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1. Introduction and Scope

In 1907, F.W Taylor—the father of production engineering—exposed the fundamentals of modern
machining and defined chatter as the most obscure and delicate of all problems facing the machinist.
However, a century later, chatter is still a hot topic at the forefront of machining problems. New casted
materials with higher properties lead to challenging designs with even thinner walls and floors. Despite
nowadays new processes emerge, parts still need to be finished with metal removal processes as
ever if aiming for good quality and close tolerances. Specifically, this book, Machining Dynamics and
Parameters Process Optimization, includes a series of ten studies with some new advances regarding
machining dynamics in metal cutting. The topics include the dynamic characterization of machine tools,
experimental dampening techniques, or optimization algorithms combined with signal monitoring.

2. Contributions

All the contributions were divided into three different sub-topics.

2.1. Dynamic Characterization of Machine Tools and Stability Analysis

Unstable vibrations in machining processes arise due to the regenerative effect of the uncut
chip thickness. Stability analysis enables the prevention of these undesirable vibrations, improving
tool life, surface roughness and, in general, productivity. For instance, Alvarez et al. [1] present
an innovative method for calculating stability maps in cylindrical and centerless infeed grinding
process. The method is based on the application of the Floquet theorem by repeated time integrations.
Additionally, Sosa et al. [2], discussed an updated method of the enhanced multistage homotopy
perturbation method for the solution of delay differential equations (DDE) with multiple delays.
The authors demonstrated better convergence rates and less computation time for the calculation of
the stability lobes for multivariable cutters in the milling process. This method is also a very promising
tool that could be extended to other machining processes.

The dynamic characterization of machine tools also plays an important role in understanding and
increasing performance. This task demands accurate dynamic models and sophisticated approaches to
characterize new machine tools. In the industrial scenario, the machining performance with robots is
highly dependent on their dynamics; Sun et al. [3] introduced a method to predict natural frequencies
of industrial robots that brings new knowledge for improving a 6R Robot’s dynamics.

2.2. Devices and Experimental Techniques

The productivity during the machining of thin-floor and thin-walled components is limited due
to unstable vibrations that are likely to occur when increasing depth of cut. Puma-Araujo et al. [4]

Appl. Sci. 2020, 10, 8908; doi:10.3390/app10248908 www.mdpi.com/journal/applsci1
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designed a custom-built semi-active magnetorheological damper device that increases the damping
ratio and modal stiffness of a thin-floor workpiece, significantly expanding the stable areas when
milling with a bull-nose cutter. A path is given for extending this practice towards industrial use.

Another source of vibration in five-axis machining is the discontinuities of the linear-segment
toolpath inducing fluctuation in the programmed feed rate. Gao et al. [5] proposed a double B-spline
curve-fitting and synchronization-integrated feed rate scheduling method. They experimentally
concluded that this method generates a smooth toolpath with an allowable fitting error. The optimal
setting of the computer numerical control (CNC) plays an important role in the machining performance;
specifically, Yu et al. [6] developed a practical methodology to tune the CNC parameters effectively
for easy implementation in a commercial CNC controller. They studied three turning machining
modes: high-speed, high-accuracy and high-surface quality in terms of dynamics errors. Similarly,
the accuracy determined by the CNC in a flute-grind of an end-mill, has an impact on the performance
of the cuter. Fang et al. [7] proposed a new projection model intending to optimize the wheel’s location
and orientation for the flute-grinding to achieve higher accuracy and efficiency.

2.3. Monitoring Systems and Machining Optimization

Contemporary additive manufacturing (AM) has demonstrated the potential to manufacture
lightweight, complex parts of which subtracting manufacturing was incapable. However, most of
these parts still require a machining stage to achieve the required dimensions and surface roughness.
Accordingly, Grossi et al. [8], presented an approach to predict the dynamics of a thin-walled
component produced using wire–arc–additive manufacturing. The knowledge of the workpiece
dynamics evolution throughout the machining process is necessary for cutting parameter optimization.

Furthermore, innovative machining monitoring systems based on artificial intelligence (AI) can
minimize machining errors and yield high productivity by predicting and avoiding adverse conditions
that cause a lack of dimensional accuracy and tool breakage. Mamledesai et al. [9] proposed a tool
condition monitoring framework that included different quality requirements and monitors if the
tool produces conforming parts. They used computer vision, a convolution neural network (CNN),
and transfer learning (TL) to detect changes in quality indicators. However, because Industry 4.0 is
becoming a reality in all the manufacturing sectors, deep learning (DL) for big data has emerged as a
key tool. Zhang et al. [10] presented a tool-wear monitoring method for complex part milling based on
deep learning. The features were pre-selected based on the cutting force model and wavelet packet
decomposition. The pre-selected cutting forces, vibration and condition features were introduced into
a deep autoencoder for dimension reduction, and then a deep multi-layer perceptron was developed
to estimate tool wear.
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Featured Application: The calculation time reduction of the new methodology for obtaining

the stability maps in grinding processes contributes to the industrialization of chatter

avoidance technologies.

Abstract: An alternative method is devised for calculating dynamic stability maps in cylindrical
and centerless infeed grinding processes. The method is based on the application of the Floquet
theorem by repeated time integrations. Without the need of building the transition matrix, this is
the most efficient calculation in terms of computation effort compared to previously presented
time-domain stability analysis methods (semi-discretization or time-domain simulations). In the
analyzed cases, subspace iteration has been up to 130 times faster. One of the advantages of these
time-domain methods to the detriment of frequency domain ones is that they can analyze the stability
of regenerative chatter with the application of variable workpiece speed, a well-known technique
to avoid chatter vibrations in grinding processes so the optimal combination of amplitude and
frequency can be selected. Subspace iteration methods also deal with this analysis, providing an
efficient solution between 27 and 47 times faster than the abovementioned methods. Validation of
this method has been carried out by comparing its accuracy with previous published methods such
as semi-discretization, frequency and time-domain simulations, obtaining good correlation in the
results of the dynamic stability maps and the instability reduction ratio maps due to the application
of variable speed.

Keywords: stability; machining; chatter; grinding

1. Introduction

Grinding is a finishing process characterized by its ability to achieve workpieces with smooth
surfaces and fine tolerances. One of the most important limitations in grinding processes is the
self-excited vibration or chatter. The appearance of this regenerative effect leads to lower form accuracy
and worse surface finish of the ground parts, loss of productivity, grinding machine damage or even
wheel breakage.

Chatter in grinding occurs when the grinding forces change during the process due to the variations
of the chip thickness in the presence of vibrations, then the corresponding delayed responses to the
forces increase the undulations over the workpiece surface. The generative effect can appear on both
the workpiece and the grinding wheel, adding complexity to the dynamic behavior. The undulations
generated on the workpiece surface grow quite rapidly, whereas those generated in the grinding wheel
surface grow more gradually [1]. Besides, when the vibration amplitude builds up to a certain limit,

Appl. Sci. 2020, 10, 8203; doi:10.3390/app10228203 www.mdpi.com/journal/applsci5
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those undulations on the grinding wheel surface are removed through the dressing process. For these
reasons, this paper is only focused on the workpiece regenerative chatter.

Different approaches have been developed to analyze this phenomenon and devise practical
methods for suppressing these vibrations [2]. The first discussion of regenerative stability of a grinding
process was done by Hahn using the Nyquist criteria [3]. Then, Snoeys and Brown [4] performed
a similar analysis by means of a doubly regenerative closed-loop block diagram and obtained the
characteristic equation of the process and a stability criterion. Thompson proposed an alternative
approach obtaining solutions of double regenerative chatter for the stability boundary [5] and chatter
growth [6]. Later, different time-domain simulation approaches were applied to grinding stability
analysis and regenerative chatter prediction [7,8], considering also non-linear effects [9,10].

Alvarez et al. applied the semi-discretization method proposed by Insperger et al. for milling [11]
and turning [12]—later used for selection of variable pitch for chatter suppression in face milling [13] to
infeed cylindrical grinding process [14] and traverse cylindrical grinding process [15]—demonstrating
the potential of this approach to analyze the application of variable speed to chatter avoidance with an
efficient computing effort comparing to previous time-domain simulations. This periodically variable
speed is one of the most extended techniques for chatter suppression in machining processes in
general [12,16,17], and in grinding processes in particular. Inasaki [18] was the first to simulate the
workpiece sinusoidal speed variation effect, concluding that chatter can be avoided with short periods
and large amplitudes of variation. Barrenetxea et al. [19] and Alvarez et al. [20] demonstrated the
application of this technique for infeed and through-feed centerless grinding processes, respectively,
by devising a time-domain dynamic approach for generating stability maps whose axes were the
amplitude and frequency of the sinusoidal variation. The analysis concluded that the sinusoidal
shape is the optimal speed variation signal. Those maps were validated experimentally, but the most
important limitation of that method was the very long time required for obtaining a complete stability
map due to the large amount of simulations needed.

Therefore, the goal of this paper is to obtain a method for computation of the instability lobes
in the time domain with much lower computing effort compared to traditional ones. The method is
based on the implicit subspace iteration presented by Zatarain et al. [21,22] for milling process analysis.
The improvement comparing with the semi-discretization method is achieved by removing the
need for calculating the complete transition matrix whose eigenvalues give the stability degree of
parameter combinations.

This method is applied both in cylindrical and centerless infeed grinding processes and validated by
comparing the results with previously published ones by Alvarez et al. [14] and Barrenetxea et al. [19,23],
respectively, analyzing the accuracy and the calculation time reduction. New formulation has
been included in the method due to the geometrical instabilities that appear during the centerless
grinding processes.

2. Materials and Methods

The stability criterion for discretized time domain simulations is based on the Floquet theorem [24],
as shown by Insperger et al. [11] for milling process and Alvarez et al. for grinding process [14]. This
theorem states that when the coefficient matrices are periodic, the solutions of the homogeneous time
periodic delay Equation:

.
x(t) = A(t)x(t) + B(t)x(t− τ) (1)

have the general form
x(t) = eλtp(t) (2)

where p(t) is also periodic with principal time period T and being A(t) = A(t+T) and B(t) = B(t+T).
Then, the solutions are exponentially increasing or decreasing periodical functions and the decay is
described by the characteristic exponent λ.

6
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After discretization, the solution at a certain moment and the solution one period later are related
by the transition matrix Z:

qi+m = Zqi (3)

being qi the multidimensional state at time ti and m = Δt/T. The eigenvectors of the transition matrix Z

are the discretized counterpart of the principal solutions of (1) and the eigenvalues μ of Z, that are
called characteristic multipliers, are related to the characteristic exponents [25]

λ =
1
T

(
ln
∣∣∣μ∣∣∣+ i(arg(μ) + 2kπ)

)
(4)

where k corresponds to the harmonics involved.
The stability condition is that there are no eigenvalues with a magnitude larger than 1. Therefore,

the interesting eigenvalues are those of highest magnitude, as they will characterize the stability of
the process.

The formation of the transition matrix Z is usually a costly procedure. Zatarain et al. proposed a
method based on implicit subspace iteration with the aim of avoiding the calculation of the transition matrix
as well as the resolution of the corresponding eigenvalue problem [21]. Therefore, the computational cost
can be reduced considerably.

Power iteration is the simplest way to obtain the highest magnitude eigenvalue and associated
eigenvector of a matrix but is a relatively slow method. Subspace iteration consists of performing the
power iteration of some vectors S0 representing a guess of the dominant eigenvectors.

S0 = [s0,1, s0,2, s0,3, . . . , s0,n] (5)

Initially there is no way to consider that the vectors in S are the eigenvectors corresponding to
the largest magnitude eigenvalues, nor that they contain a large projection on these eigenvectors.
Nevertheless, after each time period, the projection of all the vectors on the dominant eigenvectors will
increase in proportion to their corresponding eigenvalues.

The use of a group of vectors (subspace S) instead of a single vector and the orthogonalization
of these vectors with respect to the matrix S are the basis of the subspace iteration method and give
rise to a reduction in the calculation time. Therefore, the procedure will consist of multiplying the
subspace by the transition matrix Z once again and proceeding to the orthogonalization of the subspace
after each or after several multiplications. The implicit subspace iteration method [21] follows that
methodology but without calculating the transition matrix.

The multiplication of the subspace S by transition matrix Z is the first step and can be substituted
by the time integration of the vectors in S by a fast procedure

Vi = [vi,1, vi,2, vi,3, . . . , vi,n] = ZSi (6)

Now it is necessary to proceed to the orthogonalization of the vectors in S. The proposed method
performs the orthogonalization, calculating an H matrix as

Hi =
(
Si

TSi
)−1

Si
TVi (7)

and then performing an eigenvalue decomposition on it as

Hi = GiλiGi
−1 (8)

Finally, the calculation of the new subspace is obtained as

Si+1 = GiVi (9)

7
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After enough iterations, the subspace S will converge to the dominant eigenvectors, and the
eigenvalues of λ will be the dominant eigenvalues.

With this method, it is possible not to form the transition matrix Z, but just to perform the time
integration in one period (corresponding to a workpiece revolution) and obtain the new set of vectors V.
The transition matrix is not required either to perform the orthogonalization of the subspace vectors.

The method of semi-discretization for calculating the eigenvalues requires calculating the transition
matrix, which is highly time consuming, and then obtaining its eigenvalues, also time consuming.
The implicit subspace iteration method avoids calculating the transition matrix, and, instead of
performing multiplications of the subspace vectors by the transition matrix, calculates their time
integration along a time period. As the transition matrix is not calculated and the eigenvalue systems
to solve are very small compared to the size of the transition matrix, the calculation time is reduced
very significantly. If we start with any initial solution for the state over a length of time identified by the
maximum time delay (τmax), we can calculate the state at period T by multiplying the initial solution
by the transition matrix or by performing the time integration over that period. The result of both
methods must be the same, except for discrepancies given by numerical errors. Moreover, efficient time
integration algorithms can result in much faster solutions, depending on the size of the state, than the
time required to form the transition matrix.

The time integration along a period is a process that must be performed many times in this
method. To reduce the calculation time, “step matrices” relating the state at each moment with the
state one time step later are pre-calculated.

The formulation for the calculation of the step matrices in infeed grinding processes is shown
next for the centerless configuration (Figure 1). In the case of cylindrical configuration, the procedure
is the same just subtracting the geometrical parameters of the formulation.

 

Figure 1. Centerless infeed grinding process system.

Then, the centerless infeed grinding process is defined by an Equation of motion for a multiple
degree of freedom system (corresponding to considered vibration modes):

M
..
x(t) + C

.
x(t) + Kx(t) = F(t) (10)

where M, C and K are the mass, viscous damping and stiffness matrices of the system, and F(t) is the
grinding force in the normal direction, which follows the next expression:

F(t) = φPkwn[δrw(t− τ) − δrw(t)] (11)

8
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Normalizing to unit mass, φ is a matrix with the modal displacements of considered modes in
the normal direction of the contacts between the workpiece and the grinding wheel, the regulating
wheel and the support blade. kwn is the cutting stiffness and δrw(t-τ) and δrw(t) are the radius defects
at the cutting point in the previous and the current workpiece revolutions, respectively, being τ the
time between revolutions. P is a dimensionless vector relating the forces at the contact points with the
normal force at the cutting point [26]. Thus, the considered direction of motion of the process system is
corresponding to the normal force F(t), defined as x(t).

In centerless grinding processes, the radius defect depends on a geometric displacement of the
workpiece due to roundness errors passing through the contact points with the blade and regulating
wheel, as well as on the static defection of the system and the vibrations generated in the process.
The radius defect at the current revolution can be expressed as:

δrw(t) = Cφx(t) +
F(t)
kr

+ gbδrw(t− τb) − grδrw(t− τr) (12)

where kr is the inverse of the residual flexibility. It can be calculated by subtracting the flexibility of
considered vibration modes from the process equivalent stiffness keq, which is the sum of the system
static flexibility and the contact flexibility between the workpiece and the grinding wheel, the regulating
wheel and the support blade.

1
kr

=
1

keq
−

Nm∑
i = 1

Cφiφi
tP

ω2
i

(13)

where ωi are the natural frequencies of considered modes. There are different experimental methods
to obtain the equivalent stiffness [27]. δrw(t-τb) and δrw(t-τr) are the radius defects at the contact
points with the blade and regulating wheel (represented in Figure 1 as δb and δr), and gb and gr are
two geometrical parameters depending on the contact angles of the blade and regulating wheel with
the workpiece (ϕb and ϕr), obtained from the geometric configuration of the process represented
by the workpiece height h and the blade angle θ [28]. C is a dimensionless vector representing the
displacement at the cutting point due to the displacements at the contact points [26].

Replacing Equations (11) and (12) in Equation (10) and renaming:

..
x(t) + C

.
x(t) + [K + Vkt]x(t) = φPkt[δ+ gbδb − grδr] (14)

being V = CTφφTP, δi = rw(t− τ), δb = rw(t− τb), δr = rw(t− τr) and kt = kwn

1+
(

kwn
kr

) .
Following the same procedure of integrating and rearranging in state-space mode as [14] for

cylindrical grinding process, the next expression is obtained:

pi+1 = (Ai −Bi)pi + G0,i
(
δi−n + gbδb,i−n1 − grδr,i−n2

)
+G1,i

(
δi−n+1 + gbδb,i−n1+1 − grδr,i−n2+1

) (15)

Bi =

⎡⎢⎢⎢⎢⎣ Δt2

2
Δt3

6
Δt Δt2

2

⎤⎥⎥⎥⎥⎦[ Vkt 0
0 Vkt

]
(16)

G0,i =

⎡⎢⎢⎢⎢⎣ Δt2

3
Δt
2

⎤⎥⎥⎥⎥⎦φPkt , G1,i =

⎡⎢⎢⎢⎢⎣ Δt2

6
Δt
2

⎤⎥⎥⎥⎥⎦φPkt (17)

Matrix A is constant for all the calculations. It is obtained as [21]. Bi, G0,i and G1,i vary and
they are calculated for each discretized segment. This set of matrices represents the step matrices of
the process.
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Once all the step matrices are calculated, the procedure to obtain the state after one period begins
with the definition of the initial state of the process by including the initial discretized radius defect
and the initial dynamic modal solution, presented in the following mixed system state:

qn =
{
δ1 δ2 . . . δn−2 δn−1 xn

.
xn

}
(18)

For the first segment:
p1 = Apn (19)

δ1 = Tp1 + Wδ1−n + Gbδ1−n1 −Grδ1−n2 (20)

T =
CTφ(

1 + kwn
kr

) , W =
kt

kr
(21)

Reaching the last segment:

δi+1 = Tpi+1 + Wδi+1−n + Gbδi+1−n1 −Grδi+1−n2 (22)

pi+1 = (Ai −Bi)pi + G0,i
(
δi−n + gbδb,i−n1 − grδr,i−n2

)
+G1,i

(
δi−n+1 + gbδb,i−n1+1 − grδr,i−n2+1

) (23)

The calculation of the product of the complete state vector using the step matrices, as proposed
here, leads to a lower requirement of mathematical operations compared to the product by the transition
matrix. Besides, the calculation of the transition matrix is the operation which requires the highest
computational effort compared to the calculation of the step matrices when obtaining the stability
maps for grinding processes.

Another important issue is the calculation time dependence on the size of the state, represented by
the discretization segments. The requirement is that the integration time, equal to the length of the
segment divided by the workpiece rotational speed, must be below 0.1 times the corresponding period
related to the maximum natural frequency considered.

The criterion of stability is the same as the one used in the semi-discretization method. Then, if any
eigenvalue of the relation between the initial and final states has a magnitude larger than 1, then the
system is unstable, whereas when all magnitudes are lower than 1, the system is stable.

Besides dynamic instabilities, there are also geometric instabilities in centerless grinding processes
due to their special geometric configuration [26], named geometric lobing. They are included in the
model by the geometric parameters corresponding to the contact points between the workpiece and
the regulating wheel and the blade support. For that reason, it is necessary to include different lobe
numbers in the initial radius defect of the process. Then, the evolution of this lobe for each geometric
configuration can be analyzed and included in the stability diagrams as a result of the subspace
iteration method. Cylindrical infeed grinding processes do not give rise to that phenomenon.

As in the semi-discretization method in [14], with the developed method to analyze the stability
in grinding processes there is also the possibility to include the continuous workpiece speed variation
in the calculation.

The condition is that the speed variation period is an integer multiple of the workpiece speed
period. Then, the calculation of the step matrices must be done over the speed variation period and
the eigenvectors analysis is carried out between the first and the last system states.

Therefore, the same stability maps presented in [14,19] can be obtained, whose axes are the
amplitude and frequency of the workpiece speed variation.
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3. Results

3.1. Application of the Method to Cylindrical Grinding Processes

First application of the method is carried out for cylindrical infeed grinding process by comparing
the results with the data proposed in Alvarez et al. [14]. In this analysis, a validation of the accuracy of
the new method was done and a comparison of the computational effort of both semidiscretization
and subspace iteration methods is presented.

The process conditions for stability analysis in [14] are shown in Table 1.

Table 1. Process conditions for stability analysis in cylindrical infeed grinding [14].

Modal Analysis

Mode fn (Hz) ξ (%) Φx

1 200 5 0.1
2 300 5 0.09
3 400 4 0.1

Grinding wheel diameter (mm) 600
Grinding wheel speed (m/s) 50
Workpiece diameter (mm) 25

Equivalent stiffness (N/μm) 50
Specific energy (J/mm3) 40

Figure 2a shows the stability map obtained with the subspace iteration method for the process
conditions of Table 1, which represents the stability degree of each combination of workpiece speed
and ground length. Values below the stability limit of 1 are stable combinations and values over
the stability limit are unstable combinations. Almost the same stability map as the one obtained
with the semi-discretization method is achieved. Figure 2b shows isolines with different degrees
of stability. Dash lines correspond to subspace iteration calculations, while solid lines correspond to
semidiscretization calculations. Good correlation between isoline values can be noticed.

  

(a) (b) 

Figure 2. (a) Subspace iteration stability map; (b) comparison of stability isolines between
semi-discretization and subspace iteration methods.

Necessary computational effort for achieving the stability map has been reduced significantly.
The time required for obtaining the map with the semi-discretization method is 11,441 s, while the time
with the subspace iteration method is 256 s (45 times faster), considering that the map corresponds to a
11 × 11 matrix of stability values. For this comparison, an Intel ® Core TM i7-4610M CPU 3.00 GHz
with RAM 16 GB has been used.

One important aspect is the dependency of the number of discretized points on the calculation
time. As mentioned above, the integration time is calculated based on the considered maximum natural
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frequency. Figure 3 shows the comparison of the calculation time of both semi-discretization and
subspace iteration methods related to that frequency. As it can be noticed, the higher the frequency the
higher the difference between both calculations. For a natural frequency of 100 Hz, the subspace iteration
method is six times faster, being 138 times faster for a frequency of 700 Hz. Therefore, the subspace
iteration method is even more suitable for systems with higher natural frequencies.

 

Figure 3. Comparison of time for calculation of stability maps between semi-discretization and subspace
iteration methods for cylindrical grinding.

The subspace iteration method is also valid to calculate the stability maps with continuous
workpiece speed variations, whose axes are the frequency and amplitude of the sinusoidal variation.
Figure 4 shows a comparison of the method with that of the semi-discretization method following the
same procedure. Stability maps are calculated with process conditions of [14].

 
Figure 4. Comparison of instability reduction ratio maps with the application of continuous workpiece
speed variation, obtained with both methods.

Isolines of instability reduction ratio are presented for both methods and good correlation
can be noticed. Black boxes show the theoretical values of isolines while white ellipses show the
experimental values.
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The time required for obtaining the map with the semi-discretization method is 46,314 s, while the
time with the subspace iteration method is 2773 s (16 times faster), considering that the map corresponds
to a 16 × 26 matrix of instability reduction ratio values.

Calculation time for achieving this type of map is increased due to the necessity of calculating the
step matrices over the speed variation period. Therefore, the higher the speed variation frequency,
the lower the calculation time. Figure 5 shows the time required for frequencies of 0.5 and 3 Hz, where
the matrices must be recalculated six and two times, respectively. In this case, for a natural frequency
of 100 Hz, the subspace iteration method is 2.5 times faster, being 47 times faster for a frequency of
700 Hz.

 
Figure 5. Comparison of time for calculation of stability maps between semi-discretization and subspace
iteration methods for cylindrical grinding with the application of continuous workpiece speed variation.

3.2. Application of the Method to Centerless Grinding Processes

Firstly, the application of the subspace iteration method to centerless grinding processes is
validated by comparing it to the work by Barrenetxea et al. [23], where stability maps are calculated
and validated in the frequency domain. Figure 6a shows the map obtained in the frequency domain
and Figure 6b shows the one by the subspace iteration method. Good correlation between both can
be noticed. The main difference is that the stability limit for frequency domain is equal to zero with
negative unstable conditions, while subspace iteration is equal to 1 with unstable conditions over
that value.

  
(a) (b) 

Figure 6. Dynamic stability map for centerless grinding by (a) frequency domain method [21]; (b)
subspace iteration method.
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In the case of centerless grinding processes, aside from the work done by Barrenetxea et al. [19],
there is no bibliography regarding the obtainment of stability maps with continuous workpiece speed
variation. Then, the subspace iteration method is compared to the time domain simulation procedure
by Barrenetxea et al. [19] in terms of calculation accuracy and computational time consumption.
Figure 7 shows the map obtained in [19] by the time simulation approach while Figure 8 shows the
one obtained by the subspace iteration method. Good correlation can be noticed again, validating the
accuracy of the proposed method.

 

Figure 7. Instability reduction ratio for centerless grinding by time simulation method [19].

 

Figure 8. Instability reduction ratio for centerless grinding by subspace iteration method.

Calculation time for achieving this type of instability reduction ratio in centerless grinding with
the application of continuous workpiece speed variation is represented in the Figure 9. In this case,
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the time-domain simulations are independent of the variation frequency, since the simulation is done
during all the workpiece revolutions of the whole grinding cycle. The time required for achieving the
time-domain 11 × 11 map of Figure 7 is 63,525 s, while the time for achieving the subspace iteration
map of Figure 8 is 2541 s, being 25 times faster.

 

Figure 9. Comparison of time for calculation of stability maps between time-domain and subspace
iteration methods for centerless grinding with the application of continuous workpiece speed variation.

3.3. Conclusions

The results obtained from the comparison between subspace iteration and semi-discretization
methods in cylindrical grinding process show that:

• When obtaining stability maps, subspace iteration is between 6 and 138 times faster than
semi-discretization in the analized cases, depending on the natural frequencies of the system.

• Both methods are dependent on the natural frequencies of the system, but subspace iteration is
better when dealing with higher frequencies.

• When obtaining instability reduction ratio maps with continuous workpiece speed variation,
subspace iteration is between 2.5 and 47 times faster than semi-discretization in the analyzed
cases, depending on the natural frequencies of the system.

• The time necessary for the calculation of instability reduction ratio maps is higher than that
required for the calculation of stability maps due to the necessity of calculating the step matrices
over the speed variation period.

Regarding the results obtained comparing subspace iteration and time simulation methods in
centerless grinding process:

• When obtaining instability reduction ratio maps with continuous workpiece speed variation,
subspace iteration is about 27 times faster than time simulation in the analized case.

• Since time domain simulation does not depend on the workpiece speed variation frequency,
the improvement of the subspace iteration calculation time is higher when analyzing higher
variation frequencies.

4. Discussion

The subspace iteration method has been applied successfully to the generation of stability maps for
cylindrical and centerless infeed grinding processes. The method has also been validated to calculate
the instability reduction ratio maps with the application of continuous workpiece speed variation in
cylindrical and centerless infeed grinding processes.
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Accuracy of this method has been validated by comparing it with previously published methods
such as semi-discretization, frequency and time-domain simulations, obtaining almost the same results
and validating the subspace iteration method in grinding processes.

Reduction of calculation time related to the semi-discretization method is achieved in analyzed
cases because the transition matrix is not explicitly calculated and, instead of calculating all the
eigenvectors of the transition matrix, an iterative process calculating only the dominant eigenvalues
is used. In the comparison with the semi-discretization method for cylindrical infeed grinding,
subspace iteration is up to 138 times faster for stability maps and 47 times faster for instability reduction
ratio maps. In the comparison with time-domain for centerless infeed grinding, subspace iteration is
27 times faster for instability reduction ratio maps.

The influence of the number of segments related to the maximum natural frequency of the grinding
system has been analyzed, concluding that subspace iteration has a better performance for a higher
number of segments than semi-discretization.
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Abstract: In this work, a new method for solving a delay differential equation (DDE) with multiple
delays is presented by using second- and third-order polynomials to approximate the delayed terms
using the enhanced homotopy perturbation method (EMHPM). To study the proposed method
performance in terms of convergency and computational cost in comparison with the first-order
EMHPM, semi-discretization and full-discretization methods, a delay differential equation that model
the cutting milling operation process was used. To further assess the accuracy of the proposed method,
a milling process with a multivariable cutter is examined in order to find the stability boundaries.
Then, theoretical predictions are computed from the corresponding DDE finding uncharted stable
zones at high axial depths of cut. Time-domain simulations based on continuous wavelet transform
(CWT) scalograms, power spectral density (PSD) charts and Poincaré maps (PM) were employed to
validate the stability lobes found by using the third-order EMHPM for the multivariable tool.

Keywords: chatter; multivariable tool; stable peninsula; homotopy perturbation method

1. Introduction

There are many phenomena in different fields of science and engineering where the physical
response of a variable involves not only the value at time t but also the effects that occur in an
earlier state t− τ. Thus, delay systems appear in many engineering problems, such as in the shimmy
effect (wheel vibration) [1], vehicle traffic models [2], feedback stabilization problems [3] and in the
regenerative vibration of machine-tools better known as chatter [4]. In cases where the net force
depends on the current values and some past values (history) such as position and speed, the system
dynamic behavior can be modeled using a differential delay equation (DDE).

It is well-known that during a milling process, unstable vibrations also known as self-excited
vibration or chatter may occur. Chatter reduces the machining efficiency due to low material removal
rate by reducing the workload and affects surface quality, shortens tool life and accelerates tool
wear. Researchers are studying several ways to overcome this limitation. Kuljanic et al. [5] studied
the incorporation of a chatter detection system based on multiple sensors to milling operations for
industrial conditions, Zhuo et al. [6] used a method based on fractal dimension for the flank milling of
a thin-walled blade, which can reflect the chatter severity level through the morphological change
in signal. Paul and Morales [7], to mitigate chatter, presented an active controller based on the
technique of discrete time sliding mode control (DSMC) blended with the type-2 fuzzy logic system.
Moreover, Peng et al. [8] presented a method based on a dynamic cutting force simulation model and a
machine learning approach based on statistical learning theory to predict and avoid the cutting chatter.
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In addition, to control and suppress chatter vibrations, the use of piezoelectric actuators embedded
in the tool holder [9], electromagnetic actuators integrated into the spindle system [10] and tunable
clamping table [11] has been analyzed. In the milling process, the use of variable pitch cutters has
demonstrated to improve productivity [12]. Different from the uniform pitch cutter, when a variable
pitch cutter is used the dynamics model of cutting vibration changes from DDEs with a single delay
to DDEs with multiple delays [13]. A common technique offline to predict unstable vibrations is the
so-called stability lobes of the DDE based on Floquet theory [14], in which a curve describes the limit
of stable vibration under feasible range values of cutting parameters.

The stability analysis of the milling process with multiple delays has been studied through
different methods. Among all these methods, those with variable pitch tools play a critically important
role [15]. Slavicek [16] was the one who first demonstrated the effectiveness of variable pitch cutters in
suppressing vibrations in the milling process, he assumed a rectilinear tool motion for cutting teeth,
and applied the theory of orthogonal stability to the irregular pitch of the tooth, by assuming an
alternating step variation then, he obtained an expression of the stability limit as a function of the step
angle variation. Budak [17,18] proposed an analytical method for nonconstant pitch milling cutters
from a design point of view, showing for some applications how this variable effect helps to reduce
self-excited vibrations, so he found that chatter stability can be improved significantly even at slow
cutting speeds by properly designing the pitch angles. Altintas et al. [19] used the frequency domain
method to analyze the milling stability of the variable pitch cutter and introduced a method to select
the optimal pitch angles. Olgac and Sipahi proposed a mathematical approach, the cluster treatment of
characteristic roots (CTCR), which optimizes the design of variable pitch cutters [20]. Jin et al. [21]
presented an improved semi-discretization algorithm to predict the stability lobes for variable pitch
cutters, which were verified and compared with previous works such as the Altintas analytical method
(zero-order method) [19]. Comak and Budak [22] showed the optimal design of a tool for milling
operations with variable geometry to widen the stability zones using the semi-discretization method,
validating it experimentally. They also used a design methodology to determine the optimal pitch
angle geometry for a given cutting condition, allowing increased stability.

Zatarain et al. [23] extended the multifrequency solution proposed by Budak and Altintas [24]
to include the helix effect, they pointed out that the variation of the helix angle plays an important
role in stability graphs due to repetitive vibrations driven by impact (flip), they found that the flip
lobes became closed curves that are separated by horizontal lines where the depth of cut is equal to
a multiple of the helix pitch. A similar phenomenon was confirmed using the semi-discretization
method (SDM) in [25], meanwhile, B.R. Patel et al. [26] considered the influence of the helix angle of
the tool to obtain an analytical force model, they found that isolated islands of instability can occur in
the milling processes, which are induced by the helix angle of the tool and lead to separate regions of
period-doubling and quasi-period behavior. Sims et al. [27] by using an adapted and time-averaged
version of the SDM analyzed both the influence on the variation of the helix angle and the pitch angle
of the tool to improve the prediction of vibrations and estimate predictions of surface errors. They used
the semi-discretization method, the time-averaged semi-discretization method and the temporal finite
element method to predict vibration stability for variable helix and variable pitch milling tools. Turner
et al. [28] modeled and compared stability for variable pitch and helix angle cutters, demonstrating
that variable helix angle tools can have higher stability and productivity.

Yusoff and Sims in [29] combined SDM with differential evolution to optimize variable helix milling
tools to minimize vibration, their analysis predicted total vibration mitigation using the optimized
variable helix milling tool at low radial immersion. Furthermore, Dombovari and Stepan [30] introduced
a general mechanical model based on SDM to predict the linear stability of specialty cutters with
optional continuous variation of the helix angle. Using an extended second-order SDM, Zhan et al. [15]
predicted the stability lobe diagrams for tools with variable pitch angles. Meanwhile, Huang et al. [31]
conducted a stability analysis for milling operations with variable pitch mills at variable speed,
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while Cai et al. [32] proposed an integrated process machine model based on the computer graphics
method to simulate the milling process of a variable pitch cutter.

On the other hand, Olvera and Elías-Zuñiga in [33] led to the development of the enhanced
multistage homotopy perturbation method (EMHPM) to solve differential delay equations (DDEs)
with constant and variable coefficients and then this EMHPM was applied to predict the stability of
a multivariate milling tool in which they consider the helix angle and the pitch angle variation of
the cutting edges [34]. Based on the Laplace formulation, Sims [35] studied the stability of milling
operations with a variable helix angle. Using the multi-frequency solution, Otto et al. [36] derived a
dynamic process model where the non-linear shear force and the runout effect are included for milling
with non-uniform pitch and variable helix tools. Niu et al. [37] found that runout can significantly
increase the stability limits regardless of spindle speed ranges, while Olvera et al. [38] in a study for a
thin-walled workpiece demonstrated that by considering the effects of the runout, the helix angle and
characterization dependent on the cutting speed, more precise stability boundaries are achieved.

To demonstrate that one of the effective ways to suppress vibration in milling operations is to use
tools with variable pitch and helix angle, Wang et al. [12] proposed an improved semi-discretization
method based on Floquet′s theory. Since the delay between each cutting edge varies along with the
axial depth of the tool in milling, they discretized the cutting tool in some axial layers to simplify
the calculation. Iglesias et al. [39] presented a method to find the optimal angles between the inserts,
and the stability diagrams were obtained through the iterative brute force (BF) method, which consists
of an iterative maximization of stability through the semi-discretization method. They conclude that,
if an optimal selection of the angle between the inserts is possible then, the material removal rate can be
improved up to three times. Gou et al. [40] proposed an effective optimization method for the variable
helical cutter introducing an index called “suppression factor” to measure stability quantitatively.

Therefore, in the present work, the EMHPM developed in [33] and extended for analysis of
multivariable tools in [34], is now expanded to solve the dynamics of the machining process in milling
in which the approximation to the delay is performed with polynomials of degree two and three.
In order to study the proposed method performance in terms of convergency and computational cost,
a multivariable milling tool with a variable pitch cutter and helix angle is used to determine milling
process in stability domains.

This paper is summarized as follows. Section 2 focuses on the development of second- and
third-order EMHPM for stability analysis of DDE. Section 3 studies the application of the second- and
third-order EMHPM on the milling equation to demonstrate its improvement in the convergence rate.
Section 4 is focused on the use of the third-order EMHPM to compute the stability analysis in milling for
multivariable tools, and theoretical predictions with time-domain simulations are performed. Finally,
some conclusions are drawn.

2. Enhanced Multistage Homotopy Perturbation Method

2.1. Second-Order EMHPM

Olvera et al. enhanced in [33] the multistage homotopy perturbation method (MHPM) proposed
by Hashim [41]. The EMHPM considers the general case in which the nonlinear equation contains
terms of the independent variable. This method is also useful to solve an n-dimensional DDE in the
state-space form

.
x(t) = A(t)x + B(t)x(t− τ) (1)

where A(t + τ) = A(t), B(t + τ) = B(t), x(t), is the state vector, and τ is the time delay. Equation (1)
can be written equivalently as:

.
xi(T) −Atxi(T) ≈ Btxi

τ(T) (2)

where xi(T) indicates the m-order solution for Equation (1) that satisfies the initial conditions xi(0) =

xi−1, At and Bt are the periodic matrix whose values vary with time t. In [42], Puma et al. applied
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the first-order EMHPM to estimate the delayed term xτi (T) in Equation (2), in which the period
[t0 − τ, t0] was discretized in N equally spaced discrete state values, and the function that describes the
delayed term xτi (T) in the delayed interval [ti−N, ti−N+1] was approximated as a first-order polynomial
representation. Defining xi ≡ xi(T) to simplify the notation, Equation (2) can be written as

.
xi(T) = Atxi(T) + Bt

(
xi−N +

N − 1
τ

(xi−N+1 − xi−N)T
)

(3)

Figure 1a shows the representation of the approximation of the delayed term with the first-order
polynomial. In the second-order EMHPM, to approximate the function that describes the delayed
term xτi (T) in Equation (2), the Lagrange equation is used, making use of the discrete values
xi−N, xi−N+1, xi−N+2 as follows:

fn(x) =
n∑

i=0

Li(x) f (xi), Li(x) =
n∏

i=0,i�k

x− xi
xk − xi

(4)

to achieve a second-degree polynomial approximation, we have from Equation (4) that

P2(x) =
(x− Δt)(x− 2Δt)
(0− Δt)(0− 2Δt)

f (xi−N) +
(x− 0)(x− 2Δt)

(Δt− 0)(Δt− 2Δt)
f (xi−N+1) +

(x− 0)(x− Δt)
(2Δt− 0)(2Δt− Δt)

f (xi−N+2) (5)

(a)  (b) 

 x

t

xi-N

ti-N+1ti N ti ti

= (N t

xi-N

xi-N
xi-N

xi t

t

xi t xi t

Figure 1. (a) Scheme for the approximation of the delayed term by a first-order (solid black line),
second-order (dashed blue line) and third-order (dotted red line) polynomial: (b) zoom in the time
interval [ti−N+1, ti−N+3].

Substituting x = T and Δt = (N − 1)/τ, we obtain the function that describes the delayed
interval as:

xi−N+1(T) ≈ xi−N +
(N − 1
τ

)
T
(
−3

2
xi−N+ 2xi−N+1 − 1

2
xi−N+2

)
+
(N − 1
τ

)2 T2

2
(xi−N − 2xi−N+1 + xi−N+2) (6)

When the delay is approximated by a second-degree polynomial it is called second-order EMHPM
and should not be confused with the order of solution m and which is determined by the last deformation
taking into account the approximated solution. Notice that a polynomial of the second-degree requires
three points. Likewise four points in the case of a third-degree polynomial as shown in Figure 1.

The procedure to calculate the second-order EMHPM solution is based on the EMHPM procedure
described in [33]. The solution for second-order EMHPM is recursively expressed of Xik(T) as

Xik = Xa
ik + Xb

ik + Xc
ik, k = 1, 2, 3 . . . . (7)

where
Xa

i0 = xi−1, Xb
i0 = Xc

i0 = 0 (8)
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and
Xa

ik =
T
k

(
AtX

a
i(k−1) + g(k)Btxi−N

)
Xb

ik =
T

k+1

(
AtX

b
i(k−1) + g(k)

(
N−1
τ

)
BtT

(
− 3

2 xi−N + 2xi−N+1 − 1
2 xi−N+2

))
Xc

ik =
T

k+2

(
AtX

c
i(k−1) + g(k)

(
N−1
τ

)2
Bt

T2

2 (xi−N − 2xi−N+1 + xi−N+2)
) (9)

So, the solution of Equation (1) is obtained by adding each of the approximations Xik of Equation (7).

xi(T) ≈
m∑

k=0

Xik(T) (10)

2.2. Third-Order EMHPM Solution

For the polynomial representation of the third-degree, the function that describes the delayed term
xτi (T) is approximated by a polynomial of order three, then Equation (4) of the Lagrange interpolator
is used accordingly. In this case, it is necessary to employ the xi−N, xi−N+1, xi−N+2, xi−N+3 discrete
values. Following the same procedure described in Section 2.1, the function that describes the delayed
interval is given as:

xτi (T) = xi−N+1(T) ≈ xi−N +
(

N−1
τ

)
T
(
− 11

6 xi−N + 3xi−N+1 − 3
2 xi−N+2 +

1
3 xi−N+3

)
+(

N−1
τ

)2 T2

2 (2xi−N − 5xi−N+1 + 4xi−N+2 − xi−N+3) +
(

N−1
τ

)3 T3

6 (−xi−N + 3xi−N+1 − 3xi−N+2 + xi−N+3)
(11)

Following the EMHPM procedure, the recursive solution of Equation (1) Xik(T) is expressed as

Xik = Xa
ik + Xb

ik + Xc
ik + Xd

ik, k = 1, 2, 3 . . . . (12)

where
Xa

i0 = xi−1,X
b
i0 = Xc

i0 = Xd
i0 = 0 (13)

and
Xa

ik =
T
k

(
AtX

a
i(k−1) + g(k)Btxi−N

)
Xb

ik =
T

k+1

(
AtX

b
i(k−1) + g(k)

(
N−1
τ

)
BtT

(
− 11

6 xi−N+ 3xi−N+1 − 3
2 xi−N+2 +

1
3 xi−N+3

))
Xc

ik =
T

k+2

(
AtX

c
i(k−1) + g(k)

(
N−1
τ

)2
Bt

T2

2 (2xi−N− 5xi−N+1 + 4xi−N+2 − xi−N+3))

Xd
ik =

T
k+3

(
AtX

d
i(k−1) + g(k)

(
N−1
τ

)3
Bt

T3

6 (−xi−N+ 3xi−N+1 − 3xi−N+2 + xi−N+3))

(14)

The approximate solution of Equation (1) can be obtained by substituting Equation (12) into
Equation (10) adding each of the approximations Xik.

2.3. Stability Analysis

To calculate the stability of the differential Equation (1) using the second-order EMHPM, the
solution of Equation (10) for second-order EMHPM must be rewritten by grouping each of the discrete
values xi, xi−N+2, xi−N+1, xi−N, resulting in

xi(T) ≈ Pi(T)xi−1 + Qi
′(T)xi−N+2 + Qi(T)xi−N+1 + Ri(T)xi−N (15)
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where
Pi(T) =

m∑
k=0

1
k! A

k
t Tk,

Q
′
i(T) =

m∑
k=1

(
1

(k+2)!

(
N−1
τ

)2
Ak−1

t BtTk+2 − 1
2(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1
)

Qi(T) =
m∑

k=1

1
(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1 − 2Q
′
i

Ri(T) =
m∑

k=1

1
k! A

k−1
t BtTk −Q

′
i −Qi

(16)

Similarly, to compute the stability lobes for the third-order EMHPM, the solution of the differential
Equation (1) for third-order EMHPM is rewritten as

xi(T) ≈ Pi(T)xi−1 + Q”
i(T)xi−N+3 + Q

′
i(T)xi−N+2 + Qi(T)xi−N+1 + Ri(T)xi−N (17)

where

Pi(T) =
m∑

k=0

1
k! A

k
t Tk,

Q”
i(T) =

m∑
k=1

(
1

(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1
(

1
3

)
− 1

(k+2)!

(
N−1
τ

)2
Ak−1

t BtTk+2 + 1
(k+3)!

(
N−1
τ

)3
Ak−1

t BtTk+3
)

Q
′
i(T) =

m∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1 + 1
(k+2)!

(
N−1
τ

)2
Ak−1

t BtTk+2
(
− 7

2

)
+ 1

(k+3)!

(
N−1
τ

)3
Ak−1

t BtTk+3
(

9
2

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠− 15

2 Q
′ ′

i

Qi(T) =
m∑

k=1

(
1

(k+1)!

(
N−1
τ

)
Ak−1

t BtTk+1
)
− 3Q

′ ′
i − 2Q

′
i

Ri(T) =
m∑

k=1

1
k! A

k−1
t BtTk −Q

′ ′
i −Q

′
i −Qi

(18)

The approximate solution obtained from Equation (17) was used to define a discrete map following
the procedure described in [43]:

wi = Diwi−1 (19)

where wi−1 is a vector with dimension equal to the total number of states (displacement and velocity)
for all N discrete intervals:

wi−1 = [x(i−1),
.
x(i−1), x(i−2), . . . , x(i−N)]

T (20)

Di is a coefficient matrix and for the third-order EMHPM it has the form:

Di =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 0 0 0 · · · 0 Q′′
i Q′i Qi Ri

I 0 0 0 · · · 0 0 0 0 0
0 I 0 0 · · · 0 0 0 0 0
0 0 I 0 · · · 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

...

0 0 0 0
. . . 0 0 0 0 0

0 0 0 0 · · · I 0 0 0 0
0 0 0 0 · · · 0 I 0 0 0
0 0 0 0 · · · 0 0 I 0 0
0 0 0 0 · · · 0 0 0 I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)
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It is important to point out that in the case of the second-order EMHPM, the matrix Di is like the
matrix of the third-order EMHPM without the matrix Q

′′
i .

Then, the Floquet transition matrix Φ is calculated over the main period τ = (N − 1)/ Δt, coupling
each of the discrete maps Di, i = 1, 2, . . . , (N − 1), to obtain:

Φ = DN−1DN−2 . . .D2D1 (22)

Thus, the stability of Equation (1) is determined by calculating the eigenvalues of the transition
matrix given by Equation (22). The eigenvalues of the transition matrix are actually the Floquet
multipliers which are the exponents of each complex exponential functions that describe the motion of
Equation (1). If the modulus of greatest magnitude is greater than or equal to one, it implies that the
system will behave in an unstable way and the amplitude of the vibration will increase exponentially,
otherwise it will have a stable behavior.

3. Numeric Solution of the Milling Equation

3.1. Dynamic Model to the Milling Equation

To validate the proposed EMHPM methods, the numerical solution of the delay differential
equation analyzed by Olvera et al., in [33] was calculated, which describes the dynamic model of the
milling process in one degree of freedom (DOF):

..
x(t) + 2ζωn

.
x(t) +ω2

nx(t) = −aphxx(t)
mm

(x(t) − x(t− τ)) (23)

where ζ is the modal damping ratio, ωn is the natural frequency of the workpiece, ap is the axial depth
of cut, mm is the modal mass, τ represents the time delay corresponding to the hitting period between
each tooth of the tool and hxx(t) is the specific cutting force in the x-direction due to flexibility in
x-direction, which was calculated depending on the position of the tool

hxx(t) =
zn∑

iz=1

g(φiz(t))sinφiz(t)(Ktc cosφiz(t) + Knc sinφiz(t)) (24)

zn is the number of edges of the tool, Ktc and Knc are the average specific cut coefficients in the tangential
and normal direction, respectively, and φiz(t) is the angular position of each left edge described by

φiz = (2πn/60)t + 2πiz/zn (25)

where n is the spindle speed in revolution per minute (rpm). The function g(φiz(t)) is a window
function, which has the value of one when the current edge iz is cutting material, otherwise it takes the
value zero.

In up-milling φst = 0 and φex = cos−1(1− 2ad), conversely in down-milling φst = cos−1(2ad − 1)
and φex = π, ad is the radial immersion ratio of the cut and φst and φex are the angular positions where
each edge enters and leaves the workpiece.

The second- and third-order EMHPM is applied to obtain the solution of Equation (23) and it is
compared with the solution given by the first-order EMHPM [33]; for a regular tool the matrix A and B

are represented as:

At =

⎡⎢⎢⎢⎢⎣ 0 1

−ω2
n − aphxx(t)

mm
−2ζωn

⎤⎥⎥⎥⎥⎦, Bt =

⎡⎢⎢⎢⎢⎣ 0 0
aphxx(t)

mm
0

⎤⎥⎥⎥⎥⎦ (26)

At and Bt correspond to the periodic matrix evaluated at time t. For demonstration purposes,
time-domain simulations were computed for a full-immersion down-milling operation. We used
the parameters employed by Insperger et al., in [43] where the stability lobes were also calculated.
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The modal parameters fn = 922 Hz, ωn = 5793 rad/s, ζ = 0.011 and mm = 0.03993 kg corresponds to
a single degree of freedom. The tangential and normal cutting coefficients are Ktc = 6 × 108 N/m2

and Knc = 2 × 108 N/m2 respectively for an end-mill with zn = 2. The time-domain solution was
computed using the EMHPM considering N = 76 discrete intervals and m = 7. Two sets of cutting
conditions were chosen for a fixed spindle speed value of n = 12,000 rpm where the axial depth of cut of
ap = 1.5 mm corresponds to a stable cutting operation while that for an unstable operation ap = 3 mm
was chosen. In Figure 2 we plot the second- and third-order EMHPM solutions and compare it with
the first-order EMHPM and the dde23 routine in Matlab, which is used to integrate DDE.

(a) 

(b) 

Figure 2. Numerical comparison of the enhanced homotopy perturbation method (EMHPM) solutions
of the milling equation, Equation (23), with the dde23 MATLAB routine. (a) Stable milling operation
with ap = 1.5 mm, ad = 1 and n = 12000 rpm and (b) unstable milling operation with ap = 3 mm,
ad = 1 and n = 12000 rpm.

3.2. Numerical Comparison between Methods

In order to observe the rate of convergence of the first-, second- and third-order EMHPM, we chose
the stable case with cutting conditions ap = 1.5 mm, ad = 1 and n = 12,000 rpm presented in Figure 3a,
and the unstable case with cutting conditions ap = 3 mm, ad = 1 and n = 12,000 rpm showed in
Figure 3b. The rate of convergence was analyzed by computing the absolute error between the solution
with N discrete intervals and a converged solution. All methods were compared against itself using
the solution provided with N = 200 discrete intervals, which are considered the converged solution. In
Figure 3a it is observed that the convergence is better for the second- and third-order than the first-order,
however, the difference of convergence between second- and third-order with the parameters used was
negligible. On the other hand, Figure 3b shows that for few discrete intervals the third-order EMHPM
had the fastest convergence in comparison with the second- and the first-order EMHPM. However,
the second-order and third-order curves behaved very similarly after N = 50 discrete intervals. It is
important to mention that for a typical stability solution in the ranges of spindle speed 5000–10,000
rpm, N = 40 discrete intervals will be enough to have accurate predictions.
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(a) 

(b) 

Figure 3. Convergence rate of absolute error between first-, second- and third-order EMHPM for
down-milling operation. Cutting parameters for (a) ap = 1.5 mm, ad = 1 and n = 12,000 rpm and
(b) ap = 3 mm, ad = 1 and n = 12,000 rpm.

Since the rate of convergence was proved for time-domain simulations, we next explored the
convergence of the methods applied to the stability analysis. The stability lobes computed with the
second- and third-order EMHPM for regular milling tools were compared with its predecessor for
radial immersion value of ad =1 and the other parameters indicated above as it was used in [44].
Figure 4 shows the stability diagrams for spindle speed in the range 2000–3000 rev/min where the
precision of the method was compromised due to the higher value of the time delay. While the shaded
gray area represents the stability lobes computed with N = 200 discrete intervals in all subfigures,
in each subfigure solid black lines draw the stability frontier for a specific discrete interval and using
the first-, second- or third-order EMHPM. In Figure 4 the first, second and third column represents the
solution for the first-, the second- and the third-order EMHPM respectively, while the first and the
second row was for N = 60 and N = 100 discrete intervals, respectively. It is observed that the error
achieved in the third-order EMHPM was less than those attained for the first-order and second-order
EMHPM solutions. This confirms that the third-order EMHPM had the highest rate of convergence.
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(a) (b) (c) 

(d) (e) (f) 

(g) 

 

Figure 4. Stability diagrams for down-milling operation. The first (a–c) and second (d–f) rows of
subfigures correspond to N = 60 and N = 100 discrete intervals, respectively. First (a,d), second (b,e) and
third (c,f) columns correspond to the first-, second- and third-order EMHPM, respectively. Subfigure
(g) shows a comparison between the third-order EMHPM (black line), the SDM (dot line) and the FDM
(dash line) with N = 60 discrete intervals.

The results were also compared, in Figure 4g, with the semi-discretization method (SDM) presented
by Insperger and Stépán in [43] (dot line) and with the full-discretization method (FDM) presented by
Ding et al. in [45] (dash line). It is observed that the EMHPM converged faster than the SDM and FDM.
Table 1 list the results for computation times for a different number of discretized intervals together
with the absolute error between stability frontiers. Notice that the solution obtained with the EMHPM
with N = 60 discrete intervals was faster than the SDM and the FDM and even the error was less in the
solution by the EMHPM. For N = 100 discrete intervals the computation time for the FDM was similar
to the solution obtained with the EMHPM but it was demonstrated that the solution by second- and
third-order EMHPM requires a smaller number of discretized intervals to converge to the solution and
using a smaller amount of computation time. Notice the error for the SDM was not calculated since
there was no stability frontier in some values of spindle speed.
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Table 1. Comparison of convergence for different methods for down-milling operation with ad = 1

Method
N = 60 N = 100

Time (s) Error Time (s) Error

First-order EMHPM 52.39 1.6276 186.35 0.3203
Second-order EMHPM 54.85 0.3507 194.65 0.0568
Third-order EMHPM 61.48 0.3458 195.86 0.0563

FDM 61.26 1.4097 191.49 0.3998
SDM 278.03 - 570.04 -

It is noticeable that exists a significant improvement in the rate of convergence from first-order to
second-order and third-order EMHPM, however, the difference between the second- and the third-order
EMHPM is negligible if the number of discretized intervals increase. There is no best method between
second- and third-order EMHPM in terms of rate of convergence and computation time since the
precision depends on the nature of the studied problem. However, it is easy to prove that a higher-order
approximation (fourth- and fifth-order EMHPM) could drastically increase the computational time
without a significant improvement in the solution.

4. Stability Analysis of Multivariable Milling Tools

The EMHPM can be generalized for stability analysis of DDEs having multiple delays.
A multivariable tool contains some of the following characteristics: uneven pitch between teeth,
and/or at least one helix angle with a different value from the others. This analysis was developed by
Compeán et al., in [34] by using the first-order EMHPM, where the methodology for the characterization
of the cutting coefficients for a multivariable tool was discussed, and the dynamic behavior was studied
from the productivity point of view. Since the angular spacing at the beginning of the edge is different
between teeth (pitch) and the different values of helix angles of the edges between adjacent teeth,
the angular spacing between teeth at a specific height changes continuously, which produces an infinite
number of delays. A common approach to deal with the DDE with an infinite number of delay is
to discretize the tool by cutting disks in the axial direction with a thickness Δadsk to induce a DDE
with a finite number of delays. A single disk still has the same number of flutes (discrete flutes) and
considering that the maximum delay in the process is the period of rotation of the tool or the spindle
rotation period τT, then, it can be discretized in N − 1 intervals.

The angular position between two adjacent teeth in each cutting disk changes according to the
axial position of the referred disk and is related to the expression ψ = kβap, where kβ = 2 tan β/2D.
Here D is the diameter of the tool and ψ represents the cutting-edge offset angle due to the helix angle.
A certain interval can be associated with a discrete time delay of each tooth iz and disk l using the
following formulation

Niz,l = round
(
(N − 1)

δφiz,l

2π

)
(27)

where δφiz,l is the angular pitch between consecutive teeth for each disk, the round function converts
the argument to the nearest integer. In Equation (27) Niz, is a table (matrix) of dimension iz × l. Since
this procedure could generate several delayed terms and some of them with the same value of discrete
time delay due to the discretization scheme, it is required to collect all the different (non-repeated)
discrete time delays dn from Niz,l.

Thus, without loss of generality, the DDE with multiple delays can be written as

.
x(t) = A(t)x(t) +

max(dn)∑
d=min(dn)

Bdx(t− τ) (28)
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where x is the vector of states, A(t + τT) = A(τT), Bd(t + τT) = Bd(τT) and τT is the period of rotation
of the spindle. Following the EMHPM procedure, Equation (28) can be written equivalently by
intervals as:

.
xi(T) −Atxi(T) ≈

max(dn)∑
d=min(dn)

Bt
dxi
τd(T) (29)

being xi(T) the solution by intervals of order m for Equation (28) in the i − th interval that satisfies
the initial condition xi(0) = xi−1, the matrices At and Bd

t represent the values of the matrices A(t) and
Bd(t) evaluated at time t respectively.

4.1. Third-Order EMHPM for Multivariable Milling Tool

To approximate the term associated with the delayed terms x
τd
i (T) of Equation (29), the interval

of the period τT, [t0 − τT, t0] is discretized in N − 1 intervals that can be equal size. For simplicity,
intervals of equal size Δt = τT/(N − 1) are chosen. Then it is assumed that the function x

τd
i (T),

which is defined in the interval [ti−d−1, ti−d+2], for the third-order EMHPM has the representation of
the form:

x
τd
i (T) = xi−d(T) ≈ xi−d−1 +

(
N−1
τT

)
T
(
− 11

6 (xi−d−1) + 3(xi−d) − 3
2 (xi−d+1) +

1
3 (xi−d+2)

)
+(

N−1
τT

)2 T2

2 (2(xi−d−1) − 5(xi−d) + 4(xi−d+1) − (xi−d+2))+(
N−1
τT

)3 T3

6 (−xi−d−1 + 3(xi−d) − 3(xi−d+1) + xi−d+2)

(30)

Defining xi ≡ xi(Ti) to simplify the notation, and substituting Equation (30) in Equation (29), the
following equation is obtained:

.
xi(T) = Atxi(T) +

max(dn)∑
d=min(dn)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Bt

dxi−d−1 + Bt
dT
(

N−1
τT

)(
− 11

6 (xi−d−1) + 3(xi−d) − 3
2 (xi−d+1) +

1
3 (xi−d+2)

)
+

Bt
d T2

2

(
N−1
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where

At =
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (32)

here, hyy is the specific cutting force in the y-direction due to flexibility in y-direction, which is used
for thin wall machining. This force was calculated depending on the position of the tool via the
following equation:

hyy(t) =
zn∑

iz=1

g(φiz(t)) cosφiz(t)(−Ktc sinφiz(t) + Knc cosφiz(t)) (33)
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Then, solving Equation (31) yields

Xi0 = xi−1

Xi1 = TAt(xi−1) +
max(dn)∑

d=min(dn)
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Notice that Equation (34) can be written recursively as

Xik = Xa
ik + Xb

ik + Xc
ik + Xd

ik, k = 1, 2, 3 . . . . (35)

where Xa
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(36)

the solution of order m for Equation (31) was obtained by adding each of the approximations k of
Equation (35). Similar to Equation (15), to obtain the stability graphs the solution of Equation (35) is
rewritten by grouping the discrete states, which results in:

xi(T) ≈ Pi(T)x(i−1) +

max(dn)∑
d=min(dn)

(
Q

”

i
d(T)xi−d+2 + Q

′

i
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i
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)
(37)
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where
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The approximate solution obtained from Equation (37) was used to define a discrete map:

wi = Diwi−1 (39)

where wi−1 is a vector represented by Equation (20) and Di is a coefficient matrix given by

Di=
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(40)

The transition matrix Φ over the period τT = (N − 1)/ Δt was determined by coupling each
solution xi through the discrete map Di, i = 1, 2, . . . , (N − 1). However, the computational cost can be
reduced by computing only the transition matrix up to the maximum delayed term without losing
precision in the calculation of the eigenvalues:

Φ = DNmaxDNmax− 1 . . .D2D1 (41)
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Thus, the stability graphs of Equation (28) were determined by computing the eigenvalues of the
transition matrix of Equation (41). The results obtained from the EMHPM were corroborated with the
stability lobes in the study of multivariate tools [27].

4.2. Experimental Characterization of One Degree of Freedom Milling Equation and Cutting Force Model

4.2.1. Experimental Modal Analysis

An experimental workpiece was assembled with a 7075T6 aluminum block of 101 mm × 172 mm
supported by two thin plates (walls) with a thickness of 4.5 mm. This assembly mimics a DOF as
described in Equation (23). The workpiece assembly was rigidly fixed to the workbench of a Makino
F3 machining center. For modal analysis, tap testing was performed using a 352C68 PCB Piezotronics
accelerometer and an impact hammer model 9722A500. The signals were acquired with a Polytec
VIB-E-220 data acquisition card and processed with VibSoft signal analyzer software as shown in
Figure 5a. Using the CutPro 8 software, the modal parameters were fitted resulting the values ζ = 0.068,
mm = 3.8 kg, fm = 132 Hz and ωn = 829 rad/s.

(a) (b) 

 

Figure 5. Scheme of the experimental setup for (a) the modal analysis and (b) cutting forces
characterization.

4.2.2. Experimental Determination of Cutting Coefficients

The force model in Equation (33) was used to predict the cutting force magnitude for a given
depth of cut. It is based on a mechanistic approach that assumes a relationship between forces and the
uncut chip thickness by means of the cutting coefficients. The cutting force model was established by
introducing cutting (shearing) and edge coefficients for the tangential and normal directions of the
milling tool. The characterization procedure assumed the linear relationship between the averaged
experimental cutting forces F̃ and the feed rate fz in x- and y- directions. This relationship is established
as follows:

F̃ = fzF̃c + F̃e (42)

Here, F̃c and F̃e are the cutting shear and edge components, respectively. The experimental forces
at each feed rate are measured, and the cutting-edge components F̃c and F̃e were evaluated

Ktc = 4
F̃yc

znap
, Knc = −4

F̃xc

znap
(43)

A multivariable cutter provided by a local toolmaker was characterized by using Equation (43)
and the experimental setup shown in Figure 5b. Table 2 summarizes the main geometric characteristics
of the multivariable tool. A total of five cuttings were performed for full radial immersion in aluminum
7075T6 during dry machining. The forces were recorded by using a dynamometer 9257B Kistler and
the spindle speed was set at 3000 rpm based on the dynamometer’s natural frequency to avoid the
amplification of milling forces. The force signals were acquired using a VibSoft-20 acquisition card at
a sample rate of 48 kHz and processed in a custom-made MATLAB app to remove drift and noise.
Cutting forces data were collected for the axial depth of cut of 2 mm and four values of feed per
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tooth 0.05, 0.10, 0.015 and 0.20, so the resulting cutting coefficients Ktc for the tooth 1, 2, 3 and 4 were
1215× 106, 1369× 106, 897× 106 and 1799× 106 N/m2 respectively, while that the coefficients Knc for
the tooth 1, 2, 3 and 4 resulted 272× 106, 520× 106, 801× 106 and 859× 106 N/m2 respectively.

Table 2. Main geometric parameters of multivariable tool.

 

Diameter 12.7 mm

Cutting length 25 mm

Coating type Uncoated

Number of teeth 4

Helix angles 39◦, 37◦, 39◦, 41◦

Pitch angles 80◦, 100◦, 70◦, 110◦

4.3. Stability Analysis of 1 DOF Milling with a Multivariable Tool

The stability lobes computed for the multivariable tool using the third-order EMHPM with a
mesh of 400× 200 (n× ap) are shown in Figure 6 together with stability lobes for a regular tool (angles
of 90◦ and helix angles of 30◦ for all flutes). An approximation of order m = 7 was used with N = 241
and ad = 1 mm. Notice from Figure 6 that the stable zone obtained for the multivariable tool was
significantly larger, meaning that the critical depth of cut was higher in most spindle speeds, which
allowed having more global productivity. It is also observed in the range of spindle speed between
2000 and 3000 rpm, a stable peninsula formed with axial depth ranging from 11 to 20 mm or higher
values of critical depth of cut. For instance, for the multivariable cutter at 2500 rpm, the critical depth
of cut ap was 2.17 mm, however it became stable again as shown in Figure 6 for the interval values
between 11 and 20 mm. To validate this unexpected behavior, we performed several time-domain
simulations using the third-order EMHPM solution described by Equation (37).

(a) (b) 

 

Figure 6. (a) Comparison of stability lobes for regular (black solid line) and multivariable (red solid line)
cutters by using the third-order EMHPM and (b) zoom in on chosen cutting conditions for time-domain
simulations. The selected points are marked as follows: unstable (cross mark), stable (circle mark) and
transition (plus mark) cutting conditions.

Furthermore, the simulated vibrations for the chosen cutting conditions were analyzed using
the continuous wavelet transform (CWT), the power spectral density (PSD) and Poincaré maps (PM).
The CWT is a time-frequency representation of a signal that offers the capability to observe how
frequencies evolve in time. The scalograms display the absolute value of CWT of the simulated
vibration and therefore, they were used to detect chatter phenomena that appeared when milling with
a multivariable tool. The PSD is based on the Fourier transform that provides the transformation from
the time-domain to the frequency-domain. Additionally, PSD is defined as the squared value of the
signal and describes the power of a signal or time series distributed over different frequencies [46].
Moreover, a PM represents points in phase space, which are sampled every spindle rotation [47].
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The frequencies f of the CWT and PM were normalized fn = f / fh according to the spindle frequency
fh. When milling with a regular milling tool the excitation frequency fe is equal to zn times frequencies
of the spindle speed fh but in a multivariable tool, there are several excitation frequencies since the
angular spacing between teeth change as a function of the axial depth of cut.

Figure 7 illustrates the CWT, PSD and PM for simulated vibrations using the multivariable tool
with different axial depths denoted as cutting conditions A, B and C for the axial depths of cut of 1.0,
1.7 and 1.7 mm respectively. Figure 7a–c refers to the vibrations of the cutting conditions A marked
in Figure 6, using a regular tool. The scalogram in Figure 7a identifies point A as a stable cutting
since normalized cutting frequencies present a dominant value of fn = 3.2, which corresponds to the
natural frequency fm = 132 Hz. This is also confirmed by the PSD analysis shown in Figure 7b. The
PM illustrated in Figure 7c shows a vibration that decreased with time and sampled data concentrated
in the center confirmed a typical stable case. When the axial depth of cut was increased to 1.7 mm,
the stability diagram predicted unstable cutting conditions according to the stability lobes for the
regular tool. This case is denoted with cutting conditions B and the corresponding scalogram (shown
in Figure 7d) illustrated how the intensity of the dominant frequency increased with time even when
the excitation frequency was the same as the case in A.

(a) (b) (c) 

  

(d) (e) (f) 

  

(g) (h) (i) 

   

Figure 7. Analysis of cutting conditions A, B and C. Continuous wavelet transform (CWT) scalograms:
(a,d,g); power spectral density (PSD): (b,e,h) and Poincaré maps (PM): (c,f,i) corresponds to the cutting
conditions A, B and C respectively.
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The PM diagram shown in Figure 7f exhibited a vibration far from zero. In fact, the PM diagram
shows that the vibration amplitude grows exponentially because our equation of motion did not
consider nonlinear effects such as those that appeared when the tool lost contact with the workpiece.
Both cutting conditions A and B agreed with the stability boundaries in Figure 6. Now, the cutting
conditions B were used but with a multivariable tool, which was referred to as cutting conditions
C. The CWT plotted in Figure 7g described completely different results since there were no single
dominant frequencies in comparison with cutting conditions A, but appeared several frequencies
around fn = 3.2 and close to fn = 1 that reduced in intensity with time, suggesting a stable cutting.
Figure 7i illustrates how the vibration amplitude approached to zero when using a multivariable tool
in contrast to the PM obtained for the regular tool and exhibited in Figure 7f. This can be explained by
observing that there were several excitation frequencies due to the irregular pitch and helix angles that
break a single excitation frequency avoiding regenerative chatter phenomena.

Figure 8 illustrates the CWT, PSD and PM for simulated vibrations using the multivariable tool
with different axial depths denoted as cutting conditions D, E, F and G for the axial depths of cut
of 2.3, 3.0, 8.55 and 18 mm respectively. Notice that a stable case C was already validated when the
axial depth was 1.7 mm in Figure 7g–i that corresponded to cutting conditions under the stability
boundaries shown in Figure 6. For case D, a transient cutting condition was chosen very close to the
critical axial depth of the cut. It is interesting to point out that transition cutting conditions in the CWT
scalogram shown in Figure 8a not only shows frequencies with higher intensity in comparison with
the stable case B, but also presents shifted frequencies that varied in intensity every single revolution.
This shifting suggests a marginally stable cutting condition that was confirmed by the PM illustrated
in Figure 8c, where circular trajectories were described close to the center point.

(a) (b) (c) 

  

(d) (e) (f) 

   

Figure 8. Cont.
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(g) (h) (i) 

   

(j) (k) (l) 

  

Figure 8. Analysis of cutting conditions D, E, F and G. CWT scalogram:s (a,d,g,j); PSD: (b,e,h,k) and
PM: (c,f,i,l) corresponds to the cutting conditions D, E, F and G respectively.

Unstable vibrations that appeared for case E were because of the intensity of frequencies increased
exponentially with time, see Figure 8d. Notice that other frequencies arose with time close to the
values of fn = 0.5 and fn = 1.5. These frenquencies also occurred for cutting conditions D, which is an
indication of the appearance of chatter phenomena. In contrast to Figure 7i for a stable case, Figure 8f
exhibited few trajectories because the vibration amplitude was out of the range selected (±1 mm).
The qualitative and quantitative dynamic behaviour due to cutting conditions F, and illustrated in
Figure 8g-i, were classified as transition cutting behaviour. Here, a more severe shifting in frequencies
was observed in the scalogram (Figure 8g). From Figure 8g, it is seen that drastic shifting occurred in
the time domain in the range of normalized frequencies from 3.5 to 6. It was also evident in the PM
showed in Figure 8i, that the amplitude of vibration remained below 1 mm during several revolutions
of the tool but the amplitude of vibration never aproached to the center point, in contrast to the stable
cutting condition C shown in Figure 7i in which the oscillation aplitudes aproached the center.

An interesting dynamic behaviour was observed in the milling cutting process when the cutting
conditions were selected in the middle of the stable peninsula, above unstable cutting conditions such
as E cutting conditions. The axial depth of the cut was increased from the unstable axial depth of cut of
3–18 mm, 6 times higher of the stable cutting condition C and 2 times higher than the unstable condition
E. Since the vibration quickly decreased in a few revolutions no dominant frequencies appeared in the
CWT and PSD failed to clearly identify a dominant frequency since the vibration amplitude decreased
to zero after few revolutions, as confirmed by the PM shown in Figure 8l.

Figure 9 shows the normalized excitation frequencies that the multivariable tool produced for a
fixed spindle speed of 2500 rpm. The total number of disks of 50 μm of thickness was grouped in sets
of each millimeter in the axial direction. The waterfall plot in Figure 9 explains that a stable peninsula
was formed above 11 mm because the workpiece was excited with several frequencies simultaneously.
For instance, for a milling operation with the axial depth of cut of 1 mm (stable cutting), 80 discrete
disks were cut with four normalized excitation frequencies values (3.3, 3.6, 4.5 and 5.1). On the other
hand, when milling at 18 mm (stable cutting), there were 14 normalized excitation frequencies (3.30,

37



Appl. Sci. 2020, 10, 7869

3.35, 3.39, 3.44, 3.49, 3.54, 3.60, 4.55, 4.64, 4.73, 4.82, 4.92, 5.02 and 5.13), most of them with at least 115
discrete disks.

Figure 9. The number of discrete disks and discrete excitation frequencies as a function of the axial
depth of cut for the multivariable tool.

5. Conclusions

In this work, quadratic and cubic polynomials were used to approximate the delayed terms
of delay differential equations. Numerical simulations showed that using second- and third-order
EMHPM improved the convergence rate and required less computational time when compared
to the first-order EMHPM, and to semi-discretization and full-discretization methods, since fewer
approximations or less discrete intervals were needed to reduce the computation time.

To further assess the applicability of the proposed method, the third-order EMHPM was used for
determining the stability bounds in one-degree-of-freedom milling operation with a multivariable
tool, demonstrating that the stability zone improved in comparison with a regular tool. For instance,
at 2500 rpm the critical axial depth of the cut was 1.3 mm using the regular milling tool. However,
using the multivariable tool, the critical axial depth of the cut was increased until 2.17 mm but more
interesting, a stable zone appeared above 8.55 mm.

The CWT scalograms, PSD charts and PM were employed to validate the stability lobes found by
using the third-order EMHPM for the multivariable tool. Numerical solutions confirmed the system
dynamics behavior predicted by the third-order EMHPM.

Based on the above results, this paper provided evidence the third-order EMHPM could be used
to study dynamic phenomena that appeared at higher axial depths of cut due to the multivariable
design of the tool, which broke the excitation frequencies at a lower depth of cut.
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Abstract: The industrial robot machining performance is highly dependent on dynamic behavior
of the robot, especially the natural frequency. This paper aims at introducing a method to predict
the natural frequency of a 6R industrial robot at random configuration, for improving dynamic
performance during robot machining. A prediction model of natural frequency which expresses the
mathematical relation between natural frequency and configuration is constructed for a 6R robot.
Joint angles are used as input variables to represent the configurations in the model. The quantity
and range of variables are limited for efficiency and practicability. Then sample configurations are
selected by central composite design method due to its capacity of disposing nonlinear effects, and
natural frequency data is acquired through experimental modal test. The model, which is in form
of regression equation, is fitted and optimized with sample data through partial least square (PLS)
method. The proposed model is verified with random configurations and compared with the original
model and a model fitted by least square method. Prediction results indicate that the model fitted and
optimized by PLS method has the best prediction ability. The universality of the proposed method is
validated through implementation onto a similar 6R robot.

Keywords: machining robot; natural frequency prediction; model optimization; dynamic performance

1. Introduction

Due to the rapid development of industrial automation, the global amount of industrial robot
keeps increasing significantly in recent years [1], and new applications attract more attention [2–5].
Because of the multiple degree of freedom, large workspace, and relative low cost, industrial robot
becomes a potential alternative of traditional machine tool in hard material drilling [6], boring [7], and
milling [8,9] processes, which are not maturely and widely applied.

For machine tool, in the whole workspace, the stiffness and dynamic behavior nearly remain
steady, so machining stability and chatter suppression, which are concerned with multiple factors, are
research emphasis [10–12]. However, for industrial robot, current researches focus on the characteristic
of robot itself. Common industrial robot is of open-loop articulated serial structure with six revolute
joints (6R); therefore, the stiffness and dynamic performance are much inferior to machine tool, which
results in vibration issues and poor surface quality in machining process [13]. Static stiffness issues are
studied to avoid the robot deformation in machining, and several stiffness indexes are proposed to
evaluate the static stiffness of robot in the workspace [14–17]. On the other hand, dynamic behavior of
robot is studied to evaluate the capacity of dealing with time-variant load in machining process, which
may help to suppress vibration [18,19]. As 6R robot realizes movement through adjusting joint angles,
dynamic behavior keeps varying with configurations during motion process. For that reason, research
object is gradually expanded from one configuration to the whole workspace. Bisu et al. [20] selected
three configurations from a linear movement path of a 6R robot with interval of 50 cm for dynamic
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behavior study and vibration analysis. It was found that different natural frequencies led to dynamic
performance variation. Mousavi et al. [21] performed a similar four-point-study and analyzed the
change of stability region through modal information. Several configurations may present a linear
movement, but the usage of robot should not be such limited. Karim et al. [22] executed modal test with
63 measured points for 23 configurations, through which mode shapes were obtained and approximate
distribution of first two step natural frequencies in a plane was depicted. Natural frequency is the
vital dynamic parameter in robot machining, but massive tests are inefficient although the accuracy is
well ensured. A method was proposed by Glogowski et al. [23] to predict natural frequency in the
whole workspace efficiently, in which sample configurations were selected by design of experiment
(DoE) method and prediction model was fitted by least square (LS) method with the natural frequency
data of sample configurations, but the prediction deviation reached up to 8.9%, making the method
inadequate for practical application.

The low order natural frequencies of 6R robot are relatively small and the first order is merely
about 10 Hz, which is covered in frequency range of most machining processes, so 6R robot tends to
forced vibration during machining processes [24]. To obtain basis for vibration suppression, structure
optimization and path planning, low order natural frequencies are particularly concerned among
dynamic parameters. It is proposed that low order natural frequencies of robot are decided by the
configurations, while the high order natural frequencies are mainly related to the machining system,
which do not vary with robot configurations [25], this phenomenon is demonstrated in Figure 1.

Figure 1. Frequency Response Functions of different robot configurations.

Thus, a method to predict natural frequency of 6R industrial robot efficiently and precisely is
proposed in this paper. As shown in Figure 2, sample configurations are selected to present the
practical workspace (variable range) for fast prediction, and a regression equation fitted and optimized
by partial least square (PLS) method is used as prediction model for higher accuracy. A 6R robot,
ABB IRB4600, is used to illustrate and validate the method. Another ABB IRB6400 is used verify the
universality of proposed method.
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Figure 2. Prediction method of robot natural frequency.

2. Materials and Methods

2.1. Sample Preparation

The axes of 6R robot are noted as a1, a2, . . . , a6, corresponding joint angles are q1, q2, . . . , q6.
The mapping relation between natural frequency (f F) and configuration can be expressed as

fF= f(q1, q2, . . . , q6), (1)

With samples, a regression equation can be fitted to represent the mapping relation. However, it
is unnecessary and inefficient to include the entire workspace of the robot as the configurations near
the boundary could not be adopted in machining process. Therefore, range of variables is limited
before selecting samples through DoE method. Then natural frequency information of each sample
configuration is acquired through modal test.

2.1.1. Variable Range Determination

a1, which is the basic rotation axis of the robot structure, and a6, which is a 360◦ rotation axis
controlling the flange, are proved to be nonsignificant in changing natural frequency by preliminary
researches on 6R robots including KUKA KR60, ABB IRB6400, and IRB 4600. As low order natural
frequencies is mainly decided by robot configuration, none end-effector is fixed on the flange in above
cases for general research. Hereby, q1 and q6 are excluded from model (q1 = q6 = 0◦ in practice) for the
simplification, and q2–q5 are applied as variables. Prediction model can be adapted to

fF= f(q2, q3, q4, q5), (2)

To ensure the efficiency of model, partial workspace that may cause movement interference in
machining process is rejected by simulation software. The variable range is finally determined and
shown in Figure 3, where the solid area indicates the new efficient workspace, and the dashed area
represents the original workspace.
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Figure 3. Partial variable range.

2.1.2. Sample Configuration Selection

DoE method has advantages in study influence of different factors, especially for basic research
of robot machining, e.g., Simoes et al. [26] used DoE to study influence of robot milling parameters.
Different types of selection methods are compared in pilot study including three-level full factorial
design (3kD), orthogonal experimental design, Box-Behnken design, and central composite design
(CCD). The prediction performances of 3kD and CCD are nearly matched and superior to the other
two, while CCD demands a much smaller sample amount [23]. Meanwhile CCD owns conspicuous
ability in disposing the nonlinear influence that joint angles may lead to natural frequency. Therefore,
CCD method is adopted to select sample configurations in this paper, corresponding factors and levels
are shown in Table 1.

Table 1. Factors and Levels of central composite design (CCD).

Factors
Levels

q2

(Deg)
q3

(Deg)
q4

(Deg)
q5

(Deg)

−1 −55 −140 −180 −70
−0.5 −30 −95 −92.5 −30

0 −5 −50 −5 10
+0.5 20 −5 82.5 50

1 45 40 170 90

2.1.3. Sample Data Acquisition

Experimental modal test (EMT) is applied so that the natural frequency data of sample
configurations can be identified accurately. According to principle of modal test, any element
of frequency response function (FRF) can be written as

hij(ω) =
n∑

k = 1

⎛⎜⎜⎜⎜⎝ aijk

( jω− pk)
+

a∗i jk

( jω− p∗k)

⎞⎟⎟⎟⎟⎠, (3)

which presents the response of i point caused by the excitation at j point. aijk and a∗i jk are related
to mode shapes, their values are depending on relevant combination of excitation and response. pk

and p∗k contain the information of natural frequency and damping, which are global characteristics
independent of excitation and response combinations. Theoretically, one combination of excitation
and response is enough to identify all the natural frequencies, provided the excitation and response
points avoid the nodes.

The sample configurations selected by CCD design vary greatly, for the convenience of
implementing all the trials in the CCD design, hammer excitation is chosen, and a three-direction
accelerometer is fixed on the flange of robot to acquire response signal. In this way, the extra mass
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brought by EMT device can be negligible as the accelerometer is small and light compared to the robot.
Excitations are generated from three directions for each trial, which are corresponding to the three
directions of the accelerometer, as shown in Figure 4. Then three FRFs will be obtained for natural
frequency identification, avoiding incomplete excitation or excitation on the nodes. Moreover, for each
direction, five groups of excitation and response signals are acquired to decrease the signal-to-noise
ratio through average algorithm. With FRFs the natural frequencies are preliminarily identified, then
complex modal indicating function is used to confirm the accurate values of natural frequencies.

Figure 4. Directions of accelerometer and excitations.

With the ABB IRB4600 industrial robot being the object, a EMT system for sample data acquisition
is set up, including a LIXIE hammer, a PCB three-direction accelerometer, an ECON device for vibration
signal processing and a PC (as shown in Figure 5). The configuration of robot is adjusted according to
the CCD design in turn. All the identified natural frequency information will be used as the sample
data to construct a prediction model.

 

Figure 5. The setup of experimental modal test (EMT) system.

2.2. Prediction Model Construction and Optimization

Because of the serial structure, the relation between configuration and joint angles could not
be linear. Thus, Equation (2) is fitted to a general second order equation in this case according to
normal engineering application. PLS method is adopted to solve the issues of nonlinear influence
and multi-correlation between joint angles in regression equation fitting. Meanwhile, the fitting error
caused by the limitation of sample quantity can be remarkably reduced, due to the advantage of PLS
method in coping with small sample quantity. In addition, PLS has good interpretability for the terms
of regression equation, which can be used as optimization criterion.
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2.2.1. PLS Method Fitting Process

The principle of PLS method in multivariate regression fitting is to extract principal components t
and u respectively from independent variables X and dependent variables Y while retaining the most
correlation, which can be mathematically described as

Cov(t, u) =
√

Var(t)Var(u)r(t, u)→ max, (4)

The process of regression equation fitting by PLS method [27] is briefly introduced as follows.

1. Data standardization.
2. First principal component calculation.
3. Principal component validation.

Current principal component th is validated by following indexes:

R2
Y(cum) =

m∑
h = 1

r2(Y, th), (5)

Q2
h = 1− SSPE,h

SSE,h
, (6)

Q2
h(cum) = 1−

h∏
k = 1

SSPE,k

SSE,k
, (7)

where SSPE,h is the square sum of prediction error of Yh−1, SSE,h is square sum of deviation of Yh−1.
R2

Y(cum) indicates the ability of principal component to explain the variability of Yh−1, and its
upper limit value is 1. Q2

h represents the contribution of th to the model. When it is more than
(1–0.95)2 = 0.0975, th has significant effect on prediction model. Meanwhile, Q2

h(cum) increases,
meaning that the comprehensive significance in explaining Y is enhanced.

4. Subsequent principal components calculation. The residual matrixes from Step c. are continued
to compute new principal components, until tQ+1 deduces Q2

h(cum). The principal components
before tQ+1 are validated ones.

5. Regression equation
Y0 = t1rT

1 + t2rT
2 + . . .+ tQrT

Q + YQ, (8)

6. Data reduction. The final regression equation for prediction can be obtained through the reverse
process of data standardization.

2.2.2. Interpretability of PLS Method for Regression Equation

Variable importance in projection (VIP), which indicates the importance of each item in regression
equation, is defined as

VIPj =

√√
p

R2
Y(cum)

m∑
h = 1

r2(Y, th)w2
hj, (9)

where wjh is the jth component of wh.
The larger VIPj is, the more important xj is in constructing Y. The effects of different items can be

compared quantitatively through VIP values, so that some redundant items can be rejected to realize
regression equation optimization.
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2.2.3. Prediction Model Construction

The sample data from Section 2.1.3 is utilized to construct prediction model, taking the first order
natural frequency of ABB IRB4600 robot as example.

As mentioned, the general regression equation concludes q2, q3, q4, q5, and their cross items and
square items. The general equation is marked as M. After the second principal component is extracted,
validation indicates are shown in Table 2. The second principal component deduces Q2

h(cum), meaning
that comprehensive ability is weakened. Though R2

Y(cum) increases, the second principal component
is still abandoned.

Table 2. Principal component validation of M.

h R2
Y(cum) Q2

h Q2
h(cum)

1 0.888 0.639 0.639
2 0.962 −0.171 0.603

2.2.4. Prediction Model Optimization

Q2
h(cum) of M is merely 0.639, which means M is inadequate to represent f F. To optimize the

model, VIP values of items in M is calculated and illustrated in Figure 6.

Figure 6. VIP values of items in M.

All the one-degree items should be retained as basic items. All the square items are important
enough to stay in the model because of their high VIP values. As VIP values of cross items are relatively
low, different combination groups should be tested. A new model M1 is constructed by cutting off
cross items except q2q3, because q2q3 has the largest VIP value among cross items; meanwhile, q2 and
q3 are most two important variables according to VIP values. Based on M1, the other five cross items
are added respectively in descending order of their VIP values. The new five models are marked as
M2–M6. Validation results of above models are shown in Table 3. All the six models are constructed
with two principal components. R2

Y(cum) and Q2
h(cum) values of the six models are all improved

obviously compared to M. M2, formed by adding q3q5 to M1, has the best R2
Y(cum) and Q2

h(cum)

values. M3–M6, which get lower R2
Y(cum) and Q2

h(cum) values compared to M1, are abandoned.
Based on M2, four new models are introduced by adding q2q4, q3q4, q2q5, and q4q5 in turn. However,

the largest Q2
h(cum) only reaches up to 0.764. All the other combination groups of above four cross

items are add to M2 for test, but none of them can acquire better validation result. Thus, the optimized
model is finally confirmed to be M2. The coefficients of items are listed in Table 4 together with M.
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Table 3. Validation results of M1–M6.

Model h R2
Y(cum) Q2

h(cum)

M1 2 0.958 0.776

M2 2 0.960 0.778

M3 2 0.958 0.764

M4 2 0.958 0.762

M5 2 0.958 0.723

M6 2 0.958 0.717

Table 4. Coefficients of items in M and M2.

Items Coefficient/M Coefficient/M2

Constant 1.138 × 101 1.086 × 101

q2 8.746 × 10−3 1.214 × 10−2

q3 5.987 × 10−2 6.611 × 10−2

q4 −7.532 × 10−5 7.873 × 10−4

q5 1.374 × 10−4 −3.785 × 10−3

q2
2 8.821 × 10−4 1.179 × 10−3

q2
3 5.322 × 10−4 5.894 × 10−4

q2
4 −2.464 × 10−5 1.242 × 10−5

q2
5 −1.018 × 10−4 7.342 × 10−5

q2q3 1.171 × 10−4 1.253 × 10−4

q2q4 4.323 × 10−6 -
q2q5 4.224 × 10−5 -
q3q4 −7.206 × 10−6 -
q3q5 −4.939 × 10−5 −5.285 × 10−5

q4q5 1.099 × 10−5 -

3. Results

3.1. Prediction Model Verification and Analysis

3.1.1. Model Verification with Random Configurations

Sixteen groups of q2–q5 values are picked randomly from the variable range defined in Section 2.1.1,
through which 16 corresponding robot configurations are defined for model verification. The simulation
images of the 16 configurations are reranked by joint angles q2 and q3 as shown in Figure 7, and the
measured natural frequency is listed in the bottom left corner of each image. The configurations are
nearly uniformly distributed in the variable range, which ensures the comprehensiveness of verification
objects and rationality of verification result.

Figure 7. Random configurations for model verification.
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The first order natural frequencies of the 16 configurations are obtained by EMT. Then, original
model M and optimized model M2 are utilized to predict the first order natural frequencies.
The deviation between prediction value and measured value is defined as prediction error, the details
are listed in Table 5; Table 6.

Table 5. Prediction error of M.

No. 1 2 3 4 5 6 7 8

Error 0.20 0.36 0.22 0.11 0.22 0.45 1.59 0.26
Relative error % 1.71 3.79 1.76 1.10 1.90 3.88 10.24 2.34

No. 9 10 11 12 13 14 15 16

Error 0.54 1.43 0.87 1.04 1.46 1.78 1.47 0.12
Relative error % 4.34 10.30 8.40 8.27 12.56 19.54 12.39 1.18

Average error 0.76 Average relative error % 6.48

Table 6. Prediction error of M2.

No. 1 2 3 4 5 6 7 8

Error 0.30 0.10 0.19 0.46 0.44 0.44 0.30 0.32
Relative error % 2.51 1.04 1.47 4.55 3.85 3.81 1.92 2.88

No. 9 10 11 12 13 14 15 16

Error 0.51 0.44 0.20 0.51 0.42 0.24 0.11 0.15
Relative error % 4.12 3.14 1.90 4.01 3.56 2.68 0.88 1.48

Average error 0.32 Average relative error % 2.74

The average error and average relative error of optimized model M2 are both much lower than
those of original model M. The average relative error of M2 is less than 5% which brings more reliability.
On the other hand, seven high relative errors (more than 5%) which are underlined show up in the
prediction process of M, and the maximum error reaches up to 1.78 Hz. While M2 has no predictions
with over 5% relative error, and the maximum error is 0.51 Hz which is acceptable. Obviously,
optimized model M2 has better prediction ability.

A model (MLS) fitted by least square (LS) method with the same sample data is taken as the
contrast. Moreover, the prediction errors are displayed in Table 7. Average error and average relative
error of MLS are both higher than those of M and M2, that is, PLS method have better performance
in construct prediction model of natural frequency than LS method. In conclusion, model fitted and
optimized by PLS method has the best prediction ability.

Table 7. Prediction error of MLS.

No. 1 2 3 4 5 6 7 8

Error 0.51 0.45 0.51 0.79 1.16 1.37 0.52 0.86
Relative error % 4.32 4.77 4.01 7.91 10.30 11.81 4.66 7.68

No. 9 10 11 12 13 14 15 16

Error 1.49 0.64 0.55 0.40 1.94 0.36 0.46 0.43
Relative error % 11.92 6.32 4.86 4.38 16.44 3.29 4.43 5.89

Average error 0.78 Average relative error % 7.07

3.1.2. Model Construction Quality Analysis

In PLS method, when model is constructed by principal components, information in the last
residual matrix is ignored, causing the error between fitted model and original data. Standardized
distance between sample point and model can be used to evaluate the construction quality. (DModX,N)i
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or (DModY,N)i is the ratio of construct quality of the ith sample point and the average construct quality.
When the ratio is less than two, the construction for the ith sample point is reasonable. Construction
quality of M2 is shown in Figure 8. (DModX,N)i and (DModY,N)i are all less than two, that means the
construction of M2 is rational.

Figure 8. Construction quality of M2.

3.2. Method Universality Verification

To testify the universality of the natural frequency prediction method proposed in this paper, it
is completely applied to an ABB IRB6400 industrial robot (as shown in Figure 9). Sample data are
obtained according to Chapter 2.1 as the structure is similar to IRB4600. PLS is used to fit and optimize
the prediction model M6400. In this case, q2q4, q2q5, and q4q5 are abandoned according to VIP values.
Validation results can be seen in Table 8, values of R2

Y(cum) and Q2
h(cum) indicate that the fitting

is rational. Construction quality is eligible as shown in Figure 10. The result of model verification
through random configurations is shown in Table 9, average relative error is merely 2.982%, indicating
the good prediction performance.

Figure 9. ABB IRB6400 industrial robot.

Table 8. Validation results of M6400.

h R2
Y(cum) Q2

h Q2
h(cum)

1 0.801 0.720 0.720
2 0.952 0.546 0.874
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Figure 10. Construction quality of M6400.

Table 9. Prediction error of M6400.

No. 1 2 3 4 5 6 7 8

Error 0.35 0.43 0.13 0.47 0.23 0.23 0.07 0.19
Relative error % 2.94 3.38 1.41 4.16 1.97 1.97 0.44 1.66

No. 9 10 11 12 13 14 15 16

Error 0.15 0.23 0.25 0.61 0.78 0.58 0.35 0.34
Relative error % 1.56 2.05 2.74 4.81 7.19 5.59 3.11 2.78

Average error 0.33 Average relative error % 2.98

The two models constructed for two different robots through the method proposed in this paper
both own good prediction ability. That is, the universality of the proposed method is testified.

4. Discussion

Once the prediction model of natural frequency is constructed and verified, the prediction result
can be used as optimization parameter to improve the machining performance. An application case of
the prediction model is explained as follows.

a2 and a3 control the two longest links, by which the basic configuration of robot is determined.
Through VIP values, items involving q2 and q3 are demonstrated to act dominated role in prediction
model. a4 and a5 decide the direction of robot flange, which affect the configuration less than a2 and
a3. Taking M2 for an example, the influence of q2 and q3 on natural frequency is specifically studied
and illustrated in Figure 11. When q2 = −55◦ and q3 = 40◦ (Pmax), the maximum first order natural
frequency is obtained, and the minimum appears when q2 = −2◦ and q3 = −56◦ (Pmin).

Figure 11. Variation of natural frequency with q2 and q3.

Three configurations near Pmax, P1 (q2 = −48◦, q3 = 50◦), P2 (q2 = −38◦, q3 = 45◦), and P3 (q2 = −28◦,
q3 = 40◦) are chosen for milling test (as shown in Figure 12. The first order natural frequencies decrease
in turn from P1 to P3 according to model M2. The setup of milling test is shown in Figure 13. High speed
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milling with short and straight path are executed, so that robot configuration can be ignored in one
milling path. Milling parameters are as follows: the spindle rotation frequency is 800 Hz, f is 2.4 mm/s,
ae is 1 mm, and ap is 4 mm. Acceleration signals and milled surface are analyzed.

Figure 12. Chosen robot configurations for milling test.

 
Figure 13. Milling test system setup.

Milling acceleration signals are treated with short-time fourier transform (STFT), spectrograms
of the range 5–100 Hz are displayed in Figure 14. For all three configurations, several peaks are
conspicuous around 50–90 Hz during the whole milling process. In low frequency stage, a peak
about 16 Hz can be found in P2 and a 15 Hz peak for P3, which are corresponding to their predicted
natural frequencies. That no conspicuous can be found in P1, may because the certain frequency is not
significantly impacted by the milling parameters.

 
Figure 14. Short-time fourier transform (STFT) of vibration signals of P1–P3.

As for the milled surface, an obvious tool recession appears at P3, as shown in the red frame in
Figure 15, while the situations are better in at P1 and P2. In addition, the quality of milled surfaces
at P3 is the poorest compared with P1 and P2, and the vibration phenomenon on milled surface is
getting severer from P1 to P3, indicating that configuration with higher first order frequency may lead
to better milling performance, as mentioned in [20]. Whether there exits practical relevance between
the value of natural frequency and machining performance can be a further research topic to develop
more application of natural frequency prediction.

52



Appl. Sci. 2020, 10, 8138

 

Figure 15. Milled surfaces of P1–P3.

5. Conclusions

It is impossible to measure all the natural frequency information of the whole robot workspace,
but the information is vital in improving robot milling performance. In view of that, a method to
predict the natural frequency is proposed in this paper. The core content of the method proposed is to
construct a prediction model with sample configurations, which takes joint angles as input variables.
Two insignificant variables q1 and q6 are abandoned and workspace is limited for practicability.
Considering the nonlinear influence of joint angles on natural frequency, CCD method is used to
select sample configurations from limited variable range, and EMT is applied to acquire the sample
data of the example robot. Several models are fitted through the sample data. The model validation
procedure proves that the model fitted and optimized by PLS method has the best prediction ability.
Then the method proposed is applied completely onto another robot for universality verification, and
the prediction performance turns out to be outstanding. Thus, this method can be applied on any 6R
machining industrial robot to evaluate its natural frequency distribution, which can be used for in
machining performance improvement.
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Abstract: The productivity during the machining of thin-floor components is limited due to unstable
vibrations, which lead to poor surface quality and part rejection at the last stage of the manufacturing
process. In this article, a semi-active magnetorheological damper device is designed in order to
suppress chatter conditions during the milling operations of thin-floor components. To validate the
performance of the magnetorheological (MR) damper device, a 1 degree of freedom experimental setup
was designed to mimic the machining of thin-floor components and then, the stability boundaries
were computed using the Enhance Multistage Homotopy Perturbation Method (EMHPM) together
with a novel cutting force model in which the bull-nose end mill is discretized in disks. It was found
that the predicted EMHPM stability lobes of the cantilever beam closely follow experimental data.
The end of the paper shows that the usage of the MR damper device modifies the stability boundaries
with a productivity increase by a factor of at least 3.

Keywords: thin-floor machining; chatter; magnetorheological damper; bull-nose end mill

1. Introduction

The manufacturing of parts such as impellers, ribs, blisks, and turbine blades among other
components for the aerospace industry requires the machining of thin-wall and thin-floor features [1].
Titanium, aluminum alloys, and superalloys such as Inconel are used for these applications because of
their good corrosion resistance, lightweight, and mechanical properties. Most of these components are
machined as monolithic parts to improve their performance and their weight-resistant ratio. However,
the lightweight design of these components has as a consequence thin walls and thin floors to achieve a
good buy-to-fly ratio [2]. The low stiffness at specific part locations makes machining prone to unstable
regenerative vibrations (chatter), which is detrimental during finishing machining operations, causing
negative effects on surface quality and tool life. To avoid vibration, chip load and cutting forces are kept
in conservative values, resulting in decreasing productivity. Therefore, the machining of monolithic
parts represents a great technological challenge that is faced with several off-line and in-line solutions.

Literature offers in-line solutions from fixing perspectives [3], workpiece holders [4], stiffening
devices [5], and active materials [6]. In fact, the use of these materials such as piezoelectric,
magnetostrictive, magnetorheological (MR), and electrorheological (RT) materials has been
implemented in actuators and sensors devices in manufacturing applications.

Among the active materials, also called smart materials, the MR and RT materials whose rheological
behavior can be controlled externally through a magnetic and electrical field are mainly used as damper
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and spring devices. The MR fluids have a vast range of applications in different areas such as the
automotive industry and civil engineering. For instance, the automotive industry has developed
semi-active damper devices for automotive suspension, together with the control of the systems [7].
In civil engineering, MR damper devices are used to change the structural behavior of buildings during
earthquakes [8]. In addition, the use of MR fluids is extended in several areas of engineering such as
the research of vibrations of pipelines reported by Hui et al. [9]. Concisely, MR technology supports
many applications over different industrial contexts.

In machining, it is a common practice to instrument MR and RT materials in the clamping systems
so that workpiece properties can be modified by adjusting their damping and stiffness [10]. The MR
and RT fluids can work at a wide frequency range; their response occurs in a short time and offers
flexibility to be adapted to different machining processes. Recently, in [11], Fleischer et al. studied
some industrial applications of this technology; however, the use of these smart materials in machining
processes has evolved because of their feasibility of being implemented for scale-up production.

Segalman and Redmond [12] used ER fluids for chatter suppression; they applied a cyclic electrical
field to the spindle quill, changing the natural frequency of the spindle, which disrupts the modulation
of tool vibrations. They found significant reductions in vibration amplitudes through simulation of
the milling process. Wang and Fei [13] used an ER fluid-filled sleeve to increase the stiffness and
damping of a boring bar. They concluded that the applied electric field strength should be adjusted
on-line according to the detected vibration signals. Mei et al. [14] used MR fluids to mitigate chatter
on a boring bar by adjusting the bar stiffness via a magnetic field intensity. Similarly, Çeşmesi and
Engin [15] developed an MR damper device that was implemented in a conventional impact machine.
Their mathematical model was able to predict the behavior of the damper device by controlling the
magnetic field. According to Som et al. [16], the attenuation rate of the semi-active MR actuator
in a boring process can be up to 30% in wide frequency ranges of 400 to 600 Hz. Furthermore,
MR devices have the capability of substantially improving surface finish and reducing tool wear in
hard-turning operations [17]. The design of the MR damper device can be assisted by Finite Element
Method simulation because it can identify the magnetic field magnitudes needed when located in a
tool-holder [18]. It is interesting to point out that most implementations of MR damper devices in
machining operations were mainly oriented to boring or turning operations. This could be explained
since the MR damper devices could be easily attached to the tool-holder in lathe machines. However,
its implementation in milling operations is very infrequent, but there have been a few attempts to apply
MR technology to increase the damping of the workpiece. For instance, Ma et al. [19] demonstrated
stability improvement in the thin-wall milling process.

The most common off-line approach is focused on the calculation of chatter-free cutting parameters
based on the study of dynamics stability [20]. Special milling tools such as spherical or bull-nose
tools are preferred for thin-floor machining in order to obtain a certain curvature between floors and
walls; however, the geometry of the cutting edge has a strong influence over the forces in the tool axis
direction, which typically coincides with the direction of the low-dynamic stiffness of thin floors. Since
thin-floor dynamics are inherently complex due to the modal parameter variation that depends on
the tool-workpiece location, three-dimensional stability diagrams for bull-nose milling tool cutting
operations were calculated for identification of the location at which the spindle speed of the cutting
tool is a chatter-free tuning interval value [21]. Of course, the accuracy of the location of stability
zones depends on predicting the magnitude values of cutting forces. In this sense, Budak et al. [22]
developed a method to predict the cutting force of any cutter geometry from orthogonal cutting data.
The accuracy of the predicted forces was assessed with collected experimental data. The same method
was also applied to ball-end milling tools [23]. By fitting pressure and friction coefficients on the rake
and flank contact surfaces of ball cutters, Yucesan et al. [24] predicted with good accuracy the acting
cutting forces in Cartesian directions.

Altintas [25] described the chip regeneration mechanism in three directions with a bull nose.
The stability lobes were predicted in the frequency domain and verified experimentally. Other methods
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to predict stability are based on the time-domain discretization. For instance, Olvera et al. [26] proposed
the Enhanced Multistage Homotopy Perturbation Method to compute stability lobes in one degree of
freedom mimicking thin wall machining. Later, Urbikain et al. [27] proposed stability colormaps based
on time-domain simulations of peripheral milling in thin-walled parts with barrel cutters. Regarding
tool path planning in thin floors, Smith and Dvorak [28] proposed a tool path strategy that provided
extra stiffness by leftover material in the corners; however, this strategy is limited for large areas
consisting of mostly thin floors.

To implement reliable solutions for the machining operations of thin-floor components, two aspects
need to be considered. Firstly, high accuracy is required for the determination of the modal parameters
and the associated acting cutting forces for effective and reliable stability prediction. Secondly, it is
important to acknowledge the shortcomings of active or semi-active damping techniques, including
excessive setup times and customized designs that are only suitable for some specific machine processes.
The use of MR fluids still is not mature in cutting operations and requires more investigation if one
wants to enhance its industrial application.

Therefore, the aim of this work focuses on investigating how a semi-active MR damping
device can influence the dynamics of cutting operations in thin-floor components. First, a stability
prediction model is developed, and its accuracy is assessed by considering the milling operations
of a thin-floor component with bull-end mills. Second, a semi-active damping device based on MR
fluid is designed for improving chatter-free cutting conditions to increase productivity. In this sense,
the proposed damper device is studied experimentally in order to improve the stability lobes for
thin-floor machining operations.

This paper is summarized as follows. Section 2 focuses on developing the cutting force model for
a bull-nose milling tool based on variable cutting coefficients. Section 3 describes the method used
to compute the stability analysis in thin-floor machining and comparing theoretical prediction with
experimental data. Section 4 describes the development of a semi-active MR damper device that is an
influence on thin-floor dynamics to increase stability lobes and productivity. Finally, some conclusions
are drawn.

2. A Mechanistic Model for Bull-Nose End Mills

The cutting forces in a flat end milling are dominant in the x− and y− directions. However,
for ball and bull-nose end milling, the cutting forces have significant components in all three Cartesian
directions [25,29,30]. For chatter analysis of thin floors using bull-nose end milling, the accuracy of the
cutting force models is critical to predict reliable stability lobes. The semi-empirical models are based
on the assumption that the cutting forces and the undeformed chip section are linked through the
cutting coefficients. The shear coefficient represents the amount of force required for a tool to remove
an uncut chip, while the edge coefficient is related to the friction forces.

A bull-nose end milling tool with a tool diameter D, helix angle β, and tooth Nz, is defined by
corner radius R (also called the ball radius). The bull-nose end mill used was purchased from 3G
tool supplier and the main geometry characteristics described earlier were measured with an Alicona
microscope model InfiniteFocusG5 (Alicona Imaging GmbH, Pforzheim, Germany) together with a
2.5X objective. As illustrated in Figure 1, optical microscope photographs confirm a tool diameter of
16 mm and a nose radius of 2.5 mm.
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Figure 1. Composition of optical microscope photographs of the bull-nose end mill taken with
an Alicona microscope: (a) bottom view (diameter measurement); (b) frontal view (nose radius
measurement); (c) lateral view (helix angle measurement).

2.1. Cutting Force Model

A force model was developed to obtain an instantaneous cutting force magnitude for a given
depth of cut. It is based on a mechanistic approach that assumes a relationship between forces and
the uncut chip thickness by means of the cutting coefficients. Cutting models have been developed
for ball-end mills that present similarities with the geometry of a bull-nose end mill. For instance,
Yucesan et al. [24] proposed a model based on an analytic representation of ball-shaped helical flute
geometry. Budak et al. reported the prediction of forces from the orthogonal cutting data [22] and for
better detail, an oblique cut-offmodel presented by Altintas and Lee [31] was evaluated in sections.
However, the development of a generalized and accurate model for cutting coefficients for a bull-nose
end mill has not been set. Campa et al. [21] developed a model using averaged cutting coefficients in
the toroid part, but they recognized that the flank of the tool presented a different behavior.

The cutting force model is established by introducing two coefficients for the tangential, radial,
and axial directions: one is associated with cutting (shearing) Kc, which is directly related to the
dynamic chip thickness h(φ,κ) and the second is associated with the friction (rubbing) coefficient
Ke. As shown in Figure 2, the differential forces components dFt, dFr, and dFa are orientated for each
differential cutting edge according to the cutting edge angle κ(z). The cutting edge of the tool is
discretized in disks with a thickness of b = 1 mm along the z-direction. With this discretized approach,
it is possible to understand in detail the behavior of the cutting coefficients along the cutting edge in
the toroid part. Figure 2 illustrates the cutting parameters of thin-floor machining: axial depth of cut ap

along the z-direction, radial immersion ae of cut in the y-direction, and spindle speed n.

Figure 2. Main cutting parameters in milling operation with a bull-nose end mill: axial discretization
and differential cutting force components.

The mechanism of the bull-nose end mill is modeled using a mechanistic linear model. Here,
the differential cutting forces on the local tool system follow the analytical approach in [32]:

58



Appl. Sci. 2020, 10, 5313

dFt
(
φ j
)
= Ktch

(
φ j,κ

)
dz + Ktedz

dFr
(
φ j
)
= Krch

(
φ j,κ

)
dz + Kredz

dFa
(
φ j
)
= Kach

(
φ j,κ

)
dz + Kaedz

(1)

where dFt,r,a are the differential force components, φ j(t) is the angle of each tooth on the cutter, which
change over time, and h

(
φ j,κ

)
is the instantaneous chip thickness as described by Compean et al.

in [33]:
h
(
φ j,κ

)
= fz sinφ j sinκ. (2)

Here, fz is the feed rate per tooth and κ is the cutting-edge angle for a given axial slice. By means
of a rotation matrix, it is possible to transform the differential cutting forces to Cartesian coordinates⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dFx
(
φ j, z

)
dFy

(
φ j, z

)
dFz

(
φ j, z

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosφ j sinφ j sinκ − sinφ j cosκ
sinφ j − cosφ j sinκ cosφ j cosκ

0 − cosκ − sinκ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dFt
(
φ j, z

)
dFr

(
φ j, z

)
dFa

(
φ j, z

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (3)

2.2. Characterization Procedure

The characterization procedure assumes the linear relationship between the averaged cutting
forces F̃ and the feed rate fz. This relationship is established as follows:

F̃ = fz·F̃c + F̃e. (4)

Here, F̃c and F̃e are the cutting shear and edge components, respectively. Developing Equation (4)
in terms of differential cutting forces, the following expression is obtained:

F(φ) =
∫ z2

z1

dF(φ, z) =
∫ z2

z1

dFc(φ, z)· fz +
∫ z2

z1

dFe(φ, z). (5)

To determine the average cutting force per tooth, Equation (5) is integrated within the limits of
the entrance (φs) and exit (φe) angles, and it is divided by the pitch angle 2π/Nz:

F̃ =
Nz

2π

∫ φe

φs

Fdφ. (6)

Therefore, the Cartesian components of the average forces for the tool are:

F̃xc =
Nt
2π

∫ φe

φs

∫ z2

z1

(
Ktc sinφ cosφ sinκ+ Krc sin2 φ sin2 κ−Kac sin2 φ sinκ cosκ

)
dzdφ

F̃yc =
Nt
2π

∫ φe

φs

∫ z2

z1

(
Ktc sin2 φ sinκ−Krc sinφ cosφ sin2 κ+ Kac sinφ cosφ sinκ cosκ

)
dzdφ

F̃zc =
Nt
2π

∫ φe

φs

∫ z2

z1

(
−Krc sinφ sinκ cosκ−Kac sin2 φ sinκ

)
dzdφ.

(7)

The final step consists of computing shear and edge coefficients by solving the system of
Equation (7).

2.3. Experimental Procedure

A total of 120 cuttings were performed for 100% radial immersion in aluminum 7075T6 during
dry machining. The forces were recorded by using a dynamometer 9257B (Kistler Group, Winterthur,
Switzerland) for the set of cutting conditions listed in Table 1. The spindle speed is set at 3000 rpm based
on the dynamometer’s natural frequency to avoid the amplification of milling forces. The force signals
were acquired using a VibSoft-20 acquisition card (Polytec GmbH, Waldbronn, Germany) at a sample
rate of 48 kHz and processed in a custom-made MATLAB app to remove drift and noise phenomena.
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Cutting forces data were collected for increments of 0.1 mm in the axial depth of cut with the aim
of minimizing the model errors and obtaining detailed information of the cutting coefficients along the
cutting edge in the toroid section. For a given axial depth of cut, four values of feed per tooth were
tested as listed in Table 1.

Table 1. Characterization test parameters.

Spindle speed 3000 rpm
Radial Immersion 16 mm, down milling
Depth of cut

(
ap
)

0.1–3.0 [mm]
Feed per tooth (fz) 0.05, 0.10, 0.15, 0.20 [mm/tooth]

For a set of experiments with a specific axial depth of cut, the system of Equations (7) is solved
to obtain the Kc and Ke cutting coefficients. The computed data were fitted by using a second-order
polynomial function as listed in Table 2.

Table 2. Cutting coefficients of the tool.

Cutting Coefficients Toroid [N/mm2] Flank [N/mm2]

Ktc 138.89z2 −625z + 1136.9 434
Krc 132.98z2 − 581.96z+ 785.4 149.3
Kac 37.57z2 − 159.06z+ 171.06 2.8

Figure 3 displays the fitted model for shear coefficients in the tool coordinate system (tangential,
radial, and axial directions). It can be seen from Figure 3 that the cutting coefficients, in the range of
0.1–1.5 mm, change significantly whereas for the section approaching the flank section of the cutting
edge, these remain almost constant. This can be explained from Figure 3d, in which the cutting-edge
angle starts from zero at the bottom of the cutting edge and increases to 90◦ at the flank tool section.
In a square end mill, where the cutting-edge angle is 90◦ at any edge location, the cutting coefficients
remain constant. However, for the bull-nose end mill, the cutting coefficient exhibits nonlinear behavior.
For this reason, the proposed mechanistic model is important to predict accurately stability boundaries.

Figure 3. Experimental cutting coefficients (circle marks) vs. fitted model (solid lines) along the toroidal
section: (a) tangential; (b) radial; (c) axial directions; (d) κ angle along the toroid section.
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Notice from Figure 3a–c that the cutting coefficients in all directions present high values for the
toroid section: almost three times higher in the radial direction (see Figure 3b), and almost five times
higher in the axial direction (see Figure 3c) compared to the flank section of the cutting edge, which
could affect significantly the critical depth of cut of thin-floors machining.

In order to validate the proposed model, slot milling tests were performed. Figure 4 shows the
comparison between the proposed cutting force-fitted model and experimental forces for two sets of
cutting conditions. The accuracy of the proposed model to fit experimental data is shown in Figure 4;
it is evident that in both cases, the proposed forced model predicts the experimental data well.

Figure 4. Comparison between experiment data and the proposed force model at 3000 rev/min and the
cutting conditions: (a) ap = 0.5 mm, fz = 0.2 mm/tooth; (b) ap = 1.5 mm, fz = 0.15 mm/tooth.

3. Stability Analysis and Experimental Validation

3.1. Stability Analysis for Thin-Floor Machining

In finish milling operations of thin-floor components where the dominant mode is oriented in the
z-direction, the stability model can be simplified considering only the Frequency Response Function
(FRF) of the thin floor, so the system becomes a one degree of freedom (1 dof) model as described by
Campa et al. [30]. In this case, the dynamic chip thickness is determined from:

h
(
φ j(t)

)
= cosκΔz (8)

where φ j(t) is the angular position of the cutting edge j and Δz = (z(t) − z(t− τ)). The equation of
motion that describes the dynamics of the thin floor is given as:

..
z(t) + 2ζωn

.
z(t) +ω2

nz(t) =
Fz(t)
mm

(z(t) − z(t− τ)) (9)

where mm is the modal mass, ζ describes the damping ratio, ωn is the angular natural frequency, and Fz

is the cutting force in the z-direction, which is given as:

Fz(t) =
∑Nt−1

j=0
g
(
φ j(t)

)
h
(
φ j(t)

)(
−Krc cos2 κ−Kac sinκ cosκ

)
. (10)

Here, g
(
φ j(t)

)
is a switching function that returns the value of one when the tooth cutter is cutting

and the value of zero otherwise. The matrix representation of Equation (9) becomes:

.
z(t) = A(t)z(t) + B(t)z(t− τ) (11)

where z =
[
z,

.
z
]T

, A(t + τ) = A(t) , B(t + τ) = B(t), and τ is the time delay. Following the Enhanced
Multistage Homotopy Perturbation Method (EMHPM) described in [34], Equation (11) is written in an
equivalent form as:

.
zi(T) −Atzi(T) ≈ Btz

τ
i (T) (12)
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where zi(T) indicates the m-order solution for Equation (11) that satisfies the initial conditions
zi(0) = zi−1, At and Bt are the periodic matrix whose values vary with time t. The period [t0 − τ, t0] is
discretized in N points to approximate the term zτi (T) to the delay in Equation (12). The function zτi (T)
could be approximate as a first-polynomial representation:

zτi (T) ≈ zi−N +
N − 1
τ

(zi−N+1 + zi−N)T (13)

Next, we define zi ≡ zi(Ti) and then, Equation (12) is substituted into Equation (13) to get:

.
zi = Atzi + Btzi−N − N − 1

τ
Btzi−NT +

N − 1
τ

Btzi−N+1T (14)

where

At =

⎡⎢⎢⎢⎢⎣ 0 1

−ωn
2 +

Fz(t)
mm

−2ζωn

⎤⎥⎥⎥⎥⎦, Bt =

⎡⎢⎢⎢⎢⎣ 0 0

−Fz(t)
mm

0

⎤⎥⎥⎥⎥⎦. (15)

To compute the stability lobes of Equation (14), the procedure described in [26] is followed. Then,
it is assumed that Equation (14) can be written as a function of discretized states:

zi(T) ≈ Pi(T)zi−1 + Qi(T)zi−N + Ri(T)zi−N+1 (16)

where
Pi(T) =

m∑
k=0

1
k! A

k
t Tk,

Qi(T) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∑

k=1

N−1
(k+1)!(τ)Ak−1

t BtTk+1 m ≥ 1

0 m = 0

Ri(T) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∑

k=1

1
k! A

k−1
t BtTk −Qm m ≥ 1

0 m = 0
.

(17)

Thus, the approximate solution of Equation (16) can be written as a discrete map wi = Diwi−1.
By following the Floquet theory [35,36], the transition matrix Φ of Equation (16) is calculated over
period τ = (N − 1)Δt by coupling each solution of Di, i = 1, 2, . . .N − 1 to get:

Φ = DN−1DN−2 . . .D2D1. (18)

Finally, the stability lobes of Equation (11) are determined by computing the eigenvalues of the
transition matrix. Notice that the 1 dof model proposed in Equation (9) assumes a single vibration
mode; however, its application to a multi-degree of freedom system could be performed by computing
the stability lobes for each mode.

3.2. Experimental Validation of Stability Lobes

Experimental milling cutting tests were performed in a Makino F3 machining center. A monolithic
cantilever beam of 116 × 177 × 12.7 mm was used to mimic a 1 dof thin-floor behavior in the z-direction
defined as shown in Figure 5. A 7075T6 aluminum workpiece was positioned on the cantilevered
plate using two screws to maintain its dynamic characteristics during several passes (total mass
does not change substantially). In the thin-floor milling process, the cutting tool is much stiffer in
comparison with the workpiece properties. For that reason, the dynamic response of a thin floor is
the most important factor during machining. The workpiece FRF was measured with a compact laser
vibrometer, model CLV-2534 (Polytec GmbH, Waldbronn, Germany) and a impulse force hammer,
Model 9722A (Kistler Group, Winterthur, Switzerland). The fitted modal parameters listed in Table 3
were performed using CutPro Simulation Software (Manufacturing Automation Laboratories Inc.,
Vancouver, BC, Canada).
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Table 3. Measured modal parameters of the workpiece.

Mode z f [Hz] k [N/m] ξ

1 93 6.59E5 0.003
2 304 4.89E6 0.004

In order to validate the dynamics of the milling process together with the proposed cutting force
model, stability lobes for 2.5 mm radial immersion were computed and shown in Figure 6 by using the
EMHPM of Equation (11). As described in Section 2.2, the cutting forces model was considered for
a range from 0 to 3 mm in the z-direction. The stability lobes verification was studied through the
measurement of the vibrations of the workpiece mounted on the cantilevered plate. An accelerometer
type 8778A500M14 (Kistler Group, Winterthur, Switzerland). weighing 0.4 g was used to acquire the
vibrations, and a tachometer model FS-V31 (Keyence Corporation, Osaka, Japan) was used to detect
every single revolution of the spindle as shown in Figure 5.

Figure 5. Experimental setup used for stability verification. An accelerometer is attached in the
workpiece to detect vibrations, while the optical sensor is used to measure the spindle rotation.

The signal processing consisted of two steps. First, raw signals were filtered with a low-pass filter
with a cut-off frequency of 5 kHz. Additionally, the tachometer signal was manipulated to include a
virtual pulse in the middle of two consecutive detected pulses that allows us to sample the accelerometer
signal according to the tool passing period (two flutes impact the workpiece during each revolution).
Secondly, the analysis of the accelerometer signal was performed via wavelet transform (CWT), power
spectral density (PSD), and Poincaré diagrams. By comparing experimental and theoretical chatter
frequencies [37], all this information was used to identify and categorize every single cutting test as
having stable or unstable cutting parameters. After completing the signal process and categorization,
experimental data were superposed in Figure 6.

The stable cuts in Figure 6 are denoted by circles, the unstable quasi-periodic cuts are denoted by
squares, and the unstable double periodic cuts are denoted by triangle symbols. Experimental results
denoted by diamonds represent experimental conditions without dominant chatter frequencies, which
makes the classification as either unstable or stable challenging.

From Figure 6, three cutting tests that describe typical stable/unstable behavior have been selected
(points A, B, and C). Point A describes unstable period-doubling chatter, Point B describes stable
cutting conditions, and Point C describes unstable double periodic. Since the CWT analysis allows us
to observe how frequencies evolve in the time domain, then this analysis was applied to accelerometer
data as shown in Figure 7a–c. To relate the detected frequency in relation to the excitation, the following
normalized frequency is introduced:

fn = fw/ fTPE. (19)

In Equation (19), fw represents the wavelet transform frequency and fTPE represents the tooth
passing excitation frequency. The overlapped circles and cross white marks in Figure 7a–c identify
normalized frequencies of fn = 1 and fn = 0.5 , respectively. In Figure 7d,e, the acceleration
sampling (red circles) denotes vibration amplitude when the cutting tool hits the workpiece. Poincare
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diagrams (Figure 7g–i) were constructed with the acceleration sampling data versus 20-delayed samples.
The power spectral density (PSD) in Figure 7j–l describes the power density from the acceleration data
in the frequency domain.

Figure 6. Predicted stability lobes obtained from Equation (11) together with experimental data in a
down-milling operation. (� stable cut, � quasi-periodic chatter, Δ double periodic chatter, and ♦ border
cutting parameters).

Point A (Figure 7a,d,g,j) exhibits unstable period-doubling chatter, meaning that each tooth
passing the excitation period is half of the dominant period in the acceleration signal. Even the PSD
plot (Figure 7j) exhibits several chatter frequencies, while the doming frequency almost coincides with
the cross marks, which confirms the period-doubling chatter. Due to all these chatter frequencies,
the Poincaré diagram in Figure 7g draws two semi-elliptical trajectories. This behavior contrasts with
a pure period-double chatter experiment (data not shown) that draws two concentration of samples;
in other words, the workpiece vibrates with a dominant frequency that is half that of the tool passing
excitation frequency.

Point B (Figure 7b,e,h,k) shows stable cutting conditions. In this case, the dominant frequency in
the CWT is related to the tool passing frequency (circle marks) during several revolutions. Notice as
well that for each period τ, two stains appear corresponding to one vibration cycle: one peak and one
valley. As a result, the peak frequencies in the PSD plot coincide with multiples of the tool passing
frequency. A Poincaré diagram for stable cutting (Figure 7h) shows the concentration of sampled
acceleration data, meaning the vibration amplitude is similar every time a flute hits the workpiece.

Point C describes Hopf instabilities; this instability draws in the PSD plot-dominant quasi-periodic
chatter frequencies. Notice that the frequency intensity in the CWT (Figure 7c) is below normalized
frequency fn = 1, and those values change in time. In contrast with Point A and B, the PSD (Figure 7l)
shows multiple chatter frequencies, which are responsible for several loops in the Poincaré diagram.

Figure 7. Cont.
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Figure 7. Continuous wavelet transforms (a,b,c), sampled acceleration signals (d,e,f), Poincaré
diagrams (g,h,i), and power spectral density (j,k,l) for unstable cut A (a,d,g,j), stable cut B (b,e,h,k),
and quasi-periodic unstable cut C (c,f,i,l).

4. Semi-Active Magnetorheological Damper Device for Chatter Mitigation

4.1. Experimental Setup of MR Damper Assembly

The experimental setup is implemented as shown in the optical photograph (Figure 8a). This system
uses the same components described in Section 3.2, but now, it also includes the semi-active MR damper
device. The MR damper device is a pool-like container or chamber fabricated in acrylic material;
a non-magnetic material avoids reducing the magnetic flux density generated by an electromagnet.
The acrylic chamber contains the magnetorheological fluid with an internal diameter of 200 mm and
19 mm height. In order to avoid spills, an acrylic plate is placed covering the area not in contact with the
beam. The MR damper assembly is supported with 3D-printed columns so that an electromagnet could
be placed between the worktable and the MR damper. An HP/Agilent power supply, model 6032A
was connected to a electromagnet, model VEM200 (Electroimanes NAFSA, Gernika, Spain), which
accepts a maximum input current of 3.4 A at 25 V. Once the electromagnet is energized independently
of the machining, it generates a magnetic flux density that changes the yield stress of the MR fluid.
The chamber was fully filled with an MRF-122EG MR fluid (LORD Corporation, Cary, NC, USA).

The cross-section A – A presented in Figure 8b shows a better view of the experimental setup and
allows us to observe that the beam is sunk about 1 mm in the MR fluid with a contact area of about
50 cm2. It is important to sink the beam to guarantee that it is always in contact with the MR fluid
during machining, because the amplitude of the vibrations is expected to be in the range of ± 1 mm.
Once the workpiece is attached to the beam, the experimental setup is ready for FRF measurements
and experimental milling cuttings.
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Figure 8. (a) Optical image of the experimental setup and magnetorheological (MR) damper
installation; (b) Schematic of cross-section A–A, the assembling of capsule–MR fluid is placed above
the electromagnet.

4.2. Modified FRF of the Cantilever Beam

For this experimental setup, to validate the effectiveness of the MR damper device, a new cantilever
beam made of aluminum alloy 7075T6 was designated with dimensions of 103 × 127 × 12.7 mm to
induce specific modal parameters and study the stability boundaries of thin walls with a very low
critical depth value (below 0.5 mm). In order to evaluate the effects of the MR damper over the
stability boundaries, three levels of MR damper performance were studied: highest, 3.4 A; medium,
1.7 A; and lowest, off. The magnetic flux density produced by the electromagnet was measured
experimentally with an F.W. BELL gaussmeter, model 5170. Figure 9 shows the magnetic flux density
measured from the center of the cylindrical electromagnetic outwards along the radial direction.
As expected, the magnitude of the magnetic flux density is almost constant in the radial direction,
and the magnitude is proportional to the supplied electrical current. Measurements after 40 mm were
not considered, since the cantilever beam was not in contact with the MR fluid.

Figure 9. MR damper device magnetic flux density distribution.

The yield stress of the MR fluid changes depending on the magnetic flux density at which it is
subjected. It is expected that the dynamic properties of the system imposed will be modified because
of the effects of the MR damper device. The FRF was experimentally measured for 4 scenarios and
plotted in Figure 10. The scenarios are (1) no damper, (2) damper off, (3) damper on with 1.7 A, and (4)
damper on with 3.4 A. The technique used to acquire the FRF and the parameter fitting procedure are
similar to those of Section 3.1. Table 4 summarizes the modal parameters computed for each scenario.

Notice from Table 4 that the natural frequency of the beam, without a damper, is 190 Hz and the
damping ratio is 0.007. When MR fluid is in contact with the thin floor and off, the natural frequency
shifts to 180 Hz, and the damping ratio increased by about 50%. Note that when the MR damper is
off, the electromagnet is not active, and no electrical current is provided, but it is still in contact with
the cantilever beam and the FRF is affected. Table 4 shows that if the MR damper is turned on and
subjected to two electrical currents values, the damping ratio of the system increases proportionally.
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The damping of the system depends on the yield stress of the magnetorheological fluid, which can be
estimated by using the technical data sheet from the fluid manufacturer [38].

Figure 10. Measured Frequency Response Function (FRF) of the thin floor with the MR damper.

Table 4. Modal parameters of the cantilever beam under the action of a semi-active MR damper device.

Electrical
Current [A]

Average Magnetic
Flux Density [G]

Yield Stress
[KPa]

Natural
Frequency f [Hz]

Stiffness k
[N/m]

Damping ξ

No Damper - - 190 2.40 × 106 0.007
Off–0 - 0 180 2.18 × 106 0.011

On–1.7 372 6 178 2.04 × 106 0.023
On–3.4 695 12 175 2.07 × 106 0.036

4.3. Experimental Determination of Stability Lobes under the Action of the MR Damper Device

Notice when the MR damper device was placed on the cantilever beam, the damping ratio of the
beam change substantially, as listed in Table 4. Once the modal parameters were computed, the stability
lobes were plotted in Figure 11 following the same methodology described in Section 3.1. Since the MR
damper device increases the damping ratio in the system, the stability boundaries not only shift toward
higher axial depth but also shrink, which substantially allows more productive cutting combinations.
For instance, when the MR damper device is turned off and cuts are performed at 7000 rev/min,
the critical axial depth of cut is close to 0.25 mm, but this value increases to 0.75 and to 1.4 mm when
the current in the MR damper is adjusted at 1.7 and to 3.4 A, respectively. In order to validate the effect
of the MR damper over the stability behavior, three cutting tests were selected, and these were named
points D, E, F as illustrated in Figure 11. All of them correspond to spindle speeds of 7000 rpm but
with different axial depth-of-cut values and subjected to specific scenarios. The accelerometer signal of
point D was acquired when the MR damper was turned off, while the acceleration for points E and F
were collected when the MR damper was turned on with 1.7 and 3.4 A, respectively.

Figure 12a shows the CWT obtained from the acceleration signal collected for point D (ap =

0.5 mm). Notice that this CWT plot illustrates dominant frequencies (red colors) lower than the
normalized fn = 1, which indicates that cutting is an unstable quasi-periodic chatter test, as predicted
by the stability lobes in Figure 11. This is also confirmed with the sampled acceleration signal plotted
in Figure 12d, since the amplitudes of the samples are not similar. The same combination of cutting
parameters (ap = 0.5 mm and n = 7000 rev/min) are now analyzed when the MR damper device is
turned on with 1.7 A. Notice from Figure 12b that for this cutting test (point E), the CWT describes
dominant frequencies that are very close to normalized frequency fn = 1, and thus, this is an indication
of stable cutting conditions. This result agrees with the stability lobes plotted in Figure 11, since the
location of point E indicates stable cutting conditions because it is below the critical axial depth of cut
value of 0.75 mm. Similarly, point F (ap = 1.25 mm) exhibits stable cutting conditions, since the critical
depth of cut has now the value of 1.5 mm. It is important to observe that the acceleration amplitude
for experimental test F (Figure 12f) is even lower than the value recorded for point E (Figure 12e),
confirming that the MR damper device offers higher damping and is an effective technique to avoid
unstable vibrations.

67



Appl. Sci. 2020, 10, 5313

Figure 11. Stability lobes diagrams for three scenarios of magnetic flux density applied to the MR damper
device together with experimental data in a down-milling operation. (� stable cut, � quasi-periodic
chatter, Δ double periodic chatter, and ♦ border cutting parameters).

Figure 12. Analysis of the collected accelerometer signals (D, E and F) for different MR damper magnetic
flux density values. Continuous wavelet transforms (a,b,c). Sampled acceleration signals (d,e,f).

5. Conclusions

Chatter vibration during the milling process of thin-floor components is a key factor that limits
productivity. Placing an MR fluid in contact with the thin floor modifies the damping ratio without
changing the natural frequency and modal stiffness. Experimental measurements indicate that a good
degree of accuracy is attained from the proposed cutting force model, which is a key factor to predict
stability lobes during the machining of thin floors using a bull-nose end mill.

• The proposed force model in which the tool edge is discretized in disks along the z-direction
predicts the experimental cutting forces with high accuracy.

• The predicted EMHPM stability lobes of the cantilever beam closely follow experimental data.
• The use of an MR damper device located under the cantilever beam modifies modal damping

depending on the magnitude of the magnetic flux density. For the higher magnetic flux density
values, the damping ratio increases about 4 times, while the modal stiffness slightly varies.

• Under the effect of the MR damper device, the stability boundaries shift toward higher critical
axial depth of cut values, which substantially enhances stable cutting conditions. In other words,
experimental measurements indicate that when using the MR damper device, it is possible to
increase the critical depth of cut from 0.5 to 1.5 mm in the range of spindle speed from 7000 to
10,000 rev/min, with an increase in the material removal rate and productivity by a factor of at
least 3.
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• The use of a semi-active MR damper device represents an alternative way to increase productivity
while machining thin-floor components because of its robustness and adaptability to complex
geometries. Since MR fluids can modify their yield and shear stresses as a function of the applied
magnetic flux density, the damping ratio can be adjusted as needed in order to reach stable cutting
conditions. Additionally, the semi-MR damper device is simple to operate versus its counterpart,
the active MR damper device, which needs sensors and real-time data processing.

Author Contributions: Conceptualization, S.D.P.-A. and D.O.-T.; Methodology, S.D.P.-A.; Resources, O.M.-R.,
A.E.-Z. and L.N.L.d.L.; Supervision, O.M.-R., A.E.-Z. and L.N.L.d.L.; Validation, S.D.P.-A., D.O.-T. and G.U.;
Writing—Original draft, S.D.P.-A. and D.O.-T.; Writing—Review and editing, O.M.-R., G.U. and A.E.-Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Tecnológico de Monterrey through the Research Group of Nanotechnology
for Devices Design, and by the Consejo Nacional de Ciencia y Tecnología de México (Conacyt), Project Numbers
242269, 255837, 296176, and National Lab in Additive Manufacturing, 3D Digitizing and Computed Tomography
(MADiT) LN299129.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Del Sol, I.; Rivero, A.; De Lacalle, L.N.L.; Gamez, A.; De Lacalle, L.N.L. Thin-Wall Machining of Light Alloys:
A Review of Models and Industrial Approaches. Materials 2019, 12, 2012. [CrossRef] [PubMed]

2. Ahmed, G.S.; Reddy, P.R.; Seetharamaiah, N. Experimental Evaluation of Metal Cutting Coefficients under
the Influence of Magneto-rheological Damping in End Milling Process. Procedia Eng. 2013, 64, 435–445.
[CrossRef]

3. Junbai, L.; Kai, Z. Multi-point location theory, method, and application for flexible tooling system in aircraft
manufacturing. Int. J. Adv. Manuf. Technol. 2010, 54, 729–736. [CrossRef]

4. Kalocsay, R.; Kolvenbach, C. Innoclamp GmbH–Hydraulic Clamping Systems. Available online: https:
//www.innoclamp.de/. (accessed on 28 June 2020).

5. Woody, S.C.; Smith, S.T. Damping of a thin-walled honeycomb structure using energy absorbing foam.
J. Sound Vib. 2006, 291, 491–502. [CrossRef]

6. Park, G.; Bement, M.; Hartman, D.A.; Smith, R.E.; Farrar, C.R. The use of active materials for machining
processes: A review. Int. J. Mach. Tools Manuf. 2007, 47, 2189–2206. [CrossRef]

7. Zhu, X.; Jing, X.; Cheng, L. Magnetorheological fluid dampers: A review on structure design and analysis.
J. Intell. Mater. Syst. Struct. 2012, 23, 839–873. [CrossRef]

8. Symans, M.D.; Constantinou, M.C. Semi-active control systems for seismic protection of structures: A state-of-
the-art review. Eng. Struct. 1999, 21, 469–487. [CrossRef]

9. Ji, H.; Huang, Y.; Nie, S.; Yin, F.; Dai, Z. Research on Semi-Active Vibration Control of Pipeline Based on
Magneto-Rheological Damper. Appl. Sci. 2020, 10, 2541. [CrossRef]

10. Díaz-Tena, E.; Marcaide, L.L.D.L.; Gómez, F.C.; Bocanegra, D.C. Use of Magnetorheological Fluids for
Vibration Reduction on the Milling of Thin Floor Parts. Procedia Eng. 2013, 63, 835–842. [CrossRef]

11. Fleischer, J.; Denkena, B.; Winfough, B.; Mori, M. Workpiece and Tool Handling in Metal Cutting Machines.
CIRP Ann. 2006, 55, 817–839. [CrossRef]

12. Segalman, D.; Redmond, J. Chatter suppression through variable impedance and smart fluids. SMART Struct.
Mater. 1996, 53, 1689–1699.

13. Wang, M.; Fei, R. Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids.
Int. J. Mach. Tools Manuf. 1999, 39, 1925–1934. [CrossRef]

14. Mei, D.; Kong, T.; Shih, A.J.; Chen, Z. Magnetorheological fluid-controlled boring bar for chatter suppression.
J. Mater. Process. Technol. 2009, 209, 1861–1870. [CrossRef]
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Abstract: The discontinuities of a five-axis linear-segment toolpath result in fluctuation in the feedrate,
acceleration and jerk commands that lead to machine tool vibration and poor surface finish. For path
smoothing, with the global curve-fitting method it is difficult to control fitting error and the local
corner-smoothing method has large curvature extreme. For path synchronization, the parameter
synchronization method cannot ensure smooth rotary motion. Aiming at these problems, this paper
proposes a double B-spline curve-fitting and synchronization-integrated feedrate scheduling method.
Two C2-continuous and error-bounded B-spline curves are produced to fit tool-tip position and tool
orientation, respectively. The fitting error is controlled by locally refining the curve segments that
exceed the fitting tolerance. The tool-tip position trajectory is firstly planned to address axial kinematic
constraints in the feedrate scheduling process. Then the feedrate is deformed for the tool orientation
to guarantee smooth rotary motion as well as to share the same motion time with the tool-tip position
segment by segment. The feasibility and effectiveness of the proposed method have been validated
by simulations and experiments on the S-shape test piece. Simulations show that the proposed
curve-fitting method can generate smooth toolpath and constrain fitting error. The proposed feedrate
scheduling method can guarantee smooth rotary motion and keep axial motions under kinematic
limits, compared with the method that does not consider axial kinematic constraints and the parameter
synchronization method. Experimental results verify that the proposed curve-fitting method can
generate smooth tool path under fitting tolerance, and the proposed feedrate scheduling method can
produce smooth and restricted axial motions.

Keywords: five-axis linear-segment toolpath; path smoothing; B-spline curve-fitting; path synchronization;
feedrate scheduling

1. Introduction

To machine free-form parts used widely in aerospace, die and mould industries, cutter of
the machine tool is required to follow the programmed toolpath under computer numerical control
(CNC) commands [1,2]. The curvilinear toolpath generated by computer-aided manufacturing
(CAM) software is usually approximated by successive linear segments (linear-segment toolpath
or G01 blocks) [3]. However, the transition corners between adjacent linear segments lead to
tangential and curvature discontinuities, which cause fluctuation in the feedrate, acceleration, and jerk
commands in the feedrate scheduling process that generates machine tool vibration and poor surface
finish [4]. To avoid this behavior, the continuity of the linear-segment toolpath needs to be improved.
Several approaches have been proposed in the existing literature for three-axis linear-segment toolpath
smoothing, which can be categorized as local corner-smoothing method and global curve-fitting

Appl. Sci. 2020, 10, 3158; doi:10.3390/app10093158 www.mdpi.com/journal/applsci71



Appl. Sci. 2020, 10, 3158

method. The local corner-smoothing method utilizes parametric curves to locally replace the sharp
corners, such as B-spline [5–7], Bezier [8–10], and Pythagorean-hodograph (PH) curves [11,12].
Zhang et al. [7] propose G4-continuous toolpath via a quintic B-spline curve. Optimized by curvature
variation energy (CVE), the chord error is seriously constrained and curvature extrema can be
analytically calculated. Then the jerk-smooth feedrate scheduling scheme is developed based on
the bidirectional scanning algorithm. Fan et al. [10] generated a G4 interpolative trajectory model
using a symmetric nine-degree Bezier curve with confined chord error and analytical curvature extrema
for trajectory smoothing, and employs jerk-smooth feedrate mode to perform time-optimal feedrate
scheduling. Shi et al. [12] adopt a curvature-continuous PH curve as a transition to blend sharp corners.
The blending algorithm can guarantee the approximation error exactly. The control points, the arc
length and the curvature of the transition curve also have analytical expressions. The high-order
geometric continuity leads to high-smoothness toolpath and feedrate profile. But the rising complexity
may prevent these methods from promoting to five-axis processing. On the other hand, the global
curve-fitting method utilizes a parametric curve to smooth the linear-segment toolpath globally by
interpolating or approximating G01 data points. However, this method suffers from below-standard
fitting error. Bi et al. [13] propose a general, fast and robust B-spline fitting scheme with PIA method
to generate G2 tool path under confined chord error for high speed interpolation of micro-line tool
path. He et al. [14] propose a progressive and iterative approximation for least squares incorporating
energy term (ELSPIA) to deal with chord error constraint. Lin et al. [15] derive the explicit expression
for the Hausdorff distance between a line segment and a curve segment, then a time-parameterized
curve-fitting algorithm is presented to combine path smoothing and trajectory planning.

Five-axis CNC machine tools provide better accessibility with the help of additional rotary
axes [16,17]. The smoothing of five-axis linear-segment toolpath brings about extra difficulties
compared to three-axis. First, the tool orientation must be smoothed to ensure smooth rotary motion
in addition to the tool-tip position smoothing. Second, given that the tool-tip position and tool
orientation are smoothed independently, the two smoothed trajectories must be synchronized [18].
The local corner-smoothing method and the global curve-fitting method mentioned above are extended
and used to smooth tool-tip position and tool orientation respectively. The local corner-smoothing
method applied to five-axis linear-segment toolpath can guarantee high-order continuity while respect
error tolerance and synchronization of the tool-tip position and tool orientation is achieved by
adjusting the joint points of the linear and curvilinear segments [19–21]. The global curve-fitting
method applied to five-axis linear-segment toolpath can ensure toolpath smoothness, but the fitting
error is hard to control and evaluate [22,23]. Moreover, the global curve-fitting method usually
synchronizes two trajectories by sharing the same curve parameter (parameter synchronization).
The parameter synchronization method [22,23] plans the tool-tip trajectory according to translational
motion constraints and then makes the tool orientation follow the tool-tip in the curve parameter space.
However, if the tool orientation is merely parameter synchronized with tool-tip position, the rotary
motion may be discontinuous at certain locations.

After path smoothing and synchronization, the geometric information of toolpath is transferred
to the feedrate, acceleration (the change rate of feedrate) and jerk (the change rate of acceleration)
trajectories in CNC system [24]. The toolpath with high-order continuity can raise the feedrate at
the sharp corner, decline the fluctuation of feedrate and acceleration, thus improve the machining
quality. Many feedrate scheduling methods have been proposed in the literature, including
the jerk-limited method [25–27], the optimization method [28], the linear programming method [29–31],
and the time-synchronization method [32]. Du et al. [25] present a complete S-shape feedrate
scheduling approach (CSFA) with limited jerk, acceleration and feedrate for the three-axis parametric
toolpath. Beudaert et al. [28] propose a Velocity Profile Optimization (VPOp) algorithm which has
been implemented for various toolpath format. Fan et al. [29] reduce the velocity planning problem to
an equivalent linear programming problem with polynomial computational complexity O(N3.5) to
find the optimal solution. Huang et al. [32] advise a real-time feed scheduling method for five-axis
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machining by simultaneously planning linear and angular trajectories (SLATP) considering axial
kinematic constraints.

For path smoothing, the global curve-fitting method has difficulty in controlling fitting error
and the local corner-smoothing method has large curvature extreme which decreases nominal velocity
in feedrate scheduling. For path synchronization, the parameter synchronization method cannot
guarantee smooth rotary motion. With the aim of resolving these problems, a double B-spline
curve-fitting and synchronization-integrated feedrate scheduling method for five-axis linear-segment
toolpath is presented in this paper. Two cubic B-spline curves are used for fitting the tool-tip
position and tool orientation respectively. The data points are initially fitted by a B-spline curve
and then the curve segments exceeding the fitting tolerance are locally refined to get the final curve.
After curve-fitting, synchronization and feedrate scheduling is required to guarantee smooth motion
and machining efficiency. Feedrate scheduling of the tool-tip position is conducted first to address
the axial kinematic constraints. Then the feedrate of the tool orientation is deformed to share the same
motion time with the tool-tip position so that the tool-tip position and tool orientation arrive at specific
locations simultaneously.

The rest of the paper is organized as follows. The fitted curves for tool-tip position and tool
orientation under fitting tolerance are generated in Section 2. The synchronization and feedrate
scheduling of the tool-tip position and tool orientation are implemented in Section 3. Simulations
and experiments are carried out in Section 4 to demonstrate the feasibility and effectiveness of
the proposed method. Conclusions are drawn in Section 5.

2. Double B-Spline Curve-Fitting for Tool-Tip Position and Tool Orientation under
Fitting Tolerance

In this section, a double B-spline curve-fitting method is proposed to smooth tool-tip position
and tool orientation in different coordinate frames respectively. The overview of the proposed
curve-fitting method is shown in Figure 1. Five-axis linear-segment toolpath is expressed as discrete
cutter location (CL) data. CL data in the workpiece coordinate system (WCS) are defined as [pi, oi]

T ,
where the Cartesian coordinate pi = [pix, piy, piz]

T represents the tool-tip position, and the spherical
coordinate oi = [oiI , oiJ , oiK]

T represents the tool orientation. The tool orientation spherical coordinate
can be mapped into [α, β]T plane, where α and β are two rotary angles in the machine coordinate
system (MCS).
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Figure 1. Overview of double B-spline curve-fitting.
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2.1. Tool-Tip Position Curve-Fitting

To fit successive linear segments, a cubic B-spline curve is used as the initial curve to
guarantee C2-continuity (C2-continuity is necessary for continuous acceleration in feedrate scheduling).
Besides geometric continuity, the fitting error and curvature are taken into consideration as criteria of a
fitted curve. The fitting error affects the dimensional accuracy of the machined workpiece, hence must
be regulated under fitting tolerance. The curvature, which affects the motion kinematics (the nominal
velocity in feedrate scheduling), should be as small as possible but not under strict limitation.

The fitting error of tool-tip position is satisfied if the Hausdorff distance between the fitted curve
and the tool-tip position polyline is not greater than the fitting tolerance εp in the WCS. For a curve
segment C(sk−1)C(sk)and a line segment pk−1pk, the Hausdorff distance is [15]:

DisH(pk−1pk, C(sk−1)C(sk)) =

max{ max
p∈pk−1pk

{Dis(p, C(sk−1)C(sk))}, max
C∈C(sk−1)C(sk)

{Dis(C, pk−1pk)}}, (1)

where Dis(a, b) is the Euclidean distance between a and b.
Since the explicit calculation of the Hausdorff distance by its definition between the fitted curve

and the polyline is very computation-complex, the fitting error is classified into two categories. The first
is called point error that indicates the approximation error between the fitting curve and the data
points. The second is called chord error that represents the approximation error between the fitting
curve and the linear segments.

To fit the tool-tip position data, we start with a cubic B-spline curve to satisfy point error. A cubic
B-spline curve defined as linear combination of control points Pi and cubic B-spline basis functions
Ni,d(u) is given by [33]:

C(u) =
m

∑
i=0

Ni,d(u)Pi, 0 ≤ u ≤ 1, (2)

where d stands for degree of the curve and in this case d = 3. The B-spline basis functions defined
on a non-descending knot vector U = {0, 0, 0, 0, u4, . . . , un, 1, 1, 1, 1} are calculated recursively as
follows [33]: ⎧⎪⎨

⎪⎩
Ni,0(u) =

{
1, ui ≤ u < ui+1
0, otherwise

Ni,d(u) =
u−ui

ui+d−ui
Ni,d−1(u) +

ui+d+1−u
ui+d+1−ui+1

Ni+1,d−1(u).
(3)

The cubic B-spline curve that passes through a set of tool-tip position data points p = {pi ∈
R3|i = 0, 1, . . . , m} is determined once the knot vector U and control points Pi are decided. The curve
parameter value ūi corresponding to data point pi and the knot vector U are responsible for
the shape and parameterization of the B-spline curve. ūi is assigned using the cumulative chord
length parameterization [33]:

{
ū0 = 0, ūm = 1;
ūk = ūk−1 +

‖pk−pk−1‖
L , k = 1, . . . , m − 1,

(4)

where L =
m
∑

k=1
‖pk − pk−1‖. The knot vector U = [u0, u1, . . . , un+4] is built by averaging parameter

values from Equation (3) as follows [33]:
⎧⎪⎨
⎪⎩

u0 = · · · = u3 = 0, un+1 = · · · un+4 = 1;

uj+3 = 1
3

j+2
∑
i=j

ūi, j = 1, 2, . . . , n − 3.
(5)
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Since the knot vector U has been decided and each tool-tip position point has been assigned a
parameter value, system of linear equations is established:

pk = C(ūk) =
m

∑
i=0

Ni,3(ūk)Pi, k = 0, 1, . . . , m. (6)

The control points are acquired by solving system of linear equations shown in Equation (6) using
the inverse B-spline basis function matrix. Therefore, the initial curve interpolating all the data points
defined by Equation (1) is resolved, and the point error is satisfied. However, the initial curve might
exceed chord error at certain curve segments.

Assuming that the distance between the initial curve in the parameter interval [ūk−1, ūk]

and the corresponding line segment pk−1pk is greater than εp, the local refinement process is expected
to be limited in the parameter interval so that the remaining portion of the curve is not affected.

In order to increase the flexibility of the local curve segment that needs to be refined, control points
are added using knots insertion. Let uj be the knot inserted to [ūk−1, ūk], the new control points can be
calculated as: ⎧⎪⎨

⎪⎩
ci = Pi, i = 0, . . . , k − d − 1
ci = (1 − αi)Pi−1 + αiPi, i = k − d, . . . , k − 1
ci+1 = Pi, i = k, . . . , m,

(7)

where αi = (uj − uk−1)
/
(uk+d−1 − uk−1).

Denote ūk−1 and ūk as us and ue after knot insertion. Denote the distance between the control
point Pi(i = s − 1, . . . , e − p) and pk−1pk as Di. Ds−1 and De−p which must be not greater than εp due
to strong convex hull property of B-spline curves [33], otherwise it is necessary to insert more knots
to [ūk−1, ūk]. To keep the portion outside [ūk−1, ūk] unchanged, we can only adjust the control points
Pj(j = s, . . . , e − p − 1). If Dj > εp, replace Pj with Pj

′ = Pj + αjW where W is the unit vector that
points from Pj to P′

j and αj is the distance moved along W. Assign W to the unit vector of the direction
that is perpendicular to pk−1pk and αj to the value of Dj − εp. After all the local curve segments
are refined, the final curve satisfies the fitting tolerance while maintaining C2-continuity. Flow of
the proposed curve-fitting scheme is shown in Figure 2.

Figure 2. Flowchart of the proposed curve-fitting scheme.
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We present a planar example with five points and fitting tolerance of 0.05 mm as a numerical
illustration of the proposed curve-fitting scheme. The result of the B-spline curve fitted to five data
points is shown in Figure 3. The initial curve that satisfies point error exceeds chord error bound
at segment 1 and segment 2, which are zoomed in to get a clearer view. Then the two segments is
locally refined to obtain the final error-constrained curve. The fitting error and curvature results
are demonstrated in Figure 4. As can be seen, the fitting error of the traditional global curve-fitting
method exceeds the fitting tolerance. The proposed curve-fitting method, as an improvement of
the global curve-fitting method, can get the fitting error strictly under the fitting tolerance. Compare
to the local corner-smoothing method, the proposed method has smaller curvature extrema under
the same geometric continuity. Notice that the local corner-smoothing method has lower fitting error
in most areas because only the corner parts are replaced. The proposed curve-fitting method is more
adaptive to micro linear segments whose adjacent corners are very close.

Figure 3. Fitted curve of planar five-point example.

Figure 4. Fitting error and curvature of planar five-point example.

2.2. Tool Orientation Curve-Fitting

The tool orientation data o = {oi ∈ R3|i = 0, 1, . . . , m} are expressed by the spherical coordinates
oi = [oiI , oiJ , oiK] in the WCS. Unlike curve-fitting of the tool-tip position, the tool orientation is fitted to
the Cartesian coordinates that map from the given spherical coordinates to ensure that the magnitude of
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the orientation vector remains unity [22]. The mapping from the spherical coordinates to the Cartesian
coordinates is obtained as follows: {

αi = cos−1(oiK)

γi = tan−1(oiI/oiJ),
(8)

where αi and γi are actually the rotary drive commands θAi and θCi in the MCS respectively.
And the inverse mapping is in the following form:

⎧⎪⎨
⎪⎩

oiI = sin θAi sin θCi
oiJ = sin θAi cos θCi
oiK = cos θAi.

(9)

The fitting tolerance of the tool orientation is given as εo in the WCS. Since the tool orientation is
smoothed in the MCS, it is necessary to convert εo to εθ which denotes the fitting tolerance of the tool
orientation in the MCS.

As shown in Figure 5, we assume O′ is the orientation position after O rotates ε in the WCS and Ot

is the transitional orientation position that rotates Δα away from the zw-axis to reach O′. The lengths
of edge OOt, OtO′, and OO′ are obtained as:

⎧⎪⎨
⎪⎩

a = 2 sin α sin(0.5Δβ)

b = 2 sin(0.5Δα)

c = 2 sin(0.5ε).
(10)

Figure 5. Fitting error and curvature of planar five-point example.

Since Δα, Δβ, and ε are extremely small, Oo, Ot, and O′ are approximately collinear. Thus we have
� OoOtO ≈ � OOtO′ ≈ 90◦ and Equation (10) can be simplified as:

⎧⎪⎨
⎪⎩

a = (sin α)Δβ

b = Δα

c = ε.
(11)

77



Appl. Sci. 2020, 10, 3158

Because � OOtO′ ≈ 90◦, we have a2 + b2 = c2, that is (sin α)2Δβ2 + Δα2 = ε
2

which lead to
ε2 ≤ Δα2 + Δβ2 = εθ

2
. Since ε ≤ εo, the fitting error of the tool orientation is satisfied if εθ ≤ εo.

Without loss of generality, let εθ=εo.
The B-spline curve in the θAθC Cartesian plane is obtained with the input of the mapped tool

orientation data θ = {(θAi, θCi)|i = 0, 1, . . . , m} and fitting tolerance εθ according to the procedure in
Section 2.1 as:

R(v) =
n

∑
i=0

Ni,d(v)θi. (12)

The tool orientation spline o(v) = [oI(v), oJ(v), oK(v)] in the WCS is obtained using inverse
mapping from Equation (9). It is noteworthy that the number of control points of the fitted curve
depends on the initial curve and the fitting tolerance. Therefore the number of control points of the tool
orientation is not necessarily the same as the tool-tip position.

3. Synchronization-Integrated Feedrate Scheduling

Since the tool-tip position and tool orientation are fitted independently in different coordinates,
the synchronization and feedrate scheduling are necessary for curve interpolation. In this section,
synchronization-integrated feedrate scheduling method is presented to ensure that the tool-tip position
motion and tool orientation motion are synchronized and smooth. Feedrate scheduling of the tool-tip
position is conducted firstly to address the axial kinematic constraints. Then the tool orientation
feedrate is obtained by feedrate deformation method to guarantee smooth rotary motion as well as to
share the same motion time with the tool-tip position segment by segment. Thus, the synchronization
and feedrate scheduling is implemented in one procedure.

3.1. Feedrate Scheduling for Tool-Tip Position

The goal of feedrate scheduling is to find a smooth interpolation under machining constraints.
Usually, the interpolation chord error, the axial kinematics and the tangential kinematics are important
constraints for high speed and high accuracy machining. Under the circumstances, the interpolation
error, the axial velocities and accelerations are considered to determine the allowable feedrate along
the tool-tip position curve C(u). Then the feedrate is scheduled using the S-shape jerk-limited method
taking tangential acceleration and jerk into account.

The interpolation chord error along C(u) at the parameter value u can be approximated as [25]:

δ(u) = ρ(u)−
√

ρ(u)− (
f (u)T

/
2
)2, (13)

where T is the interpolation period, ρ(u) is the curvature radius, and f (u) is the feedrate at
the parameter value u. Hence the interpolation chord error limited feedrate can be obtained as:

f (u) ≤ 2
√

2ρ(u)δmax − δmax
2
/

T, (14)

where δmax is the defined limitation of interpolation error. Further, the feedrate in the curve parameter
domain can be expressed as:

f (u) =
∥∥∥∥dC(u)

dt

∥∥∥∥ =

∥∥∥∥dC(u)
du

∥∥∥∥ du
dt

. (15)

Denote p = du
/

dt as a representation of transition between time domain t and curve parameter
domain u, and Equation (14) can be converted to:

p(u) ≤ 2
√(

2ρ(u)δmax − δmax
2
)/

‖Cu(u)‖ T. (16)
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The velocity of each axis can be calculated as:

vM(u) =
dM(u)

dt
=

dM(u)
du

du
dt

= Mu(u)p, (17)

where M(u) represents the drive displacement. If the maximum velocity of each axis is set as VM
max,

the axial velocity constraint is written as:

p(u) ≤ VM
max

Mu(u)
. (18)

The acceleration of each axis can be calculated as:

aM(u) =
dvM
dt

=
dvM
dM

dM
dt

= vM
dvM
dM

=
1
2

d(vM
2)

dM
=

1
2

d(pMu)

dM
. (19)

If the maximum velocity of each axis is set as AM
max, the axial velocity constraints can be written as:

d(pMu)

dM
≤ 2AM

max. (20)

The parameter interval of the tool-tip curve C(u) is divided into N equal sub-intervals
at ui = i/N(i = 0, 1, . . . , N). Using the monotonic rational quadratic spline proposed by
Fleisig and Spence [34], the discrete parameter value vi of the tool orientation corresponding
to ui is computed. When N is large enough, the length of the parameter sub-interval is so
small that Mu in Equations (17) and (19) can be approximated using the finite differential method.
We can address the interpolation chord error, the axial velocities and the axial acceleration
constraints as an optimization problem with the objective of max ∑N

i=0 pi and constraints from
Equations (16), (18) and (20). By solving the optimization problem, the allowable discrete feedrate
values fi = ‖Cu(ui)‖ pi is acquired. Then the feedrate of the tool-tip position is generated utilizing
the curve splitting and bi-directional scanning techniques.

3.2. Feedrate Deformation for Tool Orientation to Achieve Synchronization

The tool-tip position curve at the curve segment joint parameters ūi, i = 0, . . . , m and the tool
orientation curve at the parameter v̄i, i = 0, . . . , m are synchronized spontaneously. Since the feedrate
scheduling of the tool-tip position is completed, the motion time tk along the tool-tip curve C(u)
in the parameter interval [ūk−1, ūk] is fixed. Thus the motion time along the tool orientation curve
in the parameter interval [v̄k−1, v̄k] must be equal to tk to achieve synchronization. The tangential
acceleration and jerk are set to zero at the joint parameters so that the tool-tip position and tool
orientation motion are smooth.

Based on these principles, a feedrate deformation method is presented to generate the feedrate
of the tool orientation. We take the tool-tip feedrate profile with seven phases in as an illustration.
The durations of the seven phases are computed by the start and end feedrate vs and ve, the maximum
feedrate vmax, the tangential acceleration amax and jerk Jmax and the arc-length Lp:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 = amax/Jmax

t2 = (vmax − vs)/amax − t1

t3 = t1

t4 = [Lp − (vmax + vs)Ta − (vmax + ve)Td]/vmax

t5 = amax/Jmax

t6 = (vmax − ve)/amax − t5

t7 = t5,

(21)
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where Ta = 2t1 + t2 represents the acceleration time, Td = 2t5 + t6 represents the deceleration time.
Denote the constant feedrate duration t4 as Tc. The feed displacement is calculated as:

Lp =
vs + vmax

2
Ta + vmaxTc +

vmax + ve

2
Td. (22)

The goal of feedrate deformation is to generate a tool orientation feedrate profile segment by
segment with the same motion time as tool-tip position and nominal orientation displacement while
keep tangential kinematics under constraint. Given the tool orientation start feedrate ws, the tool
orientation segmented arc-length Lo, the feedrate deformation begins with computing the new constant
feedrate derived form Equation (22):

wm = (2Lo − wsTa)/(Ta + 2Tc + (1 + k)Td), (23)

where k = we/wm is user-defined and Ta, Tc and Td are the same as tool-tip position. By adjusting k,
different constant feedrates can be obtained to meet the tangential constraints. The updated tangential
acceleration and jerk is calculated as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

as = (wm − ws)/(t1 + t2)

Js = as/t1

as = (wm − we)/(t5 + t6)

Je = ae/t5.

(24)

If Js or as still exceed the tangential constraint, we can consider stretching the acceleration time to
T′

a = Ta + Δt and then compute a new constant feedrate so that Js and as are reduced. The deceleration
process can be handled in the same way. Figure 6 is an illustration of the feedrate deformation
method. The orientation feedrate profile is obtained from deformation of the position feedrate profile
so that they share the same motion time but get through respective displacements to reach a specific
synchronized cutter location.

Figure 6. Illustration of feedrate deformation method.

With the new constant feedrate, tangential acceleration and jerk, the tool orientation feed time is
adjusted to match the tool-tip position feed time while the segmented arc-length remains the same.
As a consequence, the tool-tip position and tool orientation arrive at specific points simultaneously
where the two curves are synchronized.
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4. Simulation and Experiment Validations

The feasibility and effectiveness of the proposed method is validated by simulations on a computer
with 4.0 GHz CPU and 8GB RAM and experiments on a five-axis table-tilting machine tool (model of
the machine tool) with two rotary axes of A and C whose configuration is illustrated in Figure 7.

The inverse kinematic transformation of the experimental machine tool is:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A = arccos(ok)

C = arctan(oi/oj)

X = −xcosC − y sin C
Y = x cos A sin C − y cos A sin C − z sin A − LAC,z sin A
Z = x sin A sin C − y sin A cos C + z cos A + LAC,z cos A,

(25)

where LAC,z = 40 mm is the offset distance between A-axis and C-axis in the direction of z-axis.
The machine is controlled by a TwinCAT-based CNC system with the sampling period of 1 ms.
In order to formulate the feedrate profile to S-shape, we add the maximum allowable feedrate for
tool-tip position and tool orientation respectively to the predefined constraints which are listed
in Table 1.

(a) (b)
Figure 7. Configuration of experimental five-axis computer numerical control (CNC) machine tool—
(a) Real product. (b) Layout.

Table 1. Predefined constraints in the experiment.

Constraints Values

Interpolation chord error 1 μm
X/Y/Z-axis velocity 100 mm/s

X/Y/Z-axis acceleration 1000 mm/s2

A/C-axis velocity 0.5 rad/s
A/C-axis acceleration 5 rad/s2

Tool-tip position tangential acceleration 200 mm/s2

Tool-tip position tangential jerk 2000 mm/s3

Tool orientation tangential acceleration 5 rad/s2

Tool orientation tangential jerk 50 rad/s3

Tool-tip position maximum feedrate 50 mm/s
Tool orientation maximum feedrate 0.5 rad/s

The S-shape test piece is used to analyze the performance of the proposed method. The S-shape
test piece is defined by two ruled surfaces and is usually used as a representation of the thin-wall
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workpiece in the aerospace industry. It requires an allowable range of final error from −0.05 mm to
+0.05 mm [35]. We import the CAD model of the test piece shown in Figure 8a to UG NX 10 to plan
the toolpath of the ruled surfaces using five-axis flank milling. The programmed toolpath shown
in Figure 8b is approximated by a series of discrete G01 data points. The five-axis linear-segment
toolpath of one of the four corners which consists of 12 G01 data points shown in Figure 8c is used
to demonstrate the effectiveness for the proposed curve-fitting and feedrate scheduling method.
The experimental 12 G01 data points is available in Appendix A Table A1. The tool-tip position fitting
error tolerance εp is 0.05 mm and the tool orientation fitting error tolerance εo is 0.05◦.

(a) (b) (c)

Figure 8. Linear-segment toolpath generation for S-shape test piece—(a) computer-aided design
(CAD) model. (b) Toolpath generated by computer-aided manufacturing (CAM). (c) Experimental G01
CL data.

The results of curve-fitting for the 12-point linear-segment toolpath are shown in Figure 9
and the corresponding fitting error calculated numerically in the curve parameter space is shown in
Figure 10. From the data, it is evident that the fitting errors of the tool-tip position and of the tool
orientation are both under fitting tolerance.

Figure 9. Results of fitted curve for the experimental linear-segment toolpath—(a) Tool-tip position.
(b) Tool orientation.

We assign N = 500 to compute the discrete locations of the tool-tip position and tool orientation.
Then the optimization problem proposed in Section 3.1 is established and solved using the linprog
solver in Matlab to get the allowable feedrate for the tool-tip position. The feedrate profile of the tool-tip
position is obtained using the curve splitting and bi-directional scanning techniques and is shown
in Figure 11. From the data we can tell that the scheduled feedrate profile is smooth and under
feedrate restrictions.
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Figure 10. Fitting error of tool-tip position and tool orientation—(a) Tool-tip position. (b) Tool orientation.

Figure 11. Feedrate profile of the tool-tip position with respect to curve parameter.

The feedrate profiles of the original linear-segment toolpath and the smooth toolpath are compared
to show that the total motion duration is reduced by 44.2% from 7.169 s to 3.999 s in Figure 12. It can also
be seen that the tool orientation feedrate is generated sharing the same segmented motion time with
the tool-tip position.

(a) (b)

Figure 12. Feedrate profile with respect to time—(a) Tool-tip position. (b) Tool orientation.

The interpolation is conducted to generate reference positions in the WCS, as shown in Figure 13.
From the data, it is evident that the feed process is advanced at high rate except three obtrusive
deceleration locations.

The tangential kinematic profiles of the tool-tip position and tool orientation are illustrated
in Figure 14. It can be spotted that all the tangential kinematic profiles meet with the tangential
constraints. In Figure 14c,d, the results of the adjusting techniques mentioned in Section 3.2 is
displayed in the feedrate deformation process.
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Figure 13. Fitting error and curvature of planar five-point example.

Figure 14. Tangential kinematic profiles—(a) Tool-tip position acceleration. (b) Tool-tip position jerk.
(c) tool orientation acceleration. (d) tool orientation jerk.

The traditional parameter synchronization method obtains the tool orientation feedrate after
scheduling the tool-tip feedrate by simply sharing the curve parameter. It may cause wild fluctuation
in the tool orientation kinematics, as shown in Figure 15.

(a) (b)

Figure 15. Tool orientation kinematic profiles using parameter synchronization—(a) Feedrate profile.
(b) Tangential acceleration profile.

Since the interpolation results of the tool-tip position and tool orientation are obtained,
the reference axial positions are decided according to inverse kinematic transformation from
Equation (25). Then the reference axial velocities and accelerations are calculated by differentiating
the axial positions. The axial velocities and accelerations does not consider axial constraints are
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shown in Figure 16. It can be seen that despite a slight improvement of feed time (3.595 s),
the acceleration of X-axis and velocity of C-axis exceed the corresponding constraints. The axial
velocities and accelerations using the parameter synchronization [23] are demonstrated in Figure 17.
The accelerations of all axes are far greater than the allowable values at certain locations. The axial
velocities and accelerations using the proposed method is depicted in Figure 18. The data demonstrate
that the axial velocities and accelerations are both under limitation. The maximum absolute axial
velocities and accelerations using different methods are listed in Table 2 as an intuitive comparison
and the anomalously great values are highlighted in bold, especially for axial accelerations using
the parameter synchronization method. As can be seen, the large variations of axial accelerations
of the traditional parameter synchronization method come from the wild fluctuation in the tool
orientation acceleration as shown in Figure 15b.

Figure 16. Axial velocities and accelerations that does not consider axial kinematic constraints—
(a) Translational axial velocities. (b) Rotary axial velocities. (c) Translational axial accelerations.
(d) Rotary axial accelerations.

Figure 17. Axial velocities and accelerations using parameter synchronization—(a) Translational axial
velocities. (b) Rotary axial velocities. (c) Translational axial accelerations. (d) Rotary axial accelerations.
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Figure 18. Proposed axial velocities and accelerations—(a) Translational axial velocities. (b) Rotary
axial velocities. (c) Translational axial accelerations. (d) Rotary axial accelerations.

Table 2. Maximum axial velocities and accelerationsusing different methods.

Methods Kinematics X Y Z A C

Without constraints Velocities(mm|rad/s) 98.9 72.7 68.6 0.39 0.56

Accelerations(mm|rad/s2) 2795 607.3 569.3 2.67 2.45

Parameter synchronization Velocities(mm|rad/s) 91.2 65.6 66.4 0.29 0.5
Accelerations(mm|rad/s2) 2871 4781 2929 44.4 44.1

Proposed Velocities(mm|rad/s) 91.2 64.6 66 0.29 0.49
Accelerations(mm|rad/s2) 828.5 493.4 513.4 1.62 1.71

The S-shape test piece made of Aluminum Alloy 1060 is machined on the experimental five-axis
table-tilting machine tool with a cutter of diameter 10 mm. The machining process consists of three
steps: rough machining, semi-finishing and finishing. The CNC system reads the trajectories using
the proposed curve-fitting and feedrate scheduling method and then the axial commands are generated
and sent to the controller. The machining results are shown in Figure 19.

Figure 19. Machining results of S-shaped workpiece.

The machining accuracy of the S-shape workpiece is affected by many factors, such as theoretical
error, geometric error of the machine tool, and quality of toolpath [36]. Also, the measurement of
freeform workpiece is very complicated. In this experiment, quality of toolpath (fitting error) is
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mainly concerned. According to drive commands of the machine tool, the real tool-tip position
and tool orientation are reversely computed using forward kinematic transformation and the real
fitting error in the WCS is calculated. The real maximum and average fitting errors with the traditional
parameter synchronization method and the proposed method are demonstrated in Table 3. Due to large
variance of axial kinematics, the maximum and average fitting errors with the traditional parameter
synchronization show greater values, especially for the tool orientation (40.0% greater for the maximum
fitting error).

Table 3. Fitting error of the experiments.

Methods
Position Error (mm) Orientation Error (deg)

Max. Average Max. Average

Parameter synchronization 0.0525 0.0268 0.0717 0.0378
Proposed 0.0507 0.0243 0.0512 0.0317

The real axial velocities and accelerations shown in Figure 20 are obtained by differentiating
the real axial positions with the sampling period of 1 ms. The real axial velocities and accelerations
are both under control and the large fluctuations are further reduced in the real machining process
(the acceleration for X-axis is reduced by 44.3%). Experimental results show that the proposed method
can generate trajectories with allowable fitting error and smooth motion.

Figure 20. Real axial kinematics—(a) Translational axial velocities. (b) Rotary axial velocities.
(c) Translational axial accelerations. (d) Rotary axial accelerations.

5. Conclusions

This paper proposes a double B-spline curve-fitting and synchronization-integrated feedrate
scheduling method for five-axis linear-segment toolpath. The main technical characteristics are
as follows—(1) the tool-tip position and tool orientation are fitted by two cubic B-spline curves
respectively so that the discontinuities caused by transition corners of five-axis linear-segment toolpath
are handled and the fitting error is strictly respected; (2) the axial kinematic constraints are mapped
and satisfied in the feedrate scheduling process of the tool-tip position; (3) the synchronization
and smooth rotary motion is obtained using feedrate deformation for tool orientation.

Simulations and experiments are carried out to validate the feasibility and effectiveness of
the proposed method. For a toolpath of 12 CL data points from the S-shape test piece, the proposed
curve-fitting method constrains the fitting error under fitting tolerance. The proposed machining time
is reduced significantly by 44.2% in comparison with the original linear-segment toolpath. To verify
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the smooth motion of the proposed feedrate scheduling method, we compare the proposed method
with the method does not consider axial kinematic constraints and the method using parameter
synchronization. The results show that the proposed rotary motion is smooth and the axial motions
are under kinematic limits. The experiments are conducted on the S-shape test piece. The real tool-tip
position and tool orientation are reversely computed using the real axial positions to confirm that
the proposed method can generate a smooth toolpath with allowable fitting error. The real axial
kinematics are further smoothed in the real machining process.

Despite the progress made in this study, only fitting error and smoothness are considered for
the fitted curve. However, the machining accuracy is affected by other factors such as thermal error,
geometric errors of machine tool, dynamic error and so forth, and workpiece measurement to evaluate
the surface quality directly is not conducted. Therefore, further research should be done in our
future study.
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Appendix A. Cutter Location Data

Table A1. Experimental cutter location data.

No. px (mm) py (mm) pz (mm) oi oj ok

1 113.560775 7.735266 −2.209314 −0.107258 0.624902 0.773300
2 117.864949 −10.950074 −0.974065 −0.003002 0.653008 0.757345
3 110.502860 −34.808781 1.779567 0.135034 0.648777 0.748902
4 104.086026 −55.840098 2.682644 0.263922 0.596758 0.757776
5 95.225652 −63.959571 4.073524 0.317154 0.551822 0.771301
6 88.820589 −65.972318 6.021818 0.329520 0.516103 0.790603
7 80.162816 −65.096397 7.031464 0.326785 0.478040 0.815285
8 72.478246 −61.109537 6.863103 0.313696 0.446069 0.838223
9 65.985754 −54.666365 6.143037 0.288698 0.416448 0.862105

10 54.251993 −39.568096 4.931174 0.217010 0.357492 0.908354
11 38.038952 −23.111532 3.536073 0.129479 0.261821 0.956391
12 31.679054 −18.711329 3.017623 0.105499 0.220895 0.969575
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Abstract: This paper proposes the development of a tuning methodology which can set the proper
values of the Computer Numerical Control (CNC) parameters to achieve the required machining
performance. For the conventional operators of machine tools, the CNC parameters were hard
to be adjusted to optimal settings, which was a complicated and time-consuming task. To save
time in finding optimal CNC parameters, the objective of this research was to develop a practical
methodology to tune the CNC parameters effectively for easy implementation in the commercial
CNC controller. Firstly, the effect of the CNC parameters in the CNC controller on the tool-path
planning was analyzed via experiments. The machining performance was defined in the high-speed
(HS) mode, the high-accuracy (HP) mode, and the high-surface-quality (HQ) mode, according to the
dynamic errors of several specified paths. Due to the CNC parameters that have a particularly critical
effect on the dynamic errors, the relationship between the CNC parameters and the dynamic errors
was validated by the measured data. Finally, the tuning procedure defined the anticipated dynamic
errors for the three machining modes with the actual machine. The CNC parameters will correspond
with anticipated dynamics errors based on several specified paths. The experimental results showed
that the HS mode was the fastest to complete the path, and the completion time of the HP and HQ
modes were increased by 37% and 6%, respectively. The HP mode had the smallest dynamic errors
than other modes, and the dynamic errors of the HS and HQ modes are increased by 66% and 16%.
In the HQ mode, the motion oscillation was reduce significantly, and the tracking error of the HS and
HP modes were increased by 85% and 28%. The advantage of the methodology is that it simplifies
set-up steps of the CNC parameters, making it suitable for practical machine applications.

Keywords: CNC parameters; machining mode; high speed; high accuracy; high surface quality

1. Introduction

There are many kinds of products produced with Computer Numerical Control (CNC) machine
tools. According to the workpiece weight, geometric shape, material, tools, and cutting conditions, the
operator needs to estimate the proper manufacturing processes, so the machining requirements will
not be the same. Some products require an extremely smooth surface, such as plastic injection molds,
while others require high geometrical accuracy and little tolerance, such as precision machine elements
(cf., gears), and still others require high cutting efficiency (i.e., material removal rate) and allow larger
tolerance, such as the aluminum brackets for bicycle or aerospace. This situation is why machine tools
have focused on how to accomplish high-surface-quality (HQ), high-accuracy (HP) and high-speed
(HS) machining. Most of the commercial CNC machine tools are equipped with a standard set of CNC
parameters, which are not changed according to the different machining demands. The standard set of
CNC parameters of machine tools are created by their manufacturers. However, the tuning of CNC
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parameters has to require a lot of domain knowledge, including the most basic theories, such as statics,
dynamics, kinematics, mechanism, motion control, etc. More advanced knowledge also includes the
quality of Computer Aided Manufacturing (CAM), interpolation, machine performance, tool geometry,
cutting conditions, etc. That is why the machine operators cannot easily tune the CNC parameters
to match their product for relevant machining requirements. Figure 1 shows the architecture of feed
motion processing sequence in the commercial CNC machine tools in this study. Firstly, the CAM
model generates the corresponding Numerical Control (NC) code. The position command of the NC
code (Sg) would be interpreted by the CNC controller for tool-path planning in interpolator, and that
generates the motion trajectory based on the CNC parameters. Therefore, the CNC parameters include
the velocity, acceleration, and jerk for their path statements, such as straight, corner, and arc paths.
An algorithm on the tool-path planning produced the kinematic profiles of their relevant position,
velocity, acceleration, and jerk based on NC code and CNC parameters. According to the kinematic
profiles, each servo axis would move along the trajectory motion that was defined as position command
(Sc). The Sc drives the feed drive system of the machine tools via servo loop. The feedback signal
was defined as the actual position (Sa) for the feed drive system in the machine tools. Finally, the real
workpiece would be produced based on the tool path, tool, material, and cutting conditions. The loop
of the blue arrow in Figure 1 has been widely used in all machine tools.

Figure 1. The goal architecture of the processing sequence in this study.

The goal of this study was to analyze the relationships among machining modes, CNC parameters,
and dynamic errors, followed by developing the tuning procedure which can tune the proper values
of the CNC parameters to match the selected machining mode; it is shown on the red dot frame in
Figure 1. Firstly, an analysis of the CNC parameters based on algorithm of tool-path planning in
the conventional controller, and the principle of tool-path planning was organized. It proposed the
dynamic errors chain that we have to observe in actual machine tools. In this paper, dynamic errors
signify the deviation between the position of the NC code and the actual position of the feed drive
system. It contains two parts: One part is the difference between the Sg and Sc, another part is the
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difference between the Sc and Sa. Secondly, we experimented on the machining modes with different
CNC parameters and collected data. It presents a tuning criteria for the three machining modes and
CNC parameters. Finally, this study adjusted the CNC parameters and analyzed the experimental
results with an actual machine to develop the tuning methodology for machining modes. It proposes
the tuning methodology and procedure for the CNC parameters based on machining requirements.

A number of studies have analyzed the effects of the tool-path planning to follow the desired
contours, and jerk control strategies have been proposed [1–4]. According to the path distance and
feedrate of the NC code, the form of the acceleration profile must first be defined by the presetting
of jerk and acceleration for CNC parameters; the acceleration profile of the triangle or trapezoid was
planned. Some literature introduced the advanced method for interpolation, such as Non-Uniform
Rational B-Splines (NURBS) and Bazier [5,6]. Sencer et al. [7] literature presented the algorithm with
learning for NC code re-established. Therefore, the objective of the tool-path planning is to ensure the
feedrate can be smoothed for precision results as required. Tapie et al. [8] proposed the circular tests
for high speed machining, and proposed the limit values of jerk, acceleration, and circular velocity.
However, the tool path is not only a circular path, but also contains straight and corner paths. This
study did not discuss the other CNC parameters. Pateloup et al. [9] presented the corner optimization.
However, it proposed the corner with arc path for pocket machining. In general, the corner path
consists of two short lines, and the limit of corner velocity avoids the vibration after the corner motion.
This study did not obtain the corner velocity of CNC parameters.

Andolfatto et al. [10] presented the dynamic errors at the tool center point, and included the
contour error caused by a closed loop feed drive system and actual error from the machine structure
that defined the feedback position to relate tool center point. However, this study did not discuss the
error caused by CNC parameters. Lee et al. [11] also established a servo parameter tuning method
based on the corner error. The experimental results based on the corner error measurements showed
that the proposed tuning methods are very effective in improving the corner accuracy of a three-axis
high-speed CNC machine tool. Parenti et al. [12] proposed the acceleration spectrum of the acceleration
profiles which exert significant effects on the behavior of the dynamic errors in the CNC machine tools
at the tool center point. Bringmann et al. [13] introduced a measurement device based on the “R-test”
for measuring displacements in the three linear degrees of freedom, and for evaluating the dynamic
errors of the machine at the tool center point. The CNC parameters, such as jerk and acceleration limits,
can be set to obtain the required dynamic path accuracy. However, the proposed tuning method was
proven only for the HP mode, and not for the HQ or HS mode. Li et al. [14] presented the different
feedrate effect on the dynamic errors of the feed drive system. This proposal was useful for HQ mode,
but this study did not have any solutions to tune the other modes.

Some studies have analyzed the influence of motion errors for the machining performance. Some
scholars focus on the dynamic errors caused by tool geometrics [15–17]. It is dependent on a larger
machine and the dynamic errors’ source on machine structure. Mia et al. [18] presented intelligent
optimization of hard-turning parameters. This paper proposed the evolutionary algorithms for cutting
conditions. Their dynamic errors adjust method was to change the cutting conditions. The main
disadvantage is that the error between the measuring tool center point and the geometry of NC code
must be considered. This is not a trivial task for the machine’s operator. Li et al. [19,20] introduced the
ambient environmental temperature effect on the positioning accuracy of moving carrier on machine
tools. Therefore, the carrier embedded cooling channels to achieve thermal error suppression, and
the machine tools were operated in an air conditioning chamber in which the temperature could be
controlled. However, the variation of accuracy caused by thermal deformation of machine tools comes
from the long-term machining. Actually, there are not any CNC parameters to solve the problem of
thermal displacement.

Several works developed the virtual machine tool technology which predicts the contour error of
the closed loop feed drive system of the CNC machine tools [21–26]. However, the virtual machine
tool technology proposed by these previous works involved a mechatronic model which integrated the
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servo driver, mechanics of the feed drive mechanism, and the dynamics of the machine structures.
Although the effects on the dynamic errors after changing the CNC and servo parameters have been
studied, they did not establish or propose any tuning algorithm to switch the machining performance
between HS, HP, and HQ modes.

Conventional controllers have been provided with the functions of the HS, HP, and HQ modes
in the CNC machine tools; they are predominantly used in trajectory generation [27,28]. When the
user selects a machining mode, the controller has to process feedrate with the NC blocks. In order to
achieve the machining strategy, the control method has to match the tolerance value of the path contour
via a relevant NC program. However, the algorithm of different machining modes isn’t included in the
feed drive system of real CNC machine tools; the function is merely processed in the interpolation of
the controller.

This paper presents a tuning methodology for the CNC parameters, and, hence, matches the
machine’s dynamic errors according to the selection of machining modes which are set by the mixed
combination of three machining modes: The HS mode, HP mode, and HQ mode. The relationship
between CNC parameters and dynamic errors is defined in Section 2. Section 3 uses simple paths
to test the tuning criteria of the CNC parameters and different machining requirements. The tuning
methodology and procedure of the CNC parameters based on machining modes were implemented in
this section. In Section 5, the CNC parameters were estimated based on the relevant machining modes
for experimental validation. Finally, the conclusion is presented in Section 6.

2. The Definition of the CNC Parameters and Dynamic Errors

2.1. Tool-Path Planning in the CNC Controller

The function of the interpolator is to generate the velocity profile of the tool path, so the interpolator
needs to provide smooth velocity change during the contour machining via a multi-axis machine tool.
The tool-path planning algorithm maintains a smooth velocity transition during the high-speed feed
motion. Most commercial CNC controllers use S-curve velocity profile along with the function of
jerk control. According to the specific feedrate and displacement from the NC code, the kinematic
profiles (velocity) are generated by the interpolator in the CNC controller with the CNC parameters
(jerk, acceleration, and time constant of the acceleration/deceleration (Acc/Dec)).

Figure 2 shows the typical trapezoidal acceleration profile. For feed motion along the tool path,
acceleration profiles are linear, velocity profiles are parabolic, and position profiles are cubic for regions
1, 3, 5, and 7 where time constant of Acc/Dec with constant jerk occurs. Acceleration values are constant
and jerk is zero for regions 2 and 6, where velocity profiles are linear and position profiles are parabolic.
In region 4, jerk and acceleration values are zero, velocity is constant, and position is linear. If the
feed motion has the greatest acceleration, the acceleration profile does not have the regions 2 and 6.
When the triangular acceleration profile has been generated, the result is no constant acceleration,
but it has a short acceleration peak. While this profile is useful to reduce machining time, it has very
high requirements on the performance of the machine. Finally, the result of the tool-path planning is
divided into the position command of each feed axis to enter the servo loop, and the motor that drives
each feed axis reaches the position required for the workpiece shape.

Actually, the tool-path geometry not only consists of a straight path, but also includes circular
and curved paths generated from many short lines. The general purpose machine tool consists of
three mutually perpendicular linear axes, and the multi-axis synchronous motion makes the tool-path
process a complex shape. Figure 3 shows the tool path with complex shape. It consists of many
short lines. When the X and Y axes are in synchronous motion for the tool path, the path velocity
will be reduced to distribute the X-axis velocity (Vx) and Y-axis velocity (Vy). The P1 and P2 are the
corner motion. The feedrate must be decreased at tP1 and tP2 (as shown in Figure 3). One of the CNC
parameters is to set a corner velocity (Vc) for the tool-path planning; the Vc is composed of the Vx and
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Vy. The purpose is to define the time point at which the Vy starts to increase velocity when the Vx has
decelerated to the Vc.

Figure 2. Typical trapezoidal acceleration profile.

Figure 3. The velocity profile with the complex shape.

The NC code is circular with the radius (R), and the circular path is composed of the X-axis and the
Y-axis. In fact, the path velocity (Vp) has to be consistent, while the Vx and Vy are changing constantly,
and each axis is constantly accelerating and decelerating at the same time. Tapie et al. [8] showed that
the velocity profiles are similar to the sine wave during the feed motion. There are two kinds of CNC
parameters to limit the velocity of the circular path for the interpolator in a commercial controller. One
is the arc velocity (Va) and the other is centripetal acceleration (Ac). The feedrate of NC code (V f ) is
similar to the Vp, but the V f is only used in the velocity of the circular path for the tool-path planning.
The relationship between the centripetal acceleration and the arc velocity is expressed as:

Ap =
(
V f

)2
/R. (1)

When V f is larger than the feed motion, the greater centripetal acceleration is excited, causing the error
between the circular path and the ideal path at the same time.

The flow chart of the tool-path planning was organized as shown in Figure 4. According to the
path geometry and feedrate of the NC code, the form of the acceleration profile must first be defined.
The profile of the triangle or trapezoid was planned by presetting jerk (Jp), acceleration (Ap), and time
constant of the Acc/Dec (Tp). These values can be preset by the CNC parameters of the controller.
The actual acceleration (A′p) will be defined by the tool-path planning. It includes the corner velocity
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(Vc), arc velocity (Va), and smoothing time constant (Ta) for the velocity profile with path velocity (Vp),
and, finally, the completed position command required for each axis (Scx, Scy, Scz). The most important
function of the controller’s interpolator is making the velocity profiles of each axis as smooth as possible
to avoid tool-path drastic speed changes. The drastic speed changes would produce force, causing
machine deformation or oscillation during the machining process, which would affect the accuracy of
the workpiece and surface. This study adjusted the parameters and analyzed the experimental results
with an actual machine to develop the tuning methodology for machining modes.

 
Figure 4. The principle of the tool-path planning in interpolator.

2.2. The Dynamic Errors’ Chain Corresponding to the Trajectory Generation

Dynamic errors signify the deviation between the path of the NC code and the actual path. They
contain the error from the NC code after interpolation in the controller that is a command error.
In Figure 1, the command error (ε1) is the deviation between the original command from the NC code
(Sg) and the position command (Sc) through the interpolator, expressed as:

Command error = ε1 = Sg − Sc. (2)

The command error represents the influence of the CNC parameters in the tool-path planning.
Contour error (ε2) is another dynamic error, caused by the dynamic characteristics of the servo

loop and feed drive system. The corresponding contour error is the deviation between the position
command (Sc) and actual position (Sa) expressed as:

Contour error = ε2 = Sc − Sa (3)

where Sc and Sa are position command and actual position, respectively. Numerous studies [4,11,17]
used the contour error to analyze the performance of machine tools. The phenomenon of servo delay
causes position error, called tracking error, on a single axis, and is named as contour error if the path
was simultaneously moving by multi-axis. The dynamic errors (ε3) include ε1 and ε2, introduced as:

Dynamic errors = ε3 = ε1 + ε2 = Sg − Sa (4)

The ε1 was caused by the interpolator in tool-path planning, while the ε2 was caused by the closed
loop feed drive system of the machine. Figure 5 shows the dynamic errors chain with ε1 and ε2 for
the corner path and the circular path, respectively. In the following description, we focused on the
development of the HS/HP/HQ mode by observing the dynamic errors during the axis movement.
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Figure 5. The dynamic errors in corner path and circular paths.

The tool-path planning purpose is to control the path velocity and slow down the velocity change
of each axis when the machine moves along the three-dimensional path. When the velocity of each axis
changes drastically, the generation of acceleration causes the machine to be stressed and thus generates
errors and vibrations.

3. Experiment on the Machining Modes with CNC Parameters

3.1. CNC Parameters’ Tuning Criteria for the Machining Modes

Different workpieces have different requirements in the machining process, such as aerospace
or difficult-to-cut materials, which require higher efficiency for material removal; the surface quality
and accuracy are not the priority requirements, as defined in the HS mode. Regarding the structure
of the wing used in aerospace, the product demand is high geometric accuracy. As surface quality
was not the priority requirement for this product, it was defined via the HP mode. The mold of the
optical component needs to have good surface quality and the accuracy needs at least to match the
requirement, so it defines with the HQ mode. The tuning criteria of the CNC parameters for the
three kinds of the machining mode are summarized in Figure 6. The relationship between the CNC
parameters’ tuning criteria of the three machining modes is defined below:

• HS mode: The objective is to set the feed motion of machine tools suitable for the larger dynamic
errors. It will finish the tool path with the shortest time for motion. In order to reach the target, the
CNC parameters’ values of jerk, acceleration, corner velocity, and arc velocity must be increased.
At the same time, the HS mode will cause larger oscillation after the Acc/Dec motion, and it will
mark the vibration texture on the surface.

• HP mode: The dynamic errors should be kept to a minimally tight tolerance. The motion path is
close to the ideal path of the NC code. In order to reach the goal, the values of jerk, acceleration,
corner velocity, and arc velocity must be reduced for HP mode. Therefore, the smaller values of
the CNC parameters result in larger cycle time.

• HQ mode: The goal is to obtain a smoother machining surface. This means that we must maintain
minimal oscillation during feed motion. In addition to reducing the values of jerk, acceleration,
corner velocity, and arc velocity, smoothing time constant must be provided to restrain the
mechanical resonance. The magnitude of the dynamic errors is between the HS mode and HP
mode. In the HQ mode, the motion hardly oscillates, and, therefore, contributes to the smooth
surface quality on the geometric surface of the product.
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Figure 6. The tuning criteria of the three machining modes.

3.2. Experimental Platform

The experiments were performed on a three-axis machine tool with SYTEC’s PC-based CNC
controller, and DELTA’s ASDA-A2 servo motor and servo driver. The absolute encoder was
implemented in the servo motor and the linear scale was mounted on the feed drive system.
The resolution of linear scale was 1 μm for the HEIDENHAIN LS100-series. The software of ASDAsoft
was used to ensure the operating system with real-time performance.

The experiments presented how to verify the validity of the tuning criteria of the three machining
modes based on several specified paths, such as straight, square, and circular paths. According to the
requirements of tool-path planning, the relevant CNC parameters are listed in Table 1. In addition to
the path geometries and feedrate of NC code, the acceleration profile of the triangle or trapezoid was
planned via the CNC parameters in the table for the tool-path planning, such as preset jerk (Jp, N100),
acceleration (Ap, N200), and time constant of Acc/Dec (Tp, N300), and then included the corner velocity
(Vc, N500), arc velocity (Va, N600), and smoothing time constant (Ta, N400). The Jp, Ap, and Tp will
be limited by the CNC parameters of each axis based on the tool-path planning in the interpolator,
such as the Jx (N101), Jy (N102), Jz (N103), Ax (N201), Ay (N202), Az (N203), Tx (N301), Ty (N302), and
Tz (N303). Therefore, when testing for specified paths, the Jx, Jy, Jz, Ax, Ay, and Az have to be set to
extreme limits and the Tx, Ty, and Tz have to be set to zero. Its advantage is that the Jp and Ap of the
path can be fully presented. It is useful to estimate the relationship between the CNC parameters and
dynamic errors. In addition, in order to understand the efforts of CNC parameters, the feedrate has to
be kept the constant value for specified paths in the NC code. The geometrical shape of NC code is
Sg as the idea position, the CNC controller completing the position command (Scx, Scy, Scz) required
for each axis servo loop, and the feed motion resulted in actual position (Sax, Say, Saz) source from
linear scale. The Scx, Scy, Scz and Sax, Say, Saz were measured and stored by the ASDAsoft, and the
numerical analysis was performed with MATLAB.
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Table 1. CNC parameters corresponding to the tool-path planning.

No. Symbol Description Unit

N100 Jp Maximum jerk for tool-path movement m/s3

N101~203 Jx, Jy, Jz Maximum jerk for each axis movement m/s3

N200 Ap Maximum acceleration for tool-path movement m/s2

N201~203 Ax, Ay, Az Maximum acceleration for each axis movement m/s2

N300 Tp Time constant of Acc/Dec for tool-path movement ms
N301~303 Tx, Ty, Tz Time constant of Acc/Dec for each axis movement ms

N400 Ta Smoothing time constant for tool-path movement ms
N500 Vc Maximum corner velocity for tool-path movement mm/min
N600 Va Maximum arc velocity for tool-path movement mm/min

According to the various paths and the relevant CNC parameters, we designed the experimental
conditions to validate how the CNC parameters influence the dynamic errors when the machine was
set as HS, HP, and HQ mode individually. On the other hand, the experimental data was collected as
an important basis for the tuning methodology of CNC parameters.

3.3. Parameters’ Analysis by Straight Path

Figure 7 shows the experimental results of the straight path with distance 350 mm and feedrate
60,000 mm/min. Herein, three selections of CNC parameters were introduced for the HS mode, as
shown in Figure 7 (blue solid line: N100 is 200 m/s3, N200 is 6.8 m/s2; green dashed line: N100 is
200 m/s3, N200 is 9.8 m/s2; red dotted line: N100 is 100 m/s3, N200 is 9.8 m/s2) and the command
signals for position, velocity, acceleration, and jerk were observed by the CNC controller. With the blue
solid line with larger jerk and smaller acceleration limit, it was easy to reach the accelerated limitation.
The acceleration profile was trapezoidal and the path completion time was tl1. The green dashed line
had the increased acceleration limitation. The acceleration was larger than in the first condition, and
the time of Acc/Dec was shorter than in the first condition, so that the path completed time tl2 was
shortened. With the red dotted line, although the accelerated limitation was larger and the jerk was
smaller, the acceleration profile was triangular. The third condition path completed time was the
longest tl3. Finally, the path completion time was compared to tl3 > tl1 > tl2, and the tl2 was the shortest
time to complete the machining process. This result verified that the HS mode had larger Jp and Ap.

The first condition had a short acceleration time, but it was limited by the acceleration setting
parameter N200. Therefore, the profile was a trapezoidal acceleration profile. This was a disadvantage
for the machine because the machine received force for a long period, which made machine dynamic
errors or oscillations happen more easily. The second condition set an upper acceleration limitation,
thus shortening the segment time during acceleration and deceleration. If the dynamic characteristics’
performance of the servo and the machine are raised, the maximum accelerated limitation can be
increased, so that it can be a triangular acceleration profile, and the path completion time can be
reduced. The acceleration profile was triangular for the third condition. The jerk could reach the
maximum acceleration directly, but the maximum acceleration was not large enough, making the
finishing time longer; the path completion time was finally increased. However, the larger Jp and Ap

will excite the resonance of the machine, which will cause vibration during the feeding process, and the
workpiece surface will suffer worse oscillation textures. Since HQ mode pursues good surface quality,
it needs to maintain a constant feedrate by avoiding acceleration and deceleration during the motion,
since the feed force instantaneously causes vibration on the machine (as shown in Figure 8) during
acceleration and deceleration. Then, some distinct vibration caused the surface of the workpiece to
become rough. However, it is impossible that no acceleration or deceleration occurred during the
motion of the three-dimensional path. Therefore, the HQ mode is not meant to preclude small dynamic
errors. Its significance is in reducing the oscillation caused by acceleration and deceleration of each axis.
The oscillation of the Acc/Dec machine cannot be defined by the ε1 after interpolation; the oscillated
behavior resulted from the dynamic characteristics of the real machine. Therefore, the HQ mode
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was used to observe the tracking error of each axis, reduce the oscillation of the feed drive system
during the period of acceleration and deceleration, and avoid the rough surface on the workpiece.
The Acc/Dec is equivalent to an impact on the input of the mechanism. If the bandwidth of the impact
is greater than the resonance mode of the machine, the resonance is easily excited. Generally, the
controller smoothed the oscillation during acceleration and deceleration by the filter for the time
constant parameter. The function of the filter was to ensure smooth path velocity but it increased the
completion time of the machining and the dynamic errors of the path. Figure 9 shows the experimental
results of a straight path whose distance was 25 mm, acceleration was 10 m/s2, and feedrate was
6000 mm/min with different filter Ta (N400). Figure 9 shows the tracking error for a single axis,
and it also shows the spectrum of the fast Fourier transformation (FFT) based on the tracking error.
The spectrum can be observed that there were two peaks caused by the oscillation of the feed drive
system. Their resonance frequencies were 38 and 46 Hz, respectively. The first resonance should have
been suppressed by the proper Ta. It can be observed that after the Ta was 26 ms, the first resonance
was suppressed. If the Ta was based on the second resonance frequency, then the oscillation still was
excited for the feed drive system. For the tracking error, it was found that after increasing Ta, the
oscillation was reduced after passing of the Acc/Dec (red line in Figure 9). In addition, when the
Ta was 0, the path completion time was ts1. When the Ta was 26 ms, the path completion time was
extended to ts2. In this case, the Ta was 0 ms for the HS mode, and the Ta was 26 ms for the HQ mode.

Figure 7. Analysis of straight path with different parameters.
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Figure 8. The oscillation caused by feed motion in the feed drive system.

Figure 9. The smoothing time constant (Ta) effect on the tracking error and spectrum.

3.4. Parameters’ Analysis by Square Path

Figure 10 shows a square path in the left with a side length of 30 mm, feedrate was 5000 mm/min,
acceleration was 4 m/s2, and jerk was 200 m/s3 by setting the three different corner velocities (N500),
which were 100/1000/3000 mm/min, respectively, and observing the influence of the Vc at the corners
for C1, C2, and C3. The right of Figure 10 shows the testing result of the C1. The larger Vc caused larger
dynamic errors (green line in Figure 10), and the period time of the path Sc was shorter. The smaller Vc

caused smaller dynamic errors (blue line in Figure 10), and the period time of the path Sc was longer.
Figure 11 shows a velocity profile of a typical square path. The diagrams from top to bottom

were the Vx, Vy, and Vp, respectively. The completed time was tc1 > tc2 > tc3 in these results. Figure 12
shows the acceleration profile of the square path. The diagrams from top to bottom were Ax and Ay,
respectively. First, observing the velocity and acceleration of C1, C2, and C3, the larger value of the
Vc would cause the velocity at the corners to suddenly become discontinuous, resulting not only in a
large acceleration but also the Ax and Ay becoming unstable (green line in Figure 12) at the corners;
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oscillation would occur in the constant velocity section. The smaller Vc would cause smooth velocity
because the Ax and Ay reached the set value of the parameter at the corner. The performance of the
HP mode included the dimensional accuracy and geometric accuracy of the workpiece, which means
the dynamic errors needed to be smallest when the path was performed. In this case, the Vc was
3000 mm/min for the HS mode, and the Vc was 100 mm/min for the HP mode. However, if the Vc is
largest, the completion time is shortest for the path, but the dynamic errors will increase on the corner
at the same time.

Figure 10. The dynamic errors of the square path.

Figure 11. Analysis of square path with different corner velocity (Vc).
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Figure 12. Analysis of the acceleration at each corner with different corner velocity (Vc).

3.5. Parameters’ Analysis by Circular Path

Figure 13 shows the experimental results of a circular path with a radius of 15 mm, acceleration
of 4 m/s2, and jerk of 200 m/s3. Adjust the three conditions of different Va (N600) (blue line:
3000 mm/min; red line: 6000 mm/min; green line: 9000 mm/min) and observe the feedback signals.
In order to easily observe the testing results with variant Va, the feedrate of NC code must be greater
than 9000 mm/min; otherwise, Va is limited by the feedrate. Figure 14 shows the conversion of a
circular path into a straight line. The diagrams from top to bottom show that actual radius value
and dynamic errors were due to different Va, respectively. The horizontal axis in the error graph is
the angle, and the black line is the reference path. The four quadrants of the circular path, A1, A2,
A3, and A4, were the reverse directions of the axis, at the position of the axis where acceleration and
deceleration occur. The acceleration value was limited by parameters including N101~103, N201~203,
and N301~303. The sharp corners caused the backlash of the feed drive system, and the sharp corners’
error value reduced the dynamic errors, so that the influence of A1, A2, A3, and A4 should not be
estimated in the dynamic errors. To analyze the influence of Va on the circular path, a large Va will
produce large dynamic errors, and a smaller Va will produce smaller dynamic errors.

Figure 15 shows the velocity curve for a typical circular path. The diagrams from top to bottom
present Vx, Vy, and Vp. The Vx and Vy are sine waves, and Vp had a constant velocity except at the
start position and the end position. Comparing the completion time of the path, the result was ta1 > ta2

> ta3. In this case, the Va was 9000 mm/min for the HS mode, and the Va was 3000 mm/min for the
HP mode. However, if the Va is largest, the completion time is shortest for the path, and the dynamic
errors increase at the same time.
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Figure 13. The dynamic errors of the circular path.

Figure 14. Analysis of circular path for the dynamic errors at all degrees of the whole path.
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Figure 15. Analysis of circular path for the velocity of the whole path.

In summary, in order to reduce the dynamic errors, the jerk, acceleration, Vc, and Va need to be
reduced properly, so that the advantage of HP mode is fewer dynamic errors, but the path completion
time becomes longer. In general, HP mode is used for the finishing process, and most machining
requirements are dimensional accuracy and geometric accuracy. However, mold processing needs
more dimensional accuracy requirement, not geometric accuracy.

4. Tuning Methodology and Procedure for the CNC Parameters

The relationship between CNC parameters and the three machining modes was verified in
Section 3. The experimental results showed the effectiveness of our proposed machining mode for
corresponding CNC parameters, which is relevant to the dynamic errors of the machine. The tuning
methodology and procedures of the CNC parameters were defined by the simple path, as shown in
Figure 16. Firstly, the anticipated dynamic errors were defined as the maximum magnitude of the tool
path that had first been allowed. In this paper, the anticipated dynamic errors of the HS/HP/HQ mode
were set to 0.05/0.01/0.02 mm, respectively. Actually, the anticipated dynamic errors had no absolute
value. They must to be adjusted by the operator for the product requirements. The specified paths used
the relevant feedrate for testing. We suggest the proper feedrate that the machining condition used.
According to anticipated dynamic errors and the circular test, the Ap and Va could be easily calculated
based on Equation (1), secondly. For the Ap and straight test, the Jp was calculated. The Ta and Vc were
estimated based on the square test. The tuning procedure was based on actual measurement of the
machine’s two-dimensional contouring performance. The machine’s dynamic errors were measured
with simple paths, and the best combination of CNC parameters were chosen. A practical methodology
will be discussed in this section in detail.
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Figure 16. CNC parameter tuning methodology and procedure.

4.1. Allowable Acceleration

The acceleration of any axis results from the force caused by the feed drive system, and leads to
contour error on the components. This means that by measuring dynamic errors and correlating them
to effective acceleration, maximum allowable acceleration values for each axis can be set depending on
the anticipated path accuracy. According to the circular testing, the dynamic errors can be evaluated
due to the limited circle radius R. With small circles and increasing Va, the required acceleration
values Aa become very high (Equation (1)). Examples can be seen in Figures 13 and 14. According to
Newton’s second law and Hooke’s law expressed as:

F = ma = kΔx (5)

where m and k are equivalent mass and equivalent stiffness, which are assumed the constants for the
closed loop feed drive system in this paper, they are usually hard to tune by the machine operator. The a
and Δx are acceleration and deformation of system. According to Equation (5), we can easily understand
the relationship between acceleration and dynamic errors. Finally, the equation of acceleration and
dynamic errors was obtained by the linear regression method expressed as:

Ap = Aa = 63.551× ε3 − 0.1543 (6)

where Ap is allowable acceleration for path movement, Aa is allowable acceleration for axis movement,
and ε3 is anticipated dynamic errors. According to Equation (6), the allowable acceleration has limits
of HS/HP/HQ modes: 3.02/0.48/1.12 m/s2, respectively. Therefore, these tests are useful for verifying
the allowable acceleration value. This means that the CNC parameters related to acceleration can be
evaluated. When the NC code was a circular path, the N600 of CNC parameters will be defined by the
radius of curvature and Equation (1). In this paper, the radius of curvature of the commercial controller
was 5 mm, and the arc velocities in HS/HP/HQ mode were 7373/2939/4490 mm/min, respectively.
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4.2. Allowable Jerk

The jerk profiles were similar to the impact force on the mechanical structure. The jerk is a dynamic
excitation of the machine, which will cause oscillation in its structure resonance, meaning relative
displacements between tool and workpiece, as illustrated in Figure 8. The oscillating characteristic
is created by the driving torque or force. This means the measured tracking error of the relevant
resonance frequencies can be identified with FFT. For this reason, the allowable jerk values for each axis
can be identified at the same time. According to the straight path testing, the mechanical resonance can
be identified with tracking error, as illustrated in Figure 9 (blue line). The first resonance of machine
was about 38 Hz. The allowable jerk (Jp) can be evaluated due to the time constant of Acc/Dec (Tp)
and allowable acceleration (Ap) (maximum value Jp = Ap/Tp). The allowable acceleration was set in
Section 4.1, and the allowable jerk limits of HS/HP/HQ mode were 114.88/18.29/42.44 m/s3, respectively.
It means that the CNC parameters related to jerk can be evaluated.

4.3. Smoothing Time Constant

The smoothing time constant is similar to the filter, which can smooth the velocity profiles in
tool-path planning. The smoothing filter must be designed such that it cancels the mechanical resonance.
Its time constant must be set at the inverse of the resonance frequency. According to the square path
testing, dynamic errors can be observed at the corner, as illustrated in Figure 17. The oscillation can be
seen on the straight line after the corner. In Figure 18, the time constant of the solid line was 0 ms, and
the time constant of the dotted line was 26 ms. The result shows that the longer time constant helped
to reduce the oscillation of the workpiece surface during machining, but increased contour error and
cycle time in machining parts.

Figure 17. The smoothing time constant led to the contour error.
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Figure 18. The smoothing time constant led to the oscillation of the tool path.

4.4. Corner Velocity

A higher corner velocity is useful for shorter cycle time, but it would cause larger dynamic errors
(or corner error). If it is too high, it easily causes structural vibration at the corners. The vibration
could be decreased by the smoothing time constant, but the errors would be increased at the corners.
The corner velocity is proportional to the corner error. However, the corner error also includes the
effect of the tracking error from the servo loop. However, while there is a lot of domain knowledge to
tune the tracking error, it is not easy for the machine operator to use. Therefore, this paper regarded the
servo loop as a black box. We proposed the experimental methods to create the relationship between
the corner velocity and corner error. According to the experimental results of Section 3.4 for square
path testing, the dynamic errors can be observed at the corner. We fed the different jerk, acceleration,
Vc, and feedrate for the square path, respectively, summarized as follows:

• The larger jerk and acceleration will increase the corner error as the feedrate increases.
• There are two sets of parameters: One is Jp = 100 m/s3 and Ap = 2.5 m/s2, and the other one is

Jp = 50 m/s3, Ap = 1.2 m/s2. The corner errors are more stable than the other set of parameters
for the different feedrates.

• If the Vc is set to 3000 mm/min, when the feedrate exceeds 3000 mm/min, the corner errors are
more stable. This is caused by the current feedrate being lower than the anticipated Vc. The Vc

will give priority to the current feedrate for tool-path planning.

The experimental data on the square path were used to estimate the maximum corner errors
of each measurement result. The jerk, acceleration, Vc, and feedrate by the test conditions were
considered as inputs, and the corner errors as outputs. Multiple regression analysis was used to obtain
the regression formula for the inputs and outputs. Finally, the maximum corner error was set to the
dynamic errors of the HS/HP/HQ modes expected in this paper. The feedrate was 4000 mm/min for the
square path, the allowable acceleration, and allowable jerk, in Sections 4.1 and 4.2, as the inputs of
the regression formula, and solving the allowable Vc of the HS/HP/HQ modes. The corresponding Vc

were 1470/250/550 mm/min, respectively.

5. Experimental Validation

In Section 3, the experimental results showed the effectiveness of our proposed machining modes
for corresponding CNC parameters, which is relevant to the dynamic errors of the machine. According
to the tuning methodology and procedures of the CNC parameters implemented, the relevant CNC
parameters were estimated based on the anticipated dynamic errors in Section 4. This section proposed
a single square path with the same 4000 mm/min feedrate and the length was 30 mm to verify
the validation of the tuning methodology. We used the three sets of CNC parameters (see Table 2)
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corresponding to the “HS, HP, and HQ modes” in the actual machine platform for validation, thereby
observing the performance of the motion dynamic under various modes.

Table 2. CNC parameters for tool-path movement with machining modes.

No. Sym. Description Unit HS HP HQ

N100 Jp Maximum jerk for tool-path movement m/s3 114.88 18.29 42.44
N200 Ap Maximum acceleration for tool-path movement m/s2 3.02 0.48 1.12
N300 Tp Time constant of Acc/Dec for tool-path movement ms 26 26 26
N400 Ta Smoothing time constant for tool-path movement ms 1 1 26
N500 Vc Maximum corner velocity for tool-path movement mm/min 1470 250 550
N600 Va Maximum arc velocity for tool-path movement mm/min 7373 2939 4490

The experimental results are listed in Table 3. We observed the time of the completion of the tool
path was the fastest for HS mode. In HP mode, the minimum dynamic errors were of the corners.
There was small oscillation that was caused by the tracking error after the cornering in HQ mode.
According to the experimental results, the servo parameters could be ignored, and the relevant CNC
parameters of the tool-path planning could be adjusted, which can affect the completion time, dynamic
errors, and tracking error of the same path.

Table 3. Experimental results for three machining modes.

Description Unit HS HP HQ

Cycle time sec 1.935 2.655 2.064
Dynamic errors mm 0.053 0.018 0.026
Tracking error mm 0.007 0.003 0.001

The comparison of HS, HP, and HQ modes are listed in Table 4. In the HS mode, the completion
time of the path was fastest than the other modes. However, the dynamic errors and the tracking error
were increased by 66% and 85%, respectively. In the HP mode, although the completion time of the
path was increased by 37% compared with the HS mode and the tracking error was increased by 28%,
the HP mode was closed to the ideal path with highest accuracy. In the HQ mode, the surface quality
of the workpiece was improved by focusing on reducing the machine resonance, although the dynamic
errors were worse than the HP mode. The surface quality improved by 85% compared with the HS
mode. However the completion time was only increased by 6% compared with the HS mode.

Table 4. Comparison of three machining modes from the experimental results.

Description HS HP HQ

Cycle time 0% 37% 6%
Dynamic errors 66% 0% 16%
Tracking error 85% 28% 0%

The experimental results verified the tuning methodology for CNC parameters of Section 4.
We found that no single set of CNC parameters was able to simultaneously satisfy all of the three
machining modes: “High speed”, “high accuracy”, and “high surface quality”. Actually, these three
machining modes often contradict each other. For example, we may have the “high productivity”, but
with “low accuracy and poor surface finish.”

6. Conclusions

Since the required product quality affected CNC parameters of the machine tools, the CNC
parameters must be selected to vary the machining performance of the tool-path planning, named as
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HS, HP, and HQ modes, respectively. Actually, the manufacturer provided only a single set of CNC
parameters for the commercial CNC machine tools. It was not enough for the different machining
requirements. However, the performance of the servo loop and actual machine was fixed and was
hard to be tuned, another reason for needing to have quite a domain knowledge to tune the CNC
parameters’ requirements. Therefore, the operator of the machine cannot easily process the different
machining requirements. This paper introduced the relationship of CNC parameters, dynamic errors,
and machining modes. The dynamic errors defined the difference of the ideal position for NC code
to the actual position for linear scale in this study. According to the anticipated dynamic errors for
the three machining modes and feed motion testing by several specified paths’ experiment, such
as straight, square, and circular paths in actual machine tools, the HS, HP, and HQ modes can be
achieved by properly tuning the CNC parameters via the tuning methodology. The experimental
results proposed an approach that contained three sets of CNC parameters. The CNC parameters were
selected to be larger values of Jp, Ap, Vc, and Va, the path completion time was shortened, and the
processing efficiency improved to match the HS mode. However, the corresponding dynamic errors
became larger, which sacrificed accuracy and surface quality. On the other hand, the smaller values
of CNC parameters resulted in larger completion time and smaller tracking error, and the geometric
accuracy was improved to reach the HP mode. The HQ mode dealt with the worse surface quality of
the product, caused by feed force for the feed motion. When the feed motion experienced oscillation
on the corner or circular paths, the exact Ta reduced the impact of feed force during the high Acc/Dec
period. Although the dynamic errors of HQ mode were larger than in the HP mode, the oscillation
could be reduced during the feed motion. If there is larger oscillation occurring in the HS mode, in
addition to the reduction in Jp, Ap, Vc, and Va, it can also use the Ta to decrease the oscillation for the
smooth surface quality of the geometric shape. However, the cycle time became longer, caused by Ta in
the HQ mode. The experimental results were introduced to illustrate the effectiveness of the proposed
approach. The advantage of this paper is that it has developed a tuning methodology and procedure of
the CNC parameters based on their relevant machining mode required; it can easily be implemented
in a commercial CNC controller of the machine tools. The machine user can simply select the best
machining mode according to the machining requirements.
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Abstract: The profile of flutes has a great influence on the stiffness and chip-removal capacity of
end-mills. Generally, the accuracy of flute parameters is determined by the computer numerical
control (CNC) grinding machine through setting the wheel’s location and orientation. In this work,
a novel algorithm was proposed to optimize the wheel’s location and orientation for the flute-grinding
to achieve higher accuracy and efficiency. Based on the geometrical constraint that the grinding
wheel should always intersect with the bar-stock while grinding the flutes, the grinding wheel and
bar-stock were simplified as an ellipse and circle via projecting in the cross-section. In light of
this, we re-formulated the wheel’s determination model and analyzed the geometrical constraints
for interference, over-cut and undercut in a unified framework. Then, the projection model and
geometrical constraints were integrated with the evolution algorithm (i.e., particle swarm optimization
(PSO), genetic algorithm (GA) for the population initialization and local search operator so as to
optimize the wheel’s location and orientation. Numerical examples were given to confirm the validity
and efficiency of the proposed approach. Compared with the existing approaches, the present
approach improves the flute-grinding accuracy and robustness with a wide range of applications
for various flute sizes. The proposed algorithm could be used to facilitate the general flute-grinding
operations. In the future, this method could be extended to more complex grinding operations with
the requirement of high accuracy, such as various-section cutting-edge resharpening.

Keywords: flute-grinding; evolution algorithms; wheel location and orientation

1. Introduction

Flutes, as the major structure of end-mills, play an important role in the cutting performance [1–4].
A flute can be defined by the following three parameters: core radius, flute angle and rake angle [5–7].
The rake angle influences the cutting force, while the core radius and the helix angle determine the
stiffness and chip-removal capacity of the cutters. The performance of those flute parameters quietly
depends on the manufacturing accuracy. Generally, the flute is manufactured by the CNC grinding
machine through the determination of location and orientation for the grinding wheel path [8–10].
In the flute-grinding operations, the grinding wheel will move with a helix path to generate the grooves.
In recent years, much attention has been paid to developing an advanced wheel path determination
model and optimized algorithms for the CNC flute grinding to minimize the manufacture errors and
improve calculation efficiency.
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The kinematics of flute-grinding operations for CNC grinders has been developed by many
researchers. For instance, Kim et al. [11] developed a simulation method with Boolean operations
to construct the helix motion and developed an iterative process to compute the wheel geometry
and location data. Although this method could be used for virtual cutting tests in the CAM system,
it is time-consuming to achieve a high machining accuracy. To improve the precision of generated
flutes, Li [12] established a novel algorithm to calculate the numerical data of flutes based on the
enveloping theory, in which the flute profile was interpolated with appropriate discrete points using the
cubic polynomial expression. However, this method might be invalid for grinding with a bevel-type
wheel. In order to calculate the location and orientation of wheels with complex shapes (e.g., 1B1,
1E1, 1F1, and 4Y1 wheels), Habibi et al. [13] used virtual grinding curves to formulate the grinding
processes. Based on the virtual curves, they calculated the grinding error with the worn wheels
and compensated the wheel path. Generally, the kinematic of flute-grinding was represented by
several transcendental equations, which were supposed to be solved to get the generated helical flute.
However, it is very complicated to give the analytical solution, and thus numerical analysis was
generally used to describe the flute profile in current studies, which suffer from long computation time.
For free-form grinding wheels, Wasif et al. [14] presented a novel method for five-axis CNC grinding
through the optimization of the grinding wheel geometry, which was constructed with line segments
and circular arcs. Although this method could economically produce or dress the grinding wheel for
accurately grinding the end-mill cutters, it ignored the optimization of the wheels’ path. On the basis
of the flute-grinding model, the following problem is how to achieve the desired flute parameters by
setting the trajectory of the grinding wheel. In industry, the conventional way is to grind end-mill
flutes by trial and error, which is costly and time-consuming [15]. Mathematically, the desired flute
profile can be viewed as an optimization problem with regards to the wheel’s shape and configuration.
To solve this problem, Chen et al. [16] proposed an iteration algorithm to determine the wheel location
and orientation. For each loop, the generated flute parameters were compared with the desired values
until they converged within the target range. The iteration method has a high calculating speed and
precision, but it required a proper initial value, which cannot be easily determined without experience.
In Karpuschewski’s research [17], particle swarm optimization (PSO) was investigated to search the
wheel location for a given helical flute and grinding wheel profile. Recently, Li et al. [18] extended this
work with a novel graphic analysis method and niche particle swarm optimization (NPSO) algorithm
to solve the problem for multi-objective of machining accuracy. Although the evolution algorithms
(EA, i.e., PSO, GA) could be used in the wheel path optimization process with a global search strategy
for such a complex nonlinear problem, they are not stable in convergence, especially for some small
flutes (flute diameter < 1 mm).

In view of the above survey, it can be seen that the current study has addressed the modeling
of flute-grinding well, but fast and stable algorithms are still required for further study. Currently,
extreme-size cutters are widely used in industry, such as the micro-milling cutter or turbine blade
root milling cutter. The flute parameters for those cutters will greatly affect their cutting performance,
which requires higher accuracy. However, the current algorithms lack the definition of various
constraint conditions in machining, which cannot guarantee the machining accuracy and calculation
stability. In this work, a new method is presented to calculate the flute parameters and determine its
CNC grinding operations. Compared to the above studies, we projected the grinding wheel in the
cross-section and used a two-parameter operator to control the grinding operations. Regarding the
wheel path optimization algorithm, the projection model was integrated with the evolution algorithm
(i.e., PSO, GA) for the population initialization and local search operator. Compared to the current
EA method, the improved method showed better stability and short computation time. In addition,
it could achieve higher accuracy for a wide range of flute sizes with various profiles, especially for the
above-mentioned small flutes.

The outline of the paper is described as follows. In Section 2, the kinematic of flute-grinding is
a model with an explicit expression, and the generated flute parameters are formulated. In Section 3,
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a projection model is proposed for the grinding processes and a two-parameter operator to control
the wheel location and orientation is introduced. Additionally, the constraints for undercut, over-cut
and extreme-cut of flutes are investigated. This projection model will integrate with the subsequent
evolution algorithm. Section 4 presents a wide range of flute-grinding problems to test the accuracy,
efficiency, and robustness of the proposed method. Finally, Section 5 summarizes the whole article and
points out the contribution of our work.

2. Modeling of Flute-grinding Processes

2.1. Grinding Wheel Modeling

In this work, a standard conical grinding wheel was applied to implement the flute-grinding.
Figure 1 illustrates this type of standard grinding wheel. To describe the wheel’s geometry, a frame
OG, denoted as a wheel coordinate system, is developed and shown in Figure 1. Then, the parametric
representation of the wheel GW(h,θ) in the wheel coordinate system can be derived as

GW(h,θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
f · cosθ
f · sinθ

h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where h ∈ [0, H], θ ∈ [0, 2π] and f = R− h cotα.

Figure 1. Modeling of conical grinding wheel.

Except for the wheel surface, the lateral face will also be involved in the grinding processes.
Geometrically, the front lateral face GW(0,θ) and the back lateral face GW(H,θ) can be obtained
by setting h = 0 and h = H. Additionally, the wheel surface normal is deduced from Equation (1)
as follows:

GN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ
sinθ
cotα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

2.2. Kinematic of CNC Flute-Grinding

To demonstrate the flute-grinding operations, another framework OT is established in Figure 2,
which is denoted as a tool coordinate system. In the modeling, OT is static while OG is moving with
the grinding wheel. The flute-grinding operations consist of two steps: (1) wheel set-up and (2) wheel
moving with a helix trajectory.
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(a) (b) 

Figure 2. Flute-grinding processes: (a) XTYT view; (b) XGYG view.

In the wheel set-up operation, the wheel is configured in OT with a specified location and
orientation shown in Figure 2. The wheel location is defined by the wheel center OG, which is denoted
by the coordinate value [dx dy dz]. The wheel orientation is defined as an angle, which can be viewed
as rotating the grinding wheel about the YT axis in a counter clockwise direction through the angle β.
To this end, the set-up operation in the tool coordinate system can be expressed using the homogeneous
transformation matrix in Equation (3).

TM1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos β

0
− sin β

0

0
1
0
0

sin β
0

cos β
0

dx
dy
dz
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

In the wheel helix motion, the wheel moves along the ZT axis with a translation velocity νwhile
the cutter rotates about the ZT axis with a velocity ω. In the tool coordinate system, the kinematics
matrix of the helix motion is represented as follows:

TM1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(ω · t)
sin(ω · t)

0
0

0
1
0
0

− sin(ω · t)
cos(ω · t)

1
0

0
0

v · t
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where t represents the grinding time.
To guarantee the helix angle λ, the translation v and the rotation ω is supposed to satisfy the

following condition:

cotλ =
v

rT ·ω . (5)

Based on the above operations, the kinematic of grinding wheels can be obtained with
regarding machining time t in the tool coordinate system by integrating Equations (1)–(5), listed in
Equation (6). In addition, to simplify the calculation, the rotation speed ω is generally set as 1 in the
following equations.

TW(h,θ, t) = TM2 · TM1 · GW(h,θ) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dx · cost− dy · sint + h · sinβ · cost− f · sinθ · sin t + f · cosβ · cosθ · cost
dy · cost + dx · sint + h · sinβ · sint + f · sinθ · cost + f · cosβ · cosθ · sint

h · cosβ+ v · t− f · sinβ · cosθ+ dz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (6)
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Geometrically, the flutes are generated by the envelope of grinding wheels. The envelope surface
consists of a group of curves, which are called the contact curve [19]. As shown in Figure 3, the contact
curve is composed of two parts. One is generated by the wheel surface, which can be deduced using
envelope theory. The other is formed by part of the wheel edges.

Figure 3. Illustration of the flute generation and the contact curve.

For the first part of the contact curve, it can be obtained using the conjugate theory as shown in
Equation (7):

TN · TV = 0, (7)

where TN = TM2 · TM1 · GN and TV(h,θ, t) =
d(TW(h,θ,t))

dt .
By solving Equation (7), the equation of this contact curve can be deduced as Equation (8).

v · (dz− sinβ · cosθ+ cotα · cosβ) − (dy + sinθ · f ) · (dx + cotα · sinβ+ cosβ · cosθ)
+(dy + sinθ) · (dx + h · sinβ+ cosβ · cosθ · f ) = 0.

(8)

By solving this triangular equation, the explicit expression of the contact curve can be obtained in
Equation (9):

θ∗ = atan2(B, A) + atan2
(√

A2 + B2 −C2, C
)
, (9)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A = −dy · cosβ− v · sinβ
B = dx + f · sinβ · cotα

C = dy · cotα · sinβ− dz · v− v · cotα · cosβ
.

Substituting Equation (9) into Equation (6), the first part of the flute surface can be obtained,
which is formed by the envelope of the wheel surface in a general form in Equation (10).

TW(h, t)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dx · cost− dy · sint + h · sinβ · cost− f · sinθ∗ · sin t + f · cosβ · cosθ∗ · cost
dy · cost + dx · sint + h · sinβ · sint + f · sinθ∗ · cost + f · cosβ · cosθ∗ · sint

h · cosβ+ v · t− f · sinβ · cosθ∗ + dz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

The other part of the contact curve generated by wheel edge can be obtained by setting h = 0 or
h = H for Equation (6) denoted as TW(0,θ, t) and TW(H,θ, t).

Generally, the flute parameters are presented in the cross-section with the definition of core radius,
flute angle and rake angle [20,21]. The flute profile could be easily obtained by setting Z = 0 for
Equation (10), as shown in Equation (11):

117



Appl. Sci. 2020, 10, 4223

TW(h) =
[

xc

yc

]
=[

dx · cost∗ − dy · sint∗ + h · sinβ · cost∗ − f · sinβ · sint∗ + f · cosβ · cosθ∗ · cost∗
dy · cost∗ + dx · sint∗ + h · sinβ · sint∗ + f · sinβ · cost∗ + f · cosβ · cosθ∗ · sint∗

]
,

(11)

where t∗ = R·sinβ·cosθ∗−h·cosβ−dz
v .

As shown in Figure 4a, the flute parameters are defined as follows:

 
(a) (b) 

Figure 4. The flute parameters: (a) flute angle and core radius; (b) rake angle.

The flute angle is established as the opening angle between the vector OTP1 and another vector
OTP2, which can be calculated using: φ = acos(OTP1 ·OTP2).

The core radius is the minimum distance from a point OT to the flute profile, which can be
calculated as: rc = min

(
xc

2 + yc
2
)
.

The rake angle is illustrated in Figure 4b, which is a close-up of Figure 4a at point P1. In practice,
the rake angle is measured at the start point P3 with a measure distance PD (PD is set as 5% of tool
radius in this work). Geometrically, the rake angle is the included angle of the two vectors P2OT and
P2P3, which can be expressed as: γ = acos(P2OT · P2P3)

In addition, the points P1, P2 and P3 can be obtained by the following conditions:

(1) Point P1 is deduced by Equation (10) satisfying the condition
√

x2
c + y2

c = rT;

(2) Point P2 is deduced by setting h = 0 to Equation (10), and satisfying the condition
√

x2
c + y2

c = rT;

(3) Point P3 is deduced by setting |P2P3| = PD = 5% · rT.

3. Determination of Wheel Location and Orientations with a 2D Projection

Mathematically, the flute-grinding operations can be simplified with three equations shown in
Equation (12). For these equations, the wheel location [dx dy] and orientation β are supposed to be
calculated to configure the wheel path and generate the designed flute profile. Generally, the intelligent
evolution algorithms, i.e., GA or PSO, were used to solve the above equations. However, it was
reported that the selection of initial points would greatly affect the accuracy and efficiency of the
optimization. In practice, we found that the initial wheel’s location and orientation were confined
by several geometrical conditions, such as inference avoidance, contact constraints, etc., which can
be used to define the feasible space for the initial points. To this end, an optimization method was
introduced to build the feasible space and constraints by mapping the grinding operations into a
two-dimensional projection.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
f rake (dx, dy, β) = γ0

f f lute (dx, dy, β) = φ0

f core (dx, dy, β) = rc0

. (12)

3.1. Grinding Operation Projection

Geometrically, the flutes are formed by the intersection between the wheel and the bar-stock.
To represent the intersection, the grinding wheel and the bar-stock were projected in the cross-section,
which is shown in Figure 5. The bar-stock is simplified as a circle area and the wheel edge can be
expressed with an ellipse area. The ellipse could be represented with regard to the wheel’s location
and orientation denoted as re|(dx,dy,β). In order to assure the accuracy of the core radius, the ellipse will
intersect with the circle rT and tangent with the circle rc at a tangent point. The tangent point is defined
by the parameter θc, denoted by Pc|(θc). It can be seen that the point Pc|(θc) can be used to locate the
ellipse. The algebra relation between Pc|(θc) and re|(dx,dy,β) is deduced in Appendix A. In light of the
above geometrical relation, the wheel path determination equation can be re-organized concerning the
parameters θc and β, shown in Equation (13).⎧⎪⎪⎪⎨⎪⎪⎪⎩

f rake (θC, β) = γ0

f f lute (θC, β) = φ0

f core (θC, β) = rc0

, (13)

Figure 5. Illustration of the projection of the wheel edge and cutter profile within the cross-section.

To solve this equation, an optimization model is defined as following:

minξ(θC, β) = s.t.ξ = max
{∣∣∣∣∣∣ f rake(θC, β) − γ0

γ0

∣∣∣∣∣∣,
∣∣∣∣∣∣ f f lute(θC, β) −φ0

φ0

∣∣∣∣∣∣,
∣∣∣∣∣∣ fcore(θC, β) − rc0

rc0

∣∣∣∣∣∣
}

, (14)

where ξ is the grinding error in the following description.
In addition, several constraints were defined as follows:

• Constraint 1: the tangent point Pc|(θc) should always locate in the first or the second quadrant,

θC ∈ [0,π]. (15)
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• Constraint 2: the wheel edge cannot be separated with the bar-stock and overcut the core radius,

rc(θC, β) = |OTPC| ∈ [rc0, rT], (16)

• Constraint 3: to avoid interference, the open-angle θS should satisfy the following condition (see
Appendix B),

θS ≥ Ω, (17)

To sum up, the flute-grinding operations can be re-formulated by the following optimization problem:

minξ(θC, β),

subjected to: Equations (15)–(17).
Compared with current flute-grinding optimization models, this project method has two

advantages: (1) instead of three decision parameters (dx, dy, β), only two parameters (θC, β) were
required to be considered, which will simplify the calculation during the iterations; (2) three constraints
could be used to confine the feasible area and generate the proper initial points, which would improve
the robustness and efficiency of the optimization.

3.2. Calculation Procedure with the Improved GA and PSO

To solve the above-constrained optimization problem, the projection model with the GA and
PSO was integrated to calculate the wheel’s location and orientation for flute-grinding operation.
As mentioned, the initial points would greatly affect the optimization results. In this work, an initial
points generation algorithm was proposed in Algorithm 1, which could be used for the population
initialization for GA or PSO. It is noted that all the initial points would be checked by the over-cut
and interference constraints in the projection model. Furthermore, the flowchart of improved GA
and PSO (IGA, IPSO) integrated with the projection model is shown in Figure 6. First, a set of initial
points were generated with the algorithm in, which is used to calculate the following wheel’s location
and the generated flute parameters. In light of this, the grinding errors were evaluated and set as
the fitness function for the GA and PSO. For the IGA and IPSO, the off springs or particles generated
by the iteration operators, e.g., mutation or crossover, will be checked by the proposed over-cut and
interference constraints. The iteration will stop while satisfying either of the following conditions:
(1) iterations n> 100 (2) there is no obvious improvement in the grinding errors within n= 10 succeeding
iterations. With this procedure, the optimized wheel’s location and orientation, the generated flute
parameters and grinding errors could be obtained.

Algorithm 1 Generate N initial points

Input: Desired flute
{
rT,λ, rc0,γ0,φ0

}
and wheel parameters {R, H,α}

Output: initial points (pop) for β & θC
1. pop =

{
ϕ
}
.

2. while n < N do

3. β = random(0,π/2) and θC = random(0,π).
4. Calculate rc(θC, β) and θs in the projection model (see Appendix A)
5. If satisfy the constraints for Equation (16) and Equation (17).
6. pop = pop∪ {β,θC

}
7. else
8. go to line 3
9. end if

10. return pop
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Based on the projection model
1.Caculate the wheels s location. [dx dy] .
2.Caculate the machined core radius rc .
3.Caculate the machined rake angle .
4.Caculate the machined  flute angle .
5.Cacualte the grinding errors 

Generation of initial points for wheel setting with 
the algorithm in Table. 1

pop =

YES

ξ

Input:
1. wheel shape parameters
2. the desired flute parameters

Output:
1. Optimized wheel location. & orientation
2. The comprehensive error
3. The machined flute parameters

( )Cθ , β

min 
Using : GA or PSO operators.

Note: the new offspring or particle for the next 
generation will be checked by the over- or under-cut 
and interference constraints in Eq.(16) and Eq.(17) in 
the projection model.

ξ

Stopping criterion
Iter.>100 or 

there is no  improvement for    within n 
iterations

ξ

Figure 6. Flow chart of the improved genetic algorithm (IGA) and improved particle swarm optimization
(IPSO) with the projection model.

4. Numerical Simulation

To test the accuracy and efficiency of the presented model, the numerical simulation was
conducted with various sizes of flutes. Three types of grinding wheels were provided in Table 1.
The designed flutes were divided into three groups according to their size: small (rT ≤ 1 mm), medium
(1 mm ≤ rT ≤ 20 mm), large (rT ≥ 20 mm). To grind those flutes, the wheel’s location and orientation
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in CNC operations were determined with the proposed improved GA and PSO (IGA, IPSO), and also
compared with the traditional GA and PSO. For each instance, the optimization was run 10 times
and the average results and deviation were recorded. The optimization program was implemented in
MATLAB 2010 on a computer with Intel Core i5, 2.39 GHz, 4 GB RAM. The parameters of the GA and
PSO were set in Table 2. The desired flutes parameters are listed in Table 3. The helix angle for those
flutes was set as 30 degrees.

Table 1. Specification of grinding wheel.

Wheel Parameters Wheel 1 Wheel 2 Wheel 3

wheel width H (mm) 5 20 40
wheel radius R (mm) 30 75 75
wheel angle α (deg.) 75 75 90

Table 2. Parameters of optimization algorithms.

Algorithm Parameters Setting

GA or IGA

initial population size: 100
range of crossover probability: 0.2
range of mutation probability: 0.1
stopping condition: iterations > 100 or ξ < 1 × 10−4

PSO or IPSO

initial population size: 100
inertia weight: 1
inertia weight damping Ratio: 0.99
personal learning coefficient: 1.5
global learning coefficient: 2.0
stopping condition: iterations >1 00 or ξ < 1 × 10−4

The simulation results with various algorithms are given in Table 3. It can be concluded that
the integrated method, i.e., IGA and IPSO, had wider applicability and higher accuracy than the
traditional GA and PSO. Especially for IGA, it could be used to solve the very small size flute-grinding
problem. For further study, the grinding errors ξ (calculated by Equation (14)) between the grinding
flute parameters and the designed flute parameters were calculated as shown in Figure 7a. It can be
seen that the integrated method superior to the traditional in accuracy and stability. The accuracy of
flute parameters with IGA and IPSO could achieve 1 × 10−4. It was also noted that the grinding errors
with IGA and IPSO were less for the medium size flutes, while larger for the small and large size flutes.
What is more, to further test the efficiency of the proposed method, the computing time was recorded
as shown in Figure 7b. The integrated method also showed better efficiency in convergence, which
could save about 15%–40% computing time. In addition, the initial setting parameters of the grinding
wheel solved by IGA are provided in Table 4. In light of the IGA solution, three instances were selected
and simulated in the software CATIA. The simulated results were obtained and measured, as shown
in Figure 8, which also shows that they are highly consistent with the designed flute parameters.
In summary, according to the simulation tests for various optimization methods, it is demonstrated
that the proposed IGA and IPSO based on the projection model is effective, efficient, and robust solving
the flute-grinding problem.
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Table 4. Initial setting parameters of grinding wheels calculated by IGA.

Case No. β θc dx dy

F1 52.9353 87.7783 0.4304 30.1917
F2 50.3040 82.2274 1.7030 30.1838
F3 49.6645 82.7015 1.6804 30.4926
F4 53.2624 95.5550 −3.0894 80.4462
F5 48.4607 80.5059 6.3067 79.4745
F6 55.3177 100.8935 −5.7797 80.4662
F7 48.4607 77.1924 9.5815 83.9187
F8 54.5717 85.3600 3.2566 89.8680
F9 57.7373 99.4303 −6.3210 91.4772

F10 52.8445 79.5509 8.6418 94.2074

Figure 8. Simulated cutting tool flutes by CATIA.

5. Conclusions

In the CNC flute-grinding processes, the accuracy of generated flute parameters is determined
by setting the wheel’s location and orientation. The existing methods for the solution of wheel path
optimization were time-consuming and cannot handle grinding the extreme-size cutters. In addition,
the current model ignored the definition of various constraints in machining, which would strongly
affect the machining accuracy and calculation stability.

In the present work, a novel projection model for flute-grinding operations was developed to
generate the grinding wheels’ configuration. Based on the projection model, the wheel’s location
was re-formulated with the projection parameters, which simplified the following calculation of
machined flute parameters. To minimize the flute-grinding errors regarding the wheel configuration,
the projection model was used to generate the proper initial points and was integrated with the GA
and PSO as a heuristic regulation. In the numerical simulation, the improved GA and PSO are more
accurate, efficient, and robust, with a wide range of applications for various flute sizes. It is noted that
the proposed flute-grinding algorithm was verified with a simulation-based method. For the actual
grinding, a great deal of topics, such as the dynamics of the grinding machine, the material of the
grinding wheel and work-piece, the post-processing, the grinding speed, etc., should be considered in
the future experiments.
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Nomenclature

R Grinding wheel radius
[dx dy dz] Grinding wheel location
β Grinding wheel orientation
OT Tool coordinate system
OG Wheel coordinate system
TM1 Set-up operation matrix
TM2 Kinematics matrix of 5-axis grinding
v Translation velocity
ω Rotation velocity
rT Cutter radius
rc Core radius
γ Rake angle
φ Flute angle
rc0 Designed cutter radius
γ0 Designed flute rake angle
φ0 Designed flute angle
λ Helix angle

Appendix A. Representation of the Wheel’s Location in the Projection Model

 

Figure A1. Flute-grinding projected in the cross-section: (a) the projection model; (b) normal flute;
(c) interference flute.

In the projection model, the wheel edge can be represented as:

re =
[ dx + R · cosβ · cosθ

dy + R · sinθ

]
, (A1)
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The wheel edge is tangent with the core at the point Pc, which satisfies the following condition:{ rc = re
rc · r′e = 0 , (A2)

where rc =
[ rc0 · cosθc

rc0 · sinθc

]
and r′e is the derivative of re.

Solving Equation (A2), we get:[ dx
dy

]
=
[ rc0 · cosθc −R · cosβ · cosθe

rc0 · sinθc −R · sinθe

]
, (A3)

where θe = arctan
(

tanθc
cosβ

)
.

In summary, the wheel’s location [dx dy] can be expressed regarding the parameter θc.
In addition, two key points in PS and P′S in the projection mode were deduced in the following:

PS =
[ dx + R · cosβ · cosθ2

dy + R · sinθ2

]
, (A4)

P′S =
[ dx + R · cosβ · cosθ2

dy + R · sinθ2

]
. (A5)

The open angle between PS and P′S can be represented as: |OTPS| =
∣∣∣OTP′S

∣∣∣ = rT.

Appendix B. The Geometrical Condition for Interference-Free

Improper wheel setting would result in the interference in the flute-grinding operations. As shown in Figure
A, the interference is generally caused by the wheel edge grinding in the rake face. Geometrically, the interference
would happen while the point P′S crosses PS in the counterclockwise direction. To simplify this problem, the
angle θss is introduced in Figure Ab and c, which is defined as follows:

θss

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0 No inter f erence
= 0 Critical
< 0 Inter f erence

. (A6)

In the flute-grinding operations, the angle θss can be obtained by mapping the angle θs with a phase
difference in the projection model: θss = θs − ΔΩ.

As mentioned, in the flute-grinding process, the tool-stock rotates with speed ω, while the wheel translates
in speed v along the ZT direction. Therefore, the points PS and P′S would be located in the cross-section with
a phase difference, which can be calculated by the following equation:

ΔΩ =
f · sinβ · (cosθ2 − cosθ1)

v
·ω. (A7)

Therefore, to avoid interference, the following constraint can be got for the open-angle θs in the
projection mode:

θs ≥ f · sinβ · (cosθ2 − cosθ1)

v
·ω. (A8)
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Featured Application: This work aims at supporting process parameter selection for machining

thin-walled components made by additive manufacturing. Machining industries, especially the

ones performing both additive and milling, could benefit from the potential application of such

an approach.

Abstract: Additive manufacturing (AM) is an arising production process due to the possibility to
produce monolithic components with complex shapes with one single process and without the need
for special tooling. AM-produced parts still often require a machining phase, since their surface
finish is not compliant with the strict requirements of the most advanced markets, such as aerospace,
energy, and defense. Since reduced weight is a key requirement for these parts, they feature thin walls
and webs, usually characterized by low stiffness, requiring the usage of low productivity machining
parameters. The idea of this paper is to set up an approach which is able to predict the dynamics
of a thin-walled part produced using AM. The knowledge of the workpiece dynamics evolution
throughout the machining process can be used to carry out cutting parameter optimization with
different objectives (e.g., chatter avoidance, force vibrations reduction). The developed approach
exploits finite element (FE) analysis to predict the workpiece dynamics during the machining process,
updating its changing geometry. The developed solution can automatically optimize the toolpath
for the machining operation, generated by any Computer Aided Manufacturing (CAM) software
updating spindle speed in accordance with the selected optimization strategies. The developed
approach was tested using as a test case an airfoil.

Keywords: additive manufacturing; thin walled machining; dynamics; machining cycle optimization

1. Introduction

Lightweight constructions are becoming more and more important for many industries, such as
power generation, aerospace, automotive and medical technology. The functional requirements of
these parts often lead to the inclusion of thin-walled features in the design of such components. Due
to the strict strength and fatigue requirements, such structures are often machined from the bulk as
monolithic components, removing a large amount of material to create the final product. Usually this
is achieved through intensive milling operations, removing up to 95% of the stock volume, to create
the final geometry [1].

An arising trend in thin-walled parts manufacturing is the introduction of additive manufacturing
(AM) in the process chain. Indeed, AM allows one to deposit only the material needed for the
thin-walled structures, considerably reducing the material waste. This is a critical issue, especially
when high cost materials are used, such as titanium or nickel-based alloys. Nowadays, many different
AM processes are available on the market [2]: powder bed fusion processes such as electron beam
melting or selective laser melting enable the manufacturing of extremely complex geometries, but
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have strict limitations on the part size [3]; on the other hand, directed energy deposition processes
such as laser deposition [4] or wire-arc-additive-manufacturing (WAAM) [5] enable the manufacturing
of large parts with a limited features resolution. Despite the great advancements undergone by
the AM processes in terms of material quality [6] and repeatability, these technologies often do not
meet the dimensional and surface finishing requirements prescribed by the applications [7]. For this
reason, milling operations are usually carried out after AM, to correct inaccuracies and improve the
surface quality [8]. Therefore, including AM in the process chain requires carrying out machining
of thin-walled components. This is a critical operation due to the low stiffness of such workpieces,
making them prone to forced vibrations, chatter [9], and deflection issues [10], being responsible for
surface location errors [11] and poor surface finish [12,13].

The general approach used to prevent these issues is to limit the material removal rate (MRR)
by means of conservative machining parameters. This generates a reduction in the cutting forces,
hence limiting workpieces’ vibrations at the expense of reduced productivity. Counteracting process
vibrations without affecting the productivity requires the knowledge of workpiece dynamic behavior,
i.e., the frequency response functions (FRFs), at each driving point triggered during the milling
cycle [14,15]. This is hardly practicable through experimental techniques, such as impact testing, since
the workpiece FRFs change during the milling operation, due to the material removal process [16].
Moreover, in a thin-walled workpiece, the driving points’ FRFs are strongly dependent on the excitation
point, resulting in a different dynamic behavior over the component. Finite element (FE) models are a
convenient way of overcoming these issues, enabling a virtual identification of workpiece dynamic
behavior at different driving points [17].

This paper proposes an innovative approach to identify the dynamic behavior of thin-walled
workpieces during milling operations. The basis of the proposed technique is the identification of the
workpiece dynamics through FE modelling using 2D shell elements [18]. This approach enables an
efficient and accurate description of thin-walled structures’ dynamics. Moreover, the generation of a
shell model could be easily automated exploiting AM deposition path, since it provides the information
concerning the workpiece skeleton surface.

The proposed technique is divided into three main stages: (i) AM stock modelling, (ii) stock
thickness updating and (iii) FRF identification. In the first step, a shell FE model of the deposed material
is created. Then, the machine tool numerical control (NC) programming language, known as G-code,
is analyzed through an automated algorithm that identifies the position of the tool–workpiece contact
point and updates the stock geometry, modifying the shell element’s thickness. This information allows
the system to generate an updated FE model of the workpiece that takes the material removal effect into
account, enabling the accurate identification of its dynamic behavior. In the final step, the workpiece
FRFs are calculated at the driving points (i.e., the tool–workpiece contact point) for every step of the
machining process. This provides all the required information to optimize the milling process.

To prove the effectiveness and accuracy of the proposed dynamics identification technique, two
specimens of a test case thin-walled component were manufactured through the WAAM process. In
this work, the WAAM process was selected because its high productivity has the drawback of low
accuracy and the need for an extensive subtractive process to realize the final product. However, the
proposed approach could be applied to other directed energy deposition processes. A five-axis milling
cycle was defined and analyzed using the proposed technique, identifying the evolution of workpiece
dynamics. Then, the machining parameters (i.e., spindle speed and feed rate) were adjusted following
two different optimization techniques. The two specimens were machined, interrupting the process to
perform modal analysis, required to verify the accuracy of the proposed modelling technique. At the
end of the milling process, both specimens were analyzed through surface measurements.

2. Additive Production of Thin Walled Component

The selected test case is an National Advisory Committee for Aeronautics 9403 airfoil, (NACA,
USA) as shown in Figure 1. The stock to be machined was initially created using WAAM (Figure 1a) and
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a subsequent 5-axis milling step was used to obtain the final shape (in Figure 1b). In WAAM, subsequent
layers of metal are selectively deposed using a gas metal arc-welding source, in which raw material in
the form of wire is molten through an electric arc. This enables one to achieve high productivity and to
manufacture very large components if compared with alternative AM processes [19].

 

(a) (b) 

Figure 1. The selected test case after the deposition (a) and the milling process (b).

The airfoil was created deposing 41 layers of ER70S-6 (i.e., a standard filler metal for carbon steels)
onto a brick-shaped substrate made of AISI 1040. The deposition was carried out using the process
parameters presented in Table 1.

Table 1. Welding parameters used in the deposition.

Current (A) Voltage (V) Deposition Speed (mm/min) Wire Feed Speed (m/min)

80 20 200 4.6

Such parameters resulted in an average layer height of 1.8 mm and in a layer width of about
6.8 mm and have been selected based on previous studies [20]. The filler material was deposed
following the airfoil camber line, creating a constant cross-sectional profile. The final shape of airfoil
was achieved by the subsequent 5-axis milling process. The WAAM machine prototype developed by
the Manufacturing technologies research laboratory (MTRL) of the University of Firenze was used to
carry out the deposition [21]. The deposition process is shown in Figure 2a, while Figure 2b shows the
airfoil after the WAAM step. Figure 2b highlights that a significant surface waviness issue affects the
WAAM component, requiring a milling step, performed on Mori Seiki (Nagoya, Japan) NMV 1500
DCG milling machine, to meet the surface finishing requirement. As stated in the introduction, two
specimens of the selected test case were manufactured. After the deposition step, the geometry of the
WAAM parts was acquired through a Euro Apex C776 coordinates-measurement-machine (CMM),
(Mitutoyo, Japan). This step allowed us to check the required machining allowances for the milling
process. The CMM measurement operation is shown in Figure 3a, while Figure 3b shows the CMM
measurements results. CMM measurements highlighted that the airfoil surfaces presented an average
deviation from the reference surfaces of about 0.24 mm.
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(a) (b) 

Figure 2. Wire-arc-additive-manufacturing (WAAM) deposition (a), airfoil after the deposition (b).

  
(a) (b) 

Figure 3. Coordinates-measurement-machine (CMM) measurement of the deposed airfoil (a), measured
airfoil geometry (b).

3. Adopted Machining Cycle

The machining cycle adopted to produce the airfoil requires 5-axis machining capabilities to ensure
the manufacturability of the part. The cycle is constituted by three phases: roughing, semi-finishing
and finishing. The tool used for all the operations is a 2-flute 10 mm carbide ball end mill produced
by cod. 207280 (Garant, Lengerich, Germany) designed for dry cutting condition on carbon steel.
A morphing strategy was applied for the roughing phase to reach an offset geometry of the airfoil
starting from the nearly constant thickness geometry produced by WAAM process. A 2 mm axial
depth of cut was set for this operation. In Figure 4, the roughing operation is presented. The following
machining parameters were selected, based on previous experiences of WAAM parts machining [22]:
cutting speed 180 m/min and feed per tooth 0.062 mm/tooth. A machining allowance of 0.5 mm was
left on the product, to be removed in the following operations. The Rotation Tool Center Point (RTCP)
function was activated for the G-code set-up and a constant 30◦ tilt angle of the tool with respect to
the airfoil surface was used. As described in Section 2, CMM measurement of the WAAM part was
used to optimize the alignment between the final part and the stock. The oriented geometry of the
airfoil was then used to create the toolpath thanks to the ESPRIT® (DP Technology, Camarillo, CA,
USA) Computer Aided Manufacturing (CAM) software. After the roughing cycle, semi-finishing and
finishing operations were carried out to complete the manufacturing of the airfoil. The two cycles used
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the same tilt angle of the roughing phase. The axial depth of cut adopted for the machining operations
was 1 mm for semi-finishing and 0.5 mm for finishing. These steps were selected considering the
expected surface finish.

  
(a) (b) 

Figure 4. (a) Roughing cycle, (b) finished part.

4. Thin-Walled Dynamics Prediction

Thin wall dynamics can be proficiently estimated using finite element analysis. To increase
modelling reliability and to reduce the computational effort, shell elements were considered. Moreover,
considering the application of the proposed technique to the WAAM process, the deposition path can
be used to automatically generate the shell FE mesh. Each point of the NC code generated to create the
deposition toolpath can be used to become a node of the FE model, where only the properties and
thickness of the shell elements shall be adjusted to create a realistic model. This enables a fast and
automatic mesh and model creation starting from the simple G-code of the deposition process (see
Figure 5). To take the material removal into account, the FE model must be continuously updated,
according to the tool position along to the CAM generated toolpath. For this reason, a general algorithm
was developed to modify the nodal thicknesses, according to the tool engagement obtained by a
post-processing of the G-code (Figure 6).

 
(a) (b) 

Figure 5. (a) Traditional shell element representation, (b) 3D element representation, showing the
nodal thickness.
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Figure 6. Roughing cycle toolpath post-processing.

For each node of the FE model, the corresponding block of the G-code is determined, computed
as the minimum distance between the tooltip and the node considered. The nodal thickness is then
updated considering the intersection of the tooltip geometry (a ball nose mill for the considered
test case) with the external surface of the machined component (Figure 7). The predicted frequency
response (FR) of the machined part can thus be easily obtained, performing a numerical frequency
response analysis. For the test case considered, a modal frequency response was preferred. A unit force
was applied to the node closest to the tool-tip position (obtained by G-code), directed normal to the
surface. Linear behavior was assumed, and dynamic compliance in the other direction was neglected.
This allows for obtaining a good description of thin wall dynamics in a wide frequency range using a
limited number of excitation frequencies, notably reducing the computational effort: a FR analysis
took about 3 s on a PC using a commercial FE solver (MSC Nastran 2014.1, Swedish Hexagon AB,
Newport Beach, CA, USA). The accuracy of the FE model was tested after the roughing machining
phase, considering the FE model, updated according to the aforementioned algorithm (Figure 8). The
following mechanical characteristics were considered: elastic modulus: 200 GPa, density: 7850 kg/m3,
Poisson’s ratio: 0.31, structural damping: 0.005. According to the results in Figure 1, the proposed
approach allows for predicting the changing of workpiece dynamics along the toolpath, taking the
material removal into account at the same time.

  

(a) (b) 

Figure 7. Finite element (FE) model updating phase: (a) FE model (b) tooltip position.
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(a) (b) 

Figure 8. Workpiece driving point frequency response functions (FRFs): (a) experimental setup (b)
comparison with numerical FRF.

Simulated workpiece FRFs can be then composed, according with the orientation of the tool
(lead and tilt angle) with the tooltip FRFs (experimentally determined), to obtain the dynamics of the
system (tool +workpiece), changing with respect to the cutting point (see Figure 9). Combination of
tool–workpiece compliance was used in the optimization strategy.

Figure 9. Compliance at the tip of the blade moving from the trailing to the leading edge.

5. Optimization Strategy

The proposed approach allows for identifying the dynamics of the tool–workpiece system during
the whole machining cycle and could be coupled with any optimization strategy to achieve different
goals, computing an optimized machining cycle.

Two main dynamic phenomena could arise in machining thin-walled components: forced
vibrations and chatter vibrations. Both the effects are minimized by increasing the stiffness of the
system or reducing the MRR (i.e., depth of cut). The first approach is hard to follow since workpiece
shape and tooling system are generally fixed. The second one affects the productivity of the process.

Therefore, optimization strategies are generally based on the selection of spindle speed [23], which
governs the frequency content of the cutting forces and thus could reduce vibration levels, without
affecting productivity or altering system layout. However, the selection of spindle speed has conflicting
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requirements for forced and chatter vibrations. Indeed, to reduce forced vibrations, the spindle speed
should be far from the resonance frequencies of the system, hence reducing the relative tool–workpiece
displacements during the cycle. On the contrary, for chatter avoidance, the optimal spindle speeds
excite the resonance frequency of the dominant mode [24].

According to these considerations, the machining cycle optimization strategy should be tailored
for the specific application. In this work, two simple optimization strategies were applied, with the
aim of showing the potential applications of the proposed approach.

• Strategy A: ensuring chatter-free machining by selecting a spindle speed, exciting the resonance
of the dominant mode

• Strategy B: minimizing forced vibrations by selecting spindle speeds far from the resonances of
the systems

Both the strategies were applied to the test case, starting from the dynamic behavior of the system
at the cutting point computed by the proposed technique, presented in the previous section.

For strategy A, the dominant mode of the system was identified in the different steps of the
machining cycle and a single optimized spindle speed was selected, ensuring the excitation of the
dominant mode with one of the tooth pass frequency (ftp) harmonics. The procedure is exemplified in
Figure 10, where FRFs of system during the machining cycle at the trailing edge are presented. The
figure shows the dominant mode of the system around 1300 Hz. A single spindle speed equal to 5580
rpm (ftp = 186 Hz) was selected to ensure the system to work close to the dominant mode resonance
frequency with one of the ftp harmonics (7th).

Figure 10. Optimization strategy A applied to the airfoil.

For strategy B, machining parameters were selected to minimize the relative displacement of the
tool–workpiece under the effect of cutting force (i.e., force vibrations). These vibrations were assessed
by computing the system compliance at the ftp and harmonics (till 12th).

The harmonics were weighted based on the results of a preliminary analysis in which cutting
forces were simulated in the finishing cutting conditions (i.e., radial depth of cut (ae) 0.2 mm, axial
depth of cut (ap) 0.5 mm).Fast Fourier Transform (FFTs) of the cutting force and weights adopted are
presented in Figure 11. This approach allows for identifying the relative displacement of the tool and
workpiece in the case of stable cutting (i.e., without chatter) and, based on this information, selecting
the optimal speed in a defined range (in this case, 140 to 235 m/min). The interesting advantage of
such approach is not considering a cutting force model and the consequently need of cutting force
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coefficients [25]—this allows us to perform the proposed optimization but not to predict the actual
dynamic deflection.

Figure 11. Harmonics weights for optimization strategy B.

To effectively minimize the forced vibrations, this procedure was repeated for each step of the
cycle, and with respect to the previous strategy, the spindle speed was changed continuously during the
machining cycle. Feed rate was changed accordingly to keep feed per tooth constant (0.062 mm/tooth).
The optimal cutting speeds trend for the finishing of the airfoil, using strategy B, is presented in
Figure 12.

Figure 12. Optimal spindle speeds for optimization strategy B.

6. Results and Discussion

The two strategies were tested on the finishing phase of the test-case to assess their performances.
During strategy B machining, chatter occurred, as was clear from the sound during cutting and the
surface quality of the product. Strategy B was defined to minimize forced vibrations assuming a
chatter-free condition; however, adopting such a solution leads to the selection of spindle speeds more
prone to chatter vibrations, as explained in the previous section. On the contrary, no chatter was
detected during the strategy A machining cycle: the selection of the suitable spindle speed avoided the
occurrence of the phenomenon.

To further investigate the results, airfoils surfaces were acquiring by the CMM and analyzed. Both
pressure and suction sides were scanned using a 2 mm spatial step along length and height. First, form
errors of the surfaces respect to the nominal NACA 9403 were studied. Mid-surfaces were computed
and compared with the reference camber line and results are shown at three heights (Figure 13): Tip is
close to the upper part of the airfoil, Mid is in the middle and Base is close to the fixed root part but
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higher because of measurement limits. Both strategies could accurately reproduce the camber line
with very small deviations with respect to the reference (less than 0.1 mm). Indeed, this behavior is
in line with the model results: almost the same level of vibrations in the same point of the camber
line on the two sides of the airfoil (pressure and suction) was predicted, and therefore no significant
modifications of the airfoil camber line were expected.

(a) (b) 

Figure 13. Camber line at different Z-level (a) camber line (b) camber line error.

On the contrary, significant thickness differences are expected along the camber line, caused by
static deflection and forced vibrations. To assess this effect, the thickness of the product was computed
at the different levels and compared to the desired one Figure 14. The results show a higher thickness at
the borders, especially at the trailing edge, increasing from the base to the tip. This is due to compliance
of the system, causing workpiece deflection under the cutting force effect. This deflection increases
where tool–workpiece relative displacements are higher, i.e., at the trailing and leading edges and at
the tip, producing an increased thickness. Moreover, in Figure 14 on the right, errors on both sides are
shown, highlighting similar errors between the two strategies and the same level of error on both sides,
as predicted.

(a) (b) 

Figure 14. Thickness at different Z-level (a) airfoil thickness (b) error on suction (solid line) and pressure
(dashed line) sides.
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The thickness error along the entire surface is presented in Figures 15 and 16. The results present
the thickness error trend, higher at the two edges and increasing the height. It is interesting to point
out that the thickness error is very similar between the two strategies. This could be explained by the
fact that strategy A allowed us to avoid chatter vibrations at the price of working at the resonance of
the system, thus increasing forced vibrations and causing thickness errors. Strategy B was selected to
reduce forced vibrations, but chatter vibration occurred, leading to a significant increase in cutting
forces, which cancelled the optimized speed selection benefits. Moreover, static deflection is not
affected by the two strategies and could be the main factor responsible for the deviations that increase
at the leading and trailing edge because of structural stiffness reduction. The main difference between
the two thickness error maps is roughness: strategy A produced a smoother surface, while strategy B
presents higher waviness and roughness caused by the occurrence of chatter.

Figure 15. Airfoil thickness error for strategy A.

Figure 16. Airfoil thickness for strategy B.

7. Conclusions

In this paper, a novel integrated approach to predict the changing dynamic behavior of a thin
walled component is presented. The thin-walled test case, a NACA 9403 airfoil, was initially created
using WAAM, an arising technology to produce low buy-to-fly ratio components. The developed
system was able to correctly simulate both the material removal process on an initial stock and its
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dynamic behavior during the machining cycle. The results show that the proposed method can be
proficiently applied for AM products thanks to the automatic FE mesh generation and updating.

Based on the simulation results, two different optimization strategies were applied, confirming
the importance of the right spindle speed selection. In this work, milling of an additive manufactured
component has been optimized based only on the dynamic behavior of the thin-walled part. In the
future, a more comprehensive approach, including cutting force and tool wear, could be implemented.
In that case, the process parameters of the additive manufacturing step should be taken into account
since they affect the proprieties of the part [26]. The idea underpinning this work is investigating
hybrid additive-subtractive manufacturing; in this work, the approach was applied using to two
separated machines, and in the future the combination of milling and WAAM on the same machine
will be investigated.

Author Contributions: Methodology and conceptualization, N.G. and A.S., investigation and validation, N.G. and
G.V.; data curation and writing—original draft preparation, N.G.; supervision, A.S. and G.C.; project administration
and funding acquisition, G.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Machine Tool Technology Research Foundation (MTTRF)
and its supporters for the loaned machine tool (Mori Seiki NMV1500DCG) and CAM Software (ESPRIT), both
used to carry out this research activity.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Oliveira, D.; Calleja, A.; López de Lacalle, L.N.; Campa, F.; Lamikiz, A. Flank milling of Complex Surface. In
Machining of Complex Sculptured Surfaces; Davim, J.P., Ed.; Springer: London, UK, 2012.

2. Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928.
[CrossRef]

3. Sing, S.L.; Yeong, W.Y. Laser powder bed fusion for metal additive manufacturing: Perspectives on recent
developments. Virtual Phys. Prototyp. 2020, 15, 359–370. [CrossRef]

4. Guo, C.; He, S.; Yue, H.; Li, Q.; Hao, G. Prediction modelling and process optimization for forming multi-layer
cladding structures with laser directed energy deposition. Opt. Laser Technol. 2021, 134, 106607, in press.
[CrossRef]

5. Montevecchi, F.; Venturini, G.; Grossi, N.; Scippa, A.; Campatelli, G. Heat accumulation prevention in
Wire-Arc-Additive-Manufacturing using air jet impingement. Manuf. Lett. 2018, 17, 14–18. [CrossRef]

6. Wächter, M.; Leicher, M.; Hupka, M.; Leistner, C.; Masendorf, L.; Treutler, K.; Kamper, S.; Esderts, A.;
Wesling, V.; Hartmann, S. Monotonic and Fatigue Properties of Steel Material Manufactured by Wire Arc
Additive Manufacturing. Appl. Sci. 2020, 10, 5238. [CrossRef]

7. Li, F.; Chen, S.; Shi, J.; Tian, H.; Zhao, Y. Evaluation and Optimization of a Hybrid Manufacturing Process
Combining Wire Arc Additive Manufacturing with Milling for the Fabrication of Stiffened Panels. Appl. Sci.
2017, 7, 1233. [CrossRef]

8. Flynn, J.M.; Shokrani, A.; Newman, S.T.; Dhokia, V. Hybrid additive and subtractive machine tools—Research
and industrial developments. Int. J. Mach. Tools Manuf. 2016, 101, 79–101. [CrossRef]

9. Puma-Araujo, S.D.; Olvera-Trejo, D.; Martínez-Romero, O.; Urbikain, G.; Elías-Zúñiga, A.; López de
Lacalle, L.N. Semi-Active Magnetorheological Damper Device for Chatter Mitigation during Milling of
Thin-Floor Components. Appl. Sci. 2020, 10, 5313. [CrossRef]

10. Grossi, N.; Scippa, A.; Croppi, L.; Morelli, L.; Campatelli, G. Adaptive toolpath for 3-axis milling of thin
walled parts. MM Sci. J. 2019, 2019, 3378–3385. [CrossRef]

11. Ning, H.; Zhigang, W.; Chengyu, J.; Bing, Z. Finite element method analysis and control stratagem for
machining deformation of thin-walled components. J. Mater. Process. Technol. 2003, 139, 332–336. [CrossRef]

140



Appl. Sci. 2020, 10, 7575

12. Lin, Y.-C.; Wu, K.-D.; Shih, W.-C.; Hsu, P.-K.; Hung, J.-P. Prediction of Surface Roughness Based on Cutting
Parameters and Machining Vibration in End Milling Using Regression Method and Artificial Neural Network.
Appl. Sci. 2020, 10, 3941. [CrossRef]

13. Grossi, N.; Scippa, A.; Sallese, L.; Montevecchi, F.; Campatelli, G. On the generation of chatter marks in
peripheral milling: A spectral interpretation. Int. J. Mach. Tools Manuf. 2018, 133, 31–46. [CrossRef]

14. Arnaud, L.; Gonzalo, O.; Seguy, S.; Jauregi, H.; Peigné, G. Simulation of low rigidity part machining applied
to thin-walled structures. Int. J. Adv. Manuf. Technol. 2011, 54, 479–488. [CrossRef]

15. Scippa, A.; Grossi, N.; Campatelli, G. FEM based Cutting Velocity Selection for Thin Walled Part Machining.
Procedia CIRP 2014, 14, 287–292. [CrossRef]

16. Thevenot, V.; Arnaud, L.; Dessein, G.; Cazenave-Larroche, G. Influence of Material Removal on the Dynamic
Behavior of Thin-walled strucutres in Peripheral Milling. Mach. Sci. Technol. 2006, 10, 275–287. [CrossRef]

17. Tuysuz, O.; Altintas, Y. Frequency Domain Prediction of Varying Thin-Walled Workpiece Dynamics in
Machining. J. Manuf. Sci. Eng. 2017, 139, 071013. [CrossRef]

18. Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method-The Basis, 5th ed.; Butterworth-Heinemann: Woburn,
UK, 2000.

19. Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-feed additive manufacturing of metal components: Technologies,
developments and future interests. Int. J. Adv. Manuf. Technol. 2015, 81, 465–481. [CrossRef]

20. Campatelli, G.; Campanella, D.; Barcellona, A.; Fratini, L.; Grossi, N.; Ingarao, G. Microstructural, mechanical
and energy demand characterization of alternative WAAM techniques for Al-alloy parts production. CIRP J.
Manuf. Sci. Technol. 2020, in press. [CrossRef]

21. Montevecchi, F.; Venturini, G.; Scippa, A.; Campatelli, G. Finite Element Modelling of
Wire-arc-additive-manufacturing Process. Procedia CIRP 2016, 55, 109–114. [CrossRef]

22. Montevecchi, F.; Grossi, N.; Takagi, H.; Scippa, A.; Sasahara, H.; Campatelli, G. Cutting forces analysis in
additive manufactured AISI H13 alloy. Procedia CIRP 2016, 46, 476–479. [CrossRef]

23. Bolsunovskiy, S.; Vermel, V.; Gubanov, G.; Kacharava, I.; Kudryashov, A. Thin-Walled Part Machining Process
Parameters Optimization based on Finite-Element Modeling of Workpiece Vibrations. Procedia CIRP 2013, 8,
276–280. [CrossRef]

24. Montevecchi, F.; Grossi, N.; Scippa, A.; Campatelli, G. Improved RCSA technique for efficient tool-tip
dynamics prediction. Precis. Eng. 2016, 44, 152–162. [CrossRef]

25. Grossi, N. Accurate and fast measurement of specific cutting force coefficients changing with spindle speed.
Int. J. Precis. Eng. Manuf. 2017, 18, 1173–1180. [CrossRef]

26. Tan, J.H.K.; Sing, S.L.; Yeong, W.Y. Microstructure modelling for metallic additive manufacturing: A review.
Virtual Psysical Prototyp. 2020, 15, 87–105. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

141





applied  
sciences

Article

A Qualitative Tool Condition Monitoring Framework
Using Convolution Neural Network and
Transfer Learning

Harshavardhan Mamledesai, Mario A. Soriano and Rafiq Ahmad *

Laboratory of Intelligent Manufacturing, Design and Automation (LIMDA),
Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada;
mamledes@ualberta.ca (H.M.); masorian@ualberta.ca (M.A.S.)
* Correspondence: rafiq.ahmad@ualberta.ca

Received: 26 September 2020; Accepted: 16 October 2020; Published: 19 October 2020

Abstract: Tool condition monitoring is one of the classical problems of manufacturing that is yet
to see a solution that can be implementable in machine shops around the world. In tool condition
monitoring, we are mostly trying to define a tool change policy. This tool change policy would
identify a tool that produces a non-conforming part. When the non-conforming part producing tool
is identified, it could be changed, and a proactive approach to machining quality that saves resources
invested in non-conforming parts would be possible. The existing studies highlight three barriers
that need to be addressed before a tool condition monitoring solution can be implemented to carry
out tool change decision-making autonomously and independently in machine shops around the
world. First, these systems are not flexible enough to include different quality requirements of the
machine shops. The existing studies only consider one quality aspect (for example, surface finish),
which is difficult to generalize across the different quality requirements like concentricity or burrs
on edges commonly seen in machine shops. Second, the studies try to quantify the tool condition,
while the question that matters is whether the tool produces a conforming or a non-conforming
part. Third, the qualitative answer to whether the tool produces a conforming or a non-conforming
part requires a large amount of data to train the predictive models. The proposed model addresses
these three barriers using the concepts of computer vision, a convolution neural network (CNN),
and transfer learning (TL) to teach the machines how a conforming component-producing tool looks
and how a non-conforming component-producing tool looks.

Keywords: tool condition monitoring; tool change policy; Industry 4.0; machine learning; CNN; AI

1. Introduction

The last decade has been the decade of the fourth industrial revolution (Industry 4.0) for
manufacturing around the world using smart systems and technology. Industry 4.0 uses the concepts of
machine learning and big data to reduce wastage of time and resources and make the production process
more efficient [1,2]. The concepts of Industry 4.0 require machines that are smart and autonomous [3],
and this presents an excellent opportunity for the development of machine learning algorithms that
improve operations and help in the reduction of waste.

Smart systems are essential for the implementation of Industry 4.0 in machine shops, but what
is the definition of a smart machine in the context of machining quality control? There is no
clear definition proposed in past studies. A smarter machine in the context of machining quality
control can be envisioned as a machine with the intelligence to understand and implement the
quality requirements. This machine only produces the parts that meet the design requirements
(i.e., conforming parts) and detects the changes in machining parameters or environmental factors.
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These changes in environmental factors might result in the manufacturing of parts that do not meet the
design requirements (i.e., non-conforming parts). In other words, the machine has the intelligence
to predict whether the machine will produce a conforming or a non-conforming part based on the
environmental inputs.

In a mass manufacturing facility, the environmental factors like type of machine used, jigs,
and fixtures in which the machining is taking place are reasonably stable, and these are changed
only when the production lines are repurposed to produce different components. Given the stable
environmental factors, the quality of the machining largely depends on the consumables like cutting
tools, coolant oils, and others used by these machining processes [4,5]. If the consumables are used
for too long, they contribute to the production of non-conforming parts, and if the consumables are
underutilized, they add to the overheads and wastage [6]. The process of defining the limits for an
overused and an underused tool can be termed a tool change policy (TCP) and is illustrated in Section 4.
In an intelligent tool condition monitoring (TCM) system, the definition and implementation of a TCP
should be carried out autonomously and independently.

TCM is one of the classical problems of manufacturing, and it has been extensively studied in
the last four decades [7,8]. However, three barriers have been identified by the presented study that
challenge the deployment of existing solutions in machine shops around the world. First, the inflexibility
of the systems to accommodate different TCPs: tool condition affects different aspects of machining
like surface finish [9] and dimensional accuracy [10,11]. For example, a TCP for one tool is when the
chatter marks start to appear, while for another tool TCP it is related to a burr on the edge. The existing
studies fail to provide flexibility to accommodate different TCPs.

Quantification of tool wear ignores the concept of a TCP and diverts the attention to the
quantification of wear on inserts, and this is the second identified challenge for deployment of
current TCM systems. The studies try to quantify the wear on inserts in terms of millimeters of flank
wear [12–15]. This quantification provides no information about the usability of the tool. In machine
shops around the world, quality management is not seen as a process that directly adds value to
the component, and from an economic point this process must be limited to what is absolutely
necessary [16]; that is why the manufacturers are interested to know whether components meet the
design requirements (a conforming part) or do not meet design requirements (a non-conforming part).
One of the examples for this qualitative approach is GO (conforming part)/NO GO (non-conforming
part) gauges [17], which are discussed in Section 3. Therefore, the central objective of TCM must also
be qualitative so that it recognizes the GO quality tool (tool that produces conforming part) and the
NO GO quality tool (tool that produces non-conforming part).

The final barrier identified is the large amount of data and time required to collect and train these
systems, which is the most significant barrier in the accommodation of different TCPs. The models
have to be retrained for different quality requirements that require changing the parameters learned by
the predictive systems. For example, Wu et al. [15] used 5880 images to train a model for the detection
of different wear patterns. Considering four cutting edges per insert, the model used 1470 inserts
for training. Collecting these extensive data for every machine and TCP is infeasible considering the
hundreds of different quality requirements in machine shops around the world.

The proposed system is an integrated solution to the three barriers mentioned above. The system
relies on monitoring the wear of cutting tools and classifies the tools as GO/NO GO tools that help
the machine operator make the decision on whether the tool can be used for the next machining
cycle. The system uses state-of-the-art tool wear classification in the form of a convolution neural
network (CNN) and principles of transfer learning (TL). These concepts are discussed in Section 3.
The novelty of the system is its ability to correlate the tool condition with machining quality and the
accommodation of different quality requirements using a TCP with the requirement of fewer data to
achieve the accommodation.

The rest of the research paper is structured as follows. In Section 2, the relevant studies are
discussed. Section 3 explains the methodology used in the system, which can be divided into training,
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offline state, and online state. In Section 4, the case study and the implementation of the proposed
system are discussed and the evaluation of the proposed system is performed in Section 5, followed by
the suggested future direction of tool condition monitoring. In the final section, the conclusions drawn
from the study are discussed.

2. Literature Review

Tool condition monitoring methods are classified into direct and indirect methods [18];
direct methods mostly involve the use of computer vision [14,15], radiation [19], and electrical
resistance [20], whereas indirect methods involve online monitoring methods that use vibration [21–23],
force [22], and temperature and sound [24] signals. Indirect methods are less complicated and can be
implemented straightforwardly and monitored in real-time [10], but they are prone to making noise
and are less accurate than the direct methods [25]. Real-time monitoring is also not a crippling
disadvantage for direct systems as there is enough time in between machining operation and
cycles [26] to get the required data without disturbing the sequence of operations of a machine
shop. In addition, the unidirectional execution of existing G-code-based systems does not allow for
real-time changes in the machining parameters [27–29]; therefore, there is no way to integrate the
response generated by indirect systems in real-time. Considering direct methods are more accurate
systems, the study adopts the direct monitoring methodology.

Vision-based systems are the most popular systems when it comes to direct tool condition
monitoring. Vision systems have also improved in recent years and are being used in different facets
of machining like collision avoidance [2,30], which also demonstrates the ability of vision systems to
detect changes while maintaining distance from the cutting process. Computer vision systems are used
to monitor changes in the wear morphologies of an insert. Wear morphology classification has been
the subject of many studies in past years; Lanzetta [31] employed vision systems for wear morphology
classification using quantitative definitions of different wear patterns. The conventional tool condition
monitoring used in machine shops involves the quantitative approach. For autonomous systems,
the quantitative approach proves difficult for implementation considering the variety of qualitative
parameters that need to be hardcoded into the system to identify a variety of wear morphologies.
The hard coding of parameters is also computationally expensive; thus, there is a need for a system that
identifies the features of different types of wear. The need for identification of different morphologies
is satisfied to an extent using CNN by Wu et al. [15]; this study has inspired the base wear classification
model discussed in Section 3.1.

Autonomously detecting damage to the inserts before they are used in machining is one of the
essential requirements for making tool monitoring autonomous. Fernandez-Robles et al. [32] developed
a vision-based system to detect broken inserts in milling cutters automatically. Sun et al. [14] used image
processing and image segmentation techniques to develop a system that could identify built-up edges,
fractures, and other insert deformations. These studies used image processing techniques, which require
human intervention to develop feature descriptions; this limits the independent implementation of
these systems for a variety of wear morphologies. As opposed to image processing techniques, the CNN
approach learns to identify the region of interest (ROI) and features descriptions to identify different
wear morphologies, and this eliminates the need for the human feature descriptions step needed in
other techniques [33]. Considering the utility of autonomous feature extraction, the proposed study
uses the CNN approach for tool condition monitoring.

Even though tool condition monitoring is one of the classical problems, there are fewer publications
in the context of the correlation of tool condition with the quality of the component. Jain and Lad [34]
developed a system that correlates tool condition and production quality. The study also developed a
multi-level categorization of the wear using a support vector machine methodology. Jain and Lad [35]
explored the relationship between surface finish and tool wear and found the Pearson correlation
coefficient between surface finish and tool condition to be significant to establish a strong correlation.
The study used a random forest-based fault estimation model to determine the relation between surface
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finish and tool condition. Grzenda and Bustillo [36], developed a semi-supervised model to predict
the surface finish using vibration signals; Fourier transformation was used to transform signals to
frequency space, and only the relevant frequency ranges were considered for the study. Wu et al. [15]
developed a two-stage system that aimed to determine the type of wear in the first stage and tried to
quantify the wear of the insert in a milling cutter. The system used CNN to determine the type of wear,
and the wear value was obtained using the relation between image pixel value and actual value and
width of the minimum circumscribed rectangle. Dutta et al. [37] used surface texture descriptions to
determine tool life using the grey level co-occurrence matrix; the images of the resulting surface finish
were captured, and the tool wear was measured using a microscope. García-Ordás et al. [25] used a
computer vision system to determine the usefulness of milling cutters. The system used a support
vector machine methodology to classify the wear patterns. The system identified the state of the tool
with about 90 percent accuracy.

The studies mentioned above correlate tool condition with the specific quality and design
requirements like surface finish. As discussed in Section 1, there are a variety of quality and design
requirements that are defined by TCP. These different TCPs form the ultimate definition of TCM;
considering this, a TCM that is flexible enough to accommodate different TCPs is the need of the hour.
Most of the studies are also limited by the materials and tool geometries they have used, and changing
any one of the factors means the findings of the studies cannot be used. For the TCM to be autonomous
and independent, it must be capable of working with different materials, tool geometries, and tool
coating grades. The requirements of flexibility to work with different TCPs and the ability to generalize
the system for different working materials, tool geometries, and tool coating grades, form the basis for
the development of the proposed system.

3. Qualitative Tool Condition Monitoring System

The system is developed to operate in three stages, as shown in Figure 1. The training of the
base model is where the architecture of the base model and the central intelligence of the system
are developed; this training is done remotely. The architecture and training parameters of the base
model are discussed in Section 3.1. The offline state of the system is operational in the machine shops
when the production lines are set up. In this state, the system is receiving training to identify the
TCP. The knowledge from the base wear classification model is used to expedite this training process
using the TL technique discussed in Section 3.2. The output of the system is inspired by the GO/NO
GO gauges. The goal of the GO gauge is to accept as many good parts as possible that satisfy the
material condition specification, and NO GO gauges are designed to reject all the parts that violate
the material condition specification [17]. The GO/NO GO gauge in this system is envisioned as an
implementation of a TCP. When a tool of GO quality is detected, the tool is accepted and used for
production. When a NO GO quality tool is detected, the operator is asked to change the tool before
resuming the production. The GO/NO GO arrangement allows for the flexibility to adapt the system
for different TCPs. In the online state of the system discussed in Section 3.3, the system is executing the
TCP autonomously after every machining cycle, making sure the tools are in GO condition before they
are used, and in this way provides a proactive approach to TCM.
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Figure 1. Overview of the system architecture.

3.1. The Base Wear Classification Model

A CNN is one of the most promising approaches to image processing and pattern recognition [33].
CNN layers are part of the architecture; it is standard practice to use convolution layers at the start of
the model to develop feature descriptions of the images. These layers are good at narrowing down
the ROI and require less computational memory when compared to conventional models. These are
the reasons they have seen a wide range of applications in a variety of areas, from hand gesture
recognition [38] to disease recognition in plants [39]. One of the other advantages of the convolution
layers is their ability to extract features autonomously. Some of these transformations are shown in
Figure 2. In Figure 2b, each row is the output of convolution or max pooling layers. It can be seen in
the successive layers. The layer transformation and filtering further define the description of the wear
features. This step in image processing techniques is done manually, which is the disadvantage of
image processing techniques.

 

Figure 2. Convolution layer image transformation: (a) original image of wear; (b) convolution
transformation for region of interest (ROI) and feature extraction.
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The base model architecture used by the system is shown in Figure 3. The input to this architecture
is a 200 × 200 × 3 Red Green Blue image (RGB). The convolution layers have sparse interaction with
the input of the previous layer [40]. For the convolution layer, a 3 × 3 kernel is used with 32 filters in
the first and second convolution layers. For the last two convolution layers, 64 filters are used with
a 3 × 3 kernel. A kernel can be imagined as a 3 × 3 window sliding over 200 × 200 in the step of a
one-pixel slide. This concept helps in the detection of small meaningful features and also reduces the
parameters to be stored and computed [40]. The output of the convolution layer is then fed to the
pooling layer, in the case of the developed model, it is the max pooling layer, where the kernel reports
the maximum value of the kernel size input. This layer helps in making the model more robust in
response to small translations to the inputs [40]. This is summarized in Equation (1), where A is the
corresponding pixel value in row i and column j, and this equation is valid for the 2 × 2 kernel used for
max pooling layers.

Figure 3. Base convolution neural network (CNN) architecture for insert wear classification.

Max pooling layer
Oi,j =max {Ai,j, Ai+1,j, Ai,j+1, Ai+1,j+1} (1)

The output of the last max pooling layer is then flattened to a 1 × n vector, which forms the input
to the fully connected layers (FCLs) for further processing, where n is the number of inputs to the
neural network. The number of inputs n also determines the width of the FCLs of the network.

FCLs are the basic type of neural network where each input interacts with each output of the
previous layer [40], the different layers in the network are modeled as different functions, which are the
function of the previous layer. In the proposed base model shown in Figure 3, we have four FCL layers,
which can be written as f(1), f(2), f(3)

, and f(4)
. Using the chain concept we can rewrite these functions as

f(xi) = f(4)(f(3)(f(2)(f(1)(xn)))) [40], where xn is the data from the convolution layers. The objective of the
neural network is to best estimate f(xn; θ) to function f * (xn), where f * (xn) is the ideal (real-world
relation) function that maps the inputs from the convolution layer to their classes of wear and θ is a
free parameter adjusted to optimize the best estimation of an ideal function [40].

The architecture in Figure 3 uses a rectified linear unit (ReLU) activation function in the intermediate
layers, which is a common practice for CNNs to improve the training speed [39]. The ReLU returns
zero for half of its domain and is the input for the other half of the domain that is zero for inactive
nodes and is the node output for active nodes, which helps make the gradients of the loss function
large and constant [40]. The ReLU is used in all the layers except the output layer in the proposed
model shown in Figure 3. The ReLU is summarized in Equation (2), where z is the output of the node.

ReLU(z) = max{0, z} (2)
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The softmax activation function was used in the last layer of the base model architecture, which is
also common in multiclass classification CNNs [39]. Softmax activation usually used in the output
layers of the neural networks gives the probability distribution over n possible values. It ensures
that the prediction of z belonging to a class for n different classes is between 0 and 1, and the sum of
probabilities is equal to 1 [40]. This is summarized in Equation (3), where zp is the output of the node
for the p class.

softmax
(
zp
)
=

ezp∑3
c=1 ezc

(3)

The loss of a model can be defined as a function that quantifies the performance of the system [33];
the study uses categorical cross-entropy as the loss function. ADAM, which is a stochastic optimizer
that is computationally efficient and combines the advantages of RMSProp and AdaGrad [41], was used
to optimize the weights of the base model. This facilitated faster convergence to an optimal solution [40].
The parameters used in ADAM were learning rate = 0.001, beta1 = 0.9, and beta2 = 0.999. The algorithm
for ADAM implementation can be found in [41].

3.2. CNN Image Classifier Trained for TCP

The base model developed and discussed in Section 3.1 forms the central intelligence for the
TCM. The base model helps narrow down the ROI and extract useful features and descriptions of
the tool, as shown in Figure 2. This intelligence is developed in the base model and rolled out as a
trained network. The offline stage of the system is in the machine shops, where the model has to
be repurposed to identify and implement different TCPs. Considering that there are thousands of
different TCP unique to each machine shop, retraining a complete network presents a significant data
and training time challenge. TL is one of the lifelines to overcome this data and training time challenge.

Given the importance of TL, we now adapt the definitions of TL in [42] for our application.
In the proposed system, the knowledge developed during the training of the wear classification
model to identify what type of wear pattern or damage the cutting tool has is optimized using TL
to differentiate between a good tool that produces conforming parts and a bad tool that produces
non-conforming parts. Every classification model has a domain D, which forms the pool for data
extraction and a task which, in the case of this study, is classification. Pan and Yang [42] define domain
D as consisting of two components: a feature space X and a marginal probability P(X). Task T also
consists of two-component Y labels and a predictive function f(.); since neural networks have a large
number of trainable parameters they can choose from different functions that best predict the task,
which in the case of our study is image classification. Therefore D =

{
X, P(X)

}
and T =

{
Y, f(.)

}
,

and considering these definitions we can define source domain and target domain. The source domain
is images captured from cutting inserts used in machining (DS), and the task is to identify wear type
classification (TS). Similarly, the target domain is images of inserts used in production (DT), and the
task is the quality classification (TT).

The images for the base model are drawn for the inserts used in production. Similarly, images used
for the target model are also drawn from inserts used in production. Therefore, the methodology is built
around the assumption that the images for the source and target model have a similar domain, which is
reasonable considering that the images used to train base model wear morphology classification are
also used in production in a machine shop. Given the similarity of domains, XS = XS, PS(X) = PT(X),
and DS =DT, that is, the feature space and the marginal probability of data distribution for both models
are the same.

The tasks of the source and target models are different as the labels are different, therefore TS � TT

as YS � YT, as given by Equations (4) and (5). But the predictive function could be similar or different
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since the neural networks are black-box models. There is no way to know if the same or a different
function was used for source and target tasks.

YS =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if the insert is damaged
1 if the insert has deformation
2 if the insert has normal wear

(4)

YT =

{
0 if the component is conforming (GO)

1 if the component is non− conforming (NO GO)
(5)

The target task is tied up to the traditional concepts of GO/NO GO gauges discussed at the start of
Section 3. GO/NO GO gauges are one of the most popular gauges to evaluate the material conditions
in holes and shafts. The tool condition monitoring system developed extends and generalizes this
definition of GO/NO GO gauges to other quality requirements. In the target task, the model is retrained
to identify a GO part producing tool and NO GO part producing tool. This concept makes the proposed
methodology qualitative and gives the model the flexibility to adapt its knowledge across different
TCPs. The offline state requires an expert to generate the GO/NO GO labels for the training and
adaptation of the task to the TCP.

3.3. CNN Image Classifier Adapted for TCP

The online state of the system works seamlessly without the need for human intervention to
identify the tools that produce a NO GO part. The system takes a picture before the machining
starts and, based on the training during the offline state, classifies the tool as a useable or unusable
tool. There are many tools on the machine, and the quality demand from each tool is different.
Therefore, the offline part of the system where the tool condition is associated with GO/NO GO quality
of operation has to be performed on each tool during the production setup. This allows the system to
run without quality inspection in the online state.

4. Experimental Setup

The images of the CNMG 120408/12, TNMG 160408/12, and VNMG 160408 turning inserts used in
the turning application are captured using the DFK 33GP006 GigE color camera with TCL 3520 5MP lens.
Initially, the top, side, and front views are considered for the classification. A processor with Intel i7
and 16 GB RAM was used to develop the classification model, and the models were implemented using
R computer language with the Keras package using a TensorFlow backend. Examples of these pictures
can be seen in Table 1. Table 1 shows that the top and side views do not clearly show the type of
wear, but the wear is easily distinguishable in the front view images; therefore, only front view images
were considered for the classification model. The setup for capturing the images of different views
can be seen in Figure 4. The images are captured in standard room lighting without any dedicated
light source. As we can see from Figure 2, the background of the insert has no impact on the feature
extraction process.
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Table 1. Wear patterns and different views.

Wear Pattern Top View Side View Front View

Damaged

   

Deformation

   

Abrasive

   

 

Figure 4. Image capturing station.

The process started with collecting the front-view images of the inserts for three different categories:
79 images of damaged inserts, 121 images of deformed inserts, and 128 images of abrasive wear inserts
were captured. All the pictures were then resized to 200 (width) × 200 (height).

The model must be made robust against variation and transformation. One of the ways to do
this is to use data augmentation, where the data are subjected to various transformations such as
rotation, flipping, and shearing the images; this helps in improving the generalization error as the
model is trained to be invariant to these transformations [40]. The training dataset was subjected to
data augmentation, with an allowed rotation range of 10 degrees, width shift range of 20 percent,
height shift range of 10 percent, and zooming range of 20 percent. The parameters for augmentation
were chosen carefully so as not to alter the wear description of the images, but to accommodate for
poor quality images that can be seen when the system is deployed in machine shops. An example of
this data augmentation can be seen in Figure 5. It should be noted that the validation images were not
subjected to data augmentation.
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Figure 5. Examples of rotation, shearing, height shift, and zooming data augmentation applied to
training images.

The augmented data were then fed to the neural networks. The images were first subjected to
the image transformations of the convolution and max pooling layers, where the ROI was identified,
and useful features were extracted from the images autonomously. The data in the final layers formed
the last max pooling layer and formed the input to the densely connected layers. The images were
converted to pixel data, and each pixel formed the input to the first FCL; the data were mapped to the
labels of the pictures, and the output of the FCL was the prediction of wear type. The base model can
now identify the nuanced differences in the cutting insert by identifying if the insert has deformation,
normal wear, or damage. The knowledge developed in the base model can now be used to identify the
change in quality by retaining the model.

For the target model, the images of inserts are classified into GO/NO GO categories; for this part of
the study, only CNMG 120408 turning inserts are used; one of the examples for GO/NO GO can be seen
in Table 2. Table 2 also gives an example for different TCPs accessible in machine shops. The objective
of the case study with respect to the target model is to prove that the model identifies the nuanced
differences in changes in wear morphology and predicts the consequence of using a tool. That is, if the
tool produces a GO quality part or NO GO quality part while using lesser images and training time
and iterations so that the TCP deployment is fast-tracked.

For this part of the study, inserts that are relatively new and have typical wear patterns are
manually classified as GO category inserts, and the inserts that have higher wear levels, as shown in
the NO GO part of Table 2, are classified as NO GO category inserts. These images are used to train the
target model, and the training images are subjected to similar data augmentation to that shown in
Figure 5. The architecture of the target model is shown in Table 3. The parameters learned by the base
model are frozen, and only 382 parameters of layers 12 and 13 are optimized for the target model.
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Table 2. GO, NO GO, and examples of different tool change policies used in machine shops around
the world.

NO GO GO GO GO GO Quality

     

Insert wear
image

     

Surface finish

     

Burrs on edge

     

Chatter marks

     

Feed marks

Table 3. Target model architecture.

Layer Type Input Shape Output Shape Filter Size Trainable Parameters

0 Input layer 200,200,3 200,200,3 0
1 Convolution layer 200,200,3 198,198,32 3,3,32 0
2 Max pooling layer 198,198,32 99,99,32 2,2,32 0
3 Convolution layer 99,99,32 97,97,32 3,3,32 0
4 Max pooling layer 97,97,32 48,48,32 2,2,32 0
5 Convolution layer 48,48,32 46,46,64 3,3,64 0
6 Max pooling layer 46,46,64 23,23,64 2,2,64 0
7 Convolution layer 23,23,64 21,21,64 3,3,64 0
8 Max pooling layer 21,21,64 10,10,64 2,2,64 0
9 flatten (Flatten) 10,10,64 6400,1 0 0
10 Dense layer 6400,1 50,1 0 0
11 Dense layer 50,1 35,1 0 0
12 Dense layer 35,1 10,1 0 360
13 Dense layer 10,1 2,1 0 22

5. Results and Discussion

The training of the base model was carried out using 223 images, and 105 images were split from
the original dataset for validation; the validation data set consists of approximately 33 percent from
each of the damaged, deformation, and abrasive wear categories. Figure 6a gives the accuracy for base
model training runs. The validation accuracy stabilized around the 200th epoch, and the validation
accuracy is 83.75 percent. Figure 6b presents the loss of over 250 epochs, and the loss is the indication
of the magnitude of deviation between prediction and the actual value.
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Figure 6. (a) Accuracy of the base model. (b) Loss convergence graph of the base model.

For the second part, the objective is to demonstrate the capability of the system to adapt to the
new task of TCP deployment using fewer images and shorter training time. For this, the data are
partitioned into three sections: training, validation, and test dataset; various training runs are carried
out using a different number of images. The summary of the number of images used for each run is
shown in Table 4. All the images in the three sections are different and are not repeated. The images in
the test data set can be seen in Figure 7; the GO category images have no wear or have typical wear
pattern; these tools produce conforming parts, and the NO GO category have visible wear on the edges;
these tools produce non-conforming parts.

Table 4. Training, validation, and test data split for different runs.

RUN Training Pictures Validation Pictures Test Pictures

1 13 10 20
2 18 12 20
3 23 16 20
4 27 18 20
5 37 26 20

  

Figure 7. Test image data: (a) GO images; (b) NO GO images.

Figure 8 shows the accuracy and loss values for different runs. It can be seen from Figure 8b that
the loss value plateaued around the 5th epoch in most of the runs, signifying that the optimization
of the parameters requires fewer iterations, which enables the system to accommodate a variety of
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TCPs and with fewer training requirements. Figure 8c and d show the accuracy and loss of the trained
models on the test dataset. It can be seen that the accuracy of the models increases with the number
of images used for training the model. Run 4 had a smaller loss value when compared to run 5 but
had lower accuracy; this can be attributed to overfitting of data which led to misclassification of the
images in the NO GO category test data as GO category images. Run 5 had the best results in terms of
accuracy on test data, where 37 images were used in training the model. The accuracy of the test data
for run 5 was 85 percent; the confusion matrix for run 5 can be seen in Table 5. The model predicted all
NO GO label images correctly and predicted 3 images of GO labels incorrectly.

Figure 8. Results for target model training run on validation and test datasets.

Table 5. Confusion matrix for run 5.

Actual
Prediction

GO NO GO

GO 7 0
NO GO 3 10

The final part of the study is the deployment of the system using a graphical user interface (GUI).
Figure 9 gives a view of the GUI; the output of the GUI is feedback to the operator. The feedback is NO
GO for tools that the target model predicts will produce a non-conforming part, and GO for tools that
the model predicts will produce a conforming part. The machine operator is encouraged to replace
the tool when the GUI displays NO GO. The prediction is generated within 5 s, facilitating the mass
production without interruptions from quality inspections.
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Figure 9. Graphical user interface (GUI) for quality management system.

The proposed system directs the TCM from a quantitative to a qualitative approach using a
TCP. This is the reason the study does not consider quantification of the wear using any measuring
system, and this makes the system more flexible to accommodate different quality requirements seen in
machine shops around the world. The system uses the feature extraction capabilities of CNN and the
ability of these models to learn new features using TL. Future development in the proposed system has
three fronts. First, the development of the camera system to be integrated into the machine: the image
acquisition in the study was independent of the machine, but the system has demonstrated that the
images acquired at a reasonable distance away from the cutting operation can be used and classified
by the system. The system uses standard room lighting; there are systems discussed in studies done by
Sun et al. [14], which are capable of generating the required light intensity and protecting the camera
from cutting oil. Second, improvement of the intelligence and accuracy of the system by integrating
more diverse wear images into the base model: since the base model is the central nervous system and
target models have similar data distribution, the accuracy of the GO/NO GO model can be improved
with fewer iteration requirements, and with a more robust base model. Finally, the proposed system is
designed for the turning process: considering that the wear mechanisms in milling are different, there is
a need to develop a similar system for milling applications. A similar neural network can be trained
with milling insert data to repurpose the framework for a milling application. The CNN architecture is
a standard approach when it comes to image recognition and identification-related neural network
architectures. The area of deep learning also continues to evolve; therefore, there is a need to keep an
eye out for new techniques that can improve the training time and accuracy of the system.

6. Conclusions

The proposed study redirects tool condition monitoring from tool wear quantification to the
objective of providing a more proactive qualitative approach to quality management that saves the
resources used in the production of non-conforming parts. A tool change policy is employed to detect
these changes in quality indicators and change the tools when they occur. Given the different quality
requirements, there are a variety of tool change policies. Therefore, tool condition monitoring that
is flexible enough to adapt to different tool change policies is developed. The developed systems
can adapt to a new tool change policy requiring as few as 37 images and 12 training iterations using
concepts of transfer learning and convolution neural networks. The study also developed a qualitative
approach to tool condition monitoring, since the issue that is more important than quantifying the wear
on a cutting tool is whether the tool produces a conforming or a non-conforming part. This is captured
in the system by extending the concept of GO/NO GO gauges to different quality requirements through
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tool conditions. The tools that are predicted to produce a conforming part are categorized as GO tools,
while non-conforming part producing tools are classified as NO GO tools. The developed system can
identify the GO/NO GO quality tool with 85 percent accuracy. Lastly, a graphical user interface is
also developed to give feedback to machine operators about the usability of the tools. The system is
designed to operate in between machining cycles, checking the usability of every tool before they are
used. The system only takes a few seconds to determine the usability of the tools. This concept helps
in making the proposed methodology an in-process tool condition monitoring system.
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Abstract: Tool wear monitoring is necessary for cost reduction and productivity improvement
in the machining industry. Machine learning has been proven to be an effective means of tool
wear monitoring. Feature engineering is the core of the machining learning model. In complex
parts milling, cutting conditions are time-varying due to the variable engagement between cutting
tool and the complex geometric features of the workpiece. In such cases, the features for accurate
tool wear monitoring are tricky to select. Besides, usually few sensors are available in an actual
machining situation. This causes a high correlation between the hand-designed features, leading to
the low accuracy and weak generalization ability of the machine learning model. This paper presents
a tool wear monitoring method for complex part milling based on deep learning. The features are
pre-selected based on cutting force model and wavelet packet decomposition. The pre-selected cutting
forces, cutting vibration and cutting condition features are input to a deep autoencoder for dimension
reduction. Then, a deep multi-layer perceptron is developed to estimate the tool wear. The dataset is
obtained with a carefully designed varying cutting depth milling experiment. The proposed method
works well, with an error of 8.2% on testing samples, which shows an obvious advantage over the
classic machine learning method.

Keywords: tool wear monitoring; milling; complex part; deep learning; autoencoder; deep
multi-layer perceptron

1. Introduction

Tool wear is a cost driver in machining that affects quality and productivity and adds unscheduled
downtime for tool changes and the reworking of damaged parts. Accurate tool wear monitoring is
necessary to avoid these unnecessary costs. Tool wear monitoring methods can be categorized into
two main groups: direct and indirect methods [1]. Direct methods measure the actual wear value with
optical, laser or ultrasonic devices. Although direct methods measure tool wear precisely, they are
difficult to implement in real-time machining because, in most cases, the tool wear area is unreachable
due to the occlusion of workpiece structure and flood coolant. Indirect methods monitor in-process
physical parameters to evaluate wear state, such as force, vibration, acoustic emission, current, power
and temperature signals [2]. Nowadays, indirect methods are the most widely used in tool wear
monitoring because they are easy to conduct in real time and can obtain acceptable accuracy by using
a proper monitoring signals and modeling method.

Indirect tool wear monitoring methods can be divided into two categories: physical-based
and data-driven methods. Physical-based methods first develop the hand-designed physical model,
i.e., the mathematic relationship between tool wear and measurable physical quantities from the
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mechanism of machining, and then estimate tool wear value through monitoring signals based on
the model. Choudhury and Rath [3] proposed an evaluating approach of milling tool flank wear
based on the relationship between average tangential cutting force coefficients and tool wear. Cui [4]
discussed the influences of process parameters, tool parameters, and tool wear on tangential cutting
force coefficients in his dissertation. A recognition approach for milling tool wear was proposed,
based on the relationship between tangential cutting force coefficients and tool wear. This approach
was needed to solve the cutting force coefficients through actual cutting forces, and then the tool wear
was recognized through the solved tangential cutting force coefficients. The complex calculations
meant that the recognition speed was low, and the result was not precise enough. Shao et al. [5]
established a cutting power model in face milling, which included the cutting conditions and the
tool flank wear, and then proposed a tool wear monitoring approach based on this power model.
Hou et al. [6] developed the relationship between flank wear and average milling force based on the
stress distribution in the tool wear zone and applied this relationship to estimate the flank wear width
in the milling process. Han et al. [7,8] proposed a mechanistic cutting force model considering various
wear types for difficult-to-cut material drilling, which can be used for tool wear monitoring and process
parameter optimization in the conditions of multiple tool wear existing on different cutting edges.

Due to the complexity of tool wear mechanism and randomness of the machining process,
the physical-based monitoring methods are faced with the problem of low accuracy and weak
universality [9,10]. In recent years, many data-driven tool wear monitoring methods have been
proposed based on machine learning such as fuzzy logic, artificial neural network (ANN), support
vector machine (SVM), and Bayesian networks. Yu [11] used logistic regression with penalization and
manifold regularization for tool condition monitoring. Kilickap et al. [12] used ANN with the inputs of
cutting speed, feed rate and depth of cut for tool wear prediction in the milling of Ti-6242S. Patra et al. [13]
used ANN with thrust force signals for tool wear prediction in micro-drilling. Karam et al. [14] built an
ANN-based cognitive decision-making system to extract signal features for online tool life prediction.
In other studies, the ANNs with different inputs and architectures are employed to predict tool
wear [15–17]. Madhusudana et al. [18] used SVM with the features extracted from discrete wavelet
transformation in sound signals for tool condition monitoring in face milling. Benkedjouh et al. [19]
used support vector regression (SVR) with the features extracted from multi-sensor signals to predict
tool life. Zhang and Zhang [20] used a least-square SVM to develop a nonlinear regression model for
tool wear prediction in the milling process. Yu et al. [21] proposed a weighted hidden Markov model
for tool life prediction. Zhu and Liu [22] proposed a hidden semi-Markov model with dependent
durations through cutting force signals for tool wear monitoring. Tobon-Mejia et al. [23] established
a dynamic Bayesian network for tool condition monitoring and remaining useful life estimation.
Kong et al. [24] proposed a Gaussian process regression model for tool wear prediction. Wu et al. [25]
made a comparative study on different machining learning method including ANN, SVR and random
forest for tool wear monitoring. Liu et al. [26] built an Elman_Adaboost predictor with Elman neural
networks for milling tool wear assessment with several statistic features selected from multi-sensor
data including spindle current, force, vibration and acoustic emission.

The accuracy and generalization ability of the above-mentioned conventional feature-based
machining learning models are highly affected by the quality of the hand-designed features [27].
However, feature selection is problem-dependent and somewhat subjective in practice. Different
from feature-based machining learning methods, deep learning can achieve adaptive feature learning,
which is helpful to improve the adaptability of prediction methods. Moreover, layer-by-layer feature
learning in deep network is more likely to learn essential features hidden in the monitoring data and
then to improve prediction accuracy [28]. Common deep learning methods include deep multi-layer
perceptron (DMLP), deep autoencoder (DAE), convolutional neural network (CNN) and long short-term
memory (LSTM) network. Serin et al. [29] used DMLP neural networks to predict surface roughness
and specific energy consumption during 5-axis milling. Ou et al. [30] proposed an online sequential
extreme learning machine for tool wear state recognition with a stacked denoising autoencoder (SDAE)
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put forward to extract abstract features. Cao et al. [31] proposed a 2-D CNN for milling tool wear
monitoring, with the spectrum of the high signal-to-noise ratio vibration signals obtained from the
derived wavelet frames as input features. Aghazadeh et al. [32] employed a CNN with a hybrid
feature extraction method using wavelet time-frequency transformation and spectral subtraction
algorithms for tool wear estimation. Mart’ınez-Arellano et al. [33] built a CNN model with time series
imaging technique to transform the input raw signals. Sun et al. [34] designed an LSTM network to
predict multiple flank wear values using raw signals of cutting force, vibration and acoustic emission.
Zhao et al. [35] used convolutional bi-directional LSTM networks for tool condition monitoring in
milling process.

From the above, most existing deep learning methods use raw signals without feature pre-selection
and hand-design to maximize the merits of deep learning. In the actual machining process, cutting
conditions are strongly time-varying, especially for the milling of parts with complex geometry, of which
the allowance and cutting depth drastically change along the whole tool path [36]. In most cases,
in the actual machining environment, only a few types of monitoring signals are possible to acquire,
and the input features from the signals are probably highly correlated, leading to low prediction
accuracy and poor generalization ability in time-varying cutting conditions. Besides, the model based
on the raw signal as input has weak interpretability and it is difficult to analyze the source of error.

To solve this problem, a tool wear monitoring method for complex part milling based on
deep learning is proposed in this paper. Compared with the existing approaches, the features are
pre-selected with cutting force model and wavelet packet decomposition. The cutting depth, cutting
forces, cutting force coefficients and the energy of the cutting vibration are selected as the input
parameters and the output is the flank wear. Then, a deep autoencoder is employed to retract the
highly correlated features from the pre-selected features, followed by a deep neural network to predict
the wear value. The dataset for training and testing of the deep learning model is obtained with
a carefully designed varying depth milling experiment. The testing results prove the effectiveness of
the proposed method.

The remainder of this paper is organized as follows. The proposed monitoring method based on
deep learning is introduced in Section 2. The experiment is conducted in Section 3. The application and
results of the proposed method are shown and discussed in Section 4. The conclusions are summarized
in Section 5.

2. Method

2.1. Overall Monitoring Method

Tool wear monitoring usually uses force, vibration, acoustic emission, current, power and
temperature signals. In this study, to accord with the situation of few sensors in real machining
environment, cutting force is selected as the single signal used for tool wear monitoring. In complex
part milling, the cutting depth usually varies with the profile of the part. In this case, the cutting force
and stability are time-varying, and it is difficult to design features for accurate tool wear estimation.
To address this problem, a feature extractor based on pre-selection and deep learning is developed.
The hand-designed features from the cutting force signal are further extracted with a deep autoencoder
and then input to the deep multi-layer perceptron to estimate the tool wear value. The framework of
the proposed tool wear monitoring method is illustrated in Figure 1.

2.2. Feature Pre-Selection

The features are pre-selected from the cutting force signals as the input of the deep learning,
including nine features, i.e., the radial cutting depth, the magnitudes of two cutting force components
in the tangential and axial direction, four cutting force coefficients and the two cutting vibration
features in the tangential and axial direction.
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Figure 1. Framework of tool wear monitoring method for complex part milling based on deep learning.

2.2.1. Cutting Force Features

Cutting force is the most sensitive quantity reflecting the changes in tool wear. The magnitudes of
cutting forces are selected as the features for tool wear monitoring. Cutting force coefficients can also
be used as the cutting condition independent features for tool wear monitoring in complex part milling.
Thus, the cutting force coefficients are also selected as the features.

The cutting forces in the milling process are illustrated in Figure 2. The cutting force model can be
expressed as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ft(φ) = Ktcbh(φ) + Kteb
Fr(φ) = Krcbh(φ) + Kreb
Fa(φ) = Kacbh(φ) + Kaeb

(1)

where Ft, Fr and Fa are the tangential, radial and axial cutting force, Ktc, Krc and Kac are the cutting
force coefficients contributed by the shearing action in tangential, radial and axial directions, Kte, Kre

and Kac are the edge constants, φ is the instantaneous angle of immersion, b is the edge contact length,
h is uncut chip thickness

h = fz sinφ (2)

where fz is feedrate per tooth. According to Equations (1) and (2), the cutting force has a linear
relationship with the uncut chip thickness h. When the spindle speed and feedrate are fixed, the uncut
chip thickness h changes with the sine of the instantaneous angle of immersion φ. The linear function
can be rewritten as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ft/b = Ktc fz · sinφ+ Kte

Fr/b = Krc fz · sinφ+ Kre

Fa/b = Kac fz · sinφ+ Kae

(3)

As per Equation (3), the cutting force coefficients can be calibrated by linear regression of the
cutting force value. Let the slope and intercept of the linear function after linear fitting be Pi and Qi,
respectively, the cutting force coefficients can be obtained as
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{
Kic = Pi/ fz

Kie = Qi
(4)

In complex part milling, the part is usually cut layer by layer in the axial direction. The tangential
and radial force are varied significantly compared with the axial cutting force. Hence, in this study
the average tangential and radial cutting forces Ft, Fr, and the tangential and radial cutting force
coefficients Ktc, Krc, Kte, Kre are selected as the input features.

Figure 2. Interaction of tool and workpiece in milling process.

2.2.2. Cutting Vibration Features

Cutting vibration has high correlation with tool wear. In this study, the cutting vibration features
are extracted from cutting force signals for tool wear monitoring. To this end, a three-layer wavelet
packet decomposition is used to decompose the cutting force fluctuation components from the original
cutting force signal, as shown in Figure 3.

Figure 3. Structure of the three-layer wavelet packet decomposition for reconstruction of cutting
force signals.
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Wavelet packet decomposition (WPD) is a time-frequency analysis method. In WPD, the scale
function of a standard orthogonalizationψ(x) is used, and with two scale difference recursive Equations,
the orthogonal wavelet packet is generated as{

w2n(x) =
√

2
∑

k=Z hkwn(2x− k)
w2n+1(x) =

√
2
∑

k=Z gkwn(2x− k)
(5)

where w0 = ψ(x), hk, gk are, respectively, a pair of conjugate quadrature filter coefficients derived
from ψ(x). For signal s(t), the discrete orthogonal WPD is defined as the projection coefficient of s(t)
on the orthogonal wavelet packet base, which can be expressed as

Ps(n, j, k) =
〈
s(t), wn, j,k(t)

〉
=

+∞∫
−∞

s(t)
[
2−

j
2wn

(
2− jt− k

)]
dt (6)

where
{
Ps(n, j, k)

}
is the WPD coefficient sequence of s(t) on the orthogonal wavelet packet space Un

j .
By setting a group of different conjugate quadrature filter coefficients of {hk} and

{
gk
}
, the wavelet

packet transform coefficients can be expressed as{
Ps(2n, j, k) =

∑
k=Z hl−2kPs(n, j− 1, l)

Ps(2n + 1, j, k) =
∑

k=Z gl−2kPs(n, j− 1, l)
(7)

Then, the energy distribution of the reconstructed signal in the time-frequency domain is
expressed as

E( j, n) =
∑
k=Z

[Ps(n, j, k)]2 (8)

In this study, the reconstructed force component with WPD caused by vibration is adopted as the
input feature for tool wear monitoring.

2.3. Deep Learning for Tool Wear Monitoring

2.3.1. Structure of the Deep Learning Network

The deep learning network for tool wear monitoring in variable cutting depth milling is shown in
Figure 4. It consists of two parts, a deep autoencoder and a deep multi-layer perceptron. The deep
autoencoder is used to reduce the dimension of the input vectors (the pre-selected features) and learn
the highly correlated features. Then, the following deep multi-layer perceptron is used to learn the
effect of the extracted features on the tool wear and predict the tool wear value.

2.3.2. Deep Autoencoder

The pre-selected features are all obtained from cutting force signals. They are highly coupled and
superfluous for tool wear prediction. This affects the accuracy and generalization ability of the deep
learning model. In this study, the deep autoencoder (DAE) is used to learn the low-dimensional abstract
features from the original features, which have a high correlation with the tool wear. The structure of
the DAE is illustrated in Figure 5. Deep autoencoder is an unsupervised deep learning network for
data dimensional reduction and feature extraction. It has a symmetric structure of multiple layers with
the same input and output data. It consists of an encoder and a decoder. The transformation from
the input layer to the middle hidden layer is called encoding. This is a dimensional reduction
process, which transforms the high-dimensional original data into the low-dimensional space.
The transformation from the middle hidden layer to the output layer is called decoding. This is
the reconstruction process, which is the inverse of the encoder that reconstructs the encoded vector
back to the original input data. In the encoding process, the obtained middle hidden layer reflects
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the essential features of the high-dimensional input data and is the core of the DAE. In this study,
a six-layer DAE is developed with three layers for both the encoder and decoder.

 

Figure 4. Architecture of deep learning network for tool wear prediction combining autoencoder and
multi-layer perceptron.

Figure 5. Symmetrical structure of deep autoencoder consisting of three-layer encoder and
three-layer decoder.

The encoding process can be expressed as

h = fθ(x) = s f (Wx + b) (9)

The decoding process can be expressed as

^
x = gθ′(h) = sg

(
W
′
h + b

′)
(10)
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where x = [x1, x2, · · · , xn]
T is the input vector, h and

^
x = [x̂1, x̂2, · · · , x̂n]

T are the encoded and decoded
vectors, fθ and gθ′ are the encoding and decoding functions, W is the weight matrix from the input
layer to the hidden layer, W

′
is the weight matrix from the hidden layer to the input layer, b is the bias

vector of the hidden layer, b
′

is the bias vector of the output layer, θ is the set of parameters in the
encoding function, θ′ is the set of parameters in the decoding function, s f and sg are the activation
functions of the encoder and decoder, which are both selected as the sigmoid function.

In the training process, to measure the error between the input x and the reconstructed input x
′
,

the squared Euclidean distance is used as the loss function for this regression problem, which can be
expressed as

Loss
(
W, b, W

′
, b
′)
=

n∑
i=1

‖xi − x̂i‖2 (11)

After the DAE has been trained, the encoder (the first three layers) is employed as a feature
extractor in front of the deep learning model.

2.3.3. Deep Multi-Layer Perceptron

The deep multi-layer perceptron is used to predict tool wear with the input of the extracted
features from the DAE. The deep multi-layer perceptron consists of an input layer, a hidden layer and
an output layer. The input layer and hidden layer are followed by a dropout layer. The number of
neurons in each layer is tuned in the training process. The Rectified Linear Unit (ReLU) is used as the
activation function, which can be expressed as

f (x) = max(0, x) (12)

2.3.4. Loss Function

The tool wear prediction is a regression problem. The target of network training is to minimize the
error between the predicted and measured wear values. In this study, the mean squared error (MSE) is
used to evaluate the prediction error, which can be expressed as

MSE =
1
n

n∑
i=1

‖yi − ŷi‖2 (13)

where y = [y1, y2, · · · , yn]
T is the measured output vector which refers to the tool wear value,

^
y = [ŷ1, ŷ2, · · · , ŷn]

T is the predicted output vector, and n is the number of samples.

2.3.5. Regularization

Regularization is an effective technique used to enhance the generalization ability of deep neural
network. The L1 and L2 regularization are generally used regularization methods. This involves adding
the L1 norm or the L2 norm of the weight to the loss function in order to constrain the weight of the
neural network. In this way, the networks with large weight values are abandoned in training process.
In this study, to accord with the MSE loss value, L2 regularization is adopted. Then, the final loss
function of the deep neural network can be expressed as

Loss =
1
n

n∑
i=1

‖yi − ŷi‖2 + λ2 ‖w‖
2 (14)

where ‖w‖ is the L2 norm of the weight vector w, and λ is the regularization parameter.
The regularization parameter is tuned in the training process.

Another regularization approach is Dropout. In the Dropout method, the neurons in the network
are deleted randomly in the training process, as illustrated in Figure 6. This trick can significantly
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reduce the interaction between the feature detectors (the hidden layer nodes). Detector interaction
means that, in a deep network, some detectors only show their effect depending on other detectors.
In this study, the dropout layers are inserted behind the input and hidden layers to diminish overfitting
in training process. The dropout rate is set as 0.2, which means each neuron has a 20% probability of
being deleted in the training process.

Figure 6. Schematic representation of dropout trick in a fully connected network.

3. Experiment

To acquire the training and testing dataset for a deep learning model, the milling experiment is
performed. The experimental setup is shown in Figure 7. The experiment is carried out on a YHVT850Z
three-axis machining center. The work material is GH4169. The up milling is used with a 12 mm
diameter indexable carbide insert tool APMT113PDER-H2. To control random factors in the machining
process, the milling process is performed without a coolant. The cutting force is measured with
a Kistler 9123C rotating dynamometer. The flank wear of the cutting tool was measured with Alicona
InfiniteFocus optical measurement device.

Figure 7. Experimental setup: (a) cutting force online measurement system, (b) layout of cutting tool
and workpiece.

To simulate the actual milling process with time-varying cutting depth, the milling process is
designed with variable radial cutting depth. The tool path is illustrated in Figure 8. A total of 12 cutting
passes are performed. For each pass, the radial cutting depth is from 0.5 to 1.5 mm. With the increase
of cutting length, tool wear is gradually increased. Each cutting pass is divided into 10 segments.
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The cutting process was paused after each segment and the tool wear measurement was performed
offline after each segment was finished. The average cutting forces in each segment are recorded as the
input features of tool wear monitoring. The cutting parameters are listed in Table 1.

Figure 8. Tool path of varying depth milling: (a) tool path design, (b) tool path, (c) cutting
process simulation.
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Table 1. Cutting parameters in milling experiment.

Cutting Parameters Setting Values

Spindle speed 1200 rev/min
Feedrate 0.05 mm/rev

Axial cutting depth 2 mm
Radial cutting depth 0.5~1.5 mm

4. Results and Discussion

4.1. Features Extracted from Cutting Force Signals

The raw cutting force signal in a single segment is shown in Figure 9. This shows that the
magnitude of the force is increased with the cutting depth. The average cutting force and the cutting
force coefficients are selected as the input cutting force features of the deep learning model for tool
wear monitoring. The average value of the cutting force in each segment are calculated and used
as the input features. Cutting force coefficients are calibrated by applying linear regression as per
Equations (3) and (4).

Figure 9. Raw signal of cutting force in a single segment.

By reconstructing the cutting force signal with the WPD, the cutting force components caused by
cutting vibration are obtained. The features related to tool wear are extracted from these two kinds of
signals. With the three-layer WPD, the cutting force signals in the 0~1.5 KHZ are decomposed into
eight frequency bands. By using 8 db wavelet packet decomposition, the width of each frequency band
is 150 Hz. Taking the cutting force signal in three cycles as an example, the reconstructed signals in
each band after WPD are shown in Figure 10.

From Figure 10, the reconstructed signals in different frequency band can be analyzed intuitively.
According to the cutting force model Equation (1), the signal in the 0~150 Hz frequency band is related
to the static cutting force component; the other signal in higher frequency band can be regarded as the
dynamic component caused by cutting vibration and noise. From the results of WPD, the tangential
force signal in 150~300 Hz is related to cutting vibration. The reconstructed force is denoted as Vt.
The radial force signal in 450~600 Hz is related to cutting vibration. The reconstructed force is denoted
as Vr. These two parameters are selected as the input cutting vibration features of the deep learning
model for tool wear monitoring.
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Figure 10. Reconstructed cutting force signals in each frequency band with wavelet packet decomposition.

4.2. Training and Validation of Deep Neural Network

After the feature pre-selection and measurement shown above, the dataset for deep learning is
shown in Appendix A. There are a total of 120 samples (acquired from 10 segments in 12 cutting passes).
The Keras deep learning library is employed with Tensorflow as the back-end to implement the proposed
deep learning networks. The dataset is randomly split into 80% training set (96 samples) and 20%
testing set (24 samples). Before training, all the input parameters are normalized. Then, the grid search
technique is employed to select the optimal hyper-parameters, including epochs, neuron numbers,
optimizer, learning rate and regularization parameter. The obtained optimal hyper-parameters are
given in Table 2.

With the proposed deep learning model in Section 2, with the above optimal hyper-parameters,
the training process is carried out. In the training process, four-fold validation is used, with 24 samples
in each fold. The mean value of the mean absolute error in all the fold is recorded as the training error.

The training curve is shown in Figure 11. The final mean absolute error after 1000 epochs is
34.93 μm, and the corresponding R2 value is 0.9826. This proves the accuracy of the trained deep
learning model.
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Table 2. Optimal hyper-parameters of deep neural network obtained by grid search.

Hyper-Parameters Setting Values

Epochs 1000
Neuron number of the input layer 50

Neuron number of the hidden layer 10
Optimizer RMSprop

Learning rate 0.001
Regularization parameter 0.001

Figure 11. Mean absolute error of proposed deep learning model in training process.

The mean absolute error with the trained network in the four folds of the validation set is shown
in Figure 12. The prediction error of tool wear value is less than 37 μm, and it is enough to monitor
the tool wear state in the real machining process. This proves the effectiveness of the trained deep
learning model.

Figure 12. Mean absolute error in four-fold validation set.
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4.3. Testing of Deep Neural Network

The trained deep learning model is used for tool wear prediction on the testing set. The average
error in percentage is used to evaluate the performance of the trained model, which is calculated as

error =
1
m

m∑
i=1

∣∣∣VB∗i −VBi
∣∣∣

VBi
(15)

where VB∗i is the predicted tool wear value, VBi is the measured tool wear value, and m is the total
number of the testing samples.

The testing result is shown in Figure 13. The average error of the 24 testing samples is 8.2%,
as per Equation (15). In the testing samples, the maximum relative error occurs in the test NO.13,
with 64.8 μm larger than the measured value. In this case, the new tool has just begun to cut, with
the measured flank wear of 25.7 μm. Besides, the maximum absolute error occurs in the test NO.15,
with 82.3 μm less than the measured value. In this case, the cutting edge is seriously worn and the
measured flank wear reaches 402.9 μm, far beyond the ISO tool wear criterion of 300 μm. Except for the
two extreme cases shown above, where the actual tool wear value is too small or too large, the trained
deep learning model predicts well for all the testing samples. For the cases where the tool wear is too
small or too large, the model has a larger prediction error because the training set obtained from the
experiment covers few samples of the tool wear with such extreme values, and thus the rules learnt
in the model under these situations are somewhat under-fitting. The proposed deep learning model
can be more accurate with more varied training data through additional experiments. This will be
investigated in future research work. In this study, the testing result shows that the proposed model
works well in most cases and this proves the generalization ability of the trained deep learning model.

Figure 13. Testing result in 24 samples of the trained deep learning model.

Then, the radial basis function neural network (RBF NN) is implemented on the same dataset as
the baseline to compare it with the performance of the proposed method. It turns out that the average
error of RBF NN is 13.8%. Compared with the RBF NN, the proposed method shows higher accuracy
in the tool wear prediction of varying cutting depth milling.
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5. Conclusions

In this paper, a monitoring method based on deep learning is presented to give a solution to the
feature extraction and accurate prediction of tool wear in complex part milling. A deep neural network
is developed to estimate tool wear with the features pre-selected based on the cutting force model and
wavelet packet decomposition, and further extracted using a deep autoencoder. The conclusions of this
paper are summarized as: 1) the feature pre-selection based on cutting force model and wavelet packet
decomposition and extraction coupled with a deep autoencoder is able to learn the highly correlated
features for tool wear monitoring from single cutting force signals; 2) the proposed deep leaning model
with the optimal settings has high accuracy for predicting tool wear; 3) the proposed deep learning
method is proved to have higher accuracy than radial basis function neural network in varying cutting
depth milling.
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Appendix A

Table A1. Experimental data in varying cutting depth milling.

Ft

(n)
Fr

(n)
V t

(n)
Vr

(n)
Ktc

(MPa)
Kte

(n/mm)
Krc

(MPa)
Kre

(n/mm)
ap

(MPa)
VB

(μm)

1459.1 298.1 1302.7 274.6 −1349.8 342 761.7 61 0.55 4.4381
1602.3 223.4 1413.4 330.1 −1238.5 176 649 73 0.65 13.7772
1425.2 269 1727.5 308.6 −973.21 237 606.69 29 0.75 25.6596
1683.9 209.7 1620.1 321.9 −1057.7 433 681.5 2 0.85 38.4103
1744.1 225.8 1629.4 301.7 −1054.1 294 687.3 80 0.95 50.89
1772.3 207.7 1660.3 232.4 −880.45 −156 730.55 −69 1.05 62.374
1672.8 177.4 1909.3 237.8 −889.18 −6 603.24 −38 1.15 72.4515
2003.3 168 1756.2 279.9 −878.06 250 642.87 13 1.25 80.9435
2096.7 380.3 1840.3 200.1 −844 357 618 −40 1.35 87.8359
2155.3 283 1947.2 289 −890.49 264 571.82 43 1.45 93.2272
1466.6 264.8 1469.2 283.9 −1220.2 345 1055.7 75 0.55 97.2865
1551.2 302.1 1552.2 338.8 −1350.9 260 823.4 150 0.65 100.2214
1634.5 316.1 1584.1 321.7 −1128.1 289 760.1 125 0.75 102.2543
1735.4 196.5 1601.5 326.3 −1138.4 447 742.2 54 0.85 103.6044
1719.9 243.2 1692.4 311 −1068.6 334 706.3 152 0.95 104.4762
1743.4 228.6 1740.2 235.3 −936.78 230 774.3 −31 1.05 105.0513
1831.6 184.2 1832.2 243.7 −952.43 −118 610.3 −46 1.15 105.4842
2014.8 226.2 1829.3 293.4 −951.5 288 647.7 27 1.25 105.9005
1981.3 245.4 1973.2 269 −919.93 372 630.93 73 1.35 106.3973
2208.2 262 2096.9 295.3 −979.94 243 641.1 78 1.45 107.0448
1397.1 287.6 1388.7 353.2 −1274.2 780 985.7 114 0.55 107.8888
1611.9 340.1 1616.2 380.5 −1314.4 570 856.4 168 0.65 108.9541
1670.2 331 1731.8 346 −1196.3 348 815.2 134 0.75 110.2482
1751.3 242 1788 321.5 −1264.7 511 757.6 155 0.85 111.7645
1865.5 262.9 1827 322.4 −1137.6 472 716.2 138 0.95 113.486
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Table A1. Cont.

Ft

(n)
Fr

(n)
V t

(n)
Vr

(n)
Ktc

(MPa)
Kte

(n/mm)
Krc

(MPa)
Kre

(n/mm)
ap

(MPa)
VB

(μm)

1867.6 267.5 1872.3 248.3 −1078.4 238 798.77 42 1.05 115.3889
1939.7 241.1 1978.7 276.1 −1104 204 646.73 35 1.15 117.4449
2055.8 337 2029.5 325.5 −1006.1 375 719.5 8 1.25 119.6239
2143.7 359 2306.2 390 −936.07 460 679.18 79 1.35 121.8962
2332.4 436.5 2429.1 464 −1000.4 336 670.88 129 1.45 124.2341
1478.4 380.2 1348.3 208.2 −1459.5 755 975.6 181 0.55 126.613
1774.5 378.7 1751.6 437.8 −1335 716 862.7 246 0.65 129.0121
1881.1 530.2 1918.5 544.6 −1362.7 562 827.4 199 0.75 131.415
2066.7 414.5 2093.3 519.6 −1346.9 754 801 187 0.85 133.8098
2004.8 413.3 1987.2 430.9 −1176.8 555 855.9 171 0.95 136.1888
2046.6 313.4 2003.2 263 −1142.4 342 809.5 88 1.05 138.5482
2094.5 289.4 2025.4 301.7 −1094.2 287 676.42 122 1.15 140.8876
2172.1 363 2302.2 384.7 −1031 378 730.4 25 1.25 143.2091
2262.7 440.5 2519.8 469.9 −904.63 374 791.85 177 1.35 145.5169
2497.5 558 2714.6 500.4 −1042.3 542 697.24 135 1.45 147.8161
1773.8 478.4 1560.1 462.6 −1118 −58 921.5 128 0.55 150.1124
1603.1 335.1 1714.2 384.8 −1273.9 305 622.4 240 0.65 152.411
1709.8 388.8 1758.7 419.4 −1190 333 572.7 250 0.75 154.7163
1806 331.6 1891.5 332.8 −1076.9 510 372.6 140 0.85 157.031

1842.8 293.9 1919.2 313.4 −913.35 147 351.8 190 0.95 159.3561
1902.8 342.9 2107.3 348.3 −946.33 268 155.59 289 1.05 161.6902
1952 368.9 2086.9 322.5 −990.2 246 263.8 202 1.15 164.0297
2018 260 2131.5 255.3 −829.85 −137 219.1 264 1.25 166.3684

2026.2 280.2 2192.9 315.1 −737.38 −249 297.1 246 1.35 168.698
2084.3 279.7 2075.5 206.4 −839.1 153 242.72 257 1.45 171.0079
1893.9 324.5 1768 475.8 −1134 63 1081.3 193 0.55 173.2859
1828.2 328.7 2010.7 404.2 −1304.5 407 780.5 244 0.65 175.5185
1889.2 397.5 2117.9 466.6 −1169.6 340 661 371 0.75 177.6913
2027.6 370.6 2159.4 410.8 −1186.2 553 352.2 257 0.85 179.7893
2007.6 325.6 2204.9 316.7 −1128.9 351 427.99 202 0.95 181.7983
2050.7 349.2 2272 396.9 −887.75 −26 406.65 302 1.05 183.7045
2142.9 196.3 2394.2 283.9 −1012.2 314 441.4 311 1.15 185.4958
2159.9 280.9 2494.5 313.3 −969.15 −35 348.69 369 1.25 187.1618
2188.6 312.7 2569.1 386.4 −888.6 55 396.01 394 1.35 188.6949
2305.8 291.3 2684 289.1 −911.61 391 310.12 366 1.45 190.09
1939 362.9 1843.1 481.2 −1673.4 681 1222.5 230 0.55 191.3455

1873.3 402.8 2098.1 460.2 −1272.2 624 991.1 334 0.65 192.4632
2000.5 472.5 2290.4 527.1 −1246.8 590 980.6 375 0.75 193.4483
1984.4 468 2322.7 399.9 −1197.3 411 1046.1 218 0.85 194.3099
2158.9 323.7 2368.6 338.3 −1120.1 490 938.9 219 0.95 195.0602
2153.3 369.4 2545.5 437.2 −1151.5 888 982 373 1.05 195.7152
2236.5 436.4 2458.5 372 −1048.5 360 913.1 315 1.15 196.2933
2286.6 276.3 2642.1 343.7 −1006.6 87 946.3 420 1.25 196.8157
2315.7 400.3 2752.6 421.1 −891.5 244 921.83 459 1.35 197.3056
2242.5 403 2722.2 403 −993.13 516 959.55 383 1.45 197.7874
1908 572.1 2238.1 523.5 −1654.1 818 1308.1 407 0.55 198.2861

1885.1 444.7 2268.6 595.1 −1389 798 1277.8 422 0.65 198.8267
1991.9 517.5 2353.8 657.6 −1379.1 640 1176.9 457 0.75 199.4334
2013.9 571.2 2434 469.2 −1367.8 912 1147.2 362 0.85 200.1284
2100.7 415.4 2582.5 537.4 −1315.1 1079 1099.8 347 0.95 200.9318
2075.2 379.4 2603.8 430.7 −1220.3 957 1136.4 395 1.05 201.8606
2196.2 460.6 2715.2 526.7 −1147.7 561 1083.2 433 1.15 202.9279
2033.4 388.4 2952.1 532.9 −1025.5 244 1056.3 484 1.25 204.1425
2242.2 488.3 2869.1 433.3 −1201.8 882 1089.5 489 1.35 205.5085
2332.3 468.7 2958.7 503.8 −916.35 187 994.5 480 1.45 207.0249
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Table A1. Cont.

Ft

(n)
Fr

(n)
V t

(n)
Vr

(n)
Ktc

(MPa)
Kte

(n/mm)
Krc

(MPa)
Kre

(n/mm)
ap

(MPa)
VB

(μm)

1867.7 333 2448.9 419.6 −1150.6 −144 1602 −83 0.55 208.6857
2062 330.7 2494.8 436.2 −1425.8 428 996.3 151 0.65 210.4795
2102 372 2609.9 452.3 −1264.1 278 1278.5 −399 0.75 212.3903

2208.2 401.5 2679.6 426.9 −1271.1 257 1412.5 21 0.85 214.3974
2234.8 424.5 2852.4 361.2 −947.3 442 1307.5 −251 0.95 216.4763
2310.1 281.8 2890.6 367.3 −1169.4 468 1250.1 −352 1.05 218.5993
2315.1 281.9 3005.4 354.5 −1100 481 1113.5 −34 1.15 220.7367
2477.8 299.7 3033.9 380 −1138.1 291 1164.8 −391 1.25 222.8577
2509.5 374.8 3144.9 446.4 −1068.8 120 1064.4 271 1.35 224.932
2315.8 371.7 3273.9 472 −844.1 100 1029.1 205 1.45 226.9309
2097.7 462.9 2633.9 478.2 −1524.8 161 1859 −515 0.55 228.8288
2144.6 376.8 2726.3 441.3 −1481.9 595 1566.8 225 0.65 230.605
2227 457.6 2820.1 521 −1393.5 223 1595.1 −268 0.75 232.245

2363.9 578.2 3011.5 432.5 −1355.6 276 1588.5 142 0.85 233.7418
2363.6 414.3 3061.6 425.4 −1059.3 525 1305.2 362 0.95 235.0976
2343.8 330.8 3220.2 375.3 −1182.6 504 1332.5 −11 1.05 236.3249
2468.6 370 3196.8 391 −1075.4 610 1328.8 146 1.15 237.447
2520.5 326.5 3389.9 444 −1259.4 435 1301.3 −242 1.25 238.4994
2500.6 291.2 3406.1 365 −1116.1 260 1284.5 197 1.35 239.5294
2536.6 451.7 3536.2 556.4 −1113.9 288 1257.9 −382 1.45 240.5966
2217.6 422 2809.5 477.3 −1355.7 894 1870.8 −191 0.55 241.7719
2315.8 482.7 2984.9 521.1 −1658.2 631 1895.2 475 0.65 243.1369
2300.7 531.4 3048 529.6 −1553 782 1589.9 297 0.75 244.7824
2418.9 627.2 3114.5 549.7 −1408.9 565 1681.8 178 0.85 246.8062
2407.4 689.2 3226.6 441.9 −1100.1 659 1605.6 573 0.95 249.3112
2575.1 418.9 3357.7 398.5 −1216.2 595 1512 345 1.05 252.4023
2469.1 474.1 3659.3 526.2 −1113.2 728 1360.8 657 1.15 256.1839
2551 343.3 3746.9 484.2 −1216.2 486 1354.6 624 1.25 260.7562

2627.1 400.8 3868 482.8 −1167.4 430 1358.7 438 1.35 266.2127
2598.8 349.2 3856.5 531.2 −1145.6 601 1212.1 553 1.45 272.6374
2221.1 598.5 2204.8 691.2 −1885.5 945 2161.7 −622 0.55 280.1025
2267.4 500.7 3340.9 617.1 −1592.5 1114 1972.7 626 0.65 288.668
2386.6 535.2 3390.2 570.9 −1646.5 1060 1646.8 414 0.75 298.3815
2597.7 796.9 3717.5 659.3 −1444.7 877 1691.9 527 0.85 309.2817
2563.2 707.3 3919.5 583.2 −1197.9 1233 1688.8 893 0.95 321.4035
2662.1 696.1 4051 621.3 −1374.5 678 1574.9 485 1.05 334.7875
2711.7 689.5 4156.5 513.8 −1266.3 954 1514.1 943 1.15 349.4937
2742.9 543.2 4333.8 640.3 −1348.7 526 1563.1 875 1.25 365.6212
2914.2 527.1 4622.7 492.5 −1448.2 518 1359.9 785 1.35 383.3351
2836.4 527.7 4773.4 674.9 −1157.2 665 1255.5 634 1.45 402.9015
1459.1 298.1 1302.7 274.6 −1349.8 342 761.7 61 0.55 4.4381
1602.3 223.4 1413.4 330.1 −1238.5 176 649 73 0.65 13.7772
1425.2 269 1727.5 308.6 −973.21 237 606.69 29 0.75 25.6596
1683.9 209.7 1620.1 321.9 −1057.7 433 681.5 2 0.85 38.4103
1744.1 225.8 1629.4 301.7 −1054.1 294 687.3 80 0.95 50.89
1772.3 207.7 1660.3 232.4 −880.45 −156 730.55 −69 1.05 62.374
1672.8 177.4 1909.3 237.8 −889.18 −6 603.24 −38 1.15 72.4515
2003.3 168 1756.2 279.9 −878.06 250 642.87 13 1.25 80.9435
2096.7 380.3 1840.3 200.1 −844 357 618 −40 1.35 87.8359
2155.3 283 1947.2 289 −890.49 264 571.82 43 1.45 93.2272
1466.6 264.8 1469.2 283.9 −1220.2 345 1055.7 75 0.55 97.2865
1551.2 302.1 1552.2 338.8 −1350.9 260 823.4 150 0.65 100.2214
1634.5 316.1 1584.1 321.7 −1128.1 289 760.1 125 0.75 102.2543
1735.4 196.5 1601.5 326.3 −1138.4 447 742.2 54 0.85 103.6044
1719.9 243.2 1692.4 311 −1068.6 334 706.3 152 0.95 104.4762
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Ft

(n)
Fr

(n)
V t

(n)
Vr

(n)
Ktc

(MPa)
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(n/mm)
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(MPa)
Kre

(n/mm)
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(MPa)
VB

(μm)

1743.4 228.6 1740.2 235.3 −936.78 230 774.3 −31 1.05 105.0513
1831.6 184.2 1832.2 243.7 −952.43 −118 610.3 −46 1.15 105.4842
2014.8 226.2 1829.3 293.4 −951.5 288 647.7 27 1.25 105.9005
1981.3 245.4 1973.2 269 −919.93 372 630.93 73 1.35 106.3973
2208.2 262 2096.9 295.3 −979.94 243 641.1 78 1.45 107.0448
1397.1 287.6 1388.7 353.2 −1274.2 780 985.7 114 0.55 107.8888
1611.9 340.1 1616.2 380.5 −1314.4 570 856.4 168 0.65 108.9541
1670.2 331 1731.8 346 −1196.3 348 815.2 134 0.75 110.2482
1751.3 242 1788 321.5 −1264.7 511 757.6 155 0.85 111.7645
1865.5 262.9 1827 322.4 −1137.6 472 716.2 138 0.95 113.486
1867.6 267.5 1872.3 248.3 −1078.4 238 798.77 42 1.05 115.3889
1939.7 241.1 1978.7 276.1 −1104 204 646.73 35 1.15 117.4449
2055.8 337 2029.5 325.5 −1006.1 375 719.5 8 1.25 119.6239
2143.7 359 2306.2 390 −936.07 460 679.18 79 1.35 121.8962
2332.4 436.5 2429.1 464 −1000.4 336 670.88 129 1.45 124.2341
1478.4 380.2 1348.3 208.2 −1459.5 755 975.6 181 0.55 126.613
1774.5 378.7 1751.6 437.8 −1335 716 862.7 246 0.65 129.0121
1881.1 530.2 1918.5 544.6 −1362.7 562 827.4 199 0.75 131.415
2066.7 414.5 2093.3 519.6 −1346.9 754 801 187 0.85 133.8098
2004.8 413.3 1987.2 430.9 −1176.8 555 855.9 171 0.95 136.1888
2046.6 313.4 2003.2 263 −1142.4 342 809.5 88 1.05 138.5482
2094.5 289.4 2025.4 301.7 −1094.2 287 676.42 122 1.15 140.8876
2172.1 363 2302.2 384.7 −1031 378 730.4 25 1.25 143.2091
2262.7 440.5 2519.8 469.9 −904.63 374 791.85 177 1.35 145.5169
2497.5 558 2714.6 500.4 −1042.3 542 697.24 135 1.45 147.8161
1773.8 478.4 1560.1 462.6 −1118 −58 921.5 128 0.55 150.1124
1603.1 335.1 1714.2 384.8 −1273.9 305 622.4 240 0.65 152.411
1709.8 388.8 1758.7 419.4 −1190 333 572.7 250 0.75 154.7163
1806 331.6 1891.5 332.8 −1076.9 510 372.6 140 0.85 157.031

1842.8 293.9 1919.2 313.4 −913.35 147 351.8 190 0.95 159.3561
1902.8 342.9 2107.3 348.3 −946.33 268 155.59 289 1.05 161.6902
1952 368.9 2086.9 322.5 −990.2 246 263.8 202 1.15 164.0297
2018 260 2131.5 255.3 −829.85 −137 219.1 264 1.25 166.3684
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