comprise the starting point at the classical level. So let us directly calculate via
Equation (2) barred Poisson brackets with respect to the unbarred canonical structure, which is
clearly known to be unambiguous. For the metric components we have {qij(x), qkl(y)} = 0 which is
encouraging, as the unbarred metric clearly is devoid of any momentum dependence. However, using
the following relations

δq1/3

δqij
=

1
3

q1/3qij;
δqij

δqmn
= −q(imqj)n;

δqkl
δqij

= q−1/3Pij
kl ;

δπij

δπ̃kl = q1/3Pij
kl , (7)

in conjunction with

δπij

δqkl
=

1
3

(
qklπij + q1/3(q(ikqj)lqrsπ̃rs − qijπ̃kl)) =

1
3

q−1/3(qklπij − qijπkl)+ 1
3

q1/3q(ikqj)lπ̃, (8)

we obtain the following Poisson bracket relations between barred metric and momentum

{qij(x), πkl(y)} =
∫

Σ
d3z

( δqij(x)

δqmn(z)
δπkl(y)
δπ̃mn(z)

− δπkl(y)
δqmn(z)

δqij(x)

δπ̃mn(z)

)
= Pkl

ij δ(3)(x, y). (9)

Finally, we obtain the following relation amongst the barred momentum components

{πij(x), πkl(y)} =
∫

Σ
d3z

( δπij(x)
δqmn(z)

δπkl(y)
δπ̃mn(z)

− δπkl(y)
δqmn(z)

δπij(x)
δπ̃mn(z)

)
=

1
3
(
qklπij − qijπkl)δ(3)(x, y). (10)

The Poisson brackets between barred variables are noncanonical. But we will show that they yield
the same barred contribution as the symplectic two form (6) which can be seen as follows. From the
calculated Poisson brackets the following Poisson matrix can be constructed

PI J =

(
{qij(x), qkl(y)} {qij(x), πkl(y)}
{πkl(y), qij(x)} {πij(x), πkl(y)}

)
=

(
0 Pkl

ij

−Pkl
ij

1
3
(
qklπij − qijπkl)

)
δ(3)(x, y). (11)

In Poisson geometry, a two form Ω = 1
2 ΩI JδqI ∧ δqJ on the phase space qI ≡ qij, πij can be

constructed whose components are the inverse of the Poisson matrix. If Ω is closed (δΩ = 0) and
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nondegenerate, then it is said to be a symplectic two form. Making the identifications {q, π} ∼ β and
{π, π} ∼ α, then the inverse of the Poisson matrix for the barred variables is of the form

P−1 =

(
0 β

−β α

)−1

=

(
β−1αβ−1 −β−1

β−1 0

)
, (12)

which does not exist since the projector Pkl
ij is uninvertible. This suggests, naively, that the symplectic

structure associated with the above Poisson brackets does not exist.
One method of quantization of a theory is to promote Poisson brackets directly into quantum

commutators. The Poisson brackets for a generic theory can be read off directly from its symplectic
two form, and which in turn is defined from the Poisson matrix by constructing the inverse of the
latter. We would like to construct the symplectic two form for ITQG by inverting the Poisson matrix
PI J constructed in equation Equation (11). The Poisson matrix in its present form is uninvertible since
it consists of projectors Pkl

ij in its block off-diagonal positions denoted by the symbol β. In the process

of inversion of PI J , as shown above with P−1, it is necessary to have β−1. But β−1 does not exist on
account of the fact that projectors are not invertible, which suggests, naively, that ITQG does not have
a well-defined symplectic structure.

To get around this technical difficulty we will add a trace part to the Poisson matrix, parametrized
by a parameter γ which we will ultimately remove after all calculations have been performed.
While this distorts the theory of ITQG to a new theory parametrized by γ, it renders the resulting
Poisson matrix invertible to allow progress to the corresponding symplectic two form, parametrized by
γ, since the previously offending terms β now become βγ, which as in Equation (12) are now invertible.
Thus we have

βγ ≡ (Pγ)
ij
kl = Pij

kl + γqijqkl −→ β−1
γ = Pkl

mn +
1

9γ
qklqmn. (13)

So now, we can invert the resulting object, and we have that

β−1
γ αβ−1

γ =
1
3
(

Pmn
kl +

1
9γ

qmnqkl
)(

qklπij − qijπkl)(Prs
ij +

1
9γ

qrsqij
)
= − 1

9γ

(
πmnqrs − qmnπrs), (14)

where we have used Pij
klqij = qklπkl = 0 and Pij

klπ
kl = πij, which assumes that πij is traceless. So the

inverse of the Poisson matrix parametrized by γ is given by

P−1 =

(
− 1

9γ

(
qklπij − qijπkl) −(

Pkl
mn +

1
9γ qklqmn

)
Pij

rs +
1

9γ qijqrs 0

)
δ(3)(x, y),

and the associated two form Ω inherits the γ dependence

Ωγ =
1
2

Ωγ
I JδqIδqJ

=
∫

Σ
d3x

[
− 1

18γ

(
qklπij − qijπkl)δqij ∧ δqkl +

(
Pij

kl +
1

9γ
qijqkl

)
δqij ∧ δπkl +

1
2
(0)ijklδπij ∧ δπkl

]
.

(15)

But qijδqij = 0, causing the δq ∧ δq term and the γ contribution to the δq ∧ δπ term of (15) vanish.
The quantity (0)ijkl in Equation (15) is basically to highlight the fact that that term, while zero is
nontrivially so. Rather than omit this term, we wanted to highlight the fact that it is a tensorial quantity
forming the coefficient of the δπ̄ ∧ δπ̄ two form. This facilitates the keeping track for the reader of
each individual term, of which there should be of the type including δq̄ ∧ δq̄ and δq̄ ∧ δπ̄. There is no
δπ ∧ δπ term since {qij, qkl} = 0. All explicit γ dependence in the symplectic form has disappeared,
so the γ → 0 limit can be safely taken, yielding
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limγ→0Ωγ =
∫

Σ
d3xPij

klδqij ∧ δπkl

=
∫

Σ
d3xδqij ∧ δπij − 1

3

∫
Σ

d3x(qijδqij) ∧ (qklδπkl) =
∫

Σ
d3xδqij ∧ δπij.

(16)

The vanishing of the 1
3 term is due to qijδqij = 0 or alternatively by the Leibniz rule for the

momentum term

(qijδqij) ∧ (qklδπkl) = δqij ∧ δ(qijqklπkl)− δqij ∧ δqij(qklπ
kl)− (qijδqij) ∧ (πklδqkl) = 0 (17)

due additionally to qijπ
ij = 0. This implies that the tracelessness of πij must be conjugate to the fact

that infinitesimal variations in qij are traceless. Hence (16) is the same as the barred contribution to (6),

with the difference that the tracelessness of πij has been implicitly enforced due to a unimodular
metric. This calculation demonstrates that extreme care must be exercised when extracting Poisson
brackets from a symplectic two form, particular when the index structure of the fundamental variables
has implicit symmetries. The requirement to implement the noncanonical Poisson brackets at the
quantum level will pose nontrivial issues, which we will address in the next few sections. Let us
display, for completeness, the fundamental Poisson brackets for the barred phase space

{qij(x), qkl(y)} = 0; {qij(x), πkl(y)} = Pij
kl(x, y); {πij(x), πkl(y)} = 1

3
(
qklπij − qijπkl)δ(3)(x, y). (18)

The basic Poisson brackets are noncanonical, which can be seen as the price to be paid for
choosing πij to be traceless at the classical level, or alternatively, the price for choosing unimodular
metric variables.

The original motivation was to obtain a symplectic form parametrized by γ and then to take the
limit as γ approaches zero. But as one can see from the above that the wedge products in the resulting
symplectic two form have coefficients proportional to γ−1, which in the limit as γ approaches zero
would be ill-defined. However, note form the arguments provided from Equation (15) through to
Equation (18), that the individual wedge products of the fundamental variables all vanish on account
of the unimodularity of the configuration space variable q̄ij and the tracelessness of the momentum p̄iij.
Hence the proper procedure is to leave γ arbitrary in the symplectic two form, which is immaterial
since all terms which depend on γ automatically vanish. The result is that the symplectic two form
reduces to δq̄ ∧ δπ̄ form as in Equation (17), whence γ is conspicuously absent. So the justification that
the parametrization of the Poisson matrix by the parameter does not affect the results of the symplectic
two form is that for all nonzero γ, we can transition from the Poisson matrix to the symplectic two
form by inversion as per the standard procedure, yielding a symplectic two form which is independent
of the parameter γ. It is the unique choice of unimodular and traceless variables, which makes this the
case, which admits a complete quantization of these variables.

3. A Prelude into the Quantum Theory

Having determined the Poisson brackets for the barred phase space, the next step is to implement
them at the quantum level. In proceeding to the quantum theory according to the Heisenberg–Dirac
prescription, we must promote all classical variables A, B to operators Â, B̂ and all Poisson brackets
to commutators {A, B} → 1

(ih̄) [Â, B̂]. So the fundamental Poisson brackets (18) yield the following
equal-time commutation relations

[qij(x, t), qkl(y, t)] = 0; [qij(x, t), π̂
kl
(y, t)] = ih̄Pij

kl(x, y); [π̂
ij
(x, t), π̂

kl
(y, t)] = ih̄

3
(
qklπ̂

ij − qijπ̂
kl)

δ(3)(x, y), (19)

where we have chosen an operator ordering with the momenta to the right. Since the momentum
components fail to commute, then we are restricted to wavefunctionals ψ[q̄] in the metric representation.
A representation of the classically traceless momentum as a vector field
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π̂
ij
(x)ψ[q] −→ h̄

i

[
Pij

kl
δ

δqkl
+

1
3
(
qijπkl − qklπij) δ

δπkl

]
ψ[q] =

h̄
i

Pij
kl(x)

δψ[q]
δqkl(x)

(20)

correctly reproduces the commutation relations (19) (The term of (20) from the πij, πkl commutation
relation does not contribute for wavefunctionals ψ[q] polarized in the metric representation.). However,
Equation (20) does not constitute a self-adjoint operator since

h̄
i

δ

δqkl(x)
Pij

kl(x) =
h̄
i

Pij
kl(x)

δ

δqkl(x)
− 2h̄

3i
qijδ(3)(0). (21)

So qijπ̂
ij
= 0 �= π̂

ij
qij, namely that the momentum in (20) is left-traceless, but is not right-traceless.

A self- adjoint operator can be constructed by averaging the left-traceless and right-traceless versions
1
2
(

δ
δqij

Pkl
ij + Pkl

ij
δ

δqij

)
. However, the resulting operator, while self-adjoint, is neither traceless from the

left nor from the right. So it appears that tracelessness is a property which is nontrivial to enforce at
the quantum level in the q̄ij, πij variables.

The quantity δ(3)(0) in Equation (21) is an ultraviolet singularity in field theory, which results from
evaluating the commutation relations at the same spatial point. It is a formal expression more rigorously
defined by a limiting procedure in the coincidence limit of the arguments x and y. It is necessary
to perform the commutation relations at the same spatial point in order to reorder the fundamental
operators in Equations (20) and (21), which are defined at the same spatial point, which is necessary in
order to evaluate self-adjointness. This operator ordering induced ambiguity, parametrized by δ(3)(0),
highlights that the variables in their present form, while solving the aforementioned problem of the
symplectic structure, are still not ideally suited for quantization. This will ultimately lead us to the
choice of the momentric π̄i

j, in lieu of the momentum variable π̄ij, which being self adjoint as we will

demonstrate in the remainder of this paper, will eliminate the presence of any such δ(3)(0) divergences
in the quantum theory.

4. Momentric Operators and the SU(3) Lie Algebra

Let us define a mixed-index version of the momentum, namely the momentric variables
Pi

j = qjmπim. We first compute the commutator of Pi
j with the barred metric. This is given by

[Pi
j(x), qkl(y)] = [qjm(x)πmi(x), qkl(y)] = qjm(x)[πmi(x), qkl(y)] = −ih̄qjmPmi

kl δ(3)(x, y) ≡ h̄
i Ei

j(kl)δ
(3)(x, y) (22)

where we have used (19), with the “superspace vielbein” defined as Ei
j(kl) =

1
2
(
δi

kqjl + δi
l qjk

)− 1
3 δi

jqkl .

So we will rather adopt the pair qij, Pi
j as the fundamental variables, and recompute the fundamental

relations (19) with respect to them.
For the commutators amongst the momentric components themselves the following identity

involving commutation relations regarding generic operators Â, B̂, Ĉ, D̂ will be useful

[ÂB̂, ĈD̂] = Â[B̂, Ĉ]D̂ + Ĉ[Â, D̂]B̂ + [Â, Ĉ]B̂D̂ + ĈÂ[B̂, D̂]. (23)

Note that the proper operator ordering has been preserved in (23). So we have the following,
suppressing the x-y dependence in the intermediate steps and suppressing the hats to avoid cluttering
up the notation,
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[Pi
j(x), Pk

l (y)] = [qjm(x)πim(x), qln(y)π
kn(y)]

= qjm[π
im, qln]π

kn + qln[qjm, πkn]πim + [qjm, qln]π
imπkn + qlnqjm[π

im, πkn]

=
h̄
i

[
qjmPim

ln πkn − qlnPkn
jmπim + 0 +

1
3

qlnqjm
(
qknπim − qimπkn)]δ(3)(x, y).

(24)

In the third line of Equation (24) we have used the fundamental equal time commutation
relations (19). For completeness, let us display some of the intermediate steps from Equation (24).
For the first term on the right hand side we have

qjmPim
ln πkn = qjm

(1
2
(
δi

lδ
m
n + δi

nδm
l
)− 1

3
qimqln

)
πkn =

1
2
(
δi

l P
k
j + qjlπ

ki)− 1
3

δi
jP

k
l . (25)

For the middle term we have

qlnPkn
jmπim = qln

(1
2
(
δk

j δn
m + δk

mδn
j
)− 1

3
qknqjm

)
πim =

1
2
(
δk

j Pi
l + qljπ

ik)− 1
3

δk
l Pi

j. (26)

For the last term on the right hand side of (24) we have

1
3

qlnqjm
(
qknπim − qimπkn) = 1

3
(
δk

l Pi
j − δi

jP
k
l
)
. (27)

Substitution of Equations (25)–(27) into Equation (24) yields the result that

[Pi
j(x), Pk

l (y)] =
h̄
i

[
1
2
(
δi

l P
k
j − δk

j Pi
l
)
+

2
3
(
δk

l Pi
j − δi

jP
k
l
)]

δ(3)(x, y). (28)

Note that the algebra closes (if not for the precise cancellation of terms of the form qjlπ
ki, this

would not be the case). While the algebra (28) closes on the momentric variables Pi
j, it does not enforce

the vanishing of the trace P = δ
j
i Pi

j. This can be seen by contraction of (28) with δi
j, wherein

[P(x), Pi
j(y)] = −2h̄

i
(

Pi
j −

1
3

δi
jP

)
δ(3)(x, y) ≡ 2ih̄πi

jδ
(3)(x, y), (29)

where πi
j denotes the traceless part of the momentric. Note that P = 0 in Equation (29) leads to a

contradiction, whereas the relation (22) implies [P, qij] = 0 due to tracelessless of Ei
j(kl).

Still, it is interesting in Equation (29) that the commutator of Pi
j with its trace yields it traceless

part πi
j. So let us evaluate the commutation relations involving the traceless part (suppressing the

coordinate dependence for simplicity)

[πi
j(x), πk

l (y)] =
[
Pi

j −
1
3

δi
jP, Pk

l −
1
3

δk
l P

]
= [Pi

j, Pk
l ]−

1
3

δk
l [P

i
j, P]− 1

3
δi

j[P, Pk
l ] +

1
9

δi
jδ

k
l [P, P]

=
ih̄
2
(
δi

l P
k
j − δk

j Pi
l
)
δ(3)(x, y)

(30)

where we have used (28) and (29). We can now make the substitution Pi
j = πi

j +
1
3 δi

jP, and the trace

part cancels out to yield [πi
j, πk

l ] =
ih̄
2
(
δi

lπ
k
j − δk

j πi
l
)
. The final result of our commutation relations (19),

in terms of the traceless momentric variables πi
j is given by

[qij(x), qkl(y)] = 0; [π̂
i
j(x), qkl(y)] =

h̄
i Ei

j(kl)δ
(3)(x, y); [π̂

i
j(x), π̂

k
l (y)] =

ih̄
2
(
δi

lπ
k
j − δk

j πi
l
)
δ(3)(x, y). (31)

Note that Equation (31) implies a representation of the momentric as a vector field
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P̂
i
j =

h̄
i

δ

δqkl
Ei

j(kl) =
h̄
i

Ei
j(kl)

δ

δqkl
+

h̄
i

[ δ

δqkl
, Ei

j(kl)

]
=

h̄
i

Ei
j(kl)

δ

δqkl
, (32)

which is both self-adjoint and left-right traceless, implements the commutation relations, and is

traceless in the sense that δ
j
i π̂

i
j = π̂

i
jδ

j
i = 0. There are a few things to note regarding (31). First, upon

contraction with δ
j
i , yields consistently that the trace δ

j
i π

i
j = 0 vanishes as well as its comutator with all

quantities. Secondly, the traceless momentric variables by themselves form a SU(3) current algebra,
and also generate an affine algebra with the metric, which unlike (19) preserves the positivity of the
metric qij. Thus, the fundamental variables qij, πi

j will be the prime choice for the quantum theory
which, at the kinematical level, will involve constructing unitary, irreducible representations of the
SU(3) Lie algebra. Also of note is that the the object Δ = π

j
iπ

i
j encodes to the quadratic Casimir of

SU(3), which by definition must commute with all traceless momentric components [Δ, πi
j] = 0.

The Gell–Mann matrices satisfy the relations

[λA, λB]
i
j = i f C

AB(λC)
i
j; {λA, λB}i

j = dABC(λC)
i
j (33)

with totally antisymmetric structure constants fABC, and totally symmetric dABC. We will exploit the
aforementioned index structure by projection of the momentric onto the Gell–Mann matrices

TA = (λA)
j
iπ

i
j −→ πi

j = 2TA(λA)
i
j, (34)

where we have used the SU(3) completeness relation (λA)i
j(λ

A)k
l = 1

2
(
δk

j δi
l − 1

3 δi
jδ

k
l
)
. The SU(3) Lie

algebra is of rank 2, and therefore has two Casimir operators, C(2) and C(3) given by

C(2) = (λA)
j
i(λA)

i
j = TATA; C(3) = dABC(λA)

i
j(λB)

j
k(λC)

k
i = εijkεmnlπ

m
i πn

j πl
k ∝ 6detπi

j. (35)

Note for C(3) that the pair of epsilon symbols is totally symmetric under interchange of any index
pair (i, m), (j, n), (k, l), which is consistent with the total symmetry of dABC.

5. The Classical Theory, Revisited

Having determined the ideal variables for quantization as the unimodular- traceless momentric
pair qij, πi

j, we will now re-evaluate the Poisson brackets of the theory. This provides a basis for
correlation of quantum predictions to the classical dynamics. First, the fundamental Poisson brackets
are given by

{qij(x), qkl(y)} = 0, {qij(x), πk
l (y)} = Ei

j(kl)δ
(3)(x, y); {πi

j(x), πk
l (y)} = 1

2
(
δi

lπ
k
j − δk

j πi
l
)
δ(3)(x, y). (36)

So the Poisson brackets between phase space functions A and B is given by

{A, B} =
∫

Σ
d3x

∫
Σ

d3y
[

δA
δqij(x)

{qij(x), qkl(y)}
δB

δqkl(y)
+

δA
δqij(x)

{qij(x), πk
l (y)}

δB
δπk

l (y)

+
δA

δπi
j(x)

{πi
j(x), qkl(y)}

δB
δqkl(y)

+
δA

δπi
j(x)

{πi
j(x), πk

l (y)}
δB

δπk
l (y)

]

=
∫

Σ
d3z

[
Ek

j(ij)

( δA
δqij

δB
δπk

l
− δB

δqij

δA
δπk

l

)
+

δA
δπi

j
πi

l
δB

δπ
j
l

− δA
δπi

j
πk

j
δB
δπk

i

]
.

(37)

In General relativity, we will be interested in the evolution of the basic variables with respect to T,
gauge-invariant part of intrinsic time lnq1/3, under the action of a physical Hamiltonian
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HPhys =
∫

Σ
d3xH̄(x) =

∫
Σ

d3x
√

π
j
iπ

i
j + V[qij], (38)

where V is a potential term which depends on the metric. The Hamilton’s equations for the basic
variables with respect to the Poisson brackets (37) are given by

δqij(x)

δT
= {qij(x), HPhys} =

1
H̄

Ek
l(ij)π

l
k;

δπi
j(x)

δT
= {πi

j(x), HPhys} =
1
H̄

[1
2

Ei
j(kl)

δV

δqkl
+ πi

lπ
l
j − πk

j πi
k

]
=

1
2H̄

Ei
j(kl)

δV

δqkl
.

(39)

As a quick consistency check, contraction of the first equation of (39) with qij and contraction of
the second equation with δ

j
i shows that if qij is unimodular and πi

j is traceless at time T0, then these
properties will be preserved under evolution in intrinsic time by the Hamilton’s equations.

6. Conclusions

The consistent quantization of 3+1 gravity is one of the biggest unsolved problems in theoretical
physics spanning the past 100 years of approaches which, while leading to insights into certain often
complementary aspects of the problem, have so far not provided a complete solution due to various
technical and conceptual difficulties and issues. The novelty of the author’s approach is the claim that with
ITQG, one has a complete and consistent quantization of gravity which provides a possible resolution to the
long-standing problem, while solving the difficulties inherent in all of the approaches so far, in one stroke.

For future work, we aim to follow the work of this paper with a similar work by focusing on
some 2+1 aspect of ITQG, with the aim of studying the thermodynamic aspects of the BTZ black hole.
Also, looking at the initial wave function, one difference from the case of 3+1 gravity seems to be the
observation that there is no Cotton-York tensor in two spatial dimensions. So we should expect just a Ricci
curvature-squared higher derivative rendition of the theory. This then will help us to be able to exploit the
SU(2) structure of the theory, which will go a long way towards learning about the physical Hilbert space.
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Abstract: We present a brief review of the teleparallel equivalent of general relativity and analyse
the expression for the centre of mass density of the gravitational field. This expression has not been
sufficiently discussed in the literature. One motivation for the present analysis is the investigation of
the localization of dark energy in the three-dimensional space, induced by a cosmological constant
in a simple Schwarzschild-de Sitter space-time. We also investigate the gravitational centre of mass
density in a particular model of dark matter, in the space-time of a point massive particle and in
an arbitrary space-time with axial symmetry. The results are plausible, and lead to the notion of
gravitational centre of mass (COM) distribution function.

Keywords: teleparallel gravity; gravitational centre of mass moment; dark energy; teleparallel
equivalent of general relativity
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1. Introduction

The most popular and acceptable approach to the relativistic theory of gravitation is given by
Einstein’s theory of general relativity. However, nowadays there are several alternative formulations
of theories for the gravitational field that attempt to explain the dark energy and dark matter problems,
which do not find satisfactory explanations within the framework of Einstein’s general relativity.
Moreover, concepts such as energy, momentum, angular momentum and centre of mass of the
gravitational field are usually defined only for asymptotically flat space-times, in the context of
a 3+1 type formulation. The latter are definitions for the total quantities, and suffer from at least two
restrictions: the definitions are valid only for asymptotically flat space-times, and there do not exist
localized expressions for the densities of the energy-momentum and 4-angular momentum of the
gravitational field. The ADM definition for the gravitational energy-momentum [1] is constructed
out of the metric tensor, and by means of the metric tensor it is not possible to construct suitable
scalar densities in the form of total divergences. The approach via pseudo-tensors is certainly not
satisfactory. The notions of energy-momentum and angular momentum of the gravitational field have
been extensively discussed in the literature, but not the concept of gravitational centre of mass.

The notion of centre of mass can be made clear in flat space-time. Any relativistic field theory
in flat space-time is expected to be covariant under the inhomogeneous Lorentz transformations,
or Poincaré transformations: the 4-rotations and space-time translations. The generators of these
transformations satisfy an algebra, the algebra of the Poincaré group. The generators of the 4-rotations
are composed by the generators of the ordinary 3 dimensional rotations, and by the generators of the
boosts. The latter are related to the centre of mass moment of the field. Energy, momentum and angular
momentum of the field constitute seven conserved integral quantities associated to the symmetries
of the theory. The integrals are carried out over the whole three-dimensional space. The three other
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integral quantities are associated to the centre of mass of the field, which sometimes is also called the
centre of energy [2].

In the notation of Ref. [2], the centre of mass integrals read

J0i = tPi −
∫

d3x xiT00 , (1)

where 0 and i are time and space indices, Pi is the i-th component of the momentum of the field, and
T00 is the energy component of the energy-momentum tensor of field. It is argued [2] that the J0i

components have no clear physical significance since J0i can be made to vanish if the coordinate system
is chosen to coincide with the “centre of energy” at t = 0. However, in the context of general relativity,
Dixon [3–5] developed a procedure for describing the dynamics of extended bodies in an arbitrary
gravitational field, and for this purpose a definition of the centre of mass of such bodies (considered as
quasi-rigid bodies) was proposed. A general relation between the centre of mass 4-velocity and the
energy-momentum of the body was obtained [6]. One is led to the concept of centre of mass world
line, whose uniqueness depends on the strength of the gravitational field [6].

In the standard metric formulation of general relativity, the centre of mass moment for the
gravitational field has been first considered by Regge and Teitelboim [7,8], and reconsidered by several
other authors (see References [9–12] and references therein). The centre of mass integral was obtained
in the context of the Hamiltonian formulation of general relativity. The idea was to require the variation
of the total Hamiltonian to be well defined in an asymptotically flat space-time, where the standard
asymptotic space-time translations and 4-rotations are considered as coordinate transformations at
spacelike infinity. This requirement leads to the addition of boundary (surface) terms to the primary
Hamiltonian, so that the latter has well defined functional derivatives, and therefore one may obtain
the field equations in the Hamiltonian framework (Hamilton’s equations) by means of a consistent
procedure. In this way, one arrives at the total energy, momentum, angular momentum and centre of
mass moment of the gravitational field, given by surface terms of the total Hamiltonian.

In this article we address the centre of mass moment of the gravitational field in the realm of
the teleparallel equivalent of general relativity (TEGR), which is an alternative and mathematically
consistent formulation of general relativity [13] (see also Reference [14], and chapters 5 and 6 of
Reference [15] and references therein). The geometrical structure of the TEGR was already considered
by Einstein [16,17] in his attempt to unify gravity and electromagnetism, and later on by Cho [18,19],
Hayashi and Shirafuji [20,21], Hehl et al. [22], Nitsch [23], Schweizer et al. [24], Nester [25] and
Wiesendanger [26]). In recent years the teleparallel geometrical structure has been used in modified
theories of gravity, with the purpose of constructing cosmological models that provide a consistent
explanation to the dark energy problem (see the review article [27] and references therein).

The TEGR is constructed out of the tetrad fields ea
μ, where a = {(0), (i)} and μ = {0, i} are

SO(3,1) and space-time indices, respectively. The extra six components of the tetrads (compared to
the 10 components of the metric tensor) yield additional geometric structure, that allows to define
field quantities that cannot be constructed in the ordinary metric formulation of the theory (such as
non-trivial total divergences, for instance). The tetrad fields allow to use concepts and definitions of
both Riemannian and Weitzenböck geometries.

The definitions of the gravitational energy, momentum, angular momentum and centre of mass
moment in the TEGR are not obtained according to the procedure described above, based on surface
integrals of the total Hamiltonian. In the TEGR we first consider the Hamiltonian formulation of the
theory [28,29]. The constraint equations of the theory (typically as C = 0) are equations that define the
energy-momentum and the 4-angular momentum of the gravitational field [13] (i.e., C = H − E = 0).
Moreover, the definitions of the energy-momentum and 4-angular momentum satisfy the algebra of
the Poincaré group in the phase space of theory [13,30]. However, the energy-momentum definition,
together with the gravitational energy-momentum tensor (but not the 4-angular momentum) may also
be obtained directly from the Lagrangian field equations [13].
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The gravitational centre of mass moment to be considered here yields the concept of gravitational
centre of mass (COM) distribution function. One purpose of the present article is to show that a
cosmological constant, which might be responsible for the dark energy, induces a very intense
(divergent) gravitational COM distribution function in the vicinity of the cosmological horizon
r = R � √

3/Λ in a simple Schwarzschild-de Sitter space-time, in agreement with the hypothetical
existence of dark energy. It seems that this result, obtained by means of tetrad fields, cannot be obtained
in the context of the metric formulation of general relativity.

In Section 2 we present a brief review of the TEGR, emphasizing a recent simplified definition
of the 4-angular momentum of the gravitational field, given by a total divergence. In Section 3 we
investigate the gravitational COM distribution function of (i) the space-time of a massive particle in
isotropic coordinates; (ii) the Schwarzschild-de Sitter space-time; (iii) a particular model of dark energy
that arises from the non-local formulation of general relativity; and (iv) of an arbitrary space-time with
axial symmetry. In the analysis of the first three cases above, which are spherically symmetric, we
arrive at interesting results, that share similarities with the standard expressions in classical mechanics.
For such space-times, the total centre of mass moment vanishes, as expected.

Notation: space-time indices μ, ν, ... and SO(3,1) (Lorentz) indices a, b, ... run from 0 to 3. The torsion
tensor is given by Taμν = ∂μeaν − ∂νeaμ. The flat space-time metric tensor raises and lowers tetrad
indices, and is fixed by ηab = eaμebνgμν = (−1,+1,+1,+1). The frame components are given by the
inverse tetrads {ea

μ}. The determinant of the tetrad fields is written as e = det(ea
μ).

It is important to note that we assume that the space-time geometry is determined by the tetrad
fields only, and thus the only possible non-trivial definition for the torsion tensor is given by Ta

μν.
This tensor is related to the antisymmetric part of the Weitzenböck connection Γλ

μν = eaλ∂μeaν, which
determines the Weitzenböck space-time and the distant parallelism of vector fields.

2. A Review of the Lagrangian and Hamiltonian Formulations of the TEGR

The TEGR is constructed out of the tetrad fields only. The first relevant consideration is an identity
between the scalar curvature and an invariant combination of quadratic terms in the torsion tensor,

eR(e) ≡ −e
(

1
4

TabcTabc +
1
2

TabcTbac − TaTa

)
+ 2∂μ(eTμ) , (2)

where Ta = Tb
ba and Tabc = eb

μec
νTaμν. The Lagrangian density for the gravitational field in the

TEGR is given by [31]

L(e) = −k e
(

1
4

TabcTabc +
1
2

TabcTbac − TaTa

)
− 1

c
LM

≡ −keΣabcTabc − 1
c

LM , (3)

where k = c3/(16πG), LM represents the Lagrangian density for the matter fields, and Σabc is
defined by

Σabc =
1
4

(
Tabc + Tbac − Tcab

)
+

1
2

(
ηacTb − ηabTc

)
. (4)

Thus, the Lagrangian density is geometrically equivalent to the scalar curvature density.
The variation of L(e) with respect to eaμ yields the fields equations

eaλebμ∂ν(eΣbλν)− e(Σbν
aTbνμ − 1

4
eaμTbcdΣbcd) =

1
4kc

eTaμ , (5)

where Taμ is defined by δLM/δeaμ = eTaμ.
The field equations are equivalent to Einstein’s equations. It is possible to verify by explicit

calculations that the equations above can be rewritten as
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1
2
[Raμ(e)− 1

2
eaμR(e)] =

1
4kc

Taμ , (6)

Since the Lagrangian density (3) does not contain the total divergence that arises on the right
hand side of Equation (2), it is not invariant under arbitrary local SO(3,1) transformations, but the field
Equation (5) are covariant under such transformations.

The equivalence between the TEGR and the standard metric formulation of general relativity is
based on the equivalence of Equations (5) and (6). However, in the TEGR there are additional field
quantities (like third order tensors) constructed by means of the tetrad fields, such as total divergences,
for instance, that cannot be obtained in the standard metric formulation. These additional field
quantities are covariant under the global Lorentz transformations, but not under local transformations.
In the ordinary formulation of arbitrary field theories, energy, momentum, angular momentum
and COM moment are frame dependent field quantities, that transform under the global SO(3,1)
transformations. In particular, energy transforms as the zero component of the energy-momentum
four-vector. This feature must hold also in the presence of the gravitational field. As an example,
consider the total energy of a black hole, represented by the mass parameter m. As seen by a distant
observer, the total energy of a static Schwarzschild black hole is given by E = mc2. However, at
great distances the black hole may be considered as a particle of mass m, and if it moves with
constant velocity v, then its total energy as seen by the same distant observer is E = γmc2, where
γ = (1 − v2/c2)−1/2. Likewise, the gravitational momentum, angular momentum and the COM
moment are also frame dependent field quantities in general, whose values are different for different
frames and different observers. On physical grounds, energy, momentum, angular momentum and
COM moment cannot be local Lorentz invariant field quantities, since these quantities depend on the
frame, as we know from special relativity, which is the limit of the general theory of relativity when
the gravitational field is weak or negligible.

After some rearrangements, Equation (5) may be written in the form [13]

∂ν(eΣaμν) =
1
4k

eea
ν(tμν +

1
c

Tμν) , (7)

where
tμν = k(4ΣbcμTbc

ν − gμνΣbcdTbcd) , (8)

is interpreted as the gravitational energy-momentum tensor [13,32] and Tμν = ea
μTaν.

The Hamiltonian density of the TEGR is constructed as usual in the phase space of the theory.
We first note that the Lagrangian density (3) does not depend on the time derivatives of ea0.
Therefore, the latter arise as Lagrange multipliers in the Hamiltonian density H. The momenta
canonically conjugated to ea0 are denoted by Πa0. The latter are primary constraints of the theory:
Πa0 ≈ 0. The momenta canonically conjugated to eai are given by Πai = δL/δėai = −4kΣa0i.
The Hamiltonian density is obtained by rewriting the Lagrangian density in the form L = Πai ėai − H,
in terms of eai, Πai and Lagrange multipliers. After the Legendre transform is performed, we obtain
the final form of the Hamiltonian density. It reads [29,30]

H(e, Π) = ea0Ca + λabΓab. (9)

where λab are Lagrange multipliers. In the above equation we have omitted a surface term.
Ca = δH/δea0 is a long expression of the field variables, and Γab = −Γba are defined by

Γab = 2Π[ab] + 4ke(Σa0b − Σb0a) . (10)

After solving the field equations, the Lagrange multipliers are identified as λab = (1/4)
(Ta0b − Tb0a + ea

0T00b − eb
0T00a). The constraints Ca may be written as
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Ca = −∂iΠai − pa = 0 , (11)

where pa is an intricate expression of the field quantities.
The quantities Ca and Γab are first class constraints. They satisfy an algebra similar to the algebra

of the Poincaré group [29]. The integral form of the constraint equations Ca = 0 yields the gravitational
energy-momentum Pa [13],

Pa = −
∫

V
d3x ∂iΠai , (12)

where V is an arbitrary volume of the three-dimensional space and Πai = −4kΣa0i. In similarity to the
definition above, the definition of the gravitational 4-angular momentum follows from the constraint
equations Γab = 0 [30]. However, it has been noted [33] that the second term on the right hand side of
Equation (10) can be rewritten as a total divergence, so that the constraints Γab become

Γab = 2Π[ab] − 2k∂i[e(eaieb0 − ebiea0)] = 0 . (13)

Therefore, the definition of the total 4-angular momentum of the gravitational field Lab may be
given by an integral of a total divergence, in similarity to Equation (12). We have

Lab = −
∫

V
d3x 2Π[ab] , (14)

where
2Π[ab] = (Πab − Πba) = 2k∂i[e(eaieb0 − ebiea0)] . (15)

It is easy to show [30] that expressions (12) and (14) satisfy the algebra of the Poincaré group in
the phase space of the theory,

{Pa, Pb} = 0 ,

{Pa, Lbc} = ηabPc − ηacPb ,

{Lab, Lcd} = ηadLcb + ηbdLac − ηacLdb − ηbcLad . (16)

Therefore, from a physical point of view, the interpretation of the quantities Pa and Lab

is consistent.
Definitions (12) and (14) are invariant under coordinate transformations of the three-dimensional,

under time reparametrizations, and under global SO(3,1) transformations. The gravitational energy is
the zero component of the energy-momentum four vector Pa.

3. The Centre of Mass Moment

The gravitational centre of mass (COM) moment is given by the components

L(0)(i) = −
∫

d3x M(0)(i) , (17)

where
M(0)(i) = 2Π[(0)(i)] = 2k∂j[e(e(0)je(i)0 − e(i)je(0)0)] , (18)

according to definition (15). The quantity −M(0)(i) is identified as the gravitational COM density.
The evaluation of the expression above is very simple. One needs just to establish the suitable set of
tetrad fields that define a frame in space-time.

The inverse tetrads ea
μ are interpreted as a frame adapted to a particular class of observers in

space-time. Let the curve xμ(τ) represent the timelike worldline C of an observer in space-time, where
τ is the proper time of the observer. The velocity of the observer along C is given by uμ = dxμ/dτ.
A frame adapted to this observer is constructed by identifying the timelike component of the frame
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e(0) μ with the velocity uμ of the observer: e(0) μ = uμ(τ). The three other components of the frame,
e(i) μ, are orthogonal to e(0) μ, and may be oriented in the three-dimensional space according to the
symmetry of the physical system. If the space-time has axial symmetry, for instance, then the e(3) μ

components of the tetrad fields are chosen to be oriented, asymptotically, along the z axis of the
coordinate system, i.e., e(3) μ(t, x, y, z) � (0, 0, 0, 1) in the limit r → ∞. A static observer in space-time
is defined by the condition uμ = (u0, 0, 0, 0). Thus, a frame adapted to a static observer in space-time
must satisfy the conditions e(0) i(t, xk) = (0, 0, 0).

An alternative way to characterise a frame in space-time is by means of the acceleration tensor
φab [34–38],

φab =
1
2
[T(0)ab + Ta(0)b − Tb(0)a] . (19)

This tensor is invariant under coordinate transformations and covariant under global SO(3,1)
transformations, but not under local SO(3,1) transformations. It yields the inertial (i.e., the
non-gravitational) accelerations that are necessary to impart to a frame in space-time in order
to maintain the frame in a given inertial state. Three components of φab yield the translational
accelerations, and three other components yield the frequency of rotation of the frame. Altogether,
these six components cancel the gravitational acceleration, so that the frame is kept in a particular
inertial state.

In the following, we will evaluate the density of the centre of mass moment of four space-time
configurations that exhibit spherical symmetry. In the four cases we will establish the frame of a static
observer in space-time.

3.1. The Space-Time of a Massive Point Particle

The Schwarzschild solution in isotropic coordinates represents the space-time of a point
massive particle [39,40]. It is obtained as an exact solution of Einstein’s equations by writing the
energy-momentum tensor in terms of a δ function of a point particle of mass M, with support at the
origin of the coordinate system. The solution is described by the line element

ds2 = −α2c2dt2 + β2[dr2 + r2(dθ2 + sin2 θ dφ2)] , (20)

where

α2 =

(
1 − m

2r
1 + m

2r

)2

, β2 =

(
1 +

m
2r

)4

. (21)

The parameter m = GM/c2 represents the mass of the point particle that appears in the
energy-momentum tensor. The line element above is clearly a solution of Equation (6), with the
appropriate energy-momentum tensor Taμ described in Reference [40].

By performing a coordinate transformation to (x, y, z) coordinates where

x = r sin θ cos φ ,

y = r sin θ sin φ ,

z = r cos θ , (22)

the line element becomes
ds2 = −α2 c2dt2 + β2(dx2 + dy2 + dz2) . (23)

The tetrad fields adapted to static observers is given by

eaμ(t, x, y, z) =

⎛
⎜⎜⎜⎝

−α 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

⎞
⎟⎟⎟⎠ . (24)
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Taking into account Equation (18), straightforward calculations yield M(0)(1) = 2k ∂1β2,
M(0)(2) = 2k ∂2β2 and M(0)(3) = 2k ∂3β2. It is easy to obtain

−M(0)(1) = dg x ,

−M(0)(2) = dg y ,

−M(0)(3) = dg z . (25)

The quantity dg is defined by

dg =
4 k m

r3

(
1 +

m
2r

)3

. (26)

Therefore,

L(0)(1) =
∫

d3x dgx ,

L(0)(2) =
∫

d3x dgy ,

L(0)(3) =
∫

d3x dgz , (27)

where d3x = dx dy dz and r2 = x2 + y2 + z2. The expressions above remind the definition of centre of
mass in classical mechanics. Given that M(0)(i) = 2k ∂iβ

2, it is easy to see that all integrals given by
Equation (17) vanish, namely, all components of the total centre of mass moment vanish. However,
the field quantity (26) has the following properties:

r → ∞ : dg → 0 ,

r → 0 : dg → ∞ . (28)

Thus, dg is more intense in the vicinity of the particle, and vanishes at spatial infinity. In view of
Equations (27) and (28), dg may be interpreted as the gravitational COM distribution function. It is
clearly related to the intensity of the gravitational field. The analyses of the space-time configurations
below support this interpretation, as we will see.

3.2. The Schwarzschild-de Sitter Space-Time

The line element of the Schwarzschild-de Sitter space-time is given by

ds2 = −α2 dt2 +
1
α2 dr2 + r2dθ2 + r2 sin2 θdφ2 , (29)

where

α2 = 1 − 2m
r

− r2

R2 , (30)

R =
√

3/Λ and Λ is the cosmological constant. Here we are considering the speed of light c = 1.
The Schwarzschild-de Sitter space-time has been considered in the TEGR in Reference [41]. The set of
tetrad fields adapted to stationary observers in space-time is given by

eaμ =

⎛
⎜⎜⎜⎝

−α 0 0 0
0 α−1 sin θ cos φ r cos θ cos φ −r sin θ sin φ

0 α−1 sin θ sin φ r cos θ sin φ r sin θ cos φ

0 α−1 cos θ −r sin θ 0

⎞
⎟⎟⎟⎠ . (31)
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After long but simple calculations we find that the components of Equation (18) read

−M(0)(1) = 4k sin θ

(
1
α
− 1

)
r sin θ cos φ ,

−M(0)(2) = 4k sin θ

(
1
α
− 1

)
r sin θ sin φ ,

−M(0)(3) = 4k sin θ

(
1
α
− 1

)
r cos θ . (32)

We identify x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ as usual, and write Equation (17) as

L(0)(1) =
∫

d3x 4k sin θ

(
1
α
− 1

)
x ,

L(0)(2) =
∫

d3x 4k sin θ

(
1
α
− 1

)
y ,

L(0)(3) =
∫

d3x 4k sin θ

(
1
α
− 1

)
z , (33)

where d3x = dr dθ dφ. Integration in the angular variables implies the vanishing of the three integrals
L(0)(i), i.e., the total centre of mass vanishes, as expected. The equations above may be written exactly
as Equation (27) provided we identify

dg = 4k sin θ

(
1
α
− 1

)
≡ 4k sin θ f (r) . (34)

The analysis of the expression above leads to interesting results. Let r1 and r2 denote the two
horizons of the Schwarzschild-de Sitter space-time, α(r1) = 0 and α(r2) = 0, so that r1 < r2. The radius
r1 is close to the Schwarzschild radius, r1 ≈ 2m

r , and r2 ≈ R. We have

r → r1 : f (r) → ∞ ,

r → r2 : f (r) → ∞ . (35)

The function f (r) is defined by Equation (34). The minimum of f (r) is given by

d f
dr

= − 1
α2

dα

dr
= 0 ,

and takes place at rmin = (mR2)1/3. Thus, dg is intense close to both r1 and r2, i.e., close to the
Schwarzschild and cosmological horizons.

The radial position rmin is related to the inertial accelerations of an observer. In order to understand
this feature, we evaluate the translational (non-gravitational) accelerations of a frame given by
Equation (19). We find

φ(0)(1) =
dα

dr
sin θ cos φ ,

φ(0)(2) =
dα

dr
sin θ sin φ ,

φ(0)(3) =
dα

dr
cos θ . (36)

We define the inertial acceleration vector Φ as

Φ(r) = (φ(0)(1), φ(0)(2), φ(0)(3)) ≡ φ(r)r̂ =
dα

dr
r̂ , (37)
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where r̂ = (sin θ cos φ, sin θ sin φ, cos θ). Since

dα

dr
=

1
α

(
m
r2 − r

R2

)
,

we see that

r1 < r < rmin :
dα

dr
> 0 → φ(r) > 0 ,

rmin < r < r2 :
dα

dr
< 0 → φ(r) < 0 . (38)

Thus, given that the inertial acceleration φ(r) > 0 is repulsive in the region r1 < r < rmin,
the gravitational acceleration is attractive in this interval, as expected. By means of a similar argument,
we see that the gravitational acceleration is repulsive in the region rmin < r < r2, as expected.

In view of the analysis above, we may interpret dg given by Equation (34) as the gravitational
COM distribution function, in similarity to Equation (26), and therefore one may understand the
gravitational repulsion as attraction to a region of intense gravitational COM distribution function,
which, in the present case, is the region in the vicinity of the cosmological horizon. If dark energy is
indeed related to the existence of a cosmological constant, then it is natural that it is concentrated close
to the radius r2 ≈ R =

√
3/Λ in the context of a simple Schwarzschild-de Sitter model.

The function dg plays the role of a gravitational COM density. However, mathematically it is not a
density. The integrands in Equations (27) and (33) are in fact densities, but not dg alone. In Newtonian
mechanics, dg in Equations (27) and (33) plays the role of mass density.

3.3. Dark Matter Simulated by Non-Local Gravity

A non-local formulation of general relativity, based on a geometrical framework similar to the one
established by Equations (2)–(4) has been developed by Hehl, Mashhoon and collaborators [42–44].
One interesting consequence of this development is an extension of Newtonian gravity that may play
a relevant role in the dynamics of galaxies, and might provide an explanation that is expected to come
from dark matter models of gravity. We restrict the considerations to a simplified space-time with
spherical symmetry, so that Equations (29), (31), (33) and (34) remain valid.

The Newtonian approximation is established by

α2 = −g00 � 1 +
2Φg

c2 , (39)

where Φg is the Newtonian potential, and 2Φg/c2 << 1.
It follows that

f (r) =
1
α
− 1 � −Φg

c2 . (40)

The Newtonian potential that arises in the non-local formulation of gravity is given by [43,44]

Φg � −GM
r

+
GM

λ
ln
(

r
λ

)
, (41)

where λ is a constant length, and is taken to be λ ≈ 1kpc = 3260 light-years. Consequently,
the influence of the second term on the right hand side of Equation (41) in the solar system is negligible.
Therefore, we find

f (r) =
1
α
− 1 � m

r
− m

λ
ln
(

r
λ

)
. (42)

In the expression above, m = GM/c2. For values of r within a galaxy, r < λ and thus
−(m/λ) ln(r/λ) is positive, and decreases as 1/r with increasing values of r, a result that shows
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that the gravitational field is sufficiently intense at the borders of a galaxy to explain the rotation curves
of spiral galaxies. The function dg = 4k sin θ f (r) may again be understood as the gravitational COM
distribution function of the spherically symmetric space-time.

3.4. Arbitrary Space-Time with Axial Symmetry

The analysis of a space-time that is not spherically symmetric allows to obtain the generalization
of Equations (27) and (33). Let us consider an arbitrary space-time with axial symmetry. It is described
by following line element,

ds2 = g00dt2 + g11dr2 + g22dθ2 + g33dφ2 + 2g03dφ dt , (43)

where all metric components depend on r and θ, but not on φ : gμν = gμν(r, θ). The determinant
e =

√−g is e = [g11g22 δ]1/2, where
δ = g03g03 − g00g33 .

The inverse metric components are g00 = −g33/δ, g03 = g03/δ and g33 = −g00/δ.
The set of tetrad fields in spherical coordinates that is adapted to static observers in space-time is

given by

eaμ =

⎛
⎜⎜⎜⎝

−A 0 0 −C
0

√
g11 sin θ cos φ

√
g22 cos θ cos φ −D r sin θ sin φ

0
√

g11 sin θ sin φ
√

g22 cos θ sin φ D r sin θ cos φ

0
√

g11 cos θ −√
g22 sin θ 0

⎞
⎟⎟⎟⎠ . (44)

The functions A, C and D are defined such that Equation (44) yields (43). They read

A(r, θ) = (−g00)
1/2 ,

C(r, θ) = − g03

(−g00)1/2 ,

D(r, θ) =
1

(r sin θ)

[
δ

(−g00)

]1/2

. (45)

After simple calculations, we find that Equations (17) and (18) yield

L(0)(1) =
∫

d3x dg1 (r sin θ cos φ) ,

L(0)(2) =
∫

d3x dg2 (r sin θ cos φ) ,

L(0)(3) =
∫

d3x dg3 (r cos θ) , (46)

where now we have

dg1 = dg2 = 2k
{
−1

r
∂1

[
g22δ

(−g00)

]1/2

− 1
r sin θ

∂2

[(
g11δ

(−g00)

)1/2

cos θ

]

+
1

r sin θ
(g11g22)

1/2
}

,

dg3 = 2k
{
−1

r
∂1

[
g22δ

(−g00)

]1/2

+
1

r cos θ
∂2

[(
g11δ

(−g00)

)1/2

sin θ

]}
. (47)

In the flat space-time, the quantities above vanish. It is not difficult to see that if the metric tensor
components above represent the exterior gravitational field of a typical rotating source, the expressions
above are not divergent. Note that L(0)(1) and L(0)(2) vanish due to integration in φ, as a consequence
of the axial symmetry, but L(0)(3) is non-vanishing in general.
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In the equations above we obtain dg1 = dg2 because of the axial symmetry of the space-time.
We see that, in general, we may have three different COM distribution functions, one for each direction
in the three-dimensional space, in contrast to the situation in classical mechanics, where there is a
single mass density in the definition of centre of mass.

4. Conclusions

In this article we have investigated the definition of centre of mass of the gravitational field, in the
realm of the teleparallel equivalent of general relativity. The analysis of the gravitational centre of mass
density leads to the concept of COM distribution function. We may understand the latter as a quantity
that provides a description of the intensity of the gravitational field in space-time. The emergence
of this quantity justifies the analysis of the centre of mass density of arbitrary configurations of the
gravitational field, including gravitational wave configurations. We have applied this definition to
the space-time endowed with a positive cosmological constant. At the speculative level, dark energy
might be a consequence of the existence of a positive cosmological constant that induces a strong
gravitational acceleration very far from our present location in the universe. In the simple model
established by the Schwarzschild-de Sitter space-time, dark energy is roughly located in the region
beyond r = rmin = (mR2)1/3, according to Equation (38).

The centre of mass moment naturally arises in the Hamiltonian formulation of the teleparallel
equivalent of general relativity, and its definition is obtained from the primary constraints of the
theory—Equation (13). It is given by Equations (17) and (18). The analysis led us to interpret the
quantity dg in the integrand of Equations (27), (33) and (46) as the gravitational COM distribution
function. Although dg plays the role of a density, mathematically it is not a density. It vanishes when
the gravitational field is turned off. The expressions of L(0)(i) given by Equations (27) and (33) do
remind the standard expression of centre of mass in classical mechanics. The distribution function dg

in the three-dimensional space is related to the intensity of the gravitational field. In the space-time of
a point massive particle, dg is intense (and in fact diverges) in the vicinity of the particle, and in the
Schwarzschild-de Sitter space-time dg is positive definite and diverges at both the Schwarzschild and
cosmological horizons, which are precisely the regions where the gravitational field is more intense.

In relativistic field theory or in the Newtonian approximation of general relativity, energy,
momentum and angular momentum are frame dependent field quantities, and so they are, in general,
in the present context. In particular, the gravitational COM moment is evaluated in the frame adapted
to an arbitrary observer in space-time. The gravitational centre of mass given by Equations (17)
and (18) is invariant under coordinate transformations of the three-dimensional space, and under
time reparametrizations. It transforms covariantly under global SO(3,1) transformations, provided
the tetrad fields transform as ẽa

μ = Λa
beb

μ, where Λa
b are matrices of the SO(3,1) group. However,

definition (17) is not covariant under local SO(3,1) transformations. In relativistic field theory, the COM
definition is also not covariant under local SO(3,1) transformations.

We conclude that repulsion, in the Schwarzschild-de Sitter space-time, is in fact attraction
to a region of intense gravitational COM distribution function. We have seen that in the region
r < rmin = (mR2)1/3 the gravitational acceleration is attractive, and is repulsive in the dark energy
region r > rmin. We expect the present analysis to be useful in the investigation of realistic cosmological
models endowed with a positive cosmological constant.
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Abstract: We consider a parametrized torsion gravity model for Riemann–Cartan geometry around a
rotating axisymmetric massive body. In this model, the source of torsion is given by a circulating
vector potential following the celestial parallels around the rotating object. Ours is a variant of the
Mao, Tegmark, Guth and Cabi (MTGC model) in which the total angular momentum is proposed as
a source of torsion. We study the motion of bodies around the rotating object in terms of autoparallel
trajectories and determine the leading perturbations of the orbital elements by using standard
celestial mechanics techniques. We find that this torsion model implies new gravitational physical
consequences in the Solar system and, in particular, secular variations of the semi-major axis of
the planetary orbits. Perturbations on the longitude of the ascending node and the perihelion of
the planets are already under discussion in the astronomical community, and if confirmed as truly
non-zero effects at a statistically significant level, we might be at the dawn of an era of torsion
phenomenology in the Solar system.

Keywords: Solar system anomalies; Riemann–Cartan spacetime; gravitation models; autoparallel
curves; geodesic curves

1. Introduction

After one hundred years since its proposal [1], gravitation is still understood in terms of the
theory of general relativity (GR). This theory is considered as the pinnacle of classical physics, and the
status of its agreement with experiments is very good, although the progress in its verification has been
painfully slow [2] due to the weakness of the gravitational interaction and the technical difficulties
in measuring/observing its predicted effects due to their smallness [3–6]. In the last few years, an
important advance has been achieved with the confirmation of the geodetic and the frame-dragging
effects upon a gyroscope mounted on an artificial satellite orbiting the Earth. This is known as the
Gravity Probe B experiment [7]. With this outstanding result, most of the major deviations from
Newtonian gravity, as predicted by GR in the Solar system, are already experimentally checked. Efforts
to test a few other ones, such as the Lense–Thirring [8–12] and the post-Newtonian quadrupolar orbital
precessions [13,14], are ongoing. Moreover, the discovery of exoplanets orbiting other stars provides an
opportunity to obtain additional substantiation of GR [15–17]. In particular, some authors have claimed
that the relativistic precession of periastra in exoplanets could be detectable in the near future [18,19].
Zhao and Xie have also studied the influence of parametrized post-Newtonian dynamics in their
transit times and the possibility of testing GR to a 6% level [20]. Even testing a putative fifth-force
have also been considered [21]. The hot exoplanet WASP-33b also constitutes an excellent natural
laboratory for GR [22], because the predicted Lense–Thirring node precession is 3.25 × 105 larger than
that of Mercury [23], and this is only one order of magnitude below the measurability threshold for
these systems.
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On the other hand, since the development of GR in its standard form, there have been many
attempts to propose modified theories of gravity capable of predicting new testable phenomena. From
the 1920s to the 1950s, the main drive of this research was to find a way of unifying gravitation
and electromagnetism, although this objective was slowly being abandoned, except for Einstein
himself and his collaborators [24]. Many of these theories were characterized by including a nonzero
torsion tensor field, as well as the curvature tensor of standard Riemannian geometry. Extended
geometries including both curvature and torsion have been used in physics since the early work of
Einstein and Cartan [24]. The resulting Einstein–Cartan theory, much later improved by Sciama [25]
and Kibble [26], is still considered a viable alternative to standard GR. In fact, it is still actively
investigated as attested from the papers, conferences and even books published on this topic [27–29].
The Einstein–Cartan–Sciama–Kibble theory (ECSK) has also an interesting structure, as it can be
consistently described as a gauge theory of the Poincaré group [30]. This way, it was put in
correspondence with the very successful gauge theory approach to other interactions.

As beautiful as it could be, ECSK theory has not received any experimental support yet. This is
not sufficient to dismiss any gravitation theory beforehand, because, as has happened with GR, the
experiments are very difficult to design and carry out. Net spin densities are very small in most
substances, as alignment of individual atomic spins is random, but it can be large in some elements,
such as helium three (3He) or dysprosium-iron compounds (Dy6Fe23). Ni has suggested to use these
elements to build gyroscopes capable of testing PGtheory [31]. Apart from small spin densities, there
is also the peculiarity that ECSK predicts null torsion outside macroscopic bodies. The reason for
that behavior is that the field equation for torsion relates it linearly with spin density. Consequently,
in a vacuum, where spin densities are null, torsion is also zero. Another important application of
ECSK theory has been recently found by Popławski, who showed that torsion in the early Universe
generates repulsion, and this could solve the flatness and horizon problems without resorting to an ad
hoc inflation scenario [32,33]. A class of Poincaré gauge theories with extended Lagrangians quadratic
in curvature and torsion have also been studied in the last few decades. These theories follow closely
the analogy of the gauge paradigms of Weyl and Yang–Mills and, in some cases, predict a propagating
torsion [34].

However, exploring alternative theories and models to standard PG is still both viable and timely.
Theories in which torsion propagates outside macroscopic bodies can also be developed consistently [35].
As early as 1979, Hojman et al. proposed a model in which torsion is connected with a massless scalar
field [36,37]. In this theory, torsion propagates in a vacuum, and torsion waves can be generated by
sources with variable spin. At the same time, Hayashi and Shirafuji discussed an alternative to GR in
which they revived the notion of Einstein’s teleparallelism [38]. In the Hayashi–Shirafuji theory the
fundamental entities are the tetrads instead of the metric, and the action is varied with respect to them
to obtain the field equations. Interestingly, Hayashi and Shirafuji found a static spherically-symmetric
vacuum solution in Weitzenböck spacetime (characterized by a null curvature tensor and a nonzero
torsion [39,40]), which replaces the Schwarzschild solution in standard GR. The so-called new general
relativity agrees with the classical tests for light bending, the anomalous advance of the perihelion of
Mercury and Shapiro’s delay of radar signals [38]. However, this theory fails to predict the geodetic
and frame-dragging effects already checked in the Gravity Probe B experiment [7,41].

In 2007, Mao, Tegmark, Guth and Cabi proposed a phenomenological parametrized model for
torsion in the Solar system (MTGC model). In this model, the source of torsion is assumed to be the
rotational angular momentum of the planets and the Sun [41]. This is not the case in standard PG
theory in which only the microscopic spin of elementary particles can generate torsion. The MTGC
model does not depend on any specific theoretical framework, as the authors deduce the form of
the torsion tensor from symmetry principles as the invariance under rotation, the antisymmetry of
the torsion tensor in its covariant indices and the behavior of the angular momentum vector under
parity transformations [41]. By using autoparallel or extreme schemes for the spin four vector Sμ or
spin fourth tensor Sμν, these authors calculate extra contributions to the geodetic and frame-dragging

416



Universe 2015, 1, 422–455

precessions of a gyroscope’s spin orbiting around the Earth. They claim that a refined version of
Gravity Probe B experiment could be used to determine the values of some combinations of the seven
constant parameters used to parametrize torsion. For the time being, error bars in the GPBexperiment
are so large that we can only give some estimates on the bounds of the torsion parameters, but
compatibility with standard GR is still not excluded by observations. Applying the planetary equations
of Lagrange in the Gauss form, March et al. calculated the secular variations of the orbital elements
for the planets and the Earth’s geodynamics satellites [42,43]. In particular, they have found extra
precessions rates for the longitude of the ascending node, i.e., an anomalous Lense–Thirring effect, and
also a contribution to the precession of the perihelion. Unfortunately, the precision in the determination
of the Lense–Thirring effect or the perihelion precession, even for the highly-accurate measurements of
the geodynamics satellites, such as LAGEOS, is still not sufficient to evince an irrefutable discrepancy
with the predictions of standard GR. It is hoped that the newly-launched LARES [44] satellite may
yield an improvement in the accuracy of the ongoing and forthcoming tests of fundamental physics,
although also, such a possibility is currently debated [45–48]. Although the authors of these works
have given some bounds on the values of the torsion parameters, based on the known error bars from
the most recent ephemerides, it is still premature to draw any firm conclusion on the need of modified
theories of gravity to explain the data.

The approaches of Mao et al. [41] and the subsequent spin-off applications by March et al. [42,43]
have been heavily criticized by advocates of the PG theory. Hehl et al. have argued the following [49,50]:
(i) Postulating that structureless test bodies follow autoparallel trajectories is incorrect in a general
relativistic setup. In standard torsion theories test, bodies follow extremal trajectories, as is also the case
in GR. The extremal trajectory is derived from the field equations themselves, and this is a theoretical
feature of general relativity that should be preserved in any future theory. (ii) The net orbital angular
momentum is not an integral over a local density, and consequently, it cannot be the source of torsion
in a local field theory of gravity. Concerning the first objection, Kleinert and Pelster argued that in
a spacetime with torsion, we must notice that parallelograms are, in general, not closed [51], the
closure failure being proportional to the torsion tensor. This implies that the variational principle
for finding the extrema of the action must take into account that the variation at the final point is
nonzero as a consequence of the closure failure [52]. Using this modified variational principle, Kleinert
and Pelster found that the equation of motion of structureless test bodies is given by autoparallel
trajectories instead of extremal trajectories [51]. Bel has also shown that an analogy can be established
among geodesics in Riemannian spacetime and autoparallels of a Weitzenböck connection [40]. In the
absence of torsion extremal and autoparallel trajectories coincides as happens in standard GR. Hehl
and Obukhov criticized this approach, because the autoparallel trajectories were not derived from
the energy-momentum conservation laws, as is done in the GR and PG theories [50]. However, the
closure failure also implies that the energy-momentum tensor of spinless point particles satisfies a
different conservation law, as shown by Kleinert [53]. The second objection is, however, lethal to the
MTGC model and its consequences. Any consistent theory of gravity must admit only local quantities
or quantities obtained as the integration of local densities as sources of the tensor fields.

For these reasons, we investigate in this paper an alternative source for torsion around a rotating
sphere. In our model, torsion is related to an axial vector field following the celestial parallels,
A(r, θ, φ) = A(r, θ, φ)φ̂. This field structure could be obtained from the solution of a local Laplacian
equation relating the vector potential with the energy-momentum flux of the rotating body in analogy
to the corresponding equation for the magnetic field around a charged rotating sphere. All quantities
in this model are local, and the non-locality induced by considering the total angular momentum as the
source of torsion is removed. We study the secular evolution of the orbital elements for a test particle
orbiting around a rotating central body. Some new effects unknown in GR are found: (i) a secular
variation of the semi-major axis of the orbit; and (ii) a secular variation of the orbital eccentricity. As the
increase of the astronomical unit is currently being discussed and no conventional explanation has still
been found, our model could provide such an explanation, and moreover, we can give estimations
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on the torsion parameters from the preliminary data on these anomalies [54–56]. If these anomalies
are confirmed, torsion fields generated by a circulating potential vector around rotating bodies could
provide a parsimonious explanation of these phenomena, and they would stimulate further research
in torsion gravity.

The structure of the paper is as follows: In Section 2, we provide a brief review on Riemann–Cartan
spacetime as a quick reference for the rest of the paper. Our proposal for the torsion around spherical
rotating bodies is discussed in Section 3 by following the symmetry arguments of Mao et al. [41];
autoparallel trajectories and orbital equations for perturbation theory are derived in Section 4. Results
for the secular variation of the elements and comparison with Solar system anomalies are used in
Section 5 to estimate the torsion parameters of our model. The discussion and conclusions are given in
Section 6. Appendix A A is also included, in which the relation among the perturbing forces in the
Sun’s and the orbital system of reference is derived.

2. The Torsion and Contortion Tensors in Riemann–Cartan Spacetime

In this section, we remind about the main definitions and relations among tensors and the affine
connection in Riemann–Cartan spacetime [57]. This spacetime is characterized by a non-zero curvature
tensor and a torsion tensor defined as follows:

Sjk
i =

1
2

(
Γi

jk − Γi
kj

)
. (1)

Therefore, a nonvanishing torsion implies that the affine connection is not symmetrical in the two
lower indices in contrast with the postulates of ordinary Riemannian geometry. Christoffel’s symbols
are defined in terms of the metric tensor by the same expression found in Riemannian geometry.
However, as we will find below, they do not coincide with the affine connection. Therefore, we have
for Christoffel’s symbols: {

i
jk

}
=

1
2

gil
(

glk,j + gjl,k − gjk,l

)
, (2)

where the commas denote, as usual, ordinary derivatives with respect to the coordinates. However,
covariant and contravariant derivatives of a vector field must be defined in terms of the affine
connection by the following relations:

Ai|j = Ai,j − AkΓk
ji , (3)

Ai
|j = Ai

,j + AkΓi
jk . (4)

The metric condition is given as usual:

gij|k = gij,k − ghjΓ
h
ki − gihΓh

kj = 0 , (5)

so the non-metricity is null [41]. By adding up the equivalent equations resulting from Equation (5) by
the cyclic permutation of the the three indices, we have:

{
i
jk

}
= Γi

jk + Kjk
i , (6)

where Kjk
i is the contortion tensor defined in terms of the torsion as follows:

Kjk
i = −Sjk

i + gil ghkSjl
h + gil gjhSkl

h

Kjk
i = −Sjk

i − Si
jk + Sk

i
j ,

(7)
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where we have used the metric tensor to raise and lower the indices. Similarly, in terms only of
covariant indices, we have:

Kijk = Sjik − Skij + Sjki , (8)

from which we deduce the following antisymmetry property:

Kijk = −Kikj , (9)

which also implies Kij
j = 0. In the case of the Riemann–Cartan spacetime, we have a generalization of

a Ricci identity involving the torsion tensor as follows:

Ai |jk − Ai |kj = −AhRkjh
i − 2Qkj

h Ai |h , (10)

where both the curvature tensor and the torsion tensor appear.

3. Parametrization of Torsion in Spherically-Symmetric and Axisymmetric Spacetimes

The main idea of the MTGC model consist of a parametrization of torsion for both the static,
spherical and parity symmetric case and the stationary, spherically-axisymmetric spacetime by using
dimensional and symmetry arguments [41].

In the first case, we expect torsion to be invariant under the group of spatial rotations, O(3), and,
consequently, to involve only invariant quantities, such as the radio vector, xi, i = 1, 2, 3, the Kronecker
δ-function and the mass of the spherical object generating the field. The most general torsion tensor
with these conditions becomes:

S0i
0 = t1

m
2r3 xi , (11)

Sjk
i = t2

m
2r3

(
xjδki − xkδji

)
, (12)

where i, j and k are spatial indices and t1, t2 are functions of r alone to be treated as constants for an
orbit of fixed radius. For perturbation calculations, it is highly convenient to transform this result to
spherical coordinates by using the identities: ∂xi/∂r = êi

r, ∂xi/∂θ = rêi
θ and ∂xi/∂φ = r sin θêi

φ, which
yields for the nonvanishing components:

Str
t = Str

t ∂xi

∂r = t1
m

2r2 (13)

Srθ
θ = Sjk

i ∂xj

∂r
∂xk

∂θ
∂θ
∂xi = t2

m
2r2 , (14)

Srφ
φ = Srθ

θ . (15)

Now, we consider the stationary spherically-axisymmetric spacetime whose metric is given, to
first order, as:

ds2 = −[
1 − ρS

r
]
c2dt2 +

[
1 + γ

ρS
r
]

+ r2(dθ2 + sin2 θdφ2)
− (1 + γ + α1/4) ρSρJ

r cdtdφ ,
(16)

where ρS = 2GM/c2 is the Schwarzschild radius and ρJ = J/(Mc) is a distance given in terms of the
total angular momentum of the rotating object, its mass, M, and the speed of light, c. The constant
parameters γ and α1 are the parametrized post-Newtonian mechanics (PPN) parameters whose values
in the case of standard general relativity are γ = 1, α1 = 0 as we will assume in this paper. The
non-zero first-order contributions to Christoffel’s symbols in Equation (2) are listed below:

{
t
rt

}
=

{
r
tt

}
= ρS

2r , (17)
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{
t

rφ

}
= − 3

2 sin2 θ
ρSρJ

r2 , (18)

{
r

φt

}
= − sin2 θ

ρSρJ
2r2 , (19)

{
r
rr

}
= − ρS

2r2 , (20)

{
r

θθ

}
= ρS − r =

{
r

φφ

}
/ sin2 θ , (21)

{
θ

tφ

}
=

ρSρJ
r3 sin θ cos θ , (22)

{
θ

rθ

}
=

{
φ

rφ

}
= 1

r , (23)

{
θ

φφ

}
= − sin θ cos θ , (24)

{
φ

tr

}
=

ρSρJ
2r4 , (25)

{
φ

tθ

}
= − cos θ

sin θ
ρSρJ

r3 , (26)

{
φ

θφ

}
= cos θ

sin θ , (27)

and the corresponding symbols with permutated lower indices, which coincide with the listed ones by
symmetry. First-order refers to the fact that we only consider terms proportional to ρS, ρJ and ρSρJ
and ignore any higher-order power.

Finally, we will consider the torsion tensor for the stationary spherically-axisymmetric case.
Torsion will be associated with an axial vector field Ak instead of the angular momentum, as proposed
in the MTGC model [41]. This vector field reverses under time reversal and improper rotations. This
requires that only those components with a single temporal index are nonvanishing. Moreover, to
cancel the minus sign arising in improper rotations, we must include the Levi–Cività symbol, εijk,
because, being a pseudotensor, it also changes sign in improper rotations. With these conditions, it
was found that:

Sij
t = f1

2r3 εijk Ak + f2
2r5 Akxl

(
εikl xj − εjkl xi

)
+ f6

2r5 Akxkεijl xl ,
Stij = f3

2r3 εijk Ak + f4
2r5 Akxlεikl xj

+ f5
2r5 Akxlεjkl xi + f7

2r5 Akxkεijl xl ,

(28)

where f1, . . . , f7 are constants by dimensional analysis. Notice that Mao et al. [41] identified the vector
Ak with the angular momentum Jk, but in the model presented in this paper, it could be a more general
vector field. Save for constant prefactors, we chose a vector field with the same structure that the vector
potential of a rotating charged sphere is as follows:

A =
4GMΩR2

5c3 sin θ(− sin φ m̂1 + cos φ m̂2) , (29)
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where Ω is the angular velocity of the rotating central body, m is the mass and R is its radius.
The prefactor is, then, proportional to the modulus of the total angular momentum. Notice that
we can also write it as 4GMΩR2/

(
5c3) = ρSρJ , where ρS = 2GM/c2 is the Schwarzschild radius of

the central body and ρJ = J/(Mc) = 2/5(ΩR/c)R. The unit vector m̂1 points towards the ascending
node of the Sun’s axial rotation, and m̂2 is perpendicular to it in the equatorial plane of the Sun
or the rotating body that we are considering. The nonvanishing components of the torsion tensor
corresponding to the static spherically-symmetric case are derived from Equation (13) as given in [41]
as follows:

Str
t = t1

m
2r2 , Srθ

θ = Srφ
φ = t2

m
2r2 . (30)

Additionally, those components, opposite in sign, correspond to the permutation of the covariant
indices. Similarly, we find from Equations (28) and (29) that additional nonzero components of the
torsion tensor for the stationary spherically-axisymmetric case are given by:

Srθ
t = −Sθr

t = χ1
ρSρJ
2r2 sin θ ,

Stθ
r = −Sθt

r = χ2
ρSρJ
2r2 sin θ ,

Str
θ = −Srt

θ = χ3
ρSρJ
2r4 sin θ ,

(31)

where χ1, χ2 and χ3 are constant parameters. Finally, we must tabulate the values of the nonvanishing
components of the contortion tensor (up to first-order in ρS, ρJ and ρSρJ) by using the relation with the
torsion in Equation (7) and Equations (30) and (31). The results are listed below:

K01
0 = K00

1 = − ρSt1
r2 , (32)

K22
1 = K33

1/ sin2 θ = −ρSt2 , (33)

K21
2 = K31

3 = ρSt2
r2 , (34)

K21
0 = (χ1 + χ2 + χ3)

ρSρJ
2r2 sin θ , (35)

K12
0 = (χ1 − χ2 − χ3)

ρSρJ
2r2 sin θ , (36)

K20
1 = (χ1 + χ2 + χ3)

ρSρJ
2r2 sin θ , (37)

K02
1 = (χ1 − χ2 + χ3)

ρSρJ
2r2 sin θ , (38)

K10
2 = (χ2 + χ3 − χ1)

ρSρJ
2r4 sin θ , (39)

K01
2 = (χ2 − χ1 − χ3)

ρSρJ
2r4 sin θ . (40)

In the next section, we will study the autoparallel trajectories in the spacetime with this contortion
tensor. Notice that the torsion and contortion tensor fields are determined by five constant parameters:
t1, t2, χ1, χ2 and χ3. The effect of the first two, t1 and t2, has already been analyzed by March et
al. [42,43], and we will be concerned in this paper with the bounds or estimated values of χ1, χ2 and
χ3.

4. Autoparallel Trajectories and Perturbation Theory

As in previous models [41–43], we will assume that structureless point particles move along
autoparallel trajectories of the Riemann–Cartan spacetime. Therefore, we have that:

d2xα

dτ2 +

{
α

μν

}
dxμ

dτ

dxν

dτ
= Kμν

α dxμ

dτ

dxν

dτ
, (41)
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where τ is proper time measured along the trajectory. Notice that in a purely Riemannian spacetime,
the contortion tensor is null, and Equation (41) is also found for geodesic trajectories. It is usually
claimed that only test bodies with a microstructure can couple to torsion [58] and that spinless particles
should follow the geodesic trajectories defined by:

d2xα

dτ2 +

{
α

μν

}
dxμ

dτ

dxν

dτ
= 0 . (42)

In standard general relativity, one finds this equation of motion in two ways: as the extremal
of the integral of the spacetime element, ds, or as a consequence of the field equations, i.e., as the
condition that the covariant divergence of the stress-energy tensor has zero value [59]. Both ways
are equivalent and lead to the geodesic equation of motion in Equation (42). Mathematically, this
coincides with the autoparallels in Equation (41) for zero torsion. If the calculations are translated
to a Riemann-Cartan spacetime using holonomic constraints at the initial and final points (with zero
variation in these points) of the trajectory, we find again the geodesic trajectories, because only the
Christoffel symbols enter into the analysis [53].

However, geodesics are a global concept defined, as they are, as the shortest paths between two
points. On the contrary, autoparallels can be defined locally as the straightest paths in spacetime.
Therefore, from the fundamental principle of locality in classical field theory, it seems more natural to
ascribe physical significance to autoparallels instead of geodesics.

Kleinert and collaborators [51–53] have studied a new nonholonomic mapping principle from
flat spacetime to curved spacetime with torsion in which curvature is described as a disclination
and torsion as a dislocation of the spacetime fabric. This implies that a closure failure appears in
parallelograms, and the endpoints of a variational trajectory are displaced by:

δSbμ = δSqμ − δqμ , (43)

where δS denotes the nonholonomic variations and δ are the auxiliary variations vanishing at the
endpoints [53]. Starting from the action:

A = −1
2

∫ σ2

σ1

dσ gμν(q(σ))
.
qμ(σ)

.
qν(σ) , (44)

and applying the nonholonomic variations, we get:

δSA = −
∫ σ2

σ1

dσ

(
gμν

.
qνδS .

qμ +
1
2

∂μgλκδSqμ .
qλ .

qκ

)
, (45)

where the dot denotes a derivative with respect the proper time, σ. In terms of the multivalued
tetrads ei

ν, i = 0, . . . , 3, μ = 0, . . . , 3, the metric tensor is defined as follows gμν = ei
μei

ν, and the
affine connection is given by Γμν

λ = ei
λ∂μei

ν. Taking also into account that ∂μgνλ = Γμνλ + Γμλν and
integrating by parts, we obtain:

δSA = − ∫ σ2
σ1

dσ

[
−gμν

(
..
qν +

{
ν

λκ

}
.
qλ .

qκ

)
δqμ

+
(

gμν
.
qν d

dσ δSbμ + ΓμλκδSbμ .
qλ .

qκ
)]

.
(46)

By using the differential equation for the nonholonomic variation δSbμ:

d
dσ

δSbμ = −Γλν
μδSbλ .

qν + 2Sλν
μ .

qλδqν , (47)
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Kleinert finds:
δSA =

∫ σ2

σ1

dσgμν

( ..
qν + Γν

λκ

.
qλ .

qκ
)

δqμ = 0 . (48)

As the auxiliary variations are arbitrary, but null at the endpoints, σ1 and σ2, we get from this the
autoparallel equation instead of the geodesic. A similar derivation was discussed also by Kleinert and
Pelster [51]. Further details are also given in several textbooks [60,61]. Autoparallels also satisfy a gauge
invariance relating the autoparallel equations of motion in different Riemann–Cartan spacetimes [62].
This property could find a deeper physical meaning, apart from its mathematical interest, in future
theories of gravity involving curvature and torsion.

The question of the relevance for the physics of the standard method or the method based on
nonholonomic variations for the derivation of the equations of motion in Riemann–Cartan spacetime
should be decided experimentally if, as we suggest, there is an additional torsion structure in spacetime.
This question cannot be answered in the context of standard general relativity, because, in this case,
autoparallel and geodesic equations coincide.

In Riemann–Cartan spacetime, the right-hand side of Equation (41) represents a perturbing
force whose effects can be calculated by standard perturbation theory in celestial mechanics. We
should calculate the first-order perturbation terms arising from the contortion tensor field in Equations
(32)–(40). As the planets in the Solar system move with velocities much smaller than the speed of light,
we can identify the proper time with the ephemeris time or the atomic time used by astronomers, i.e.,
τ = t. We will also consider that the torsion parameters t1 = t2 = 0, because it has been shown that t1

can be absorbed in a redefinition of the mass of the source, and t2 does not appear in the equations of
the trajectories [42,43].

The components of the perturbing torsion terms are then given by:

δFi = Kμν
i dxμ

dτ

dxν

dτ
, (49)

with i = 1, 2, 3 corresponding to the radial, polar and azimuthal coordinates, respectively. The leading
term of the radial perturbing acceleration is found by direct substitution of Equations (32)–(40) into
Equation (49):

δar = δFr = c
(

K02
1 + K20

1
) .

θ

= c(χ1 + χ3)
ρSρJ

r2 sin θ
.
θ ,

(50)

ignoring corrections O
(

.
θ

2
)

and O
(

.
φ

2
)

, c being the speed of light in a vacuum, dx0/dt = c and
.
θ = dθ/dt. Similarly, for the polar component of the perturbing force, we find:

δaθ = rδFθ = r
(

K01
2 + K10

2
) .

r

= c(χ2 − χ1)
ρSρJ

r3 sin θ
.
r .

(51)

On the other hand, the azimuthal component of the perturbing torsion force is zero, as expected
for an axisymmetric source, δaφ = 0. The perturbing accelerations in Equations (50) and (51) are
corrections to the accelerations in spherical coordinates in the system of reference of the Sun (see
Appendix A 6), which are obtained from the left-hand side of the equations for the autoparallel
trajectories and the first-order Christoffel symbols in Equations (17)–(27) as follows:

ar =
..
r − r

.
θ

2 − r
.
φ

2
sin2 θ , (52)

aθ = r
..
θ + 2

.
r

.
θ − r

.
φ

2
sin θ cos θ , (53)

aφ = r
..
φ sin θ + 2

.
r

.
φ sin θ + 2r

.
θ

.
φ cos θ . (54)
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As our objective is to apply celestial mechanics perturbation techniques, we will find it convenient
to calculate the radial, R, tangential to the orbit, T , and normal to the orbital plane, N , components of
the perturbing torsion force per unit mass. In Equations (88)–(90) in the Appendix A 6, we have found
those components in terms of the accelerations in spherical coordinates in a system of reference whose
z axis is the rotation axis of the Sun. The relation is expressed in terms of a transformation matrix αij,
i, j = 1, 2, 3 obtained as the set of scalar products among the vectors in the orbital system of reference
and the Sun’s system of reference, as given in Equation (79).

Direct substitution of Equations (50) and (51) and δaφ = 0 into Equations (88)–(90) yields:

R = c(χ1 + χ3)
ρSρJ

r2 (α13 sin ν (55)

− α23 cos ν)
.
ν ,

T = c(χ2 − χ1)
ρSρJ

r3 (α13 sin ν (56)

− α23 cos ν)
.
r ,

N = c(χ2 − χ1)
ρSρJ

r3 sin θ

(α31 cos θ cos φ + α32 cos θ sin φ − α33 sin θ)
.
r ,

= c α33(χ1 − χ2)
ρSρJ

r3
.
r . (57)

Notice that all terms in Equations (55)–(57) are constants or can be written in terms of the true
anomaly. The relations among the polar, θ, and azimuthal, φ, angles and the true anomaly, ν, are given
in Equations (80)–(82). Using these relations and the identity in Equation (83), we have found the
simplifications for T and N .

For the radio vector and radial velocity, we have [63–65]:

r = p
1+ε cos(ν−ω)

,
.
r =

√
μ
p ε sin(ν − ω) ,

(58)

where p = a
(
1 − ε2) is the semilatus rectum, ε is the eccentricity, a is the semimajor axis, ω is the

argument of the perihelion and μ = GM is the product of the gravitational constant and the mass
of the Sun. The relation among time, t, and the true anomaly, ν, will also be useful in the following
perturbation calculations:

dt =
T

2π

(
1 − ε2)3/2

(1 + ε cos(ν − ω))2 dν , (59)

where the orbital period, T, is given by Kepler’s third law: T = 2πa3/2/μ1/2. We are now ready for
calculating the perturbations in the orbital elements as a consequence of the torsion force in Equations
(55)–(57). Following the classical treatment of Burns [65], we can write for the semimajor axis:

.
a
a
=

2a
μ

.
E =

2a
μ

( .
rR+ r

.
νT )

, (60)

where E is the total energy. After some simplifications using Equations (55), (56), (58) and (59), we have:

da = cT
π

ρSρJ
a2

ε

(1−ε2)
5/2 (χ2 + χ3) sin(ν − ω)

(1 + ε cos(ν − ω))2(α13 sin ν − α23 cos ν)dν .
(61)
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For the instantaneous variation of the eccentricity, we start from:

.
ε =

ε2 − 1
2ε

[
−

.
a
a
+

2rT
H

]
, (62)

where H =
√

μp =
√

GMa(1 − ε2) is the angular momentum per unit mass. By using Equations (61),
(56) and (59) conjointly with Equation (62), we arrive at:

dε = cT
2πa

ρSρJ
a2

sin(ν−ω)

(1−ε2)
1/2 (α13 sin ν − α23 cos ν)[

(χ2+χ3)
1−ε2 (1 + ε cos(ν − ω))2 + χ1 − χ2

]
dν .

(63)

Torsion also induces an extra precession of the longitude of the ascending node of the planetary
orbits in addition to the Lense–Thirring effect arising in standard general relativity. This precession
rate is proportional to the normal component to the planetary orbits of the perturbing force, as found
in perturbation theory [63]:

dΩ
dt

=
rN sin ν

H sin I
=

√
p

GM
N

sin I
sin ν

1 + ε cos(ν − ω)
, (64)

where I is the orbital inclination and p = a
(
1 − ε2) is the semi-latus rectum. From the expression of

the normal component of the perturbing force in Equation (57) and the contribution to the precession
of the longitude of the ascending node in Equation (64), we obtain:

dΩ = α33(χ1 − χ2)
cT

2πa
ρSρJ

a2
ε

(1 − ε2)
3/2

sin ν

sin I
sin(ν − ω)dν . (65)

Finally, for the extra precession of the perihelion contributed by spacetime torsion, we find:

dω = (χ2 − χ1)
cT

2πa
ρSρJ

a2
1

(1−ε2)
3/2(

sin2(ν − ω)
2+ε cos(ν−ω)

(1+ε cos(ν−ω))3 (α13 sin ν − α23 cos ν)

+ εα33 cot I sin ν sin(ν − ω))dν

−c(χ1 + χ3)
√

a
GM

ρSρJ
a2

1
ε(1−ε2)

3/2

cos(ν − ω)(α13 sin ν − α23 cos ν)dν .

(66)

In the next section, we will discuss the predictions of Equations (61)–(66) for the variation of
the orbital elements of the planet and its possible connection with certain anomalies recently found
by astronomers.

5. Results

As we cannot give to the parameters χ1, χ2 and χ3 definite values on a theoretical basis, it is not
possible, in principle, to make predictions on the variation of the orbital elements as a consequence
of torsion in our model. It is reasonable to assume that these parameters are of the order of unity, if
there is a theory consistent with the torsion model, but this is not sufficient to suggest any reliable
prediction. However, we can use an inductive approach by assuming that some anomalies recently
found for the planetary orbits are the consequence of torsion gravity arising in a theory that includes
the phenomenological model discussed in this paper as a particular case. Specifically, we refer to the
anomalous secular increase of the astronomical unit (AU) first reported by Krasinsky and Brumberg
in 2004 [66]. The analysis of databases of radar and laser ranging and spacecraft observations in
the last few decades showed that the astronomical unit increases by 15 ± 4 meters per century. An
independent study by Standish reduced this figure to 7 ± 2 meters per century [67]. This problem
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has even motivated the International Astronomical Union to redefine the AU as a constant and, as
a consequence, to remove the Gaussian constant of mass from the list of astronomical constants [56].
However, these redefinitions of constants do not solve the problem pointed out by the aforementioned
astronomers. However, we should notice that, according to this new definition, it is not rigorous
to compare the rates of the semi-major axes of the planets with the rates of the astronomical unit,
because this is fixed. On the other hand, we can use the recent reports on a secular decrease of the mass
parameter μ = GM of the Sun [56]. The average of the rates determined with EPM2008, EPM2010 and
EPM2011 ephemerides is μ = (5.73 ± 4.27)× 10−14 yr−1. It is known from the perturbation analysis
of the planetary orbits in a scenario of a diminishing gravitational constant that the semi-major axis
increase as [68]:

.
a
a
= −

.
μ

μ
, (67)

which implies a rate of 0.86 ± 0.64 meters per century. It is important to point out that the recent
analyses with the INPOP13cephemerides are statistically compatible with a zero variation of the
Sun’s mass parameter [56]. Some conventional and unconventional attempts for an explanation of
the variation rates for the semi-major axes of the planets have been suggested, but there is still no
convincing solution of the problem [69–73].

It is interesting to notice that Equation (61) implies a variation of the semimajor orbital axes for
η = χ2 + χ3 �= 0. Moreover, if we assume that:

χ1 + χ3 = 0 , (68)

it is found from Equations (61)–(66) that the variations of a, ε, Ω and ω depend only on the single
parameter η = χ2 − χ1. We will choose the condition in Equation (68) without losing the perspective
that other possibilities are compatible with our model, even the case in which no secular change is
found for the semimajor planetary axes, i.e., the case η = 0.

Using this condition and averaging Equations (61), (63), (65) and (66) over a whole orbit, we
obtain the following results for the variation of the elements in one year:

Δa
a = η

Ly
a

ΩR
c

(
R
a

)2
ε

(1−ε2)
5/2 (69)

(
1 + ε2

4

)
(α13 cos ω + α23 sin ω) ,

Δε = η
5Ly
8a

ρSρJ
a2

ε2

(1−ε2)
3/2 (70)

(α13 cos ω + α23 sin ω) ,

ΔΩ = −η α33
Ly
2a

ρSρJ
a2

ε

(1−ε2)
3/2

cos ω
sin I , (71)

Δω = η
Ly
2a

ρSρJ
a2

ε

(1−ε2)
3/2 (72)

[
α33 cot I cos ω − 5

4 (α13 sin ω − α23 cos ω)
]

,

where Ly stands for a light year. By assuming that the increase of the astronomical unit is obtained as
an average over the inner planets, Mercury, Venus, the Earth and Mars, and taking the value reported
by Standish, ΔAU = 7 ± 2 meters per century, we find that η = −0.154. If we take the values deduced
from the variation of the mass parameter GM of the Sun as reported in the EPM2008–2011 ephemerides,
a smaller value η = −0.019 is found. In these calculation, the elements of the planets as given in [74,75]
were used. We can also make some predictions for the variation of the other orbital elements and check
if they are consistent with the presented observations. We should see that, at least, our model is not
inconsistent in this sense.
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For the secular variation of the eccentricity for this value of η, we find Δε = 4.57 × 10−13 in one
year in the case of Mercury and even lower values for the other planets. This is below the precision
threshold for present determinations of this magnitude [69].

Possible anomalous contributions to the secular node precessions are currently considered in
recent ephemerides. For the moment, no statistically-significant results have been obtained with the
attained precisions, but these values set an upper limit to any prediction by theoretical models. For
INPOP10a, these corrections are listed in milliarcseconds per century and compared to our predictions
from Equation (71) in Table 1. The most recent ephemerides, INPOP10a and EPM2011, in connection
with possible Solar system anomalies have been discussed by Iorio [56].

Table 1. Corrections to the secular node precessions as obtained in the INPOP10a ephemeris and
predictions of the torsion gravity model discussed in this paper in milliarcseconds per century.

Planet Δ
.

Ω (INPOP10a) Δ
.

Ω(Torsion Gravity)

Mercury 1.4 ± 1.8 0.30
Venus 0.2 ± 1.5 2.14 × 10−2

Earth 0.0 ± 0.9 −1.70 × 10−4

Mars −0.05 ± 0.13 2.62 × 10−3

Jupiter −40 ± 42 1.51 × 10−5

Saturn −0.1 ± 0.4 1.31 × 10−5

The corrections to the standard secular perihelion precessions are given in Table 2 and compared
to the predictions of our torsion gravity model.

Inspection of Tables 1 and 2 shows that the predictions of the model are compatible with both
ephemerides at the 2σ level. Therefore, in the context of the torsion gravity model, the anomalous
increase of the astronomical unit is consistent with the rest of measurements on possible corrections
to other orbital elements. On the other hand, we have shown that only for Mercury, it seems that an
improved ephemeris could detect a statistically-significant nonzero correction for Δ

.
Ω and Δ

.
ω in the

foreseeable future.

Table 2. Corrections to the secular perihelion precessions as obtained in the INPOP10a and
EPM2011ephemerides and predictions of the torsion gravity model discussed in this paper in
milliarcseconds per century.

Planet Δ
.

ω (INPOP10a) Δ
.

ω (EPM2011) Δ
.

ω (Torsion Gravity)

Mercury 0.4 ± 0.6 −2.0 ± 3.0 −0.622
Venus 0.2 ± 1.5 2.6 ± 1.6 −4.28 × 10−3

Earth −0.2 ± 0.9 0.19 ± 0.19 −1.03 × 10−4

Mars −0.04 ± 0.15 −0.02 ± 0.037 −4.9 × 10−3

Jupiter −41 ± 42 58.7 ± 28.3 −3.48 × 10−5

Saturn 0.15 ± 0.65 −0.32 ± 0.47 −2.69 × 10−5

6. Conclusions

The advancement of physics can only proceed by a continuous interplay between theory and
experiment. This healthy interaction allows for a selection of the most promising hypotheses among
the different proposals. Gravity theory has been an exception to this methodological rule for the most
part of the 20th century, because experiments are very difficult to develop, as they usually imply very
accurate devices, and these must be set into orbit to perform the measurements [7,8]. Gravity being the
weakest of all interactions is also the one we know least, because accurate tests of all general relativity
predictions are still lacking [2]. For example, Lense–Thirring precession of orbital nodes is only
known with a wide error bar from the laser range monitoring of the geodynamic satellites [8–10,76–78].

427



Universe 2015, 1, 422–455

A further, non-negligible source of difficulty in gravitational experiments resides in the extremely long
times required either to collect data or to analyze them: the Gravity Probe B is a case-study example [7].

The experimental situation has been complicated in recent years because of the discovery of a
set of anomalies that, apparently, cannot be explained conventionally (see, e.g., the recent review by
Iorio [56]). Similarly, the most recent ephemerides has allowed the determination of upper bounds on
the variation of the orbital elements of the planets beyond the predictions of classical perturbation
theory and general relativity [56,75]. Although some of these anomalies may lose their statistical
significance in the more or less near future in view of further observations and related analyses, it
is nonetheless important to discuss the possibility that they may constrain theories and extensions
beyond general relativity.

Many extensions of general relativity, some of them proposed by Einstein himself, have made
use of the concept of torsion [24]. These ideas coalesced in the 1960s and 1970s in the so-called
Einstein–Cartan–Sciama–Kibble (ECSK) theory in which torsion is connected with the microscopic
spin density and does not propagate outside massive bodies [30]. This theory is still considered
a viable alternative to general relativity, but it suffers from a total lack of experimental support,
despite some claims that it could explain inflation [32,33]. This situation leaves room for the study
of more alternatives without restricting to a given mathematical formalism. In such a spirit, Mao et
al. proposed in 2007 the MTGC parametrized model in which torsion is connected to macroscopic
angular momentum [41]. It was shown that this model can be constrained by perturbations in the
orbital elements of the planets and geodynamic satellites [42,43].

Hehl et al. [49,50] have pointed out that it is inconsistent to use total angular momentum, i.e.,
a quantity not obtained by integration over local densities, as the source of a local field quantity,
such as torsion. To avoid this inconsistency, we have modified the approach of the original MTGC
model by connecting torsion with a local circulating vector potential as the one obtained in classical
electromagnetism for a rotating charged sphere. This way, we have shown that a new phenomenon,
qualitatively distinct from those obtained in general relativity, is predicted. Namely, a secular increase
of the semi-major axes of the planets [66,67]. This problem has attracted the attention of several
authors in recent years, who have tried to find explanations in terms of nonstandard and conventional
hypotheses [56,69,70,72]. This observation remains unexplained and, although it could be dismissed
by more precise analyses in the future, it deserves further attention. We have shown that our torsion
model is compatible with these observations for a value of the parameters of the order of unity.

Moreover, planetary ephemerides are becoming increasingly precise year after year. It is still
premature to state that statistically-significant anomalies have been revealed in the secular precessions
of the longitude of the ascending node and the argument of the perihelion, but the uncertainty
intervals are promisingly small [56]. Anyway, it is now clear that any deviation from the predictions of
general relativity (once we take into account standard perihelion precessions and the gravitomagnetic
Lense–Thirring effect) is expected only in the range of a few milliarcseconds per century.

We have also shown that extra secular precessions of these elements are the consequence of
torsion, but for any planet, they are very small in relation to the confidence intervals of the INPOP10a
and EPM2011 ephemerides. However, for the case of Mercury, they could be detected in the foreseeable
future, because they lie in the range of a few tenths of milliarcseconds per century. The important
fact is that this agreement is achieved in consistency with an increase of the astronomical unit of a
few meters per century. This means that testing a torsion gravity extension of general relativity as the
one discussed in this paper is within the reach of modern observation techniques and data analyses
in astronomy.

We conclude that further experiments and observations are required, achieving the maximum
precision possible with present-day technology, to confirm or dismiss possible anomalies beyond
general relativity in the secular evolution of the elements of the planets and spacecraft. From these
future observations, the model proposed in this paper could receive further support. In such a case, it
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could serve as the basis for a consistent theory of torsion gravity obtained by the scientific method of
induction from experience.
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Appendix A. Relation among the Sun’s System of Reference and the Orbital Coordinates

Firstly, we define the ecliptic system of reference: k̂ is a unit vector perpendicular to the ecliptic
plane; ı̂ points towards the point of Aries; and ĵ is perpendicular to the preceding unit vectors in such
a way that we have a right-handed Cartesian coordinate system [75].

The orbital plane of a given planet is then characterized by two angles: the inclination ι with
respect to the ecliptic plane and the angle Ω among the line of nodes (i.e., the intersection among the
two planes) and the point of Aries. Consequently, we can write the unit vector of the orbital system of
reference as follows:

n̂1 = cos Ω ı̂ + sin Ω ĵ , (73)

n̂2 = − cos ι sin Ω ı̂ + cos ι cos Ω ĵ + sin ι k̂ , (74)

n̂3 = sin ι sin Ω ı̂ − sin ι cos Ω ĵ + cos ι k̂ . (75)

Similarly, we can define the inclination of the Sun’s axis and the longitude of the ascending node
of its equator. These two angles determine the orientation of the Sun’s rotation axis on space and were
obtained in the 19th century by careful observations of Carrington. Carrington’s elements, as they are
called, are given by [79,80]:

ιc = 7.25◦ , (76)

Ωc = 73.67◦ + 0.013958◦(t − 1850) , (77)

where t is the year of observation. We define the Sun’s system of reference as the Cartesian system
obtained by the three unit vectors m̂i, i = 1, 2, 3 whose expression in terms of the Carrington elements
is also given by Equation (73).

The planet’s orbital radius vector is usually written as [63,64]:

r = p
cos ν n̂1 + sin ν n̂2

1 + ε cos(ν − ω)
, (78)

where p = a
(
1 − ε2) is the semilatus rectum, a the semi-major axis, ε the orbital eccentricity, ν is the

true anomaly and ω is the argument of the perihelion. Notice that we use an unconventional definition
of the true anomaly as the angle among the radius vector and the ascending node of the planet instead
of measuring it from the perihelion as usual.

We now introduce the transformation matrix αij as the scalar products of the unit vectors of the
orbital and the Sun’s system of reference:

αij = n̂i·m̂j , i , j = 1, 2, 3 . (79)

If θ, φ are, respectively, the polar angle and azimuthal angle in the Sun’s system of reference, we
find from Equation (78) and using the definition in Equation (79) the relation among them and the true
anomaly, ν, in the following form:

cos θ = r
r ·m̂3 = α13 cos ν + α23 sin ν , (80)

sin θ cos φ = r
r ·m̂1 = α11 cos ν + α21 sin ν , (81)

sin θ cos φ = r
r ·m̂2 (82)
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= α12 cos ν + α22 sin ν .

The coefficients of the transformation matrix satisfy some useful identities:

3

∑
k=1

αik αjk = δij , i, j = 1, 2, 3 , (83)

where δij is Kronecker’s delta. The spherical unit vectors in the Sun’s system of reference are given as:

r̂ = sin θ cos φ m̂1

+ sin θ cos φ m̂2 + cos θ m̂3 ,
(84)

θ̂ = cos θ cos φ m̂1

+ sin θ sin φ m̂2 − sin θ m̂3 ,
(85)

φ̂ = − sin φ m̂1 + cos φ m̂2 . (86)

From Equations (80) and (84), we can also find the tangential unit vector to the planetary orbit:

ν̂ = dr̂
dν = (−α11 sin ν + α21 cos ν) m̂1

+ (−α12 sin ν + α22 cos ν) m̂2

+ (−α13 sin ν + α23 cos ν) m̂3 .
(87)

Orthogonality with r̂ and normalization to the unity modulus can be shown by applying the
identities in Equation (83).

Now, we can find the radial, R, tangential to the orbit, T , and normal to the orbital plane, N ,
components of the perturbing force per unit mass in terms of the accelerations, ar, aθ and aφ, in the
Sun’s spherical system of reference. It is obvious that:

R = ar . (88)

For the tangential component, we have:

T =
(
aθ θ̂+ aφ φ̂

)·ν̂
= aθ

sin θ (α13 sin ν − α23 cos ν)

+
aφ

sin θ (α11α22 − α12α21) ,
(89)

after some simplifications using Equations (80)–(87). Finally, for the normal component, we find:

N =
(
aθ θ̂+ aφ φ̂

)·n̂3

= aθ(α31 cos θ cos φ + α32 cos θ sin φ − α33 sin θ)

+ aφ(−α31 sin φ + α32 cos φ) .
(90)

Notice that the angles θ and φ can be formally expressed in terms of the true anomaly by using
Equation (80).
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Abstract: We address the reasons why the “Wick-rotated”, positive-definite, space-time metric obeys
the Pythagorean theorem. An answer is proposed based on the convexity and smoothness properties
of the functional spaces purporting to provide the kinematic framework of approaches to quantum
gravity. We employ moduli of convexity and smoothness which are eventually extremized by Hilbert
spaces. We point out the potential physical significance that functional analytical dualities play in
this framework. Following the spirit of the variational principles employed in classical and quantum
Physics, such Hilbert spaces dominate in a generalized functional integral approach. The metric of
space-time is induced by the inner product of such Hilbert spaces.
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1. Introduction

When one looks at the equations describing the four fundamental interactions of nature, then s/he
immediately notices that the kinematic equations in the Lagrangian formalism involve second order
derivatives with respect to space-time variables. It may be worthwhile to try to understand the reasons
behind this phenomenon, which has been taken for granted as an empirical fact since the earliest
days of Newtonian mechanics. Modelling of the fundamental interactions except gravity relies, at the
classical level, on Classical Mechanics, on Electromagnetic Theory and its Yang-Mills/non-abelian
gauge “generalizations”. General Relativity can also be seen as a gauge theory whose gauge group
is the diffeomorphism group (re-parametrization invariance) of the underlying topological space
endowed with its metric structure.

In all of the above, and in the Lagrangian approach which we employ throughout this work,
the Euler-Lagrange equations that describe the underlying dynamics can be seen to emerge from
variational principles; such equations could use derivatives of arbitrarily high order and a formalism
for accommodating this fact has already been developed. However, in practice, when dealing with
fundamental interactions and not performing perturbative or approximate calculations that rely on
series expansions, one rarely needs derivatives that are of higher than the second-order with respect to
space-time variables.

The statements on the number of derivatives in the equations of dynamics can be seen to be
essentially equivalent, upon partial integration, to the fact that the kinetic terms as well as relevant
potential energy terms are at most quadratic with respect to first order derivatives of the fundamental
variables/fields/order parameters. This in turn, allows one to use Euclidean/Riemannian concepts
to model the evolution of such systems; for particle systems one uses the more familiar aspects of
finite-dimensional Riemannian spaces [1], and for field theories one may have to resort to using aspects
of infinite dimensional manifolds [2] which involve further subtleties.

One could use, equivalently in the simplest context, a Hamiltonian approach where the equations
involve first order derivatives. Each of these two lines of approach Lagrangian versus Hamiltonian has
its own advantages and drawbacks, as is well-known. See, for instance, the very recent review [3] for
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an approach to gravity based on first order actions including boundary terms. Without denying
the advantages of the Hamiltonian or first order formalisms, we will adopt in this work the
Lagrangian/second-order formalism, as already mentioned above. Our viewpoint is somewhat
influenced by and may have common points with that of [4], even though the methods which we use
and the results we reach are substantially different from those of that work.

We will adopt the convenient technical device of Wick-rotating to a “Euclidean”
(i.e., positive-definite) signature metric. We would like to state at this point, that we do not consider
positive-definite metrics “superior” in any sense, to these of Lorentzian (indefinite) signature. On the
contrary, all experiments, so far, point to the latter as being the physical ones, so even if unstated, our
underlying view is closer to [5] rather than [6], for instance. On the other hand, on purely formalistic
grounds, the Euclidean (positive-definite) metrics are easier to work with, as they obey the positivity
property and the triangle inequality that their indefinite metric (Lorentzian) counterparts are lacking.

A substantial amount of effort has been spent, in recent decades, into understanding the non-trivial
features of space-time, as described by the General Theory of Relativity or other theories incorporating
space-time diffeomorphism invariance. Even though considerable progress has been made toward
such an understanding, it is probably fair to state that many important issues still remain unresolved [7].
It is not clear, for instance, why space-time is 4-dimensional, to what extent it is smooth and how such
a smoothness arises, why its Wick-rotated metric obeys the Pythagorean theorem etc. Henceforth
we will work only with positive definite (Wick-rotated) metrics of space-time and by “Euclidean”
we will mean only the ones obeying the Pythagorean theorem. In linear algebraic and functional
analytic language the metrics we call Euclidean would be called the l2 metrics. Moreover, we will
use the term space-time in order to keep in mind that our arguments actually purport to describe
(indefinite/Lorentzian signature) space-time even if we use positive-definite (Wick-rotated) metrics
throughout this work.

A potentially fruitful way toward answering why the space-time metric is Euclidean, which is the
subject of this work, is to look at it through the eyes of convexity. Convexity plays a central role in
many branches of Mathematics, but seems to be under-appreciated and under-utilized in gravitational
Physics [8], and not only. This can also be considered as a partial motivation for looking for answers to
the questions of our interest through convexity. In the context of linear spaces, convexity turns out
to be dual to smoothness, a fact that we also use to support the case for the Euclidean form of the
space-time metric.

In Section 2, we provide a general background and a physical interpretation, wherever feasible,
from the theory of normed spaces with emphasis on properties pertinent to our arguments. In Section 3,
we discuss the aspects of convexity, smoothness and their duality via a Legendre-Fenchel transform,
employing in particular Clarkson’s modulus of convexity and to the Day-Lindenstrauss modulus of
smoothness. In Section 4, we put our, less than rigorous, argument together on how the previous
results result in space-time metric that has the Euclidean form. Section 5, presents some conclusions
and caveats.

2. Background and Physical Interpretation of Some Concepts

Space-times are assumed to be locally flat, to first order approximation of their metric.
This is an outcome of the application of the Equivalence Principle, and a well-known fact in
Riemannian/Lorentzian geometry. Therefore, we can analyze the ultralocal aspects of the features
of a space-time by confining our attention to vector spaces. Most features of such tangent spaces can
be captured by the various closely related functional spaces that can be defined on them. There are
numerous classes of functional spaces that have been investigated during the last century, in the context
of Functional Analysis, such as Lebesgue, Hardy, Bergman, Sobolev, Orlicz, Besov, Triebel-Lizorkin,
etc. spaces. Most of the previously named spaces are or rely on, in one form or another, constructions
and results of (usually infinite dimensional) Banach spaces. Such infinite dimensional Banach spaces
will be the main vector spaces of interest in this work.
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In this Section we provide some preliminary information on these and related mathematical
constructions which are pertinent to the subsequent sections, where most of our arguments are
developed. We attempt to stress their physical motivation and interpretation, wherever feasible, from
the viewpoint we adopt in this work.

2.1. Norms on Linear Spaces

To make the exposition more readable and self-contained, we recall [9,10] that a norm on a vector
space V defined over a field F, usually F = R or F = C in most applications in Physics, is a function
‖ · ‖ : V → R+ where R+ = {λ ∈ R : λ ≥ 0}, such that for all x, y ∈ V
• Positive definiteness: ‖x‖ = 0, if and only if x = 0.
• Homogeneity: ‖kx‖ = |k|‖x‖, for all x ∈ V , and all k ∈ F.
• Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖

A vector space V endowed with a norm, which moreover is complete in this norm, namely such
that all Cauchy sequences have limits belonging to V , is called a Banach space. Examples of Banach
spaces that are explicitly used in this work are:

• c0 is the space of all sequences a = (an), n ∈ N converging to zero, with an ∈ F, and the sup-norm

‖a‖ = sup
n

|an| (1)

• lp, 1 ≤ p < ∞, which is the space of all sequences a = (an), n ∈ N with an ∈ F endowed with
the norm

‖a‖p =

(
n

∑
i=1

|an|p
) 1

p

< ∞ (2)

• l∞, the space of all bounded sequences a = (an), n ∈ N endowed with the supremum norm

‖a‖ = sup
n

|an| (3)

• Lp(Rn), 1 ≤ p < ∞, the space of Lebesgue integrable functions f : Rn → F endowed with
the norm

‖ f ‖p =

(ˆ
Rn

| f |p
) 1

p
(4)

• L∞(Rn), the space of all essentially bounded f : Rn → F, endowed with the norm

‖ f ‖∞ = inf{C : | f | < Calmosteverywhere} (5)

The above functional spaces Lp(Rn), 1 ≤ p ≤ ∞ are, strictly speaking, spaces over equivalence
classes of functions, where two functions are considered equivalent (“equal”) if they differ from each
other, at most, in a set of measure zero. One uses the Lebesgue measure (“volume”) of Rn in the
definition of such Lp(Rn). In most applications in Physics, the distinction between functions and
classes of equivalent functions is tacitly assumed and not explicitly stated. For completeness, we
mention that a Hilbert space is a linear space endowed with an inner product (·, ·) which is, moreover,
complete [9,10]. The norm which we will assume that Hilbert spaces are endowed with, is induced
by their inner product by ‖x‖2 = (x, x). Among the above examples of Banach spaces, l2 and L2(Rn)

are Hilbert spaces. Since the spaces that we will be referring to are normed, hence metrizable, they
are endowed with the topology induced by the metric. An important topological property of such
topological (vector) spaces is separability: this means that such spaces contain a countable dense subset.
For such metrizable spaces, being separable is equivalent to being second countable. Topological

436



Universe 2017, 3, 8

spaces that are finite or countably infinite are, obviously, separable. For Hilbert spaces separability
implies the existence of a countable orthonormal basis, hence any separable infinite dimensional
Hilbert space is isometric to l2. In most cases in quantum theory, separability of the space of the
Hllbert space of wave-functions is tacitly assumed. Banach spaces can also be either separable or not
separable [11]. The issue of separabilty of the spaces we use is not pertinent to the arguments of this
work, so it will not be encountered anywhere in the sequel.

2.2. Norm Equivalence

Naturally, one can endow a vector space V with many different norms. Usually the “appropriate”
choice of such a norm has substantial implications for the specific predictions of the physical model
built on (V , ‖ · ‖). In other words, the choice of two “different”, in the naive sense of the word, norms
will usually result in substantially different predictions of the physical quantities resulting form such
calculations. Hence the choice of a norm is usually considered to be a piece of data which is initially
provided by hand, in any model. In most cases such a choice of norm is not explicitly discussed,
because it is assumed that a norm arising from an inner product is the physically relevant one. In this
work, we would like to know why this may be the case.

Given that a vector space may be endowed with different norms, one can ask what the word
“different” may actually mean. If two norms are point-wise different but still reasonably close to each
other, in some particular sense, let’s say with respect to a particular metric, can they still be declared as
“equivalent”? Consider, for instance, the case of Hamiltonian systems of many degrees of freedom.
This paragraph operates in the context of Euclidean metrics but can still be used to highlight our point of
view. Suppose that one changes the metric of the phase space. If all thermodynamic quantities remain
invariant under such a change of norm, is it reasonable to consider the two metrics as “equivalent”
or should someone insist as treating them as “different”? Under some additional conditions, two
such metrics may turn out to be equal; this is reminiscent of the (Hamburger, Stieltjes etc.) moment
problem pertaining to the equality of underlying probability distributions, if the sets of moments of
these distributions are equal [12]. Something similar occurs in Geometry or Analysis: quite often two
metrics or norms are declared as “equivalent” even though they may be pointwise distinct.

This re-interpretation of the concept of “equivalence” can have substantial consequences for
Statistical or Quantum Physics. The issue at hand can be seen as a form of “stability”. Consider,
for instance, a Hamiltonian system. This determines a symplectic structure on the phase space M
of the system or, alternatively, a Poisson structure on the space of smooth functions C∞(M) [13].
However, it does not generically determine a metric structure on M. Such a metric is usually assumed
to stem from the quadratic “kinetic” term of the Hamiltonian, at least for systems having a kinetic
term of such form. Then we can proceed to perform an analysis of the evolution of this Hamiltonian
system, quantize the system etc. based on this symplectic and metric structures. However, one should
not forget that the metric structure was not “natural”, or may not be unique. For this reason if it
changes, especially a little bit, one would expect the physically relevant results to remain practically
invariant. This can be interpreted as a form of structural stability of the underlying Hamiltonian
dynamical system, even though it applies to an auxiliary piece of data, such as the metric. It is a
subject of much discussion on whether such a metric structure should be assumed, and if so, to what
extent it determines the statistically significant features of the system in an appropriate many-body
“thermodynamic” limit [14].

Given the above considerations, one may be willing to allow variations of the assumed metric of
the underlying Hamiltonian system. Then two metrics can be declared as equivalent, as also previously
mentioned, if they give the same predictions of physically relevant quantities. The question is then how
to find such variations of metrics, or norms. From an analytical viewpoint, one can use a central concept
of Analysis, that of the limit, to determine how to answer such questions. The most crude/rough
approach is to demand that two metrics/norms ‖ · ‖1, ‖ · ‖2 to be considered as equivalent if all
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sequences converging with respect to one of them also converge with respect to the other. This is
realized when there are constants 0 < C1 ≤ C2 such that

C1‖ · ‖1 ≤ ‖ · ‖2 ≤ C2‖ · ‖1 (6)

This always holds for any two norms on finite dimensional vector spaces. However, it is not true
in general for infinite dimensional functional spaces, which are at the center of our attention.

A way to interpret (6) from the viewpoint of statistical theories is as follows: physically relevant
results of the microscopic or quantum dynamics should be somehow reflected or emerge in the large
scale/multi-particle or thermodynamic limit. Such features should remain largely unaffected by most
“small-scale” details of the system or their perturbations. This tacitly assumes that the underlying
quantities characterizing geometric characteristics of the system are proportional to the effective
measure(s) used in the calculations of the pertinent statistical quantities. This is clearly true for ergodic
systems, but it can also be true for non-ergodic systems such as the ones whose thermodynamic
behavior is conjecturally described by any of the many recently proposed entropic functionals, such as
the “Tsallis entropy” [15], or the “κ-entropy” [16], for instance. So, from a geometric viewpoint,
equations like (6) express this insensitivity to small-scale details. This viewpoint motivates and
pervades “coarse geometry” [17] and is frequently encountered in constructions related to hyperbolic
spaces [18] or groups [19]. Metrically, it is expressed by demanding invariance under quasi-isometries.
In dynamical systems one can see a similar viewpoint in several occasions, an example of which is
that the topological entropy of a map or flow on a metric space (X, d) does not actually depend on
the specific metric/distance function d, but only on the class on metrics on X that induce the same
topology on X. Then the key/desired invariance akin to (6), is the topological conjugacy [20].

2.3. The Operator Norm and the Banach-Mazur Distance

Before continuing, for completeness of the exposition, we state two definitions that will be
extensively used in the sequel [9,10]. Let (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ) be two normed spaces, over R, C
(or any other field, although the general case does not appear to be of any particular interest in Physics,
so far) and let T be a continuous linear map T : X → Y . If such a map exists between X ,Y which is
bijective, and its inverse T−1 is also bijective, then X ,Y are called isomorphic. Actually less is needed:
the Open Mapping Theorem guarantees that if T is bijective and bounded, so is T−1. If a mapping T is
an isometry, namely if

‖Tx‖Y = ‖x‖X (7)

then X ,Y are called isometric. Since boundedness of T is equivalent to its continuity, one can see that
isometric spaces are isomorphic. Let the space of bounded linear maps from X to Y be denoted by
B(X ,Y). This space B(X ,Y) can be endowed with the operator (sup-) norm which for T ∈ B(X ,Y)

is given by the following equivalent definitions

‖T‖ = sup
x∈X

{‖Tx‖ : ‖x‖ ≤ 1} = sup
x∈X

{‖Tx‖ : ‖x‖ = 1} = sup
x∈X

{‖Tx‖
‖x‖ : ‖x‖ �= 0

}
(8)

It turns out that if X is a normed space and if Y is a Banach space, then B(X ,Y) endowed with
the operator norm (8) is a Banach space too. We know that every normed space can be isometrically
embedded in a Banach space. So, most of the pertinent features of general normed spaces are contained
in Banach spaces, therefore we can use the latter believing that we are not losing important aspects
of the flexibility or generality of the former, for applications in Physics. Given this, our question is
then reduced to asking, why among all Banach spaces, the inner product (Hilbert) spaces are the ones
describing most fundamental aspects of nature most accurately, so far as we know today.

In the spirit of norm-equivalence, discussed in Subsection 2.2, one can ask how close, or how far,
from each other are two linear spaces. From a metric viewpoint they are identical, if they are isometric.
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We want to have a “reasonable” distance function that measures how far from each other they may be,
if they are not isometric. Defining such a distance function is clearly a matter of choice which ideally,
for our purposes, should also reflect some desirable physical properties. It appears that the classical
Banach-Mazur distance has properties fitting such requirements. It is defined as follows. Let X ,Y be
two isomorphic Banach spaces. The Banach-Mazur distance between them is defined as

dBM(X ,Y) = inf
T
{‖T‖ · ‖T−1‖} (9)

where T : X → Y is an isomorphism. If X ,Y are not isomorphic, then their Banach-Mazur distance is
infinite, by definition. We can immediately see that

dBM(X ,Y) ≥ 1 (10)

and that for isometric spaces such a distance is exactly equal to one. The converse is also true, but
only for finite-dimensional Banach spaces. Therefore, the Banach-Mazur distance is actually a distance
function on the set of equivalence classes of normed spaces (where “equivalence” is defined as
“isometry”), but in a multiplicative sense, namely for three isomorphic linear spaces X ,Y ,Z , it satisfies

dBM(X ,Z) ≤ dBM(X ,Y) · dBM(Y ,Z) (11)

To get to the usual triangle inequality instead of (11), we have to consider the logarithm of dBM.
The Banach-Mazur distance is invariant under invertible linear maps T, namely

dBM(TX , TY) = dBM(X ,Y) (12)

In some sense the Banach-Mazur distance expresses the minimum distortion that any isomorphism
between two linear spaces can possibly entail.

Before closing this Subsection, one cannot help but distinguish between the functional spaces
arising in a theory developed on space-time and the underlying form of the metric of space-time itself.
These are clearly two quite distinct classes of spaces that have to be treated independently. However,
one can hope that if and when a reasonably testable model of quantum gravity is found, then its
Hilbert (or more generally, functional) space of “wave-functions” will induce the observable metric of
space-time. So from now on, the working assumption will be that such quantum mechanical Hilbert
spaces induce the space-time metric. Therefore, we should address the question about what is so
special about inner product (Hilbert) spaces among the class of all Banach spaces. Since we will be
working with spaces of functions, we will focus on infinite dimensional Banach spaces in the sequel.
To be more concrete, we will have in mind spaces seen frequently in applications such as the spaces
of p-summable sequences (lp), or of Lebesgue p-integrable functions on Rn (Lp) endowed with their
cardinality or their induced Euclidean measure “volume” respectively, appearing in (1)–(5).

2.4. Reflexive and Super-Reflexive Spaces

To proceed in determining desirable properties of the Banach spaces of functions on Rn,
we consider the following. It is widely believed among many, or even most, quantum gravity
practitioners that spacetime properties such as its topology, smoothness, metric etc. should be
“derived” from a quantum theory of gravity rather than be put in the models by hand. This seems to
be a widespread belief, regardless of the exact approach to quantum gravity that someone follows.
It is based in the fact that macroscopic properties of systems can be derived from their quantum
counterparts and rely, to some extent, in the great separation of scales and numbers of degrees of
freedom between the microscopic and the macroscopic scales. This is the main reason, as accepted
today, of why Statistical Mechanics works so well in providing accurate predictions for systems with
many degrees of freedom.
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Independently of such physical considerations, there has been a recent surge of activity in
Geometry and Analysis purporting to better understand first order calculus properties of non-smooth
spaces [21]. An influential work in this direction has been [22], where conditions were given for the
existence of a differentiable structure on metric measure spaces, based on Lipschitz maps, which
also have the doubling property and admit a Poincaré inequality. Among the numerous works that
clarified, elaborated and generalized [22], we could point out [23–26]. In these works, the differentiable
structure appears naturally as a result of the more “primitive” assumptions stated above and presented
in [22]. What is pertinent to our purposes is that [22] discovered that Sobolev spaces of functions on
such metric measure spaces, which seem to be the most relevant from a physical viewpoint, turn out to
be reflexive. Moreover they admit a uniformly convex norm. We will elaborate on the first condition
in this Subsection, and the second in the next Section.

Reflexive Spaces. Let X be a Banach space and let BX indicate its closed unit ball, namely

BX = {x ∈ X : ‖x‖ ≤ 1} (13)

The dual of X , denoted by X ′, is the space of (real or complex valued) continuous linear
functionals of X , namely an element of B(X ,R) or B(X ,C). Examples of such dual spaces are
(c0)

′ = l1, (l1)′ = l∞, (Lp(Rn))′ = Lq(Rn), 1 < p < ∞, p−1 + q−1 = 1 etc. In case X is
finite-dimensional, the closed unit ball of its dual BX ′ is the polar body of the unit ball of X , namely

BX ′ = B◦
X (14)

Generalizing, one can define the bi-dual of X as the dual of X ′. These dualities induce a natural
linear mapping F : X → (X ′)′ given by

F( f ) = f (x) (15)

for x ∈ X and f ∈ X ′ being its dual. There is no a priori reason why the double dual of X should be
equal to X . Usually X ⊂ (X ′)′. A simple example of this inclusion is that the dual of co is l1 and the
dual of l1 is l∞. Therefore the inclusion F : co → l∞ is not surjective. If, however, it happens that under
the canonical map F

X = (X ′)′ (16)

then the Banach space X is called reflexive. It is important that X is isometric to (X ′)′ under the
canonical embedding (15). It is possible for a non-reflexive space to be isometric to its bi-dual;
an example is provided by James’ space. Obviously every finite-dimensional Banach space is reflexive,
due to the rank-nullity theorem. It should be immediately noticed that reflexivity is a topological
property and not a property of the norm of a particular space. This is quite important given the fact
that sometimes we will consider renormings of Banach spaces for the reasons mentioned in Section 2.2.

An example of reflexive Banach spaces are the Lebesgue spaces Lp(Rn), 1 < p < ∞. Reflexive
Banach spaces have numerous desirable properties: one can mention, for instance

1. the dual of reflexive space is reflexive.
2. the closed subspaces of reflexive spaces are reflexive.
3. the quotient spaces of reflexive spaces are reflexive, etc.

The question that comes to mind is whether there are physical reasons why a linear space should
be reflexive. This is unclear in our opinion, beyond the desirable mathematical properties previously
mentioned. It is not clear, for instance, what would be the physical consequences if the bi-dual of a
Banach space were dense, rather than surjective, under the canonical mapping (15).

Discrete spacetime and“internal” symmetries, such as parity, time-inversion and charge
conjugation whose “double dual” is the identity, namely idempotent operations, have played and
continue to play an important role in several branches of Physics. Despite this, it is not clear to us if the
linear functional duality (16) has or reflects some deeper physical origin. One would certainly not want
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to preclude spaces such as L1(Rn) or L∞(Rn) from being used as functional spaces in applications due
to their non-reflexivity. The actual question that is relevant to our purposes is whether such functional
spaces have anything to do with the determination of the Euclidean metric of space-time. The work
of [22] and subsequent developments seem to point out that reflexive (Sobolev) spaces may have some
special geometric significance under the assumptions of his work. For this reason when combined
with the implications of reflexivity for convexity and smoothness, we will restrict our attention to
reflexive Banach spaces only, in the sequel.

Finite representability. One may be able to demand a stronger property along the lines of
reflexivity, from physically relevant Banach spaces, for the purposes of determining the space-time
metric, First a definition: a Banach space X is finitely representable in a Banach space Z if for every
ε > 0 and for every finite-dimensional subspace X0 ⊂ X there is a subspace Z0 ⊂ Z such that
dBM(X0,Z0) < 1 + ε. This essentially means that any finite-dimensional subspace of X can be
represented, almost isometrically, in Z . Equivalently, one controls the distortion of the embedding
of every finite-dimensional subspace of X into Z . From a physical viewpoint the above definition
may be of interest, since it is at the confluence of two ideas: one has to do with the fact that based
on quantum physics, or on the statistical interpretation of theories of many degrees of freedom, one
may have to reconsider or even dispense with the concept of strict, “point-wise”, equality. Instead one
should think much more along the lines of probabilistic equivalence, something that of course needs
further qualifications. From such a perspective though, an approximate rather than strict, demand
for isometry such as required in the definition of finite representability of a finite dimensional linear
space is not unreasonable. The second idea relies on the fact that in any physical measurement we
have a finite number of pieces of data on which to rely. As a result, the infinite dimensional spaces
are excellent mathematical models, but from a very pragmatic perspective we see only their finite
subspaces and then we mentally and technically extrapolate to the infinite dimensional counterparts.
From this viewpoint, properties of finite dimensional vector spaces is the most of what someone can
realistically expect to have to deal with in physical applications.

Super-reflexive spaces. A Banach space X is called super-reflexive if every Banach space which
is finitely representable in X is reflexive. Equivalently, a Banach space X is super-reflexive if no
non-reflexive Banach space Y is finitely representable in X . Examples of super-reflexive spaces,
pertinent to our discussion, are the Lebesgue spaces Lp(Rn), 1 < p < n. Super-reflexive spaces are
reflexive, but the converse is not true. Super-reflexive spaces have numerous desirable properties,
from a physical viewpoint, some of which will be encountered in the next Section as they are pertinent
to convexity and smoothness properties. One property is that if a Banach space is isomorphic to
a super-reflexive space then it is itself super-reflexive. Another useful property is is that a Banach
space X is super-reflexive if and only if its dual X ′ is super-reflexive. The super-reflexivity of Banach
spaces is a property which allows the structure of infinite dimensional Banach spaces to be determined
by the embedding properties of its finite-dimensional subspaces. Since c0 and l1 are not reflexive
Banach spaces, they are not super-reflexive either. For completeness, we mention there are reflexive
spaces are not necessarily super-reflexive: indeed consider a Banach space such that L∞(Rn) is finitely
representable in it; then it cannot be not super-reflexive. In closing, one would like to notice that
super-reflexivity, very much like reflexivity, is a topological property: as it does not really depend on
the specific norm with which the underlying linear space is endowed.

Super-properties. One can be more general at this point and talk about “super-properties”, a term
that we will occasionally use in the sequel. These were defined by R.C. James in [27]. Here, we follow
the excellent “pedestrian” exposition of [28]. Consider a property P that is valid on a Banach space
X . Consider two finite-dimensional subspaces Y ,Z ⊂ X and numbers nP(Y), nP(Z) respectively
such that

nP(Y) → nP(Z) as dBM(Y ,Z) → 1 (17)
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Probably the most straightforward case of this occurrence is when a relation like

nP(Z) ≤ dBM(Y ,Z)nP(Y) (18)

holds. Then the Banach space X has the property P when

nP(X ) = sup
Y

nP(Y) < ∞ (19)

where the supremum is taken over all finite dimensional subspaces of X . Whether a property P
holds for the Banach space X evidently depends on the family F(Y) of all finite-dimensional spaces V
such that

∀ε > 0, ∃Y ⊂ X : dBM(V ,Y) < 1 + ε (20)

In this terminology, finite representability of Y in X amounts to F(Y) ⊂ F(X ). The property P
is called a super-property if whenever a Banach space X has P, then every Banach space Y finitely
representable in X also has P.

The Radon-Nikodým property. An additional property which is quite desirable at the technical
level, and which is extensively used in Statistical Mechanics, where it is usually taken for granted,
is the Radon-Nikodým property. It basically provides a way to make a transition between two different
measures in a measure space. From a certain viewpoint, it can be seen as a generalization of the
change of variables formula employed in multivariable calculus integration. For “practical purposes”,
it states that one can use a function alongside the volume of a manifold as equivalent to any absolutely
continuous measure. Such a density function is the micro-canonical distribution employed extensively
in equilibrium Statistical Mechanics. This mathematical result extends to vector-valued measures as
follows: consider a probability space (Ω, μ) with a σ- algebra of (Borel) sets Σ, U ∈ Σ and a Banach
space X . Let the vector-valued measure ν : Σ → X be countably additive and of bounded variation.
Then there is a (Bochner) integrable function f : Ω → X such that

ν(U) =

ˆ
U

f dμ (21)

For details and the generalization of this concept, from a geometric viewpoint, see [24]. As stated
previously, this is a convenient technical theorem which allows one to use continuous functions f
as a form of a “derivative” dν/dμ. Such functions play an important role in Statistical Mechanics
and quantum/thermal field theories as they do allow the coarse-grained distributions of interest to
be treated as continuous rather than as discrete variables, something that many times simplifies the
calculations. Moreover, it is certainly true that thermodynamic potentials such as the entropy have the
drawback of being coordinate-dependent for continuous distributions; the only known way around
such a difficulty is the use of reference measures which invariably lead to Radon-Nikodým derivatives.
Hence it may be a relief to know that reflexive Banach spaces X do obey the Radon-Nikodým property
and that the same is true for super-reflexive spaces: the obey the super Radon-Nikodým property.

3. Convexity and Smoothness

There are numerous characterizations, singling out inner product spaces among all Banach spaces.
One can consult, for instance, the book [29] for a classical, extensive exposition and numerous results.
We have also found a host of pertinent information in [30,31].

In this Section, we provide some information about one modulus of convexity and one modulus
of smoothness and use them to single out Hilbert spaces among all the Banach spaces of interest.
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3.1. Why Convexity and Smoothness?

There is little doubt that convexity is a fundamental concept, whose origin and initial
developments can be traced as far as the Greek antiquity schools of Geometry such as the Pythagoreans,
having far-reaching consequences in many branches of Mathematics. We are interested in aspects of
convexity, in this work, mainly in the context of vector spaces [32] with our approach oriented toward
the infinite dimensional cases.

Convexity enters dynamics very early, both historically and at a stage of its development. It is
present as early as Newton’s equations, at least. A particle trajectory in 3-dimensional space “bends”
locally in the general direction of the total force acting on the particle. In other words, the total
force acts toward the “convex interior”, vaguely speaking, of the curve. The resulting acceleration is
associated to the curvature of the trajectory in space. Such a curvature is an extrinsic concept though,
namely it depends on the way the curve has been embedded in 3-dimensional space. Incidentally, the
intrinsic geometry of a line is trivial. However this hints at a strong connection between curvature
and convexity of the embedded curve. One can generalize this observation for higher dimensional
sub-manifold embeddings. Such embeddings become crucial in the configuration or in the phase
space of a system. Consider, for instance, an isolated system; its energy os constant. Hence, as is
well-known, its evolution takes place in a co-dimension one sub-manifold of its configuration space.
This can be seen as a simple example of an embedding. The quantity characterizing such embeddings
locally, in Riemannian geometry, is the second fundamental form or its closely associated shape
operator. This topic is a classical one. For an overview and many references, see the recent thesis [33].
The statement of interest, for our purposes, is that if one considers a compact hyper-surface M of Rn

endowed with the induced Euclidean metric, and the second fundamental form of this embedding is
positive-definite everywhere on M, then M bounds a convex subset of Rn [34]. This provides a local
characterization of convexity for embeddings and can be seen as a generalization of the kinematical
framework that originated with Newton’s equations.

One also expects convexity to be related to smoothness at least in the context of finite-dimensional
vector spaces V . A hand-waving argument that may illustrate this relationship is as follows: Consider
a curve γ : [0, 1] → V which is locally rectifiable and which is arc-length parametrized by s ∈ [0, 1].
For simplicity, and in order to make this argument more clear, assume that γ rests on a 2-plane, at
least in some neighborhood Ux around a point x corresponding to γ(s0). Then consider the osculating
circle of γ at x: this is a circle with a common tangent to the tangent dγ(s0)

ds whose center is along
the normal line to the tangent in the 2-plane around Ux. The radius of the osculating circle is equal
to the radius of curvature R(s0) at x. The smaller the radius of curvature R(s0) the more “steeply”
the curve turns. Now assume that R(s0) → 0. This will result in the formation of a corner at γ(s0)

so γ will no longer be differentiable at s0. At the same time, intuitively speaking, the “amount of
convexity”, a concept that really needs to be made precise, of γ(s0) will increase as R(s0) → 0. A word
of caution at this point: using Clarkson’s modulus of convexity which is a primary object of interest in
this work, such a shrinking of the radius of curvature would leave that modulus unaffected. Still the
statements regarding convexity in this paragraph were meant to be heuristic and suggestive, rather
than precise, in order to visually illustrate our motivation for the use of convexity and smoothness and
their inter-relation, in the rest of this work.

Convexity can also be seen at the level of Einstein’s field equations of General Relativity. These are,
in 4-dimensions,

Rμν − 1
2

Rgμν =
8πG

c4 Tμν (22)

assuming that the cosmological constant Λ = 0 and μ, ν = 0, 1, 2, 3. Consider the null energy
condition [35], which is (arguably) the most fundamental of the energy conditions [36],

Tμνlμlν ≥ 0 (23)
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where l is a null vector. (23) amounts to essentially demanding that

Rμνlμlν ≥ 0 (24)

(24) can be interpreted as a (mean) convexity condition in a null direction: one way is to see that the
Ricci tensor involves two derivatives of the components of the metric tensor hence the non-negativity
of (24) signifies convexity in analogy with the case of functions. Such convexity can also be seen
in a Riemannian context. There, the non-negativity of the Ricci curvature (24) can be shown [37] to
imply a generalized Brunn-Minkowski inequality, which is essentially a statement about the concavity,
the convexity of the opposite function, of the volume in Euclidean and Riemannian spaces.

3.2. A Modulus of Convexity

Convex sets. To be more precise and attempt to make the exposition somewhat self-contained,
we present the following well-known definitions and statements. Consider V to be a vector space over
R or C. A subset A ⊂ V is called (affinely) convex if

{ta1 + (1 − t)a2, t ∈ [0, 1]} ⊂ A, ∀a1, a2 ∈ A (25)

Equivalently, for every n ∈ N and for every t0, t1, . . . , tn ∈ [0, 1] such that t0 + t1 + . . . + tn = 1
and for every a0, a1, . . . , an ∈ A, we have t0a0 + t1a1 + . . . + tnan ∈ A. Obviously Rn as well as its
linear and affine subspaces are convex. The same conclusion holds about open and closed unit balls in
normed vector spaces.

Convex functions. Convex functions can be considered as generalizations of convex sets.
Let A ⊂ V be a convex subset of the linear space V and let f : A → R be a function. The epigraph of f
is defined to be the set

Ep( f ) = {(a, t) ∈ A×R : f (a) ≤ t} (26)

Then, such a function f is called convex, if Ep( f ) is a convex subset of A×R. Equivalently, if for
all a, b ∈ A and t ∈ [0, 1], such f satisfies the inequality

f (ta + (1 − t)b) ≤ (1 − t) f (a) + t f (b) (27)

The combination of homegeneity and the triangle inequality shows immediately that a norm ‖ · ‖
on V is a convex function. Other convex functions are the distance functions between two lines in
Euclidean space (Rn endowed with the Euclidean metric) and, more generally, distance functions on
metric spaces of negative curvature. Moreover, if in a normed (more generally: a metric) space V with
A ⊂ V and for all a ∈ V , one defines

dA(a) = inf
b∈A

‖a − b‖ (28)

when A is a nonempty closed convex subset of V , then the distance function dA : V → R+ is convex.
Convex functions have many nice properties: they are semicontinuous and almost everywhere

differentiable, they possess left and right derivatives (which however need not coincide), limits of
sequences of convex functions defined on convex sets are convex functions, they have a unique
minimum and they obey the local-to-global property, namely a locally convex function is actually
(globally) convex. It is properties like these that make convex functions so useful and widespread in
Physics and, in particular, in Analytical Mechanics and Thermodynamics.

A modulus of convexity. A next logical step is to find a way to quantify the extent of convexity
of a set or of a function. Naturally, determining such a “modulus of convexity” is not a unique process
and it involves making certain choices. Simplicity and computability in, at least, simple cases are
usually good guidelines, as far as physical applications are concerned. A relatively recent list of such
moduli which is quite extensive, even if not necessarily comprehensive, can be found in [38].
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The oldest and most studied among the moduli of convexity is due to J.A. Clarkson [39,40].
To define it, consider the normed linear space (X , ‖ · ‖), let BX indicate its closed unit ball, as before,
and let ε ∈ [0, 2]. The modulus of local convexity is defined by

δ(x, ε) = inf
{

1 −
∥∥∥∥ x + y

2

∥∥∥∥ : y ∈ BX , ‖x − y‖ ≥ ε

}
(29)

Then Clarkson’s modulus of convexity of X denoted by δX : [0, 2] → [0, 1] is defined as

δX (ε) = inf{δ(x, ε) : x ∈ BX } (30)

This can be equivalently expressed as

δX (ε) = inf
{

1 −
∥∥∥∥ x + y

2

∥∥∥∥ : x, y ∈ X , ‖x‖ = ‖y‖ = 1, ‖x − y‖ = ε

}
(31)

It should be immediately noticed that this modulus of convexity is really a property of the 2-plane
spanned by x, y ∈ X which is then inherited by X . This should look familiar: the curvature of
an n-dimensional Riemannian manifold M is a genuinely 2-dimensional concept which is actually
formulated on its Grassmann manifold G2,n(M). The (sectional) curvature expresses the deviation of
the metric of M from its flat counterpart [41]. The characteristic of convexity of (X , ‖ · ‖) is defined
as [42]

ε0(X ) = sup{ε ∈ [0, 2] : δX (ε) = 0} (32)

Uniformly convex spaces. A Banach space (X , ‖ · ‖) is uniformly convex when it has non-zero
modulus of convexity, namely δX (ε) > 0, ε ∈ (0, 2] or equivalently when ε0(X ) = 0. Geometrically,
the idea of the definition is simple: uniformly convex spaces have a unit ball BX whose boundary
unit sphere SX does not contain any (affine) line segments. Roughly speaking: the further away
from containing an affine segment SX is, the higher the modulus of convexity of X is. It should be
noticed that according the D.P. Milman [43] - B.J. Pettis [44] theorem, uniformly convex spaces are
reflexive. Actually one can see that uniformly convex spaces are actually super-reflexive. Hence, if one
deems reflexivity or super-reflexivity to be a desirable, or pertinent, property in an argument about
the Euclidean nature of the space-time metric, as was stated above, then confining their attention to
uniformly convex Banach spaces will not miss this property.

From a different viewpoint, it is known from the work of P. Enflo [45] and R.C. James [46] that
X is super-reflexive if and only if it has an equivalent uniformly convex norm. “Equivalence” in this
theorem is meant to be understood in the sense described in Subsection 2.2. Therefore, insisting on
having super-reflexivity of the underlying functional spaces that determine/induce the space-time
metric usually has to allow for a change of their norm to a uniformly convex one, if this is feasible.
This change may have substantial physical implications for the underlying model. If however, as
mentioned above, one is only interested in large-scale “coarse” phenomena that ignore spatially “small”
details and arise as a result of statistical averaging of many degrees of freedom, then one believes that
such a renorming will leave the macroscopic quantities of interest unaffected.

Modulus of convexity of Lebesgue spaces. Explicitly calculating the modulus of convexity for
specific Banach spaces has proved to be more difficult than one might have naively anticipated. This is
one reason why so many different moduli of convexity have been defined over the decades, after
Clarkson’s work [38]. For completeness, we mention that for p = 1 and for p = ∞, δLp = 0 as these two
Banach spaces are not uniformly convex. The fact that the other Lebesgue spaces Lp(Rn), 1 < p < ∞
are uniformly convex was already known to [39]. For a simpler and more recent proof, see [47].
However, the explicit asymptotic form of their modulus of convexity was determined by [48] who
relied on the inequalities bearing his name [48,49] to reach his result. Hanner proved that
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δLp(ε) =

⎧⎪⎨⎪⎩
(p − 1) ε2

8 + o(ε2), if 1 < p ≤ 2

1
p
(

ε
2
)p

+ o(εp), if 2 ≤ p < ∞
(33)

One cannot fail to notice the “phase transition” in the asymptotic behavior of this modulus of
convexity occurring around p = 2, namely around the Hilbert space case. An inevitable question is
how generic such a behavior might be, among all Banach spaces. If it is, then it would be an initial
indication that Hilbert spaces may be “special”, from a convexity viewpoint. It turns out that this
is essentially true, and this is the statement on which the main argument of the present work relies.
This is the realization that among all Banach spaces, the Hilbert space is the “most” convex. To be
more precise, it was proved in [50] that among all Banach spaces X , the Hilbert spaces H have the
largest modulus of convexity, namely

δX (ε) ≤ δH(ε) (34)

where

δH(ε) =
2 −√

4 − ε2

2
(35)

It is also interesting to notice that the results of [50] when combined with those of [51,52] prove
that if a linear space X is such that the equality in (34) holds, then X is an inner product space.

Modulus of convexity and equivalences. It should be noted that the modulus of convexity δX (ε)

is not necessarily itself a convex function of ε. What we know, for instance, is that for an infinite
dimensional uniformly convex Banach space X , we have that

δX (ε) ≤ Cε2 (36)

For a Hilbert space we have (35) which is, obviously, compatible with (36). So, in a quantitative
sense, the closer δX is to ε2 for a normed space X , the closer X is being maximally convex, hence the
closer it is to being a Hilbert space H. T. Figiel [53] showed that one can consider as a modulus of
convexity instead of δX (ε) the greatest convex function δ̃X (ε), namely

δ̃X (ε) ≤ δX (ε) (37)

Then [53]
c1δX (c2ε) ≤ δ̃(ε) (38)

for constants c1 > 0, c2 > 0.
The re-definition employed in [53] is reminiscent of the equivalence of growth functions in

geometric group theory when one has to decide whether such a growth function is exponential,
polynomial or has an intermediate growth rate [54]. The reason for such similarity is quite clear:
in geometric group theory, as in our case, one really cares about equivalences that may distort distances,
but leave large-scale details of the structure invariant. The metric equivalence employed there is
that of quasi-isometric maps, which distorts distances between two metric spaces (X1, d1), (X2, d2)

according to

1
c1

d1(x, y)− c2 ≤ d2( f (x), f (y)) ≤ c1d1(x, y) + c2, ∀x, y ∈ X1 (39)

where c1 > 1 and c2 > 0. The difference between (6) and (39) is the presence of c2 in (39) which
completely ignores structures whose length is smaller than c2. We have previously employed such
equivalences in our work in [55,56] in our attempt to determine the dynamical basis of a power-law
entropy, something that may have implications for the derivation of the metric of space-time from
microscopic models of quantum gravity. The use of such maps acquires even greater significance when
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one considers that it is intimately related to properties of (Gromov) hyperbolic spaces. After a 3 + 1
decomposition, 3-dimensional manifolds represent space-like hyper-surfaces in spacetimes. Following
the results of the Thurston geometrization program (see [57] for an overview), it seems that “most”
of the 3-dimensional manifolds are hyperbolic. Hence quasi-isometries and similar ideas may be
relegated to a central role in determining classical/long-distance structures of the (4-dimensional)
spacetimes from their microscopic/quantum foundations.

3.3. A Modulus of Smoothness and a Duality

A quantity intimately related to convexity, in the context of normed linear spaces, is smoothness.
In line with convexity, one also needs a way to quantify the amount of smoothness of a linear space.
Once more, there is no unique way of how to go about constructing such a modulus of smoothness
and actually several such moduli of smoothness have been constructed over the years [38].

A modulus of smoothness. The oldest and most studied modulus of smoothness is due to
M.M. Day [40] and J. Lindenstrauss [58]. The modulus of smoothness of a normed space (X , ‖ · ‖) is a
function ρX : [0, ∞) → R which is defined by

ρX (t) = sup
{‖x + ty‖+ ‖x − ty‖

2
− 1, x, y ∈ BX

}
(40)

This can be alternatively defined as

ρX (t) = sup
{‖x + y‖+ ‖x − y‖

2
− 1 : x ∈ BX , ‖y‖ ≤ t

}
(41)

or as

ρX (t) = sup
{‖x + y‖+ ‖x − y‖

2
− 1, x, y ∈ SX

}
(42)

One defines the coefficient of smoothness of X by

ρ0(X ) = lim
t→0+

ρX (t)
t

(43)

Uniformly smooth spaces. The Banach space (X , ‖ · ‖) is called uniformly smooth if ρ0(X ) = 0.
One sees immediately that uniform smoothness is a point-wise property and is essentially
2-dimensional, as is the case for uniform convexity. In a pictorial sense, this modulus of smoothness
captures the fact that the unit sphere SX of the Banach space X is smooth, i.e., that it has not corners.
More issue on this issue is discussed below.

Before continuing it may be worth developing a pictorial idea about uniform convexity and
uniform smoothness. Consider, for instance, a square with rounded corners. This is not uniformly
convex, since it includes line segments in its boundary, but it lacks corners, so it is uniformly smooth.
Consider now the, assumed non-empty and not a point, intersection of two equal radius disks: it is
uniformly convex as its boundary contains no line segments, but it is not uniformly smooth since at
the two intersection points of the two circles which are the boundaries of the two disks, the figure
has corners.

Modulus of smoothness of Lebesgue spaces. Unlike the modulus of convexity, the modulus of
smoothness is a convex function, essentially by definition. The asymptotic behavior of the modulus of
smoothness of the Lebesgue spaces Lp(Rn) were also calculated in [48]. O. Hanner found that

ρLp(t) =

⎧⎪⎨⎪⎩
tp

p + o(tp), if 1 < p ≤ 2

p−1
2 t2 + o(t2), if 2 ≤ p < ∞

(44)
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The same comments and thoughts regarding the phase transition around p = 2 apply here as in
the case of the modulus of convexity as stated above. The counterpart of (34) was also established,
and it states that that for any Banach space X one has

ρX (t) ≥ ρH(t) (45)

Therefore Hilbert spaces are the least smooth among all Banach spaces. Moreover, the exact same
statement as the one following (35) applies for the modulus of smoothness: if a Banach space X obeys

ρX (t) = ρH(t) (46)

then X is an inner product space. The modulus of smoothness, very much like for the modulus of
convexity, of a Hilbert space is a result of the validity of the parallelogram equality and it is given by

ρH(t) =
√

1 + t2 − 1 (47)

The analogue of (36) is that for an infinite dimensional Banach space X one has

ρX (t) ≥ ct2 (48)

The Milman-Pettis theorem established, in addition to uniform convexity, that uniformly smooth
spaces are reflexive. Even though the dual of a super-property may not be a super-property, using
the “convexity-smoothness” duality of the next paragraph, one sees that uniformly smooth spaces are
indeed super-reflexive. Analogous things can be stated about the uniform smoothability of a Banach
space as were stated about their uniform convexifiability, with equivalent norms.

A duality and the Legendre-Fenchel transforms. One observes form the above that Clarkson’s
modulus of convexity and the Day-Lindenstrauss modulus of smoothness appear to behave very much
like dual concepts. The fact is that this suspected duality is true. More precisely, [58] proved that a
Banach space X is uniformly convex if and only if its dual X ′ is uniformly smooth. The exact relation
between the corresponding moduli is given by the Legendre-Fenchel transform

ρX ′(t) = sup
{

εt
2
− δX (ε), 0 ≤ ε ≤ 2

}
(49)

or, equivalently,

ρX (t) = sup
{

εt
2
− δX ′(ε), 0 ≤ ε ≤ 2

}
(50)

Therefore, every theorem valid for convexity has a dual analogue valid for smoothness. We see,
for instance, that

ρ0(X ′) = 1
2

ε0(X ), ρ0(X ) =
1
2

ε0(X ′) (51)

which shows that a Banach space X is uniformly convex if and only if its dual X ′ is uniformly
smooth. Continuing along the lines of the quantification of convexity and smoothness, one can state
the following: consider the Banach space X . It turns out that

δX (ε) ≥ Cεq, q ≥ 2 (52)

in which case X is called a q−convex space. According to a theorem of Figiel and Assouad, this is
equivalent to the existence of some constant α such that

1
2
(‖x + y‖q + ‖x − y‖q) ≥ ‖x‖q + α‖y‖q, ∀x, y ∈ X (53)
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For smoothness, the corresponding statement is that for the Banach space Y one has

ρY (t) ≤ ctp, 1 < p ≤ 2 (54)

in which case Y is called p−smooth. Then, according to a theorem of Pisier and Assouad, this is
equivalent to the existence of some constant β such that

1
2
(‖x + y‖p + ‖x − y‖p) ≤ ‖x‖p + β‖y‖p, ∀x, y ∈ Y (55)

Based on the Legendre-Fenchel duality noted above, one can also state that a Banach space X is
q-convex if and only if its dual X ′ is p-smooth, where q qnd p are harmonic conjugates, namely

1
p
+

1
q
= 1 (56)

3.4. Smoothness, Derivatives and Equivalences

The word “smoothness” is associated, in a typical Physicist’s mind, with the concept of the
derivative. It may be of interest to know that the same can be stated for the cases of the Banach spaces
of our interest. Using infinite dimensional spaces though introduces additional complexities and also
possible counter-intuitive features that should be carefully accounted for. For one, there are several
possible definitions for the (directional) derivative in a normed space. We only need the definition
of the Frechét derivative in this work [31]. Let X ,Y be Banach spaces and let f : X → Y . Then f is
called Frechét differentiable at x ∈ X , if there is a bounded linear operator Ax : X → Y such that the
following limit exists uniformly for y ∈ SX

Axy = lim
t→0

f (x + ty)− f (x)
t

(57)

If this limit indeed exists, then it is called the Frechét derivative of f at x and is indicated by Df (x).
The pertinent statement is that if X is a uniformly smooth Banach space then its norm f (x) = ‖x‖ is
Frechét differentiable for every x ∈ X\{0}. In such a case, one can see that the linear approximation to
f at x through Df (x) is valid, namely we can write

f (x + y) = f (x) + Df (x)y + o(‖y‖) (58)

If a function is Frechét differentiable at a point, it turns out that it is also continuous at that point,
which is the Banach space analogue of a well-known and frequently used result of elementary calculus.

In addition to the above, it turns out [31] that for a Banach space X the following statements
are equivalent:

• X is super-reflexive.
• X admits an equivalent, uniformly convex norm, whose modulus of convexity satisfies, for some

q ≥ 2,
δX (ε) ≥ c1εq (59)

• X admits an equivalent, uniformly smooth norm, whose modulus of smoothness satisfies, for
some 1 < p ≤ 2

ρX (t) ≤ c2tp (60)

Moreover, Asplund [59] showed that a space which admits two equivalent norms one of which
is uniformly convex and the other uniformly smooth, admits a third one which is equivalent to the
previous two and which has both properties. As a special case, one can state that a super-reflexive
space admits an equivalent norm which is both uniformly convex and uniformly smooth.
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3.5. Type, Co-Type and Moduli

Rademacher functions. The powers q and p in the lower bound of the modulus of convexity
(52) and in the upper bound in the modulus of smoothness (54), respectively, have a nice
geometric-probabilistic interpretation. To formulate it, we need to use the Rademacher functions
which are defined as ri : [0, 1] → ±1 by

ri(t) = sign[sin(2iπt)], i ∈ N (61)

We see that the Rademacher functions can be interpreted as a sequence of identically distributed
random variables on [0, 1] endowed with its Lebesgue measure, taking values ±1, each with probability
0.5. It may be worth noting that for vectors xi, i = 1, . . . n in a Banach (or more generally in a normed)
space (X , ‖ · ‖), one has ˆ 1

0

∥∥∥∥∥ n

∑
i=1

ri(t)xi

∥∥∥∥∥
p

dt = E

(∥∥∥∥∥ n

∑
i=1

εixi

∥∥∥∥∥
p)

(62)

where the expectation value E is taken over εi = ±1.
Type. Suppose now that for any finite number n and any choice of vectors xi, i = 1, . . . , n of X

there is a constant Cp > 0 such that

(ˆ 1

0

∥∥∥∥∥ n

∑
i=1

ri(t)xi

∥∥∥∥∥
p

dt

) 1
p

≤ Cp

(
n

∑
i=1

‖xi‖p

) 1
p

(63)

then the Banach space X is said to have type p. The best constant Cp(X ) in the definition (63) is called
type-p constant of X . Consider A.I. Khintchine’s inequality for ai, ai ∈ R, i = 1, . . . , n, 0 < p < ∞, the
Rademacher functions ri(t), and constants Ap, Bp, namely

Ap

(ˆ 1

0

∣∣∣∣ n

∑
i=1

airi(t)
∣∣∣∣pdt

) 1
p

≤
(ˆ 1

0

∣∣∣∣ n

∑
i=1

airi(t)
∣∣∣∣2dt

) 1
2

≤ Bp

(ˆ 1

0

∣∣∣∣ n

∑
i=1

airi(t)
∣∣∣∣pdt

) 1
p

(64)

If we assume that all vectors are equal in (63), then by using (64) we see that that p ≤ 2. By using
the triangle inequality, one can also see that p ≥ 1. Therefore the only allowed values for a type p
Banach space are 1 ≤ p ≤ 2. This is equivalent to stating that the elements of the family F(Z) of
finite-dimensional subspaces Z ⊂ X satisfy

sup
F(Z)

Cp(Z) < ∞ (65)

which shows that X having type p is a super-property. One can also see that if p′ < p then type p
implies type p′.

Co-type. With similar notation as for type, a Banach space Y has co-type q if there is a constant
C′

q > 0 such that (ˆ 1

0

∥∥∥∥∥ n

∑
i=1

ri(t)xi

∥∥∥∥∥
q

dt

) 1
q

≥ C′
q

(
n

∑
i=1

‖xi‖q

) 1
q

(66)

for any n ∈ N and for any set of vectors xi ∈ Y . Again, the best constant C′
q(Y) in (66) is called the

co-type q constant for Y . This again is equivalent to stating that the elements of the family F(W), for
all finite-dimensional subspaces W ⊂ Y satisfy

sup
F(W)

Cq(W) < ∞ (67)
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which also shows that Y having co-type q is a super-property. By using Khintchine’s inequality again,
one can see that the co-type of any Banach space that has one has to be q ≥ 2. One can also see that if
q′ > q, then co-type q implies co-type q′.

Type and co-type properties. As an explicit example of type and co-type we know [30] that the
Lebesgue spaces Lp(Rn) have

• Type p and co-type 2, if 1 ≤ p ≤ 2
• Type 2 and co-type p, if 2 ≤ p < ∞

One again cannot fail to notice the “phase transition” in the behavior of type and co-type of
Lp(Rn) taking place around p = 2. Hilbert spaces are singled out in a stronger sense: indeed, using
the parallelogram equality (38) below, one can see that a Hilbert space has type 2 and co-type 2. That
the converse is also true, is a non-trivial result due to S. Kwapień [60].

The type and co-type of a Banach space X can be seen in a variety of ways: one way is to state
that they are a way of quantifying how far X is from being a Hilbert space. The comparison of the
definitions of type and co-type with the parallelogram equality that only Hilbert spaces satisfy

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2) (68)

is quite suggestive. In view of the last paragraph of this Subsection (see below) the same can be
stated by comparing (68) to (53) and (55) which alternatively quantify the moduli of convexity and
smoothness of X .

Now, one can inquire about the robustness of the concepts of type and co-type. J.P. Kahane’s
inequality [61] is a vector-valued extension of A.I. Khintchine’s inequality (64) and states, with the
above notation, that for every 0 < p < q < ∞ there is a constant C(p, q) > 0 such that

(ˆ 1

0

∥∥∥∥∥ n

∑
i=1

ri(t)xi

∥∥∥∥∥
p

dt

) 1
p

≤
(ˆ 1

0

∥∥∥∥∥ n

∑
i=1

ri(t)xi

∥∥∥∥∥
q

dt

) 1
q

≤ C(p, q)

(ˆ 1

0

∥∥∥∥∥ n

∑
i=1

ri(t)xi

∥∥∥∥∥
p

dt

) 1
p

(69)

This shows that the type p and co-type q are properties that are maintained under an equivalent
norm. Moreover, instead of using Rademacher functions in the definitions, something which is
technically convenient, one could use centered Bernoulli random variable, Gaussian random variables
etc. with just a change in the values of the constants in the definitions [62].

Type, co-type and moduli. The relation of the type and co-type of a Banach space with its moduli
of convexity and smoothness is contained in the following theorem due to T. Figiel, G. Pisier [63]:
Let X be a uniformly convex Banach space with modulus of convexity satisfying δX (ε) ≥ Cεq for
some q ≥ 2. Then X has co-type q. Let Y be a uniformly smooth Banach space whose modulus of
smoothness satisfies ρY (t) ≤ ctp for some 1 < p ≤ 2. Then Y has type p. Therefore the moduli of
smoothness and convexity of a Banach space are bounded by the type and co-type of that Banach
space, assuming that the latter exist. It may be worth noticing at this point the behavior of type and
co-type under duality: It is known that when a Banach space X has type p, then its dual X ′ has
co-type q where p and q are harmonic conjugates of each other. However the converse is not true
without one additional assumption. The accurate statement is that if a Banach space X has non-trivial
type, and co-type q, then its dual X ′ has type p, where p and q are harmonic conjugates of each other.
For excellent expositions of the type and co-type of normed spaces, including proofs of all of the above
statements, one may consult [30,31,62].

4. The Space-Time Metric from Variational Principles

One cannot fail to notice from the content of the previous Sections, the unique role that inner
product (Hilbert) spaces H play among all Banach spaces X and, in particular, the distinct role of
L2(Rn) among all Lp(Rn). Such Hilbert spaces are, at the same time, the most convex and least smooth

451



Universe 2017, 3, 8

among all Banach spaces. They are the only Lebesgue spaces that have the same type and co-type 2.
In addition, they are super-reflexive. Moreover such Hilbert spaces are the only self-dual Lebesgue
spaces under harmonic conjugation, a basic fact reflecting properties of the polarity of convex bodies
and of the Legendre-Fenchel transformations [64].

Functional integrals and variational principles. Using extremal (more accurately: stationary)
properties of functionals under infinitesimal variations subject to appropriate boundary conditions has
been a fundamental aspect of Classical and Quantum Physics since the time of Maupertuis, D’Alembert
and Lagrange at least [65], if not earlier. In particular, a large number of works in Quantum Physics
have used and continue to use as starting point, especially for calculational purposes, the stationary
phase or saddle point approximation which rely on the vanishing variation under small perturbations
of a judiciously chosen functional (the “classical action” S) [66], an approach that can be traced back to
an original idea of P.A.M. Dirac [67]. In this path-integral approach, as is very well-known, one starts
with the path-integral/canonical partition function as the primary object encoding the statistically
significant properties of the system

Z =

ˆ
e−S [Dφ] (70)

where φ corresponds to the variables (“fields”) in the action S to be integrated over and [Dφ] represents
an appropriate integration measure, which may not rigorously be known on whether it even exists, but
whose ad hoc choice (usually being of Gaussian form) allows concrete calculations to be performed
and eventually the results derived from it to be compared with experimental data. In the case of
quantum gravity the most immediate choice for S is usually taken to be the Einstein-Hilbert or the
Palatini actions, a Chern-Simons action, of their discretized counterparts etc., each of which may be
augmented with boundary terms and/or topological terms etc.

Other entropies and robustness. Before proceeding, we would like to have a short digression.
During the last three decades, there have been several functionals that have been proposed
purporting to capture the collective/thermodynamic properties of systems of many degrees of freedom.
One motivation for the formulation of such functionals, such as the “Tsallis entropy” [15] or the
“κ-entropy” [16] is to determine the thermodynamic properties of systems with long-range interactions.
From the Newtonian viewpoint, gravity clearly falls in this category, as well as Maxwell’s theory of
electrodynamics etc. Assuming that such functionals may prove to be applicable to a path-integral
formulation of aspects of semi-classical or even quantum gravity, the arguments of the present work
will still hold without any major modifications. The minor modification needed in case such functionals
are pertinent, is to use in (70) another convex function instead of the exponential one, something
akin to the aptly named “q-exponential” [15], whose form will have to be determined. One could
possibly use the maximum entropy principle subject to appropriate constraints, for such a purpose.
A second minor, for our purposes, modification may be to substitute some other measure in the
place of the often used Gaussian measure in (70). Beyond these points, we expect the above analysis
to still be valid. Another point that will most likely change is the rate of convergence to the limit
of the saddle-point approximation, which is intimately related to the probability of dealing with
space-time geometries that may be non-Euclidean. This in the spirit of theories having a statistical
interpretation, where even when the “classical” limit is known, it is the form of the “semi-classical”
contributions/corrections that is used to distinguish between several competing models purporting to
describe the same physical phenomenon.

Generalized path integrals. Going back to our argument, in the spirit of the path-integral,
an often discussed but still unsolved question is whether one should extend (70) by considering
additional contributions by summing over more “primitive”, than the metric, structures such over
all topological, piecewise-linear, differentiable etc. structures. Most of the treatments to quantum
gravity that we are aware of, address the issue of a possible sum in the right-hand-side of (70) over
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all topologies. Then the modification of (70) states that the partition function of quantum gravity
should be

Ztop = ∑
topologies

ˆ
e−S [Dφ] (71)

Such possible summation over all topologies has presented insurmountable difficulties, which can
be credited in large part for the eventual demise of the dynamical triangulation approach to quantum
gravity [68], where one is faced with hard problems of Gödelian type indecisive propositions.

On the other hand, (71) can be used as as starting point for a similar question, where the
summation is not over all topologies of 4-dimensional manifolds, which are of course locally spaces
endowed with a Euclidean metric. One could instead ask for summation over all metrics that can
be placed on the underlying topological or uniform structure of the space whose classical limit will
eventually be a space-time. This however is would be a very broad set, hence a very difficult to analyze
class of metrics. To be closer to something manageable, and also be in accordance with the equivalence
principle demanding the local approximation of the underlying structure with linear spaces, one may
wish to consider locally, only p-integrable Banach metrics, namely metrics/norms induced from
Lp(Rn). This effectively generalizes the underlying space-time structure from that of a Riemannian to
something akin to a Finslerian space. Therefore one could write a modified path-integral/canonical
partition function, instead of (71), as

ZB = ∑
p≥1

ˆ
e−S [Dφ] (72)

with the summation being over all metrics of a space(-time) which are locally induced by the Lp(Rn).
In conventional path-integral approaches to quantum gravity such a summation does not arise, since
one has already determined to only use Euclidean metrics on the space-time underlying manifold.

One could use the lack of renormalizability of the path-integral expressions like (70) around their
saddle points, namely around a fixed background metric, to argue against such an approach [69].
After all, if (70) gives rise to non-renormalizable interactions around Minkowski space, this should
force us to believe that it precludes (72) from being more successful to that end. Such a criticism
would be misguided though. Lack of renormalizability of (70) takes into account only metrics of
Riemannian (quadratic) form on the underlying space and the saddle point is calculated within
the set of such metrics. What we propose is to enlarge such a set to the more general locally
p-integrable Banach metrics. Since our argument is quite empirical/“phenomenological” rather
than fundamental/dynamical, the issue of renormalizability of the underlying path-integral does not
even enter our considerations.

Demanding a summation over such p-integrable metrics as in (72) may be reasonable, or not, but
only after someone can properly write a finite classical action A for them. How exactly to do this is not
clear to us at this stage. There are synthetic definitions of the Ricci and even the scalar curvature for
metric measure spaces with very little regularity [70]. One could use them and alongside a general
minimal cost transportation to possibly argue in this direction. What is sorely lacking in such cases
though is the formalism that could accommodate expressions for the non-gravitational fields capturing
the essence of the stress-energy tensor and recasting it in such a synthetic framework. Therefore a
dynamical argument, which would be the most desirable, in favor of Hilbert spaces and their induced
Euclidean metrics does not seem to be feasible, in any obvious way, at this stage.

A “kinematic” approach via smoothness. Given the above difficulties, we have to resort to ad
hoc decisions in order to proceed. To the extent of our knowledge, there has never been a variational
principle of “maximum convexity” or a principle of “minimal smoothness” that would single out
Hilbert spaces among all Banach spaces. The path-integral/partition function approach to quantum
Physics can be interpreted as suggesting that all allowed possibilities in quantum evolution should be
considered in calculating quantities of interest, each possibility however being assigned with a different
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weight factor. Following this viewpoint one can extend/stretch the domain of this interpretation to
allow not only for a set of Riemannian metrics to contribute to the evolution of a gravitational system
but also consider a broader class of possible metrics. To keep things close to the familiar territory
of Riemannian/Lorentzian metrics we have used induced metrics on space-time locally induced by
Lp(Rn), as was mentioned before. The familiar picture of space-time appears then as the classical limit
of a theory of quantum gravity, and so are its associated properties like smoothness, etc.

Given the assumed irregularity/granularity of space-time at a fundamental level (expressed
through spin networks in loop quantum gravity, partially ordered sets with discrete measures in the
causal set approach, simplicial approximations and Regge calculus in causal dynamical triangulations
etc.) it may not be out of place to assume that nature chooses the least smooth class of metrics among
such induced metrics from Lp(Rn), 1 ≤ p < ∞. Therefore it is the Hilbert space metric/norm L2(Rn)

that provides the only extremal, hence dominant, contribution in an “extended” path-integral approach
(72) which, in turn, induces its properties to the classical space-time limit of the quantum gravitational
theory. In short, the induced metric of space-time inherits its Euclidean character from that of L2(Rn)

which dominates the path-integral (72), by being the least smooth.
Convexity and predictability. A somewhat complementary argument for Hilbert spaces and the

induced Euclidean metric form on space-time, can be made based on convexity and predictability.
As stated in the previous sections, the Hilbert spaces H = L2(Rn) are the most convex among all
Lp(Rn). Contrast the behavior of the norm/metric of H to those of the family of Lp(Rn) that are the
least convex. These are L1(Rn) and L∞(Rn) which are neither uniformly convex nor uniformly smooth,
nor are they reflexive, so they have been largely ignored in most part of this work. Nevertheless, use
of these two spaces can help make this argument more transparent.

Consider, for concreteness, the L1(Rn) space, or to be more intuitive, the metric induced by the
related l1 norm on R2. This metric, for �x = (x1, x2),�y = (y1, y2) where the coordinates are considered
with respect to a Cartesian system, is given by

d(�x,�y) = |x1 − x2|+ |y1 − y2| (73)

Then one can see that there is an infinity of geodesics connecting �x and �y. This by itself is not a
drawback: after all, the north and south poles of a sphere with the induced metric from the Euclidean
space are also connected by infinite geodesics (the meridians). The definition of geodesics is not a
problem either: in metric geometry [71] they can be defined to be the isometric images of the unit
interval. The problem exists because many of the geodesics between �x and �y in the (73) are branching:
geodesics that have initially a common segment can separate after a while. If one assumes strong
locality in a theory of gravity, whose metric is even “Euclidianized” (made positive-definite) after
a Wick rotation, then this presents a problem with predictability. Since the theory does not possess
any “memory” in its formulation, how then one can make any prediction based on the behavior of
geodesics which largely encode the underlying geometry, if the theory has branching geodesics? If, for
instance, the action S or the resulting kinematic equations possessed some form “memory” as in the
case of systems being modelled by fractional derivatives [72–74], then the use of geometric structures
with branching geodesics might not pose a serious problem to predictability. Knowing this, one may
wish to stay as far away as possible from using metrics that may allow for the possibility of branching
geodesics. It turns out that the Hilbert space L2(Rn) is the furthest away from resembling L1(Rn)

which has branching geodesics, at least when one uses the modulus of convexity to quantify such
a difference.

The counter-argument to the above is that L1(Rn) has branching geodesics exactly because it is not
uniformly convex. If someone chose any other Lp(Rn), p �= 1 then this problem would not exist. This is
largely correct. However it assumes very much like many occasions in classical Physics that some
objects can be well-approximated by point particles, which in the absence of (non-gravitational) forces
move along causal (in the Lorentzian signature framework) geodesics. When the quantum nature of
such an object comes into consideration though, even in a fixed, classical background space-time, this
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statement would not be accurate. The uncertaintly principle would prevent such point-like structures
from existing; this introduces substantial technical complications for any operator in the assumed
Fock space of a quantum gravity theory following the canonical approach, such as loop gravity for
instance: the operator has to be “smeared”, namely to act on test not at a particular point but on an
appropriately chosen neighborhood of it before applying the canonical commutation relations [75].

The result is that a wave-function will sweep out a tube, for short times, rather than a line, in
such a space-time as it evolves. For predictability purposes, since the Schrödinger, the Klein-Gordon,
the Dirac etc. equations involve usual derivatives, as opposed to being integro-differential equations
that may signify that memory effects are taken into account, it is quite important for such tubes not to
have a branching property. Naively speaking and without getting into any details, we believe that
this goal has the best chances of being realized, if the underlying space has a metric which is as far
away from having branching geodesics as possible, which again brings us back to favoring the use of a
Hilbert space.

The space-time metric from Hilbert spaces. Going from L2(Rn) to the metric of space-time itself
is quite straightforward, in principle. Consider as the linear spaces of interest to be appropriate
A ⊂ Rn. For the case of point particles this will be the tangent to the particles’s space-time evolution
trajectory. We can then confine ourselves to the analysis of a subspace of L2(Rn) which is comprised of
the characteristic functions χA of such subspaces. Then the quadratic metric on L2(Rn) gets induced
on such A which acquires itself a quadratic metric. Use the equivalence principle and “patch together”
such A endowed with their Euclidean metrics to form the space-time of interest. This is a kinematic
construction. The dynamics is provided by Einstein’s equations, after a Wick rotation back to indefinite
signature metrics. This transition between metrics of different signatures may involve several subtleties
which may have to be addressed at that stage, but this is outside the scope of the present work.

5. Discussion and Outlook

In this work we have presented a non-rigorous, conjectural argument that aims to explain why
the metric of space-time, after being suitably Wick-rotated, obeys the Pythagorean theorem. Such a
metric can be seen as descending from the metrics of appropriate Banach spaces which provide a
reasonable kinematical framework of a mesoscopic description/quasi-classical limit of models of
quantum gravity. The advantage of this approach is also its disadvantage: it is kinematical with ad
hoc aspects. It does not attempt to delve into the actual realm of the approaches to quantum gravity,
however it is motivated by and uses some of the common points of such approaches. We relied
on aspects of General Relativity and the Einstein equations for some motivation, used the spirit
of the variational principles and path-integrals to formulate our approach in the spirit of classical
and quantum Physics and then for our proposal we used standard results from functional analysis,
convexity and the theory of normed spaces.

As in any, partly ad hoc and conjectural, work the virtues of the current work may be seen as
out-weighting their shortcomings, or vice versa. The value of work like the present, which may appear
to purport to justify the “obvious”, may lie in the ideas involved in it and in the methods used to reach
the conclusions. Much more importantly from a physical viewpoint, it may also point out to reasons
about the inapplicability of its conclusions should pertinent experiments refute our currently held
ideas about space-time properties, or should one observe such exceptions at, or beyond, the galaxy
cluster or the Planck scales.

We would like to add that there should be some skepticism regarding the role of the Wick rotation
of the space-time signature to a positive-definite one. There is little doubt that the Wick rotation has
been very successful in obtaining results in perturbative quantum field theories, or more generally
when employing saddle point approximations, which may otherwise be ill-defined or inaccessible
in a covariant approach to such relativistic theories. It is not clear, to us at least, to what extent
employing such Euclidean (positive-definite) metrics is equivalent to purely Lorentzian arguments
and results, in particular in regimes outside the possible domain of validity of such saddle-point
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approximations. It is well-known now that many fundamental results of Riemannian geometry
(such as the Hopf-Rinow theorem etc.) are either not valid in Lorentzian geometry or may become
valid when appropriate modifications are made. Such discrepancies become even more pronounced
when one considers the topological and causal formalism of space-times and other such statements of
Lorentzian geometry which have no obvious analogue in the Riemannian case [35,76,77]. Since our
results rely on positive-definite metrics of the underlying (linear) spaces, we can only be skeptical
about their applicability in the physical, indefinite (Lorentzian) signature, case.

A technical point that may be worth addressing before closing, is the fact that all the analysis
in this work uses in a very essential way the particular moduli of convexity and smoothness whose
definitions and properties have been stated above. Naturally, these are mathematical constructions
and cannot conceivably be unique or automatically be considered the “most useful” among their
peers. And actually they are not. As mentioned in the opening paragraphs of this work, there are
several, generally inequivalent, moduli encoding convexity and smoothness [38]. If history is any
guide, new such moduli will keep being defined, their properties being examined and their values
will be calculated in concrete cases in the future. We have chosen the above two moduli because they
appear to us to be the simplest, the most intuitive and also the most developed. It is theoretically
possible that other moduli may single out other spaces, as opposed to Hilbert ones, but we have not
been able to find any such results in the existing literature, nor can we see any overwhelming physical
reason for their implementation.
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