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Preface to ”Mesh Methods—Numerical Analysis and

Experiments”

Mathematical models of various natural processes are described by differential equations,

systems of partial differential equations and integral equations. In most cases, the exact solution

to such problems cannot be determined; therefore, one has to use grid methods to calculate an

approximate solution using high-performance computing systems. These methods include the finite

element method, the finite difference method, the finite volume method and combined methods.

In this Special Issue, we bring to your attention works on theoretical studies of grid methods for

approximation, stability and convergence, as well as the results of numerical experiments confirming

the effectiveness of the developed methods. Of particular interest are new methods for solving

boundary value problems with singularities, the complex geometry of the domain boundary and

nonlinear equations. A part of the articles is devoted to the analysis of numerical methods developed

for calculating mathematical models in various fields of applied science and engineering applications.

As a rule, the ideas of symmetry are present in the design schemes and make the process harmonious

and efficient.

Viktor A. Rukavishnikov, Pedro M. Lima, Ildar B. Badriev

Editors
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Abstract: Scattered data interpolation is important in sciences, engineering, and medical-based problems.
Quartic Bézier triangular patches with 15 control points (ordinates) can also be used for scattered data
interpolation. However, this method has a weakness; that is, in order to achieve C1 continuity, the three
inner points can only be determined using an optimization method. Thus, we cannot obtain the exact
Bézier ordinates, and the quartic scheme is global and not local. Therefore, the quartic Bézier triangular
has received less attention. In this work, we use Zhu and Han’s quartic spline with ten control points
(ordinates). Since there are only ten control points (as for cubic Bézier triangular cases), all control
points can be determined exactly, and the optimization problem can be avoided. This will improve the
presentation of the surface, and the process to construct the scattered surface is local. We also apply the
proposed scheme for the purpose of positivity-preserving scattered data interpolation. The sufficient
conditions for the positivity of the quartic triangular patches are derived on seven ordinates. We obtain
nonlinear equations that can be solved using the regula-falsi method. To produce the interpolated
surface for scattered data, we employ four stages of an algorithm: (a) triangulate the scattered data
using Delaunay triangulation; (b) assign the first derivative at the respective data; (c) form a triangular
surface via convex combination from three local schemes with C1 continuity along all adjacent triangles;
and (d) construct the scattered data surface using the proposed quartic spline. Numerical results,
including some comparisons with some existing mesh-free schemes, are presented in detail. Overall,
the proposed quartic triangular spline scheme gives good results in terms of a higher coefficient of
determination (R2) and smaller maximum error (Max Error), requires about 12.5% of the CPU time of the
quartic Bézier triangular, and is on par with Shepard triangular-based schemes. Therefore, the proposed
scheme is significant for use in visualizing large and irregular scattered data sets. Finally, we tested the
proposed positivity-preserving interpolation scheme to visualize coronavirus disease 2019 (COVID-19)
cases in Malaysia.

Keywords: quartic spline; triangulation; scattered data; continuity; surface reconstruction; positivity-
preserving; interpolation

1. Introduction

Scattered data interpolation and approximation are still active research topics in computer-aided
design (CAD) and geometric modeling [1–9]. This is because engineers and scientists often face the

Symmetry 2020, 12, 1071; doi:10.3390/sym12071071 www.mdpi.com/journal/symmetry1
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problem of how to produce smooth curves and surfaces for the raw data obtained from experiments
or observations. This is where scattered data interpolation can be used to assist them. To construct
smooth curves and surfaces, some mathematical formulations are required. This can be achieved using
functions which are well-established, such as the Bézier, B-spline, and radial basis functions (RBFs).
All these methods are guaranteed to produce smooth curves and surfaces.

The formulation problem in scattered data interpolation can be described as follows:
Given functional data (

xi, yi, zi
)
, i = 1, 2, . . . , N

construct a smooth C1 surface z = F(x, y) such that

zi = F
(
xi, yi

)
, i = 1, 2, . . . , N

To solve the above problem, there are many methods that can be used, such as meshless methods
(e.g., radial basis functions (RBFs) and many types of Shepard’s families). However, some meshless
schemes are global. Fasshauer [10] gave details on many meshless methods to solve the problems
arising in scattered data interpolation and approximation, as well as partial differential equations.
Beyond that, another approach that can be used to solve the problem is the triangulation of the given
data points. Then, the Bézier or spline triangular can be used to construct a piecewise smooth surface
with some degree of smoothness, such as C1 or C2. The Shepard triangular can also be used to produce
a continuous surface from irregular scattered data. For instance, Cavoretto et al. [6], Dell’Accio and
Di Tommaso [11], and Dell’Accio et al. [12,13] have discussed the application of the Shepard triangular
for surface reconstruction. However, their schemes require more computation time in order to produce
the interpolated surfaces.

Crivellaro et al. [14] applied RBFs to reconstruct 3D scattered data via new algorithms, which involves
an adaptive multi-level interpolation approach based on implicit surface representation. The least squares
approximation is used to remove the noise that appears in the scattered data. Chen and Cao [15]
employed neural network operators of a logistic function through translations and dilation. Meanwhile,
Bracco et al. [2] considered scattered data fitting using hierarchical splines where the local solutions
are represented in variable degrees of the polynomial spline. Zhou and Li [16] studied scattered noise
data by extending the weighted least squares method via triangulating the data points. Zhou and
Li [17] discussed the scattered data interpolation for noisy data by using bivariate splines defined on
triangulation. Qian et al. [18] also considered scattered data interpolation by using a new recursive
algorithm based on the non-tensor product of bivariate splines. Liu [19] constructed local multilevel
scattered data interpolation by proposing a new idea (i.e., nested scattered data sets), and scaled the
compactly supported RBFs. Borne and Wende [3] also considered the meshless scheme based on definite
RBFs for scattered data interpolation. In their study, they applied the domain decomposition methods to
produce a symmetric-saddle point system. Joldes et al. [20] modified the moving least squares (MLS)
methods by integrating the polynomial bases to solve the scattered data interpolation problem. Brodlie et
al. [5] discussed the constrained surface interpolation by using the Shepard interpolant. The solution
to the problem is obtained by solving some optimization. Lai and Meile [21] discussed scattered data
interpolation by using nonnegative bivariate triangular splines to preserve the shape of the scattered
data. Schumaker and Speleers [22] considered the nonnegativity preservation of scattered data by using
macro-element spline spaces including Clough–Tocher macro-elements. Furthermore, they also give
general results for range-restricted interpolation. Karim et al. [23] discussed the spatial interpolation for
rainfall data by employing cubic Bézier triangular patches to interpolate the scattered data. Karim et
al. [24] have constructed a new type of cubic Bézier-like triangular patches for scattered data interpolation.
Karim and Saaban [25] constructed the terrain data using cubic Ball triangular patches [23]. In this study,
they show that the scattered data interpolation scheme by Said and Rahmat [26] is not C1 everywhere.
Thus, a new condition for C1 continuity is derived. The final surface is C1 and provides a smooth
surface. Feng and Zhang [27] proposed piecewise bivariate Hermite interpolations based on triangulation.
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They applied the scheme for large scattered data sets to produce high-accuracy surface reconstruction.
Sun et al. [28] constructed bivariate rational interpolation defined on a triangular domain for scattered
data lying on a parallel line. They only considered a few data sets, and it was not tested for large data sets.
By using a rational spline, the computation time increases. Bozzini et al. [4] proposed a polyharmonic
spline to approximate the noisy scattered data.

The main motivation of the present study is described in the following paragraphs. In triangulation-
based approaches to scattered data interpolation, cubic Bézier triangular or quintic Bézier triangular
patches are the common methods. The quartic Bézier triangular has received less attention due to the
need to solve optimization problems in order to calculate the Bézier ordinates. This approach increases
the computation time. There are four steps in constructing a surface using a triangulation method:
(a) triangulate the domain by using Delaunay triangulation; (b) specify the first partial derivative at
the data points (sites); (c) assign the control points or ordinates for each triangular patch; and finally
(d) the surface is constructed via a convex combination scheme. Goodman and Said [29] constructed a
suitable C1 triangular interpolant for scattered data interpolation using a convex combination scheme
between three local schemes. Their work is different from that of Foley and Opitz [30]. However,
both studies developed a C1 cubic triangular convex combination scheme. Said and Rahmat [26]
constructed a scattered data surface using cubic Ball triangular patches [31,32] with the same approach
as in Goodman and Said [29]. Based on the numerical results, their scheme gave the same results as
cubic Bézier triangular patches. The main advantages of cubic Ball triangular patches are that the
required computation is 7% less when compared with the work of Goodman and Said [29]. This is what
has been claimed by References [26,29]. However, in the work of Karim and Saaban [25], it was proved
that Said and Rahmat [26] is not C1 continuous everywhere, and Karim and Saaban [25] found that
the [26] scheme produced the same surface for scattered data interpolation when the inner coefficient
was calculated by using Reference [29]. Hussain and Hussain [33] proposed the rational cubic Bézier
triangular for positivity-preserving scattered data interpolation. They claimed that their proposed
scheme is C1 positive everywhere. However, from their results, it is possible that their scheme may
not be positive everywhere. Chan and Ong [7] considered range-restricted interpolation using a cubic
Bézier triangular comprising three local schemes. All the schemes were implemented by estimating
the partial derivatives at the respective knots using the method proposed by Goodman et al. [34].

Other than the use of cubic Ball and cubic Bézier triangular patches for scattered data interpolation,
there are some studies that have utilized quartic Bézier triangular and rational quartic Bézier triangular
patches for scattered data interpolation. For instance, Saaban et al. [35] constructed C1 (or G1) scattered
data interpolation based on the quartic Bézier triangular. Piah et al. [36] considered C1 range-restricted
positivity-preserving scattered data interpolation by using the quartic Bézier triangular. They employed
an optimization method (i.e., the minimized sum of squares) to calculate the inner Bézier points
proposed in Saaban et al. [35]. Hussain et al. [37] extended this idea to construct convexity-preserving
scattered data interpolation. Hussain et al. [38] constructed a new scattered data interpolation scheme
by using the rational quartic Bézier triangular. They applied it to positivity-preserving interpolation.
However, to achieve C1 continuity, we still need to solve some optimization problems. This is the main
weakness of quartic Bézier triangular patches when applied to scattered data interpolation. Some good
surveys on scattered data interpolation can be found in [39–43].

The present study aims to answer the following research questions:
a. Can we construct a scattered data interpolation scheme by using quartic triangular patches but

without an optimization method?
b. How can we produce a C1 surface (everywhere)?
c. Is the proposed scheme better than some existing schemes in terms of CPU time, coefficient of

determination (R2), and maximum error?
To answer these research questions, we will use the quartic triangular basis initiated by Zhu and

Han [44]. The main advantage of using this quartic basis is that it only requires ten control points to
construct one triangular patch. This is the same as the number of control points in the cubic Bézier

3
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triangular patch. Thus, in order to construct C1 scattered data interpolation using the quartic spline
triangular, we can employ the Foley and Opitz [30] cubic precision scheme to calculate the inner
ordinates. With this, the optimization problem required in a quartic triangular basis will be avoided.
Hence, this will show that the proposed scheme is local. Furthermore, the proposed scheme is different
from the works of Lai and Meile [21] and Schumaker and Spellers [22], even though all schemes
required triangulation of the given data in the first step.

Some contributions from the present study are described below:
1. The proposed scattered data interpolation scheme produces a C1 surface without any optimization

method like Piah et al. [36], Saaban et al. [35] and Hussain et al. [37,38].
2. The proposed scheme is local; meanwhile, the schemes presented in Piah et al. [36], Saaban et al. [35]

and Hussain et al. [37,38] are global.
3. Based on the CPU time needed to construct the surface, the proposed scheme is faster than

quartic Bézier triangular patches. Thus, the reconstruction of scattered surfaces from large data sets
can be performed in less time.

4. Furthermore, the proposed positivity-preserving scattered data interpolation is capable of
producing a better interpolated surface than quartic Bézier triangular patches. This lies in contrast
to scattered data schemes by Ali et al. [1], Draman et al. [9] and Karim et al. [24], which are not
positivity-preserving interpolations.

This paper is organized as follows: In Section 2 we give a review of the triangular basis initiated
by Zhu and Han [44], and the derivation of the quartic triangular basis with ten control points.
Some graphical results are presented, as well as the construction of a local scheme comprising convex
combination between three local schemes. The numerical results and the discussion are given in
Section 3 with various numerical and graphical results, including a comparison with some existing
schemes. Error analysis is also investigated in this section. The construction of the positive scattered
data interpolant is discussed in Section 4. Meanwhile, numerical results for positivity-preserving
scattered data interpolation are shown in Section 5. Conclusions and future recommendations are
given in the final section.

2. Materials and Methods

2.1. Review of the Cubic Triangular Bases of Zhu And Han

Zhu and Han [44] proposed a new cubic triangular basis with three exponential parameters α, β,γ.
Since we are dealing with triangulation, the barycentric coordinate (u, v, w) on the triangle T1 with
vertices V1, V2 and V3 is defined by u + v + w = 1, where u, v, w ≥ 0. Set the point inside the triangle
as V(x, y) ∈ R2 (as shown in Figure 1), which can be expressed as:

V = uV1 + vV2 + wV3 (1)

Figure 1. Triangle.

4
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Definition 1. Let the parameters α, β,γ ∈ [2,∞] and the triangular domain D =
{
(u, v, w)

∣∣∣u + v + w = 1
}

;
the following are cubic Bernstein–Bézier basis functions ([44]):

{
B3

3,0,0(u, v, w;α, β,γ) = uα, B3
0,3,0(u, v, w;α, β,γ) = vβ, B3

0,0,3(u, v, w;α, β,γ)
= wγ, B3

2,1,0(u, v, w;α, β,γ)

= u2v
[

3−2u−uα−2

1−u

]
, B3

2,0,1(u, v, w;α, β,γ)

= u2w
[

3−2u−uα−2

1−u

]
, B3

1,2,0(u, v, w;α, β,γ)

= uv2
[

3−2v−vβ−2

1−v

]
, B3

0,2,1(u, v, w;α, β,γ)

= v2w
[

3−2v−vβ−2

1−v

]
, B3

1,0,2(u, v, w;α, β,γ)

= uw2
[

3−2w−wγ−2

1−w

]
, B3

0,1,2(u, v, w;α, β,γ)

= vw2
[

3−2w−wγ−2

1−w

]
, B3

1,1,1(u, v, w;α, β,γ) = 6uvw.

(2)

Zhu and Han’s triangular basis functions satisfy the following properties:
Non-negativity:

B3
i,j,k(u, v, w;α,β,γ) ≥ 0, i + j + k = 3.

Partition of unity: ∑
i+j+k=3

B3
i,j,k(u, v, w;α,β,γ) = 1.

Symmetry:
B3

i,j,k(u, v, w;α,β,γ) = B3
ijk(w, v, u;γ,β,α).

For more details on the other properties, please refer to Zhu and Han [44].
Zhu and Han’s triangular patches with three parameters α, β, and γ, and control points bijk, i + j +

k = 3 are defined as

P(u, v, w) =
∑

i+ j+k=3

bijkB3
i, j,k(u, v, w;α, β,γ), u + v + w = 1 (3)

Figure 2 shows the Zhu and Han ordinates, and Figure 3 shows one patch of the Zhu and Han
triangular with α = β = γ = 3 (i.e., cubic Bézier triangular).

Figure 2. The 10 quartic triangular ordinates (control points).
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Figure 3. One patch (Zhu and Han [44]).

2.2. Quartic Zhu and Han Triangular Patches

From Equation (2), let α = β = γ = 4, then we obtain the following ten quartic basis functions
defined on the triangular domain:

{
B3

3,0,0(u, v, w;α, β,γ) = u4, B3
0,3,0(u, v, w;α, β,γ) = v4, B3

0,0,3(u, v, w;α, β,γ)
= w4, B3

2,1,0(u, v, w;α, β,γ) = u2v (3 + u), B3
2,0,1(u, v, w;α, β,γ)

= u2w (3 + u), B3
1,2,0(u, v, w;α, β,γ)

= uv2 (3 + v), B3
0,2,1(u, v, w;α, β,γ)

= v2w (3 + v), B3
1,0,2(u, v, w;α, β,γ)

= uw2 (3 + w), B3
0,1,2(u, v, w;α, β,γ)

= vw2 (3 + w), B3
1,1,1(u, v, w;α, β,γ) = 6uvw.

(4)

Figure 4 shows the quartic triangular basis on the triangular domain.

Figure 4. Quartic triangular basis functions.

6
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Thus, the quartic Zhu and Han triangular patch can be defined by

P(u, v, w)= u4b300 + v4b030 + w4b003 + u2v (3 + u)b210 + (3 + u)u2wb201

+(3 + v)v2ub120 + (3 + v)v2wb021 + (3 + w)w2ub102

+(3 + w)w2vb012 + 6uvwb111

(5)

The main advantage of Zhu and Han’s quartic is that it only requires ten control points to
construct one triangular patch; meanwhile, the quartic Bézier triangular will require 15 control points
to produce one patch. Furthermore, when the quartic Bézier triangular is used for scattered data
interpolation, an optimization method is required to produce the interpolated surface, as discussed
in Saaban et al. [35], Piah et al. [36] and Hussain et al. [37,38]. However, if we apply the proposed
quartic triangular patches for scattered data interpolation, the optimization is not required since we
can employ the cubic precision scheme of Foley and Opitz [30] to construct a C1 interpolated surface
everywhere. So far, this is the first study to apply a a quartic triangular basis but with ten control
points for scattered data interpolation.

Figure 5a shows examples of quartic Zhu and Han, and Figure 5b shows the quartic Bézier
triangular patch.

(a) (b)

Figure 5. Quartic triangular patches. (a) Quartic Zhu and Han [44]; (b) Quartic Bézier triangular.

2.3. Scattered Data Interpolation Using Quartic Zhu and Han Triangular Patches

To apply the quartic triangular patch defined in Section 2.2 for scattered data, we use the local
scheme comprising a convex combination between three local schemes K1, K2, and K3 [1,9,24] such that:

P(u, v, w) =
vwK1 + uwK2 + uvK3

vw + uw + uv
, u + v + w = 1 (6)

The local scheme Ki, i = 1, 2, 3 is obtained by replacing b111 in (5) with bi
111 to ensure the C1

condition is satisfied. Given the vertex of the triangle (i.e., F(V1) = b300, F(V2) = b030, and F(V3) = b003),
the derivative along ejk (see Figure 6)—that is, the edge connecting two points

(
xj − yj

)
and (xk − yk)—

is defined as [1,9,24,29]:
∂P
∂ejk

=
(
xk − xj

)∂F
∂x

+
(
yk − yj

)∂F
∂y

Thus

b210 = F(V1) +
1
4
∂P
∂e3

(V1)

7
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which can be simplified as

b210 = b300 +
1
4

(
(x2 − x1)Fx(V1) + (y2 − y1)Fy(V1)

)
(7)

Similarly, the other five ordinates are calculated as follows:

b201 = b300 − 1
4

(
(x1 − x3)Fx(V1) + (y1 − y3)Fy(V1)

)
(8)

b021 = b030 +
1
4

(
(x3 − x2)Fx(V2) + (y3 − y2)Fy(V2)

)
(9)

b120 = b030 − 1
4

(
(x2 − x1)Fx(V2) + (y2 − y1)Fy(V2)

)
(10)

b102 = b003 +
1
4

(
(x1 − x3)Fx(V3) + (y1 − y3)Fy(V3)

)
(11)

b012 = b003 − 1
4

(
(x3 − x2)Fx(V3) + (y3 − y2)Fy(V3)

)
(12)

Figure 6. Side-vertex blending.

The remaining bi
111, i = 1, 2, 3 is obtained by using the cubic precision of Foley and Opitz [30] as

shown in Figure 7. For complete derivation, the reader can refer to [30].

Figure 7. Two adjacent quartic triangular patches.
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In order to achieve C1 continuity along all edges, the following equations must be satisfied:

c201 = r2b210 + 2stb021 + 2rsb120 + s2b030 + 2rtb2
111 + t2b012 (13)

c210 = r2b201 + 2stb012 + 2rtb102 + s2b021 + 2rsb1
111 + t2b003 (14)

b210 = u2c201 + 2vwc012 + 2uwc102 + v2c021 + 2uvc1
111 + w2c003 (15)

b201 = u2c210 + 2vwc021 + 2uwc120 + v2c030 + 2uvc1
111 + w2c012 (16)

To find c1
111 in (13) and (14), we need to add these equations together. Thus, we obtain

c1
111 = 1

2u(v+w)

(
b201 + b210 − u2(c210 + c201) − v2(c030 + c021)

)
+w2(c012 + c003) − 2vw(c021 + c012) − uvc120 − 2uwc102.

Similarly, with Equations (15) and (16), we obtain

b1
111 = 1

2r(s+t)

(
c201 + c210 − r2(b210 + b201) − s2(b030 + b021)

)
+t2(b012 + b003) − 2st(b021 + b012) − rsb120 − 2rtb102.

Now we establish the theorem for the main result.

Theorem 1. The local scheme defined by (6) is a rational function with degree 7, that is, degree five in numerator
and degree two in denominator with C1 continuity everywhere. It has the following form:

P(u, v, w) =
∑

i+ j+k=3 i, j,k�1

bijkB3
i, j,k(u, v, w) + 6uvw

(
a1b1

111 + a2b2
111 + a3b3

111

)
(17)

with
a1 =

vw
vw + uw + uv

, a2 =
uw

vw + uw + uv
, a3 =

uv
vw + uw + uv

(18)

and the barycentric coordinate satisfies u + v + w = 1.

The following Algorithm 1 can be used to implement the proposed scheme.

Algorithm 1 (Scattered Data Interpolation)

Step 1: Input scattered data points;
Step 2: Estimate the partial derivative at the data points by using [25];
Step 3: Triangulate the domain of the data points;
Step 4: Calculate the boundary control points using Equations (7)–(12);
Step 5: Calculate inner control points for the local scheme, bi

111, i = 1, 2, 3 by using the cubic precision method
as in Foley and Opitz [30];
Step 6: Construct the interpolated surface using the convex combination method of three local schemes
defined by (6);
Step 7: Calculate CPU time (in seconds), R2, and maximum error. Repeat steps 1 through 6 for the other
scattered data sets.

Below we give the theorem for scattered data interpolation by using quartic Bézier triangular patches.

Theorem 2. C1 quartic Bézier triangular patches using minimized sum of squares of principal curvatures [35].

9
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Let the quartic Bézier triangular patch (n = 4) with barycentric coordinates u, v, w be expressed as

S(u, v, w) =
∑

i+ j+k=4

cijkB4
i jk(u, v, w) (19)

where B4
i jk(u, v, w) = 4!

i! j!k! u
ivjvk and cijk are the Bézier ordinates of S. Let the total number of triangles

in the whole triangular mesh be nt and the total number of interior edges be ne. S(x,y) which will
minimize the functional I(S(x,y)) leads to the optimization problem xT Qx + ex + h, subject to the C1

continuity constraint:
min xxTQx + ex + h subject to Ax = b (20)

where Q is a 6nt × 6nt sparse matrix, e is a 1 × 6nt row vector, x is a 6nt × 1 column vector consisting
of unknown ordinates

(
bm

220 bm
211 bm

121 bm
202 bm

112 bm
022

)
, m = 1, . . . , nt, h is a real constant, A is a 3ne × 6nt

(3ne ≤ 6nt) coefficient matrix, x is a 6nt × 1 unknown column vector consisting of the remaining
ordinates b220, b202, b022, b211, b121 and b112 to be determined for the entire triangular mesh, and b

is a 3ne × 1 constant column vector. The optimization problem stated in (18) was solved using the
optimization toolbox in MATLAB 2017 on Intel® Core™ i5-8250U 1.60 GHz.

Note that the optimization problem in Theorem 2 is obtained by using a minimized principal
curvature norm with respect to the C1 continuity constraint, which results in a global method for
scattered data interpolation. Meanwhile, by using the proposed scheme in this study, the resulting
surface is local.

3. Results and Discussion for Scattered Data Interpolation

We tested the proposed scheme using two well-known test functions F1(x, y) and F2(x, y):

F1(x, y) = 0.75e(−(9x−2)2+(9y−2)2/4) + 0.75e(−(9x+1)2/49−(9y+1)2/10)

+0.5e(−(9x−7)2+(9y−3)2/4) − 0.2e(−(9x−4)2−(9y−7)2)
(21)

F2(x, y) =
(1.25 + cos cos (5.4y))

6 + 6(3x− 1)2 (22)

We implemented the proposed scheme using MATLAB 2017 version on Intel® Core™ i5-8250U
1.60 GHz. MATLAB coding was developed based on Algorithm 1. About 25 MATLAB functions were
used to obtain all the results.

We chose 36 data point samples in the domain [0, 1] × [0, 1], as shown in Table 1. Figure 8 shows
the Delaunay triangulation for the data. Figure 6 shows examples of surface interpolation for both
functions. Comparing Figures 9 and 10, the surfaces produced by the proposed scheme visually
look smoother than the surfaces obtained from the quartic Bézier triangular of Saaban et al. [35]
and Piah et al. [36]. Figure 10 shows an example of scattered data interpolation using quartic Bézier
triangular patches.

To validate the proposed scheme, we calculated the maximum error (Max Error) and coefficient of
determination (COD; i.e., R2) for both functions and compared them with those obtained for quartic
Bézier triangular for three different numbers of points i.e., 100, 65, and 36 for both functions F1(x, y)
and F2(x, y). Functions 1 and 2 represent F1(x, y) and F2(x, y), respectively.

Table 2 shows the error analysis for both tested functions by using (a) quartic Zhu and Han and
(b) quartic Bézier triangular. Meanwhile, Table 3 shows CPU time in seconds. From Table 2, we can
see that the proposed quartic triangular patches for scattered data interpolation gave smaller Max
Error values than the quartic Bézier triangular. Additionally, the proposed scheme gave higher R2

values for all numbers of data points (100, 65, and 36). From Table 3, the proposed scheme required
less CPU time than the quartic Bézier. For instance, for 100 data points, the proposed scheme only
required 0.71 s for data from function F1(x, y) and 0.42 s for data from function F2(x, y), compared

10
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with the quartic Bézier which requires 5.6 s and 3.57 s for 100 data points from functions F1(x, y) and
F2(x, y), respectively. Thus, the proposed scheme in this study gave very good results, and was better
at treating scattered data than using the quartic Bézier triangular proposed by Piah et al. [36], Saaban
et al. [35], and Hussain et al. [37,38]. We conclude that the proposed scheme required less CPU time
than the quartic Bézier triangular. This reduction of CPU time consumption is an advantage when the
goal is to construct a surface with thousands of data points or big data.

Table 1. Data points.

x y F1(x,y) F2(x,y) x y F1(x,y) F2(x,y)

0 0 0.7664 1.3333 0.80 0.85 0.0823 1.2431
0.50 0 0.4349 1.3833 0.85 0.65 0.1412 1.2043
1.00 0 0.1076 1.2833 1.00 0.50 0.1610 1.2199
0.15 0.15 1.1370 1.3382 1.00 1.00 0.0359 1.2712
0.70 0.15 0.4304 1.3020 0.50 1.00 0.1460 1.3346
0.50 0.20 0.5345 1.3128 0.10 0.85 0.2935 1.2363
0.25 0.30 1.0726 1.2423 0 1.00 0.2703 1.3029
0.40 0.30 0.7134 1.2421 0.25 0 0.8189 1.4069
0.75 0.40 0.5903 1.2139 0.75 0 0.2521 1.3150
0.85 0.25 0.5088 1.2607 0.25 1.00 0.2222 1.3496
0.55 0.45 0.3823 1.1613 0 0.25 0.8026 1.2683

0 0.50 0.4818 1.1747 0.75 1.00 0.0810 1.2913
0.20 0.45 0.6458 1.1412 0 0.75 0.3395 1.1987
0.45 0.55 0.2946 1.1037 1.00 0.25 0.2302 1.2573
0.60 0.65 0.1920 1.1552 1.00 0.75 0.0504 1.2295
0.25 0.70 0.2930 1.1240 0.19 0.19 1.2118 1.3229
0.40 0.80 0.0515 1.1887 0.32 0.75 0.2029 1.1477
0.65 0.75 0.1372 1.1961 0.79 0.46 0.4777 1.2041

Figure 8. Delaunay triangulation of data in Table 1.
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(a) (b)

Figure 9. Surface reconstruction using the proposed scheme. (a) For F1(x, y); (b) For F2(x, y).

(a) (b)

Figure 10. Surface reconstruction using quartic Bézier triangular. (a) For F1(x, y); (b) For F2(x, y).

Table 2. Error analysis.

Num. of Data Points Function
Max Error R2

The Proposed Scheme Quartic Bézier [35] The Proposed Scheme Quartic Bézier [35]

100
1 3.436 × 10∧−2 3.598 × 10∧−2 0.99936 0.99934

2 4.500 × 10∧−2 7.61 × 10∧−2 0.99977 0.99967

65
1 6.410 × 10∧−2 6.586 × 10∧−2 0.99720 0.99733

2 1.732 × 10∧−2 1.562 × 10∧−2 0.99796 0.99793

36
1 9.740 × 10∧−2 9.973 × 10∧−2 0.99211 0.99256

2 2.675 × 10∧−2 2.762 × 10∧−2 0.99332 0.99208

This can be seen clearly from Table 3. With the largest number of data points, the CPU time
for the proposed scheme was approximately 12.5% that of the CPU time required for the quartic
Bézier triangular based scheme. This is very significant, especially when the user wants to render and
reconstruct surfaces obtained from very dense data sets. Many studies in scattered data interpolation
usually involve the use of Shepard-type interpolants such as Shepard triangular schemes for scattered

12
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data interpolation [6,11–13]. We also implemented the Shepard triangular to the same data sets
as listed in Table 1. Tables 4 and 5 show the error analysis for the schemes of Cavoretto et al. [6],
Dell’Accio et al. [12,13], and Dell’Accio and Di Tommaso [11]. Based on CPU time, for all tested data
sets, the proposed scheme was faster than the schemes in [6,11–13], except for the case with 100 data
points for the data from function F1(x, y). Considering the Max Error, the proposed scheme was better
than all four schemes except for the case with 100 data points from function F2(x, y). Therefore, we can
conclude that the proposed scheme is better than quartic triangular patch and the Shepard triangular
based schemes [6,11–13].

Table 3. CPU time (in seconds).

Num. of Data Points Function
CPU Time (in Seconds)

The Proposed Scheme Quartic Bézier [35]

100
1 0.7097807844 5.6002481345

2 0.4234289196 3.5703151686

65
1 0.2741610887 1.5474957467

2 0.2363209917 1.3271791002

36
1 0.1298699059 0.5886074910

2 0.1163838547 0.4703613961

Table 4. Error analysis.

Num. of Data
Points

Function

Max Err

Dell’Accio
et al. [12]

Dell’Accio and Di
Tommaso [11]

Dell’Accio et al., [12]
and Cavoretto et al. [6]

Dell’Accio
et al. [12]

Dell’Accio et al. [13]
and Cavoretto et al. [6]

100
1 5.2990 × 10∧−2 8.6648 × 10∧−2 1.0970 × 10∧−1 6.2438 × 10∧−2 5.3936 × 10∧2

2 1.8617 × 10∧−2 5.0590 × 10∧−2 3.2842 × 10∧−2 1.5449 × 10∧−2 1.9619 × 10∧−2

65
1 1.0147 × 10∧−1 1.1864 × 10∧−1 1.1221 × 10∧−1 7.6266 × 10∧−2 7.1704 × 10∧−2

2 6.4329 × 10∧−2 3.7704 × 10∧−2 3.5962 × 10∧−2 2.7322 × 10∧−2 2.8894 × 10∧−2

36
1 1.2822 × 10∧−1 1.6219 × 10∧−1 1.3564 × 10∧−1 1.1371 × 10∧−1 9.8914 × 10∧−2

2 7.9686 × 10∧−2 5.6713 × 10∧−2 5.3611 × 10∧−2 5.1806 × 10∧−2 4.6253×10∧−2

Table 5. CPU time (in seconds).

Num. of Data
Points

Function

CPU Time (Second)

Dell’Accio
et al. [12]

Dell’Accio and Di
Tommaso [11]

Dell’Accio et al., [12]
and Cavoretto et al. [6]

Dell’Accio
et al. [12]

Dell’Accio et al. [13]
and Cavoretto et al. [6]

100
1 0.490380 1.894685 0.480296 0.423177 0.401825
2 0.502923 1.881019 0.501286 0.428949 0.417658

65
1 0.486381 1.882420 0.478175 0.424583 0.424086
2 0.484984 1.849458 0.459517 0.424870 0.397832

36
1 0.437090 1.707668 0.445523 0.415162 0.445566
2 0.448242 1.686242 0.448589 0.417875 0.421869

4. Positivity-Preserving Scattered Data Interpolation

In this section, we apply the proposed scheme discussed in the previous section to preserve the
positivity of scattered data sets. To do this, first we derive the sufficient condition for the positivity of
the quartic triangular spline defined in (5). Finally, the rational corrected scheme defined by (19) will
be used to construct a positive surface with C1 continuity.

To derive the sufficient condition for the positivity of the quartic spline triangular patch, we adopted
a similar approach to Saaban et al. [35] and Piah et al. [36]. Assume that the quartic ordinates at
the vertices are strictly positive such b300, b030, b003 > 0. Let A = b300, B = b030, C = b003, therefore

13
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A, B, C > 0 (see Figure 11). Meanwhile, let the other ordinates have the same value, that is −t < 0 where
t > 0. Thus, Equation (5) becomes

P(u, v, w) = Au4 +Bv4 + Cw4

−t
(
u2v (3 + u) + (3 + u)u2w + (3 + v)v2u + (3 + v)v2w + (3 + w)w2u

+(3 + w)w2v + 6uvw
)

= Au4 + Bv4 + Cw4 − t
(
1− u4 − v4 −w4

)
= (A + t)u4 + (B + t)v4 + (C + t)w4 − t

(23)

Figure 11. Quartic triangular ordinates arrangement for positivity preservation.

From (23) we can observe that when t = 0 then P(u, v, w) > 0. Meanwhile as t increases, P(u, v, w)

decreases. We want to find the value of t = t0 when the minimum value of P(u, v, w) = 0. By taking
first partial derivatives, we will obtain the following:

∂P(u,v,w)
∂u = 4(A + t)u3,

∂P(u,v,w)
∂v = 4(B + t)v3,

∂P(u,v,w)
∂w = 4(C + t)w3.

(24)

The minimum value of P(u, v, w) occurs when

∂P
∂u − ∂P∂v = 0 and ∂P∂u − ∂P∂w = 0 or equivalently.

∂P
∂u

=
∂P
∂v

=
∂P
∂w

(25)

From Equation (25) we have
u3

v3 = B+t
A+t and u3

w3 = C+t
A+t

Hence:
u3 : v3 : w3 =

1
A + t

:
1

B + t
:

1
C + t

.

Since u + v + w = 1, we obtain the following relations:

u =

1
(A+t)1/3

1
(A+t)1/3 +

1
(B+t)1/3 +

1
(C+t)1/3

,

14
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v =

1
(B+t)1/3

1
(A+t)1/3 +

1
(B+t)1/3 +

1
(C+t)1/3

, and

w =

1
(C+t)1/3

1
(A+t)1/3 +

1
(B+t)1/3 +

1
(C+t)1/3

.

Substituting this value into (23) we obtain the minimum value of P(u, v, w) i.e.,
P(u, v, w) 1[

1
(A+t)1/3 +

1
(B+t)1/3 +

1
(C+t)1/3

]3
min

which can be simplified to

P(u, v, w)
t[

1
(A/t+1)1/3 +

1
(B/t+1)1/3 +

1
(C/t+1)1/3

]3
min

(26)

Now, P(u, v, w)min when

1

(A/t + 1)1/3
+

1

(B/t + 1)1/3
+

1

(C/t + 1)1/3
= 1 (27)

Let s = 1/t, then

G(s) =
1

(As + 1)1/3
+

1

(Bs + 1)1/3
+

1

(Cs + 1)1/3
(28)

Then Equation (27) can be written as G(s) = 1, s ≥ 0. This equation can be solved by using
regula-falsi method with suitable choice of initial guess.

Since A, B, C > 0 and s ≥ 0 then G′(s) < 0 and G′′ (s) > 0. (see Figure 12). Thus, the curve is convex
on that region. Let X = max(A, B, C) and Y = min(A, B, C), then the following holds

3
3√Xs + 1

≤ G(s) ≤ 3
3√Ys + 1

Figure 12. Function G(s) for s ≥ 0.
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Such that
G
(26

X

)
≥ 1 and G

(26
Y

)
≤ 1.

Figure 12 shows the example of the relative locations of 26
X and 26

Y and s0.
Now we establish the main theorem for positivity preservation using the proposed scheme.

Theorem 3. Consider the quartic triangular patch P(u, v, w) with vertex A = b300, B = b030, C = b003,
such that A, B, C > 0. If the remaining quartic triangular ordinates are equal to −t0 where t0 = 1

s0
is a unique

solution to (28), then P(u, v, w) ≥ 0 for all u, v, w ≥ 0 and u + v + w = 1.

Some observations from Theorem 3 can be made as follows:
Let A = B > C = 1. Then, we have

G(s) =
2

(As + 1)1/3
+

1

(s + 1)1/3

Therefore, as A→∞ , then G(s)→ 1
(s+1)1/3 . Hence, s0 → 0 and therefore t0 →∞ . Thus, the ordinate

values are unbounded compared with the work of Chan and Ong [7] in which the Bézier ordinates are
bounded by a lower bound −1/3.

Remark 1. The sufficient condition for the positivity of the quartic triangular patch developed in this study is the
same as the sufficient condition for the quartic Bézier triangular patch developed in Saaban et al. [35]. The main
difference is that the proposed quartic polynomial only requires ten control points (or ordinates) as compared to
the quartic Bézier triangular which requires 15 control points and involves some optimization problems as shown
in Saaban et al. [35] and Hussain et al. [37,38]. Therefore, the proposed positivity preservation using a quartic
triangular patch requires less computation time than some established schemes for scattered data interpolation.

The final construction of the positive scattered surface is described below:
1. Input positive scattered data points;
2. Triangulate the scattered data using Delaunay triangulation;
3. Assign the first partial derivative at the respective data sites and adjust if necessary, to provide

the positivity preservation;
4. The C1 triangular surface is constructed via convex combination between three local schemes;
5. Repeat Steps 1 through 4 for other positive scattered data sets.

5. Numerical Results and Discussion for Positivity-Preserving Scattered Data Interpolation

After we derive the sufficient condition for the positivity of quartic triangular patch, the final C1

scattered data scheme for positivity preservation can be written as follows:

P(u, v, w) =
∑

i + j + k = 3
i, j, k � 1

bijkB3
i, j,k(u, v, w) + 6uvw

(
a1b1

111 + a2b2
111 + a3b3

111

)
(29)

with
a1 =

vw
vw + uw + uv

, a2 =
uw

vw + uw + uv
, a3 =

uv
vw + uw + uv

(30)

16
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We test the proposed scheme by using four well-known test functions given below:

F1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1.0if(y− x) ≥ 0.5
2(y− x)if0.5 ≥ (y− x) ≥ 0.0
cos(4π

√
(x−1.5)2+(y−0.5)2+1

2 if(x− 1.5)2 + (y− 0.5)2 ≤ 1
16

0elsewhereon[0, 2]x[0, 1]

F2(x, y) = 1.025− 0.75e−(6x−1)2−(6y−1)2 − 0.75e−(9x+1)2/49−(9y+1)2/10

−0.5e−(9x−7)2−(9y−3)2 − 0.5e−(10x−4)2−(10y−7)2

F3(x, y) = x4 + y4

F4(x, y) = e−(5−10x)2/2 + 0.75e−(5−10y)2/2 + 0.75e−(5−10x)2/2e−(5−10y)2/2

The positive test functions F1, F2, F3, and F4 were evaluated on 36, 33, 26, and 100 node points
respectively (Tables 6–9) where all function values were greater than or equal to zero. The nodes of 36
and 33 points were defined on a rectangular domain (Figure 13a,b), while the 26- and 100-point nodes
were defined on a sparse non-rectangular domain (Figure 13c,d). Tables 8 and 9 show examples of
irregular scattered data sets.

Table 6. Value of F1 on 36 node points.

x y F1(x,y) x y F1(x,y) x y F1(x,y)

0 0 0 0.35 0 0 1.4 0.8 0
0.2 0.2 0 0.8 0 0 1.65 0.75 0
0.5 0.2 0 0.1 0.85 1 2 1 0
0.4 0.4 0 0 0.25 0.5 1.25 0 0
0.75 0.35 0 0.8 1 0.4 1.7 0 0

0 0.5 1 2 0 0 1.25 1 0
0.25 0.5 0.5 1.4 0.3 0.0272 1.7 1 0
0.25 0.75 1 1.75 0.45 0 2 0.35 0
0.55 0.75 0.4 1.2 0.45 0 2 0.7 0
0.7 0.6 0 1.45 0.5 0.9045 1.05 0.2 0
0.5 1 1 1.6 0.3 0.0272 1 0.5 0
0 1 1 1.25 0.7 0 0.95 0.8 0

Table 7. Value of F2 on 33 node points.

x y F2(x,y) x y F2(x,y) x y F2(x,y)

0 0 0.2586 0 0.50 0.5960 0.50 1.00 0.8762
0.50 0 0.6429 0.25 0.45 0.6264 0.10 0.85 0.7316
1.00 0 0.9174 0.45 0.55 0.7981 0 1.00 0.7547
0.25 0.20 0.0056 0.60 0.65 0.8336 0.25 0 0.2629
0.70 0.15 0.6012 0.25 0.70 0.7862 0.75 0 0.7739
0.50 0.20 0.6329 0.40 0.80 0.9941 0.25 1.00 0.8026
0.30 0.30 0.4199 0.65 0.75 0.8825 0 0.25 0.2792
0.45 0.35 0.6618 0.80 0.85 0.9427 0.75 1.00 0.9440
0.75 0.40 0.4361 0.85 0.65 0.8838 0 0.75 0.6865
0.85 0.25 0.5164 1.00 0.50 0.8640 1.00 0.25 0.7948
0.55 0.45 0.6724 1.00 1.00 0.9891 1.00 0.75 0.9746
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Table 8. Value of F3 on 26 node points.

x y F3(x,y) x y F3(x,y) x y F3(x,y)

0.9375 −0.4063 0.7997 0.0469 −0.7656 0.3436 −0.5156 −0.1094 0.0708
−0.1719 1.0000 1.0009 −0.7813 −0.8906 1.0017 0.4844 0.1406 0.0554
−0.8906 −0.0938 0.6292 0.0625 0.3750 0.0198 −0.4531 0.1563 0.0427
−0.0625 −0.6719 0.2038 −0.7656 −0.2969 0.3513 0.7031 0.3281 0.2560
−0.8750 −0.6250 0.7388 0.0938 0.1250 0.0003 −0.4219 0.4688 0.0800

0 0.7969 0.4033 −0.6875 0.3750 0.2432 0.9063 −0.5938 0.7990
−0.8438 −0.5313 0.5866 0.1094 0.3281 0.0117 −0.2344 0.1406 0.0034
0.0313 0.5313 0.0797 −0.5625 −0.6563 0.2856 0.9688 0.7188 1.1476
−0.8438 0.1563 0.5075 0.1563 0.4531 0.0427

Table 9. Value of F4 on 100 node points.

x y F4 (x,y) x y F4 (x,y) x y F4 (x,y)

0.0096 0.3083 0.119425 0.3307 0.5159 1.155816 0.6677 0.6764 0.442125
0.0216 0.245 0.029055 0.3379 0.9426 0.268844 0.6814 0.8444 0.195332
0.0298 0.8614 0.00111 0.3439 0.48 1.248258 0.6888 0.3273 0.365476
0.0417 0.0978 0.000258 0.353 0.1783 0.345127 0.6941 0.1894 0.158965
0.047 0.3648 0.300748 0.3636 0.1147 0.395081 0.7062 0.0646 0.119387

0.0563 0.7156 0.073456 0.3766 0.8226 0.473071 0.7161 0.018 0.096822
0.0647 0.5311 0.714724 0.3822 0.2271 0.526808 0.7317 0.8905 0.068664
0.074 0.9756 0.000124 0.387 0.4074 1.274589 0.7371 0.4161 0.619367

0.0874 0.1781 0.004419 0.3973 0.8875 0.590813 0.7462 0.4689 0.797375
0.0935 0.5453 0.677296 0.4171 0.7632 0.749339 0.7567 0.2175 0.051462
0.1032 0.1604 0.00273 0.4256 0.9973 0.758236 0.77 0.5734 0.613977
0.111 0.7837 0.013932 0.4299 0.496 2.117705 0.7879 0.8853 0.016309

0.1181 0.9982 0.000684 0.4373 0.341 1.207499 0.7944 0.8018 0.021117
0.1252 0.6911 0.121795 0.4705 0.2498 1.021601 0.8164 0.6389 0.294451
0.1327 0.105 0.001483 0.4737 0.6409 1.512454 0.8193 0.8931 0.006444
0.144 0.8185 0.00648 0.4879 0.1059 0.99334 0.8368 0.1001 0.003695

0.1565 0.7086 0.088121 0.494 0.5412 2.374907 0.8501 0.279 0.067559
0.1651 0.4457 0.653239 0.5055 0.009 0.998497 0.8588 0.9083 0.001782
0.1786 0.1178 0.006221 0.5163 0.8784 0.987962 0.8646 0.3259 0.166279
0.1886 0.3189 0.154486 0.5219 0.5516 2.273778 0.8792 0.8319 0.003798
0.2017 0.9668 0.011703 0.5349 0.4039 1.858252 0.8838 0.0509 0.000664

0.21 0.7572 0.042784 0.5483 0.1654 0.895154 0.89 0.9708 0.000509
0.2147 0.2017 0.025997 0.557 0.2965 1.02504 0.897 0.5121 0.745189
0.2204 0.3232 0.180361 0.5639 0.366 1.370095 0.9045 0.286 0.076266
0.2344 0.4369 0.662063 0.5785 0.0367 0.734861 0.9084 0.9582 0.00026
0.241 0.8908 0.035317 0.5864 0.9502 0.688545 0.9204 0.6183 0.372734

0.2528 0.0647 0.047165 0.5929 0.2638 0.725544 0.9348 0.378 0.356442
0.2571 0.5693 0.673111 0.5988 0.9277 0.613938 0.9435 0.401 0.459525
0.2733 0.2947 0.174707 0.6118 0.5378 1.60735 0.949 0.9479 7.49E-05
0.2854 0.4332 0.760009 0.6252 0.7375 0.521789 0.957 0.7425 0.039667
0.2902 0.3347 0.323199 0.6331 0.4675 1.417194 0.9772 0.8883 0.00041
0.2965 0.7436 0.169566 0.6399 0.9186 0.375998 0.9983 0.5497 0.66287
0.302 0.1066 0.141203 0.6489 0.0417 0.330061

0.3126 0.8845 0.173287 0.6559 0.1291 0.29764

For test function F1 as the data in Table 6, the interpolated surface did not preserve the positivity
of the original surface for the C1 Zhu and Han quartic (from Theorem 1), as shown in Figure 14a with
calculated min F1(x, y)

(x,y)∈D
= −0.039975. Observe that these surfaces cross the xy-plane at a number of

places. After applying positivity-preserving methods from Theorem 3, the result is shown in Figure 14b,
where the interpolated surfaces lie above or on the xy-plane min F1(x, y)

(x,y)∈D
= 0.
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(a) (b)

(c) (d)

Figure 13. Triangulation domain using Delaunay triangulation: (a) 36 node points; (b) 63 node points;
(c) 26 node points; (d) 100 node points.

(a) (b)

Figure 14. C1 quartic Zhu and Han interpolated surface (data in Table 6): (a) without positivity
preserved; (b) with positivity preserved from Theorem 3.
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For test function F2 as the data in Table 7, the interpolated surface did not preserve the positivity
of the original surface for the C1 Zhu and Han quartic as shown in Figure 15a, with calculated
min F2(x, y)

(x,y)∈D
= −0.039975. These surfaces cross the xy-plane at a number of places. Using the proposed

positivity-preserving methods, the interpolated surface lies above or on the xy-plane, as shown in
Figure 15b, with calculated min F2(x, y)

(x,y)∈D
= 0.0072657.

(a) (b)

Figure 15. C1 quartic Zhu and Han interpolated surface (data Table 7): (a) without positivity preserved;
(b) with positivity preserved from Theorem 3.

For the third test function defined on a sparse non-rectangular domain (data in Table 8),
the interpolated surface did not preserve the positivity, as shown in Figure 16a where the surface
crosses below the xy-plane with min F3(x, y)

(x,y)∈D
= −0.0053288 and the positivity-preserving interpolated

surface using the proposed scheme is shown in Figure 16b where the surface lies above or on the
xy-plane, with calculated.

(a) (b)

Figure 16. C1 quartic Zhu and Han interpolated surface (data Table 8): (a) without positivity preserved;
(b) with positivity preserved from Theorem 3.
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The interpolated surface of the Zhu and Han C1 quartic without positivity preservation is given
in Figure 17a, with calculated min F4(x, y)

(x,y)∈D
= −0.67634, while the positivity-preserved surface lying

above the xy-plane is illustrated in Figure 17b with calculated min F4(x, y)
(x,y)∈D

= 0.000074928.

(a) (b)

Figure 17. C1 quartic Zhu and Han interpolated surface (data Table 9): (a) without positivity preserved;
(b) with positivity preserved from Theorem 3.

We also calculated the CPU time (in seconds), maximum error, and coefficient of determination
(R2) for the positivity-preserving scattered data interpolation as shown in Tables 10 and 11. Once again,
the proposed scheme was superior to the quartic Bézier triangular patch. For positivity preservation in
scattered data interpolation with dense data sets (i.e., 100 data points with 1697 points of evaluation),
the proposed scheme only required 0.5168 s, compared with the quartic Bézier which required 18.5996
s. This is about 36 times faster than the times obtained by the schemes of Saaban et al. [35] and Piah et
al. [36]. Roughly, the proposed scheme only required about 2.78% of the CPU times of schemes [35,36].
This is very significant when we want to visualize thousands of scattered data points.

Table 10. CPU time (in seconds).

Size Data
Interpolation

Points
Function

CPU Time (in Seconds)

The Proposed Scheme Quartic Bézier [35]

36 1296 F1 0.6587 1.5653
33 1296 F2 1.0159 2.6322
25 377 F3 0.0935 1.1535

100 1697 F4 0.5168 18.5996

Table 11. Error analysis.

Number of
Evaluation Points

Function
Max Error R2

The proposed scheme Quartic Bézier [35] The proposed scheme Quartic Bézier [35]

1296 F1 0.2729197868113 0.282452475456 0.9800905 0.9760174674571
1296 F2 0.6346772647732 0.633667822156 0.819140703 0.8244631293045
377 F3 0.2716512377297 0.311611498819 0.93773671136 0.935885979498
1697 F4 0.64080639264362 0.4808917225171 0.98734351099 0.988298717425

Our final example is devoted to the coronavirus disease 2019 (COVID-19) cases at Selangor State
and Klang Valley in Malaysia until 15 April 2020. There were 5072 positive cases in Malaysia on
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15 April 2020. Selangor and Klang Valley alone had about 2296 positive cases. This represents 45.27%
of all COVID-19 cases in Malaysia. Table 12 shows the number of positive COVID-19 cases in 14
districts of Selangor and Klang Valley, including Putrajaya [45].

Table 12. Coronavirus disease 2019 (COVID-19) cases at Selangor and Klang Valley in Malaysia until
15 April 2020.

Label District Longitude Latitude COVID-19 Cases

A Hulu Langat 101.7620249 3.0727692 440
B Petaling 101.664208 3.086134 363
C Klang 101.449611 3.043125 171
D Gombak 101.714574 3.233044 142
E Sepang 101.709401 2.800862 68
F Hulu Selangor 101.641482 3.52361 49
G Lembah Pantai 101.672189 3.104444 577
H Kuala Selangor 101.34555 3.362102 35
I Kuala Langat 101.496182 2.836562 25
J Sabak Bernam 101.058059 3.687115 23
K Kepong 101.623581 3.2059 142
L Titi Wangsa 101.695278 3.173573 129
M Cheras 101.71649 3.107178 78
N Putrajaya 101.684046 2.918 54

Figures 18 and 19 show the example of surface interpolation for COVID-19 scattered data listed in
Table 12. Figure 18 shows the interpolated surface without positivity preservation. Figure 19 shows the
interpolated surface after we applied the positivity-preserving scheme. Clearly, Figure 19 is suitable
for the relevant agency to visualize the number of COVID-19 cases. Then, they can prepare any
contingency plan for the spread of COVID-19. They could also try to minimize the spread of COVID-19.
This is very crucial, since at the time of writing there are no available vaccines to cure the patients.

Figure 18. Interpolated surface without positivity preservation.
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Figure 19. Interpolated surface with positivity preservation.

6. Conclusions

Zhu and Han [44] proposed new cubic Bernstein–Bézier basis functions defined on a triangular
domain. We implemented quartic triangular bases (with ten control points) for scattered data
interpolation. This new quartic basis makes it possible to avoid the optimization problem that appears
when the quartic Bézier triangular is used for scattered data interpolation. From the results, we can
see that the proposed scheme in this study outperformed the quartic Bézier triangular, having the
smallest maximum error, higher R2, and requiring only 12.5% of the CPU time needed by the quartic
Bézier triangular scheme. This is very significant, especially when the goal is to reconstruct surfaces
from large scattered data sets. Furthermore, based on a comparison against the Shepard triangular
for scattered data, the proposed scheme was also superior to the schemes of Cavoretto et al. [6],
Dell’Accio et al. [12,13] and Dell’Accio and Di Tommaso [11]. Finally, we constructed a positive
interpolant based on the proposed quartic triangular spline to preserve the positivity of scattered data.
Numerical results suggest that the proposed scheme is better than existing schemes, especially in terms
of CPU time—our proposed scheme requires less computation time than positivity schemes proposed
by Piah et al. [36] and Saaban et al. [35]. Finally, we implemented our proposed positivity-preserving
interpolation to visualize COVID-19 cases in Selangor State and Klang Valley, Malaysia. The resulting
surfaces were smooth and positive everywhere. Future works will focus on the construction of a quintic
Zhu and Han spline for scattered data interpolation with quintic precision as well as shape-preserving
interpolation (e.g., positivity-preserving and range-restricted interpolation). This can be achieved
by extending the main idea from Karim et al. [46]. Another potential study could be a comparison
between the use of a CPU and a graphical processing unit (GPU) for large scattered data sets. Finally,
the proposed scheme can also be applied to visualize large sets of scattered data, such as from
geophysical data, medical imaging, and total COVID-19 cases around the world.
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Abstract: We investigate the suitability of the Brinkman penalization method in the context of
a high-order discontinuous Galerkin scheme to represent wall boundaries in compressible flow
simulations. To evaluate the accuracy of the wall model in the numerical scheme, we use setups
with symmetric reflections at the wall. High-order approximations are attractive as they require
few degrees of freedom to represent smooth solutions. Low memory requirements are an essential
property on modern computing systems with limited memory bandwidth and capability. The
high-order discretization is especially useful to represent long traveling waves, due to their small
dissipation and dispersion errors. An application where this is important is the direct simulation of
aeroacoustic phenomena arising from the fluid motion around obstacles. A significant problem for
high-order methods is the proper definition of wall boundary conditions. The description of surfaces
needs to match the discretization scheme. One option to achieve a high-order boundary description
is to deform elements at the boundary into curved elements. However, creating such curved elements
is delicate and prone to numerical instabilities. Immersed boundaries offer an alternative that does
not require a modification of the mesh. The Brinkman penalization is such a scheme that allows us to
maintain cubical elements and thereby the utilization of efficient numerical algorithms exploiting
symmetry properties of the multi-dimensional basis functions. We explain the Brinkman penalization
method and its application in our open-source implementation of the discontinuous Galerkin scheme,
Ateles. The core of this presentation is the investigation of various penalization parameters. While we
investigate the fundamental properties with one-dimensional setups, a two-dimensional reflection of
an acoustic pulse at a cylinder shows how the presented method can accurately represent curved
walls and maintains the symmetry of the resulting wave patterns.

Keywords: high-order methods; Brinkman penalization; discontinuous Galerkin methods; embedded
geometry; high-order boundary; IMEX Runge–Kutta methods

1. Introduction

In simulations of fluid motion for engineering scenarios, we generally need to deal with obstacles
or containment of a non-trivial shape. In mesh-based schemes, we have two options to represent such
geometries: we can try to align the mesh with the geometries, such that the walls build a boundary
of the mesh or we try to embed the boundary conditions inside the mesh elements. The first option
eases the formulation of boundary conditions and their treatment in the scheme [1]. The second option
avoids the need to adapt the mesh to the, possibly complex, geometry [2]. Correctly aligning the mesh
with arbitrary geometries in the first option can become cumbersome for high-order approximations.
Thus, the embedding method is attractive for high-order schemes. Another application area, where
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the embedded boundaries provide a benefit, are moving geometries, as the need for new meshes can
be avoided during simulations.

High-order discretization schemes can represent smooth solutions with few degrees of freedom.
This is an essential property for algorithms on modern computing systems as the memory bandwidth
is a strongly limiting factor on new systems, due to the widening memory gap. A numerical scheme
that allows for high-order approximations of the solution is the discontinuous Galerkin finite element
method. In this method, the solution within elements is represented by a function series (usually
a polynomial series). In this work, we are concerned with a high-order discontinuous Galerkin
scheme and the embedded geometry representation within it. Besides the possibility to use high-order
approximations, the discontinuous Galerkin scheme also offers a relatively loose coupling between
elements, resulting in a high computational locality, which in turn is advantageous for modern parallel
computing systems. Discontinuous Galerkin methods are, therefore, increasingly popular and relevant.

Peskins [3] was one of the first scientists trying to impose immersed boundaries for his
investigations. For his studies, he simulated the flow around heart valves considering the
incompressible Navier–Stokes equations while introducing the immersed boundaries, using an elastic
model and applying forces to the fluid, thus changing the momentum equations. His work was
extended by Saiki and Biringen [4], and they considered feedback forces for the immersed boundaries to
represent a rigid body while using an explicit time-stepping, hence resulting in stiff problems and very
small time-stepping for the simulation. An important fact, which makes immersed boundary methods
more attractive, is the introduction of the effect of the geometry in the governing equations themselves.
Embedding the boundaries in the mesh relaxes the requirements on the elements, and using simple
elements allows for efficient numerical algorithms that can, for example, exploit inherent symmetric
properties of the discretization. The additionally introduced terms can either be considered in the
numerical discretization or the continuous equations. Applying forcing terms in the discretization
allows for better control of the numerical accuracy and the conservation properties of the used
discretization method; on the other hand, the generality and flexibility of these methods disappear
when considering different solvers using different discretization methods. In contrast, the volume
penalization method imposes additional forcing penalty terms on the continuous equations, while
the discretization is done as usual [5]. The Brinkman Penalization Method (BPM) is one of these
methods. It was originally developed by Arquis and Caltagirone [6] for numerical simulations of
isothermal obstacles in incompressible flows. The idea is to model the obstacle as a porous material,
with material properties approaching zero. The major benefit of this method is error estimation, which
can be rigorously predicted in terms of the penalization parameters [7]. Furthermore, the boundary
conditions can be enforced to a precision, without changing the numerical discretization of the scheme.
Kevlahan and Ghidaglia already applied this method for incompressible flows, while considering a
non-moving, as well as a moving geometry. They used a pseudo-spectral method [8] in their works.

Liu and Vasilyev employed the volume penalization for the compressible Navier–Stokes equations.
In their publication [9], they discussed a 1D and a 2D test case. They used a wavelet method for
the discretization and showed error convergence and resulting pressure perturbations for acoustic
setups. In other investigations, various numerical discretization methods were used, which showed
promising results using the Brinkman penalization method. In [10,11], the pseudo-spectral methods,
in [9], wavelet, and in [12], the finite volume/finite element methods were used. However, as far as
we know, no work on this kind of penalization in the context of high-order discontinuous Galerkin
methods for compressible Navier–Stokes equations has been done so far. Thus, this paper will look
into the Brinkman penalization employed within a high-order discontinuous Galerkin solver. Our
implementation is available in our open-source solver Ateles [13].

2. Numerical Method

The flow of compressible viscous fluids can mathematically be described by the Navier–Stokes
equations governing the conservation of mass, momentum, and energy. In this section, we describe the
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compressible Navier–Stokes equation with the Brinkman penalization method to model solid obstacles
as proposed in [9]. We apply this penalization in the frame of the Discontinuous Galerkin (DG) method
and introduce this method also briefly in this section. The additional source terms introduced by the
penalization increase the stiffness of the scheme considerably, and the last part of this section discusses
how this can be overcome by an implicit-explicit time integration scheme.

2.1. The Compressible Navier–Stokes Equation

The Navier–Stokes equations describe the motion of fluids and model the conservation of mass,
momentum, and energy. The non-dimensional compressible equations in conservative form can be
written as:

∂ρ

∂t
= −∇ · m, (1)

∂mi
∂t

+
3

∑
j=1

∂

∂xj

(
mivj + pδij

)− 1
Re

3

∑
j=1

∂

∂xj
τij = 0 i = 1, 2, 3 (2)

∂ρe
∂t

+∇ ·
[(

e +
p
ρ

)
m

]
− 1

Re

2

∑
j=1

∂

∂xj

(
2

∑
i=1

τijvi − 1
γ − 1

μ

Pr
T

)
= 0 (3)

where the conserved quantities are the density ρ, the momentum m = ρv, and the total energy density
e, given by the sum of kinetic and internal energy density:

e =
1
2
|v|2 + p

ρ(γ − 1)
. (4)

where v = (v1, v2, v3)
T is the velocity vector, δij is the Kronecker delta, Re is the reference Reynolds

number, and Pr the reference Prandtl number. γ stands for the isentropic expansion factor, given by
the heat capacity ratio of the fluid, and T denotes the temperature. Viscous effects are described by the
shear stress tensor:

τij = μ

(
∂vi
∂xj

+
∂vj

∂xi

)
(5)

and the dynamic viscosity μ.
To close the system, we use the ideal gas law as the equation of state, which yields the

following relation:
p = ρRT. (6)

where R represents the gas constant.

2.2. The Brinkman Penalization

Penalization schemes employ additional, artificial terms to the equations in regions where the
flow is to be inhibited (penalized). In the conservation of momentum and energy, we can make use of
local source terms that penalize deviations from the desired state. With the Brinkman penalization, we
also inhibit mass flow through obstacles by introducing the Brinkman porosity model and using a low
porosity, where obstacles are to be found. Extending the compressible Navier–Stokes equations from
Section 2.1 by the penalization terms, we obtain Equations (7) and (9).
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∂ρ

∂t
= −∇ ·

[
1 +
(

1
φ
− 1
)

χ

]
m, (7)

∂mi
∂t

+
3

∑
j=1

∂

∂xj

(
mivj + pδij

)− 1
Re

2

∑
j=1

∂

∂xj
τij

= −χ

η
(vi − Uoi) i = 1, 2, 3, (8)

∂ρe
∂t

+∇ ·
[(

e +
p
ρ

)
m

]
− 1

Re

2

∑
j=1

∂

∂xj

(
2

∑
i=1

τijvi − 1
γ − 1

μ

Pr
T

)

= − χ

ηT
(T − To) . (9)

The obstacle has the porosity φ, the velocity Uo, and the temperature To. The strength of the source
terms can be adjusted by the viscous permeability η and the thermal permeability ηT . The masking
function χ describes the geometry of obstacles and is zero outside of obstacles and one inside. It is also
referred to as the characteristic function. It is capable of dealing not only with complex geometries but
also with variations in time.

χ(x, t) =

{
1, if x ∈ obstacle.

0, otherwise.
(10)

To represent a solid wall for compressible fluids properly, Liu et al. [9] stated that the porosity
φ should be as small as possible, i.e., 0 < φ << 1. They scaled the permeabilities with the porosity
and introduced according scaling factors α and αT . The permeabilities were then defined by η = αφ

and ηT = αTφ. With these relations, Liu et al. [9] found a modeling error of O(η1/2φ) for resolved
boundary layers in the material and O((η/ηT)

1/4φ3/4) for non-resolved boundary layers. In both
cases, the error was dominated by the porosity. Nevertheless, the error can still be minimized with
sufficiently small viscous permeabilities η.

Moreover, small values of the porosity caused stability issues and imposed a heavy time-step
restriction with our numerical scheme. With the introduction of φ, the eigenvalues of the hyperbolic
system changed, which has adverse effects on stability. The eigenvalues of the system of equations
along with penalization terms [9] are given by the following characteristic equation:

− (λ − u)3 +

[
c2 +

u2

2
(φ−1 − 1)(γ − 3)

]
(λ − u)− c2u(φ−1 − 1)(γ − 1) = 0, (11)

where c = (γp/ρ)1/2 and γ, p, ρ, and u are the ratio of specific heat, pressure, density, and velocity,
respectively. For φ = 1, the system of equations yields three eigenvalues u, u + c, u − c, which
implies the speed of sound c in the medium, which is what we would like to achieve. However, with
0 < φ << 1, the eigenvalues can no longer be evaluated easily and are linked to φ, which causes
problems for the hyperbolic part.

2.3. The Discontinuous Galerkin Discretization

In this section, we briefly introduce the semi-discrete form of the Discontinuous Galerkin finite
element method (DG) for compressible inviscid flows. The compressible Euler equations were derived
from the Navier–Stokes equations by neglecting diffusive terms. They still provide a model for the
conservation of mass, momentum, and energy in the fluid and can be described in vectorial notation by:

∂tu +∇ · F(u) = 0, (12)
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equipped with suitable initial and boundary conditions. Here, u is a vector of the conservative
variables, and the flux function F(u) = (f(u), g(u))T for two spatial dimensions is given by:

u =

⎡
⎢⎢⎢⎣

ρ

ρu
ρv
ρE

⎤
⎥⎥⎥⎦ , f(u) =

⎡
⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
(ρE + p)u

⎤
⎥⎥⎥⎦ , g(u) =

⎡
⎢⎢⎢⎣

ρv
ρuv

ρv2 + p
(ρE + p)v

⎤
⎥⎥⎥⎦ ,

where ρ, v = (u, v)T , E, p denotes the density, velocity vector, specific total energy, and pressure,
respectively. The system is closed by the equation of state assuming the fluid obeys the ideal gas law
with pressure defined as p = (γ − 1)ρ

(
e − 1

2 (u
2 + v2)

)
; where γ =

cp
cv

is the ratio of specific heat
capacities and e is the total internal energy per unit mass.

The discontinuous Galerkin formulation of the above equation was obtained by multiplying it
with a test function ψ and integrating it over the domain Ω. Thereafter, integration by parts was used
to obtain the following weak formulation:

∫
Ω

ψ
∂u

∂t
dΩ +

∮
∂Ω

ψF(u) · nds −
∫

Ω
∇ψ · F(u)dΩ = 0, ∀ψ, (13)

where ds denotes the surface integral. A discrete analogue of the above equation was obtained
by considering a tessellation of the domain Ω into n closed, non-overlapping elements given by
T = {Ωi|i = 1, 2, . . . , n}, such that Ω = ∪n

i=1Ωi and Ωi ∩ Ωj = ∅∀i �= j. We define a finite element
space consisting of discontinuous polynomial functions of degree m ≥ 0 given by:

Pm = { f ∈ [L2(Ω)]m : f|Ωk
∈ P

m(Ωk)∀Ωk ∈ Ω} (14)

where Pm(Ωk) is the space of polynomials with largest degree m on element Ωk. With the above
definition, we can write the approximate solution uh(x, t) within each element using a polynomial of
degree m:

uh(x, t) =
m

∑
i=1

ûiφi, ψh(x) =
m

∑
i=1

v̂iφi, (15)

where the expansion coefficients ûi and v̂i denote the degrees of freedom of the numerical solution
and the test function, respectively. Notice that there is no global continuity requirement for uh and ψh
in the previous definition. Splitting the integrals in Equation (13) into a sum of integrals over elements
Ωi, we obtain the space-discrete variational formulation:

n

∑
i=1

∂

∂t

∫
Ωi

ψhuhdΩ +
∮

∂Ωi

ψhF(uh) · nds −
∫

Ωi

∇ψh · F(uh)dΩ = 0, ∀ψh ∈ Pm. (16)

Due to the element local support of the numerical representation, the flux term is not uniquely
defined at the element interfaces. The flux function is, therefore, replaced by a numerical flux function
F∗(u−

h , u+
h , n), where u−

h and u+
h are the interior and exterior traces at the element face in the direction

n normal to the interface. A choice of appropriate numerical flux can then be selected from several
numerical flux schemes. For our simulations, we used the Lax–Friedrichs scheme for numerical flux.

For simplicity, we can re-write the equation above in matrix vector notation and obtain:

∂

∂t
û = M−1

(
S · F(û)− MF · F(û)

)
=: rhs(û). (17)

where M, S denote the mass and the stiffness matrices and MF are the so-called face mass lumping
matrices. The above obtained ordinary differential Equation (17) can be solved in time using any
standard time-stepping method, e.g., a Runge–Kutta method.
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In our implementation, we exploited the fact that we only used cubical elements. This choice of
simple elements allowed for a tensor-product notation in the multi-dimensional basis functions. The
symmetry of the elements enabled efficient dimension-by-dimension algorithms in the computation.

2.4. The Implicit-Explicit Time Discretization

As the penalization introduces stiff terms to the equations and for accuracy, we would want them
to be as stiff as possible, we introduce an implicit time integration for those terms. With an otherwise
explicit time integration scheme, this results in an implicit-explicit time-stepping scheme that can be
achieved by splitting the right-hand side of the equations into an explicitly integrated part and an
implicitly integrated part. Therefore, to perform time integration of the system, we use a Diagonally
Implicit Runge–Kutta (DIRK) scheme with three explicit and four implicit stages as presented in [14].
The following section first considers a single implicit Euler step, to discuss the arising equations that
need to be solved in each implicit stage of the higher order time discretization.

We denote the right-hand side by Q and employ the superscript ι for the implicit part and the
superscript ξ for the explicit part. By using the conservative quantities as subscripts (ρ, m, and e),
we can distinguish the right-hand sides for the different equations. Thus, we get:

∂ρ

∂t
= Qξ

ρ + Qι
ρ (18)

∂mi
∂t

= Qξ
mi + Qι

mi
(19)

∂e
∂t

= Qξ
e + Qι

e (20)

and we chose the implicit parts as:

Qι
ρ = 0 (21)

Qι
mi

= −χ

η
(ui − Uoi) (22)

Qι
e = − χ

ηT
(T − To) (23)

out of Equations (7) and (9).
This choice restricts the implicit computation to the local source terms, which can be evaluated

pointwise. Unfortunately, the introduced Brinkman porosity in (7) affects the flux and introduces
spatial dependencies. To avoid the need for the solution of an equation system across the whole
domain for this dependency, the porosity part will be computed in the explicit time-stepping scheme.

Observation for the Implicit Part

Considering Equations (18)–(20) only with their implicit parts, we get the following
equation system:

∂ρ

∂t
= 0 (24)

∂mi
∂t

= −χ

η
(ui − Uoi) (25)

∂e
∂t

= − χ

ηT
(T − To) . (26)

Notice that these equations can be solved pointwise as no spatial derivatives appear.
A discretization of these equations in time with a Euler backward scheme yields the solvable

equation system:
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ρ(t + Δt)− ρ(t)
Δt

= 0 (27)

mi(t + Δt)− mi(t)
Δt

= −χ

η
(ui(t + Δt)− Uoi) (28)

e(t + Δt)− e(t)
Δt

= − χ

ηT
(T(t + Δt)− To) . (29)

Equation (27) trivially yields ρ(t + Δt) = ρ(t). With the implied constant density, we can now
solve the equation for the change in momentum (28) and arrive at an explicit expression for the velocity
ui(t + Δt) at the next point in time:

ρ(t + Δt)ui(t + Δt)− ρ(t)ui(t)
Δt

= −χ

η
(ui(t + Δt)− Uoi) (30)

ui(t + Δt) =
ρ(t)ui(t) +

χΔt
η Uoi

ρ(t) + χΔt
η

. (31)

Finally, density and velocity at the new point in time can be used to find the new temperature
as well by substituting the above results in Equation (29) and solving for the temperature at the next
point in time. We find:

T(t + Δt) =
χΔt
ηT

To + cvρ(t)T(t) + ρ(t)
2 (u2

i (t)− u2
i (t + Δt))

cvρ(t) + χΔt
ηT

. (32)

where ui(t + Δt) is given by Equation (31).
Thus, this specific choice of terms for the implicit part of the time integration scheme yields a

system that can be solved explicitly and without much additional computational effort. However, the
implicit discretization allows for arbitrarily small values of η and ηT . A similar approach was developed
by Jens Zudrop to model perfectly electrical conducting boundaries in the Maxwell equations, and
more details can also be found in his thesis [15].

To solve the complete system, we then employed the diagonally implicit Runge–Kutta scheme
with three explicit stages and four implicit stages [14]. It provides a scheme that is third order in time
and L-stable.

Note, that while this approach overcomes time step limitations with respect to the permeabilities
η and ηT , the porosity term changes the eigenvalues of the hyperbolic system and affects the stability.

3. Results and Discussion

To investigate the penalization scheme in our discontinuous Galerkin implementation, we first
analyzed the fundamental behavior in two one-dimensional setups and then considered the scattering
at a cylinder in a two-dimensional setup.

As explained in Section 2.2, the modeling error by the penalization for the compressible
Navier–Stokes equations as found by Liu and Vasilyev [9] was expected to scale with the porosity φ

by an exponent between 3/4 and one and with the viscous permeability η by an exponent between
1/4 and 1/2. To achieve low errors, you may, therefore, be inclined to minimize φ. However, with
the implicit mixed explicit time integration scheme presented in Section 2.4, we can eliminate the
stiffness issues due to small permeabilities with little additional costs, while the stability limitation by
the porosity persists. Because of this, we deem it more feasible to utilize a small viscous permeability
instead of a small porosity. At the same time, the relation between viscous permeability η and thermal
permeability ηT gets small without overly large ηT . Therefore, we used a slightly different scaling than
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proposed by Liu and Vasilyev [9]. We introduce the scaling parameter β and define the permeabilities
accordingly in relation to the porosity as follows.

η = β2 · φ2 (33)

ηT = 0.4β · φ (34)

Note, that we then expect the modeling error to be of size O(β1/4φ3/4).

3.1. One-Dimensional Acoustic Wave Reflection

To assess how well the penalization scheme can capture the reflective nature of a solid wall, we
used the reflection of an acoustic wave at the material. The initial pressure distribution is shown in
Figure 1. It is described by the Gaussian pulse given in Equation (35) around its center at x = 0.25 in
the left half of the domain (x ≤ 0.5).

ρ′ = u′ = p′ = εexp
[
−ln(2)

(x − 0.25)2

0.004

]
(35)

For the amplitude ε of the wave, we used a value of ε = 10−3. The perturbations in density
ρ′, velocity u′, and pressure p′ from (35) are applied to a constant, non-dimensionalized state with a
speed of sound of one. This results in the initial condition for the conservative variables density ρ,
momentum m, and total energy e as described in: (36).

ρ = 1 + ρ′, m = ρu′, e =
1

γ(γ − 1)
+

p′

γ − 1
+

1
2

ρ(u′)2 (36)
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Figure 1. One-dimensional acoustic wave setup: the center of the initial pressure pulse is located
at x = 0.25 and has an amplitude of ε = 10−3. Discretization by 48 elements as denoted by grid
lines, and the right half of the domain (x > 0.5) is penalized. Note that the wall coincides with an
element interface.
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The penalization with porous medium is applied in the right half of the domain (x > 0.5).
In acoustic theory, the reflection should be perfectly symmetric, and the reflected pulse should have
the same shape and size, only with opposite velocity. This simple setup allows us to analyze the
dampening of the reflected wave and induced phase errors. Reflected waves for different settings
of β as defined in Equation (33) are shown in Figure 2. The pressure distribution for the reflection is
shown for the state after a simulation time of 0.5. With linear acoustic wave transport and a speed
of sound of one, the pulse should return to its original starting point, just with an opposite traveling
direction. This symmetry makes it easy to judge both the loss in wave amplitude and the phase shift of
the reflected pulse.

While the analytical result for a linear wave transport provided a good reference in general for the
acoustic wave, it sufficiently deviated from the nonlinear behavior to limit its suitability for convergence
analysis to small error values. Therefore, we compared the simulations with the penalization method
to numerical results with traditional wall boundary conditions and a high resolution. This reference
was computed with the same element length, but the domain ended at x = 0.5 with a wall boundary
condition, and a maximal polynomial degree of 255 was used (256 degrees of freedom per element) to
approximate the smooth solution. The resulting pressure profiles for different settings of β and a fixed
porosity of φ = 1.0 are shown in Figure 2. This illustrates how well the wave was reflected for different
settings of β and that the solid wall reflection was well approximated for sufficiently small values of
β. These numerical results were obtained with 48 elements and a maximal polynomial degree of 31
(32 degrees of freedom per element). Note that this setup aligns the wall interface with an element
interface, where the discontinuity in the penalization is actually allowed by the numerical scheme.
Later, we will discuss the changes observed, when moving the wall surface into the elements.
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Figure 2. Plot for the pressure profile of the reflected wave at t = 0.5 for different scaling factors β. The
numerical reference is obtained with a traditional wall boundary condition and a high resolution.

Figure 3 illustrates the impact of the porosity on the error in amplitude of the reflected wave for
the same discretization with 48 elements and a maximal polynomial degree of 31. We plotted the error
e = (ε − p′(t = 0.5))/ε over porosity φ for various scaling parameters of β between one and 10−6.
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A scaling parameter of β = 1 means that the error is only driven by the porosity φ, and for large values
of β ≥ 10−2, we observed the expected reduction in the error with decreasing porosity. However, with
β = 10−3, this comes eventually to an end (no improvements for φ < 2 × 10−2), and for smaller values
of β, no improvements for the error can be achieved by lowering the porosity anymore. As can be seen
in this figure, a sufficiently small permeability can yield the accuracy as a small porosity.
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Figure 3. Plot of the error in the wave amplitude at t = 0.5 with decreasing porosity and different
scaling factors β. The error e is given by the relative error in the pulse amplitude after the reflection at
the wall.

In Figure 3 as well, for β = 1e−3, we observed a drop in error, and then it increased again with
smaller φ to reach a convergence point finally. We would like to point out that this was expected to
come from our numerical scheme using polynomials to represent the solution. Each data-point in the
plot with varying φ and β represents a slightly different test case in terms of boundary layer thickness,
as pointed out in Section 2.2. A sweet spot is reached when the degree of polynomial used for the
simulation correctly captures the boundary layer in the problem. However, as we move further left
from here, this sweet spot is slowly gone with further thinning of the boundary layer. With the same
polynomial degree used, one would also expect to see this behavior for lines representing β < 1e−3

and correspondingly larger φ. This is exactly what we also see for β = 1e−4 and the value of φ close to
1.0. For all other lines in the plot, this spot does not fall within the range of the figure.

By using the implicit mixed explicit scheme from Section 2.4, it is possible to exploit drastically
smaller values for the permeabilities to cover up the lack of porosity in the penalization. On the other
hand, the porosity cannot that easily be treated in our discretization, and even moderate values of
φ can have a dramatic impact on the time step restriction, due to the changed eigenvalues in the
hyperbolic part of the equations.

Next, we performed a convergence analysis shifting the position of the wall such that it intersected
the element at different locations. The reason for performing such an analysis becomes imperative
when we consider the high-order numerical scheme used. We represented the solution state within
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an element using polynomials. For the pointwise evaluation of the nonlinear terms, we employed
the Gaussian integration points, at which also the masking function of the penalization needs to be
evaluated. Within an element, these integration points were scattered, being more concentrated on
the element interface, and were rather sparse at the center. Therefore, in a peculiar validation test
case like this one, when the wall was aligned with the element interface, due to the abundance of
interpolation points, it had the advantage of being very precisely represented even for comparatively
fewer degrees of freedom. In actual simulations, the wall interface may intersect an element at any
point. We, therefore, also need to consider such intersections through the element and ensure the
solution converges to the reference solution. The penalization method itself was not restrictive to any
such limitations and could perfectly represent wall irrespective of its location within an element.

Thus, we performed and compared convergence analysis on two different discretizations, one
where the wall lied at the element interface and a second where the wall intersected one element exactly
in the middle. We would like to point out that the later scenario yielded a worst case estimate for
the approximation of the jump in the masking function within an element. As explained, this simply
came from scarce integration points lying around the center of element. For the following convergence
analysis, we ignored the porosity (i.e., set φ = 1) and used small permeabilities by choosing β = 10−6.
We also considered the L2 error norm now in the fluid domain. As a reference solution, we employed
a numerical simulation with a traditional wall boundary and a high maximal polynomial degree of
255 (256 degrees of freedom per element). The error was measured at t = 0.5 after the reflected wave
reached its initial position again.

Figure 4 shows the L2 norm of the error for the reflected pressure wave with a maximal polynomial
degree of seven over an increasing number of elements (h-refinement). This plot compares the two
discretizations explained. As expected, in Figure 4, we observe superior convergence behavior for
the case when the wall lies at the element interface in comparison to the other case where the wall
is crossing through the element center. However, for both cases, we observed a proper convergence
towards the solution with a traditional solid wall boundary condition. The order of error convergence
did not match the high-order discretization in either case, but this was expected due to the discontinuity
introduced by the masking function of the penalization.
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Figure 4. L2-error for a polynomial degree of seven over an increasing number of elements
(h-refinement).
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Next, we performed another convergence study using the same two discretizations, but this time
keeping the number of elements constant and increasing the order of polynomial representation within
those elements.

Figure 5 shows the error convergence over the maximal polynomial degree in the discretization
scheme (p-refinement) with the number of elements fixed to 24. Here, also, one observes a solution
in both cases converging to the reference solution. While no spectral convergence was achieved for
the discontinuous problem, a quadratic convergence can be observed. This shows that a high-order
approximation was beneficial even with the discontinuous masking function for the penalization.
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Figure 5. L2-error for 24 elements over increasing maximal polynomial degree (p-refinement).

Finally, we also looked at the case where the wall was close to the element interface, but not
exactly on it. This is a potential critical configuration for the numerical scheme being used, as the
discontinuity close to the surface needs to be properly captured. We put the wall at 5% of the element
length away from the element surface and measured the error as before, resulting in the graph shown
in Figure 6. For this case as well, we observed a similar convergence rate as before, though the error
was a little bit worse than with the wall on the interface.

For a smooth solution, the advantage of high-order methods to attain a numerical solution of
a given quality using fewer degrees of freedom is well documented [16]. However, for a complex
nonlinear problem with a discontinuity introduced by the porous medium, it is not so clear whether
there is still a computational advantage by a high-order discretization. To investigate this, we ran the
wall reflection problem for several orders and plotted the convergence with respect to the required
computational effort, as seen in Figure 7. This test was performed starting with 16 elements in each
data series, providing the leftmost point for the respective spatial scheme order. For subsequent data
points, the number of elements was always increased by a factor of two up to the point where an error
of 10−6 was achieved. Figure 7a depicts the observed L2 error over the total number of degrees of
freedom in the simulation. Here, we can see that for attaining a certain level of accuracy, the number
of degrees of freedom required was always less when using a higher spatial order, even though the
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convergence rate did not increase with the scheme order. The high-order discretization, thus, allowed
for memory-efficient computations, also in this case with a discontinuity present at the wall.
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Figure 6. L2-error for varying the polynomial degree. With a wall just 5% of the element length away
from the element surface.
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Figure 7. Behavior of the error in the reflected acoustic pulse with respect to computational effort.
The figure on the left (a) shows the error convergence for various spatial orders over the required
memory in terms of degrees of freedom. The right figure (b) shows the same runs, but now over the
computational effort in terms of running time in seconds. All simulations were performed on a single
node with 12 cores using 12 processes.

While for the memory consumption, there seems to be a clear benefit in high-order discretizations,
it is not so clear whether this still holds for the required computing time. The time step limitation
of the explicit scheme required more time steps for higher spatial scheme orders, increasing the
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computational effort to reach the desired simulation time. Additionally, the number of operations
increased with higher orders due to the nonlinearity of the equations. Figure 7b shows the measured
running times on a single computing node with 12 Intel Sandy-Bridge cores for the same runs. Again,
the achieved accuracy is plotted, but this time over the observed running time in seconds. As can
be seen, the advantage in terms of running times was not as clear as in terms of memory. However,
we still observed faster times to the solution with higher spatial scheme orders, despite the increased
number of time steps. In conclusion, we found some computational benefit from higher spatial scheme
orders even in the presence of a discontinuity in this setup.

3.2. One-Dimensional Shock Reflection

After considering the reflection of an essentially linear acoustic wave, we now look into the
reflection of a shock, where nonlinear terms play an important role. However, we neglected viscosity
in this setup and only solved the inviscid Euler equations. The reflection of a one-dimensional shock
wave at a wall was described and numerically investigated by Piquet et al. [17], for example. We used
their setup to validate the penalization method in our discontinuous Galerkin setup, even though a
high-order scheme is not ideal for the representation of shocks.

The downstream state in front of the shock (denoted by 1) is given in Table 1. The upstream state
after the shock (denoted by 2) is then given by the Rankine–Hugoniot conditions for the shock Mach
number Mas. These yield:

ρ2

ρ1
=

γ + 1
γ − 1 + 2Mas

−2 (37)

for the relation of densities ρ in up- and downstream of the shock and

p2

p1
=

2γMas
2 − (γ − 1)
γ + 1

(38)

for the relation of pressures p.
With these relations, the ratio of the upstream (p3) and downstream (p2) pressure for the reflected

shock wave is [18]:
p3

p2
=

Ma2
s (3γ − 1)− 2(γ − 1)
2 + Ma2

s (γ − 1)
(39)

For the computation of the velocity urs of the reflected shock wave, we considered
Equation (40) [19].

urs =
1

Mas

(
1 +

2(Mas
2 − 1)

(γ + 1)/(γ − 1)

)
c1 (40)

Table 1. Shock state description.

Downstream speed of sound c1 1.0
Shock Mach number Mas 1.2

Shock velocity us 1.2
Downstream density ρ1 1.0
Downstream pressure p1 γ−1

Downstream velocity u1 0.0
Isentropic coefficient γ 1.4

With an incident shock wave velocity of Mas = 1.2, we obtained a pressure relation across the
shock of 1.47826 from Equation (39). The shock was simulated in the unit interval x ∈ [0, 1] with the
wall located at x = 0.5. Thus, half of the domain (x ∈ [0.5, 1]) was covered by the porous material to
model the solid wall. The shock was initially located at x = 0.25.
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For the numerical discretization, we used 256, 512, 1024, and 2048 elements (n) in total (Δx = 1/n)
and a scheme Order (O) of 32, 16, 8, and 4, respectively. As explained in the inspection of the linear
wave transport, our numerical scheme preferred strong permeabilities over penalization with the
porosity. Therefore, we ignored porosity and chose φ = 1, while the scaling factor from Equations (33)
and (34) was set to a small value of β = 10−6.

In Figure 8, the shock wave after its reflection is shown for different spatial resolutions. The
discretizations with O(8) and 1024 elements and with O(4) and 2048 elements were chosen to have
the same number of degrees of freedom, while the third discretization with O(8) and 2000 elements
provided a high-resolution comparison.

0.00 0.25 0.50 0.75
x

0.25

0.50

0.75

1.00

N
or
m
al
iz
ed

P
re
ss
ur
e
(p
/p

3
)

O(8), n1024

O(4), n2048

O(8), n2000

(a)

0.25 0.30 0.35 0.40 0.45
x

0.98

0.99

1.00

1.01

1.02

N
or
m
al
iz
ed

P
re
ss
ur
e
(p
/p

3
)

O(8), n1024

O(4), n2048

O(8), n2000

(b)

Figure 8. Different curves represent different discretizations using different scheme orders and a
different number of elements. (a) Normalized pressure of the reflected shock wave. (b) Zoom of the
reflected shock.

The exact solution for the normalized pressure (p3/p2) according to Equation (39) was 1.47826087.
In Table 2, the ratio of the pressure (p3/p2), the relative error between the numerical, and the exact
solution (error in p3/p2 in %) close to the shock, as well as the difference between the location of the
shock wave after the reflection and its origin (Δx: phase shift) are listed. The table illustrates that with
higher scheme order, but constant number of degrees of freedom, the error in the pressure ratio, as
well as in the phase shift reduces considerably even for this discontinuous solution. From the obtained
results, we can conclude that we achieved the same error as in [17], when using O(16) and 512 elements.
As can be seen in Figure 8b, the plateau after the shock was not fully flat, but rather had a slope that
asymptotically got close to the expected constant value. Except for the fourth-order approximation,
this constant plateau was well obtained, but it remained slightly off the exact solution. This remaining
error was also stated in the table as minerror and had a value of 0.0129% for β = 10−6.

Table 2. Comparison of simulation results with the exact solution.

Test case p3/p2 Error in p3/p2 in [%] Δx ·10−4

n2048, O(4) 1.46053873 1.19885086 32.0161
n1024, O(8) 1.47642541 0.12416375 13.0319
n512, O(16) 1.47700446 0.08499256 8.1828
n256, O(32) 1.47714175 0.07570497 7.6228
n128, O(64) 1.47721414 0.07080803 6.4032

n2000, O(8) 1.47740998 0.05755990 7.0317

minerror 1.47806952 0.012944346 −−
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In Table 3, the results for the reflected shock wave are presented for the case that the wall is inside
an element, instead of at its edge. Again, the error was reduced by an increased scheme order and
a fixed total number of degrees of freedom. Notably, the error in the pressure ratio was reduced for
small element counts in relation to the case where the wall coincided with an element interface. This
was due to the fact that there was an additional element introduced here, and the element length was
accordingly smaller. However, we can see that the phase shift of the shock was larger in this case.
This can be attributed to the larger distance of the Gaussian integration points, which were used to
represent the wall interface.

Table 3. Comparison of simulation results, when the porous material was located in the middle of the
element with the exact solution.

Test Case p3/p2 Error in p3/p2 in [%] Δx ·10−4

n2049, O(4) 1.44333420 2.36268639 25.6373
n1025, O(8) 1.47333865 0.33297335 21.5178
n513, O(16) 1.47750687 0.05100577 15.4564
n257, O(32) 1.47751832 0.05023153 13.0052

minerror 1.47801754 0.01646083 −−

For better comparison of the simulation results, Figure 9 illustrates the different test cases. The
plot presents the solution, from the previous investigation, when using a scheme order of O(16). As a
reference, we considered a no-slip wall, which was located at the same place as the porous material,
while considering the same scheme order.
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Figure 9. Different curves represent different locations of the porous material in the element and the
solution when using a no-slip wall. (a) illustrates the normalized pressure of the reflected shock wave,
and (b) depicts a zoom-in of the front area of the reflected shock.

Figure 9 accentuates the close solution, when modeling the wall as a porous material, to the
reference wall. As can be seen in Figure 9a, the high-order discretization introduced Gibbs oscillations
around the shock, but otherwise, the discontinuity was well preserved by the numerical scheme. Some
of those oscillations remained inside the modeled material (see Figure 9b) for the solid wall, but again,
the discontinuity was well preserved. Further, the reflected shock exhibited an over- and under-shoot.
Since the material was represented in polynomial space and according to the Gibbs phenomenon, we
were limited to 9% deviation for physical correctness of the solution, we also computed those over- and
under-shoots. For the material located inside an element, the overshoot was around 2.052% and the
undershoot around 8.639%. Locating the porous material at the element interface resulted in 1.821%
and 7.681%, respectively.
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3.3. Scattering at a Cylinder

While the one-dimensional setups served well to demonstrate the basic numerical properties
of the penalization scheme, they did not show the benefit of this approach. Only with multiple
dimensions, the mesh generation was problematic for high-order schemes. Thus, we now turn to
the scattering of a two-dimensional acoustic wave at a cylinder. The result was compared against
the analytical solution of the linearized equations presented in [20]. In this case, the surface of the
object was curved, and the wave did not only impinge in the normal direction of the obstacle. The
expected symmetric scattering pattern of the reflected pulse eased the identification of numerical issues
introduced by the modeling of the cylinder wall. Thus, this setting illustrated the treatment of curved
boundaries in the high-order approximation scheme by penalization within simple square elements.
The problem setup is depicted in Figure 10 and consisted of a cylinder of diameter d = 1.0 with its
center lying at the point P with the coordinates (10, 10).

AE

D C B

10 12 148

12

10

8

P S

Figure 10. Test case setup for the wave scattering; only the section containing the cylindrical obstacle,
the probing points, and the initial pulse is shown, and the actual computational domain is larger. The
cylindrical obstacle is represented by the black circle located at P(10, 10). Five observation points
(A, . . . , E) around the obstacle are shown as circles. The initial pulse in pressure is indicated by the
black dot with a turquoise circle around it located at S(14, 10).

The initial condition prescribed a circular Gaussian pulse in pressure with its center at the point
S = (14, 10) and a half-width of 0.2. Thus, the initial condition for the perturbation of pressure is
given by:

p′ = εexp
[
−ln(2)

(x − 14)2 + (y − 10)2

0.04

]
. (41)

The amplitude ε = 10−3 of the pulse was chosen to be sufficiently small to nearly match the full
compressible Navier–Stokes simulation with the linear reference solution.

The initial condition in terms of the conservative variables was given as:

ρ = ρ0 + p′, m1 = m2 = 0, e = cpT − p
ρ

. (42)

Here, ρ0 is the background density chosen as ρ0 = 1.0. m1, m2 are the momentum in the x
and y direction, respectively, and e is the total energy. T and cp are the temperature and specific
heat at constant pressure, respectively. The ratio of specific heats was chosen to be γ = 1.4. The
Reynolds number used was Re = 5 × 105 , calculated using the diameter of the cylinder d = 1.0 as the
characteristic length. Figure 10 shows the test case setup magnified around the area of interest.
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The overall simulation domain was Ω = [0, 24] × [0, 20] to ensure that the boundaries were
sufficiently far away to avoid interferences from reflections during the simulated time interval. To
test the accuracy of the simulation, five probing points were chosen around the obstacle. The points
were located in different directions with respect to the obstacle P and the source S. The incident and
the reflected acoustic wave passed through these probes at different points in time. This intends to
address both phase and amplitude errors that arise from the Brinkman penalization. The porosity was
set to φ = 1.0. The viscous and thermal permeability η and ηT were defined respectively with the help
of the scaling parameter β = 10−6 according to Equations (33) and (34). Results were obtained solving
the compressible Navier–Stokes equations in two dimensions with a spatial scheme order of O = 8,
i.e., 64 degrees of freedom per element. Cubical elements with an edge length of dx = 1/64 were used
to discretize the complete domain. The simulation was carried out for a total time of tmax = 10 s.

The pressure perturbation in the initial condition resulted in the formation of an acoustic wave
that propagated cylindrically outwards as depicted in Figure 11a. Eventually, the wave impinged on
the obstacle, where it was reflected as shown in Figure 11b with the pressure perturbation at t = 4. The
quality of this reflected wave was completely dependent on the quality of the obstacle representation.

(a) Pressure perturbation at t = 2 (b) Pressure perturbation at t = 4

(c) Pressure perturbation at t = 6 (d) Pressure perturbation at t = 8

Figure 11. Simulation snapshots of pressure perturbations captured at successive points in time. The
cylindrical obstacle is visible as a black disk and the probe points surrounding it as white dots. The
scale of the pressure perturbation is kept constant for all snapshots.

A third wave was generated when the initial wave, disrupted by the obstacle, traveled further
to the left and joined again. This is visible in Figure 11c, and its further evolution is visible in
Figure 11d, which shows the pressure perturbation at t = 8. These three circular acoustic waves had
different centers (shifted along the x-axis), but coincided left of the obstacle. As can be seen from these
illustrations, the expected reflection pattern was nicely generated by the obstacle representation via
the penalization. For a more quantitative assessment of the resulting simulation, we looked at the time
evolution of the pressure perturbations at the chosen probing points.

Figure 12 shows the time evolution of the pressure fluctuations monitored at each of the five
observation points around the cylinder. The numerical results were compared with the analytical
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solution for linear equations at these points. Here, we can observe the principal wave and the reflected
wave arriving at different probing points at different times. We also observed that the computational
results obtained showed an excellent agreement with the analytical solution for all the probes. It nearly
perfectly predicted all the amplitudes and pressure behavior without showing phase shifts.
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Figure 12. Time evolution of pressure perturbations at all five observation points surrounding the
cylinder up to t = 10. Be aware that the perturbation pressure plotted along the y axis is scaled
differently from probe to probe to illustrate the pressure profile better.
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4. Conclusions

We showed that, with the help of an implicit mixed explicit time integration approach, it was
feasible to implement wall boundaries accurately in a high-order discontinuous Galerkin scheme.
The additional source terms introduced for the penalization can be efficiently computed in the implicit
part of the mixed time integration without the need for iterative solvers. This implicit treatment
enabled us to utilize arbitrary small values for the permeabilities and freed us from the need for the
porosity introduced by Liu and Vasiliyev for compressible flows. The viability of the approach was
shown in one-dimensional examples, where we saw that the solid wall can be well approximated with
small permeabilities in the high-order discontinuous Galerkin scheme. Even for the reflection of a
shock wave, for which a high-order discretization is problematic due to the oscillations incurred by
the discontinuity, the penalization provided small errors and convergence with higher polynomial
degrees. The real strength of the penalization method, however, came through in multiple dimensions,
where curved boundaries could easily be represented by the penalization consistent with the scheme.
As an example of such a setting, we looked at the acoustic wave scattering at a cylinder.

With the presented method, it, therefore, was possible to exploit the benefit of reduced memory
consumption by the high-order discretization even for complex geometries without the need for
advanced mesh generation.

Author Contributions: Conceptualization by N.A. and H.K.; N.A. wrote the original draft preparation and N.E.P.
contributed the shock reflection setup; all authors were involved in the review and editing process; N.A., N.E.P.
and H.K. worked on the presented methodology; H.K. and N.E.P. worked on the employed software; investigation
and validation was carried out by N.A. and N.E.P., they also did the visualization to produce the graphs and
images. supervision, S.R.; funding acquisition, S.R.

Funding: Neda Ebrahimi Pour was financially supported by the priority program 1648–Software for Exascale
Computing 214 (www.sppexa.de) of the Deutsche Forschungsgemeinschaft.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Thompson, J.F.; Warsi, Z.U.; Mastin, C.W. Boundary-fitted coordinate systems for numerical solution of
partial differential equations A review. J. Comput. Phys. 1982, 47, 1–108. [CrossRef]

2. Mittal, R.; Iaccarino, G. Immersed Boundary Methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. [CrossRef]
3. Peskin, C.S. Flow patterns around heart valves: A numerical method. J. Comput. Phys. 1972, 10, 252–271.

[CrossRef]
4. Saiki, E.; Biringen, S. Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual

Boundary Method. J. Comput. Phys. 1996, 123, 450–465. [CrossRef]
5. Brown-Dymkoski, E.; Kasimov, N.; Vasilyev, O.V. A characteristic based volume penalization method for

general evolution problems applied to compressible viscous flows. J. Comput. Phys. 2014, 262, 344–357.
[CrossRef]

6. Arquis, E.; Caltagirone, J.P. Sur les conditions hydrodynamiques au voisinage d’une interface milieu
fluide-milieu poreux: Application a‘ la convection naturelle. CR Acad. Sci. Paris II 1984, 299, 1–4.

7. Angot, P.; Bruneau, C.H.; Fabrie, P. A penalization method to take into account obstacles in incompressible
viscous flows. Numer. Math. 1999, 81, 497–520. [CrossRef]

8. Kevlahan, N.K.R.; Ghidaglia, J.M. Computation of turbulent flow past an array of cylinders using a spectral
method with Brinkman penalization. Eur. J. Mech. B/Fluids 2001, 20, 333–350. [CrossRef]

9. Liu, Q.; Vasilyev, O.V. A Brinkman penalization method for compressible flows in complex geometries.
J. Comput. Phys. 2007, 227, 946–966. [CrossRef]

10. Jause-Labert, C.; Godeferd, F.; Favier, B. Numerical validation of the volume penalization method in
three-dimensional pseudo-spectral simulations. Comput. Fluids 2012, 67, 41–56. [CrossRef]

11. Pasquetti, R.; Bwemba, R.; Cousin, L. A pseudo-penalization method for high Reynolds number unsteady
flows. Appl. Numer. Math. 2008, 58, 946–954. [CrossRef]

46



Symmetry 2019, 11, 1126

12. Ramière, I.; Angot, P.; Belliard, M. A fictitious domain approach with spread interface for elliptic problems
with general boundary conditions. Comput. Methods Appl. Mech. Eng. 2007, 196, 766–781. [CrossRef]

13. Simulationstechnik und Wissenschaftliches Rechnen Uni Siegen. Ateles Source Code. 2019. Available online:
https://osdn.net/projects/apes/scm/hg/ateles/ (accessed on 26 August 2019).

14. Alexander, R. Diagonally Implicit Runge–Kutta Methods for Stiff O.D.E.’s. SIAM J. Numer. Anal. 1977,
14, 1006–1021. [CrossRef]

15. Zudrop, J. Efficient Numerical Methods for Fluid- and Electrodynamics on Massively Parallel Systems.
Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2015.

16. Hesthaven, J.S.; Warburton, T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications,
1st ed.; Springer: New York, NY, USA, 2007.

17. Piquet, A.; Roussel, O.; Hadjadj, A. A comparative study of Brinkman penalization and direct-forcing
immersed boundary methods for compressible viscous flows. Comput. Fluids 2016, 136, 272–284. [CrossRef]

18. Ben-Dor, G.; Igra, O.; Elperin, T. (Eds.) Handbook of Shock Waves; Academic Press: Cambridge, MA, USA, 2001.
19. Glazer, E.; Sadot, O.; Hadjadj, A.; Chaudhuri, A. Velocity scaling of a shock wave reflected off a circular

cylinder. Phys. Rev. E 2011, 83, 066317. [CrossRef]
20. Tam, C.K.W.; Hardin, J.C. Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems; NASA,

Langley Research Center: Hampton, VA, USA, 1997.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

47





symmetryS S

Article

Numerical Method for Dirichlet Problem with
Degeneration of the Solution on the Entire Boundary

Viktor A. Rukavishnikov *,† and Elena I. Rukavishnikova †

Computing Center of Far-Eastern Branch, Russian Academy of Sciences, Kim-Yu-Chen Str. 65,
Khabarovsk 680000, Russia; rukavishnikova-55@mail.ru
* Correspondence: vark0102@mail.ru; Tel.: +8-421-257-2620
† These authors contributed equally to this work.

Received: 10 November 2019; Accepted: 23 November 2019; Published: 26 November 2019

Abstract: The finite element method (FEM) with a special graded mesh is constructed for the
Dirichlet boundary value problem with degeneration of the solution on the entire boundary of
the two-dimensional domain. A comparative numerical analysis is performed for the proposed
method and the classical finite element method for a set of model problems in symmetric domain.
Experimental confirmation of theoretical estimates of accuracy is obtained and conclusions are made.

Keywords: boundary value problems with degeneration of the solution on entire boundary of the
domain; the method of finite elements; special graded mesh

1. Introduction

As is known, classical solutions for boundary value problems for elliptic equations with
discontinuous coefficients do not exist. Therefore, the notion of a generalized (weak) solution was
introduced. Based on this definition and on the Galerkin method, numerous numerical methods were
developed for finding approximate solutions of such problems. However, these methods for boundary
value problems with singularity lose accuracy, which depends on the smoothness of the solution of the
original differential problem (see, for example, [1,2]). The singularity of the solution of the boundary
value problem can be caused by the presence of re-entrant corners on the domain boundary, by the
degeneration of the coefficients and right-hand sides of equation and boundary conditions, or by the
internal properties of the solution (see, for example, [3–9]). For boundary problems with a singularity,
we proposed to determine an Rν-generalized solution. The existence, uniqueness and differential
properties of this kind of solution in the weighted Sobolev spaces were studied in [10–15]. Based
the Rν-generalized solution, a weighted finite element method was developed for boundary value
problems for elliptic equations in two-dimensional domain with a singularity in a finite set of boundary
points [16–20]. A weighted FEM was constructed and studied for the Lamé system in a domain with
re-entrant corners [21,22]. To find an approximate solution of Maxwell’s equations in an L-shaped
domain, a weighted edge-based finite element method was proposed in [23,24]. In [25,26] a weight
analogue of the condition of Ladyzhenskaya-Babuška-Brezzi was proved, a numerical method was
developed for the Stokes and Oseen problems in domains with corner singularity. The main feature of
all the developed methods is the convergence of the approximate solution to the exact one with the
rate O(h) in the norms of the Sobolev and Monk weighted spaces, regardless of the reasons causing
the solution singularity and its value.

In this paper we consider the Dirichlet problem for an elliptic equation with degeneration of
the solution on the entire boundary of a two-dimensional domain. In [27] a finite element method
was constructed for this problem and the convergence of this method was established. The paper [28]
singles out the weighted subspace of functions for which the approximate solutions converge to
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an exact solution with a speed O(h) on a mesh with a special compression of nodes close to the
boundary (see [29]). The compression parameters depend on the constructed subspace. Our method
of constructing mesh with a special compression of nodes differs from the methods proposed by other
authors (see, for example, [30–32]).

Here we test model problems with singularities in a symmetric domain. We carry out a
comparative numerical analysis of finite element methods on quasi-uniform meshes and meshes
with a special compression of nodes close to the boundary. We obtain experimental confirmation
of theoretical estimates and demonstrate the advantage of the proposed method over the classical
finite element method. By analogy with [22], we found that it is impossible to use FEM with a strong
thickening of mesh, and introduction of an R-generalized solution is required. The existence and
uniqueness of the R-generalized solution for this problem were proved in [33].

2. Problem Formulation

Let Ω be a bounded convex two-dimensional domain with twice differentiable boundary ∂Ω, and
let Ω be the closure of Ω, i.e., Ω = Ω ∪ ∂Ω; x = (x1, x2) and dx = dx1dx2.

We assume that a positive function ρ(x) belongs to the space C(2)(Ω) and coincides in the
boundary strip of width d > 0 with the distance from x (x ∈ Ω) to the boundary ∂Ω.

We introduce the weighted Sobolev space Ws
2,η(Ω) with the norm

‖v‖Ws
2,η(Ω) = ‖v‖L2(Ω) + ∑

m1,m2=0
|m|=s

∥∥∥∥ρ−η ∂|m|v
∂xm1

1 ∂xm2
2

∥∥∥∥
L2(Ω)

,

where η is a real number satisfying the inequalities 1
2 − s < η < 1

2 ; s = 1, 2; m = (m1, m2), |m| =
m1 + m2, m1, m2 are integer nonnegative numbers.

Let

W̊s
2,η(Ω) = {v : v ∈ Ws

2,η(Ω), v|∂Ω = 0}.

We denote by L2,−1−η(Ω) the space of functions f with the norm

‖ f ‖L2,−1−η(Ω) =

(∫
Ω

|ρ1+η f |2 dx

)1/2

.

We consider the first boundary value problem for a second order elliptic equation

−
2

∑
k=1

∂

∂xk

(
akk(x)

∂u
∂xk

)
+ a(x)u = f in Ω,

u = 0 on ∂Ω.

(1)

We suppose that the input data of Equation (1) satisfy the conditions:

(a)
f ∈ L2,−1−α(Ω), (2)

(b) akk(x) (k = 1, 2) are differentiable functions on Ω, such that the inequalities

|akk(x)| ≤ C1ρ−2α(x), (3)

∣∣∣∣∂akk(x)
∂x1

∣∣∣∣,
∣∣∣∣∂akk(x)

∂x2

∣∣∣∣ ≤ C2ρ−2α−1(x), (4)
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2

∑
k=1

akk(x)ξ2
k ≥ C3ρ−2α(x)

2

∑
k=1

ξ2
k , x ∈ Ω, C3 > 0, (5)

hold,
(c) the function a(x) satisfies the inequalities

0 < a(x) ≤ C4ρ−2α−2(x), x ∈ Ω. (6)

Here Ci, (i = 1, . . . , 4) are constants independent of x, ξ1 and ξ2 are any real parameters, α ∈(− 1
2 , 1

2
)
.

Remark 1. If Conditions (2)–(6) are fulfilled for the input data, Equation (1) is called a Dirichlet boundary value
problem for an elliptic equation with degeneration of the solution on the entire boundary of a two-dimensional
domain. Such problems are encountered in gas dynamics, electromagnetism and other subject areas of
mathematical physics. The differential properties of solutions of problems with degeneracy on the entire boundary
were studied, for the first time, in [7–9].

We introduce the bilinear and linear forms

E(u, w) =
∫
Ω

( 2

∑
k=1

akk(x)
∂u
∂xk

∂w
∂xk

+ a(x)uw
)

dx, ( f , w) =
∫
Ω

f w dx.

A function u in W̊1
2,α(Ω) is called a generalized solution of the first boundary value Equation (1) if

for any w in W̊1
2,α(Ω) the identity

E(u, w) = ( f , w)

holds.
We note that if Conditions (2)–(6) are satisfied, then there exists a unique generalized solution of

the Equation (1) in the space W̊1
2,α(Ω) (see Theorem 1 from [8]). In addition u ∈ W̊2

2,α−1(Ω) (see Theorem
1 from [9]). Moreover, if the function f ∈ L2,−1−α+λ(Ω) ⊂ L2,−1−α(Ω)

(− 1
2 < α < α + λ < 1

2
)

and
the parameter λ is sufficiently small, then the generalized solution u belongs to the space W̊2

2,α+λ−1(Ω)

which is a subspace of W̊2
2,α−1(Ω) (see [28]).

Remark 2. Knowing that the solution belongs to the space W̊2
2,α+λ−1(Ω) allows us to construct a finite element

method for finding a generalized solution for the Dirichlet problem with the degeneration of the solution on the
entire boundary of the domain with a convergence speed O(h) in the norm W1

2,α(Ω).

3. The Scheme of the Finite Element Method

We construct a scheme of the finite element method for finding an approximate generalized
solution of the first boundary value Equation (1). We perform a triangulation of the domain Ω (see, for
example, Figure 1).

We draw the curves Γj, j = 0, . . . , n, at distance b
( j

n
)r, j = 0, . . . , n, to the boundary ∂Ω. Here r is

the exponent of compression and r > 1; 0 < b < δΩ
2 ≤ d, δΩ is the diameter of the circle inscribed in

Ω. In this case the line Γn divides the domain Ω into two subdomains Ω1 and Ω2. The subdomain
Ω1 is the outer domain on the boundary strip of width b, Ω2 is the inner domain. On each curve Γj,
j = 0, . . . , n, (Γ0 = ∂Ω, Γn = ∂Ω1) we fix Mj equidistant points, which we call the nodes. Here Mj =[

lj/
(

b
(( j

n
)r − ( j−1

n
)r
))]

+ 1, j = 1, . . . , n, lj is the length of the curve Γj ([x] denotes the integer

part of x) and M0 = 2M1. All nodes on the curve Γj, j = 0, . . . , n, are connected by the broken line.
Then, we connect each node on the curve Γj−1, j = 1, . . . , n, with closest nodes on the curve Γj. As a
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result, the subdomain Ω1 is divided into triangles with the compression of nodes to the boundary ∂Ω.
The union of all triangles with vertices on Γj−1 and Γj is a layer Qh

j . (In Figure 1 the subdomain Ω1 is

divided into the layers Qh
1, . . . , Qh

4, Γ4 = ∂Ω1). The parameter h denotes the greatest in length of the
sides of the triangles in Qh

n.

Figure 1. Triangulation of domain Ω.

The subdomain Ω2 is divided quasi-uniformly into a finite number of the triangles. The sides of
these triangles can not be greater than h. Moreover, the vertices of the triangles on the boundary ∂Ω1

belong to the set of vertices of the triangles in ∂Ω2.
The algorithm and code description of this triangulation are given in [29].
Let Ωh be the union of closed triangles {K} = {K1, . . . , KNh}, and Kj, j = 1, . . . , Nh, is the finite

element. The vertices Gi, i = 1, . . . , N, of these triangles are the nodes of the triangulation. We denote
by N′ the number of the internal nodes. To each node Gi, i = 1, . . . , N′, we assign the function ϕi(x)
which is equal to 1 at the point Gi and zero at all other nodes, and ϕi(x) is linear on each triangle K.
We denote by Vh the linear span {ϕi}N′

i=1. Next, we associate the following discrete problem with the
constructed finite-dimensional space Vh ⊂ W̊1

2,α(Ω): find the function uh ∈ Vh satisfying the equality

E(uh, wh) = ( f , wh)

for any function wh ∈ Vh.
An approximate (finite element) generalized solution will be found in the form

uh(x) =
N′

∑
i=1

ai ϕi(x),

where ai = uh(Gi). We assume that uh(x) = 0, x ∈ Ω \ Ωh.
The coefficients ai are defined from system of equations

E(uh, ϕi) = ( f , ϕi), i = 1, . . . , N′

or
Âa = F,

where
a = (a1, . . . , aN′)T , F = (F1, . . . , FN′)T , Â = (Aij),
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Aij = E(ϕi, ϕj), Fi = ( f , ϕi), i, j = 1, . . . , N′.

It is obvious that the approximate generalized solution of Problems (1)–(6) by the finite element
method exists and is unique.

For the performed triangulation of the domain Ω with the exponent of the compression of the
mesh r = 1

λ and for functions in the space W̊2
2,α+λ−1(Ω) we have convergence estimates:

‖u − uh‖W1
2,α(Ω) ≤ C5h‖ f ρ1+α−λ‖L2(Ω),

‖u − uh‖L2(Ω) ≤ C6h2‖ f ρ1+α−λ‖L2(Ω).

Here, the positive constants C5, C6 are independent of u, uh, f and h.

4. Numerical Experiments

In this section we present the results of numerical experiments for two model problems.
Let Ω be a circle of unit radius with center at the point (2, 2). We consider the boundary value

Equation (1) in the domain Ω. The right-hand side and coefficients of Equation (1) are given as

f (x) = 4(1 + μ − t)
(
(μ − 2α − t)ρ̃μ−2α−t−1(x)(1 − ρ̃(x))− ρ̃μ−2α−t(x)

)
+ ρ̃1+μ−t(x),

a11(x) = a22(x) = ρ̃−2α(x), a(x) = 1, α ∈
(
− 1

2
,

1
2

)
, μ ∈

(
α,

1
2

)
, t <

1
2

,

where ρ̃(x) = 1 − (x1 − 2)2 − (x2 − 2)2 and ρ̃(x) be a function that is infinitely differentiable and
satisfies the following conditions:

C7ρ(x) ≤ ρ̃(x) ≤ C8ρ(x) for each point x of the domain Ω; 0 < C7 ≤ C8 < ∞.
The exact solution of this problem is u(x) = ρ̃1−μ−t(x).
For finding an approximate solution of model problems we used mesh with the compression

of nodes to the boundary (Rc), quasi-uniform mesh (Rq) and the finite element method scheme from
paragraph three. For the mesh Rc we set the number of layers n and the exponent of compression of
the mesh r = 1

τ , τ = μ − α.
We investigate the convergence rate of the approximate solution uh to the exact one in the norms

of the spaces L2(Ω) and W1
2,α(Ω) on the mesh Rc and Rq. The absolute value of the error e = |u − uh|

in the mesh nodes Gi on the mesh Rc and Rq is analyzed.
Model Problem 1. We set the parameters α = 0.01, μ = 0.49, t = 0.499, at which the solution, the

coefficients and the right-hand side of the equation in Equation (1) have the form

u(x) = ρ̃0.991(x),

a11(x) = a22(x) = ρ̃−0.02(x), a(x) = 1,

f (x) = 0.114956 · ρ̃−1.029(x) + 3.849044 · ρ̃−0.029(x) + ρ̃0.991(x),

the exponent of compression of the mesh r = 2.08(3).
In Table 1 we give the number of nodes and their percentage to the total number of mesh nodes

N, in which the absolute value of the error e = |u − uh| is not less than the specified value of the limit
error. In this Table the patterns of the absolute error distribution at the nodes of the Rq and Rc meshes
are also showed. We present data on the Rc mesh for N nodes and on the Rq mesh for N and N

2 nodes.
In Table 2 we present the norms of the difference between an exact and an approximate solution

‖e‖L2(Ω) = ‖u − uh‖L2(Ω) and ‖e‖W1
2,α(Ω) = ‖u − uh‖W1

2,α(Ω) for Rq and Rc and find the ratios of the
norms β when the mesh parameter h is reduced by a factor two. The value of the parameter h in the
domain Ω2 for Rc varies by changing number of layers n.
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Table 1. Absolute value of the error e for Model Problem 1.

Quasi-Uniform Mesh (Rq) Absolute Error Distribution Specified Limited Error Percent
Number
of Nodes

Number of
nodes N

10,849,474
e ≥ 3 × 10−6 0.00% 69

1 × 10−6 ≤ e < 3 × 10−6 89.37% 9,696,362

7 × 10−7 ≤ e < 1 × 10−6 10.61% 1,151,232

h 0.00055

3 × 10−7 ≤ e < 7 × 10−7 0.01% 1196

1 × 10−7 ≤ e < 3 × 10−7 0.00% 372

0 ≤ e < 1 × 10−7 0.00% 243

Refined Mesh (Rc) Absolute Error Distribution Specified Limited Error Percent
Number
of Nodes

N 10,755,478 e ≥ 3 × 10−6 0.00% 0

Number of
nodes in
domain Ω2

10,661,162 1 × 10−6 ≤ e < 3 × 10−6 0.00% 0

7 × 10−7 ≤ e < 1 × 10−6 0.00% 4

h 0.000556 3 × 10−7 ≤ e < 7 × 10−7 44.46% 4,781,879

n 3 1 × 10−7 ≤ e < 3 × 10−7 55.44% 5,962,761

b 1/1024 0 ≤ e < 1 × 10−7 0.10% 10,834

Refined Mesh (Rc) Absolute Error Distribution Specified Limited Error Percent
Number
of Nodes

N 4,974,486 e ≥ 3 × 10−6 0.00% 0

Number of
nodes in
domain Ω2

4,241,164 1 × 10−6 ≤ e < 3 × 10−6 0.00% 0

7 × 10−7 ≤ e < 1 × 10−6 0.00% 0

h 0.00087 3 × 10−7 ≤ e < 7 × 10−7 2.75% 136,821

n 18 1 × 10−7 ≤ e < 3 × 10−7 83.18% 4,137,684

b 1/128 0 ≤ e < 1 × 10−7 14.07% 699,981

Table 2. The errors ‖e‖L2(Ω) and ‖e‖W1
2,α(Ω) for meshes Rq and Rc for Model Problem 1.

Quasi-Uniform Mesh (Rq) Refined Mesh (Rc), b = 1/128

h ‖e‖L2(Ω) β ‖e‖W1
2,α(Ω) β h ‖e‖L2(Ω) β ‖e‖W1

2,α(Ω) β

0.0022 5.40 × 10−6 3.83 × 10−3 0.0035 3.00 × 10−6 5.11 × 10−3

1.68 1.85 4.21 2.06
0.0011 3.21 × 10−6 2.22 × 10−3 0.00169 7.12 × 10−7 2.48 × 10−3

1.83 1.72 4.11 2.03
0.00055 1.75 × 10−6 1.36 × 10−3 0.00083 1.73 × 10−7 1.23 × 10−3

The distribution of the absolute values of the error e in the mesh nodes with a decrease in the h
parameter by a factor of two on the meshes Rq and Rc is given in Table 3.
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Table 3. The distribution of the error e on the grids Rq and Rc as h changes for Model Problem 1.

Specified Limited Error Quasi-Uniform Mesh (Rq)

e ≥ 3 × 10−6

1 × 10−6 ≤ e < 3 × 10−6

7 × 10−7 ≤ e < 1 × 10−6

3 × 10−7 ≤ e < 7 × 10−7

1 × 10−7 ≤ e < 3 × 10−7

0 ≤ e < 1 × 10−7

N 338,449 1,355,498 5,427,739

h 0.0031 0.0015 0.00078

Specified Limited Error
Refined Mesh (Rc), b = 1/128

n = 5 n = 10 n = 20

e ≥ 3 × 10−6

1 × 10−6 ≤ e < 3 × 10−6

7 × 10−7 ≤ e < 1 × 10−6

3 × 10−7 ≤ e < 7 × 10−7

1 × 10−7 ≤ e < 3 × 10−7

0 ≤ e < 1 × 10−7

N 425,760 1,569,052 6,129,755

Number of nodes in
domain Ω2

386,628 1,375,684 5,200,079

h in domain Ω2 0.0029 0.0015 0.00079

Model Problem 2. We set the parameters α = −0.49, μ = 0.01, t = 0.49, at which the solution, the
coefficients and the right-hand side of Equation (1) have the form

u(x) = ρ̃0.52(x),

a11(x) = a22(x) = ρ̃0.98(x), a(x) = 1,

f (x) = −1.04 · ρ̃−0.5(x) + 3.12 · ρ̃0.5(x) + ρ̃0.52(x),

the exponent of compression of the mesh r = 2.
A numerical analysis of this problem was carried out by analogy with Model Problem 1.

The results of the research are presented in Tables 4–6.
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Table 4. Absolute value of the error e for Model Problem 2.

Quasi-Uniform Mesh (Rq) Absolute Error Distribution
Specified
Limited
Error

Percent
Number
of Nodes

N 2,713,152
e ≥ 5 × 10−3 50.40% 1,367,499

2 × 10−3 ≤ e < 5 × 10−3 49.60% 1,345,653

1 × 10−3 ≤ e < 2 × 10−3 0.00% 0

h 0.00055 7 × 10−4 ≤ e < 1 × 10−3 0.00% 0

4 × 10−4 ≤ e < 7 × 10−4 0.00% 0

Refined Mesh (Rc) Absolute Error Distribution
Specified
Limited
Error

Percent
Number
of Nodes

N 3,254,432 e ≥ 5 × 10−3 0.00% 0

Number of
nodes in
domain Ω2

2,484,744 2 × 10−3 ≤ e < 5 × 10−3 0.00% 0

h in domain
Ω2

0.0011 1 × 10−3 ≤ e < 2 × 10−3 26.32% 856,521

n 27 7 × 10−4 ≤ e < 1 × 10−3 31.94% 1,039,571

b 1/64 4 × 10−4 ≤ e < 7 × 10−4 41.74% 1,358,340

Table 5. The error ‖e‖W1
2,α(Ω) for meshes Rq and Rc for Model Problem 2.

Quasi-Uniform Mesh (Rq) Refined Mesh (Rc), b = 1/64

h ‖e‖W1
2,α(Ω) β n h in domain Ω2 ‖e‖W1

2,α(Ω) β

0.0022 0.065816 3 0.0068 0.04562
1.43 2.08

0.0011 0.046016 8 0.0032 0.021939
1.43 2.00

0.00055 0.032220 18 0.0016 0.010989

Table 6. The distribution of the error e on the grids Rq and Rc as h changes for Model Problem 2.

Specified Limited Error Quasi-Uniform Mesh (Rq)

e ≥ 5 × 10−3

2 × 10−3 ≤ e < 5 × 10−3

1 × 10−3 ≤ e < 2 × 10−3

7 × 10−4 ≤ e < 1 × 10−3

4 × 10−4 ≤ e < 7 × 10−4

N 168,670 677,704 2,713,152

h 0.0044 0.0022 0.0011
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Table 6. Cont.

Specified Limited Error
Refined Mesh (Rc)

n = 6 n = 12 n = 24

e ≥ 5 × 10−3

2 × 10−3 ≤ e < 5 × 10−3

1 × 10−3 ≤ e < 2 × 10−3

7 × 10−4 ≤ e < 1 × 10−3

4 × 10−4 ≤ e < 7 × 10−4

N 166,751 643,498 2,567,442

Number of nodes in
domain Ω2

139,635 514,952 1,972,944

h in domain Ω2 0.0050 0.0025 0.00127

In Figure 2a,b we present graphs of the error ‖e‖W1
2,α(Ω) = ‖u − uh‖W1

2,α(Ω) as a function of the
parameter h on the grids Rq and Rc in a logarithmic scale. In the first case the parameter h decreases
due to an increase in the number of layers n at a fixed value b = 1/64 (Figure 2a). In the second case h
changes due to a decrease in the width of the border strip b at a fixed number n (Figure 2b).

0.01

0.05

0.15

0.01 0.002 0.00075

/

0.01

0.05

0.15

0.01 0.002 0.00075

Figure 2. The graph of the error ‖e‖W1
2,α(Ω) on the grids Rq and Rc as h changes in a logarithmic scale

for Model Problem 2. For Rc (a) b = const = 1/64, n is a variable; (b) n is a constant, b is a variable.

5. Conclusions

We can conclude according to the results of numerical experiments:

• An approximate generalized solution of Equation (1) on grids with an appropriate compression
of nodes (close) to the boundary of the domain converges to an exact solution with a speed O(h2)

in the norm of the space L2(Ω) and O(h) in the norm of the space W1
2,α(Ω) (see Tables 2 and 5);
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• the absolute value of the error is an order of magnitude smaller on the mesh with the compression
of nodes to the boundary of the domain and with an optimal choice of parameters b and n than
on a quasi-uniform mesh (see Tables 1, 3, 4 and 6);

• to reduce the absolute value of the error it is more expedient to increase the number of layers n
than to reduce the width of the boundary ring domain; in this case the absolute value of the error
decreases faster;

• for meshes of large dimensionality it is advisable to use the weighted finite element method.

In the next papers we plan to develop the proposed finite element method for boundary value
problems with inhomogeneous boundary conditions for self-adjoint differential equations of second
and higher orders with weaker conditions on the input data of the problem, in particular

a(x) ≥ −c, x ∈ Ω, c is finite constant.
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Abstract: At present, research on the influence of friction heat on the wear resistance of laser cladding
layers is still lacking, and there is even less research on the temperature of laser cladding layers under
different loads by a finite element program generator (FEPG). After a symmetrical laser cladding
path, the wear performance of the moving jaw will change. The study of the temperature change of
the moving jaw material in friction provides a theoretical basis for the surface modification of the
moving jaw. The model of the column ring is built in a finite element program generator (FEPG).
When the inner part of the column is WDB620 (material inside the cylinder) and the outer part is
ceramic powder (moving jaw surface material), the relationship between the temperature and time
of the contact surface is analyzed under the load between 100 and 600 N. At the same time, the
stable temperature, wear amount, effective hardening layer thickness, strain thickness, and iron
oxide content corresponding to different loads in a finite element program generator (FEPG) were
analyzed. The results showed that when the load is 300 N, the temperature error between the finite
element program generator (FEPG) and the movable jaw material is the largest, and the relative error
is 4.3%. When the load increases, the stable temperature of the moving jaw plate increases after
the symmetrical laser cladding path, and the wear amount first decreases and then increases. The
minimum wear amount appears at a load of 400 N and a temperature of 340 ◦C; the strain thickness
of the sample material increases gradually, and the effective hardening layer thickness increases.
However, when the load reaches 400 N, the thickness of the effective hardening layer changes little;
the content of Fe decreases gradually, and the content of FeO and Fe2O3 increases. The increase of
the moving jaw increases in turn the temperature of the laser cladding layer of the test jaw material,
which intensifies the oxidation reaction of the ceramic powder of the laser cladding layer.

Keywords: jaw crusher; symmetrical laser cladding path; FEPG; wear

1. Introduction

The mobile jaw plate of a jaw crusher is under severe impact in humid and high temperature
environments. In the world, there are approximately 200–300 thousand movable jaw plates damaged
by wear every year, and the consumption of steel is approximately 60–72 thousand tons [1]. Each year,
this directly causes a loss of more than one billion dollars [2]. Therefore, mining enterprises pay a
huge price for it. In order to strengthen its wear resistance, the surface of the moveable jaw plate is
usually treated by laser cladding and other methods [3]. Laser cladding technology is an advanced
surface modification technology, which involves many disciplines, such as metal materials, metallurgy,
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chemistry, and so on. It is found that the tensile strength and hardness of the coating are always higher
than that of the substrate, and the performance is better than that of the substrate [4–7], no matter how
the laser power is set in a certain range. However, the analysis of the effect of friction heat on the wear
resistance of laser cladding materials remains to be discussed. Therefore, the analysis of the wear
behavior and material structure of the moving jaw plate after the symmetrical laser cladding path
under the action of reciprocating impact and friction has a positive significance for the study of the
influence of temperature on the wear resistance of the moving jaw plate and the surface modification
of the moving jaw plate.

For the study of wear of the jaw crusher and other mining crushers after laser cladding, the
existing research methods are mainly theoretical calculation, test, and other methods [8–10]. Karan
et al. analyzed the main wear area of the acceleration plate of the vertical impact crusher, changed
the structural parameters and production parameters of the rotor, respectively, and explored the wear
characteristics of the acceleration plate [11]. Drzymała et al. analyzed the mechanical characteristics
and particle movement characteristics of the hammer head of the vertical shaft impact crusher through
theoretical calculation and determined that impact wear is the main form of hammer head wear [12].
Limanskiy et al. analyzed the movement of the jaw plate of the jaw crusher through experiments and
analyzed the wear on the jaw plate of the jaw crusher based on the microwear mechanism and failure
of the jaw plate surface, so as to learn the reason for jaw plate wear when materials are broken [13].
Amanov et al. analyzed the change trends of the grain area, and hardness and wear of the chain
wheel of the mine conveyor after treatment at different temperatures and times and finally obtained
the best treatment temperature and time [14]. Baek et al. analyzed the kinematic characteristics of
the materials in the cone crusher through theoretical calculation, solved the crushing process, and
obtained the compression ratio, particle size distribution coefficient, and crushing pressure in each
region of the crushing chamber [15]. Abuhasel et al. calculated and analyzed the wear of the impact
crusher plate hammer after different laser cladding processes and determined the spot diameter and
powder spreading speed of laser cladding in the early stage with the minimum wear amount [16].
Anticoi et al. conducted an experimental analysis on the temperature field of the friction stir welding
process on the roller surface of the roller crusher and found that the friction coefficient decreased
with the increase of the temperature, and the welding temperature increased with the increase of the
concave angle of the shoulder [17]. Pei et al. analyzed the influence of particle size on the liner wear of
the semi-autogenous mill via a theoretical calculation method. The results showed that the wear of
the lining plate is especially significant when the particle size increases, the wear of the lining plate
increases with the increase of particle size, and the kinetic energy obtained by large particle materials
is far greater than that of small particle materials [18].

The wear amount calculated by theory is quite different from the actual result, and most of
the conditions calculated by theory are ideal. In the physical prototype, the wear performance test
of the components of the crusher is carried out, and the analysis of the wear characteristics of the
components has great data disturbance, so it is difficult to extract the relevant data accurately and
collect the data. Therefore, in this study, a finite element model of the cylinder-ring was built in
the finite element program generator (FEPG). The temperature of laser cladding ceramic powder
(surface material of the movable jaw plate) obtained by FEPG under different loads was verified and
compared with the temperature obtained by the test. At the same time, the stable temperature, wear
amount, effective hardening layer thickness, strain thickness, and iron oxide content corresponding to
different loads were analyzed. The research results can be used to solve the problems of failure of the
jaw crusher caused by high friction temperature and low service life of the moving jaw plate under
complex working conditions. At the same time, they can provide a theoretical basis for analyzing the
wear performance of the moving jaw plate material after symmetrical laser cladding path and the
temperature change of the moving jaw plate in friction, which is of great significance to the surface
modification of the moving jaw plate.
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In addition, through the existing literature, it is found that in the cylinder disk test, along the
direction of sliding friction, plastic deformation occurs on the surface of cylinder coating, resulting in
different thicknesses of the work hardening layer [19–21]. However, analysis of the effect of friction
heat on the wear resistance of laser cladding materials is still lacking.

2. Materials and Methods

In this study, WDB620 (Figure 1) was selected as the material of the moving jaw plate, and then
the ceramic powder was laser-cladded on the surface of the moving jaw plate. The contents of various
chemical components of ceramic powder are shown in Table 1 [22–25].

 
Figure 1. WDB620 material.

Table 1. Chemical composition.

Mn (%) Rb (%) C (%) P (%) V (%) B (%) Re (%) Fe (%)

2.2 1.3 22.5 0.3 1.2 1.7 3.8 26.4

The cylinder sample after cutting is installed on the friction electronic tester and closely contacts
with the ring. The material of the ring is 40Cr, the loads of the cylinder sample are 100, 200, 300, 400,
500, and 600 N, and the rotation speed of the ring is 2000 r/min. The test scheme was carried out
according to Table 2.

Table 2. Test plan.

Serial Number
Load
X1/N

Time
X2/s

Speed
X3/s

1 100 550 2000
2 200 550 2000
3 300 550 2000
4 400 550 2000
5 500 550 2000
6 600 550 2000

Through the thermocouple temperature sensor used to collect the temperature of the cylinder
sample (Figure 2), the collected temperature of each point is counted.

The model of the cylinder-ring was built in UG (Figure 3). (UG is an interactive computer-aided
design and computer-aided manufacturing software, which has powerful functions and can realize the
construction of various complex entities and models. It is mainly used in the product development
fields of mechanical product modeling design, structural design, part assembly design, mold design,
numerical control programming, design analysis, etc.) The radius difference between the two concentric
circles is 230 mm [26–30], and it is added to the creator in FEPG in the form of x_t (Figure 4). The material
of the setting ring in FEPG is 40Cr, the inner part of the cylinder is WDB620 (movable jaw plate
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material), and the outer part is laser cladding ceramic powder. The specific physical parameter settings
of the cylinder-ring are shown in Table 3 [31–34].

Figure 2. Thermocouple temperature sensor.

Figure 3. Cylinder-ring model in UG.

 
Figure 4. Cylinder-ring model in a finite element program generator (FEPG).

Table 3. Parameter setting in FEPG.

Material 40Cr WDB620 Ceramic Powder

Shear modulus (Pa) 2.06× 1012 2.26× 1011 4.16× 1011

Heat transfer coefficient (W/(m · k)) 35 60 72
Density (kg/m3) 7220 8230 7850
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3. Results and Discussion

3.1. FEPG and Test Results

The finite element study [35–37] was carried out under the loads of 100, 200, 300, 400, 500, and 600
N, respectively, and the rotating speed of the ring was 2000 r/min. The maximum surface temperature
and radial diffusion size of the ring under different loads were obtained (Figure 5).

Figure 5. Maximum value and radial diffusion size of ring surface temperature.

The maximum temperature and radial diffusion size in Figure 5 are analyzed. When the cylinder
loads are 100, 200, 300, 400, 500, and 600 N, the maximum corresponding temperature is 396.8 ◦C
and the radial diffusion size is 20.3 mm. With the increase of the load on the cylinder, the maximum
temperature and the radial diffusion size of the ring surface are increasing.

When the cylinder loads are 100, 200, 300, 400, 500, and 600 N, the temperature change rule of the
cylinder-ring contact surface is studied (Figure 6).

Figure 6. Temperature of cylinder-ring contact surface.

The temperature of the contact surface in Figure 6 is analyzed. At the same time, the temperature
of the contact surface of the cylinder increases with the increase of the load on the cylinder. However,
the change trend of contact surface temperature under different loads is basically the same. After the
time reaches about 60 s, the temperature does not rise significantly. When the cylinder loads are 100,
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200, 300, 400, 500, and 600 N, the contact surface temperature is stable at 222, 251, 326, 341, 360, and
378 ◦C, respectively.

Through the test, the mean value of the temperature at the acquisition point under the sample
loads of 100, 200, 300, 400, 500, and 600 N is obtained. The test result data are processed by high-order
function regression through SPSS software (12.0, SPSS Inc., Chicago, IL, USA), and the regression
function of temperature relative to time and load is as follows:

L = 600.421− 3.252X1 − 8.002X2 + 1.763X1X2 − 0.287X1
2 − 0.891X2

2 (1)

The temperature of the contact surface under different time and load is shown in Figure 7.

Figure 7. Temperature obtained at different times.

From Figure 7, when the load of the sample increases from 100 to 600 N, the temperature
corresponding to the fixed time increases. When the loads of the sample are 100, 200, 300, 400, 500, and
600 N, the temperature of test and FEPG changes with time (Figure 8).

Figure 8. Comparison between test and FEPG.

From Figure 8, when the sample loads are 100, 200, 300, 400, 500, and 600 N, the temperature
obtained by FEPG at the same time point is slightly higher than the test result. The reason for the
result is that there are many environmental effects, such as heat and air transfer loss, in the actual test.
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However, when the loads of FEPG are 100, 200, 300, 400, 500, and 600 N, the trend of temperature
change is the same, and when the load is 400 N and the time is 80 s, the temperature error is the largest,
and the relative error is only 4.3%.

3.2. Effect of Temperature on the Performance of the Moving Jaw

According to the previous test and FEPG study, after a certain period of time (this study is about
65 s), the temperature of the moving jaw material sample tends to be stable, so the performance of the
stabilized moving jaw material is analyzed. The steady temperature and wear of the cylinder under
different loads are analyzed (Figure 9).

Figure 9. Change trend of temperature and wear.

With the increase of load, the stable temperature rises gradually, and the wear amount rises after
an initial decrease. When the load is at 400 N and the temperature is around 340 ◦C, the value is the
smallest. This is because the laser cladding layer on the surface of the sample material (moving jaw
material) is partially melted under high heat, which reduces the wear. However, the temperature and
load continue to increase, which not only destroys the protective layer, but also causes part of the
remaining protective layer to bond and tear due to the rotation of the ring.

Through the electron microscope, the effective hardening layer thickness and strain thickness
of the moving jaw specimen under different loads were analyzed, and the results were compared
(Figure 10).

Figure 10. Effective hardening layer thickness and strain thickness

Through the analysis of the effective hardening layer thickness and strain thickness under no
load, it is known that with the increase of load, the strain thickness of the sample material increases
gradually, and the effective hardening layer thickness increases significantly, but when the load reaches
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400 N, the effective hardening layer thickness changes little. The results show that when the load is
about 400 N, the wear resistance of the laser cladding material is relatively good.

The surface of the sample was analyzed by X-ray photoelectron spectroscopy (XPS), and the
content changes of Fe, O, Mn, C, V, and Re were counted (Figure 11).

Figure 11. Content change of Fe, O, Ti, Cr, V, and Nb.

It can be seen from Figure 11 that there are mainly Fe, O, Mn, V, and other elements on the surface
of the wear mark of the material, and the mass fraction of Fe and O elements accounts for the largest
proportion. With the increase of the load, the mass fraction of Fe element increases from 26.08% to
58.42%, and the mass fraction of O element increases from 12.28% to 32.37%. With the increase of the
load on the sample, the content of Fe and O increases gradually. In the process of friction, the increase
of the load on the cylinder causes the temperature of the friction contact surface of the cylinder to rise,
and the constant formation of iron oxide, which leads to the oxidation and wear of the deposition layer
of the cylinder.

Analyzing the content of different types of iron oxide in the laser cladding layer of the moving
jaw plate, A represents Fe, B represents FeO, and C represents Fe2O3 (Figure 12).

Figure 12. Content of Fe, FeO, and Fe2O3.

The contents of Fe, FeO, and Fe2O3 were studied. It was found that when the load was 100 N,
the oxide on the worn surface was mainly Fe, and then there is not only FeO, but also Fe2O3 when
the load is 200 and 300 N. With the increase of load from 400 to 600 N, the content of FeO and Fe2O3

on the worn surface of the coating continued to increase. In the above analysis, it can be found that
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with the increase of friction temperature, the high-temperature transformation process of wear on the
surface is Fe→ FeO→ Fe2O3. The main reason is that in the process of friction and wear, the micro
convex particles on the contact surface easily produce a flash point temperature (higher than 1500◦)
under the conditions of high load and high speed, and the changes of temperature and load affect the
change of oxide type [38–40]. The simulation experiment is in an ideal working environment where
there are no micro convex particles on the surface of the friction pair and there is no flash point high
temperature. In the experiment of temperature measurement, the temperature changes dynamically,
and the temperature of the contact surface is the highest. The thermocouple only measures the surface
temperature, so it cannot measure the flash point temperature. Thus, the main reason for the existence
of the iron oxide is that the heat generated by friction is accumulating in the contact surface, which
leads to the plastic deformation of the material surface caused by oxidation and softening, and the
appearance of the friction oxide layer. The results show that the increase of the sample load increases
the temperature of the laser cladding layer of the sample material (movable jaw plate material), which
intensifies the oxidation reaction of the ceramic powder of the laser cladding layer.

4. Conclusions

Based on the theory of tribology and heat transfer, focusing on the influence of temperature on the
properties of laser cladding ceramic powder (surface material of the movable jaw plate), the coupling
analysis of cylinder disc wear is completed using the finite element software FEPG, and a temperature
measurement test bench which is built on the wear test machine for test analysis and verification.
Finally, the wear amount, effective hardening layer thickness, and strain thickness of the moving jaw
after symmetrical laser cladding path are analyzed by FEPG. It is concluded that in the wear process of
the moving jaw material after the symmetrical laser cladding path, the maximum temperature of the
moving jaw material is related to its load.

It is found that when the load is 100, 200, 300, 400, 500, and 600 N and the time is about 65 s, the
contact surface temperature is stable at 222, 251, 326, 341, 360, and 378 ◦C, respectively. The results
show that the temperature of FEPG at the same time point is slightly higher than that of the test when
the loads of the sample are 100, 200, 300, 400, 500, and 600 N, but the trend of temperature change is
the same. When the load is 300 N, the temperature error between the test and FEPG is the largest, and
the relative error is only 4.3%. When the load increases, the stable temperature of the laser-cladded
moving jaw material increases, and the wear amount first decreases and then increases. The minimum
wear amount appears at the load of 400 N, and the temperature is about 320 ◦C. With the increase
of load, the thickness of strain increases gradually, and the thickness of the effective hardening layer
increases obviously, but when the load reaches 400 N, the thickness of the effective hardening layer
changes little. The increase of the sample load increases in turn the temperature of the laser cladding
layer of the sample material, which intensifies the oxidation reaction of the ceramic powder of the
laser cladding layer. The research results provide a new idea for the analysis of the wear behavior of
the moving jaw plate after laser cladding under the action of reciprocating impact and friction and
provide a theoretical basis for the analysis of the change of the wear resistance of the moving jaw plate
caused by the temperature and the surface modification of the moving jaw plate.
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Abstract: In this article, the direct and inverse problems for the one-dimensional time-dependent
Volterra integro-differential equation involving two integration terms of the unknown function
(i.e., with respect to time and space) are considered. In order to acquire accurate numerical results,
we apply the finite integration method based on shifted Chebyshev polynomials (FIM-SCP) to handle
the spatial variable. These shifted Chebyshev polynomials are symmetric (either with respect to the
point x = L

2 or the vertical line x = L
2 depending on their degree) over [0, L], and their zeros in the

interval are distributed symmetrically. We use these zeros to construct the main tool of FIM-SCP: the
Chebyshev integration matrix. The forward difference quotient is used to deal with the temporal
variable. Then, we obtain efficient numerical algorithms for solving both the direct and inverse
problems. However, the ill-posedness of the inverse problem causes instability in the solution and, so,
the Tikhonov regularization method is utilized to stabilize the solution. Furthermore, several direct
and inverse numerical experiments are illustrated. Evidently, our proposed algorithms for both the
direct and inverse problems give a highly accurate result with low computational cost, due to the
small number of iterations and discretization.

Keywords: finite integration method; shifted Chebyshev polynomial; direct and inverse problems;
Volterra integro-differential equation; Tikhonov regularization method

MSC: 65R20; 65R32

1. Introduction

An integro-differential equation (IDE) is an equation which contains both derivatives and integrals
of an unknown function. Several situations in the branches of science and engineering can be
demonstrated by developing mathematical models which are often in the form of IDEs, such as
in RLC circuit analysis, the activity of interacting inhibitory and excitatory neurons, the Wilson–Cowan
model, and so on; see Reference [1] for more applications. In fact, many of these problems cannot
be directly solved, because we may not know all necessary information or an incomplete system
may be provided. This has led to the study of both direct and inverse problems for a certain type of
one-dimensional IDE involving time, which is called the one-dimensional time-dependent Volterra
IDE (TVIDE). Hence, in this study, we investigate the TVIDE of the following form

vt(x, t) + Lv(x, t) =
∫ t

0
κ1(x, η)v(x, η)dη +

∫ x

0
κ2(ξ, t)v(ξ, t)dξ + F(x, t), (1)
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for all (x, t) ∈ (0, L)× (0, T], where x and t represent space and time variables, respectively; L is the
spatial linear differential operator of order n; κ1(x, t) and κ2(x, t) are the given continuously integrable
kernel functions; and v(x, t) is an unknown function, which is to be determined subject to prescribed
initial and boundary conditions. We remark that, if a forcing term F(x, t) of (1) is given, then this
problem has only one unknown v(x, t) ∈ Cn,1([0, L] × [0, T]) to be solved, and it is called a direct
problem. In contrast, if the forcing term F(x, t) is missing, then this problem has two unknowns
F(x, t) ∈ C([0, L]× [0, T]) and v(x, t) ∈ Cn,1([0, L]× [0, T]) to be solved, and it is called an inverse
problem. However, for the inverse problem in this paper, we specifically define the forcing term
F(x, t) := β(t) f (x, t), where β(t) is a missing source function to be retrieved and f (x, t) is the given
function. We note that (1) has both

∫ t
0 κ1(x, η)v(x, η)dη and

∫ x
0 κ2(ξ, t)v(ξ, t)dξ, while several studies

in the literature have considered similar problems containing only one of these two terms.
The Volterra IDE containing only an integration term with respect to time arises in many

applications, including the compression of poro-viscoelastic media, blow-up problems, analysis of
space–time-dependent nuclear reactor dynamics, and so on; see Reference [2]. The existence, uniqueness,
and asymptotic behavior of its solution have been discussed in Reference [3]. There are many authors
who have studied the numerical solution of this type of problem by using techniques such as the finite
element method [2], finite difference method (FDM) [4], collocation methods in polynomial spline [5],
the implicit Runge–Kutta–Nyström method [6], the Legendre collocation method [7], and so on.

On the other hand, the Volterra IDE containing only an integration term with respect to space
has also been studied in various areas, such as for the one-dimensional viscoelastic problem and
one-dimensional heat flow in materials with memory [8], modeling heat/mass diffusion processes,
biological species coexisting together with increasing and decreasing rates of growth, electromagnetism,
and ocean circulation, among others [9]. Moreover, the existence and uniqueness for this type of
Volterra IDE were shown in Reference [8]. Consequently, abundant numerical methods have appeared
for finding solutions to this type of Volterra IDE using, for example, spline collocation method [10],
collocation method with implicit Runge–Kutta method [11], decomposition method [12], and so on.

However, our problem deals with a Volterra IDE involving both temporal and spatial integrations.
There have been no results in the literature regarding the existence and uniqueness of solutions to this
type of problem. In this paper, we concentrate on providing a decent numerical procedure to find
approximate solutions for both the direct and inverse problems of the proposed TVIDE (1).

Generally, it is well-known that the classification of problems involving differential equations
was defined by Hadamard [13] in 1902. Mathematical problems involving differential equations are
well-posed if the following conditions hold: existence, uniqueness, and stability. Otherwise, the problem
is called ill-posed; this normally occurs in the inverse problem. Even though the initial and boundary
conditions are prescribed, it is not sufficient to guarantee that our inverse problem (1) has unique
solutions β(t) and v(x, t). Hence, additional conditions (e.g., the observation or measurement of data)
need to be involved. In practice, there are many kinds of additional conditions; for example, a fixed point
of the system, an average time of the system, or an integral of the system. After the additional conditions
has been added as an auxiliary condition in our inverse problem (1), we can obtain the existence and
uniqueness of β(t) and v(x, t). However, the additional condition may contains measurement or
observation errors, which may cause the instability in the solutions; namely, a small perturbation in the
input data can produce a considerable error, especially for β(t). Thus, some regularization techniques
are required to overcome the ill-posedness and stabilize the solution.

There exist many schemes which are generally used to solve both direct and inverse problems
of Volterra IDEs, such as the above-mentioned methods. However, those methods utilize the process
of approximating differentiation. It is well-known that numerical differentiation is very sensitive
to rounding errors, as its manipulation task involves division by a small step-size. On the other
hand, the process of numerical integration involves multiplication by a small step-size and, so, it is
very insensitive to rounding errors. In recent years, the finite integration method (FIM) has been
developed to find approximate solutions of linear boundary value problems for partial differential
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equations (PDEs). The concept of FIM is to transform a given PDE into an equivalent integral equation,
following which a numerical integration method, such as the trapezoid, Simpson, or Newton–Cotes
methods (see References [14–16]), are applied. In 2018, Boonklurb et al. [17] modified the traditional
FIM by using Chebyshev polynomials to solve one- and two-dimensional linear PDEs and obtained
a more accurate result compared to the traditional FIMs and FDM. However, their technique [17] has
not yet been utilized to overcome the direct and inverse problems of TVIDE, which are the major
focuses of this work.

In this paper, we formulate numerical algorithms for solving the direct and inverse problems of
TVIDE (1). We manipulate the idea of FIM in Reference [17] by using shifted Chebyshev polynomials,
which we call the FIM with shifted Chebyshev polynomials (FIM-SCP), to deal with the spatial
variable and use the forward difference quotient to estimate the time derivative. We further apply
the Tikhonov regularization method to stabilize our ill-posed problem (1). The rest of the paper
is organized as follows. In Section 2, the definition and some basic properties concerning the
shifted Chebyshev polynomial are given to construct the shifted Chebyshev integration matrices.
The Tikhonov regularization method is also presented in Section 2. In Section 3, we use the FIM-SCP
and the forward difference quotient to devise efficient numerical algorithms to find approximate
solutions to the direct and inverse problems of (1). Then, we implement our proposed algorithms
through several examples, in order to demonstrate their efficiency compared with their analytical
solutions. Furthermore, we also display the time convergence rate and CPU time (s) in Section 4.
Finally, the conclusion and some directions for future work are given in Section 5.

2. Preliminaries

In this section, we introduce some necessary tools for solving the direct and inverse problems of
TVIDE (1): the FIM-SCP and the Tikhonov regularization method.

2.1. Shifted Chebyshev Integration Matrices

We first introduce the definition and some basic properties of shifted Chebyshev polynomials [18],
which are used to establish the first- and higher-order shifted Chebyshev integration matrices based
on the idea of constructing integration matrices in Reference [17]. However, we slightly modify this
idea by instead using a shifted Chebyshev expansion suitable for solving our problem (1) without
domain transformation. We give the definition and properties as follows.

Definition 1. The shifted Chebyshev polynomial of degree n ≥ 0 is defined by

Sn(x) = cos
(

n arccos
(

2x
L

− 1
))

for x ∈ [0, L].

Note that this shifted Chebyshev polynomial is symmetric, either with respect to the point x = L
2

or the vertical line x = L
2 over [0, L], depending on its degree. Next, we provide some important

properties of the shifted Chebyshev polynomial, which we use to constructing the shifted Chebyshev
integration matrix, as follows.

Lemma 1. (i) For n ∈ N, the zeros of Sn(x) are symmetrically distributed over [0, L] and given by

xk =
L
2

(
cos
(

2k − 1
2n

π

)
+ 1
)

, k ∈ {1, 2, 3, ..., n}. (2)

(ii) For r ∈ N, the rth-order derivatives of Sn(x) at the endpoint b ∈ {0, L} are

dr

dxr Sn(x)
∣∣∣
x=b

=
r−1

∏
k=0

(
n2 − k2

2k + 1

)(
2b
L

− 1
)n+r

. (3)
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(iii) For x ∈ [0, L], the single-layer integrations of shifted Chebyshev polynomial Sn(x) are

S̄0(x) =
∫ x

0
S0(ξ) dξ = x,

S̄1(x) =
∫ x

0
S1(ξ) dξ =

x2

L
− x,

S̄n(x) =
∫ x

0
Sn(ξ) dξ =

L
4

(
Sn+1(x)

n + 1
− Sn−1(x)

n − 1
− 2(−1)n

n2 − 1

)
, n ∈ {2, 3, 4, ...}.

(iv) Let {xk}n
k=1 be a set of zeros of Sn(x), the shifted Chebyshev matrix S is defined by

S =

⎡
⎢⎢⎢⎢⎣

S0(x1) S1(x1) · · · Sn−1(x1)

S0(x2) S1(x2) · · · Sn−1(x2)
...

...
. . .

...
S0(xn) S1(xn) · · · Sn−1(xn)

⎤
⎥⎥⎥⎥⎦ .

Then, it has the multiplicative inverse S−1 = 1
n diag(1, 2, 2, ..., 2)S�.

Next, we use the above definition and properties of shifted Chebyshev polynomials to construct
the shifted Chebyshev integration matrices. First, let N be a positive integer and L be a positive real
number. Define an approximate solution u(x) of a certain differential equation by a linear combination
of shifted Chebyshev polynomials Sn(x); that is,

u(x) =
N−1

∑
n=0

cnSn(x) for x ∈ [0, L]. (4)

Let xk for k ∈ {1, 2, 3, ..., N} be the interpolated points which are meshed by the zeros of SN(x)
defined in (2). Substituting each xk into (4), it can be expressed (in matrix form) as⎡

⎢⎢⎢⎢⎣
u(x1)

u(x2)
...

u(xN)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

S0(x1) S1(x1) · · · SN−1(x1)

S0(x2) S1(x2) · · · SN−1(x2)
...

...
. . .

...
S0(xN) S1(xN) · · · SN−1(xN)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

c0

c1
...

cN−1,

⎤
⎥⎥⎥⎥⎦ ,

which is denoted by u = Sc. The unknown coefficient vector can be performed by c = S−1u. Let us
consider the single-layer integration of u(x) from 0 to xk, which is denoted by U(1)(xk); we obtain

U(1)(xk) =
∫ xk

0
u(ξ) dξ =

N−1

∑
n=0

cn

∫ xk

0
Sn(ξ) dξ =

N−1

∑
n=0

cnS̄n(xk)

for k ∈ {1, 2, 3, ..., N} or, in matrix form,

⎡
⎢⎢⎢⎢⎣

U(1)(x1)

U(1)(x2)
...

U(1)(xN)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

S̄0(x1) S̄1(x1) · · · S̄N−1(x1)

S̄0(x2) S̄1(x2) · · · S̄N−1(x2)
...

...
. . .

...
S̄0(xN) S̄1(xN) · · · S̄N−1(xN)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

c0

c1
...

cN−1

⎤
⎥⎥⎥⎥⎦ .

We denote the above matrix by U(1) = S̄c = S̄S−1u := Au, where A = S̄S−1 := [aki]N×N is called the
first-order shifted Chebyshev integration matrix for the FIM-SCP; that is,

U(1)(xk) =
∫ xk

0
u(ξ) dξ =

N

∑
i=1

akiu(xi).
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Next, consider the double-layer integration of u(x) from 0 to xk, which denoted by U(2)(xk). We have

U(2)(xk) =
∫ xk

0

∫ ξ2

0
u(ξ1) dξ1dξ2 =

N

∑
i=1

aki

∫ xi

0
u(ξ1) dξ1 =

N

∑
i=1

N

∑
j=1

akiaiju(xj)

for k ∈ {1, 2, 3, ..., N}. It can be written, in matrix form, as U(2) = A2u. Similarly, we can calculate the
n-layer integration of u(x) from 0 to xk, which is denoted by U(n)(xk). Then, we have

U(n)(xk) =
∫ xk

0
· · ·
∫ ξ2

0
u(ξ1) dξ1 · · · dξn =

N

∑
in=1

· · ·
N

∑
j=1

akin · · · ai1 ju(xj)

for k ∈ {1, 2, 3, ..., N}, which can be expressed, in matrix form, as U(n) = Anu.

2.2. Tikhonov Regularization Method

In this section, we briefly present the idea of the Tikhonov regularization method [19], which is
usually applied to stabilize ill-posed problems, such as our inverse problem. Normally, the considered
inverse problem can be represented by the system of m linear equations with n unknowns, as

Ax = bε, (5)

where bε is the vector in the right-hand side, which is perturbed by some noise ε, and x is the solution
of the system (5) after perturbation. Tikhonov regularization replaces the inverse problem (5) by
a minimization problem to obtain an efficiently approximate solution, which can be described as

arg min
x∈Rn

{
‖Ax − bε‖2 + λ ‖x‖2

}
, (6)

where λ > 0 is a regularization parameter balancing the weighting between the two terms of the
function and ‖ · ‖ is the standard Euclidean norm. To reformulate the above minimization problem (6),
we obtain

arg min
x∈Rn

⎧⎨
⎩
∥∥∥∥∥
[

A√
λI

]
x −
[

bε

0

]∥∥∥∥∥
2
⎫⎬
⎭ .

Clearly, this is a linear least-square problem in x. Then, the above problem turns out to be the normal
equation of the form [

A√
λI

]� [
A√
λI

]
x =

[
A√
λI

]� [
bε

0

]
.

To simplify the above equation, the solution x under the regularization parameter λ (denoted by xλ)
can be computed by

xλ = (A�A + λI)−1A�bε. (7)

We can see that the accuracy of xλ in (7) depends on the regularization parameter λ, which plays
an important role in the calculation: A large regularization parameter may over-smoothen the solution,
while a small regularization parameter may lose the ability to stabilize the solution. Therefore,
a suitable choice of the regularization parameter λ is very significant for finding a stable approximate
solution. There are many approaches for choosing a value of the parameter λ, such as the discrepancy
principle criterion, the generalized cross-validation, the L-curve method, and so on. Nevertheless,
the regularization parameter λ in this paper is chosen according to Morozov’s discrepancy principle
combined with Newton’s method, which has been proposed in Reference [20]. We provide the
procedure for calculating the optimal regularization parameter λ below, which can be carried out by
the following steps:
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Step 1: Set n = 0 and give an initial regularization parameter λ0 > 0.

Step 2: Compute xλn = (A�A + λnI)−1A�bε.

Step 3: Compute ∇xλn = −(A�A + λnI)−1xλn .

Step 4: Compute G(λn) = ‖Axλn − bε‖2 − ε2.

Step 5: Compute G′(λn) = 2λn‖A∇xλn‖2 + 2λ2
n‖∇xλn‖2.

Step 6: Compute λn+1 = λn − G(λn)
G′(λn)

.

Step 7: If ‖λn+1 − λn‖ < δ for a tolerance δ, end. Else, set n = n + 1 and return to Step 2.

Therefore, we receive the optimal regularization parameter λ, which is the terminal value λn

obtained from the above procedure. When the regularization parameter λ is fixed as the mentioned
optimal value, we can directly obtain the corresponding regularized solution by (7).

3. Numerical Algorithms for Direct and Inverse Problems of TVIDE

In this section, we apply the FIM-SCP described in Section 2.1 to devise the numerical algorithms
for solving both the direct and inverse TVIDE problems (1), in order to obtain accurate approximate
results. Let u be an approximate solution of v in (1). Then, we have the following linear TVIDE over
the domain Ω = (0, L)× (0, T]:

ut(x, t) + Lu(x, t) =
∫ t

0
κ1(x, η)u(x, η)dη +

∫ x

0
κ2(ξ, t)u(ξ, t)dξ + F(x, t), (8)

subject to the initial condition
u(x, 0) = φ(x), x ∈ [0, L], (9)

and the boundary conditions
u(r)(b, t) = ψr(t), t ∈ [0, T], (10)

for b ∈ {0, L} and r ∈ {0, 1, 2, ..., n − 1}, where t and x represent time and space variables, respectively.
Additionally, κ1, κ2, F, φ, and ψr are given continuous functions and L is the spatial linear differential
operator of order n defined by L := ∑n

i=0 pi(x, t) di

dxi , where pi(x, t) is given and sufficiently smooth.

3.1. Procedure for Solving the Direct TVIDE Problem

First, we linearize (8) by uniformly discretizing the temporal domain into M subintervals with
time step τ. Then, we specify (8) at a time tm = mτ for m ∈ N and use the first-order forward difference
quotient to estimate the time derivative term ut. Next, we replace each x by xk for k ∈ {1, 2, 3, ..., N} as
generated by the zeros of the shifted Chebyshev polynomial SN(x) defined in (2). Thus, we have

u〈m〉 − u〈m−1〉

τ
+ Lu〈m〉 =

∫ tm

0
κ1(xk, η)u(xk, η)dη +

∫ xk

0
κ2(ξ, tm)u(ξ, tm)dξ + F〈m〉, (11)

where u〈m〉 = u〈m〉(xk) = u(xk, tm) and F〈m〉 = F〈m〉(xk) = F(xk, tm). Next, consider the first integral
term with respect to time by letting it be J〈m〉

1 (xk), we approximate J〈m〉
1 (xk) by using the trapezoidal

rule. Thus, we approximate J〈m〉
1 (xk) as
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J〈m〉
1 (xk) :=

∫ tm

0
κ1(xk, η)u(xk, η)dη

=
m−1

∑
i=0

∫ ti+1

ti

κ1(xk, η)u(xk, η)dη

≈
m−1

∑
i=0

τ

2

(
κ
〈i〉
1 (xk)u〈i〉(xk) + κ

〈i+1〉
1 (xk)u〈i+1〉(xk)

)

=
τ

2
κ
〈0〉
1 (xk)u〈0〉(xk) + τ

m−1

∑
i=1

κ
〈i〉
1 (xk)u〈i〉(xk) +

τ

2
κ
〈m〉
1 (xk)u〈m〉(xk)

for each xk ∈ {x1, x2, x3, ..., xN}. The above equation can be written, in matrix form, as

J
〈m〉
1 =

τ

2
K

〈0〉
1 u〈0〉 + τ

m−1

∑
i=1

K
〈i〉
1 u〈i〉 + τ

2
K

〈m〉
1 u〈m〉, (12)

where each parameter in (12) can be defined as follows:

J
〈m〉
1 =

[
J〈m〉
1 (x1), J〈m〉

1 (x2), J〈m〉
1 (x3), ..., J〈m〉

1 (xN)
]�

,

u〈i〉 =
[
u〈i〉(x1), u〈i〉(x2), u〈i〉(x3), ..., u〈i〉(xN)

]�
,

K
〈i〉
1 = diag

(
κ
〈i〉
1 (x1), κ

〈i〉
1 (x2), κ

〈i〉
1 (x3), ..., κ

〈i〉
1 (xN)

)
.

Then, we consider the second integral term with respect to space by letting it be J〈m〉
2 (xk) and using the

idea of FIM-SCP (as described in Section 2.1) to approximate it. Then, we obtain

J〈m〉
2 (xk) :=

∫ xk

0
κ2(ξ, tm)u(ξ, tm)dξ =

∫ xk

0
κ
〈m〉
2 (ξ)u〈m〉(ξ)dξ ≈

N

∑
i=1

akiκ
〈m〉
2 (xi)u〈m〉(xi)

for each xk ∈ {x1, x2, x3, ..., xN}. The above equation can be written, in matrix form, as

J
〈m〉
2 = AK

〈m〉
2 u〈m〉, (13)

where A = S̄S−1 is the shifted Chebyshev integration matrix defined in Section 2.1,

J
〈m〉
2 =

[
J〈m〉
2 (x1), J〈m〉

2 (x2), J〈m〉
2 (x3), ..., J〈m〉

2 (xN)
]�

,

u〈m〉 =
[
u〈m〉(x1), u〈m〉(x2), u〈m〉(x3), ..., u〈m〉(xN)

]�
,

K
〈m〉
2 = diag

(
κ
〈m〉
2 (x1), κ

〈m〉
2 (x2), κ

〈m〉
2 (x3), ..., κ

〈m〉
2 (xN)

)
.

Then, we apply the FIM-SCP (described in Section 2.1) to eliminate all spatial derivatives from (11)
by taking the n-layer integral on both sides of (11), to obtain the following equation at the shifted
Chebyshev node xk, as defined in (2), as

∫ xk

0
...
∫ ξ2

0

(
u〈m〉 − u〈m−1〉

τ
+ Lu〈m〉

)
dξ1... dξn =

∫ xk

0
...
∫ ξ2

0

(
J〈m〉
1 + J〈m〉

2 + F〈m〉
)

dξ1... dξn. (14)
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To simplify the n-layer integration of the spatial derivative terms of Lu〈m〉, by letting it be Q〈m〉(xk)

and using the technique of integration by parts, we have

Q〈m〉(xk) :=
∫ xk

0
...
∫ ξ2

0
Lu〈m〉(ξ1) dξ1... dξn

=
∫ xk

0
...
∫ ξ2

0

n

∑
i=0

pi(ξ1, tm)
di

dxi u〈m〉(ξ1) dξ1... dξn

=
n

∑
i=0

(−1)i
(

n
i

) ∫ xk

0
...
∫ η2

0
p(i)n (η1, tm)u〈m〉(η1)dη1... dηi

+
∫ xk

0

(
n−1

∑
i=0

(−1)i
(

n − 1
i

) ∫ ξn

0
...
∫ η2

0
p(i)n−1(η1, tm)u〈m〉(η1)dη1... dηi

)
dξn

+
∫ xk

0

∫ ξn

0

(
n−2

∑
i=0

(−1)i
(

n − 2
i

) ∫ ξn−1

0
...
∫ η2

0
p(i)n−2(η1, tm)u〈m〉(η1)dη1... dηi

)
dξn−1dξn

...

+
∫ xk

0
...
∫ ξ2

0
p0(ξ1, tm)u〈m〉(ξ1)dξ1... dξn + d1

xn−1
k

(n − 1)!
+ d2

xn−2
k

(n − 2)!
+ d3

xn−3
k

(n − 3)!
+ ... + dn,

where d1, d2, d3, ..., dn are the arbitrary constants which emerge from the process of integration by
parts. Then, we substitute each xk ∈ {x1, x2, x3, ..., xN} into the above equation and utilize the idea of
FIM-SCP. Thus, we can express it, in matrix form, by

Q〈m〉 =
n

∑
i=0

(−1)i
(

n
i

)
AiP

(i)
n u〈m〉 +

n−1

∑
i=0

(−1)i
(

n − 1
i

)
Ai+1P

(i)
n−1u〈m〉

+
n−2

∑
i=0

(−1)i
(

n − 2
i

)
Ai+2P

(i)
n−2u〈m〉 + · · ·+ AnP

(0)
0 u〈m〉 + Xnd (15)

=
n

∑
j=0

n−j

∑
i=0

(−1)i
(

n − j
i

)
Ai+jP

(i)
n−ju

〈m〉 + Xnd,

where A = S̄S−1 is the shifted Chebyshev integration matrix, d = [d1, d2, d3, ..., dN ]
�,

Q〈m〉 =
[

Q〈m〉(x1), Q〈m〉(x2), Q〈m〉(x3), ..., Q〈m〉(xN)
]�

,

Xn =
[
xn−1, xn−2, xn−3, ..., x0

]
for each xi =

1
i!
[
xi

1, xi
2, xi

3, ..., xi
N
]� ,

P
(i)
n−j = diag

(
p(i)n−j(x1, tm), p(i)n−j(x2, tm), p(i)n−j(x3, tm), ..., p(i)n−j(xN , tm)

)
.

Finally, we vary all points xk ∈ {x1, x2, x3, ..., xN} in (14) and rearrange them into matrix form by using
the FIM-SCP with the derived matrix equations (12), (13), and (15); thus, we obtain

Anu〈m〉 − Anu〈m−1〉

τ
+ Q〈m〉 = AnJ

〈m〉
1 + AnJ

〈m〉
2 + AnF〈m〉

or, factorizing the unknown solution u〈m〉 explicitly, as

(
An + τ ∑n

j=0 ∑
n−j
i=0 (−1)i(n−j

i )Ai+jP
(i)
n−j − τ2

2 AnK
〈m〉
1 − τAn+1K

〈m〉
2

)
u〈m〉

+Xnd = τ2

2 AnK
〈0〉
1 u〈0〉 + τ2 ∑m−1

i=1 AnK
〈i〉
1 u〈i〉 + Anu〈m−1〉 + τAnF〈m〉.

(16)
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Next, consider the given boundary conditions (10) at the endpoints b ∈ {0, L}. We can convert them
into matrix form by using the linear combination of shifted Chebyshev polynomial (4) in term of the
rth-order derivative of u at the iteration time tm and using (3). Then, we have

dr

dxr u〈m〉(x)
∣∣∣
x=b

=
N−1

∑
n=0

c〈m〉
n

dr

dxr Sn(x)
∣∣∣
x=b

= ψr(tm)

for all r ∈ {0, 1, 2, ..., n − 1}. We can express the above equation, in matrix form, as

⎡
⎢⎢⎢⎢⎣

S0(b) S1(b) · · · SN−1(b)
S′

0(b) S′
1(b) · · · S′

N−1(b)
...

...
. . .

...

S(n−1)
0 (b) S(n−1)

1 (b) · · · S(n−1)
N−1 (b)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c〈m〉
0

c〈m〉
1
...

c〈m〉
N−1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

ψ0(tm)

ψ1(tm)
...

ψn−1(tm)

⎤
⎥⎥⎥⎥⎦ , (17)

which can be denoted by Bc〈m〉 = Ψ〈m〉 or BS−1u〈m〉 = Ψ〈m〉. Finally, we can construct the system of
mth iterative linear equations from (16) and (17), which has N + n unknowns containing u〈m〉 and d,
as follows: [

H〈m〉 Xn

BS−1 0

] [
u〈m〉

d

]
=

[
E
〈m〉
1

Ψ〈m〉

]
, (18)

where H〈m〉 is the coefficient matrix of u〈m〉 in (16) and E
〈m〉
1 is the right-hand side column vector of (16).

Consequently, the solution u〈m〉 can be approximated by solving the system (18) starting from the
given initial condition (9); that is, u〈0〉 = [φ(x1), φ(x2), φ(x3), ..., φ(xN)]

�. Note that, when we would
like to find a numerical solution u(x, t) at any point x ∈ [0, L] for the terminal time T, we can calculate
it by the following formula:

u(x, T) =
N−1

∑
n=0

c〈m〉
n Sn(x) = s(x)c〈m〉 = s(x)S−1u〈m〉,

where s(x) = [S0(x), S1(x), S2(x), ..., SN−1(x)] and u〈m〉 is the final mth iterative solution of (18).

3.2. Procedure for Solving Inverse Problem of TVIDE

For the inverse problem in this paper, we specifically define the forcing term F(x, t) := β(t) f (x, t),
where β(t) is a missing source function to be retrieved and f (x, t) is the given function. Thus,
our considered time-dependent inverse TVIDE problem (1) becomes

ut(x, t) + Lu(x, t) =
∫ t

0
κ1(x, η)u(x, η)dη +

∫ x

0
κ2(ξ, t)u(ξ, t)dξ + β(t) f (x, t), (19)

where u is an approximate solution of v and the other parameters are defined as in (8). The initial
and boundary conditions of (19) are (9) and (10), which satisfy the compatibility conditions. Now,
we remove all spatial derivatives from (19) and use the shifted Chebyshev integration matrix (as
explained in Section 2.1). Then, we obtain the following matrix equation, based on the same process as
in (16), as

(
An + τ ∑n

j=0 ∑
n−j
i=0 (−1)i(n−j

i )Ai+jP
(i)
n−j − τ2

2 AnK
〈m〉
1 − τAn+1K

〈m〉
2

)
u〈m〉

+Xnd − τAnf〈m〉β〈m〉 = τ2

2 AnK
〈0〉
1 u〈0〉 + τ2 ∑m−1

i=1 AnK
〈i〉
1 u〈i〉 + Anu〈m−1〉,

(20)

where β〈m〉 = β(tm), f〈m〉 = [ f (x1, tm), f (x2, tm), f (x3, tm), ..., f (xN , tm)]� and the other parameters in
(20) are as defined in Section 3.1. However, the occurrence of missing data is caused by the given
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conditions being insufficient to ensure a unique solution to our inverse problem. Hence, an additional
condition or observed data needs to be involved. Thus, we use an additional condition, regarding the
aggregated solution of the system, in the following form:

∫ L

0
u(ξ, t) dξ = g(t), t ∈ [0, T], (21)

where g(t) is the measured data at time t, which probably contains measurement errors. In order
to illustrate the realistic phenomena of this problem, we assume that the measurement data of the
aggregated solution g(t) involves some noise ε, which is denoted by gε(t) (where ‖gε(t)− g(t)‖ ≤ ε)
and define the noisy value ε by a random variable generated by the Gaussian normal distribution with
mean μ = 0 and standard deviation σ = p|g(t)|, where p is the percentage of the noise to be input.
Then, the additional condition (21) becomes

∫ L

0
u(ξ, t) dξ = gε(t), t ∈ [0, T]. (22)

Using the concept of FIM-SCP, the additional condition (22) at time tm can be written, in vector form, as

∫ L

0
u〈m〉(ξ) dξ =

N−1

∑
n=0

c〈m〉
n

∫ L

0
Sn(ξ) dξ =

N−1

∑
n=0

c〈m〉
n S̄n(L) dξ := zc〈m〉 = zS−1u〈m〉 = gε(tm), (23)

where z = [S̄0(L), S̄1(L), S̄2(L), ..., S̄N−1(L)] and each S̄n(L) is as defined in Lemma 1(iii). Finally,
we can establish the following system of mth iterative linear equations for the inverse TVIDE problem
(19) by utilizing (20) and (23), which has N + n + 1 unknown variables including u〈m〉, d, and β〈m〉, as

⎡
⎢⎣H〈m〉 Xn −τAnf〈m〉

BS−1 0 0

zS−1 0 0

⎤
⎥⎦
⎡
⎢⎣u〈m〉

d

β〈m〉

⎤
⎥⎦ =

⎡
⎢⎣ E

〈m〉
2

Ψ〈m〉

gε(tm)

⎤
⎥⎦ , (24)

where H〈m〉 is the coefficient matrix of u〈m〉 defined in (20) and E
〈m〉
2 is the right-hand side column vector

of (20). Before seeking an approximate solution u〈m〉 and source term β〈m〉, as we have mentioned,
we must address that our inverse problem is ill-posed. When a noisy value is input into the system,
it may cause a significant error. Hence, we need to stabilize the solution of (24) by employing the
Tikhonov regularization method. We denote the linear system (24) by the simplified matrix equation as

Ry = bε. (25)

Applying the Tikhonov regularization method (6) in order to filter out the noise in the corresponding
perturbed data, we can stabilize the numerical solution (25) by using (7). Thus, we have

yλ = (R�R + λI)−1R�bε. (26)

Finally, we can receive the optimal regularization parameter λ by using Morozov’s discrepancy
principle combined with Newton’s method, as described in Section 2.2. Thus, we can directly obtain
the corresponding regularized solution by (26).
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3.3. Algorithms for Solving the Direct and Inverse TVIDE Problems

For computational convenience, we summarize the aforementioned procedures for finding
approximate solutions to the direct (8) and inverse (19) TVIDE problems in Sections 3.1 and 3.2,
respectively, as the numerical Algorithms 1 and 2, which are in the form of pseudocode.

Algorithm 1 Numerical algorithm for solving the direct TVIDE problem via FIM-SCP

Input: x, τ, L, T, N, φ(x), ψr(t), pi(x, t), κ1(x, t), κ2(x, t), and F(x, t).
Output: An approximate solution u(x, T).

1: Set xk =
L
2
(

cos
( 2k−1

2N π
)
+ 1
)

for k ∈ {1, 2, 3, ..., N} in descending order.

2: Compute A, B, S, S̄, S−1, Xn, and u〈0〉.
3: Set m = 1 and t1 = τ.

4: while tm ≤ T do

5: Compute K
〈m〉
1 , K

〈m〉
2 , F〈m〉, H〈m〉, Ψ〈m〉, and E

〈m〉
1 .

6: Find u〈m〉 by solving the linear system (18).

7: Update m = m + 1.

8: Compute tm = mτ.

9: end while

10: return Find u(x, T) = s(x)S−1u〈m〉.

Algorithm 2 Numerical algorithm for solving the inverse TVIDE problem via FIM-SCP

Input: x, p, τ, δ, L, T, N, λ0, φ(x), g(t), ψr(t), pi(x, t), κ1(x, t), κ2(x, t), and f (x, t).
Output: An approximate solution u(x, T) and the source terms β(tm) at all discretized times.

1: Set xk =
L
2
(

cos
( 2k−1

2N π
)
+ 1
)

for k ∈ {1, 2, 3, ..., N} in descending order.

2: Compute A, B, S, S̄, S−1, Xn, AN , and u〈0〉.
3: Set m = 1 and t1 = τ.

4: while tm ≤ T do

5: Set the measurement data gε(tm) = g(tm) + ε, where ε ∼ N (0, p2|g(tm)|2).
6: Compute K

〈m〉
1 , K

〈m〉
2 , f〈m〉, H〈m〉, Ψ〈m〉, E

〈m〉
2 , R, and bε.

7: Set n = 0.

8: do

9: Compute yλn = (R�R + λnI)−1R�bε.

10: Compute ∇yλn = −(R�R + λnI)−1yλn .

11: Compute G(λn) = ‖Ryλn − bε‖2 − ε2.

12: Compute G′(λn) = 2λn‖R∇yλn‖2 + 2λ2
n‖∇yλn‖2.

13: Compute λn+1 = λn − G(λn)
G′(λn)

.

14: Update n = n + 1.

15: while ‖λn − λn−1‖ ≥ δ

16: Set the optimal regularization parameter λ = λn.

17: Find u〈m〉 and β〈m〉 by explicitly solving yλ using the matrix equation (7).

18: Update m = m + 1.

19: Compute tm = mτ.

20: end while

21: return Find u(x, T) = s(x)S−1u〈m〉.
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4. Numerical Experiments

In this section, we implement our devised numerical algorithms for solving the direct and
inverse TVIDE problems through several examples, in order to demonstrate the efficiency and
accuracy of the solutions obtained by proposed methods. Examples 1 and 2 are used to examine
Algorithm 1 for the direct TVIDE problems (8). Examples 3 and 4 are inverse TVIDE problems (19),
as solved by Algorithm 2. Additionally, time convergence rates and CPU times(s) for each example
are presented to indicate the computational cost and time. The time convergence rate is defined by
Rate = limtm→T

‖u∗(tm+1)−u(tm+1)‖∞
‖u∗(tm)−u(tm)‖∞

, where T is the terminal time, tm is a partitioned time contained in
[0, T], u∗(tm) is the exact solution at time tm, u(tm) is the numerical solution at time tm, and ‖ · ‖∞ is
the l∞ norm. Graphical solutions of each example are also depicted. Our numerical algorithms were
implemented using the MatLab R2016a software, run on a Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz
computer system.

Example 1. Consider the following direct TVIDE problem, which consists of a second-order derivative with
constant coefficient for x ∈ (0, 1) and t ∈ (0, T]:

ut + uxx + u =
∫ t

0
2e−xu(x, η)dη +

∫ x

0
(ξ + t)u(ξ, t)dξ + F(x, t), (27)

where
F(x, t) = −t − ex(t2 − 3t + tx − 1),

subject to the homogeneous initial condition u(x, 0) = 0 for x ∈ [0, 1] and the Dirichlet boundary conditions
u(0, t) = t and u(1, t) = te for t ∈ [0, T]. The analytical solution of this problem is u∗(x, t) = tex.

In the numerical testing based on Algorithm 1, we first took the double-layer integral of both
sides of (27) and transformed it into matrix form (16). Then, we obtained the approximate solutions
u(x, T) for this problem (27) by applying the numerical Algorithm 1. The accuracy of our obtained
approximate results was measured by the mean absolute error, which compared it to the analytical
solution at different values of x ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and the terminal time T = 1, as shown in Table 1.
From Table 1, we observe that, when the partitioning number of the temporal domain M was fixed and
nodal numbers N were increasingly varied, then the accuracy was significantly improved. Similarly,
for a fixed nodal number N but various time partitioning numbers M, the accuracy results were also
significantly improved. Moreover, the convergence rates with respect to the time in Algorithm 1 were
estimated for various numbers of the time partition (M ∈ {5, 10, 15, 20, 25}) for the spatial points
N = 10, as shown in Table 2. We can notice, from Table 2, that these time convergence rates for the �∞

norm indeed approached linear convergence for T ∈ {5, 10, 15}. The computational cost, in terms of
CPU times (s), is also displayed in Table 2. Finally, a graph of our approximate solutions u(x, t) for
different times t and the surface plot of the solution under the parameters N = 20, M = 20, and T = 1
are depicted in Figure 1.

Table 1. Mean absolute errors between exact and numerical solutions of u(x, 1) for Example 1.

x
M = 20 N = 12

N = 8 N = 10 N = 12 M = 11 M = 13 M = 15

0.1 1.6855 × 10−5 1.1723 × 10−8 1.0208 × 10−10 2.3823 × 10−7 5.0060 × 10−9 3.3268 × 10−11

0.3 4.3851 × 10−5 3.0501 × 10−8 2.6554 × 10−10 6.1976 × 10−7 1.3024 × 10−8 8.6539 × 10−11

0.5 5.3554 × 10−5 3.7247 × 10−8 3.2429 × 10−10 7.5684 × 10−7 1.5904 × 10−8 1.0567 × 10−10

0.7 4.2555 × 10−5 2.9599 × 10−8 2.5767 × 10−10 6.0140 × 10−7 1.2638 × 10−8 8.3964 × 10−11

0.9 1.5864 × 10−5 1.1034 × 10−8 9.6049 × 10−11 2.2419 × 10−7 4.7112 × 10−9 3.1289 × 10−11
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Table 2. Time convergence rates and CPU times (s) for Example 1 by Algorithm 1 with N = 10.

M
T = 5 T = 10 T = 15

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

5 4.298 × 10−12 1.4584 0.0465 8.565 × 10−12 1.5076 0.0456 1.262 × 10−11 1.5112 0.0469
10 4.318 × 10−12 1.2499 0.0487 8.576 × 10−12 1.2863 0.0469 1.276 × 10−11 1.3040 0.0485
15 4.309 × 10−12 1.1723 0.0495 8.547 × 10−12 1.2008 0.0481 1.275 × 10−11 1.2135 0.0501
20 4.311 × 10−12 1.1327 0.0506 8.533 × 10−12 1.1555 0.0516 1.277 × 10−11 1.1657 0.0535
25 1.135 × 10−12 1.1353 0.0521 8.540 × 10−12 1.1272 0.0538 1.277 × 10−11 1.1365 0.0553

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 1. The graphical results of Example 1 for N = 20, M = 20, and T = 1.

Example 2. Consider the following direct TVIDE problem, which consists of a third-order derivative with
variable coefficient for x ∈ (0, 1) and t ∈ (0, T]:

ut + tuxxx + cos(x)uxx =
∫ t

0

2
x − 1

u(x, η)dη +
∫ x

0

6t
ξ − 1

u(ξ, t)dξ + F(x, t), (28)

where
F(x, t) = x − x2 + xt2(3x + 1)− 2t cos(x),

subject to the initial condition u(x, 0) = 0 for x ∈ [0, 1] and the boundary conditions u(0, t) = 0, u(1, t) = 0,
and u′(0, t) = t for t ∈ [0, T]. The analytical solution of this problem is u∗(x, t) = (x − x2)t.

We test the efficiency and accuracy of the proposed Algorithm 1 via the problem (28). First,
we took a triple-layer integral on both sides of (28) and utilized the shifted Chebyshev integration
matrix to transform it into matrix form (16). Next, we implemented Algorithm 1 to obtain numerical
solutions u(x, T) for this problem (28). Table 3 shows the precision of our obtained approximate results
at different values of x ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and at the terminal time T = 1, through the mean
absolute error. We can see that the accuracy was significantly improved according to an increase in
the number of both the partitioning space and time domains. However, we observe that, in the case
of fixed N, when M was increased, the mean absolute errors provide accurate results with a lower
computational number M. Furthermore, the time convergence rates concerning the �∞ norm and CPU
times (s) are demonstrated in Table 4, under various values of M (M ∈ {5, 10, 15, 20, 25}) and final
times T (T ∈ {5, 10, 15}). The graphical solutions for u(x, t) in both one and two dimensions are shown
in Figure 2.
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Table 3. Mean absolute errors between exact and numerical solutions of u(x, 1) for Example 2.

x
M = 10 N = 10

N = 8 N = 10 N = 12 M = 5 M = 10 M = 15

0.1 3.5098 × 10−10 5.0498 × 10−13 1.6695 × 10−14 5.1849 × 10−13 5.0498 × 10−13 4.9435 × 10−13

0.3 1.0060 × 10−9 1.1285 × 10−12 4.1411 × 10−14 1.1544 × 10−12 1.1285 × 10−12 1.0850 × 10−12

0.5 1.0780 × 10−9 1.4543 × 10−12 5.1958 × 10−14 1.4672 × 10−12 1.4543 × 10−12 1.3845 × 10−12

0.7 1.0237 × 10−9 1.1625 × 10−12 4.5908 × 10−14 1.1572 × 10−12 1.1625 × 10−12 1.0923 × 10−12

0.9 3.1567 × 10−10 5.2400 × 10−13 2.0983 × 10−14 5.1567 × 10−13 5.2400 × 10−13 4.9050 × 10−13

Table 4. Time convergence rates and CPU times (s) for Example 2 by Algorithm 1 with N = 10.

M
T = 5 T = 10 T = 15

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

5 1.426 × 10−12 1.0241 0.0524 1.620 × 10−12 1.0489 0.0531 3.549 × 10−12 1.3720 0.0535
10 1.533 × 10−12 1.0334 0.0577 1.635 × 10−12 1.0278 0.0576 1.874 × 10−12 1.1035 0.0576
15 1.426 × 10−12 1.0208 0.0597 1.664 × 10−12 1.0243 0.0585 1.806 × 10−12 1.0294 0.0598
20 1.476 × 10−12 1.0223 0.0609 1.609 × 10−12 1.0210 0.0610 1.537 × 10−12 1.0203 0.0620
25 1.496 × 10−12 1.0165 0.0619 1.488 × 10−12 1.0182 0.0638 1.276 × 10−12 1.0079 0.0641

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 2. The graphical results of Example 2 for N = 20, M = 20, and T = 1.

Example 3. Consider the following inverse TVIDE problem, which consists of a second-order derivative with
constant coefficient and a continuous forcing function f (x, t) for x ∈ (0, 1) and t ∈ (0, T]:

ut − uxx + 2u =
∫ t

0
2 ln(x)u(x, η)dη +

∫ x

0
e−ξ u(ξ, t)dξ + β(t) f (x, t), (29)

where
f (x, t) = e2t [1 + t − x + ex + te−x − (2ex + t)t ln x

]
,

subject to the initial condition u(x, 0) = ex for x ∈ [0, 1] and the boundary conditions u(0, t) = t + 1 and
u(1, t) = t + e for t ∈ [0, T]. The additional condition, in terms of the aggregated solution of the system, is
g(t) = t + e − 1. The analytical solutions of this problem are u∗(x, t) = t + ex and β∗(t) = e−2t.

Implementing the numerical Algorithm 2 by taking the double-layer integral of both sides of (29)
and transforming it into matrix form (24), we obtained the approximate solutions u(x, 1) and β(t) for
this problem (29). As the additional condition was measurement data, there may be an error in the
measurement. Therefore, we perturbed the additional condition g(t) with a percentage p of the noise
(p ∈ {0%, 1%, 3%, 5%}). In Table 5, we show the accuracy of the solutions u(x, 1) and β(t), in terms of
the mean absolute error, respectively, denoted by Eu = 1

N ∑N
i=1 |u∗

i − ui| and Eβ = 1
M ∑M

j=1 |β∗
j − β j|,

and the values of the optimal regularization parameters λ at time t = 1 with various M = N ∈
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{5, 10, 15, 20}. From Table 5, we can observe that the optimal regularization parameters λ were close
to zero and the mean absolute errors for both Eu and Eβ significantly increased with an increasing
percentage p of the perturbation. Furthermore, we used the regularization parameter λ = 0 to explore
the rates of convergence with respect to the �∞ norm and CPU times (s) for M = N ∈ {5, 10, 15, 20}
with the final times T ∈ {1, 2, 3} as shown in Table 6. The graphical solutions of the perturbed functions
u(x, 1) and β(t) for p ∈ {1%, 3%, 5%} are depicted in Figure 3.

Table 5. Mean absolute errors of u(x, 1) and β(t) for optimal regularization parameter λ of Example 3.

M = N
p = 0% p = 1%

λ Eu Eβ λ Eu Eβ

5 6.22 × 10−14 1.6609 × 10−5 7.9997 × 10−7 3.11 × 10−12 1.1372 × 10−4 4.1098 × 10−4

10 2.38 × 10−18 3.9844 × 10−13 1.0459 × 10−12 2.20 × 10−13 3.4011 × 10−4 8.8853 × 10−4

15 1.02 × 10−17 9.9950 × 10−14 1.6384 × 10−13 9.17 × 10−12 7.8857 × 10−4 7.0288 × 10−4

20 2.14 × 10−18 2.9774 × 10−13 1.7125 × 10−13 4.33 × 10−14 1.9024 × 10−4 1.3201 × 10−3

M = N
p = 3% p = 5%

λ Eu Eβ λ Eu Eβ

5 8.80 × 10−11 1.2533 × 10−3 8.3870 × 10−3 8.61 × 10−12 2.2805 × 10−3 1.0964 × 10−2

10 6.64 × 10−11 3.7067 × 10−3 9.5414 × 10−3 1.11 × 10−11 5.0047 × 10−3 2.7003 × 10−2

15 1.09 × 10−12 8.4361 × 10−3 7.0094 × 10−3 8.79 × 10−12 3.2925 × 10−2 3.2201 × 10−2

20 8.61 × 10−12 3.3382 × 10−3 1.3582 × 10−2 1.40 × 10−13 1.0214 × 10−2 3.8774 × 10−2

Table 6. Time convergence rates and CPU times (s) for Example 3 by Algorithm 2 with N = 10.

M
T = 1 T = 2 T = 3

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

5 8.495 × 10−13 1.0046 0.0667 9.130 × 10−13 1.0203 0.0655 3.602 × 10−12 1.6644 0.0662
10 8.131 × 10−13 0.9970 0.0679 8.659 × 10−13 1.0042 0.0667 2.456 × 10−12 1.2409 0.0673
15 7.851 × 10−13 0.9965 0.0684 8.362 × 10−13 1.0001 0.0675 1.731 × 10−12 1.1355 0.0693
20 8.344 × 10−13 1.0003 0.0716 7.829 × 10−13 0.9967 0.0722 2.928 × 10−12 1.0956 0.0720
25 8.362 × 10−13 1.0003 0.0776 8.686 × 10−13 1.0022 0.0766 2.134 × 10−12 1.0699 0.0751

(a) u(x, 1) with p = 1% (b) u(x, 1) with p = 3% (c) u(x, 1) with p = 5%

(d) β(t) with p = 1% (e) β(t) with p = 3% (f) β(t) with p = 5%

Figure 3. The graphical results of u(x, 1) and β(t) for Example 3 with N = 30 and M = 20.
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Example 4. Consider the following inverse TVIDE problem, which consists of a second-order derivative with
variable coefficient and the piecewise forcing function f (x, t) for x ∈ (0, 1) and t ∈ (0, T]:

ut + uxx + ux − cos(xt)u =
∫ t

0
2 sin(x)u(x, η)dη −

∫ x

0
3t cos(ξ)u(ξ, t)dξ + β(t) f (x, t), (30)

where

f (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
[
2t cos(2x) + t sin(2x) + (t cos(xt) + 1) sin2 x

]
, 0 < t ≤ T

3 ,
1
3
[
2t cos(2x) + t sin(2x) + (t cos(xt) + 1) sin2 x

]
, T

3 < t ≤ 2T
3 ,

1
4
[
2t cos(2x) + t sin(2x) + (t cos(xt) + 1) sin2 x

]
, 2T

3 < t ≤ T,

subject to the initial condition u(x, 0) = 0 for x ∈ [0, 1] and the Dirichlet boundary conditions u(0, t) = 0 and
u(1, t) = t sin2(1) for t ∈ [0, T]. The additional condition, in terms of the aggregated solution of the system,
is g(t) = t

4 (2 − sin(2)) + et. The analytical solutions of this problem are u∗(x, t) = t sin2(x) and

β∗(t) =

⎧⎪⎪⎨
⎪⎪⎩

2, 0 < t ≤ T
3 ,

3, T
3 < t ≤ 2T

3 ,

4, 2T
3 < t ≤ T.

Based on the numerical Algorithm 2, we took the double-layer integral to both sides of (30) and
transformed it into matrix form (24). We obtained the approximate solutions u(x, 1) and β(t) for (29)
by implementing Algorithm 2. Table 7 shows the accuracy of the solutions u(x, 1) and β(t) obtained
by our numerical algorithm, in terms of the mean absolute errors Eu and Eβ, as well as the values of
the optimal regularization parameter λ at time t = 1 with the noisy percentage p ∈ {0%, 1%, 5%, 10%}
under various M = N ∈ {6, 9, 12, 15}. Although this problem had the piecewise forcing term f (x, t),
our Algorithm 2 perfectly performed in providing accurate results, as shown in Table 7. The time
convergence rates concerning the �∞ norm and CPU times (s) are shown in Table 8, under various
numbers of M ∈ {6, 9, 12, 15, 18} with the final times T ∈ {1, 2, 3}. The graphical perturbed solutions
u(x, 1) and β(t) for p ∈ {1%, 5%, 10%} are shown in Figure 4.

Table 7. Mean absolute errors of u(x, 1) and β(t) for optimal regularization parameter λ of Example 4.

M = N
p = 0% p = 1%

λ Eu Eβ λ Eu Eβ

6 1.25 × 10−14 6.4987 × 10−6 18123 × 10−4 2.60 × 10−12 7.8604 × 10−6 1.8959 × 10−4

9 7.41 × 10−17 2.8057 × 10−9 7.1782 × 10−9 3.45 × 10−10 1.2932 × 10−7 4.0319 × 10−5

12 2.65 × 10−20 1.4031 × 10−13 4.5672 × 10−12 6.02 × 10−11 2.6701 × 10−7 5.1531 × 10−5

15 6.11 × 10−21 5.4903 × 10−14 2.7330 × 10−13 8.41 × 10−12 2.9871 × 10−6 6.8381 × 10−5

M = N
p = 5% p = 10%

λ Eu Eβ λ Eu Eβ

6 4.19 × 10−12 8.8690 × 10−5 5.1802 × 10−4 5.51 × 10−11 6.5680 × 10−4 3.7335 × 10−3

9 6.20 × 10−13 1.8419 × 10−5 7.0830 × 10−4 7.96 × 10−11 4.4035 × 10−4 2.3292 × 10−3

12 4.11 × 10−12 7.0910 × 10−5 1.6889 × 10−3 8.65 × 10−12 6.4815 × 10−4 6.3981 × 10−3

15 1.01 × 10−13 2.7507 × 10−4 1.7821 × 10−3 5.64 × 10−12 5.9709 × 10−4 6.1579 × 10−3
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Table 8. Time convergence rates and CPU times (s) for Example 4 by Algorithm 2 with N = 12.

M
T = 1 T = 2 T = 3

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

6 2.681 × 10−13 1.4574 0.0704 5.338 × 10−13 1.4564 0.0726 8.024 × 10−13 1.4563 0.0728
9 2.677 × 10−13 1.3415 0.0727 5.353 × 10−13 1.3406 0.0737 8.006 × 10−13 1.3395 0.0746

12 2.681 × 10−13 1.2758 0.0735 5.338 × 10−13 1.2744 0.0753 8.011 × 10−13 1.2743 0.0767
15 2.666 × 10−13 1.2312 0.0749 5.360 × 10−13 1.2332 0.0783 8.015 × 10−13 1.2337 0.0807
18 2.682 × 10−13 1.2028 0.0798 5.351 × 10−13 1.2031 0.0799 7.989 × 10−13 1.2022 0.0828

(a) u(x, 1) with p = 1% (b) u(x, 1) with p = 5% (c) u(x, 1) with p = 10%

(d) β(t) with p = 1% (e) β(t) with p = 5% (f) β(t) with p = 10%

Figure 4. The graphical results u(x, T) and β(t) for Example 4 with N = 30 and M = 21.

5. Conclusions and Discussion

In this paper, we utilized FIM-SCP combined with the forward difference quotient to create
efficient and accurate numerical algorithms for solving the considered direct and inverse TVIDE
problems. According to the numerical examples in Section 4, we have demonstrated the performance
of our proposed Algorithm 1 for seeking the approximate solutions of direct TVIDE problems in
Examples 1 and 2. We can see that, for Example 1—which involved a second-order derivative with
constant coefficients—Algorithm 1 provided an accurate result. Furthermore, for a problem involving
a higher-order derivative with variable coefficients, it still provided high accuracy, in terms of solutions,
as demonstrated in Example 2. Moreover, we handled inverse TVIDE problems using Algorithm 2,
the effectiveness of which was illustrated in Examples 3 and 4. We used the Tikhonov regularization
method to deal with the instability of the inverse problem; it can be seen that, in the examples,
the regularization parameter λ was close to zero. Algorithm 2 could handle both continuous and
piecewise-defined forcing terms with high accuracy, as demonstrated in Examples 3 and 4. Furthermore,
when we perturbed the problems by adding noisy values, our Algorithm 2 still overcame the noise
and provided approximate results that approached the analytical solutions. We further notice that
our presented methods provide high accuracy, even when using only a small number of nodal points.
Evidently, when we decrease the time step, they will furnish more accurate results. The rates of
convergence with respect to time (based on the �∞ norm) of our methods were observed to be linear.
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Finally, we also depicted the computational times for each example. However, we realize that there exist
no theoretical error analysis results for the proposed numerical algorithms. Thus, our future research
will study the error analysis, in order to find theories for order of accuracy and rate of convergence for
our method. Another interesting direction for our future work is to extend our techniques to solve other
types of IDEs and non-linear IDEs.
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Abstract: Multigrid methods (MGMs) are used for discretized systems of partial differential equations
(PDEs) which arise from finite difference approximation of the incompressible Navier–Stokes
equations. After discretization and linearization of the equations, systems of linear algebraic equations
(SLAEs) with a strongly non-Hermitian matrix appear. Hermitian/skew-Hermitian splitting (HSS)
and skew-Hermitian triangular splitting (STS) methods are considered as smoothers in the MGM
for solving the SLAE. Numerical results for an algebraic multigrid (AMG) method with HSS-based
smoothers are presented.

Keywords: multigrid methods; Hermitian/skew-Hermitian splitting method; skew-Hermitian
triangular splitting method; strongly non-Hermitian matrix

1. Introduction

Mathematical modeling of hydrodynamics is the base for research of various natural phenomena,
technological processes, and environmental problems. The main equations describing this problem
are the Navier–Stokes equations. Development and research of effective numerical algorithms for
solving these equations and their practical realization is an actual task. The use of the MGM for
the numerical solution of the Navier–Stokes equations describing the motion of an incompressible
viscous fluid is discussed. Currently, various discretization methods for the corresponding differential
model are known. However, with any choice of the discretizing method, the problem of constructing
effective methods for solving large systems of algebraic equations—to which the discrete model is
reduced—arises. This problem is especially relevant in the nonstationary case, when multiple solutions
of the systems of algebraic equations are required at each discrete time step.

To discretize the system of two-dimensional Navier–Stokes equations on regular grids, we use
the finite difference method. The equations are considered in the natural variables “velocity-pressure”:

∂V

∂t
+ (V · ∇)V = −∇P + νΔV, divV = 0, (1)

where P/ρ is replaced by P (i.e., ρ is normalized at 1), P is the static pressure, V is the velocity vector,
and ν is the kinematic viscosity coefficient. At the initial moment of time and at the boundary of the
domain, the initial and boundary conditions are set, respectively.

Symmetry 2020, 12, 233; doi:10.3390/sym12020233 www.mdpi.com/journal/symmetry93
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Flow simulating is accompanied by a number of mathematical difficulties. One of the problems
in solving this system is the nonlinearity associated with convective terms in the equations, which can
lead to the appearance of oscillations of the solution in regions with large gradients. The main efforts
of the researchers were directed at overcoming the difficulties associated with the nonlinearity of the
Navier–Stokes system of equations.

One of the most time-consuming stages of the computational procedure is finding the solution
of the system of linear algebraic equations (SLAE). Modern application packages usually use the
linearization of the original equations, and Krylov subspace methods are used to solve the resulting
SLAEs. Despite the fact that these methods have proven themselves well, they have some problems in
cases of significant nonsymmetry of the SLAEs—associated, for example, with variable coefficients in
differential equations or using complex numerical boundary conditions. For time discretization of the
unsteady problem, we use an implicit difference scheme. Here, we do not specifically consider the
stages of discretization and linearization of the Navier–Stokes equations, but focus on solving SLAEs.
Given that the SLAEs resulting from the use of the implicit time schemes have a large dimension and a
sparse nonsymmetric matrix, we propose using the MGM to solve them.

Thus, we consider the iterative solution of the large sparse SLAE

Av = b, v, b ∈ C
n, (2)

where A ∈ Cn×n is a non-Hermitian and positive definite matrix.
Naturally, the matrix A can be split as

A = A0 + A1, (3)

where
A0 =

1
2
(A + A∗), A1 =

1
2
(A − A∗) (4)

and A∗ denotes the conjugate transpose of the matrix A. Positive definiteness of the matrix A means
that for all x ∈ Cn \ {0}, x∗A0x > 0. Here, x∗ denotes the conjugate transpose of the complex
vector x. Let in some matrix norm ||| · |||, |||A0||| << |||A1|||, then the matrix A is called a strongly
non-Hermitian one. This situation occurs in many real applications, such as the discretization of the
Navier–Stokes equations.

The Hermitian and skew-Hermitian splitting (HSS) iteration methods, based on HS splitting (3)
and (4), for solving large sparse non-Hermitian positive definite SLAE were firstly proposed in [1].
The HSS iteration method has been widely developed in [2–5] and others.

Then, we can split the skew-Hermitian part A1 of the matrix A ∈ Cn×n into

A1 = KL + KU , (5)

where KL and KU are the strictly lower and the strictly upper triangular parts of A1, respectively.
Obviously, that KL = −K∗

U .
Based on the splitting (3)–(5) in [6–8] classes of skew-Hermitian triangular splitting (STS), iteration

methods for solving SLAE (2) have been proposed. The triangular operator of the STS uses only the
skew-Hermitian part of the coefficient matrix A. These methods have been further developed in [9–12].

The use of the multigrid method (MGM) with the STS-based smoothers for solving
convection–diffusion problems has been studied in [13]. The convergence of the MGM with the
STS-based smoothers has also been proved in this research. The local Fourier analysis of the MGM
with the triangular skew-symmetric smoothers has been performed in [14]. The results of numerical
experiments for convection–diffusion problems with large Peclet numbers by the geometric MGM
have been presented in both researches.
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In [15], it was shown that the MGMs with the HSS-based smoothers converge uniformly for
second-order nonselfadjoint elliptic boundary value problems. This happens if the mesh size of the
coarsest grid is sufficiently small, but independent of the number of the multigrid levels.

2. Multigrid Methods

The MGMs are proving themselves as very successful tools for solving the SLAE associated with
discretization of partial differential equations (PDEs).

The main idea of the MGM has been proposed by R.P. Fedorenko in [16]. Then, A. Brandt [17],
W. Hackbusch [18], and other researchers showed the efficiency of the multigrid approach and extended
Fedorenko’s idea.

The multigrid technique is based on two principles: error smoothing and coarse grid correction.
The smoothing property is fundamental for the MGM. It is connected with fast damping high-frequency
Fourier components of an initial error in decomposition on the basis from eigenvectors.

There exist two approaches in the MGM: geometric multigrid and algebraic multigrid methods.
Geometric multigrid methods were critical to the early development of the MGM and still play an

important role today. Nevertheless, there are classes of problems for which geometric techniques are
too difficult to apply or cannot be used at all. These classes can be solved by the algebraic multigrid
(AMG) methods, as introduced in [19,20].

The MGM is not a fixed algorithm. Rather, there is a multigrid technique that defines its scope.
The efficiency of the MGM depends on the adjustment of its components to the considered problem [21].
The key to this is the correct choice of its components and effective interaction between smoothing and
coarse-grid correction [22]. We need to use special iteration methods as smoothers for the MGM and
nonstandard course-grid correction to a good approximation of the smooth error components.

The smoothing method is the central component of the multigrid algorithm; it is the most
dependent part of the MGM on the type of the problem being solved. The role of smoothing methods is
that they should not so much reduce the total error as smooth it (namely, suppress the high-frequency
harmonics of the error) so that the error can be well approximated on a coarse grid.

Standard smoothing methods are linear iteration methods, for example, the Gauss–Seidel method.
An alternative is the following methods:

• Richardson’s Iterative method;
• Gauss–Jacobi method;
• Symmetric Gauss–Seidel method;
• Gauss–Seidel Alternate Direction method;
• Gauss–Seidel method with black and white ordering;
• Four-color Gauss–Seidel method;
• Iteration zebra method;
• Incomplete factorization method;
• Specially adapted SOR.

The MGMs can be used as solvers as well as preconditioners. The MGMs have been widely used
for complicated nonsymmetric and nonlinear systems, like the Lame equations of elasticity or the
Navier–Stokes problems.

3. Smoothers Based on the HSS and the STS Iteration Methods

A particular problem when using the MGM is the choice of smoothers. There are a number of
iteration methods that can be used as smoothers, but not all of them are effective for solving strongly
non-Hermitian SLAEs. The behavior of the HSS and the STS iteration methods is similar to the behavior
of the Gauss–Seidel method, which quickly damps the high-frequency harmonics of the error, slowing
down in the future. We give the formulas of these iteration methods.

The HSS iteration method [1]: Given an initial guess v(0), for k = 0, 1, 2, ... until {v(k)}
convergence, compute
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{
(αI + A0)v(k+

1
2 ) = (αI − A1)v(k) + b,

(αI + A1)v(k+1) = (αI − A0)v(k+
1
2 ) + b,

where α is a given positive constant and I is an identity matrix.
Bai, Golub, and Ng [1] proved that the HSS iteration method converges unconditionally to the

exact solution of the SLAE (2). Moreover, the upper bound of the contraction factor depends on the
spectrum of A0 but is independent of the spectrum of A1.

We can rewrite the HSS iteration method in the following form:

v(k+1) = G(α)v(k) + B(α)−1b,

where

G(α) = B(α)−1(B(α)− A)

and

B(α) =
1

2α
(αI + A0)(αI + A1).

The STS iteration method [6,8]: Given an initial guess v(0) and two positive parameters ω and τ.
For k = 0, 1, 2, ... until {v(k)} convergence, compute

v(k+1) = G(ω, τ)v(k) + τB(ω)−1b,

where

G(ω, τ) = B(ω)−1(B(ω)− τA),

ω and τ are two acceleration parameters, and B(ω) is defined by

B(ω) = Bc + ω((1 + j)KL + (1 − j)KU), j = ±1

with Bc ∈ Cn×n a prescribed Hermitian matrix.
For the STS method a convergence analysis, optimal choice of parameters and an accelerating

procedure have presented in [8]. As it was mentioned above, smoothers in the MGMs should have
a smoothing effect on the error of approximation. It was shown in [14] that the skew-Hermitian
triangular iteration methods have such properties. Therefore, these methods can be used as smoothers
in the MGMs.

4. Numerical Experiments

A wide class of CFD (Computational Fluid Dynamics) problems is associated with solving the
equations of motion of a viscous incompressible fluid with a predominance of convective transfer. As a
model, we consider the problem of internal single-phase chemically homogeneous flows, which are
described by the unsteady Navier–Stokes equations in the domain Ω with a solid boundary Γ. At the
initial stages of the development of CFD, preference was given to explicit methods that were used to
solve stationary and nonstationary Navier–Stokes equations. Recently, increased attention has been
paid to implicit methods. This is primarily due to the insufficient computational efficiency of explicit
methods in solving the equations of motion of a viscous fluid using small difference grids. From the
point of view of computational linear algebra, the matrices obtained at each time step when integrating
unsteady equations using implicit schemes (after linearization) are nonselfadjoint and require special
iterative methods for their effective solution. Therefore, in this research, we suggest using the AMG
with special smoothers to solve such SLAEs.
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So, we consider the model unsteady Navier–Stokes problem

∂V

∂t
+ (V · ∇)V = −∇P + νΔV, (6)

divV = 0, (7)

or
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+
∂P
∂x

− 1
Re

(
∂2u
∂x2 +

∂2u
∂y2

)
= 0, (8)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+
∂P
∂y

− 1
Re

(
∂2v
∂x2 +

∂2v
∂y2

)
= 0, (9)

∂u
∂x

+
∂v
∂y

= 0, (10)

u (x, y, t) = 0, v (x, y, t) = 0 on Γ,
u (x, y, 0) = 0, v (x, y, 0) = 0,

P (x, y, 0) = ξx − 1
2 ξ, ξ = const,

where ν is the kinematic viscosity coefficient; Re = UL/ν is the Reynolds number, where U is a
characteristic velocity of the flow and L is a characteristic length scale; V = (u(x, y, t), v(x, y, t)) is the
velocity vector; P is the static pressure; the initial pressure distribution is given by a linear function.
The initial conditions are taken to be zero. At the boundary, no-slip conditions are accepted. It means
that at a solid boundary, the fluid will have zero velocity relative to the boundary. There are no
mass forces in the formulation; motion is determined only by the boundary and initial conditions for
the velocity field as well as the initial pressure distribution. For convenience, only square domain
Ω = (0, 1)× (0, 1) will be considered. We assume that the fluid motion occurs in the time interval
[0, T]. Therefore, the equations are considered in the domain Ω × (0, T) with the boundary Γ × [0, T].
The Navier–Stokes equations with the introduced boundary conditions have a solution determined up
to an arbitrary constant for pressure, therefore, an agreement was adopted on the next normalization∫

Ω P(x, y, t)dxdy = 0, ∀t.
The most common approach to solving the Navier–Stokes equations in natural variables

essentially uses the replacement of the difference continuity equation by the difference Poisson equation
for pressure. Following this approach, first the difference equations are constructed that approximate
the mass and momentum conservation equations and then, by algebraic transformations, the Poisson
equation for determining the pressure is derived. This equation is used in the calculations instead of
the continuity equation.

First, the equations of motion and continuity (6) and (7) are rewritten in schematic form [23]:

∂V

∂t
+∇P = R, (11)

where R contains all convective and diffusive forces,

R = −(V · ∇)V +
1

Re
ΔV, (12)

divV = 0. (13)

We fix the time step δt and introduce a discrete time grid tn = nδt, n ≥ 0 and denote the
approximation to f (tn, x, y) as f (n). Then, the fully implicit scheme will have the form

1
δt
(V(n+1) − V(n)) +∇P(n+1) = R(n+1), (14)
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R(n+1) = −(V(n+1) · ∇)V(n+1) +
1

Re
ΔV(n+1), (15)

divV(n+1) = 0, (16)

V(n+1)|Γ = 0. (17)

The Poisson equation for pressure is obtained by taking the divergence from both sides of the
Equation (14), taking into account the continuity Equation (16):

ΔP(n+1) − divR(n+1) = div
V(n)

δt
. (18)

But following [23], at this moment, the Poisson Equation (18) does not need to be created. Instead,
we need to do a discretization. In addition, the continuity Equation (16) is first discretized before
substituting the discrete version of (14). To approximate the problem in space, the finite difference
method is used. Let the equations in discrete form be given by

DhV
(n+1)
h = 0, (19)

1
δt
(V

(n+1)
h − V

(n)
h ) + GhP(n+1)

h = R
(n+1)
h , (20)

V
(n+1)
h |Γ = 0, (21)

where Dh and Gh are the discrete div and ∇ operator, respectively. Then, Vh, Ph and Rh are the discrete
grid functions corresponding with V, P, and R. After discretization of (16), the number of velocity
unknowns equals the number of discrete momentum equations. The number of pressure unknowns
is equal to the number of discrete continuity equations, since both are equal to the number of grid
cells [23]. Our approach uses the idea of [23], but it differs in implementation.

The uniform grid Ω is introduced in the domain Ω with steps h1 and h2; h1 = 1/N1, h2 = 1/N2,
where N1, N2 are the number of cells in each direction. The grid cells are positioned such that the cell
faces coincide with the boundary Γ of Ω. The discretization in space of the Navier–Stokes equations
is performed on MAC (Marker and Cell) [24] (staggered) grids when pressure P and velocities in
two-dimensional problems are determined on three grids shifted relative to each other. So, P is
located in the center of each cell, the x-component velocity u is on the middle points of vertical
faces, the y-component velocity v is on the middle points of horizontal faces. For the MAC-method,
the solution advanced in time by solving the momentum equation with the best current estimate of
pressure distribution. Such a solution initially would not satisfy the continuity equation unless the
correct pressure distribution was used. The pressure is improved by numerically solving the Poisson
equation with estimated velocity field. We rewrite the equation for pressure in the following form:

ΔP =
d

dx

(
−
(

u
∂u
∂x

+ v
∂u
∂y

)
+

1
Re

(
∂2u
∂x2 +

∂2u
∂y2

))
+ (22)

+
d

dy

(
−
(

u
∂v
∂x

+ v
∂v
∂y

)
+

1
Re

(
∂2v
∂x2 +

∂2v
∂y2

))
− ∂

∂t

(
∂u
∂x

+
∂v
∂y

)
.

We now introduce the grid sets and the corresponding spaces:

D1 = {xij = ((i + 1/2)h1, jh2) : i = 0, ..., N1 − 1, j = 0, ..., N2},

D2 = {xij = (ih1, (j + 1/2)h2) : i = 0, ..., N1, j = 0, ..., N2 − 1},

D3 = {xij = (ih1, jh2) : i = 1, ..., N1 − 1, j = 1, ..., N2 − 1}.
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Let Vh = V1,h × V2,h be the linear space of vector functions defined on D1 × D2 and vanishing at
the corresponding grid boundaries, and Ph is the space of functions defined on D3 and orthogonal to
unity. Thus,

V1,h = {uij = u(xij) : xij ∈ D1, u0,j = uN1−1,j = ui,0 = ui,N2 = 0},

V2,h = {vij = v(xij) : xij ∈ D2, v0,j = vN1,j = vi,0 = vi,N2−1 = 0},

Ph = {Pij = P(xij) : xij ∈ D3, ∑
ij

h1h2Pij = 0}.

Variables are denoted by a single set of indices, despite the fact that different variables are
calculated at different grid nodes. As a result, the indices i, j refer to a set of three mismatched points.

The term R(n+1) in (15) contains the nonlinear terms. So, for treating this nonlinearity, Newton
linearization around the old time level is used. For example, we want to linearize a nonlinear term
u(n+1)φ

(n+1)
x , then

u(n+1)φ
(n+1)
x = u(n)φ

(n+1)
x + u(n+1)φ

(n)
x − u(n)φ

(n)
x + O(δt2). (23)

The expression in the right-hand side of (23) is linear in the variables at the new time level and
possesses a discretization error O(δt2).

Let D =
∂u
∂x

+
∂v
∂y

in (22) be the local dilation term, and other terms with velocity field determined

from the solution of momentum equation with a provisional estimate of pressure P′ = (
f ′1
f ′2
), counter,

and D(n+1)
ij be set equal to zero. That is, the correction of pressure is required to compensate for

nonzero dilation at the n iterative level. The Poisson equation is then solved for the revised pressure
field. The improved pressure is then used in the momentum equation for better solution at time step.
If the dilation (divergence of velocity field) is not zero, the cyclic process of solving the momentum
equation and Poisson equation is repeated until the velocity field is divergence free.

Thus, our computational scheme can be represented as follows:

1. Velocity field components u′ = u(n+1) and v′ = v(n+1) are determined by solving the implicit
momentum equation with P′, and for treating nonlinearity, the Newton linearization around the
old time level is used.

u(n+1)
ij − u(n)

ij

δt
+

⎛
⎝u(n)

ij

⎛
⎝u(n+1)

ij − u(n+1)
i−1,j

h1

⎞
⎠+ u(n+1)

ij

⎛
⎝u(n)

ij − u(n)
i−1,j

h1

⎞
⎠− u(n)

ij

⎛
⎝u(n)

ij − u(n)
i−1,j

h1

⎞
⎠
⎞
⎠+

+

⎛
⎝v(n)ij

⎛
⎝u(n+1)

ij − u(n+1)
i,j−1

h2

⎞
⎠+ v(n+1)

ij

⎛
⎝u(n)

ij − u(n)
i,j−1

h2

⎞
⎠− v(n)ij

⎛
⎝u(n)

ij − u(n)
i,j−1

h2

⎞
⎠
⎞
⎠− (24)

− 1
Re

⎛
⎝u(n+1)

i+1,j − 2u(n+1)
ij + u(n+1)

i−1,j

h2
1

+
u(n+1)

i,j+1 − 2u(n+1)
ij + u(n+1)

i,j−1

h2
2

⎞
⎠ = f ′1,

v(n+1)
ij − v(n)ij

δt
+

⎛
⎝u(n)

ij

⎛
⎝v(n+1)

ij − v(n+1)
i−1,j

h1

⎞
⎠+ u(n+1)

ij

⎛
⎝v(n)ij − v(n)i−1,j

h1

⎞
⎠− u(n)

ij

⎛
⎝v(n)ij − v(n)i−1,j

h1

⎞
⎠
⎞
⎠+

+

⎛
⎝v(n)ij

⎛
⎝v(n+1)

ij − v(n+1)
i,j−1

h2

⎞
⎠+ v(n+1)

ij

⎛
⎝v(n)ij − v(n)i,j−1

h2

⎞
⎠− v(n)ij

⎛
⎝v(n)ij − v(n)i,j−1

h2

⎞
⎠
⎞
⎠− (25)
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− 1
Re

⎛
⎝v(n+1)

i+1,j − 2v(n+1)
ij + v(n+1)

i−1,j

h2
1

+
v(n+1)

i,j+1 − 2v(n+1)
ij + v(n+1)

i,j−1

h2
2

⎞
⎠ = f ′2,

u(n+1)
ij − u(n+1)

i−1,j

h1
+

v(n+1)
ij − v(n+1)

i,j−1

h2
= 0. (26)

2. The Poisson equation with estimated velocity field components u′ = u(n+1) and v′ = v(n+1) is
solved for the revised pressure field P = P(n+1).

1
h2

1

(
P(n+1)

i+1,j − 2P(n+1)
i,j + P(n+1)

i−1,j

)
+

1
h2

2

(
P(n+1)

i,j+1 − 2P(n+1)
i,j + P(n+1)

i,j−1

)
=

=
1
δt

⎛
⎝u(n+1)

ij − u(n+1)
i−1,j

h1
+

v(n+1)
ij − v(n+1)

i,j−1

h2

⎞
⎠+

+
1
h1

⎛
⎝−u(n+1)

ij

⎛
⎝v(n+1)

ij − v(n+1)
i−1,j

h1

⎞
⎠− v(n+1)

ij

⎛
⎝v(n+1)

ij − v(n+1)
i,j−1

h2

⎞
⎠
⎞
⎠+

+
1

Reh1

⎛
⎝u(n+1)

i+1,j − 2u(n+1)
ij + u(n+1)

i−1,j

h2
1

+
u(n+1)

i,j+1 − 2u(n+1)
ij + u(n+1)

i,j−1

h2
2

⎞
⎠+

+
1
h2

⎛
⎝−u(n+1)

ij

⎛
⎝v(n+1)

ij − v(n+1)
i−1,j

h1

⎞
⎠− v(n+1)

ij

⎛
⎝v(n+1)

ij − v(n+1)
i,j−1

h2

⎞
⎠
⎞
⎠+

+
1

Reh2

⎛
⎝v(n+1)

i+1,j − 2v(n+1)
ij + v(n+1)

i−1,j

h2
1

+
v(n+1)

i,j+1 − 2v(n+1)
ij + v(n+1)

i,j−1

h2
2

⎞
⎠ .

Revised velocity field components u and v are determined by solving the implicit momentum
equation with revised pressure P. Process of solving the momentum equation and Poisson equation is
repeated until the velocity field is divergence free. Thus, at each time step in solving the Navier–Stokes
equation, we need to solve SLAE with nonsymmetric matrices that are solved by the AMG method
with HSS smoothers.

There are two coarsening approaches in the AMG: RS and PMIS algorithms. Coarsening splits
initial grid on C-points and F-points—coarse and fine grid points, respectively. The RS (Ruge-Stuben)
algorithm [25] is a traditional coarsening approach. The RS algorithm is based on two heuristic criteria
that achieve optimal convergence and minimal computational cost. The first criterion provides the
achievement of good convergence, as the effective coarsening scheme should allow to accurately
interpolate a smooth error. Then, it is desirable that each F-point (Fine-grid point) has as many
strongly influencing C-points (Coarse-grid points) as possible [26]. The criterion, provided minimal
computational cost for different levels of V-cycle, requires that the set of C-points is the maximum
subset of all F-points, to obtain more accurate interpolation, provided that no C-point is strongly
dependent on another C-point (the set is maximum and independent), since such points would have
increased the computational costs without providing visible benefits of interpolation [26]. In general,
as the convergence is increased, the computational costs of the V-cycle decrease. Therefore, the first
criterion is strictly observed and the second one is guidance. The RS algorithm has two passes. The first
pass splits the full grid in C and F points; the second one ensures strict implementation of the first
criterion [26]. PMIS (parallel changes independent set), the algorithm of coarsening, is based on the
same principles as the RS algorithm except that a heuristic criterion is not strictly observed, i.e., F-F
connections without a common C-point are permitted. Unlike the RS coarsening, the PMIS is not
sequential. However, the precision may be deteriorated because an insufficient number of points
reduces the accuracy of interpolation [26].
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Numerical experiments have been done using the PMIS-algorithm. In Tables 1 and 2 , we give
the number of AMG-iterations with the HSS-based smoother on the different grids, where α is the
parameter of the HSS iteration method. For comparison, we give the AMG calculations when the
Gauss–Seidel method is used as the smoothing procedure. In our implementations, all iterations are
started from the zero vector, and terminated when

‖r(p)‖2

‖r(0)‖2
≤ 10−6,

where r(p) = b − Av(p) is the residual vector of the SLAE (2) at the current iterate v(p) and r(0) is the
initial residual. Our comparisons are done for the number of iteration steps and the elapsed CPU time
(in seconds, in parentheses). The abbreviation “n.c.” in Table 2 means “no convergence”.

The experiments are run in MATLAB (version R2018b) with a machine precision of 10−16.
From Tables 1 and 2, it follows that the AMG methods with the HSS-smoother have fast

convergence speed for all tested values of the viscosity coefficient (ν = 10−1 ÷ 10−5) on all used
grids, while the AMG with the Gauss–Seidel smoother does not converge for ν = 10−4, 10−5 on all
considered grids, and does not converge on the grids 260 × 260 and 520 × 520 nodes for all values of
the viscosity coefficient. For all tests, the AMG+HSS (Algebraic multigrid method with Hermitian/
Skew-Hermitian Splitting smoother) outperforms the AMG+GS (Algebraic multigrid method with
Gauss–Seidel smoother) with respect to both number of iteration steps and CPU time. Moreover,
the number of iteration steps and CPU time increase with increasing grid size for both methods.

From the data shown in the Table 1, an increase in the number of iterations with an increase in the
mesh size follows. However, this relates to some features of the algebraic approach in MGM (more
precisely, the PMIS algorithm in the AMG). The traditional (a scalable) approach in the AMG (RS
algorithm) works well for problems arising from the discretization of PDEs in two spatial dimensions.
For many two-dimensional problems, a solver can be obtained with the number of iterations, regardless
of the size of the problem n, as well as the solution time per iteration, linearly proportional to n. For the
RS algorithm, the convergence factor is separated from unity and does not depend on the size of the
problem n. But when using regular AMG interpolation in combination with PMIS, AMG convergence
worsens depending on the size of the problem. This results in a loss of scalability [27]. However,
when traditional AMG algorithms are applied to three-dimensional (3D) problems, numerical tests
show [27] that in many cases scalability is lost. However, the number of iterations may remain constant.
The computational complexity and size of the stencil can increase significantly, which will lead to an
increase in execution time and memory usage. In addition, the PMIS algorithm allows for natural
parallelization, unlike the RS algorithm. These properties of the PMIS algorithm seem promising to us
for the further study of the three-dimensional Navier–Stokes equations using parallel computing.

Table 1. Algebraic multigrid (AMG)+(HSS) Hermitian/skew-Hermitian splitting iterations with
different ν.

Grid ν = 10−1 ν = 10−2 ν = 10−3 ν = 10−4 ν = 10−5

60 × 60 25 (21.20) 26 (21.59) 29 (26.20) 30 (26.54) 21 (14.15)
120 × 120 40 (64.50) 45 (67.70) 54 (94.60) 40 (59.20) 37 (51.50)
180 × 180 54 (152.61) 50 (151.52) 64 (161.82) 49 (126.85) 35 (97.51)
260 × 260 85 (192.70) 93 (197.20) 82 (191.52) 83 (197.26) 58 (126.7)
520 × 520 90 (282.51) 97 (290.58) 90 (286.26) 92 (286.85) 85 (252.21)
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Table 2. Algebraic multigrid (AMG)+(GS) Gauss–Seidel iterations with different ν.

Grid ν = 10−1 ν = 10−2 ν = 10−3 ν = 10−4 ν = 10−5

60 × 60 26 (32.57) 46 (42.51) 54 (114.85) n.c. n.c.
120 × 120 57 (83.82) 64 (122.61) 83 (160.50) n.c. n.c.
180 × 180 59 (162.36) 82 (185.38) 85 (192.20) n.c. n.c.
260 × 260 n.c. n.c. n.c. n.c. n.c.
520 × 520 n.c. n.c. n.c. n.c. n.c.

Table 3 shows the number of iteration steps and CPU time of the AMG+HSS method depending
on the value α, when ν = 10−5. For the AMG+HSS method, the optimal (experimental) parameter
value that reduces the number of iterations depends on the size of the grid. As the grid size increases,
the value of α, which provides the best convergence, decreases. Numerical experiments showed that
for parameter values less than 0.2, the AMG+HSS method diverges.

Table 3. (AMG)+(HSS) iterations with different α, ν = 10−5.

Grid α = 0.2 α = 0.3 α = 0.4 α = 0.6 α = 0.8 α = 0.9 α = 1.0

60 × 60 29 (26.84) 24 (21.51) 21 (14.15) 42 (40.61) 54 (58.86) 56 (68.22) 65 (84.20)
120 × 120 40 (61.50) 39 (64.67) 37 (51.50) 45 (67.52) 56 (94.60) 57 (94.20) 82 (162.85)
180 × 180 52 (114.2) 35 (97.51) 42 (129.20) 67 (14.82) 84 (165.84) 86 (175.21) 91 (196.21)
260 × 260 58 (126.7) 65(171.58) 65 (187.21) 82 (192.64) 84 (194.54) 91 (194.60) 95 (197.22)
520 × 520 82 (251.26) 84(251.84) 85 (252.21) 92 (260.52) 93 (262.42) 94 (282.52) 97 (290.21)

Thus, the numerical experiments have showed that the HSS-based smoothers can be effectively
used for the AMG, in which the stage of coarse-grid correction can be considered as a kind of
accelerating procedure of the HSS methods.

5. Conclusions

In our previous theoretical and numerical studies of the MGM with the STS-based smoothers,
the stationary (and nonstationary) linear diffusion–convection equation with dominant convection
was considered as a test problem [13,14]. All theoretical results and calculations were performed
using geometric MGM. Here, we first use the HSS-method as the smoother in the algebraic MGM
for solving the unsteady Navier–Stokes equations. It is supposed to further prove the theoretically
smoothing properties of the HSS iteration methods and to prove the convergence of the MGM with
the corresponding smoothers. In addition, theoretical and numerical results should be obtained for
the MGM with the STS-based smoothers for the Navier–Stokes problem. The PMIS algorithm was
not chosen by us by chance. Preliminary testing of it on this model problem showed its robustness.
In addition, the PMIS algorithm allows for natural parallelization, unlike the RS algorithm. These
properties of the PMIS algorithm seem promising to us for the further study of the three-dimensional
Navier–Stokes equations using parallel computing.
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MGM Multigrid Method
SLAE Systems of Linear Algebraic Equations
AMG Algebraic Multigrid
HSS Hermitian/Skew-Hermitian Splitting
STS Skew-Hermitian Triangular Splitting
PDE Partial Differential Equations
CFD Computational Fluid Dynamics
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Abstract: In this article, an invariantized finite difference scheme to find the solution of the heat
equation, is developed. The scheme is based on a discrete symmetry transformation. A comparison
of the results obtained by the proposed scheme and the Crank Nicolson method is carried out with
reference to the exact solutions. It is found that the proposed invariantized scheme for the heat
equation improves the efficiency and accuracy of the existing Crank Nicolson method.
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1. Introduction

Lie’s theory of symmetry groups for differential equations was initiated and utilized for obtaining
solutions or reductions of the differential equations [1]. Lie constructed a highly algorithmic technique
for the solutions of differential equations. Lie established that several techniques to find the solutions
of differential equations can be described and deduced by considering the Lie group analysis of
differential equations [2]. Thus, Lie symmetry methodology has a great significance in the theory and
applications of differential equations. It is broadly applied by several researchers to solve difficult
nonlinear problems. Lie studied the groups of continuous transformations. These transformations
(symmetries) can be described by the infinitesimal generators.

The symmetries, which are not continuous are called discrete symmetries. Discrete symmetries
have several applications in differential equations, e.g., they are used to simplify the numerical scheme
and to find the new exact solutions from the known solutions [3]. The nature of bifurcations in nonlinear
dynamical systems are also obtained by using discrete symmetry groups [4]. The procedure to find the
discrete symmetries of the differential equations is discussed in [5–8].

Nowadays, it is a challenging area of research to solve the dynamical equations, as various
phenomena in nature are modeled in dynamical systems. Many researchers have considered dynamical
systems, e.g., Martinez, Yu Zhang, and Timothy Gordon studied the uses of the control scheme in the
classical dynamical systems theory to predict driver behavior and vehicle trajectories [9]. Martinez and
Timothy also discussed the uses of machine learning for the systematic understanding of human control
behaviors in driving [10]. Lie group theory has became a universal tool for the analysis of dynamical
equations. Lie symmetry analysis provides an effective way to solve the partial differential equations.

But recently, interest is rising on the applications of Lie group analysis in the partial differential
equations for their numerical solutions. Some work has been dedicated to building those numerical
schemes that preserve the symmetries of the given differential equations. Invariantized finite difference
schemes by using the idea of moving frame were constructed by Kim [11] and Olver [12]. The technique
of discretization that preserves some continuous symmetries of the original differential equation
was also studied in [13–17]. In [18], the exact solutions of Fisher’s type equation with the help

Symmetry 2020, 12, 359; doi:10.3390/sym12030359 www.mdpi.com/journal/symmetry105
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of Lie symmetries, which are continuous symmetries in nature, are studied. Since most of the
partial differential equations have some geometrical properties and some discrete symmetry groups
correspond to these geometrical features of partial differential equations [8], the new invaiantized
finite difference methods constructed by using these discrete symmetry groups may show better
performances than the other finite difference methods.

In this article, first, it is shown that the Crank Nicolson scheme of a diffusion (heat) equation is
invariant under a group of the discrete symmetry transformation. Here, a modification is proposed
for the invariantization of the Crank Nicolson method given by Kim et al. [19]. This modification is
proposed with the help of the composition of discrete and continuous symmetry transformations of
the heat equation. It is also shown that the proposed invariantized scheme gives better results, as
compared to the other classical finite difference methods.

2. Heat Equation

The homogeneous heat (diffusion) [20] equation

∂w
∂t

− D
∂2w
∂x2 = 0, (1)

plays a vital role in the study of heat conduction and other diffusion processes, in which a thin metal
rod of length L, whose sides are insulated, is considered. The temperature of the bar at the point x
and at the time t is represented by w(x, t). The parameter D is called the thermal conductivity and it
depends only upon the material from which the rod is made. For simplicity, we take the parameter
D = 1 then the Equation (1) becomes

∂w
∂t

− ∂2w
∂x2 = 0. (2)

2.1. Continuous Symmetry Groups

Equation (2) is a linear and homogenous partial differential equation with one dependent variable
w and two independent variables x and t. The point transformation of Equation (2) defines the
local diffeomorphism

Γ : (x, t, w) �→ (x̂(x, t, w), t̂(x, t, w), ŵ(x, t, w)).

This transformation maps any surface w= f (x, t) to the following surface

x̂ = x̂(x, t, f (x, t)),

t̂ = t̂(x, t, f (x, t)),

ŵ = ŵ(x, t, f (x, t)).

The heat Equation (2) has infinite dimensional Lie algebra. The infinitesimal generators and the
continuous symmetry groups of the Equation (2) [21] are presented in Table 1.

Table 1. Continuous symmetry transformations of (2).

Generators Symmetry Transformations

1 ∂
∂x Space translation: (x, t, w) �→ (x + ε, t, w)

2 ∂
∂t Time translation: (x, t, w) �→ (x, t + ε, w)

3 w ∂
∂w Scale Transformation: (x, t, w) �→ (x, t, eεw)

4 x ∂
∂x + 2t ∂

∂t Scale Transformation: (x, t, w) �→ (eεx, e2εt, w)

5 2t ∂
∂x − xw ∂

∂w Galilean boost: (x, t, w) �→ (x + 2εt, t,−xwε + w)

6 4xt ∂
∂x + 4t2 ∂

∂t − (x2 + 2t)w ∂
∂w Projection: (x, t, w) �→

(
x

1−4εt , t
1−4εt , w

√
1 − 4εt exp( −εx2

1−4εt )
)

7 q(x, t) ∂
∂w
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Due to the arbitrariness of the function appearing in the last generator of Table 1, Lie algebra of
Equation (2) is infinite dimensional. Each of the groups given in Table 1 has the property of mapping
solutions of heat Equation (2) to the other solutions. For example, consider the explicit form of
the projection

(x, t, w) �→
( x

1 − 4εt
,

t
1 − 4εt

, w
√

1 − 4εt exp(
−εx2

1 − 4εt
)
)

,

where ε is the group parameter. Computing the induced action on graphs of functions, we conclude
that if w = f (x, t) is any solution to heat Equation (2), so is

w =
1√

1 − 4εt
exp
( εx2

1 − 4εt)

)
f
( x

1 − 4εt
,

t
1 − 4εt

)
.

2.2. Discrete Symmetry Group

Hydon introduced a technique [7] by which all discrete point symmetries of the partial differential
equations can be found on basis of the results [6] that each continuous symmetry generator of
a Lie algebra � of a differential equation brings an automorphism that preserve the following
commutator relation

[Xl , Xk] = cm
lkXm.

Hydon’s method categorizes and factor out all those automorphisms of a Lie algebra � that are
equivalent under the action of a Lie symmetry in a Lie group that is generated by the Lie algebra � and
provide the most general realization of these automorphisms as point transformations. Finally, by using
these point transformations, an entire list of discrete point symmetries of a partial differential equation,
is obtained.

The discrete symmetry group of Equation (2) has already been obtained in [8], which is isomorphic
to Z4 = {group of residues modulo 4} and is generated by

(x, t, w) →
( x

2t
,
−1
4t

,
√

2ιt exp
( x2

4t

)
w
)

, (3)

where ι =
√−1.

3. Finite Difference Schemes for the Heat Equation

Some finite difference schemes are available in the literature, which help us to find the numerical
solutions of the partial differential equations. In this section, the backward difference scheme, forward
difference scheme, and the Crank Nicolson method for the heat equation along their stability conditions,
are given [22].

3.1. Forward Difference Scheme

The forward difference scheme for heat Equation (2) is given by

wn,j+1 = αwn+1,j + (1 − 2α)wn,j + αwn−1,j,

where α = k
h2 . Here h is the x−axis step size and k is the time step size for the grid points (xi, tj),

where xi = ih, tj = jk for non-negative integers i, j. This scheme is Forward in Time and Centered in
Space (FTCS). This method is explicit and converges to the solution for 0 < α ≤ 1

2 , so is conditionally
stable [22].
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3.2. Backward Difference Scheme

The backward difference scheme for Equation (2) is given by

wn,j−1 = −αwn+1,j + (1 + 2α)wn,j − αwn−1,j.

This scheme is Backward in Time and Centered in Space (BTCS). This is an implicit and
unconditionally stable scheme [22].

3.3. Crank Nicolson Method

The Crank Nicolson method (CNM) for Equation (2) is

αwn−1,j + 2(1 − α)wn,j + αwn+1,j = −αwn−1,j+1

+2(1 + α)wn,j+1 − αwn+1,j+1. (4)

The Crank Nicolson method is also implicit and unconditionally stable [22]. It has significant
advantages for the time-accurate solutions. The temporal truncation error of CNM is O(�t2), whereas
the truncation error of FTCS and BTCS is O(�t).

3.4. Invariantization of the Crank Nicolson Method under the Discrete Symmetry Transformation

It is observed that among the mentioned finite difference schemes for the heat equation,
the Crank Nicolson method gives the more accurate results [23], so we are interested in constructing
an invariantization of the Crank Nicolson method. In the present subsection, we show that the Crank
Nicolson method is invariant under the discrete symmetry transformation (3).

Let wn,j = w(n�x, j�t) be an approximation of w(x, t) at the mesh point (xn, tj). Now, by using
the discrete symmetry group of heat equation given in (3), we have the following transformation

w =
√

2it exp
( x2

4t

)
w. (5)

By using (5), the Crank Nicolson method transformed to

αwn−1,j
√

2ij�t exp
{
(n − 1)2 (�x)2

4j�t

}
+ 2(1 − α)wn,j

√
2ij�t exp

{ (n�x)2

4j�t

}
+

αwn+1,j
√

2ij�t exp
{
(n + 1)2 (�x)2

4j�t

}
= −αwn−1,j+1

√
2i(j + 1)�t exp

{
(n − 1)2 (�x)2

4(j + 1)�t

}

+2(1 + α)wn,j+1

√
2i(j + 1)�t exp

{ (n�x)2

4(j + 1)�t

}
−

αwn+1,j+1

√
2i(j + 1)�t exp

{
(n + 1)2 (�x)2

4(j + 1)�t

}
. (6)

By considering the following transformation

wN,J =
√

J exp
(N2

4J

)
wn,j,

with
J = j�t and N = n�x,

(6) can be written as
αwN−1,J + 2(1 − α)wN,J + αwN+1,J =

−αwN−1,J+1 + 2(1 + α)wN,J+1 − αwN+1,J+1. (7)
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The finite difference approximation to heat Equation (2) obtained in (7) is similar to the Crank
Nicolson method for heat Equation (4). Thus, the Crank Nicolson method remains invariant under
the discrete symmetry transformation (3). The consequence of the result obtained in Section 3 can be
written in the form of the following theorem.

Theorem 1. The Crank Nicolson method for heat equation given in (4) is invariant under the only discrete
symmetry transformation (3) of the heat Equation (2).

4. Discrete Symmetry Numerical Scheme For the Heat Equation

Most of the finite difference methods including the Crank Nicolson method are invariant under
time, space translations, and scale transformation [24]. It is also proved in the previous literature that
the Crank Nicolson method for the heat Equation (2) is invariant under the transformation of the
discrete symmetry. Notice that the Galilean boost and projection group are the transformations under
which the Crank Nicolson method is not invariant. However, the Crank Nicolson method invariantized
by Galilean boost, projection transformations or composition of these transformations, becomes
unstable (i.e., does not converge to the exact solution). Nevertheless, by taking the composition of the
discrete symmetry group and the projective symmetry group, which is a continuous symmetry group
of the heat equation, invariantized Crank Nicolson method converges to the exact solution and gives
the more adequate results as compare to other existing finite difference schemes of Equation (2).

In the present section, we construct an invariantization of the Crank Nicolson method for Equation
(2) by using the composition of discrete and continuous symmetry groups. The construction of this
method is based on the composition of the variable w of these two groups. We deal with the following
transformation to construct the new scheme:

w =
√

2ιt exp
{ x2

4(1 − 4εt)

(1
t
− 4ε

)}
w,

where ι =
√−1. By transforming the variable w in the Crank Nicolson method (4) with the above

transformation for Equation (2), we get:

α
√

tj wn−1,j exp
{ (xn−1)

2

4(1 − 4εtj)

( 1
tj
− 4ε

)}

+(2 − 2α)
√

tj wn,j exp
{ (xn)2

4(1 − 4εtj)

( 1
tj
− 4ε

)}

+α
√

tj wn+1,j exp
{ (xn+1)

2

4(1 − 4εtj)

( 1
tj
− 4ε

)}

= −α
√

tj+1 wn−1,j+1 exp
{ (xn−1)

2

4(1 − 4εtj+1)

( 1
tj+1

− 4ε
)}

+(2 + 2α)
√

tj+1 wn,j+1 exp
{ (xn)2

4(1 − 4εtj+1)

( 1
tj+1

− 4ε
)}

−α
√

tj+1 wn+1,j+1 exp
{ (xn+1)

2

4(1 − 4εtj+1)

( 1
tj+1

− 4ε
)}

,

which can be further simplified as

√
tj

[
αwn−1,j exp

{ (xn−1)
2

4(1 − 4εtj)

( 1
tj
− 4ε

)}
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+(2 − 2α)wn,j exp
{ (xn)2

4(1 − 4εtj)

( 1
tj
− 4ε

)}
+

αwn+1,j exp
{ (xn+1)

2

4(1 − 4εtj)

( 1
tj
− 4ε

)}]
=

√
tj+1

[
− αwn−1,j+1 exp

{ (xn−1)
2

4(1 − 4εtj+1)

( 1
tj+1

− 4ε
)}

+(2 + 2α)wn,j+1 exp
{ (xn)2

4(1 − 4εtj+1)

( 1
tj+1

− 4ε
)}

−αwn+1,j+1 exp
{ (xn+1)

2

4(1 − 4εtj+1)

( 1
tj+1

− 4ε
)}]

.

Since ε is a continuous parameter and we can choose the optimal value of ε for which the proposed
method gives better performance than the Crank Nicolson method. We choose ε = ci, where 0 ≤ ci ≤ 1
and i is a positive integer, so the above equation takes the form:

√
tj

[
αwn−1,j exp

{ (xn−1)
2

4(1 − 4εtj)

( 1
tj
− 4ci

)}

+(2 − 2α)wn,j exp
{ (xn)2

4(1 − 4εtj)

( 1
tj
− 4ci

)}
+

αwn+1,j exp
{ (xn+1)

2

4(1 − 4εtj)

( 1
tj
− 4ci

)}]
=

√
tj+1

[
− αwn−1,j+1 exp

{ (xn−1)
2

4(1 − 4εtj+1)

( 1
tj+1

− 4ci

)}

+(2 + 2α)wn,j+1 exp
{ (xn)2

4(1 − 4εtj+1)

( 1
tj+1

− 4ci

)}

−αwn+1,j+1 exp
{ (xn+1)

2

4(1 − 4εtj+1)
(

1
tj+1

− 4ci

}]
.

The final form of the method is

A
(

αwn−1,jB1 + (2 − 2α)wn,jB2 + αwn+1,jB3

)

= C
(
− αwn−1,j+1D1 + (2 + 2α)wn,j+1D2 − αwn+1,j+1D3

)
, (8)

where
A =

√
tj ,

B1 = exp
{ (xn−1)

2

4(1 − 4εtj)

( 1
tj
− 4ci

)}
,

B2 = exp
{ (xn)2

4(1 − 4εtj)

( 1
tj
− 4ci

)}
,

B3 = exp
{ (xn+1)

2

4(1 − 4εtj)

( 1
tj
− 4ci

)}
,

and
C =

√
tj+1 ,
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D1 = exp
{ (xn−1)

2

4(1 − 4εtj+1)

( 1
tj+1

− 4ci

)}
,

D2 = exp
{ (xn)2

4(1 − 4εtj+1)

( 1
tj+1

− 4ci

)}
,

D3 = exp
{ (xn+1)

2

4(1 − 4εtj+1)

( 1
tj+1

− 4ci

)}
.

Since the Crank Nicolson method for the heat equation is unconditionally stable [22] and the
discritized Crank Nicolson method (DCNM) for heat Equation (2) provided in (8) is the invariantization of
the Crank Nicolson method, so this method also preserves the unconditional stability condition and
therefore converges to the exact solution without having any condition on α.

5. Solutions of the Heat Equation

In this section, we find the analytic solution of heat Equation (2) and compare it with the numerical
solutions calculated by using the CNM and the proposed method DCNM.

5.1. Analytic Solution

We consider one dimensional homogeneous heat Equation (2) with the following
boundary conditions

w(x, 0) = g(x), 0 ≤ x ≤ L, (9)

w(0, t) = f1(t), 0 ≤ t ≤ T,

w(1, t) = f2(t),

where g(x), f1(t) and f2(t) are two times continuously differentiable functions on x ∈ [0, L], L is the
length of the rod and T is the maximum time.

Heat Equation (2) is reduced to an ordinary differential equation by using the following
similarity variable

ξ = t, V =
w

g(x)
,

where g(x) is obtained from the initial condition (5.1) with g(x) �= 0. An exact solution of the system
given by the Equations (2) and (9) for particular values of arbitrary functions g(x), f1(t), and f2(t) is
given in the following example.

Example 1. Our aim is to find the solution of (2) with the following initial and boundary conditions

w(x, 0) = sinπx, 0 ≤ x ≤ 1,

w(0, t) = 0, 0 ≤ t ≤ 1,

w(1, t) = 0.

Using the similarity transformation
ξ = t, V =

w
sinπx

,

the above problem is reduced to the following ODE

Vξ + π2V = 0,

with the solution V = e−π2t.

Hence w(x, t) = e−π2tsin(πx) is the exact solution of the above boundary value problem.
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5.2. Numerical Solutions Using CNM and the Proposed Method DCNM

In this subsection, the performance of the proposed method DCNM is investigated by applying it
to Example 1. The efficiency of the present method DCNM is shown by calculating the absolute errors,
root mean square errors L2 and maximum errors L∞. These errors are computed by the following
formulas [18]:

Absolute error = |ei|,

L2 =
( n

∑
i=1

e2
i

)1/2
,

L∞ = max
1≤i≤n

|ei|,

with ei = (wi − Wi), where wi are numerical and Wi are the exact solutions.
To check the computational accuracy of the proposed method (DCNM), we reconsider Example

1 given in the previous subsection, which has the analytic solution w(x, t) =exp(−π2t) sin(πx) [22].
We compare our results of the numerical solutions (DCNM) with the exact solutions and the solutions
that are obtained by the Crank Nicolson method for the x-axis step size h = 0.1, a time step size
k = 0.01 and for the time T = 0.5. The comparisons of the numerical solutions obtained by DCNM
with the solutions calculated by FTCS, CNM, and the exact solutions are presented in Table 2, where
Table 3 is showing the absolute errors of the solutions calculated by FTCS, CNM and the DCNM given
in (8) for the different x-axis step sizes. Table 4 shows the values of w(x, t) for fixed h = 0.1 and for
different values of k, where Tables 5 shows the values of w(x, t) for fixed k = 0.02 and for different
values of h.

Table 2. The values of w(x, t) for different x.

xi FTCS CNM DCNM Exact Solutions

0.0 0.000000 0.000000 0.0000000000 0.000000
0.2 0.000892 0.004517 0.0042956284 0.004227
0.4 0.001444 0.007309 0.00695047277 0.006840
0.6 0.001444 0.007309 0.00695047277 0.006840
0.8 0.000892 0.004517 0.0042956284 0.004227
1.0 0.000000 0.000000 0.0000000000 0.000000

Table 3. Absolute errors for different values of x.

xi FTCS CNM DCNM

0.0 0.000000 0.000000 0.0000000000
0.2 0.003335 2.9 × 10−4 6.8345438 × 10−5

0.4 0.005396 4.69 × 10−4 1.10585242 × 10−4

0.6 0.005396 4.69 × 10−4 1.10585242 × 10−4

0.8 0.003335 2.9 × 10−4 6.8345438 × 10−5

1.0 0.000000 0.000000 0.000000000000

Table 4. w(x, t) for fixed h = 0.1 and for different values of k.

xi k = 0.03 k = 0.02 k = 0.01

0.0 0.0000 0.0000 0.0000
0.2 0.0053 0.0045 0.0042
0.4 0.0085 0.0076 0.0069
0.6 0.0085 0.0076 0.0069
0.8 0.0053 0.0045 0.0042
1.0 0.0000 0.0000 0.0000
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Table 5. w(x, t) for fixed k = 0.02 and for different values of h.

xi h = 0.3 h = 0.2 h = 0.1

0.0 0.0000 0.0000 0.0000
0.2 0.0050 0.0047 0.0045
0.4 0.0081 0.0078 0.0076
0.6 0.0081 0.0078 0.0076
0.8 0.0050 0.0047 0.0045
1.0 0.0000 0.0000 0.0000

Table 6 presents root mean square errors L2 and the maximum errors L∞ for DCNM and CNM of
Example 1 for the different values of t.

Table 6. L2 and L∞ errors for different values of t.

t L2 DCNM L∞ DCNM L2 CNM L∞ CNM

0.1 9.6 × 10−3 4.3 × 10−3 4.86 × 10−3 6.79 × 10−3

0.3 4.0 × 10−4 1.8 × 10−4 8.87 × 10−5 3.76 × 10−4

0.5 9.0830 × 10−4 4.0812 × 10−4 1.73 × 10−3 2.44 × 10−4

0.7 1.8024 × 10−4 1.0097 × 10−4 2.04 × 10−4 3.17 × 10−4

0.9 1.0224 × 10−4 6.1223 × 10−5 2.14 × 10−3 3.14 × 10−3

1 1.1556 × 10−4 5.0808 × 10−5 2.15 × 10−3 3.32 × 10−3

Figure 1 shows the comparisons between the numerical solutions, obtained by the DCNM given
in (8), the Crank Nicolson method, and the exact solutions of Example 1 in 2D for fixed T = 0.5.
For h = 0.1, k = 0.05 and T=1, the graphical representations of the space-time graph of the numerical
solutions calculated by the DCNM and exact solutions for the above boundary value problem for
x∈ [0, 1] are presented in Figures 2 and 3, respectively, and it can be observed that both solutions are
very similar.

Figure 1. Comparison of the exact solution with solutions obtained by CNM and DCNM.
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Figure 2. Space-time graph of DCNM solution for Example 1.

Figure 3. Space-time graph of exact solution for Example 1.

6. Conclusions

This paper contains the application of the discrete symmetry transformation for the boundary
value problem of the diffusion equation. An invariantized finite difference method to find the solution
of the heat equation using the composition of discrete symmetry group and projection group of the
heat equation is developed. Tables 2–4 show that the proposed invariantized method DCNM improves
the efficiency and accuracy of the existing Crank Nicolson method.

Similarly, with the help of discrete symmetry groups of partial differential equations, different
invariantized finite difference schemes can be constructed to improve the efficiency and performance
of the existing finite difference methods.
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The following abbreviations are used in this manuscript:
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CNM Crank Nicolson Method
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