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Preface to “Advances in Integrated Energy Systems 
Design, Control and Optimization” 
1. Introduction 

In the face of climate change and resource scarcity, energy supply systems are on the verge of a 
major transformation, which mainly includes the introduction of new components and their 
integration into the existing infrastructures, new network configurations and reliable topologies, 
optimal design and novel operation schemes, and new incentives and business models. This revolution 
is affecting the current paradigm and demanding that energy systems be integrated into multi-carrier 
energy hubs [1]. It is greatly increasing the interactions between today’s energy systems at various 
scales (ranging from the multinational, national, community scales down to the building level) and 
future intelligent energy systems, which are able to incorporate an increasing amount of often fluctuating, 
renewable energy sources (RESs). It also increases the need for the integration of energy storage 
options into the energy mix, not only to reduce the need for increased peak generation capacity, but also 
to enhance grid reliability and support higher penetration of RESs [2]. Moreover, this transformation is 
accommodating active participation of end-users as responsive prosumers at different scales, which in 
turn helps to reduce energy costs to all consumers, increase reliability of service and mitigate carbon 
footprints. However, this plan of action necessitates regulatory frameworks, strategic incentives and 
business models for efficient deployment.  

2. Energy Systems Design, Control and Optimization  

To cover the above-mentioned promising and dynamic areas of research and development, this 
Special Issue was launched to allow the gathering of contributions in design, control and optimization 
of integrated energy systems. In total, 23 papers were submitted to this Special Issue, nine of which 
were selected for publication which denotes an acceptance rate of 39%. The accepted articles in this 
Special Issue cover a variety of topics, ranging from operation and control of small-scale electrical 
networks to the complex design and planning of energy systems. 

In the first paper, a novel control scheme is proposed by Z. Zhu, J. Sun, and G. Qi for a 
frequency-controlled power grid not only to improve the frequency regulation of the power grid as 
well as the input-to-state stability, but also to minimize the communication cost within the study 
system [3]. The second paper, authored by J.-W. Choi and M.-K. Kim, studies the voltage stability of a 
renewable-based power system (mainly driven by wind turbines) using Monte Carlo simulations 
(MCS) and probabilistic security-constrained optimal power flow techniques [4]. In this paper, it is also 
demonstrated that as the wind energy penetration into a grid environment increases, the system 
voltage stability is more affected by the wind turbines due to the stochastic wind behavior. As a 
complement to the previous study, M. Vahedipour-Dahraie, H. Rashidizaheh-Kermani, H. Najafi, A. 
Anvari-Moghaddam, and J. Guerrero show how optimal scheduling and dispatch of electric vehicles 
(EVs) could enhance the system performance in terms of stability, considering high penetration of 
renewables in a typical network [5]. This could also be a good solution to the frequency instability  
(or weak stability) problem in islanded microgrids where there is low inertia for frequency 
compensation. The fourth paper in this Special Issue studies the important role of end-use consumers 
in optimal energy systems scheduling [6]. The work, done by M. Vahedipour-Dahraie, H. Najafi, A. 
Anvari-Moghaddam, and J. Guerrero, demonstrates the positive effect of various time-based rate (TBR) 
demand response (DR) programs on stochastic day-ahead energy and reserve scheduling. This is 
deemed to be a new trend in energy systems optimization where consumers change their consumption 
behavior in response to the changes in energy market prices or market incentives. Focusing on energy-
related production and consumption units management, the fifth paper authored by J. Wang, K. Fang, 
J. Dai, Y. Yang, and Y. Zhou reflects on co-optimal distributed generation and load management 
considering task continuity constraints [7]. Moreover, this paper shows how energy management 
solutions can effectively be integrated into industrial applications to accurately perceive and access 



 

viii 

 

users’ needs in an economic way. The focus of the next paper is to optimally size and allocate energy 
storage systems (ESSs) in an integrated energy system in a cost-effective and emission-aware fashion [8]. 
In this work, H. Lan, H. Yin, S. Wen, Y.-Y. Hong, D. Yu, and L. Zhang perform different case studies to 
clearly demonstrate that optimal battery sitting and sizing could ensure secure and economic 
integration of wind turbines into a power system to minimize the total operation cost and improve 
voltage profiles. As a real-world example, K. Pambour, B. Cakir Erdener, R. Bolado-Lavin, and G. 
Dijkema propose a practical simulation framework for analyzing security of supply in integrated gas 
and electric power systems [9]. This work, which is developed within the framework of the European 
Program for Critical Infrastructure Protection (EPCIP) of the European Commission, clearly paves the 
way for close collaboration and coordination between gas and power transmission system operators 
(TSOs) from an integrated energy system perspective. 

Resource management in energy systems under faulty conditions is another research challenge 
that needs to be addressed suitably. In this Special Issue, B. Goo, S. Jung, and J. Hur tackle this timely 
topic by proposing a fast restoration procedure for power systems affected by blackouts [10]. They 
initially outline an optimal selection mechanism for black start units using generator characteristic data 
and advanced algorithms considering minimum restoration time as an objective. Afterwards, they 
verify the effectiveness and applicability of the proposed method by an empirical system in the eastern 
regions of South Korea. Last but not least, U. Tamrakar, D. Shrestha, M. Maharjan, B. Bhattarai, T. Hansen, 
and R. Tonkoski review the recent literature on the control of modern power systems (which are on the 
verge of transition from synchronous machine-based systems towards inverter-dominated systems) 
and describe the current state-of-the-art in such virtual inertia systems under high renewable energy 
penetration [11]. They also suggest potential research directions and challenges in this subject area.  

3. Energy Systems of the Future 

The trend in energy systems integration for sustainable development has been increasing over 
the past few years and becoming the point of interest for many researchers and scientists worldwide. 
As more and more conventional and centralized energy sources that used to ensure system stability are 
removed from the generation mix or shut down, distributed generation (DG) units together with 
energy storage options may form micro energy grids (MEG) and provide a solution. Such MEGs have a 
variety of micro-sources (both in the form of conventional and renewable sources) that are closely 
networked with one another and could play the role of virtual control units over larger areas. These 
integrated energy systems also have the potential to meet the high demands both economically and reliably. 

In the future, we will have to integrate energy-related devices and interfaces (such as inverter-
interfaced distributed energy sources) more intensely into energy systems not only to ensure secure 
optimal operation and control in normal mode, but also to maintain stability when a fault occurs. The 
next-generation virtual control units are also standardized and more affordable because they are less 
specific in their demands. 

Josep M. Guerrero and Amjad Anvari-Moghaddam 
Special Issue Editors 
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Abstract: In control systems of power grids, conveying observations to controllers and obtaining
control outputs depend greatly on communication and computation resources. Particularly for
large-scale systems, the costs of computation and communication (cyber costs) should not be
neglected. This paper proposes a self-triggered frequency control system for a power grid to reduce
communication costs. An equation for obtaining the triggering time is derived, and an approximation
method is proposed to reduce the computation cost of triggering time. In addition, the communication
cost of frequency triggering is measured quantitatively and proportionally. The defined cost function
considers both physical cost (electricity transmission cost) and communication cost (control signal
transmission cost). The upper bound of cost is estimated. According to the estimated upper bound of
cost, parameters of the controller are investigated by using the proposed optimization algorithm to
guarantee the high performance of the system. Finally, the proposed self-triggered power system is
simulated to verify its efficiency and effectiveness.

Keywords: frequency regulation; self-triggered control; input to state stable; communication cost

1. Introduction

Control systems have been widely used in power grids, and large-scale control systems
continually increase the proportion of usage. Due to limited computation and communication resources,
the traditional electric power network seriously affects the performance of large-scale control systems.
The public shared networks for control signal communication, such as the Internet, have more
powerful computation and communication resources which are used to increase the efficiency of
current large-scale control systems. The scheduling of computation capacity and communication
bandwidth is the key to efficiently utilizing public shared networks. Event-triggered control (ETC)
systems are used to reduce the costs of computation and energy resources when the electricity network
is in a steady state. They avoid the limited bandwidth of the communication network occupied by
redundant sampled and fused signals [1–6]. The self-triggered control (STC) method [7,8] as one of the
control methods can effectively reduce communication costs and power costs of sensor monitoring in
the control system. An STC method is applicable to solve the optimization of scheduling computation
and communication resources, especially in networked control systems (NCSs). The control task is
triggered when STC is at the pre-computed updating time.

Appl. Sci. 2017, 7, 688 1 www.mdpi.com/journal/applsci
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Since more and more systems have become increasingly networked, wireless, and spatially
distributed, event-based systems are proposed to adopt a model of calls for resources only if necessary,
and to utilize communication bandwidth, computation capability, and energy budget efficiently [9–12].
The proposed control-based model allowed each control task to trigger itself to achieve the optimization
of computing resources and control performance. The execution time of next instance was scheduled by
the executing instance. As a function of the utilization factor and control performance, the next instance
execution point was dynamically obtained in time [13–17]. The dynamic selection of an appropriate
threshold was investigated for basic send-on-delta (SoD) sampling strategies. The error reduction
principle was formulated and proved to reduce the signal tracking-error in an available transmission
rate [18,19]. A new event-based control strategy was proposed and applied to differential wheeled
robots. Compared with the classical discrete–time strategy, the proposed event-based control strategy
not only reached the same accuracy, but also obtained a higher efficiency in communication resource
usage [20–23].

In power system frequency regulation research, Shashi Kant Pandey [24] used linear matrix
inequalities (LMI) with parameters tuned by particle swarm optimization (PSO). Praghnesh Bhatt [25]
analyzed the dynamic participation of doubly-fed induction generators and coordinated control
for frequency regulation of an interconnected two-area power system in a restructured competitive
electricity market. Soumya R. Mohanty [26] presented a study on frequency regulation in an isolated
hybrid distributed generation (DG) system with the robust H-infinite loop shaping controller. Although
much frequency regulation research has been done in order to achieve better physical performances,
cyber costs also need to be taken into account. Considering both physical performance and the cyber
cost of power system, event-driven schemes are usually used. Dai [27] proposed a methodology for
real-time prediction that required event-driven load shedding (ELS) against severe contingency events.
Jun [28] presented a novel emergency damping control (EDC) to suppress inter-area oscillations
occurring as anticipated low-probability cases in power system operations. The proposed EDC
combined an event-driven scheme and a response-based control strategy. Yan [29] elaborated a new
approach based on parallel-differential evolution (P-DE) to efficiently and globally optimize ELS
against voltage collapse.

However, continuously monitoring plants using event-driven schemes takes many cyber resources.
In contrast with the EDC approach, STC does not generally require dedicated hardware to continuously
monitor the plant state and check the defined stability conditions [30–33]. Therefore, STC can be
considered in power grid frequency regulation to reduce communication costs and make the utilization
of communication resources more efficient.

In this paper, we propose a novel self-triggered control scheme employed in a frequency-controlled
power grid. A power grid consists of many subsystems that interact with each other through
communication networks and power flow. The proposed self-triggered controller calculates the
triggering period with each state point to ensure the system’s exponential stability, input-to-state
stability, and low communication cost. In the proposed model, the triggering interval is a function
of system state and triggering rate is proportional to communication cost. This paper has three main
contributions as follows:

• A self-triggered control scheme is applied to the frequency regulation of the power grid;
• An online optimization method is used to extend the triggering period for reducing communication

cost; and
• Communication cost and parameters of control system for power grid are estimated and

optimized, so that the cost of control system can be guaranteed under a required level.

This paper is organized as follows. Section 2 introduces the model of the power system and
the basic concept used in this paper. Section 3 presents the proposed self-triggered control scheme
in which the exponential stability theory with varying sampling rate, control performance synthesis
algorithm for the control system under the consideration of communication, physical cost and online

2
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optimization for searching the maximal triggering period are elaborated. A simulation of frequency
regulation with a self-triggered control scheme is illustrated in Section 4. Conclusions are given in
Section 5.

2. System Model of Power Grid

2.1. Dynamic Model of Power Grid

The electric power network consists of n interconnected power subsystems as shown in Figure 1.
It assumes that all power subsystems are same. Each power subsystem consists of a distributed energy
source and load, including gas turbine generators, wind power generations and battery arrays [34,35] in
the system. These power generating machines supply electric power to meet the demands. Gas turbine,
wind power, and battery power output are controllable.

Figure 1. Power grid structure.

Mass loads are considered in the dynamic model of the power grid. Battery electric storage
systems and wind power systems, which are connected to the power net by power electronic interface,
are controllable. In mathematics, the frequency control method is equivalent to the tie-line bias
control (TBC) method as a frequency control in electrical power systems in consideration of tie-line
frequency [36–39]. For each subsystem, the block diagram is shown in Figure 2. The meaning of each
parameter in the block diagram is given as follows.

• Ki and Bi are TBC gain and frequency bias, respectively.
• Tgi and Tdi are the governor and gas turbine constant, respectively.
• Mi and D are the inertia and damping constant, respectively.
• Rgi and Tij are the regulation and synchronizing constant, respectively.
• Δxgi is a governor input of a gas turbine generator.

There are six power notations as follows:

• ΔPgi is an output of the gas turbine generator.
• ΔPWi is an output of wind power generation.
• ΔPLi is the load fluctuation except controllable load.
• ΔPBi is an output of the battery electric storage system.
• ΔPji and ΔPij is the tie-line power low deviation.
• ΔPij − ΔPji is the output power of area i, which is delivered to area j.
• ΔPi in Equation (1) shows the electric power generation of subsystem i and the supply error

margin of power consumption.

3
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Figure 2. Subsystem structure.

Frequency deviation Δ fi can be calculated by the supply error margin shown in the block diagram.
The power ΔPi for subsystem i is:

ΔPi = ΔPgi + ΔPWi + ΔPBi − ΔPLi + ΔPij − ΔPji (1)

In a mathematical form, for subsystem i, if the set of neighbored subsystem is denoted as Di,
the dynamics of each subsystem can be described by using continuous time–state equation:

ẋi = Aixi + Biui + ∑
j∈Di

Ajixj + Eiwi (2)

Ai =

⎛
⎜⎜⎜⎜⎜⎝

0 −∑j∈Di
Tji 0 0 0

1/Mi −Di/Mi 1/Mi 0 0
0 0 −1/Tdi 1/Tdi 0
0 −1/(TgiRgi) 0 1/Tgi Ki/Tgi
1 −Bi 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1/Mi 1/Mi

0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Aji =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
Tij

Mi ∑h∈Di
Tih

0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, j ∈ Di.
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where x = (ΔPouti, Δ fi, ΔPgi, ΔxgiUARi )
T , and ΔPouti, Δ fi, Δgi, Δxgi, and UARi are output power

deviation, frequency deviation, gas generator output power deviation, governor input of gas turbine
generator, and regional demand for subsystem i, respectively. wi is disturbance of the dynamic system,
which is bounded. The power output of subsystem i is ΔPouti = ∑j∈Di

ΔPij. The tie-line power
flow deviation of i is expressed as Δ ∑j∈Di

Pji = ∑j∈Di
Tij(Δ f jBiΔ fi), when the adjoining area is j.

The regional demand is defined by UARi =
∫

ARidt, where ARi = Δ ∑j∈Di
Pji.

For subsystem i, we assume the L-2 norm of wi is bounded, and ||wi||2 ≤ η. The control input ui
for subsystem i is:

ui = −Kixi − ∑
j∈Di

Ljixj, (3)

where K is the local state feedback gain for control law of Equation (3), −Kixi is the local feedback
component and −∑j∈Di

Ljixj is the control compensation for the neighbors.

2.2. The Self-Triggered Controller

Compared with the distributed control scheme, the advantage of the centralized control scheme in
STC is that it reduces the conservativeness of control system, and further decreases the communication
cost [40,41]. In order to present the self-triggered control scheme, the power system is formulated as
a linear dynamic system in a form of:

ẋ = Ax + Bu + EW (4)

where x = (xi)n×1, 1 ≤ i ≤ n and i ∈ N+; A = (Aij)n×n, Aii = Ai,1 ≤ i, j ≤ n and i, j ∈ N+,
if no connection exits between subsystem i and j, Aij = 0; B = diag(Bi)n×1 and E = diag(Ei)n×1,
1 ≤ i ≤ n and i, j ∈ N+; the control input u = (ui)n×1 = (−Lij)n×n, x = −Kx, Lii = Ki,
1 ≤ i, j ≤ n and i, j ∈ N+, and Lij = 0, if there is no connection on subsystems i and j;
the disturbance is W = (wi)n×1, 1 ≤ i, j ≤ n and i, j ∈ N+. The control objective is to drive state x
to origin zero by the linear controller.

In a self-triggered control scheme [42], the local state xi(t) can be acquired by observers (sensors).
However, the information remains within the ith subsystems and is not shared within the system
controller unless a pre-calculated triggering time is up, a self-triggered state is reached and a message
is sent via data communication links. Thus, the control signal from controller remains constant and
may change only after a self-triggered message is received. Self-trigged control promises the reduction
of communication cost without sacrificing control performance. For a self-event triggered controller,
the dynamic of power system in kth triggering is:

ẋ(t) = Ax(t) + Bu(tk) + EW(t), tk ≤ t < tk+1 (5)

and the control output u(tk) is:

u(tk) = (−Lij)n×nx(tk), 1 < i, j < n and i, j ∈ N+ (6)

As shown in Figure 3, for a self-triggered control scheme, the controller obtains system state x1, x2,
x3 from sensors or observers of each subsystem, when the time for triggering tk is up. Then, the next
triggering time tk+1 is calculated by using the previous system state x(tk). Meanwhile, the controller
calculates the new control output u(tk) with the obtained new system state. The new control output
u1(t) = u1(tk), u2(t) = u2(tk), u3(t) = u3(tk), where tk ≤ t < tk+1 is then applied to its corresponding
subsystems. Above all, the procedure of self-triggered control is:

1. First, obtain the system state of each subsystem, when the time for triggering is up;
2. Second, calculate the time for the next triggering;
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3. Finally, apply the new control output, which is calculated by using the system state obtained
in step 1.

Figure 3. Self-triggered control scheme.

2.3. Exponential Stability and Cost Function

Before elaborating the control scheme for power grid, the exponential stability and cost function
are introduced. Exponential stability [43,44] is a kind of asymptotic stability. According to the
exponential stability, the state converges to zero with an exponential rate, and x(t) = x(0)e−t.
If a Lyapunov function satisfies κ1|x| ≤ V(x) ≤ κ2|x|, we have Proposition 1.

Proposition 1 [45]. Let V : Rn → R+ be a quadratic Lyapunov candidate function satisfying
V(x) = xT Px, ∀x ∈ Rn, with P = PT > 0. If the condition:

V̇(x) + 2βV(x) ≤ 0 (7)

is satisfied for all trajectories of (4), for a given scalar β > 0, the system origin is globally β-stable
(i.e., there exists a scalar β and α, such that the trajectories satisfy ‖x(t)‖ ≤ αe−βt‖x0‖ for any initial
condition x0). Proposition 1 addresses the relationship between the time derivation of Lyapunov
function V(x) and the V(x) under the restriction of exponential stability.

As both physical cost and cyber cost are considered, the cost of system consists of two parts.
The first part, the physical state cost expressed by the following equation, is a general form that is
widely used in optimal control theory [46].

p(t) = x(t)TQx(t) = ‖x(t)‖2
Q

where Q is the weight matrix for state cost. The communication cost as the second part is essentially
related to the triggering rate. High triggering rate means high communication bandwidth cost in data
transmission within a time unit. Therefore, the communication cost is proportional to the sampling rate.

Definition 1. At the kth triggering period, the communication cost is defined as:

c(t) =
�

τ(k)
.

where � is the weight of communication cost, and τ(k) is the sampling interval between number k
sampling and the number k + 1 sampling.

Integrating physical state cost with communication cost, the cost function is shown as:

J =
∫ Tf

0 [q(t) + c(t)]dt

=
∫ Tf

0 [‖x(t)‖2
Q + �

τ(k) ]dt
(8)

6
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where Tf is the terminal time. When t = Tf , the system state converges to a small value that is close to
zero. Moreover, when t = Tf , the Lyapunov function value is VT, which is much smaller than the initial
Lyapunov function value V0. c is the number of control actions, which have Tf = ∑n

i=0 τ(i). This model
considers two parts. The first is a function σ(x(tk)) = tk+1 − tk for calculating self-triggered time,
which is adaptive to state x(tk), to reduce costs in communication; the second is the determination of
control gain K = (−Lij)n×n. Hence, the cost of system J is guaranteed under a specified upper bound.
The following assumptions are made to calculate the upper bound.

Assumption 1. For a given Lyapunov function V(x) = xT Px, ε and initial state x0, the system is exponentially
stable. The terminal time of control process is Tf defined by dV(x(Tf ))/dt = ν, where ν is a small number.
The Lyapunov function is V(x(Tf )) = VT, and its initial value is V(x(0)) = V0, which has VT < V0.

Assumption 1 is applied to make the value of Lyapunov function close to zero at terminal time Tf ,
so that the terminal time Tf for cost function can be determined. It should be noted that the variation
of the Lyapunov function converges to zero, when the system converges to a stable state. Therefore,
ν should be a small number.

3. The Self-Triggered Controller Design

3.1. Function σ for Self Triggering

The communication cost of self-triggered control depends on the triggering rate, which is directly
related to the triggering time in self-triggered control. The system calculates the next triggering time
and updating control output when the triggering time is up. The function σ for self-triggering is
a crucial function. For obtaining the function σ, some important results about exponential stability
and input-to-state stability under self-triggered control are introduced. To investigate the relationship
between the maximal triggering interval function σ and system performance, exponential stability and
input-to-state stability from disturbance W to system state x, Theorem 1 is proposed.

Theorem 1. For the dynamic system (5), given scalars β > 0, γ > 0, if there exists an n × n matrix P = PT,
a positive scalar γ and a bounded function σ(x) : Rn → R+ are for all x ∈ R4n and τ ∈ [0, σ(x)]:

xTΦP,β(τ)x ≤ ψ(τ) (9)

where ψ is,

ψ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 τ ∈ R1 ∩ R2

(γ/2 − (2β + 1)(eατ − 1)rε)nη τ ∈ R1/R2

(γ/2 − rεeατ)nη τ ∈ R2/R1

(γ − rεeατ(2β + 1)(eατ − 1)rε)nη τ ∈ R+/R1/R2

with R1 = {τ|γ/2 − rεeατ} > 0, R2 = {τ|γ/2 − (2β + 1)(eατ − 1)r > 0},
α = λmax(AT + A), ε = λmax(P), r = λmax(ETE), where,

ΦP,β(τ) =

(
Λ(τ)

I

)T (
AT P + PA + 2βP −PBK

−KT BT P 0

)(
Λ(τ)

I

)
(10)

and,

Λ(τ) = I +
∫ τ

0
esAds(A − BK), (11)

then the origin system (2) is global β-stable and input-to-state stability from W to x for any triggering
interval σ(x) : R+ × Rn → R+ defines the triggering interval sequence by the law tk+1 = tk + σ(x(tk)),
k ∈ N. ||x||2 ≤ n(γ + ϑ)η/(εβ) under a given zero initial state x(tk) = 0.

Proof. See Appendix A. �
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The key of Theorem 1 is that the function σ must satisfy the inequality (9). However directly
solving inequality (9) for obtaining σ is difficult. Approaches, such as in [30,47], are employed to cut
the triggering interval (sampling interval) and state space into several sections. Numerical methods,
such as the linear matrix inequality (LMI) toolbox, offer a possibility to solve σ. The precision of
maximal triggering time depends on the number of sections. Higher precision of maximal triggering
time requires more sections. In addition, if the state space dimension is high, the computation cost in
the design process dramatically increases. This is not practical in power system control applications
with a high state space dimension. Therefore, another algorithm is proposed. The σ(x) can be directly
computed with a given x on-line by the proposed algorithm. Based on the result of Theorem 1,
the following theorem is derived for calculating σ.

Theorem 2. For the given parameters in Theorem 1, the dynamic system in Equation (5) has a minimal
triggering interval for the global state space τmin = minx∈R4n σ(x), and a maximal sampling interval
τmax = maxx∈R4n σ(x). ∀τ ∈ [0, σ(x)], xTΦP,β(τ)x ≤ 0, if the σ(x) is:

σ(x) = argτ min
τ∈[τmin ,τmax ]

τ, (12)

where τmin and τmax are the lower bound and upper bound of self-triggering interval or sampling
interval, respectively. Under the constraint of:

xTΦP,β(τ)x = ψ(τ) (13)

then the origin system in Equation (2) is global β-stable with input-to-state stability from W to x.

Proof. From Theorem 1, it is known that the left-hand-side and the right-hand side of inequalities (9)
are continuous, and σ(x) ∈ [τmin, τmax], thus the maximal triggering interval σ(x) must be the minimal
root of Equation (13).

From Theorem 2, for a given triggering interval τ = tk+1 − tk, the root of Equation (13) for
triggering interval σ(x) should be the one which is closest to τmin. Equation (13) can be written as
a linear combination of eλiτ and e(λi+λj)τ , where λi and λj are the eigenvalues of A. If we denote
eτ by z,

ΦP,β(τ) = φ1 + φ2zv1 + φ3zv2 + . . . + φrzvr−1 (14)

where φk is the coefficient matrix of zvk , vk is λi or λi + λj, i ≤ n, j ≤ n and vi �= vj.
However, the computation cost of directly solving the equation xTΦP,β(τ)x = 0 is very high, and it
is not practical in online processing for power system control. Instead, the approximate root of this
equation can be obtained by the two-point Taylor expansion method. The ΦP,β(τ) can be expanded

into two-point Taylor series in m orders at z1 = eτmin
and z2 = eτmax . The approximation of ΦP,β(τ) is:

H(z) = ∑m
k=0{[ak(z1, z2)(z − z1)+

ak(z2, z1)(z − z2)](z − z1)
k(z − z2)

k},
(15)

where z = eτ , and an(z1, z2) is:

an(z1, z2) =

∑m
k=0{ (n+k−1)!

k!(n−k)
(−1)n+1nφ(n−k)(z2)+(−1)kkφ(n−k)(z1)

n!(z1−z2)n+k+1 }.
(16)

and the approximation of the right hand side of Equation (13), denoted h(z), can be obtained similarly
as H(z). Above all, for a given state x, we have the following theorem to calculate the σ(x).
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Theorem 3. For the given parameters in Theorem 1, the dynamic system (5), the maximal and minimal
triggering intervals τmin, τmax, and the maximal approximation error of ΦP,β(τ):

ε1 = max
τ∈[τmin ,τmax ]

eig[ΦP,β(τ)− H(z)]

The maximal approximation error of h(z) is ε2 = maxτ∈[τmin,τmax] ψ1(τ)− h1(z),
under γ − rεeατ > 0, with the approximation expression (15). Then, under the constraint of
σ(x) ∈ [τmin, τmax], the maximal triggering interval function is chosen by:

σ(x) = ln zc (17)

where,
zc = argz min

xT [H(z)+ε1 I]x=h1(z)−ε2

|z − z1| (18)

Then, the origin system in Equation (2) is global β-stable with input-to-state stability from W to x.

Proof. See Appendix B. �

For a given state x, zc can be easily obtained by solving the polynomial in Equation (18).
Thus, under the constraint of σ(x) ∈ [τmin, τmax], the maximal triggering interval can be obtained
by Theorem 3. If the approximation error ε1 and ε2 are very small, the approximation maximal
triggering interval obtained by applying Theorem 3 should be very close to the actual maximal
triggering interval. It should be noted that τmin can be calculated by conventional discrete control
theory. However, the maximal sampling interval τmax = maxx∈R4n σ(x) cannot be obtained without
knowing σ. Thus, τmax is set to be much larger than τmin, τmax > τmin in the algorithm to guarantee
σ(x) ≤ τmax.

3.2. The Selection of Feedback Gain for Controller

The system performance to some extent depends on the feedback gain. If the selected
feedback gain is not proper for the control system, the τmin in Theorem 1 may not exist, so that
β-exponential stability and input-to-state stability cannot be satisfied even under the continuous
control. Therefore, the feedback gain should be selected for satisfying the exponential stability and
input-to-state stability in continuous control (σ(x) = 0) first. Otherwise, the cost function should
be considered when we select the feedback gain. In dealing with nonlinear control problems, many
optimal control theories are proposed, such as Hamilton–Jacobi–Bellman equations, Euler–Lagrange
equations and Sontag’s formula [44,48]. However, it is difficult to apply those methods to solve this
optimal control problem with the cost function described in Section 2. The reason is that solving the
Hamilton–Jacobi–Bellman equations and Euler–Lagrange equations is extremely difficult. In addition,
Sontag’s formula requires a fixed standard form of cost function, which does not coincide with our
cost function. It is difficult to obtain the value of cost function directly. Therefore, instead of directly
calculating the value of the cost function, inequalities for estimation are derived to select a proper
feedback gain for guaranteeing the cost function within an upper bound.

Theorem 4. For given feedback gain K, γ, β, and τmin = minx∈RN σ(x) for global state space, which satisfies
the condition of Proposition 1 and Assumption 1. Then the cost function (8) can be estimated by:

J < λmax(Q)
β2λmin(P){γnηT′

f β − [γnη + V0β](1 − e−βT′
f )}+ �T′

f
τmin

, (19)

where,

T′
f =

1
β

ln[(V0β − γnη)/ν] ≥ Tf (20)

9
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Proof. From the proof of Theorem 1, the value of the Lyapunov function can be estimated by
V(t) ≤ e−βtV0 + γnη/β(1 − e−βt).

To integrate both sides of the above inequality during 0 and Tf , the cost of state can be estimated

by:
∫ Tf

0 xT Pxdt ≤ 1
β2 {γnηTf β − (γnη + V0β)(1 − e−βTf )}.

The estimated terminal time T′
f for Tf can be obtained by solving the following inequality:

V(Tf ) ≤ e−βTf V0 + γnη/β(1 − e−βTf ) = VT , and the time derivatives of V have the inequality
dV(Tf )/dt ≤ (γnη − V0β)e−βTf .

Therefore, the result is: Tf ≤ 1
β ln[(V0β − γnη)/ν] = T′

f .
The communication cost can be estimated by c ≤ �Tf /τmin ≤ �T′

f /τmin. Above all, the value of
the cost function at terminal time Tf can be estimated by summing the estimation of state cost and
communication cost.

For a given P for Lyapunov function, the decay rate β, and γ for the inhibition of disturbance
effect, the minimal sampling interval τmin and the feedback gain K can be figured out by conventional
robust discrete control technique. Then, the upper bound of cost function J can be estimated by a given
Lyapunov function value V0 and VT in initial time and terminal time by Theorem 4. The objective
is to minimize the upper bound of J, so that the value of the cost function J can be guaranteed on
a required level. Therefore, the feedback gain K, decay rate β, parameter γ for input-to-state stability,
minimal sampling interval τmin, and Lyapunov function parameter P, can be estimated by minimizing
the upper bound of J. If we denote the right-hand side of inequality (19) by χ, it is:

{K, β, P, γ} = arg min
{K,β,P,γ}

χ(K, β, P, γ) (21)

Some numerical optimization methods can be applied to solve this optimization problem.
Let θ = {K, β, P, γ}. The optimization process in one iteration can be depicted as follows:

1. For a given θ, τmin is calculated by conventional discrete robust control technique;
2. The upper bound of cost function χ is obtained by Theorem 4, and Rk can be calculated;
3. Update θ by numerical optimization algorithms (such as GA optimization algorithm) with χ

obtained in previous step;
4. Return to the first step until the stop criteria is satisfied.

The iteration stop condition depends on the value of χ and the iteration count and satisfies the
design requirements. With the smallest upper bound of cost, the performance of control is guaranteed.
The cost consists of state cost and communication cost. Thus, the Pareto Frontier curve may be
calculated for generality. Then the optimal parameter θ can be easily obtained for any �.

3.3. Event-Triggered Control Algorithm

The self-triggered control is divided into two phrases. The first phrase is about parameter design,
and the second phrase is online computing of triggering interval σ(x(tk)). First, for a given power grid
dynamic model (4) and Q, the τmin is calculated. The best value of θ is designed by Theorem 4. Optimal
searching algorithms consider both state and communication cost in cost function. If the feedback with
gain K does not have a solution with given γ and β, β and γ should decrease and increase respectively
until there is a solution of K. After θ, τmin and τmax are selected, the approximation error ε1, ε2 and
ε3 are calculated. Meanwhile, the two-point Taylor expansion of Φ, ψ1 and ψ2 can be obtained by
software such as Mathematica.

Second, the triggering interval is calculated online. The power system obtains new system state xk
from sensors, when a self-triggered time is up. Then, the time tk+1 = tk + σ(x(tk)) is calculated for the
next triggering. For a system state xk, the coefficient of polynomial respect to z is derived by xT H(z)x.
Then zc is solved using Equation (18) by inverse iteration. Therefore, the triggering interval can be
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obtained by zc and (17). The new control output u = −Kx(tk) is calculated and applied to actuators.
At last, the control output is updated at the next triggering time tk+1.

4. Simulation Results

In this section, a simulation of power frequency control with distributed energy source
demonstrates the effectiveness and advantages of our proposed control method. The subsystem
frequencies are controlled by our proposed controller, which can save more costs under the
consideration of communication and system state. Meanwhile, a comparison is carried out to verify
the benefit on the control of power system. The simulation is performed in MATLAB 2010b.

We consider the electrical power network shown in Figure 4. Three subsystems are in the power
system. It assumes that the composition of three electric power subsystems is same, which is illustrated
in Figure 2. There are gas turbine generators, wind power generations and battery arrays in the system.
Power supply is done to the electric power demand with these power generating machines. The gas
turbine, wind power and battery power output are controllable.

Figure 4. Power system structure for simulation

The parameters of each subsystem are given in Table 1.

Table 1. Parameter set.

Parameters ($) Symbols (Unit) ($)
Values

Subsystem 1 Subsystem 2 Subsystem 3

Inertia constant M (puMw s/Hz) 0.20 0.14 0.16
Damping constant D (puMw/Hz) 0.26 0.26 0.23
Governor constant Tg (s) 0.20 0.20 0.12

Gas turbine constant Td (s) 5.0 4.5 5.0
Regulation constant Rg (Hz/pu Mw) 2.5 2.5 1.5

Synchronizing constant Ti j (pu Mw) 0.50 0.5 0.5
TBC gain Ki 0.1 0.08 0.1

Frequency bias Bi (Mw/Hz) 0.1 0.1 0.08

The maximal norm of disturbance assumes to be 0.1, and the weight � for communication cost is
set to 0.1. The contour map of cost upper bound with respect to exponential stability parameter β and
input-to-state stability parameter γ is illustrated in Figure 5, and the relationship between β and τmin
is shown in Figure 6.

According to the cost upper bound contour map, if the parameter β is selected to be very low
(lower than 0.02), then the effect of parameter γ is not significant. Meanwhile, it shows that the faster
convergence rate (larger β) makes the physical cost (state cost) lower. However, according to the
relationship between the τmin and β illustrated in Figure 6, large β may bring a higher communication
cost, because the controller has to reduce the triggering interval to satisfy higher physical cost
requirements (faster rate of convergence). Thus, a tradeoff should be made to reduce the total cost.
After solving the optimization problem described in (21) with MATLAB Optimization ToolBox, β and
γ are obtained as 0.12 and 0.11, respectively. In addition, the feedback gain K and Lyapunov function
parameter P are also calculated by the robust control design algorithm and LMI toolbox. The initial

11



Appl. Sci. 2017, 7, 688

state is set to 1, and the terminal time is calculated to be 10. The simulation is divided into two groups.
The first group is the proposed algorithm with approximation method to calculate the triggering
interval. The second method is the method proposed in [42], which is a widely used method in
self-triggered control. We call it the “conventional method” in the following. The simulation results
and comparisons are illustrated in Figures 7–11.

According to the simulation results in Figures 7–11, we know that the control method can make
all states converge to zero with exponential rate β. Moreover, the curve with proposed control method
converges slightly faster than the conventional method in the beginning, especially in the curve of Δ f
and Δxg.

Figure 5. Contour map of cost upper bound with respect to β and γ.

Figure 6. The minimal triggering interval curve with respect to β.
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Figure 7. The output power deviation of each subsystem Pout.

Figure 8. The frequency deviation Δ f .

Figure 9. The power output deviation of the gas turbine generator Pg.
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Figure 10. The governor input of the gas turbine generator Δxg.

Figure 11. The regional demand UAR.

At last, they are in the same magnitude. Above all, under the same exponential convergence rate
β and input-to-state stability parameter γ requirement, the convergence rate or the physical cost seems
almost same and satisfies the performance. The proposed method is effective in the frequency control
application of power system. However, the communication should be considered in our proposed
control algorithm. Therefore the comparison of communication cost is illustrated. As the sampling rate
of classical control method is fixed, it causes the communication cost of the classical control method to
be much higher than for the STC method [49,50]. We only compare the proposed STC method with the
conventional STC method in Figure 12. The total cost is illustrated in Figure 13.
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Figure 12. Communication cost comparison.

Figure 13. Cost curve comparison.

According to the communication cost comparison in Figure 12, it is known that the communication
cost of the proposed self-triggered control method is lower than that of the conventional self-triggered
control method. At the end of the simulation time, it costs about 530 control actions using the proposed
self-triggered control method. In comparison, it costs about 600 control actions using conventional
self-triggered control method. According to the definition of communication cost, the system takes
530 control actions for sensor data acquisition to compute control output with the proposed method,
and needs 600 control actions using the conventional method. Based on the total cost curve comparison,
the proposed self-triggered method costs less than the conventional method. At the end of simulation,
the conventional method costs about 120 control actions, and the proposed method costs about
110 control actions. The cost of the proposed method is not much lower than for the conventional
method. When the communication cost is high, bandwidth is limited, or communication network is
publicly shared, the triggering time of proposed method further improves. Besides, the computation
cost of calculating triggering time in the proposed method is reduced by the approximation method.
Above all, the proposed method is better than the conventional method in frequency control application
of power system, at least under this situation.
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5. Conclusions

In this paper, a novel self-triggered control method is proposed and applied to the frequency
control application of the power system. The power system dynamic model consists of multiple
subsystems that have distributed energy sources. Physical cost and communication cost as two
parameters of cost function are considered in the proposed model. On one hand, the equation for
solving the triggering time is derived by the definition of exponential stability and the input of
state stability, and an approximation algorithm is proposed to reduce computation costs. On the
other hand, the upper bound of cost is derived. The feedback gain and parameters are selected,
according to optimizing the upper bound of the cost. Thus, the system cost can be guaranteed
under a required level. At last, a simulation of power system frequency control is carried out to
demonstrate that the proposed method is effective and can save more costs than the conventional
method. Compared with the distributed control scheme, the advantage of the centralized control
scheme in STC is that it reduces the conservativeness of the control system, and further decreases the
communication cost. Meanwhile, it may require more computational resources and time. Additionally,
more communication networks are needed in the centralized control scheme. In future research,
the application of self-triggered control method in the transient control of power system for avoiding
cascade failure will be investigated.
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Appendix A. Proof of Theorem 1

For t ∈ [tk, tk+1] and t = tk + τ, it is known that x(t) = ζ(τ)x(tk) + ξ(τ), where,

ζ(τ) = I +
∫ τ

0
eAsds(A − BK), ξ(τ) =

∫ τ

0
eAsEW(s)ds

Therefore for the Lyapunov function

V(x(t)) = x(t)T Px(t) = [ζ(τ)x(tk) + ξ(τ)]T P[ζ(τ)x(tk) + ξ(τ)] ≤ x(xk)
Tζ(τ)T Pζ(τ)x(xk) + ξT Pξ.

We denote:

V
′
(x(tk), τ) = x(xk)

Tζ(τ)T Pζ(τ)x(xk) + ξT Pξ.

We define � as the mean of EW(s) in the paper. For the given β > 0 and γ > 0, if,

V̇
′ ≤ −2βV̇

′
+ γ/2||W||2 + γ/2||�||2, (A1)

where ξ =
∫ τ

0 eAsds�, then,

V
′
(x(tk), τ) ≤ e−βτV

′
(x(tk), 0) +

∫ τ

0
(γ/2e−βs||W(s)||2 + γ/2||�||2)ds,
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so that,

V(x(t)) ≤ V
′
(x(tk), τ) ≤ e−βτV(x(tk)) +

∫ τ

0
γ/2e−βs||W(s)||2ds +

∫ τ

0
γ/2e−βs||�(s)||2ds.

which means the dynamic system is of β-exponential stability. When ||�||2 ≤ nη, we have ||x||2 ≤
nγη/(εβ) with initial state x(tk) = 0. The inequality (A1) is:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤ −d(ξT Pξ)/dt − 2β(ξT Pξ) + γ/2||W||2 + γ/2||�||2, (A2)

and the inequality is:

−d(ξT Pξ)/dt − 2β(ξT Pξ) + γ/2||W||2 ≥ ξ̇T Pξ̇ − (2β + 1)(ξT Pξ) + γ/2||W||2 ≥
(γ/2 − rεeατ)||W||2 + [γ/2 − (2β + 1)(eατ − 1)r]ε||�||2.

It should be noted that the left-hand side of inequality (A2) is equivalent to the left-hand side of
inequality (9). If:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤
(γ/2 − rεeατ)||W||2 + [γ/2 − (2β + 1)(eατ − 1)r]ε||�||2,

then the inequality (A1) satisfies. When γ/2 − rεeατ > 0, and γ/2 − (2β + 1)(eατ − 1)r > 0, the
above inequality holds if:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤ 0.

When γ/2 − rεeατ > 0, and γ/2 − (2β + 1)(eατ − 1)r ≤ 0, the above inequality holds if:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤ [γ/2 − (2β + 1)(eατ − 1)rε]nη.

When γ/2 − rεeατ ≤ 0, and γ/2 − (2β + 1)(eατ − 1)r > 0, the above inequality holds if:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤ (γ/2 − rεeατ)nη.

When γ/2 − rεeατ ≤ 0, and γ/2 − (2β + 1)(eατ − 1)r ≤ 0, the above inequality holds if:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤
(γ/2 − rεeατ)nη + [γ/2 − (2β + 1)(eατ − 1)rε]nη.

Appendix B. Proof of Theorem 3

Since the approximation errors are given, under τ ∈ [τmin, τmax], we have
ΦP,β(τ)− [H(z) + εI] ≤ 0. Hence,

xTΦP,β(τ)x ≤ xT H(z)x + xTε1 Ix. (A3)

As we know, |ψ1(τ) − h1(z)| ≤ ε2 and |ψ2(τ) − h2(z)| ≤ ε3 where τ ∈ [τmin, τmax], thus if
xTΦP,β(τ)x ≤ xT H(z)x + xTε1 Ix ≤ h1(τ)− ε2 then xTΦP,β(τ)x ≤ ψ1(τ) ≤ ψ(τ).

Therefore, the zc calculated from Equation (18), makes the inequality (9) in Theorem 1.
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Abstract: This paper proposes voltage-stability based on congestion management (CM) for electricity
market environments and considers the incorporation of wind farms into systems as well. A probabilistic
voltage-stability constrained optimal power flow (P-VSCOPF) is formulated to maximize both social
welfare and voltage stability. To reflect the probabilistic influence of CM in the presence of wind farms
on voltage stability, Monte Carlo simulations (MCS) are used to analyze both the system load and the
wind speed from their probability distribution functions. A multi-objective particle-swarm optimization
(MOPSO) algorithm is implemented to solve the P-VSCOPF problem. A contingency analysis based on
the voltage stability index (VSI) for line outages is employed to find the vulnerable line of congestion
in power systems. The congestion distribution factor (CDF) is also used to find the optimal location
of a wind farm in CM. The optimal pricing expression, which is obtained, with respect to preserving
voltage stability, by calculating both the locational marginal prices (LMPs) and the nodal congestion
prices (NCPs), is demonstrated in terms of congestion solutions. Simultaneously, the voltage stability
margin (VSM) is considered within the CM framework. The proposed approach is implemented on a
modified IEEE 24-bus system, and the results obtained are compared with the results of other optimal
power flow methods.

Keywords: congestion management; probabilistic voltage-stability-constrained optimal power flow;
congestion distribution factor; voltage stability margin; multi-objective particle swarm optimization;
wind farm

1. Introduction

Congestion management (CM) is one of the most critical transmission problems of open access
environments [1]. Congestion occurs in a power market if the transmission system is incapable of
adjusting all of the desired transactions because of the existence of system violations [2]. System
congestion may also threaten the reliability of the power system by making it more vulnerable
to sudden disturbances. It may also impede market efficiency, forcing consumers to reduce their
electric power consumptions because of the rises in market prices. As the organizations responsible
for maintaining power system security efficiently, independent system operators (ISOs) have to
mitigate congestion problems by using market-based tools and/or effective operating facilities [3].
Market-based techniques using both locational marginal prices (LMPs) and nodal congestion prices
(NCPs) have been proposed to manage and relieve transmission congestion [4]. The LMP is the
generation marginal cost of meeting both the power demands and the transmission losses at a specific
node, and the NCP is the cost of satisfying network security parameter limits. Consequently, the
market price structure both provides the marginal cost of generating units and indicates the system

Appl. Sci. 2017, 7, 573 21 www.mdpi.com/journal/applsci



Appl. Sci. 2017, 7, 573

security cost of the power network. Thus, it is currently used by ISOs as well as many researchers as
CM pricing [5,6]. In addition, the influence of CM can be analyzed through the results obtained from
LMPs and NCPs.

Recently, wind energy has emerged as a critical candidate for bridging the gap between global
power supply and demand [7]. Wind energy is primarily considered as a sustainable method of
mitigating severe problems that result from the use of fossil fuels, such as market volatility, social
conflict, and global warming [8,9]. Hence, special attention should be paid to wind energy sources in
the CM of the electricity market. CM is essential to the efficient operation of any electricity market,
with a special emphasis on wind energy. Assume that several buses in a power system each have
strong potential for wind installation. An ISO should consider several factors in determining the
optimal placements for wind farms in order to alleviate transmission congestion via additional power
injection. CM that uses proper power injection reduces both the component of the LMP associated
with the congestion price and reduces transmission losses. Several CM problems involving renewable
energy sources have been analyzed in the literature [10–12]. In [10], the authors proposed a new
optimal model of congestion management with an emphasis on the promotion of renewable energy
sources in a competitive electricity market. In [11], the CM problem incorporated a wind farm based
on the sensitivity factor. In [12], the authors addressed transmission congestion relief by considering
both the sizes and the sites of new renewable energy sources. However, the impact of renewable
energy congestion relief on the probabilistic approach was not considered. Wind behavior is often
unpredictable, as it is a stochastic phenomenon. In particular, wind speed is highly dependent upon
the weather conditions, geographical region, and season. Wind farms, which deploy many wind
turbine generators to harness wind energy for electricity production, have a variable power outputs
due to variations in wind speed [13]. Therefore, the rapid global growth of wind power capacity may
increase the uncertainties for congestion problems. A reliable probabilistic method that can consider
random wind speeds must be found to solve congestion problems.

CM is essentially an optimization problem with an exponential number of constraints that can
be generally described as an optimal power flow (OPF) problem whose objective function is the
maximization of social welfare and whose constraints are the load flow equations and the operation
limitations [14]. In [15], the authors applied CM to the adjustments of power transfers in transmission
lines based on a transmission congestion penalty-factor. A CM method based on OPF, presented
in [16], relieved congested transmission lines by using both power generation rescheduling and
load curtailment. In [17], the authors analyzed both the enhancement of voltage loadability and the
transmission mechanisms of line outage contingencies in a smart power network and found that if
a few lines were able to be fully loaded, some voltages could be adjusted to their lower restrictions.
Although no violation occurred, even a small disturbance, such as a load change, could cause the
system to deteriorate into an unstable condition.

As the penetration of wind energy into a power network increases, the influence of wind turbines
on the voltage stability becomes more significant. Following a large incorporation of wind power into a
grid, severe problems may arise due to both the characteristics of the wind generators and the random
nature of wind. Hence, when wind power systems are connected to weak networks, the voltage stability
should be considered in addition to the uncertainties of the wind power in their CM frameworks.
Voltage stability refers to the ability of a power system to sustain steady levels of voltage for all of
the network buses after being subjected to a disturbance [18]. Voltage instability can lead to load
shedding, branch trips, or even cascading outages caused by acting protective relays. Voltage collapse
is a phenomenon in which a sequence of voltage instability events leads to a blackout. Generally, the
closeness to voltage collapse can be used to measure the voltage stability of a power system. In systems
with weak connections among areas, congestion problems frequently occur due to either overloading
or voltage security requirements. Several techniques have been proposed to solve voltage security
problems in CM. In [19], a multi-objective method was presented to maximize both the social benefits
of the power market and the distance to the maximum loading point. In this method, which employed
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a loading margin, the ISO paid more for security enhancement. In [20], a method for ensuring voltage
security after the implementation of CM was proposed. However, it did not consider the diverse
effects of different loads on the voltage security. In addition, due to the complexities of power-system
stability problems, both the solution spaces resulting from inter-area power transfer problems and the
system stability boundaries may become complicated. As such, traditional optimization techniques
can occasionally fail or encounter numerical difficulties with objective functions. In contrast, both
particle swarm optimization (PSO) and differential evolution are powerful population-based searching
algorithms [21]. However, transforming a typical single-objective PSO into a multi-objective PSO
requires reestablishing both the best local and global individuals to seek a front of optimal solutions.

In this paper, we propose an approach to solving CM problems, focusing in particular on both
voltage stability and wind farms in the electricity market. The problem is modeled as a probabilistic
voltage-stability constrained optimal power flow (P-VSCOPF) to maximize both the social welfare
and the voltage stability margin. A multi-objective particle swarm optimization (MOPSO) algorithm
is used to determine the P-VSCOPF solution for mitigating the transmission congestion problem.
Since wind speed is a random variable and load forecasting contains uncertainties as well, we apply
a probabilistic approach based on Monte Carlo simulations (MCSs). The contingency analysis for
line outages is also considered by using the voltage stability index (VSI). The optimal sites of wind
farms are determined based on the congestion distribution factor (CDF), and the voltage stability
margin (VSM) is considered within the CM framework. Simultaneously, optimal pricing expressions
for relieving congestion are derived with linear programming (LP).

2. Uncertainty Analysis and Wind Farm Modeling

2.1. Wind Speed

Wind speed is a random variable, and its fluctuations over a period are expressed by probability
distribution functions. In general, wind speed can be described using either a two-parameter Rayleigh
or a Weibull distribution [22]. The Rayleigh distribution is the simplest distribution used to describe
average wind speed because it has only a single model parameter: b. Its probability distribution and
cumulative distribution functions are, respectively,

fSw(Sw; b) =
Sw

b2 exp

(
−1

2
Sw

2

b2

)
(1)

and

FSw(Sw; b) = 1 − exp

(
−1

2
Sw

2

b2

)
(2)

As a distribution recommended in literature, the Weibull distribution is also widely utilized to
both represent wind speed distribution and compute wind energy potential [23]. It is thought to fit the
probability distribution for wind speed better than the Rayleigh distribution does because of its more
flexible shape granted by its additional parameter. The probability density function of the Weibull
distribution is formulated as

fSw(Sw; k, a) =
kSk−1

w
ak exp

[
−
(

Sw

a

)k
]

, Sw > 0, k, a > 0. (3)

The Weibull distribution has a two-parameter function characterized by both a and k.
These parameters determine the wind speed necessary for the optimum performance of a wind-energy
conversion system. A survey of the literature indicates that the shape parameter of the Weibull
distribution for estimating the global wind energy conditions ranges from 1.2 to 2.75. The cumulative
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distribution function of the Weibull distribution, which gives the probability of the wind speed, is
expressed as

FSw(Sw; k, a) = 1 − exp

[
−
(

Sw

a

)k
]

(4)

2.2. System Load

To reflect a proper probabilistic approach, the uncertainty in the system load must be considered.
The pattern of the system load is assessed by accumulating the consumption periodically over daily,
weekly, or monthly periods. Uncertainties related to the predicted load data are usually considered by
using a normal distribution with a standard deviation. A normal probability distribution function can
be expressed as

fL(PL) =
1√

2πσL2
exp

[
− (PL − eL)

2

2σL2

]
(5)

2.3. Wind Turbine Modeling

The power output of a wind turbine is associated with the wind speed, which is converted
to electrical power by different types of wind turbine generators. Our model representing a wind
turbine’s power is given by

Pw(Sw) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 Sw < Scut−in

Pw,rated
S2

w−S2
cut−in

S2
rated−S2

cut−in
Scut−in < Sw < Srated

Pw,rated Srated < Sw < Scut−out

0 Sw > Scut−out

(6)

Figure 1 shows the representative power curve for a wind turbine. The cut-in wind speed Scut−in
is the minimum speed required to generate power. If the wind speed reaches the cut-in value, power
is generated by the wind turbine. The generator produces the machine’s rated power Pw,rated when the
wind speed reaches the rated wind speed Srated. As shown in Figure 1, power production is almost
constant between Srated and Scut−out. At the cut-out wind speed Scut−out, power generation is shut
down to protect the wind turbine from damage and defects, and the power output becomes zero.

 

Figure 1. Wind turbine power curve.
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Recently, both permanent magnet synchronous generators (PMSGs) and doubly fed induction
generators (DFIGs) have begun to be used more widely [24]. PMSG wind turbines have more highly
reliable operations, lower maintenance expenses, and smaller weights with simpler structures than
DFIG wind turbines do. Accordingly, this paper focuses on PMSG wind turbines. Maximum power
point tracking control is usually employed to maximize the turbine energy-conversion efficiency
through the regulation of the rotational speeds of variable-speed wind turbines. Depending on the
wind’s aerodynamic conditions, the power captured by the wind turbine can be maximized versus
rotational speed characteristics by adjusting the coefficient Gp, which represents the aerodynamic
efficiency of the wind turbine and is a function of the tip speed ratio (TSR). The maximum mechanical
output power of the wind turbine is then defined as

Pmax =
1
2

ρπR2S3
wGp,opt

(
β, γw,opt

)
(7)

The optimal TSR of the mechanical output is given as

γw,opt =
ωm,optR

Sw
(8)

For the PMSG wind turbine modeled in this paper [24], the maximum value of the power
coefficient (Gp,opt = 0.4412) is obtained according to the optimal value of the TSR (γw,opt = 6.9) calculated
using (8). Because wind farms consist of several PMSG wind turbines, the power coefficient of a wind
farm located at bus i is the sum of the active powers generated by the wind turbines, given by

PWF,i =
NTn

∑
n=1

PWT,n (9)

3. Proposed Congestion Management Approach

3.1. P-VSCOPF

Power systems, including wind farms, are open systems. This means that any external parameter
can influence their functionalities, which can lead to rather uncertain systems. The proposed OPF
for CM is implemented as a P-VSCOPF, which is a nonlinear, multi-objective optimization problem.
A probabilistic method has been developed using MCSs that apply random sampling of the uncertain
parameter probability density function to solve the problems. In our study, a multi-objective OPF is
formulated as

Min − (w1)(CDPD − CSPS)− w2λc (10)

The objective function contains both social welfare and maximum loading margins with weighting
factors of w1 > 0 and w2 > 0. Here, we assume that w1 = (1 − w) and w2 = w, (for 0 < w < 1).
The value of the weighting factor is increased so that stability takes precedence over cost. Hence, the
system becomes more stable and has higher operating costs.

The equality and inequality constraints for the problem are as follows:
Power flow equations:

f (δ, V, QG, PS, PD) = 0 (11)

f (δc, Vc, QGc , λc, PS, PD) = 0 (12)

Supply and demand bid blocks:

PSmin ≤ PS ≤ PSmax (13)

PDmin ≤ PD ≤ PDmax (14)

Generation reactive power limit:
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QGmin ≤ QG ≤ QGmax (15)

QGmin ≤ QGc ≤ QGmax (16)

Thermal limit:
Iij(δ, V) ≤ Iijmax (17)

Iji(δ, V) ≤ Ijimax (18)

Iij(δc, Vc) ≤ Iijmax (19)

Iji(δc, Vc) ≤ Ijimax (20)

Voltage security limit:
Vmin ≤ V ≤ Vmax (21)

Vmin ≤ Vc ≤ Vmax (22)

Loading margin:
λcmin ≤ λc ≤ λcmax (23)

Here, the subscript c represents the system’s maximum loading condition. Equation (12) is related
to a loading parameter, which guarantees that the system network has the required margin of voltage
stability. The generation and load in the present state, with the loading parameter λc, are expressed as

PG = PG0 + PS (24)

PL = PL0 + PD (25)

PGc = (1 + λc + kGc)PG (26)

PLc = (1 + λc)PL (27)

In the proposed P-VSCOPF-based approach, the critical loadability λc can be expressed as a
measure of system congestion. The loadability is maximized to receive the impact of the voltage
stability limit. Therefore, the total maximum loadability (TML) and the available loading capability
(ALC) can be defined, respectively, as

TML = (1 + λc)∑ PLi (28)

ALC = λc∑ PLi = λcTTL (29)

Here, TTL is the total transaction level at the current operating point. In Equation (29), the ALC is
computed for the product of λc and TTL.

3.2. Stability Margin

To make the system more robust against voltage-related disturbances, a suitable level of voltage
stability should always be maintained in the power system. The continuation method is used as a tool
for voltage security studies in [25]. In this work, the VSM is applied to measure the voltage stability,
and the load is assumed to be of the constant-power type. Figure 2 illustrates the bifurcation curve
between the power and the voltage. In the P-V curve, the maximum value of the loading parameter,
from the base case up to the saddle node bifurcation (SNB) point, which is regarded as the voltage
collapse point, indicates the VSM, which is described as the loading distance between the base case
and the SNB point in voltage collapse:

VSM = PSNB − Pbase (30)
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Figure 2. Bifurcation curve for voltage stability analysis.

Equation (30) illustrates that a greater VSM results in a more stable system from a voltage stability
viewpoint. On the other hand, a stressed power system typically experiences a low VSM.

3.3. Sensitivity Analysis

3.3.1. VSI Analysis

Steady-state voltage stability analysis includes the determination of an index called the VSI, which
is an approximate measure indicating both the most critical bus and the closeness of the system to
voltage collapse. To determine the most critical and congested line between buses i and j, contingency
ranking is implemented by determining the voltage collapse point from the post-contingency operating
conditions. The maximum loading point will move in accordance with variations in both the system
topology and the control variables if transmission line outages occur. Since some sensitivity exists
between the loading margin and the transmission parameters, a new sensitivity-based branch outage
contingency ranking method [26] is used in our study to carry out the contingency selection. This is
computed using both the power flow variables and the loading parameter with respect to changes in
the transmission line flows. The VSI can be found from the following equation:

VSI =

∣∣ΔPij
∣∣•∣∣Pij

∣∣
|Δλc| (31)

In order to evaluate the weight of each line, a scaling method involving lines with heavy loads is
applied. From Equation (31), the contingency line must be the most vulnerable line according to the
smallest voltage stability margin. This line is ranked at the top of the list. This technique ranks the
contingencies correctly with respect to their impacts on the VSM. The VSI can be used as a real-time
operational tool because of its low computational effort requirements. In addition, the VSI is similarly
associated with a security cost, which is defined as the amount expended on security improvements to
satisfy the N − 1 criterion. The security cost contains the additional costs incurred by the system to
ensure N − 1 security.

3.3.2. CDF

The optimal location of a wind farm can also be obtained through a sensitivity analysis with
respect to the power flow injection of any bus n. This analysis introduces information about the
variations in power transfer, and therefore, about loading the system with respect to the variations in
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the power injection of any bus. This study utilizes these sensitivity factors, called CDFs, which are
based on the VSI. The derivation of the CDF is given in Appendix A, and the factors are obtained as

CDFic jc
n =

ΔPic jc
ΔPn

(32)

3.4. MOPSO Algorithm

The optimization model of P-VSCOPF involves highly complicated implementations of both the
objective and constraint equation differentials. To overcome the major restrictions faced by many
traditional methods, evolutionary computation algorithms (e.g., PSO or differential evolution) can be
used as reliable alternatives in many complex engineering optimization applications [17]. In this paper,
the MOPSO based on the Newton–Raphson method is used as the optimization algorithm for the
P-VSCOPF problem. The proposed MOPSO is suitable for solving constrained, nonlinear optimization
problems. This technique can be managed easily, and it provides good convergence characteristics
with high computing efficiencies compared to conventional PSO. Moreover, it obtains good starting
values for the initial population before the PSO process begins by using the Newton–Raphson method.
Thus, it offers a better performance in finding the optimal Pareto front.

The velocity and position vectors of a particle in an n-dimensional space are given by

Xa = (xa1, · · · , xan) (33)

Za = (za1, · · · , zan) (34)

The best position calculated by a particle is

Pbesta = (xa1
best, · · · , xan

best) (35)

The particle among all of the particles in the population that has the best position can be
represented as

Gbestg = (xg1
best, · · · , xgn

best) (36)

The position and velocity of each particle, updated after (k + 1), steps is calculated by

Xa
(k+1) = Xk

a + Zk+1
a (37)

The velocity of the ith individual during the (k + 1)th iteration can be computed by

zt+1
an = Wzt

an + c1r1(Pbestt
an − xt

an) + c2r2(Gbestt
gn − xt

an) (38)

Finally, the inertia weight parameter W can be expressed as

W = (Wi − Wf )× (itermax − iter)
itermax

+ Wf (39)

Figure 3 shows the MOPSO process. This application is used to check the feasibility of the
non-dominated solutions.
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Figure 3. MOPSO procedure.

3.5. Price Analysis

The LMPs are the key factors in both managing the transmission congestion and identifying the
spot price. The LMPs are utilized by using a linear programming (LP) approach to compute the power
dispatch schedules while simultaneously maximizing the social welfare function. Network congestion
causes LMP differences at the buses. These should be minimized to relieve the congestion while
also keeping their values as low as possible. LMPs are commonly associated with both the bidding
costs and the dual variables (Lagrange multipliers) of the power flow equation [25]. The Lagrange
multiplier is the shadow price for the load flow constraints of the OPF, and it describes each congested
transmission line on the network. A higher multiplier means, in general, a greater influence of the
corresponding congested transmission line on the prices at each location. Using Equations (10)–(27),
the expressions for the LMPs are computed to be

LMPSi = φPSi
= CSi + μPSmaxi

− μPSmini
− φcPSi

(1 + λ∗
c + k∗Gc

)

LMPDi = φPDi
= CDi − φQDi

tan(ϕDi )− μPDmaxi
+ μPDmini

−φcPDi
(1 + λ∗

c )− φcQDi
(1 + λ∗

c ) tan(ϕDi )

(40)

Equation (40) contains terms related to the loading parameters, which consider the generation
marginal cost of the electricity responsible for both supply and demand, including the system losses
of each transmission line. Note that the LMPs have additional terms that rely on the voltage security
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constraints. Thus, these equations represent the manner in which the voltage stability coordinates the
existing prices.

This paper also proposes NCPs to both maintain network security parameter limits and send
an appropriate signal based on the price of electricity. Equation (40) can be used to perform a
decomposition calculation in order to obtain NCPs that are associated with the transmission line limits.
The equation to determine the NCP is given as

NCP =

(
∂ f T

∂X

)−1
∂ZT

∂X
(μmax − μmin) (41)

which shows that the NCPs not only involve transmission congestion but also estimate the degree
of congestion severity. After clearing the electricity market from the P-VSCOPF solution, our work
uses an LMP payment mechanism for the CM as a cost settlement process that is performed according
to the market participants’ contributions to both the system congestion and the system losses [26].
In doing so, the total ISO payment is computed as the difference between the supplier and consumer
payments as

PayISO = ∑
i

CSi PSi − ∑
j

CDj PDj (42)

Overall, the proposed approach is implemented sequentially, as shown in Figure 4.

 
Figure 4. Procedure for proposed approach.

4. Simulation Results

The validity applying of the proposed approach to CM was evaluated using the modified IEEE-24
bus system, as shown in Figure 5. This system consisted of ten generating plants connected by 11 buses,
38 transmission lines, and 17 loads [27], with bus 13 designated as a slack bus. To solve the P-VSCOPF
problem, the maximum number of MOPSO algorithm iterations was set to 100. r1 and r2 were uniform
random factors that were assigned values between 0 and 1 both at each step and for each particle in
the swarm in order to add randomness to the velocity update. The inertia weight W was decreased
from 0.9 to 0.4 for different iterations. Each of the acceleration coefficients c1 and c2 were set equal
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to 2 in order to achieve a stochastic factor with a mean value of unity. The simulation results were
analyzed using the power system analysis toolbox (PSAT) for both MATLAB (version, Manufacturer,
City, US State abbrev. if applicable, Country) and GAMS (version, Manufacturer, City, US State abbrev.
if applicable, Country) in the optimization package [28].

 

Figure 5. Modified IEEE-24 bus system with a wind farm.

4.1. Probability Distributions of Wind Power and Load

In consideration of the probabilistic variability of both wind speeds and loads, an MCS is
conducted to select both the wind power and the system load as input variables. To estimate the
Weibull parameters of wind speeds, two years of historical wind speed data were collected from a
wind turbine in Seongsan-eup on Jeju Island, South Korea [29]. These data were used as the input
for a 2-MW PMSG wind turbine. Our study assumed that wind power generation consumes no fuel.
Figure 6 illustrates the cumulative distribution curve of the power output based on a 2-MW wind
turbine using an MCS with 1000 samples. The mean value of the wind power output is approximately
1 MW. The normally distributed system load uncertainty is shown in Figure 7. It is considered using
the mean value of the period in which congestion occurs more frequently. For statistical purposes, the
normal distribution representing the load uncertainty can be obtained with a standard deviation of 5%.
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Figure 6. Cumulative distribution curve of wind power.

Figure 7. Normally distributed load uncertainty.

4.2. Optimal Locations of Wind Farms

The optimal sites of wind farms with respect to CM were obtained via a CDF based on VSI.
In consideration of the contingency analysis, the ten highest transmission-line VSI values were
calculated, and the results are shown in Table 1. Note that the line outage between buses 3 and
24 was the most severe because it had the smallest security margin. The critical line, which had the
highest security margin value, was considered a potential candidate for CM. These CDFs are obtained
based on the VSI data and are given in Table 2. Higher CDFs values indicate that the lines are more
critical to power transfer in the transmission lines. Table 2 illustrates that the power injections of bus 3
are the biggest influence on the power flowing through this line. Based on the CDFs results, we find
that suitable wind farm locations are typically among the load-side buses. As shown in Figure 5,
a wind farm was placed at bus 3, which was the optimal location regarding CM. This wind farm was
composed of 300 PMSG wind turbines rated at 2 MW each. The total wind power capacity of 600 MW
represented approximately 20% of the total generation capacity.
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Table 1. Ranking results and corresponding VSI values.

Rank Between Buses VSI

1 3–24 1121.57
2 23–20 735.85
3 17–16 698.50
4 16–14 473.11
5 19–20 475.72
6 19–16 350.73
7 18–17 335.22
8 21–15 304.80
9 10–6 274.51

10 1–2 223.31

Table 2. CDFs for lines between buses 3 and 24.

Bus CDF Bus CDF

1 0.4330 13 −0.0768
2 0.4853 14 −0.3205
3 1.3113 15 −0.7625
4 0.3358 16 −0.634
5 0.0359 17 −0.5492
6 −0.4014 18 −0.5419
7 −0.0498 19 −0.5507
8 0.1511 20 −0.4097
9 0.3992 21 −0.6040
10 0.1580 22 −0.5824
11 −0.0463 23 −0.3308
12 0.0232 24 −1.8239

4.3. Solution Results and Comparison

To verify the effectiveness of the proposed approach, the performances of conventional OPF,
VSCOPF, and P-VSCOPF with respect to CM were compared for the modified IEEE-24 bus system.
In our study, all three methods were utilized to consider the optimal installation of the wind farm in
bus 3, which is obtained through a CDF based on VSI. However, both conventional OPF and VSCOPF,
which take into account only the mean values of loads and the wind farm’s output, do not consider
the probabilistic effects between the loads and the wind farm’s variability. Meanwhile, P-VSCOPF
consists of two parts: an MCS for selecting both the wind output and load input variables and MOPSO
for solving the multi-objective optimization problem. It was implemented based on 1000 MCS trials.
Table 3 presents the optimal solution results for P-VSCOPF. Note that these results represent the mean
values of 1000 MCS trials based on MOPSO. The power generation (PG) in bus 3, which was connected
to the wind farm, was 295.1 MW. This value was determined by the performance of 1000 MCSs with
probabilistic variables taken into account. Figure 8 reveals the estimates of the Pareto optimal front,
which relates PayISO and the loading parameter λc. Note that the Pareto optimal front of the test
system exhibits highly nonlinear relationships between the social welfare and the voltage stability
margin. A suitable range for the weighting factors is approximated to be 0.4–0.8. In fact, for values
smaller than 0.4, system security can almost be ignored, and for values higher than 0.8, market power
will happen. On the other hand, with respect to the weighting factors within this range, an importance
of between 0.4 and 0.8 was assigned to the voltage security. Therefore, we assume that the results of
our work apply to test systems with w = 0.6.
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Table 3. Optimal solution results for P-VSCOPF.

Bus LMP ($/MWh) NCP ($/MWh) PG (MW) PD (MW) PayISO ($/h)

1 19.4849 0.1934 172 95.04 −1499.55
2 19.5338 0.2067 172 128.04 −858.71
3 18.7920 0.0381 295.1 158.40 2976.65
4 20.1954 0.3120 0 91.48 1847.48
5 19.9423 0.2783 0 62.48 1245.99
6 20.2911 0.3769 0 119.68 2428.43
7 20.2384 0.3134 220.9 161.22 −1208.19
8 20.6143 0.3823 0 150.48 3102.04
9 19.7676 0.2084 0 154.00 3044.22
10 19.8959 0.2633 0 171.60 3414.13
11 19.7557 0.0982 0 0 0
12 19.7065 0.0519 0 0 0
13 19.5299 0.0000 237.8 233.20 −99.62
14 19.5805 0.0460 0 256.08 5014.17
15 18.7755 −0.2834 167 461.64 5532.00
16 18.9073 −0.2417 155 132.00 −434.87
17 18.5877 −0.3417 0 0 0
18 18.7890 −0.3691 400 439.56 −2176.06
19 19.0499 −0.1925 0 238.92 731.42
20 18.9498 −0.2156 0 168.96 4551.40
21 18.3782 −0.3990 400 0 −3201.76
22 17.9248 −0.5160 300 0 −7351.28
23 18.8138 −0.2532 350 0 −12417.08
24 18.5280 −0.3474 0 0 −7040.64

Figure 8. Pareto optimal front for P-VSCOPF.

Figure 9 compares the LMPs and the NCPs. As shown in Figure 9a, for CM, the LMP differences
were less with P-VSCOPF than they were with either the conventional OPF or VSCOPF. It is clear
that the congestion problems were resolved by minimizing the LMP differences and then maintaining
them at the lowest possible levels. As shown in Figure 9b, the range of NCP values was −0.6954 to
0.5962 $/MWh. Here, NCP values at bus 13 (the slack bus) were zero. Lower NCP values indicate
lower congestion in the test system. The congestion mitigation of P-VSCOPF was the most effective
among those of all of the methods, since the NCP of P-VSCOPF was the lowest. A comparison of
the results obtained in each case reveals that the best solution for CM was obtained with P-VSCOPF.
Consequently, appropriate realizations of both the voltage stability constraints and the contingency
analyses not only result in a better distribution of electricity prices but also reduce the influence of
system congestion.
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(a)

(b)

Figure 9. Comparison of optimal pricing for CM. (a) LMPs; (b) NCPs.

Table 4 shows a comparison of the optimal solutions for the three methods. Compared to both
the conventional OPF and the VSCOPF, the proposed approach provides higher values for time to
live (TTL), TML, and ALC. The use of enhanced LMPs also results in an improved total ISO payment,
although the accrued system losses are higher according to the TTL. Meanwhile, the conventional OPF
provides the lowest VSM of 364.37 MW after CM has been applied. Despite the fact that the OPF relives
congestion, it does not ensure secure operations of the power network. The stability margin could be
low, leading to a vulnerable network. When compared to the OPF, the VSCOPF alleviates congestion,
ensuring the power system’s security in terms of voltage stability. Nevertheless, the stability margin of
VSCOPF remains low after congestion relief has taken place. This means that the total ISO payment
should increase because of the additional set of system constraints. In addition, neither the conventional
OPF nor the VSCOPF considers the probabilistic effects between the congestion and the wind farm’s
variability, taking only the mean value of the wind farm’s output into account. On the other hand, the
proposed approach not only provides the system with a larger VSM of 685.43 MW but can also relieve
congestion by considering the margin of the system’s stability with respect to the uncertainty in the
wind farm. The ISO makes selective payments to both participants that can mitigate congestion as
well as those that affect the system stability margin significantly.
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To evaluate the ongoing security after CM has been executed, the voltage profiles of the buses for
the three methods are shown in Figure 10. The horizontal and vertical axes represent the bus numbers
and the voltage magnitudes, respectively. A good voltage profile is one of the indications of a more
secure power system. The voltages of P-VSCOPF are the highest among all methods for all of the
buses. Thus, P-VSCOPF not only provides a greater stability margin but also leads to a better voltage
profile than the other OPF methods do. This means that the system is more robust and can maintain
stability even under the most severe circumstances.

Table 4. Comparison of optimal solutions of three methods.

Method TTL (MW) System Losses (MW) TML (MW) ALC (MW) PayISO ($/h) VSM (MW)

Conventional OPF 3056.97 52.63 3246.19 189.22 1049.95 364.37
VSCOPF 3139.86 42.39 3555.11 385.25 820.13 640.87

P-VSCOPF 3222.77 41.92 3638.04 415.36 812.26 685.43

Figure 10. Voltage profiles of three methods.

5. Conclusions

In this paper, a probabilistic, multi-objective approach for CM that considers both voltage stability
and wind energy was proposed. P-VSCOPF was formulated as a multi-objective problem not only for
maximizing social welfare but also for improving the voltage stability margin. It can be used to assist
both ISOs and planners in visualizing the nonlinear relationships between power transfer levels and
voltage stability margins via the MOPSO algorithm. MCSs were applied to select the input variables of
both wind speed and load by using the probability distribution functions. The problem was solved
using 1000 trials of an MCS. The VSI was calculated to increase the accuracy of the sorting and ranking
technique in the contingency analysis. The optimal location of a wind farm, with a special emphasis on
CM, was also determined using the CDF. The influence of the wind output variations on the congestion
price, which is related to both the LMPs and the NCPs, was analyzed. The VSM, ALC, and TML were
employed as measures of voltage stability. To illustrate its effectiveness, the proposed approach was
both demonstrated and compared to the conventional OPF and VSCOPF using the modified IEEE-24
bus system with wind farms. The simulation results revealed that the P-VSCOPF achieved discernible
advantages over all of the other OPF methods. It was able to not only minimize the LMP differences
and lower the NCP for CM but also increase the VSM. Therefore, the information provided by the
proposed approach can be useful in both the planning and operation of various power systems.

36



Appl. Sci. 2017, 7, 573

Acknowledgments: This research was supported by Korea Electric Power Corporation through Korea Electrical
Engineering & Science Research Institute. (grant number: R15XA03-55).

Author Contributions: Jin-Woo Choi proposed the content of this paper and Mun-Kyeom Kim coordinated the
proposed manuscript approach.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Constants
ρ Air density (=1.205 kg/m2)
γw,opt Optimal tip speed ratio
Gp,opt Optimal power coefficient of wind turbine
R Rotator radius
ωm,opt Optimal rotational speed
Scut−in Cut-in speed of wind turbine
Srated Rated speed of wind turbine
Scut−out Cut-out speed of wind turbine
Pmax, Pmin Maximum and minimum limits of possible power
λcmax , λcmin Maximum and minimum limits of loading margin
PSmax , PSmin Maximum and minimum limits of supply bid
PDmax , PDmin Maximum and minimum limits of demand bid
QGmax , QGmin Maximum and minimum limits of reactive power
Iijmax Maximum limit of line currents between nodes i and j
Vmax, Vmin Maximum and minimum limits of voltage magnitude
μmax, μmin Maximum and minimum limits of shadow price
T Scheduling time (e.g., 24 h)
c1, c2 Acceleration coefficients
Variables
β Blade pitch angle
Sw Wind speed
b Scale parameter of Rayleigh distribution
k, a Shape and scale parameter of Weibull distribution
σL Standard deviation of load
eL Expected value of probability variable
w Weighting factor
Pw,rated Rated power of wind turbine
PWF,i Active power output of wind farm at bus i
PWF,n Active power of nth wind turbine
ΔPn Variation in active power of nth bus
PG, PL Power outputs of generator and load, respectively
PGo , PLo Current power outputs of generator and, respectively
PS, PD Supply and demand bid volumes (in MW), respectively
CS, CD Bid prices for supply and demand (in $/MWh)
QG Generator reactive power
ΔPic jc Variation of power flow in critical condition
Pij, Pji Power flowing through lines in both directions
Vi, Vj Voltage magnitude at buses i and j, respectively
Iij, Iji Line currents in both directions
PSNB Power output of SNB point for voltage collapse
Pbase Power output at base operating point
δi, δj Voltage angle at buses i and j, respectively
θij, Yij Angle and magnitude of ijth element of Ybus, respectively
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λc Loading parameter under critical conditions
kGc Loss distribution factor
ϕ Lagrange multiplier
μ Dual variable
ϕDi Constant load demand power factor angle
Xk

a , Zk
a Position and velocity of ith particle at iteration k, respectively

Wi, Wf Initial and final values of inertia weight
Numbers and Sets
Jr Reduced Jacobian matrix
NTn Number of wind turbines
k Number of iterations
itermax Maximum number of allowed iterations
r1, r2 Random numbers between 0 and 1

Appendix A. Derivation of CDF

The real power flow on line k connected between bus i and bus j is formulated as [30]:

Pij = |Vi|
∣∣Vj
∣∣∣∣Yij

∣∣cos(θij − δi + δj)− V2
i Yij cos θij. (A1)

Applying the approximation of a Taylor series expansion and ignoring the effects of the remaining
higher-order terms, Equation (A1) gives

ΔPij =
∂Pij

∂δi
Δδi +

∂Pij

∂δj
Δδj +

∂Pij

∂Vi
ΔVi +

∂Pij

∂δj
. (A2)

Equation (A2) can be rewritten as

ΔPij = aijΔδi + bijΔδj + cijΔVi + dijΔVj. (A3)

The coefficients in Equation (A3) are formulated from the partial derivatives of the real power
injection corresponding to the variables δ and V and given as

aij = ViVjYij sin(θij + δj − δi), (A4)

bij = −ViVjYij sin(θij + δj − δi), (A5)

cij = VjYij cos(θij + δj − δi)− 2ViYij cos θij, (A6)

dij = ViYij cos(θij + δj − δi). (A7)

The Newton–Raphson Jacobian relationship is considered in determining the CDFs as

[
ΔP
ΔQ

]
= [J]

[
Δδ

ΔV

]
=

[
J11 J12

J21 J22

][
Δδ

ΔV

]
(A8)

Taking the coupling between ΔP–Δδ and ΔQ–Δδ into consideration and assuming that the reactive
power flows are constant (i.e., ΔQ = 0), the power injections variations can be expressed by

ΔP = J11Δδ + J12ΔV, (A9)

0 = J21Δδ + J22ΔV. (A10)

Equations (A9) and (A10) then become

ΔP = J11Δδ − J12 J−1
22 J21Δδ = JrΔδ. (A11)
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From Equation (A11), the value of the voltage angle variation is given by

Δδ = [Jr]
−1ΔP. (A12)

From Equation (A10), the voltage variation with respect to the variations in power can be written
as

ΔV = J−1
22 J21Δδ = J−1

22 J21[Jr]
−1ΔP. (A13)

Equations (A12) and (A13) are formulated as

Δδi =
n

∑
l=1

milΔPl i = 1, 2, ..., n, i �= s, (A14)

ΔVi =
n

∑
l=1

milvΔPl i = 1, 2, ..., n, i �= s. (A15)

Substituting Equations (A14) and (A15) into Equation (8), the variation in real power flow becomes

ΔPij = aij

n

∑
l=1

milΔPl + bij

n

∑
l=1

mjlΔPl + cij

n

∑
l=1

mjlvΔPl + dij

n

∑
l=1

mjlvΔPl . (A16)

Equation (A16) can be rewritten as

ΔPij = (aijmi1 + bijmj1 + cijmi1v + dijmj1v)ΔP1

+...(aijmin + bijmjn + cijminv + dijmjnv)ΔPn
. (A17)

Thus, the CDF corresponding to both the nth bus and the line ij, connecting buses i and j, can be
obtained as

ΔPij = CDFij
1 ΔP1 + CDFij

2 ΔP2 + ... + CDFij
n ΔPn, (A18)

CDFij
n = aijmin + bijmjn + cijminv + dijmjnv. (A19)
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Abstract: Increasing the penetration levels of renewable energy sources (RESs) in microgrids (MGs)
may lead to frequency instability issues due to intermittent nature of RESs and low inertia of MG
generating units. On the other hand, presence of electric vehicles (EVs), as new high-electricity-
consuming appliances, can be a good opportunity to contribute in mitigating the frequency deviations
and help the system stability. This paper proposes an optimal charging/discharging scheduling of
EVs with the goal of improving frequency stability of MG during autonomous operating condition.
To this end, an efficient approach is applied to reschedule the generating units considering the
EVs owners’ behaviors. An EV power controller (EVPC) is also designed to determine charge and
discharge process of EVs based on the forecasted day-ahead load and renewable generation profiles.
The performance of the proposed strategy is tested in different operating scenarios and compared to
those from non-optimized methodologies. Numerical simulations indicate that the MG performance
improves considerably in terms of economy and stability using the proposed strategy.

Keywords: microgrid (MG); renewable energy sources (RESs); electric vehicle (EV); frequency stability;
energy management strategy (EMS)

1. Introduction

Microgrids (MGs) are a part of distribution systems that include several means of distributed
generation (DG), renewable energy sources (RESs), storage devices and controllable loads and have the
capability to operate either in connected or isolated mode [1,2]. During islanded operation, due to low
inertia of MG and intermittent nature of RESs such as wind and solar, there might be some frequency
deviations beyond the acceptable range. Thus, an islanded MG requires specific primary and secondary
frequency control schemes, in order to maintain power balance between generation and load and
restore frequency to the nominal value [3]. Moreover, MG requires sufficient spinning reserve provided
by DG units or energy storage systems (ESSs) to keep power balance during islanded operation [4].
With increasing penetration level of EVs and considering that they are available most of the times in
a day, they can play the role of ESSs in a way to alter their energy consumption/production level under
the vehicle-to-grid (V2G) concept and exchange the power with the grid [5]. Thus, with V2G capability,
EVs can provide ancillary services for the grid, such as frequency regulation [5], load levelling [6,7]
and spinning reserve [8]. With the application of a well-designed energy management system (EMS),
EVs can act as an effective solution to compensate the uncertain behaviour of RESs. On the other
hand, EVs without any proper management strategy could cause a number of issues such as energy
losses, overloads, and voltage and frequency fluctuations [9]. Different methods have been used in
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recent literature to manage EVs’ charging and discharging process to facilitate ancillary services in
the presence of RESs [10,11]. The role of EVs in primary frequency response and in the presence
of renewable energies was investigated in [5] for the Great Britain power system. By considering
three EV charging strategies, it was shown that a proper EV charging strategy is effective in primary
frequency response and can stabilize the grid frequency when is needed. In [12], with regard to
the randomness of renewable energy generation, the operation of EVs in the MG was scheduled to
minimize cost of charging. Moreover, economic incentives for EV owners to compensate the wind
forecast uncertainties were provided in [13]. Coordination of EVs and minimization of the penalty cost
associated with wind power imbalances was studied in [14]. Authors in [15] presented an aggregated
primary frequency control model, where a participation factor, based on the state-of-charge (SOC),
was used to determine the droop characteristic. It was investigated that EVs can effectively improve
the system frequency response due to their ability to participate in primary reserves. The work in [16]
performed a comparative study in order to evaluate benefits of EVs providing primary frequency
control in an islanded system with high penetration of RESs. A control strategy was also presented
in [17] in order to provide active participation of EVs for load frequency response purposes. In the same
study, the SOC of EVs was managed by using a smart charging strategy in order to obtain a scheduled
charging level requested by an EV owner. In a similar manner, Ref. [18] provided frequency regulation
to the power grid using EVs with an effective pricing policy, and Ref. [19] presented a frequency
control method considering both EVs and controllable loads.

When an MG enters an isolated mode due to loss of the main grid or a blackout/fault, it necessitates
appropriate control and management schemes such that both the economical and stability targets are
achieved. In this regard, this paper proposes an EV energy management scheme for MG autonomous
operation based on local frequency measurements such that EVs will contribute. The participation of
EVs will contribute to the frequency stability of the MG in off-grid times. The proposed control strategy
is intended to manage EVs’ charging and discharging process considering cost signal and the demand
not supplied by renewable resources (DNSRen) in order to keep the power balance within the MG.
The major contributions of this paper are summarized as follows:

• Developing a stability margin index considering variability of load and renewable resources
generation to attain the electricity cost signal to manage EVs’ charging and discharging process.

• Application of a new EV power controlling (EVPC) scheme to improve frequency stability of
an islanded MG.

• Maximize the MG operator’s profit and minimize total emission of generating units.

The remainder of this paper is organized as follows. The EV power controlling (EVPC) scheme
is discussed in Section 2. The problem of techno-economic optimization of the MG is formulated in
Section 3. The simulation results and discussion are expressed in Section 4 and the conclusion is drawn
in Section 5.

2. EV Power Controlling (EVPC) Scheme

2.1. MG Energy Management and Control

The stochastic behavior of RESs might cause inevitable concerns for the reliable operation of
an islanded-MG. Any power fluctuation in such energy resources may lead to imbalance between
load and generation, and, as a result, the frequency may deviate from its nominal value. On the other
hand, an appropriate EV energy management strategy can respond to system frequency deviation and
thus provide primary frequency regulation. EVs can supply (absorb) energy to (from) the network
considering two possible operating modes: grid to vehicle (G2V) mode (charge and absorb power) and
V2G mode (discharge and inject power to the network). Thus, from the MG operator’s point of view,
EVs can act both as load and generation. EVs participate in frequency control to charge in low load or
high generation hours and discharge during high load or low renewable generation hours. In order to
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measure the power mismatch between demand and renewable resources generation, an indicator is
introduced here as demand not supplied by renewable sources (DNSRen) and defined as below:

DNSRen(t) = D(t)− PRen(t) ∀t ∈ T, (1)

where D(t) and PRen(t) are total demand and generation of renewable resources in period t,
respectively. In an isolated MG without energy storage, DNSRen should be supplied by dispatchable
generators (DGs). The difference between the maximum installed capacity of DG units and DNSRen
stands for the spinning reserve capacity of MG. Here, the normalized value of this capacity is defined
as stability margin index (SMI):

SMI(t) = 1 − DNSRen(t)
∑

i∈NG
Pmax

i
∀t. (2)

The SMI index value at each time period depends on the installed capacity of DG units, output
power of renewable resources and customers’ demand. As an illustrative example, the variation of
SMI during 24 h of a given day is shown in Figure 1. When the total demand is supplied by renewable
resources, SMI value is 1 and it is zero if DNSRen is equal to the total installed capacity of DGs. If the
generated power of RESs is more than the total demand, then SMI will be more than 1 (e.g., point
P1 in Figure 1). In this case, as it can be observed, the system frequency is unstable, and, in order to
keep frequency within its nominal value, dump load (DL), which is comprised of a set of three-phase
resistors connected in series, is used in order to be activated to absorb that excess power. Moreover,
if a portion of load is supplied by RESs, the SMI index takes a value between 0 and 1. In this case,
the system frequency remains within its nominal values, but its variation differs in various points of
SMI. For example, as it can be observed from Figure 1, the frequency at points P2 and P3 has different
variations but is still in the accepted range. Furthermore, when SMI value is less than zero (i.e., point
P4 in the system frequency drops, thus it is required to inject power to the network (for example, by
discharging of EVs)). In the next step, SMI is applied to obtain electricity buying and selling prices for
EVs’ energy management.

The cost signal should follow the SMI index in such a way to encourage EV owners to charge or
discharge their vehicles for keeping the power balance of the system and improving the frequency.
Thus, cost signal should track the SMI trend with considering the range of electricity buying price (EBP)
and electricity selling price (ESP) obtained from electricity market. On the other hand, the maximum
(minimum) value of electricity price represents the highest (lowest) value of SMI. Other prices are fitted
between these two limitations based on the values of SMI with the application of numerical analysis.

Figure 1. A typical stability margin index (SMI).
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2.2. EVPC Structure

In calculating the payments to (by from) the MG operator when EVs are charged (discharged),
EBP (ESP) value is introduced to reflect both the wholesale electricity prices and domestic tariffs [20].
Generally, once an EV is connected to the MG, it will be charged and thus has to pay for the consumed
energy based on the EBP. However, when it discharges, it receives payments based on the ESP for
providing the service. The high level of ESP is considered as a high electricity selling price (HESP), and,
here, it is set at 85% of the maximal ESP. Moreover, the high level of EBP is considered as high electricity
buying price (HEBP), and it is set at 60% of the maximal EBP. In the islanding operation mode of MG,
the major goal is to keep the system power balance and, consequently, to limit frequency variations
within the allowed range. Considering the same objective, this paper presents an EVPC scheme as
an energy management strategy in order to manage the participation of EVs in charging/discharging
process with considering the intermittent behavior of renewable resources. Figure 2 shows the
algorithm of an EVPC scheme for optimal scheduling of the MG, and it includes three stages. In the
first stage, the difference between day-ahead load and the forecasted power of renewable resources
would be calculated to obtain stability margin index and the electricity cost signal that are utilized for
managing the power of EVs. This stage includes the following parts:

• Forecasted load and output powers of RESs (wind and solar); it is assumed that the day-ahead
load demand and renewable generations are determined.

• Index calculation part; in this block, SMI is calculated using Labels (1) and (2).
• Price calculation part; the electricity prices are obtained based on SMI index.
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Figure 2. Algorithm of the electric vehicle power controller (EVPC) scheme for optimal scheduling of
the microgrid (MG).
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In the second stage, an optimal scheduling of the generating units is done to match the demand
for the scheduling horizon properly through a unit commitment algorithm and optimal power flow
procedure by considering system’s objectives and constraints (technical and security).

In the third stage, the MG emergency operation is determined and the frequency behavior is
evaluated. Since, the MG is operating in islanded mode, the power unbalance (Pdist

t ) will result from
the changes in loads or generation. The emergency active power of unit i at the certain time t (dPi,t),
is defined as: ⎧⎪⎨

⎪⎩
dPi,t = Pdist

t · Ri,t
Rt

NG
∑

i=1
dPi,t = Pdist

t
∀t, (3)

where Ri,t is the reserve capacity of unit i at time period t, and Rt is the total available generation
reserve at time period t.

The demand load, EV power and the generation emergency dispatch are applied as inputs to the
MG dynamic model, in order to evaluate the energy balance within the MG for a given period and the
expected frequency deviation in the event of a disturbance. Based on the dynamic model results, if the
MG does not have enough reserve capacity, it is necessary to exploit emergency load curtailment (LC).
Moreover, DL is applied when RESs’ generated power is high and a portion of it is not consumed.

2.3. Coordination of EVs Operation with EVPC

Different types of charge and discharge of EVs are considered based on electricity cost signal and
their SOC when plugged in: charging with high current (IH), charging/discharging with medium
current (IM) and low current (IL). The flowchart of delivered power of EV k is depicted in Figure 3.
The transacted power of each EV would be obtained based on its initial conditions such as SOC and
the calculated EBP and ESP based on SMI index. The relationship between SOC of EV k and the
charge/discharge current is obtained from (4) [9]:

SOCk,t = 1 − Ik,t × Δtplug

3600Ca
k

, (4)

where Ik,t, Δtplug and Ca
k are the current, plugged-in time (in seconds) and the available capacity

of the battery. Since most EV companies use lead acid batteries for their vehicles, here, this kind
of technology is also adopted. The voltage against released capacity at different discharge/charge
currents for a lead-acid battery is extracted from [20].

In addition, in idle or driving mode, there is no power transaction between EV and the MG,
but the stored energy might decrease depending on the length of its daily travel (Lk) and its energy
consumption per km (rk). Each EV comes back to the parking lot after driving Lk km and its SOC at
the entrance of parking lot (SOCent

k ) is obtained as following:

SOCent
k = SOCint

k − Lk × rk, (5)

where SOCint
k is the SOC at the start of a day trip.

The value of EV SOC at time t is obtained with respect to the amount of its initial SOC,
charge/discharge energy (when it is connected to the grid) and the energy decreased due to its
travelling. On the other hand, SMI index at time t would be calculated from the previously-mentioned
equations. With considering both SOC and SMI indexes, the charge/discharge process would be
determined. In other words, if EV is connected, the value of current that EV absorbs (injects) from
(to) the network would be found. Then, the voltage would be obtained based on the voltage-current
characteristic of the battery. Thus, with the obtained voltage and current, the transacted power between
EV and the network would be captured. This process repeats at each time t.
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Figure 3. Flowchart of delivered power of electric vehicle (EV) k.

3. Problem Formulation

In order to investigate techno-economic valuation and optimization of the proposed strategy in
the MG, a multi-objective optimization problem is formulated with several objectives.

3.1. Objective Function

In the proposed multi-objective problem, three objectives are considered as the MG operator’s
profit (F1) maximization, and minimization of the total emission (F2) as well as the cost corresponding
to frequency deviation of the MG (F3). The total MG operator’s profit is formulated as:

F1 =
T
∑

t=1

NJ

∑
j=1

Cj,t·Dj,t

− T
∑

t=1

NG
∑

i=1
[(Ai·ui,t + Bi·Pi,t) + SUCi·yi,t+ SDCi·zi,t]

− T
∑

t=1

NW
∑

w=1
Cw,t·Pw,t −

T
∑

t=1

NP
∑

p=1
Cp,t·Pp,t

+
T
∑

t=1

Nch
∑
k

EBPt·Pch
k,t −

T
∑

t=1

Ndis
∑
k

ESPt·Pdis
k,t

. (6)

The first line of Label (6) represents the MG operator’s revenue from selling energy to the
consumers. The second line stands for the fuel cost of generation units and the start-up/shut-down
costs. The third line denotes the costs associated with energy provided from the wind turbine (WT) and
photovoltaic (PV) units. Here, it is assumed that the MG operator is not the owner of the renewable
resources and is only responsible for the scheduling of the renewable units in the MG, so he should
pay for energy provided by WT and PV. Finally, the last line expresses the costs associated with charge
and discharge of EVs.
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The second objective is to minimize the MG pollutants’ emissions generated by DG units that
consist of CO2, NOx and SO2:

F2 =
T

∑
t=1

[
NG

∑
i=1

(EmiCO2
t,i + EmiNOx

t,i + EmiSO2
t,i ) . (7)

The cost corresponding to MG frequency deviation should be minimized during scheduling
horizon, which can be considered as a quadratic function of SMI as shown in Figure 4.

1SMI 2SMI 3SMI

3SMIC

2SMIC

1SMIC

Figure 4. Piecewise linear cost curve of frequency deviation for an hour.

The piecewise linear model for one period is represented as the following:

f3(t) =
NS(i)

∑
m=1

vm,t·SMIt·ut ∀t, (8)

F3 =
T

∑
t=1

f3(t), (9)

where vm,t is the slope of segment m in linearized total penalty cost and NS(i) is the number of segments.
In addition, ut is a binary variable, equal to 0 if SMI has its expected limitation value (system stability
is not at risk); otherwise, it is 1.

3.2. Mixed-Objective Function

Considering the above-mentioned objectives, the mixed-objective optimization problem can be
developed as follows:

Max : Mobj = WC(F1) + WE·μE·(−F2) + WSMI ·(−F3), (10)

where WC, WE and WSMI are weighting factors of the objective functions F1, F2 and F3, respectively, and
μE is the emission penalty factor in terms of £/kg. In the proposed weighted-sum model, the weighting
factors can be set based on a multiple-criteria decision analysis (MCDA) done by the MG operator.

3.3. Constraints

The mentioned optimization problem is solved subject to the constraints as follows:

• Demand–supply balance equation: the balance between the total active power production and
consumption in both grid-connected and isolated modes of MG is presented as:

PGrid
t +

NG

∑
i=1

Pi,t +
NW

∑
w=1

Pw,t +
NP

∑
p=1

Pp,t +
Ndis

∑
k=1

Pdis
k,t =

NJ

∑
j=1

Dj,t +
Nch

∑
k=1

Pch
k,t. (11)
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The left-side of Label (11) corresponds to the total available power in the MG at time period
t including the expected WT and PV generation, the scheduled discharged power from EVs,
the power of DG units and the exchanged power with the utility. In addition, the right side of
Label (11) represents the total load and the power fed to the EVs.

• EVs constraints: Equations (12) and (13) define the power bounds for both EVs charging and
discharging processes:

0 ≤ Pch
k,t ≤ Pmax,ch

k , (12)

0 ≤ Pdis
k,t ≤ Pmax,dis

k , (13)

where Pch
k,t and Pdis

k,t are charging and discharging power of kth EV. In addition, Pmax,ch
k and Pmax,dis

k
are maximum charging and discharging power of kth EV, respectively.

• Power generation capacity: Active power output of a generation unit should be bounded within
a range as follows:

Pi,t ≤ Pmax
i ui,t − RU

i,t ∀i, ∀t, (14)

Pi,t ≥ Pmin
i ui,t + RD

i,t ∀i, ∀t (15)

4. Simulation Results and Discussion

4.1. Case Study

The considered MG test system shown in Figure 5 is used to demonstrate the effectiveness of the
proposed strategy. The test system includes a PV plant and a WT unit as renewable resources, a diesel
engine as a DG, EVs and loads. Moreover, a dump load bank is considered for dumping the surplus
energy produced by the RESs’ units in isolated mode operation. Based on an economical assessment
performed by HOMER Pro®, the optimal design of MG’s sources (installation capacities of resources)
is obtained for a region in the east of Iran (32.8649◦ N, 59.2262◦ E). With respect to this assessment
and considering the technical constraints, the installed capacity of PV, WT and DG are calculated as
300 kW, 375 kVA and 300 kVA, respectively.

Figure 5. Single line diagram of the examined MG.

The forecasted load, output power of WT, PV and the summation power of WT and PV (PRen)
in a typical day are depicted in Figure 6. It is also assumed that there are 100 EVs plugged into two
different parking lots (in residential and office buildings) and their arrival times are modeled based on
a Gaussian distribution with μ = 19 and δ2 = 10 [21].
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Figure 6. Forecasted demand and renewable generations in a typical day on an hourly basis.

Here, the minimum and maximum limit of SOC are considered as 40% and 90% of the total
battery capacity, respectively [22]. The connected EVs are assumed to be charged at different current
ratings (i.e., 2, 10 or 30 Ampere), and to be discharged either with 2 or 10 Ampere [23].

Moreover, it is assumed that the charge/discharge processes in both parking lots is the same and
the number of EVs in each parking lot is evaluated based on the available profiles depicted in Figure 7.
Due to EVs travelling, the number of EVs in both parking lots is a percentage of the total number
of EVs.
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Figure 7. Number of EVs in the house and office parking lots.

4.2. EVs Charge/Discharge Process with/without EVPC

Based on the explanation in Section 2, the DNSRen and SMI index over the 24-h horizon are
achieved in the under study system that are shown in Figures 8 and 9, respectively. To obtain the
cost signal based on the SMI index, the minimum and maximum values of SMI correspond with
the minimum and maximum values of cost signal in the wholesale market with the application of
numerical analysis. The other values of cost signal should remain in this range in such a way to
follow the SMI index. It should be noted that this cost signal is applied in the isolated mode by the
MG operator, but in the connected mode, the MG operator is a price taker and the cost signal of the
wholesale market is used for EV management.
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Figure 8. The demand not supplied by renewable resources (DNSRen) of MG over the 24-h horizon.

Figure 9. SMI over the 24-h horizon.

In this case, as shown in Figure 10a, the minimum electricity buying and selling prices are 0.186
and 0.184 (£/kWh), and maximum electricity buying and selling prices are 0.202 and 0.212 (£/kWh),
respectively. Figure 10b shows the day-ahead electricity selling and buying prices as adopted from [24].
As can be seen, the minimum electricity buying and selling prices are set to 0.169 and 0.149 (£/kWh),
while the maximum electricity buying and selling prices are considered as 0.191 and 0.245 (£/kWh),
respectively. This cost signal is used to be compared with the numerical results of the proposed signal.
The exchanged power between EVs and the MG with/without EVPC in each time interval is shown in
Figure 11 for a typical day.
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(b) extracted from [23].
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Figure 11. The exchanged power between EVs and the MG with/without EVPC.

4.3. Frequency Stability Analysis with/without EVPC

To investigate the effect of EVPC on the MG frequency stability, it is assumed that at time 1:00,
the MG switches into isolated mode and remains in this mode during the scheduling horizon. Due to
a fault occurrence in the upstream at time 1:00, the MG switches into the isolated mode. In isolated
mode, MG frequency response is studied in two cases. In the first case, EVs do not participate in load
frequency control, while, in the second one, EVs contribute in the MG frequency regulation. Figure 12
shows the MG frequency variations in two cases.

Comparison of the two cases shows that the application of EVPC results in a lower frequency
deviation. As can be seen in the same figure, with EVPC, frequency varies in the range between 59 and
61.4 Hz; however, without it, the frequency drops to less than 57 Hz when the MG enters the isolated
mode. As can be observed from Figure 13, the minimum value of SMI occurs at 6:00. It can be shown
that, at this time, the system is in the critical condition without the application of EVPC.

Figure 12. Frequency variation in two cases over a 24-h horizon.

 

Figure 13. Variation of SMI with and without EVPC.

During islanded operation, due to low inertia of MG and intermittent nature of RESs and load,
there might be some frequency deviations beyond the acceptable range. As depicted in Figure 14,
due to a sudden load change of 20 kW at 6:30, the system frequency becomes unstable without EVPC.
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At this time, EVs are charged 140 kW without EVPC; however, with the application of that, they are
discharged at the rate of 68 kW/h. In fact, when the load demand increases suddenly, the amount of
reserve reduces. In this condition, generation of RESs is very low (7 kW) and so EVs’ high charging
leads to frequency drop. However, with the application of EVPC, due to a low amount of reserve
and the SMI index, EVs assist in the discharge process and the system obtains a proper margin for
its reserve and, consequently, frequency remains within its limitation. It should be mentioned that,
without EVPC, the frequency instability occurs at 11:00 due to surplus energy produced by RESs.
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Figure 14. Frequency variation at 6:00 (SMI is in its lowest value).

In order to assess fluctuation of frequency accurately, the frequency deviation with and without
EVPC is shown in Figure 15. At this time, without the EVPC scheme, EVs are discharged up to 56 kW
and with EVPC EVs are charged 142 kW, accordingly. On the other hand, with EVPC, EVs are charged
with lower power and frequency variation is less than the other case where there is no EVPC.

Thus, the value of SMI without EVPC is more than 1 and the system is unstable at 11:00. However,
with the application of DL, frequency remains within its expected value. In this case, DL consists
of a bank of resistive loads each with a consumption level of 1.75 kW (up to 175 kW). As it can be
observed from Figure 16, to keep the system power balance at 11:00, 30 kW of DL activated. Thus,
with the application of DL in the case without EVPC, the system remains stable at all times.

 

Figure 15. Frequency variation.

Figure 16. Dump load activation at 11:00.
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The maximum load demand occurs at 14:00 (368 kW), and frequency variation at this time is
shown in Figure 17. At this time, load has its maximum value and the production of RESs is 300 kW.
Based on both cost signals, EVs are charged 152 kW and 168 kW in cases with and without EVPC,
respectively, and the frequency is kept in its limitations in both cases.

As can be observed in Figure 12, frequency has an overshoot at 8:00 and 18:00 that is zoomed
in on in Figure 18. At these times, since SMI is higher in conditions without EVPC than that of in
circumstances with EVPC; hence, frequency deviation is further in the former conditions than the
latter ones.

 
Figure 17. Frequency variation at the maximum load.

The optimization results of the under-study system with and without the application of EVPC
are presented in Table 1. As it can be seen, the implementation of EVPC achieves better economic
results as compared to the case without it. The results reveal that the MG operator’s profit (F1) is
324.2 £, which is 30.1 £ more than the case without EVPC. Moreover, MG emission is decreased about
205.849 kg with the proposed strategy.

 
(a) 

 
(b) 

Figure 18. Frequency variation (a) at 8:00 and (b) at 18:00.

53



Appl. Sci. 2017, 7, 539

Furthermore, since the frequency deviations in the case with EVPC remain in the allowable range,
the cost corresponding with load frequency control is zero. However, in the case without EVPC, cost of
frequency control (F3) raises up to 11.7 £. Finally, the objective function that is equal to the total MG
operator’s profits with and without the implementation of EVPC are obtained as 282.1 and 237.6 £,
respectively. Thus, the assessment of the results shows that, with the application of EVPC, the total
MG operator’s profit is increased considerably.

Table 1. The optimization results of microgrid (MG) in scheduling time horizon.

Case F1 (£) F2 (kg) F3 (£) Objective Function (£)

Without EVPC 293.6 3408.691 11.7 237.6
With EVPC 324.2 3202.842 0.0 282.1

EVPC: Electric vehicle power controller.

5. Conclusions

In this paper, an optimal management strategy was proposed in order to schedule the
EVs’ charging/discharging process with the goal of improving frequency stability of MG during
autonomous operating conditions. In this way, a cost signal including EBP and ESP was proposed
based on the variation of SMI index that followed the intermittent nature of RESs and load variation.
Based on the proposed strategy, when frequency is at risk, EVs could absorb (inject) the surplus
(shortage) of energy and act as energy storage systems. The results also showed, that with the
application of this strategy, the frequency variation of MG in isolated mode is less than that without it.
Moreover, it is not required to use DL when the EVPC strategy is applied in the MG. Furthermore,
it was understood from the results that using EVPC strategy could increase the total MG operator’s
profit and decrease the emission substantially.
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Nomenclature

NG Number of generation units
NJ Set of loads number
Ns Number of scenarios
NW Number of wind turbine units
NP Number of photovoltaic units
NK Number of EVs
T Scheduling time (24 h a day)
i(j) Index of generating units (loads), running from 1 to NG (NJ)
b,n,r Indices of system buses
t (s) Index of time (scenario), running from 1 to T (Ns)
w (p) Index of WT (PV) units, running from 1 to NW (NP)
k Index of EVs, running from 1 to NK

Cw,t (Cp,t) Energy bid submitted by WT w (PV p) in period t (£/kWh)
CRU

i,t (CRD

i,t ) Bid of the up (down)-spinning reserve submitted by unit i in period t (£/kWh)
CRU

j,t (CRD

j,t ) Bid of the up (down)-spinning reserve submitted by load j in period t (£/kWh)

CRNS

i,t Bid of the non-spinning reserve submitted by unit i in period t (£/kWh)
SUCj,t (SDCj,t) Start-up (shut-down) cost of unit i in period t (£)
ρ(t) Electricity price in period t (£)
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Pi,t Scheduled power for unit i in period t (kW)
Pw,t (Pv,t) Output power of WT w (PV v) in period t (kW)
Px

max (Px
min) Maximum (minimum) generating capacity of unit x (kW)

Pk,t
EV,ch (Pk,t

EV,dis) Charging (discharging) and discharging power of EV k in period i (kW)
RU

i,t (RD
i,t) Scheduled up (down)-spinning reserve for unit i in period t (kW)

RNS
i,t Scheduled non-spinning reserve for unit i in period t (kW)

RU
j,t (RD

j,t) Scheduled up (down)-spinning reserve for load j in period t (kW)
ui,t Binary variable, equal to 1 if unit i is scheduled to be committed in period t otherwise 0
yi,t Binary variable, equal to 1 if unit i is starting up in period t otherwise 0
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Abstract: In recent deregulated power systems, demand response (DR) has become one of the most
cost-effective and efficient solutions for smoothing the load profile when the system is under stress.
By participating in DR programs, customers are able to change their energy consumption habits in
response to energy price changes and get incentives in return. In this paper, we study the effect of
various time-based rate (TBR) programs on the stochastic day-ahead energy and reserve scheduling
in residential islanded microgrids (MGs). An effective approach is presented to schedule both
energy and reserve in presence of renewable energy resources (RESs) and electric vehicles (EVs).
An economic model of responsive load is also proposed on the basis of elasticity factor to model the
behavior of customers participating in various DR programs. A two-stage stochastic programming
model is developed accordingly to minimize the expected cost of MG under different TBR programs.
To verify the effectiveness and applicability of the proposed approach, a number of simulations are
performed under different scenarios using real data; and the impact of TBR-DR actions on energy
and reserve scheduling are studied and compared subsequently.

Keywords: demand response (DR); scheduling; time-based rate (TBR) programs; renewable energy
resources (RESs); electric vehicles (EVs)

1. Introduction

One of the major thrust areas of demand side management (DSM) is demand response (DR)
which is defined as a set of actions taken to reduce users’ electricity consumptions in response to
higher market prices or market incentives [1]. Moreover, system operators may apply DR programs to
reduce the load temporarily in emergency grid conditions such as unit outage or unpredictable change
in renewable generation [2,3]. Therefore, the main idea of DR is to encourage customers to manage
their consumption patterns in a way not only to maximize their own utility, but also to support safe
operation of the power system [4].

According to the Federal Energy Regulatory Commission (FERC), DR programs can be classified
into two major categories, namely, time-based rate (TBR) and incentive-based programs (IBPs) [5].
In TBR programs (also known as price-based DR programs [6]), time-varying prices are given to
consumers based on the electricity price in different time periods, encouraging them to change their
consumption level in response to the changing price signals. On the other hand, in IBP schemes,
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customers are offered fixed or time-varying incentives, to reduce their electricity consumption during
periods of system stress, however they would be penalized for no participation in the program [7].

The focus of this paper is on TBR programs which are mainly divided into three categories,
real-time pricing (RTP), time of use (TOU), and critical peak pricing (CPP) programs. These programs
are well-suited for implementation in residential areas (e.g., residential microgrids (MGs)) where
there are more possibilities for load management purposes [8–11]. However, there exist a number
of challenges, such as rebound peaks during low cost periods and service interruptions. Moreover,
the presence of uncertain elements within an environment such as wind and photovoltaic (PV) power
generation imposes development of sophisticated balancing mechanisms between supply and demand
to meet the system stability. Therefore, TBR models need to be well-designed and implemented to
provide efficient operating conditions for such systems in presence of uncertainties.

Regarding the MG scheduling under uncertainty, much research has been done recently [12–21].
The effect of wind energy forecast errors on the network-constrained market-clearing problem, in which
energy and reserve are simultaneously dispatched, was investigated in [12,13] using two-stage stochastic
programming models. Based on the proposed method in [12], cost of MG was minimized with regard to
the uncertainty of renewable energy resources (RESs). In [13], optimal dispatch of a MG was presented
with regard to emissions and fuel consumption cost minimization using heuristic optimization.
Authors in [14,15] exploited MG management as a multi-objective optimization problem to mitigate
emission level as well as operation and maintenance costs. To obtain efficient energy management,
artificial intelligence techniques were also used with multi-objective optimization programming [16].
However, in the reviewed literature, the procurement of the MG reserve (in terms of spinning and/or
non-spinning reserve) for reliable operation of the system has been neglected. To address this issue,
effective methods for providing reserve in typical MGs with high penetration of RESs are developed
based on DR programs [17–19]. In [17], a day-ahead market structure was presented where DR can
provide contingency reserves through a bidding procedure representing the cost of load curtailment.
Also, authors in [18] introduced a price-responsive DR action for optimal regulation service reserve
provision under high levels of wind penetration. The same type of study was carried out in [19],
considering load uncertainty and generation unavailability as different working scenarios. In view
of the problem-solving strategies, most of the reviewed research works have utilized stochastic
programming techniques, however some have applied other methods such as robust optimization or
Monte Carlo simulation [20,21]. In [22], a stochastic AC security-constrained unit commitment problem
under wind power uncertainty has been formulated. Also, a stochastic multi-objective framework has
been proposed in [23], for joint energy and reserve scheduling in day-ahead however, this reference
has not considered AC network, load, EVs and wind power uncertainties. Furthermore, authors in [24]
have proposed a multi-objective structure that can optimize objective functions including operation
costs of MG, but they have not considered demand and EVs uncertainty in day-ahead scheduling.

This paper presents the effect of different types of TBR programs on the MG operation costs
and shaping the load profile in presence of RESs and electrical vehicles (EVs). EVs are employed
for energy scheduling or peak shaving with fast charging and discharging capabilities, while the
responsive loads are used to supply a part of the required MG reserve to compensate RESs uncertainties.
Monte-Carlo simulations together with k-means clustering technique are applied to create several
scenarios corresponding to renewable generation variations and EVs owners’ behaviors. The generated
scenarios are then reduced and fed into a two-stage optimization model developed for minimizing
the operation costs. In the first stage of optimization, the energy and reserve costs are minimized
simultaneously and in the second stage, the cost associated with the rescheduling of generating units
(due to the variations in wind turbine (WT) and photovoltaic (PV) output powers) is minimized.
Finally, simulation results for co-optimization of energy and reserves in the examined residential MG
are presented and compared under different DR programs and operating conditions. As a whole,
the main contributions of this paper can be highlighted as:
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• Optimal management of an islanded MG with RTP-based DR programs using a scenario-based
two-stage stochastic programming model.

• Simultaneous energy and reserve scheduling of MGs with regard to different DR schemes in
an uncertain environment.

• Assessment of TBR-based DR programs under different scenarios with/without considering
EVs participation.

The remainder of this paper is arranged as follows: a network-constrained day-ahead market
clearing model is introduced in Section 2 and it is reformulated into a mixed integer programming
(MIP) model in Section 3. The case studies are presented in Section 4 and the simulation results are
discussed thereafter. Finally, Section 5 concludes this paper with future scope.

2. Model Description

A network-constrained day-ahead market clearing model is developed under a two-stage
stochastic programming framework in order to accommodate the uncertain nature of RESs and
EVs. Based on [25] the MG uncertainties can be categorized into two groups:

(1) Normal operation uncertainties (including errors in forecasting wind data, EV operation,
and real-time market prices).

(2) Contingency-based uncertainties (including random forced outages, unintentional islanding,
and resynchronization events).

The subject area of this paper mainly falls in the first category so the optimization model is
developed in a way to effectively consider normal operation uncertainties including forecasting
errors of WT and PV power production and EV owner behaviors. A set of scenarios representing
MG uncertainties are generated for scheduling horizon. In order to render the problem tractable,
an appropriate scenario-reduction algorithm is applied to reduce the generated scenarios into
an optimal subset that represents well enough the uncertainties. In the next step, the optimization
problem is solved in two stages using commercially-available software packages. In the first stage of
the proposed optimization model, energy and reserves are jointly scheduled to balance supply and
demand. The second stage corresponds to operation management in several actual MG modes and
deals with variables that are scenario-dependent and have different values for every single scenario.
In other words, the first stage corresponds to the optimal decision for the deterministic base case,
while the second stage examines the feasibility and optimality of the first stage decisions under
system contingencies.

In the proposed framework, different customers sign contracts for participating in various TBR
programs and submit them to the MG operator. Based on the type of the consumers’ contributions,
MG operator finds the optimal day-ahead energy and reserve scheduling with regard to the minimum
expected cost of operation. At the same time, optimum participation level of consumers in each
DR program for reserve procurement is determined. Also, MG operator schedules the charging and
discharging process of the EVs for any time intervals in the studied period.

2.1. Market-Based DR Model

In order to evaluate the impact of residential customers’ participation in DR programs on load
profile characteristics, an economic model of responsive loads is developed on the basis of elasticity
factors. Elasticity is defined as demand sensitivity with respect to the electricity prices [26].

E(t, t) =
ρ0(t)
D(t)

∂D(t)
∂ρ(t)

(1)
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where, D(t) and ρ0(t) are the nominal/initial value of demand and electricity price, respectively. Based
on a single-period elastic load model, the customer changes his demand to achieve the maximum
benefit from D(t) to DDR(t) as:

DDR(t) = D(t) + ΔD(t) (2)

The customer benefit for the tth time interval can be calculated as:

S(DDR(t)) = B(DDR(t))− DDR(t) · ρ(t) (3)

where, S(DDR(t)) and B(DDR(t)) represent customer benefit and income at time t after implementing
DR programs, respectively. In order to maximize customer benefit, the following condition must be
met [27]:

∂S(DDR(t))
∂DDR(t)

= 0 ⇒ ∂B(DDR(t))
∂DDR(t)

= ρ(t) (4)

Therefore, the customer utility function would get a quadratic form as follows [27]:

B(DDR(t)) = B0(t) + ρ0(t)[DDR(t)− D(t)]×
[

1 +
DDR(t)− D(t)
2E(t, t) · D(t)

]
(5)

Differentiating (5) with respect to DDR(t) and substituting the result in (4) yields:

ρ(t) = ρ0(t)·
[

1 +
DDR(t)− D(t)

E(t, t) · D(t)

]
(6)

Therefore, a customer’s consumption behavior over the time can be obtained as follows:

DDR(t) = D(t) ·
[

1 + E(t, t) · ρ(t)− ρ0(t)
ρ0(t)

]
(7)

In a multi-period elastic loads model, the price elasticity of the tth period versus the hth period
can be defined as [26]:

E(t, h) =
ρ0(h)
D0(t)

· ∂D(t)
∂ρ(h)

(8)

Considering the linear relationship between the hourly demand level and the electricity prices,
it can be expressed that:

DDR(t) = D(t) ·

⎡
⎢⎢⎢⎢⎢⎢⎣

1 +
T

∑
t = 1
t �= h

E(t, h) · ρ(h)− ρ0(h)
ρ0(h)

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

Combining (7) and (9), the responsive load economic model can be extracted as follows:

DDR(t) = D(t) ·

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + E(t, t) · ρ(t)− ρ0(t)
ρ0(t)

+
T

∑
h = 1
h �= t

E(t, h) · ρ(h)− ρ0(h)
ρ0(h)

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

2.2. EVs Participation in DR Programs

EVs can be considered in three different modes: grid-connected mode, idle mode, or driving
mode. In grid-connected mode, the MG operator can schedule charging/discharging process of EVs
batteries. EVs can exchange power with the MG based on their state of charge (SOC), stop time in the
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parking lot (PL) and the electricity price in each DR program. In this case, EVs are considered to be
probabilistic loads or generations which can be evaluated by stochastic methods [28]. The exchange
power between each EV and the network can be obtained as [28]:

PEV
k,t = ηcPc

k,t −
Pd

k,t

ηd
∀t ∈ uk (11)

The SOC of EVs connected to the network is updated by Equation (12) [28].

BCk · SOCk,t = BCk · SOCk,t−1 + PEV
k,t−1 ∀t ∈ T, ∀k ∈ Nk (12)

where SOCk,t−1 = SOCk,I , if t = 1. BCk is battery capacity of EV in kWh and SOCk,I is the initial SOC
of kth EV. It is important to control the charge and discharge energy of the parked vehicle w such that
the SOC of the battery could be kept within the allowed range SOCmin

k and SOCmax
k .

Besides, in idle or driving mode, there is no power exchange between EV and the network,
however the stored energy might decrease depending on the EV trip length (Lk) and its energy
consumption rate (rk). It is assumed that each EV returns to the PL after driving Lk km and is
plugged back into the network. Thus, the SOC at the time of arrival (SOCent

k ) can be estimated by
Equation (13) [28].

SOCent
k = SOCint

k − Lk × rk ∀k ∈ Nk (13)

where, SOCint
k is the initial SOC at the beginning of the trip.

2.3. Renewable Energy Resources

Output power of WT and PV plants are inherently intermittent. In order to model the stochastic
wind speed (and the WT behavior accordingly), the divided Weibull probability density function (PDF)
is usually employed. The general Weibull PDF of wind speed can be formulated as follows [29]:

PDF(v) =
k
c
(

v
c
)

k−1 · e−( v
c )

k
(14)

where v, k and c are wind speed, shape factor (dimensionless) and scale factor, respectively.
Besides, the output power of WT can be described by Equation (15) [30]:

Pw(v) = Pr
w ·

⎧⎪⎪⎨
⎪⎪⎩

0 ; 0 ≤ v ≤ vin and v ≥ vout
v3

in
v3

in−v3
r
+ bv3

v3
r−v3

in
; vin ≤ v ≤ vr

1 ; vr ≤ v ≤ vout

(15)

where vr, vin and vout indicate the rated speed, cut-in speed and cut-out speed of the WT, respectively,
and Pr

w represents the total rated power of WT.
The distribution of hourly irradiance usually follows a bimodal distribution, which can be seen as

a linear combination of two unimodal distribution functions [31,32]. A Beta PDF is utilized for each
unimodal, as stated in the following [31]:

fb(ϕ) =

{
Γ(α+β)

Γ(α)·Γ(β)
· ϕ(α−1) × (1 − ϕ)β−1 f or 0 ≤ ϕ ≤ 1, α ≥ 0, β ≥ 0

0 otherwise
(16)

The parameters of the Beta distribution function (α, β) are calculated based on the mean (μ) and
standard deviation (σ) of the random variable [31].

In this paper, to model the uncertainties of output power for WT and PV units, a set of possible
scenarios is generated based on Metropolis–Hastings algorithm and reduced thereafter to a number of
distinct scenarios using the k-means clustering technique [33].
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3. Optimization Problem Formulation

3.1. Objective Function

The objective function is defined based on the minimization of the total expected cost (EC) of
an isolated residential MG which includes cost of energy and reserve provision as well as the operating
cost in different working scenarios.

EC =
T
∑

t=1

Ng
∑

i=1
[(Ai · ui,t + Bi · Pi,t) + SUCi · yi,t + SDCi · zi,t

+(CRD

i,t · RD
i,t + CRU

i,t · RU
i,t + CRNS

i,t · RNS
i,t )

]
+

Nw
∑

w=1
Cw,t · Pw,t +

Np
∑

p=1
Cp,t · Pp,t

+
Nkd
∑

k=1
SPRt · Pd

k,t −
Nkc
∑

k=1
BPRt · Pc

k,t

+
T
∑

t=1

Nj
∑

j=1
CRD

j,t · RD
j,t + CRU

j,t · RU
j,t −

Nj
∑

j=1
Cj,t · Lj,t

+
Ns
∑

s=1

T
∑

t=1

Ng
∑

i=1
[SUCi · (yi,t,s − yi,t) + SDCi · (zi,t,s − zi,t)

+Ci,t · (rU
i,t,s + rNS

i,t,s − rD
i,t,s)

]
+

Ns
∑

s=1

T
∑

t=1

[
Nj
∑

j=1
Cj,t · (rU

j,t,s − rD
j,t,s)

+
Nw
∑

w=1
Cw,t · ΔPw,t,s +

Np
∑
p

Cp,t · ΔPp,t,s

]

+
Nj
∑

j=1
VLOL · Lshed

j,t,s

(17)

In Equation (17), the first line of the objective function states the costs associated with energy
provided from the generating units and the start-up and shut-down costs, and the second line expresses
the commitment of the generating units to provide reserves. The third line denotes the costs associated
with energy provided from the WT and PV units. The fourth line expresses the cost associated with
charge/discharge of EVs and the fifth line considers the utility of the demand loads and their up and
down reserve provision.

The rest of the terms in the objective function deal with the operating cost in different working
scenarios. In this regard, the sixth and the seventh lines consider cost of unit commitment and the
cost of deploying reserves from those units in different scenarios. The eighth line represents the cost
of deploying reserves from DR programs and the ninth line states the costs associated with energy
provided from WT and PV units. Here, it is assumed that the MG operator would pay for energy
provided by WT and PV. Finally, the last term stands for the expected cost of energy not served for the
inelastic loads.

3.2. Constraints

The problem constraints include two parts; the first-stage constraints and second-stage constraints.
The first-stage ones are associated with the base case scenario (i.e., deterministic operating condition),
and can be expressed as follows:

• Power balance in steady state; Equation (18) represents the active power balance in MG in steady
state [21].

Ngb

∑
i=1

Pi,t +
Nwb

∑
w=1

Pw,t +
Np

∑
p=1

Pp,t +
Nkbd

∑
k=1

Pd
k,t = Lb,t +

Nkbc

∑
k=1

Pc
k,t+

Lb

∑
l=1

Fl,t ∀b, ∀t (18)
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where, Fl,t is power flow through line l in period t, (Fl,t =
1

Xl
(δls − δlr)), δx,t is voltage angle at node x

in period t. The power flow through line l is limited as:

− Fmin
l,t ≤ Fl,t ≤ Fmax

l,t ∀l, ∀t (19)

• Real power generation constraints; The real power generated by DG units are constrained by (20)
and (21) [21].

Pi,t ≤ Pmax
i ui,t − RU

i,t ∀i, ∀t (20)

Pi,t ≥ Pmin
i ui,t + RD

i,t ∀i, ∀t (21)

• Generation-side reserve limits; Constraints (22)–(24) impose limits on the provision of spinning
reserve in terms of up and down regulations, as well as non-spinning reserve from the
generating units.

0 ≤ RU
i,t ≤ RU,max

i,t ui,t ∀i, ∀t (22)

0 ≤ RD
i,t ≤ RD,max

i,t ui,t ∀i, ∀t (23)

0 ≤ RNS
i,t ≤ RNS,max

i,t (1 − ui,t) ∀i, ∀t (24)

• Demand-side reserve limits; Constraints (25) and (26) restrict the procurement of up and down
reserves from the responsive loads.

0 ≤ RU
j,t ≤ RU,max

j,t ∀j, ∀t (25)

0 ≤ RD
j,t ≤ RD,max

j,t ∀j, ∀t (26)

• Unit commitment constraints; Equation (27) determines the start-up and shut-down status of
units, while (28) states that a unit cannot start-up and shut-down during the same period [29].

yi,t − zi,t = ui,t − ui,t−1 ∀i, ∀t (27)

yi,t + zi,t − 1 ≤ 0 ∀i, ∀t (28)

• Generating units startup cost constraint; constraints (29) and (30) represent generating units
startup cost limitations [21].

SUCi,t ≥ λSU
i,t (ui,t − ui,t−1) ∀i, ∀t (29)

SUCi,t ≥ 0 ∀i, ∀t (30)

The second-stage constraints account for stochastic operating conditions are the same as the
first-stage constraints and mentioned in Appendix A.

4. Simulation Results and Discussion

4.1. Test Case

The simulations are performed over a modified residential MG which is presented in Figure 1 [30].
There are different types of distributed generation (DG) units in the MG including two micro-turbines
(MT1 & MT2), two fuel cell (FC1 & FC2) units, and one gas engine (GE) unit. Also, there are a number
of renewable-based prime movers in the system including three WTs, each with a capacity of 80 kW
installed at bus 6, 9 and 16, respectively and two PV plants, each with a capacity of 70 kW installed at
buses 5 and 10, respectively. The wind and PV power generation are a function of random wind speed
and sun radiation, respectively. Their output power scenarios are reduced by applying a k-means
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algorithm as shown in Figure 2. Technical specifications of the simulated MG components are given in
Table 1 [34]. Moreover, the hourly load profile of the MG is illustrated in Figure 3 and is supposed to
be divided into three different periods, namely valley period (00:00–5:00), off-peak periods (5:00–10:00,
16:00–19:00 and 22:00–24:00) and peak periods (11:00–15:00 and 20:00–22:00).

Figure 1. Single line diagram of the simulated microgrid MG.

Figure 2. The output power of renewable energy resources (RESs) in the reduced generated scenarios,
(a) each wind turbine (WT) and (b) each photovoltaic (PV) plant.

Figure 3. Total demand load curve of MG.

64



Appl. Sci. 2017, 7, 378

Table 1. Technical specifications of the simulated microgrid (MG) components.

Emission
(kg/kWh)

CRNS

($)
CRD

($)
CRU

($)

SDC
($)

SUC
($)

B ($)
A

($/kWh)
Pmax

(kW)
Pmin

(kW)
DG

0.550 0.019 0.020 0.021 0.080 0.090 0.043 0.851 150 25 MT1
0.550 0.019 0.020 0.021 0.080 0.090 0.044 0.851 150 25 MT2
0.377 0.015 0.015 0.015 0.090 0.160 0.028 2.552 100 20 FC1
0.377 0.015 0.015 0.015 0.090 0.160 0.029 2.552 100 20 FC2
0.890 0.017 0.017 0.017 0.080 0.120 0.031 2.120 150 35 GE

- - - - - - 0.106 0 80 0 WT
- - - - - - 0.548 0 70 0 PV

In this study, it is assumed that the total signed contracts for participating customers in DR
programs are equal to 40% of the total load during the scheduling period. The price elasticity of
demand is shown in Table 2, which is adopted from [27] with some modification. It is also assumed
that there are two PLs with 40 charging stations in buses 3 and 11. The arrival time of EVs is modeled
with a Gaussian distribution with μ = 19 and δ2 = 10 [35]. Moreover, the EVs connected to the MG are
assumed to be capable of providing slow, medium and fast charging modes [28,36]. For the studied
MG, energy prices at different tariffs (RTP, TOU and CPP) are also depicted in Figure 4.

Table 2. Price elasticity of demand.

23–24 20–22 16–19 11–15 6–10 1–5 Hour

0.03 0.034 0.03 0.034 0.03 −0.08 1–5
0.03 0.04 0.03 0.04 −0.11 0.3 6–10
0.04 0.01 0.04 −0.19 0.04 0.034 11–15
0.03 0.04 −0.11 0.04 0.03 0.03 16–19
0.04 −0.19 0.03 0.01 0.04 0.034 20–22
−0.11 0.04 0.03 0.04 0.03 0.03 23–24

Figure 4. Energy prices at different tariffs (RTP, TOU and CPP).

The optimization horizon is considered to be a day with 24 time intervals. To simulate the
environmental/behavioral uncertainties within the system, 3000 scenarios are generated based on
Weibull, Beta, and Gaussian PDFs to represent different values for wind speed, irradiation and EVs
owners’ behaviors, respectively. In the next step, the k-means algorithm is applied to reduce the
generated scenarios to an optimal subset that represents well enough the uncertainties. The reduced
scenarios are then applied to the proposed mixed integer programming (MIP)-based optimization stage
to minimize the expected cost at scheduling time horizon. The effect of demand-side participation
in different TBR-based DR programs in the MG energy and reserve scheduling is also analyzed.
The optimization is carried out by CPLEX solver using GAMS software (Release 24.7.3 r58181 WEX-WEI
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x86 64bit/MS Windows, TU Braunschweig, Braunschweig, Germany) [37] on a PC with 4 GB of RAM
and Intel Core i7 @ 2.60 GHz processor (Intel, Santa Clara, CA, USA).

4.2. Presentation and Discussion of Results

We consider the following three cases for testing the effect of scheduling of DR programs and
EVs on operation costs of the MG, load profile curve characteristics and profit of customers during the
scheduling period.

� Case 1: without demand side participation and EVs commitment,
� Case 2: with demand side participation and without EVs commitment,
� Case 3: with demand side participation and EVs commitment.

It should be noted that Case 1 is considered to be a base case, so operating costs, load profiles and
reserve scheduling in other cases are evaluated compared to the base case.

Case 1: In this case, DR programs are not considered and there is no contribution from EVs
side. The scheduled energy and reserve capacity in this case is illustrated in Figure 5a,b, respectively.
As shown in Figure 5a, based on the economic dispatch results, low-cost MT1 and GE are used as base
units to provide the energy. These generators are dispatched during the entire scheduling horizon to
reduce the overall operating cost, while the other units (especially FC1 and FC2 due to their higher
operating cost) are only dispatched at peak hour periods. As shown in Figure 5b, all the scheduled
reserve capacity is provided by dispatchable DG units, including up-spinning reserve (Up/DGs),
down-spinning reserve (Down/DGs), and non-spinning reserve (Non/DGs) in this case. Since the
output power of WT and PV are intermittent, the required reserve power is provided by MTs, FCs and
GE. It can be observed that when RESs power productions in scenarios are relatively different from the
forecasted values, (i.e., in 10:00–14:00 and 19:00–22:00), more reserve capacity is scheduled accordingly.
The total expected cost of MG operation as well as costs of providing energy and reserve services from
DG units in case 1 are obtained as 897.833$, 436.622$ and 19.752$, respectively.

Figure 5. Hourly energy and reserves scheduling in case 1, (a) hourly energy and (b) reserve capacity.

Case 2: In this case, optimal operation of MG with demand-side participation (i.e., TBR-DR
programs) but without EVs contribution is presented. The scheduled energy and reserve capacity in
RTP programs are illustrated in Figure 6a,b, respectively. Comparing the results in Figures 5a and 6a
demonstrates that with demand side participation in RTP schemes, the power provided by DG units is
reduced at peak hours, specifically in 10:00–14:00 and 20:00–22:00. Likewise, during the hours with
relatively high energy prices, the customers also reduce their consumption levels to save energy and
get incentives. On the other hand, customers shift most of their consumptions into the time intervals
with low energy prices, specifically in 01:00–05:00 (valley period, see Figure 3) to further reduce their
running cost.
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(a) (b)

Figure 6. Hourly energy and reserves scheduling in case 2 under RTP programs (a) energy and
(b) reserve.

As shown in Figure 6b, in this case, a part of the required reserve capacity is provided by demand
side participation, including up-spinning reserve (Up/DR) and down-spinning reserve (Down/DR).
Comparison of results in Figures 5b and 6b also shows that the participation of responsive loads can
decrease the spinning reserve requirement of DG units and reduce the back-up energy costs. It can
also be understood from the simulation results that the stochastic nature of wind and PV power
generations, makes it necessary to allocate more reserve capacity to the time intervals (e.g., 10:00–14:00
and 19:00–22:00) when the risk of power shortage from RESs is higher. To this end, DR actions can
provide a considerable portion of the needed upward reserve in the MG and decrease the MG operation
cost. The expected operating cost of MG and the DGs energy and reserve costs in case 2 in RTP program
are obtained as 872.943$, 416.789$ and 25.077$, respectively.

The scheduled energy and reserve capacity under TOU programs are illustrated in Figure 7a,b,
respectively. By comparing the results in Figures 6a and 7a, it can be seen that the produced powers of
DGs in TOU are slightly higher than ones in RTP programs at peak hours. This is due to the fact that
during peak periods, participation of consumers in TOU programs is lower than that in RTP programs.

(a) (b)

Figure 7. Hourly energy and reserves scheduling in case 2 under TOU programs (a) energy and
(b) reserve.

It is also observed from Figure 7b that the scheduled reserves in these programs are different,
especially in peak periods. This difference is due to the fact that the load reduction in TOU is less than
that of in RTP at peak periods and the customers don’t participate in downward reserve. Therefore,
DGs non-spinning reserve scheduling is not required. The expected operating cost of MG and the DGs
energy and reserve costs in case 2 under TOU programs are 881.164$, 420.549$ and 19.172$, respectively.

The hourly energy and reserve scheduling in case 2 in CPP programs are shown in Figure 8a,b,
respectively. As mentioned before, the electricity price in CPP programs is the same as the price in
TOU programs, except during hours 20:00 and 21:00. During these two hours, the price in CPP is four
times greater than that of TOU. So, as Figure 8a shows, customers are highly encouraged to reduce
their consumption as much as possible. As a result, the demand downward reserve increases in these

67



Appl. Sci. 2017, 7, 378

two hours and consequently, the DGs non-spinning reserve increases. The expected operating cost of
MG and the DGs energy and reserve costs are 850.395$, 410.590$ and 21.600$, respectively.

(a) (b)

Figure 8. Hourly energy and reserves scheduling in case 2 under CPP programs (a) energy and
(b) reserve.

Case 3: In this case, we evaluate the effectiveness of TBR-DR schemes in presence of EVs. In order
to indicate the impact of different programs on responsive loads along with the presence of EVs,
the same types of tariffs including RTP, TOU and CPP are implemented. Figure 9 illustrates the
EVs daily charging and discharging power in different TBR- DR programs. As can be seen from the
operating profiles, EVs are charged during low tariff hours (valley periods) and discharged during high
tariff hours (peak periods). The energy and reserves scheduling in case 3 are shown in Figure 10a,b.

Figure 9. Charging and discharging power of EVs in TBR-based DR programs.

(a) (b)

Figure 10. Hourly energy and reserves scheduling in case 3 in RTP programs (a) hourly energy and
(b) Reserve.

Compared to Figure 6, it is observed that, the output power of generating units is flattened in the
presence of EVs. It should be noted that, in case 3 the charging/discharging powers of EVs are added
to the MG load which in turn affect the energy scheduling process; however, there is no effect on the
reserve market as EVs are not considered on this occasion. So, it can be seen from Figure 10b that DR
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provides a part of the required reserve scheduling similar to case 2. The expected operating cost of
MG and DGs energy and reserve costs in case 3 in RTP are obtained as 866.113$, 403.482$ and 23.482$,
respectively, which are considerably lower than the corresponding values obtained in the previous
cases. Thus, an efficient scheduling of EVs and responsive loads can improve the operation of the MG.

Figure 11a,b shows the energy and reserves scheduling in case 3 considering a TOU-based DR
program. As can be seen from the results, during peak periods, EVs are discharged, and the operations
of the costly units are delayed accordingly. So, in comparison with the two previous cases, the energy
cost of DG units decreases. The expected operating cost of MG and DGs energy and reserve costs in
case 3 considering a TOU scheme are obtained as 878.252$, 413.482$ and 21.084$, respectively.

(a) (b)

Figure 11. Hourly energy and reserves scheduling in case 3 in TOU programs (a) hourly energy and
(b) Reserve.

The energy and reserves scheduling in case 3 regarding the CPP program are also shown in
Figure 12a,b. Also, in this program, the participation of EVs in DR schemes decreases operating costs.
The expected operating cost of MG and DGs energy and reserve cost values in this case study are
obtained as 853.049$, 400.620$, and 20.801$, respectively.

(a) (b)

Figure 12. Hourly energy and reserves scheduling in case 3 in CPP programs (a) hourly energy and
(b) Reserve.

The total load profile associated with the three cases in TBR programs are illustrated in Figure 13.
As can be observed, with the application of DR programs, the total load decreases in peak periods
when prices are high and increases in off-peak or valley periods when prices are relatively lower.
This leads to smoother load profiles especially in cases 2 and 3. This load-shaping process can be
better observed with active participation of EVs and their charging behavior during the valley period
(when the price has its lowest value).

It can be also observed from Figure 13a,b, that the load profile in RTP and TOU schemes are
relatively similar, but greatly different from the one in CPP scheme (Figure 13c) due to the price spikes
at some time intervals and their effect on demand side participation.
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(a)

(b)

(c)

Figure 13. Daily load profile in three cases considering (a) RTP, (b) TOU and (c) CPP programs.

Table 3 compares the operational costs of the MG in different working conditions. The expected
operating cost of MG, DGs and DR scheduled energy and reserve costs, start-up costs and start-down
costs have been reported for the three cases. Comparison of results in cases 1 and 2 shows that the
deployment of DR programs allows lower total operating cost to be obtained. The reason is that
the expensive units are not dispatched to meet the demand of peak periods since peak loads are
decreased due to the participation of responsive loads in different DR programs. Also, participation
of both responsive loads and EVs in DR programs (case 3) can reduce the total operating cost more
than the other cases where there are no DR action or EV support. In fact, in case 3, EVs discharging
in peak hours (as shown in Figure 9) causes the decrement of expected cost of MG in comparison
with cases 1 and 2. In other words, during peak hours, EVs discharge and supply peak loads; thus,
the more expensive units may not be dispatched and, consequently, the energy cost of DGs is reduced.
Moreover, in CPP programs, since customers are highly encouraged to reduce their consumption as
much as possible at peak hours (at 19:00 and 20:00 as shown in Figure 13), the energy cost of DG units
and as the result the total operating cost of MG has its lowest value. Moreover, in case 3, due to the
uncertainty of EVs, the total cost of scheduling reserve of DGs and DR in each DR program is more
than the one in case 2. However, it can be observed that the total deployed reserve cost of DGs and DR
in cases 2 and 3 are almost the same, because deployed reserve is provided by DR and DG units and
EVs do not participate, as they only affect the energy scheduling process.
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Table 3. MG operating costs (in $) in three cases considering TBR-based DR programs.

Attribute
Case 1 Case 2 Case 3

No DR RTP TOU CPP RTP TOU CPP

Expected cost 897.833 872.943 881.164 850.395 866.113 878.253 853.049
Energy cost of DGs 436.622 416.790 420.549 410.590 403.482 413.482 400.620

Scheduling reserve cost of DGs 19.752 25.076 19.172 21.600 23.482 21.085 22.801
Scheduling reserve cost of DR 0 23.856 0 10.048 33.856 0 10.048

Energy cost of RESs 443.206 443.206 443.206 443.206 443.206 443.206 443.206
Deployed reserve cost of DGs −2.365 10.182 −2.131 1.536 9.923 −2.081 1.189
Deployed reserve cost of DR 0 −56.785 0 −40.192 −56.785 0 −40.192

Start-up cost of DGs 0.78 0.78 0.62 0.87 0.87 0.64 1.02
Shut-down cost of DGs 0.27 0.27 0.18 0.35 0.35 0.25 0.46

In order to analyze the expected cost of MG with respect to load participation in DR, a sensitivity
analysis is done and shown in Figure 14. With increasing customer participation in DR, the expected
cost of MG is mitigated in all TBR-DR programs. As observed, in higher values of DR participation
(i.e., more than 60%) the expected cost reduced slightly because in higher DR participants, new peaks
of demand may occur (also known as rebound peak effect) and expensive units may need to be
committed. Also, it is seen that in all the rates of DR participants, the expected cost in CPP program
has lower value compared with other TBR-DR programs.

Figure 14. Expected cost of MG versus customers’ participation in different TBR-DR programs.

5. Conclusions and Future Work

In this paper, the effect of the TBR-DR programs on reserve and energy scheduling in an isolated
residential MG and in the presence of EVs were studied. A two-stage optimization model was
developed to minimize the MG operation costs considering RESs and EVs uncertainties. The numerical
results revealed that demand-side participation in energy and reserve scheduling reduces the total
operating cost in different DR programs. The simulation results also demonstrated that in all TBR-DR
programs, the participation of both responsive loads and EVs can reduce the energy cost of DGs
and as the result the total operating cost of MG can decrease compared to the case where only DR
actions are considered. Comparing the simulation results of TBR-DR programs also demonstrated
that in CPP due to a great load reduction at peak price hours, the expected running cost of the
system has its lowest value, and as a result, this program could be a proper alternative from the MG
operator’s viewpoint. In addition, the results showed that due to the uncertainty of EVs, the total
cost of scheduling reserve of DGs and DR in each DR program is more than the one in case only with
responsive loads. Moreover, it was shown that by increasing the participation of responsive loads in
all TBR-DR programs (i.e., to more than 60%), the rate of decrement of expected cost may reduce due
to the rebound peak problem.

Our future efforts will be mainly focused on developing an optimal scheduling model based
on real-world uncertainties of DR resources and assessing their effects on islanded MG voltage and
frequency security.
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Appendix A

The second-stage constraints are as bellow:
Power balance equation in different scenarios: The active power balance in MG buses in each

scenario is represented as follow [21]:

Ngb

∑
i=1

Pi,t,s +
Nwb

∑
w=1

Pw,t,s +
Npb

∑
p=1

Pp,t,s +
Nkd

∑
k=1

Pd
k,t,s + Lshed

b,t,s = Lb,t,s +
Nkc

∑
k=1

Pc
k,t,s+

Lb

∑
l=1

Fl,t,s ∀b, ∀t, ∀s (A1)

where, Fl,t,s is power flow through line l in period t and scenario s (Fl,t,s =
1

Xl
(δn,t,s − δr,t,s)), which is

limited as −Fmin
l ≤ Fl,t,s ≤ Fmax

l .
Generation-side reserve limits in each scenario [21]:

Pi,t,s ≥ Pmin
i ui,t,s + RD

i,t,s ∀i, ∀t, ∀s (A2)

Pi,t,s ≥ Pmin
i ui,t,s + RD

i,t,s ∀i, ∀t, ∀s (A3)

Deployed reserves limits from the generation-side: Constraints (A4)–(A6) enforce a limit on the
procurement of up-, down- and non-spinning reserves from the generating units, respectively.

0 ≤ rU
i,t,s ≤ RU

i,t,s ∀i, ∀t, ∀s (A4)

0 ≤ rD
i,t,s ≤ RD

i,t,s ∀i, ∀t, ∀s (A5)

0 ≤ rNS
i,t,s ≤ RNS

i,t,s ∀i, ∀t, ∀s (A6)

Deployed reserves limits from the demand-side: Constraints (A7) and (A8) enforce a limit on the
procurement of up- and down-spinning reserves from the responsive loads, respectively [29].

0 ≤ rU
j,t,s ≤ RU

j,t,s ∀j, ∀t, ∀s (A7)

0 ≤ rD
j,t,s ≤ RD

j,t,s ∀j, ∀t, ∀s (A8)

Involuntary load shedding: Equation (A9) represents the amount of inelastic load that can be
shed by the MG operator in order to keep the system stable.

0 ≤ Lshed
j,t,s ≤ Lj,t ∀j, ∀t, ∀s (A9)

Decomposition of units power outputs; Constraint (A10) includes the scheduled day-ahead
generation unit outputs with the deployed power in scenarios [21].

Pi,t = Pi,t,s + rU
i,t,s + rNS

i,t,s − rD
i,t,s ∀i, ∀t, ∀s (A10)

Decomposition of demand consumption: The relationship between the amount of scheduled
day-ahead responsive loads and up- and down-spinning reserves deployed in scenarios is represented
by (A11) [21].

Lj,t = Lj,t,s − rU
j,t,s + rD

j,t,s ∀j, ∀t, ∀s (A11)

It should be noted that the up-reserves deployed by the demand-side is defined as a decrease in
the consumption level, while down-reserve is defined oppositely.
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Nomenclature

Nb Number of system buses.
Ng Number of generating units.
Nj Set of loads number.
Ns Number of scenarios.
Nw(Np) Number of WT (PV) units.
Nk Number of EVs.
T Scheduling time (24 h a day).
i (j) Index of generating units (loads), running from 1 to Ng(Nj).
b, n, r Indices of system buses, running from 1 to Nb.
t Index of time periods, running from 1 to T.
s Index of scenarios, running from 1 to Ns.
w (p) Index of WT (PV) units, running from 1 to Nw(Np).
k Index of EVs, running from 1 to Nk.
v Wind speed (m/s).
B(t) Customer’s benefit in period t ($).
BPRt(SPRt) Electricity baying (selling) price for EVs charging (discharging) in period t ($/kWh).
Cw,t(Cp,t) Energy bid submitted by WT w (PV p) in period t ($/kWh).
CRU

i,t (CRD

i,t ) Bid of the up (down) -spinning reserve submitted by unit i in period t ($/kWh).
CRU

j,t (CRD

j,t ) Bid of the up (down) -spinning reserve submitted by load j in period t ($/kWh).

CRNS

i,t Bid of the non-spinning reserve submitted by unit i in period t (cents/kWh).
D(t) Power demand in period t (kW).
DDR(t) Power demand after implementing DR programs in period t (kW).
E(t, t) Elasticity of load demand.
SUCi,t(SDCi,t) Start-up (Shut-down) cost of unit i in period t ($).
ρ(t) Electricity price in period t ($/kW).
Pi,t(Pi,t,s) Scheduled power of unit i in period t (and scenario s) (kW).
Pw,t(Pw,t,s) Output power of WT w in period t (and scenario s) (kW).
Pp,t(Pp,t,s) Output power of PV p in period t (and scenario s) (kW).
Pmax

x (Pmin
x ) Maximum (Minimum) generating capacity of unit x (kW).

Pc
k,t(P

d
k,t) Charging (Discharging) power of EV k in period t (kW).

PEV
k,t Power of EV k in period t (kW).

RU
i,t(R

U
j,t) Scheduled up-spinning reserve for unit i (load j) in in period t (kW).

RD
i,t(R

D
j,t) Scheduled down-spinning reserve for unit i (load j) in period t (kW).

RNS
i,t Scheduled non-spinning reserve for unit i in period t (kW).

rU
i,t,s(rU

j,t,s) Up-spinning reserve deployed by unit i (load j) in period t (and scenario s) (kW).
rD

i,t,s(rD
j,t,s) Down-spinning reserve deployed by unit i (load j) in period t (and scenario s) (kW).

S(t) Customer’s income at period t ($).
VLOL Cost of involuntary load shedding for inelastic loads ($/kWh).
Lj,t(Lj,t,s) Power scheduled for load j in period t (and scenario s) (kW).
Lshed

j,t,s Inelastic load shedding level of jth load in period t and scenario s (kW).
Fl,t(Fl,t,s) Power flow through line l in period t (and scenario s) (kW).
δx,t(δx,t,s) Voltage angle at node x in period t (and scenario s) (radian).
ηc(ηd) Charging (Discharging) efficiency of EV

ui,t(ui,t,s)
Binary variable, equal to 1 if unit i is scheduled to be committed in period t (and scenario
s), otherwise 0.

yi,t(yi,t,s) Binary variable, equal to 1 if unit i is starting up in period t (and scenario s), otherwise 0.
zi,t(zi,t,s) Binary variable, equal to 1 if unit i is shut down in period t (and scenario s), otherwise 0.

xk,t
Binary variable expressing the charging/discharging status of EV k, equal to 1 if it is
charging, otherwise 0.
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Abstract: In the context of climate change and energy crisis around the world, an increasing amount of
attention has been paid to developing clean energy and improving energy efficiency. The penetration
of distributed generation (DG) is increasing rapidly on the user’s side of an increasingly intelligent
power system. This paper proposes an optimization method for industrial task-continuous load
management in which distributed generation (including photovoltaic systems and wind generation)
and energy storage devices are both considered. To begin with, a model of distributed generation and
an energy storage device are built. Then, subject to various constraints, an operation optimization
problem is formulated to maximize user profit, renewable energy efficiency, and the local consumption
of distributed generation. Finally, the effectiveness of the method is verified by comparing user profit
under different power modes.

Keywords: demand response; distributed generation; smart power utilization; task-continuous load

1. Introduction

Faced with the increasingly severe circumstances of energy and the environment, many actions
with respect to renewable energy have been taken around the world. One of the most important targets
is to improve the access capacity of renewable energy on the user’s side. With the development of
smart grids and the implementation of related policies, many users have already attempted to use
distributed energy. However, the asynchrony between the output of distributed generation and the
users’ loads leads to a low utilization rate of renewable energy and low profit for users. To make matters
worse, the intermittence of renewable energy may lead to harmful effects on the distribution grid or
even power failure due to the absence of a reasonable program [1]. Therefore, the local consumption of
distributed generation is an important direction of energy management for both power grids and users.
The users of electric power can be divided into residential users, utility users, commercial users,
and industrial users. With the development of smart devices and advanced metering infrastructures,
several programs of energy management for users have been proposed. The conception of user-side
energy management has been proposed, including home energy management systems, building
energy management systems, and enterprise energy management systems [2]. Based on user-side
energy management systems, smart communities, smart industrial parks, and smart grids are steadily
developing [3]. However, many existing energy management systems focus on energy monitoring
systems rather than systems with optimization functions.

There is much literature about energy management and optimization. Among them, demand
side management [4,5] and demand response technology are the main focus [6,7]. References [8–12]
explore the method of improving energy efficiency with the assistance of demand response technology,
aimed at water heaters, air conditioners, fridges, and washing machines. Reference [13] keeps the
balance between economy and comfort by introducing comfort constraints in energy strategies that
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include distributed generation. In addition, the study of a micro-grid energy management system,
analogous to the demand side energy management system, is also a hot topic for researchers [14].
As for the building energy management systems, in reference [15], a semi-centralized decision-making
methodology using multi-agent systems was proposed to improve energy efficiency and reduce
energy costs. Reference [16] introduces the actual experiment of using a building energy management
system. After installing the building energy management system in a 21-floor building in Tirana,
the total electrical energy footprint of the building was 135 kWh/m2/year; it was 200 kWh/m2/year
before the installation of the system, which indeed is a massive drop. In addition, an enterprise energy
management system was used in Guangzhou Iron and Steel Co., Ltd. (Guangzhou, China), to help
them to arrange production [17].

However, there are still some issues that remain to be tackled. For one thing, the above existing
studies, ignoring the distribution generation, cannot ensure the application of their technology to the
demand-side energy management, which includes distributed generation. Moreover, the available
research does not take the industrial task-continuous load into consideration when doing research
on energy management. The main contribution of this paper lies in building a model of energy
management considering the synchronization between the distributed generation and the industrial
task-continuous load. In addition, this paper proposes a method that optimizes the industrial
task-continuous load schedule to improve both the local consumption of the distributed generation
and the economic benefit of users. Specifically, the contribution of this paper is as follows:

(1) The model of task-continuous load proposed in this paper is established, which can accurately
describe the mathematical characteristic of the task-continuous load in the industry process.

(2) Regarding the states of industrial task-continuous load in time slots different from the controlled
variables, the optimal solutions solved by this model of energy management can be directly
applied to the industry process. That is to say, the method in this paper indeed has promising
prospects of promotion in the industry.

(3) In addition, this paper shows that the model of energy management can shift the load to the
period when the output of distributed generation is high and can shift the output power of the
distributed generation into the battery. This results in a higher rate of self-occupied distributed
generation, increasing the benefit for users.

2. The Model of Task-Continuous Load

Task-continuous load is a special kind of load that has been widely used in the industry process.
Such kind of load is usually composed of several highly continuous devices. Each device is activated
and works at different times, and the completion of the task requires the process flow containing
all devices. Taking the process of the oxygen top blown converter, for instance, the processes that
include making up raw material, adding molten iron, adding oxygen, and tapping are closely
connected. In addition, the electricity consumption of each process is quite different from each other.
Task-continuous load achieves cyclical fluctuation in terms of electricity consumption and often lasts
for a long time, such as the loads of the production line and the iron metallurgy industry. The model
of task-continuous load is established as follows.

It is assumed that k is the serial of the time slots, k ∈ {1, 2, 3, . . . . . . , T}, and xi(k) is the state of
the ith device’s switch at the kth time slot, where “1” refers to “on” while “0” refers to “off.” Pi is the
power rating of the ith process and Pi(k) is the power of the ith process at the kth time slot. Therefore,

Pi(k) = Pi × xi(k) =

{
Pi xi(k) = 1
0 xi(k) = 0

(1)

Task-continuous load should satisfy the following constraints.
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2.1. The Constraint of On-Time

It is assumed that the on-time of the ith device is constrained by the working hours and process
flow. That is to say, such a device must be turned off between the ath time slot and the bth time slot.
Moreover, k ∈ {a, a + 1, . . . . . . , b} ⊂ {1, 2, 3, . . . . . . , T}. This constraint is given by

b

∑
k=a

xi(k) = 0 (2)

2.2. The Constraint of Continuous Working

It is assumed that the ith device must work continuously from the cth time slot to the dth time
slot. Moreover, k ∈ {c, c + 1, . . . . . . , d} ⊂ {1, 2, 3, . . . . . . , T}. This constraint is given by

d

∏
k=c

xi(k) = 1 (3)

2.3. The Constraint of the Order of the Process Flow

It is assumed that, at the eth time slot, the ith procedure must be turned on, and the previous jth
procedure must be accomplished. Moreover, k ∈ {1, 2, . . . . . . , e − 1} ⊂ {1, 2, 3, . . . . . . , T}. If the jth
procedure lasts for Tj time slots, this constraint is given by

xi(k)× {
e−1

∑
k=1

[xj(k)/Ti]− 1} = 0 (4)

3. Model of Energy Optimization

User-side energy management, considering the type and significance of devices, provides
a management scheme that makes optimal production plans to maximize users’ benefits based on
users’ productive plans. Benefit maximization refers to the optimum of the property index such as
time, cost, satisfaction, energy-saving, and emission reduction.

A typical user-side energy management system is shown in Figure 1. This system consists of
a distributed generation unit, an energy storage unit, an inverter, a controller, and loads. In this system,
electric supply is used to guarantee the normal operation of loads when the distributed generation
unit fails to meet the demand.

Figure 1. Structure of typical users’ energy management system.
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3.1. Maximum Revenue Target

For users with distributed generation units that are connected to the power grid, their economic
benefit comes from two sources: (i) the subsidies for the local consumption of the distributed generation;
and (ii) the money earned by selling redundant DG power to the power grid. In order to recover the
cost of distributed generation equipment in the shortest time, the maximum revenue objective function
ought to be adopted.

The maximum revenue target is shown as Equation (5):

maxF =
T
∑

k=1
CPV PPV(k)xPV(k)Δt +

T
∑

k=1
CWindPWind(k)xWind(k)Δt

− T
∑

k=1
CBPB(k)Δt − T

∑
k=1

CG(k)PG(k)Δt
. (5)

In Equation (5), the production planning cycle (usually be one day) is divided into T time slots,
and each time slot lasts for Δt (usually one hour). In addition, the optimal strategy is allowed to execute
at the initial moment of the kth time slot. The first part of users’ revenue comes from the distributed
generation (including the PV system and wind generation). Among the first part of the revenue,
xPV(k) and xWind(k) are the states of PV generation and wind generation, respectively, the controlled
variables of the PV system and wind generation, where “1” refers to “on” and “0” refers to “off.”
PPV(k) and PWind(k) represent the active power of PV generation and wind generation. At the same
time, CPV and CWind are the PV system’s and wind generation’s subsidized price of self-occupation,
and usually are the same value. The second component of the objective is the revenue from the storage
battery. Comparing with the distributed generation, the battery is allowed to charge or discharge.
Therefore, the active power of the storage battery PB(k) can be negative. When PB(k) > 0, the storage
battery discharges, and, when PB(k) < 0, the storage battery charges. Moreover, CB is the generating
cost of the storage battery. At last, the third part of the revenue comes from buying or selling the
residuary power to the grid. Correspondingly, PG(k) represents the active power of the electric supply.
When PG(k) < 0, the distributed generation offers the electric energy back, and CG(k) is the difference
between the acquisition price of DG and DG subsidized price of self-occupied at the kth time slot.
However, when PG(k) > 0, CG(k) is the electricity price of the initial moment of the kth time slot.

3.2. Active Power Balance Constraint

Active power balance constraint is shown as Equation (6):

∑ PL(k) =Pucl(k) +
N

∑
i=1

Pi(k)xi(k) = PDG(k) + PB(k) + PG(k) (6)

PDG(k) = PPV(k)xPV(k) + PWind(k)xWind(k) (7)

In Equation (6), N is the total number of task-continuous load. Pi(k) is the active power of the
ith task-continuous device at the kth time slot, and xi(k) is the state of the switch at the kth time
slot, where “1” refers to “on” and “0” refers to “off.” Pucl(k) represents the active power of other
uncontrollable loads at the kth time slot. Therefore, ∑ PL(k) is the whole power consumption at the
kth time slot. In Equation (7), PDG(k) is total output of the distributed generation, which is directly
supplied to the users’ energy management system.

3.3. Storage Battery Constraint

Storage battery constraint is shown as Equations (8)–(10):

PB(k) > −PB,cmax

PB(k) < PB,dmax
(8)
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SOCmin < SOC(k) < SOCmax (9)

|SOC(1)− SOC(n)| < δ (10)

PB,cmax is the maximum charge power of the storage battery, and PB,dmax is the maximum discharge
power of the storage battery. SOCmax and SOCmin are the superior limit and the inferior limit of the
storage battery, respectively. SOCmax and SOCmin usually take 80% and 20%, respectively. SOC(1) and
SOC(n) are the states of the battery at the start time and the terminal time. δ is usually 5%.

3.4. Transferable Load Contraint

To guarantee the production flow on the rails, the ability of the transferable task -continuous
load ought to meet the demand of various kinds of production task constraints, such as the on-time
constraint. The detailed computation is the same as Equations (1)–(4).

4. Model Solution

The model of energy management is like a knapsack problem: the independent variables are
all integers, and the values of most independent variables are 0 or 1. The switch state of each load
and the distributed generation is a question of whether a certain thing should be put into the bag
or not. The constraints are analogous to the fact that the total weight of goods ought to be less than
the capacity of the bag. The objective function is to maximize the total value of the goods in the bag.
The whole model is to optimize the goods, and there is a total of 2n solutions, where n is the number of
the goods. Because the problem is linear, the dimension of the problem depends on the length of the
schedulable period and the task of the schedulable load.

Therefore, in this paper, these switch states of each load and distributed generation are the
controlled variables. The constraints of Equations (2)–(4) and (6)–(10) limit the feasible region of the
controlled variables.

When the controlled variables of each solution are ascertained, the power of the task-continuous
load, the distributed generation can be gained directly. While the power of the battery and grid should
be calculated based on following the power supply flowchart, whose calculating process is shown
in Figure 2. Firstly, the predicted power of the distributed generation PDG(k) and the total predicted
power of the system ∑ PL(k) should be calculated and compared so that further power flow between
the users and the system can be ascertained. It is assumed that the power of the distributed generation
and the total power of the system has been predicted. The method to account for inaccurate predictions
is not discussed in this paper. Skipping to the second layer of the logic judgment, the state of the battery
represented by its current SOC(k) should be calculated. Finally, an economic scheduling assignment is
provided based on (i) the state of the battery and the grid and (ii) the difference between the battery
discharging cost and the price of the electric supply.

It is well known that a knapsack problem needs to be solved through iterative methods such as the
branch and bound method, the dynamic planning method, and different kinds of intelligent algorithms.
Generally, the PSO (Particle Swarm Optimization) algorithm, as one kind of intelligent optimization
technique, has good performance in global optimization. Further, due to its simple structure, no need
for gradient information of constraints, and few parameters in the algorithm, the PSO algorithm
achieve suitable solutions in continuous and discrete optimization problems. Therefore, based on these
features, the PSO algorithm is selected as the optimal method for solving.
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Figure 2. Flowchart of the power-supply-state judgment.

The PSO algorithm was firstly proposed by Kennedy and Eberhart [18]. This algorithm is a kind of
stochastic evolutionary optimization method based on simulating bird population searches, that have
good global search capacity. The basic theory of a PSO algorithm is briefly introduced as follows.

In the PSO algorithm, it is assumed that yi and vi are the position (the set of the controlled variables
in this paper) and velocity (the evolutionary direction of the controlled variables) of the ith particle,
while yi+1 and vi+1 represent the position and velocity of the next iteration. There are some parameters
in the algorithm. For example, w is the inertia weight factor parameter in this algorithm, c1 and c2

are positive learning factor parameters, and r1 and r2 are random numbers between 0 and 1 and obey
uniform distribution. Therefore, the position and velocity of the next iteration can be calculated by
Equations (11) and (12):

vj(i + 1) = c1r1

[
yl,j − yj(i)

]
+ c2r2

[
yg,j − yj(i)

]
+ wvj(i) (11)

yj(i + 1) = yj(i) + vj(i + 1). (12)

If the position of a particle does not satisfy the constraints, the PSO algorithm should be modified
and its velocity can be calculated by Equation (13):

vj(i + 1) = c1r1

[
yl,j − yj(i)

]
+ c2r2

[
yg,j − yj(i)

]
. (13)

In the process of the optimization of the modified PSO, the positions represent the states of the
switch of each device in an industry process, and the velocities represent the changes in positions after
each iteration [19].

The detailed optimization process of the PSO algorithm is shown in Figure 3. Firstly, the prediction
of the load and distributed generation should be input into the algorithm. Then, the initial values of
states of task-continuous load, PV generation, and wind generation (controlled variables) are obtained
by randomly selecting in the set {0, 1}. After attaining the initial values, it is easy to gain the power of
the battery and grid though the power supply approach provided by Figure 2. Hence, the value of the
objective function can be calculated by Equation (5).

Further, the PSO method is utilized to iterate by itself to generate a more optimal solution.
Moreover, in every iteration, the constraints are requested to be checked. The iterative Equation (11)
is replaced by Equation (13) when the constraints are not satisfied. After attaining a new solution,
the algorithm goes back to the process of calculating the power of the battery and the grid. Moreover,
the stop criterion of the PSO algorithm is whether the number of iterations reaches the setting value.
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Figure 3. Flowchart of the PSO process.

5. Example Analysis

To simplify the model, the efficiency of the battery is regarded as 1. An example of industrial
production processes in manufacturing devices is selected. It is assumed that this task includes 6 steps.
In the production processes, Step 1 to Step 3 ought to be accomplished by order and Step 4 to Step 6
ought to be accomplished by order. That means before Step 2 starts, Step 1 should be accomplished
already. Before Step 3 starts, Step 1 and Step 2 ought to be finished. Step 4, Step 5, and Step 6 are alike.
The normal production work is divided into 24 time slots (each slot lasts for 1 h) and all the work
ought to be carried out between 8:00 and 18:00.

As is shown in Figure 4, industrial electricity tariff is in accordance with city industrial production
patterns, including three sections: peak, valley, and plain. In Figure 4, the unit is ¥. It represents
RMB Yuan. The distributed unit is made up of a 600 kW PV system and a 300 kW wind-power
generating unit. A 2000 Ah/480 V lead-acid storage battery is equipped in this system also. The life
loss of the system is limited to 1/1000.

Figure 4. The price of electricity of a city.
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Production time of the original, the original loads and the output of the distributed power are
shown in Figure 5. The original loads consist of task-continuous processes and uncontrollable load,
which is shown by the bars. Specifically, the load bars are stacked in a time slot. Therefore, the original
maximum load power (800 kW) also occurs in the tariff peak.

 
Figure 5. The stacked bars of the original loads and power curve of the distributed generation.

According to the energy management model proposed in this paper, the optimized power curve
of the energy storage device and the optimal process order are shown in Figure 6. Comparing Figure 6
with Figure 4, it can be found that the period between 14:00 and 17:00 is the advantageous period where
the electricity price is low and the output of PV maintains a high level. Therefore, Processes 1, 2, 4 and 5
are shifted into this period. Because of the characteristic of the task-continuous load, Processes 3 and 6
are shifted behind. At the same time, the results arrange the energy storage device to discharge to
support Processes 3 and 6. The curve of grid in Figure 6 demonstrates that the schedule reduces both
the selling power and the buying power in this period. The reduction of selling power benefits the
local consumption of the distributed generation and the reduction of buying power is in favor of
saving users’ bills.

Figure 6. The process order and the power curve of the energy storage device after optimization.

Before optimization, the user’s revenue is 6.53 Yuan. However, after optimization, the user’s
revenue is 8.57 Yuan. Therefore, the amount of revenue increase is 2.04 Yuan.
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A comparison of production processes and power allocation sequences before and after
optimization shows that this model reduces the load during the high tariff period time and transfers
the load to the time slots when distributed energy generation is more prominent. From the power
exchange with the grid and the actual power of the battery, we can verify that this model improves the
local consumption of the distributed generation. On the other hand, the stability of the power grid
has been improved with less distributed energy sent back to the grid. At the same time, the model
improves the power curve and effectively responds to the electric tariff signal.

Specially, it is obvious that the former disordered working scheme of the task-continuous load
is well reorganized and shifted. The optimal scheme of the task-continuous load shown in Figure 6
not only reduces the electricity bill but also makes the working process more compact and smooth.
Due to the limitations of the time slot division and the user working time, the task-continuous load
optimization becomes relatively concentrated. However, such planning has not uplifted peak loads,
thus causing no extra pressure on the power grid. The result demonstrates the availability and efficiency
of the energy management model proposed in this paper, which could be suitable for utilization in
the industry.

6. Conclusions

Based on the task-continuous load characteristics, combined with the increasing integration of
distributed generation, this paper presents a comprehensive consideration of distributed generation,
energy storage charging/discharging, and task-continuous management strategies to optimize load
operation. Compared to non-optimized energy management, the proposed strategy takes advantage
of local distributed energy, improves the local consumption proportion of renewable energy sources,
and improves the economic efficiency of users.

For user-side energy management issues, the toughest problem is not to obtain an optimal load
schedule, but to accurately perceive and access users’ needs. Therefore, future work will focus on
how to analyze the influence of large amounts of load on the energy management system, how to
improve optimization results, and how to realize a flexible and interactive smart power utilization in
the environment of the smart grid.
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Abstract: Due to the increasingly serious energy crisis and environmental pollution problem,
traditional fossil energy is gradually being replaced by renewable energy in recent years. However,
the introduction of renewable energy into power systems will lead to large voltage fluctuations
and high capital costs. To solve these problems, an energy storage system (ESS) is employed into
a power system to reduce total costs and greenhouse gas emissions. Hence, this paper proposes a
two-stage method based on a back-propagation neural network (BPNN) and hybrid multi-objective
particle swarm optimization (HMOPSO) to determine the optimal placements and sizes of ESSs in a
transmission system. Owing to the uncertainties of renewable energy, a BPNN is utilized to forecast
the outputs of the wind power and load demand based on historic data in the city of Madison, USA.
Furthermore, power-voltage (P-V) sensitivity analysis is conducted in this paper to improve the
converge speed of the proposed algorithm, and continuous wind distribution is discretized by a
three-point estimation method. The Institute of Electrical and Electronic Engineers (IEEE) 30-bus
system is adopted to perform case studies. The simulation results of each case clearly demonstrate
the necessity for optimal storage allocation and the efficiency of the proposed method.

Keywords: renewable energy; energy storage system; hybrid multi-objective particle swarm optimization;
back-propagation neural network; power-voltage sensitivity analysis; three-point estimation method

1. Introduction

With the rapid development of renewable energy, interest in wind power has drawn more
attention, as it possesses advantages such as free energy resources, non-greenhouse gas emission,
and the ability of supporting rural areas. However, a high penetration of wind power raises a problem
of system instability, caused by the nature of wind uncertainty. The integration of ESS is one of the
best solutions to guarantee a stable power system with distributed wind resources [1].

An optimal allocation of ESSs in power systems can reduce total costs, enhance reliability and
power quality, and, by determining the best locations and sizes of ESSs, improve voltage profiles [2].
Studies [3,4] show that an optimal planning of locations and sizes of ESSs in power systems can reduce
a power system’s costs and enhance a its reliability and power quality. A novel method has been
presented in [5] for designing an energy storage system dedicated to the reduction of the uncertainty of
short-term wind power forecasts up to 48 h. Wang et al. in [6] proposed a determination methodology
for optimizing the capacity of an ESS that enables a wind power generator to meet the requirements of
grid integration. To improve regulation effects, the segmentation method and automatic segmentation
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method are also applied to the proposed algorithm. An improved genetic algorithm is utilized
in [7] to obtain the best energy savings and voltage profile by optimizing the location and size of
ultra-capacitors. In [8], Xiao et al. proposed a capacity optimization method for a hybrid energy
storage system taking SOC and efficiency into account. They used the maximal cumulative capacity
and SOC constraint to calculate ESS capacity. Motaleb et al. [9] performed optimal sizing for a hybrid
power system with wind and energy storage sources based on stochastic modeling of historical wind
speed and load demand.

Since the uncertainties of wind power will lead to large errors in the results of optimally
allocating ESSs, a power forecasting method is always used to predict power demand, spot price,
and outputs of renewable energy and helps decision-makers determine an ESS’s capacity more
accurately. A large amount of literature [10–13] related to power prediction has been developed
in recent years. The authors of [14–16] utilized artificial neural network (ANN) approaches for the
optimum estimation and forecasting of renewable energy consumption by considering environmental
and economic factors. Physical models were set up to predict solar irradiance and the output power
of photovoltaic (PV) generation, which are based on numerical weather predictions and satellite
images [17,18]. Bacher et al. developed a statistical approach based on a data-driven formulation using
historical measured data to forecast renewable energy time series [19].

In addition to the determination of ESS capacity, it is also necessary to design the placement
and rated power of energy storing devices, which is a complex parameter optimization problem.
A multi-objective particle swarm optimization (MOPSO) algorithm has been widely utilized to solve
the nonlinear, non-differentiable, multidimensional optimization problems [20,21]. Ganguly in [22]
made use of MOPSO to plan the reactive power compensation of radial distribution networks with a
unified power quality conditioner. Ramadan et al. [23] adopted the MOPSO technique to find the best
capacitors in distribution systems that are connected to wind energy generations.

The focus of this paper is to optimally allocate ESSs in a power system integrated with wind
power taking system costs, carbon dioxide emissions, and voltage fluctuations into account. In order
to mitigate the influence of the uncertainties of wind power, a back-propagation neural network
technique is utilized to forecast the power gap of the load and wind power using historical data.
A hybrid multi-objective particle swarm optimization algorithm, which consists of a three-point
estimation method, MOPSO, and a probabilistic power flow method, is developed to optimize the
placements and sizes of the ESSs. Furthermore, power–voltage sensitivity analysis is proposed in
this paper to select candidate buses for the installation of the ESS with the purpose of minimizing
iteration times.

The novelty of this work, distinguishing it from previous studies, is as follows: (1) the candidate
buses for the ESSs’ installation were selected by the power–voltage (P-V) sensitivity analysis,
which reduced the computational burden; (2) the capacity of the total ESS was determined by a
forecasting method; (3) instead of running the Monte Carlo method, a three-point estimation method
was employed to discretize the wind distribution; and (4) both the cost and greenhouse gas emissions
were reduced by hybrid multi-objective particle swarm optimization.

The rest of this paper is organized as follows: Section 2 formulates the problem. Section 3 presents
the method for solving it. Section 4 describes several case studies to demonstrate the proposed
algorithm, and Section 5 draws conclusions.

2. Problem Formulation

2.1. Electrical Energy Forecasting

To ensure the secure and economic integration of wind turbines into a power system, accurate
wind power and load demand forecasting has become critical of energy management systems [24].
In this paper, the back-propagation algorithm based on the artificial neural network is employed to fit
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the power curve of the difference between wind generation and load. The total capacity of the ESS is
determined by the predicted wind power and loads.

Due to the uncertainties of renewable energy, it is difficult to predict the change in power and
capacity of the ESSs. In this paper, the optimal storage capacity problem is formulated as a time series
forecasting problem.

The outputs of the generation comprise two parts:

{
Pd = Ps + Pd

dev
Pw = Pw

F + Pw
dev

(1)

Similarly, the load can be separated into two components as follows:

Pl = Pl
F + Pl

dev (2)

Supposing that
Ps + Pw

F = Pl
F (3)

The power difference between the actual power and the forecasting power is compensated by
the ESS.

According to the requirement of a power system, the power balance in the hybrid wind/diesel/ESS
system should be followed as Equation (4).

Pd + Pe + Pw = Pl (4)

Consequently, the charging or discharging power of the ESS can be calculated by Equation (4)
and the capacity of the ESS can be obtained herein, which is described by Equation (5).

Pe = Pl − Pd − Pw =
(

Pl
F + Pl

dev)− (Ps + Pd
dev)− (Pw

F + Pw
dev) (5)

CE = Emax
E /umin = Pmax

e × Δt/umin (6)

Noted that the main effect of the ESS is to compensate for the power deviation from the forecast;
as a result, the largest forecasting error is the total capacity of the ESSs.

2.2. Optimal Allocation of ESSs

The optimal placements and rated power of ESSs are formulated as a constrained nonlinear
integer optimization problem where both the locations and sizes of the storage devices are discrete.
The objective function encompasses the expected system costs, the emissions, and the voltage
fluctuation under the consideration of multiple equality and inequality constraints.

2.2.1. Objective Function

The aims of this work are to minimize the total costs, greenhouse gas emissions, and voltage
fluctuations by optimally determining the location and sizes of ESSs, while considering the uncertainties
of the wind power generation. More specifically, the system costs contain the fuel cost of diesel
generators, the operation cost of the WT, and the ESSs. The multi-objective functions are shown
as follows: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min f 1 =
3
∑

i=1
Probi · Costi

min f 2 =
3
∑

i=1
Probi · Emissioni

min f 3 =
3
∑

i=1
Probi · Fi

(7)
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Notice that

Costi =
N

∑
j=1

C(Pd) + Cw + Ce =
N

∑
j=1

(a + b · Pd + c · P2
d )+cw · Pw + ce · Pe (8)

Emissioni =
N

∑
j=1

E(Pd) =
N

∑
j=1

(d + e · Pd + f · P2
d ) (9)

Fi =
n

∑
k=1

(
Vk − Vspec

k
ΔVmax

k
)

2

(10)

where i is the scenario caused by the three-point estimate of wind power; Vspec
k is the expected voltage;

ΔVmax
k is the maximum of voltage deviation. The expected value of Equation (7) is to calculate the

desired system cost and the emissions by optimally allocating the ESSs and by determining the outputs
of all the different types of generators factoring in the wind distribution. However, the voltage will
fluctuate sharply with the change in the wind power generation, so the voltage profile is improved by
the third objective function of (7).

2.2.2. Constraints

To a hybrid wind/diesel/ESS power system, the following operational constraints should
be satisfied.

1. Equality Constraints: the power balance that is related to the nonlinear power flow equations is
considered in this paper, which is shown in Equation (11).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pi − Vi
N
∑

j=1
Vi(Gij cos δij + Bij sin δij) = 0

Qi − Vi
N
∑

j=1
Vi(Gij sin δij − Bij cos δij) = 0

(11)

2. Inequality Constraints: the inequality constraints are those associated with the bus voltage
Vk, the reactive power of generation QGi, the tap of the transformer Ti, and the maximum
charge/discharge power of the ESS.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vmin ≤ Vk ≤ Vmax

Tmin ≤ Ti ≤ Tmax

QGmin ≤ QGi ≤ QGmax

−nc · CE ≤ Pe ≤ nd · CE

(12)

where nc and nd are taken to be 3 C in this paper.

3. Solution Method

3.1. Discretizing Wind Distribution

The optimal allocation of the ESSs is always determined in the worst case (peak load without
wind power) or the historical time series of the power [25,26]. The goal of this paper is to obtain the
sitting and sizing of the ESSs in a more convenient way. Instead of using the Monte Carlo method,
a three-point estimation method is adopted to discretize the distribution of wind power.
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3.1.1. Wind Distribution

The probabilistic description of wind speed can be accurately presented by the Weibull
distribution [27]. Due to the great applicability, Weibull distribution has been widely used to describe
the probably distribution of the wind speed, which is defined as follows:

f (x; λ, k) =
k
λ
(

x
λ
)

k−1
e−(x/λ)k

(13)

where k represents the shape parameter, and λ is the scale parameter.
To obtain the wind power distribution, a linear approximation equation that established the

relationship between the wind speed and the wind power is presented in (14):

Y =

⎧⎪⎨
⎪⎩

0 i f x ≤ Vci or x > Vco

α+ βx i f Vci ≤ x ≤ Vno

M i f Vno ≤ x ≤ Vco

(14)

where M is the maximum power of wind turbine; α and β are the linear coefficients; and Vci, Vco,
and Vno denote the cut-in wind speed, the cut-out wind speed, and the normal wind speed, respectively.

3.1.2. Discretizing Wind Speed Distribution

The aim of the discretization scheme is to group the values of the continuous random variable
into a three finite group.

The continuous sequence of wind speed can be discretized into three points, as shown in the
following formula:

yi = μx + zi · σx. (15)

Notice that ⎧⎨
⎩ zi =

λ3
2 + (−1)3−i

√
λ4 − 3λ3

2

4
, i = 1, 2

z3 = 0
(16)

where yi is the discrete wind speed
Define ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μx =
M∫
0

x f (x; λ, k)dx

σx =
M∫
0
(x − μx)

2 f (x; λ, k)dx

λi =
M∫
0
( x−μx

σx
)

i
f (x; λ, k)dx

(17)

where μx is the mean value of x; σx is the standard deviation of x; λi is the ith central moment of x.
Notice that ⎧⎪⎨

⎪⎩
Pi =

(−1)3−i

zi(z1 − z2)
, i = 1, 2

P3 = 1 − P1 − P2

(18)

where Pi is the probability corresponding to yi.
A ten-year daily wind speed data for the city of Madison, USA, was utilized to fit the Weibull

distribution. Specifically, the rated power for wind generation was 113 MW with the total maximum
load of 283 MW, and the cut-in, cut-out, and normal speed of wind turbines was 3.5 m/s, 40 m/s,
and 13.5 m/s, respectively. The three-point discrete distribution was calculated and is shown in
Figure 1.
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Figure 1. Three-point discrete distribution of wind power.

3.2. BPNN Prediction

A standard BPNN is a multilayer feed-forward neural network with error backward propagation,
including an input layer, one and more hidden layers, and an output layer. Each layer is composed of
a number of neurons that are connected by weights and thresholds. To solve a complicated problem,
a complex neural network structure must be established by increasing the number of neurons and
layers, and the structure of the network should match the problem [28]. Figure 2 illustrates a three-layer
BPNN with a sigmoid function for the hidden layer and a linear function for the output layer.

Figure 2. Basic structure of a back-propagation network.

During the training progress, an input pattern is given to the input layer of the network. Based on
the given input pattern, the network will compute the output in the output layer. This network output
is then compared with the desired output pattern. The aim of the back-propagation learning rule is to
define a method of adjusting the weights of the networks. Eventually, the network will give the output
that matches the desired output pattern given any input pattern in the training set.

In this paper, a dynamic artificial neural network integrated with the non-linear auto-regressive
model with exogenous inputs (NARX) [29,30] is employed to forecast the output power of the
generation, which contains an input layer, a hidden layer with delays, and an output layer with
2, 10, and 1 neurons, respectively.
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As can be seen from Figure 3, a non-linear autoregressive with exogenous inputs dynamic neural
network model establishes a relationship between the optimal scheduling of diesel generation and the
actual data of wind power and the load, and is detailed in Equation (19).

Pdiesel(t) = f [Pdiesel(t − 1), . . . , Pdiesel(t − d); Pwind(t − 1), . . . , Pwind(t − d)] + ε(t), d ≥ 1 (19)

where d is the delay-order of independent variable; Pwind(t) is wind power at t hour; Pdiesel(t) is the
output power of the diesel generation power in one-hour ahead scheduling. It should be noticed
that, in the NARX model, load demand is not the independent variable because it has been contained
in Pdiesel(t).

Figure 3. Non-linear auto-regressive model with exogenous inputs—back-propagation neural
network (NARX-BPNN).

3.3. HMOPSO

Particle swarm optimization (PSO) is an intelligent optimization technique that was firstly put
forward in 1995 [31–33], and the fundamental idea of the PSO algorithm is to randomly generate
particles in the solution space and make each particle gradually approach the optimal solution [34,35].
In this paper, a hybrid MOPSO algorithm integrated with a non-dominated sorting genetic algorithm
(NSGA-II) is programmed by MATLAB (Version R2010b, the MathWorks, Natick, MA, USA, 2010) to
optimize the placements and sizes of ESSs in a hybrid wind/diesel power system. MOPSO is utilized to
update the position and velocity for each particle to search the best allocation of the ESS, and NSGA-II
is used to find a substantially improved spread of solutions and an improved convergence [36].
The procedure of the proposed method can be summarized as follows:

1. Forecast the difference between wind power and load demand and calculate the total capacity of
the ESSs.

2. Randomly generate a population with a certain number of particles for initializing all generators’
voltage, the output power, and the position and size of the ESSs. The random selections of
the swarm of particles considering constraints and corresponding velocity for each particle
are initialized.

3. Discretize the joint wind power distribution into a three-point distribution by the proposed
estimation method, which is discussed in Section 3.1.

4. Select the candidate buses for installing ESSs via P-V sensitivity analysis.
5. Through probabilistic power flow, evaluate the particles by fitness function and recall their best

positions associated with the best fitness value.
6. Check and preserve the pbest (particle best) and gbest (global best); if the algorithm has not yet

found the minimum cost, emissions, and voltage fluctuations, update the pbest and gbest.
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7. Duplicate the initial population to another population to form a combined population and update
the position and velocity of each particle.

8. Sort the members in the new population through NSGA-II with an elitism algorithm for selecting
the best solutions to renew the original population.

9. Repeat Steps 5–8 until all scenarios are considered.

4. Results and Discussion

4.1. Electrical Energy Forecasting

One-year wind power and load historical data, which are shown in Figure 4, of the hybrid system
are used to predict the output power of the diesel generation.
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Figure 4. One-year data of wind generation and load.

In this paper, a sodium–sulfur battery is used as the energy storage unit and the slowest battery
charge/discharge rate is 0.5 C. Three types of forecasting methods are studied and conducted to
calculate the time series of the outputs of the generations. The total capacity of the ESSs is determined
herein. The performances of the predicting methods are compared, and the results are depicted in
Table 1.

Table 1. Energy storage system (ESS) capacity based on different forecasting methods.

Method Network Type Capacity (MWh) Maximum Deviation Mean Deviation Variance

No prediction - 1465.68 100% 21.34% 0.00686
Persistence model - 226 52.09% 8.58% 0.009

Static prediction

Standard BP 217.48 50.13% 5.28% 0.00695
Variable gradient BP 213.56 49.23% 5.30% 0.00634

BFGS 205.84 47.45% 5.13% 0.00562
Conjugate gradient BP 209.57 48.31% 5.02% 0.00533

LM 201.07 46.35% 4.72% 0.00484
Dynamic

prediction
NAR BP 56.52 13.03% 0.86% 0.00022

NARX BP 54.4 12.54% 0.89% 0.00019

It can be seen from Table 1 that, with the help of the NARX-BPNN method, the total capacity of
the ESS is reduced from 1465.68 MWh to 54.4 MWh with a minimum variance of 0.00019. Compared
with the other prediction model, not only the maximum deviation but also the mean deviation of
the dynamic prediction method achieves the lowest, which is nearly 4 times less than that of the
persistence model. Figure 5 presents the performance of the NARX-BPNN method.
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Figure 5. (a) Simulation result of NARX-BPNN; (b) Annual forecast error of NARX-BPNN.

4.2. Sensitivity Analysis

Power vs. voltage characteristics, known as the P-V curve, has been widely used as a complementary
analytical tool to the dynamic study by many utilities. It depicts the loading and generating capability of
each bus in the power network with respect to voltage stability. The P-V curve enables system planners
and operators to reduce the risks of systems accidentally entering unstable regions [37].

In the paper, in order to minimize the possible placements of energy storage systems, thereby
reducing the computational complexity of the PSO algorithm, P-V sensitivity analysis is conducted.
The IEEE 30-bus system is selected to verify the ability performance of the proposed algorithm.
The system consists of five generations and 20 loads, where Bus 1 is the slack bus, Bus 2 is installed
with wind generation rated as 113 MW, Buses 5, 8 11, and 13 are defined as PV nodes, and other
buses are PQ nodes [38]. Wind generation is added to Bus 2 rated as 113 MW. In order to simulate the
extreme actual severe operating condition and expose the weaknesses and limitations of the system,
the lengths of branches from Bus 1 to Bus 3 and Bus 1 to Bus 2 are doubled.

Buses that have more variation according to the change of loading and/or generating conditions
are identified as sensitive buses. By placing energy storage systems at sensitive buses, the voltage
profiles not only at these sensitive buses but also at adjacent buses will be improved. Therefore,
by selecting proper locations for energy storage systems, the overall system voltage profiles can be
improved, and system costs and losses thus minimized.

Figure 6 depicts P-V curves of generation and load areas in the IEEE 30-bus system. Buses 7, 10,
and 12 in the generation area shown in Figure 6a, and Buses 25, 26, 28, the 30 in the load area shown in
Figure 6b are noticeably more sensitive than other buses; in other words, they are able to contribute
more voltage stability than other buses when energy storage devices are installed. It is worth noticing
that Buses 1, 5, 8, 11, and 13 are not considered to install ESSs, as they are either connected to the bulk
grid or already installed generations.
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(a) (b)

Figure 6. (a) Power–voltage (P-V) curves for generation areas of the IEEE 30 bus system; (b) P-V curve
for loading areas of the Institute of Electrical and Electronic Engineers (IEEE) 30 bus system.

4.3. Economic Analysis

Considering the actual situation, the impacts of integration of the wind power and ESS into a
transmission system are studied and compared in three cases in consideration of three scenarios of
wind power, which are obtained from 3-point estimation method (3-PEM) to illustrate the effectiveness
of the HMOPSO method. Table 2 presents the fuel cost parameters for each diesel engine, and the
operation cost parameters cw, ce are 45 $/MW and 5.8 $/MW, respectively.

Table 2. Fuel cost parameters of diesel engines.

Generator a b c

Gen 1 0 20 0.038432
Gen 2 0 40 0.01
Gen 3 0 40 0.01
Gen 4 0 40 0.01
Gen 5 0 40 0.01

Case 1: A probabilistic load flow analysis for the peak load condition in the IEEE 30-bus system
without ESS installation;

Case 2: A cost study with an ESS completely installed in Bus 2 where wind turbine is located;
Case 3: HMOPSO considering seven sensitive nodes as candidate locations.
Figure 7 reveals the economic performance of optimization results in three cases.

(a) (b)

Figure 7. (a) Operation cost with consideration of wind distribution; (b) Total operation cost in
three cases.
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It can be seen from above that the total operation cost is reduced with the changes of the wind
power from 0 MW to 113 MW. In Case 1, the load demand is only supplied by the diesel generation
such that the system has to face a high cost of $12,434.4/h. Even though the ESS is introduced to
Case 2, the system cost is still high which implies that the distributed ESSs and optimization method
is necessary. More specifically, the costs in Case 2 are $12,877, $10,721, and $9507 with the change of
the wind power from 0 MW to 113 MW. Compared with other cases, the cost in Case 3 is the lowest
with $11,270/h, $9312/h, and $8036/h, respectively corresponding to the three different wind power
outputs. If the system operate in one year (8760 h), the system will save $25,633,512.

4.4. Carbon Emission Analysis

Table 3 presents the carbon emission parameters of diesel engines [39]. Figure 8 reveals the
benefit from the renewable energy. It shows that total carbon emission decreased from 17,064 kg/h
to 15,364 kg/h with increasing wind power in Case 1. Compared with Case 1, the greenhouse gas
emissions dropped by 5.9% every hour, which is 15,194.4 kg/h in Case 3. The total carbon emission
is markedly decreased from 16,151.27 kg/h to 15,194.4 kg/h owing to the optimal allocation of ESSs.
It should be noted that the emissions are 17,386 kg/h in Case 3 when the wind power reaches the
maximum. The simulation results indicated that the operating range of the diesel engine should be
taken into account when optimizing the configuration of the ESS.

Table 3. Carbon emission parameters of diesel engines.

Generator d e f

Gen 1 22.983 −0.9 0.0126
Gen 2 25.505 −0.01 0.027
Gen 3 24.900 −0.005 0.0291
Gen 4 24.700 −0.004 0.0290
Gen 5 25.300 −0.0055 0.0271

(a) (b)

Figure 8. (a) Carbon emission considering wind distribution; (b) Total carbon emission.

As seen from the above analysis, the operation cost and carbon emission are greatly reduced by
the distributed ESS configuration. Meanwhile, the real power loss of the system declines sharply from
26.4 MW to 10.7 MW. Eventually, Buses 12, 25, and 26 are found to be the best places to install ESSs
with capacities of 30.7 MW, 18 MW, and 39.46 MW, respectively, which are demonstrated in Table 4.
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Table 4. Optimal allocation of energy storage systems (ESSs).

ESS BUS 12 BUS 25 BUS 26

Rated power (MW) 30.70 18.00 39.46
Capacity (MWh) 23.46 6.64 24.30

5. Conclusions

With the rapid development of renewable energy, it has become important to forecast electric
energy when optimally planning a stable and economic power system. In this paper, a two-stage
hybrid MOPSO that integrates with a back-propagation neural network is proposed to optimize the
allocation of ESSs in order to reduce total cost and emissions. Furthermore, wind power distribution
is discretized by a three-point estimation method, and the P-V curve is explored to select candidate
buses for the installation of the ESSs. The simulation results show that (i) the dynamic prediction
method is more suitable for forecasting wind power and load demand, which has the lowest number
of errors; (ii) with the help of P-V sensitivity analysis, the proposed HMOPSO is able to search for
the best placement and size for ESSs at a fast speed as well as minimize the total operation cost and
improve voltage profiles; (iii) different from conventional analysis, the distributed ESSs can achieve
minimum costs and greenhouse gas emissions for a wind power integrated system. In a future study,
the air density and ambient temperature will be taken into account to improve the forecasting method.
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Nomenclature

Acronyms

ANN Artificial Neural Network
BFGS Quasi-Newton
BPNN Back-propagation Neural Network
ESS Energy Storage System
HMOPSO Hybrid Multi-objective PSO
LM Levenberg Marquard
MOPSO Multi-objective PSO
NAR Non-linear Auto-regressive
NARX Non-linear Auto-regressive model with exogenous inputs
NARX-BPNN Non-linear Auto-regressive model with exogenous inputs—back-propagation neural network
O&M Operation and Management
PEM Point Estimation Method
PSO Particle Swarm Optimization
PV Photovoltaic
SOC State of Charge
WT Wind Turbine
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Variables

a, b, c, cw, ce Cost coefficients of different generations
CE Capacity of the ESS (MWh)
C(Pd), Cw, Ce Cost of the diesel generator ($/h), the WT ($/h), and the ESS ($/h)
Costi Total operation cost at the i scenario ($/h)
d, e, f Carbon emission coefficients of diesel generations
Emax

E Maximum charge/discharge demand of battery (MWh)
Emissioni Carbon dioxide emissions at the i scenario (kg/h)
Fi Total voltage fluctuations at the i scenario (V)
n Total number of bus node
N Number of diesel generators
nc, nd Maximum charge/discharge rate of the ESS (C)
PA Output power of A (MW) A∈{d(diesel generators), w(WT), e(ESS), l(load)}
PA

dev Deviation from the schedule of A (MW)
PB

F Forecasted power of B (MW) B∈{w(WT), l(load)}
Ps Hour-ahead scheduled power of diesel generators (MW)
Probi Probability of target value at the i scenario
QGi Reactive power of diesel generator i
Ti Tap of transformer i
umin Minimum battery charge/discharge rate (C)
Vk RMS value of bus k voltage (V)
x Wind speed (m/s)
Y WT power in PEM model (MW)
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Abstract: Gas and power networks are tightly coupled and interact with each other due to physically
interconnected facilities. In an integrated gas and power network, a contingency observed in one
system may cause iterative cascading failures, resulting in network wide disruptions. Therefore,
understanding the impacts of the interactions in both systems is crucial for governments, system
operators, regulators and operational planners, particularly, to ensure security of supply for the
overall energy system. Although simulation has been widely used in the assessment of gas systems
as well as power systems, there is a significant gap in simulation models that are able to address
the coupling of both systems. In this paper, a simulation framework that models and simulates the
gas and power network in an integrated manner is proposed. The framework consists of a transient
model for the gas system and a steady state model for the power system based on AC-Optimal
Power Flow. The gas and power system model are coupled through an interface which uses the
coupling equations to establish the data exchange and coordination between the individual models.
The bidirectional interlink between both systems considered in this studies are the fuel gas offtake of
gas fired power plants for power generation and the power supply to liquefied natural gas (LNG)
terminals and electric drivers installed in gas compressor stations and underground gas storage
facilities. The simulation framework is implemented into an innovative simulation tool named SAInt
(Scenario Analysis Interface for Energy Systems) and the capabilities of the tool are demonstrated
by performing a contingency analysis for a real world example. Results indicate how a disruption
triggered in one system propagates to the other system and affects the operation of critical facilities.
In addition, the studies show the importance of using transient gas models for security of supply
studies instead of successions of steady state models, where the time evolution of the line pack is not
captured correctly.

Keywords: combined simulation; power and gas interdependence; security of supply; transient gas
simulation; scenario analysis; power system contingency

1. Introduction

Large scale energy infrastructures for natural gas and power play a crucial role for any
well-functioning society. These infrastructures are systematically analyzed and controlled in order
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to understand their operational characteristics and to provide an energy efficient operation and
a sufficient level of security of supply. However, ensuring the required level of security of supply is
becoming more challenging, especially because of the increasing interconnections among the facilities
in both systems.

The dependence of power generation on natural gas has increased the vulnerability of electric
power systems to interruptions in gas supply, transmission, and distribution. Since the storage of
gas on-site is not an option, as it is for coal and fuel oil, the direct gas delivery through pipelines
becomes more critical during unexpected events in electricity systems like peak periods or disruptions.
Particularly, short term problems caused by pipeline constraints that cause an inability of a generator
to receive fuel gas can seriously affect security of power supply [1].

Another issue is the lack of predictability of renewable generation, which might increase the
magnitude of imbalances in the gas system. Although the increasing share of renewables will cause
a reduction of the power system dependency on natural gas, forecasting the amount of gas needed
to serve Gas Fired Power Plants (GFPPs) will become more challenging due to growing penetration
of variable resources. Additionally, shale gas production already had a significant impact on the
deployment of new infrastructures, especially in the USA, where the installed capacity of GFPPs has
increased enormously during the last years and is expected to continue increasing in the coming
years [2]. This increase has obviously tightened the dependency of the electricity system on the gas
system. This could also be the case in other regions of the world, including Europe, especially under
scenarios of abundant shale gas and low carbon policies.

Not only is the power system dependent on gas, but also the gas system is dependent on power.
A gas network consists of different facilities that depend on electrical power in order to maintain
normal operation (e.g., electric driven compressors, liquefied natural gas (LNG) facilities, underground
gas storage facilities, valves, regulators, gas meters). The usage of electric drivers in gas facilities
is increasing due to advantages regarding environmental impacts and flexibility compared to gas
turbines [3]. Moreover, increased availability, better control, improved energy efficiency, and shorter
delivery times are other important and attractive advantages of electric drivers. Since the proper
functioning of electric drivers requires a reliable power supply, gas system dependency on the power
system can be considered critical. Additionally, the present advancement in the Power-to-Gas (P2G)
technology, where excess power generation from renewable sources is used to produce hydrogen or
synthetic natural gas (SNG) will significantly contribute to the coupling of both systems [4], since the
power system will depend on the gas system as an energy storage provider.

Summarizing these aspects, it appears that interconnections between gas and electricity
systems make the entire energy system vulnerable, since a disruption occurring in one system
(e.g., an unexpected failure) may propagate to the other system and may possibly feed back to the
system, where the disruption started. Tight relations are increasing the potential risk for catastrophic
events, triggered by either intentional or unintentional disruptions of gas or electricity supply and
possibly magnified by cascading effects. Analyzing both systems in an integrated manner and
developing a combined assessment methodology is needed in order to know whether and how
such interdependencies may contribute to the occurrence of large outages and to ensure the proper
functioning of the energy supply system.

In this paper, we propose a simulation framework for assessing the interdependency of integrated
gas and power systems in terms of security of supply. The framework combines a steady state AC-flow
model with a transient hydraulic gas model and captures the physics of both systems. The data
exchange between both models is established through a developed software application named SAInt
(Scenario Analysis Interface for Energy Systems), which contains a graphical user interface for creating
the network models and scenarios and for evaluating the simulation results. The proposed framework
implemented in SAInt, is intended to be used by system operators, researchers, operational planners
interested in analyzing the operation and interdependency of gas and electricity systems in terms of
security of energy supply; i.e., to analyze the cascading impacts of contingencies on the operation
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of integrated gas and power systems and to assess system flexibilities by providing information on
system abilities to react to changes.

To achieve these goals, the paper follows the following pattern. In Section 2, we give an overview
of available models in the scientific literature addressing the analysis of combined gas and power
systems and highlight the gaps in the literature we intend to fill. Section 3 discusses the different
modeling aspects to be considered in a combined gas and power system model for assessing security
of supply, while Section 4 elaborates the developed simulation framework and its implementation into
a software application. In Section 5, we apply the proposed model to perform a contingency analysis
on a real life sized test network. Finally, the conclusions are given in Section 6.

2. State of the Art

The area of analyzing interdependencies between gas and power systems is relatively new. It is
encouraging that the number of publications on integrated gas and electricity systems found in the
literature is increasing, although still limited. Comprehensive reviews of past publications can be found
in [5–8]. The different types of analysis undertaken in integrated gas and power systems literature
can be categorized as; economic and market perspective analysis, operation planning and control
(e.g., optimization, demand response), design and expansion planning, and security analysis.

Studies on the medium and long-term economic evaluations aiming at exploring the interactions
between the mechanisms of pricing of each carrier are reported in [7–17], where the influence of
technical constraints is often ignored or taken into account in a simplified way. Additionally in [18],
the authors proposed a dynamic model representation of coupled natural gas and electricity network
markets to test the potential interaction with respect to investments while considering network
constraints of both markets. In [19], two methodologies for coupling interdependent gas and power
market models are proposed in a medium-term scope, where the two systems are formulated separately
as optimization problems and the obtained primal dual information is utilized.

From the operational viewpoint, unit commitment models relating to short term security
constrained operation of combined gas and power systems are developed in [20–22]. In [21], the authors
considered the natural gas network constraints in the optimal solution of security constrained unit
commitment (SCUC). Additionally dual fuel units are modelled for analyzing different fuel availability
scenarios. In [22], the model proposed in [21] is extended using a quadratic function of pressure for
describing the gas flow in pipelines and also including the gas consumption of the compressors. In [23],
an economic dispatch model (ED) is developed for integrated gas and power systems. The security
constraints for both systems are integrated in the ED which aims to minimize power system operating
costs. The optimal power flow (OPF) of the coupled gas and power systems are investigated in [24–29].
A method for OPF and scheduling of combined electricity and natural gas systems with a transient
model for natural gas flow is investigated in [27] and the solutions for steady-state and transient
models of the gas system are compared. A multi-time period OPF model was developed for the
combined GB electricity and gas networks in [28,29].

The impact of uncertainties on integrated gas and power system operation caused by variable
wind energy is discussed in [30–33]. In [30] the impacts of abrupt changes of power output from
GFPPS, to compensate variable power output from wind farms, on the Great Britain (GB) gas network
is analyzed. In [32], the authors developed partial differential equation (PDE) model of gas pipelines
to analyze the effects of intermittent wind generation on the fluctuations of pressure in GFPPs and
pipelines. The coordination between the gas and power systems based on an integrated stochastic
model for firming the variability of wind energy is presented in [33]. Gas transmission system
constraints and the variability of wind energy is considered in the optimal short-term operation of
stochastic power systems with a scenario based approach.

Studies considering the implementation of demand side response in order to mitigate the pressure
of peak demand can be found in [34–37]. An operating strategy for short-term scheduling of integrated
gas and power system is proposed in [36] while considering demand response and wind uncertainty.
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In [37], the impact of demand side response on integrated gas and power supply systems in GB is
analyzed for the time horizon from 2010 to 2050.

The problem of the design and expansion planning is addressed in [38,39] for the integrated gas
and power systems at the distribution level and the transmission level, respectively.

Recently P2G has gained significant interest. A number of studies [4,40] have investigated the
interdependencies introduced by P2G units on the integrated gas and power system operation in GB.
The application of P2G for seasonal storage in gas networks was investigated in [41].

The security perspective including the reliability and the adequacy of integrated gas and power
systems has gained significant interest due to increasing dependencies among the systems. Such studies
may include the cascading effects of contingencies where the performance of the networks is
reduced [8,42–45]. In [8], an integrated simulation model that aims at reflecting the dynamics of
the systems in case of disruptions is proposed. While developing the integrated model, first gas and
power systems are modeled separately and then linked with an interface.

Despite the growing interest in analyzing the integrated gas and power system in reliability aspects
most of the studies on that area have used steady-state or successions of steady state formulations
(i.e., supply and demand are assumed balanced at all time) to define each system in order to reduce
the complexity of the problem [21,46,47]. However, these formulations could not reflect the different
behavior of the two systems appropriately, since gas and power system dynamics evolve on very
different timescales. Gas systems react slower to changes in the system, because of the larger
system inertia, due to the quantity of gas accumulated in the pipelines, also referred to as linepack.
Since steady state gas models do not account for the changes in linepack, these models are inadequate
for describing the dynamic behavior of gas systems, when boundary conditions change over time
(demand, supply, etc.) [48,49]. Capturing the dynamic behavior of gas systems correctly requires
the use of transient models. Nevertheless, few references can be found in literature considering the
integration of gas dynamics with electricity systems [27,49]. In [27], gas and electricity systems have
been modeled in a coupled manner to assess the coordinated daily scheduling of interdependent gas
and electricity transmission systems that are based on slow transient process of gas flow. However,
the authors did not take into account the ability of GFPPs to change their output within the day.
Moreover, the flexibility of the gas system to adapt itself to changing demands of GFPPs is not
analyzed in the study. In [49] an integrated gas and electric flexibility model has been developed where
a relevant flexibility metric is introduced to assess the ability of the gas transmission networks to react
to changes in the power system, particularly, due to intermittent renewables. The proposed model
uses both steady-state and transient gas analysis and electrical DC optimal power flow, where the
bus voltages and reactive power balance are neglected. The simplification used in DC power model
may provide too optimistic results, mainly because voltage profile of buses and reactive power has
significant impacts on the system conditions when perturbed by failure events [8].

This study extends previous work in the area in several ways. First, to the best of our knowledge it
is the first scenario-based integrated simulation tool to analyze the cascading effects of the contingencies
for integrated gas and power systems in such detail. The proposed framework (referred to as SAInt)
couples a transient gas hydraulic model, which considers sub-models of the most important facilities,
such as compressor stations, LNG terminals and UGS facilities, with a steady state power model based
on AC flow, where the transmission capacity, active-reactive generation and upper-lower limits on
voltage magnitude are considered. The gas model is designed with a dynamic time step adaptation
method which adapts the simulation time step in relation to the control mode changes in order to
capture these changes with a higher time resolution. Moreover bidirectional interdependencies are
modeled by considering the gas dependency of GFPPs and the power dependency of electric driven
compressor stations, LNG terminals and UGS facilities. The proposed model focuses on integrated
analysis of gas and electricity systems to achieve a sustainable energy system and to improve energy
security, as well as aiming at developing a methodology to identify and assess the impact of interactions
between gas and electric systems in terms of energy security.
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3. Security of Supply in Integrated Gas and Power Systems

The interactions between gas and electric systems make it increasingly difficult to separate security
of gas supply from security of electricity supply. The changes in the overall system due to all type
of incidents affect the dynamic behavior and vulnerability of the integrated gas/electricity system.
The degree of integrated power and gas system vulnerability depends on some external conditions
like the level of power system dependency on GFPPs, power generation mixture of the region, weather
conditions, natural disaster probabilities of the region, and failure probability of facilities in either of
the systems, among other factors.

Generally speaking, large disruptions in gas systems affecting both power and non-power
consumers are not so common. The gas system is well known as reliable and safe. However, there
could be incidents resulting in curtailment of gas in some conditions which can immediately cause
problems in the power system such as, unexpected increase in demand, freezing of wellheads and
disruption of pipelines among others. In such cases, the delivery pressure needed by the facilities has
to be taken into account. This is particularly important in recently deployed GFPPs using modern
combustion turbines, which need higher gas pressure to operate compared to conventional combustion
turbines. It should be noted that, even if the gas system had enough capacity to deliver gas to GFPPs
at peak demand, the coincidence of peak demand for GFPPs and for conventional use (household,
commercial, industrial) may result in a significant diminished pressure in pipelines, which eventually
may produce interruptions in the electricity generation because of insufficient pressure.

In case of lack of gas supply in a GFPP, the possible solutions that may help bridge the gap of
gas availability could be dual fuel capabilities or/and a variety of storage options (line-pack and UGS
facilities close to consumption areas). However, the costs and feasibility of storage and fuel switching
has to be analyzed in detail since sometimes they cannot be used as a solution in practice. In fact,
quite frequently because of the cost of fuel-oil storage a dual fuel GFPP cannot switch to the alternative
fuel due to lack of fuel stored on-site.

When the consequences and cascading effects of a disruption originating in one system and
propagating to the other system are compared, the gas system is more resilient to local and short-term
disruptions compared to the electricity system. The main reason for this is that, in addition to the
existence of the linepack as short-term storage, the majority of compressor stations are still powered by
gas turbines, which keeps the pressure profile within limits, allowing continued operation. Furthermore,
in case electric driven compressors are installed, a back-up power system (typically diesel) is usually
available to protect the system from power outages. A massive power failure would generally have no
serious effect on the physical pipeline facilities, provided that it does not last too long. Compressor
stations that utilize electric drivers would be the most affected and have to be analyzed carefully.

When analyzing and modelling integrated gas and electricity systems, there are several issues
that have to be addressed mainly due to the differences in the structure of the systems. For instance,
the failure response of the power and gas system infrastructures is significantly different. A technical
failure in the power system infrastructure can result in an immediate loss of service from a generating
unit or a transmission line, that can, under some extreme conditions, propagate loss of service to the
electric customers due to cascading effects. On the contrary, most technical failures in gas systems
(e.g., pipeline rupture, failure in compressor station or storage facility etc.) result in a locally or
regionally reduced network capacity rather than an entire loss of service to the gas consumers [1].
This capacity reduction might result in curtailments of gas delivery to customers according to their
priority level of service. Another important distinction is the different dynamic behavior of the
two systems. Electricity travels almost instantaneously and cannot be stored economically in large
quantities in current power systems, with the only exception of hydraulic pumping power stations,
whose availability is very much limited in a significant number of countries. In case of disruptions,
the response time of the power system is quite small and basically the transmission line flows satisfy
the steady-state algebraic equations. On the contrary, the gas flow in pipelines is a much slower
process, with gas velocities below 15 m/s, resulting in a longer response time in case of disruptions.
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In particular, high-pressure transmission pipelines have much slower dynamics due to the large
volumes of gas stored in the pipelines. This quantity of gas cannot be neglected when simulating the
dynamics in a gas transmission system; in fact the line pack in the pipeline increases the flexibility of
the gas system to react to short term fluctuations in demand and supply. This information is important
especially in the modeling stage, since different timing of the systems needs to be considered during
the simulation process.

Based on the information above, a simulation framework is proposed that allows simulating
integrated gas and power systems in a realistic way, emphasizing the integration and communication
between the networks. The architecture of the simulator is explained in detail in the next section.

4. Methodology

In this section, we elaborate the different models and methods used in the proposed simulation
framework for analyzing the interdependence between gas and power systems. In the first part, we
derive the physical equations describing the behavior of both systems independently. Next, we elaborate
the coupling equations describing the most relevant interconnections between the two energy systems.
Finally, we integrate the individual models together with the coupling equations into a single integrated
simulation framework and describe the algorithm and the communication and synchronization between
the simulators in the course of the solution process of the combined energy system.

4.1. Power System Model

A power transmission system is described by a directed graph G = (V, E) consisting of a set of
nodes V and a set of branches E, where each branch e ∈ E represent a transmission line or a transformer
and each node i ∈ V a connection point between two or more electrical components, also referred to as
bus. At some of the buses power is injected into the network, while at others power is consumed by
system loads.

Transmission lines and transformers, can be described by a generic per-phase equivalent π-circuit
model depicted in Figure 1, which reflects the basic properties of both components, such as resistance
R f t, reactance X f t, line charging susceptance b f t, transformer tap ratio t f t and phase shift angle φ f t.

Vf = |Vf | ejδ f

I f Vp

j
b f t

2

R f t jX f t

j
b f t

2

It

Vt = |Vt| ejδt

1 : t f t

Figure 1. Generic branch model (π-circuit) for modeling transmission lines (t f t = 1 & φ f t = 0),
in-phase transformers (φ f t = 0) and phase-shifting transformers (φ f t �= 0). The transformer tap ratio is
modeled only on the from-Bus side of the branch model.

From the π-circuit model, we can derive for each branch e ∈ E a branch admittance matrix Ybr,
which relates the complex from-bus and to-bus current injections I f & It, respectively, to the complex
from-bus and to-bus voltages Vf & Vt, respectively, as follows:

⎡
⎣I f

It

⎤
⎦ =

⎡
⎢⎣a2

f t(y f t +
b f t
2 ) −t∗f t · y f t

−t f t · y f t a2
t f (y f t +

b f t
2 )

⎤
⎥⎦
⎡
⎣Vf

Vt

⎤
⎦ (1)
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with

t f t =
Vp

Vf
= a f t ejφ f t , a f t =

|Vp|
|Vf | , y f t =

1
R f t + jX f t

=
1

Zf t
(2)

The elements of the branch admittance matrices can be used to assemble the bus admittance
matrix Ybus which describes the relation between the vector of complex bus current injections I to the
vector of complex bus voltages V for the entire power network.

I = Ybus · V, Ybus =
[
Yij
]Nb×Nb (3)

The steady state power balance in the power system is derived from Kirchhoff’s Current Law
(KCL, i.e., all incoming and outgoing currents at a bus must sum up to zero) applied to each bus in the
network, which yields the following complex power balance matrix equation for the entire network:

S = V · I∗ ⇒ (PG − PD) + j(QG − QD) = V · Y∗
bus · V∗ (4)

where the left hand side describes the active P and reactive Q power injections/extractions at
generation/load buses, respectively, and the right hand side the incoming and outgoing apparent
power flows from transmission lines and transformers.

The operation of a power system is restricted by a number of constraints imposed by technical
components and stakeholders (producers, consumers, regulators etc.) involved in the power supply
chain. Transmission lines, for instance, can only transport a limited amount of power due to
thermal restrictions, while the operation of power plants is limited by the capability curves of the
installed generators. The power transmission system operator (TSO) is responsible for respecting
these constraints, while operating the system in an economic and secure manner. The real time
power dispatch in an electric power system can be described by a steady state AC-optimal power
flow model (AC-OPF) [50], which is expressed by the following non-linear inequality constrained
optimization model:

min
X

f (X) =
Ng

∑
i=1

c0,i + c1,i PG,i + c2,i P2
G,i (5)

s. t. GP,i(X) = Pi(V)− PG,i + PD,i = 0, i = 1 . . . Nb (6)

GQ,i(X) = Qi(V)− QG,i + QD,i = 0, i = 1 . . . Nb (7)

Pi(V) =
Nb

∑
j=1

|Vi||Vj||Yij|cos(δi − δj − θij), i = 1 . . . Nb (8)

Qi(V) =
Nb

∑
j=1

|Vi||Vj||Yij|sin(δi − δj − θij), i = 1 . . . Nb (9)

H f
k (X) = S f

k
∗ · S f

k − Smax
k

2 ≤ 0, k = 1 . . . Nl (10)

Ht
k(X) = St

k
∗ · St

k − Smax
k

2 ≤ 0, k = 1 . . . Nl (11)

δi = δ
re f
i , i = ire f (12)

|Vmin
i | ≤ |Vi| ≤ |Vmax

i |, i = 1 . . . Nb (13)

Pmin
G,i ≤ PG,i ≤ Pmax

G,i , i = 1 . . . Ng (14)

Qmin
G,i ≤ QG,i ≤ Qmax

G,i , i = 1 . . . Ng (15)
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where the decision variables expressed by vector X

X =
[
Δ Vm PG QG

]T
(16)

are the set of bus voltage angles Δ, bus voltage magnitudes Vm and active and reactive
power generation PG and QG, respectively. Equation (5) is a scalar quadratic objective function,
which describes the total operating costs for each committed generation unit in terms of its active power
generation, while the non-linear equality constraints expressed by Equations (6)–(9) describe the set of
active and reactive power balance equations derived from matrix Equation (4). Equations (10) and (11)
are non-linear inequality constraints, which describe the transmission capacity limits Smax

k for each
line, while the upper and lower limits of the decision variables are described by Equations (13)–(15).
For each isolated sub network one bus is chosen as the voltage angle reference (see Equation (12)),
i.e., the voltage angle of the reference bus is set to zero.

The described AC-OPF model is implemented into the open source power flow library
MATPOWER [51], which we utilize as the power system simulator in the context of the proposed
simulation framework.

4.2. Gas System Model

Similar to the power system network, the gas network is described by a directed graph G = (V, E)
composed of nodes V and branches E. Facilities with an inlet, outlet and flow direction are modeled
as branches, while connection points between these branches as well as entry and exit stations
are represented by nodes. Branches, in turn, can be distinguished between active and passive
branches. Active branches represent controlled facilities, which can change their state or control
during simulation, such as compressor stations, regulator stations and valves, while passive branches,
such as pipelines and resistors represent facilities or components whose state is fully described by the
physical equations, derived from the conservation laws. A description of the different branch types is
given in Table 1. Nodes can also be differentiated according to their function into supply, demand,
storage and junctions. A description of the different node types and their corresponding node facilities
is given in Table 2.

The gas model proposed in this study includes sub-models of all important facilities comprising
a gas transport system, such as pipelines, compressor stations (CS), production fields (PRO),
cross-border import (CBI) and export stations (CBE), city gate stations (CGS), stations of direct served
customers (GFPPs, IND), liquefied natural gas (LNG) regasification terminals and underground gas
storage (UGS) facilities. The model is able to capture appropiately [52,53] the reaction of gas transport
systems to load variations (i.e., daily and seasonal changes of gas demands at offtake points) and
disruption events (e.g., loss of supply from an entry point, failure in a compressor station, etc.) with
moderate computational cost, taking into account the physical laws governing the dynamic behavior of
gas transport systems. The accuracy of the proposed gas model has been confirmed in [52,53], where it
is benchmarked against a commercial software package. In the following we give a brief description of
the physical equations used fro describing the gas system. We refer to previous publications, for more
details on the gas model implemented in SAInt [52–54].

The dynamic behavior of a gas transport system is predominantly determined by the gas flow in
pipelines. The set of non-linear hyperbolic partial differential equations (PDE) describing the transient
flow of natural gas in pipelines are derived from the law of conservation of mass, momentum and
energy and the real gas law.

108



Appl. Sci. 2017, 7, 47

Table 1. Basic elements comprising gas transport networks.

Element Types Description

Passive Elements

pipe models a section of a pipeline, basic properties are length, diameter, roughness and
pipe efficiency

resistor models passive devices that cause a local pressure drop (e.g., meters, inlet piping,
coolers, heaters, scrubbers etc.)

Active Elements

compressor
models a compressor station with generic constraints, allows the specification of a
control mode of the station (e.g., outlet pressure control, inlet pressure control, flow rate
control etc.)

regulator models a pressure reduction and metering station located at the interface of two
neighboring networks with different maximum operating pressures, allows the
specification of a control mode of the station (e.g., outlet pressure control, inlet pressure
control, flow rate control etc.)

valve
models a valve station, which is is either opened or closed

Table 2. Classification and characteristics of nodes in the network.

Node Type Description Facilities

demand

L > 0

point, where gas is extracted from the network, connected
facilities are typically flow or pressure controlled

CGS, CBE, GFPP,
IND

supply

L < 0

point, where gas is injected into the network; connected facilities
are typically flow or pressure controlled; for LNG regasification
terminals the working gas inventory is monitored and the flow
rate is reduced in case of low inventory

PRO, CBI, LNG

storage

L ≥ 0 or L ≤ 0

point, where gas is injected or extracted from the network and
where the maximum supply/loads depend on the working gas
inventory, which is monitored along the transient simulation;
connected facilities are typically flow or pressure controlled

UGS

junction

L = 0

point, where a topological change or a change in pipe properties
occurs (e.g., diameter, inclination); no specific control -

Applying these laws on an infinitesimal control volume (CV) of a general pipeline with a constant
cross-sectional area A and an infinitesimal length dx (see Figure 2) and assuming the parameters
describing the gas flow dynamics along the pipe coordinate x are averaged over A, yields the following
set of fundamental Partial Differential Equations (PDEs) describing the gas flow through pipelines
(the assumption of averaging the flow parameters over the cross-sectional area can be justified as
long as the pipe length L is much greater than the pipe diameter D which is the case in transmission
networks where D

L is of order O(10−5) or lower):

Law of Conservation of Mass—Continuity Equation:

∂ρ

∂t
+

∂(ρv)
∂x

= 0 (17)
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Newton’s Second Law of Motion—Momentum Equation:

∂(ρv)
∂t︸ ︷︷ ︸

inertia

+
∂(ρv2)

∂x︸ ︷︷ ︸
convective term

+
∂p
∂x︸︷︷︸

pressure force

+
λρv|v|

2D︸ ︷︷ ︸
shear force

+ ρgsinα︸ ︷︷ ︸
force of gravity

= 0 (18)

First Law of Thermodynamics - Energy Equation:

∂

∂t

[(
cvT +

1
2

v2
)

ρA
]
+

∂

∂x

[(
cvT +

p
ρ
+

1
2

v2
)

ρuA
]
+ ρuAgsinα = Ω̇ (19)

Real Gas Law - State Equation:
p
ρ
= Z R T (20)

ρgAdx

α

CV
dx

pA+
A
∂p

∂x
dx

Adx
D(ρ

v)

Dt

λ
ρv|v|

2D
Adx

pA

z

x

Qout

Q in

Figure 2. Forces acting on a control volume in a general gas pipeline.

The fundamental equations are typically simplified by adapting them to the prevailing conditions
in transport pipelines. The most common assumptions are isothermal flow (i.e., constant temperature
in time and space, thus, energy equation is redundant and can be neglected) and small flow velocities
(i.e., relatively small Mach numbers, thus, convective term in momentum equation is negligible
compared to the other terms), which applied to the above equations yields the following set of
non-linear hyperbolic PDEs:

∂p
∂t

= −ρnc2

A
∂Qn

∂x
(21)

∂p
∂x

= −ρn

A
∂Qn

∂t
− λρ2

nc2

2DA2 p
|Qn|Qn − g sinα

c2 p (22)

with

c2 =
p
ρ
= ZRT, M = ρvA = ρnQn

The above PDEs express the physical behavior of the gas flow in each pipe section in the gas
model. We can integrate the set of PDEs for the entire network into one coupled equation system by
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applying the following integral form of the continuity equation to a nodal control volume Vi in the
network, assuming all pipelines in the network are divided into a finite number of pipe segments:

Vi
ρnc2

dpi
dt

=
k

∑
j=1

aijQij − Li, i = 1 . . . Nn (23)

with

Vi =
π

8

k

∑
j=1

D2
ij Δxij

Equation (23) can be expressed for each nodal control volume Vi in the network, resulting in Nn

set of equations with 2Nn + Mb unknown state variables, where Nn and Mb denote the number of
nodes and branches, respectively. Thus, Nn + Mb additional independent equations are required in
order to close the entire problem. These equations are provided by the pressure drop equation for
each pipe segment derived in Equation (22) and the equations describing the control modes and active
constraints of non-pipe facilities [52]. The differential equations can be discretized using the following
fully implicit finite difference approximations for the state variables p, Q and L and their time and
space derivatives:

∂U
∂t

=
Un+1

i − Un
i

Δt
,

∂U
∂x

=
Un+1

i+1 − Un+1
i

Δx
, U =

Un+1
i+1 + Un+1

i
2

(24)

The resulting (non-)linear finite difference equations and control equations of non-pipe facilities
are solved iteratively by a sequential linearisation method [55]. For more details on the equations
describing the control and active constraints of non-pipe facilities and the algorithm for solving the
gas model we refer to [52–54].

Furthermore, we use the following expression for computing the quantity of gas stored in each
pipe section (line pack):

LP(t) =
A

ρn · c2

∫ x=Δx

x=0
p(x, t) dx =

Δx pm(t) A
ρn · c2 (25)

with

pm(t) =
2
3

p1(t)2 + p1(t) · p2(t) + p2(t)2

p1(t) + p2(t)
(26)

where pm is the mean pressure in the pipe section and, p1 and p2 are the inlet and outlet gas pressure,
respectively. The ramping of a GFPP depends on the availability of line pack in the hydraulic area
(sub network bounded by controlled facilities) the GFPP is connected to. We consider the availability
of line pack by setting a minimum nodal gas pressure threshold for the corresponding GFPP node.
Since line pack is linearly correlated to the mean gas pipeline pressure, GFPPs operate only if a specific
line pack level equivalent to the specified minimum pressure is available.

The presented gas model is implemented into the simulation tool SAInt, which we use as
a simulator for the gas model in the proposed simulation framework.

4.3. Interconnection between Gas and Power Systems

As discussed in the previous sections, gas and electric power systems are physically interconnected
at different facilities. In this paper, we consider the most important connections between both systems
as follows:

1. Power supply to electric drivers installed in gas compressor stations:
The electric power consumed by the compressor station can be described by the following
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expression (derived from the first and second law of thermodynamics for an isentropic
compression process) describing the required driver power PCS

D,i for compressing the gas flow Q
from inlet pressure p1 to outlet pressure p2 [56,57]:

PCS
D,i = f

κ

κ − 1
Z1T1RρnQ

ηadηm

⎡
⎣ p2

p1

κ − 1
κ − 1

⎤
⎦ , i = 1 . . . NCS (27)

where f is a factor describing the fraction of total driver power provided by electric drivers,
ηad the average adiabatic efficiency of the compressors, ηm the average mechanical efficiency of
the installed drivers, p2 the outlet pressure, p1, Z1, T1 the inlet pressure, compressibility factor,
temperature, respectively, R the gas constant, κ the isentropic exponent.
The power supply of the gas network is added to the active power demand in the electric model.

2. Electric power supply to LNG terminals and UGS facilities:
We capture this interaction by assuming a generic linear function in terms of the regasification or
withdrawal rate Lrw, respectively:

Prw
D,i = ki,0 + ki,1 · Lrw,i (28)

3. Fuel gas offtake from gas pipelines for power generation in GFPPs:
The required fuel gas LGFPP,i for active power generation PG,i at plant i can be expressed in
terms of the thermal efficiency ηT of the GFPP and the gross calorific value GCV of the fuel gas,
as follows:

LGFPP,i =
PG,i

ηT · GCV
, i = 1 . . . NGFPP (29)

4.4. Integrated Simulation Framework for Security of Supply Analysis

The modeling framework carried out within SAInt considers the integrated gas and electricity
transmission network under cascading outage contingency analysis. The cascading outages are
investigated when the gas or electricity system has just experienced a disruption, like a shortage in
supply or transmission capacity. The framework comprises of

(i) a simulator (MATPOWER) for solving an AC-OPF for the power system,
(ii) a transient hydraulic gas simulator (SAInt) for the gas system which includes sub-models of all

relevant pipe and non-pipe facilities
(iii) and an interface (SAInt) which handles the communication and data exchange between the

two isolated simulators.

SAInt is composed of two separate modules, namely, SAInt-API (Application Programming
Interface) and SAInt-GUI (Graphical User Interface). The API, is the main library of the software and
contains the solvers, routines and classes for instantiating the different objects included in gas and
electric systems. In order to perform power flow calculations and to extend the functionality of the
software, the API has been linked to MATLAB using the Matlab COM Automation Server. This link
has been used to establish a communication between the Matlab-based open source power flow
library MATPOWER [51] and SAInt-API. This allows the execution of AC-Power Flow and AC-OPF
with MATPOWER and the evaluation and visualization of the obtained results using SAInt-GUI [52].
For more information on SAInt we refer to previous publications [52,54].

The proposed simulation framework is illustrated in the flow diagram depicted in Figure 3,
which is explained further below.

The power model proposed in this paper is designed to provide a realistic representation of the
behavior of an actual power system when subjected to contingencies. Cascading effects of contingencies
in the power grid are very complex phenomenona, and identifying the typical mechanisms of
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cascading failures and understanding how these mechanisms interact during blackouts is an important
research area [58–63]. Potential mechanisms that might be modeled include overloaded line tripping
by impedance relays due to the low voltage and high current operating conditions, line tripping
due to loss of synchronism, the undesirable generator tripping events by overexcitation protection,
generator tripping due to abnormal voltage and frequency system condition, and under-frequency
or under-voltage load shedding. For each additional mechanism of cascading failure included
in a model, assumptions must be made about how the system will react to these rarely observed
operating conditions.
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Figure 3. Flow chart of the proposed Simulation Framework SAInt, showing the implemented algorithm.
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This paper introduces a steady state AC-flow model which is adapted to reflect a set of corrective
actions performed by TSOs when trying to return the system to a stable operating condition after
a contingency.

While the initial contingency can usually be considered as being a random event, an interaction
of cascading failure mechanisms exists in the subsequent events. For example, the loss of critical
components such as tripping of transmission lines creates load redistribution to other components,
which might become overloaded. The overall network is then weakened due to the stress on remaining
elements, possibly leading to an instability. If corrective action plans are not applied quickly further
failures might be created as a consequence leading to a blackout. In this paper, this cascading failure
phase, starting with the initiating event is modeled, where the cascading contingencies occurrence are
affected by operator actions and the times between subsequent events are considered in a range of
tens of seconds to 1 h. Various system adjustments that are considered include the post-contingency
redispatch of active and reactive resources, cascade tripping of an overloaded transmission line,
tripping or re-dispatching of generators due to load/generation imbalance, and load shedding at load
buses to prevent a complete system blackout when insufficient voltage magnitudes are observed.

The initial state of the model is obtained by solving the standard AC optimal power-flow problem
as described in Equations (5)–(15), which yields the optimum hourly generator dispatch for given
hourly loads, cost functions for each generator and bus voltage and line loading constraints. To execute
this task MATPOWER 6.01b AC-OPF algorithm is applied [51].

Any change from the initial state caused by a contingency event, such as a (simultaneous) failure
of one or more transmission lines, failure of a generation unit or decreased amount of generation
capacity due to lack of gas supply, can be introduced in the model by defining a scenario event
for the corresponding facility, which is composed of an event time, an event parameter and its
corresponding value.

Whenever a contingency is observed in the system, an imbalance between total generation
and total load may occur. In order to re-balance the system, the model redistributes the missing or
excess power to the remaining facilities in the power grid. The power re-dispatch is obtained by
running the AC-OPF model, while considering the new topology triggered by a previous disruption
(e.g., lines and generation units may be disconnected). However, since the system is under a stressed
state, the AC-OPF algorithm may deliver an infeasible solution, that does not satisfy the convergence
criteria, since system constraints such as line overloading or voltage limits cannot sustain the desired
system loads. In order to allow the system to find a converged solution, the bus voltage (|V| ≥ |Vmin|)
and line capacity constraints (S f · S∗

f ≤ Smax2 & St · S∗
t ≤ Smax2) in the standard AC-OPF formulation

are relaxed for the re-dispatching process. The re-dispatching process is followed by a two step
feasibility checking procedure. In step one, bus voltage violations are mitigated by performing load
shedding at the affected buses and recomputing the relaxed AC-OPF until no voltage violations are
detected, so called under-voltage load shedding. The model assumes that there is enough time for
the operator to implement under voltage load shedding to prevent a voltage collapse which is the
root cause of most of the major power system disturbances [64–66]. The model sheds load in blocks of
2% for the corresponding bus until the relaxed bus voltage constraint is satisfied. If a violation is not
eliminated although the load sheds more than 50% of its original load, we assume complete failure of
the affected bus and set the load value to zero [8]. The second step of the feasibility checking procedure
follows after all bus voltage violations have been remedied in the first step. During the re-dispatching
process new failures may occur at certain components as they become overloaded. In this paper
the overloads are aimed to be strictly avoided for all component contingencies. This means that it
is assumed that the probability for line trip is 1 when line flow exceeds its thermal capacity with
a tolerance parameter. The second step involves disconnecting overloaded transmission lines from the
power grid and recomputing the relaxed AC-OPF until a feasible solution is obtained. It should be
noted that, the connectivity of the network is checked in every simulation step prior to the AC-OPF
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computation in order to detect isolated facilities. The algorithm used for checking the connectivity is
based on the well-known minimum spanning tree algorithm and is described in detail in [8].

After obtaining a feasible solution for the power system, the resulting hourly power generation of
GFPPs is converted into a hourly gas demand profiles and provided as input to the gas model. The gas
model needs an initial state for running the transient simulation. This state can either be a solution of
a steady state simulation or the terminal state of a transient simulation. If an initial state is not available
the algorithm uses the initial loads of the generated gas demand profiles for GFPPs to compute a steady
state solution. This solution is then used as an initial state for the transient simulation. After each
transient or steady state simulation the algorithm checks if the fuel gas pressures at GFPP nodes are
sufficient to operate the facilities. If an insufficient fuel gas pressure is detected, the affected GFPP is
shut-down and the power system model is recomputed. The algorithm is terminated if no pressure
violations are detected after the transient gas simulation. Finally, the amount of energy not supplied is
calculated as an indicator of the impact of the disruption event.

The gas and electric model described above are connected through an interface which enables the
communication and data exchange between the two simulators (i.e., MATPOWER as power system
simulator and SAInt as transient gas simulator, see Figure 3). The time integration of the combined
model is performed separately for both systems and the interconnection between both systems is
established through data exchange at discrete time and space points.

The timing of the power model is based on the discrete event simulation concept. It is assumed
that the configuration of the power system (e.g., the state of generation units and lines) remains
unchanged between events and changes only at the time of the specific event. If no events are
scheduled or triggered in the course of the simulation the time step of the power system corresponds
to a reference time step of 1 hour.

In contrast to the power system, the time integration of the transient gas model, is based on
a dynamic time step adaptation method (DTA), which adapts the time resolution with respect to the
control changes of controlled gas facilities during the solution process. The DTA allows capturing
rapid changes in the gas system (shut-down of a power plant or compressor station etc.) with a higher
time resolution. In this context, the gas model can be viewed as a quasi-continuous system, where
the values of the state variables (i.e., nodal pressure p, element flows Q and nodal loads L) between
two discrete time points are approximated by linear interpolation. If no events are scheduled or
triggered in the course of the simulation the time step of the gas system corresponds to a reference
time step of 15 min.

The gas and power system simulator used in the simulation framework have both been tested
and verified. The gas simulator SAInt was benchmarked against a commercial software in previous
publications [52,53] and the power system simulator MATPOWER [51] is well known and accepted by
the scientific community.

In the following section, the proposed framework is applied to perform a contingency analysis
for an integrated gas and power system network.

5. Model Application

In this section, an integrated gas and power network is constructed to demonstrate the
previously discussed simulation framework implemented in SAInt. Three supply side scenarios
(one non-disrupted scenario (base case) and two supply disruption scenarios) are presented in order
to demonstrate the value of the proposed framework and to stress the importance of modeling the
interdependence between gas and power systems with respect to security of supply.

The proposed scenarios are performed on the test network depicted in Figure 4. (The test network
applied in this paper is a model of a real gas and electric power network of an European region. Due to
confidentiality reasons and the sensitivity of the presented results, the topology and facility names of
the real network have been disguised. The network topology and properties used for the computations,
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however, are realistic data for the combined network). The scenarios are composed of a number of
extreme events causing more than two network facilities to be deactivated or to cascade out of service.

Figure 4. Integrated gas and power network applied in the case study. Map shows a real network of
an European region, which has been disguised due to confidentiality reasons. The network data and
properties used for the case studies, however, are original input data for the actual network. The solid
black lines (lines 1–3, 7–12, 14–18) represent interconnections between Gas Fired Power Plants (GFPPs)
in the power grid (left) and their fuel gas offtake points in the gas grid (right), while the dashed black
lines (4–6, 13) represent interconnections between electric buses in the power grid (left) supplying
electric power to connected facilities in the gas grid.

The sample network includes a power grid with 158 buses, 62 generating units with 22,076 ( MW)
installed capacity based on different generation mix that mainly consists of lignite (33%), natural gas
(28%), coal (20%), wind power (7%) and others (12%). The transmission system consists of 194 high
voltage transmission lines with total line length of approx. 8000 (km). The base voltage levels for the
transmission lines are distinguished between 200 (kV) and 400 (kV).

The solution of the AC-OPF equations requires the knowledge of the voltage levels, admittances
as well as the maximum thermal capacities of the transmission lines. The reactance of a line depends
mainly on its physical properties. It increases proportionally to the geometric length of the line.
Therefore, in the scope of this work, we assume equal physical properties for all lines and use the
length to determine the reactance. A typical value for the reactance of a transmission line per unit length
is 0.2 (Ω/km). Regarding the thermal capacities of the transmission lines, we assume a transmission
capacity of 800 (MW) for 400 (kV) lines and 530 (MW) for 200 (kV) lines. In AC-OPF analysis the
reactive power has strong influence on voltage drop thresholds. Thus, during AC OPF analysis,
the maximum and minimum voltage levels for buses are considered and a value between 1.12 and
0.96 (p.u.) is assigned, respectively.

The gas network, comprises of 345 pipe segments with a total pipe length of roughly 4000 (km),
10 compressor stations and 352 nodes (54 exit stations to the local distribution system (CGS), 15 stations
to direct served customers (14 GFPPs and one large industrial customer (IND)), two cross border
export stations (CBE_1 & CBE_2), one cross border import station (CBI), one LNG terminal (LNG), one
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production field (PRO) and one underground gas storage facility (UGS). The CBI, PRO, LNG terminal
and UGS facility are pressure controlled, while each compressor station is pressure ratio controlled
with a pressure ratio set point ranging between 1.02 and 1.2. The input data for the compressor stations
are listed in Table 3. The data used for the facilities supplying gas to the gas system are given in Table 4,
while the data for the GFPPs are listed in Table 5. The minimum delivery pressure for the 14 GFPPs is
set to 30 (bar-g) while the time needed to reach complete shut-down of a GFPP is set to 45 (min).

Table 3. Compressor station control (PRSET—Pressure Ratio Set Point) and constraints (PRMAX—
Maximum Pressure Ratio, PWMAX—Maximum Available Driver Power, POMAX—Maximum
Discharge Pressure, PIMIN—Minimum Suction Pressure).

Compressor PRSET PRMAX PWMAX POMAX PIMIN
Station (-) (-) (MW) (barg-g) (barg-g)

CS_1 1.05 1.6 10 54 34
CS_2 1.02 1.45 44 54 25
CS_3 1.01 1.6 60 54 25
CS_4 1.2 1.45 25 54 25
CS_5 1.2 1.45 80 54 25
CS_6 1.2 1.3 35 54 25
CS_7 1.2 1.45 50 54 25
CS_8 1.2 1.7 20 54 25
CS_9 1.2 1.7 20 54 25

CS_10 1.05 2 10 65 25

Table 4. Input data for facilities supplying the gas system with gas.

Gas Supply k0 (MW) k1

(
MW

sm3/s

)
PSET (Barg)

CBI - - 50
PRO - - 52.6
UGS 3.5 0.01 56
LNG 5 0.03 50

Table 5. Input data for GFPPs connected to the gas and electric power system. Numbering of GFPPs
corresponds to the numbering of the solid interconnection lines in Figure 4.

Name
c0 c1 c2 ηT Pmax

G Pmin
G Qmax

G Qmin
G pmin

(AC)
(
AC

MW

) (
AC

MW2

)
(%) (MW) (MW) (MVAr) (MVAr) (Barg)

GFPP_1 0 220.86 0 60 475 0 332.5 −285 30
GFPP_2 0 220.86 0 41 130 0 91 −78 30
GFPP_3 0 220.86 0 57 101 0 70.7 −61 30
GFPP_7 0 220.86 0 45 180 0 126 −108 30
GFPP_8 0 220.86 0 44.5 105 0 73.5 −63 30
GFPP_9 0 220.86 0 51 420 0 294 −252 30
GFPP_10 0 220.86 0 30 1127 0 788.9 −676 30
GFPP_11 0 220.86 0 40 360 0 252 −216 30
GFPP_12 0 220.86 0 48 420 0 294 −252 30
GFPP_14 0 220.86 0 30 766.7 0 536.7 −460 30
GFPP_15 0 220.86 0 45 147.8 0 103.5 −89 30
GFPP_16 0 220.86 0 61 435 0 304.5 −261 30
GFPP_17 0 220.86 0 67 390 0 273 −234 30
GFPP_18 0 220.86 0 55 410 0 287 −246 30

The transient scenarios for the integrated gas and power network are simulated by assigning the
relative load profile depicted in Figure 5 to the relevant exit stations (left plot represents the gas load
profile and right plot the power load profile). It should be noted that, the relative load profile for the
gas system is only assigned to CGSs, which are the connection points between the gas transmission
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and local distribution system. For all other exit stations (CBE_1, CBE_2, IND) a constant load profile
corresponding to the steady state load is assumed. The absolute values of the load profile for CGS
nodes are obtained by multiplying the steady state load with the relative values in Figure 5 (left plot).
The load profiles of the 14 GFPPs in the gas model are provided by the power model based on allocating
the results obtained from the AC-OPF analysis to the corresponding nodes in the gas model. For the
power network, the resulting loads for a time window of 24 h are obtained by multiplying the initial
loads by the relative profile depicted in Figure 5 (right plot).
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Figure 5. Load profiles gas (left side) and power (right side) networks.

All 14 GFPPs in the power grid are physically interconnected to the gas network. Furthermore,
we assume additional interconnections between the gas and power network at two compressor stations,
at the LNG terminal and at the UGS facility, which are supplied with power from the electric grid.
The integrated gas and power network with 18 physically interconnected facilities is illustrated in
Figure 4. Additional input parameters for the gas simulator are given in Table 6.

Table 6. Input data for the gas simulator.

Parameter Symbol Value Unit

time step Δt 900 (s)
total simulation time tmax 24 (h)
gas temperature T 288.15 (K)
dynamic viscosity η 1.1 × 10−5 (kg/m·s)
pipe roughness k 0.012 (mm)
reference pressure pn 1.01325 (bar)
reference temperature Tn 273.15 (K)
relative density d 0.6 (-)
gross calorific value GCV 41.215 (MJ/sm3)

Applying the simulation tool SAInt on the presented sample network, some preliminary
observations on cascading outage contingency analysis can be made. Initially, a base case scenario
(scenario 0) with no supply disruption in any of the two interlinked networks is introduced. In the base
case scenario, we capture the behavior of the networks at normal operation. Then, we compare the
base case scenario with two scenarios, where we introduce a number of disruption events and simulate
the reaction of the system to these events. The simulated grid is generated with a time resolution of
900 (s) and all scenarios are simulated for one gas day from 06:00 to 06:00 (For the case study, we
chose a simulation time of one operating day (24 h) with a time resolution of 15 min for the gas model
and a time resolution of one hour for the power model, in order to keep the size of input data and
information at a moderate level for the results discussion. However, the framework is designed to
allow an extension and adaptation of the time window and resolution depending on if a short or long
term study of a contingency scenario is of interest.) It should be noted that although it is possible
to change the status of the failed components (repairing and restoration can be modeled) within the
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simulation, the scenarios that are presented in this study do not take into account the repairing activity
in order to analyze system capabilities in worst-cases.

While the first scenario involves a disruption of several supply points in the gas network,
the second scenario includes supply disruptions triggered by the power network. In scenario 1,
we assume a reduced regasification rate for the LNG terminal from maximum via a ramp-down
between 06:00 and 07:00 (see Figure 6), which corresponds to an expected 7-day delay in cargo.
In addition, we assume a supply disruption at the production field causing a ramp down of the supply
between 08:00 and 9:00 (see Figure 6). Furthermore, a 30% supply reduction at CBI station at time 14:00
is implemented via a ramp-down between 14:00 and 15:00 (see Figure 6). Scenario 2 is related to power
network contingencies and initial contingency set consist of the loss of major lignite power plant with
1157 (MW) operational capacity at 07:00 and 70% lack of power generation from wind turbines at 06:00
(see Figure 6).

In the following, we discuss the simulation results for the three scenarios (The simulation results
and conclusions are based on the input data chosen for the sample network. While some data
were provided by the TSOs, others were not available (e.g., pipe roughness, gas temperature, line
properties etc.) and were therefore estimated using typical values. Thus, these input data are connected
with uncertainties).

The sequence of initial events (shown in black) and their consequences (shown in orange and red)
are summarized in Figures 6 and 7 for scenario 1 and scenario 2, respectively. It can be seen from the
figures, that when a minimum pressure violation for a GFPP is detected in the gas model, the failure
of the corresponding power plant is applied after 45 (min) due to the required shut-down time.
Figures 8–10 show the difference in gas supply to the system through the CBI station, the production
field and the LNG terminal. There is a big difference in inflows to the system through these supply
points in scenario 0 and scenario 1, where the difference is more than 20 (Msm3/d) (Million standard
cubic meter per day, where the reference pressure is 1.0135 (bar) and the reference temperature is
0 (◦C)). The impact of this observation can be seen in Figures 8–12. Figure 11 shows that the disruptions
introduced in scenario 1 have the highest impact on the gas network, since the flow balance, which
is the sum of inflow minus sum of outflow, is always negative; the system is not able to supply
enough gas to balance the demand. In fact, the flow balance is quite negative throughout the time,
peaking down to equivalent daily flows of −32 (Msm3/d). As a result, the quantity of gas stored in
the pipeline (i.e., the line pack) reduces significantly as time passes. The flow balance can be viewed
as the time derivative of the line pack, thus, if the flow balance is negative the line pack decreases
and if positive the line pack increases. A zero flow balance corresponds to no change in line pack.
Latter is the assumption made in steady state gas models, which cannot capture the changes in line
pack, and therefore, the real behavior of the gas system appropriately. Moreover, Figure 11 shows
a decrease in line pack from ca. 85 to 67 (Msm3/d) for scenario 1 (approx. 18 (Msm3/d) lost along the
day in the pipelines). In contrast, in scenario 0 only approx. 1.5 (Msm3/d) of line pack is extracted.

This produces a steady decrease of pressure in the CBI station, the production field and the LNG
facility causing the pressure to reduce to approx. 39, 42 and 31 (bar-g), respectively (see Figures 8–10).

An important observation is the pressure drop to approximately 31 (bar-g) at the LNG terminal,
which is the main gas supplier for some of the GFPPs in the hydraulic region. This value is slightly
above the 30 (bar-g) minimum delivery pressure threshold required by the GFPPs. When gas supplies
are scarce, the only way to keep maintain sufficient pressure and to allow the network to continue
operating is to reduce consumption, either through curtailment or fuel switching, if there is the chance
to do this with some power plants. In scenario 1, gas curtailment at GFPPs is implemented, presuming
that replacement fuel is not available in any of the investigated GFPPs.

Figure 12 shows the behavior of the UGS facility, the only supply node able to increase gas supply
to satisfy the increased demand in scenario 1. The UGS facility is able to maintain its pressure set point
till the end of the simulation (see Figure 12). The disconnection of four GFPPs from the gas network at
14:15, 15:45 and 16:30, respectively, allows the gas system to continue running (see Figures 6 and 13).
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The pressure and load profiles for failed GFPPs are given in Figures 13 and 14. This curtailment
was sufficient to cope with the pressure drop in the network. Therefore, there was no need of gas
curtailment at CGSs, where protected customers (e.g., households, public services) are supplied
with gas.
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fraction of not supplied power/gas with respect to total power/gas loads.
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Figures 15 and 16 depicts the voltage profiles for a selected number of buses, where minimum
voltage violation is detected for scenario 1 and 2, respectively. In order to keep the bus voltage above
the minimum voltage level, load shedding is implemented at the affected buses. The left plots in
Figures 15 and 16 show the voltage profiles of the affected buses for the computation where voltage
violations were detected and no countermeasures were employed to avoid this violation, while the
right plots show the voltage profiles after implementing load shedding at the affected buses. As can be
seen in the right plots of Figures 15 and 16, the bus voltages recover to a value above the minimum
voltage threshold after load shedding is implemented. However, due to load shedding some customers
connected to the affected buses are not supplied with enough electricity (see Figures 6 and 7).
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Figure 8. Time evolution of gas supply and pressure at the cross border import (CBI) node for the
computed scenarios
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Figure 9. Time evolution of gas supply and pressure at the production field for the computed scenarios.
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Figure 10. Time evolution of regasification rate and pressure at the liquefied natural gas (LNG) terminal for the
computed scenarios.
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Figure 11. Time evolution of flow balance (sum of inflow minus sum of outflow) and line pack for the
computed scenarios.
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Figure 12. Time evolution of withdrawal rate and pressure at underground gas storage (UGS) facility
for the computed scenarios.
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Figure 13. Time evolution of load and pressure of failed GFPPs in scenario 1.
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Figure 14. Time evolution of load and pressure of failed GFPPs in scenario 2.
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Figure 15. Time evolution of bus voltage before load shedding (left) and after (right) for scenario 1.
All four buses where load shedding was applied are shown in this figure.
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Figure 16. Time evolution of bus voltages before load shedding (left) and after (right) for scenario 2.
Load shedding was applied at 15 buses. Among these buses are the 4 buses from scenario 1, which are
shown in this figure.

Regarding the CBE_1 station, due to the pressure drop at the station (see Figure 17), the flow is
restricted around 21:00 because the threshold pressure of 30 (bar-g) is reached. This is the only way to
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keep minimum delivery pressure at that exit point; otherwise problems would arise downstream due
to too low pressure. Figure 17, shows the drop in flow (around 8 (Msm3/d) ) at CBE_1 station due to
the pressure restriction.
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Figure 17. Load and pressure profile of CBE_1 for scenario 1.

Moreover, the difference between scenario 0 and scenario 2 shows the gas system reaction to
the electric side disruption. In Figure 11, it can be seen that the flow balance of the gas network in
scenario 2 is more negative (the gas system loses more gas) than in scenario 0 until 18:00. This is caused
by the increase in gas demand of GFPPs due to the disruption of the lignite power plant and the loss of
power generation from wind turbines. The increase in gas demand of GFPPs leads to a pressure drop in
two GFPPs, followed by the disconnection of the power plants from the network (see Figures 7 and 14).
The pressure and load profiles for failed GFPPs are given in Figure 14. The disconnection of the
generators affects the loading of the gas system in a positive way. Moreover, the line pack starts to
recover after 18:00 (see Figure 11).

The scenario results indicate clearly that the disruptions taking place in the gas network that affect
GFPPs also affected the operability of the power network. After failure of each GFPP, the power model
calculates the new generating profiles for all power plants and sends these profiles to the gas model. In
scenario 1, the closure of 4 GFPPs due to low pressure levels in the gas system caused voltage violations
in the electricity network at peak demand hour (19:00–20:00) because of the high amount of power
transmission from relatively distant generators in order to compensate the missing generating capacity.
This violation in voltage levels caused 954 (MW) of load shedding during 2 h (see Figures 6 and 15).
In scenario 2, the cascading effects are more severe including three line overloads and load shedding
of 1607 (MW) at the peak demand hours (19:00–20:00, see Figures 7 and 16). The initial failure of
large capacity lignite power plant together with lack of power generation from wind power caused
an increase in power generation from GFPPs. This increase results in pressure drops at two GFPPs
followed by the closure of both facilities. The system has to implement these cascading effects in order
to avoid a complete blackout in the overall network.

Furthermore, the results show that the impact of disruptions introduced in both scenarios is much
higher for the power system than for the gas system Section 3.

6. Conclusions

In this paper, we developed an integrated simulation framework for cascading outage contingency
analysis in combined gas and power system networks and demonstrated the capabilities of the
implemented framework by applying it to a realistic, combined electricity and gas transmissions
network of an European region.

The simulation framework is composed of a transient hydraulic model for the gas system and
a steady state AC-OPF model for the power system. Both models, are derived from the physical laws
governing the flow of gas and electrical power, respectively. Moreover, the most important facilities
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and their technical constraints are considered. The gas and power system models a coupled through
coupling equations describing the fuel gas offtake of GFPPs for power generation and the power
supply to LNG terminals, UGS facilities and electric driven compressor stations.

The model application was divided into three scenarios, namely, scenario 0 with no disruption,
scenario 1 with gas side disruptions and scenario 2 with power side disruptions. The results of
these scenarios show how disruption events triggered in one system propagate to the other system.
In scenario 1, for instance, three major gas supply stations are disrupted and as a result a number
of GFPPs are shut-down due to insufficient fuel gas pressure. This contingency propagates further
to other buses in the power system, where load shedding is implemented in order to maintain the
voltage levels above the minimum voltage threshold. Similar observations are made in scenario 2,
where a drastic reduction in renewable energy generation together with a shutdown of a large power
plant triggered a large increase in gas demand of GFPPs, leading to a rapid pressure drop in the gas
network and the subsequent shut-down of GFPPs. Eventually, this circumstance increased the stress on
the power system leading to minimum bus voltage violations in a couple of buses, which is remedied
by applying load shedding at the affected buses.

Based on these key findings, it can be concluded that there is a need for close collaboration and
coordination between gas and power TSOs. Data concerning pressures, flows, voltages etc., efficiently
handled and communicated may introduce resilience on the integrated network. This has to be done
via well-structured protocols that inform the other TSO about the grace periods and support that each
network may grant the other. The use of models like the one proposed in this study may be of much
help for getting part of this information to share with the other operator.

We believe it is fair to state that the integrated model allows for detailed fingerprinting and
exploration of the effects of disruption in gas and/or power, to a level of detail that is not possible by
qualitative, expert analysis. Once the data characterizing a gas and electricity grid have been loaded,
experts can perform in-silico experiments at will to investigate the system, determine weak elements,
and propose mitigation strategies. In both two scenarios, GFPP_9 and GFPP_10 fail, which merits
an investigation into their position in the system. If in more scenarios it is these two plants that
fail first, it could be decided to equip these with alternative backup fuel options. In the future,
we intend to further develop the simulation framework to implement more simulation options and
functionalities into the simulation tool SAInt in order to investigate the effectiveness of different
demand and supply side measures to mitigate the consequences of supply disruptions in coupled gas
and electric power systems.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviations

AC Alternating current
API Application Programming Interface
EU European Union
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ED Economic dispatch
CBE Cross Border Export
CBI Cross Border Import
CBP Cross Border Point
CEI Critical Energy Infrastructures
CGS City Gate Station
DC Direct current
DTA Dynamic Time Step Adaptation
GB Great Britain
GFPP Gas Fired Power Plant
GNS Gas not supplied
GUI Graphical User Interface
IND Large Industrial Customer
KCL Kirchoff’s Current Law
LNG Liquefied Natural Gas
NGTS National Gas Transport System
P2G Power to Gas
PF Power Flow
PDE Partial Differential
PNS Power not supplied
PRO Production Fields
OPF Optimal Power Flow
SAInt Scenario Analysis Interface
SCUC Security Constraint Unit commitment
SNG Synthetic Natural Gas
TSO Transmission System Operator
UC Unit commitment
UGS Underground Gas Storage

Mathematical Symbols

A cross-sectional area
a transformer tap ratio
ai,j elements of the node-branch incidence matrix
b line charging susceptance
c0, c1, c2 coefficients of cost function
c speed of sound
CV control volume
D inner pipe diameter
e Euler’s number
E set of branches
f electric driver factor
g gravitational acceleration
G directed graph
GCV gross calorific value
I f electric curent injection at from bus
It electric curent injection at to bus
j imaginary number
k0, k1 coefficients of coupling equation
L nodal load
LGFPP fuel gas offtake for power generation at GFPPs
l pipe length
LP line pack
M number of pipe section
n simulation time point
Nn number of gas nodes
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Nb number of buses, number of branches
NCS number of compressor stations
Ng number of power generation units
NGFPP number of GFPPs
Niq number of inequality constraints
Nl number of transmission lines and transformers
PD active power demand
PCS

D power demand of compressor stations
Prw

D power demand of LNG terminals and UGS facilities
PG active power generation
PG vector of active power generation
p gas pressure (vector)
p1 inlet pressure
p2 outlet pressure
pm mean pipe pressure
Q gas flow rate, reactive power
QG vector of reactive power generation
R gas constant, line resistance

S f
k apparent power injection at from bus of branch k

Smax
k maximum transmission capacity of branch k

St
k apparent power injection at to bus of branch k

S vector of apparent power flow
t time, complex transformer tap
tn time point
Δt time step
T temperature
Tn reference temperature
v gas velocity
V complex bus voltage, set of nodes
V vector of complex bus voltage
Vm vector of complex bus voltage magnitudes
|V| bus voltage magnitude
Vi nodal volume
X line reactance
x pipeline coordinate
X vector of decision variables
Δx pipe segment length
Y line admittance
Ybr branch admittance matrix
Ybus bus admittance matrix
Z compressibility factor, impedance

Greek Symbols

α inclination
α, β, γ coefficients of heat rate curve
δ voltage angle
Δ vector of bus voltage angles
ε residual tolerance
ηad compressor adiabatic efficiency
ηm driver efficiency
ηT thermal efficiency
κ isentropic exponent
λ friction factor
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φ transformer phase shift angle
ρ gas density
ρn gas density at reference conditions

Physical Units

(bar-g) bar gauge (absolute pressure minus atmospheric pressure)
(p.u.) per unit
(Msm3) millions of standard cubic meters (line pack, inventory)
(Msm3/d) millions of standard cubic meters per day (gas flow rate)
(sm3) standard cubic meters (line pack, inventory)
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Abstract: When a blackout occurs, it is important to reduce the time for power system restoration
to minimize damage. For fast restoration, it is important to reduce taking time for the selection
of generators, transmission lines and transformers. In addition, it is essential that a determination
of a generator start-up sequence (GSS) be made to restore the power system. In this paper, we
propose the optimal selection of black start units through the generator start-up sequence (GSS) to
minimize the restoration time using generator characteristic data and the enhanced Dijkstra algorithm.
For each restoration step, the sequence selected for the next start unit is recalculated to reflect the
system conditions. The proposed method is verified by the empirical Korean power systems.

Keywords: restoration; black start service; power system restoration; generator start-up sequence

1. Introduction

The current bulk power systems require a high level of reliability. To improve the reliability of a
power grid, system operators analyze N-1 contingencies, monitor the system margins and develop
new technologies such as High Voltage Direct Current (HVDC) and Flexible AC Transmission Systems
(FACTS) which have been introduced. Nevertheless, there is the possibility of total and partial blackouts.
According to recent blackouts [1,2], large blackouts can be described as cascading outages, as shown
Figure 1. Cascading outages occur sequentially, and they are caused by an initial disturbance. The initial
disturbance includes natural disasters, unexpected accidents, misoperation of a facility and imbalanced
power systems. It causes sequential trips of facilities such as transmission lines, transformers and
generators. Sequential outages are propagated until the system fails to recover due to voltage instability
and thermal violations which are alleviated or drop below the operating limits. Eventually, a partial or
total blackout occurs. Once the blackouts have occurred, the appropriate system restoration should
be performed.

Figure 1. Typical blackout procedure.

Most blackouts are partial and can be restored with the support of neighboring regions [3,4].
On the other hand, if total blackouts occur, neighboring regions may be not able to assist the system,
especially for isolated power systems such as Korean power systems. For isolated systems, a reliable
restoration method is more essential than interconnected power systems. When a total blackout
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occurs in isolated systems, the whole system is usually divided into several subsystems to restore
the system as quickly as possible [5], and subsystems are restored in parallel. After the restoration
of each subsystem, all subsystems are synchronized. Each subsystem must have at least one black
start unit and should be balanced between generation and load [6]. Additionally, each subsystem
must satisfy the following reliability criteria: real and reactive power balance, thermal constraints on
transmission lines, being sustained over voltages during early restoration, and maintaining a steady
state and transient stability during restoration.

Figure 2 shows the general black start procedure [7–9]. First, when a blackout occurs, the status
of the power systems is checked through an alarm or communication. In this step, the size and
status of the blackout are evaluated. Afterwards, the generators in the systems are identified using
their location and capacity and the proximity to the grid. Based on the confirmed information,
the sequence of the generators is established [10,11]. According to the sequence, the generators in
the systems are started. While monitoring the power systems and identifying the connectivity of the
system, the path for restoration is searched. The transmission lines and transformers on the paths are
re-energized, and the load is restored depending on the system balance [12–14]. During the restoration
stage, three limitations are needed to maintain the range: the voltage of the bus, the overload rate of
the transmission lines and the frequency of the grid.

Figure 2. The general procedure of the black start service.

The restoration sequence of non-black start units, transmission lines, and transformers is different
according to the objective function of each system’s restoration methodology. Many domestic and
foreign studies have been performed, and each Independent System Operator (ISO) has a different
restoration methodology [15,16]. After a complete blackout occurs, the Australian Energy Market
Operator (AEMO) in Australia aims to supply power to major generators in 90 minutes and to restore
40% of the system peak load in four hours [17–19]. The Pennsylvania New Jersey Maryland (PJM)
ISO in USA intends to restore 80% of the whole system load in 16 hours and to implement the
system restoration with the priority of system stability [20,21]. The Electric Reliability Council of
Texas (ERCOT) ISO in USA aims to restore the whole system within the shortest amount of time [22].
At the same time, the system load should not exceed 5% of the total power in every single step.
Also, when a blackout occurs, the status of the system is reported to the ERCOT ISO by the transmission
system operators, and the system operators carry out the restoration procedure using the specified black
start units. The system is divided into small islands and all islands are synchronized after completing
the restoration process of each island. Many studies related to the methodology of restoring the islands
have studied the ERCOT ISO [23]. On the other hand, the Korean Power Exchange (KPX) in Korea
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divides the whole system into subsystems and restores the black start units and pre-assigned paths in
each subsystem first. Afterwards, there is no specific restoration methodology.

It is important to perform the restoration process considering the system condition and
understanding the characteristics of the blackout. The Electrical Research Institute (EPRI) proposed a
generic restoration milestones (GRM) technique to restore the system depending on various system
conditions [24,25]. In the GRM, there are six milestones and system operators can select a series of
milestones to restore the system depending on system conditions. The Power System Engineering
Research Center (PSERC) suggested restoration procedures based on optimization techniques [6].
During the power system restoration process, the optimization technique Mixed Integer Linear
Programming (MILP) is used to determine the generators’ start-up sequence [26,27]. In this paper,
we propose a sequential restoration strategy based on the enhanced Dijkstra algorithm for Korean
power systems. In the methodology, we determine the generator start-up sequence (GSS) using
generator characteristic data and an enhanced Dijkstra algorithm. To determine the GSS, we compare
the characteristic data of generators, including the cranking power, start-up time, and ramping rate.
Additionally, we create an adjacency matrix and consider the charging current as a weighting factor to
establish power grids quickly [28]. The proposed method is verified by Korean power systems.

2. Enhanced Dijkstra Algorithm

In order to minimize damage after blackouts occur, restoration should be fulfilled reliably and
quickly. For fast restoration, it is important to reduce the time taken for the selection of generators,
and the time taken for the transmission lines and transformers should be considered.

First, to restore the generators, the connectivity between two different buses should be verified
using an adjacent matrix [25,29]. We can find the path from the energized block which is already
restored to a generator that can be restored. The adjacent matrix A(k) based on the transformation of
the connection matrix can be presented as follows [12]:

A(k) =
[
linek

ij

]
=

{
1 i = j or i & j are connected directly
0 i & j are not connected directly

(1)

where lineij is a line between bus i and bus j. After generating the adjacent matrix, we utilize a Dijkstra
algorithm to find the shortest path to the generator. At the same time, we consider the charging current
of each transmission line as a weighting factor to avoid excessive charging currents.

B(k) =

⎧⎪⎨
⎪⎩

0
a charging current o f lineij

a large number ρ

i and j ∈ ΩE(S)
i or j /∈ ΩE(S)

lineij is a trans f ormer and i or j /∈ ΩE(S)

(2)

where ΩE(S) is the energized block that is already restored. If the number of transformers in a path is
increased, the likelihood of ferroresonance may increase. However, transformers usually have small
charging currents. Therefore, they should be assigned a large number of ρ as weighting factors. In this
paper, we use the R program to generate the adjacent matrix.

For example, in Figure 3, if we find the paths from bus 2 to 16, we can consider two different paths.
The one that is marked with the red line is the shortest path which does not consider the weighting
factor, while the other that is marked with the blue dashed line is the path with the smallest weighting.
Even though the red line is shorter, we will select the blue dashed line. The blue and yellow balls
illustrated in Figure 3 represent the buses with bus numbers and generators respectively.
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Figure 3. The example of applying the enhanced Dijkstra algorithm.

3. Sequential Restoration Strategy

3.1. Problem Formulation

The object function is used to minimize the total time taken to restore generators [30]. It should
select the generator that can be restored in the shortest time. The object function can be denoted with
the following equation:

min
N

∑
i=2

ΔtGENi+1 − tGENi (3)

where N is the total number of generators; tGENi is the time to re-start the ith generator at the ith
step; and ΔtGENi+1 − tGENi means the time taken to start the i + 1th generator from the ith generator.
The object function can be formulated as the minimization of the restoration time. While restoring the
system, we must satisfy the following constraints.

• Solving power flow equations

PowerFlow(PGEN, PLO, QGEN, QLO) = 0 (4)

• No violation of generation, transmission and voltage limits

VMIN_BU ≤ VBU ≤ VMAX_BU (5)

PMIN_LO ≤ PLO ≤ PMAX_LO (6)

PMIN_GEN ≤ PGEN ≤ PMAX_GEN (7)

The second equation means the system balance PGEN, PLO are the active power of the
generator and load, and QGEN, QLO are the reactive power of the generator and load, respectively.
Equations (5)–(7) represent the need to maintain a range of voltage and power; VBU is the voltage of
the bus. VMIN_BU, VMAX_BU denote the minimum and maximum, respectively. PLO means the power
of the load, and PMIN_LO and PMAX_LO are the minimum and maximum, respectively. In the same way,
Equation (5) is the range of the generator.
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The criteria for selecting the next generator are required as in the following equations: ∑ Pi
gen

is the amount of output in MW from the ith generator; Pi+1
start is the power needed to start the i + 1th

generator. When the generation amount of the system is large enough to supply the cranking power of
the generator to be committed, the sequential process of the restoration is performed. If the generation
amount of the system is insufficient, it will take some time to meet the cranking power. In summary,
we can select the next generator when the total amount of power to the ith is greater than the cranking
power of the i + 1th generator.

∑ Pi
gen − Pi+1

start ≥ 0 (8)

To restore the generator in a short amount of time, the generator must calculate the time required
for the re-energizing. The estimation of the time for cranking the generator is performed in each step.
The time can be formulated as the following equation. The generator that takes the shortest time to
start is selected as the next generator by comparing the time calculated as shown below:

tGENi = STi
GEN + ETLi−1

i + ETri−1
i (9)

where STi
GEN is the start-up time for the ith generator; ETLi−1

i is the energizing time of the transmission
lines to restore the path from i − 1th to ith; ETri−1

i is the restoration time of the transformers to the ith

generator; STj
GEN may be described in the equation and Figure 4 as follows.

STGEN = Tstart +
Pstart

Rr
(10)

Figure 4. Generator capability curve.

When supplying power from the grid at time Ton, the generator starts power generation after
the time required for cranking the generator. In the case of a black start unit that can be started
without any external power from the power system, the Ton value is zero. Once the generator starts
power generation at time Tstart, it generates the power up to the maximum power according to its
ramp rate, Rr.

3.2. Optimal Restoration Approach

We will propose a new sequential restoration strategy, as shown in Figure 5. First, if a blackout
occurs, the restoration process is started. We set the recovery time t = 0 and the restoration step
i = 1. In the next stage, the black start unit is started, and we confirm the generator that can be
restored in the next step. If all generators are restored, the flow is terminated. Otherwise, the flow is
continued to determine the generator start-up sequence (GSS), and the start-up time of each generator
to be restored is calculated. At this time, the time taken to re-energize the transmission lines and
transformers is calculated. To consider this, we search for the shortest path to the generator by
considering the charging currents as a weighting factor. The time taken to restore the transmission
lines and transformers is calculated by counting the amount of equipment in the path and multiplying
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it by a certain value. Afterwards, we compute the time to re-start the generator in accordance with the
generator characteristic data. By adding the respective times that are calculated, the generator with the
shortest restoration time is selected for the next unit. During the process of restoration, the constraints
expressed in Equations (5)–(7) must be satisfied. Unless the constraints are satisfied, the corrective
actions such as power generation or load adjustment should be performed. The restoration of the next
unit is started, and the load is restored in order to maintain the system balance and stability. At this
time, the sum of the time to re-energize transmission lines and transformers and the time until the
generator can supply the power is added to the recovery time. In the same way, the flow of the GSS is
repeated until the available generators exist in the systems.

Figure 5. Flow chart of generator start-up sequence.

4. Case Study: Eastern Regions of South Korea

In Korea, when a total blackout occurs, the whole system is divided into seven regions to restore
the whole system (Figure 6). Each subsystem has at least one black start unit and pre-assigned paths.
Black start units are usually hydroelectric power or pumped storage power. If a blackout occurs,
the black start unit and pre-assigned paths are restored first. After the black start unit and pre-assigned
paths are restored, the rest of the generators are ordered to be restored.

 

Figure 6. Korean power systems.
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In this section, we assume that a total blackout has occurred, and we choose one subsystem,
which is the eastern regions, among the subsystems to restore it. The black start unit and pre-assigned
paths are restored first, and the rest of the generators in the eastern regions are ordered to be restored.
To find the restoration sequence of the rest of the generators, the information on the generators
and the charging currents of the transmission lines are used. Table 1 shows the information about
the generators in the eastern regions. It does not display the exact name of the generators due to
confidentiality. G6 is a black start unit, and its capacity is 280 MW. The rest of the 19 generators are
non-black start units. In the table, there is information about 20 generators, such as the capability and
ramping rate in MW/h, to calculate the start-up time for the next units.

Table 1. Information about the generators in the eastern regions.

Generator Capacity (MW) Rr (MW/h) Pstart (MW) Tstart (h)

G1 183 24.5 0.18 0.55
G2 186 24.5 0.14 1.05
G3 830 28.4 6.72 0.70
G4 150 1.5 4.14 1.70
G5 200 1.5 7.15 1.88
G6 280 100.0 0.42 0.05
G7 260 100.0 0.45 0.07
G8 255 100.0 0.50 0.09
G9 240 100.0 0.55 0.10

G10 100 22.5 0.05 0.30
G11 100 22.5 0.04 0.35
G12 35 15.0 0.00 0.08
G13 37 15.0 0.00 0.07
G14 282 18.0 0.00 0.20
G15 29 18.0 0.00 0.15
G16 30 18.0 0.00 0.18
G17 32 18.0 0.00 0.15
G18 210 1.0 11.88 7.20
G19 200 1.0 12.04 7.00
G20 180 24.5 0.15 0.89

In order to determine the GSS, the time taken to energize each generator is calculated.
The generator that takes the shortest time to start is selected as the next generator. When the time is
calculated, the restoration time of the transmission lines to the generator and the restoration time of
the transformers to the generator are considered together, and the charging current of the transmission
lines and transformers is used. Figure 7 illustrates the adjacency matrix of the eastern regions.
The bus numbers are re-assigned to generate the adjacency matrix. Using this matrix, we can consider
the shortest path to the non-black start unit.

Figure 7. Adjacency matrix of the eastern regions.
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Table 2 shows an example of the GSS in the eastern regions of South Korea. STGEN means
the start-up time for each generator, and ETLr is the energizing time of the transmission lines and
transformers for restoring the generator. Total means the total time taken to restore the generator,
including the time taken to restore the transmission lines and transformers. The highlighted cells are
the generators that are selected as the next units in each step. In the eastern regions, the pre-assigned
paths are G6 (Black start unit) →58→6→19→20→30→25→26→29→73→G20, and G6 is started as the
black start unit in the first step. In the second step, G20 is started as well. Afterwards, we calculate the
total times for all available generators and compare them. In the third step, G7, which has the shortest
total time, is restored. At the end of the third step, the total times of all generators are compared again,
and in the next step, G8 is restored. G7–G9 are sequentially restored, since these are located near each
other and are the same type. In the same way, the restoration sequence is repeated until the available
generators exist in the systems.

Table 2. Example of the generator start-up sequence of the eastern regions.

Gen
STEP 3 STEP 4 STEP 5 STEP 6

STGEN ETLr Total STGEN ETLr Total STGEN ETLr Total STGEN ETLr Total

G1 0.55 0.17 0.72 0.55 0.17 0.72 0.55 0.17 0.72 0.18 0.17 0.35
G2 1.05 0.17 1.22 1.05 0.17 1.22 1.05 0.17 1.22 0.14 0.17 0.31
G3 0.70 0.17 0.87 0.70 0.17 0.87 0.70 0.17 0.87 6.72 0.17 6.89
G4 1.70 0.08 1.78 1.70 0.08 1.78 1.70 0.08 1.78 4.14 0.08 4.22
G5 1.88 0.08 1.96 1.88 0.08 1.96 1.88 0.08 1.96 7.15 0.08 7.23
G7 0.08 0.00 0.08 - - - - - - - - -
G8 0.10 0.00 0.10 0.10 0.00 0.10 - - - - - -
G9 0.11 0.00 0.11 0.11 0.00 0.11 0.11 0.00 0.11 - - -

G10 0.30 0.67 0.97 0.30 0.67 0.97 0.30 0.67 0.97 0.05 0.67 0.72
G11 0.35 0.67 1.02 0.35 0.67 1.02 0.35 0.67 1.02 0.04 0.67 0.71
G12 0.09 0.92 1.00 0.09 0.92 1.00 0.09 0.92 1.00 0.00 0.92 0.92
G13 0.08 0.92 0.99 0.08 0.92 0.99 0.08 0.92 0.99 0.00 0.92 0.92
G14 0.20 0.92 1.12 0.20 0.92 1.12 0.20 0.92 1.12 0.00 0.92 0.92
G15 0.16 0.92 1.08 0.16 0.92 1.08 0.16 0.92 1.08 0.00 0.92 0.92
G16 0.19 0.92 1.11 0.19 0.92 1.11 0.19 0.92 1.11 0.00 0.92 0.92

Table 3 shows the results of the simulation. According to the strategy, the generator start-up
sequence (GSS) is determined using generator characteristic data and the enhanced Dijkstra algorithm.
All the generators in the system are restored sequentially, and at each restoration step, the system
conditions are reflected to calculate time taken. Additionally, in order to maintain the system balance
and stability, sufficient load is restored during the restoration, and the total load restored in the
proposed restoration strategy of the eastern regions is 2728.80 MW.

Table 3. The results of the simulation: The eastern regions.

Step Restored Generators Restoration Path

1 G6 -
2 G20 58→6→19→20→30→25→26→29→73
3 G7 60
4 G8 57
5 G9 59
6 G2 74
7 G1 75
8 G3 76
9 G11 43→41→17→18→15→16→67
10 G10 68
11 G14 13→14→64
12 G15 63
13 G16 65
14 G17 66
15 G12 12→61
16 G13 62
17 G4 21→69
18 G5 70
19 G18 27→34→31→23→71
20 G19 72
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Table 4 shows the comparison of the generator start-up sequence between the proposed method
and the existing method using mixed integer programming (MIP). The GSS is determined through the
MIP. The existing method only considers the restoration of the maximum system capacity. The case
studies from both methods are shown in the table below.

Table 4. Comparison of generator start-up sequence.

Step Proposed Method Existing Method

1 G6 G6
2 G20 G20
3 G7 G7
4 G8 G8
5 G9 G9
6 G2 G1
7 G1 G2
8 G3 G3
9 G11 G18
10 G10 G19
11 G14 G4
12 G15 G5
13 G16 G10
14 G17 G11
15 G12 G12
16 G13 G13
17 G4 G14
18 G5 G15
19 G18 G16
20 G19 G17

As the proposed method aims to restore the system within the shortest amount of time,
the generators that can be activated in a very short time are restored preferentially. On the other
hand, the existing method intends to restore the system with the maximum capacity restoration.

The time to commit all generators is 36 min for the proposed method and 55 min for the existing
method. Also, the total time is 657 min using the proposed method and 643 min using the existing
method when all generators reach the maximum power-generating outputs. In the proposed method,
the recovery times of transmission lines and transformers are included in the restoration time; on
the other hand, the time using the existing method only takes into account the start-up time of
the generators.

5. Conclusions

In Korean systems, there are the pre-assigned paths and black start units in each subsystem to
restore the systems. However, there is no specific restoration methodology afterwards. Therefore,
it is essential to develop a restoration strategy for determining the generator start-up sequence (GSS)
and the paths that can re-energize the generators according to the GSS. Also, this restoration strategy
should be performed within the shortest time to minimize the economic and social loss. In this paper,
we propose a sequential and systematic restoration strategy that can minimize the generator restoration
time and considers the characteristics of the Korean power system.

In this paper, we propose a sequential restoration strategy based on an enhanced Dijkstra
algorithm for Korean power systems. The new methodology is intended to minimize the time taken
to restore the generators that can be restored. At this time, some loads are restored to maintain the
system voltage and the stability of generating units. In the methodology, we developed a strategy
for the determination of the generator start-up sequence in order to restore the system in the shortest
time, an adjacency matrix was created, and the charging current of the path was considered as the
weighting factor. The proposed method was verified by an empirical system (in the eastern regions of
South Korea). In the future, we will apply the proposed methodology to other regions.
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Abstract: The modern power system is progressing from a synchronous machine-based system
towards an inverter-dominated system, with large-scale penetration of renewable energy sources
(RESs) like wind and photovoltaics. RES units today represent a major share of the generation, and the
traditional approach of integrating them as grid following units can lead to frequency instability.
Many researchers have pointed towards using inverters with virtual inertia control algorithms so
that they appear as synchronous generators to the grid, maintaining and enhancing system stability.
This paper presents a literature review of the current state-of-the-art of virtual inertia implementation
techniques, and explores potential research directions and challenges. The major virtual inertia
topologies are compared and classified. Through literature review and simulations of some selected
topologies it has been shown that similar inertial response can be achieved by relating the parameters
of these topologies through time constants and inertia constants, although the exact frequency
dynamics may vary slightly. The suitability of a topology depends on system control architecture
and desired level of detail in replication of the dynamics of synchronous generators. A discussion on
the challenges and research directions points out several research needs, especially for systems level
integration of virtual inertia systems.

Keywords: frequency stability; microgrid control; renewable energy; virtual inertia

1. Introduction

The demand for clean energy in the modern power system is on the rise, driven by factors such
as fuel prices, laws, and regulations. Renewable energy sources (RESs) like photovoltaic (PV) and
wind energy are now gradually starting to dominate the energy generation mix, replacing traditional
generation sources, such as coal and nuclear [1,2]. The popularity of distributed PV plants further
escalates the penetration of renewables in the modern power system. The global installation of wind
and PV generation exceeded 400 GW and 200 GW, respectively, by the end of 2015 [3]. Countries
like Ireland and Germany already have annual RES penetrations of more than 20% [4]. In Denmark,
wind power alone has the capacity to meet 40% of the country’s instantaneous electricity demand,
which is the highest among all the countries. The rapid development of RES is causing the modern
power grid to gravitate towards an inverter-dominated system from a rotational generator-dominated
system, as illustrated in Figure 1. PV systems and most modern wind turbines are interfaced through
inverters. Although this is advantageous from the point-of-view of harvesting RES, the inverter-based
generation does not provide any mechanical inertial response, and hence compromises frequency
stability [4–6].
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Figure 1. Evolution towards an inverter dominated power system.

Recent reports and studies have shown frequency stability to be a matter of significant concern
due to lack of inertial response from RESs. The independent system operator, Electricity Reliability
Council of Texas (ERCOT) has reported a continuous decline in the inertial response of its system
and recommends additional inertial response [7,8]. Figure 2 illustrates the change in frequency in the
ERCOT interconnection for two time periods for the same amount of generation loss. The change in
frequency per generation loss is increasing yearly, and this trend is highly correlated with increased
RES penetration over the same time-period. Similarly, the European Network of Transmission System
Operators for Electricity (ENTSO-E) has reported increased frequency violations in the Nordic grid
correlated with increased RES penetration [9]. As a consequence, inertial response from wind turbines
is now mandatory in many countries [10,11] and the trend is extending towards PV plants as well.
Accordingly, there is a strong practical relevance to research on virtual inertia systems which was of an
academic nature in the past.

Figure 2. Increase in frequency changes in Electricity Reliability Council of Texas (ERCOT) connection
due to generation loss [7].

In order to maintain the power generation and load balance, various control actions are
implemented in a power system over multiple time-frames as illustrated in Figure 3. The governor
response is the primary control action which takes place within the first few seconds (typically 10–30 s)
of a frequency event and aims at reducing the frequency deviation. The automatic generation control
is the secondary control action which takes place within minutes (typically 10–30 min) and restores
the system frequency back to the nominal value. The tertiary control action is the reserve deployment
when actions are taken to get the resources in place to handle present or future disturbances in the
system. Whenever there is an imbalance between the generation and consumption in a power system,
the generators cannot respond instantaneously to balance the system. The kinetic energy stored in
the rotors is responsible for counteracting this imbalance through inertial response until the primary
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frequency control has been activated. As conventional generators are displaced by RESs, the inertial
response also decreases. This leads to an increased rate-of-change-of-frequency (ROCOF), and a low
frequency nadir (minimum frequency point) in a very short time. The primary frequency control
cannot respond within the small time frame (typically less than 10 s) to arrest the system frequency
change. This period is highlighted as section AB in Figure 3. It is clear from the figure that in systems
with lower inertia, the frequency nadir is considerably lower along with a high ROCOF. Such situations
can lead to tripping of frequency relays (causing under-frequency load shedding (UFLS)) and, in the
worst case, may lead to cascaded outages [12,13]. The solution to such scenarios is to add virtual inertia
in the system. The basic requirements of a virtual inertia system is that it has to operate in a very short
time interval (typically less than 10 s) and in autonomous fashion. Deployed appropriately, virtual
inertia systems would enhance system stability and enable greater penetration of RESs.

Figure 3. Multiple time-frame frequency response in a power system following a frequency event.

This paper presents a literature review of the various topologies used for virtual inertia
implementation. The major topologies and the consequent improvements in these topologies are
reviewed through a literature search followed by a restudy through simulations. The problem of
large frequency variations due to high penetration of RESs are introduced first in Section 2. The “first
generation” of virtual inertia systems are introduced next in Section 3. The topologies and control
algorithms to effectively emulate inertia of synchronous generators (SGs) through power electronic
based converters are discussed. After a literature review of the virtual inertia topologies, three main
topologies are compared and evaluated in a common benchmark in Section 4. The “second generation”
of virtual inertia systems is then reviewed in Section 5. The optimization of these systems in terms of
dynamic performance and energy usage is discussed. Finally, a review of the challenges involved with
integrating virtual inertia systems into the existing power system and some future research directions
are discussed in Section 6. Section 7 discusses the conclusions of the paper.

2. Frequency Variations in Weak Power Systems with High Penetration of RES

Microgrids have been identified as the best option to integrate distributed generation (DG) units
in terms of flexibility and reliability [14–16]. The microgrids can be operated in three possible modes:
grid-connected, islanded, or isolated. A microgrid is said to have been islanded when a microgrid that
is grid-connected disconnects from the grid, either in a planned fashion or due to a fault/disturbance
in the main grid. In the isolated mode of operation, the microgrid is designed such that it is never
connected to the grid. Regardless, these microgrid systems represent weak power systems and the
high penetration of inertia-less PV and wind energy systems has a severe effect on the frequency
stability. The rapid changes in the generation can cause frequency variations in the system that are
outside standard limits and compromise the stability of the system.
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Figure 4 shows the recommended standard frequency range for grid-connected and
isolated/islanded microgrids. In the grid-connected mode, the frequency is controlled by the main
grid and the frequency deviations are relatively small. However, this scenario is slowly changing with
increased integration of large-scale inertia-less generation. The Institute of Electrical and Electronic
Engineers (IEEE) recommends a tight frequency operating standard of ±0.036 Hz for grid-connected
systems. The North American Reliability Corporation (NERC) recommends triggering the first level of
UFLS when the system frequency drops below 59.3 Hz (for a nominal frequency of 60 Hz for the US
power grid). The activation of UFLS is the last automated reliability measure to counteract frequency
drop and re-balance the system [17]. NERC recommended control actions include disconnecting the
generator if the frequency drops below 57 Hz or rises above 61.8 Hz [18]. The European Norm EN50160
also imposes similar tight ranges for grid-connected microgrid systems [19]. There are no specific
standards defined for frequency limits for isolated microgrid systems. This is highly dependent on
the generation and the load mix in a particular microgrid system. From a generator point-of-view,
frequency standards like the ISO 8528-5 standard [20] can provide a guideline for the frequency limits.
With the small amount of SGs in isolated microgrids, the frequency excursions and ROCOF are greater
and the need for virtual inertia is of high importance. In such isolated microgrids, to implement virtual
inertia, either dedicated energy storage systems (ESSs) can be used [21,22], or inertia can be emulated
by operating PV/wind below their maximum power point (MPP) [23,24]. However, the allowable
frequency nadirs and ROCOFs in the microgrids in islanded/isolated conditions may be relaxed
compared to grid-connected operation. This will be especially vital for the design of virtual inertia
systems for isolated microgrids as these microgrids often have limited energy resources and relaxing
the frequency operating region would result in significant energy saving and reduction in power
ratings of virtual inertia systems.

Figure 4. Frequency standards for microgrid systems [18–20].
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3. First Generation: Virtual Inertia Topologies

3.1. Concept and Classification of Virtual Inertia Topologies

The frequency variation in a power system after a frequency event/disturbance can be
approximated by the swing equation [25]:

Pgen − Pload =
d(EK.E.)

dt
=

d( 1
2 Jω2

g)

dt
(1)

Pgen − Pload = Jωg
dωg

dt
(2)

where, Pgen is the generated power, Pload is the power demand including losses, J is the total system
inertia, and ωg is the system frequency. The inertia constant of the power system H is the kinetic
energy normalized to apparent power Sg of the connected generators in the system:

H =
Jω2

g

2Sg
(3)

Equation (2) can then be written as:

2H
ωg

dωg

dt
=

Pgen − Pload

Sg
(4)

Equation (4) can also be represented in terms of frequency (Hz) instead of angular frequency
(rad/s) as follows:

2H
f

d f
dt

=
Pgen − Pload

Sg
(5)

where, d f
dt is the ROCOF of the system. With reduced inertia, the ROCOF of the system increases

which causes larger changes in frequency of the system in the same time-frame. Thus, the system
requires additional inertia as more RESs are integrated into the power system. The concept of virtual
inertia implementation using power electronic converters was first developed by Beck and Hesse [26].
Many other topologies and approaches have been developed in the literature since.

Virtual inertia is a combination of control algorithms, RESs, ESSs, and power electronics that
emulates the inertia of a conventional power system [13]. The concept of virtual inertia is summarized
in Figure 5. The core of the system is the virtual inertia algorithm that presents the various energy sources
interfaced to the grid through power electronics converters as SGs. Most modern wind turbines are
operated as variable speed wind turbines and interfaced through back-to-back converters, completely
decoupling the inertia from the grid. Similarly, PV systems and ESSs have a DC-DC converter and an
inverter in the front-end, and do not contribute to the inertial response [4,27]. Virtual inertia systems
based on current/voltage feedback from the inverter output generate appropriate gating signals to
present these resources as SGs from the point-of-view of the grid [28]. Although the basic underlying
concepts are similar among the various topologies in the literature, the implementation is quite varied
based on the application and desired level of model sophistication. Some topologies try to mimic the
exact behavior of the SGs through a detailed mathematical model that represent their dynamics. Other
approaches try to simplify this by using just the swing equation to approximate the behavior of SGs,
while others employ an approach which makes the DG units responsive to frequency changes in the
power system. This section discusses the various topologies that have been proposed in literature.
Figure 6 shows a general classification of various topologies that are available in the literature for
virtual inertia implementation. Among the listed topologies, the synchronverter, the Ise lab’s topology,
the virtual synchronous generator (most popular in literature from each classification), and the droop
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control were selected for a detailed description. A brief description of the remaining topologies is also
presented under Section 3.6.

Figure 5. Concept of virtual inertia.

Virtual Inertia Systems

Inducverters

Virtual Oscillator
Control (VOC)

Droop based approach

Frequency-power
response based

Virtual Synchronous
Generators

VSYNC’s Topology

Swing equation based
Synchronous Power

Controller (SPC)

Ise Lab’s Topology

Synchronous generator
model based

Kawasaki Heavy
Industries (KHI)
Lab’s Topology

Institute of Electrical
Power Engineering

(IEPE) Topology

Virtual Synchronous
Machine (VISMA)

Topology

Synchronverters

Figure 6. Classification of different topologies used for virtual inertia implementation.
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3.2. Synchronverters: A Synchronous Generator Model Based Topology

Synchronverters operate the inverter-based DG units as SGs representing the same dynamics from
the point-of-view of the grid [29]. This is based on the notion that such a strategy allows traditional
operation of the power system to be continued without major changes in the operation structure.
The topology is well developed in the literature by Q.C. Zhong [30]. A frequency drooping mechanism
is used to regulate the power output from the inverter similar to how the SG regulates its power
output [31]. The following basic equations are used to capture the dynamics of the SG:

Te = Mf i f < i, s̃inθ > (6)

e = θ̇Mf i f s̃inθ (7)

Q = −θ̇Mf i f < i, c̃osθ > (8)

where, Te is the electromagnetic torque of the synchronverter, Mf is the magnitude of the mutual
inductance between the field coil and the stator coil, i f is the field excitation current, θ is the angle
between the rotor axis and one of the phases of the stator winding, e is the no load voltage generated,
and Q is the generated reactive power. In Equations (6) and (8), 〈·, ·〉 represents the standard inner
product of two vectors in R

3. The three-phase stator current, i, s̃inθ, and c̃osθ are vectors defined
as follows:

i =

⎡
⎢⎣ia

ib
ic

⎤
⎥⎦ ; s̃inθ =

⎡
⎢⎣ sinθ

sin(θ − 2π
3 )

sin(θ − 4π
3 )

⎤
⎥⎦ ; c̃osθ =

⎡
⎢⎣ cosθ

cos(θ − 2π
3 )

cos(θ − 4π
3 )

⎤
⎥⎦ (9)

Equations (6)–(8) are first discretized and then solved in each control cycle in a digital controller to
generate the gating signals for the DG unit under consideration. Figure 7a shows the basic schematic
of the synchronverter. The dashed box represents the control part of the synchronverter, the details of
which are illustrated in Figure 7b. The inverter output current i and grid voltage v are the feedback
signals utilized to solve the differential equations within the controller. Additionally, the desired
moment of inertia J and damping factor Dp can be set as desired. The selection of these parameters
is crucial from the point-of-view of the stability of the system as shown in [32]. The frequency and
voltage loops, as indicated in Figure 7b, are used to generate the control inputs—the mechanical torque,
Tm and Mf If . In the frequency loop, Tm is generated from the reference active power P∗ based on the
nominal angular frequency of the grid wn. The virtual angular frequency of the synchronverter w is
thus generated by this loop which is integrated to calculate the phase command θ and is used for the
pulse width modulation (PWM). Similarly, in the voltage loop, the difference between the reference
voltage v∗ and and the amplitude of the grid voltage v is multiplied by a voltage drooping constant
Dq. This is added to the error between the reference reactive power Q∗ and the reactive power Q
calculated using (8). The resulting signal is then passed through an integrator with gain 1

kv
to generate

Mf If . The outputs of the controller are e and θ which are used for PWM generation.
The underlying equations of a synchronverter topology form an enhanced phase locked loop (PLL)

or a sinusoid-locked loop, making it inherently capable of maintaining synchronism with the terminal
voltage [33]. Single phase variants of the synchronverter have also been designed in [34]. The basic
version of synchronverter requires a PLL to initially synchronize with the grid, however the use of
PLLs in weak grids is known to be prone to instabilities [35–37]. To counteract this, self-synchronized
synchronverters are introduced in [38]. The synchronverter topology has also inspired the operations
of rectifiers as synchronous motors [39] which helps in obtaining inertial response from the load side
of the power system. Moreover, the voltage-source based implementation means that synchronverters
can be operated as grid forming units, and ideally suited for inertia emulation from DGs that are
not connected with the main grid. The fact that the frequency derivative is not required for the
implementation, is a major advantage as derivative terms often induce noise in the system. Although
the synchronverter is able to replicate the exact dynamics of a SG, the complexity of the differential

150



Appl. Sci. 2017, 7, 654

equations used can result in numerical instability. Moreover, a voltage-source based implementation
means there is no inherent protection against severe grid transients, which may result in need of
external protection systems for safe operation.

(a) (b)

Figure 7. Synchronverter topology: (a) overall schematic showing operating principle; (b) detailed
control diagram showing the modeling equations.

3.3. Ise Lab’s Topology: A Swing Equation Based Topology

The topology developed by Ise lab for virtual inertia implementation is similar to the synchronverter
approach described previously, but instead of using a full detailed model of the SG, the topology solves
the power-frequency swing equation every control cycle to emulate inertia [40]. The schematic diagram
of the topology illustrating the operation principle is shown in Figure 8a. The controller senses the
inverter output current i and the voltage of the point of connection v, and computes the grid frequency
ωg and active power output of the inverter Pout. These two parameters are inputs to the main control
algorithm block along with Pin which is the prime mover input power [41]. Within the control
algorithm, the swing equation given by Equation (10) is solved every control cycle thus generating the
phase command θ for the PWM generator. The typical swing equation of a SG is:

Pin − Pout = Jωm(
dωm

dt
) + DpΔω (10)

Δω = ωm − ωg (11)

where, Pin, Pout, ωm, ωg, J, and Dp are the input power (similar to the prime mover input power in
a SG), the output power of the inverter, virtual angular frequency, grid/reference angular frequency,
moment of inertia, and the damping factor, respectively. A model of the governor, as shown in
Figure 8b, is utilized to compute the input power Pin based on the frequency deviation from a reference
frequency ω∗.The governor is modeled as a first-order lag element with gain K and time-constant Td.
P0 represents continuous power reference for the DG unit. The delay in the governor model leads to
higher ROCOF and thus higher frequency nadirs as a consequence. The voltage reference e can be
generated through Q − v droop approach as described in [42,43].

Similar to the synchronverter, derivative of frequency is not needed to implement the control
algorithm. This is highly beneficial as frequency derivatives are know to introduce noise in the system
which makes the system difficult to control. Additionally, this topology can be used to operate DG
units as grid forming units. However, problems related to numerical instability still remain, which
along with improper tuning of parameters J and Dp, can lead to oscillatory system behavior [41].
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(a) (b)

Figure 8. Ise Lab’s topology: (a) overall schematic showing operating principle; (b) the governor model
to compute input power.

3.4. Virtual Synchronous Generators: A Frequency-Power Response Based Topology

The main idea behind virtual synchronous generators (VSG) is to emulate the inertial response
characteristics of a SG in a DG system, specifically the ability to respond to frequency changes [25,44].
This emulates the release/absorption of kinetic energy similar to that of a SG, thus presenting the
DG units as a dispatchable source [45,46]. Compared to traditional droop controllers which provide
only frequency regulation, the VSG approach is able to provide dynamic frequency control [21].
This dynamic control is based on the derivative of the frequency measurement and behaves similarly to
inertial power release/absorption by a SG during a power imbalance. Thus, the VSG is a dispatchable
current source that regulates its output based on system frequency changes. This is one of the simplest
approaches to implement virtual inertia in DG systems as it does not incorporate all the detailed
equations involved in a SG. However, operating multiple DG units as current sources is known to
result in instability [47].

The output power of the VSG converter is controlled using Equation (12):

PVSG = KDΔω + KI
dΔω

dt
(12)

where, Δω and dΔω
dt represent the change in angular frequency and the corresponding rate-of-change.

KD and KI represent the damping and the inertial constant, respectively. The damping constant is
similar to the frequency droop and helps return the frequency to a steady-state value and reduce
the frequency nadir. The inertial constant arrests the ROCOF by providing fast dynamic frequency
response based on the frequency derivative. This feature is especially important in an isolated grid
where the initial ROCOF can be very high, leading to unnecessary triggering of protection relays.
The VSG topology is illustrated in Figure 9. A PLL is used to measure the change in system frequency
and ROCOF [45]. Then, using Equation (12), the active power reference for the inverter is computed.
The current references are then generated for the current controller based on this reference power.
The topology illustrated here assumes a direct-quadrature (d-q) based current control approach, but
any other current control techniques (as described in [48,49]) may be used. For d-q control, d-axis
current reference can be calculated as [22]:

I∗d =
2
3
(

VdPVSG − VqQ
V2

d + V2
q

) (13)
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where, Vd and Vq are the d − axis and q − axis components of the measured grid voltage v. The q-axis
current reference I∗q and the reactive power Q is set to zero as it is assumed that only the active power
is being controlled. The current controller based on the grid current feedback generates the gate signals
to drive the inverter. Thus, the inverter behaves as a current-controlled voltage source inverter [13,48].

Figure 9. Virtual synchronous generator (VSG) topology.

This topology is used by the European VSYNC research group [45,50] and has demonstrated the
effectiveness of inertia emulation using VSG topology through real-time simulations [51] and several
field tests [52]. In [22], an experimental verification of the topology is presented for remote microgrid
applications. The VSG topology has also been widely employed for virtual inertia emulation from wind
systems as reported in [6,53,54]. The main drawback of this topology is that it cannot be implemented
in islanded modes where the virtual inertia unit has to operate as a grid forming unit. Moreover,
the system emulates inertia during frequency variations, but not in input power variations [55].
Accurate measurement of the frequency derivative through PLLs can be challenging for this kind
of implementation [56,57]. The performance of PLLs can degrade and compete against each other,
especially in weak grids [58,59]. PLL systems are known to show steady-state errors and instability especially
in weak grids with frequency variations, harmonic distortions, and voltage sags/swells [35–37]. In [60],
it was shown that the problems with instability are even more pronounced when a proportional-integral
(PI) controller is used to implement the inner-current control loop of the inverter. Accordingly, a VSG
requires a robust and sophisticated PLL for a successful implementation [61]. Another disadvantage of
the VSG approach is that the derivative term used to compute the ROCOF makes the VSG sensitive to
noise which can lead to unstable operation.

3.5. Droop-Based Approaches

The approaches described so far try to mimic or approximate the behavior of SGs to
improve inertial response of inverter-dominated power systems. Different from these techniques,
the frequency-droop based controllers have been developed for autonomous operation of isolated
microgrid systems [62,63]. Based on the assumption that the impedance of the grid is inductive,
the frequency droop is implemented as:

ωg = ω∗ − mp(Pout − Pin) (14)

where, ω∗ is the reference frequency, ωg is the local grid frequency, Pin is the reference set active
power, Pout is the measured active power output from the DG unit, and mp is the active power droop.
Similarly, the voltage-droop is implemented as:

vg = v∗ − mq(Qout − Qin) (15)
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where, v∗ is the reference voltage, vg is the local grid voltage, Qin is the reference set reactive power,
Qout is the measured reactive power output from the DG unit, and mq is the reactive power droop.

The schematic of a frequency-droop controller based on Equation (14) is shown in Figure 10.
Often a low pass filter with a time constant Tf is used when measuring the output power to filter
out high frequency components from the inverter [14]. In the literature [59,64,65], it has already been
shown that the use of this filter makes the droop-based control approximate the behavior of virtual
inertia systems. The proof was first presented by Arco et al. [59] and is repeated here for convenience.

Figure 10. Schematic for frequency droop control.

Proof. Based on the schematic of Figure 10:

Pout = (1 + Tf s)
{

1
mp

(ωg − ω∗) + Pin

}
(16)

Rearranging,

Pin − Pout =
1

mp
(ω∗ − ωg) + Tf .

1
mp

.s.ω∗ (17)

This equation is of the similar form of the virtual synchronous generator described in Equation (12).
The exact approximation is as follows:

KI = Tf .
1

mp
(18)

KD =
1

mp
(19)

Hence, the filters used for power measurements in these controllers constitute a delay which is
mathematically equivalent to virtual inertia, while the droop gain is equivalent to damping. However,
the traditional droop-based systems described by Equations (14) and (15) are known to have slow
transient response. Moreover, the inductive grid assumption may not always be valid. Methods to
improve the droop controllers, such as using virtual output impedance [16] or improving dynamic
behavior of the droop scheme [14], have been proposed. In [10,66], a technique to emulate virtual
inertia by a modified droop approach was also presented.

3.6. Other Topologies

Some other topologies that have been proposed in the literature are—virtual synchronous machine,
referred to as “VISMA” in the literature, Institute of Electrical Power Engineering (IEPE’s) topology,
Kawasaki Heavy Industries (KHI) lab’s topology, synchronous power controllers (SPC), virtual
oscillators, inducverters, etc. The basic concept of inertia emulation remains the same in all these
techniques. The VISMA topology as proposed in [67] uses d-q (synchronous reference frame) based

154



Appl. Sci. 2017, 7, 654

mathematical model of a SG. This model when implemented in the digital controller of a power inverter
replicates the dynamics of a SG. Instantaneous measurements of the grid voltage are used to compute
the stator currents of the virtual machine and these currents are injected through a hysteresis current
control approach using a power inverter. However, concerns with numerical instability have been
reported with the VISMA model [68]. To improve robustness, a three-phase model has been proposed
in [69] over a d-q based model. This is especially effective under unsymmetrical load conditions or
rapid disturbances in the grid. A comparison between the VISMA algorithm implemented as a current
source versus a voltage source has also been performed in [70]. The VISMA model implemented as a
voltage source is referred to as IEPE’s topology in the literature [28]. Instead of using voltage as input as
with the VISMA topology, IEPE’s topology uses the DG output current as input and generates reference
voltages for the virtual machine. The IEPE topology is better suited for islanded operation, but transient
currents particularly during the synchronization processes when operated in grid-connected mode
can be difficult to deal with. In the KHI topology, instead of using detailed dynamic model of SG,
an equivalent governor and automatic voltage regulator (AVR) model is implemented in a digital
controller to generate voltage amplitude and phase reference for the virtual machine [71]. The reference
is then used to generate current references based on algebraic-phasor representation of the SGs.

Another popular topology for virtual inertia implementation is the SPC as proposed in [72–74].
The general structure of the control algorithm is similar to the structure proposed in the Ise lab’s
topology, but instead of operating the converter as a voltage controlled system or a current controlled
system, it implements a cascaded control system, with an outer voltage loop and an inner current
control loop through the use of a virtual admittance. In general, such a cascaded control structure
provides inherent over-current protection during severe transient operating conditions. This is lacking
in other open-loop approaches such as synchronverters or the Ise lab’s topology [75] described
previously. SPC also avoids the discontinuities encountered in solving the mathematical models, thus
making the system more robust against numerical instabilities. The nested loop structure however
does entail complexity in tuning the control system parameters. Furthermore, at its core, instead of
using the swing equation for inertia emulation, a second order model with an over-damped response is
proposed. This helps to reduce the oscillations in the system [55]. Improved forms of this second-order
model was presented in [55,76].

Inducverters [58] are one of the recent topologies that has been proposed which tries to
mimic the behavior of induction generators instead of SGs. This method has the advantage of
auto-synchronization without a PLL [77]. A virtual-inertia based static synchronous compensator
(STATCOM) controller was proposed in [65] which behaves as synchronous condenser. The virtual
inertia controller was used to exploit the fact that no PLL is required, hence providing improved voltage
regulation compared to traditional STATCOMs with PLL units. Virtual oscillator controller (VOC) is
another approach where, instead of mimicking synchronous/induction generators, a non-linear
oscillator is implemented within the controller to synchronize DG units without any form of
communication [78,79]. This approach is particularly beneficial for a grid largely dominated with DGs,
as the controller is intrinsically able to maintain synchronism and share the total system load [80].

3.7. Summary of Topologies

A summary table which highlights the key features and weakness of various virtual inertia control
topologies is presented in Table 1.
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Table 1. Summary of Virtual Inertia Control Topologies.

Control Technique Key Features Weaknesses

Synchronous generator
(SG) model based

• Accurate replication
of SG dynamics

• Frequency derivative
not required

• Phase locked loop (PLL)
used only for
synchronization

• Numerical instability
concerns

• Typically voltage-source
implementation; no
over-current protection

Swing equation
based

• Simpler model
compared to SG based
model

• Frequency derivative
not required

• PLL used only
for synchronization

• Power and frequency
oscillations

• Typically voltage-source
implementation; no
over-current protection

Frequency-power
response based

• Straightforward
implementation

• Typically current-
source implementation;
inherent over-current
protection

• Instability due
to PLL, particularly in
weak grids

• Frequency derivative
required, system
susceptible to noise

Droop-based
approach

• Communication-less
• Concepts similar to

traditional droop
control in SGs

• Slow transient response
• Improper transient

active power sharing

4. Design Procedures and Simulation Results

In this section, three of the major virtual inertia topologies were restudied in a diesel generator
based remote microgrid system. The design procedures and simulation results presented are
aimed to supplement the concepts of virtual inertia topologies reviewed in Section 3. Three of
the topologies—the synchronverter, the Ise lab’s topology, and the VSG—were implemented and their
performance was studied in a common benchmark. Moreover, a procedure is provided to choose
appropriate parameters for the virtual inertia systems. The three virtual inertia systems were designed
in a common framework so that the different parameters used are more relatable to each other. To this
end, constants in each topology were selected such that the virtual inertia system injects/absorbs the
same amount of active power for a given frequency change. Furthermore, the inertial constant and the
damping constant have the same proportion and were related through a time constant Tf of 0.01 s in all
the simulations. This led to an inertia constant H of 1 s in all simulation cases for the virtual inertia unit.
The schematic used for the virtual inertia simulation benchmark is shown in Figure 11. The generator
was rated at 13 kVA, while the PV unit was rated at 6 kWp [22]. A separate, dedicated inverter unit
rated at 10 kW was used as the virtual inertia unit. In all the cases, the steady-state power output
from the inverter was set to 1000 W. It was assumed that, the DC side of the inverter was connected
to a 400 V DC source which remained constant in all the simulations. Step changes in the load were
used to emulate the change in load or PV generation in all the systems. For simplicity, the inverter was
modeled as either a controlled current source or a controlled voltage source (depending on the virtual
inertia topology used) neglecting the switching behavior.
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Figure 11. Schematic diagram of the virtual inertia simulation benchmark.

4.1. Design of Synchronverter Topology

The main parameters to be computed to implement a synchronverter are the moment of inertia J
and the damping factor Dp. The parameter Dp can be calculated using Equation (20) from [29].

Dp = − ΔT
Δω

= − ΔP
ωgΔω

(20)

Once Dp was calculated, the moment inertia J was computed using the desired time constant for
the system, τf :

τf =
J

Dp
(21)

In this case, Dp was calculated to be 14.072 assuming ΔP of 100% (10 kW) for 0.5% change in the
angular frequency (1.885 rad/s). Then for a time-constant of 0.01 s, the J value was calculated to be
0.140. The inertia constant from the synchronverter is:

H =
Jω2

g

2Prated
= 1 s (22)

The frequency and ROCOF of the system after a step-increase of 2 kW on the load, with and
without the synchronverter, are presented in Figure 12a,b, respectively. The dip in frequency and the
ROCOF of the system was reduced with the addition of the synchronverter, as expected. The additional
inertia from the synchronverter increased the settling time for the frequency compared to when there
was no synchronverter in the system. As shown in Figure 12c, the synchronverter increases its active
power output in response to the frequency event much like the behavior of a SG.

(a) (b) (c)

Figure 12. Simulation results from a synchronverter: (a) system frequency after a step-increase of 2 kW
load; (b) ROCOF after a step-increase of 2 kW load; (c) increase in inverter power in response to system
frequency decrease [29].
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4.2. Design of Ise Lab’s Topology

For the design of the Ise lab’s topology, the same values for the constants J and Dp that were
calculated for synchronverter in Section 4.1 were used. For the implementation of the governor model,
a K value of 0.01 with a time delay Td of 0.16 s was used. The frequency and ROCOF of the system after
a step-increase of 2 kW on the load, with and without the Ise lab’s system, is presented in Figure 13a,b,
respectively. The dip in the frequency and the ROCOF of the system was reduced with addition of the
virtual inertia unit, as expected. The additional inertia from virtual inertia system increased frequency
settling time compared to the case without the virtual inertia system. The settling time, however was
higher than with the synchronverter. Figure 13c shows the power injected by the inverter during the
step-load increase. There is a short transient at 50 s, which was a consequence of numerical oscillation
in solving the swing equation. The peak-power injected was similar to that of the synchronverter,
but the time taken for the power to return to the steady-state value of 1000 W was much longer,
leading to a larger energy usage from the DC side.

(a) (b) (c)

Figure 13. Simulation results from ISE lab’s topology: (a) system frequency after a step-increase of
2 kW load; (b) ROCOF after a step-increase of 2 kW load; (c) increase in inverter power as a response
to system frequency decrease [40].

4.3. Design of Virtual Synchronous Generator Topology

For implementing the VSG topology, the main parameters to be designed are the inertia constant
KI and the damping constant KD. The parameter KD can be calculated using:

KD =
ΔP

ωgΔω
(23)

Once KD was calculated, the inertia constant KI was computed using the desired time constant
for the system, τf :

τf =
KI
KD

(24)

In this case, the damping constant, KD, was calculated to be 14.07, assuming ΔP of 100% (10 kW)
for 0.5% change in the angular frequency (1.885 rad/s). Then, for a time-constant of 0.01 s, the KI value
was calculated to be 0.14. The inertia constant from the VSG is:

H =
KIω

2
g

2Prated
= 1s (25)

The frequency and ROCOF of the system after a step-increase of 2 kW on the load, with and
without the VSG, is presented in Figure 14a,b, respectively. The dip in frequency and the ROCOF of the
system was reduced with addition of the VSG, as expected. As with the previous cases, the additional
inertia from the VSG slowed the system down, and the settling time for the frequency was increased
compared to the case without virtual inertia. The peak-power injected was slightly higher than that
of the synchronverter and Ise lab’s topology. However, the time taken for the power to return to the
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steady value of 1000 W was much longer than for the synchronverter leading to a larger energy usage
from the DC side.

(a) (b) (c)

Figure 14. Simulation results from a virtual synchronous generator: (a) system frequency after
a step-increase of 2 kW load; (b) ROCOF after a step-increase of 2 kW load; (c) increase in inverter
power as a response to system frequency decrease [45,46].

4.4. Summary of Simulations

The simulation results are summarized in Table 2 in terms of parameters like the minimum
frequency, maximum ROCOF, settling time, peak power, and energy exchange. The settling time is
defined here as the time required for the frequency to return to and stay within ±0.25 Hz of the final
steady-state frequency after a disturbance. The energy exchange was calculated over the time period
where the inverter exchanges power with the system. With all three topologies, the minimum frequency
and ROCOF were reduced by similar amounts. The peak power delivered by the inverter varied
slightly, with the highest value of 1929 W for the VSG topology. The most pronounced differences were
in the settling time for the frequency and the energy exchange. Compared to systems with no virtual
inertia, the settling time has increased in all three cases. This was expected as adding virtual inertia
slows down the frequency dynamics. The ISO8528-5 standard for generators sets recommends a settling
time of 10 s [20]. The settling time, however, increased to 13.2 s with synchronverter and an even higher
value of 17.7 s and 17.9 s with the Ise lab’s and VSG respectively. This led to a relatively higher energy
exchange in these two topologies of 3.8 Wh and 4.9 Wh compared to that 0.8 Wh with the synchronverter.
Moreover, there was a short-energy recovery period in the power plot of the synchronverter as seen in
Figure 12c which led to a lower energy exchange estimate for the synchronverter.

Table 2. Performance comparison of systems without virtual inertia (VI), and VI implemented through
synchronverter, Ise lab’s and virtual synchronous generator (VSG) topologies.

Parameter No VI Synchronverter Ise Lab VSG

Minimum Frequency 57.3 Hz 58.1 Hz 58.6 Hz 58.3 Hz
Maximum ROCOF 1.9 Hz/s 1.5 Hz/s 1.6 Hz/s 1.7 Hz/s

Settling time 11.3 s 13.2 s 17.7 s 17.9 s
Peak power delivered 0 W 1825 W 1800 W 1929 W

Energy exchanged 0 Wh 0.8 Wh 3.8 Wh 4.9 Wh

Therefore, by appropriate selection of the parameters for the topologies through the time constant
Tf and/or the inertia constant H, similar inertial response can be achieved in terms of frequency
deviation reduction and power exchange from the inverter. Based on the topology, the exact dynamics
represented by the system may vary. The selection of a particular topology depends on the application
and the desired level of replication of the dynamics of the SG. Topologies like the synchronverter
and the Ise lab’s topology may be more suitable for isolated power system as they can operate
autonomously as grid forming units, as well as for reasons discussed in Section 3. The VSG topology
on the other hand behaves more like a grid following unit with added inertial response capabilities
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and is more suited towards interconnected operations. The synchronverter or Ise lab’s topology are
more suitable for a closer approximation of SG dynamics. If the main aim, however, is to make the DG
unit responsive to frequency changes, the VSG approach provides a far simpler implementation.

5. Second Generation: Optimization of Virtual Inertia Systems

The first generation of virtual inertia systems in the literature focused on developing novel
topologies for emulation of inertia using power electronic converters. These topologies have matured
since as pointed out in Section 3. Recently, the field is more focused towards improving and
optimizing the performance of these topologies from the point-of-view of enhanced dynamics, stability,
and minimizing energy storage requirements.

5.1. Second Generation of Synchronverters

Improved versions of the synchronverter have been proposed in [81,82] which makes the
synchronverter more robust and allows for an more accurate dynamic representation of SGs.
One of the main improvements (among others) in [82] is virtually increasing the filter inductance
of the synchronverter, which improved the stability compared to the original synchronverter.
This modification allowed for an improved control over the response speed of the frequency loop
proposed in [29]. In a similar theme, an auxiliary loop around the frequency-loop was proposed
in [83] which allowed for a free control of the response speed of synchronverter. This auxiliary loop
did not affect the steady-state drooping mechanism of the synchronverter which is very desirable.
By changing the inertia constant J and a different tunable constant Df , the desired response speed was
achieved. In [84], a synchronverter with analytically determined bounds for frequency and voltage
was introduced. In traditional synchronverters, saturation units were employed for this purpose,
but such an approach can lead to instability due to wind-up. Instead, analytically determined bounds
based on the system parameters were proposed to improve stability.

5.2. Second Generation of Ise Lab’s Topology

In the traditional Ise lab’s topology, active power oscillation during the inertia emulation has been
identified as one of the major concerns [41]. Typically, during a frequency event, the DG unit needs to
release/absorb a high amount of power, which may exceed their power ratings. This is not a problem
for conventional SGs as they have inherently overrated operation capabilities. However, in the case
of inverters, the switches have to be over-sized to handle such peak power, leading to an increase
in inverter size and, consequently, cost [36]. In [41], an alternating moment of inertia emulation
approach was proposed to make the system less susceptible to such oscillations. The J parameter
was changed based on the relative “virtual angular velocity” and its rate of change. The proposed
alternating moment of inertia approach not only stabilized the system under consideration, but other
nearby virtual inertia units as well. Similarly, in [85] another technique of adjusting the “virtual
stator reactance” of the virtual inertia unit has also been proposed to reduce such active power
oscillations. This approach was somewhat similar to the approach described for synchronverters in [82].
The technique was also found to aid in proper transient active power sharing when operating multiple
virtual inertia units in a microgrid environment. In [86], a particle swarm optimization technique
was developed to properly tune the parameters of the system and achieve smooth transitions after
a disturbance when operating multiple virtual inertia units.

5.3. Second Generation of Virtual Synchronous Generators

In terms of improvement in VSG topologies, some researchers have developed techniques to try
to minimize the frequency nadirs/peaks in the system at the expense of higher energy usage and peak
transient power exchange through the virtual inertia systems [87,88]. Other researchers, meanwhile,
have focused on reducing the energy storage requirements and limiting peak transient power in virtual
inertia systems even though it leads to slightly higher frequency nadirs/peaks [89,90]. A self-tuning
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VSG was developed in [89] using an online optimization technique to tune the KI and KD parameters of
the VSG control algorithm (described in Section 3.4) to minimize the frequency excursions, the ROCOF,
and the power flow through the ESS. Although the frequency excursions were slightly higher in the
case of the self-tuning algorithm, the power flow through the ESS was reduced by 58%. Moreover,
the technique used less energy per Hz of frequency reduction than a constant parameter VSG.

On a similar note of energy saving, an online neural-network based controller was proposed
in [90,91]. It used an adaptive dynamic programming (ADP) based approach to optimize the system
and minimize energy usage while limiting the transient power. The controller supplemented the
power references generated by the main VSG algorithm PVSG with a supplementary signal PADP to
give the total reference PVSG,TOTAL as shown in Figure 15a. The aim of this supplementary signal
was to improve the dynamics of virtual inertia. The proposed ADP controller used a neural network
structure with two different networks—an action network and a critic network as shown in Figure 15b.
The idea behind the design of the critic network was to adapt its weight such that the optimal cost
function J∗(X(t)) satisfies the Bellman principle of optimally as given by:

J∗(X(t)) =min
u(t)

{
J∗(X(t + 1)) + r(X(t))− Uc

}
(26)

where, r(t) is the reinforcement signal for the critic network and Uc is a heuristic term used to
balance. The input to the supplementary ADP controller was the state vector X(t) where the elements
were the frequency error and the one and two time-step delayed frequency error signals. Based on
a reinforcement learning approach, the ADP controller generated auxiliary power reference signals
PADP to return the frequency back to its steady-state value faster and as a consequence reduced the
energy exchange as explained in [90,91]. The main concern with adding virtual inertia to the system
is that it can increase the frequency settling time, leading to increased energy exchange from the
ESS, which subsequently shortens the life of the ESS. The online controller was able to reduce the
frequency settling time and the transient peak power. Figure 16a shows the frequency of a PV-hydro
system under step load changes with and without the ADP controller. The frequency excursion was
slightly higher than using constant parameter VSG, but there was a reduction in the frequency settling
time. This led to lower energy usage and lower transient power as observable in Figure 16b. Table 3
summarizes the improvement achieved through the ADP-based virtual inertia controller.

(a)

Figure 15. Cont.
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(b)

Figure 15. Modified virtual synchronous generator (VSG) using adaptive dynamic programming
(ADP) (a) overall schematic of the controller; (b) the action and critic neural network based structure.

(a) (b)

Figure 16. Comparison of traditional virtual synchronous generator (VSG) controller with the online
learning based controller: (a) frequency of the system for step load changes; (b) power exchange with
the system (Adapted from [91]).

Table 3. Performance comparison of the system without virtual inertia (VI), simple virtual synchronous
generator (VSG) based and adaptive dynamic programming (ADP) based VSG (Data from [91]).

Parameter No VI Simple VSG ADP Based VSG

Peak Power for Event A 0 W 2184 W 1979 W
Settling time for Event A 12.6 s 35.1 s 31.3 s
Peak Power for Event B 0 W −2235 W −2029 W
Settling time for Event B 11.1 s 29.1 s 26.6 s
Energy delivered (Wh) 0 Wh 8.2 Wh 6.2 Wh

Net energy exchanged (Wh) 0 Wh 1.6 Wh 0.9 Wh

A similar online learning controller was proposed for virtual inertia implementation in a double
fed induction generator (DFIG) based system in [87]. In this case, the controller was trained so as to
restrict the frequency excursions to a minimum while maintaining the rotor speed of the DFIG within
a safe operating range, rather than saving the energy flow from ESS. Other techniques to optimize the
virtual inertia have been proposed in [88] using Linear-quadratic-regulator (LQR) and in [92] using
fuzzy logic to minimize frequency deviations and ROCOF.
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6. Challenges and Future Research Directions

6.1. Virtual Inertia as an Ancillary Service

Many research works have proposed the possibility of using virtual inertia as an ancillary service
to improve frequency stability of large power grids. In [93], a control scheme to integrate DC microgrids
as virtual inertia emulating units in the traditional AC grid has been presented. With the control
scheme, the resources within the DC microgrid can be dispatched as an ancillary service for inertial
response. Another major source of under-utilized energy lies in modern data centers. Data centers
need a high degree of reliability, and as a result large amounts of backup energy storage which are
unused during normal operating conditions. Research work in [94,95] have shown methods to utilize
these resources using demand response techniques. This concept can be extended to use data center
resources for virtual inertia implementation. Virtual inertia based interfaces, as mentioned in [93],
can be integrated with data center resources for frequency regulation. A unit commitment model that
combines system inertia from the conventional plants, and the virtual inertia from wind plants into
system scheduling has been presented in [96], which allows for an economic analysis of the virtual
inertia system.

Modern wind farms are already obligated through various laws and regulations to provide
inertial ancillary services [97–100]. The uncaptured inertia in wind turbines, referred to as “hidden
inertia”, can be captured through the techniques described in previous sections. Commercial wind
turbine manufacturers, like WindINERTIA [101] and ENERCON [102], already provide virtual inertia
response. Moreover, leading inverter manufacturers like FREQCON, Schneider Electric, and ABB
already provide out-of-the-box inertial response capabilities. Using electric vehicles (EVs) to provide
ancillary services has become a popular research topic [103]. Typically the control algorithm of the
bidirectional converters in EVs can be modified for virtual inertia implementation [104,105].

6.2. Inertia Estimation

Research has been conducted in [106] to estimate the total inertia constant of the power system.
The research was aimed at determining spinning reserve requirements for the power system. However,
virtual inertia emulated using ESSs and RESs is not going to be constant as in the case of traditional
synchronous generation. The available inertia in the system will depend upon whether RES units
are online or not, and resource availability (wind speed, irradiance, and state of charge in case of
ESS) [107]. System inertia estimation is thus going to be critical for planning purposes for system
operators in the future power system with high RES penetrations. Furthermore, such estimates can
provide helpful insights into the stable real-time operation of a power system. Inertia estimation using
frequency transients measured using synchronized phasor measurement units (PMUs) was proposed
in [107,108]. In [109], a method to estimate the inertial response of power system under high wind
penetration based on the swing equation is presented. Accurate detection of frequency events and
precise ROCOF measurements are critical for proper inertia estimation [110]. In the context of modern
power systems with RES units participating in the inertial response, the inertia of the system will also
largely depend on the RES resource availability at any given time as well. So, PV and wind forecasts
data can be used to complement and further improve the inertia estimation techniques described
before. Accurate inertia estimation methods will help setup a framework for system operator’s to
procure inertial services.

6.3. Improved Modeling, Control and Aggregation of Virtual Inertia Systems

Most research has focused on specific implementations of virtual inertia and the broader impacts
of inertial response. Current literature, lacks accurate, mathematical models which represent the
dynamics of the system. Such models are essential for parameter tuning and understanding the
operational behavior when virtual inertia systems are interconnected to the power system. In [75,111],
a small-signal model for a virtual inertia system has been developed. The model was used to identify
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critical operating modes through Eigenvalue analysis, and a technique to assess the sensitivity
of the system to the parameter gains has been demonstrated. Similarly, a small-signal model of
a synchronverter was developed in [32]. Such a model aids in improved tuning of the controller
gains and provides granular control over how the overall system needs to be operated. An analytical
approach to study the effect of microgrids with high RES penetration on the frequency stability has
been described in [112]. Performance indices completely independent of the test system have also been
proposed to better facilitate impact analysis. The behavior and coordination between virtual inertia
systems and existing SGs are critical topics for further research. In the future, with numerous virtual
inertia units, the coordinated and aggregated operation, and optimal placement will also be important
research questions.

6.4. Market Structure for Virtual Inertia Systems

Currently no market for virtual inertia nor for inertia from conventional SGs exists. SGs and
some loads in the power system inherently provide inertial response and are treated as a free resource.
As the power system becomes inverter-dominated, the inertial requirements will become a valuable
tradeable commodity, and generating units will demand financial compensation. A market-based
approach can be a cost effective solution to ensure sufficiency of inertial services in the future power
market [113]. The inertial response can be provided by wind turbines or even PV systems with inherent
storage technologies [114]. Schemes to operate PV systems below their MPP with reserve for inertial
response is also a possible option with the suitable market for such resources. A scheme to trade
inertia is presented in [11]. Furthermore, the paper argues inertia should not be traded in terms of
power or energy, but rather in terms of an inertia metric. A unit commitment framework for fast
frequency services in the power system with transient stability constraints representing the dynamic
performance requirements was proposed in [115]. It was shown that additional inertia prevented
expensive units being committed post-frequency event and reduced the overall system production cost
in a power system. Other papers propose a penalty factor for generators that do not provide inertial
response, but so far there is no clear structure on how the inertia market should operate and is an open
research area.

One method that deserves further exploration is deploying inertia as “service” for power quality.
For instance, as a microgrid operator, one can offer inertial services based on certain criteria such as
maximum allowable ROCOFs and/or frequency deviation. The Quality of Service (QoS) metrics which
have been proposed for cloud computing services (e.g., [116]) can be garnered for power systems to
measure the power quality in terms on inertial response availability. The quality may be assessed in
terms of response time after a frequency disturbance and/or inertia made available. This will foster
a framework for microgrid operators to incorporate inertial response services in the system based on
the requirements of its end-users.

6.5. Energy Storage Resources for Virtual Inertia Systems

Typically, capacitors and batteries have been proposed as ESSs for dynamic frequency control
using power electronic converters [45,50,72,82]. In [117], an ultra-capacitor based ESS is proposed to
reduce the impact of RESs variability of frequency stability of an isolated power system. However,
these energy resources often incorporate prohibitive cost investments, and because fast-frequency
needs to compensated by the virtual inertia systems it may effect the lifetime of the ESS. As a solution,
a parallel combination of batteries and ultra-capacitors was proposed in [21] which significantly
reduced the impact of high frequency dynamics on the batteries as the ultra-capacitors supplied the
high frequency components. This also allowed for a cheaper and smaller battery unit [118]. Flywheel
based energy storage for virtual inertia was proposed in [119]. Novel solar panel technologies with
inherent storage capabilities could be another way of providing inertia through PV systems [114].
Recently, researchers have started to focus on alternate means of energy resource for virtual inertia.
One of the main areas that is gaining attention is the so-called “thermal-inertia” of heating, ventilation,
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and air conditioning (HVAC) systems of commercial buildings. As discussed in [120–122], the power
consumption of the power electronics based HVAC units can be controlled to provide inertial response
while ensuring that the customer comfort is not effected. Similarly, the large HVAC installation in
data centers could be another potential to tap for inertial response in the future grid with large scale
integration of RES units.

7. Conclusions

This paper presented a literature review of virtual inertia systems in the modern power system
under high RES penetration. Numerous topologies for virtual inertia implementation, which constitutes
the “first generation” of virtual inertia systems, were identified. It was shown that, fundamentally,
the objective of all the topologies is to provide dynamic frequency response through power electronic
converters. The appropriate topology can be selected based on the required architecture (current source
or voltage source implementation) and desired level of sophistication in emulating the exact behavior
of SGs. For example, for replication of the exact dynamics of SGs, topologies such as the synchronverter,
VISMA and inducverters can be used. More simplistic topologies like Ise lab’s topology, SPC can
be used if an approximate replication is sufficient. The VSG approach, on the other hand, is more
suitable when the objective is to provide just the dynamic frequency response without emulating
the exact behavior of SGs. An important takeaway through the literature review was that the droop
based controllers, which were regarded as separate control method for inverter systems, are in fact
fundamentally similar to virtual inertia systems as formalized by the literature pointed out.

Next, the second generation of virtual inertia systems with focus on optimization of existing virtual
inertia topologies were reviewed. Such algorithms can prevent degradation of ESS lifetime and allow
reduced curtailment of RES units that participate in inertial response. Furthermore, the enhancements
help in improved dynamics and overall stability. Some of the challenges and possible areas where
further research is required were also discussed. The current state-of-art of topics such as inertia
estimation, improved controls and aggregation techniques, the virtual inertia market, and ESS for
virtual inertia systems were also presented. This was followed by a discussion on possible research
directions on these topics.
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LQR Linear Quadratic Regulator
KHI Kawasaki Heavy Industries
MPP Maximum Power Point
NERC North American Electric Reliability Corporation
PI Proportional-Integral
PLL Phase Locked Loop
PWM Pulse Width Modulation
QoS Quality of Service
RES Renewable Energy System
ROCOF Rate of Change of Frequency
SG Synchronous Generator
SPC Synchronous Power Controller
STATCOM Static Synchronous Compensator
VI Virtual Inertia
VISMA Virtual Synchronous Machine
VOC Virtual Oscillator Controller
VSG Virtual Synchronous Generator
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