
 Energy Eff
icient Cities of Today and Tom

orrow
   •   Jukka H

einonen, Sanna Ala-M
antila and O

rtzi Akizu-Gardoki

Energy Efficient 
Cities of Today 
and Tomorrow

Printed Edition of the Special Issue Published in Energies

www.mdpi.com/journal/energies

Jukka Heinonen, Sanna Ala-Mantila and Ortzi Akizu-Gardoki
Edited by



Energy Efficient Cities of 
Today and Tomorrow





Energy Efficient Cities of 
Today and Tomorrow

Editors

Jukka Heinonen

Sanna Ala-Mantila

Ortzi Akizu-Gardoki

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Jukka Heinonen

University of Iceland

Iceland

Sanna Ala-Mantila

University of Helsinki

Finland

Ortzi Akizu-Gardoki 
University of the Basque Country

Spain

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Energies (ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/

Energy Efficient Cities 2019).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-0362-2 (Hbk)

ISBN 978-3-0365-0363-9 (PDF)

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Energy Efficient Cities of Today and Tomorrow” . . . . . . . . . . . . . . . . . . . . ix

Jeffrey R. Kenworthy

Passenger Transport Energy Use in Ten Swedish Cities: Understanding the Differences through
a Comparative Review
Reprinted from: Energies 2020, 13, 3719, doi:10.3390/en13143719 . . . . . . . . . . . . . . . . . . . 1
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Preface to ”Energy Efficient Cities of Today and Tomorrow”

The world needs to undergo a rapid transformation to a sustainable low-carbon consumption 
system. With the ongoing urbanization and ever-growing harmful environmental impacts from 
urban areas, the focus of this required sustainability transformation is on cities. However, cities are 
centers of wealth creation and economic growth, also known as two of the main drivers of 
environmental degradation. Cities also provide their citizens with evermore diverse consumption 
opportunities, making the lifestyles of city dwellers more and more consumption-oriented. This 
inevitably leads to increased energy demands and emissions in cities due to needed infrastructure 
and real estate development, the increased energy demands of users, and the increased energy 
embodied in the goods and services consumed within cities. Concurrently, we are facing imminent 
pressure to significantly reduce our energy consumption and greenhouse gas emissions at all levels 
of society. This pressure urges cities to re-establish themselves as low-energy/low-carbon urban 
ecosystems, but the transformation is difficult and complex in many ways, and time is running out 
rapidly. A lively academic discourse on the issue has been ongoing for several years, but so far 
without widely accepted or unanimous solutions. This Special Issue, “Energy Efficient Cities of 
Today and Tomorrow”, seeks to enhance this conversation and provide a more profound 
understanding of the future energy requirements of urban areas and low-energy and low-carbon 
cities. The nine published papers range from macro-level assessments of cities manifesting 
themselves as forerunners in their environmental work to micro-level studies of pro-environmental 
attitudes and their impacts on individual emissions, as well as impacts on the carbon footprint from 
sharing goods and services. They present potential solutions and introduce new discussion points to 
find potential pathways to a truly sustainable future.

Jukka Heinonen, Sanna Ala-Mantila, Ortzi Akizu-Gardoki

Editors
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Abstract: Energy conservation in the passenger transport sector of cities is an important policy
matter. There is a long history of transport energy conservation, dating back to the first global
oil crisis in 1973–1974, the importance and significance of which is explained briefly in this paper.
Detailed empirical data on private and public passenger transport energy use are provided for
Sweden’s ten largest cities in 2015 (Stockholm, Göteborg, Malmö, Linköping, Helsingborg, Uppsala,
Jönköping, Örebro, Västerås and Umeå), as well as Freiburg im Breisgau, Germany, which is a
benchmark small city, well-known globally for its sustainability credentials, including mobility.
These data on per capita energy use in private and public transport, as well as consumption rates
per vehicle kilometer and passenger kilometer for every mode in each Swedish city and Freiburg,
are compared with each other and with comprehensive earlier data on a large sample of US, Australian,
Canadian, European and Asian cities. Swedish cities are found to have similar levels of per capita car
use and energy use in private transport as those found in other European cities, but in the context
of significantly lower densities. Possible reasons for the observed Swedish patterns are explored
through detailed data on their land use, public and private transport infrastructure, and service and
mobility characteristics. Relative to their comparatively low densities, Swedish cities are found to
have healthy levels of public transport provision, relatively good public transport usage and very
healthy levels of walking and cycling, all of which help to contribute to their moderate car use and
energy use.

Keywords: Swedish cities; passenger transport energy use; urban form; transport infrastructure;
mobility patterns; public transport; non-motorized modes

1. Introduction

Until the 1973–1974 Arab oil embargo from October 1973 to March 1974, (the first global oil crisis)
the use of energy in transport was not seriously on any academic or policy agendas. When OPEC
(the Organization of Arab Petroleum Exporting Countries) declared an embargo on oil exports to
countries deemed supportive of Israel during the 1973 Yom Kippur war with Egypt, the global price of
oil essentially quadrupled ‘overnight’, from about $US3 per barrel to $12 per barrel [1,2]. Suddenly the
world realized how vulnerable it is to events in the Middle East which affect the production and
export of oil and its price. This stirred a spate of interest in this topic e.g., [3,4] and led to a growing
concern about how to reduce dependence on oil in transport, particularly imported oil, and especially
in cities [5,6]. The 1973–1974 oil crisis played out very differently in different cities. Dutch cities
(The Netherlands was included in the embargo) adapted well to the crisis, since they were compact
places which relied heavily on walking and cycling anyway, while the automobile cities in the USA
experienced significant societal disruption as people scrambled to fill their very gas guzzling cars [7].

Energies 2020, 13, 3719; doi:10.3390/en13143719 www.mdpi.com/journal/energies1
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The world was again rudely awakened to this issue in the subsequent Iranian oil crisis in 1979 [8]
caused by the Iranian Revolution. Iran’s daily oil production of 6.05 million barrels per day, of which
about five million barrels were exported to supply about 10% of the non-communist world’s daily
needs, was thrown into chaos. This event again brought into focus the dire situation of the world
in regard to its political vulnerability to oil supply and its sometimes-volatile pricing. The need to
reduce petroleum consumption and its dependence on Middle Eastern sources was firmly on the
table. Unlike stationary uses of oil, such as for heating homes and in industry, which can be relatively
quickly swapped to other energy sources, the petrol and diesel derived from oil and used in transport
is a difficult issue because these liquid fossil fuels as a source of energy are particularly suited to
mobile uses due to their high-energy density and thus long range of vehicular travel on one fill, ease of
distribution, and convenient, compact and safe storage inside a vehicle. Conventional oil cannot be
easily substituted, as exemplified over the last years with efforts to produce oil from non-conventional
sources and electric cars on a larger scale. Oil from oil shale, tar sands and coal, as well as from other
fuels such as ethanol and methanol, have all proved to be difficult. They have been too expensive
relative to conventional oil, have had a poor net energy return and have had large environmental
impacts from mining and other problems [9].

Despite the above history and the current urgency of CO2 reduction from carbon-based fuels,
liquid fossil fuel consumption in passenger transport throughout the world has continued to rise in
the relatively wealthy cities in the West and in currently less wealthy, but rapidly industrializing and
motorizing cities elsewhere, such as in China, India and Brazil [10]. The sheer size of the population in
such countries and others, as well as the growing environmental problems in cities from, for example,
air pollution, has made it even more critical today to try to reduce transport energy use and especially
dependence on oil as the major source of transport fuels. Rising living standards and incomes and
increasing car ownership and use, especially in such populous countries mentioned above and the
continued profligate use of transport energy in North American and Australian cities, for example,
make it difficult to reduce global oil demand in the transport sector. This is especially so when there are,
for the most part, still few disincentives to car ownership and use in cities and insufficient investment
in alternatives to motorized private transport, such as quality public transport and good walking and
cycling conditions [10].

Of course, over time there are numerous fluctuations in this general upward trend of transport
demand and energy use in transport as economies fluctuate along with the demand for and price of oil.
The West Texas Intermediate (WTI) or New York Mercantile Exchange (NYMEX) oil price per barrel
(in US dollars) between April 2008 and August 2008 was above $US135, peaking in June 2008 at $164,
but by September 2008 and the major onset of the Global Financial Crisis, the oil price dropped to $118
per barrel and proceeded rapidly downward to $50 per barrel by January 2009, as demand fell away.
Oil prices did recover to some extent after this as the global economy and demand again picked up,
and in December 2019, oil was $61 per barrel [11]. The global COVID-19 pandemic, however,
saw passenger transport demand in cities basically collapse, and the price of oil in April 2020 had
plummeted to just $19 per barrel.

Regardless of these perturbations, the issue of transport energy use in cities is still of major
concern. A focus of discussion since the mid-1990s has been the geopolitical implications of oil reserves
concentrated in the Middle East and the issue of “peak oil” when half the world’s known oil reserves
have been used and the production curve heads downward [12,13]. Although “peak oil” is disputed
e.g., [14], the realities of war in the Middle East mostly focused on maintaining oil security for the
United States (Gulf War in 1990–1991 and the Iraq War from 2003 to 2011) remain, as does the critical
need to engage with the idea of a post-petroleum future.

Since the mid-1970s, much has been published about transport energy use in cities, and the
author’s own work has had a focus on growing the evidence about the best ways to reduce energy use
in urban passenger transport systems through reducing automobile dependence and taking advantage
of the different energy consumption rates of urban transport modes [15–17].
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This paper continues in this tradition with a special focus on ten Swedish cities, plus Freiburg im
Breisgau in Germany, as a benchmark small city known for its sustainable transport performance [18,19].
Sweden established a national research and education think tank on public transport called K2
(The Swedish National Centre for Research and Education on Public Transport), with the express
aim of improving public transport’s role throughout Sweden and shifting modal share toward public
transport. As part of the author’s research in K2, this paper reports on detailed comparisons of many
aspects of land use, transport and other transport-related factors in ten Swedish cities, including the
energy consumption of each passenger transport mode and attempts to answer the following three
research questions about private passenger transport energy use in Swedish cities:

(1) How does energy use per capita in private and public transport modes compare within Sweden
and with other cities in the USA, Australia, Canada, Europe and Asia?

(2) How do the modal energy-consumption rates per vehicle kilometer and passenger kilometer in
Swedish cities differ from each other and other cities worldwide?

(3) Can differences in transport energy use per capita be explained through reference to a range of
other important transport indicators in Swedish cities?

2. Methodology

A detailed account of the research methodologies used to obtain all the data contained in the tables
in this paper can be found in [17,20,21], along with the geographies defining each city. Table 1 provides
a summary of the American, Australian, Canadian, European and Asian cities used to calculate the
averages for these groups of cities shown in this paper, as well as the ten Swedish cities and Freiburg.
It presents their population and the year of that population, their metropolitan GDP per capita at that
year (in US$1995) and the per capita annual boardings for their whole public transport systems
(all modes in use in each city are included, which cover buses, minibuses, trams, light rail,
metro, suburban rail and ferries). This last item gives a comparative perspective on a key
transport-sustainability factor for each city. “Cities” is used here as a shorter term for metropolitan
regions because the data mostly represent wider metropolitan areas, not just the “cities” lying at the
heart of these areas.

Table 1. List of cities used for the international comparisons with their population, GDP per capita and
annual public transport use per capita.

City Population Metropolitan GDP Total Annual
Per Capita Public Transport Use
(US$1995) Per Capita (Boardings)

American Cities
Atlanta 2005 3,826,866 $41,641 39
Chicago 2005 8,217,201 $40,666 73
Denver 2005 2,256,442 $45,762 38
Houston 2005 4,853,225 $44,124 19
Los Angeles 2005 9,758,886 $40,899 68
New York 2005 20,580,795 $47,206 168
Phoenix 2005 3,590,804 $32,589 17
San Diego 2005 2,824,259 $42,324 32
San Francisco 2005 4,071,751 $54,266 103
Washington 2005 4,273,361 $55,070 109
Australian Cities
Brisbane 2006 1,819,800 $29,365 74
Melbourne 2006 3,743,000 $30,411 104
Perth 2006 1,518,700 $37,416 68
Sydney 2006 4,282,000 $31,583 136

3



Energies 2020, 13, 3719

Table 1. Cont.

City Population Metropolitan GDP Total Annual
Per Capita Public Transport Use
(US$1995) Per Capita (Boardings)

Canadian Cities
Calgary 2005 988,193 $36,713 131
Montreal 2005 3,487,520 $26,815 206
Ottawa 2005 1,130,761 $29,956 129
Toronto 2005 5,555,912 $33,103 154
Vancouver 2005 2,116,581 $29,726 134
European Cities
Graz 2005 247,248 $33,889 411
Copenhagen 2005 1,827,239 $43,108 191
Helsinki 2005 988,347 $47,548 309
Düsseldorf 2005 577,416 $40,270 266
Oslo 2005 1,039,536 $53,941 214
Madrid 2005 5,964,143 $26,964 337
Stockholm 2005 1,889,945 $43,527 332
Bern 2005 303,202 $54,145 543
Geneva 2005 440,982 $50,918 320
London 2005 7,512,000 $33,368 483
Vienna 2005 1,651,437 $36,131 511
Manchester 2005 2,543,800 $26,611 102
Stuttgart 2005 592,028 $33,294 285
Brussels 2005 1,006,749 $39,758 328
Prague 2005 1,181,610 $20,179 1051
Berlin 2005 3,395,189 $21,027 410
Frankfurt 2005 651,583 $38,356 327
Hamburg 2005 1,743,627 $36,733 266
Munich 2005 1,288,307 $45,133 505
Zurich 2005 832,159 $48,756 536
Asian Cities
Hong Kong 2006 6,857,100 $18,823 548
Singapore 2005 4,341,800 $23,578 353
Swedish Cities
Stockholm 2015 2,231,439 $49,271 359
Malmö 2015 695,430 $32,709 111
Goteborg 2015 982,360 $40,808 285
Linköping 2015 152,966 $30,260 64
Helsingborg 2015 137,909 $28,917 158
Uppsala 2015 210,126 $31,998 108
Västerås 2015 145,218 $29,594 53
Örebro 2015 144,200 $29,045 39
Jönköping 2015 133,310 $29,952 60
Umeå 2015 120,777 $29,415 45
Freiburg (benchmark small city)
Freiburg 2015 222,082 $25,782 192

In this paper, Swedish cities have been divided into five larger and five smaller cities so that
differences on this basis can be seen. Averages are presented for the larger cities, smaller cities and all
ten Swedish cities. The larger cities are Stockholm, Göteborg, Malmö, Linköping and Helsingborg,
while the smaller cities are Uppsala, Jönköping, Örebro, Västerås and Umeå.

The value of this research on the Swedish cities, as well as the global sample, is that it uses
empirical energy data from cities for private and public transport, as opposed to theoretical modeled
data for different vehicular technologies e.g., [22,23]. All data are collected directly for each city
from the primary sources of those data, mostly through a variety of government departments in
each city or through national datasets that are available for the specific geographies used to define
the metropolitan areas in this study. For example, public-transport energy use is obtained directly
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from every operator and mode in every city. The collection of these data is conducted by consulting
published online sources in the first instance and then many emails and phone calls between many
people in a plethora of transport, planning, energy, environmental and other departments in every city.
Most data require this in-depth work and are not routinely published. Only primary data are collected,
never the standardized indicators shown in the tables. These standardized indicators are calculated
by the author by combining the relevant primary data (e.g., population and urbanized land area to
get urban density). All Swedish city data and Freiburg are for 2015, while the American, Australian,
Canadian, European and Asian city data are for 2005–2006, from an earlier study of these other cities
e.g., see [15,19,24].

While it would be ideal to have all the comparative data for the same year, it must be pointed out
that the collection of these comparative cities’ data, which are much more than shown in the tables in
this paper, takes many years to complete (the 2005–2006 data commenced in 2007 and was not complete
until 2014). Providing 2015 data for the other cities could not have even been commenced until 2017,
due to delays in data release. The comparisons, however, are still valid in relative terms, and experience
over 40 years of such data collection has shown at each point that the relative differences between cities
remain. This is supported by the author’s publications in the reference list, including representing
these other cities with 2005–2006 data at a much later date and where the 2005–2006 data have been
compared to later data [25], including a paper comparing many urban indicators for the five larger
Swedish cities in 2015 with the 2005–2006 data on the American, Australian, Canadian, European and
Asian cities [21]. Where some variables can change quite rapidly, the discussion provides caveats on
the results and cautions readers accordingly.

The point of making comparisons between the Swedish cities in 2015 with a global sample ten
years earlier is to gain an insight into the general magnitude of differences, not to be absolutely precise.
Over a decade, European cities are, for example, not going to become very like American cities, nor are
even Canadian cities, in virtually any of the parameters. There is a basic and relatively stable difference
in these fundamental metropolitan-scale indicators across such a global range of cities, which is quite
resilient to change over time. The author has 1960, 1970, 1980 and 1990 data that show similar basic
patterns. The exact numbers have changed, but the general relativities have not [26].

To demonstrate this, Table 2 provides the ten-year change in an earlier decade from 1995–1996
to 2005–2006 in the value for every variable that has been used in this paper for the US, Australian,
Canadian, European and Asian cities. From this, it can be seen, for example, that although private
transport energy use per capita has changed, European cities are still very much lower than American
cities, and Asian cities are very much lower again than European cities. Australian and Canadian
cities maintain their medium position in the sample. Car passenger kilometers per person did not
change much in the ten years in any group of cities, so the general magnitude of differences were again
stable. With respect to seat kilometers of public transport service per person, this was still worst in the
American cities by a large margin, fair to middling in the Australian and Canadian cities, very much
better in the European cities and better again in the Asian cities. By 2015, though values will have
changed, it is highly unlikely that American cities will have reached even Australian levels of public
transport service, let alone European or Asian levels. Likewise, public transport use follows the same
pattern and is very similar in its relative differences, even over a decade of change. If we consider
the use of non-motorized modes, American cities are the worst, Canadian cities are next and then
Australian cities, and the Asian cities, while the European cities are the best. This general perspective
has not changed over ten years, even though the value for each group has changed to some degree.
Rather than eliminating this global perspective for the sake of 2015 data, which are not possible yet on
the global sample, the 2005–2006 perspective still has utility.
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All energy data are end-use data and do not include the energy expended for drilling, extracting,
refining or distributing oil to obtain the petrol, diesel and other liquid or gaseous fossil fuels before
dispensing them into vehicle fuel tanks. Renewable fuels, such as ethanol, do not include the planting,
growing, harvesting and processing of crops or other energy use expended in delivering that fuel to a
vehicle’s fuel tank. Electrical energy does not include the power station and transmission losses or
other energy expended in the production and delivery of electrical energy to its end user.

All other standardized data or indicators on cities such as urban density, which are used to help
explain the observed per capita energy use and modal energy use per kilometer, were obtained by
using the same methodology as for energy. All the primary data used to calculate the indicators
(e.g., freeway length and population for freeway length per capita) were collected directly from the
sources of those data (e.g., population data from the relevant official sources of such data, such as local
or national censuses and freeway length from road inventories or other sources). All public transport
operating and infrastructure data were collected from the same operators and agencies as the energy
data. A little more detail is provided about methodology in the results section, when dealing with
specific indicators.

3. Transport Energy Use per Capita and Modal Energy Consumption

Table 3 contains all the data on per capita levels of energy use in private and public transport
in the ten Swedish cities, along with the modal energy consumption of cars and all public transport
modes in each city. Also included are similar data for Freiburg, Germany, and a group of American,
Australian, Canadian, European and Asian cities. These patterns are now explained.

3.1. Private Passenger Transport Energy Use per Person

Sections 3.1 and 3.2 address the first research question in the introduction. The biggest user of
passenger transport energy in cities is private transport modes, mainly cars. Table 3 shows the data
for the ten Swedish cities, as well as averages for the larger five cities and the smaller five cities and
Freiburg as something of a benchmark by which to assess the performance of the Swedish cities,
especially the smaller ones.

The annual energy use in private motorized passenger transport in Swedish cities was calculated
backward from the comprehensive emissions inventories that exist in Sweden for each municipality [27].
Transport is one of the sectors in these emissions inventories, which is further broken down into its
component parts and provides CO2 equivalent emissions (as well as all other transport emissions
for each municipality). CO2 emissions were converted to energy use by using relevant conversion
factors. The energy use figures here for private passenger transport are thus dependent on the integrity
of CO2 emissions accounting by the Swedish government. There was no other direct source of fuel
consumption for private transport available in Swedish cities.

Figure 1 shows that the ten Swedish cities in 2015 averaged 15,601 MJ/person, which is virtually
the same as the average for the other European cities in 2005 (15,795 MJ). It is close to half the global
sample average of 28,301 MJ and dramatically below the American, Australian and Canadian cities
(Table 3). In addition, there is hardly any difference here between the averages for the larger and
smaller Swedish cities (15,886 MJ cf. 15,317 MJ, respectively). Freiburg consumes 16,488 MJ/person
or 8% more than in the smaller Swedish cities (one factor could be the significantly slower average
speed of traffic in the denser urban fabric of Freiburg—see later). Only the Asian cities, as a group,
have lower energy use per person for private passenger transport (6076 MJ), but they are radically
denser than Swedish cities (see later).
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Figure 1. Annual private passenger transport energy use per person in ten Swedish cities (2015), and in
American, Australian, Canadian, European and Asian cities (2005–2006).

Uppsala, Stockholm and, interestingly, Umeå consume the least energy, with 12,157, 12,051 and
11,622 MJ/person, respectively. Jönköping and Linköping, which are amongst the least-dense of the
Swedish cities, consume the most private transport energy use (21,678 and 18,124 MJ, respectively),
which might be expected. However, transport energy use per capita does not relate well, overall,
to urban density in Swedish cities, probably due to the very small range in urban densities and other
factors in these mostly small cities with short travel distances and high use of non-motorised modes
(see Section 4 for these other data on Swedish cities). Overall, Swedish cities in 2015 performed
comparatively well against other cities in the world, consuming only moderate quantities of energy
in private passenger transport in this very energy-hungry sector. Improvements are, however,
always possible through less driving and better technology.

3.2. Public Transport Energy Use per Person

The use of energy in public transport systems is important to understand and to compare with
its private passenger transport equivalent. As already indicated, public-transport energy-use data
were obtained from each of the public transport operators by mode (Figure 2). Public transport here
considers every mode that exists in the city, whether it is just buses or whether it includes multiple
modes (buses, trams, trams and light rail (LRT), metro, suburban rail and ferries). Even cable cars
and small funiculars are included if they exist. Taxis are considered private transport. All public
transport modes and operators must be included to properly and accurately represent the public
transport system.

The data reported here are the average for all modes in each city. Swedish cities are identical to
the other European cities in their per capita energy use by public transport, but significantly more
than in the three auto-oriented groups of cities, with their lesser public transport systems. Freiburg
consumes a modest 1081 MJ/person. The larger Swedish cities on average consume 1787 MJ/person,
while the smaller cities consume a significantly lower 1281 MJ. Göteborg is the biggest per capita
energy consumer in public transport (2680 MJ), which is surprisingly almost the same as the Asian
cities. This is followed quite a bit behind by Jönköping and Stockholm, both of which are, however,
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still relatively high. The range of public transport energy use per person in Swedish cities is large
(2680 MJ in Göteborg and 862 MJ in Örebro—Göteborg provides a vastly higher magnitude of public
transport service, including a large LRT system, compared to Örebro—see Section 4).

 

Figure 2. Annual public transport energy use per person in ten Swedish cities (2015); Freiburg (2015);
and American, Australian, Canadian, European and Asian cities (2005–2006).

Figures 1 and 2 highlight the huge difference between the energy consumption by public transport
systems, compared to private transport. In the case of the Swedish cities (and European cities generally),
private transport consumes over ten times more per capita than that used by public transport. In the
case of US cities, it is over 55 times more, while Australian and Canadian cities show less dramatic
differences (35 and 26 times more, respectively). It is only in the Asian cities, with their very heavy
dependence on public transport and their low levels of car use, that private and public transport energy
use per capita are more equitable (private transport is a little more than twice as high). The data also
suggest that there is considerable untapped energy conservation potential in public transport systems,
particularly given the frequent similarity in energy use per capita in public transport in different cities,
but the vast differences in levels of usage (see Section 4).

3.3. Modal Energy Consumption in Private Transport

This section addresses the second research question in the introduction. Energy consumption
by mode can be examined in two ways—energy use per vehicle kilometer traveled (VKT), which is
common for cars and something that consumers consider when purchasing a vehicle, or energy use per
passenger kilometer traveled (PKT). The latter is more common for public transport, since vehicular
energy consumption for higher capacity public transport vehicles is not useful to compare with cars
because of the greatly different vehicle sizes and occupancy levels. Therefore, when comparing the
relative energy use between modes, energy use per passenger kilometers is used.
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3.3.1. Energy Use per Private Passenger Vehicle Kilometer

Table 3 shows that energy use per private passenger vehicle kilometer varies from a high of
4.9 mega-joules per km (MJ/km) in Canadian cities (4.8 MJ/km in Asian cities and 4.1 MJ/km in the
American and Australian cities), down to 2.3 MJ/km in Umeå and 2.4 MJ/km in Stockholm. It must be
borne in mind, however, that the data for the Swedish cities and Freiburg are from 2015, ten years later
than the data for US, Australian, Canadian, European and Asian cities, over which time, technological
advances and changes in the size and weight of vehicles may have yielded increases in the fuel
efficiency of vehicles. It might be that 2015 data for the other cities could show lower rates of energy
use per vehicle kilometer than they did in 2005, though the relativities between cities are likely to
remain similar. Figure 3 summarizes these results.

 

Figure 3. Energy use per vehicle kilometer in private passenger transport in ten Swedish cities (2015);
Freiburg (2015); and American, Australian, Canadian, European and Asian cities (2005–2006).

The larger Swedish cities consume, on average, 3.1 MJ/km in private passenger modes, which is
the same as the European cities, while the small cities consume 2.9 MJ/km (less congestion and higher
vehicle operating speeds may partly explain this—see Section 4). Freiburg has the same rate of
energy use as the larger Swedish cities (3.1 MJ/km). The range in energy use per VKT in private
passenger transport in Swedish cities is from 2.3 MJ/km (Umeå) to 3.5 and 3.6 MJ/km in Linköping and
Jönköping, respectively.

3.3.2. Energy Use per Public Transport Vehicle Kilometer

Whilst it has been explained that energy use per VKT for public transport modes is of no real use
in comparing to private transport, it is interesting to compare the differences in Table 3 across cities for
the same mode.

Buses: Examining buses first, we see that Jönköping and American city buses consume 32.1 and
31.3 MJ/km, respectively. At the lower end, we find Umeå and Uppsala have only 12.0 and 13.3 MJ/km,
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respectively, while Freiburg consumes 17.9 MJ/km, and European cities, overall, show 18.8 MJ/km,
quite like the average for all Swedish cities of 18.0 MJ/km. The larger cities in Sweden consume
17.4 MJ/km, while buses in the smaller cities consume 18.5 MJ/km or quite close to the European
average. In 2005–2006, the “world average” for buses, based on this large sample of global cities,
was 23.1 MJ/km.

Trams and light rail (LRT): These rail modes represent very similar technologies, and their
differentiation is somewhat artificial. In the Swedish cities and Freiburg, all such modes have been
classed as LRT, and they only exist in Stockholm, Göteborg, Linköping and Freiburg. In the global
sample from 2005, trams and LRT exist in at least some of the cities in all regional groupings. For the
purposes of comparison with the Swedish cities and Freiburg, the average for the other regional
groupings of tram and LRT were used (i.e., American, 17.3 MJ/km; Australian, 10.8 MJ/km; Canadian,
16.2 MJ/km; European, 13.3 MJ/km; Asian, 9.8 MJ/km; and with a global average of 13.8 MJ/km).

The data reveal the Swedish cities to be well within the normal range of energy use by these
modes (11.9 MJ/km) and closest to the Australian cities, while Freiburg (13.0 MJ/km) is very close to the
European average (13.3 MJ/km) and the global average from 2005–2006 (13.8 MJ/km). Swedish cities
are within a relatively tight range in the three cities where LRT exists (10.5 to 14.0 MJ/km). Overall,
tram/LRT systems have a range of about 10.0 to 17.0 MJ/km, depending on the age and type of system.

Metros: Metro systems are mostly underground systems and tend to operate in the denser inner
parts of metro regions (e.g., the Paris metro in the Ville de Paris at the center of the Paris region known
as the Île de France). In Sweden, a metro only exists in Stockholm (tunnelbana), while in the global
sample, metros exist in at least some cities in all regional groupings. Stockholm’s energy use per
vehicle kilometer (wagon kilometer not train kilometer) is 7.8 MJ/km, which is reasonably close to
the European average of 9.3 MJ/km, but significantly less than in all other groups of cities (a range of
13.5 MJ/km in Canadian cities to 22.6 MJ/km in Australian cities and a global average of 12.7 MJ/km).

Suburban rail: This rail mode covers the rail systems that operate over longer distances and
include both underground sections in denser parts of cities and a lot of aboveground operations in
lower-density suburban-type environments. These include the S-Bahn and regional rail systems in
Germany, the RER suburban rail services throughout the Île de France and the regional rail operations
that exist in all ten Swedish cities in this paper, as well as in Freiburg. Rolling stock is mostly bigger
and heavier, including double-decker wagons, and train speeds are much higher than those of metro
systems (see Section 4). In this mode, there is a very wide range of vehicular energy use per kilometer,
depending on the type of trains, their fuel (diesel services are much higher in energy use than electric
services), their age, number of wagons, their size, weight, passenger loadings and operating speeds.

All Swedish suburban train services are longer-distance regional rail lines which operate at high
average speeds. Their energy use is, on average, 22.6 MJ/km, which is like the global average of
23.9 MJ/km, but with a big difference between the larger cities (31.8 MJ/km) and the smaller cities
(13.5 MJ/km). Freiburg averages 19.0 MJ/km. Globally, there are also huge differences with a range of
11.9 MJ/km in the all-electric Australian cities, up to 50.4 MJ/km in the USA with a mixture of diesel
and electric, mostly commuter rail style services. Canadian systems are similar, averaging a relatively
high 43.0 MJ/km, whereas the European and Asian systems are virtually all electric and average only
15.6 and 14.8 MJ/km, respectively. The range in energy use per vehicle kilometer in the ten Swedish
cities is from 5.0 MJ/km in Örebro up to 38.3 MJ/km in Stockholm.

Ferries: These modes only exist in Stockholm and Göteborg in the Swedish sample, but all the
other regional groupings of cities have at least some ferry services. Ferries are very high in their
vehicular energy use, a main factor being the very large frictional forces that must be overcome to ply
through water and the speeds at which operate. Naturally, the size of vessels, which varies hugely
around the world, is also a key determinant of energy use. Swedish cities average 236.9 MJ/km,
with not much difference between the two cities (230.4 and 243.4 MJ/km). The global average was
358.8 MJ/km, with a massive range from 140.7 MJ/km for the ferries in Perth, Brisbane and Sydney
(European cities were virtually identical at 141 MJ/km), up to 1073.3 MJ/km for ferries in US cities
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(only New York and San Francisco). The Asian cities (Hong Kong only) are also very high, with many
large and heavily loaded double-decker ferries in operation.

3.3.3. Energy Use per Private Passenger Kilometer (PKT)

Energy use per PKT is a more meaningful measure of energy consumption in public transport,
which enables genuine comparisons to be made with private passenger transport energy use. Table 3
provides the energy consumption per PKT for private transport, and Figure 4 depicts the data for the
Swedish and global sample. The European cities, including Freiburg, and especially the Swedish cities,
are amongst the lowest energy consumers in cars, though there is a range in Sweden from 2.74 MJ/PKT
in Jönköping down to 1.74 MJ/PKT in Umeå. The larger Swedish cities (2.35 MJ/PKT) are about the
same as Freiburg (2.39) and the average for the European cities (2.30), while the smaller cities are
little lower at 2.18 MJ/PKT. Compared to the Canadian (3.79 MJ/PKT), Asian (3.31), Australian (2.87)
and American (2.85) cities, the Swedish cities are significantly less energy hungry in cars (2.27 MJ/PKT).
Of course, this sets a greater challenge for public transport to compete in energy terms, especially
where loadings in public transport vehicles are low.

 

Figure 4. Energy use per passenger kilometer (PKT) in private passenger transport in ten Swedish cities
(2015); Freiburg (2015); and American, Australian, Canadian, European and Asian cities (2005–2006).

3.3.4. Energy Use per Public Transport Passenger Kilometer (PKT)

Table 3 also provides the energy use per public transport PKT, and Figure 5 graphs the results.
It reveals that Swedish cities have over a threefold difference in energy use per PKT, from a low in
Stockholm of 0.76 MJ/PKT (identical to the European sample and almost the same as Freiburg with 0.79),
up to 2.53 MJ/PKT in Jönköping, which is only 8% lower than for cars in that city. Overall, Swedish
cities consume 1.10 MJ/PKT in public transport or some 45% higher than in European cities, but lower
than in the American and Canadian cities. The smaller cities are more consumptive (1.30 MJ/PKT)
than the larger Swedish cities (1.00 MJ/PKT). Generally, it could be said that the energy result for public
transport in Swedish cities is a little disappointing, with, for example, Jönköping and Örebro exceeding
US consumption levels per PKT. This is indicative of a larger public transport problem in Swedish
cities related to usage levels, as discussed in Section 4.
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Figure 5. Energy use per PKT in public transport in ten Swedish cities (2015); Freiburg (2015);
and American, Australian, Canadian, European and Asian cities (2005–2006).

3.3.5. Ratio of Private to Public Transport Energy Use per PKT

A useful way of considering the last two sets of data is to examine the ratio between private and
public transport energy use per PKT. Figure 6 provides these data and shows that the Asian cities have,
by far, the greatest advantage in energy consumption for public transport (cars are 4.74 times more
consumptive), while in Freiburg and the other European cities, cars are three times higher in energy use
per PKT. In Swedish cities, the energy advantage of public transport is significantly reduced, with cars
being only a little more than twice as energy demanding per PKT, but in the larger cities, the figure is
2.36, while in the smaller cities, cars are only 1.68 times higher in energy use. Of even larger concern is
that, in Örebro, public transport energy use per PKT is basically identical to that of cars and does not
appear to offer any energy advantage at current levels of occupancy for cars and public transport.

3.3.6. Bus Energy Use per PKT

It is important to consider the relative energy use of the different public transport modes. Table 3
shows that buses are the second highest public transport mode for energy use after ferries. They have
considerably more energy consumption than rail modes in every case, but in most cases, they are still
less energy consumptive than cars (except in Örebro, where buses consume 14% more energy/PKT
than cars, and in US cities, where buses are 4% higher than in cars). In the Swedish cities, buses overall
consume 1.76 MJ/PKT or almost identical to the global sample at 1.78. Buses in the larger Swedish
cities are a little more economical in energy (1.54 MJ/PKT) than in the smaller cities (1.97). However,
clearly, the Swedish urban buses do not perform as well in energy terms as other European cities
(1.31 MJ/PKT), which is likely related to their lower levels of usage (Section 4).

3.3.7. Tram/LRT Energy Use per PKT

As mentioned before, for simplicity, tram and LRT in the global sample are combined here to
provide an overview perspective. These rail modes are generally the second-lowest energy-demanding
modes in cities after metros (see below) and average around 0.60 MJ/PKT (e.g., the global average
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is 0.64 MJ/PKT, Swedish cities 0.60 and European cities 0.63). Freiburg is exceptionally good,
with 0.33 MJ/PKT, and the two Asian cities quite close to this (0.40). In every case, trams and LRT are also
much less energy consumptive than buses, due to their generally higher loadings, electric propulsion
and the fact that they tend to operate in generally denser, more public-transport-supportive urban
fabrics, especially inner areas of cities.

 
Figure 6. Ratio of private to public transport energy use per PKT in ten Swedish cities (2015);
Freiburg (2015); and American, Australian, Canadian, European and Asian cities (2005–2006).

3.3.8. Metro Energy Use per PKT

Metros are very often the least-energy-consuming mode in cities. Stockholm, the only Swedish
city with a metro, consumes only 0.39 MJ/PKT, even a little lower than the European average of 0.42
and only a little higher than the Asian average of 0.34 MJ/PKT. Globally, metros average 0.52 MJ/PKT,
but in the auto-dependent cities in the US, Australia and Canada, they average higher energy use
(0.69, 0.75 and 0.64 MJ/PKT, respectively).

3.3.9. Suburban Rail Energy Use per PKT

Suburban rail is generally the third least-energy-consumptive public-transport mode in cities,
after metros and LRT. In Asian cities, however, suburban rail averages only 0.27 MJ/PKT. Swedish cities
acquit themselves well here, by averaging 0.59 MJ/PKT (0.55 and 0.64 MJ/PKT in the larger and
smaller cities, respectively). This is very like the other European cities (0.60) and Freiburg (0.65)
and significantly better than the US and Canadian cities (1.29 and 1.17 MJ/PKT, respectively), due in no
small part to the use of diesel fuel in some of their systems. In no case is suburban rail energy use
more than that used in buses and is sometimes less than metros (e.g., in Linköping, Australian and
Asian cities).

3.3.10. Ferry Energy Use per PKT

Ferries are the most-energy-consuming modes in cities, though they are not so common. In Swedish
cities, they consume, on average, 7.77 MJ/PKT versus a global figure of 4.60 MJ/PKT. In other European
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cities, they consume 4.88 MJ/PKT. Although ferry systems are not generally energy-efficient anywhere,
they often form critical links across water bodies where bridges for traffic are not very practicable or
desirable. Therefore, their energy conservation quality is realized more in substituting for long car
trips that would otherwise be needed to circumvent water obstacles in cities.

It is important to note here that Table 3 shows minibuses to also be high energy consumers per PKT
(7.16 MJ/PKT), but they are a category found only in the American cities and in Hong Kong in this study.
However, this is due to the high-energy-consuming-demand-responsive bus systems in American
cities that drive many millions of kilometers in low-density areas, picking up very few passengers.

4. Understanding Differences in Patterns of Energy Use in Swedish Cities

This section addresses the third research question in the introduction which seeks to explain
patterns of passenger transport energy use per capita in Swedish cities by reference to a set of
standardized transport and land-use indicators developed for each city and compared to other global
cities and Freiburg. Table 4 contains these data.

The preceding data have shown that Swedish cities have almost identical average per capita use of
energy in both private and public transport systems, despite, as Table 4 shows, having densities which
are significantly below those in other European cities (16.9 cf. 47.9 persons/ha) and notwithstanding
that density has been shown to be the most strongly correlated variable in explaining urban energy
use in private passenger transport [26,28]. This low energy use is, of course, linked to the fact that
Swedish cities also have nearly identical car passenger kilometers (PKT) per capita as other European
cities (6888 car PKT/person cf. 6817, respectively), which is at least partly explained by the Swedish
cities’ lower car occupancy of 1.31 compared to 1.38 in other European cities in 2005. Car passenger
kilometers is the result of car vehicle kilometers multiplied by the average 24 h/7 days per week car
occupancy, and of course includes the driver. Such low car occupancy and underutilized capacity in
public transport due to low vehicle and seat occupancy (explained later) are naturally also sources of
potential energy conservation if occupancies can be increased.

So, how might the relatively low car use per person and low private transport energy use per
person, despite comparatively low urban densities in Swedish cities, be explained? A review of the
data in Table 4 highlights some significant findings regarding Swedish cities which serve as mitigating
factors in understanding the above issue. However, it is first important to highlight the metropolitan
Gross Domestic Product (GDP) per capita factor in Table 4. It is common to hear that greater wealth
generates more car use, but Table 4 shows that Swedish cities had a similar average GDP per capita
($30,001) in 2015 to the Australian ($32,194) and Canadian cities ($31,263) in 2006, whose car and energy
use per capita are much higher than in Swedish cities (around double or more in private transport
energy use). Similarly, European cities had an average GDP of $38,683/person in 2005, which was very
much higher than the Australian and Canadian cities at that time, and yet all of their mobility factors
are strongly oriented to public transport, walking and cycling, and they have much lower transport
energy use per capita. These inconsistent relationships between wealth and transport energy use mean
that wealth is generally a weak factor in predicting per capita transport energy use data at an aggregate
level in cities across the globe. In the 2005–2006 data for the cities in Table 1, GDP per capita had the
strongest positive relationship with private passenger transport energy use per capita, using a power
function with an r2 value of only 0.172. By contrast, urban density (persons per ha) showed a very
strong negative relationship, with an r2 value of 0.827.

18



Energies 2020, 13, 3719

T
a

b
le

4
.

K
ey

tr
an

sp
or

ta
nd

la
nd

u
se

in
d

ic
at

or
s

in
te

n
Sw

ed
is

h
ci

ti
es

(2
01

5)
,p

lu
s

Fr
ei

bu
rg

im
B

re
is

ga
u

(2
01

5)
,a

s
co

m
p

ar
ed

to
A

m
er

ic
an

,A
u

st
ra

lia
n,

C
an

ad
ia

n,
Eu

ro
pe

an
an

d
A

si
an

ci
ti

es
(2

00
5–

20
06

).

V
a

ri
a

b
le

U
n

it
s

S
to

ck
h

o
lm

M
a

lm
ö

G
ö

te
b

o
rg

L
in

k
ö

p
in

g
H

e
ls

in
g

b
o

rg
S

W
E

L
A

R
G

E
U

p
p

sa
la

V
ä

st
e

rå
s

Ö
re

b
ro

Jö
n

k
ö

p
in

g

U
rb

an
de

ns
it

y
pe

rs
on

s/
ha

23
.5

20
.0

19
.7

13
.8

21
.9

1
9

.8
15

.3
17

.1
13

.7
12

.6
Pr

op
or

ti
on

of
jo

bs
in

C
BD

%
28

.2
%

7.
8%

7.
0%

18
.9

%
19

.7
%

1
6

.3
%

19
.2

%
23

.3
%

14
.6

%
20

.6
%

M
et

ro
po

lit
an

gr
os

s
do

m
es

tic
pr

od
uc

tp
er

ca
pi

ta
U

SD
19

95
$4

9,
27

1
$3

2,
70

9
$4

0,
80

8
$3

0,
26

0
$2

8,
91

7
$

3
6

,3
9

3
$3

1,
99

8
$2

9,
59

4
$2

9,
04

5
$2

9,
95

2
Le

ng
th

of
fr

ee
w

ay
pe

r
pe

rs
on

m
/

pe
rs

on
0.

13
8

0.
23

2
0.

22
5

0.
26

9
0.

28
7

0
.2

3
0

0.
18

0
0.

22
4

0.
36

6
0.

49
6

Pa
rk

in
g

sp
ac

es
pe

r
10

00
C

BD
jo

bs
sp

ac
es
/1

00
0

jo
bs

12
5

23
7

16
0

22
5

48
3

2
4

6
16

9
50

1
46

1
28

7
Pa

ss
en

ge
r

ca
rs

pe
r

10
00

pe
rs

on
s

un
its
/1

00
0

pe
rs

on
s

39
8

44
2

40
5

43
2

43
5

4
2

3
38

7
46

1
43

5
48

1
A

ve
ra

ge
sp

ee
d

of
th

e
ro

ad
ne

tw
or

k
(2

4/
7)

km
/h

37
.1

41
.0

39
.0

30
.5

39
.1

3
7

.3
51

.3
48

.5
47

.4
45

.0
To

ta
ll

en
gt

h
of

pu
bl

ic
tr

an
sp

or
tl

in
es

pe
r

10
00

pe
rs

on
s

m
/1

00
0

pe
rs

on
s

48
67

31
09

60
98

11
,0

55
30

31
5

6
3

2
11

,1
76

68
94

98
76

90
24

To
ta

ll
en

gt
h

of
re

se
rv

ed
pu

bl
ic

tr
an

sp
or

tr
ou

te
s

pe
r

10
00

pe
rs

on
s

m
/1

00
0

pe
rs

on
s

23
4

22
2

28
3

37
8

43
2

3
1

0
58

4
12

75
42

2
14

57
To

ta
lp

ub
lic

tr
an

sp
or

ts
ea

tk
ilo

m
et

re
s

of
se

rv
ic

e
pe

r
ca

pi
ta

se
at

km
/p

er
so

n
8,

29
4

5,
83

7
9,

37
6

4,
64

7
6,

32
1

6
8

9
5

71
15

26
77

36
42

4,
33

0
O

ve
ra

ll
av

er
ag

e
sp

ee
d

of
pu

bl
ic

tr
an

sp
or

t
km
/h

33
.6

46
.8

30
.9

38
.6

31
.5

3
6

.3
64

.4
38

.4
33

.4
40

.7
*

A
ve

ra
ge

sp
ee

d
of

bu
se

s
km
/h

24
.8

27
.8

28
.0

31
.3

23
.6

2
7

.1
46

.0
28

.0
30

.5
31

.5
*

A
ve

ra
ge

sp
ee

d
of

su
bu

rb
an

ra
il

km
/h

56
.3

75
.6

66
.0

93
.8

65
.8

7
1

.5
10

2.
0

93
.9

89
.0

72
.5

To
ta

lp
ub

lic
tr

an
sp

or
tb

oa
rd

in
gs

pe
r

ca
pi

ta
bo

ar
di

ng
s/

pe
rs

on
35

9
11

1
28

5
64

15
8

1
9

5
10

8
53

39
60

To
ta

lp
ub

lic
tr

an
sp

or
tp

as
se

ng
er

ki
lo

m
et

re
s

pe
r

ca
pi

ta
p.

km
/p

er
so

n
25

79
14

51
24

63
87

7
15

90
1

7
9

2
17

65
88

4
36

7
80

9
O

ve
ra

ll
pu

bl
ic

tr
an

sp
or

tv
eh

ic
le

oc
cu

pa
nc

y
pe

rs
on

s/
un

it
22

.6
22

.0
16

.3
14

.4
16

.1
1

8
.3

15
.2

16
.2

7.
2

9.
9

O
ve

ra
ll

pu
bl

ic
tr

an
sp

or
ts

ea
to

cc
up

an
cy

%
31

%
25

%
26

%
19

%
25

%
2

5
%

25
%

33
%

10
%

19
%

Pa
ss

en
ge

r
ca

r
pa

ss
en

ge
r

ki
lo

m
et

re
s

pe
r

ca
pi

ta
p.

km
/p

er
so

n
66

30
68

39
66

89
67

34
68

62
6

7
5

1
61

31
70

48
73

61
79

02
Pe

rc
en

ta
ge

of
to

ta
ld

ai
ly

tr
ip

s
by

no
n

m
ot

or
is

ed
m

od
es

%
22

.1
%

31
.2

%
26

.3
%

33
.0

%
23

.0
%

2
7

.1
%

46
.8

%
32

.7
%

34
.0

%
21

.2
%

Pe
rc

en
ta

ge
of

to
ta

ld
ai

ly
tr

ip
s

by
m

ot
or

is
ed

pu
bl

ic
m

od
es

%
31

.6
%

17
.6

%
20

.0
%

9.
7%

18
.0

%
1

9
.4

%
14

.1
%

6.
7%

9.
0%

9.
6%

Pr
op

or
ti

on
of

to
ta

lm
ot

or
is

ed
pa

ss
en

ge
r

ki
lo

m
et

re
s

on
pu

bl
ic

tr
an

sp
or

t
%

27
.8

%
17

.4
%

26
.7

%
11

.4
%

18
.7

%
2

0
.4

%
22

.2
%

11
.1

%
4.

7%
9.

2%
R

at
io

of
pu

bl
ic

ve
rs

us
pr

iv
at

e
tr

an
sp

or
ts

pe
ed

s
ra

ti
o

0.
91

1.
14

0.
79

1.
27

0.
81

0
.9

8
1.

25
0.

79
0.

71
0.

90
R

at
io

of
se

gr
eg

at
ed

pu
bl

ic
tr

an
sp

or
t

in
fr

as
tr

uc
tu

re
ve

rs
us

ex
pr

es
sw

ay
s

ra
ti

o
1.

69
0.

96
1.

26
1.

41
1.

51
1

.3
6

5.
48

10
.3

4
2.

32
7.

67

19



Energies 2020, 13, 3719

T
a

b
le

4
.

C
on

t.

V
a

ri
a

b
le

U
n

it
s

U
m

e
å

F
re

ib
u

rg
S

W
E

S
M

A
L

L
S

W
E

A
L

L
U

S
A

A
U

S
C

A
N

E
U

R
A

S
IA

A
L

L

U
rb

an
de

ns
it

y
pe

rs
on

s/
ha

11
.5

46
.0

1
4

.0
1

6
.9

15
.4

14
.0

25
.8

47
.9

21
7.

3
42

.2
Pr

op
or

ti
on

of
jo

bs
in

C
BD

%
13

.7
%

16
.3

%
1

8
.3

%
1

7
.3

%
8.

2%
12

.7
%

15
.0

%
18

.3
%

9.
1%

14
.5

%
M

et
ro

po
lit

an
gr

os
s

do
m

es
tic

pr
od

uc
tp

er
ca

pi
ta

U
SD

19
95

$2
9,

41
5

$2
5,

78
2

$
3

0
,0

0
1

$
3

3
,1

9
7

$4
4,

45
5

$3
2,

19
4

$3
1,

26
3

$3
8,

68
3

$2
1,

20
1

$3
7,

70
0

Le
ng

th
of

fr
ee

w
ay

pe
r

pe
rs

on
m
/

pe
rs

on
0.

00
0

0.
06

3
0

.2
5

3
0

.2
4

2
0.

15
6

0.
08

3
0.

15
7

0.
09

4
0.

02
6

0.
11

2
Pa

rk
in

g
sp

ac
es

pe
r

10
00

C
BD

jo
bs

sp
ac

es
/1

00
0

jo
bs

24
0

27
1

3
3

2
2

8
9

48
7

29
8

31
9

24
8

12
1

31
4

Pa
ss

en
ge

r
ca

rs
pe

r
10

00
pe

rs
on

s
un

it
s/

10
00

pe
rs

on
s

43
5

39
3

4
4

0
4

3
1

64
0

64
7

52
2

46
3

78
51

2
A

ve
ra

ge
sp

ee
d

of
th

e
ro

ad
ne

tw
or

k
(2

4/
7)

km
/h

46
.7

29
.9

4
7

.8
4

2
.6

50
.4

42
.8

45
.4

34
.3

30
.6

40
.2

To
ta

ll
en

gt
h

of
pu

bl
ic

tr
an

sp
or

tl
in

es
pe

r
10

00
pe

rs
on

s
m
/1

00
0

pe
rs

on
s

18
,9

69
51

31
1

1
,1

8
8

8
4

1
0

13
82

26
09

24
96

3,
18

3
2,

61
4

2,
57

6
To

ta
ll

en
gt

h
of

re
se

rv
ed

pu
bl

ic
tr

an
sp

or
tr

ou
te

s
pe

r
10

00
pe

rs
on

s
m
/1

00
0

pe
rs

on
s

18
78

41
1

1
1

2
3

7
1

6
72

16
0

67
29

8
34

18
8

To
ta

lp
ub

lic
tr

an
sp

or
ts

ea
tk

ilo
m

et
re

s
of

se
rv

ic
e

pe
r

ca
pi

ta
se

at
km
/p

er
so

n
49

63
39

57
4

5
4

6
5

7
2

0
18

74
40

77
23

68
61

26
72

67
44

86
O

ve
ra

ll
av

er
ag

e
sp

ee
d

of
pu

bl
ic

tr
an

sp
or

t
km
/h

34
.0

32
.1

4
2

.2
3

9
.2

27
.3

33
.0

25
.7

29
.8

26
.3

28
.8

*
A

ve
ra

ge
sp

ee
d

of
bu

se
s

km
/h

31
.2

26
.1

3
3

.4
3

0
.3

19
.9

23
.4

22
.4

21
.9

19
.4

21
.5

*
A

ve
ra

ge
sp

ee
d

of
su

bu
rb

an
ra

il
km
/h

90
.4

50
.6

8
9

.6
8

0
.5

57
.3

47
.6

44
.7

52
.1

50
.8

51
.7

To
ta

lp
ub

lic
tr

an
sp

or
tb

oa
rd

in
gs

pe
r

ca
pi

ta
bo

ar
di

ng
s/

pe
rs

on
45

19
2

6
1

1
2

8
67

96
15

1
38

6
45

0
25

4
To

ta
lp

ub
lic

tr
an

sp
or

tp
as

se
ng

er
ki

lo
m

et
re

s
pe

r
ca

pi
ta

p.
km
/p

er
so

n
11

17
13

75
9

8
8

1
3

9
0

57
1

1,
07

5
10

31
22

34
37

86
16

44
O

ve
ra

ll
pu

bl
ic

tr
an

sp
or

tv
eh

ic
le

oc
cu

pa
nc

y
pe

rs
on

s/
un

it
12

.3
22

.6
1

2
.1

1
5

.2
13

.1
18

.1
19

.8
21

.0
28

.1
19

.0
O

ve
ra

ll
pu

bl
ic

tr
an

sp
or

ts
ea

to
cc

up
an

cy
%

23
%

35
%

2
2

%
2

4
%

29
%

27
%

44
%

39
%

52
%

37
%

Pa
ss

en
ge

r
ca

r
pa

ss
en

ge
r

ki
lo

m
et

re
s

pe
r

ca
pi

ta
p.

km
/p

er
so

n
66

80
68

99
7

0
2

4
6

8
8

8
18

,7
03

12
,4

47
84

95
68

17
19

75
10

,2
34

Pe
rc

en
ta

ge
of

to
ta

ld
ai

ly
tr

ip
s

by
no

n
m

ot
or

is
ed

m
od

es
%

29
.3

%
63

.0
%

3
2

.8
%

3
0

.0
%

9.
5%

14
.2

%
11

.6
%

34
.5

%
26

.1
%

23
.2

%
Pe

rc
en

ta
ge

of
to

ta
ld

ai
ly

tr
ip

s
by

m
ot

or
is

ed
pu

bl
ic

m
od

es
%

6.
9%

16
.0

%
9

.3
%

1
4

.3
%

5.
5%

7.
5%

13
.1

%
22

.4
%

46
.0

%
16

.8
%

Pr
op

or
ti

on
of

to
ta

lm
ot

or
is

ed
pa

ss
en

ge
r

ki
lo

m
et

re
s

on
pu

bl
ic

tr
an

sp
or

t
%

14
.2

%
16

.4
%

1
2

.3
%

1
6

.3
%

3.
2%

8.
0%

11
.3

%
24

.5
%

62
.9

%
18

.0
%

R
at

io
of

pu
bl

ic
ve

rs
us

pr
iv

at
e

tr
an

sp
or

ts
pe

ed
s

ra
ti

o
0.

73
1.

07
0

.8
8

0
.9

3
0.

55
0.

78
0.

57
0.

88
0.

86
0.

75
R

at
io

of
se

gr
eg

at
ed

pu
bl

ic
tr

an
sp

or
t

in
fr

as
tr

uc
tu

re
ve

rs
us

ex
pr

es
sw

ay
s

ra
ti

o
-

19
.1

0
6

.4
5

3
.2

6
0.

56
1.

98
0.

56
5.

51
1.

42
3.

16

20



Energies 2020, 13, 3719

4.1. Differences and Similarities in Car-Related Factors

Firstly, Swedish cities had lower car ownership in 2015 (431/1000 people) than the European cities
had in 2005 (463/1000), and the difference would have widened, since car ownership in European cities
would have grown over the intervening ten years. This lower car ownership in Swedish cities will tend
to reduce their energy use. However, they also have 2.5 times more linear length of freeway provision
than European cities (0.242 cf. 0.094 m/person), which generally tends to increase per capita transport
energy use in cities [29] because it encourages more driving over longer distances.

However, the average speed of individual vehicles is also known to be the most important single
variable in explaining the fuel consumption of vehicles in traffic streams [30–32], with higher average
speeds up to about 60 km/h being shown to reduce the consumption of fuel per kilometer in a vehicle.
The ten Swedish cities have an average traffic speed of 42.6 km/h, compared to only 34.3 km/h in
other denser European cities. Swedish average traffic speed is almost identical to the much more
auto-oriented Australian cities (42.8 km/h).

While this result would tend to mitigate fuel use somewhat by reducing the fuel consumption
per kilometer of vehicles in Swedish cities, it has also been shown that there is a trade-off between
fuel-efficient traffic and fuel-efficient cities. Policies that try to minimize transport energy consumption
by building more roads and speeding up traffic will, overall, tend to increase the amount of energy use
per person through greater car-orientation of the city and more driving, and therefore should never be
pursued [33].

Swedish cities also have quite similar parking spaces per 1000 Central Business District (CBD)
jobs to their European cousins. European cities average 248 spaces/1000 jobs while Swedish cities
average 289, though the larger Swedish cities have only 246 spaces/1000 jobs with the smaller ones
being more generously supplied with parking (332/1000 jobs). Reduced parking in the CBD will greatly
favor non-car modes, especially for the journey to work [34]. Overall, the similarity in Swedish cities
with other European cities on this factor, and especially when compared to the very high CBD parking
in US cities, will tend to reduce transport energy use. When this is combined with the relatively high
centralization of jobs in their CBDs (17.3% in the Swedish cities overall and 18.3% in their smaller
cities), the possibility of using public transport, walking and cycling to work is enhanced.

Table 4 shows that private transport modes constitute 55.7% of all daily trips in the ten Swedish
cities, with a slightly better result in the five larger cities (53.5%). Other lower-density, auto-oriented
cities in the USA, Australia and Canada have between 75% and 85% of daily trips by private modes.
This is a very big factor in keeping Swedish car use and private passenger transport energy use per
capita very much lower than it is in the USA, Australia and Canada.

When the fuel consumption rate in MJ/km and MJ/passenger km (PKT) is considered, as detailed
earlier in the paper, it can also be seen that Sweden follows the European phenomenon of more
fuel-efficient vehicles. For example, cars in the ten Swedish cities average 3.0 MJ/km, while the
European cities average 3.1 MJ/km. In all other groups of cities, cars are consuming between 4.1
and 4.9 MJ/km. Likewise, considering passenger loadings, Swedish cities average 2.27 MJ/PKT,
while European cities average 2.30 and the other cities average between 2.85 and 3.79 MJ/PKT.
Thus smaller, more fuel-efficient cars in Swedish cities also help to suppress their transport energy use.

4.2. Public Transport and Non-Motorized Mode Factors

There are a series of other important factors that make Swedish cities a somewhat unique cohort
in the global system of cities. Firstly, relative to other lower-density cities, Sweden provides a lot
of public transport infrastructure. The length of all public transport lines in the ten cities averages
8410 m/1000 persons, while in other European cities, it is 3183. In American cities, it is only 1382 meters,
and in Australia, in the best of the auto cities, it is 2609 m/1000 persons. The reserved route length per
1000 persons is also high in Swedish cities with 716 m/1000 persons and only 298 in other European
cities (reserved routes are those that are reserved only for public transport such as bus lanes and rail
lines, including segregated LRT/tram routes), so that congestion from other vehicles does not interfere
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with their operation. Other lower-density cities typically average only around 100 m/1000 persons.
Additionally, the ratio of reserved public transport route to freeways (the two premium measures
of private and public transport infrastructure) is 3.26 in the Swedish cities, only exceeded by other
European cities with 5.51 times more premium public transport route than freeways.

This means that public transport systems in Swedish cities offer quite competitive average speeds.
The ratio of overall public transport system speed (all modes) is 0.93 (so approaching parity with
average road traffic speed), while in other European cities, it is 0.88. American and Canadian cities have
public transport systems that operate at little more than half the average speed of general road traffic.
The Swedish suburban rail services are especially competitive with road traffic, averaging 80.5 km/h cf.
42.6 km/h. Even Swedish urban bus systems have the best average speed of all buses in the world (30.3
km/h compared to a range in other cities from 19.4 to 23.4 km/h, with a global average of 21.5 km/h).

Furthermore, Swedish cities are blessed with relatively high levels of public transport service as
measured by the annual seat kilometers of service per person. They provide on average 5720 seat
km/person, with the five larger cities at 6895 km/person, which is more than other European cities
(6126 seat km/person).

It could be concluded that Swedish cities do a great deal for public transport, to help compensate
for what are atypically low densities for European cities and therefore quite dramatically reduced
catchment densities around public transport stops. Stockholm is an exception here and has had a strong
policy of transit-oriented development around stations on its tunnelbana (metro) system [35,36],
thereby achieving the highest public transport use in Sweden (359 annual boardings/person),
comparable to other European cities with 386/person. This suggests that even where densities are
relatively modest overall (23.5 persons/ha in Stockholm), if significantly focused and denser, mixed-use
urban fabrics can be developed and integrated with good public transport services, high levels of use
can still be achieved.

Because of overall good infrastructure and service for public transport, the ten Swedish cities
achieve what is a respectable performance in public transport use despite their lower densities.
They average 128 annual boardings per capita and 195 in the larger five cities, compared to 67, 96
and 151 per capita in US, Australian and Canadian cities, respectively (and Canadian cities average
58% higher urban density than the average for the Swedish cities). Swedish cities are, however,
67% less in per capita boardings than in other European cities. Their public transport passenger
kilometers are better, due most likely to longer travel distances, averaging 1390 PKT/person, compared
to 571, 1075 and 1031 in US, Australian and Canadian cities, though they are still 38% below the
European cities (2234/person). Swedish cities also have 16.3% of total motorized travel by public
transport (20.4% in the larger cities), compared to only 3.2%, 8.0% and 11.3% in US, Australian and
Canadian cities respectively. Not surprisingly, though, they lag the other European cities in this
factor (24.5%).

The major public transport problem for Swedish cities is their low density. This can be seen in
the vehicle and seat occupancy data. These data show how many people on average are in a public
transport vehicle (for rail, a vehicle is one wagon of a train) and what percentage of the seats supplied
are on average occupied. Table 4 shows that there are on average only 15 persons per public transport
vehicle (23 in Stockholm), which is lower than all other groups of cities, apart from the American cities
(13). In seat occupancy (24% for all Swedish cities), there are no groups of cities with lower occupancy,
and the range is from 31% in Stockholm down to 10% in Örebro. Thus, there is a lot of unutilized public
transport capacity in Swedish cities and therefore high energy conservation potential if occupancy of
the generous services provided can be increased.

Finally, Table 4 also suggests that the strong orientation to non-motorized modes in Swedish
cities, despite a cold climate for much of the year, is also contributing significantly to their moderate
private passenger transport energy use per capita. Swedish cities average 30% of all daily trips by
walking and cycling (and a further 14.3% by public transport), with 32.8% walking and cycling in the
five smaller cities, not far behind the other European cities with 34.5%. This is in stark contrast to 9.5%
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in American, 14.2% in Australian and 11.6% non-motorized-mode use in Canadian cities. Despite low
overall densities, Swedish cities do have significant areas of higher density, mixed use walking city
fabric which facilitates greater use of both walking and cycling [21,37].

A simple way of summarizing the collective importance of all these factors in understanding
transport energy use is to look at a pair of contrasting examples from Sweden with quite different per
capita energy use in private passenger transport. Table 5 contrasts these key differences and shows that
Jönköping has 80% higher private transport energy use per capita than Stockholm (21,678 MJ/person cf.
12,051 MJ/person). Furthermore, despite public transport use being dramatically less than in Stockholm
(60 boardings/person cf. 359 in Stockholm), even public transport energy use per capita is a fraction
higher (2050 in Jönköping cf. 1949 MJ/person in Stockholm). This highlights the energy conservation
potential of public transport in a simple way—despite very similar public transport energy use per
capita, Stockholm carries six times more boardings. The efficiency of energy use is also very different
between the two cities. Jönköping’s private and public transport energy use per passenger km are very
similar (2.74 versus 2.53 MJ/PKT respectively) so that public transport has only a slight advantage in
energy consumption. By contrast, private transport uses 2.4 times more energy per passenger km than
public transport in Stockholm.

Table 5. Key differences between Stockholm and Jönköping with low compared to high per capita
energy use in private passenger transport.

Variable Units Stockholm Jönköping

Private passenger transport energy use per capita MJ/person 12,051 21,678
Public transport energy use per capita MJ/person 1949 2050
Energy use per private passenger kilometre MJ/p.km 1.82 2.74
Energy use per public transport passenger kilometre MJ/p.km 0.76 2.53
Urban density persons/ha 23.5 12.6
Proportion of jobs in CBD % 28.2% 20.6%
Metropolitan gross domestic product per capita USD 1995 $49,271 $29,952
Length of freeway per person m/ person 0.138 0.496
Parking spaces per 1000 CBD jobs spaces/1000 jobs 125 287
Passenger cars per 1000 persons units/1000 pers. 398 481
Average speed of the road network (24/7) km/h 37.1 45.0
Total length of public transport lines per 1000 persons m/1000 persons 4867 9024
Total length of reserved public transport routes per 1000 persons m/1000 persons 234 1457
Total public transport seat kilometres of service per capita seat km/person 8294 4330
Overall average speed of public transport km/h 33.6 40.7
* Average speed of buses km/h 24.8 31.5
* Average speed of suburban rail km/h 56.3 72.5
Total public transport boardings per capita boardings/person 359 60
Total public transport passenger kilometres per capita p.km/person 2579 809
Overall public transport vehicle occupancy persons/unit 22.6 9.9
Overall public transport seat occupancy % 31% 19%
Passenger car passenger kilometres per capita p.km/person 6630 7902
Percentage of total daily trips by non motorised modes % 22.1% 21.2%
Percentage of total daily trips by motorised public modes % 31.6% 9.6%
Proportion of total motorised PKT on public transport % 27.8% 9.2%
Ratio of public vs private transport speeds ratio 0.91 0.90
Ratio of segregated public transport infrastructure vs expressways ratio 1.69 7.67

It can also be seen how different many of the other factors are between the two cities. Urban density
is 87% higher in Stockholm, the proportion of jobs in the CBD is 1.4 times more, parking spaces per
1000 jobs are 2.3 times higher in Jönköping and GDP per capita in Stockholm is 1.6 times higher
than Jönköping, despite Stockholm having significantly lower car use per capita than in Jönköping
(6630 PKT/person cf. 7902 PKT/person). Freeway provision per person is 3.6 times greater in Jönköping,
and car ownership is 21% higher, reflecting a higher commitment to the car than in Stockholm.
Average road traffic speed is 45 km/h in Jönköping versus 37.1 km/h in Stockholm, thus encouraging
more car use, although the ratio between public transport system speed and road traffic speed is
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virtually identical in both cities due to Jönköping’s average public transport speed also being higher
(40.7 km/h cf. 33.6 km/h).

Although Jönköping has more public transport lines and greater reserved public transport route
per person than Stockholm, this infrastructure is not as well serviced as in Stockholm (only 4330 seat
km/person cf. 8294 in Stockholm). This is reflected in all the public transport usage variables in Table 5
being so much higher in Stockholm, including vehicle and seat occupancy levels. Such differences
are, to a degree, expected, given the difference in density and therefore the reduced public transport
catchment populations around stops/stations in Jönköping. Interestingly, in non-motorized mode use
as a percentage of total daily trips, Stockholm only has a slight edge over Jönköping, and both cities
are the two lowest of the ten Swedish cities in this factor.

When taken collectively, it is likely that there is a strong multiplicative effect at work in determining
the differences in energy use between the two cities.

5. Conclusions

This paper has provided a detailed insight into the private and public transport energy consumption
patterns in ten Swedish cities and some broad urban planning, infrastructure and mobility patterns
data that help to explain that consumption, both within Sweden and in relation to other world cities.
The introduction posed three research questions, and the summary answers to those questions are
provided in this section.

5.1. How Does Energy Use per Capita in Private and Public Transport Modes Compare within Sweden and with
Other Cities in the USA, Australia, Canada, Europe and Asia?

Swedish cities are typical European cities in both their average private and public transport
energy use per capita (15,601 MJ and 1534 MJ/person, respectively), with the smaller Swedish cities
being a little less than the larger cities in both. However, there is considerable variation from 11,622 to
21,678 MJ/person in Umeå and Jönköping, respectively. On average, Swedish cities have about one-half
the per capita private transport energy use of Australian and Canadian cities and less than one-third
that of US cities. Their public transport energy use per capita is higher than the automobile cities in the
USA, Australia and Canada, about the same as in other European cities, but much lower than in the
Asian cities. This public transport energy use reflects much higher levels of public transport service
and therefore greater commitment to public transport in Swedish cities than in the auto-oriented cities
with a similar density.

5.2. How Do the Modal Energy Consumption Rates per Vehicle Kilometer and Passenger Kilometer in Swedish
Cities Differ from Each Other and Other Cities Worldwide?

5.2.1. Energy Use per Vehicle Kilometer

Private transport energy use per vehicle km in Swedish cities is on average similar in the smaller
and larger cities (2.9 and 3.1 MJ/km, respectively, with an average of 3.0) and very like Freiburg (3.1),
as well as the other European cities in 2005 (3.1 MJ/km). This factor is, however, much less than in all
the other groups of cities, which ranged in 2005 from 4.1 to 4.9 MJ/km.

Public transport energy use per kilometer (17.3 MJ/km all modes) is lower than in the global
sample (18.6 MJ/km). Swedish buses consume less energy per kilometer than all groups of cities,
apart from the European cities and Freiburg, with which they are very alike. LRT energy use per
wagon km is also very like European cities, but lower than the other groups of cities. Metro energy
use per wagon km (Stockholm’s tunnelbana) is again akin to European cities, but very much lower
than metros everywhere else. Suburban rail energy use varies a lot and is higher than in European,
Australian and Asian cities, but very much lower than in American and Canadian cities (which have
numerous less energy-efficient diesel operations).
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5.2.2. Energy Use per Passenger Kilometer

Private transport energy use per passenger km follows the same patterns as outlined above,
with Swedish cities on average being almost identical to European cities, but significantly below all the
other cities. On the other hand, the lower use of public transport services sees Swedish cities consuming
more energy per passenger kilometer (1.10 MJ/PKT) than all groups of cities, except those in the US
and Canada. This includes Freiburg and the European cities which consume 0.79 and 0.76 MJ/PKT,
respectively. This pattern is mainly due to the buses, because for the rail modes (LRT, metro and
suburban rail), Swedish cities are much more alike, or sometimes better than, the other groups of cities.

5.3. Can Differences in Transport Energy Use per Capita Be Explained through Reference to a Range of Other
Important Transport Indicators in Swedish Cities?

An examination of a wide range of other transport-related indicators has revealed insights into
why Swedish cities differ between one another in passenger transport energy use and between other
cities in the world. The key point to note here is that Swedish cities have similar levels of car use to
other European cities and therefore similar per capita private transport energy use. This is despite
Swedish cities being significantly lower in density than other European cities. However, unlike cities
of similar density in North America and Australia, Swedish cities are still more centralized in work
than their more auto-oriented cousins, thus favoring walking, cycling and public transport; they have
significantly lower car ownership and they provide very good levels of public transport infrastructure
and service, including competitive speeds with the car. They also have respectable levels of public
transport use and very healthy levels of walking and cycling, especially considering their density.

Unlike most lower-density cities in North America and Australia, Swedish cities, being much
older, do retain much more significant areas of “walking city” and “transit city” urban fabric and are
therefore not uniformly low in density but rather have substantially higher density mixed-land-use
areas, which are very supportive of public transport, walking and cycling [37]. For a more detailed
explanation of how Swedish cities distinguish themselves from other cities in these matters, readers can
refer to Kenworthy [21], which also contains photographic evidence of this urban fabrics’ argument.

The variation in per capita private transport energy use between Swedish cities can
generally be explained by the lower energy-consuming Swedish cities having a combination of
(a) more energy-efficient cars, (b) higher density, or at least more extensive areas of walking and
transit city fabric, (c) more centralized jobs in the CBD, (d) less parking in their CBDs, (e) less freeway
availability, (f) lower car ownership, (g) lower car use, (h) lower car speed (which makes cars somewhat
less attractive), (i) higher public transport service levels and (j) better public transport use. Higher
public transport energy use per capita in Swedish cities generally relates to a combination of higher
service levels and how much of that service is provided by buses compared to rail—rail modes have
much lower energy use per passenger kilometer.

The data in this paper can be used to explore the transport energy conservation potential of a
variety of different scenarios in Swedish cities.
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Abstract: A lot of emphasis has been put on the densification of urban form to reduce greenhouse gas
emissions from transportation. However, many recent studies have found that central urban dwellers,
even though their carbon footprints of daily transportation may be lower, might be responsible for
higher total emissions than those that reside in suburban areas. Similarly, as with the urban form,
higher environmental concern is often considered as an indicator of lower emissions, but several
studies have found that pro-environmental attitude (PEA) does not always correlate with less energy
intensive behavior. This study analyzes how urban zones, PEA, and several sociodemographic
variables are associated with annual travel emissions and pro-environmental behaviors (PEB), using
a dataset collected with a map-based online survey (softGIS) survey, contributed by 841 participants
from the Helsinki Metropolitan Area (HMA), Finland. Although PEA can affect PEBs related to
household energy consumption (β = 0.282, p < 0.001), clothing (β = 0.447, p < 0.001) and produce
purchases (β = 0.449, p < 0.0001), their relationship with emissions from local (β = −0.067), national
(β = −0.019) and international (β = −0.016) travel was not significant. Clusters of low emissions
from local travel and high international travel emissions were found in pedestrian-oriented urban
zones and residents of car-oriented zones were more likely to conserve household energy (β = 0.102,
p < 0.05). These results might help broaden the current perspective of city planners, as well as identify
opportunities for more effective mitigation policies.

Keywords: pro-environmental attitude; pro-environmental behavior; greenhouse gases; urban zones;
local travel; national travel; international travel

1. Introduction

Anthropogenic activity contributes to global warming, changes in the water cycle, changes in
climate extremes, rising of sea levels, and the melting of ice caps. In fact, it is extremely likely that
humans have been the dominant cause since the 1950s by contributing to an increased concentration of
greenhouse gas (GHG) emissions in the atmosphere, which is the main cause of climate forcing [1].
The current state of anthropogenic activity is distressing the earth system, in some cases, beyond the
planetary boundaries [2].

The production and consumption activities of cities are responsible for the majority of global
GHG emissions [3]. While around half of the world’s population resides in urban areas, cities have
been said to be responsible for 71% to 76% of global energy-related CO2 emissions [4]. The mitigation
of these GHG emissions has been a common focus of researchers and policy-makers.

As cities become more compact, distances between services decrease, resulting in less dependency
on cars and shorter trip lengths [5–12]. Many cities have emphasized dense urbanization and the
reduction of emissions from the private transport sector in their plans, even though these aspects
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may constitute only a small part of cities’ total baseline emissions [13] and factors other than land use
planning may have a more decisive role in shaping the structure of emissions from travel [14].

Emissions from aviation are rarely included in city-level policies and studies, even though they
can exceed those from ground transport in wealthy European countries [15–17], especially when
short-lived climate forcers are included in calculations. The aviation sector currently produces 2% to
3% of total anthropogenic carbon emissions [18,19] and the emissions from it are expected to grow at a
rate of around 8% annually [20]. Emissions related to tourism alone account for 8% of global GHG
emissions [21].

Many recent studies have found that urban dwellers, although their carbon footprints of local
transportation may be lower, are responsible for higher emissions than those that reside in rural areas,
due to higher consumption levels [22–28]. Several studies have also extended this pattern to within
city-levels, reporting higher carbon footprints in the densest city centers in comparison to those in the
outer urban areas [29–33]. This pattern is also related to the so-called rebound effect; cars are expensive
to possess and operate, and a car-free lifestyle provides new consumption opportunities that seem to
be taken advantage of, resulting in the overall emission load being higher than when possessing and
operating a car [34].

Another popular urban planning and development related mitigation strategy is the creation
of more energy efficient housing as 68% of cities plan GHG reductions in the building sector [13].
However, while housing energy related emissions might indeed go down significantly along with new
energy efficient buildings, again, the overall carbon footprints of the residents might still show upward
curves due to higher consumption levels [30].

One of the most common policy levers for GHG mitigation is the raising of awareness [13,35].
However, although public awareness of the impacts of global warming is growing, studies on
reduced emissions or changes in behaviors of concerned citizens vary. This implies that there are
awareness–attitude–behavior gaps, where an individual’s awareness, values, or beliefs are not reflected
in their actions or market behaviors. Some suggest that comfort, convenience, and cost overrule
values, and barriers include the lack of relevant information easily available, organizational challenges,
and time and money constraints [36], and that pro-environmental self-identity may not translate to
pro-environmental behaviors (PEBs) due to a lack of available options [37].

Studies vary on the extent of these gaps, however. The impact of attitudes on purchasing behavior
related to produce and products has been found to be weak, while norms are a significant predictor [38].
Another study, which used a value–belief–norm model, found a weak connection [39]. The same
value–belief–norm model also explained household energy savings and cost-effective behaviors while
other studies suggest little connection between environmental concern and energy consumption [36].
Conserving energy is usually done for reasons other than concern for environmental impacts [40] and
change in travel behavior is rarely due to climate concern [36,40,41]. However, other researchers found
that environmental concern or knowledge (along with lower income) can lead to more PEB related to
food, energy, and travel [42,43].

A dissonance between environmental attitudes and behaviors has also been found regarding air
travel [44,45], and when it comes to international travel and tourism, individuals do not take the same
measures to limit their environmental damage as they do around the home [46,47]. In addition, it is not
uncommon that “green” measures taken at home are used as a justification of long-distance travel [48].

Factors other than climate concern are often found to be more decisive in GHG mitigation. Higher
education is associated with lower personal CO2 emissions [49], and income with higher emissions
and other environmental impacts [9,49,50]. Environmental attitudes have been found to have no effect
on the income–carbon relationship, except with the most climate concerned of the population [9].
Another obstacle in GHG mitigation is that PEBs related to household energy saving do not necessarily
translate to lower emissions due to structural factors [51].

Even though the connection between environmental attitudes and behavior has been extensively
studied, so far, few studies have paid attention to the spatial aspect. However, it is likely that
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environmental attitudes are manifested differently, and that they affect the behavior differently in
different types of residential areas and housing types.

The aim of this study is to analyze how pro-environmental attitudes (PEAs) and residential
urban zones affect PEBs regarding household energy consumption, purchasing choices of produce and
clothing, and GHG emissions from travel, using results from a map-based online survey (softGIS) [52]
targeting young adults living in the Helsinki Metropolitan area (HMA).

The research questions, of which the main novelty value lies on the fourth, are:

• How does the PEA affect PEB regarding household energy use, and clothing and produce purchases?
• How does the PEA affect the amount of GHG emissions stemming from local, national, and

international travel?
• How do PEA, PEB, and travel-related emissions cluster geographically within the study area?
• How do these relationships differ depending on residential location?

2. Research Design

2.1. Case Area

The data collected were from inhabitants of HMA in Southern Finland. Around a quarter of the
country’s five million inhabitants live in the area and the fast-growing population has a high proportion
of young adults. The predominance of young adults and households without children is especially
pronounced in the capital city of Helsinki [53]. High demand for housing has resulted in urban sprawl,
but the regional land use plan focuses on densification with development focused in the center and
the densely populated corridors around the public transportation network [54]. HMA is the most
affluent region in Finland and the location of the biggest and by far most diversely connected airport,
thus offering conditions for frequent long-distance travel. At the same time, HMA is also the core of
support of the Green Party in Finland with almost a quarter of the votes in the region going for the
Green Party [55], which is likely related to a high level of environmental concern among the residents
of the region. These features make the region an illustrative case for the purpose of this study.

2.2. Data Collection

The data were collected using a softGIS method, in which conventional survey questions, such
as multiple choice and scaled questions, were combined with an interactive map [52,56]. The map
allowed respondents to mark visited locations and answer questions pertaining to these locations. Thus,
it allowed for an accurate way of measuring travel distances, frequencies, and associated emissions
using geographical information systems (GIS). The survey is presented in Appendix A, in Table A1.
It was targeted to individuals aged 25 to 40 years residing in the HMA municipalities of Helsinki,
Vantaa, Kauniainen, and Espoo. This relatively narrow age range was chosen to minimize the effect
of life course variables and generational differences. People in this age group are usually employed,
are independent from their parents, and have grown up in a globalized world, with good access to
information and communication technologies [15]. A random sample of 5000 individuals from the
target group was drawn from the Population Register Center of Finland. Two rounds of personal
letter invitations were sent to the sampled individuals in August and September 2016. After deducting
incomplete responses, the response rate was 16.82% with 841 responses out of the 5000 individuals
invited (see [15] for more details). The geographic distribution of the study participants’ residences was
similar to that of the target population: Pearson’s r calculated in a 1 km hexagon grid equals 0.81, which
was deemed satisfactory and close to that in other related studies [57]. The sample over-represented
people with higher education (70% compared to 46% in the HMA population aged 25 to 40) and women
(58% to 50%). However, as the aim of the analysis was not to estimate descriptive statistics of the
population, but to estimate correlations, no weights were used in the analyses [58]. The dataset included
socio-demographic variables, locations visited every day, behaviors, attitudes, values, consumption
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figures and background information, travel distances, estimated GHG emissions from that travel,
and residential coordinates categorized into urban zones.

2.3. Data Analysis

The process of data processing and analysis is summarized in Figure 1. Subsequent steps are
described in following sections, except for computing variables related to income, household type,
education, and gender, which are presented in Appendix B.

 
Figure 1. Flowchart of the data processing and analysis.

2.3.1. Factor Analyses

For the behavior variables, principal axis factoring was used to reduce data, with the orthogonal
rotation method varimax with Kaiser normalization used to produce independent factors with no
multicollinearity. Kaiser-Meyer-Olkin (KMO) and Bartlett’s test was used to test the adequacy of
the sampling and produced a score of 0.831, which confirmed the sampling was adequate for factor
analysis. Each PEB variable had a value of 0 to 4 (a value of 0 is for never and 4 is always), which
were answers to how often participants engaged in 11 behaviors (Table 1). Coefficients below 0.4
were suppressed.

Table 1. Results of factor analysis of pro-environmental behavior variables.

Factor 1 Factor 2 Factor 3

Reduce heating in unoccupied rooms 0.757
Reduce hot water temperature 0.542

Switch off lights in unoccupied rooms
Keep heating low to save energy 0.740
Use high-efficiency appliances

Buy organic produce 0.585
Buy local produce 0.707

Purchase items with as little packaging as possible 0.494
Buy second-hand clothes 0.534

Choose to buy clothes according to environmental impact 0.834
Choose to buy clothes according to ethical aspects of production 0.786

Note: Extraction method: principal axis factoring. Rotation method: Varimax with Kaiser normalization.

The PEB factor analysis indicated that the 11 variables of environmentally significant behaviors
could be reduced to just 3 factors related to clothing purchases (factor 1), household energy saving
(factor 2), and produce purchases (factor 3). All three factors had an eigenvalue above 1.0 and the
accumulated percentage of the explained variance was 59.917.
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Each PEA variable had a value of 1 to 5 (value of 1 was “strongly disagree” and 5 was “strongly
agree”), which were answers to how much participants agreed or disagreed with five statements
(Table 2). Principal component analysis was used to reduce data. KMO and Bartlett’s test produced a
score of 0.850, which confirmed the sampling was adequate for factor analysis.

Table 2. Results of factor analysis of pro-environmental attitude variables.

Pro-Environmental Attitude Variable Factor 1

I want to live as ecologically as possible 0.853
I am very concerned about environmental issues 0.787

I think about how I can reduce environmental damage when I go on holiday 0.760
I think about the environmental impact of services I use 0.836

When shopping, I rarely think about the environmental impact of the things I buy [reversed] 0.713

Note: Extraction method: principal component analysis.

The factor analysis confirmed that due to a high correlation between all variables, only one factor
was needed. It had just over 62% of the explained variance and an eigenvalue of 3.1. The regression
factor score was named the pro-environmental attitude (PEA factor score).

2.3.2. Travel-Related Urban Zones

The respondents were allocated into the following six zones depending on the coordinates of
their home locations: Central pedestrian zone, the fringe of the pedestrian zone, pedestrian zones of
the sub-centers, intensive public transport zone, basic public transport zone, and car zone. The zones
were taken from the Travel-Related Urban Zone GIS-based classification of the Finnish Environment
Institute, which divides the regions into zones depending on the distance from the center, population
characteristics, public transportation infrastructure, building stock, and jobs [59].

For this study, the residential zones were merged into three categories, based on location,
density, similarities in the mode of travel to work, and on having approximately the same number of
respondents in each group. The central pedestrian zone and the fringe of the pedestrian zone became
the pedestrian-oriented zone (33% of respondents), the pedestrian zones of sub-centers and intensive
public transport zones became the public transport-oriented zone (31%), and the basic public transport
zone and the car zone became the car-oriented zone (36%).

2.3.3. Travel Behavior and GHG Emissions

The variables used in analyzing travel emissions were annual per capita transportation emissions
from local, domestic, and international travel. The GHG emissions were taken from the previous study
of Czepkiewicz et al. [15]. They used a broad life cycle assessment (LCA) approach, accounting for both
direct and indirect emissions, such as those from direct combustion, fuel and electricity production,
transport infrastructure construction, and vehicle manufacturing and maintenance [15].

A large number of respondents reported zero emissions from either local, domestic, or international
travel. Binary variables signifying participation or non-participation in each type of travel were
computed. For those that participated in travel, the natural logarithm of emissions was used to
normalize the data.

2.3.4. Spatial Statistical Analyses

The variables that were analyzed with spatial statistics were PEB factor scores related to clothing,
produce and household energy, the PEA factor scores, and travel emissions from local, national,
and international travel. We used two spatial statistical methods in ArcGIS 10 to identify patterns of
spatial association. We used Global Moran’s I statistic [60] to check whether the values were clustered
in space in the whole region, and Getis-Ord Gi* to identify areas in which high or low values cluster
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locally [61]. Moran’s I is not sensitive to some cases of local spatial association, so we computed the
Gi* even in cases when Moran’s I did not show a significant pattern of spatial association.

2.3.5. Multivariate Analyses

We used bivariate analysis methods, such as bar charts and Spearman correlations, and multiple
regression models to analyze the relationships between explanatory variables, such as household type,
gender, education, income, PEA factor scores, urban zone of the residential location, and the outcome
variables: PEB factor scores related to clothing (factor 1), heating (factor 2), and produce (factor 3),
and travel emissions from local, national, and international travel.

The statistical analyses were run in IBM SPSS Statistics 24. Three models for each of the PEB factor
scores were prepared and the first model included the four sociodemographic variables as independent
variables. In the second model, PEA factor scores were added as independent variables, and in the
third model, the three residential urban zones were added too. Ordinary least squares (OLS) regression
was used due to the quantitative character of the dependent variables.

Two models were calculated for each type of travel (local, domestic, and international). Binary
logistic regression was used to analyze participation in emissions from travel, due to the dichotomous
character of the dependent variable. OLS regression was used to analyze the amount of emissions of
those who participated. By also running a binary logistic regression on participation in travel emissions,
it was possible to capture which variables impacted whether a respondent had traveled in the past
year and see if those same variables affected the amount of emissions. The independent variables in all
models were gender, income, education level, household type, PEA factor scores, and urban zones.

3. Results and Discussion

Our results show that PEAs cluster in space and have, on average, higher values in
the pedestrian-oriented zones than in the car-oriented zones. We found that PEA influenced
environmentally significant behaviors regarding household energy, clothing, and produce, but it
did not have an effect on the amount of GHG emissions from local, national, or international travel.
Residents of car-oriented zones were more likely to conserve heating at home, but less likely to purchase
environmentally-friendly produce than residents of the pedestrian-oriented zones, after controlling for
socio-demographic variables and the PEA. Residents of pedestrian-oriented zones generated lower
emissions from local travel and were more likely to participate in emissions from international travel
than residents of the remaining urban zones. In the following, we present the results of the spatial
and multivariate analyses divided into three topical sections: PEAs, PEBs, and emissions from travel.
Each section is followed by a short discussion that relates the results to previous studies.

3.1. Pro-Environmental Attitudes

3.1.1. Results

Those with low income tended to have higher PEA factor scores and the same can be said about
those with a high level of education (Figure 2a). Although there was a correlation between income
and education (rs = o.225, p < 0.001, n = 847), respondents with the highest PEA scores were the most
highly educated while the opposite can be said regarding income: Respondents with high income had
a lower PEA score. Household size did not have a strong effect on PEA, although single people did
have the lowest PEA factor scores. Women had considerably higher factor scores than men. Residents
of the pedestrian-oriented zone had the highest PEA score of the three zones.

Pro-environmental attitude factor scores were significantly spatially autocorrelated (Moran’s
I = 0.23, p < 0.001). Areas with values higher than expected were located in pedestrian-oriented parts
of Helsinki (Figure 2b). It is of note that the spatial association was not very strong, and residents with
high factor scores lived next to residents with low factor scores, and vice-versa.
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(a) (b) 

Figure 2. (a) Mean pro-environmental attitude factor scores by education, household type, gender,
zone, and income categories; (b) Hot spot (Getis-Ord Gi*) map of pro-environmental attitude factor
scores (n = 814). Areas highlighted in red (hot spots) have a local mean higher than the global mean,
and areas highlighted in blue (cold spots) have a local mean lower than the global mean scores.

3.1.2. Discussion

In regards to our bivariate results for education level, similar trends were established [62].
The same study found that being male and having a high income were indicators of high concern,
which contradicts our results. However, the high pro-environmental attitude scores of women are
in line with other previous research [63,64]. Although we found clusters of high PEAs in central
areas, the environmental concern of central and suburban residents has previously been found to not
differ [65]. On the urban-rural scale, differences in environmental attitudes and concerns depend largely
on specific issues [66], and therefore, the results of various studies might differ depending on the types
of questions used. As our PEA variable consisted of quite broad terms (considerations of environmental
impacts, concern for environmental issues, and wanting to live ecologically), specific environmental
issues were not determined. The spatial and bivariate analysis of PEAs lays the foundation for the next
two results sections of PEBs and travel emissions; it shows the distribution of our specific PEA factor
scores in space, and within sociodemographic variables.

3.2. Pro-Environmental Behaviors

3.2.1. Results

There were significant differences in the PEBs of different groups, extending to the spatial dimension.
Respondents within the low education category had the lowest clothing and produce related PEB factor
scores, while the high education category had the highest (Figure 3a). PEB factor scores regarding
household energy use did not differ greatly depending on education level. The household type with
the highest PEB factor scores in all three categories was families. Women, in general, seemed to have
higher PEB scores in all three categories, although the most variance was in the clothing category.
The higher the income category of the respondents, the lower their PEB factor score in the clothing
category. An opposite trend was found in the produce category, where the wealthiest respondents
bought the most organic, local, and package free produce. Regarding household energy, very little
variance was found, but in general, the wealthier respondents were less likely to make a conscious
decision of reducing household energy consumption.
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(a) (b) 

Figure 3. (a) Mean pro-environmental behavior (PEB) factor scores by categories; (b) Hot spot (Getis-Ord
Gi*) map of factor scores of PEB factor 1: clothing (n = 831). Areas highlighted in red have values higher
than the regional average, and areas highlighted in blue have values lower than the regional average.

Most notable is that the residents of the pedestrian-oriented zone had relatively high PEB factor
scores related to clothing and produce purchases, which is also reflected in the spatial analysis. Local
indicators of spatial association show that high values of the factors related to produce and clothing
purchases cluster in central parts of the pedestrian-oriented zones of Helsinki (Figures 3b and 4b).
We found no significant spatial association of the factor related to household energy and heating saving
(Figure 4a and Table 3).

 

(a) (b) 

Figure 4. (a) Hot spot (Getis-Ord Gi*) map of factor scores of PEB factor 2: household energy (n = 831).
Areas highlighted in red have values higher than the regional average, and areas highlighted in blue
have values lower than the regional average.; (b) hot spot (Getis-Ord Gi*) map of factor scores of PEB
factor 3: produce (n = 831). Areas highlighted in red have values higher than the regional average,
and areas highlighted in blue have values lower than the regional average.
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Table 3. Results of the spatial analyses of PEB factor scores.

PEB Factor Moran’s I Getis-Ord Gi*

Clothing (F1) 0.099 (p = 0.124)
Areas with the local mean higher than the global

mean are located in the northern part of the
pedestrian-oriented zone of Helsinki.

Household energy (F2) −0.022 (p = 0.747) No significant patterns of spatial association

Produce (F3) 0.070 (p = 0.272)
Areas with the local mean higher than the global

mean are located in the central part of the
pedestrian-oriented zone of Helsinki.

As can be seen in Table 4, the only independent variable that influenced all three PEB categories
was PEA, all of which were positive and had relatively large effect sizes and impacts on R2 (model 1
improved from R2 = 0.100 to R2 = 0.298 in model 1a; model 3 improved from R2 = 0.013 to R2 = 0.203
in model 3a).

Table 4. Multiple linear regression of clothing, household energy, and produce related pro-environmental
behavior factor scores, with education level, household type, income category, gender, pro-environmental
attitude, and zones as dependent variables.

PEB Model 1 1 1a 1b 2 2a 2b 3 3a 3b
Clothing Household Energy Produce

β β β β β β β β β

Education
level

Low - - - - - - - - -
Medium 0.048 0.007 −0.002 0.017 −0.013 0.001 0.070 0.032 0.019

High 0.100* 0.047 0.033 −0.023 −0.070 −0.049 0.067 0.015 −0.005

Household
type

Single - - - - - - - - -
Couple 0.078 0.034 0.036 0.029 −0.013 −0.015 −0.007 −0.048 −0.046
Family 0.158*** 0.125** 0.139*** 0.068 0.030 0.008 −0.001 −0.049 −0.027

Income
category

Very low - - - - - - - - -
Low −0.148** −0.082 −0.084 −0.036 0.007 0.008 0.038 0.112* 0.111*

Medium −0.221*** −0.140** −0.136** −0.053 0.008 0.004 0.044 0.143* 0.147**
High −0.249*** −0.176*** −0.174*** −0.047 0.013 0.007 0.087 0.179** 0.185***

Very high −0.318*** −0.209*** −0.207*** −0.080 0.005 0.000 0.137* 0.274*** 0.279***

Gender
Male - - - - - - - - -

Female 0.242*** 0.163*** 0.161*** 0.012 −0.039 −0.037 0.076* −0.008 −0.010

PEA 0.452*** 0.447*** 0.277*** 0.282*** 0.453*** 0.449***

Zones Pedestrian - - -
Public transport −0.047 0.040 −0.032

Car −0.067 0.102* −0.100*

R2 0.100*** 0.298*** 0.311*** −0.005 0.077*** 0.084*** 0.013* 0.203*** 0.221***
F 10.906*** 31.955*** 26.937*** 0.534 6.036*** 5.509*** 2.167* 19.569*** 16.936***

Notes. *p < 0.05. **p < 0.01. ***p < 0.001. 1 Model 1: PEB regarding clothing as a dependent variable. Education
level, household type, income category, and gender as independent variables. 1a: PEA added as an independent
variable. 1b: zones added as an independent variable. Model 2: PEB regarding household energy-saving as a
dependent variable. Education level, household type, income category, and gender as independent variables. 2a:
PEA added as an independent variable. 2b: zones added as an independent variable. Model 3: PEB regarding the
purchase of produce as a dependent variable. Education level, household type, income category, and gender as
independent variables. 3a: PEA added as an independent variable. 3b: zones added as an independent variable.

The wealthy residents were less likely to buy environmentally-friendly clothing (Table 4), which
could be due to the purchasing of second-hand clothing being a part of our clothing measure. Education
level had a significant effect on PEBs related to clothing only when attitudes and urban zones were
not included (model 1), indicating that it only affects the model through attitudes. Household types
affected the PEB clothing model (models 1, 1a, and 1b). Families were more likely to buy environmental,
ethical, or second-hand clothing. Women had positive coefficients throughout the models, which
suggest that they not only had more environmental concern, but also were more likely to take care
of the kind of clothing they did purchase. There was no influence of geographical location on the
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models, despite spatial clustering of the factor scores, which suggests geographical clustering was due
to patterns in PEAs.

Models 2, 2a, and 2b confirmed the small household energy variance found between income
groups in the bivariate analysis (Figure 3a); none of the coefficients were statistically significant. A high
level of income had a significantly positive effect on PEBs regarding produce and significant negative
coefficients in the clothing models; the more affluent population is more likely to take care when
purchasing food, but less likely to think about the environmental effects related to clothing. Residents of
the car-oriented zones were more likely to save heating energy than the residents of pedestrian-oriented
zones (model 2b), despite the lack of a spatial association of this variable (Figure 4a).

Gender lost significance when attitudes were added to the produce model, which suggests that it
only affects the produce purchases through attitudes. Residents of the car-oriented zones were less
likely to engage in PEBs related to produce purchases than residents of the pedestrian-oriented zones.
Spatial autocorrelation and residual analysis was performed on models 1b, 2b, and 3b (see Appendix D,
Table A6). No spatial autocorrelation was found, using global Moran’s I with a threshold of p < 0.05, but
the residuals of the clothing model (1b) showed signs of heteroskedasticity, exhibiting more variance
with higher predicted values. As a result, the regression was run again using robust standard errors to
see if the coefficients held their significance. The p values of these models were very similar and no
coefficients lost or gained significance, indicating that our initial models predicted the significance
adequately. Although OLS might not provide the best possible fit for the data, it still provided
unbiased estimation of which variables influence the dependent variable, which was the primary goal
of our analysis.

3.2.2. Discussion

The regression (Table 4) showed that PEA had a significant positive effect on all three PEB
categories, which suggests that the attitude-behavior gap related to household energy-saving and
the purchase of produce and clothing was small in our results. Value–belief–norm models have
been more successful at explaining these low-cost, “good intention” behaviors than ones that have
larger behavioral restrictions, such as limiting car-use [67]. Interestingly, PEAs had the least effect on
household energy-related PEBs of the three categories. The effect was still quite large and significant,
which is in line with other studies [39,42,43]. This could indicate that it is easier and more accessible to
install secondary heating or control personal energy use in detached houses in the suburbs than in
apartment buildings in the centers, as suggested by Kyrö et al. [64].

The only other variable that had a significant positive relationship with the energy PEB factor
score was the residential zone, where the residents of the more sparsely populated areas were more
likely to minimize household energy use. However, this is likely due to only the single-family house
residents in the car-oriented zones paying directly for their heating, whereas those living in apartment
buildings pay it as a part of the housing management fee or rent, having no monetary incentive to
reduce usage [68,69]. Furthermore, in HMA, over 80% of households are connected to district heating,
covering virtually all apartment buildings, while electricity is used for heating in the low-rise outer
fringe areas [23]. Electricity is more expensive than district heating, which in turn could lead to less
energy use due to monetary reasons.

The effect of zones on PEBs related to produce might be due to characteristics of the
urban surroundings, which differ in availability of organic, package free, and local produce.
Suburban residents may find it more difficult to practice sustainable consumption than their urban
counterparts [70]. Overall, the higher the income category of respondents, the less likely they were
to have high PEB scores related to household energy and clothing (Figure 3a), which is in line with
several papers that state a positive correlation between income and carbon footprints related to
consumption [27,49,50,71].
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Multiple linear regression performed on the data split by zones showed that the relationships
between PEB and PEA did not differ notably between residential zones, as the coefficients for PEA in
all three zones were similar in size and significance (see Table A2 in Appendix C).

3.3. Emissions from Travel

3.3.1. Results

Participation in and amount of emissions from all travel categories increased with increased
income, and the most notable difference in participation in international travel was found between
respondents with very low and very high income (Figure 5). Single people had the lowest participation
rates and mean annual emissions from all travel categories. Families had the highest participation
rates and mean annual local travel emissions, and couples had the highest participation rates and
mean annual emissions from national travel. Mean emissions from international and national travel
increased with education level while local travel emissions decreased. Very little difference was found
in participation in local travel between education levels. Respondents with a medium level of education
had the highest participation scores, closely followed by the high education category. Women had
slightly higher participation percentages than men throughout all travel categories. They had higher
mean annual emissions in the national and international travel categories, while men had slightly
higher emissions from local travel.

Figure 5. Mean annual local, national, and international per capita travel emissions (kg CO2 eq) and
participation (%) in emissions by gender, household type, income, education, and zone categories.

Respondents from car-oriented zones had the highest participation rates (93%) and mean annual
emissions from local travel, while respondents from pedestrian-oriented zones had the lowest
participation rates (70%) and mean annual emissions from local travel. On the other hand, residents of
pedestrian-oriented zones had the highest participation rates and annual emissions in international
travel. Participation rates and annual emissions in national travel were similar throughout the zones.
Spatial clustering was the strongest in the case of emissions from local travel (Moran’s I = 0.22,
p < 0.001), and not significant in the case of domestic or international travel (Table 5), although there
were significant local clusters of high emissions (Figure 6b, Figure 7).
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Table 5. Results of spatial analyses of local, domestic, and international travel emissions.

Variable Moran’s I Local Indicators of Spatial Association

Local emissions—all 0.22 (p = 0.001)

Areas with the local mean lower than the global mean are located in
the pedestrian-oriented zones of Helsinki. Areas with the local

mean higher than the global mean are located in the car-oriented
zones of Espoo and Vantaa (Figure 6a).

Domestic emissions—all 0.023 (p = 0.775) Areas with the local mean higher than the global mean are located
in areas along the Helsinki-Vantaa border in Helsinki (Figure 6b).

International emissions—all −0.019 (p = 0.776) Areas with the local mean higher than the global mean are located
in the pedestrian-oriented zones of Helsinki (Figure 7).

(a) (b) 

Figure 6. (a) Hot spot (Getis-Ord Gi*) map of GHG emissions from local travel (n = 831). Areas
highlighted in red have values higher than expected, and areas highlighted in blue have values lower
than expected.; (b) hot spot (Getis-Ord Gi*) map of GHG emissions from domestic leisure travel
(n = 831). Areas highlighted in red have values higher than expected, and areas highlighted in blue
have values lower than expected.

Figure 7. Hot spot (Getis-Ord Gi*) map of GHG emissions from international leisure travel (n = 831).
Areas highlighted in red have values higher than the regional average, and areas highlighted in blue
have values lower than the regional average.
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Education level and household type did not have a statistically significant relationship to local
travel, neither on the participation rates nor the amount of emissions (Table 6). High income, being
a woman, and living in car-oriented zones were all positively associated with participation in local
travel emissions. The largest odds ratio was found with participants of a very high income, who were
more likely to participate in local travel emissions than the lowest income group.

Table 6. Binary logistic regression on participation in local travel emissions (1) and multiple linear
regression on the amount of local travel emissions (1a) of local per capita annual emissions (CO2 eq) of
those participating.

Travel Model 1 1 1a
B (S.E.) OR B (S.E.) β

Education level
Low - - - -

Medium 0.220 (0.343) 1.247 0.102 (0.150) 0.032
High −0.039 (0.325) 0.961 0.056 (0.144) 0.019

Household
type

Single - - - -
Couple −0.133 (0.304) 0.874 −0.008 (0.159) −0.003
Family 0.106 (0.342) 1.112 −0.073 (0.161) −0.024

Income
category

Very low - - - -
Low 0.817 (0.379) * 2.263 * −0.107 (0.226) −0.031

Medium 0.471 (0.383) 1.601 0.009 (0.233) 0.003
High 0.920 (0.426) * 2.509 * 0.250 (0.242) 0.071

Very high 2.074 (0.560) *** 7.957 *** 0.362 (0.248) 0.103

Gender
Male - - - -

Female 0.647 (0.253) ** 1.910 ** −0.116 (0.114) −0.039

Zones Pedestrian - - - -
Public transport 1.284 (0.296) *** 3.612 *** 0.870 (0.144) *** 0.276 ***

Car 1.746 (0.338) *** 5.732 *** 1.299 (0.142) *** 0.429 ***

PEA −0.333 (0.125) ** 0.717 ** −0.100 (0.057) −0.067

Constant −0.050 (0.427) 0.951 5.070 (0.248) ***
X2 (Goodness-of-fit)2 11.265 (p = 0.187)

Pseude R2 (Nagelkerke) 0.196
R2 0.155 ***
F 9.545 ***

Notes. *p < 0.05. **p < 0.01. ***p < 0.001. 1 Model 1: Binary logistic regression on participation in emissions
from local travel. Education level, household type, income category, gender, zones, and PEAs are independent
variables. Model 1a: Multiple linear regression on the natural logarithm of the amount of yearly emissions from
local travel. Education level, household type, income category, gender, zone, and PEAs are independent variables.
2 Hosmer-Lemeshow test of goodness-of-fit.

The only significant contributor to the amount of local emissions was residential location. Residents
of the car-oriented zones were most likely to participate in local travel and had the highest emissions
from local travel. PEAs had a negative effect on participation in emissions from local travel, but did
not have a statistically significant effect on the amount of emissions.

Binary logistic regressions performed with the data split by residential zones showed that although
residents with high PEA scores of all three zones were less likely to participate in local travel emissions,
only the coefficients from the pedestrian-oriented zone data were statistically significant (see Table A3
in Appendix C). This suggests that those with high PEA scores living in the central pedestrian zone
are able to adopt sustainable urban mobility. No statistical significance was found between PEA and
international or national travel when data was split by zones (see Tables A4 and A5 in Appendix C).

Neither PEA factor scores nor residential zones had a significant relationship to domestic travel
emission participation or the amount of emissions (Table 7). Single people generated significantly more
emissions from travel within the country than couples and families did. Wealthier respondents were
significantly more likely to participate in travel and generated more emissions. Although the amount of
emissions generated by women was not significantly different to men, they were more likely to participate
in national travel. Education level had no significant effect on emissions from domestic travel.
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Table 7. Binary logistic regression on participation in domestic travel emissions (2) and multiple linear
regression on the amount of travel emissions (2a) of domestic per capita annual emissions (CO2 eq) of
those participating.

Travel Model 1 2 2a
B (S.E.) OR B (S.E.) β

Education level
Low - - - -
Medium 0.436 (0.337) 1.547 0.184 (0.123) 0.074
High 0.302 (0.326) 1.352 0.128 (0.119) 0.055

Household
type

Single - - - -
Couple 0.402 (0.373) 1.495 −0.286 (0.124) * −0.120 *
Family −0.045 (0.349) 0.956 −0.312 (0.130) * −0.130 *

Income
category

Very low - - - -
Low 0.968 (0.382) * 2.634 * 0.052 (0.183) 0.019
Medium 1.451 (0.429) *** 4.269 *** 0.334 (0.187) 0.123
High 1.678 (0.486) *** 5.356 *** 0.586 (0.195) ** 0.218 **
Very high 1.906 (0.523) *** 6.726 *** 0.773 (0.202) *** 0.280 ***

Gender
Male - - - -
Female 0.823 (0.277) ** 2.277 ** −0.018 (0.093) −0.008

Zones Pedestrian - - - -
Public transport −0.590 (0.352) 0.555 −0.104 (0.113) −0.042
Car −0.360 (0.367) 0.697 0.087 (0.112) 0.037

PEA 0.202 (0.134) 1.224 −0.021 (0.046) −0.019

Constant 0.620 (0.451) 1.859 6.158 (0.201) ***
X2 (Goodness-of-fit)2 10.410 (p = 0.237)
Pseude R2 (Nagelkerke) 0.142
R2 0.057 ***
F 3.276 ***

Notes. *p < 0.05. **p < 0.01. ***p < 0.001. 1 Model 2: Binary logistic regression on participation in emissions from
domestic travel. Education level, household type, income category, gender, zones, and PEAs are independent
variables. Model 2a: Multiple linear regression on the natural logarithm of the amount of yearly emissions from
domestic travel. Education level, household type, income category, gender, zones, and PEAs are independent
variables. 2 Hosmer-Lemeshow test of goodness-of-fit.

Respondents with high income and living in pedestrian-oriented zones were more likely to
participate in international travel emissions, but for those participating the amount of emissions were
not significantly different from other zones or income categories (Table 8). Families had a significantly
negative relationship with international travel emissions and the highly educated had a significantly
positive relationship with emissions.

Table 8. Binary logistic regression on participation in international travel emissions (3) and multiple
linear regression on the amount of travel emissions (3a) of international per capita annual emissions
(CO2 eq) of those participating.

Travel Model 1 3 3a
B (S.E.) OR B (S.E.) β

Education level
Low - - - -
Medium 0.335 (0.267) 1.398 0.184 (0.124) 0.077
High 0.075 (0.253) 1.078 0.368 (0.121) ** 0.164 **

Household
type

Single - - - -
Couple 0.045 (0.264) 1.046 0.085 (0.128) 0.036
Family 0.394 (0.281) 1.483 –0.377 (0.133) ** –0.163 **

Income
category

Very low - - - -
Low 1.020 (0.334) ** 2.772 ** 0.070 (0.188) 0.027
Medium 0.503 (0.331) 1.653 0.113 (0.197) 0.041
High 1.374 (0.384) *** 3.951 *** 0.258 (0.201) 0.099
Very high 1.821 (0.433) *** 6.175 *** 0.404 (0.207) 0.154

Gender
Male - - - -
Female 0.324 (0.207) 1.383 0.098 (0.093) 0.043
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Table 8. Cont.

Travel Model 1 3 3a
B (S.E.) OR B (S.E.) β

Zones Pedestrian - - - -
Public transport –0.826 (0.263) ** 0.438 ** –0.204 (0.116) –0.083
Car –0.556 (0.276) * 0.573 * –0.180 (0.113) –0.078

PEA 0.148 (0.104) 1.159 –0.018 (0.046) –0.016

Constant 0.579 (0.373) 1.784 6.973 (0.209) ***
X2 (Goodness-of-fit)2 4.021 (p = 0.855)
Pseude R2 (Nagelkerke) 0.129
R2 0.082 ***
F 4.298 ***

Notes. *p < 0.05. **p < 0.01. ***p < 0.001. 1 Model 3: Binary logistic regression on participation in emissions from
international travel. Education level, household type, income category, gender, zones, and PEAs are independent
variables. Model 3a: Multiple linear regression on the natural logarithm of the amount of yearly emissions from
international travel. Education level, household type, income category, gender, zones, and PEAs are independent
variables. 2 Hosmer-Lemeshow test of goodness-of-fit.

Spatial autocorrelation and residual analysis was performed on travel models 1a, 2a, and 3a
(see Appendix D, Table A6). No spatial autocorrelation was found, using global Moran’s I with a
threshold of p < 0.05, and the residuals showed no signs of heteroskedasticity; they were symmetrically
distributed, showed no signs of patterns, and were clustered towards the middle of the plots.

3.3.2. Discussion

The results align with previous studies in that centrally located, pedestrian-friendly areas with
mixed land use have lower levels of private car use, travel shorter distances, and thus generate
less GHG emissions from local travel [7,12,72,73]. Residential location in travel-related zones was
connected both to non-zero emissions and their amount, which suggests that it contributes to multiple
aspects of local travel, such as car ownership, travel mode choice, and distances. PEAs, in turn, only
contributed to participation in emissions: Respondents with a higher concern for the environment
were more likely to rely solely on walking or cycling (Table 6). This is largely in line with previous
research that suggests that PEAs are significantly related to car ownership and use [74–76]. Similarly,
as in previous studies [14,21] higher incomes were related to higher GHG emissions from local travel,
and the likelihood of non-zero emissions, in particular (Table 6). It likely results from differences in
car-ownership, which strongly correlated with income in our sample (rs = 0.441, p < 0.001, n = 846).

The differences in international travel emissions depending on residential location are also in
line with previous studies, with residents of centrally-located dense urban areas generating higher
emissions than those living farther away from the centers (Table 8) [15,56,72,77–79]. With regard
to PEAs, our results are similar to those presented in a recent paper by Alcock et al. [44], where
correlations were found between climate concern and PEBs, but not between environmental concern
and actively refraining from air travel. Our results also reinforce the well-known link between income
level and international travel [77]. The statistically significant relationship between high education
and emissions from international travel, when income is controlled for, has also been previously
observed [9,72]. Interestingly, in our results, higher income increased the likelihood of international
travel and university education increased the amount of emissions. This suggests that income is
an enabling factor, while education level contributes to traveled distances among those who can
afford it, for instance, through higher cultural capital and more extensive social networks among the
educated [14].

Previous studies suggest that the amount of domestic travel decreases with increasing population
density and settlement size [80,81]. These studies, however, primarily compare settlements of different
sizes (e.g., large cities with small towns) and not areas within one urban region. Looking at within-city
differences in three Nordic cities, a previous study [82] found that distance traveled on weekends
increases with distance from the city center, which is in line with the existence of clusters of high
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emissions from domestic travel in city outskirts in our results (Figure 6b). However, our regression
shows no significant influence of urban zones on the emissions from domestic travel (Table 7). Higher
income was positively associated with more domestic travel in our results, as well as in previous
research [82], but we found no relationship with education level or gender, which is present elsewhere.

4. Limitations of the Study

The generalizability of the study is limited due to the single case study research design. Case
studies are said to be objective due to the insights and knowledge of the researcher conducting it [83],
but their generalizability is low until enough studies have been conducted [84].

The age range for the target group, 25 to 40 years, was relatively narrow. The reason this range
was chosen was to minimize the effect of life course variables and generational differences, as people
in this age group are usually employed, are independent from their parents, and have grown up in a
globalized world, with good access to information and communication technologies [15]. The accuracy
of behavior variables not related to travel might be compromised by their reliance on the respondent’s
perception of their behavior rather than direct observation (see Appendix A, Table A1 for the survey).
An example is that instead of having access to information on the actual household energy used,
respondents answered questions on how often they try to limit their use of household energy with
various actions. The scope of the study is limited by the omission of business travel. This choice was
made on an assumption that business trips are often involuntary and driven by different variables than
leisure trips. Additionally, they constituted a very small share of the international travel emissions in
our sample [15].

5. Conclusions

Previous research conducted in the study region has suggested that living in the densest urban
core areas is associated with higher carbon footprints than living in suburban areas [29–31]. Similar
findings have been presented by Chen et al. [32] for Sydney. Minx et al. [27] found for London that
it is the spatial accumulation of wealth that is the decisive factor, not the spatial location as such.
Furthermore, it is known from previous studies that PEAs do not always correlate with less energy
intensive behavior [37,39–41].

Our study included local, domestic, and international travel, which has been called for by other
researchers [72]. On the one hand, the results confirmed the well-established connection between
compact urban form and local travel and thus suggest that land use planning may be instrumental in
reducing carbon emissions by urban dwellers [7,12]. On the other hand, emissions generated from the
international travel of urban dwellers are higher than those generated from their daily travel [15,72,78].
This suggests that other processes have a stronger influence on total travel-related emissions than land
use planning [14]. Our results showed a correlation between residential location and international
travel, but did not explain the reasons behind it. Numerous potential explanations exist, such as
compensating for a lack of urban environmental quality, monetary rebounds related to car ownership,
prevalence of cosmopolitan attitudes and lifestyles among urban dwellers, or influence of their higher
cultural capital and extent of their social networks [34,56,72,79,85,86]. To illuminate these relationships,
future studies should supplement quantitative research designs with qualitative methods to reveal
motivations behind leisure travel behavior among urban dwellers [56,85].

Several mixed-methods and qualitative studies have already investigated motivations for
holiday travel in the context of sustainability. They have highlighted the discrepancies between
environmental concern and holiday travel and identified barriers that may hinder behavioral change
in this domain [46–48]. These include, among others, high perceived benefits of leisure long-distance
travel, such as its importance for social status and personal well-being [87,88]. Some travelers use PEBs
in other domains of life to justify their lack of action in leisure travel [48] or may adjust their attitudes
to behaviors that are beneficial and well integrated into their lifestyles, despite being aware of climate
change and its factors [47]. International leisure travel has not been as often or widely discussed as an
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important contribution to emissions as private car travel or household energy use. This may have
contributed to the awareness–behavior gap in this domain and suggest the need for education about the
environmental cost of flying among the public. Future studies should further explore the discrepancy
between PEA and flying, using both quantitative and qualitative methods to inform action aimed at
behavioral changes. In addition, quantitative studies should use more nuanced models, which include
values, beliefs, and norms, as a single PEA index can overly simplify these relationships.

Although changes in travel behavior can directly affect personal emissions, the connection between
other PEBs and emissions is less clear and has even been found to be non-existent in the case of
heating and energy saving, due to structural factors [51]. Household energy consumption is said
to be accountable for over 25% of the personal consumption of GHG emissions in HMA [23] and is
thus a key category in lowering the GHG emissions in the area. A shift away from fossil fuels in
district heat production would effectively reduce the emissions due to the wide coverage of the district
heating network, whereas individual incentives to engage in more energy efficient behavior could
be created by installing apartment-based meters and moving from building-level heat contracts to a
pay-per-use system. One of our variables for the PEB factor related to produce was organic purchases,
which, compared to conventional produce, has been found to have similar global warming potential
(GWP) [89].

The effectiveness of policy that relies on “green” consumers as agents of change has been
doubted [90,91]. Green consumerism is still a driver of resource depletion and pollution while
sustainable consumption is not. In addition, the carbon capability of individuals—that is, how
equipped they are to engage in mitigation—has been found to be limited [92] and they might evaluate
the environmental impact of the product incorrectly when engaging in “green” purchasing behavior [38].
In this context, it is important to acknowledge that both PEAs and PEBs are varied and complex; an
attitude that emphasizes the importance of conserving biodiversity does not necessarily translate to a
willingness to mitigate climate change.

More research on the carbon footprints of people with different levels of PEAs is required to fully
understand the overall climate change pressure of urban residents. Such research may shed light on
how much one can mitigate their climate impacts by different levels of behavioral changes, such as
making pro-environmental purchasing choices of goods in the same category, spending on different
consumption categories, or reducing the spending budget rather than allocating it differently. It was
found that at equal income levels, the carbon footprints of HMA residents are quite similar regardless
of how they spend their money as consumption is simply reallocated from one category to another [24].
Moreover, all the carbon footprints assessed for the residents of HMA were far above the remaining
global per capita quota estimated for reaching even the 2 degree warming target [93]. Connecting
future assessments to the 2 degree or 1.5 degree [94] target would be an important improvement for
positioning the findings and making comparisons and mitigation consideration more tangible.
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Appendix A

This appendix presents relevant sections of the online softGIS survey used for data collection.

Table A1. Relevant sections of the softGIS survey.

2/14 Background
information

Gender
Male

Female

Age 25-40

Main occupation at the
moment

Employed

Other

Retired

Stay-at-home-parent/Paternity or
maternity leave

Student/Pupil

Unemployed

Education level

Basic education

Upper secondary education

Lowest level of tertiary education

Undergraduate level

Graduate level

Postgraduate level

How many hours per week
do you usually spend
working and studying

combined?

Less than 30

30 to 35

35 to 40

40 to 45

More than 45

4/14 Household

Type of household

Couple living together

Couple with child/children

None

Several people with separate budgets

Single parent with child/children

Single person living on her or his own

Single person living with parents

Household monthly income

Less than €1500

€1500–€3000

€3000–€4500

€4500–€6500

More than €6500

How many cars are there in
your household

None

1

2

3

More than 3
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4/14 Household

Please indicate how much
fuel your car consumes per
100 km of combined urban

and highway driving

Car no. 1

less than 4

4 to 6

6 to 8

8 to 10

Above 10

Does not apply

Car no. 2

less than 4

4 to 6

6 to 8

8 to 10

Above 10

Does not apply

Car no. 3

less than 4

4 to 6

6 to 8

8 to 10

Above 10

Does not apply

Car no. 1 annual mileage
(in kilometers)

Car no. 2 annual mileage
(in kilometers)

Car no. 3 annual mileage
(in kilometers)

5/14 Home and work

How long have you lived in
the Helsinki

metropolitan area

Less than a year

One to three years

Three to ten years

More than ten years

Home Please mark your main place of
residence on a map

Work or study place Please mark main locations

Place type

How do you usually travel
to this place?

How often do you usually
visit this place?

What reasons were
important when making
decision on moving to

current place of residence?

0—not at all important, 4—very
important, N—not sure/not applicable.
Please skip this question if it doesn’t

apply to you

Access to private yard

Social life in the
neighbourhood

House or apartment size

Housing price and cost

Access to green areas

Neighbourhood reputation

Proximity to services

Environmental impact

House or apartment quality

Distance from work or
study place

Distance from city centre
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6/14 Local trips and
services

Please mark locations that
you have been frequently
visiting within Helsinki

metropolitan area

Please mark between 5 and 15 places.
Don’t worry about location accuracy. It
is fine to mark just approximate location

Shopping—Grocery stores,
shopping malls, markets etc.

Daycare, kindergarten or
school—Places where you
bring your own children to

Services and errands—Post
office, bank, health care,

personal care etc.

Sports and active
recreation—Indoor and

outdoor physical activities

Culture and sport
events—Theatre, cinema,

music, spectator sports etc.

Leisure and going
out—Restaurants, cafes,
bars, meeting places etc.

7/14 Regional trips

Please mark locations within
Finland but away from

Helsinki metropolitan area,
which you visited during the

last 12 months

Please mark all locations that you can
remember. Don’t worry about location

accuracy. It is fine to mark just
approximate locations

Trips by car

Trips by train

Trips by bus

Trips by plane

8/14 International
trips

How many international
trips did you make during

the last 12 months?

If you have travelled abroad
at least once during the

last 12 months, please mark
all the trips you can

remember

Please don’t worry about location
accuracy. It is fine to mark just

approximate location

International trips by plane

International by boat

International by train

International by bus

International by car

9/14
Pro-environmental

behaviors

How often do you do the
things listed below?
(0—never, 1—rarely,

2—sometimes, 3—usually,
4—always, N—not sure/not

applicable

Reduce heating in unoccupied rooms

Keep heating low to save energy

Buy organic produce

Purchase items with as little packaging
as possible

Buy local produce

Buy second-hand clothes

Use high efficiency appliances

Switch off lights in unoccupied rooms

Choose to buy clothes according to
ethical aspects of production

Choose to buy clothes according to
environmental impact

Reduce hot water temperature
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11/14 Personal
attitudes

Please state how much you
agree or disagree with

statements below (where
1 = strongly disagree,
3 = neither agree nor

disagree, 5 = strongly agree)

Every now and then it is good to take a
break from urban life

Experience of different cultures is very
important to me

I feel at home wherever in the world I go

It is easy for me to jump on a plane and
go on a trip

When shopping, I rarely think about the
environmental impact of the

things I buy

I prefer spending my free time at home
than going out

There are many other things that are
more important to me than housing

I want to live as ecologically as possible

I am not willing to limit the amount
of my travel due to its

environmental footprint

I think about how I can reduce
environmental damage when I go

on holiday

Exploring new places is an important
part of my lifestyle

I am very concerned about
environmental issues

I think about the environmental impact
of the services I use

Taking a holiday is very important for
my wellbeing

Appendix B

The income categories of reported household incomes were computed into the following categories:
Less than €1500 = very low, €1500–€3000 = low, €3000–€4500 =medium, €4500–€6500 = high, and more
than €6500 = very high.

Household type was reported in the following six categories: “Several people with separate
budgets”, “single person living on her or his own”, “single person living with parents”, “couple living
together”, “couple with child/children”, and “single parent with child/children”. Categories were
merged based on these three household types: Being in a childless relationship (couple, n = 298),
having a child (family, n = 313), and being single and childless (single, n = 260).

Education was reported in six categories: Basic education, upper secondary, lowest tertiary,
under graduate, graduate, and postgraduate. To ensure an adequate number of respondents in
each category, the six categories were merged into three—low, medium, and high—based on the
real-world background information they represent and the number of respondents in each group.
“Under graduate” became the category “medium” (n = 271) so an education level below that became
“low” (n = 232) and above became “high” (n = 394).

Gender was reported dichotomously: Men were computed into 0 and women into 1.

Appendix C

This appendix presents regressions performed on the data split by zones to see how the relationships
between attitudes and behaviors vary in space. Each urban zone was regressed in a separate model.
A multiple linear regression table of clothing, household energy, and produce related PEB factor scores
is first presented, followed by three binary logistic regression tables on participation in local, national,
and international travel emissions.
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Table A2. Multiple linear regression of clothing, household energy, and produce related PEB factor
scores, with education level, household type, income category, gender, and PEA as dependent variables,
with data split by zones.

Zone 1 2 3 1 2 3 1 2 3
Clothing Household Energy Produce
β B β β β β β B B

Education level
Low - - - - - - - - -
Medium 0.014 −0.007 0.016 −0.183 0.067 0.003 −0.085 0.035 0.014
High 0.043 0.185* −0.093 −0.273* −0.016 −0.002 −0.218* −0.043 0.156*

Household type
Single - - - - - - - - -
Couple 0.019 0.040 0.031 −0.074 −0.002 0.080 −0.035 −0.087 0.011
Family 0.176** 0.106 0.112 −0.034 0.020 0.095 −0.003 −0.064 0.030

Income category

Very low - - - - - - - - -
Low −0.105 −0.143 0.028 −0.132 0.254* −0.129 0.081 −0.045 0.296**
Medium −0.197* −0.219* 0.019 −0.028 0.182 −0.152 0.235** 0.084 0.130
High −0.116 −0.276** −0.096 −0.102 0.167 −0.101 0.197* 0.109 0.272*
Very high −0.183* −0.265** −0.105 −0.053 0.096 −0.096 0.365*** 0.240* 0.238*

Gender
Male - - - - - - - - -
Female 0.163** 0.187*** 0.141* 0.014 −0.068 −0.066 0.085 −0.013 −0.042

Pro-environmental attitude 0.447*** 0.410*** 0.475*** 0.299*** 0.264*** 0.296*** 0.417*** 0.484*** 0.387***

R2 0.332*** 0.321*** 0.290*** 0.085*** 0.048* 0.066** 0.252*** 0.269*** 0.228***
F 11.025*** 10.397*** 11.839*** 3.143*** 2.163* 2.867** 7.488*** 8.089*** 7.526***

Notes. *p < 0.05. **p < 0.01. ***p < 0.001.

Table A3. Binary logistic regression on participation in local travel emissions with data split
by residential zones. Education level, household type, income category, gender, and PEA are
dependent variables.

Zone 1 2 3
B (S.E.) OR B (S.E.) OR B (S.E.) OR

Education
level

Low - - - - - -
Medium −0.242 (0.599) 0.786 −0.608 (0.625) 0.544 1.055 (0.706) 2.871
High −0.987 (0.568) 0.373 0.070 (0.665) 1.072 1.706 (0.839)* 5.506*

Household
type

Single - - - - - -
Couple −0.255 (0.410) 0.775 0.616 (0.648) 1.851 −1.182 (0.914) 0.307
Family −0.040 (0.474) 0.961 0.235 (0.656) 1.264 −0.691 (0.979) 0.501

Income
category

Very low - - - - - -
Low 0.478 (0.530) 1.612 0.982 (0.699) 2.669 1.210 (0.928) 3.352
Medium 0.005 (0.550) 1.005 0.847 (0.677) 2.333 1.261 (0.990) 3.530
High 0.628 (0.600) 1.873 0.737 (0.809) 2.090 2.215 (1.124)* 9.163*
Very high 1.923 (0.755)* 6.389* 19.659 (5909.168) 344,910,941.4 1.663 (1.180) 5.276

Gender
Male - - - - - -
Female 0.609 (0.356) 1.839 1.195 (0.535)* 3.303* 0.310 (0.618) 1.364

PEA −0.422 (0.169)* 0.656* −0.335 (0.263) 0.716 −0.179 (0.321) 0.836

Constant 1.054 (0.688) 2.868 0.822 (0.640) 2.275 1.347 (0.799) 3.845
X2 (Goodness-of-fit)1 7.204 (p = 0.515) 5.511 (p = 0.702) 6.172 (p = 0.628)
Pseudo R2 (Nagelkerke) 0.143 0.196 0.146

Notes. *p < 0.05. **p < 0.01. ***p < 0.001. 1 Hosmer-Lemeshow test of goodness-of-fit.
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Table A4. Binary logistic regression on participation in national travel emissions with data split
by residential zones. Education level, household type, income category, gender, and PEA are
dependent variables.

Zone 1 2 3
B (S.E.) OR B (S.E.) OR B (S.E.) OR

Education
level

Low - - - - - -
Medium 19.472 (4308.355) 286,194,371.8 −0.080 (0.504) 0.923 0.314 (0.580) 1.369
High 0.714 (0.678) 2.043 0.340 (0.527) 1.404 0.307 (0.635) 1.359

Household
type

Single - - - - - -
Couple 1.721 (1.012) 5.589 0.394 (0.548) 1.483 −0.378 (0.760) 0.685
Family 0.393 (0.847) 1.481 −0.262 (0.518) 0.769 −0.470 (0.687) 0.625

Income
category

Very low - - - - - -
Low 0.676 (0.791) 1.966 0.205 (0.642) 1.227 2.125 (0.733)** 8.374**
Medium 19.202 (5401.501) 218,445,271.6 0.275 (0.646) 1.316 2.787 (0.870)*** 16.225***
High 1.195 (1.031) 3.302 0.324 (0.734) 1.383 4.072 (1.045)*** 58.663
Very high 0.293 (1.092) 1.341 2.323 (1.175)* 10.211* 3.050 (0.937)*** 21.125***

Gender
Male - - - - - -
Female 0.101 (0.612) 1.106 0.412 (0.412) 1.511 2.167 (0.626)*** 8.731***

PEA 0.062 (0.294) 1.064 −0.060 (0.214) 0.941 0.410 (0.257) 1.506

Constant 0.269 (0.861) 1.309 1.126 (0.620) 3.082 −0.816 (0.654) 0.442
X2 (Goodness-of-fit)1 6.586 (p = 0.582) 6.702 (p = 0.569) 6.608 (p = 0.579)
Pseudo R2 (Nagelkerke) 0.309 0.090 0.354

Notes. *p < 0.05. **p < 0.01. ***p < 0.001. 1 Hosmer-Lemeshow test of goodness-of-fit.

Table A5. Binary logistic regression on participation in international travel emissions with data
split by residential zones. Education level, household type, income category, gender, and PEA are
dependent variables.

Zone 1 2 3
B (S.E.) OR B (S.E.) OR B (S.E.) OR

Education
level

Low - - - - - -
Medium 0.206 (0.709) 1.229 0.248 (0.415) 1.282 0.558 (0.429) 1.747
High 0.128 (0.665) 1.137 −0.004 (0.398) 0.996 0.145 (0.400) 1.156

Household
type

Single - - - - - -
Couple −0.208 (0.553) 0.812 0.169 (0.397) 1.185 0.016 (0.508) 1.017
Family −0.274 (0.600) 0.761 0.533 (0.430) 1.704 0.519 (0.504) 1.680

Income
category

Very low - - - - - -
Low 2.128 (0.701)** 8.395 0.364 (0.536) 1.439 0.968 (0.592) 2.633
Medium 0.618 (0.593) 1.856 0.100 (0.520) 1.105 0.816 (0.635) 2.261
High 2.320 (0.824)** 10.171** 1.088 (0.647) 2.968 1.138 (0.660) 3.119
Very high 2.272 (0.848)** 9.701** 1.341 (0.686) 3.822 1.969 (0.769)** 7.161**

Gender
Male - - - - - -
Female 0.460 (0.462) 1.585 0.164 (0.320) 1.178 0.345 (0.360) 1.412

PEA 0.257 (0.219) 1.293 0.012 (0.168) 1.012 0.183 (0.185) 1.201

Constant 0.251 (0.764) 1.285 0.192 (0.511) 1.212 −0.148 (0.544) 0.863
X2 (Goodness-of-fit)1 5.583 (p = 0.694) 15.270 (p = 0.54) 8.489 (p = 0.387)
Pseudo R2 (Nagelkerke) 0.167 0.097 0.122

Notes. *p < 0.05. **p < 0.01. ***p < 0.001. 1 Hosmer-Lemeshow test of goodness-of-fit.

Appendix D

This appendix presents the results of the residual analysis and spatial autocorrelation of
standardized residuals. Standardized predicted values and standardized residuals are plotted and
global Moran’s I is used to assess spatial autocorrelation, with a 1500 m fixed distance band.
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Table A6. Results of residual analysis and spatial autocorrelation of standardized residuals.

Model
Heteroskedasticity 1

(Predicted*Residual)

Spatial Autocorrelation 1

(Moran’s I Z-Score, p-Value),
1500 m Fixed Distance Band

Local travel (1a) 1.82 (p = 0.06)

National travel (2a) –0.33 (p = 0.74)

International travel (3a) –1.37 (p = 0.17)

Clothing (1b) –0.46 (p = 0.64)
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Table A6. Cont.

Model
Heteroskedasticity 1

(Predicted*Residual)

Spatial Autocorrelation 1

(Moran’s I Z-Score, p-Value),
1500 m Fixed Distance Band

Household energy (2b) –0.44 (p = 0.66)

Produce (3b) –0.46 (p = 0.64)

Note: 1 Standardized residuals used.
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Abstract: As households get smaller worldwide, the extent of sharing within households reduces,
resulting in rising per capita energy use and greenhouse gas (GHG) emissions. This article examines
for the first time the differences in household economies of scale across EU countries as a way to
support reductions in energy use and GHG emissions, while considering differences in effects across
consumption domains and urban-rural typology. A country-comparative analysis is important to
facilitate the formulation of context-specific initiatives and policies for resource sharing. We find that
one-person households are most carbon- and energy-intensive per capita with an EU average of 9.2
tCO2eq/cap and 0.14 TJ/cap, and a total contribution of about 17% to the EU’s carbon and energy use.
Two-person households contribute about 31% to the EU carbon and energy footprint, while those of
five or more members add about 9%. The average carbon and energy footprints of an EU household
of five or more is about half that of a one-person average household, amounting to 4.6 tCO2eq/cap
and 0.07 TJ/cap. Household economies of scale vary substantially across consumption categories,
urban-rural typology and EU countries. Substantial household economies of scale are noted for home
energy, real estate services and miscellaneous services such as waste treatment and water supply; yet,
some of the weakest household economies of scale occur in high carbon domains such as transport.
Furthermore, Northern and Central European states are more likely to report strong household
economies of scale—particularly in sparsely populated areas—compared to Southern and Eastern
European countries. We discuss ways in which differences in household economies of scale may
be linked to social, political and climatic conditions. We also provide policy recommendations for
encouraging sharing within and between households as a contribution to climate change mitigation.

Keywords: household size; household economies of scale; carbon footprint; energy footprint;
consumption; European Union; urban; rural; population density; climate change mitigation

1. Introduction

We need rapid and effective climate action to reduce global greenhouse gas (GHG) emissions and
avoid catastrophic climate change. Annual emissions must decrease to close to half of their 2010 levels
by 2030, and reach net-zero by 2050 to increase the probability of limiting temperature changes to
1.5 ◦C above preindustrial levels [1]. Yet there are some socio-demographic trends that may make it
more difficult to achieve this.

One such trend is the shrinking of household sizes globally. Together with the rise in global
emissions, the number of households has also been increasing, outpacing population growth. Several
studies have shown that there is a strong link between household size and per capita energy use and
GHG emissions [2–6] in both developed and developing countries [7]. When individuals live together,
there are “economies of scale”—people tend to share appliances, tools and equipment, cook together
and heat and cool common living spaces. These acts of sharing allow for the per capita energy use to
diminish with rising household size. Thus, as households get smaller, the extent of sharing within
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households reduces, while the per capita energy use and emissions rise. Some domains, such as energy
consumption for heating, cooling and lighting, show substantially higher potential for household
economies of scale [3,4,8] compared to others such as transport, clothing, and services [2,4,8]. There
may also be social benefits associated with shared living and larger household sizes, as they tend to
counteract trends of isolation and loneliness and build stronger communities [9,10]. Furthermore,
recent research shows that members of grassroots initiatives, which may involve communal living such
as eco-villages and Transition towns, manage to reconcile lower carbon footprints and less materialistic
living with higher life satisfaction [11,12]. Recognizing the important role of household economies
of scale and their social and environmental implications, researchers have advocated policies and
initiatives that encourage larger households and sharing within and across households [13].

Yet, the majority of research evidence focusing on the role of household size for consumption-based
energy and GHG emissions is restricted to single country studies. A notable exception is a comparative
multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan
conducted by Lenzen and colleagues dating from 2006 [14]. There is a lack of up to date comparative
studies between countries [5], examining these trends in a broader context and discussing the potential
contextual differences across countries. An up-to-date country comparative perspective is important
from a policy perspective: is advice on supporting sharing within and across household equally valid
across all EU countries, or do these strategies need to vary and be adjusted to different contexts?

Furthermore, average household sizes differ between rural and urban areas and opportunities
to share may also vary with urban-rural context [15,16]. Yet, studies that examine the interaction
between household size and population density in a country-comparative setting are lacking. This
article addresses this gap, analyzing the role of household size and its interaction with urban-rural
typology across EU countries.

Our main finding is that household economies of scale vary substantially across consumption
categories, urban and rural typology and EU countries. High household economies of scale are noted
for home energy, real estate services, and miscellaneous services such as waste treatment and water
supply; yet, some of the weakest household economies of scale occur in high carbon domains such
as transport. Furthermore, Northern and Central European states are more likely to report strong
household economies of scale—particularly in sparsely populated areas—compared to Southern and
Eastern European countries. We discuss possible reasons for these patterns, as well as policy strategies
to encourage sharing within and between households to contribute to climate change mitigation.

1.1. Cross-Country Differences in Household Economies of Scale

There may be various factors explaining the potential differences in the household economies
of scale across EU countries. Some of these are related to the distribution of household size and
composition. Adding another member to a household is likely to reduce per capita energy use and
carbon footprints at a decreasing rate with rising household size; that is, increasing the household
size from one to two members may drastically reduce home energy use and the associated carbon
footprint, while a change from three to four members has been shown to produce a smaller effect
on average [2]. Furthermore, the household composition—e.g., the age and the gender of the new
household member—may also play an important role [3,5].

Several social, political and cultural factors are also likely to influence the effect that an additional
household member has on energy and carbon footprints. Widely reported long-term changes include
decreasing social trust, concern for others, conformity and religiosity, and increasing individualism,
gender egalitarianism, materialistic and extrinsic values [17,18], all of which may have implications
for household dynamics and sharing practices. Yet, following the global financial crisis, more recent
changes in values towards greater importance of conservation (security, tradition) and concerns for
close others (benevolence) have been noted in Europe [17]. As countries with extensive social nets report
lower value changes following the financial crisis [17], we discuss social welfare systems as an important
country-specific factor that influences the potential for sharing within and between households. Welfare
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regimes that promote individual independence, female participation in the labor force, and countries
with higher levels of secularization [19] may stand out with lower household sizes, which may also
affect the potential for household economies of scale. Differences in consumption patterns across
countries, stemming from differences in culture, social norms, geography and climate, infrastructural
and institutional contexts, may also explain some of the variation in household economies of scale.

While we cannot test these theories directly in our analysis, they offer potential explanations for
the country clustering of household economies of scale in our analysis.

1.2. Interaction between Household Size and Population Density

Urban areas are associated with high population and employment densities, compact and mixed
land uses, and high degrees of connectivity and accessibility [20–22]; as such they have higher potential
for collaborative consumption and sharing of resources between households, and more efficient uses
of infrastructure [5], the so-called “compact” or “density effect” hypothesis [16]. This is because urban
areas with narrower streets and smaller city blocks, compact and connected design, pleasant and safe
urban space and mixed land uses generally reduce travel distance and promote active travel (walking
and biking) and public transport [5,20,22]. Furthermore, urban dwellings are associated with smaller
sizes, a higher proportion of apartments and multi-family houses and the presence of district heating,
which are overall less carbon and energy intense per unit of area [3,22]. While there is strong evidence
for this density effect on per capita carbon and energy footprints in the European context, this is largely
compensated by higher income levels in cities [23]. Urban cores are generally preferred by more
affluent and younger adults with greater consumption opportunities and smaller household sizes
(and hence higher per capita carbon and energy footprints), while suburban areas benefit from larger
household sizes and economies-of-scale effects at the household level [15,16]. This clearly complicates
the established view that dense urban environments are more sustainable [5].

Furthermore, household economies of scale are likely to differ between rural and urban areas [15,16].
A recent study from the USA found household economies of scale to be about twice as large in rural
compared to urban contexts (up to 8% reduction in per capita carbon emissions when adding an
adult in rural contexts compared to 3% reduction in dense urban contexts) [24]. Lower household
economies of scale in urban areas have also been found in a European context [25]. An explanation for
this trend is that both household and urban economies of scale “are driven by proximity and realized
through sharing” [24]. Adding a member in a rural detached house will bring about higher savings
through sharing walls, living space and heating and cooling, compared to adding a member in a shared
apartment building, where walls are already shared between more households, living space is smaller
and common district heating may be present. Urban context is associated with proximity between
households and thus higher potential to share resources outside of the household, which may in turn
partially offset the household size effect. We explore differences in the household economies of scale
between urban and rural context through an interaction term between household size and population
density in the model.

1.3. This Study

In this article, we calculate the total and the average per capita EU carbon and energy footprints
for various household sizes. We examine the inter-country differences in household economies of scale
across 26 EU countries as a way to uncover sharing opportunities and support reductions in energy
use and GHG emissions. This analysis considers differences in effects across consumption domains, as
well as between rural and urban areas.

Prior studies generally focus on a single country, while a comparative perspective is lacking.
A comparative perspective allows for a more robust discussion of the potential energy and GHG
emission cuts that could be achieved through within- and between-household sharing—and may help
formulate context-specific initiatives and policies for resource sharing on a regional and country level.
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Studies usually focus on either carbon or energy. In this study, we examine both in order to enable a
wider comparison.

2. Data and Methods

2.1. Databases

The Household Budget Surveys (HBS), harmonized and disseminated through Eurostat, collect
information about household consumption expenditure across EU countries. This study utilized data
from 2010, which is the latest available. Price coefficients were used to adjust household expenditure
to the reference year of 2010 and EUR/purchasing power standard (PPS) units, thus accounting
for price differences across countries and time (for the countries, which collected expenditure in a
different year) [26]. A detailed overview of the HBS accuracy (sampling and non-sampling errors),
timeliness, comparability and representativeness is provided elsewhere [26]. We transformed household
expenditure into per capita expenditure and proceeded with carbon and energy footprint calculations.

We calculated annual carbon and energy footprints on the household level, utilizing the
multiregional input-output database EXIOBASE (version 3.7) [27]. We applied the Global Warming
Potential (GWP100 [28]) metric to convert various GHGs (carbon dioxide, methane, nitrous oxide
and sulphur hexafluoride) to kilograms of CO2-equivalents per year (kgCO2eq). Annual energy
use was calculated using the net energy extension measures in terajoules (TJ). There is no double
counting with regards to the conversion from primary sources (derived directly from nature, e.g.,
coal) into secondary sources (coal-generated electricity, for instance) [29]. In this paper, we used the
terms “carbon footprints” and “GHG emissions”, as well as “energy footprints” and “energy use”
interchangeably. We expected that the two environmental indicators would depict similar trends in
terms of the effect of household size, as the majority of GHG emissions are related to energy use (e.g.,
burning of fossil fuels).

The EXIOBASE database covers high sectoral detail (200 products), 49 countries (including all
EU countries) and rest-of-the-world regions, and a wide range of environmental and social satellite
accounts [27,30]. We matched the HBSs household expenditure in 2010 with the environmental and
economic structure in EXIOBASE for the same year. For a detailed overview of the harmonization
steps between consumption from HBSs and the environmental intensities from EXIOBASE, see SM1
and elsewhere [4,31].

2.2. The Model

In order to examine inter-country differences in household size effects, we performed the regression
analysis for each EU country c separately (see SM4 for a robustness check through a model including
all of the countries). We also performed the analysis on EU level. We applied the household weights
disseminated by Eurostat. The analysis is conducted on a per capita level for each household i, with
the following specified model:

 

ENVF stands for the estimated environmental footprint, namely the annual carbon or energy
footprint per capita measured in kgCO2eq and TJ, respectively, in logarithmic form. The
log-transformation was done to achieve normally distributed regression residuals, which previously
had a positively skewed distribution.

LNINCOME measures the role of net disposable household income [32] (not equivalized) for the
environmental footprint. The income coefficient can be interpreted as income elasticity as both the
dependent and independent variables are measured in logarithmic form. As the Italian HBS does not
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include the income variable used for other countries, we employed the logarithm of total expenditure
instead as an independent variable, similar to other studies [14,24].

HHSIZE presents the number of household members. The term household refers to people with a
common use of an address, usually sharing space and practices [9]. In the HBSs, sharing common
accommodation and expenses was also central to the household definition.

The dummy variables for population density (DENSE and INTERMEDIATE) utilize the Eurostat’s
measure of the degree of urbanization [33], based on Local Administrative Units level 2 (LAU2). LAU
are low level administrative divisions below that of a province, region or state [34], where LAU2 is the
lowest consisting of municipalities or equivalent units in the 28 EU Member States (formerly NUTS 5
level) [35]. The degree of urbanization defined by Eurostat classifies LAU2 into sparsely, intermediate
and densely populated areas, using as a criterion the geographical contiguity in combination with the
population density in the different types of areas [33]. A map of the degree of urbanization in 2011 for
all of the EU and a detailed explanation of the undertaken steps for the LAU2 classification can be
found elsewhere [33]. In this article, variable DENSE takes the value of one for households that live in
areas with at least 500 inhabitants/km2, and zero otherwise (cities). INTERMEDIATE takes the value of
one for households that live in areas between 100 and 499 inhabitants/km2, and zero otherwise (towns
and suburbs). The base category SPARSE is associated with rural or sparsely populated areas with less
than 100 inhabitants/km2 according to the HBS classification.

Similar to a prior study [24], we added an interaction term between household size and population
density (HHSIZE×DENSE) in order to explore the potential variability in household economies of scale
by urban-rural typology.

We also included spatial controls—a set of regional dummy variables (REGION)—aiming to
account for regional differences such as technological (e.g., energy efficiency or infrastructure, type of
dominant industries) as well as geographical and climatic context [4] (see SM1 for an overview of all
regions). The regional distribution is the first-level NUTS of the EU for most countries.

Prior work has discussed the selected variables in the model as key socio-demographic, economic
and geographical determinants of environmental footprints [4,5,24]. While additional factors such as
dwelling size and type, vehicle ownership, energy sources and prices [3,21] among others are important,
the HBSs do not collect such data. We also did not explore the role of household composition, while
prior studies found education, gender and age to have small and mixed effects [2–5,36]. For example,
females have been found to have lower carbon footprints associated with transport and food, and
higher energy use at home [3,36]. Single parent households (mostly headed by women) were found
to be more likely to experience fuel and energy poverty [37]. Age has been found to be positively
associated with energy use [3,38], although this effect may slow down or even change direction when
people reach their later years [2,36]. Education and social status may also redesign preferences towards
more or less emission- and energy-intensive consumption [2,4,39].

We estimated the regression model based on household surveys from 25 EU countries (excluding
Sweden and the Netherlands due to lack of consumption data and Romania due to lack of population
density), with a total sample of 243,911 observations.

2.3. Limitations

Our analysis was affected by limitations regarding the representativeness, harmonization and
measurement errors of the HBSs. A detailed account of these limitations [26] and their implications
for the carbon and energy footprint calculations can be found elsewhere [3,31]. There may be higher
sampling error and inflated variation associated with infrequent purchases [26], for instance second
homes [40], personal vehicles, flights or furniture, and their associated environmental impacts.

There are some limitations regarding the environmental impact assessment. EXIOBASE offers
details of 200 products and services across 44 countries and five rest-of-the-world regions, and can
thus only distinguish the country-level carbon and energy intensities of largely heterogeneous product
groups. Particularly in the context of household dynamics, the product detail was insufficient to
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distinguish between consumption of items that are more likely to be shared within and between
households (e.g., use of shared appliances vs. individual equipment). Difficulties in allocating land
use change emissions to specific economic activities have been previously recognized [41,42].

Some products and services may also be purchased directly by households in some countries but
are provided through governmental spending in others. Focusing solely on household expenditure may
thus result in substantial variation in terms of spending on health, social work, education and transport
services, disregarding impacts associated with public provision, which affects comparative analysis [43].
As a result, our analysis may not capture well country differences in the between-household sharing
opportunities through the provision of public infrastructure.

Furthermore, as household carbon and energy footprints are based on monetary expenditure, there
are limitations due to potential price differences within products. Therefore, we likely overestimated
the environmental impact of expensive products (wealthier individuals) and underestimated the
impact of cheap products (and less wealthy individuals) [44]. In addition, we could not examine
the effect of “green consumerism” [16] on carbon and energy intensities, e.g., buying a fuel-efficient
car, opting for a green energy provider or a more expensive but energy efficient dwelling. Larger
households may also be more likely to purchase items in bulk and, thus, pay lower prices per item.
Prior work discusses the limitations associated with the monetary-based approach [2,31,44].

The HBS uses household size or type in the stratification criteria for most countries in order
to make the survey sampling more accurate [26,32]. Yet, there may be an under-representation of
less common household types such as intentional communities (e.g., eco-villages, co-housing). All
collective households such as elderly homes, boarding schools and others, where individual spending
cannot be distinguished from collective spending, have been excluded from the HBSs [26].

Furthermore, the population density variable and interaction effect are based on the LAU2
classification and as such it can only capture potential consumption and footprint differences between
cities, towns and suburbs and rural areas. We cannot capture differences in the between-household
sharing potential and opportunities on dwelling-, close community- or neighborhood levels.

3. Results

3.1. Descriptive Statistics and Bi-Variate Regressions

3.1.1. Household Size, Carbon and Energy Footprints

In per capita terms, one-person households have the highest average carbon and energy footprints
in the EU at 9.2tCO2eq/cap and 0.14 TJ/cap per year (Figure 1). They contribute 17-18% of the EU’s
total carbon and energy footprints, but constitute less than 13% of the EU population. Two-person
households are most numerous with 27% of the EU population. They also contribute the largest share
of the EU’s total carbon and energy footprints with 31-32%. The EU per capita average of carbon and
energy footprints for two-person households amounts to 8.4 tCO2eq/cap and 0.12 TJ/cap, respectively.
The largest households (>4 persons) contribute about 9-10% to total EU emissions and energy use and
represent 14% of the population. They have the lowest average carbon and energy footprints of 4.6
tCO2eq/cap and 0.07 TJ/cap, respectively (Figure 1).
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(a) 

(b) 

Figure 1. Distribution of EU carbon (a) and energy (b) footprint shares by household size. The total
carbon and energy contribution can be split into two parts: the average carbon and energy footprints
per capita (y-axis) and the number of people within the household cohort in the EU (x-axis). The %-s
represent the share of total EU carbon and energy footprints by household sizes. Source: own
calculations based on country population from the World Bank for 2010.

Figure 2 depicts the relationship between average per capita carbon and energy footprints and
average household sizes across EU countries. The figure shows a negative trend across countries,
suggesting a substantial overlap between countries with high average carbon and energy footprints
and relatively low household sizes. The average household size in EU amounts to 2.4, varying between
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2.2 and 2.9 across countries. The supplementary material (SM2) provides more detail about the
distribution of carbon and energy footprints, and household sizes across EU countries.

 
(a) 

 
(b) 

Figure 2. Association between average household size and average per capita carbon (a) and energy
(b) footprints in the EU. The carbon footprints are measured in tCO2eq/cap and energy footprints in
TJ/cap. Household weights provided by the HBS have been applied.

The countries with the highest per capita carbon and energy footprints in the EU include
Luxembourg, Greece (previously found to have one of the highest carbon footprints in the EU [4,43],
with a large vessel fleet in relation to its size, requiring a high use of fuel from bunkers [45]), Ireland,
Finland, United Kingdom, Belgium, Germany and Denmark, with carbon footprints between 14.1 and
9.1 tCO2eq/cap, and energy footprints between 0.2 and 0.13 TJ/cap (Figure 2, SM2). These are also the
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countries with some of the lowest household sizes: Germany (2.0), Denmark and Finland (2.1), Belgium
and the United Kingdom (2.3). Finland and Denmark have the highest share of one-person households
from the total number of households at 40%, followed by Germany at 39%. These observations broadly
agree with the Eurostat statistics on household sizes (SM3).

The countries with the lowest per capita carbon and energy footprints include Romania, Croatia,
Hungary, Latvia, Poland, Bulgaria, Spain, Portugal and Slovakia, with carbon footprints between 3.6
and 6.2 tCO2eq/cap, and energy footprints between 0.05 and 0.09 TJ/cap. The countries with the highest
household sizes include Romania and Cyprus (2.9), Slovakia, Malta, Poland and Croatia (2.8), and
Spain (2.7). Romania, Malta and Spain have the lowest share of one-person households (19%) from the
total number of households.

Figure 3 shows average per capita carbon and energy footprints per household size across EU
countries. It confirms a drop in the environmental per capita impact with rising household size within
EU countries. While the slopes vary in steepness, we consistently confirm this trend for all EU countries.
For example, the average carbon footprint of Luxembourg ranges from 18.8 to 7.4 tCO2eq/cap for
one-person and six-or-more persons households, respectively. Similarly, the per capita energy footprint
of the average one-person household in Luxembourg is 0.27 TJ/cap, while that of an average six-or-more
persons household amounts to 0.11 TJ/cap. According to Figure 3, the spread of the average carbon
and energy footprints across EU countries is much larger for smaller household sizes compared to
larger household sizes. Additionally, the absolute change in environmental impacts with the addition
of one more household member is decreasing in magnitude with the rising household size.

3.1.2. Household Size and Population Density

The countries with lower average household sizes—Belgium, Germany, the United Kingdom and
Finland—are also some of the most densely populated (Figure 4). At the same time, countries with
larger average household sizes are more sparsely populated—e.g., Slovakia, Croatia and Poland.

Notable exceptions are Malta (with high average household size and a predominantly urban
sample (92%) and Denmark (with low average household size and a largely rural sample, with as
much as 43% of the sample living in sparsely populated areas). Denmark has a long tradition of a
social-democratic welfare regime [46] with more liberal attitudes to family relationships and lower
levels of religiosity, which may explain the relatively lower household sizes at lower population
density. Compared to Western Europe, there is higher religious participation in Malta, attaching
great importance to teachings regarding family life, the morality of abortion, divorce and other
matters [47], which may explain the relatively large average household size. In addition, there may
also be geographical reasons for the relatively high population density, with Malta being a small island.

Similar to other studies [23], we find that population density is important for per capita carbon and
energy footprints (see SM2). Descriptive statistics should be interpreted with caution as they do not
control for the differences in income levels and other relevant factors, which tend to vary substantially
between urban and rural areas.
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(a) 

 
(b) 

Figure 3. Mean per capita carbon (a) and energy (b) footprints by EU country by household size.
Households with household sizes >5 have been aggregated in the same group. The carbon footprints
are measured in tCO2eq/cap and energy footprints in TJ/cap. Household weights provided by the HBS
have been applied.
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(a) 

 
(b) 

Figure 4. Association between average household size and share of households living in densely
(a) and sparsely (b) populated areas in the EU. In cases where the shares do not add up to one, the
difference amounts to the share of households living in intermediately populated areas. Household
weights provided by the HBS have been applied.

3.1.3. Bi-Variate Regressions

Table 1 presents an overview of the standardized bi-variate Ordinary Least Squares (OLS)
regression coefficients and statistical significance between household size (as a dependent variable) and
urban-rural typology, carbon and energy footprints, and income per capita (as independent variables)
across EU countries. Table 1 confirms a strong negative relationship between household size and per
capita energy and carbon footprints within countries. The EU coefficients amount to −0.17 and −0.20
for carbon and energy footprints, respectively. Across countries, the coefficients vary between −0.11
(in Romania) and −0.39 (in Luxembourg) for carbon, and between −0.12 (in Romania) and −0.44 (in
Czech Republic) for energy.
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Table 1. Standardized bi-variate regression coefficients (can be interpreted as pairwise correlation
coefficients) between household size and other variables by EU country.

Country Code Country Name
Coefficients for Household Size (HHSIZE)

Densely
Populated

Sparsely
Populated

Carbon
Footprint

Energy
Footprint

Income

EU European Union −0.040*** 0.042*** −0.170*** −0.196*** −0.208***
BE Belgium −0.102*** 0.011 −0.310*** −0.341*** −0.297***
BG Bulgaria −0.007 −0.025 −0.132*** −0.195*** −0.356***
CY Cyprus −0.072*** 0.01 −0.274*** −0.293*** −0.276***
CZ Czech Republic −0.083*** 0.054** −0.384*** −0.437*** −0.291***
DE Germany −0.179*** 0.114*** −0.169*** −0.182*** −0.196***
DK Denmark −0.114*** 0.087*** −0.162*** −0.228*** −0.154***
EE Estonia −0.009 −0.003 −0.196*** −0.241*** −0.239***
ES Spain −0.046*** 0.016* −0.191*** −0.217*** −0.416***
FI Finland −0.150*** 0.128*** −0.159*** −0.195*** −0.181***
FR France −0.082*** 0.101*** −0.229*** −0.294*** −0.242***
GB United Kingdom 0.017 −0.000 −0.139*** −0.141*** −0.161***
GR Greece −0.026 −0.008 −0.193*** −0.190*** −0.263***
HR Croatia −0.095*** 0.048** −0.156*** −0.200*** −0.326***
HU Hungary −0.147*** 0.118*** −0.282*** −0.264*** −0.415***
IE Ireland −0.052*** 0.082*** −0.261*** −0.236*** −0.261***
IT Italy −0.053*** 0.013* −0.273*** −0.259*** −
LT Lithuania −0.152*** 0.150*** −0.143*** −0.146*** −0.325***
LU Luxembourg −0.109*** 0.084*** −0.391*** −0.379*** −0.391***
LV Latvia −0.076*** 0.076*** −0.157*** −0.224*** −0.214***
MT Malta −0.001 − −0.253*** −0.245*** −0.240***
PL Poland −0.187*** 0.144*** −0.296*** −0.306*** −0.295***
PT Portugal −0.02 −0.044*** −0.127*** −0.134*** −0.243***
RO Romania − − −0.116*** −0.122*** −0.422***
SE Sweden −0.011 −0.002 −0.184*** −0.170*** −0.231***
SI Slovenia −0.079*** 0.061*** −0.277*** −0.316*** −0.179***
SK Slovakia −0.098*** 0.052*** −0.202*** −0.216*** −0.355***

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. The variables densely populated (DENSE) and sparsely populated
(SPARSE) are dummies. In the context of this table, HHSIZE can be interpreted as a dependent variable, and the rest
of the variables—as independent variables. Household weights provided by the HBS have been applied.

Furthermore, densely populated contexts (cities) are associated with smaller household sizes,
and sparsely populated rural contexts – with larger household sizes in most EU countries (Table 1).
The lowest regression coefficients between household size and densely populated context are found
in Poland (−0.19) and Germany (−0.18). The opposite is true for sparsely populated areas, with the
highest significant coefficient between household size and sparsely populated context found in Poland
(0.14). Portugal shows an exceptional trend, being the only country with a negative and significant
coefficient for household size and sparsely populated context.

While we note substantial inter-country differences, household dynamics should clearly be
analyzed controlling for other socio-demographic trends (such as income and population density) [16].
For example, the analysis confirms a strong negative relationship between income and household
size across all EU countries—suggesting an association between lower household sizes and higher
incomes—with a coefficient amounting to −0.21 for the EU.

3.2. Household Economies of Scale for Total Carbon and Energy Footprints

Figure 5 portrays results from a multi-variate OLS regression on the role of HHSIZE for per capita
carbon and energy footprints in logarithmic form (dependent variables). There are additional variables
in the models such as income, urban-rural typology and geographical region (see the Data and Methods
section for the model specification). The figure shows two model specifications, including (in blue)
and excluding (in red) the HHSIZE×DENSE interaction terms.
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(a) 

 
(b) 

Figure 5. Household size effect across countries with dependent variables—the log of carbon footprints
per capita (a) and energy footprint per capita (b). The blue coefficients depict the HHSIZE coefficient
acquired from the model including interaction effect (HHSIZE×DENSE) and the red coefficient—the
HHSIZE coefficient from the model without any interaction term. All models control for income,
rural-urban typology and region. See Data and Methods for the model specification. Household
weights provided by the HBS have been applied.

Figure 5 shows considerable variation across countries: while most countries display strong and
moderate household economies of scale, there are also countries with no household economies of scale,
or even with positive HHSIZE effects. Most countries (15 out of 25) in the EU sample show a negative
and significant HHSIZE effect, which is in line with our initial hypothesis.
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An increase in the EU household size by one member brings about a 5%-reduction in the carbon
footprint and 7%-reduction in the energy footprint (Figure 5, in blue). The countries with the strongest
household economies of scale include Luxembourg, Slovenia and Czech Republic, described by negative
and significant HHSIZE at the 5% level coefficients, ranging from −0.11 to −0.13. The coefficients
suggest that an increase in household size by one member decreases the per capita carbon and energy
footprint by up to 12% (taking the exponent of the coefficient). Other countries—such as Belgium,
Germany, Finland, France and the United Kingdom—are characterized by moderate household
economies of scale. Their HHSIZE effects vary between −0.03 and −0.10, suggesting that an increase in
the household size by one member reduces per capita carbon and energy footprints by 3–10%.

However, Figure 5 also points to countries—such as Cyprus and Lithuania—with no visible
household economies of scale for the total carbon and energy footprint per capita. Against our initial
hypothesis, several countries even stand out with positive and significant HHSIZE coefficients such as
Spain, Italy, Greece, Portugal and Croatia. There are no significant differences between the HHSIZE
coefficients for carbon and energy footprints in most countries (see SM Figure S9), suggesting similar
economies of scale for energy and emissions.

The 95% confidence intervals of the HHSIZE coefficients in blue and red are also largely overlapping
across EU countries, meaning that there is no significant difference of the HHSIZE effect magnitude
regardless of whether or not the interaction term is included.

The following two sections explore these inter-country differences (1) for different consumption
domains; and (2) in their interaction with population density. We consider contextual differences
between countries to discuss these results in the Discussion section.

3.3. Household Economies of Scale by Consumption Categories

Figure 6 provides an overview of the HHSIZE regression coefficients across the various
consumption categories with the logarithm of the carbon footprint by consumption category as
a dependent variable. We note substantial differences between EU countries within each consumption
category, both in terms of household economies of scale and carbon contribution. Figure 7 shows
the HHSIZE regression coefficients and their 95% confidence intervals across the EU countries.
A detailed overview of the sectors included in each consumption category can be found in the
supplementary material.

The coefficient ranges highlight the differences of the magnitude of household economies of scale
and point to some of the products and services associated with higher sharing rates compared to others.
For example, the strongest household economies of scale are noted for housing categories such as rents
and mortgages, electricity and household services. These housing categories have median carbon
shares of 5%, 8% and 4%, respectively (Figure 6). At the same time, some of the weakest household
economies of scale are noted in the transport domain, which is also characterized with the highest
median carbon share of 25%.
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(a) 

 

(b) 

Figure 6. A summary of the HHSIZE regression coefficients of EU countries (displayed on Figure 7)
with the logarithm of the per capita carbon footprint by consumption category as dependent variables
(a) and the proportion of the individual consumption categories of the overall carbon footprint of EU
countries (b). The categories are ordered by the median HHSIZE effect depicting the importance of the
household economies of scale from the strongest to the weakest.
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Figure 7. Regression coefficients for household size effects on the logarithm of the per capita annual
carbon footprint by consumption category. Categories: (a) Actual and imputed rent; (b) Electricity;
(c) Household services, e.g., waste treatment, water supply, insurance; (d) Food; (e) Gas, liquid and
solid fuels; (f) Other services and manufactured products; (g) Appliances, equipment and furniture;
and (h) Transport. The categories are ordered by the median HHSIZE effect depicting the importance
of the household economies of scale from the strongest to the weakest. Household weights provided
by the HBS have been applied.

3.3.1. Housing

Substantial household economies of scale are noted for home- and housing-related categories,
particularly housing rent or real estate services (Figure 7(a)), electricity (Figure 7(b)) and household
services such as waste treatment, water supply and insurance (Figure 7(c)). The HHSIZE effect
associated with rents and mortgages vary between −0.08 (for Estonia) and −0.47 (for the United
Kingdom) (the category includes development of building projects, management and support services).
This means that an increase in the household size by one member is associated with an 8–37% reduction
(taking the exponent of the coefficient) in the carbon footprint associated with real estate services.
With regards to electricity, negative and significant HHSIZE coefficients between −0.05 for Estonia
and −0.23 for the United Kingdom and Slovenia are noted; this suggests a 3-21% reduction in the
related per capita carbon footprint with an additional household member. Cyprus and Sweden stand
out with insignificant HHSIZE effects (the Swedish HBSs offered a lower level of consumption detail
aggregating all home-related energy consumption). Similarly, strong household economies of scale
are noted in terms of household services with the largest (negative) coefficients noted for Slovakia
(−0.28), Lithuania and Estonia (−0.25). That is, the increase of household size by one member results in
a reduction of the household services emissions by as much as 24%.

While similar ranges of the household economies of scale are noted for electricity and housing
fuels (Figure 6), the strong positive outliers in terms of HHSIZE effects lower the median household
economies of scale for housing fuels. We found negative and significant HHSIZE coefficients varying
between −0.17 (for Czech Republic) and −0.04 (for Germany and Slovenia) across most EU countries
(Figure 7(e)). The positive and significant effects—especially for Malta and Cyprus—could potentially
be explained by product allocation inconsistencies of fuel use from marine bunkers [45] (where we
do not expect household economies of scale) being inaccurately allocated to household fuels in the
national accounts.

The strong household economies of scale in the household domain are in line with prior claims
that household size is one of the largest determinants of domestic energy consumption [48] and shelter
carbon footprints [4]. They result from the sharing of space and embodied energy in buildings, energy
for heating, cooling, lighting and shared appliances and activities [9].
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3.3.2. Food

Food-related economies of scale in larger households may occur when household members
prepare (e.g., when sharing food ingredients) and manage food together (e.g., when they better manage
food waste [49], which we were not able to test in this study). Furthermore, larger households may be
more likely to buy food in larger quantities, which may cost less per unit [50]. While this may allow for
a reduction in embodied emissions, e.g., through reduced packaging, in our model we were unable to
capture any differences in carbon intensities within food products. As we applied monetary-based
carbon intensities, any reduction in food spending due to lower price is reflected in our model in lower
carbon footprints, which may be misleading in cases of large price variation within products. Finally,
there may be other carbon reduction potential associated with the use of common utensils, appliances
for cooking and storing food and shared shopping for larger households. These effects are included in
the estimates for housing and transport in our analysis.

Figure 7(d) denotes significant negative coefficients between −0.20 (for Slovenia) and −0.05 (for
Denmark, Spain and Greece), suggesting that an increase in the household size with one member leads
to a decrease in the food-related carbon footprint by 5–18%.

3.3.3. Equipment, Transport and Other Consumption

While we expected substantial household economies of scale for shared appliances, equipment and
furniture, we find that most EU countries report positive HHSIZE regression coefficients (Figure 7(g)).
A potential explanation of this result is that while some appliances, machinery and furniture are
shared within households, the sectoral detail of EXIOBASE does not allow us to distinguish between
typically shared and individually-used items. Furthermore, this category only includes the purchase of
items (and hence their embodied carbon footprint), while the direct emissions associated with the use
phase is included in the analysis of electricity and housing fuels. Notable exceptions with moderate
household economies of scale for home appliances and equipment include Luxembourg and Slovenia
with regression coefficients of −0.09 and −0.05, respectively.

We did not find consistent household economies of scale for transport—with positive or
insignificant coefficients for all EU countries (Figure 7(h)). Larger households have potential to
stabilize car ownership [51,52], where additional household members do not require additional number
of cars. Prior longitudinal analysis of French car sharing practices shows that while household car
sharing is a regular practice concerning almost half of the French car fleet, this trend is decreasing [53].
Their analysis further highlighted gender differences in terms of car sharing within households, with
a higher proportion of main users being male and a higher proportion of secondary users being
female [53].

However, our analysis suggests that the benefits of shared travel within the household are not
realized in many countries in Europe (Figure 7(h)). The lack of household economies of scale with
regards to personal vehicles and equipment (SM4) suggests that additional household members may
also activate a need for another household car, e.g., following a partnership formation [54]. There may
also be offsetting effects such as using the car more intensively or having a larger car in single-car
households [55]. Furthermore, no household economies of scale were noted for other transport modes
such as air travel, for which there is a growing demand with rising incomes in Europe [31].

Finally, we did not observe substantial household economies of scale with regards to other services
and manufactured products (Figure 7(f)). There may also be additional factors that strongly correlate
with household size (e.g., demographic, social, cultural and economic characteristics) that we could
not include in our model due to lacking data, which may explain the variation in coefficients.

3.4. Household Size and Population Density Interaction

In this section, we discuss the magnitude and significance of interaction effects depicted in
Figure 8 (HHSIZE×DENSE) across EU countries (the model in blue in Figure 5, controlling for income,
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household size, population density and region). The majority of EU countries show insignificant
interaction coefficients, suggesting no significant differences in the HHSIZE effect between densely and
sparsely populated areas in the EU.

 
(a) 

 
(b) 

Figure 8. Interaction effect between household size and population density (HHSIZE×DENSE) across
countries. Dependent variables—the log of per capita carbon (a) and energy (b) footprints. We excluded
the HHSIZE×INTERMEDIATE interaction term as no significant differences of the household size
effects between intermediately and sparsely populated areas were noted. See Data and Methods for the
model specification. Household weights provided by the HBS have been applied.

However, several countries such as Czech Republic and Germany demonstrate negative HHSIZE
effects and positive interaction effects (HHSIZE×DENSE), both of which are significant at the 5%
level. This result suggests that adding another household member in a sparsely populated (rural)
environment is associated with larger household economies of scale compared to doing so in a densely
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populated (urban) environment. While adding a household member to a rural household reduces per
capita energy footprints by 7–11%, adding a household member to a dense urban household reduces
them by 4–7% (Figure 5, Figure 8). The lower household economies of scales in densely populated
environments are noted particularly for electricity, housing fuels, appliances, equipment and furniture,
and food. This is plausible because these types of environmental impacts tend to be higher in rural
areas in these countries, compared to urban areas, so that greater household sizes can reduce these
impacts more in rural areas.

We find negative interaction effects for other countries, particularly for Greece, Estonia, Cyprus
and Croatia, suggesting that households in densely populated regions encounter higher household
economies of scale in these countries, compared to sparsely populated areas. The analysis of
consumption categories suggests that these negative interaction effects are primarily associated with
consumption of household services (e.g. water and waste), other services and manufactured products.

These negative interaction effects may contradict our previous hypothesis that the interaction
between household and urban economies of scale leads to higher household economies of scale in rural
and sparsely populated areas [24,25]. However, these are all countries where per capita environmental
footprints tend to be higher in urban compared to rural areas (SM2), so it is plausible that adding a
household member in urban areas leads to greater reductions of per capita environmental footprints
there compared to rural areas.

4. Discussion and Conclusions

4.1. Household Dynamics within the EU

One-person households are the most carbon and energy intensive in per capita terms, contributing
to 17-18% of the EU total carbon and energy footprint. The per capita carbon and energy footprint of a
one-member household is about twice that of a five- or more person household in the EU. The share
of those living in one-person households varies from 40% in Finland and Denmark to 19% in Spain,
Malta and Romania, with an EU average of 31% from the total number of households.

We note substantial differences in household sizes across various EU countries as well as the
role of household size for per capita carbon and energy impacts. Adding an additional household
member results in a carbon and energy reduction of above 10% on average in some EU countries.
This result confirms that shrinking household sizes across the EU and globally are of key concern
for climate change mitigation. They should thus be adequately considered in modelling work, e.g.,
prospective scenarios of socio-demographic trends and their influence on carbon and energy footprints
and pathways to meet carbon targets. Household dynamics should also be regarded in the context of
mitigation solutions and experimentation with alternative household formations.

Substantial differences in the household economies of scale are noted for various consumption
domains, with a higher potential in housing-related items such as electricity use (up to 21% reduction
with an additional household member), real estate services (up to 37%) and household services such as
waste collection and water supply (up to 24%). Food and fuel consumption show moderate household
economies of scale with up to 18% reduction of the carbon footprint with an additional household
member in some EU countries. We note lower or no household economies of scale in other domains of
consumption (e.g., transport, manufactured products and services), where an increase in the household
size likely corresponds to an increase in consumption needs (e.g., second household vehicle, more
clothing, educational or health services with an additional household member).

Furthermore, the majority of EU countries have comparable household economies of scale between
urban and rural areas (insignificant interaction term). Other countries such as Czech Republic and
Germany report higher household economies of scale in sparsely populated areas, in line with prior
evidence [24] (positive interaction term). We also found a negative interaction effect between household
size and population density for a third group of countries, which counters our original hypothesis; yet,

79



Energies 2020, 13, 1909

these are countries in which per capita emissions and energy use tend to be higher in urban compared
to rural areas, unlike most other EU countries.

4.2. Country Clusters and Contextual Factors

Table 2 summarizes our observations regarding the household economies of scale by various
consumption domains and the interaction with population density. Two clusters of countries
emerge—one with strong or moderate household economies of scale, and one with lower or no
household economies of scale.

Table 2. A summary of country clusters with regards to household economies of scale and other
contextual differences.

Country Clusters
Example

Countries

Mean
Household

Size and T-test

Household Economies of Scale by
Consumption Domains

Interaction with
Population Density

1

Countries with
high/moderate/low
household economies of
scale

LU, SI, CZ, BE,
DE, FI, FR, GB,
MT, DK, HU,
IE, LV, PL, SE,
SK

2.54 (0.003)

Strong household economies of scale for
actual and imputed rent (GB, CZ, DK, SE),
electricity (GB, BE, CZ, DK, FR, SI),
household services (SK, LV), food (MT, SI,
LU), housing fuels (CZ, HU), other goods
and services (MT, LU, LV), appliances and
equipment (LU, SI);

Higher household
economies of scale in
rural areas compared to
urban areas (DE, CZ)

2

Countries with no
household economies of
scale/Countries with
positive HHSIZE effect

CY, LT, EE, ES,
IT, GR, PT, HR,
BG

2.64 (0.005)

Some of the lowest household economies of
scale (or positive coefficients) for actual and
imputed rent (EE, CY), electricity (CY),
household services (GR), food (PT, ES, GR),
housing fuels (CY), other goods and services
(EE, ES, LT, IT), appliances and equipment
(EE, BG, GR, LT, IT) and transport (GR, BG);

Higher household
economies of scale in
urban areas (GR, EE, CY,
HR), relatively low share
of urban population and
higher environmental
impacts in urban areas.

Difference ***

Note: One-sided two-sample unweighted t-test is performed in order to compare the average household sizes
between the country clusters under the following hypotheses: H0: μcluster2 − μcluster1 = 0, HA : μcluster2 − μcluster1 > 0.
We estimated separate variances to control for significant differences in sample sizes between the country clusters.
Standard errors are presented in parenthesis. T-test significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.

The first cluster—with high and moderate household economies of scale—consists of
predominantly Northern and Central European countries. An increase in the household size by
one member results in a reduction of the total carbon and energy footprint by 3–13% (Figure 5). This
cluster is characterized by strong welfare regimes that promote individual independence and female
labor market participation [19]—which may explain the lower household sizes in these countries. The
cluster includes Belgium, Denmark, Sweden, Finland, France, Germany and the United Kingdom,
which are similar in terms of socio-demographic context [56]. The small countries of Malta and
Luxembourg are exceptions in terms of welfare regime [47,56]; the regression coefficients of Malta
in particular are characterized by relatively high error ranges across most consumption categories,
and results should thus be interpreted with caution. Finally, the Czech Republic, Poland, Slovakia,
Slovenia and Hungary (and Croatia, which is allocated to the second cluster in terms of household
economies of scale in our analysis) are characterized by the Central Europe welfare model, associated
with lower income inequality, lower rates of unemployment, higher labor market flexibility and higher
social contributions and government expenditure as a share of the Gross Domestic Product compared
to the Eastern European countries in the second cluster [56].

The second cluster—with lower or no household economies of scale—consists of predominantly
Southern and historically Catholic countries as well as some Eastern European states. An increase
in the household size by one member does not change the total per capita carbon and energy
footprint, or even increases in the per capita environmental impact (Figure 5). These countries already
have higher household sizes, and emphasize the role of the family for mutual support or are more
“collectivistic”. Greece, Spain, Italy, Cyprus and Portugal stand out from other EU countries in
terms of their welfare regimes previously described as the Mediterranean welfare model [56] with
stronger influence of Catholicism and traditional family values [57–59]. The Eastern European welfare
model—including Lithuania, Estonia and Bulgaria (and also Latvia, which is included in the first
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cluster in our analysis)—is associated with strong nuclear family institutions, low social protection
expenditure primarily on old-age pensions, high income inequality, rigid and discriminatory labor
markets and lower government capacity for generous social policies [56,60]. This might also contribute
to higher family dependency for financial and welfare support, and hence higher household sizes. The
reliance on extended family for assurance against risks of ill health, unemployment or poverty could
be reduced with higher standards of living and the provision of stronger social-security systems in
these countries [61].

These clusters show significant differences in terms of the average household sizes, with the second
cluster denoting a significantly higher household size (Table 2, Figure 2). Considering the decreasing
rate of household economies of scale with rising household sizes, this may partly explain the lower
household economies of scale in these countries—where there already is a lot of within-household
sharing, thus, there is less to gain by adding a household member.

Heating degree days are positively correlated with the housing-related energy use (and carbon
footprints), with dwellings in colder regions requiring more energy to heat over the year [4]. This effect
is partly mediated by stricter building standards in northern European countries, which reduces the
amount of energy for heating per heating degree day [62]. Nevertheless, colder countries are likely to
report higher household economies of scale particularly due to the high importance of home energy
for the overall household economies of scale, which is also in line with the country clustering. This
might also explain why we find significant positive HHSIZE effects in countries such as Spain, Italy,
Greece, Portugal and Croatia. Not only are these countries with relatively large average household
sizes already (and hence less scope for further within-household sharing), but there is also less of
a requirement for heating, which is associated with some of the strongest capacity for household
economies of scale.

The positive HHSIZE coefficients for some of the categories, where we expect relatively low
possibilities for sharing is likely driven by other socio-demographic, infrastructural and economic
factors that vary with household size, that we cannot explicitly control for in our model because they
are not captured in the HBSs.

4.3. Policy Recommendations

Targeting the trend towards smaller households and under-occupation of homes in the EU and
globally is a key option to reduce per capita carbon and energy contributions, with a higher mitigation
potential compared to efficiency improvements such as upgrading the thermal insulation or more
efficient appliances [42,63]. Understanding needs and expectations about personal space as well as
changing social norms [18] are key for the upscaling of “downsizer homes” [63] and other alternatives
to encourage within household sharing. Household sharing has an important gender dimension [53]
as well; sharing may support the depersonalization of objects allowing for them to be managed and
used jointly, thus encouraging even more (and more gender equal) sharing [53].

Yet, the trend of smaller households results from a myriad of processes, some of which cannot
be reversed (e.g., falling birth rates or liberation from norms), or which we consider valuable for
other reasons (e.g., female emancipation, financial independence or residential autonomy) [48,61].
For example, higher divorce rates worldwide may result in an increase of energy use and GHG
emissions per capita [13]; however, the freedom to divorce is also a matter of human rights and social
justice. This makes it crucial for policy interventions to realize the complexity of household dynamics
and the inter-connections with social and environmental wellbeing.

Proximate causes of the reduction in household sizes worldwide include lower fertility rates,
higher divorce rates and a decline in the frequency of multi-generational families with increasing
non-family provision of care among others [61,64]. There is some evidence that the trend of decreasing
fertility rates and increasing divorce rates is reversing since the early 2000s [65,66], which may also
stabilize or even reverse the trend of smaller households. This suggests that the trend towards smaller
families over the past half century did not result from a lasting change of family preferences, but rather
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from a change in women’s roles and labor market participation when institutions and partnerships
had not yet adapted [65]. To successfully promote parenthood and female labor force participation,
there is a need for a strong investment in childcare services, flexible workplace support and other
family support [65,66]. Such policies may help reconcile work and family responsibilities and promote
gender equity [65].

Additional social and psychological factors that may have influenced the reduction in household
sizes include liberation from strict norms, less religiosity and increased importance of individual
autonomy, self-actualization and privacy [48,61]. Support and increased visibility [67] for alternative
household types—such as intentional communal living—may encourage larger households, which
share lifestyles, cultural elements and common sense of purpose. Such alternative forms of living may
thus be less challenging in terms of these social and psychological factors [12], compared to traditional
family living. Yet alternative living arrangements may also be associated with difficulties in negotiating
common and personal items, space and time [9]. Partnerships between policymakers and sharing
initiatives may help tackle such difficulties by alleviating structural and institutional constraints and
reducing social distance (e.g., by fostering care for the community) and geographical distance (e.g.,
by improving connectivity), which impede sharing [9,11]. Sharing emerges as an opportunity to act
collectively on growing social, political and environmental awareness and steadily transforms social
norms and routines [68].

The complexity of household dynamics and the low household economies of scale in high-carbon
consumption domains such as transport encourage the consideration of additional ways to share
resources between households as well. For example, while sharing a car may reduce the energy use
and emissions associated with travel within the household (particularly in car-dependent areas outside
urban cores [22]), in the presence of an excellent public transport system, the mitigation potential may
actually be higher through sharing between households. Further research on household sharing in the
context of public infrastructure and sharing initiatives at a higher spatial resolution—in both urban
and rural context—is needed to explore the carbon mitigation potentials associated with sharing. Such
wider sharing practices for de-carbonization and low energy demand require the provision of social
and technological infrastructure such as investment in public spaces, green areas, mass transportation
and new forms of peer-to-peer sharing [9,24]. The establishment of collective systems (e.g., universal
basic services [69])—as opposed to highly individualized energy service delivery—also enables more
resilient societies and prevents future emission lock-in [70].

In this paper, we explore possible impacts of household dynamics on per capita emissions, and
examine difference in within household economies of scale across EU countries. Our main finding
is that household economies of scale vary substantially across consumption categories, urban and
rural typology and EU countries. We identify potential explanations associated with the sharing
potential of various products and services, contextual differences in terms of social and cultural norms,
geographic context, infrastructural and political context. Targeting trends towards smaller households
and under-occupation of homes and encouraging sharing offers substantial potential to mitigate climate
change with already available technologies and infrastructure.
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Abstract: Existing private homes in Germany and throughout Europe often are in need of energy
efficient refurbishment measures (EERMs). However, these EERMs are not realized on the required
level in order to achieve environment-related political targets. Therefore we investigate, based
on an online survey of 1085 German owner-occupiers, the factors that differentiate two groups of
single- and two-family house owners in need of EERM. Using an extended version of the Theory
of Planned Behavior as a research framework, the performed logistic regression analysis shows
that e.g., behavioral beliefs are significant factors for differentiating “Future-Refurbishers” from
“Non-Refurbishers”. Based on our results we suggest an enhancement of practice-orientated initiatives,
e.g., refurbishment workshops or best-practice presentations. By presenting the aesthetic appearance
of refurbished buildings or providing knowledge, other owner-occupiers could be motivated to
engage in EERM. In addition to funding programs, initiatives like this can be used to increase
the general energy efficiency of buildings and specifically of those in cities and urban districts,
where a high share of the mentioned houses is located and greenhouse gas emissions are caused to a
great extent.

Keywords: energy efficient refurbishment measures; residential buildings; decision-making; Theory
of Planned Behavior

1. Introduction

Energy efficiency in the building sector plays a crucial role in Germany and in other European
countries. Both Germany and the EU have passed several laws and regulations to improve the
energy efficiency of buildings. As examples the 2010 Energy Performance of Buildings Directive [1],
the 2012 Energy Efficiency Directive [2] of the European Union, the German National Action Plan on
Energy Efficiency [3] and the German Federal Government’s energy concept [4] can be mentioned.
The stipulations and objectives in these frameworks deal with the high energy demand of the existing
building stock and consequently its negative effects on the climate as well as the environment. In total,
the European building stock accounts for 40% of the European final energy consumption as well as
36% of the overall European greenhouse gas emissions (GHGE) [5]. For Germany, these figures are
similar, with the total building stock accounting for 38% of the final energy consumption and 30% of the
overall GHGE [6]. In order to achieve significant reductions in consumption and emissions, the stock
of owner-occupied single- and two-family houses is of special importance in Germany. Compared to
the more complex ownership structure associated with multi-family houses, owner-occupiers of single-
and two-family houses are more independent in their decision-making related to energy efficient
refurbishment measures (EERM) [7]. Additionally, these house owners are responsible for 11% of the
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total final energy consumption in Germany what also suggests a high energy saving potential [8].
Based on an average energy consumption of 177 kWh/m2·a, the estimated potential savings could
range between 50% and 70% by 2050 [6].

However, despite several governmental actions such as setting legal requirements, grants or low
interest loans [9], the refurbishment rate in Germany has currently not yet reached the politically
focused target value of 2% p. a. [4,8]. With regard to residential buildings, Rein and Schmidt [10]
actually point out a decline of more than 6 billion Euros between 2010 (EUR 40.9 billion) and 2014
(EUR 34.8 billion) in the financial investment in EERM.

In order to achieve an almost climate-neutral building stock by 2050, as determined in the existing
German regulations, and moreover benefitting from multiple societal benefits (e.g., decreased energy
import dependency, lower residential energy bills and increased residential comfort [11–13]), a better
understanding of house owners’ reluctance towards EERM is essential. Against this background,
the present study considers owner-occupiers of single- and two-family houses in Germany with a
specific focus on two groups of owner-occupiers. Next to owner-occupiers who stated their intention
to conduct specific EERM in the next years, hereinafter called “Future-Refurbishers,” the second group
consists of “Non-Refurbishers”, who stated a need for EERM but also a lack of intention to take action.
For the comparative analysis of these groups we analyze data gained from an online survey. Within this
survey we considered influencing factors derived from the scientific literature which are related to the
Theory of Planned Behavior [14], Building conditions and individuals’ Environmental awareness.

Based on this research framework, our research target is the identification of those factors
allowing for a differentiation and consequently a better understanding of “Future-Refurbishers” and
“Non-Refurbishers” (research target 1). Furthermore, we intend to provide ideas on how relevant
identified factors can be utilized to trigger increased energy-related refurbishment activities among
owner-occupiers of single- and two-family houses in Germany and beyond (research target 2). This is
of special relevance for cities and urban districts where globally 70% of all GHG originate from [15]
and where 57% of all single-family houses are located in Germany [16].

By focusing on willing house owners pre-refurbishment (“Future-Refurbishers”) and house
owners who do not intend to take actions despite a perceived need (“Non-Refurbishers”), this study
is a contribution to the still lacking understanding of decisions regarding EERM [17]. In contrast to
our study, which is focused on future refurbishment activities, the existing decision-making literature
focused on EERM is, as pointed out in the review of Kastner and Stern [18], primarily characterized by
studies considering past decisions (retrospective studies) or experimental/hypothetical approaches.
As examples the retrospective studies of Zundel and Stieß [19], Stieß and Dunkelberg [20], Michelsen
and Madlener [21] or Black et al. [22] can be mentioned. Experimental/hypothetical approaches are
followed in the studies of Achtnicht [23], Achtnicht and Madlener [24], Grösche and Vance [25] or
e.g., Alberini et al. [26].

In [19,20], the authors pursued a comparative concept by comparing German homeowners with
different refurbishment activities, i.e., energy-efficient and standard refurbishment activities. Michelsen
and Madlener [21] also conducted an analysis among German homeowners but with a focus on
motivational factors that influence the decision-making in the context of residential heating systems.
In the study of Black et al. [22] various energy-related efficiency measures were considered in order to
investigate relevant factors that determine the decisions of the analyzed US citizens. Next to insulation
activities also activities referring to the heating system were considered.

As a prominent experimental/hypothetical approach, the analysis of Achtnicht [23], who conducted
a choice experiment among German house owners, can be mentioned. Besides the role of environmental
benefits, this study also analyzed the willingness-to-pay for CO2 savings. The study of Achtnicht and
Madlener [24] is a continuation of Achtnicht [23] and differs with regard to the considered choice sets.
Grösche and Vance [25] analyzed data of German homeowners who conducted one or more EERM
(e.g., roof insulation, façade insulation, replacement of the heating system or replacement of windows).
Based on this measures and further details, the authors elicited the households’ willingness to pay per
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kWh saved. Alberini et al. [26] surveyed Swiss owner-occupiers of houses that haven’t been renovated
in the past years. The considered owner-occupiers had to choose between hypothetical refurbishments
during the conducted conjoint choice experiments. These refurbishments were defined by different
attributes such as upfront cost, rebate offered by the government or savings on the energy bills per year.

While there is a number of retrospective and hypothetical/experimental studies, only a few studies
considering future refurbishment activities can be identified in the existing literature. As examples,
the studies of Klöckner and Nayum [27] and Friege [28] can be mentioned. In their study of
3787 Norwegian households, Klöckner and Nayum [27] considered drivers and barriers (in different
stages of the decision-making process) referring to planned EERM such as e.g., insulation activities or
the replacement of windows. Insulation activities were also regarded in the study of Friege [28] who
considered planned refurbishment activities as well as past refurbishment activities in his study among
275 private German homeowners. On the one hand, we want to contribute to the limited understanding
of decisions regarding EERM [17] by adding a study using a future-orientated approach in a research
field that so far was predominantly analyzed with retrospective and experimental/hypothetical studies.
On the other hand, the present study aims to enhance the insights related to the current political
activities focused on increasing the refurbishment activities in Germany.

The study is structured as follows: the theoretical and methodological background is outlined in
the Sections 2 and 3. Our results related to research target 1 are presented and discussed in Section 4.
Finally, we provide conclusions and implications in Section 5 based on our results to meet research
target 2.

2. Research Framework of the Study

This section conveys the theoretical research framework of our analysis, including an introduction
of the Theory of Planned Behavior (TPB) which is the main guideline for the identification of relevant
factors within the scientific literature. This section also introduces additionally considered predictors
which were identified when screening relevant literature.

Built upon the Theory of Reasoned Action (TRA) [29], the Theory of Planned Behavior was
developed by Icek Ajzen [30]. This was done by adding the predictor ‘Perceived behavioral control’ to
the TRA predictors ‘Attitude toward the behavior’ and ‘Subjective norms’ [14]. With these predictors,
the TPB is intended to deal with behaviors over which people have incomplete control. In the context
of the TPB, the predictor ‘Attitude toward the behavior’ refers to the extent of which a person has a
favorable or unfavorable evaluation or appraisal of the behavior in question. The second predictor is
named ‘Subjective norm’. This predictor refers to the perceived social pressure to perform or not perform
the behavior. The third factor is the degree of ‘Perceived behavioral control’ and refers to the perceived
ease or difficulty of performing the behavior and it is assumed to reflect past experience, individuals’
resources and related anticipated barriers. In general, the greater the ‘Perceived behavioral control’ and
the more favorable the ‘Attitude’ and ‘Subjective norm’ with respect to a behavior, the stronger is an
individual’s intention to perform the behavior in question [14]. Thereby, the individual contributions
of the three predictors are expected to vary across situations and behaviors [14].

However, according to Ajzen, the developer of the TPB, and Driver [31], the TPB postulates–at
the most basic level of explanation–that performance or non-performance of behaviors depends on
the beliefs behind the introduced TPB predictors. In addition to Behavioral beliefs, which are assumed
to affect the predictor ‘Attitudes toward the behavior,’ these are Normative beliefs and Control beliefs.
While Normative beliefs constitute the underlying determinants of ‘Subjective norms,’ Control beliefs
refer to the predictor ‘Behavioral control’ [31].

Based on the TPB we utilized factors associated to these beliefs for the differentiation of
“Future-Refurbishers” and “Non-Refurbishers”. These factors as well as additional contextual aspects
were identified by a screening of the existing scientific literature. The identified additional aspects
refer to individuals’ Environmental awareness and Building conditions. The latter were also considered by
Organ et al. [32] as important for understanding house owners’ motivation in the context of EERM.
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In addition, Black et al. [22] also pointed out a building’s physical structure as relevant in the context
of capital investments in residential energy efficiency. Considering of house owners’ Environmental
awareness in the analysis is supported by two reasons. The first relates to the interaction of energy
consumption and environmental damages and the perceived high relevance of environmental and
climate protection in Germany but also other European countries [33]. The second and more important
reason is the identified relationship between environmental awareness and related attitudes in previous
empirical research considering the adoption of measures to reduce the environmental impact of
buildings [34,35]. Thus Rajaie et al. [36] explicitly suggest that environmental awareness should be
addressed in research that considers technological advancements for the reduction of the energy
demands of buildings and consequently their impact on the environment.

Finally, a legitimization for the utilization of the TPB as a basis framework can be found in the
studies of Wang et al. [37], Wu et al. [38] or Abrahamse and Steg [39], in which the TPB was already
used successfully in similar contexts (energy efficiency and buildings).

3. Data Collection and Analysis

To analyze our research questions an online survey was conducted using a questionnaire with
statements considering Environmental awareness aspects, Building conditions as well as Behavioral,
Normative and Control beliefs of the TPB model. Finally, this extended form of the TPB served as a
guideline for the identification of relevant influencing factors within the existing literature. In the
following we introduce the precise statements and questions asked based upon the identified influencing
factors. Moreover we provide information on the procedure of data acquisition and the method used
to statistically analyze the collected data.

3.1. Survey Content

The factors and statements used in this study were either drawn directly from the available
scientific literature in the context of energy efficiency and residential buildings (such as e.g., [19,20,24])
or were specifically created based on factors identified as relevant. Moreover, we utilized statements
from Bearden et al. [40] to assess the potential influence of individuals’ Environmental awareness.
The Building conditions [22,32] were examined using self-developed statements related to the structural
condition, the energy efficiency as well as a variable representing the comfort in the building and its
visual appearance.

The wording of the statements used in our questionnaire can be derived from Table 1. While
“Non-Refurbishers” were asked to refer their answers to hypothetical energy-related refurbishment
activities on their buildings, “Future-Refurbishers” were asked to refer their answers to those measures
stated as intended for the near future.

Table 1. Statements used in the questionnaire of this study (wording for “Non-Refurbishers”).

Factors Predictor and Statements

Behavioral Beliefs

The expenditure for EERM is justified . . .
All in all reasonable * all in all.

Indoor comfort * because of an associated enhancement of the indoor comfort.
Energy bills * because of the cost savings afterwards.

Reasonable for environment * because of the resulting benefits for the environment.
Doubts about desired effects I would have doubts regarding the desired effects of EERM.

Susceptibility repairs Energy-related refurbishment projects make a house less susceptible to repairs.

Normative Beliefs

Esteem friends/family Among my friends and my family refurbishments are seen as useful.
Social esteem Energy-related refurbishments raise the social esteem.

Esteem neighborhood In my neighborhood refurbishments are seen as useful.
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Table 1. Cont.

Factors Predictor and Statements

Control Beliefs

Experience I have experience with energy-related refurbishment projects.
Time planning I would have enough time for planning the refurbishment.

Time conduction I would have enough time for conducting the refurbishment measures.

Own capabilities I could renounce on professional help regarding EERM due to my own
capabilities.

Support family My family would support me during an energy-related refurbishment project.
Financing problems I would have problems financing the EERM.

No loan I wouldn’t want to take up a loan.
Appropriate craftsmen It surely would be hard to find appropriate craftsmen.

Complex promotion The governmental promotions for EERM are onerous and bureaucratic.
Legal requirements Complying with the legal regulations would be difficult.

Dust / dirt no problem Dust and dirt are no problem for me.
Objective information Getting objective information in the context of EERM would be difficult.

Complex case My house would be a complex refurbishment case.
Consulting during conduction I would use professional help during the conduction of EERM.
Consulting during planning I would use professional help for the planning of EERM.

Insecurity during refurbishment I would often be insecure during the planning and conducting of EERM.

Environmental Awareness

Environmental harm products It is important to me that the products I use do not harm the environment.

Impacts of decisions I consider the environmental impact of my actions when making many of my
decisions.

Purchase habits My purchase habits are affected by my concern for our planet.
Waste of resources I am concerned about the resource wastage on our planet.

Environmental responsibility I would describe myself as environmentally responsible.

Discomfort
Eco-friendliness I would accept discomfort in exchange for more environmental friendliness.

Building Conditions

In terms of the . . .
Energy efficiency ** . . . energy efficiency of the building I ought to take actions . . .

Comfort and appearance ** . . . comfort in the building and its visual appearance I ought to take actions . . .
Building fabric ** . . . structural condition I ought to take actions . . .

Answer-scales: I totally agree/I agree/Neither agree nor disagree/I don’t agree/I don’t agree at all. * Yes/Not sure/No.
** I should take actions . . . as soon as possible (asap)/ . . . in the next years/there is no need. Source: Content adapted
and adopted from Zundel and Stieß [19], Stieß and Dunkelberg [20], Achtnicht and Madlener [24], Bearden et al. [40],
Black et al. [22] and Organ et al. [32].

3.2. Data Collection

For the purpose of our study, a Germany-wide online survey was conducted during June and
July 2016 using an online panel provided by a market research institute. Our target group were
house owners of single- and two-family houses in Germany who lived in these houses at the time
of data collection. By asking the house owners whether a refurbishment project was planned or
not, the group of “Future-Refurbishers” and “Non-Refurbishers” were identified. Subsequently,
“Future-Refurbishers” were asked whether they plan to undertake EERM on the upper or lower
building envelope, the façade, windows and/or doors. Only those house owners who stated their
intention to realize at least one EERM related to these building components or intended to modernize
the heating system (e.g., via solar thermal systems, installation of a ventilation system with heat
recovery) were considered as “Future Refurbishers” for the present study. “Future-Refurbishers”
without energy-related measures were not considered for this study.

Those individuals who stated to have no refurbishment intentions were considered for this study
when a need for EERM was indicated. This need was identified by asking a question considering the
perceived energy-related status of those building components.

Only those owner-occupiers (without refurbishment intentions) who stated a “need” or an
“immediate need” for improving the energy efficiency of the heating system or of at least one of the
mentioned building components were considered for the group of “Non-Refurbishers”.
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Finally, after data cleaning and sorting out owner-occupiers without energy-related refurbishment
intentions (75 respondents) or needs (627 respondents) 351 “Non-Refurbishers” and 734 “Future-Refurbishers”
were available for statistical data analysis. The data cleaning procedure followed a combined approach
characterized by an analysis of the respondents’ answers to the individual question sets as well as
the time respondents devoted for answering the questions. After marking questionnaires in which
mainly identical answers and/or short processing times were evident, an individual case-by-case
examination of suspicious but also incomplete data sets finally led to the exclusion of questionnaires of
320 “Future-Refurbishers” and 345 “Non-Refurbishers”.

The characteristics of the respondents of both groups are presented in the Figures 1–4 indicating
statistically significant differences between the two groups in terms of age (Figure 1), education
(Figure 2), average monthly net household income (Figure 3) and in terms of the construction periods
(Figure 4) of the participants’ buildings.
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Figure 1. Age groups of “Future-Refurbishers” and “Non-Refurbishers”.
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Figure 4. Construction periods of “Future-Refurbishers” and “Non-Refurbishers” buildings.

Figures 2 and 3 show that “Future-Refurbishers” are not only more likely to have a university
degree, but also a higher income than “Non-Refurbishers.” Since EERM often result in substantial
costs, it seems that people with a higher income are more capable of realizing EERM in the future.
Moreover, the group of “Non-Refurbishers” is older than the group of “Future-Refurbishers.” Further,
there are significant differences between the two groups related to the age of their houses with the
average construction year of “Future-Refurbishers” buildings being 1968 compared to 1963 for houses
of “Non-Refurbishers”. This implies that a higher share of “Non-Refurbishers” buildings were built
before the ‘Thermal Insulation Ordinance’ came in place in 1977 in order to enhance the energy
efficiency of new buildings in Germany.

The answers of the “Future-Refurbishers” and “Non-Refurbishers” to the statements presented in
Section 3.1 were analyzed using binary logistic regression. This method is intended to reveal factors—
beyond socio-demographic aspects—that allow for a differentiation of both analyzed groups and
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potentially for deriving recommendations for overcoming the reluctance concerning residential EERM
in Germany.

3.3. Mathematical Approach for Data Analysis

In general, logistic regression is a form of multiple regression with a categorical outcome variable
and categorical or continuous predictor variables. In its simplest form it is possible to forecast which
of two categories a person is likely to belong to given some other details [41]. In this study, the two
outcome categories are represented by “Future-Refurbishers” and “Non-Refurbishers.” The predictor
variables, in turn, are represented by the underlying factors of the questions and statements presented
in Section 3.1.

In multiple linear regression, Y is, as presented in Equation (1), predicted by a combination of
predictor variables multiplied by their respective regression coefficients:

Yi = b0 + b1X1i + b2X2i + . . .+ bnXni + εi (1)

Instead of predicting the value of a variable Y from several predictor variables Xn, in binary
logistic regression a probability P(Y) of Y occurring given known values of Xn is determined with
Equation (2):

P(Y) =
1

1 + e−( b0+b1X1i+b2X2i+...+bnXni+ε)
(2)

In this equation e is the base of the natural logarithm and the other coefficients form a linear
combination. By expressing the multiple linear regression equation in logarithmic terms (called the
logit) the results of the equation vary between 0 and 1. Thus, a value close to 1 means that Y is very
likely to have occurred while a value close to 0 expresses the opposite [41]. The coefficients of the
predictor variables are determined by using maximum-likelihood estimation. This estimation method
selects coefficients that make the observed values most likely to have occurred [41]. Based on these
values so-called “odds” and “odds ratios” (the proportionate change in odds due to a unit change in
the predictor variable) can be calculated [41]. These odds ratios and the regression coefficients are
presented hereinafter in Section 4.

For identifying relevant factors behind the introduced statements, we used the IBM SPSS Statistics
23 analysis program. Due to the high amount of initially considered influencing factors, a stepwise
logistic regression was used for identifying the most important factors capable of distinguishing the
survey participants into “Future-Refurbishers” and “Non-Refurbishers.” Due to potential suppressor
effects (those effects occur when a predictor has a significant effect but only when another variable is
held constant) we used the stepwise backward method. In [42], this method is described as follows:
“With this method, the initial model contains all of the terms as predictors. At each step, terms in the
model are evaluated, and any terms that can be removed without significantly detracting from the
model are removed. In addition, previously removed terms are reevaluated to determine if the best of
those terms adds significantly to the predictive power of the model. If so, it is added back into the
model. When no more terms can be removed without significantly detracting from the model, and no
more terms can be added to improve the model, the final model is generated.“ The thresholds for
this procedure were PIN = 0.05 and POUT= 0.10. The stepwise backward method was used in order to
reduce the risk of a Type II error (i.e., missing a predictor that does in fact predict the outcome) which
would be more likely with the alternative method of stepwise forward selection [41]. This method
in essence follows an opposite procedure than the stepwise backward method but starts with no
model terms (except the constant) in the equation. The third general method available in SPSS when
conducting a binomial logistic regression is the default mode called ‘enter’. This method simply adds
all terms into the equation [42].
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4. Results and Discussion

In order to gain a better understanding of the differences between house owners who are aware
of their need to conduct EERM but differ with regard to their intention to take action, we compared
reluctant “Non-Refurbishers” with house owners who plan to take action, i.e., “Future-Refurbishers.”
The results of the applied binary logistic regression analysis as well as a discussion are presented in the
following subsections.

4.1. Differentiating Influencing Factors

The results of the binary logistic regression analysis are provided in Table 2. For all significant
influencing factors not excluded via the stepwise regression, the odds ratios (Exp(B)), the regression
coefficients (β) and p-values are presented. A significant Exp(B) value (p-value≤ 0.05) greater (less) than 1.0
indicates that, as the predictor increases, the odds of the outcome occurring (being a “Future-Refurbisher”)
increase (decrease). Statistically insignificant results are printed in non-bold letters.

Table 2. Results for the numeric and categorical variables of being a “Future-Refurbisher”.

Factors Predictors and Statements
Exp (B)/β
(p-value)

Behavioral beliefs

The expenditure for EERM is justified . . .

All in all reasonable all in all.
YES vs. NO 1.62/0.48

(0.411)

DON’T KNOW vs. NO 0.92/−0.086
(0.881)

Indoor comfort because of an associated enhancement
of the indoor comfort.

YES vs. NO 5.37/1.68
(0.000)

DON’T KNOW vs. NO 3.33/1.20
(0.013)

Energy bills because of the cost savings afterwards. YES vs. NO 2.09 /0.74
(0.043)

DON’T KNOW vs. NO 1.13/0.125
(0.722)

Reasonable for
environment

because of the resulting benefits for the
environment.

YES vs. NO 0.15/−1.92
(0.000)

DON’T KNOW vs. NO 0.29/−1.26
(0.013)

Doubts about desired
effects I would have doubts regarding the desired effects of EERM. 2.06/0.723

(0.000)

Normative beliefs

Esteem friends/family Among my friends and my family refurbishments are seen as useful. 0.64/−0.439
(0.004)

Social esteem Energy-related refurbishments raise the social esteem. 0.81/−0.212
(0.089)

Esteem neighborhood In my neighborhood refurbishments are seen as useful. 0.79/−0.240
(0.089)

Control beliefs

Experience I have experience with energy-related refurbishment projects. 1.22/0.202
(0.060)

Time planning I would have enough time for planning the refurbishment. 0.74/−0.302
(0.028)

Time conduction I would have enough time for conducting the refurbishment measures. 0.66/−0.422
(0.001)

Own capabilities I could renounce on professional help regarding EERM due to my own
capabilities.

0.74/−0.305
(0.015)

Financing problems I would have problems financing the EERM. 2.43/0.888
(0.000)
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Table 2. Cont.

Factors Predictors and Statements
Exp (B)/β
(p-value)

Appropriate craftsmen It surely would be hard to find appropriate craftsmen. 0.58/−0.545
(0.000)

Complex promotion The governmental promotions for EERM are onerous and bureaucratic. 0.67/−0.399
(0.000)

Legal requirements Complying with the legal regulations would be difficult. 1.36/0.310
(0.008)

Complex case My house would be a complex refurbishment case. 1.24/0.218
(0.044)

Consulting during
conduction I would use professional help during the conduction of EERM. 1.43/0.357

(0.011)
Consulting during

planning I would use professional help for the planning of EERM. 1.34/0.295
(0.025)

Environmental awareness

Impacts of decisions I consider the environmental impact of my actions when making many of
my decisions.

0.64/−0.453
(0.001)

Discomfort
Eco-friendliness

I would accept discomfort in exchange for more environmental
friendliness.

1.30/0.261
(0.069)

Building conditions

In terms of the . . .

Energy efficiency energy efficiency of the building I ought
to take actions . . .

ASAP vs. NO NEED 10.60/2.36
(0.000)

NEXT YEARS vs. NO NEED 4.09/1.41
(0.000)

Comfort and appearance comfort in the building and its visual
appearance I ought to take actions . . .

ASAP vs. NO NEED 7.25/1.98
(0.000)

NEXT YEARS vs. NO NEED 3.50/1.25
(0.000)

Building fabric structural condition I ought to take
actions . . .

ASAP vs. NO NEED 1.49/0.398
(0.455)

NEXT YEARS vs. NO NEED 1.91/0.647
(0.012)

Constant term N/A/ −1.61
0.143

Reference-category: “Non-Refurbishers”; Source: own calculation.

Regarding Behavioral beliefs, the factors Indoor comfort, Reasonable for environment, Energy bills and
Doubts about desired effects were significant and thus included in the regression model. The affiliated
Exp(B) values for these factors suggest that it is more likely to be in the group of “Future-Refurbishers,”
given house owners assume that EERM enhance the housing comfort and that EERM lead to a reduction
of the energy bill. Belonging to this group is also more likely for individuals, who are not or less
skeptical regarding the doubts about the pursued effects of EERM. The Exp(B) value associated with
the factor Reasonable for environment is smaller than 1.0. This indicates that house owners who think that
EERM are good for the environment are less likely to be part of the group of “Future-Refurbishers.”

When considering Normative beliefs, only the factor Esteem friends/family is significant and included
in the regression model. The calculated Exp(B) value suggests that belonging to the group of
“Non-Refurbishers” is more likely with a decreased appreciation of EERM by house owners’ friends
and family.

A look at the Control beliefs shows that there are ten significant factors identified as being relevant for
predicting group membership. Among these factors the most differentiating factors with Exp(B) values
bigger than 1.0 are Financing problems, Consulting during conduction, Legal requirements and Consulting
during planning. These results indicate that being a member of the group of “Future-Refurbishers”
is more likely the lower house owners perceive financial problems to be associated with EERM.
Implementing EERM is, furthermore, more likely for those house owners who have a lower demand of
consultation. Further, the results of the factors Legal requirements but also Complex case imply that the
uptake of EERM is more probable if complying with legal requirements in connection with EERM is
perceived as less complex and also when the building does not appear to be hard to treat.
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Significant Exp(B) values smaller than 1.0 are calculated for the factors Appropriate craftsmen,
Time conduction as well as Complex promotion, Own capabilities and Time planning. With respect to the
wording of our statements and the answer scales used in the questionnaire, this can be interpreted as
follows: the more positive a house owner’s expectation is to find appropriate craftsmen for conducting
EERM, the more likely this person belongs to the group of “Non-Refurbishers.” This also applies to
the perceived difficulty connected to governmental promotion—if individuals perceive governmental
promotion as not complex, their belonging to the group of “Non-Refurbishers” is more likely. In
contrast to the latter two rather surprising results, we also find that limited time for conducting and
planning EERM and low Own capabilities of the house owners in this area increase the odds of belonging
to the group of “Non-Refurbishers.”

Along with factors associated with the TPB we included Environmental awareness factors and
Building conditions as additional contextual aspects in our study. When considering the results related
to the Environmental awareness aspects, there is only one significant factor, which is Impacts of decisions.
The associated Exp(B) value suggests that belonging to the group of “Non-Refurbishers” is more
probable if house owners do not or hardly consider the potential environmental impacts of their actions
when making decisions.

With respect to Building conditions, the factors Energy efficiency and Comfort and appearance are
included, significant and connected to strong Exp(B) values greater than 1.0. These results suggest
that being a “Future-Refurbisher” is more likely if house owners perceive an immediate need or a
need within the next few years to take actions to improve the energy efficiency, the appearance or the
comfort of their buildings. A perceived need to take care of a buildings structural condition in the
foreseeable future (Building fabric) was also identified as increasing the likeliness of being part of the
“Future-Refurbishers.”

The factors which have been excluded via stepwise backward algorithm are presented in Table 3.
In total 10 factors were excluded by the stepwise regression algorithm in SPSS.

Table 3. Excluded factors/statements.

Factors Predictors and Statements

Behavioral beliefs

Susceptibility repairs Energy-related refurbishment projects make a house less susceptible to repairs.

Normative beliefs
—

Control beliefs

Support family My family would support me during an energy-related refurbishment project.
No loan I wouldn’t want to take up a loan.

Dust/dirt no problem Dust and dirt are no problem for me.
Objective information Getting objective information in the context of EERM would be difficult.

Insecurity during refurbishment I would often be insecure during the planning and conducting of EERM.

Environmental awareness

Environmental harm products It is important to me that the products I use do not harm the environment.
Purchase habits My purchase habits are affected by my concern for our planet.

Waste of resources I am concerned about the resource wastage on our planet.
Environmental responsibility I would describe myself as environmentally responsible.

Building conditions

—

Source: own figure.

4.2. Overall Classification

This section is intended to allow a better evaluation of the quality of the analysis results. Next to
the actual and predicted group membership via binary logistic regression in Table 4 we furthermore
provide additional information on specific quality indicators.
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Table 4. Classification table showing the predicted and actual groups from the sample.

Actual Membership
Predicted Membership

Future-Refurbishers Non-Refurbishers Correctly Classified

Future-Refurbishers (N = 734) 671 63 91.4%
Non-Refurbishers (N = 351) 93 258 73.5%

Overall: 85.6%

Source: own figure.

From 734 respondents who stated their willingness to conduct relevant refurbishment measures in
the future, 91.4% were assigned to the correct group. In the case of the “Non-Refurbishers,” this value
is 73.5%. In total, the binary logistic regression function assigned 85.6% of the sample participants
correctly. By comparing this proportion of correctly classified observations with the proportion
expected by chance, known as proportional chance criterion (56.2%) [43], our model improves this
indicator by almost 30%.

The pseudo R2 value that determines the amount of variance in the dependent variable explained
by the independent variables of 0.649 (Nagelkerke) also indicates a very good quality of the analysis [44].
The finally computed significance levels associated with the model chi-square value (678.8) of p = 0.000
and the Hosmer and Lemeshow test with p = 0.960 (>0.05) also suggest a good model fit. For the
assessment of multicollinearity among the considered variables, the variance inflation factors (VIF;
details on VIFs can be derived from [44]) were calculated. None of these VIFs was higher than 3, which
leads to the conclusion that multicollinearity does not negatively affect the quality of our results.

4.3. Discussion

In this study we analyzed multiple factors that influence the realization of EERM in owner-occupied
single- and two-family houses in Germany. The specific subjects of our empirical analysis, which is
based on a relatively highly educated sample, were owner-occupiers of single- and two-family houses
who stated their intention to conduct EERM (“Future-Refurbishers”) and those owner-occupiers of such
houses who stated a need to undertake EERM but do not intend to take action (“Non-Refurbishers”).

Utilizing an extended version of the TPB as a framework for our analysis appears justified in
our point of view as it has already been previously used successfully in the context of buildings and
energy efficiency and factors of all predictor domains contribute to group differentiation in our study.
Additionally, Wilson and Dowlatabadi [45] state, that “Residential energy use is characterized by
a wide range of decision types and contexts, as well as psychological and contextual influences on
behavior. [Thus] Decision models from different research traditions are all relevant to some aspect of
residential energy use”. Adding further aspects in connection with the original TPB is not unusual
and provides, as Kastner and Stern [18] state, the possibility to improve and adapt the purpose
of the analysis. Additionally, considering house owners’ perceived specific Building conditions and
Environmental awareness in this study contributed to a better differentiation of “Future-Refurbishers”
and “Non-Refurbishers”.

Before discussing the results of our study some limitations and methodological aspects need
to be addressed. As outpointed earlier, our data was collected with an online survey in June and
July 2016. Choosing this time of the year might have led to a bias of our results due to an omission
or an overrepresentation of certain house owners. Evidence for such effects can be found in [46].
Additionally, some limitations refer to the depth of further statistical evaluations, e.g., carrying out a
more detailed analysis of our research framework differentiated by older or younger respondents in
interaction with their income. The reason for not realizing such type of analysis relates to the limited
sample size. Even though the number of respondents was suitable for the statistical analyses presented,
the sample size was not sufficient for such more specific statistical analyses. The limited sample size
was also the reason why further statistical tests to underpin the predictive power (e.g., cross-validation;
for details see [47]) were omitted.
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Related to our results, specifically referring to the considered Behavioral beliefs, the literature
states that individuals are likely to perform energy efficiency measures in order to increase indoor
comfort and to reduce energy bills and their environmental impact [32]. However, the results of
our study regarding the last aspect suggest the opposite as the perception that EERM do have
a positive effect on the environment is more characterizing for the group of “Non-Refurbishers.”
A reason for this result could originate from house owners’ thoughts about the necessary building
components and the origin of the materials for these components that are required for carrying out
EERM. While “Non-Refurbishers” might only consider the usually desired positive effects of EERM on
the environment, “Future-Refurbishers” answers could be influenced by their higher involvement
and know-how about the refurbishment such as the necessary amount of insulation material or
construction material for windows and doors, which are often based on fossil fuels. Regarding the
factors Indoor comfort and Energy bills, our results are congruent with the thesis of Organ et al. [32].
Further underpinning results referring to these aspects originate from empirical studies conducted in
Ireland [48] and Sweden [49]. The Irish study concluded that EERM are mainly driven by monetary
goals while comfort gains were identified to be of secondary relevance. Environmental benefits of
EERM were identified to be of low relevance in both studies. In terms of Doubts about desired effects,
our results go along with the cause-effect relationship stated by Zundel and Stieß [19] who identified
doubts concerning the results of EERM as a hindering aspect.

Regarding the Normative beliefs, our results associated with the factor Esteem friends/family indicate
that a supportive opinion of friends and family favors the uptake of EERM, what is supported by
Earl and Peng [50] who state that the desire of an enhanced standing within the social surrounding
(e.g., friends and family) is a motivating factor for the uptake of EERM. Furthermore, a case study
carried out in British communities [51] also suggests that ‘social capital’ is important for home energy
innovations what partly is related to the wish of individuals to gather information from people they
know—e.g., from friends or family members who value such home energy innovations or EERM.

When considering Control beliefs and the factor Financing problems, our results go along with
Organ et al. [32] and Zundel and Stieß [19], who state a lack of financial resources as a barrier for energy
efficiency measures. Concerning the factors Consulting during conduction and Consulting during planning,
our results indicate that a refurbishment is more probable in the case of a low demand of professional
help or advice. This could be influenced by the house owners’ Own capabilities, but also by low trust in
energy advisers. Support for the latter reason can be found in the study of Risholt and Berker [52] who
identify a lack of knowledge and expectation of bad advice from professionals as impeding aspects for
homeowners. Lacking possibilities to conduct EERM by themselves is also stated as impeding factor in
our study. A further result in the field of the Control beliefs shows that high availability of time results in
a higher probability of realizing EERM (Time conduction, Time planning), what is in line with the findings
of Zundel and Stieß [19] who show that house owners who conducted EERM have had more time to
deal with the planning than those who conducted standard refurbishment measures. A higher time
intensity for larger home improvement projects is also outlined in [53]. Further support for our findings
can be found in empirical studies conducted in Greece [54], Norway [55] and The Netherlands [56].
In the latter two studies financial aspects were also identified as barriers for the adoption of EERM.
Moreover, in [54] a missing expertise or knowledge was identified as an impairing factor, too. Further
critical influencing factors identified were a lack of reliable experts and information, time and effort to
find information and complexities in the refurbishment process. The latter aspects found in [56] do
not only support our finding regarding the relevance of time to carry out EERM but also our findings
referring to the trust in energy advisers.

Besides the TPB components we also analyzed Environmental awareness aspects in the study
on hand. From six initial factors, only the factor Impacts of decisions was identified to contribute
significantly to a differentiation of “Future-Refurbishers” and “Non-Refurbishers.” This factor indicates
that individuals who do not put high relevance on environmental aspects during decision-making
rather belong to the group of “Non-Refurbishers.” When additionally considering the results associated
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with the factor Reasonable for environment, both findings together allow for the conclusion that even
though “Non-Refurbishers” might support the idea that EERM are good for the environment, it might
be less likely that environmental aspects are of high relevance during the decision-making in terms of
EERM for this group. This conclusion suggests to regard political initiatives critically that emphasize
the environmental benefits of energy-related refurbishment activities to influence house owners’
decisions positively in order to persuade them to conduct EERM.

When considering the predictor Building conditions, our analysis shows that the perceived Energy
efficiency as well as the Comfort and visual appearance strongly contribute to a differentiation between the
analyzed groups. At a first glance, it is reasonable that those house owners who perceive a greater need
for actions belong to the group of “Future-Refurbishers.” However, when considering the construction
periods of the houses of the analyzed groups, it comes up that the houses of “Non-Refurbishers” are
on average older compared to those of “Future-Refurbishers” and thus should generally call for a
higher need of action. Taking into account the finding of Stieß and Dunkelberg [20] who conclude that
house owners with standard refurbishment measures are more likely to believe their house to be in a
good condition, this might support the assumption that the actual (energy) status of the houses of
“Non-Refurbishers” is more negative than perceived by their owners even though they have performed
some efforts to reduce the energy consumption of their houses in the past.

German and European goals and legislations have become steadily more important to fulfill the
Legal requirements in the context of EERM. Our results suggest that a future refurbishment is more likely
the lower the perceived problems are to comply with existing regulations. According to the review
of Kastner and Stern [18] neither approving nor disproving results could be detected in the existing
literature for this factor.

Further initially surprising results refer to the variables Complex promotion and Appropriate craftsmen.
Our findings suggest that house owners are more likely to belong to the group of “Non-Refurbishers”
if they think it is easy to find appropriate craftsmen for carrying out EERM or if they do not perceive
governmental promotions as complex. These results might be explained by the low involvement and
experience of “Non-Refurbishers” related to the practice of refurbishment activities. Thus, such house
owners might not be very concerned when it comes to aspects as finding craftsmen or dealing with
governmental promotions. This might originate from a lack of a threat of “Non-Refurbishers” compared
to house owners who intend to undergo EERM and who not only risk losing time but also money,
due to potential incorrect craftsmen-work, missed grants and subsidies because of non-compliance
with legal requirements. This reasoning is supported by Pepels [57],who points out that extensive
investments (such as in EERM) are associated with more extensive risk evaluations or intensified
search for information.

5. Conclusions

In order to increase the currently rather low energy efficiency-related refurbishment activities
in Germany it is necessary to take a wider range of measures into account. While it is widely
acknowledged that private house owners and their respective buildings play a key role for achieving
the climate targets until 2050 set by the German Government [4] and elsewhere, the results of this
study show that pure political appeals to house owners to conduct specific energy-related measures
are not expedient.

Based on the results of our analysis and with respect to our second research target, we suggest
that, along with already existing financial support (Financing problems) that was identified as relevant,
an increased non-monetary support might supplement existing efforts to trigger individual house
owners towards increased energy-related refurbishment activities. An enhanced presentation
of refurbished “best-practice houses” and their owners, who already have mastered the task of
refurbishment, could be such an additional non-monetary support activity.

These kind of measures could supplement existing information and capacity building measures
that are provided by the German Energy Agency (Dena, “Deutsche Energieagentur”) or the KfW
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(“Kreditanstalt für Wiederaufbau”), which support interested house owners inter alia during financing
EERM activities. An enhanced provision of best-practice houses could be provided by regional contact
points for energy efficiency or by the German Energy Agency itself, as their objectives involve the
design of campaigns in the context of energy efficiency, the distribution of information to the public,
and the support of the building sector (architects, craftsmen, etc.) in order to ensure aligned work with
current standards and regulations [58].

Directed towards “Future-Refurbishers,” a presentation of already refurbished houses in
collaboration with energy advisors and craftsmen could be used to level up the currently low
refurbishment efficiency in the residential building sector in Germany. Since our results indicate a rather
low acceptance of advice from professionals (Consulting during planning, Consulting during conduction),
providing more neutral information during such best-practice events could foster additional efforts
from those house owners who already intend to take specific individual energy-related refurbishment
measures. Thus, potential doubts (Doubts about desired effects) about the implementation and the effects
of additional measures of “Future-Refurbishers” could be eliminated. A key role in this regard is
assigned to the owners of the refurbished best-practice houses. While professionals could take care
of the presentation of the individually conducted measures and the overall refurbished building,
or answer specific questions from the visiting house owners, these hosting house owners could ensure
the trustworthiness of the professionals and provide further credible answers. Besides information on
promised and actual costs and energy savings, those owners can also provide reliable information on
technical aspects such as the effort associated with technical systems (e.g., in terms of operation and
maintenance aspects) or the refurbishment process itself.

Such a trustworthy and informative situation can also be used to inform and persuade house
owners who are aware of energy-related deficiencies, but also perceive financial problems (Financing
problems) and thus neglect the uptake of efficiency measures. By lowering these house owners’ doubts
regarding financial savings or costs associated with certain efficiency measures, this could also reduce
these house owners’ perceived financial problems. Additionally, information on technical aspects
provided by the professionals but also the best-practice-house owners can also lower their concerns
due to a perceived lack of skills and capabilities (Own capabilities).

A further promising activity could be providing Do-It-Yourself workshops to individual house
owners. During such workshops, energy advisors and craftsmen could present measures that allow
for identification and removal of energy-related weak points of residential buildings. This could
involve for example, the insulation behind radiator niches, or, for technically skilled house owners,
the insulation of neuralgic spots like cellar ceilings. In addition to the direct effect of such measures,
meaning the provision of capabilities and skills (Own capabilities) to “Non-Refurbishers” but also
“Future-Refurbishers,” there are also indirect effects connected to such workshops, i.e., multiplier effects
among house owners, since applied know-how very likely will be spread within the neighborhood
and among friends (Esteem friends/family). Additionally, such workshops might have positive effects
related to trust in and the image of EERM since “Future Refurbishers” as well as “Non-Refurbishers”
are likely to look for approval from their social network (e.g., families, friends, neighbors) instead of
trusting highly unknown governmental or professional experts.

Workshops of this nature can also be used to provide information on legal obligations (Legal
requirements) that have to be met according to the German “Energieeinsparverordnung” (energy
saving ordinance) when implementing specific EERM. Other relevant information could concern
e.g., legal obligations, when old or polluting heating systems need to be replaced. In addition to
“Non-Refurbishers” and “Future-Refurbishers,” another group of house owners could be targeted
with such workshops, namely those who are basically not aware of the energy efficiency of their
houses. By providing information on average energy consumptions for houses of different construction
periods as well as information on energy savings associated with different kinds of EERM, all groups
of house owners could be triggered to re-evaluate their actual need for energy efficiency measures
and their intentions to take measures. This is also true for “Non-Refurbishers” who perceive a lower
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need for actions (Building conditions) but live on average in older houses with mostly lower energy
efficiency standards.

A further opportunity associated with the presentation of best-practice refurbishment projects is
the possibility to allow visiting house owners to experience a high level of indoor comfort and the
nice appearance of a comprehensively refurbished building envelope. Such measures would address
important influencing factors according to our results such as Building conditions and Behavioral beliefs
and the factors Comfort and appearance and Indoor comfort, respectively.

Even though the extent and the effects of best-practice campaigns in private residential houses
might be unknown, the realization of the proposed measures is a way forward to increase the energy
efficiency in the existing building stock in Germany but also in other European countries. Furthermore,
this kind of initiative would largely go along with Article 17, information and training, of the Energy
Efficiency Directive 2012/27/EU [2], which demands that “Member States shall, with the participation of
stakeholders, including local and regional authorities, promote suitable information, awareness-raising
and training initiatives to inform citizens of the benefits and practicalities of taking energy efficiency
improvement measures.”

Due to the initially mentioned fact that a large share of single- and two-family houses is located in
cities and urban districts, such measures might be especially promising when focused on these spatial
and social environments. Since financial issues, capabilities and social acceptance were identified
as relevant, enhanced initiatives considering these aspects could help to reduce the high energy
consumption and GHG emissions in such conurbations. Thereby, the mentioned focus on specific
districts is essential. Besides the possibility to enhance the outlined multiplier effect in the regional
social surrounding, also regional-typical energy-related weak points of the commonly similar buildings
could be addressed. These weak points could be covered during the mentioned practice-orientated
workshops as well as in funding programs, e.g., for subsidized refurbishment management or for
specific EERM. Increasing prices because of such funding programs, however, could be prevented by
contractual arrangements with regional partners.

Nevertheless, the potential negative effects of such local initiatives also need to be considered,
e.g., the fact that people with lower incomes might not be able to afford living in such houses or
apartments anymore due to increased rental fees after refurbishment activities. Overcoming this
phenomenon, however, is another aspect that is and needs to be considered by politicians and also
scientists [59].
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Abstract: Nowadays, there is a wide scientific consensus about the unsustainability of the current
energy system and at the same time, social awareness about climate change and the IPCC’s goals
is increasing in Europe. Amongst the different pathways towards them, one alternative is the
radical transition to a democratic low-carbon energy system where the local scale has a key leading
role. Under this scope, this research is framed within the mPOWER project, financed by the
European Commission’s H2020 programme, which promotes collaboration among different European
municipalities in order to boost the transition to a renewable-based participatory energy system.
This paper presents the starting point of the mPOWER project, where the main energy features of 27
selected European municipalities are collected and analysed for the year 2016. An open public tender
and selection process was carried out among European cities in order to choose the candidates to
participate in mPOWER project. A view of this situation will be taken by the mPOWER project as a
diagnostic baseline for the following steps: a peer-to-peer knowledge-sharing process among these
European municipalities, and subsequently, among a more extensive group. The first finding of
the paper is that, even if those municipalities are trying to reduce their greenhouse gas emissions,
they are highly dependent on fossil fuels, even in cases where renewable energies have significant
presence. Second, their energy consumption is logarithmically related to the human development
index and gross domestic product but not to the size of the cities and their climate characteristics.
Finally, despite the work that these cities are making towards energy transition in general and within
the mPOWER project in particular, the paper shows a high difficulty mapping their energy systems.
The lack of accurate and unified data by the municipalities is a sign of disempowerment at a local and
public level in the energy sphere and makes difficult any strategy to advance towards a bottom-up
energy transition. Among other goals, the mPOWER project aims to reveal these kinds of difficulties
and help local authorities in managing their transition paths.
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1. Introduction

The urgency for changing the current European energy model and transiting towards a more
sustainable one is a well-accepted reality among European inhabitants, policy-makers and scientists.
In line with this, it has been clearly detected that the elevated use of fossil fuels needs to be reduced
in order to keep the temperature increase of the planet to under 2 degrees Celsius [1]. Furthermore,
it has been accepted that the incoming transition will not be merely a technological transition towards
renewable energy systems [2], but will require a change in our way of dealing with democracy, economy
and social values [3,4]. Indeed, there is an on-going debate about how this multi-dimensional transition
will take place [5]. The goals of energy democracy movements all over the world intend to resist the
current energy agenda, and reclaim and restructure the energy sector [6], with desired outcomes such
as shifting public resources away from fossil fuels, leaving fossil fuels on the ground and stopping
extractivist infrastructures, ensuring public or social control of the energy sector, or not prioritising
only the monetary benefit out of the energy system.

A number of different voices point to the need for a locally based energy transition, as the local
scale is related to more participative, inclusive and socially accepted policies and actions. Van der
Schoor et al. [7] argue that local communities should lead a bottom-up transition since they boost the
use of local resources with democratic horizontal governance and own financial strength-based energy
production and supply. Other similar studies maintain that the new energy system will be funded
directly by citizens, since they are at the heart of this new transition based on decentralised renewable
energy cooperatives [8]. In the same vein, Vita et el. [9] show that those individuals who are members
of sustainability-oriented grassroots initiatives have a more sustainable lifestyle compared to their
socio-demographic counterparts, which leads to a more satisfying life and lower carbon footprints in
the analysed domains of housing, transport, clothing and food. Indeed, energy embedded in consumed
products and services [10,11] is a major issue that goes beyond direct energy consumption and needs to
be considered in local energy transitions in order to avoid global rebound effects. Beyond the influence
of a single consumer [12], as Grabs et al. [13] point out, grassroots initiatives play a major role in this
field. After analysing the nexus between individual motivation and collective action in the context of
sustainable consumption, they concluded that individuals can be agents of societal change when they
are organised in groups.

Furthermore, some authors attribute the progress of energy transitions in different countries to the
presence of grassroots initiatives in such countries [14]. In the above-mentioned reference, Kooij et al.
studied what the conditions are for grassroots initiatives to emerge, and how these initiatives create
an impact upon these conditions. They observe that openness to alternative discourses and a shared
knowledge are favourable conditions for the appearance of these kinds of initiatives. In turn, they argue
that the influence they exert upon energy systems is low in the case of those systems with strong vested
interests, and that the support by governments and institutions is crucial for those initiatives to make
a change.

More specifically, in relation to local authorities, in the Sustainable Development Goals of 2015 [15],
the United Nations clearly recognised the key role of local public institutions in the transition towards
a more sustainable future. According to Sperling et al. [16], cities will be relevant in boosting locally
produced and consumed energy systems based on renewables in different sectors. This change will
occur by focusing our attention on underlying social drivers, and releasing the need for economic
growth as a single scope [17]. However, they suggested that the role of municipalities needs to be
outlined very clearly and that the state must provide municipalities with the necessary planning tools,
establishing the required strategy, for the integration of a 100% renewable source-based decentralised

108



Energies 2020, 13, 1315

system [16] or decarbonisation plans [18]. Comodi et al. [19] show that, even while the role of
local authorities is relevant, the results of their actions can be merely partial within a multi-scalar
energy transition. The support and energy policies of nations and states remain central in achieving
decarbonisation goals under democratic principles [20].

This paper has been developed within the mPOWER project, which focuses on the strategies and
actions that municipal authorities carry out towards a sustainable and democratic energy system [21].
Within the framework of the project and despite their limitations, municipalities are recognised as key
political actors in the transformation of the energy system within the European context.

During the last decade, the EU has promoted a proactive climate policy, increasing renewables
and improving energy efficiency [22]. Some of the leading EU countries, going beyond climate change
on the direction of the conservation of the national and global environment, have also opted for nuclear
phasing-out [23]. However, the results do not appear to be sufficient. In Europe (European Union 28,
EU-28), non-renewable energy consumption (coal, oil, gas and nuclear energy) constitutes 85.3% of
the total primary energy supply [24], consuming 23.18 MWh of non-renewable energy per inhabitant
and year (MWh·cap−1·yr−1) out of the total of 27.16 MWh·cap−1·yr−1. Even though the consumed
non-renewable energy in EU-28 is 26% less than the average for OECD countries, it is 68.7% greater
than the world average value [24], which has already been considered 2–6 times above sustainable
levels, making it beyond the planetary boundaries [25]. This underlines that there is an urgency to
continue reducing the consumed non-renewable energy in EU-28.

According to Tagliapietra et al. [22], the cost of a fully-fledged energy transition in the EU would
be similar to that of preserving the current non-renewable energy system, and adopting the right
policies to mitigate the distributional effects of said transformation, could make it also socially desirable.
Since the social and metabolic transformations required by a real decarbonisation process are to be so
relevant [26], it will be determinant to control its distributional and democratic aspects. Nevertheless,
concerning local experiences, there is a gap in the current energy system between the new theoretical
sustainable energy systems and the reality that the cities are facing [8]. In order to build bridges among
theoretical roadmaps and practical strategies, the active role of the municipalities is considered a key
factor [9]. Furthermore, difficulties in modelling the impacts of citizens’ behaviour on climate change
have been detected [27], concluding that further collaboration between social scientists and economic
developers are required.

Cities are said to be responsible for 70% of global emissions of CO2eq [28], and different targets
have been established in EU cities in order to face the energy transition towards a sustainable one.
According to van den Dobbelsteen et al. [29], all targets at a municipal level should aim to research the
current energy situation, reduce the total energy consumption, reuse energy (i.e., reuse flows, heat
transfer) and produce renewable energy. To this effect, one of the first targets in the EU was established
by the Swiss government, following the ETH researchers who estimate 17.5 MWh per capita per
annum (equivalent of 2000 watt during 365 days and 24 h) as a sustainable amount [30]. This target
is also aligned with the 1 eqtCO2 emissions per person and year, which would allow us to avoid a
climate change scenario [30]. The percentage of integration of renewable energy or electricity has
also been established, and most European cities have the goal of integrating 20% of renewable energy
into their electric mix by 2020 [29]. The European Commission goes beyond and targets a renewable
energy share of 20% in the gross final energy demand [31,32]. It has also been common to use relative
targets in percentages, such as reductions of CO2eq emissions of 40% by 2030 [31,32] or 85–90% by
2050 [32] (compared to 1990). Another commonly used percentage target is a 27% increase in energy
efficiency compared to a ‘business-as-usual’ projection of future energy demand [30,31]. The existence
of different goals has generated a diversification of targets among different cities, with an absence
of unified targets [33]. Nevertheless, despite the existence of targets, emission reductions in cities
measured in consumption-based accounts do not always occur. In the study developed in six Japanese
cities from 1980 to 2000, it was concluded that consumption-based emissions measured by carbon
inventories have not been reduced, but rather increased from 8 to 9 eqtCO2 per year and capita [28].
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Furthermore, it has been also detected that the energy consumption and carbon emissions of cities are
related to their economic performance, especially in developed countries such as China [34], thus a
massive reduction of energy or emissions could happen to not be attractive or convenient for some
cities, drawing us into a controversial panorama.

Despite these limitations, different initiatives are being developed on the roadmap to more
sustainable cities. One such example is the European Energy Awards [35], given to municipalities for
energy and climate protection activities at the European level. Those cities awarded can be considered
exemplary in energy transition.

In this regard, different bottom-up movements have arisen in recent years to boost the necessary
energy transition. The ‘Covenant of Mayors’ (CoM) [36] is one of the most relevant initiatives,
a movement that involves more than 9000 cities in 131 countries, where local authorities voluntarily
commit to meeting and exceeding the European goals for CO2 emissions reductions [37]. In the same
vein of work, ‘Energy Cities’, the European association of cities in energy transition, is a network
of local authority representatives from 30 countries that gathers frontrunners and energy transition
beginners, city officials and technical experts. Their principal goal is to support the creation of new
policies through National Energy and Climate Plans (NECP) [38]. Similarly, Ursula von der Leyen
presented the plan to make the EU the world’s first ‘climate-neutral’ continent by 2050 [39].

Apart from the work that has been carried out on (and combined with) policy-making, from
an academic perspective, several efforts to model a sustainable energy model have been made.
The MEDEAS project [40] is one of the best examples, a tool to design the transition into a 100%
renewable energy system (RES) in Europe. This initiative considers three different scenarios to model
the energetic macro-economic system from 1995 to 2050: Business as Usual (BAU), Green Growth (GG)
and the Post-Growth or degrowth approach (PG). Other tool to boost this transition in urban districts
is the learning experience through the use of visualisation games, such as Go2Zero [41].

Within the framework of this European energy transition, the mPOWER project is funded by the
European Commission Horizon 2020 Research and Innovation Framework Programme and aims to
boost municipal actions, public engagement and the creation of routes towards the necessary Energy
Transition [42]. The project is managed by seven partners (the University of Glasgow, Platform-London,
the Stichting Transnational Institute, the Society for the Reduction of Carbon Limited, the Institute for
Political Ecology, Energy Cities and the University of the Basque Country). Throughout the 48-month
duration of the project, the partners will detect, through systematic peer review, the best replicable
municipal practices in energy transitions and create a framework to share the different achievements
in a peer-to-peer learning programme.

The central question of this paper is: What is the current situation, regarding energy, of the
27 municipalities that were selected for the initial stages of the learning programme? In addition,
two sub-questions are defined, to be answered throughout the structure of the paper:

- What are the difficulties in describing the current situation?
- How can these difficulties help other authorities in their energy transition?

The analysis used in order to answer these questions is based on the statistical evaluation of
various energy indicators and was carried out using the data provided by municipalities from an online
survey related to energy consumption, renewable production and municipal policies and strategies of
participatory energy transition. The data were collected in order to determine the baseline for year
2016 (in some cases, updated data of 2017 have been used), that is, the reference situation that will be
compared with that of the end of the project. To this end, first, a description is given of the mPOWER
project, as well as the methodology used in the research, which includes the baselining, standardisation
and evaluation of the data. Following this, the results obtained from the 27 cities (i.e., municipalities)
are presented and, finally, a summary provided of the conclusions drawn.
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2. The mPOWER Project

The mPOWER project aims, by means of learning programmes participated in by more than
100 local public authorities, to replicate innovative best practices in municipal energy, and develop
ambitious energy transition plans. The project relies on two learning programmes: first, a bespoke
learning programme (referred to as mPOWER Exchange) in which 27 cities are participating and
second, a peer-to-peer online learning programme (referred to as mPOWER Digital) where around
90 municipalities will participate. This publication deals with the first part of the project, the bespoke
learning process, in which 27 cities are involved. In order to choose the cities, Covenant of Majors [36]
and Energy Cities [43] platforms were used to share the possibility of participating in the project across
all European cities. Furthermore, the institutions leading the mPOWER project (see Acknowledgments)
offered hundreds of municipalities the possibility of applying to take part in the selection process.

Among all the candidate cities, a ranking was developed by the Glasgow University members so
as to choose the most appropriate cities. The ranking was made following an online survey, interviews
and online research and was developed a selection of main learning preferences of cities based on
motivation and participation for an energy transition; experience in renewable energy integration;
experience in energy efficiency and consumption organisation. It is important to note that the cities
were selected not only for their expertise, but moreover for their interest in participating in a learning
programme. The selected cities were classified into three topics: Local Energy Communities, Renewable
Energy Integration and Energy Efficiency. Finally, in order to start the learning process, one or two
working groups have been created for each of the topics. In each of the five different working groups
created, a group leader was selected by the project organiser. The group leaders have the role of showing
the rest of the members the initiatives that have been developed or are planned to be developed.

The mPOWER Exchange programme is based on city visits to share knowledge, and enables
technicians and policy-makers to invest face-to-face time researching, understanding and contrasting
existing and new energy infrastructures and projects, with the aim of promoting participation and
enhancing the exchange of practical knowledge and expertise.

3. Methodology of the Research Baseline

At the initial stage, a baseline evaluation was planned within mPOWER in order to establish a
reference framework to be compared with the situation at the end of the project. This baseline will
serve to gain knowledge on the energy reality of the participating cities and to help to evaluate the
expected impacts from the mPOWER project:

1. To increase energy savings;
2. To increase renewable energy production;
3. To increase the capabilities of public authorities on energy supply and production management;
4. To create city-based strategies for encompassing energy transition.

Because of the lack of a public European or worldwide database about energy consumption and
production at the municipal level [36], and the fact that there is very little up-to-date online information
in this field, our strategy was to directly collect the data via an online survey (see Appendix A Material
for accessing the survey) to be completed by the municipal technicians or politicians in charge of the
mPOWER project in each participating city.

The questions from the survey cover both qualitative and quantitative aspects related to the
objectives and the expected impacts of the project: Amount and type of consumed energy; greenhouse
gas emissions (GHG); renewable energy systems (RES); municipal public staff in the energy sector and
in energy transition projects; municipal public investments related to energy transition; municipal
plans for renewable energy power development; municipality led initiatives and policies for energy
transition; citizenship/cooperative-led initiatives and campaigns for energy transition.

Taking into account the impacts for mPOWER and specific targets for energy transition listed
above, several indicators were chosen to be analysed in this baseline. Some of them were directly
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obtained from the survey, some were found in the literature on the topic and some were calculated
by the authors. The following table lists all the analysed indicators, relating them to the expected
impacts and targets, as well as indicating where in the paper they can be found. Note that impact 3 is
transversal to all targets that is why it is not appearing in Table 1.

The performance of these indicators, by assessing them at the beginning and at the end of the
project, will be used to evaluate the impacts achieved and the success of different strategies and
actions that will be carried out throughout the project. Some of the indicators, such as total energy
consumption and RES percentage, are analysed in this paper in order to evaluate how cities are
currently performing. However, others such as RES installation and production are left for a future
analysis and comparison with the end-of-project situation. This is due to the difficulty in obtaining a
reference target to compare with.

3.1. Survey Data Standardisation Methodology

As mentioned above, we faced difficulties with the data collection since some of the cities did
not complete the survey (or part of it) and, among those cities that did, in some cases the collected
data was not consistent. After compiling all the information on a database, the validity of the RES
production, energy consumption and GHG emission data was assessed as explained below.

In the case of municipal RES production, we related the data on installed power (in MW) with the
total annual production (in MWh) in order to obtain the capacity factor (CF), i.e., ratio of actual energy
output over a whole year to the maximum possible energy output over that year [44]. We considered
the data were consistent only when the CF ranged between 1 and 90%. In those cases where only
installed power or annual production was given, the data could not be checked for consistency (which is
regarded as a lack of data in Figure 1). See Table A1 from the Appendix B. for checking how the RES
data were interpreted.

Figure 1. Municipalities selected for the mPOWER exchange programme. The selected 27 municipalities
are classified in five different working groups.

In the case of the energy consumption and GHG emission data, first the values per capita were
obtained by dividing the values given by each city by the number of inhabitants. We then compared
them to the national per capita average consumption and emission data, taken from the International
Energy Agency (IEA) database (2016) [24]. The data given by the cities were considered consistent
when they were on the same order of magnitude as the ones taken from the IEA: specifically, when the
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data of the cities were no lower than one-third of the IEA data, or they were no higher than three times
the IEA data. When the data were not considered consistent or when no information was given, the
IEA data were used instead.

3.2. Survey Data Assessment Methodology

In this section, we analyse some of the above-mentioned indicators, comparing the obtained data
across all the 27 cities. The number of resources that each municipality assigns to the energy transition
(number of campaigns, people and budget) has been analysed as an indicator of energy democracy.
Total energy consumption was analysed next (how much energy per capita is consumed in each city),
quantifying also what the main energy sources are and in which sectors that energy is consumed.
Hidden Energy Flows were included among the analysed sectors.

Energy consumption has been linked to GHG emissions by comparing the obtained emission
and consumption data, and additionally by estimating the emissions that should be obtained from
the consumed energy; this was done by taking into account each city’s energy mix and the emission
intensities of each type of fuel (eqtCO2 per kWh) provided by the IPCC [45], as well as the electricity
mix per country [24].

Finally, various economic, climatic or size indicators, such as the gross domestic product (GDP),
the human development index (HDI), the heating and cooling degree days (HDD and CDD) and the
number of inhabitants of each city were plotted as a function of the energy consumption and fitted to a
logarithmic equation in order to try to find a correlation, following the methodology of Steinberger
et al. [46], Arto et al. [10] and Akizu et al. [11].

4. Results and Discussion

The aim of this section is to provide an overview of the obtained data, in order to give the cities
an insight into the steps needed for an energy transition, as well as to gain an indication of what to
learn from each other, by comparing their energy consumption and GHG emission data. Nevertheless,
before doing so, careful effort has been made to check the reliability of the data received.

4.1. Survey Data Standardisation

As can be observed, Figure 2 shows the ratio between valid and non-valid data, as well as the
absence of any answer for the energy consumption, GHG emission and RES production data given
by the cities, which was standardised as previously explained in Section 3.1. Regarding energy
consumption, the highest uncertainty corresponds to the case of liquid fuels, where only 37% of the
cities provided reliable data. In the case of coal, all of the received answers were considered valid,
since the consumption of this fuel is very low and most of the cities reported no consumption. Apart
from coal, natural gas consumption data present the highest reliability, with 63% of the answers
considered valid.

Regarding GHG emissions, 59% of the cities provided reliable data. As for RES installation
and production, we observe a better knowledge in the case of electric RES (48% of answers valid) as
compared to thermal, where only 41% of the cities provided an answer, with a validity rate of 33%.

With respect to the total energy consumption per capita, Figure 3 shows the data that we were
able to collect. Note that, in order to calculate this total, only the final consumptions of electricity,
natural gas, liquid fuels and coal were included in the survey. This, in some cases, resulted in a gap
between the total real energy consumption of a city and the total energy consumption calculated in
this assessment. As a further check of the validity of the results, the direct energy consumption data
obtained from the surveys is compared with the national total primary energy supply (TPES) per
capita of the corresponding countries in Figure 2. The ratios between these two range from 26% to 95%,
meaning that this standardisation process has allowed us to map a 49% average TPES per inhabitant of
a country. The gaps, on the one hand, may be due to the fact that a specific city is being compared to its
national average reality. On the other hand, the energy losses in transformation (in order to produce
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electricity and heat from coal, gas or biofuels and waste), the fuels employed for non-energy uses
(crude oil for asphalt and oil products used in agriculture and chemical industry) and other fuels such
as biofuels (biomass, biogas, bioethanol), butane gas or waste were not considered in the survey, which
certainly led to differences.

Figure 2. Data standardisation.

Figure 3. The total energy consumption by inhabitant computed for the selected cities (by mPOWER
project) and the national reality reflected by the International Energy Agency averages. The goal in
energy reduction of 17.5 MWh·cap−1·yr−1 has been indicated [30].

Another difficulty in the calculation of the total energy consumption was the case of those cities
with significant production by Combined Heat and Power (CHP) plants, commonly fed by natural gas.
In CHPs, energy consumption is measured, such as the consumed amount of natural gas, but similarly
the electricity produced by the CHPs is also taken into account when energy consumed at homes is
measured. Thus, this could generate small amount of double accounting that this project has not been
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able to correct. For future research, a specific question could be included to understand the energy
production from CHPs, and thus avoid this double accounting.

From this standardisation we obtained the data to be used in the evaluation of the results
(Section 3.2), which is listed in Table A2 from the Appendix B.

4.2. Survey Data Assessment

Figure 4 shows some of the indicators related to energy democracy: the staffworking on energy
and transition, the municipal energy or transition campaigns, and the budget dedicated to energy
transition (shown in Table A3 from Appendix B). These indicators are a measure of the resources
dedicated to energy and transition by enrolled authorities at both the technical and the social level.
With some exceptions, such as Barcelona, Frankfurt, Horst aan de Maas, Vienna and Zenica, most
of the municipalities have from 0 to 20 employees working on energy and energy transition issues.
Similarly, excluding Nis, Pamplona and Rijeka, most of the cities have from 5 to 15 annual campaigns.
In the annual budget for the energy transition, the values differ much more. Whereas most of the cities
dedicate several thousands of euros (within a broad range from 20,000 € to 792,000 €), some of the cities
dedicate millions of euros to the energy transition. Such is the case of Mizil (1 M€) or Frankfurt (1.8 M€).
The highest budgets correspond to Vila Nova de Gaia (5 M€), Manchester (7 M€) and Amsterdam
(87.5 M€), which were left out of the Figure in order to make the rest of the cities visible. It is important
to note that those budgets often depend on external projects (European or national, for instance), that
make it difficult to define a fixed and constant annual budget. Some cities also pointed out the difficulty
to define a budget solely related to energy transition, since this is normally spread out over the overall
budget of the city.

Figure 4. Annual budget, number of campaigns led by the city councils and number of people working
on energy transition.

Regarding the total energy consumption per capita, and going back to Figure 3, we can observe
how energy consumption differs among the cities analysed. Thus, Zenica (Bosnia and Herzegovina)
is the city with the lowest consumption per capita (6 MWh·cap−1·yr−1) while in Horst aan de Maas
(Netherlands) the consumption is as high as 48 MWh·cap−1·yr−1, meaning that Zenica consumes 87.5%
less energy than Horst aan de Maas. Comparing it to the previously cited target of 17.5 Mwh per person
and year [30], 17 out of 27 cities do reach the target. From the ones that do not reach it, the total energy
consumption of Frankfurt (Germany), Vienna (Austria), Aradippou (Cyprus), Nottingham (United
Kingdom) and Metz (France) is especially high. Alternatively, when national TPES data are taken
into account, most of the values are higher than the total energy consumption mapped by mPOWER.
For instance, the values change to 22 MWh·cap−1·yr−1 in the case of Zenica and 51 MWh·cap−1·yr−1 in

115



Energies 2020, 13, 1315

the case of Horst aan de Maas, leading to a 57% smaller energy consumption in the former. In this
case, all the consumptions are above the target level, meaning that none of the municipalities is able to
reach it.

Figure 5 depicts the distribution of the municipal energy consumption by type of fuel, taking
into account the national electric mix as that of the municipality. That assumption was made due to a
lack of data on the RES production of some of the municipalities, based on the fact that the electricity
consumed in each city is supplied by the national grid. This data changes considerably from city to city.
It can be observed that in northern countries like Tampere (Finland) and Vaxjo (Sweden), around a 50%
of the whole consumed energy is in the form of electricity. Other countries, such as the Netherlands
(Amsterdam, Horst aan de Maas) and Austria (Vienna) present a stronger dependence on natural
gas. It needs to be clarified that in Horst aan de Maas the high consumption of natural gas is due to
the massive use of heated greenhouses for intensive vegetable production [47]. Finally, southern and
eastern cities, such as Pamplona and Cadiz (Spain), Zenica or Krizevci (Croatia) make, in proportion, a
higher use of liquid fuels, but this could be due to the generalised use of other fuels, such as biofuels or
butane gas (instead of natural gas) that was not taken into account in the calculations. In Figure 5, the
electric consumption has been disaggregated by source, according to the national electricity mix, in
order to obtain the RES percentage of the total municipal energy consumption. It can be seen that only
Vaxjo is above the target of 27% of renewable energy from the total energy consumption, with a 27.1%
share. In the rest of the municipalities, renewable energies cover a maximum of 25.8% (Tampere) and a
minimum of 1.5% (Horst aan de Maas) of the total energy consumed. Northern countries (Finland,
Denmark and Austria) and Croatia show particularly high RES percentages. However, we have
observed that a high renewable electricity mix (in green in Figure 5) does not assure low fossil fuel
consumption. On the other hand, a lower energy consumption does not assure a high renewable share,
i.e., none of the cities that are able to reduce their fossil fuel consumption to below 10 MWh·cap−1·yr−1

(Aradippou -Cyprus-, Barcelona, Krizevci, Mizil -Romania-, Nis -Serbia-, Vila Nova de Gaia -Portugal-
and Zenica) have an integration of renewable energy above 17.3%.

Figure 5. Energy consumption by fuel within the direct and indirect (in electric vector) energy
consumptions by municipality (note that the total consumption of cities obtained from mPOWER
survey differs, as shown in Figure 3, from the national average data provided by International Energy
Agency (IEA)).

In order to complement the information given in Figure 5 (taking into account the differences
shown in Figure 3), Figure 6 has been created, where sectorial national direct energy consumption
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averages have been included from IEA balances [24], and national hidden energy flows (HEF) have also
been added from previous analyses carried out by the authors [11]. In order to take into account the
displacements that the impacts related to the consumption of the citizens generate elsewhere, energy
embodied in imported products and services in each country have been included using the latest data
from the year 2014 to obtain the difference between total primary energy footprint (TPEF) and TPES
per capita at a national level, adding it to each city (HEF = TPEF/TPES). The calculations have been
developed using global multi-regional input-output (GMRIO) methodology, and data are available in
Appendix B, Table A4. The accuracy of these calculations could be improved with municipal hidden
energy flows data instead of national average ones, but this would require an input-output analysis at
a local level. Although a methodology for local input-output analysis is currently being developed by
Cazcarro et al. [48] as well as by our team [49], it is currently beyond the scope of this paper.

This last figure shows how only a small percentage of the energy consumption, between 9 and
24%, is consumed by private households in terms of electricity and heat (green numbers in Figure 5),
whereas from 76% to 91% is not consumed in the residential sector (imported and national products
and services, transportation needs for humans and trade, and transformation and distribution losses
of energy).

Figure 6. National energy consumptions by sector.

Figure 7 shows the relation between energy consumption (in red bars) and GHG emissions
(in blue and green). The red bars correspond to the total per capita energy consumption calculated by
mPOWER. The blue line corresponds to the per capita GHG emission data obtained from the survey
and standardised using the IEA national values (as explained in Section 3.1). Finally, the green line
corresponds to the GHG emissions calculated from the total energy consumption mapped from the
surveys, taking into account the GHG emission intensity of each fuel given by the IPCC (tonnes of
CO2eq per kWh), as well as the emission intensity of the national electricity mix. This way, when the
IEA standardised values and the IPCC estimated values are on the same order of magnitude, it can be
regarded as a further check of the validity of the results. We consider that both GHG emission values
are on the same order of magnitude when the IEA standardised values are within the IPCC estimated
error bars, which cover a range from 50 to 150% of the IPCC estimated value. It can be observed in
general trends that energy consumption and the corresponding CO2eq emissions are related.

Even if the general trend is that the higher energy consumption, the higher the emissions, there
are some exceptions, such as Litomerice, Manchester, Nottingham and Pamplona, which have a
low IEA standardised GHG emission despite their high energy consumption. This can be explained
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by the use of different energy sources (a high natural gas and RES rate in the case of Manchester,
Nottingham and Pamplona) or the uncertainty found in the data (low GHG emission data in the case
of Litomerice). In some other cities, such as Frankfurt, Nis and Tampere, the opposite relationship is
observed: the IEA standardised GHG emission data is high compared to the total energy consumption.
This could be due to an overestimation of the GHG emissions or due to an underestimation of the
energy consumption. In this last case, as well as in the case of Litomerice, we know the inconsistencies
between IEA standardised GHG emissions and energy consumption are due to uncertainties in the data
(and not due to the use of different energy sources), because the GHG emissions estimated from the
IPCC intensities and those standardised with the IEA values are not on the same order of magnitude.

Figure 7. Energy consumption per capita by municipality, and the respective greenhouse gas (GHG)
emissions obtained from the survey (IEA standardised) and calculated from the energy consumption
and the IPCC emission intensities.

Finally, in order to understand the energy consumption differences in all the 27 cities, the total
energy consumption detected by mPOWER has been related to the achieved national HDI [50] and
national GDP [51], and also to physical conditions like the climate or the size of each city. All data were
fitted to the equation “y = A ln(x) + B” following the methodology presented by Steinberger et al. [46],
Arto et al. [10] and Akizu et al. [11]. Note that Horst aan de Maas was left out of the analysis because a
large part of its energy consumption is used for industrial agriculture, making it difficult to correlate
with the rest of the cities. This phenomenon could also occur in cities with a high presence of industrial
production, but our results for rest of the analysed cities have not shown alterations as significant as
those detected in Horst aan de Mass, so it has not been taken into account for the rest of the cities.

Figure 8 gives us a comparison of the consumed energy and the benefits obtained from it, using
HDI and GDP indicators as they are the most commonly used in this respect [10,11]. The former,
more related with human behaviours, allows us to understand how energy can affect education,
life expectancy and economy, and the latter only focuses on national economy. The general trends
among analysed cities show that life quality standards, measured in national HDI (Figure 8a) and
GDP (Figure 8b), are directly related to consumed energy. Nevertheless, it can be observed that some
cities can achieve high standards of living with markedly low energy (such as Vaxjo, Frankfurt and
Frederikshavn). It must be noted that since HDI and GDP data are national averages, they are not fully
sensitive to the realities of the cities, and it would be helpful to include city data for both indicators in
the future.
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Figure 8. Energy consumption of each city compared to the corresponding national Human
Development Index (HDI) (a) and the national Gross Domestic Product (GDP) (b).

In Figure 9a, the climate of each city was taken into account by using the heating degree day
(HDD) and cooling degree day (CDD) factors [52]. In the analysed cities, according to the obtained
fitting and R2, there is a low correlation between the energy consumption and the HDD plus CDD,
as shown in Figure 9a. Cities such as Zenica or Krizevci, with a high heating need, have a very low
energy consumption per capita, whereas cities like Amsterdam and Pamplona have a higher energy
consumption with a lower heating and cooling requirement. This could also be related to the difference
in GDP. Figure 8b compares the size of each city (measured in inhabitants) and the energy consumption
per capita, with the previous hypothesis that bigger cities might be more efficient than the smaller
ones. However, Figure 9b shows that this assumption does not correspond to reality. Small cities like
Aradippou show low energy consumption, whereas big cities such as Amsterdam are not especially
efficient because of their large number of inhabitants.
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Figure 9. Energy consumption of each city, and the corresponding heating and cooling need according
to the climate of each city (a), and the corresponding inhabitants (b).
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5. Conclusions

In relation to the difficulties in collecting municipal energy data, we have several considerations
that may be relevant for the specific goals of the project and to be taken into account when boosting
the general energy transition in Europe. The low quality of the data gathered by the municipalities
(sometimes literally non-existent) is a clear sign of public disempowerment in energy issues. Despite the
high effort of each municipality, there are not enough public up-to-date municipal data at the European
level and the energy sector is mostly owned by private companies that manage the information
according to their own interests [53]. Therefore, this project reflects how significant it is to have real
energy consumption and production data in order to lead an energy transition at city level.

Nowadays, participation in different energy transition initiatives, such as the Covenant of Mayors,
and thus, the sharing of energy consumption and GHG emission data with citizens is a voluntary act.
However, in some regions, such as the Basque Country [54], the publication of data related to energy
consumption is starting to become compulsory for their cities and villages. We claim this kind of law
to provide citizens with information could boost the incoming energy transition. This knowledge
could facilitate evaluating energy policies, analysing the real needs of each city, or creating roadmaps
and energy plans for incoming sustainable energy transitions. We expect that this project will help
in revealing these kinds of issues, enabling initiatives such as the creation of public databases, and
empowering local public institutions in the management of low-carbon energy transition. Similarly, it
is important to spread the know-how of the current energy reality among citizens and other agents
in cities in order to boost citizen-led initiatives. As an example, and as an alternative to private
energy management, renewable cooperatives could be an opportunity to start a transition towards a
democratic and sustainable energy system [55–57].

Going back to the data collection, it has been observed that the mPOWER baseline survey has
allowed us to map an average of 49% of the energy consumption per capita (in comparison with national
average total primary energy supply values offered by the IEA) consumed by citizens. The remaining
52% is mainly due to transformation losses, and also, to a lesser extent, due to the lack of integration of
non-common energy vectors such as biomass (like firewood or biofuels), butane gas, waste use for
energy purposes and fuel oil boilers. In some cases, the use of CHPs could also generate alterations in
results because of the double accountability they tend to cause when taking into account the gas they
consume, but the electricity produced in homes is also taken into account.

The obtained results reveal that European cities still present a strong dependence on fossil
fuels, ranging from 72% of fossil fuels in the total energy mix mapped in this paper to 98.4%.
The low percentage of electricity in energy supply is also noteworthy, where renewable generation
is still generally minimal. In addition, because of the small percentage of the total (renewable and
non-renewable) energy that is consumed by private homes in the form of electricity and heat, it must be
underlined that energy transition not only needs to be focused on the energy consumption of private
dwellings, but it especially needs to challenge the current model of products and goods consumption.
In this sense, this work provides a view of how consumers have the potential to improve the national
energy system, partaking in shared responsibility with governments [58].

The comparison among the 27 cities analysed clearly relates the achieved human development
index and gross domestic product in a city to the consumed energy, showing a dependence on energy
consumption to maintain the current living standards, and improve them. However, some cities
already show that they can achieve high GDP and HDI values with relatively low energy consumption
(as Vaxjo and Plymouth); hence these cities should be taken as a reference. On the other hand, we can
see that the climate and size of a city do not positively or negatively affect the energy efficiency, and
thus, this gives various types of cities the opportunity to think about different strategies to improve
their own energy systems.

Finally, in relation to the mPOWER project, this baseline has been shown as an effective tool
to obtain an initial picture of the energy situation of different European cities. The results of the
baseline and of this paper will help to improve the development of the project and can encourage
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participant cities to identify the above-mentioned key obstacles and information gaps in the transition
to a participative low-carbon energy system.
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Appendix A. Online Survey

We need some data and information to carry out a baseline assessment of your municipality.
This will allow us to calculate the evolution of the energy transition and the learning process in the
coming years. Thank you very much for your involvement and the data you provide! *Required

1. Name*
2. Municipality*

Renewable energy data

Please fill in the ‘data year’, it is very important for us. The data should be from 2017 or as close
as possible.

3. Installed renewable thermal power MW and (year)
4. Renewable thermal energy production MWh and (year)
5. Installed renewable electric power MW and (year)
6. Renewable electric energy production MWh and (year)

Non-renewable energy data

Please fill in the ‘data year’, it is very important for us. The data should be from 2017 or as close
as possible.
7. Natural gas consumption MWh and (year)
8. Electricity consumption MWh and (year)
9. Liquid fuels MWh and (year)
10. Coal MWh and (year)
11. Greenhouse Gas Emissions eqCO2 tonnes and (year)
12. If your city/municipality has any data documents with more information about energy data, you
can share the link with us here! (or email to name@ehu.eus)

Staff and budget for energy transition

Maybe you have answered these questions before, but it is important that we have the most
up-to-date information.

13. People working in energy issues (number of equivalent full-time municipal employees or subcontracted)
14. People working in energy transition issues (energy efficiency, promotion of RES, energy democracy,
sustainable mobility, etc.,)
15. Annual budget for energy transition (Should exclude personal costs)
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16. If you have any documents about the staff and budget for energy transition that you want to share,
you can paste the link here or email name@ehu.eus

Plans for investment and citizen participation

In this section we are interested in the plans for energy transitions in the future, and the information
about citizen participation in the energy transition of your municipality

17. Does your municipality already have published plans for renewable energy power development?

• Yes
• No

18. If the previous answer was yes, what is the amount of additional MW planned during the next
tax year?
19. Number of municipality-led initiatives and campaigns for energy transition

• 0
• 1–5
• 6–10
• 15+

20. Number of citizenship/cooperative-led initiatives and campaigns for energy transition

• 0
• 1–5
• 6–10
• 15+

21. If you have any interesting documents that you want to share with us about the energy transition
in your municipality, you can paste the link here or send an email to name@ehu.eus
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Abstract: Mainstreaming energy communities has been one of the main challenges in the low-carbon
transition of cities. In this sense, urban building energy modelling (UBEM) has an untapped role
in enabling energy communities, as simulations on urban models provide evidence-based decision
support to reduce risks, engage, motivate and guide actors, assert wider policy goals and regulatory
requirements. This accelerating role and the potential of UBEM is not sufficiently understood,
as research into energy community focuses on its barriers and impacts, while the research of UBEM
is mainly technologically oriented. This review takes a sociotechnical approach to explore whether
UBEM is a technological trigger for energy communities, furthering the conceptual framework of
transition management. factors influencing energy community progression in different use-cases and
stages of their lifecycle are compiled to assess the affordances of distinct capabilities of prevalent UBEM
tools. The study provides a guide for energy community planners to UBEM. It matches different tool
capabilities to the various stages of the project lifecycle for the different use-cases, equipping them
with the means to accelerate the low-carbon transition of cities from the bottom-up. Finally, the study
defines a development trajectory oriented towards application in urban sustainability to a rather new
UBEM field.

Keywords: energy community; urban building energy modelling; transition management; multi-level
perspective; sustainable transition; energy modelling; urban scale energy modelling

1. Introduction

1.1. The Need for Energy Communities in Low Carbon Cities

Energy communities (EC) have been steadily gathering attention, as social innovations potentially
driving the decarbonisation of energy systems through its democratization. Although they are
widely researched from sociotechnical, socioeconomic, governance, psychosocial perspectives [1],
the definition of energy communities is contested due to the term community being itself debated [2].
Energy communities, however, can be recognized as a collective of actors voluntarily mobilized around
a shared objective relating to energy—either shared management of energy systems or collective
purchasing of energy [3].

The significance of ECs is their potential role in driving the decarbonisation of cities, promoting
investment in and access to clean, affordable energy, responding directly to at least goals 7 and
11 of the UN sustainable development goals [4]. By investing in decentralized renewable energy
production assets in energy efficiency, they contribute directly to the energy system decarbonisation [2,5].
Even more profound value is seen in giving control to the ones who benefit from the outcomes, in the
process of producing them [6]. Community energy projects aim to mobilize and empower consumers,
previously on the fringe of a vertically integrated energy market. This decentralization is seen
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as a tool to democratize energy systems [7], granting voice, power and ownership to individuals,
community groups and municipalities [2,8,9]. This arrangement has multiple benefits. First, it recruits
grassroots human resource to drive decarbonisation, to identify and solve local problems through
public innovations and to translate sectoral cooperation to multiplicative community benefits [10,11].
Second, behaviour change to more sustainable lifestyles is more likely to occur when also driven
by intra-group solidarity and peer effects than global environmental problems [12]. Finally, energy
communities may act as policy labs, niches for governments to pilot new regulatory frameworks [8].

In western countries, ECs are trending while legislation is catching up. There are currently around
3500 recognized renewable energy cooperatives in Europe, mostly in Germany and Denmark [13].
The European Commission released the ‘Clean Energy for All Europeans’ Package in December of
2018, which provides a legal ‘enabling’ framework for the participants of energy communities [14].
The Member States are due to adapt the regulations into their national legal system by 2021 [14].
This legal framework enables the members of energy communities to be the beneficiaries of activities,
such as “generation, distribution, supply, aggregation, consumption, sharing, storage of energy and
provision of energy-related services” [13]. Since there are differences between the aforementioned
two types of energy communities, the Clean Energy Package includes the Internal Electricity Market
Directive (EU) 2019/944, which states the definition of citizen energy communities (CEC), while the
revised Renewable Energy Directive (EU) 2018/2001 defines the renewable energy communities
(REC) [13]. Both directives emphasize the shift in the role of citizens from passive consumers to energy
prosumers in the energy system, and both EC types as legal entities have common characteristics,
like the goal of achieve social, economic and environmental benefits, and must be open and voluntary
for all citizens without discrimination [15]. CEC however is a more general and REC is a more
restrictive concept, with differences such as locality not being required for CECs [13], energy can be
generated from fossil-fuels, as well as from renewable resources in CECs [15] and RECs exclude the
participation of large enterprises [13].

In the US, regulatory barriers are more pronounced. The Federal Energy Regulatory Commission
(FERC) has the authority at national level over interstate transmission and wholesale price [16].
However, FERC does not have the authority over power transactions for distributed generation (DG).
There are entities therefore which fall under FERC jurisdiction, some fall under state jurisdiction and
some under both [17]. Moreover, the crucial security regulations by the Security Exchange Commission
does not disambiguate whether community energy counts as security [18].

Regarding policies, on the federal level, renewable investment is incentivized via tax credits,
but without special provisions for community projects, while states have a variety policies
towards community energy (e.g., Virtual Net Metering (VNM), Statewide shared energy programs,
incentives) [19].

1.2. The Significance of Urban Building Energy Modelling

Energy modelling on the building scale is a mature and complete field, providing reliable
decision-support for building energy design [20]. Urban building energy modelling (UBEM) seeks to
upscale this field to better understand of new and existing neighbourhoods and assess urban energy
systems described by Keirstead et al. [21] as “formal systems that represents the combined processes of
acquiring and using energy to satisfy the energy service demands of a given urban area”. While research
in UBEM has surged [21], it is still yet considered “half-baked” [20] and has tremendous potential.

Sola et al. [22] describes Urban-scale Building Energy Modelling (UBEM) as part of Urban Scale
Energy Modelling (USEM). According to them and Allegrini et al. [23] USEM is capable of modelling not
just building related, but multisectoral energy flows including grid, mobility, microclimate, therefore
accurately model district urban energy systems. Part of this is UBEM which can simulate energy
demand of the building stock by combining energy models of standalone buildings into a summarized
district-scale model. According to another definition form Reinhart and Davila [24] UBEM is a
tool able to simulate energy demand on a city block, district, entire city or even on a bigger scale.
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Goy and Finn [25] differentiate small- and large-scale energy modelling at five buildings/households
in their review [25]. On small scale building energy modelling is where the aim is to obtain data for
internal thermal control, or thermal loads, however at large scale energy modelling aim is to predict
performance indicators like building energy consumption, CO2 emission and new policy impacts [25].
It is a necessity when considering place-based ECs to have information about the building energy
demand, since according to [3] these type of ECs gather on spatial basis and are based on shared
ownership, typically in blocks, flats, building blocks or districts. While USEM, as described above
vaguely refers to multisectoral energy flows in urban context and examples mentioned in [22,23] also
incorporate tools which do not take building energy demand into consideration, for the purpose of
this study we considered USEM as tools which can model building energy demand, and other energy
flows as well.

UBEM’s significance is multifaceted. Simulations promote market competitiveness, which in a
liberalized market is strongly tied to the success of a new energy paradigm [26]. Urban scale simulations
can provide a better understanding of the optimum combination of building and area specific measures
and interchange of energy options [27]. Through benchmarking they can provide transparency [28] in
energy efficiency markets, therefore growing trust and increasing investment appetite [29]. Analysing
different scenarios can contribute in the development of consumption awareness and therefore raise
consciousness for the sustainable environment [27], also capable of helping energy policy formulation
since it frequently leans on the evaluation of overall building performance [30].

1.3. Gap in the Research Fields

The potential of energy communities remains theoretical, and communities themselves exist in
niches of a few industrialized, developed nations [1]. Studies setting up the research agenda for energy
communities point out an empirical gap in understanding “who the project is for [...] and how do they
benefit” [6]. This is a common theme for energy communities, both their design and their research
seem ill-equipped to fully map the distributional aspects of the multiple impacts of projects [6]. This is
partly due to the convention to take buildings as isolated units of investigation for planning energy [31].
The influence of urban surroundings on their energy performance has not been properly incorporated
as well as the interdependencies that may occur amongst them [31].

This means both community energy research and practice lack the tools to incorporate emergent
properties on the urban scale such as microclimate, renewable potential or load-curve differences [32].
Regarding practice, this results in major barriers to progress community energy projects, because
it means uncertainties are high, participant and supporting networks cannot be established on a
performance-basis, regulations, policymakers and financers are more difficult to be convinced [2].
Regarding research, this is evident in calls for more empirical knowledge on the changes community
energy delivers [6]. This means that the gap in research—lack of evidence in the distributional multiple
impacts of energy communities—can be traced to missing means to produce such evidence, which
would also be a trigger for the practice of energy communities. Hypothetically, urban-scale energy
modelling could be such a tool, but the two research fields have not yet met, there are no reviews on
the potential of UBEM in advancing ECs (see Section 2). Studies of UBEM are technically focused,
lacking application-oriented classifications to assess potential in energy communities, while studies on
EC do not explore technological triggers to overcome barriers (see Section 2).

1.4. Theoretical Background

The following two subsections justify the research gap by summarizing recent reviews in both EC
and UBEM, showcasing a lack of intersections in previous studies. Subsequently, a new conceptual
framework rooted in transition theory is defined in which the research gap will be filled.

Previous reviews concerning EC can be grouped according to their subject of focus: one
group studies community energy in general, while others specialize in a specific type of energy
community—characterised by their core activity. Schoor et al. [1] made a review of community energy
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research identifying that most studies come from developed countries and that there are different
networks building up the discourse—however, these networks rarely interact. Brummer [2] collects
definitions of community energy, its benefits provided for society and the barriers of EC projects.
Berka et al. [12] and Roby et al. [33] investigate community energy impacts with different approaches.
Nolden et al. [34] move on to business models, particularly in the UK, and how they evolved over
time. Ceglia et al. [35] propose a standard for smart energy communities. Drivers and barriers feature
in most previous studies, Lehtonen et al. [36] explore the role of trust more deeply. Moroni et al. [3]
use a transition theory approach to classify energy communities, introducing the distinction between
place-based and non-place-based communities.

Most of the specialized studies focus on renewable energy communities. Creamer et al. [6] have
developed a conceptual framework and sets the focus of research on impacts, while others studied
impacts [37,38] and monitored adoption [39]. Hess et al. [40] and Joshi et al. [41] made comparative
reviews of multiple case studies, with the former focusing on country-level differences, and the latter
exploring how justice is addressed. Bauwens [42] collects factors determining investment. Regarding
institutional drivers, Heldeweg et al. [43] outlines and argues for a distinct legal form for renewable
energy communities in a separate institutional context, while Petersen [44] analyses municipal energy
plans as instruments.

Out of the remaining specialised studies, Gorroño-Albizu et al. compares community ownership
models for renewable energy production and microgrid ownership [45]. Others [46–48] focus on
community energy storage, its potential role, challenges, social, environmental, economic impacts,
with an extended description of applied technologies. Warneryd et al. [49] explores institutional
frameworks that drive microgrids, while two reviews [50,51] collects general microgrid drivers and
challenges. Van Cutsem et al. [52] is a study on demand-response communities and the process of
decentralization. Peer-to-peer electricity markets are the focus for Sousa et al. [53], classifying market
designs, motivations and challenges. One review conceptualizes energy cooperation in industrial
parks [54]. Finally, three reviews focus on broader “green neighbourhoods”, community projects with
more complex sustainability profiles, where energy is one component [32,55,56].

Review articles are considerably scarcer with technological factors of EC progression. While
there is extensive literature on drivers, barriers and challenges of multiple EC types, and they are
linked to institutional, social or economic interventions, this review will continue by investigating how
technologies relate to these drivers, barriers and challenges.

In case of UBEM, numerous reviews have been done, however only outside the field of energy
communities. In most cases the reviews differentiate the UBEM tools regarding their approaches.
Swan and Ugursal [57] and many others [58,59] differentiated 2 mainly different building energy
modelling methods: Top-down and Bottom up. Some of the reviews like [60,61] are focusing on
classifying UBEM tools by this methodology. Li et al. [60] in their review classified the UBEM models
in the aforementioned way, and emphasized the advances and still existing discrepancies in geospatial
techniques. Abbasabadi et al. [61] described strengths and limitations by each method and extended
their research further on urban scale energy simulation.

Sola et al. [22] expressed the need for a new hybrid tool for properly model energy use at
urban scale incorporating other urban scale energy uses. [22] with the same approach reviewed not
only UBEM tools, but holistic USEM tools They used a decomposition framework, where tools are
decomposed into sub-models and their sub-models are reviewed as well. In addition, further explored
how integrated and co-simulation platforms can work individually and together.

Allegrini et al. [23] reviewed 20 tools which can model neighbourhood level energy systems.
In their review they created a comprehensive matrix where the capabilities of the twenty reviewed
tools can be compared and screened easily. Reinhart et al. [24] reviewed models which are based on a
bottom-up methodology. They provided a comprehensive review about the existing workflows and
challenges in modelling in such a way due to the lack of data.
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Ferrari et al. [62] reviewed 17 tools where these tools were classified based on their most useful
features [62]. Their goal was to identify user friendly tools with hourly or sub-hourly outputs. Six of
them were identified in the paper. Manfren et al. [26] assessed tools for distributed generation projects.
They decomposed the distributed generation adoption into work phases and paired them with tools
according to their inherent features. It is clearly visible that most reviews are presenting UBEM as
a technological niche itself, hence this review will reposition UBEM and USEM tools as part of a
socio-technological framework.

Given the divergence of previous studies, a discourse to conceptualize the research gap must
be defined. While multiple research fields engage in the investigation of energy communities [1],
this study is positioned in the field of transition management due to its core tenet being built upon the
entanglement of social and technical practices [63]. At the heart of its conceptual framework is the
socio-technical system, in which the multi-level perspective (MLP), helps to visualize how the energy
communities as the social niche with the contribution of a technological novelty (as UBEM) can make a
shift in the prevailing regime of the energy sector Figure 1.

Figure 1. Positioning research subject in the multi-level perspective—adapted figure of Geels [64].

The regime is the meso-level comprising of the dominant socio-technical system [65]. The regime
defining the energy sector is influenced by the relation between social interests, like policies and
regulations (from municipal, national, supranational levels), user preferences, which is characterized
by a lack of choice awareness, energy dependency and the passive demand side in the energy system
in a centralized, vertically integrated energy market [66]. MLP states that transitioning this regime
towards decarbonisation is dependent on the novel technologies entangled with social change [63,67].
On the one hand, this is pushed from the micro-level, in niches, where technological innovations are
sheltered from the selection of mainstream market [65] (Figure 2). On the other hand, the external
factors are also essential in order to transform the regime, which in the context of MLP is the landscape
(macro-level). The landscape can include extreme events, such as climate change, but it can also be less
conspicuous events, like urbanization, or energy security concerns [65].
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Figure 2. Positioning of research subject in niche development—adapted figure of Geels [65].

In this context, ECs are social innovations existing on niche level that need to progress from the
protected environment into small market niche and eventually larger market niche. The strategic
niche management (SNM) discourse explores the factors and process of niche progression [63,67].
A bottom-up initiative, like the energy communities as social niche can affect the regime, in this
process the ECs become nodes in the decentralized energy sector, which can include the energy
production, consumption as well as management. The members of community turn into prosumers
from consumers [2]. This transition decreases their dependency on the vertically integrated energy
market. Moreover, the change in regime can also occur as the involvement of users into the energy
system, which raises awareness on the energy related issues, as well as on sustainability, thus increases
their choice awareness. This, in combination with landscape pressures that provide a window of
opportunity is the precursor for regime transition.

While the SNM emphasizes the dominant role of the niches in the replacement of regime,
the transition does not depend on a single factor, rather different dynamics must reinforce each other
on multiple dimensions. In that regard SNM usually focuses on the technological novelties as the
dominant forces to make a shift in the current regime arguing for complementary social, institutional,
behavioural change [63,67]. In other words, it focuses on technological niches, and how they can be
enriched by a social perspective, but not the other way around. However, in case of ECs, it is the social
novelty—with enabling technologies—that would eventually replace both the prevailing technology
and social, political as well as cultural practices (the regime), ultimately feeding back to the landscape
level [64,65].

By shifting the focus to a social innovation at the niche force driving change, and the technical
innovation as the support, the conceptual framework of transition theory must be expanded to
characterise this support. The theory of affordances is applied as an approach to link technological
characteristics to the psychosocial, socioeconomic and governance factors describing EC drivers and
barriers. Originally a concept describing complementarity between animals and their environment [68],
affordance refers to the range of interactions possible between an environment and an agent operating
within it [69]. In the field of design, the notion is used to sort the behaviour not only made possible,
but also suggested by specific design features, in other words, the perceived affordances [70]. In this
case, affordances are inherent in the object, technology, artefact, and more importantly, are influenced by
design choices [71]. However, affordances are differentiated from capabilities or functionalities, as the
same capability can have different affordances in different goal-oriented actions [72,73]. In the context
of UBEM for example, the capability to predict energy demand affords evidence-basis for planning for
consumers, but also affords risk elimination for a potential investor. Affordances that are intended by
a product or technology, affordances that are suggested by its design features and actual observed
behaviour are expected to deviate—the size of the gap is usually an indicator of good user-experience
design. It is also important to note that by affording a set of interactions over others, features
of technologies or environments do not only influence individual behaviour, but indirectly afford
organizational models, routines, social practices in general, [74,75]. Thus, the notion of affordances fits
the discourse of sociotechnical transitions well and is a useful method to articulate what exactly is in
technology that breaks down a non-technical barrier, and how. This review offers a methodological
contribution to transition theory by expanding its conceptual framework with affordances, which will
allow investigations in the role of technology in accelerating social innovations, social niches.
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1.5. Research Aim

The primary, practical objective is to explore whether a social niche—energy communities—can be
cross-fertilized by a technological one—urban building energy modelling. The main research question
is built around the phrase “technological trigger”, which in this context describes multiple ways a
technology enables or supports the penetration of an innovative social concept. This, in the context of
energy communities means three things: it can either trigger the creation of new energy communities,
it can accelerate the growth or diversification of energy communities and it can push the social niche of
energy communities towards becoming absorbed by the regime. On that premise, the main research
question and its decomposition is as follows:

Main research question (MRQ): Is urban building energy modelling a technological trigger for
energy communities?

RQ1: Which factors trigger energy community progression in different use-cases?
RQ2: Which factors trigger energy community progression at their different lifecycle phases?
RQ3: Is it possible to identify different utilities of UBEM tool-types during the lifecycle of

energy communities?
The main research question refers to matching UBEM against specific factors that influence the

progression of ECs from social niches. Therefore, the answer will provide a set of these factors and argue
how UBEM interacts with them. Subsequent research questions disaggregate this answer in three ways:
by use-cases of ECs (RQ1), by EC lifecycle phases (RQ2), by UBEM tool types (RQ3). Investigating
them are justified by three hypotheses that express such disaggregation will be meaningful (see H1,
H2, H3 below).

RQ1 is required as the common classification of ECs differentiate them by their functional diversity
(single-purpose, and multi-purpose) or by location specificity (place-based, non-place-based) [3].
On the one-hand UBEM tools themselves are place-based, narrowing the scope of the study. On the
other hand, it is expected that the core activity of the energy community, for example whether it is
providing flexibility services, invest in renewable energy production, will have different challenges,
development processes and different potential entry points for UBEM or other technological innovations.
This expectation is expressed in hypothesis H1, where EC use-case is defined as the core energy
management activity, which is being shared:

Hypothesis (H1). Different use-cases of energy communities have different factors to progress from niches to
which UBEM tools respond differently.

Second, it is reasonable to expect that different challenges burden ECs during different phases
of their lifecycle. It is also a possibility that similar challenges in different stages respond to UBEM
features differently. RQ2 thus disaggregates the MRQ to lifecycle, and the expectation is expressed as
hypothesis H2:

Hypothesis (H2). Energy communities in different lifecycle phases have different factors to progress from
niches to which UBEM tools respond differently.

Finally, it is reasonable to expect that UBEM itself has the variety to offer different strengths either
per use-case or per lifecycle phase. This means, again, a disaggregation of the main research question
to an UBEM tool classification (RQ3), to which a third hypothesis is formulated:

Hypothesis (H3). Different types of UBEM tools accelerate energy community progression from
niches differently.

In the light of previous reviews and the theories, answering the main research question also
carries over to practical objectives in providing a manual for EC planners to the world of UBEM

139



Energies 2020, 13, 2274

and in raising awareness for future R&D trajectories for UBEM. Literacy in UBEM is hypothesised
to give means to justify EC potential in low-carbon transition of cities and communities. On the
other hand, application-oriented analyses of UBEM tools, such as this study, will provide criteria for
UBEM development as it seeks its appropriate market. Finally, with the introduction of affordances
to the conceptual framework of the multi-level perspective, a third practical objective of the study
is to expand the scope of the SNM literature to technologically enabled social (sociotechnical) niche
management. This is done so through demonstrating the conceptual framework based on affordances
on the case of UBEM enabling ECs.

The remainder of the article is structured as follows: Section 2 presents the methodology of a
two-tiered systematic literature review and builds an analytic framework by expanding a strategic
niche management approach with the concept of affordances. In Section 3, results are presented as
follows: Sections 3.1–3.3 contain the results of the EC meta-review, and Section 3.4 is an analysis of
UBEM tools in the EC context. In Section 4, the known limitations of this paper are discussed followed
by the reflections on the original research questions and pointing out possible trajectories for future
work. Finally, the last section completes the paper with the conclusion in Section 5.

2. Materials and Methods

2.1. Research Design

To answer the research question, a new analytic framework was first designed that decomposes
both energy communities and UBEM tools to information entities relatable to each other, namely:
EC progression factors and capabilities of UBEM tools. Then, a two-tiered systematic literature
was conducted into the research of EC and UBEM, respectively, to collect these information entities.
EC use-cases and lifecycle phases were identified to answer research sub-questions. Finally, the results
were matched to see the potential interactions between UBEM and EC as the EC-specific affordances of
UBEM (Figure 3).

Figure 3. Overview of research process.

To meet the research objective of providing a manual for EC practitioners, the EC analytic
framework must consist of features corresponding to disaggregation requirements of the main research
question, namely: different use-cases, a breakdown of typical life-cycles, and a collection of progression
factors. In the framework, the features for the analysis of UBEM are the progression factors, while
use-cases and lifecycle phases are structural metadata assigned to the factors. The working definition
for progression factor in this study is any condition that is indicative for the progression of energy
communities through their lifecycle. Progression factors were extracted from the reviewed articles
and labelled by which lifecycle phase and which use-case they are relevant for. This labelling was
essential to answer research questions 2 and 3. Apart from essential structural metadata, supplementary
labelling schemes describing the importance of each factor and the discipline with highest authority
in them were added. The supplementary metadata were chosen to support the practical objective
of providing a manual for EC planners, and were selected due to availability of information, based
on a preliminary review of the literature. All categories in essential and supplementary metadata
were defined from the literature, and not top-down—meaning alternative categorizations are valid.
With four distinct categorizations, the factors were analysed on their relationships to each other by
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inspecting pairwise correlations among categories and by agglomerative hierarchical clustering using
the UPGMA algorithm [76] (Supplementary Materials). The reason for inspecting this relationship is
to validate whether the categories are redundant, and to see how factors can be bundled together for
communication to EC practitioners.

The UBEM analytic framework was an amalgamation of the frameworks of four most prevalent
UBEM tool reviews [22,61,62,77]. The features used to describe and classify UBEM tools in these
four articles were taken as UBEM capabilities for coupling against EC progression factors. However,
not all UBEM approaches were considered relevant for the research question. Generally, UBEM can be
classified into two distinct approaches: top-down and bottom-up [57–59], complemented by hybrid
approaches which combine the two [59,60,78]. Top-down modelling was excluded from this study,
as they are incapable of modelling complex scenarios in energy transitions due to their reliance on
aggregated historical statistical data and they are not able to consider different energy saving measures
in different spatiotemporal situations, or occupancy types. [78,79].

Categorisation of UBEM tools evolved naturally as they became more mature and acquired more
functions. Analysis of frameworks from four [22,61,62,77] of the collected review articles were used to
define a comprehensive analytic framework.

For the analytic framework of this study, all features of bottom-up and hybrid modelling tools that
were present in more than one article were automatically retained; the rest went under a systematic
preselection process (see Table 1 for list of selected and filtered features). Features were excluded if:
(1) they were duplicates, or included in the other features (e.g., exo- or endogenous demand modelling,
Impact of user behaviour, Time horizon); (2) does not correspond to the working UBEM definition
(e.g., building stock location, building characterization); (3) there is not sufficient information in the
reviews and the original articles of the tools (e.g., non-residential type of building, input type).

Table 1. List of selected and filtered urban building energy modelling (UBEM) tool features.

Features
Hong et al.

[77]
Ferrari et al.

[62]
Abbasabadi

et al. [61]
Sola et al. [22] Filtered

Output types (as described in Abbasabadi et al. [61]) × × ×
Optimal Spatial scale (as described in Ferrari et al.

[62]) × × ×
Approach (As described in Hong et al. [77]) × × ×
Time step (As described in Ferrari et al. [62]) × ×

Energy service (As described in Ferrari et al. [62]) × ×
Licence (As described in Ferrari et al. [62]) × ×

Energy generation modelling (As described in Sola
et al. [22]) × ×

Urban climatology model ×
Time Horizon × 1
Target users ×
Input type × 3

Web-based vs. Standalone desktop ×
Building stock location × 2

Building Characterization × 2
Exo-or Endogenous demand modelling × 1

Impact of user behaviour on Building energy
demand × 1

Non-residential type of building × 3
Integrated vs. Co-sim tool ×

1 duplicates, or included in the other features, 2 not correspond to the working UBEM definition, 3 insufficient
information in the reviews and the original articles of the tools.

However, not all analysed tools were present in all four reviews. The original articles of the
included tools were used to fill in missing features to avoid information gaps. All, but 12 feature-tool
couplings were filled this way. As in the case of EC progression factors, a typology of tools based on these
features was produced via agglomerative hierarchical clustering, using the UPGMA algorithm [76],
and a pairwise correlation matrix was produced. Again, this exercise was used to see whether there is
a useful categorisation of tools, and to test whether the UBEM capabilities (the final list of features) are
all necessary.
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Finally, the relationship between EC and UBEM was justified through the concept of affordances,
using EC progression factors as key performance indicators for the UBEM capabilities. Constructing
an affordance is not defining a single feature but is discussing the way a certain user appropriate
features for goal-oriented actions [80]. At its core, an affordance is the dynamic between features and
actions, that is: the feature, a set of actions made possible by that feature, and the way the feature
facilitates those actions [81]. This also means that an affordance is situational, as facilitation would
occur for certain users, in certain contexts, which must be specified to justify an affordance [82]. Finally,
the actions afforded must relate to the goal of the user [73,74].

Therefore, these six components, features, actions, facilitation, user, context and goal must be
present to define an affordance (Figure 4).

 
Figure 4. Components defining technological affordances.

In this study, the EC progression factors, and their metadata define the context and goals, while
UBEM capabilities refer to features. Taking the EC planner as the user, an affordance can be specified
by describing facilitation, and actions that are linked to user goals. Thus, an affordance exists if (1) in
the context defined by EC use-case and lifecycle, (2) for an EC planner or project manager as a user,
there is a (3) set of UBEM capabilities that (4) facilitate (5) a set of actions to (6) reach the goal of
the user defined by meeting one or more progression factors. If the six components are justifiably
present, the affordance exists. As progression factors were already classified by use-case and lifecycle
phase, affordances could also be examined against both. This provides the necessary disaggregation
for the research sub-questions, while a collection of justified affordances is the answer to the main
research question.

2.2. Data Extraction

To extract information for analysis, two secondary data sources are investigated: review articles
and case studies of energy communities. Thus, the feature extraction phase consists of an overview of
reviews with the scope of review articles and meta-analyses and a systematic review with a scope of
case studies. This distinction is chosen as recent reviews will not cover recent case studies, and because
case studies are expected to yield more information on project lifecycle, while reviews are expected to
give a better overview of EC use-cases. Both data sources are expected to return progression factors.
The review of UBEM tools will rely on the secondary data source of UBEM proof of concept studies.
The second phase of the research is also a systematic review, with the scope of UBEM tools.

The Scopus database was chosen for publication selection for its larger share of unique citations in
both social science and engineering citations [83]. For the overview of reviews, the search term (“energy
community” OR “community energy” OR “energy cooperative” OR “citizen energy”) AND “review”
was used for review. The time period for search was set to 2018-2020 at first, with annual extensions
planned if insufficient information would have been generated—however, database was saturated
with the first batch, see paragraphs below. For the review of case studies, (“energy community” OR

142



Energies 2020, 13, 2274

“community energy”) AND “case study” was used for the same years. For the review of UBEM tools,
“urban” AND “energy” AND “model” was used for years between 2015 and 2020.

In all cases, the articles went through a preselection process (Figure 5). Titles were checked
for overall domain relevance, while the abstracts were read for a relevance of the narrower topic.
For example, an article on nutrition [84] was filtered out in the first step, while another [85] was
filtered out in the second step, as it was a study on energy, however not on community energy as per
definition. In addition to relevance check, articles had to be reviews, case studies and original articles
introducing new UBEM tools, respectively. Finally, the following exclusion criteria were defined: the
geographical scope is limited to the EU/US and cases where EC is the only viable alternative for energy
distribution due to various constraints such as remote communities. These criteria were applied to
meet the practical objectives of the study.

 
Figure 5. Selection process of references disaggregated to data sources.

The final articles, after confirmation in the text, that they contribute to study results, were selected
in a bottom-up manner, by defining a threshold for data saturation. The data saturation threshold is
a way of determining after how much articles does the research become redundant [86]. In studies,
where the task of the observations is to provide new labels or classes, there is a characteristic saturation
curve, plotted as the number of observations against the quantity of new labels accumulated with
each observation. This curve is steep for the first “n” observations and flattens out afterwards. A flat
curve means that repeated observations will likely not yield new labels, the database is saturated.
Data saturation curves were used for the overview of reviews and the review of UBEM tools (Figure 6).
The observations were the articles read, and the labels were the progression factors and the UBEM tools
respectively. The threshold conditions for saturation were set as the difference quotient for observations
On − On−3; On − On−5; and On − On−10. The three ranges were chosen to decrease sensitivity to
small-scale disturbances, and to set a minimum number of articles to be read.

The actionable set of articles included 25 EC reviews, 18 EC use-cases and 12 UBEM articles.
Saturation for UBEM tools was reached at 12 articles and 43 tools. A total of 34 out of 2115 search
hits were assessed before saturation, out of which 12 was preselected. Due to lack of information
or failure to meet UBEM/USEM definitions, 21 tools were excluded. The 22 remaining tools were
further analysed. For the progression factors, saturation was reached at 20 articles, with 49 progression
factors. Including preselection, this meant that 108 of the 126 articles were processed, out of which 41
was preselected by domain relevance and 33 by topical relevance. A total of 8 unique use-cases were
identified, supplemented by hybrid use-cases as one category. However, 5 use-cases were considered
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for use-case-specific progression factors, due to lack of data, or conflict with the definition (see
Section 3.1). Three use-cases, community choice aggregation, microgrids and green neighbourhoods
were not considered for unique progression factor extraction.

  

(a) (b) 

Figure 6. Log of data saturation: (a) Number of accumulated progression factors plotted against
number of energy community (EC) reviews on the left; (b) number of accumulated UBEM tools plotted
against number of UBEM reviews on the right.

3. Results

The results are presented following the logic of affordances: Section 3.1 introduces the different
identified use-cases for ECs (corresponding to affordance context), Section 3.2 describes phases
of a generalized EC project lifecycle (affordance context), Section 3.3 collects EC progression
factors (affordance goal) and examines according to the selected structural metadata, Section 3.4
constructs affordances from UBEM features (affordance capabilities), and disaggregates them as per
the research questions.

3.1. Energy Community Use-Cases

The following use-cases were identified during the study: renewable energy production,
peer-to-peer energy market, demand-response providing community, bulk investment in energy
conservation measures, community choice aggregation, collective grid ownership and community
energy storage. Additionally, the green neighbourhood is a special case not strictly an EC, and three
hybrid use-cases were also identified.

Three use-cases, community choice aggregation, microgrids and green neighbourhoods were not
considered for unique progression factor extraction. Community choice aggregation (CGO) allows
cities or other local government units to aggregate customers within their jurisdictions and to procure
energy for them, either through contracts or through ownership of generation [40]. Although the
subject of the article was a comparison between community choice model and renewable energy
community, the former is not in fact an energy community, but a pooling of consumers under a single
trusted intermediary to bargain on their behalf. Collective grid ownership is a valid EC, however
it never appeared on its own in the literature but integrated to one of the other use-cases [45,49].
Finally, green neighbourhoods are unique models targeting complex sustainability goals on the
neighbourhood scale [32,55,56]. These ambitious projects are often government-funded flagship
projects or experimental niches, or unique market niches of bottom-up initiatives. They operate
partially or fully on a combined waste-water-energy nexus, seeking to leverage all three circulations to
close loop, essentially leaving behind no waste, wastewater and taking in no energy from external
sources [55,87]. Green neighbourhoods can be models for energy communities on the long-term,
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but the multiplicative impacts of such projects scale at the cost of scaling their complexity, operational
and investment costs. Given that green neighbourhoods fit the definition of multi-purpose energy
communities, any universal EC progression factor will also be valid for them as well.

From the core investigated use-cases, the energy conservation investment community (ECC)
pools resources to bulk invest in interventions reducing their energy consumption, such as purchasing
energy-efficient appliances, retrofitting the building envelope, replacing windows or multiple of
the above in deep retrofit projects (Figure 7). The reduction of operational costs makes energy
conservation communities relevant for ESCO financing, and the contribution to decarbonisation by
demand reduction are measurable contributions to government sustainability policy [33].

 
Figure 7. Energy conservation investment community use-case. Dashed line denotes the community.

Peer-to-peer energy markets (P2PM) rely on community microgrids to sell and buy electricity
produced locally in distributed plants, and externally if the microgrid is connected (Figure 8). Regarding
market structure, the model can either be a full market, a decentralized market or a hybrid solution
in between. The main difference between full and decentralized markets is the lack/presence of a
community representative, who acts as intermediary for both internal market governance and as a
medium between the decentralized community and the energy market. In hybrid models, members
may join individually, or through the representative [53].

Figure 8. Peer-to-peer energy market use-case. Dashed line denotes the community.

Renewable energy communities (REC) are the most well-researched use-cases. Historically,
decentralized renewable energy communities kicked of the social innovation niche, buy pooling
resources to invest in energy production (Figure 9). In a decentralized model, there is a single or
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several power plants for the entire community, which can both be utilized to meet the demands of
the community itself, but also to sell excess energy if they have access to wholesale markets. In a
distributed model, the community functions more akin to energy conservation communities, to bulk
invest in renewable production on household level [42]. Distributed production, alongside with
microgrid ownership, are constituent use-cases for peer-to-peer energy markets.

 
Figure 9. Renewable energy community use-case. Dashed line denotes the community.

Demand-response energy communities (DRC) are one of the more novel, experimental use-cases
that stem from the mainstreaming of renewable production and distributed energy production.
Since both trends have threats to maintaining grid balance, a community offering to harmonize
load curves en masse is a viable service for grid operators (Figure 10). This involves consumers in
the management of stable grids, therefore such interventions are labelled demand-side responses.
The key strategies for managing load curves is through changing consumption habit, with load shaving
meaning changing consumption amounts at certain times of a days, while load shifting is offsetting
supply to other uses.

Figure 10. Demand-response community use-case. Dashed line denotes the community.

Community energy storage (CSE) is a modular, scalable, virtual energy storage built up from a grid
of distributed storage units owned by community members (Figure 11). On their own, virtual storage
communities can offer flexibility services like demand-response communities, while in combination
with local production, they may serve as buffers to locally produced surplus. Community storage,
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if place-based is its own category in terms of scale (tens to hundreds of kWh) and is not a substitution
for large storage with capacity levels in the MWh-GWh scale. Most common technologies include
lithium-ion batteries, lead-acid batteries, flow batteries and more recently hydrogen for electricity, and
water tanks and phase-change materials for thermic energy.

Figure 11. Community energy storage use-case. Dashed line denotes the community.

Hybrid use-cases are trending due to the associative nature of the use-cases and the potential
of stacking services [88]. We have seen before that renewable energy communities can evolve into
peer-to-peer markets, but it is also possible for prosumers to build a diverse grid stabilisation portfolio,
by having both demand and supply side options (Figure 12). Renewable production can mitigate or
eliminate undersupply, while community energy storage can act as a buffer in case of oversupply.
Energy conservation measures are supplementary to all other use-cases, expanding external markets
of any local production use-case by decreasing internal demand [46]. It is also an option for renewable
energy communities to distribute some production and assets, and keep others at community level,
while also acquiring energy storage to provide full stack energy services internally [14,89,90].

Figure 12. Hybrid renewable-demand response community use-case. Dashed line denotes
the community.

3.2. The Energy Community Lifecycle

Based on the case studies and reviews, the EC lifecycle can be broadly split into five phases:
initiation, design and implementation, operation and further development meaning either social,
or technological scaling (Figure 13) [14,35,49,52,87,89–100].
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Figure 13. Overview of the generalized energy community project lifecycle.

EC initiation involves defining the overall strategy for the EC, namely an analysis of the
characteristics of the area, the local energy sources, the users and of the community itself [35]. As for
the energy context, the strategy of the EC is mostly defined by the varying energy load curves
for prosumer types as well as the production and conversion system technology are based on the
available energy resources. During initiation, the regulatory context, the compliance to regulatory
requirements, synergies or counter-synergies with policy targets are also investigated. The initiation
phase ends with the social approach, where the social impacts, the project’s positive and negative
implications, and potential integrations with other community-driven projects such as car-sharing,
co-housing are assessed. The depth of transition delivered by ECs depend on who is involved and
who leads the process during initiation. Most can be classified as government-driven or bottom-up,
grassroots initiatives [101], however, there are existing ECs that were initiated by organised institutional
entrepreneurs as intermediaries, like banks, public bodies, consultants [100].

The complexity of the design phase of each EC is heavily influenced by the use-case. For RECs,
the community is on its own by using the right set of tools and expert help [87,96,97]. Whereas,
the number of actors involved in P2PM necessitate a trading platform to handle all interactions between
the different stakeholders and the network operator [98]. In case of demand response (DRC), the DSO
and an aggregator need to have access to the EC’s devices [99]. CGO use-cases involve local utilities,
state and federal actors and research institutes [49].

In the operation phase ECs is split up into two parts: the incubated operation of ECs, meaning the
operation with a supportive agency e.g., government, and the self-sufficient operating ECs. Most case
studies reported of self-sufficient operation of RECs [95,100], whereas CGO and P2PM cases run almost
exclusively through facilitators [49,102].

Beyond operation, there are multiple pathways for further development of ECs: they can scale
technically or socially. Technical upscaling can mean the improvement of current use-cases, such as
introducing distributed ledger technologies [52], or by better network performance and reliability [98].
It can also mean diversifying the use-case, involving new services, leading to EC hybrids. Similarly,
social upscaling can mean both increasing memberships, or diversifying membership, such as by
involving industrial or mobility sector actors [93].
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3.3. Progression Factors

Based on the EC reviews progression factors are grouped into seven new categories:
“interactions with regulation and governance”, “information and knowledge”, “economic influencers”,
“technological infrastructure”, “requirements for justice”, “actor-bound drivers and criteria” and
“network drivers and criteria” groups. This section begins with the description of progression factors
by group, followed by their analysis via the metadata designated in Section 3.3. See Appendix A for all
progression factors.

3.3.1. Interactions with Governance and Regulation

Most reviews discussed relationships with public authorities either as regulatory conditions and
challenges or the difficulty of securing long-term, reliable political support (Table 2). At the heart of
this is the requirement for the normative alignment of energy communities, meaning their format
must be recognizable in terms of legal definitions [43]. In countries, where legislation does not yet
recognize energy communities, tend to categorize them as a cooperative or a company. Such labels
lead to unfair comparisons, as the same regulatory standards could apply to an EC as to a conventional
energy provider [87,90]. Normative alignment is shown to erect insurmountable entry barriers to
community initiatives that fail to navigate through convoluted legal requirements [2]. Moreover, even
municipalities that initiate energy communities, face challenges when ensuring compliance to national
strategies and laws [44]. This is due to change in the EU for RECs, as nation states committed to their
normative alignment [103]. While this challenge is most prevalent during initiation phase, regulatory
barriers influence the whole lifecycle, for example by cutting off community microgrids from energy
markets, due to unsatisfactory interoperability standards [50]. Changing regulations would require
political commitment, but for many countries, community energy is simply not on the agenda [35] or
is subjected to inconsistent policies [2].

Table 2. Progression factors tied to interactions with governance and regulation.

Interactions with Governance and Regulation

Multi-bilateral contracting The existence of standardised, yet flexible
peer-to-peer templates for rapid application. [3,53]

Multi-bilateral trading
A trading model harmonizing concurrent

bilateral transactions on a shared
infrastructure.

[87]

Legal and regulatory compliance
The ease of alignment between the energy
community (or the facilitation thereof) and

the regulatory regime.
[2,35,43–45,50,51,53,87,90,104]

Land-use and building code
regulation

Land-use and building codification
responsive to community-energy potentials. [3,39]

Unfavourable taxation
Taxation policy fit-for a more decentralised
energy market, level playing field for large

and small actors.
[33]

Political landscape: inconsistency,
engagement, support

The policies affecting community energy are
volatile, hindering the planning of projects. [2,35,38,44,46]

3.3.2. Information and Knowledge

It is crucial for the fitness of energy communities, that the relevant actors acquire the necessary
knowledge to make decisions [46]. Many of the more practical barriers or failure scenarios can be traced
back to lack of knowledge, and given the horizontal nature of energy communities, this knowledge is
highly heterogeneous (Table 3). Proposals often overshoot natural or physical possibilities, factors such
as sun, biomass, wind availability or proximity to sea, impacts of climate change, building conditions,
settlement layout may contradict expectations if not thoroughly understood [44]. It is generally
an obstacle that the multiple impacts and broader societal implications of energy communities are
only conceptualized, but not sufficiently specified, quantified, measured [33], hindering not only
recruitment, but also normative alignment (ref former [2]). Support from policymakers is an essential
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enabler, but only if communities can convince how their projects fit to relevant targets [40]. Research
on the impacts of CRE projects are based on interviews, surveys in costly and highly specific case
studies, model-based assessments are limited to regional-scale econometric analyses [12]. Apart from
the public sector, prospective members themselves are rarely aware of how local energy systems
work, what are the potentials for community energy, or the necessity of sustainable transition [3].
Community energy is simply not in the general discourse well enough to support the assimilation
of project proposals [48], and even existing communities miss out on involving support by not
understanding and communicating the distributional aspects of their projects, and how a certain
stakeholder is specifically affected by it [46]. It is also important to plan for how EC initiatives interact
with other projects, when calculating impacts, as certain synergistic co-benefits might greenlight
some otherwise unfeasible projects [55], and if other pre-existing societal problems force EC off the
agenda [12,35]. Finally, information provision is linked to data scarcity, the fragmentation of data
ownership, its fitness-for-purpose is often questionable, imposing significant work for data acquisition
and pre-processing [44,87].

Table 3. Information and knowledge related progression factors.

Information and Knowledge

Ambiguity in network operation Methodology for co-simulation of distribution networks
and P2P energy trading. [87]

Information barrier Discourse among the relevant actors supporting the
diffusion and assimilation of community-energy. [38,44–46,90]

Community problem field Knowledge of pre-existing complex, socioeconomic,
structural challenges in the focus of the community. [12,35]

Natural preconditions
Knowledge of potential natural resources and limitations
due to environmental factors and scenarios (such as solar

availability).
[44]

Physical preconditions Knowledge of physical possibilities and constraints
(such as building conditions). [44]

Data quality Feasible availability of timely, accurate, reasonable,
relevant, actionable data on the appropriate scale. [44,47,87]

Awareness
The general understanding of the local energy

transmission systems, production opportunities and
sustainability challenges.

[3,39,51]

Broader societal impact/benefit Knowledge of the multiple impacts of projects. [6,12,35,39,40]
Specificity Knowledge of the distributional impacts of projects. [39,46]

Synergies Knowledge of co-impacts of the project aggregate of the
energy community. [47,55]

Granularity Data generated of marketable performance on the scale
of viable products and services [47]

3.3.3. Economic Influencers

Financing community energy projects is a recurring challenge in the literature (Table 4). Energy
communities usually require both a heavy upfront investment for infrastructural interventions, and
significant costs for operation [3,45,49]. Much of this is traceable back to high transaction costs,
comprising of searching for stakeholders and supporters, bargaining and negotiation with actors,
acquiring and disseminating relevant information, dispute settlement, monitoring and opportunity
costs [34]. Meeting the legal entry barriers, connecting to the grid and entering wholesale market,
and knowledge production in general are factors discussed earlier, but they are with financial
implications [33]. On the other hand, financial benefits stem from the local production and trade of
energy at a lower price, the pooled investment on energy conservation and efficiency measures, and
selling flexibility services [42]. Many projects do not scale to the point to produce enough economic
surplus to cover operational expenditures, and there is always a danger of growing “too big”, losing
the social cohesion that came from the direct relationships of the community [2]. There is much reliance
on external incentives, the availability of favourable taxation, feed-in-tariff rates, subsidies, commercial
investments and loans support projects directly [3,33,49], while providing a level playing field for
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market actors, and easing access to information and crucial indirect tools to make community energy
economically more viable [46,49].

Table 4. Economic influencer progression factors.

Economic Influencers

Internal financial incentives Monetizable benefits from the actions of the
energy community. [42]

External financial incentives Policies, instruments, subsidies supporting
funding investment and operation. [2,3,45,46,49,51,105]

Cost Handling of high transaction costs and
upfront investment costs. [2,3,12,34,39,44,45,47,49,87,105]

Access to wholesale markets Opportunity to sell community-based
services on the larger energy market. [2,33,104]

Optimal size Appropriate community size balancing
(dis)economies of scale and social cohesion. [2]

3.3.4. Technological Infrastructure

Known technological progression factors are conditions for either the energy or the information
infrastructure (Table 5). There is a disparity among use-cases: while renewable EC factors are
mostly regulatory, economic or social, peer-to-peer markets and demand-response communities
pose unique technical criteria. It is crucial for markets, to operate on a low-voltage distribution
grid—microgrid—that can function both in island mode and connected to the wider grid [49,53].
When infrastructure exists, distributing production in an energy market introduces three technical
challenges: (1) upscaling multi-directional energy flows, (2) the diversification of energy supply and
(3) upscaling of market actors [53]. The latter is also true for demand-response communities, as it
essentially creates a market for flexibility services [35]. Scaling energy flows is a concern for grid
operation, necessitating some mechanism to predict and to handle grid congestion, maintain grid
balance and assure the supply of adequate quality energy.

Table 5. Progression factors stemming from technological infrastructure.

Technological Infrastructure

Microgrid Low-voltage distribution grid that can be operated as
island as well as connected to the wider grid. [39,47,49,53]

Market transaction cost
optimization

Optimal markets need to minimize the total transaction
costs by regulating energy flows based on the dynamism
of demand and supply.

[53]

Privacy Secure, anonymized individual inputs, including needs
signalling, and assertion of rights. [53]

Peer preferences optimization Management of peer preferences, expectations and
behaviour. [35,53]

Scalability of negotiations Computational capacity to handle negotiation and
consensus as the community scales. [53]

Quality assurance Guarantees for meeting reliability, quality, security
standards of energy sources. [53]

Grid congestion Stable, secure grid operation as the community, and thus
energy flows scale. [53]

Apart from the grid itself, EC use-cases such as P2P energy markets have unique challenges
regarding ICT infrastructure to enable intra- and inter-EC transactions [106]. Scaling market size in
terms of actors is on the one hand a—currently unresolved—computational challenge of handling
negotiations and consensus mechanisms, but on the other hand it is also an optimization problem
of multiple peer preferences and the market as a whole [35,53]. Most importantly, this includes
minimization of the total transaction costs by regulating energy flows based on the dynamism of
demand and supply, and integrating system-level optimum with the optimum of individual behaviour,
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expectations, preferences. Peer level input, including the assertion of their rights must also be extracted
and processed, and in a way that it does not compromise their privacy.

3.3.5. Requirements for Justice

Justice, especially procedural justice is heavily featured in the discourse of transition management
(Table 6). Sound institutional design, providing democratic legitimacy within energy communities is
still a challenge [49]. As a result of the phrase “community”, it is easy to believe the model is inherently
positive, and more involvement is socially empowering, but there must be safeguards to assess and
enforce legitimacy. Input legitimacy is measured on who is included in decision-making—or the
community itself—which is where governance network models can be misleading: they might report
high participation, but might exclude certain actors simply because they were out of reach from the
social networks used for recruitment [12]. Failures in input legitimacy might lead to already powerful
actors driving community energy, deepening existing conflicts and demotivating people not just from
participating in community energy, but other governance network-based initiatives [35]. Throughput
legitimacy, on the other hand, refers to the role each actor has in decision-making, and governance
network negotiations do tend to give asymmetrical powers to those with more resources [42]. In case
of peer-to-peer markets, this could lead to exacerbating energy poverty among the economically
disadvantaged [53]. However it is the strength of networked governance that it provides an arena for
discussions on issues of relevance, a core value incentivising membership, which must supplemented
by instruments to monitor and supress exploitative conduct both within the communities, and on
the markets [40]. Finally, output legitimacy in energy communities is expected to be sound, due to
broad decision-ownership, however the way decisions are reached can be opaque under layers of
negotiations, and any measure of transparency improves the community output legitimacy [42].

Table 6. Justice-related progression factors.

Justice

Energy poverty threat P2P markets may result in the energy poverty of economically
disadvantaged groups. [53]

Procedural justice Institutional design and practices ensuring fair processes of
decision-making, resource allocation, arbitration. [6,12,42,49]

Transparency of energy market Monitoring restructuring energy markets to recognize and
supress exploitative conduct. [40]

Input legitimacy Measures against the uneven access to the community,
exclusion of vulnerable groups, (e.g., women). [12]

3.3.6. Actor-Bound Drivers and Criteria

Actor-bound drivers and criteria are factors describing the people who support, oppose or
disengage from EC projects (Table 7). All three groups can influence the success of projects. Opponents
are those who actively resists community energy, whether because of legitimate concerns, such as
unwillingness to pay the opportunity cost, or through bounded rationality, which may surface as
resistance towards either environmentalism, community ownership, or collective actions [35,105].
It is a matter of providing input legitimacy to give voice to concerns, provide mutually agreeable
evidence to negate unwarranted opposition, and a just consensus and compensation mechanism
for legitimate opposition. Other actors, who are passive, but should be supportive, might also be
driven by bounded rationality, by inertia—disengagement despite the known benefits due to perceived
discomfort of change [2,53], by lack of interest in energy-related issues [43], or by a wait-and-see
attitude [2]. While opponents and bystanders influence mainly the initiation of projects, rebound effects
are threats post interventions. Physical interventions without behaviour change results in net increase
of energy consumption, hindering wider societal impacts of the EC [12]. In all cases, having community
energy up on the agenda in both the political and in social discourse and placing it in the specific
reality and value models are key conditions in overcoming passive, rebound and resistant behaviour.
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Table 7. Actor-bound progression factors.

Actors

Inertia, passivity Inhibition of transition without active opposition, due to
disengagement. [2,35,43,105]

Opposition, scepticism Unhandled active opposition and concerns to transition. [2,35,43,105]

Self-identity Supportive attitude, motivations, identity congruent with the
mission of the project. [38,42,44,105]

Reliance on volunteers/lack of time Single or multiple committed change-agents driving the
process voluntarily. [2,12]

Pre-existing knowledge and skills Actor-level understanding of regulation, technologies, markets
through existing knowledge or intermediaries.

[2,12,34,44,46,
90]

Active involvement High degree of ownership, community leadership and
meaningful individual roles.

[12,38,39,45,
105]

Rebound effect Adverse behavioural adjustment to technological
improvements. [12]

Place attachment Acceptance and support of locally bound or originated
products and services. [105]

The self-identity of actors, attitudes and individual motivations, such as concern for environment,
or grassroots enthusiasm may promote membership [42]. In multiple cases support for renewables
and for divesting from coal, nuclear produces more engaged change-agents than individual economic
benefits [105]. These change-agents, single or multiple committed evangelists for the cause, have
been critical for most energy communities, as they usually mobilize their social networks, seek out
professional expertise and lobby for political and financial support voluntarily in their free times [2,12].
This however bars potential energy communities that do not have change-agents, or they do not have
the time or social capital to succeed. There is also great potential in intermediaries who may trigger
knowledge diffusion, improve the accessibility of the community to supportive networks and resources,
but is an additional cost in an already strained business model [12]. However, community-led projects,
with more opportunities to distribute responsibilities, and assign roles to individuals fare better in
terms of multiple benefits capturing than outsourced, or commercial-led projects [12,45,105].

3.3.7. Network Drivers and Criteria

Networks shape knowledge diffusion, resource, procedural flows among EC actors, and may
provide platforms for social cohesion and grassroots empowerment [42,49,105] (Table 8). In terms of
the internal network of the community itself, there must be a clarity of the objectives and purposes
of the community: whether it serves a public task or brings profit or provides community service,
all needs to be specified [43] and be consistent among members [3]. It is a common barrier to adequately
communicate the project scope, conditions and benefits to prospective members [2]. This hinges on the
bridging, or linking capital in EC actor networks—the efficiency of interactions cascading through
them [12]. Mirroring self-identity, it is also beneficial to develop a group-identity, or to base the EC
on an existing social group, with which members associate with [42]. However, it is necessary for
EC mobilization to go beyond social networks to exploit multiple benefits [2]. Broad coalition of
stakeholders are required to make many projects feasible, and it is difficult to identify and engage all
of them [44]. Connecting to external, established interests may also prompt cross-fertilization and
support, such as relationships to social movements or similar projects [43], and favourable network
conditions improve access to relevant competences, resources, implementers, change-agents [44].
This does not undervalue social networks. Frequency and emergent saturation of community energy
in social network clusters accelerates total saturation in said cluster due to peer effects [42]. However,
there are certain actors who cannot be neglected in the decentralization of the energy market: providers
of technical infrastructure. The partnership, or lack of partnership from local utilities provider can
make or break community microgrid projects [49], while ICT providers of services, platforms and
infrastructure are crucial for the operation of energy markets [106].
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Table 8. Network-bound progression factors.

Networks

Articulate shared mission
Expected impacts and mission specified, and
communicated in a measurable, achievable, specific,
time-based, realistic manner.

[2,3,43,87]

Embeddedness, robust, resilient
network

Connectedness to relevant actors, established
networks with cross-fertilization potential. [3,38,40,43,44]

Group identity Shared sense of belonging to the social group
constituting the energy community. [12,42,49]

Relational goods, social value,
empowerment

Perceived social value of networked cooperation
through interactions and participation. [38,42,49,105]

Peer effect Frequency and emergent saturation in social network
clusters accelerates total saturation in said cluster. [42]

Market concentration Engagement or resistance of actors and gatekeepers
involved in centralized energy markets. [2,39,40,47,49,50]

Identifying and engaging the
appropriate network

Recruitment beyond social networks, on an
outcomes/performance basis. [2,39,44,46,90,93,106]

Bridging capital Efficiency of knowledge transfer and negotiations
through upscaling networks. [12,38]

Trust Trust eases transaction costs associated with
negotiations in networked organizations. [3,12,33,38]

3.3.8. Classification of Progression Factors

There is no consistent classification of progression factors in the literature, although many
take an attempt to classify by relevant discipline [2,42,55,105]. The identified factors display an
interdisciplinary scope of energy communities, with a slight skew towards social sciences and
humanities (Figure 14). However, a sizeable proportion of factors (18 out of 49) had implications from
multiple perspectives—one notable example is the optimal size of energy communities, which influences
social acceptance and cohesion [42], economies of scale [2] and the complexity of computations [53].

 

Figure 14. Progression factor distribution by discipline.

Factors were also classified by relative importance: conditions, which are necessary requirements
for EC progression, barriers/challenges, which are definitive for successful progression, and enablers,
which accelerate/hinder project progression. For example, the existence of a microgrid for peer-to-peer
markets [53], or the compliance of the grid operator in case of renewable energy communities [49],
are preconditions, with no possibilities of initiating the project without them in place. Internal incentives
are challenges, as financially unsustainable ECs might still exist through subsidization [42]. Finally,
access to other, community-based networks is an enabler for recruitment of support and diffusion of
knowledge, for example [43]. The distribution of factors in the three categories is even, with slight
skew towards barriers (Figure 15).
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Figure 15. Progression factor distribution by role.

Based on relevant use-case, the distribution of factors reflects the distribution of literature
(Figure 16). As the largest, single-use-case group of articles focus on renewable energy communities,
most of the progression factors describe them. This does not mean that these factors are not applicable to
other use-cases, however, there is insufficient evidence to confirm that they do or do not (see discussion).

 
Figure 16. Progression factor distribution by use-case.

Finally, the classification by lifecycle phase heavily skews towards the earlier stages of energy
communities. However, this does not mean that most barriers are overcome by the time operational
phase kicks in, due to overlaps among the categories. A total of 19 factors are relevant in more than
one phase, and 7 factors are relevant for all phases. The largest overlap (12) is between initiation and
both technical and social upscaling phases, while the overlap between operation and initiation is only
1 (Figure 17). This displays a polarization of progression factors between operating the community
and setting up the community—whether this “setting up” is the one that launches the project, or one
that develops it further either technically or socially.

If all classification rationales are taken into consideration, with equal weight, hierarchical clustering
returns the dendrogram shown on Figure 18. It is notable that none of the clusters are tight: even the
most distant clusters can be reached with less than 3 steps, and over two-thirds of the factors would
not be paired with any other, when setting cut-off for clustering to the average distance.
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Figure 17. Progression factor distribution by lifecycle phase.

Figure 18. Agglomerative hierarchical clustering of progression factors by discipline, role, use-case,
lifecycle phase.
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Figure 19. Pairwise correlation of metadata. Colder colour indicates a category consistently appearing
together for progression factors.

The clusters themselves are heterogeneous both in terms of discipline and in terms of lifecycle,
meaning it would be difficult to bundle interventions and responses even if the use-case is known.
This is because there are very few classes that share the same factors, as shown on the correlation
matrix of features (Figure 19). The top five positive correlates are shown on Table 9.

Table 9. Top 5 pairwise correlates of metadata.

Feature_1 Feature_2 Correlation

enabler ECC 0.547
initiation design 0.575

P2PM operation 0.698
P2PM technical 0.717

environmental technical scalability 0.808

3.4. The Analysis of UBEM Tools

In this section, the results are presented as follows: first the choice of UBEM capabilities from the
features listed in the four reviews are justified, then the individual affordances are constructed in the
context of EC lifecycle phases, for goals of meeting progression factors, for EC planners as users and
from UBEM capabilities as the affording agents. Due to inconclusive matching of progression factors
to use-cases, the use-case as a context was not used (see Section 3.3). The section concludes with the
disaggregation of results to EC phases.
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The choice of UBEM capabilities is justified by the sparseness of agglomerative hierarchical
clustering and the correlation matrix of capabilities. Clustering shows that the tools are generally distinct,
as clusters only start to form at around 2.0 average distance, while all tools can be covered at 4.0 average
distance (Figure 20). If four groups were to be generated—as shown in the figure—the threshold
average distance would have to be set for 3.5, and this would still yield 6 unique tools (UrbanOPT [107],
COFFEE [108], UrbanFootprint [109], CoBAM [110], SEMANCO [111] and OpenIDEAS [112]). The most
similar tools at 2.0 average distance are UMEM [113] to MESCOS [114] and Georgia University [115] to
Simstadt [79].

Figure 20. Agglomerative hierarchical clustering of UBEM tools by capabilities.

This result is also supported by the pairwise correlation of capabilities that show how often two
capabilities share the same tool (Figure 21). It is notable that the correlation matrix is sparse and the
only strongly correlated (coefficient higher than 0.7) pair is target groups: urban planner, and target
groups: policymaker. They appear together in 81.67% of the tools.

In this framework, the capabilities for the 22 tools which remained after the data extraction were
filled in (Appendix B), and affordances were constructed accordingly. A total of 5 affordances were
generated, responding to 45 of the 49 progression factors (Table 10). The individual affordances are
described below.
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Figure 21. Pairwise correlation of UBEM capabilities. Colder colour indicates a capability consistently
appearing together for tools.

Table 10. Identified affordances in relation to constituent capabilities and related goals (progression
factors).

Affordances UBEM Capability Progression Factor

Accessible transparent and
relevant early-stage

spatiotemporal predictions.

Free, Web-based

Awareness
Trust

Transparency
Bridging capital

Informational barrier
Inertia, passivity

Opposition, scepticism
Relational goods social value, empowerment

Reliance on volunteers/lack of time

Hybrid or reduced order
bottom-up,

Over-hourly resolution.

Transparency
Pre-existing knowledge and skills,

Specificity,
Active involvement,

Helps with finding synergies
Natural pre-conditions
Physical pre-conditions
Opposition, scepticism

Relational goods social value, empowerment
Data quality
Self-identity

Diverse range of energy services

Energy poverty threat
Social scalability
Input legitimacy

Active involvement.
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Table 10. Cont.

Affordances UBEM Capability Progression Factor

Coupling impacts to heterogenous
needs

Economic outputs

Market transaction cost optimization
Quality assurance

Financial incentives
External financial incentives/lack of funding

Broader social impact/benefit
Market concentration

Political landscape: inconsistency, engagement, support
Community problem field

Cost

Bottom-up approach,
Co-simulation,

Sub-hourly output, District scale,
Diverse range of energy services

Rebound effect
Social scalability

Broader social impacts/benefits
Market transaction cost optimization

Physical preconditions
Natural preconditions

Articulate shared mission
Market concentration

Input legitimacy
Cost

Specificity
Identifying and engaging the appropriate networks

Peer preferences optimization

Quick feedback from coarse data

Desktop based Privacy

Top down, over hourly, City scale
Land use and building code regulation

Reliance of volunteers/lack of time
Cost

Multi-scale detailed analysis
Bottom up stochastic, Sub-hourly
output resolution, District scale

Multi-bilateral contracting
Ambiguity of network

Economic outputs Legal and regulatory obstacles

Grid simulation
Co-simulation, Sub-hourly output,
Diverse range of energy services,

Energy generation modelling,

Microgrid
Grid congestion

Market concentration

3.4.1. Accessible Transparent and Relevant Early-Stage Spatiotemporal Predictions

An UBEM tool with web-based interface can afford to provide more accessibility, to its users
than its standalone desktop-based counterparts and therefore helps in achieving awareness, trust,
transparency, avoiding opposition, scepticism, helps in bridging capital and solving the information
barrier, inertia and passivity and the reliance on volunteers. UBEM tools with hybrid or reduced order
bottom up approaches are the most capable to calculate and iterate quickly and to work in data scarce
environments. Calculating outputs in over-hourly resolution fosters the time- and computational
efficiency further. With these capabilities UBEM tools can afford to provide transparency, existing
knowledge and skills, specificity to the market, self-identity, active involvement, embeddedness and
robust network, helps with finding synergies, natural and physical pre-conditions, data quality and
provide quick granular data against opposition and scepticism.

Co-simulation platform architecture provides modularity and scalability for the platform.
This modularity and the modelling of different energy services, on both supply and demand side
with visualization capabilities can solve energy poverty threat, find synergies, define social scalability
and input legitimacy and foster active involvement, embeddedness and robust resilient network by
representing relevant spatiotemporal data. Since modelling of different energy services on supply
side and other energy fluxes is an inherent capability, and modular software architecture is also more
characteristic by USEM tools, therefore an USEM tool can satisfy the needs described at this affordance.

3.4.2. Coupling Impacts to Heterogeneous Needs

When it comes to modelling behavioural and technological changes in an energy community
bottom-up approaches are far superior than top-down approaches. Bottom-up approaches with
sub-hourly outputs on neighbourhood level can model multiple energy services both demand and
supply side and generate wide range of output types. With this a wide range of granular data can be
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generated which provides specificity and allows actors to understand the causes of rebound effect, helps
in the technological side of social scalability, market transaction and cost optimization, defining physical
and natural preconditions, articulate share missions, mapping broader social impacts/benefits, costs,
identifying and engaging the appropriate networks and helps with input legitimacy. An econometric
model coupled with UBEM can immediately valorise the generated data, and analyse the results
in line with the economic macro-environment or community problem field, and this way affords
to give help with financial incentives, external financial incentives/lack of funding, analysing the
inconsistencies, engagement and support in the political landscape, costs, provide quality assurance
for prices, optimize market transaction costs, identify broader social impacts/benefits. Co-simulational
tool architecture can afford modularity and scalability, which suggests that tools built this way could
afford the transition into a real-time decision support system during operational phase with a higher
probability. Since modelling of different energy services on supply side and other energy fluxes is
an inherent capability, and modular software architecture is also more characteristic by USEM tools,
therefore an USEM tool can satisfy the needs described at this affordance.

3.4.3. Quick Feedback from Coarse Data

As bottom-up models are better at generating detailed data, top-down models usually create
outputs quicker and can work with coarse statistical data. With over-hourly outputs on a city scale this
method can afford to inform land use and building code regulations, provide data to help with the
present reliance of volunteers, and can analyse cost efficiencies. Desktop based tools are able to provide
data offline, and therefore they can offer a highest level of privacy than web-based ones. An UBEM
tool can satisfy the defined progression factors at this affordance.

3.4.4. Multi-Scale Detailed Analysis

Bottom-up approaches are generally better at scenario analysis. With sub-hourly or hourly output
resolution bottom-up models which are capable of taking occupant behaviour into consideration
can afford with the help of econometric model to provide an analysis of the network ambiguity and
fundamental boundary conditions for multi-bilateral contracting also able to help removing legal and
regulatory obstacles with price analysis of different energy vectors, and therefore helping economic
standardization. An UBEM tool can satisfy the defined progression factors at this affordance.

3.4.5. Grid Simulation

Co-simulational scalable, and modular software architecture allows higher flexibility, while
sub-hourly output resolution, heterogeneous energy generation and energy services modelling means
detailed energy supply and demand results. With these capabilities, tools can afford microgrid
simulations, grid congestion analysis and therefore attracting DSOs and end market concentration.
Grid-simulation can be part of an USEM tool, therefore here an USEM tool is able to satisfy the needs
defined at this affordance.

3.4.6. The Analysis of UBEM Tools by EC Lifecycle

Pairing UBEM capabilities with EC life-cycle stages results in the following table (Table 11).
In every column, the highest amount of progression factors is highlighted with bold and in every row
the highest amount of progression factors is highlighted with shading. The results show that accessible
transparent and relevant early-stage spatiotemporal predictions respond to the highest amount of
progression factors. This is followed by coupling impacts to heterogeneous needs. Other combinations
respond to between 1–3 factor each lifecycle phase. It also shows that initiation phase is most well
responded to by UBEM capabilities, followed by design and social upscaling, while operation and
technical upscaling are least represented.
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Table 11. Impact of affordances by energy community lifecycle phase. Shaded cells indicate highest
value in row, italic text indicates highest value in column.

Affordances Initiation Design
Social

Upscaling
Technical
Upscaling

Operation

Accessible transparent and relevant
early-stage spatiotemporal predictions. 14 factors 11 factors 10 factors 7 factors 7 factors

Coupling impacts to heterogeneous needs 14 factors 11 factors 8 factors 6 factors 6 factors
Quick feedback from coarse data 3 factors 2 factors - - 2 factors

Multi-scale detailed analysis 2 factors 1 factor - - 1 factor
Grid simulation 2 factors 1 factor - - 1 factor

4. Discussion

4.1. Limitations

Known limitations must be considered when reading the results. First, new knowledge given in
this study is based on secondary information (reviews). While the progression factors, EC lifecycle, and
main use-cases were empirically grounded, the corresponding affordances of UBEM capabilities—and
thus the answer to the research question—still needs to be proven through case studies. Second,
the development of UBEM tools compared to their original papers are not always comprehensively
documented, therefore some information may be outdated and actual UBEM platforms may have
more capabilities than described here. In addition, the utility of clustering progression factors by
use-case is limited, due to lack of literature on the more unconventional use-cases beyond renewable
energy communities. Additionally, limiting the research to western countries introduce a bias for
both the progression factors themselves, and their metadata. Further studies, investigating Asian,
Latin American and African initiatives could uncover different challenges and enablers, identifying
context-specific progression factors for EC development. It must also be noted that the regulatory
conditions for the normative alignment of RECs is about to change in the EU, as Member States
commitments stated in their National Energy and Climate Plans [103]. This translates to both
regulatory/policy factors and economic factors, as there is a recent, clear political statement in support
of RECs, which will likely carry over to incentives. However, it is unclear whether and how this
translates to other and hybrid use-cases of ECs. While there is a more general CEC and a more
restrictive REC definition in EU legislation, if policy goals do not mention for instance community
storage, then government subsidies will not be designed for them, their legal entry barriers will still
exist, which hinders CES initiation. Therefore, the results (progression factors) must be read per
use-case, as not all apply with equal weight. This amplifies the significance of not being able to group
progression factors by use-case properly. It is advised for further case studies of novel EC use-cases to
document their unique progression factors. Regarding policy, it is recommended that EC definition,
and thus related policy instruments are differentiated by use-case. Additionally, the concept of CECs
could be appropriated to support experimental, proto-ECs with a legislative pathway to evolve them
into more specialized EC categories as their use-cases mature.

4.2. Reflection on Research Questions

The first research question referred to the common use-cases of energy communities, which are
described in Section 3.1. While a majority of ECs are renewable energy communities, there is an
abundance of ways actors can cooperate on energy-related matters. There are also obvious synergies
among use-cases for hybrid, or multi-purpose energy communities to be developed. Some ECs already
diversify their services, such as acquiring storage after saving up from energy sales revenues [14,89,90].
On the one hand, this trend points to a potential for existing ECs to pilot new unique or hybrid
use-cases, leapfrogging some of the initiation-exclusive progression factors and accelerating EC uptake.
On the other hand, more research into the development, drivers and barriers of novel use-cases are
needed. Especially when it comes to hybrid use-cases and multi-purpose ECs, both the progression
factors influencing the projects and the impacts will be a result of multiple interacting core activities.
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It has been noted in previous reviews that such assessment is a research gap [2,6], and this study has
found only one article discussing co-impacts [55].

The second research question referred to the various progression factors of ECs, collected and
compiled in Section 3.3. A full classification of progression factors is presented in Appendix A. Due to
limitations mentioned above, only one essential classification can be considered conclusive: by lifecycle
phase. While the case studies and reviews identified four distinct phases (see Section 3.2), the analysis
of progression factors revealed a clear distinction between operation and all other phases. This is
reasonable, considering operation refers to the continuity of some form of status-quo, while initiation,
design, early implementation, and various further developments are changes in the status quo. Most
progression factors refer to initiation either exclusively or together with other phases. In reflection
to the practical objective of supporting EC planners and policymakers, the EC progression factors
by lifecycle phase are summarized on a project lifecycle wheel, reflecting the weight of each phase
(Figure 22).

The third research question referred to the utility of UBEM tools in the various lifecycle phases
of ECs, which is described in Section 3.4. It was shown that free, web-based hybrid or reduced
order bottom-up models with over-hourly output resolution and heterogeneous output types and
energy service modelling are most suitable for social upscaling; while bottom-up co-simulation model
with an econometric model, sub-hourly output and diverse range of energy services modelling on
district scale and the aforementioned tool are equally the best suited for initiation. There is only
one existing tool for the former CityBES [116], and several for the latter HUES [117], UMEM [113],
MESCOS [114]. In general, most UBEM capabilities deliver affordances for initiation and design stages,
where most progression factors are. This also feeds into the main research question, whether UBEM
is a technological trigger. The potential of UBEM, and UBEM-based simulation pipelines lie in the
fact that they offer flexible decision-support in the earlier stages of projects, and whenever they are
further developed. While decision-support for the operation of energy communities would require
short term dynamic predictions on high resolutions to optimize the operation of energy communities,
UBEM is a far more cost-efficient, early-stage alternative, requiring less input data and returning
easy-to-understand outputs. To provide a quick tool for EC planners, the UBEM capabilities to look for
based on progression factors, is summarized on a bipartite graph (Figure 23).

Reflecting on the second practical objective, recommending a development direction for UBEM,
the trends in EC use-cases (see discussion above, based on section) make a good argument to invest in
UBEM tool agility. The most impactful modelling capabilities were output resolution, output diversity,
modularity and web deployment. Resolution on sub-hourly levels is necessary to forecast interactions
on P2P energy markets, as trading usually occurs with 15-min frequency [27]. Output diversity
and modularity becomes important with the diversification of energy community use-cases, and
the growing prevalence of multi-purpose communities, such as green neighbourhoods. The value
of UBEM tools is likely going to be determined by how many intertwined inputs and impacts do
they handle, whom can be convinced with the evidence simulations provide. In other words, UBEM
needs to respond well to in- and output diversification. This is why all affordances are met by
USEM tools, whereas only two out of five are met by UBEM-only tools. Tools that either integrate
UBEM with other models, such as City Energy Analyst [118], LakeSIM [119], CitySIM [120] and
UrbanFootprint [109] with in-built transportation models, or tools that are modular and technically
scalable, such as SEMANCO [111], UMEM [113], will be better suited to deliver diverse outputs
reflecting EC use-case diversification. However, scalability to diverse, often uncertain and low-quality
input data, which necessitates robust modules for data ingestion and pre-processing, is still something
UBEM pipelines struggle with [121]. Finally, apart from architecture and functionalities, accessibility
to users is also crucial, as seen by the performance of web-based tools versus desktop tools. While this
was not explored as modelling tools are designed for engineers, user friendliness could be a pivotal
improvement in the EC context. Given that laypeople gain formal powers and responsibilities in the
EC model, tools in the future could support simple functionalities for users outside a niche of experts.
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Figure 22. Energy community lifecycle wheel: distribution of progression factors by lifecycle phase.

Finally, reflecting on the research of energy communities, affordances have been a seamless
addition to the conceptual frameworks of transition theory, multi-level perspective (MLP) and strategic
niche management, as a missing link between the capabilities of enabling technologies, and the
challenges posed by socio-technical transitions. We argue that technological affordances deserve an
equal footing with institutional design and behaviour change, among factors that enrich any niche
concept, be it a fundamentally technical, or a fundamentally social niche. Furthermore, the concept
of MLP substantiates the influence of energy communities and UBEM tools on the user behaviour
and preferences, which can gradually change the extraneous forces of the landscape, such as climate
change. More articles need to be written on the role of technological affordances in fostering sustainable
socio-technical transitions, with a special attention to disruptive technologies.
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Figure 23. UBEM-EC matchmaker: bipartite graph pairing UBEM capabilities to progression factors
by colour.

5. Conclusions

The study explored the potential role of urban building energy modelling in enabling the research
and planning of energy communities. The conceptual framework of strategic niche management in the
transition theory discourse was amended by the notion of affordances, to provide the missing link
for studying technology as a trigger for social innovations. The literature on energy community was
probed to reveal the diverse use-cases, general lifecycle and progression factors encompassing enablers,
conditions and barriers of energy communities. The literature on urban building energy modelling was
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investigated to identify tool capabilities that afford specific progression factors. The study revealed
that as an early-stage decision- and design-support tool, UBEM is a potential technological trigger to
support kickstarting energy communities.

Energy communities are promising social instruments to invest in accessible, clean energy sources,
system-level energy efficiency and offer a bottom-up path to low-carbon urban energy systems.
This study unveiled UBEM as technological instruments for energy communities. As a step in the
convergence of engineering and socio-technical discourses, it contributes to the task of transition
studies of bridging social and technological innovations for a low-carbon future.

Supplementary Materials: Python-based in-house data science module “padron” was used for
agglomerative hierarchical clustering and visualizations. The specific code used is available
online at https://github.com/bvabud/Project_Ence, Agglomerative clustering notebook for progression
factors: ec_progression_factor_classification_CODE, Agglomerative clustering notebook for UBEM tools:
ubem_tool_classification_CODE.
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Abstract: It is important to understand residential energy use as it is a large energy consumption
sector and the potential for change is of great importance for global energy sustainability.
A large energy-saving potential and emission reduction potential can be achieved, among others,
by understanding energy consumption patterns in more detail. However, existing studies show that it
requires many input parameters or disaggregated individual end-uses input data to generate the load
profiles. Therefore, we have developed a simplified approach, called weighted proportion (Wepro)
model, to synthesise the residential electricity load profile by proportionally matching the city’s main
characteristics: Age group, labour force and gender structure with the representative households
profiles provided in the load profile generator. The findings indicate that the synthetic load profiles
can represent the local electricity consumption characteristics in the case city of amsterdam based on
time variation analyses. The approach is in particular advantageous to tackle the drawbacks of the
existing studies and the standard load model used by the utilities. Furthermore, the model is found
to be more efficient in the computational process of the residential sector’s load profiles, given the
number of households in the city that is represented in the local profile.

Keywords: modelling; Wepro model; residential; household; electricity; load profiles; LPG; ALPG

1. Introduction

The residential energy sector plays a crucial role in achieving greater energy efficiency and
emissions reduction goals. Studies have suggested that residential energy use is of great importance in
ensuring global energy sustainability, given its energy-saving potential [1,2]. The International Energy
Agency (IEA) has calculated that the residential sector contributes about 25% of energy consumption and
17% of carbon dioxide (CO2) emissions globally. It is therefore, essential to understand the residential
energy consumption patterns locally to allow for an assessment of the energy-saving potential in the
sector. However, lack of accessibility to measured high-resolution electricity consumption data at the
city level such as smart-meter data and time use survey (TUS) data makes it difficult to understand
the characteristics of electricity consumption locally. Research into this aspect will improve our
understanding of residential electricity load profiles, which can be used to achieve improvements in
energy efficiency as the residential sector has a major potential for energy savings [3]; to reduce CO2

emissions as extensive studies have identified that household behaviour has a significant impact on
consumption and emission [3,4]; and to optimise energy management [5] as these types of studies have
supported transmission grid planning for better energy management [5,6]. This suggests that energy
policy should vary depending on local characteristics. Trends towards small scale renewable electricity
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generation and introduction of heat pumps and electric cars are changing the local energy system.
Furthermore, policies towards developing Positive Energy Districts (PEDs) support the relevance of
studying electricity load profiles at the district level [7]. Therefore, a computational method is required
to handle a large number of population datasets and handle the granularity of the data. To scope the
focus on end-user consumption, it is important to measure residential electricity consumption per
unit accurately with respect to time, or so-called ‘temporal resolution’. ‘Temporal resolution’ refers to
the granularity of the data-sampling rate, which may be more or less equal to the acquisition rate by
meter [8]. The key in temporal-resolution load-profile models of residential electricity consumption
is to emphasise identification of the resolution that represents the essential local characteristics and
consumption behaviour [8,9]. The importance of temporal resolution load profiles is that they ensure
the accuracy of calculations of self-consumption and are able to optimise short-term fluctuations
of electricity supply and demand [10]. The temporal-resolution load-profile method is the focus of
our work.

We propose a simplified approach which uses a weighted proportion (Wepro) model to synthesise
the residential electricity load profile at the city level, by utilising existing household load profile
generators such as load profile generator (LPG) and artificial load profile generator (ALPG). The model
requires some limited input parameters at the city level: the citizens’s age groups (AG), gender (GD)
structure, and labour force (LF) composition. This weighted method is widely used across many
sectors to proportionately reweight values especially in relation with population statistics. This model
can be applied for synthesising a residential electricity load profile by proportionally matching the
city’s main characteristics with the representative household profiles provided in the load profile
generators. This simplified method can tackle the drawbacks of the existing studies that require many
input parameters or disaggregated individual end-use smart meter data to generate the load profiles
and the drawbacks of the standard load model used by the utilities. It is also mentioned in [11] that
distribution system operators (DSOs) use rough estimations with respect to the worst-case situations
for modelling the residential load models which are important in their network planning processes
and in defining a standard daily load profile. Although in practice, it is challenging to validate our
results with measured data, since the measured data at the city level are mostly unavailable.

1.1. Load Profile Modelling Methods

There are different methods for modelling load profiles with top-down [12,13] or
bottom-up [3,14–22] approaches. As mentioned, extensive studies have shown that the data availability
is the main drawback of the approaches as they both require many input parameters or detailed
aggregated input data of homogeneous activities. Our work applies a different approach where it
presents a combination of a top-down approach with a few input parameters, which use general
statistics information of a city and a bottom-up load model with high temporal resolution data. It simply
utilises the existing household load profile generators that have covered the detailed disaggregated
input data in relation with behaviour, occupancy, time-use appliances and other related variables.
The fixed input parameters of the city will be matched and adjusted with the representative household
profiles proportionally.

Many load profile studies [3,14–17,19–21] have applied the occupancy model, behavioural aspect
and time-use of electrical appliance in their methods, where certain studies [14,15] emphasize more
the psychology model of individual behaviour, which makes the pre-defined household profile more
detailed and provides vary profiles. Some models are simulated based on stochastic models [18–20].
Besides focusing on the household load profiles, some studies aim at generating the load profiles at the
city level or a higher level than household level [12,20,21]. In this context, the load profiles researches can
be expanded from the temporal analysis to the spatial analysis such as performed in these studies [12,21],
which could be one of our future interests. In addition, another approach of modelling residential
electricity demand is to use a microsimulation method. In this case, the shifting from aggregate
distributions to decision making units at the individual level is the main core of microsimulation
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modelling (MSM) [23]. MSM is characterised by a large-scale simulation, spatial behaviour in relation
to energy consumption and interaction is the main feature of spatial environment. In consequence,
the dynamic migration of the population will be simplified by the model [3]. While in our work,
we model the population’s variables: age group, labour force and gender structure. However,
spatial interaction is not the main concern of our work.

The load profiles outputs are presented as high-resolution data. Existing energy studies
were generating 60-min output data [6,21,22,24–29] and one-minute resolution data [14,16–20,30].
Some works [14,15] have provided a more detailed output in one-minute resolution at once generated
60-min report data. In our work, hourly temporal resolution data are provided to compare residential
electricity consumption profiles based on seasonal variation, monthly variation and days variation.
Seasonal variation in this case refers to the cycles of the season: Winter, Spring, Summer and Autumn.
While the typical seasonal days are the selected days to be modelled in each season both weekdays and
weekend. For example, we will select to model the one weekday and one weekend in Winter, Spring,
Summer and Autumn seasons.

In generating the synthetic household load profile, extensive studies have proposed and
demonstrated the models, and some of them [14–18,20,21] have also developed a simulator or
generator. In this work, we focused on two household profile generators that have developed based on
the closest dwelling profile to our case study: amsterdam (The Netherlands). The main reasons we
selected to use LPG and ALPG in our model, because both of them are developed based on behavioural
model, and having one detailed model as LPG and one simpler model as ALPG may represent the
different variation.

Moreover, validating the accuracy of the generated load profiles is a challenging work due to the
limited available measured data to compare with. ALPG compared it’s synthesised load profiles data
with measurement data over a year from transformers and households of 81 connected households
located in Lochem (The Netherlands) [16,17]. Twenty two measured dwellings in United Kingdom
were also used to validate a study of domestic electricity use [18]. LPG validated the generated load
profiles data on different criteria: Plausibility check, yearly energy consumption and duration load
curve value in comparison with smart meter data rollout in Germany by Institut für Zukunfts Energie
Systeme (IZES). Some studies [19,20,30] used TUS data or other independent datasets as a measurement
to validate the synthesised data. Most of the studies [14,16–18] presented matched results between the
generated load profiles and the measured data.

Unfortunately, as our work is focused on the city level, it is more challenging to validate the
synthesised data with the measured data because the measured data should be a comprehensive dataset
that represents the city’s data. Finding the available measured data of the case study is challenging,
mostly due to the privacy issues, cost and the measured data should represent a city’s residential sector
by the households’ amount in the city and to make sure that the residential dwellings are located
inside the selected city. It easier to find the measured data of some households or residential data at the
neighbourhood level as used in the validation of the mentioned studies [14–16,18], or if the TUS data at
the city level has existed. As an overview, there are three available measured electricity consumption
data at the national level or obtained from various locations in The Netherlands. A measured
smart-meter data of 80-households in The Netherlands is available with hourly resolution at https:
//www.liander.nl/partners/datadiensten/open-data/data. In fact, these data are not considerable enough
to represent a real measured data for the amsterdam residential load profile. These 80 households’
locations are also undefined and require a pre-processing task since missing values exist in the dataset.
Moreover, the year we modelled is 2015 and in 2015, a large section of amsterdam still used traditional
meters, therefore hourly data was not available. Besides the strict privacy laws in The Netherlands,
time and cost are the main considerations in obtaining smart-meter data if they are not open data.
The requires time and resources to approach every customer or household, which make the cost to
obtain the city’s measured data relatively high. A national time-series electricity consumption data
is also available at Open Power System Data [31]. The source of the data is provided by ENTSO-E
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Transparency platform [32]. The European Network of Transmission System Operators (ENTSO-E)
represents most of the electricity Transmission System Operators (TSOs) across Europe. In fact, the data
consists of all sectors: residential, industrial and others which is also required to be synthesised if
we want to take the residential part of this national load profile. In fact, amsterdam might have a
different residential profile load profile than the national’s residential profile. The third dataset is the
residential electricity load profiles dataset provided by NEDU [33], which will be presented in the
Section 4. Therefore, a future study would be followed to improve current work when there is more
data available. In addition, Table 1 provides an initial overview of the important categories in the load
profiles studies based on the discussion in the related works.

Table 1. Overview of the detail load profile modelling methods based on the discussion provided in
the related works’.

Category References

Approach
Bottom-up [3,14–22,28]
Top-down [12,13]

Methods
Stochastics model [18–20]
Machine learning techniques [4,8,34,35]
Others

Load profile’s aspect
Behavioural [3,14–17,19–21]
Behavioural-psychology [14,15]
Time-use [3,14–17,19–21]
Occupancy [3,14–17,19–21]

Load profile’s output
Model [3,14–17,19–21]
Both: Model and simulator or generator [14–18,20,21]

Output’s resolution
One-minute [14–20,30]
Hourly [6,11,14,15,21,22,24–29]

Validation
Measured data: Smart-meter data, utilities

data [14–18]

TUS [19,20,30]
Specific validation method or algorithm [14,15]

Scope
Household level [3,14–17,19–21]
Local level [12,16,17,20,21]
Both: Household and local level [12,16,17,20,21]

Load profile’s type
Temporal profile [3,14–17,19–21]
Temporal profile and spatial profile [12,21]

Country
The Netherlands [11,16,17,36]
United Kingdom [18,20]
Germany [14,15]
Others [12,34,35,37]

Furthermore, some case studies have employed data-mining techniques to identify residential
electricity load profiles [4,8,34,35]. Recent studies have proposed data-mining-based methods such as
K-means [4,29,34], hierarchical [29,35] and fuzzy algorithms for purposes of electricity load profile
modelling [29]. A clustering-based framework to analyse household electricity consumption patterns
using a k-means algorithm has been proposed for a study conducted in China. The clustering method
was selected since the electricity consumption patterns in the data were relatively smooth. A k-means
algorithm was applied because it works considerably faster than other cluster algorithms, and it was
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easier to interpret the clustering results. The analysis was conducted in three consecutive stages:
holidays, seasonal and shifting phenomena [34]. Similarly, our study also clusters the load-profile
analysis into three stages: seasonal, monthly and typical seasonal days. Another case study in China
employed hierarchical clustering, which is widely recognised in the context of pattern recognition,
because it is easy to operate, efficient and practical [35]. A quantitative analysis approach based on
association rule mining (ARM) was proposed in [4] in order to identify the impacts of household
characteristics (HCs) on residential electricity consumption patterns. In any case it is assumed that the
load profile data on weekdays are somehow more typical and significant than those on weekend days,
while our work has covered both the weekday load profiles and weekend day load profiles through
selected typical days [4].

A range of statistical analysis methods have also been applied in order to model residential
electricity load profiles [6,28,37–39], including determination of the key drivers of residential peak
electricity demand. Some studies provided panel datasets including data from smart-meters [24,26,40].
A model was developed using Australian data for the greater Sydney region to analyse and model
residential peak demand by providing both daily and seasonal patterns [37]. The analysis was in
line with the results of multiple studies showing that peak residential electricity consumption was
significantly influenced by the climate and the demand for cooling. In another study, hourly residential
electricity consumption was used to estimate the Monte Carlo stochastic building-stock energy model
of the dwellings in the sample and the climate data sources [28]. An error analysis was performed using
normalised root mean square error (NRMSE), normalised mean absolute error (NMAE), maximum
absolute difference (MAXAD) and maximum relative difference (MAXRD). The results from the
modelling were validated using the hourly energy equations and electricity consumption data and the
uncertainty of the Monte Carlo model was calculated using multiple runs as a sample. When combined
with knowledge of user behaviour, this bottom-up building-stock approach, which uses energy
performance certificate (EPC) databases, can be used to estimate aggregate mean hourly electricity
consumption. In this case, calibration was required to develop urban energy models. This also
indicated that the outdoor air temperature had a significant influence on the model [28].

1.2. Electricity Consumption Studies in The Netherlands

As an overview, some studies in relation with the electricity consumption in the case study’s
country are provided. The household electricity consumption constitutes approximately twenty
percent of the total energy consumption in The Netherlands [41]. Behavioural profiles of electricity
consumption can be determined according to Dutch household and dwelling characteristics [16,17,42].
A study based on collected questionnaires relating to the dwellings above in winter 2008 showed that
household size, dwelling type, use of dryers, washing cycles and number of showers influence electricity
consumption significantly [43]. Furthermore, a model-based analysis [41] has been performed to
explore the effects of smart-meter adoption, occupant behaviour and appliance efficiency on reducing
electricity consumption in relation to CO2 emissions in The Netherlands. The paper looked at
electricity consumption by end-users, projecting the best- and worst-case scenarios for carbon intensity
annually. All cases assumed that carbon intensity would not increase in the future under current
Dutch and European policies [41]. A real-life assessment of the effect of smart electrical appliances
was conducted among Dutch households with a dynamic electricity tariff, an energy management
system and a smart washing machine [29]. The results showed changes in laundry behaviour and
thus electricity usage. The households regularly used the automation that came with smart washing
machines [44]. The results of the study are interesting and could be a focus in our future work.

In relation to the residential Dutch load profiles, a recent study includes the local impact of an
increasing penetration of photovoltaic (PV) panels and heat pumps (HPs) using the load measurements
from three Dutch areas. It shows that the average daily load profile, without photovoltaics (PVs) and
heatpumps (HPs) in all areas resembles the standard residential load profile. However, because of
a shift from gas to electric stoves the time of peak load occurs earlier in the day [11]. We have also
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mentioned another profile generator ALPG [16,17] in our review, which is applied in our model. It is
an open source load profile generator developed based on Dutch dwelling setting. The generated load
profile is compared with measured data in Lochem (The Netherlands) over one year. It indicates a
similar statistical trend, although some minor differences were identified, for instance the static stand-
by power usage from the ALPG is too flat [16].

In brief, our contributions in this paper are the following: (1) We have developed a simplified
method for modelling residential electricity load profiles in cities using Weighted proportion (Wepro)
model that reflects local characteristics. (2) We introduce a practical and efficient approach to synthesize
electricity load profiles, which does not require many input parameters or disaggregated individual
end-uses input data to generate the load profiles. (3) We assess residential electricity load profiles
based on time-division concepts: seasonal variation, monthly variation, typical seasonal days and
hourly variation. The approach adopted here is illustrated the application in the case study with simple
examples of the proportion adjustments of the city’s profiles and household’s profiles.

The rest of the paper is structured as follows: Section 2 describes the research design; Section 3
presents the results, which is the application of the method for the amsterdam case; Section 4 evaluates
and discusses the results; and Section 5 concludes the paper and present the research implications for
future work.

2. Materials and Methods

The proposed method consists of four phases: data collection, data pre-processing, data-modelling
and load-profile analyses. Data collection can be challenging, frustrating and time-consuming,
especially when we want to acquire high- resolution time series data. In order to generate the hourly
profile of residential electricity consumption in cities, it is required to provide city’s main input data on
population information such as on gender, age groups and labour force. Furthermore, it is essential
to identify the required dataset or information such as national holidays per year, solar irradiation
dataset and outdoor temperature dataset. All these data should cover the same periods of time. In this
work, the proposed model is validated by the case-study city of the H2020 ClairCity project presented
here, namely amsterdam (The Netherlands). ClairCity is a research project modelling air pollution and
carbon emissions. The project identifies current air emissions or pollutant concentrations by technology
and citizens’ activities, behaviour and practices in six pilot cities or regions: amsterdam, Bristol, Aveiro,
Liguaria, Ljubljana and Sosnowiec. The aim is to develop locally specific policy packages in which
clean-air, low-carbon, healthy futures are quantified, modelled and analysed [45–51].

In data collection and pre-processing phases, it is important to study the latter comprehensively,
as it can improve data quality and the accuracy of the result [52]. Data corruption, missing values and
outliers are the commonest problems in data-processing [52,53]. In general, there are four tasks in data
pre-processing: cleaning, transformation, integration and reduction [52,54,55]. Table 2 summarises the
common problems of data pre-processing tasks and their solutions:

In this work, the data collected from amsterdam (The Netherlands), are in the form of a panel
dataset, which is a cross-sectional data sample at specific point in time [52]. The panel dataset consists
of information on age groups, the gender structure of each age group, the labour force, national
holidays, solar irradiation and temperature datasets. The information on age groups, gender and the
labour force are obtained indirectly [56–58] from Central Bureau Statistics (CBS, The Netherlands).
In this case, we have elected to model the load profile for 2015. The population age is grouped
into three groups: 0–17 years old, 18–64 years old and above 64 years old. The unemployment
rate is recorded as 6.7% [56]. The labour force and age groups data are not in the form of datasets.
Both of them provide information on the share of employment and unemployment, and the share of
population’s age groups and gender structure in the city, during the selected period. Therefore, there is
no pre-processing technique is required in this case as well as for the solar irradiation dataset provided
in ALPG. Data on public holidays are integrated into LPG’s model as one of the independent inputs,
like the temperature dataset. The temperature dataset and solar irradiation dataset are retrieved from
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the Royal Netherlands Meteorological Institute (KNMI), the official Dutch national weather service.
More specifically for temperature, we selected the data from the 240 Schiphol weather station, which is
the nearest station to amsterdam and is in the same region of Noord-Holland. In this dataset, there is
no missing values, noisy or inconsistent data. A reduction technique is applied, since the station code
variable is not required in the modelling tool. Furthermore, due to the different standards between
the data source and LPG’s format. We transformed the dataset from .txt to .csv by reducing the first
variable, station code, and normalising the temperature value. As mentioned, we have done data
pre-processing tasks and documenting our specific work in relation to the data pre-processing steps in
more details is in preparation.

Table 2. Data pre-processing: The tasks perform in data pre-processing include their common problems
and solutions of these problems [52,55].

Task Problem/Issue Solution/Technique

Cleaning
Missing data

Ignore the record
Determine and fill in the missing values manually

Use an expected value

Noisy data
Binning methods

Clustering
Machine-learning

Inconsistent data External reference
Knowledge engineering tools

Transformation Different format, scale or unit
Normalisation
Aggregation

Generalisation
Integration Different standards among data sources Combine data into a consistent database
Reduction Complex analysis or unfeasible Reduce unnecessary observations, variables or values

2.1. Data Modelling

In the data modelling we will apply the Wepro model to synthesise the residential electricity load
profile at the city level through the household profile generators namely LPG and ALPG.

2.1.1. Weighted Proportion (Wepro) Model

The Wepro model is a simplified approach to model residential electricity load profiles in cities
by adjusting and matching the proportion of city’s weighted profiles with the households’ profiles
through the existing household profile generators. First, it is necessary to collect information on
the citizens’ age groups (AG), gender (GD) and labour force (LF). In this case, a figure for annual
electricity consumption is not required, since we only focus on providing the share of hourly electricity
load profiles. Second, we coupled the share of age groups and labour force and applied this share
to proportionally fit the total population. The population is categorised into three groups by age:
0–17 years old, 18–64 years old and over 64 years old. Thus, the sum of the composition of these age
groups represents the city’s population by age group is expressed in Equation (1):

Tag = AG1% + AG2% + AG3% (1)

where Tag is the total share of the age groups’ share in the city. AG1 is the age group for people aged 0
to 17, and AG2 for people aged 18 to 64 and AG3 for people over the age of 64. In more detail, each age
group has gender information, although we can also identify gender information at the higher level of
the age groups, giving totals for each gender in the city. In this model, more details on the gender
composition of each age group is required as expressed in Equation (2):

Tm f = Ml% + Fm% (2)
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where Tmf is the total share of male’s share and female’s share in the city. Ml is Male and Fm is
Female. We also need to identify the city’s labour force composition. The shares of employment and
unemployment represent the city’s labour force is formed in Equation (3):

Tl f = Em% + Un% (3)

where Tlf is the total share of employment’s share and unemployment’s share in the city. Em is
Employment and Un = Unemployment. The labour force data are measured on the basis of the labour
force population, which is only derived from one of the age groups. In this case, the labour force is
included in AG2 = 18–64 years old. Here the labour force is the proper set of age groups, labour force
being an aspect of the age groups but not equal to age groups as shown in Equation (4):

AG = {AG1, AG2, AG3} and LF = {AG2}

LF ⊂ AG (4)

As mentioned, we employ the household profile generators in this case LPG and ALPG to generate
the household load profiles. The first step is to select the household profiles to be modelled by the
profile generators. The fundamental consideration is that the selected household profiles in the profile
generators should represent the city’s characteristics in term of age groups, gender structure and
labour force, this being the focus of our study. This means that the selected household profiles should
represent the city’s profiles proportionally as depicted in Figure 1.

Figure 1. Weighted proportion structure of the city’s main parameters: age group, labour force
composition and gender structure.

• Capacity, fairness of allocation and rounding number

We apply the capacity model based on the amsterdam’s age groups share in Figure 1 for selecting
which household profiles to be modelled. The main goal is to determine the number of the occupants’s
profiles to be modelled as shown in the following expression of Equation (5):

Tamt = AG1wt + AG2wt + AG3wt (5)

where Tamt is the total number of the occupants’ profiles. AG1wt is the number in age group 1 based
on it’s weight. AG2wt is the number in age group 2 based on it’s weight and AG3wt is the number in
age group 3 based on it’s weight. The share of the occupants for each group are converted to decimal
form to provide the results of the total number of occupant-profiles from each age group.
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Furthermore, the capacity model can also be extended to determine the gender of the selected
profiles as expressed in Equation (6) if it is supported by the profile generators. In this case, it is
applicable to LPG, since LPG provides detail characters of the occupants’ gender information:

Tg = (AG1m ∗AG1wt) + (AG1f ∗AG1wt) + (AG2m ∗AG2wt) + (AG2f ∗AG2wt) + (AG3m∗
AG3wt) + (AG3f ∗AG3wt)

(6)

Here Tg is the total number of combinations of the occupants’ gender. AG1m is the share of males
in age group 1. AG1f is the share of females in age group 1. AG2m is the share of males in age group 2.
AG2f is the share of females in age group 2. AG3m is the share of males in age group 3 and AG3f is the
share of females in age group 3. In this case a widely used fairness sharing technique called max-min
fairness can be applied in sharing the allocations if it is required.

Therefore, the application of the Wepro model to the case-study city namely amsterdam is as
follows: First, the city’s population is represented by the sum of the composition of age groups
in amsterdam. We grouped the city’s age groups into three categories: 0–17 years old = 17.5%;
18–64 years old = 70.3%; and above 64 years old = 12.2% [57,58] using the formula in Equation (1):

Tag = 17.5% + 70.3% + 12.2%

Tag = 100%

In more detail, the gender structure is classified into three age groups. For the age group of 0 to
17-year-olds, 51.58% are male and 48.42% female. In the age group of 18- to 64-year-olds, 50.24% are
male and 49.75% female. Finally, for the age group above 65, we identified 46.24% male and 53.75%
female [57,58]. Therefore, Equation (2) is presented to identify the gender at the city level:

Tm f = 49.5% + 50.5%

Tm f = 100%

Furthermore, the labour force data are measured on the basis of the labour force population,
which is only derived from age group among 18- to 64-year-olds. The unemployment rate is recorded
as 6.7% [56]. In this case, Equation (3) is used to identify the employment and unemployment shares.

Tl f = 93.3% + 6.7%

Tl f = 100%

Here, Equation (4) is used where the labour force is the proper set of age groups, labour force
being an aspect of the age groups but not equal to age groups:

AG = {0–17 years old, 18–64 years old, 64+} and LF = {15–64 years old}

70.3% aged 18− 64 ⊂ 100% aged 0–17, 18–64, over 64

We coupled the share of age groups and labour force and applied the Proportional matched
profile to the total population as the city’s main characteristics. Therefore, as displayed in Figure 2,
the Amsterdam’s main profile should reflect: The age groups, labour force and gender classes.

This means that from the age group percentage: The aged 0–17 group is nearly 20%, aged 18–64 is
70% and the rest 10% is for aged over 64. From this 70% where the aged 18–64, there is about 93%
of this age group are people with work and the rest are not working. Furthermore, each age group
illustrates a slight difference in the share of gender information, except for the aged over 64, where the
female populations are slightly more dominant than the male populations.
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Figure 2. The application of the Weighted proportion (Wepro) model’s structure to the case-study city,
namely amsterdam, The Netherlands. It consists of the amsterdam’s age group share, labour force
composition share and gender share of each age group.

• Capacity, fairness of allocation and rounding number

Furthermore, Equation (5) is presented, where the weighted city’s age group values are applied
into a simple capacity model, in order to determine the capacity of the allocation. Therefore, based on
the weighted values, we have ten capacity of the households profiles. It means, we can only select
maximum ten occupants from the household profiles generators:

Tamt = 17.5% + 70.3% + 12.2%

Tamt = 1.75 + 7.03 + 1.2

Tamt = 2 + 7 + 1

Tamt = 10

Furthermore, if it is supported by the profile generators, the capacity model can also be extended
to determine the gender of the selected profiles as expressed in Equation (6). In this case, it is applicable
to LPG, since LPG provides detail characters of the occupants gender information:

Tg = (1.03 + 0.96) + (3.51 + 3.48) + (0.46 + 0.54)

Tg = (1m + 1f) + (4m + 3f) + 1f

As shown in the Equation (5), age group 1 has two allocations, age group 2 has seven allocations
and age group 3 has one allocation. Thus, there are currently two resources for two allocations,
which after the division between them, resulting in 1. Furthermore, AG1m has an excess of 0.03,
where the excess can be taken and divided among the remaining demands, which is only AG1f.
Therefore, AG1f = 1. As a result of the capacity and fairness of allocation model depicted in Figure 3,
there will be two occupants: one male and one female in age group 0–17. Furthermore for the case Age
group 2 and Age group 3, we cannot fully apply the max-min fairness. We simply apply rounding
number because we have only two resources per age group. For instance, for age group 3, there are
two resources for only one allocation. Therefore, rounding number is applied to the highest weight
between the resources.
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Figure 3. The application of the Wepro model’s structure to the case-study city, namely amsterdam,
The Netherlands. It consists of the amsterdam age group share, labour force composition share and
gender share of each age group and their capacity of the occupants to be modelled.

As a result, the age group 18–64 should consist of seven adult occupants with six of them working
people and one person not working. Considering the gender share is quite balance in this age group,
then it is either four females and three males, or four males and three females in the occupants’ list.
Lastly, for the aged over 64, which has only one allocation, based on the results of the capacity and
fairness of allocation model, we apply rounding value to the one which has the highest share to
represent the senior age group. Therefore, we selected a female senior to represent this age group.

2.1.2. Profile Generators: LPG and ALPG

To produce the load profiles of the selected households profiles as the result of the Wepro model
between the city’s main characteristics and the households occupants, we use LPG and ALPG as
the load profiles generators. Thus, in this case we optimise a bottom-up approach provided by the
generators, scale-up from the household level to the city level based on the down-scale task perform
previously in the weighting model, and employ the profile generator’s model at the former level.

The main reason of choosing LPG and ALPG because both of them are developed based on
behavioral model, which is in line with ClairCity project’s goal to model the citizen’s behaviour.
LPG’s model has been selected for use in our model, as it offers a mature model with which to
synthesise household energy load profiles based on various occupants’ profiles. Pflugrandt has
developed the model with a strong focus on modelling the behavioural aspect. The basic elements for
modelling a single household in Figure 4 are the desire to do so and expressions of the need to do
something. The model specifies weight, threshold and decay time as desired properties [15].

Weight is the relative weight of a need compared to all a person’s other needs. In selecting for the
next action, the minimisation of the deviation requirement is used as a criterion, the weighting acting
as a multiplier in this calculation. Threshold determines when the person really feels a need, that is,
when it is included in the next action selection of the calculation. For example, in reality there is usually
no eating after lunch because only 10% of the hunger sensation is evident. Instead, one generally waits
until a noticeable feeling of hunger has built up before having dinner. Finally, Decay Time describes the
half-life, until 50% of the requirement is reached. It has been found that activities at 50% threshold
mostly after the two to three times the decay time, depending on the weighting and the other available
activities. The decay constant is calculated from the decay time by which the current value of the
need is multiplied in each time step [15]. When creating households, it has been found that activities
at the 50% threshold are usually executed after two to three times the decay time, depending on the
weighting and the other available activities. Furthermore, besides desire, it is also essential to identify
the individual’s properties (age, gender, sick leave in the year, average duration of illness, needs when
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healthy, needs when ill) and load type, which in this case is electricity [14,15]. LPG provides various
pre-defined German household profiles.

Figure 4. LPG’s minimum necessary elements in modelling a decision-making process of a single
household [15], where the basic elements are the desire to do so and expressions of the need to
do something.

The second profile generator used in our work is ALPG. ALPG employs household occupancy
profiles generated by a simple behavioural model, which creates consistent profiles for the devices.
The devices’ flexibility is specified through four classes: timeshiftables, buffer-timeshiftables, buffers and
curtailable. The inflexible electricity profiles are grouped into the following categories: stand-by
load, consumer electronics, lighting, inductive devices, fridges, and other. Furthermore, to show
annual electricity consumption, the individual profiles are scaled in magnitude, making it easier to
alter the profile if there is a change in electricity usage by the external factors. An example of such
a change could be the adoption of a new technology, for instance, light-emitting diode (LED) lights.
Moreover, the following classes in Figure 5 are implemented in the simulation model: neighbourhood,
household, person, device, house, writer and ALPG. Electricity usage in a typical Dutch setting is the
focus of ALPG, which is also in line with our work in modelling residential electricity load profiles,
with Amsterdam as the case-study city [16,17].

Furthermore, we after applying the capacity allocation into LPG and ALPG the following are closest
profiles that reflect the city’s proportion of the age groups, gender and labour force mentioned above.

• LPG

The following are the simplified Wepro-based selected pre-defined households profiles in LPG
although there could be also several other options that may fulfill the Wepro model composition:
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Couple, both of whom work, with one child

Couple, one at work, one at home, with one child

Couple both of whom work

Single with work

Senior at home

The underlined entities indicate the age groups, the blue italic entities represent the labour force.
Moreover, to express the gender shares of each age group, we selected the characters of LPG pre-defined
household profiles in Table 3, as follows:

Table 3. The selected pre-defined household profiles in LPG based on Wepro model.

Households Profiles Household ID in LPG Character—Name (Age and Gender) in LPG

Couple with one child, both at work CHR3 Ava (40 female), Fin (43 male) and Luka (10 male)

Couple with one child, one at work, one at home CHR45 Susann (45 female), Alexander (48 male) and Claudia (16 female)

Couple both at work CHR1 Sami (25 male), Rubi (23 female)

Single with work CHR7 Christian (23 male)

Senior at home CHR31 Monika (68 female)

Furthermore, we can insert these occupant’s list to the Wepro composition in order to validate
the model. As illustrated in Figure 6, the selected household profiles can fulfill the Wepro’s model
composition. Then, we generate these LPG’s pre-defined households’ load profiles one by one.
The LPG can be downloaded free from https://www.loadprofilegenerator.de/. In generating one
pre-defined household’s load profile, after we download and open the windows program, we can go
to “calculation” menu.

Figure 5. ALPG’s class diagram [17] that shows the cardinality of a class in relation to another.
The example of one-to-one (1..1) relationship is depicted between Household and House, where a
household lives in a house and a house belongs to a household. The one-to-many(1..*) relationship
is shown between Household and Device, where a household has one or more devices, and each
device belongs to a household. Each class from these multiple classes represents a part of the model,
which makes the software flexible to be extended in the future work.

Furthermore, we should select some options such as which pre-defined profile to be modelled,
geographic location and temperature profile based on temperature dataset that we input before, if the
temperature dataset is not provided yet by LPG. That is why we need to pre-process our input data
such as temperature dataset in order to be matched with LPG’s format. Then we can calculate the
household profile one by one which may require a computational processing time and the result is
generated in comma-separated values (.CSV) file.
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Figure 6. The application of the Wepro model’s structure for amsterdam’s household occupancy
profiles in LPG. It consists of the amsterdam’s age group share, labour force composition share and
gender share of each age group, their capacity of the occupants to be modelled and the selected gender
character provided in LPG.

• ALPG

As shown in Table 4, the pre-defined households profiles in ALPG are not as detailed as in LPG,
but they simply can fulfill the Wepro model. The pre-defined households class contains seven types of
households: Single worker, dual worker, family dual worker, family single parent, dual retired and
single retired. Dual profile means a couple. In this case, each type of household corresponds to a
category of electricity annual consumption in Kilowatt hour and amount of occupants or persons.

Table 4. Pre-defined households configurations in ALPG based [17].

Name Annual Consumption Persons (Adults)

SingleWorker 1610–2410 kWh 1(1)
DualWorker 2660–4060 kWh 2(2)

FamilyDualWorker 3460–7060 kWh 3–6(2)
FamilySingleWorker 3460–7060 kWh 3–6(2)
FamilySingleParent 2600–6200 kWh 2–5(1)

DualRetired 2660–4060 kWh 2(2)
SingleRetired 1610–2410 kWh 1(1)

To fulfill the Wepro model and simplify the process, we selected: one single worker, one single
retired, two dual worker and one family dual worker. ALPG is open-source code and the code is
available at it’s github page. Figure 7 shows the snipped code of the households profiles selection,
where the ALPG program runs by executing profilegenerator.py.:

Furthermore, the same procedure with LPG, in Figure 8 we inserted these occupant’s list to the
Wepro composition in order to validate the model.

Accordingly, it indicates a different result in comparison with LPG because in ALPG there is
no need to identify the gender characteristics as it has simplified and consistent pre-defined profiles
list as provided in Table 4. Moreover, these selected occupancy’s list in ALPG may fulfill the Wepro
model regardless the gender detail. In consequences, there are five generated households load profiles
both in LPG and ALPG. We used the average load profile’s value of these generated load profiles in
the analysis.
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Figure 7. The snipped code of the configuration of the selected household profiles in ALPG based on
Wepro model.

Figure 8. The application of the Wepro model’s structure for amsterdam’s household occupancy profiles
in ALPG. It consists of the amsterdam’s age group share, labour force composition share and gender
share of each age group, their capacity of the occupants to be modelled and the selected pre-defined
profiles provided in LPG.

2.2. Load Profile Analyses Based on Time-Division

As the model has produced residential electricity load profiles in high resolution, we focus on
analysis of the load profile results in this section. The visualisation, charting and plotting of the hourly
resolution are executed in Python. The residential electricity load profile is analysed at four levels:
seasonal analysis, monthly analysis, days analysis and hourly analysis.

2.2.1. Seasonal Analysis

Electricity consumption patterns based on the seasons is interesting to distinguish, as the
temperature influences the interval of the seasons. A time-division according to the four seasons in the
year has been defined based on the meteorological concept (Table 5).

2.2.2. Monthly Analysis

Monthly characteristics are examined through the monthly average share to identify the monthly
pattern of residential electricity consumption in the city. The analyses cover the 12 months electricity
data from the load profiles results. Besides to identify the potential energy savings, the monthly
analysis is beneficial to plan the generation and distribution of power utilities.
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Table 5. Division of the seasons based on meteorological concept in the selected year: 2015 (date format:
dd-mm-yyyy). In this case, the start day of the winter season is 01 December 2015. Winter lasts from 01
December 2015 until 28 February 2015, spring lasts from 01 March 2015 to 31 May 2015, summer lasts
from 01 June 2015 to 31 August 2015, and autumn from 01 September 2015 to 30 November 2015.
Therefore, the winter season has the fewest number of days.

Seasons Date Period Number of Days

Winter 1 January 2015 to 28 February 2015
1 December 2015 to 31 December 2015 90

Spring 1 March 2015 to 31 May 2015 92
Summer 1 June 2015 to 31 August 2015 92
Autumn 1 September 2015 to 30 November 2015 91

The meteorological concept (Table 5) is quite simple and is the most widely used, being broken
down into four three-month periods. Winter has the three coldest months in the Northern Hemisphere,
namely December, January and February. Spring runs from March to May, summer from June to
August, and the other months belong to autumn [59]. Hence, a seasonal electricity load profiles model
is proposed as follows in Equation (7):

Ts% = Sw% + Ssp% + Ssm% + Sa% (7)

where Ts% is the total of seasons share, Sw% is the share of Winter season, Ssp% is the share of Spring
season, Ssm% is the share of Summer season and Sa is the share of Autumn season.

2.2.3. Days Analysis

The days analysis is provided based on the hourly average share load of the days in each season
and the typical days share in each season. The typical days are the selected days, of one weekday and
one weekend day in each season as listed in Table 6. None of the selected days listed below in Table 6
is a national holiday in the selected city, meaning that the selected days represent people’s normal
daily activities on a weekday and at weekends.

Table 6. Selected typical days (date format: yyyy-mm-dd).

Typical Day (TD) in Seasons Week Date; Weekend Date

Winter TD 11 February 2015; 15 February 2015
Spring TD 15 April 2015; 19 April 2019

Summer TD 15 July 2015; 19 July 2015
Autumn TD 11 November 2015; 15 November 2015

2.2.4. Hourly Analysis

In this part, we will process the output from the load profile generators as one minute resolution
and create a time series with an hourly resolution. The objective is to show the hourly characteristics
of electricity consumption on the hourly average load profiles in the selected year and the hourly
average of the seasonal load profiles. Hence, the average load profiles model is proposed as follows in
Equation (8):

h̃n =
1
d

d∑
i=1

xi (8)

where h̃n is the hourly average. n is the number of hours which is in the range of 0 to 23. d is the
number of days in a year, which is in the range of 1 to 365 for the selected year 2015. xi is the data i-th.
To create the hourly average of the seasonal load profiles, we replace d with the number of the days in
each season.
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3. Results: Load Profile Analyses in amsterdam as the Case Study

The analyses of the generated load profiles by the model will be presented based on the time
variation of the case-study city, namely amsterdam (The Netherlands). The hourly temporal results
will be moderately validated by the standard average of Dutch household load profile.

3.1. Load-Profile Analyses Based on Time-Division

The generated load profiles produced by the model will be analysed at four levels: seasonal
analysis, monthly analysis, days analysis and hourly analysis, where hourly resolution is the core
output of our temporal profile.

3.1.1. Seasonal Analysis

The seasonal variations based on the meteorological concept (Table 5) are provided in two
generated models: Wepro-LPG and Wepro-ALPG, where we used Equation (7). In this concept,
Winter has the fewest days, Autumn has one day more compared to winter, while spring and summer
have two days more compared to winter. Based on the generated load profiles of Wepro-LPG and
Wepro-ALPG in Figure 9, it indicates that Winter is the highest consumption share, slightly followed
by Autumn, and Spring. Both models show Summer as the lowest consumption share.

 
Figure 9. Seasonal share of electricity load based on the models: Wepro model-LPG and Wepro-ALPG.
Both models show similar seasonal characteristics of the consumption share from the highest season to
the lowest season.

Wepro-LPG
Ts% = 26.02% + 25.22% + 23.46% + 25.28%

Ts = 100%

while for Wepro-ALPG, the highest consumption share occurred in winter, slightly followed by autumn,
then spring. Summer is recorded as the lowest consumption period.

Wepro-ALPG
Ts% = 25.91% + 24.67% + 23.91% + 25.49%

Ts = 100%

3.1.2. Monthly Analysis

Amsterdam’s monthly electricity load share is illustrated in Figure 10, which shows a distinct
profile in the Wepro-LPG model. This demonstrates that December has the highest consumption
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share compared to the other months, which may exhibit seasonal variations. Surprisingly, this load
profile identifies May as having the second highest electricity share in 2015, followed by October,
August and January. The lowest monthly consumption share is in July, which concurs with the seasonal
analysis result that summer has the lowest consumption share in all load profiles. The second lowest
consumption share is in March, followed by September.

 

Figure 10. Monthly average electricity load share based on the results of the generated Wepro-LPG
and Wepro-ALPG models.

The Wepro-ALPG model indicates December as having the highest consumption share, the same
as in Wepro-LPG model. The second highest consumption share is in January, followed by October
and November. The lowest consumption share is in June, followed by February and April.

3.1.3. Days Analysis

The days analysis is provided based on the hourly average share load of the days in each season
which are depicted in Figure 11, and the daily load share of the typical selected days, which is illustrated
in Figure 12.

Figure 11 depicts the hourly average load share in each season based on the days Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday and Sunday, where the load profiles for Wepro-LPG are shown
in dashed lines and the load profiles for Wepro-ALPG are shown in solid lines. The Winter load profiles
are shown in red, the Spring load profiles are shown in blue, the Summer load profiles are shown in
green and the Autumn load profiles are shown in black, where the weekday colours are in a lighter
shade then the weekend colour.
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Figure 11. The hourly average load share of the days in each season of Wepro-LPG and
Wepro-ALPG models.

Figure 12. Daily share of electricity load of the selected typical days in each season based on the results
of Wepro-LPG and Wepro-ALPG load profiles.
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For the winter period in Wepro-LPG, the top morning peak appears around 7 am for all weekdays.
For some weekdays, the morning peak then continues with a light peak between 9 am and 10 am.
The following daylight peaks are identified around lunchtime, from 12 am to 1 pm, while for weekend
days, the curve show several daylight peaks from 7 am to late lunchtime, around 1 pm. The morning
and daylight peaks appear around 7 am, 9 am, 11 am and 1 pm, among which 11 am is identified
as the top morning peak, which may be associated with the brunch time. Furthermore, the evening
peaks for all days started from about 5 pm to 8 pm and mostly reach the top value around 7 pm,
while for the weekend days, the curves show a longer evening peak from 6 pm to around 7:30 pm.
The weekend days show a quite higher daylight share than the weekdays’ daylight share. Furthermore,
for Wepro-ALPG, the top morning peak is shown around 7 am for all weekdays, followed by a light
peak around 8 am on some weekdays. For some weekdays, the morning peak then continues with
a light peak between 10 am to 12 am. The load share continues to increase until 2 pm, while for the
weekend days, the morning peaks are characterized by a light peak around 7 am that continues to
increase to 10 am. The top morning peak is around 12 am. The weekend days show a higher daylight
share than the weekdays’ daylight share. Most of the days indicate 6 pm as the top evening peak,
some weekdays identify 5 pm as the top evening peak and one weekend day shows 7 pm as the top
evening peak.

The hourly average load share in Spring period for Wepro-LPG illustrates the top morning peak
around 6 am for all weekdays. The following morning and daylight peaks occur around lunchtime
from 12 am to 2 pm, while for weekend days, the curves show several morning peaks from 6 am to
late lunchtime around 2 pm. The morning and daylight peaks are shown around 6 am, 9 am, 11 am
and 2 pm, where 11 am is identified as the top morning peak, which may be associated with brunch.
Furthermore, the evening peaks for all days start from about 6 pm to 8 pm and mostly reach the top
peak around 7 pm. It is obvious that the weekend days show a quite significant higher daylight share
than the weekdays’ daylight share. Furthermore, the hourly average load share in Spring period for
Wepro-ALPG shows the top morning peak around 7 am for all weekdays, followed by a light peak
around 8 am on some weekdays. For some weekdays, the morning and daylight peaks then continue
with a light peak at 10 am, 11 am, 1 pm and 2 pm. After 7 am, the curves are continually declining
until 9 am. The load share continues to increase again with a slight share from 9 am to 2 pm, while for
the weekend days, the morning peaks start with a slight peak from 7 am, and gradually increase to
reach the top on 10 am. It then increases slightly at 12 am, which is identified as the top morning peak
in the weekend days. The weekend days show a higher daylight share than the weekdays’ daylight
share. Most of the days indicate 6 pm as the top evening peak, one weekday identifies 5 pm as the top
evening peak and some days shows 7 pm as the top evening peak.

Furthermore, the Wepro-LPG in Summer period indicates the top morning peak on 6 am and
7 am for all weekdays. The following morning peak is around 10 am to 2 pm, while for weekend
days, the curve shows several morning and daylight peaks from 6 am to late lunchtime, around 2 pm.
These peaks are evident at 6 am, 7 am, 8 am, 11 am and 2 pm, where 11 am is identified as the top
morning peak, which may be associated with brunch. Furthermore, the evening peaks for all days have
started from about 6 pm to 8 pm, which all days reach the top peak on 7 pm. The weekend days show
a quite significant higher daylight share than the weekdays’ daylight share, while for Wepro-ALPG in
Summer period, the top morning peak is shown around 7 am for all weekdays, followed by a light peak
around 11 am for most weekdays. The load share continues to increase again with a slight share from
11 am to 2 pm, while for the weekend days, the morning peaks start with a slight peak at 7 am, then a
gradual slight one increasing each next hour and reaching the top on 10 am. It then slightly increases
further at 12 am. The weekend days show a higher daylight share than the weekdays’ daylight share.
Most of the days indicate 6 pm as the top evening peak, two weekdays show 5 pm as the top evening
peak and the weekend days shows 7 pm as the top evening peak.

Furthermore, the hourly average load share in Autumn period for Wepro-LPG illustrates the
top morning peak on 6 am on most weekdays and one weekday has 7 am as the top morning peak.
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The following morning peak occurs on 10 am on most weekdays, followed by another daylight peak at
2 pm, while for the weekend days, the curve identifies several peaks at 6 am, 8 am, 9 am and 11 am.
The morning peaks are seen around 6 am, 9 am, 11 am and an afternoon one at 2 pm, where 11 am is
identified as the top morning peak, which may be associated with brunch. Furthermore, the evening
peaks for all days start to increase from about 5 pm or 6 pm and all days reach the maximum evening
peak on 7 pm. It is obvious that the weekend days show a quite significantly higher daylight share than
the weekdays’ daylight share. Lastly, the hourly average load share in Autumn period for Wepro-ALPG
shows the top morning peak around 7 am for all weekdays, with a slight peak occurring before at 6 am.
The next peak happens at 10 am, with the load share increasing gradually from 11 am to 3 pm on all
weekdays, while for the weekend days, the morning peaks start with a slight peak at 7 am, and the
load share keeps increasing until it reaches another peak at 10 am. It then increases further to reach
the top morning peak at 12 am. The weekend days show a higher daylight share than the weekdays’
daylight share. Most of the days indicate 7 pm as the top evening peak, one day identifies 5 pm as the
top evening peak, another day shows 6 pm as the top evening peak and another day has 8 pm as the
top evening peak.

In addition, as an overview of the daily total share load, we present the selected typical days
analysis in Figure 12, where the selected days represent weekdays and weekend days of each season.

For the weekdays, we selected 1: 11 February 2015, 3: 15 April 2015, 5: 15 July 2015 and 7: 11
November 2015. The load profile of the Wepro-LPG model in Figure 12 shows that 15 April 2015 has
the highest consumption share among the selected weekdays, followed by 11 November 2015, 11
February 2015 and 15 July 2015. For the weekend days, we chose 2: 15 February 2015, 4: 19 April 2015,
6: 19 July 2015 and 8: 15 November 2015, showing that 19 April 2015 has the highest consumption
share among the selected weekend days, followed by 15 February 2015, 15 November 2015 and 19 July
2015. Weekdays and weekends both show that the lowest consumption share is in the selected days
in July, which concurs with the seasonal and monthly analyses. In addition, this also shows that the
weekends have higher consumption shares than the weekdays.

In the Wepro-ALPG model, the load profile indicates 11 February 2015 as having the highest
consumption share among the selected weekdays, followed by 11 November 2015. 15 April 2015 comes
next, but with only a subtle difference. The lowest share is on 15 July 2015. The Wepro-ALPG model
for weekends shows 15 November 2015 as having the highest consumption share, followed by 19 April
2015, then 15 February 2015, then 19 July 2015. Both Wepro-LPG and Wepro-ALPG are having the
same values on 15 April 2015 and 15 November 2015.

3.1.4. Hourly Analysis

The hourly average load profiles in a year are provided in Figure 13 based on the expression
in Equation (8). Figure 13 also illustrates the seasonal hourly average load profiles, where the load
profiles for Wepro-LPG are shown in dashed lines and the load profiles for Wepro-ALPG are shown in
solid lines. The Winter load profiles are shown in red, the Spring load profiles are shown in purple,
the Summer load profiles are shown in green and the Autumn load profiles are shown in blue, where the
hourly average load profiles in a year are shown in grey bold lines.

The Wepro-ALPG curve illustrates an increasing load from 5 am and reaches the morning peak
around 7 am. Then, the load decreases gradually until 9 am and increases again to 10 am. After that,
the curve remains flat from 10 am to 1 pm although there is a subtle peak in between around 12 am or
during lunchtime. It is then increases slightly from 1 pm to 3 pm, and after 3 pm the curve is increasing
significantly and is reaching the evening peak around 6 pm. Furthermore, after 6 pm the curve is
decreasing gradually until midnight. After that, the curve remains flat until 5 am. While for the
Wepro-LPG, the morning peak starts to increase significantly from 5 am and reaches the peak at 6 am.
After 6 am, the curve is gradually decreasing until 4 pm although there is a subtle peak around 11 am.
It starts to increase again significantly and reaches the evening peak at 7 pm. The curve decreases
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significantly after 7 pm to midnight. Furthermore, it remains quite flat until 3 am. There is a slightly
increase load between 3 am to 5 am before the morning peak.

 
Figure 13. The hourly average load share in a year and the hourly average load share in each season
based on the results of Wepro-LPG and Wepro-ALPG models.

Furthermore, the hourly average load per season for both models indicate the consistent curve
shape within the season and model, either Wepro LPG or Wepro ALPG. The winter curve indicates
the highest load profile among the hourly season curves, and it is more obvious for Wepro-ALPG
whereas the winter’s curve is shown as the highest load and slightly followed by autumn’s curve for
Wepro-LPG. The demand peaks show similarity with the hourly average in a year as the top peak is
in the evening, followed by the morning peak and a subtle peak during the lunch time, with both
models identifying the same peak hours as the peak hours for the hourly average in a year. In general,
Wepro-LPG’s load profiles for all seasons have higher load share than the Wepro-ALPG’s load share
for all seasons during the day. Conversely, the Wepro-ALPG’s load indicate longer peak share than the
Wepro-LPG’s load during the night time.

3.2. Validation with Case Study’s Measured Data

Validation can be done by comparing the data generated by Wepro with the city’s measured
data such as smart-meter data, TUS data or data from the utilities. In this case, we cannot make an
in-depth validation as the measured city’s data is unavailable. Therefore, a future study would follow
to improve our current work when the city’s measured data is available.

In practice, we can still compare our model with the standard load profiles for Dutch households
published by the Energy Data Services Netherlands (EDSN) to validate whether our hourly average
generated load profiles have the same trends the standard Dutch residential load profile. The average
normalised standard household load in The Netherlands based on EDSN is provided in Figure 1 of [11].
It is shown that the morning peak starts to increase from 5 am, similar to both our generated models.
It then reaches the peak around 10 am, while both our models identify the morning peak around 6 am
to 7 am. The EDSN’s load remains flat from 10 am to 13 pm, although there is a subtle peak at 12 am
during lunchtime. This curve from 10 am to 13 pm is quite similar to the Wepro-ALPG model one.
Furthermore, like the Wepro-LPG model, the ESDN’s load is decreasing gradually to 4 pm. After that,
the curve starts to increase significantly like the curves of both our generated models. The EDSN’s
model reaches the peak between 19:00 and 19:30 similar to the Wepro-LPG. Furthermore, the load is
decreasing quite significantly until 2 am. It remains flat from 2 am to 5 am which is similar to our
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generated models. In general, it can be concluded that the generated hourly average share of the
Wepro models have similar curve trends as the EDSN’s load trend, although the morning peaks in the
generated Wepro models have different time characteristics from EDSN’s morning peak. Furthermore,
both our models and the EDSN’s model show a subtle peak during lunchtime. The evening peak
occurs after dinner in the Wepro-LPG and EDSN model, while the the evening peak is occurring exactly
at the dinner time in Wepro-ALPG.

As an update, the load profile data in EDSN have been moved to de Vereniging Nederlandse
Energie Data Uitwisseling’s (NEDU) page [33]. The data provided in NEDU’s page start from year
2016, therefore data 2016 are used in this initial validation. Smart-meter data is used as a basis for
the consumption/production profiles as described in ‘Profielenmethodiek elektriciteit’, where the
documentation is available in Dutch. The raw data are provided in 15 min resolution, which show
how much electricity is allocated in that 15 min. The data are obtained from 3,002,450 households type
E1A in 2016. The comparison of the standard average Dutch household load profile in 2016, which has
similar trends with Figure 1 of [11] for E1A residential type and the hourly average load profile in a
year of Wepro-LPG and Wepro-ALPG is plotted in Figure 14.

Figure 14. The comparison of hourly average standard residential load profile in The Netherlands
based on NEDU’s data of 2016, E1A and the hourly average load profile in a year of Wepro-LPG
and Wepro-ALPG.

This simple validation is an initial check to see whether our generated load profiles resemble the
standard Dutch’s household load profile characteristics before going into an in-depth validation with
the city’s measure data. Moreover, further study in the future is required.

4. Discussion

Based on the results, our weighted proportion (Wepro) model can be applied to generate the
residential electricity load profiles at the city level by utilising the exisiting household profile generators,
either LPG or ALPG, which we have employed here, given that they both have specific behavioural
profile models. The seasonal share analysis based on Wepro-LPG and Wepro-ALPG, shows each
season’s consumption share is in the range of 23% to 26%. The 1% share consists of approximately
80 h of load or about 3 days of load when calculated on the basis of the hourly dataset. For instance,
if we compare the winter and summer seasons to the whole year in Wepro-LPG as shown in Figure 9,
where winter is 26.02% and summer is 23.46%, it indicates that the electricity load in winter is
almost 3% higher than in summer to the whole year, which is equal to approximately 240 h or about
9 days. In addition, both seasonal profiles indicate Winter as having the highest consumption share,
which concurs with the known seasonal pattern in energy demands studies [60–62]. In addition,
the seasonal analyses based on meteorological is important to be mentioned as some studies did
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not mention which time-division concept they used for analysing the seasonal electricity profile.
Furthermore, the monthly analysis results illustrate that December is having the highest consumption
share, which accords with the result of some monthly electricity studies [61,63].

The hourly average share based on the days in each season show that the weekend days indicate a
higher daylight share than the weekdays’ daylight share in both models. The result of the daily share of
the selected typical days for all models indicates that most weekend days have a higher consumption
share than weekdays in the same season. It concurs with an analysis of weekday and weekend
variation, where weekend days show slightly more electricity use than weekdays [64]. Exception found
in the Wepro-ALPG model’s selected days in winter, where weekday consumption is higher than
at weekend.

The hourly average load profiles identify the morning and evening peaks in Wepro-ALPG and
Wepro-LPG, where the Wepro-LPG model has a higher load than the Wepro-ALPG model for both
peaks. It is also identified that the evening peak has a significant higher load value than the morning
peak load value in both models. All the hourly average loads in a year and per season demonstrate a
consistent curve shape within season and model, either Wepro LPG or Wepro ALPG. The consistency is
also shown within the curve shape of the hourly seasonal average load share with the hourly seasonal
load share based on the days within the model.

As a consequence, the application of our model requires a profile generator as an external tool to
match the weighted city’s profile with the representative occupants’ profiles at the household level,
since we are not building our own profile generator. It also influences the results of the generated load
profiles where they will be based on the characteristics of the developed model in profile generator,
include relying on the few selected input profiles as a result of the approach taken in this study.
The issue of relying on the few selected input profiles may result in the less fluctuations load profiles
as shown in the Wepro-ALPG load profiles for the morning curves. The main difference of the hourly
average in a year between the models is shown in the morning curve, where for Wepro-LPG after
reaches the peak on 6am, the load share is declined gradually until 4 pm, with some light peaks in
between, while for Wepro-ALPG, the curve declines slightly until 9 am after reaching a peak at 7 am.
It increases again at 10 am and remains stable until 1 pm. This issue is also has been initially identified
in [16] where the generated profiles show less fluctuations on the single household level, while the
fluctuations at the neighbourhood level matched with the measured values. We assume that the less
fluctuations during the morning period generated in Wepro-ALPG might be caused by the consistent
pre-defined profiles in ALPG, where they are developed based on the simple behavioural model of
an occupancy profile. The occupancy model for general events in ALPG is configured using mean
times to change the state of a person. In this case, it is limited to the three person’s states: active (being
home), inactive (e.g., sleeping) and away (e.g., to work) [16], while in the generated load profiles of
Wepro-LPG, the fluctuations are obviously shown during the morning period which might be caused
by the detailed behavioural model that emphasised on the person’s desire developed in LPG model.
Although, it requires a future analysis. In general, the Wepro-ALPG has more aligned curve shape with
the average standard Dutch residential load profile as illustrated in Figure 14 than the Wepro-LPG,
where it could be because ALPG model is built based on Dutch dwelling setting. Moreover, a measured
dataset that adequately represents the case study is required for validation purposes although in
general our generated hourly average load profiles have similar curve’s trend with the standard Dutch
residential load profile provided by NEDU.

In addition, our model is found to be more efficient in respect of its computational time. In this
case processing the load profiles of the city’s residential sector, which consists of a large number
of households is more efficient rather than generating each household in LPG or a certain number
of city’s households in ALPG. It takes about ten minutes computation to generate a single-person
household load profile in LPG and about fifteen minutes computation to generate a multi-occupants
household load profile in LPG, for instance profile: Family, 3 children, both adults at work. Thus,
in takes 60-min to generate the Wepro’s selected five profiles of Table 3 in LPG, where we used LPG
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version 8.9.0. Furthermore, the simulation of the current configuration that consists of five households
from four types of pre-defined profiles in ALPG takes about eight minutes. We use Python 3.7 (64-bit)
to run this configuration. All of these simulations either LPG or ALPG were conducted on a computer
using an Intel core i5-5300U CPU processor @2.3 GHz and 8 GB of installed memory (RAM). Thus,
the computation will take much longer than our approach to generate a single or the few load profiles
at the city level. In this case, our approach to model the residential sector at the city level has also
tackle the limitation addressed by the ALPG that the tool is aimed at small group of houses which is
maximum about 100 households per simulation. Consequently, our approach also creates efficiencies
in the size and storage of the generated files. For instance, the output folder of one “single with work”
profile generated in LPG has 2.6 GB size and the output folder of our selected pre-defined profiles in
ALPG has 1.5 GB size.

5. Conclusions

This work has developed a simplified and practical approach to model residential electricity load
profiles where the model can match the main city’s characteristics with the representative pre-defined
households profiles proportionally. The Wepro model is advantageous as an efficient approach
to develop the residential electricity load profiles at the city level, especially where survey data,
smart-meter data or any other local temporal profiles dataset are unavailable. The findings concur
with some load profile studies from the similar climate profile which indicate Winter as the highest
consumption share and illustrate either December or January is having the highest consumption share.
The results of the selected typical days for all load profiles indicate that most weekend days have a
higher consumption share than weekdays in the same season. Moreover, all the hourly average load
profiles in a year and per season demonstrate the consistent curve shapes, demand peaks and the peak
hours within the season and model, either using Wepro-LPG or Wepro-ALPG. In terms of the curve
shape and daylight characteristics between the models, the hourly average in a year of Wepro-ALPG
is preferred to be used because it also shows a high similarity with the shape of the standard Dutch
household provided by NEDU or previously EDSN, although the Wepro-ALPG load profiles illustrate
less morning fluctuations as a result of the few input profiles taken by the approach. In addition,
in terms of the evening peak, the hourly average in a year of Wepro-LPG is preferable to be used,
because it resembles the evening peak time of the Dutch household characteristics, where the evening
peak takes place after dinner time, which concurs with a Dutch load profile study that the evening
peak takes place after dinnertime when e.g., TV, dishwasher, etc., are on because within the average
Dutch household, cooking is done using gas instead of electricity.

Moreover, our work contributes by evaluating the characteristics of residential electricity load
profiles based on time variation analyses: seasonal analysis, monthly analysis, days analysis and
hourly analysis. In addition, this method is applicable to model previous year, current year and future
year, where for current year and future year are used city’s projected numbers.

Furthermore, the few selected household profiles which are the representative of the city’s profile
may dominate the shape of the output profiles where all of input have represented the city’s age
group, labour force composition and gender share. Although the few selected profiles may dominantly
influence the output profile, based on the results, they still resemble the Dutch average household
profile and concur with the common peak demands characteristics. In addition, although the Wepro
model depends on external household profile generators such as LPG and ALPG, the Wepro model is
found to be more efficient in storage capacity and computational process of the residential sector’s
load profiles, given the number of households in the city that can represent the local profile.

In future work, it would be interesting to identify the potential of energy savings based on the
generated load profiles using a relevant machine-learning technique. We also look forward to add more
main input parameter to the model and compare with the case study’s measured data. Further work
might also be conducted to extend residential electricity temporal profiles into spatial profiles.
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4. Wang, F.; Li, K.; Duić, N.; Mi, Z.; Hodge, B.M.; Shafie-khah, M.; Catalão, J.P.S. Association rule mining based
quantitative analysis approach of household characteristics impacts on residential electricity consumption
patterns. Energy Convers. Manag. 2018, 171, 839–854. [CrossRef]

5. To, W.M.; Lee, P.K.C.; Lai, T.M. Modeling of monthly residential and commercial electricity consumption
using nonlinear seasonal models—The case of Hong Kong. Energies 2017, 10, 885. [CrossRef]

6. Andersen, F.M.; Larsen, H.V.; Gaardestrup, R.B. Long term forecasting of hourly electricity consumption in
local areas in Denmark. Appl. Energy 2013, 110, 147–162. [CrossRef]

7. SET-Plan ACTION n◦3.2 Implementation Plan: Europe to Become a Global Role Model in Integrated,
Innovative Solutions for the Planning, Deployment, and Replication of Positive Energy Districts; European
Commission Brussels: Brussels, Belgium, 2018.

8. Granell, R.; Axon, C.J.; Wallom, D.C.H. Impacts of Raw Data Temporal Resolution Using Selected Clustering
Methods on Residential Electricity Load Profiles. IEEE Trans. Power Syst. 2014, 30, 3217–3224. [CrossRef]

9. Beck, T.; Kondziella, H.; Huard, G.; Bruckner, T. Assessing the influence of the temporal resolution of electrical
load and PV generation profiles on self-consumption and sizing of PV-battery systems. Appl. Energy 2016,
173, 331–342. [CrossRef]

10. Linssen, J.; Stenzel, P.; Fleer, J. Techno-economic analysis of photovoltaic battery systems and the influence of
different consumer load profiles. Appl. Energy 2017, 185, 2019–2025. [CrossRef]

11. Klaassen, E.; Frunt, J.; Slootweg, H. Assessing the Impact of Distributed Energy Resources on LV Grids Using
Practical Measurements. In Proceedings of the 23rd International Conference on Electricity Distribution
(CIRED), Lyon, France, 15–18 June 2015.

12. Ahn, Y.H.; Woo, J.H.; Wagner, F.; Yoo, S.J. Downscaled energy demand projection at the local level using the
Iterative Proportional Fitting procedure. Appl. Energy 2019, 238, 384–400. [CrossRef]

13. Ropuszy, E. Residential Electricity Consumption in Poland. Oper. Res. Decis. 2016, 26, 69–82.
14. Pflugradt, N.; Muntwyler, U. Synthesizing residential load profiles using behavior simulation. Energy Procedia

2017, 122, 655–660. [CrossRef]
15. Pflugradt, N.D. Modellierung von Wasser und Energieverbräuchen in Haushalten. Ph.D. Thesis,

Chemnitz University of Technology, Chemnitz, Germany, 2016.
16. Hoogsteen, G.; Molderink, A.; Hurink, J.L.; Smit, G.J.M. Generation of flexible domestic load profiles to

evaluate Demand Side Management approaches. In Proceedings of the 2016 IEEE International Energy
Conference, ENERGYCON 2016, Leuven, Belgium, 4–8 April 2016; pp. 1–6.

202



Energies 2020, 13, 3543

17. Hoogsteen, G. A Cyber-Physical Systems Perspective on Decentralized Energy Management. Ph.D. Thesis,
the University of Twente, Enschede, The Netherlands, 2017.

18. Richardson, I.; Thomson, M.; Infield, D.; Clifford, C. Domestic electricity use: A high-resolution energy
demand model. Energy Build. 2010, 42, 1878–1887. [CrossRef]

19. Widén, J.; Wäckelgård, E. A high-resolution stochastic model of domestic activity patterns and electricity
demand. Appl. Energy 2010, 87, 1880–1892. [CrossRef]

20. McKenna, E.; Thomson, M. High-resolution stochastic integrated thermal-electrical domestic demand model.
Appl. Energy 2016, 165, 445–461. [CrossRef]

21. Eggimann, S.; Hall, J.W.; Eyre, N. A high-resolution spatio-temporal energy demand simulation to explore
the potential of heating demand side management with large-scale heat pump diffusion. Appl. Energy 2019,
236, 997–1010. [CrossRef]

22. Marszal-Pomianowska, A.; Heiselberg, P.; Kalyanova Larsen, O. Household electricity demand
profiles—A high-resolution load model to facilitate modelling of energy flexible buildings. Energy 2016, 103,
487–501. [CrossRef]

23. Birkin, M.; Clarke, M. Population Dynamics and Projection Methods; Springer: Dordrecht, The Netherlands,
2011; pp. 193–208.

24. Kipping, A.; Trømborg, E. Modeling aggregate hourly energy consumption in a regional building stock.
Energies 2018, 11, 78. [CrossRef]

25. Afshari, A.; Liu, N. Inverse modeling of the urban energy system using hourly electricity demand and
weather measurements, Part 2: Gray-box model. Energy Build. 2017, 157, 139–156. [CrossRef]

26. Andersen, F.M.; Baldini, M.; Hansen, L.G.; Jensen, C.L. Households’ hourly electricity consumption and
peak demand in Denmark. Appl. Energy 2017, 208, 607–619. [CrossRef]

27. Kipping, A.; Trømborg, E. Hourly electricity consumption in Norwegian households—Assessing the impacts
of different heating systems. Energy 2015, 93, 655–671. [CrossRef]

28. Oliveira Panão, M.J.N.; Brito, M.C. Modelling aggregate hourly electricity consumption based on bottom-up
building stock. Energy Build. 2018, 170, 170–182. [CrossRef]

29. Räsänen, T.; Voukantsis, D.; Niska, H.; Karatzas, K.; Kolehmainen, M. Data-based method for creating
electricity use load profiles using large amount of customer-specific hourly measured electricity use data.
Appl. Energy 2010, 87, 3538–3545. [CrossRef]

30. Widén, J.; Lundh, M.; Vassileva, I.; Dahlquist, E.; Ellegård, K.; Wäckelgård, E. Constructing load profiles for
household electricity and hot water from time-use data-Modelling approach and validation. Energy Build.
2009, 41, 753–768. [CrossRef]

31. OPSD Data Platform—Open Power System Data. Available online: https://data.open-power-system-data.
org/time_series/ (accessed on 28 September 2018).

32. Data View. Available online: https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show?name=
&defaultValue=false&viewType=TABLE&areaType=BZN&atch=false&dateTime.dateTime=04.03.2020+
00:00%7CCET%7CDAY&biddingZone.values=CTY%7C10YNL----------L!BZN%7C10YNL----------L&
dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2) (accessed on
4 March 2020).

33. Verbruiksprofielen—NEDU. Available online: https://www.nedu.nl/documenten/verbruiksprofielen/
(accessed on 25 June 2020).

34. Guo, Z.; Zhou, K.; Zhang, X.; Yang, S.; Shao, Z. Data mining based framework for exploring household
electricity consumption patterns: A case study in China context. J. Clean. Prod. 2018, 195, 773–785. [CrossRef]

35. Yang, T.; Ren, M.; Zhou, K. Identifying household electricity consumption patterns: A case study of Kunshan,
China. Renew. Sustain. Energy Rev. 2018, 91, 861–868. [CrossRef]

36. Klaassen, E.A.M. Demand Response Benefits from a Power System Perspective; Eindhoven University of
Technology: Eindhoven, The Netherlands, 2016; ISBN 9789038641768.

37. Fan, H.; MacGill, I.F.; Sproul, A.B. Statistical analysis of drivers of residential peak electricity demand.
Energy Build. 2017, 141, 205–217. [CrossRef]

38. Kewo, A.; Munir, R.; Lapu, A.K. IntelligEnSia based electricity consumption prediction analytics using
regression method. In Proceedings of the 2015 IEEE 5th International Conference on Electrical Engineering
and Informatics: Bridging the Knowledge between Academic, Industry, and Community (ICEEI), Denpasar,
Indonesia, 10–11 August 2015.

203



Energies 2020, 13, 3543

39. Kewo, A.; Manembu, P.; Liu, X.; Nielsen, P.S. Statistical Analysis for Factors Influencing Electricity
Consumption at Regional Level. In Proceedings of the 2018 IEEE 7th International Conference on Power and
Energy (PECon), Kuala Lumpur, Malaysia, 3–4 December 2018; pp. 132–137.

40. Manembu, P.; Kewo, A.; Liu, X.; Nielsen, P.S. Multi-Grained Household Load Profile Analysis Using Smart
Meter Data: The Case of Indonesia. In Proceedings of the 2018 2nd Borneo International Conference on
Applied Mathematics and Engineering (BICAME), Balikpapan, Indonesia, 10–11 December 2018; pp. 213–217.

41. Papachristos, G. Household electricity consumption and CO2 emissions in the Netherlands: A model-based
analysis. Energy Build. 2015, 86, 403–414. [CrossRef]

42. Bedir, M.; Kara, E.C. Behavioral patterns and profiles of electricity consumption in dutch dwellings.
Energy Build. 2017, 150, 339–352. [CrossRef]

43. Bedir, M.; Hasselaar, E.; Itard, L. Determinants of electricity consumption in Dutch dwellings. Energy Build.
2013, 58, 194–207. [CrossRef]

44. Kobus, C.B.A.; Klaassen, E.A.M.; Mugge, R.; Schoormans, J.P.L. A real-life assessment on the effect of smart
appliances for shifting households’ electricity demand. Appl. Energy 2015, 147, 335–343. [CrossRef]

45. ClairCity.eu ClairCity Technical Summary. Available online: http://www.claircity.eu/about/technical-
summary/ (accessed on 11 February 2019).

46. Oliveira, K.; Rodrigues, V.; Coelho, S.; Fernandes, A.; Rafael, S.; Faria, C.; Ferreira, J.; Borrego, C.; Husby, T.;
Diafas, I.; et al. Assesment of Source Contributions to the Urban Air Quality for the Bristol Claircity Pilot
Case. WIT Trans. Ecol. Environ. 2019, 236, 89–98.

47. Rodrigues, V.; Oliveira, K.; Coelho, S.; Ferreira, J.; Fernandes, A.P.; Rafael, S.; Borrego, C.; Faria, C.;
Vanherle, K.; Papics, P.; et al. H2020 ClairCity project: Assessment of air quality impacts for Bristol City
Council. In Proceedings of the 19th International Conference on Harmonisation within Atmospheric
Dispersion Modelling for Regulatory Purposes, Bruges, Belgium, 3–6 June 2019.

48. Coelho, S.; Rodrigues, V.; Barnes, J.; Boushel, C.; Devito, L.; Lopes, M. Air pollution in the Aveiro region,
Portugal: A citizens’ engagement approach. WIT Trans. Ecol. Environ. 2018, 230, 253–262.

49. Trozzi, C.; Piscitello, E.; Vaccaro, R. Air pollutants, emissions and carbon footprint at city level: The ClairCity
project. WIT Trans. Ecol. Environ. 2018, 230, 263–275.

50. Hayes, E.; King, A.; Callum, A.; Williams, B.; Vanherle, K.; Boushel, C.; Barnes, J.; Chatterton, T.; Bolscher, H.;
Csobod, E.; et al. Claircity project: Citizen-led scenarios to improve air quality in European cities. WIT Trans.
Ecol. Environ. 2018, 230, 233–241.

51. Boushel, C.; Barnes, J.; Chatterton, T.; Vito, L.D.E.; Edwards, A.; Rogers, L.F.; Leach, M.; Prestwood, E.;
Hayes, E. “Unfortunately, I use my car”: Commuter transport choices in Bristol, UK. WIT Trans. Ecol. Environ.
2018, 230, 243–252.

52. Kewo, A.; Manembu, P.; Nielsen, P.S. Data Pre-Processing Techniques in the Regional Emissions Load
Profile Case. In Proceedings of the 2019 6th International Conference on Control, Decision and Information
Technologies (CoDIT), Paris, France, 23–26 April 2019.

53. Manembu, P.; Kewo, A.; Welang, B. Missing data solution of electricity consumption based on Lagrange
Interpolation case study: IntelligEnSia data monitoring. In Proceedings of the 2015 IEEE 5th International
Conference on Electrical Engineering and Informatics: Bridging the Knowledge between Academic, Industry,
and Community (ICEEI), Denpasar, Indonesia, 10–11 August 2015.

54. L’Huillier, G.; Velásquez, J.D. Advanced Techniques in Web Intelligence-2; Springer: Berlin/Heidelberg, Germany,
2013; Volume 452, ISBN 978-3-642-33325-5.

55. MIT Critical Data. Secondary Analysis of Electronic Health Records; Springer: Cham, Switzerland, 2016,
ISBN 978-3-319-43740-8.

56. OECD. Working Together for Local Integration of Migrants and Refugees in Amsterdam;
OECD Publishing: Paris, France, 2018. Available online: https://books.google.dk/books?id=
O-dVDwAAQBAJ&pg=PA71&lpg=PA71&dq=amsterdam+labour+force+unemployment+rate+
2015&source=bl&ots=yd61WrhIY_&sig=ACfU3U0u_zNNIckca2JzEl6aUQDx7GpN0w&hl=en&sa=
X&ved=2ahUKEwjw3fepxOLmAhWCy6QKHYqKDUg4ChDoATAAegQICRAB#v=onepage&q=
unemploymentrate&f=false (accessed on 1 January 2020).

57. Amsterdam (Municipality, Noord-Holland, Netherlands)—Population Statistics, Charts, Map and Location.
Available online: https://www.citypopulation.de/en/netherlands/admin/noord_holland/0363__amsterdam/
(accessed on 9 March 2020).

204



Energies 2020, 13, 3543

58. Age Classes by Gender Municipality of amSTERDAM, Old-Age Index and Average Age of
Residents. Available online: https://ugeo.urbistat.com/AdminStat/en/nl/demografia/eta/amsterdam/
23055764/4 (accessed on 1 January 2020).

59. Trenberth, K.E. What are the Seasons? Bull. am. Meteorol. Soc. 1983, 64, 1276–1282. [CrossRef]
60. Torriti, J. Understanding the timing of energy demand through time use data: Time of the day dependence

of social practices. Energy Res. Soc. Sci. 2017, 25, 37–47. [CrossRef]
61. Do, L.P.C.; Lin, K.H.; Molnár, P. Electricity consumption modelling: A case of Germany. Econ. Model. 2016,

55, 92–101. [CrossRef]
62. Satre-Meloy, A.; Diakonova, M.; Grünewald, P. Daily life and demand: An analysis of intra-day variations in

residential electricity consumption with time-use data. Energy Effic. 2020, 13, 433–458. [CrossRef]
63. Meng, M.; Niu, D.; Sun, W. Forecasting monthly electric energy consumption using feature extraction.

Energies 2011, 4, 1495–1507. [CrossRef]
64. Lee, S.; Whaley, D.; Saman, W. Electricity demand profile of Australian low energy houses. Energy Procedia

2014, 62, 91–100. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

205





energies

Article

An Integrated Energy and Environmental Audit
Process for Historic Buildings

Elena Mazzola, Tiziano Dalla Mora *, Fabio Peron and Piercarlo Romagnoni

Department of Architecture and Arts, IUAV University of Venice, Dorsoduro 2206, 30123 Venice, Italy;
elenoire_me@libero.it (E.M.); fperon@iuav.it (F.P.); pierca@iuav.it (P.R.)
* Correspondence: tdallamora@iuav.it

Received: 6 August 2019; Accepted: 15 October 2019; Published: 17 October 2019

Abstract: The valorization and sustainable management of historic centers is a topic relevant to
the cultural identity and heritage of European cities. A rational strategy to preserve the centers
must consider both energy and environmental retrofitting, even if this is a complex issue requiring
interdisciplinary approaches, dedicated diagnostic procedures, and specific tools. Within this context,
this paper proposes an integrated method for energy and environmental analysis specifically devoted
to historical building retrofit. Attention is focused on cases in which building management is not
interested in renovation or in a deep conservation project, but instead in green management and
maintenance overhaul. The basis of the procedure is the Leadership in Energy and Environmental
Design for Existing Buildings: Operations and Maintenance (LEED O+M) rating protocol. The global
goal was the definition of an intervention strategy indicating the principal direction of action. The first
step is identifying critical issues in the operation of the building through energy diagnosis and
dynamic thermophysical simulations. The second step is defining a panel of appropriate retrofit
measures. The third step is choosing between alternatives to increase the sustainability performance
following an environmental assessment scheme. Ca’ Rezzonico in Venice (Italy), a 17th-century
palace, nowadays the seat of a museum, was used as a case study to apply the proposed methodology.

Keywords: energy audit; green buildings; LEED rating system; operation and management;
methodology; workflow; historic buildings

1. Introduction

According to the United Nations previsions [1], in 2050, most people will live in cities or urban
centers; therefore, it is increasingly vital to work toward a more sustainable urban environment
and to guarantee adequate public services realizing greener cities [2]. In European countries
like Italy, this presents a significant challenge due to the historical context and important cultural
heritage witnesses.

Historical buildings express the cultural identity of European countries, characterize cities,
and provide continuity of the connection from our past to our future [3]. Historic centers have
the potential to valorize different cultures and to attract financial capital, real estate investments,
and building renovation projects, so it is necessary to think about how to coordinate the continuous
intervention and management of historic centers to increase citizen and tourist attendance and improve
relevant economic and cultural activities. A main goal of managing these centers is to detect and
promote new tools for the sustainable management of historic centers. This management would
enhance the attractiveness of city centers and their surroundings, increasing their suitability for both
citizens and tourists [4]. National authorities are committed to valorization policies for the buildings
of their historical heritage. Energy retrofitting could provide an effective strategy to protect the
cultural heritage through operational costs reduction and environmental quality improvement [5].
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Unfortunately, the evaluation of environmental and energy performance of historical buildings is
complex and requires dedicated tools, sophisticated diagnostic procedures, and an interdisciplinary
approach [6–8]. The energy requalification process must not work against the conservation necessities;
it has to be an instrument of protection [9,10].

Energy and environmental diagnosis should be integrated for better identifying inefficiencies and
wastefulness and to define the most appropriate retrofit measures [11]. In this context, two tools exist:
the green energy audit that integrates the methodologies for evaluating energy performance (energy
audit) and environmental impacts (green assessment) tools to guide green retrofits [12], and the green
assessment protocols [13]. The most common of these analysis tools are multi-criteria, and evaluations
are based on comparisons with real or reference performance [14,15]. Developed by the United States
Green Building Council (USGBC) in 1998, currently Leadership in Energy and Environmental Design
(LEED), represents the most influential and widespread rating system [16]. This certification system
has been set for all types of buildings and proposes different protocols according to the typology,
from home to hospital, from data center to school. The USGBC database reports that more than
100,000 projects are listed or certified by LEED, making it the most used certification system in the
world [17].

The application of sustainability assessment protocols to the energy retrofit of historic buildings
faces various difficulties [18,19]. Even if sustainability aspects were originally integrated into historical
buildings, some rehabilitation processes ignore some of the sustainability aspects, and specific categories
and criteria of rating systems, such as indoor environmental quality, conservation of materials and
resources, and sustainability in the site management, have more effective and considerable impacts
on sustainable rehabilitation [20]. Rating systems can be applicable to the interventions involved
in the thorough renovation of historic buildings but may not address the specific issues related to a
sustainable valorization of the historical and cultural aspects of this particular segment of the built
environment [21].

GBC Italia developed a protocol dedicated to architectural heritage, GBC HB (historic buildings),
which has been applied a few times [22,23]. LEED protocols (new construction, homes, core and shell,
neighborhood development) are addressed to new constructions or major renovations; only the Italian
GBC HB considers the refurbishment and the certification of the sustainability level of interventions.
GBC Italia has developed a guide dedicated to neighborhoods, historic buildings, and the management
of existing buildings. These studies have highlighted the compatibility between the safeguard
requirement, maintenance, and preservation of historical contexts with current needs and future
provision for energy efficiency [24]. An exemplary model is Savona, Italy [25]: the project reached
the gold level of USGBC’s LEED for Cities, increasing the efficiency of the energy management of the
whole urban area by the adoption of LEED certification as a planning tool and the fulfilment of city
development interventions, with the purpose of improving the lives of citizens.

USGBC guidance for applying LEED certification does not propose a method or a strategy for
the calculation of LEED requirements, but refers to the professional experience of technicians and
stakeholders for achieving the certification. The complexity of options and the required documentation
complicate the process to achieving a LEED certification, often deterring technicians and surveyors
from approaching the rating system process. The goal of this work was to create a methodology for
selecting aspects to consider and the credits to calculate according to the project characteristics [16].
This paper presents a new procedure for optimizing the integrated environmental and energy audit
dedicated to historical buildings, referring to the general scheme of the energy diagnosis process
defined in the UNI CEI EN 16247-1:2012 standard [26] and to the LEED Operation and Management
(LEED O+M) rating system that focuses on the management and operative aspects of a building.
A specific procedure for the application to historic buildings was implemented starting from previous
proposals [27,28]. A univocal and unambiguous workflow that optimizes the effort on assessment
process and the resources, reaching higher levels of sustainability and energy efficiency, is presented.
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LEED O+M is used to analyze the operative and management aspects usually aimed at existing
buildings [18], even if it has been applied in a few cases to historic buildings [29]. LEED O+M can
be usefully applied to historical buildings where the management is not interested in a complete
renovation or in a complete conservation project. In Italy, the protocol was applied to one historical
building, the Ca’ Foscari University headquarters in Venice [30], and the Galleria Borghese in Rome is
a case study for a future application [31].

Here, following some previews works [32–35], the authors propose integrating LEED O+M
with green audits to guarantee a sounder evaluation of the operating strategies to apply during the
preliminary analysis of a retrofitting project. A case study of a museum is considered, Ca’ Rezzonico in
Venice (Italy), that is not interested in renovation or a thorough conservation project (as required for
the adoption of standard LEED protocols) but is interested in green management and maintenance.
The green audit is used to identify a better framework of the critical issues and the potential for
sustainability of the building. The environmental assessment protocol was applied, choosing the issues
and credits that most optimize time and costs to result in a high level of sustainability, good performance
assessment by the protocol, and to ensure the effectiveness of retrofitting.

2. Materials and Methods

The specific issues connected with the analyses of historic buildings in the framework of sustainable
and green retrofit must be considered. For creating a procedure to lead environmental retrofitting,
the examination and deconstruction of different approaches available in standards and legislations are
necessary. Here is considered the general scheme of the process of energy diagnosis defined in the UNI
CEI EN 16247-1:2012 standard [26] and the green energy audit referring to the UNI EN 16883:2017
standard [36]. It is also considered the LEED O+M rating system that focuses on management and
operative aspects.

2.1. The Green Energy Audit

The energy diagnosis was introduced by Directive 2006/32/EC [37] and modified by Directive
2012/27/EU [38]: these directives request this procedure for all requalification actions. The interventions
on historic building are usually considered voluntary: standard regulations for these cases are
lacking [39]. The energy diagnosis general procedure was introduced by the UNI CEI EN 16247-1:2012
standard [15] that defines energy audits as a “systematic inspection and analysis of energy use and
energy consumption of a site, building, system or organization with the objective of identifying energy
flows and the potential for energy efficiency improvements and reporting them”. The green energy
audit retains the basic features of an energy audit but is aimed at a more important goal: improving
the overall sustainability of the building. The main difference with the general energy audit’s process
is that during the analysis phase, only sustainability retrofits are evaluated. The audit is strictly related
to environmental assessment protocols and the retro-commissioning process, presenting a systematic
scheme to investigate the level of maintenance and operation of the systems in existing buildings,
proposing operative interventions for improving the overall performance.

2.2. The LEED O+M Rating System

A different approach can be adopted in the management of the retrofit of an historical building
based on LEED assessment scheme. Frequently, the complexity generated by cultural preservation
and technical innovation and the necessity to find proofs of sustainability action through consistent
documentation can discourage surveyors and technicians from pursuing the certification. Here,
is considered the LEED O+M for buildings [37], which is normally intended for operative and
management aspects for existing buildings undergoing limited retrofitting.

This protocol is subdivided into 20 mandatory prerequisites and 37 credits that indicate the
points obtained from the characteristics of the structure and its management. The rating system
organizes the prerequisites and credits into categories: Location and Transportation (LT), referring to
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the building site and the effect on commuting patterns; Sustainable Sites (SS), referring to environment
surrounding the building and highlighting the relationship among services, ecosystems and buildings;
Water Efficiency (WE), which considers water holistically, including indoor use, outdoor use, specialized
uses, and metering, and recognizes the use of non-potable and alternative sources of water; Energy and
Atmosphere (EA) focuses on the energy use reduction, renewable energy sources, and energy-efficient
design strategies; Materials and Resources (MR), which considers the constant flow of products
purchased and discarded to support building operations; Indoor Environmental Quality (EQ), which
considers the satisfaction of occupants, the visual and thermal comfort, and the indoor air quality;
Innovation (IN) identifies exemplary and innovative features or practices able to generate environmental
benefits; and Regional Priority (RP), which identifies specific priorities according to the location and
type of rating system.

The LEED performance credit system allocates points to each credit considering human benefits
and the potential environmental impacts, so some categories are weighted according to the score
of the associated credits, the relevance of the topic, and the intent described in the credit. As such,
LEED O+M states that the categories EQ and EA are weighted higher than the total value of the other
categories combined.

The structure of credits and prerequisites is organized in different sections: intent and requirements,
behind the intent, step-by-step guidance, further explanation, required documentation and related
credit tips, changes from LEED 2009, referenced standards, exemplary performance, and definitions [38].
It is a voluntary assessment tool that provides guideline to enhance the use of natural resources,
to encourage restorative and regenerative policies, to maximize the positive and to minimize the
negative environmental and human health consequences of the buildings sector, and to produce high
quality indoor environments. LEED systems pursue sustainability goals by achieving mandatory
prerequisites and choice credits. Four levels of sustainability are reachable according to the achieved
points, platinum, gold, silver, and certified [23].

2.3. The Proposed Methodology

The proposed methodology starts from the green energy audit, then adding specifications in
terms of:

(1) Collecting data: in historic buildings, it is crucial to dedicate a long period of time to researching
historic data as well as planning field surveys to investigate stratigraphy; in new construction,
all the project and decisions are registered, but in this case, it is necessary to examine all the
building properties.

(2) Energy opportunities: the retrofit and the retro-commissioning are presented in this section
because they pursue sustainable objectives; with the aim of producing an energy certification,
it is possible to inspect a building’s energy systems and their operating procedures.

(3) Analysis: considering the costs and benefits is insufficient for historic buildings because the
compatibility of interventions must be considered. As previously mentioned, in this case, all the
analyses were applied for the improvement of and not for the adaptation to standards.

A phase of monitoring energy values post-intervention is added at the end of the process.
The effects of the energy requalification interventions are introduced to the scheme, where the auditor
examines indicators such as energy consumption for heating, cooling, or domestic hot water.

The green energy audit aims to improve the sustainability of the building. For this reason,
the selection of intervention measures must be evaluated according to the contribution in terms of
energy savings, economic costs, and environmental impacts. This evaluation should be assessed by
the adoption of a rating system that certifies a level of sustainability with a global score determined by
the adopted design strategy and the achievement of selected credits, so, the proposal is to follow the
environmental assessment on the basis of LEED O+M scheme. A workflow is proposed for achieving
the certification score using a new classification of prerequisites and credits that consider the points of
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credits and the document to be delivered. This method references previous studies [40] that aimed to
identify the credits necessary to achieve the minimum score to attain the certification label with the
better use of resources in term of time and costs. This step consists of two phases:

(1) Phase 1 applies a prerequisites classification, assigning a score to the parameters selected
within the LEED guide that describe the requirements and documentation for the achieving the
prerequisites [41,42];

(2) Phase 2 considers the credits and is split into two different steps:

(a) Sub-phase 2A involves the selection of credits
(b) Sub-phase 2B applies a credits classification according to the same approach in phase 1.

All the sections described for each prerequisite and credit are considered, for example, intent,
requirements, relations, score, and options, according to the structure fixed by the LEED rating system
(Figure 1).

 
Figure 1. Structure of prerequisites and credits according to the LEED rating system definition [16].

Subsequently, a scoring system, described in Table 1, was developed considering the following
parameters: the number of required documents, (listed in the required documentation section),

211



Energies 2019, 12, 3940

the connected prerequisites (listed in the related credit tips section), and the effort level to fulfil the
forms requested by USGBC (as described in the intent and requirement section).

Table 1. Scoring system for prerequisites according to options: parameters are the requirements in
each prerequisite and the score is the score system. In detail: 1 point is assigned for each document
required for the achievement of the intent; 1 point is assigned for each prerequisite listed in the section
of related credits tips; different points are assigned related to the procedure of the performance period;
different points are assigned in relation to the different levels of commitment difficulty in completing
and collecting data.

Parameter Score

Documents requested 1 point = 1 document

Related prerequisites 1 point = 1 prerequisite listed according to related credit tips section

Performance period
0 point = not present

2 points = five-yearly audit or maintenance after certification
3 points = collection of data before the certification

Type of form
1 point = easy to fill in

2 points = calculation required
3 points = form is more complex

As an example, the possible score for the prerequisite p2 of the Minimum Energy Performance (EA
category, Table 2) is presented with two options requiring a total amount of four or eight documents to be
completed according to the chosen option; there are two related prerequisites: EA p1 Energy Efficiency
Best Management Practices and EA p3 Building-Level Energy Metering. The performance period
requires 12 continuous months of metered energy data collected before the end of the performance
period; the form includes the data collected to fulfil the Energy Star Rating or similar energy audit.
Therefore, a partial score could be achieved for each prerequisite option by the application of the
method, as explained in Table 1, and the total score of the prerequisite is determined by the average
values of the options.

Table 2. Example of a score calculation for prerequisite EA p2 Minimum Energy Performance: the
number of options proposed by the prerequisite requirement; the amount of documentation, listed in
the documentation required section; the number and types of prerequisites; period and description of
performance period; forms requested from USGBC; partial score for each option; and normalization of
total score through calculation of average partial scores.

Name Options Documentation Prerequisites
Performance

Period
Form

Partial
Score

Total
Score

EA p2
Minimum

Energy
Performance

1.1 4 2 3 2 12

14.4

1.2 4 2 3 2 12

2.1.1 6 2 3 3 15

2.1.2 8 2 3 3 17

2.1.3 7 2 3 3 16

As shown for prerequisite EA p2, the procedure concludes with the assignment of a final score
for each prerequisite, obtained by the normalization of the partial score and the number of options
contained in the prerequisite description.

The result is a classification of prerequisites for LEED O+M v.4 (Figure 2), organized from higher
to lower scores, also listing the relationships. It represents a workflow for applying the certification
process as it lists the prerequisites in order of importance. In case of a correlation (for example EA
p3, EA p1, and EQ p1 with EA p2) the prerequisites with a lower score (EA p1 and EQ p1) lose the
score because the relationship allows pursuing the same documentation and data for the item with
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the higher score (EA p2), receiving the same higher score and the same relevance in the classification
and workflow.

Figure 2. Work classification of prerequisites for LEED O+M; scores of prerequisites related to other
prerequisites are struck through. LEED’s goals drive the weighting of points toward certification.
Each credit is allocated points based on the relative importance of its contribution toward the goals.
The results present a weighted average: credits that most directly address the most important goals are
assigned the highest weight [42].

The classification proposed in Figure 2 reveals the most important areas for attaining the
certification according to the LEED O+M perspective. The main area of concern for the management
of energy performance, the EA category, is the most important topic, followed by signed policies such
as requested in the EQ and MR category.

After pursuing mandatory prerequisites, credits allow receiving a score to determine the level of
certification: USGBC assigns different points to each option of each credit. Since the complexity of the
requirements and the large number of credits and documents, this study tries to simplify the selection
process with the aim of receiving higher LEED certification by evaluating the minimum number of
documentations for each credit and its relevance to the system. A calculation was developed for
assessing the weighing of each credit and for credit selection considering the following parameters:
score, relationship, and frequency. Relationship considers the number of credits listed in the related
credit tips section of the same credit; frequency counts the quotes for the considered credit in the
related credit tips section of other credits.

Phase 2A involves selection process. First, credits are listed and ranked in relation to the number
of documents/reports to be completed according to the options. Then, the methodology proposes a
new parameter called the “summary credit”, as defined in Equation (1), which considers the maximum
points achievable (score), the number of correlated prerequisites and credits (relationship), and the
quote in other prerequisites/credits (frequency):

Summary credit = point + frequency + relationship (1)

The method identifies a choice of credits with the best value as defined using Equation (2).
Considering the required documentation (y) and the calculated summary credit (x), the result is a list
of best credits (Figure 3) for LEED O+M v.4:

y ≤ 3/10 x (2)
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Figure 3. Selection of 10 important credits: on x axis, number of summary credit, on y axis, number
of documents, in particular minimum documents in (a) minimum documents and (b) maximum
documents; the chosen credits lay below the line, according to function y ≤ 3/10x.

Credits are organized in phase 2B, developing a score system that considers the internal options
(Table 3) in the requirement for the credit structure: one point is assigned for each requested
document, for each connection with prerequisites and credits; different points are assigned based on
the performance period and on the level of complexity and difficulty in completing the forms requested
from USGBC.
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Table 3. Scoring system for credits according to internal options: parameters are the requirements for
each credit and score is the scoring system. The system is the same for prerequisites, but more points
are assigned in relation to the number of prerequisites and credits listed in the tips section.

Parameter Score

Documents requested 1 point = 1 document

Relation with prerequisites 1 point = 1 relation with prerequisite

Credits inside 1 point = 1 internal credit

Performance period
0 point = not present

2 points = five-yearly audit or maintenance after the certification
3 points = collection of data before the certification

Type of form
1 point = easy to fill in

2 points = calculation required
3 points = form is more complex

While the previous analysis was only dedicated to the prerequisites, this process was also
developed for classifying the credits. The classification of credits has been implemented with the
correlation between both credits and prerequisites (Figure 4).

 
Figure 4. Work classification of credits for LEED O+M; scores of credits related to other credits are
crossed out.

The credits classification shows how the management of energy use is relevant, as with the
prerequisite classification. Particular relevance is assigned to the human health topic presented in the
EQ and LT categories, as listed in the management of air quality, the interior lighting, and the incentive
to use alternative transportation.

The methodology identifies a list of 10 credits. The application and calculation of the requirements
of these credits could achieve a total score of 53 points according to the scorecard, achieving the Silver
level of certification [41] for LEED O+M systems, achievable when a project earns 50–59 points.

3. The Application on a Case Study

3.1. Ca’ Rezzonico Museum

A case study was considered for the application of the method: Ca’ Rezzonico (Figure 5), Museum
of 18th Century Venice, in Venice, Italy. Many Italian museums are hosted in historical buildings:
28 museums are pre-12th century, 483 were built between the 12th and 16th centuries, and 544 between
the 17th and 19th centuries [43].
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(a) 

 
(b) 

Figure 5. Ca’ Rezzonico: (a) main front on the Grand Canal (Fondazione Musei Civici di Venezia s.d.);
(b) ballroom on the first floor.

This palace was built during the Baroque age and was converted into a museum in 1936 after
refurbishment interventions. The quality of architecture and exhibited works make Ca’ Rezzonico
an interesting and unique witness of the Venetian 19th century. It has four floors that host several
museum rooms, a library shop, and a coffee bar, for a total surface are of 6400 m2. Seven different types
of external walls and five different types of windows exist in the building. The energy consumption is
about 142 kWh/m2a, including about 81 kWh/m2a for electricity, determined by averaging the bills of
three consecutive years from 2014 to 2016 (Table 4).

Table 4. Energy consumption of Ca’ Rezzonico for 2014–2016. The data represent the average use for
the three years and are reported for each month; the large consumption is due to electricity; heating
and domestic hot water are provided by natural gas. Note that heating is not required from May to
September; the values are listed using kWh/m2a.

2014–2016
Energy Type

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Electricity use
(kWh/m2a) 5.79 5.34 5.85 5.62 6.26 8.41 9.99 9.42 7.23 6.06 5.27 5.54 80.77

Natural Gas use
(kWh/m2a) 13.93 11.41 9.00 2.36 0.38 0.41 0.57 0.59 0.54 2.69 7.20 12.28 61.35

The museum is managed and promoted by the Fondazione Musei Civici di Venezia foundation,
which chose Ca’ Rezzonico as a pilot case to test LEED requirements for achieving the certification for
all museum systems.

3.2. First Step: Green Audit

According to the previous above of the integrated energy and environmental audits of historic
buildings, in this case study, different surveys were developed, including a thermography analysis,
data were collected about the schedule and system plan, and a dynamic energy model was created
to evaluate the building energy performance. Using this method, some energy efficiency measures
were identified.

The entire building envelope does not have thermal characteristics similar to the energy behavior
required by actual normative; the historical protection status and heritage value do not allow energy
efficient interventions such as thermal insulation of external/internal walls or window substitution,
so the best energy improvements cannot be adopted.

The energy performance of the building envelope is low, especially in some zones (such as the
attic) or in some local points (for example, near the external systems placement or where, in previous
years, a replacement and refurbishment has been completed with the use of different materials causing
thermal bridges), so interventions should completed to maintain the integrity of the building structure.
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The thermal energy lost through the windows is high, thermal loss and need improvement,
especially into the curved partition. The intervention involves redoing the sealing between the frame
and glass to maintain the historical elements and reduce the thermal bridge problem.

An electrical system intervention should be considered as the most important measure due to the
high consumption and costs; the energy and economic savings should be achieved without altering
the historical elements of the buildings that are listed and protected by the Historical Superintendent.

Intervention on the reduction of domestic hot water (DHW) should not be considered relevant
due to its low use and cost.

Another useful tool in the audit step is dynamic simulations. A numerical model of Ca’ Rezzonico
was set up by Design Builder®(powered by EnergyPlus®) to validate simulated values with real
consumption. As shown in Table 5, the deviation was 1% on average for natural gas and electricity use.

Table 5. Comparison of energy consumption between real data from bills and output simulation by the
Design Builder model.

Energy Type
Real data

(kWh/m2a)
Simulation
(kWh/m2a)

Deviation
(%)

Electricity use 80.77 81.7 1%

Natural gas use 55.16 52.4 5%

3.3. Second Step

3.3.1. Part A: Application to Prerequisites

Phase 2A is the completion of prerequisites that are mandatory to be admitted to the LEED
certification process. According to the classification of prerequisites (Figure 2), prerequisite EA p2,
concerning operating energy performance, was developed first. For Ca’ Rezzonico, the prerequisite
was achieved in comparison with similar buildings and the recently completed energy performance
assessment. A 25% improvement in the energy consumption was verified (with reference to the
previous 12 months) in comparison with the usage data of the three contiguous years (with reference
to the last five), using a normalized index for occupancy, building use, and climate.

The work program indicates the need for an investigation into the real connections between other
prerequisites through the analysis of required data and documentation. The documents needed for
prerequisite p2 in the EA category can be used for other prerequisites (Table 6). The meter calibration
report requires data collection from permanently installed meters, according to prerequisite p3 in the
EA category; the early assessment for energy performance required by prerequisite EA p1 could be
integrated into the utility bill summary. Prerequisite EQ p1, regarding minimum indoor air quality,
requires the same occupation schedules as in the energy audit. The table presents an example of the
relationships between credits. The documents that manage the same kind of information are highlighted
in the same color, showing that they could be treated together as proposed in the methodology.

Table 6. Example of relationship between the first four prerequisites according to the work program in
Figure 2. The required documentation is listed for each prerequisite and the colors indicate the similar
documents because they manage the same kind of information.

Prerequisite Required Documentation

EA p2

Meter calibration report
Energy Star portfolio

Utility bill summary pages of performance period for each fuel source
Weather-normalized source EUI

Calculation supporting additional normalization
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Table 6. Cont.

Prerequisite Required Documentation

EA p1
Preliminary energy use analysis

Energy audit
Current facility requirements and operations and maintenance plan

EA p3
Confirmation of permanently installed meters

Letter of commitment
Confirmation of data sharing source

EQ p1

Measured outdoor airflow rates
Information about ventilation

Ventilation maintenance program
Table with occupied rooms, spaces, or zones

3.3.2. Part B: Application to Credits

A selection of 10 credits was applied according to the methodology to produce a draft of energy
and environmental certification by achieving the minimum score necessary and minimizing the internal
documents to achieve the highest possible score. This score and the consequent level of certification
are integrated with the evaluation of other issues and credits by the design team.

In Ca’ Rezzonico, the evaluation strategy was conducted considering the requests of the museum
administration, who had expressed the desire to evaluate some specific aspect such as the energy
efficiency and management, the internal lighting quality, and the ventilation system. These requests
were consistent with what is expressed in the documentation necessary for the selection of the 10 credits,
as previously described in Figure 4.

The information in Table 7 focuses on the application of 10 credits in the case study.
The administration of the museum will have to apply some specific requirements (highlighted
in red) to obtain validation and achieve certification. According to the case study characteristics, a
preview showed the museum could earn 47 points toward LEED O+M certification. In detail Table 7
shows the credits and what their characteristics and documentation are [42].

EQ c2, Enhanced Indoor Air Quality Strategies: the intent is to ensure better indoor air quality for
users’ productivity, well-being, and comfort. The requests include permanent installations (such as
slotted systems and grilles). Currently Ca’ Rezzonico does not have such systems.

EA c4, Optimize Energy Performance: the intent is to increase the energy performance beyond the
prerequisite standard for reducing economic and environmental problems in relation to the unnecessary
use of energy. The requirements include a demonstration of continuous energy efficiency improvement
during the performance period in comparison to a baseline, and Ca’ Rezzonico has an energy use 43%
lower with respect to similar buildings in terms of typology, use, and characteristics.

EQ c1, Indoor Air Quality Management Program: the intent is to maintain users’ well-being
by modifying and preventing indoor air quality problems. The requirement includes conducting an
I-BEAM audit on a regular basis and revising the IAQ management program.

EA c7, Renewable Energy Carbon Offsets: the intent is to reduce greenhouse gas (GHG) emissions
through the use of local and grid-source renewable energy technologies and carbon mitigation projects.
The requirements include a demonstration that renewable energy systems determine the total energy
use or the engagement of contracts to purchase carbon offsets, green power, or Renewable Energy
Certificates (RECs) as the annual renewal of the energy supply contract for Ca’ Rezzonico.

LT c1, Alternative Transportation: the intent is to reduce pollution and land development effects
from automobile use for transportation. Alternative transportation strategies that contribute to this
reduction include human-powered transport (e.g., walking or biking), public transit, telecommuting,
informal transit options, compressed workweeks, carpooling, and green vehicles. For Ca’ Rezzonico,
the credit is achievable as for all buildings on the Venice isle.
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Table 7. Analysis of the 10 selected credits in Figure 4 in application to the case study. The requests of
Ca’ Rezzonico management are highlighted in red color, the already requests are in black. The score
obtainable is listed, compared with the maximum achievable with the LEED O+M rating system.

Credit Requirements
Max. Score
Achievable

Points for Ca’
Rezzonico

EQ c2 Enhanced Indoor Air
Quality Strategies

Install permanent entryway systems;
each ventilation system that supplies

outdoor air to occupied spaces must have
particle filters or air cleaning devices.

2 2

EA c4 Optimize Energy
Performance

Demonstrate energy efficiency performance
that is at least 26% better than the median

energy performance for typical buildings of
similar type.

20 18

EQ c1 Indoor Air Quality
Management Program

Develop and implement an indoor air
quality management program. 2 2

EA c7 Renewable Energy
Carbon Offsets

Demonstrate that the total energy use is met
directly with renewable energy systems. 5 4

LT c1 Alternative
Transportation

Demonstrate that regular building
occupants and visitors use alternative

transportation.
15 15

EQ c4 Interior Lighting
Implement individual lighting controls;

analyze internal lighting quality level and
obtain an improvement.

2 1

MR c3 Purchasing: Facility
Maintenance and

Renovation

Purchase maintenance and renovation
materials that are environmentally

sustainable.
2 1

WE c1 Outdoor Water Use
Reduction

Calculate the landscape water requirement
and install an irrigation meter. 2 2

SS c1 Site Development –
Protect or Restore Habitat

Provide financial support to a nationally or
locally recognized land trust or

conservation organization.
2 1

SS c4 Light Pollution
Reduction

Measure the night illumination levels,
which must not be more than 20% above

the level measured with the lights off.
1 1

Total 53 47

EQ c4, Interior Lighting: the intent is to improve occupants’ well-being, comfort, and productivity
through the provision of high-quality lighting. The requirements include an analysis of the quality of
light control system. Currently, for the case study, only some changes to lighting consumption were
possible because the requirements for by this credit are constrained by the Superintendent.

MR c3, Purchasing—Facility Maintenance and Renovation: the intent is to reduce the
environmental harm due to the materials used in building renovations. The requirement includes
purchasing at least 50%, by cost, of the total maintenance and renovation materials that meet at least one
of the criteria of being recyclable, reusable, bio-based, cradle-to-cradle certification, and low emissions
of volatile organic compounds. In this case, Ca’ Rezzonico is a building listed by the Superintendent,
so the requirements for renovation and credit will have to be analyzed more in-depth in accordance
with the various stakeholders, even if no particular difficulties have yet been detected.

WE c1, Outdoor Water Use Reduction: the intent is to reduce outdoor water consumption.
The requirement is reducing the project’s landscape water requirement (LWR) by at least 50% from the
calculated baseline for the site’s peak water use month. Reductions must first be achieved through
plant species selection and irrigation system efficiency as calculated in the Environmental Protection
Agency (EPA) Water, Sense Water Budget Tool. The museum administration is active in monitoring
and validating the consumption reduction.
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SS c1, Site Development—Protect or Restore Habitat: the intent is to maintain existing natural
areas and restore damaged areas for habitat provision and biodiversity promotion. The requirement is
the coverage by vegetation (adapted or in place native) of a minimum area during the performance
period. Another option, effectively chosen for the case study, is the provision of financial support
equivalent to at least USD $4 per square meter for the total site area (including the building footprint),
to a nationally- or locally-recognized land trust or conservation organization within the same EPA
Level III ecoregion or the project’s state.

SS c4, Light Pollution Reduction: the intent is to minimize the light escaping from the site and
building, by reducing sky-glow, improving night sky access, enhancing the night-time visibility,
and reducing the impact from lighting on nocturnal environments. The requirement includes the use
of an external shading device or reducing the measured illuminance level of external lights by 20%
compared with lights off. In the case study, this second option is achievable due the installation of
external light pointed only on the main external surface of the building.

3.4. Overall Results

As described in Table 7, the certification process in the case study could achieve 47 points toward
LEED O+M certification, corresponding to a Certified level (40–49 points). This is a good result because
the application of the methodology guarantees the certification only by the calculation of 10 credits,
but above all, confirms a good level of sustainability focusing on the management of energy use and
the improvement of indoor quality. The same procedure could be applied and verified for other LEED
rating systems given the identical structure, but also to other certification systems based on criteria,
indicators, ratings, and the certification process.

With the adoption of a LEED protocol, a single intervention measure could result in the achievement
of different credits. For example, the intervention for the same inefficiencies, analyzed by energy
diagnosis, could be evaluated by environmental impact; the improvement involves the selection and
calculation of credits that concern n these items and inefficiencies (Table 8). A higher the score evaluated
based on available credits, the higher the assessment of the environmental improvement achieved.

Table 8. Description of the analyzed inefficiencies. Each intervention is defined using a qualitative
assessment according to the energy improvement, sustained costs, economic benefits, and preservation
of the historical asset (+ positive value, - negative value).

Type of Inefficiency Type of Analysis
Energy

Improvement
Costs

Heritage
Conservation

Electric energy use Consumption data,
benchmark comparison +++ ++ +++

Opaque envelope (local
element) Thermographic analysis ++ +++ +++

Transparent envelope
(local windows) Thermographic analysis ++ + +++

Whole envelope Minimum requirements by
normative +++ + - - -

DHW use Consumption data,
benchmark comparison + ++ +

In the description each credit, the rating system considers a list of related credits that are similar or
comparable in terms of items or calculation approach. Table 8 shows how to address the inefficiencies
and the calculation of the requirements for a list of credits. For example, in the Ca’ Rezzonico analysis,
a Base level of certification should be achieved by the application of recommended credits, but the
calculation of related credits, as proposed in Table 9, could increase the level.
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Table 9. Environmental assessment of the interventions examined using energy diagnosis.
The recommended measures are selected according to the credits in LEED O+M, specifying the
nomenclature of the reference credit and the related credits. The last column reports a qualitative
environmental assessment.

Type of
Inefficiency

Recommended
Intervention by

LEED
LEED Credit Related Achievable Credits

Environmental
Improvement

Electric energy use

Indoor light
management and

metering;
management plan

for inner air quality

EQ c4

EQ c3 Thermal Comfort.
EA c2 Existing Building

Commissioning—Analysis;
EA c3 Existing Building

Commissioning—
Implementation;

MR c2 Purchasing—Lamps

+++

EQ c1 EQ c9 Integrated Pest
Management

Opaque envelope
(local analysis)

Energy use
improvement EA c4 EA c2 Existing Building

Commissioning—Analysis +

Transparent
envelope (single

windows)

Energy use
improvement EA c4 EA c2 Existing Building

Commissioning—Analysis +

Whole envelope Energy use
improvement EA c4 EA c2 Existing Building

Commissioning—Analysis ++

DHW use
Management and

metering for water
use on green areas

WE c1 WE c3 Cooling Tower Water Use;
WE c4 Credit Water Metering +

4. Discussion and Conclusions

Historic buildings require special consideration because they represent a large proportion of
Italian buildings. The desire to achieve energy saving, global costs management, and environmental
impact goals is growing, aiming to reduce CO2 emissions and other greenhouse gases, and to improve
in internal quality air and comfort. In fact, the objective of this research was to investigate the energy
and environmental assessment systems and the tools that allow their implementation.

The research proposes different approaches to obtain an energy and environmental audit for
historic buildings:

(1) A new formulation for the operative workflow of the energy audit that considers energy
evaluations and the characteristics in the analysis of an historic building. The research underlines
the importance of non-destructive investigations and post-intervention monitoring, and the
selection of a rating system able to select the most appropriate intervention measures.

(2) An environmental analysis developed through the assessment of the operational and management
aspects through the application of the LEED O+M rating system with the addition of a new
strategy to organize and optimize the use and the calculation of the requirements.

(3) A validation with a case study of Ca’ Rezzonico museum. The building was analyzed according
to the normative by the completion of an operative check list, using data from the archive of
the Superintendent and through the development of non-destructive investigations. The energy
audit according to normative and an environmental assessment was developed according to the
LEED O+M.

This paper highlights some other findings. The energy diagnosis requires benchmarks that refer
only to the museums [12], and the research lacks quantitative analysis of the interventions from
economic and financial viewpoints. The investigation into supply costs, time of return of investments,
and comparisons with the Superintendent references need to be further analyzed.

The proposed method was tested on to LEED rating system and was developed according to
the characteristics of the LEED O+M credit system. Even if LEED rating systems have a standard
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structure, each protocol includes different requirements, connections, scores, and weighing. Future
developments should focus on validating the proposed method and finding a robust system for the
credits selection that is applicable for different LEED protocols.

Notably, the application of the methodology indicated a Silver level LEED O+M certification cold
be attained through the calculation of a list of 10 credits for a maximum total score of 53 points, which
could be implemented with other credits in relation to the characteristics of the projects.

As previously described, the proposed methodology is an upgrade of the GBC Historic Building
system proposal [44] and the research is revising and deepening the application to other protocols
with the aim of defining Equation (3) and improving the method to increase its applicability:

ratio =
summary credit

required documents
(3)

This study was conducted as part of a research program that includes different phases; therefore,
some weaknesses and uncertainties still need to be studied. For example, for Ca’ Rezzonico,
the certification process and the credits completion are still ongoing, so the methodology is being
verified with the progression of the credits achievement. The paper presents a calculation method that
has only been analyzed in some historical buildings and therefore, in future developments, we intend
to validate the method on other cases, including both museum and other types of buildings.

A weakness of the study is the lack of applicability to all LEED protocols, precisely because the
structure of the credits and categories in O+M is substantially different from most rating systems.
The research intends to develop the application for other protocols to create a method for preliminary
evaluation of certification achievement in terms of documentation, score, and difficulties. After verifying
the prerequisites and the selected credits using the generic formula in Equation (3), in the case of
non-achievement of a satisfactory score or obstacles, a change of rating system could be considered
during in a first phase of a check.
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Abstract: Building sectors account for major energy use and greenhouse gas emissions in the US.
While urban building energy-use modeling has been widely applied in many studies, limited studies
have been conducted for Manhattan, New York City (NYC). Since the release of the new “80-by-50”
law, the NYC government has committed to reducing carbon emissions by 80% by 2050; indeed,
the government is facing a big challenge for reducing the energy use and carbon emissions. Therefore,
understanding the building energy use of NYC with a high spatial and temporal resolution is essential
for the government and local citizens in managing building energy use. This study quantified
the building energy use of Manhattan in NYC with consideration of the local microclimate by
integrating two popular modeling platforms, the Urban Weather Generator (UWG) and Urban
Building Energy Modeling (UBEM). The research results suggest that (1) the largest building energy
use is in central Manhattan, which is composed of large numbers of commercial buildings; (2) a
similar seasonal electricity-use pattern and significantly different seasonal gas-use patterns could be
found in Manhattan, NYC, due to the varied seasonal cooling and heating demand; and (3) the hourly
energy-use profiles suggest only one electricity-use peak in the summer and two gas-use peaks in
the winter.

Keywords: building energy use; localized weather data; urban building energy use model; Manhattan

1. Introduction

In the past decades, the world has experienced rapid economic development, population growth,
and urban sprawl [1]. So far, over 55% of the world’s population lives in cities, and it is predicted that
2.5 billion more people will be dwelling in cities by 2050 [2]. This rapid urbanization has brought several
challenging issues, such as the significant increases in energy consumption and CO2 emissions [1].
Scholars project that urban energy consumption will be over 20,000 Mtoe (million tons of oil equivalent)
by 2050, which, in turn, would result in the shortage of energy and environmental degradation [3].
In response to these challenging issues, city governments throughout the whole world have proposed
ambitious greenhouse gas emission reduction plans. For instance, the City of San Francisco and the City
of London have set the emission reduction target at 40% and 60% by 2025, respectively [4]. The City of
Boston proposed a Greenovate Climate Action Plan and is targeting an emission reduction of 25% and
80% by 2020 and 2050, respectively [5]. No exception for the City of New York, where an 80% emission
reduction by 2050 has been set as the goal [6]. Buildings, as the foundation and major component
of a city, are contributing the majority of the energy consumption and greenhouse gas emissions
within the city [3]. According to past studies, up to 75% of the energy consumption is contributed by
urban buildings [7,8], and over 50% of the electricity consumption is consumed by residential and
commercial buildings in a city [3,9]. Therefore, understanding urban building energy dynamics is
essential for managing urban energy consumption, reducing greenhouse gas emissions, improving
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energy-use efficiency, developing urban sustainable development plans, and optimizing urban system
design [3,10–14].

Urban Building Energy Modeling (UBEM) has been proved effective in simulating and
understanding urban building energy consumption [15,16]. With UBEM, city governments can
manage the existing urban building energy consumption and investigate future potential energy
savings through testing new techniques and building codes [17]. UBEM can be generally grouped into
two branches: the top-down models and bottom-up models [11,18]. The top-down models analyze
urban building energy consumption based on a group of buildings, and thus not able to analyze
and explain the energy use of every single building [19,20]. Therefore, these models cannot provide
a detailed energy-use analysis for a specific neighborhood. Moreover, most top-down models rely
on historical data, which makes them difficult in testing the consequence of different energy retrofit
strategies and technological advances. For instance, Hirst et al. [21] simulated the annual residential
energy consumption of the US based on an econometric model. Zhang [22] examined the potential
changes in regional energy use in China using the residents and corresponding energy consumption
information, and also compared the results with other countries. Ozturk et al. [23] and Canyurt et al. [24]
analyzed the relationship between energy use and demographic and economic factors using the genetic
algorithms method in Turkey. While these studies have included major demographic, economic,
and technological factors in energy-use modeling, new energy retrofit strategies and technological
advances cannot be tested and verified as the models were only built based on past historical data on
a large scale. In contrast, the bottom-up models focus on single buildings, where the energy use is
thus analyzed for each building and, further, aggregated to the city, county, state, or national level.
The bottom-up models are categorized into two types based on the modeling mechanisms: statistical
models and physics-based models [25]. The statistical model simulates the energy use of single
buildings based on the collected historical energy-use data and social-economic data. Hirst et al. [26]
applied a regression model to analyze the impact of weather elements on household energy use based
on utility data. Fung et al. [27] used a regression model to explore the impact of demographics, weather,
and other equipment characteristics on residential energy use in Canada. Parti and Parti [28] used
conditional demand analysis to analyze the relationship between household occupancy and electricity
consumption in San Diego. Aydinalp et al. [29,30] proposed a national residential energy-use model
based on neural networks. However, access to historical energy use and economic data may not be
available for all cities. In contrast, the physics-based models estimate building energy use based on the
physical characteristics of every single building. These models do not require any historical data as
required by the top-down models and bottom-up statistical models, but require the knowledge of the
building’s physical parameters, including the building’s shape, orientation, glazing, occupancy rates
and schedule, envelope thermal properties, etc.

Several physics-based UBEM models have been proposed and applied in investigating urban
building energy use in the past years. CitySim was developed by the Ecole Polytechnique Federale de
Lausanne University in 2009, and it used a simplified thermal model to estimate urban building energy
use at the district scale [31]. While the accuracy of the proposed CitySim is limited as a simplified model
used in energy-use estimations, it still can provide decision support for energy-use management and
greenhouse gas emission reduction. Reinhart et al. [32] developed an Urban Modeling Interface (UMI)
in assessing building energy use performance, neighborhood walkability, and daylight potential under
a Rhino-based environment. The sustainable design lab from the Massachusetts Institute of Technology
proposed a UBEM model for the City of Boston in 2016. Specifically, the UBEM was developed based
on GIS datasets and a custom-building archetype, and 83,541 buildings were generated using the CAD
modelling and environment Rhinoceros 3D [4]. The model has been calibrated and validated and
is capable of estimating city-wide building energy use at the building level and hourly scale. City
Building Energy Saver (CityBES), a web-based city-scale energy-use simulation and management
platform, was developed by the Lawrence Berkeley National Laboratory. In particular, CityGML,
an open data model for the storage and exchange of virtual 3D city models, was adopted by the
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CityBES for simulating building energy use and creating 3D building energy-use visualization [15].
Li et al. [12] simulated building energy use of the City of Des Moines, IA, with the newly developed
CityBEUM model. Specifically, the energy-use mapping has been improved to the building level and
hourly scale. Moreover, they also reported significant underestimation of electricity consumption in
the summer and gas consumption in the winter, as well as overestimation of gas use in the spring when
applying the Typical Meteorological Year (TMY) data in the model calibration and building energy-use
simulation. Therefore, they emphasized the importance of applying actual weather data in urban
building energy-use simulation.

Nowadays, the physics-based UBEMs have been widely applied in supporting urban energy-use
management and greenhouse gas emission reduction throughout the world, such as in Boston [4],
Chicago [33], Lisbon [34], Kuwait [35], Cambridge [36], Des Moines [12], Arriyadh [37], etc. Numerous
works have been conducted for New York City (NYC) as well. Specifically, Howard and Parshall [19]
proposed a model of energy consumption for NYC at a parcel level. Scofield [38] analyzed the effect of
certification on energy consumption in NYC. Ma and Cheng [39] applied a geographic information
system integrated data mining technology framework for estimating building energy-use intensity for
NYC at an urban scale. Olivo and Hamidi [40] analyzed the spatiotemporal variability of building
energy use in NYC. However, most studies have been conducted at an urban scale or parcel scale,
no study has been implemented at the building level yet. NYC, especially the Manhattan borough,
is the most urbanized and populated area in the US, and NYC is facing a big challenge in reducing
energy use and emissions. In April 2019, the Climate Mobilization Act, the most aggressive climate bill
in the US, was passed by NYC to abide by the Paris climate change agreement, and NYC committed to
reducing the carbon emission by 80% by 2050. Buildings contribute to almost 70% of the energy use
and carbon emissions in NYC, and to reach the proposed carbon emission reduction target, several
benchmarks have been prescribed in the new “80-by-50” law. Some buildings are required to reach the
reduction goal earlier and different building types are subject to a specific target. For instance, buildings
with total areas over 25,000 square feet need to reduce the emissions by 40% by 2030, and that is about
500,000 buildings in NYC. Therefore, an urban building energy-use model with a high spatial (building
level) and temporal resolution (hourly scale) is essential for the city government and citizens in NYC
for managing building energy use and implementing effective ways to reduce carbon emissions.

When implementing UBEM, weather data has been considered as one of the most important
components, and most UBEM tools use the TMY weather data or the weather data from a local weather
station in the model calibration and simulation. The importance of applying actual weather data in
the model calibration and simulation has already been clarified by Li et al. [12]. However, actual
weather data from local weather stations may still not be enough for urban building energy use as
actual weather data is commonly collected from the weather station from the airport, which is usually
distributed in rural areas and far away from the downtown area in a city. Therefore, the impacts from
the local microclimate have not been considered in the actual weather data. Several studies reported
that the local microclimate, such as the urban heat island effect, could increase the temperature of the
city’s downtown areas more than the surrounding rural areas [41]. Therefore, it will increase the use of
air conditioning, which, in turn, has a positive feedback on the urban heat island effect. Instead of
applying actual weather data, localized weather data is needed in the urban building energy calibration
and simulation process.

In this study, I proposed a work to quantify the building energy use of Manhattan in NYC with
consideration of the local microclimate by integrating two popular modeling platforms, the Urban
Weather Generator (UWG) and UBEM. The UWG was developed by Bueno and Norford [42], and it
can generate localized hourly weather data based on the referenced hourly weather data and local
physical parameters. The UBEM has been widely used in many studies, and it is powerful in estimating
building energy use at the building level and hourly scale. The paper is organized as follows: the study
area, Manhattan in NYC, is introduced in Section 2. the UWG and UBEM are described in Section 3.
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The modeling results, including the spatial and temporal pattern of annual, monthly, and hourly
building energy use, are reported in Section 4. Conclusions are included in Section 5.

2. Study Area and Data

The borough of Manhattan, situated in the northwest part of NYC, was chosen as the study area
(Figure 1). Manhattan is one of the most urbanized and populated boroughs in NYC, with a population
of 1.6 million in 2017 and a geographic area of 59.13 km2. Manhattan features a humid subtropical
climate, the winter is cold and damp, and the summer is warm to hot and humid. Manhattan has
been classified as Climate Zone 4A by the ASHRAE. Manhattan also suffers the urban heat island
effect due to a high building density and little vegetation cover. The temperature difference between
Manhattan and the surrounding areas could be up to 15 ◦C. Manhattan is mainly covered by commercial
buildings (e.g., offices, retails, restaurants, hotels) and residential buildings (e.g., apartments and
houses), and they are contributing around 70% of the energy use in Manhattan.

Figure 1. Study area: Manhattan, New York City, US.

To model the building energy use for the borough of Manhattan, several GIS data were collected
from the New York City Open Data platform and the State of New York government website. Specifically,
the GIS building footprint data, which include all city-wide building information, was collected from
the New York Open Data Platform (https://opendata.cityofnewyork.us/). The building footprint
data include accurate information about building construction year, number of floors, and building
location. In addition, the land-use parcel data was obtained from the website of the State of New York
government (http://gis.ny.gov/parcels/). It includes information about building type and building
HVAC information. For model calibration and simulation purposes, the actual weather data at Central
Park, Manhattan, in 2009 and 2012 were obtained from the Whitebox technique [43]. To calibrate
the new model, the Residential Energy Consumption Survey (RECS) [44] and Commercial Buildings
Energy Consumption Survey (CBECS) [45] in 2009 and 2012 were collected from the Energy Information
Administration (EIA), respectively.
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3. Methodology

In order to quantify the building energy use in Manhattan, NYC, a new building energy-use model
was constructed (Figure 2); it could be detailed using the following steps. Firstly, this study generated
localized weather data based on existing hourly weather data and localized physical parameters using
the Urban Weather Generator (UWG). Secondly, the UBEM was employed and calibrated for modeling
the building energy use of Manhattan. Finally, the building energy consumption of Manhattan was
simulated using the calibrated UBEM model and the localized weather data.

Figure 2. Flow chart of the proposed study.

3.1. Generating Localized Weather Data

The UWG is developed by Bueno et al. [42], and it can estimate hourly air temperature with
consideration of the local microclimate based on the collected hourly weather data situated outside
the city. It composes four modules: the rural station model, vertical diffusion model, the urban
boundary layer model, and the urban canopy and building energy model. In UWG, the user can
identify and describe an urban area geometrically through the average building height, horizontal
building intensity, and vertical to horizontal urban area ratio. In general, users need to input the
parameters into the UWG in four categories: geometric and local parameters, radiative parameters,
thermal parameters, and building model parameters. Currently, the UWG has been updated to version
4.1 and could be requested from the website of the building technology program at MIT directly
(https://urbanmicroclimate.scripts.mit.edu/uwg.php).

3.2. Modelling Building Energy Use

In this study, an urban building energy-use model (UBEM) was developed and used to model the
building energy use of Manhattan. The UBEM modelled the city-wide building energy use by combing
the building floor area, number of floors, and the modelled building energy-use intensity [12].

EUj = EUIm × FAj ×NFj (1)
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where EUj is the simulated electricity or gas consumption for building j, EUIm is the electricity or gas
use intensity for building type m, FAj is the footprint area of building j, and NFj is the total amount of
floors of building j.

The floor areas of the buildings were derived from the GIS database of the building footprints.
To simulate building energy-use intensity, this study aggregated all buildings within the study area
into twenty-eight commercial and six residential building prototypes [46,47] (Figure 3). Specifically,
commercial buildings were categorized as hotel, primary school, secondary school, shopping mall,
warehouse, retail store, supermarket, office, hospital, quick service restaurant, and full-service
restaurant. They were further categorized based on the built year (pre-1980 or post-1980) as varied
energy consumption for buildings constructed before and after 1980. Moreover, office buildings were
reclassified as large (>5110 m2), medium (511–5110 m2), and small offices (<511 m2), based on the
floor areas; hotel buildings were regrouped into two classes: large and small hotels, based on floor
areas larger or smaller than 5110 m2. Residential buildings were classified as mid-rise apartments,
single-family, and multiple-family. The mid-rise apartments were further subdivided into two classes
based on the built year before or after 1980. Single-family and multi-family were subdivided into four
types based on the primary heating methods: electrical heating or gas heating.

 

Figure 3. Building typology of the proposed study.

An engineering model, EnergyPlus v9.2, was employed to estimate the energy-use intensity for
each building prototype. To establish the energy-use intensity model for each building prototype,
the reference commercial and residential building models from the Department of Energy (DOE) and the
Pacific Northwest National Laboratory (PNNL) were collected and used in this study. The commercial
building models were developed by the DOE directly, and it covers different climate zones [47].
The residential building models were developed by the PNNL and governed by the DOE; the models
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are available for each state [46]. Specifically, the energy-use intensity model of the 28 commercial
buildings and the mid-rise apartment buildings were obtained from the designed models of Baltimore
developed by the DOE as NYC is situated in the same climate zone as Baltimore, and they also share
similar building constructions. In addition, four residential building energy-use intensity models were
collected from the designed models of NYC developed by the PNNL.

The thirty-four building energy-use models that were designed were calibrated for simulating the
energy use of Manhattan. Model calibration is the key for energy-use simulation: Without calibration,
the collected models may not be good enough for reflecting the actual building energy use as a
discrepancy may exist between the collected models and the actual practical operation. We first
updated most of the local parameters, such as latitude, longitude, and elevation, in the models,
and then we calibrated the models through adjusting the buildings’ internal information, such as
lighting intensity, electric equipment consumption intensity, and occupancy schedule, to minimize the
difference between the simulated results and the reference data. In this study, we calibrated all models
using the US EIA’s RECS and CBECS data in 2009 and 2012, respectively.

4. Results and Discussion

4.1. Localized Weather Data Generated by UWG

The Urban Weather Generator was developed by the MIT, with the actual weather data from
weather stations in rural areas and with localized physical parameters input; the UWG can revise
the actual weather data with consideration of the variations of the local environment. There are
several physical parameters that need to be included in the UWG, such as location, latitude, longitude,
city diameter, average building height, horizontal building density, wall construction, wall albedo,
building glazing ratio, building window construction, building cooling and heating system, the surface
albedo of weather station, and the vegetated faction of the weather station. The generated local
weather data and the differences between the generated weather data and the weather data from the
weather stations are included in Figure 4. It shows that urban temperatures are much higher than
the temperature observed from the surrounding rural areas, and the differences are much higher in
the summer. It is consistent with our knowledge that the urban heat island effect can increase the
temperature in the downtown area, and such an increased temperature will definitely cause a much
higher cooling demand for buildings in the downtown area.

 

Figure 4. Localized monthly average based on hourly temperature.

4.2. Building Energy Use of Manhattan Simulated by UBEM

4.2.1. UBEM Input

To run the UBEM, to quantify the building energy use of Manhattan, NYC, several pieces of
important information need to be put into the model. In this study, most parameters were collected from
the technical report of the US Department of Energy Reference Building Models of the National Building
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Stock provided by the National Renewable Energy Laboratory, to represent a typical performance of
the different building types [48]. In general, the model input could be listed as program, form, fabric,
and equipment (see Table 1.). Occupancy is one of the most important parameters in the model; it can
be collected from different sources, such as CBECS, RECS, and ASHRAE. In this study, the occupancy
rates for all the reference building models were collected from Standard 62.2 from ASHRAE. Table 2
lists the occupancy rate by space types, and most buildings are composed of one or more of the space
types listed below. Ventilation/Outside air (OA) requirements are included in Table 3 by space types,
and they are also collected using Standard 62 from ASHRAE. As limited information is available for
old buildings, this study assumes all reference buildings are having the same ventilation requirements,
and a reevaluation is expected when more information is available in the future. The occupancy
schedule was applied with Standard 90.1 from ASHRAE. Different building types have quite different
schedules. For instance, a restaurant may have a kitchen electric (gas) equipment schedule and dining
area schedule. A hospital has an administrative area schedule, ER schedule, lab schedule, inpatient
area schedule, and outpatient schedule. Residential buildings have a kitchen schedule, dining room
schedule, and bedroom schedule. In general, some schedules are included in most building models,
such as a building occupancy schedule, building the electric equipment schedule, and the HAVC
system schedule (including both cooling and heating systems). All the occupancy schedules can also
be divided as a weekday schedule, weekend schedule, and holiday schedule. Figure 5 shows the
general weekday building occupancy schedules of the different building types. Due to the different
functions they have, quite different hourly patterns could be found. The model input is the first
and one of the most important steps for establishing the building energy-use model; more input
parameter information could also be found from the technical report of the US Department of Energy
Reference Building Models of the National Building Stock provided by the National Renewable Energy
Laboratory [48].

Table 1. The general model input information [48].

Program Form Fabric Equipment

Ventilation requirements Orientation Roof Lighting
Service hot water demand Floor height Floors Efficiency
Operating schedules Shading Windows HVAC system
Total floor area Window location Infiltration Water heating
Occupancy Number of floors Wall Control settings

Table 2. Occupancy by space type [48].

Space Type
Occupancy

Space Type
Occupancy

per space m2/person per space m2/person

Apartment 3 Supermarket 11.6
Fast food dinning 1.4 Hospital (ER) 4.7
Classrooms 4 Hospital (lab) 18.6
Corridor (school) 10 Hospital (ICU) 4.7
Hotel guest room 1.5 Warehouse 0
Lobby (hotel) 3 Office (school) 20
Office 18.6 Library 4.4
Restaurant 1.4 Restroom (school) 100
Sales 6.2 Reception areas 3.1
Storage 28 Lobby (office building) 9.3
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Table 3. Outside air requirements (ventilation) [48].

Space Type
OA Total OA

L/s/person L/s/m2 L/s/m2

Apartment
Fast food dinning 9.44 6.77
Classrooms 7.08 1.77
Corridor (school) 0.51 0.51
Hotel guest room (cfm/room) 14.16
Lobby (hotel) 9.44 3.05
Office 9.44 0.51
Restaurant 9.44 6.77
Sales 1.52 1.52
Storage 0.76 0.76
Supermarket 7.08 0.61
Hospital (ER)
Hospital (lab)
Hospital (ICU)
Warehouse 0.25 0.25
Office (school)
Library
Restroom (school) 23.6
Reception areas 7.08 2.29
Lobby (office building) 9.44 1.02

 

 

 

Figure 5. Building weekday hourly occupancy schedules.

4.2.2. UBEM Calibration

With the established UBEM model, the hourly energy-use intensity of all the designed building
prototypes could be calculated. To further apply the simulated results for the final building energy-use
calculation, the model calibration needs to be implemented first. In this study, the energy-use reference
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data from RECS and CBECS, including electricity and gas consumption data, were collected from the
EIA for model calibration. RECS and CBECS are the only two nationwide statistical information sets
on building energy consumption. RECS and CBECS data are collected in two phases: Phase 1 is the
building survey, which collects basic information about the buildings, such as structural characteristics,
building size, building type, and energy-use equipment; Phase 2 is the energy consumption survey that
collects, through a website or mail, the basic energy-use information, such as electricity consumption,
gas consumption, and heating oil consumption. The RECS and CBECS data are widely used by building
managers, energy modelers, government leaders, and the Energy Star program. There are more than
1000 itemized information about buildings and their associated energy-use information included in the
RECS and CBECS data sets. Selected important building and energy-use information is listed in Table 4.
For instance, primary and more specific building activity delivers information about building types;
construction year could help to separate the reference data into two categories, pre-1980 built buildings
and post-1980 built buildings; the number of floors and building footprint helps the calculation of the
referenced energy-use intensity; and electricity and gas consumption deliver direct information about
the building’s energy-use amount. With the all-important building and corresponding energy-use
information listed in Table 4, the referenced building energy-use intensity for all 34 building types was
calculated and used for further model calibration.

Table 4. Building and energy-use information included in RECS and CBECS.

General Information Building Typology Energy Use

Census region Number of floors Electricity used
Construction year Main heating equipment Natural gas used
Primary building activity Main cooling equipment Electricity used for cooling
Final full sample building weight Water heating equipment Gas used for heating
More specific building activity Building footprint (area)

To minimize the discrepancy between the modeled energy-use intensity and actual energy-use
intensity, several important building parameters, such as the set point, occupancy schedule, usage
pattern, etc., have all been optimized. Specifically, the setpoint of the cooling and heating system is
very essential in modeling building energy use. Different building types may have a significantly
varied cooling and heating demand. In this study, the minimum acceptable room temperature and
the optimum room temperature in the summer from the engineering toolbox [49] were collected and
used as reference data for adjusting the cooling and heating set point of the HVAC system in the
model calibration (see Table 5). Table 5 shows that the accepted room temperature in winter for the
school (classroom or lecture room) is 20 ◦C; the hotel is 21 ◦C; the office is 20 ◦C; the restaurant is
18 ◦C; and warehouse is 16 ◦C. Moreover, the general optimum room temperature in the summer is
between 20 ◦C and 22 ◦C for most rooms. Therefore, when the calibration is conducted, the cooling
and heating set point of the HVAC system has to be set with the consideration of the recommended
room temperatures. Moreover, the occupancy schedule is another very important parameter. Business
buildings, school buildings, and residential buildings may have different schedules. People may have
different timing for getting up, leaving home, starting work or study, going back home, or going to
bed. Therefore, different schedules must be considered for different buildings. In this study, the most
optimum building occupancy schedule (Figure 5) recommended by the technical report of the US
Department of Energy Reference Building Models of the National Building Stock provided by the
National Renewable Energy Laboratory was applied. Furthermore, schools may have spring, summer,
fall, and winter breaks, which result in lower energy consumption. They all must be considered in
the schedule section during model calibration. The primary school and secondary school operating
schedules were collected from the Department of Education in New York City [50]. It shows the spring
semester starts in late January and ends in late June, and the fall semester starts in early September
and ends in late December. Therefore, the summer break (July and August) and spring break (January)
were set as time points of limited operation with relatively low energy consumption [50].
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Table 5. The minimum acceptable room temperature in the winter and the optimal room temperature
in the summer of different room types [49].

Season Room Type Temperature (◦C) Room Type Temperature (◦C)

Winter

Bathrooms 22 Lecture rooms 20
Bedrooms 18 Libraries 20

Classrooms 20 Living rooms 21
Corridors 16 Offices 20

Dining rooms 20 Recreation rooms 18
Exhibition halls 18 Restaurants 18

Hotel rooms 21 Shops 18
Laboratories 20 Stores 15

Wards 18 Warehouses 16

Summer All rooms 20–22

In addition, both electricity and gas consumption are coming from different components, such as
lighting, cooking, heating, cooling, refrigerator, machines in the lab, machines in the office, etc. In general, one
or more listed lighting, electric, and gas equipment are included in each specific building type (see Table 6).
For instance, schools may include lighting, electric equipment, and gas equipment for a dorm, classroom,
lab, cafeteria, library, and auditorium. The office only has office lights and corridor lights in lighting,
electric equipment for the office, meeting room, and employee lounge, and no gas equipment. Residential
buildings include more specific equipment, such as a refrigerator, microwave, laundry machine, TV set,
stove for cooking, and lighting in different rooms. In this study, the reference data collected from the Pacific
Northwest National Lab were used for updating all models for model calibration purposes [51]. In summary,
energy plus has hundreds of parameters. On the one hand, it is impossible for us to make the change
for all parameters; on the other hand, not all reference data are available to be used for the calibration.
Therefore, the goal of the model calibration is to minimize the discrepancy between the modeled results and
the referenced number with the available reference information.

Table 6. Selected lighting, electric, and gas equipment inside buildings.

Lighting Electric Equipment Gas Equipment

Dinning lights, kitchen lights Dining room equipment Kitchen cooking equipment
Lab lights, ER lights, office lights Nurse station equipment Water heating furnace
Corridor lights, apartment lights Kitchen room equipment Heating (HVAC) equipment
Bathroom lights, auditorium lights Auditorium equipment Laundry equipment
Cafeteria lights, gym lights Cafeteria equipment
Library lights, classroom lights Library equipment
Guest room lights, employee lounge lights Employee lounge equipment
Admin office lights Meeting room equipment
Restroom lights, deli lights Guest room equipment
Produce lights Laundry room equipment
sales lights Refrigerator (residential)
storage room lights Microwave (residential)

Figure 6 indicates that, after calibration, the difference between the simulated electricity- and
gas-use intensity and the actual energy-use intensity were all reaching the evaluation criteria (within
± 10%). Therefore, all the proposed energy-use intensity models are qualified to estimate the actual
energy-use intensity of all the building prototypes. The annual energy-use intensity included in
Figure 6 shows that for commercial buildings, the quick-service restaurant has the highest energy-use
intensity for electricity consumption and the full-service restaurant has the highest energy-use intensity
for gas consumption. Moreover, the warehouse has the lowest electricity- and gas-use intensity.
In terms of residential buildings, the multi-family residences have a much higher electricity- and
gas-use intensity than single-family residences. After model calibration, the modeled total electricity
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and gas consumption in Manhattan was also compared with the real energy-use information from the
City of New York, to make sure the modeled energy consumption is reasonable.

 

 

 

 

Figure 6. Comparison of the modeled and referenced energy-use intensity for residential and
commercial buildings.

4.2.3. The Spatial Distribution of Energy Consumption in Manhattan

Figure 7 shows the spatial distribution patterns of energy-use intensity in Manhattan, and quite
different spatial patterns could be found between electricity-use intensity and gas-use intensity.
Specifically, the highest electricity-use intensity is located in the center and southern corner of
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Manhattan, which are mainly composed of large offices with an annual electricity-use intensity over
200 kWh/m2. From the central area to the outlier of Manhattan, the electricity-use intensity drops
significantly to around 100 kWh/m2, or even much lower as most buildings clustered here are medium
offices, small offices, primary schools, secondary schools, retail stores, single-family houses, and midrise
apartments. Moreover, some buildings, such as quick-service restaurants, full-service restaurants,
and supermarkets, are dispersed in Manhattan with a much higher electricity-use intensity, around
500 kWh/m2. In contrast, quite different gas-use intensity patterns could be found in Manhattan.
A very similar gas-use intensity could be found throughout Manhattan. Manhattan is very cold in
the winter, gas is majorly used for heating purposes in the winter, and most buildings have a very
similar gas-use intensity. Only some buildings located in the center and southern corner of Manhattan
show a relatively lower gas-use intensity, which is mainly composed of large offices built after 1980
with improved energy-use efficiency. There are also some red spots with a high gas-use intensity
dispersed in Manhattan, which is mainly composed of restaurants. With the modeled energy-use
intensity of all the designed building prototypes, the building energy consumption could be quantified
for all buildings in Manhattan through combing the corresponding building floor areas and number of
floors information. The modeled building energy use is very straightforward as the total energy use
was calculated for each building, and it is highly associated with building height. The energy use of
Manhattan is progressively decreasing from the urban core, which is mainly covered by commercial
buildings such as offices, hotels, and retail stores, to suburban areas, which are mainly composed of
residential buildings (mostly apartments, single-family, and multi-family houses).

Figure 7. Modeled annual building electricity- and gas-use intensity in Manhattan, NYC, in 2012.

4.3. The Temporal Profiles of Energy Consumption in Manhattan

Figure 8 illustrates similar seasonal electricity-use intensity patterns but different seasonal gas-use
intensity patterns. Specifically, the electricity-use intensity is very similar in four seasons except in
summer. In addition to the general electricity use, electricity for cooling purposes is another major
electricity consumption source in the summer. Therefore, a slight electricity-use intensity increase
could be found in the summer. Significantly different seasonal gas-use intensity patterns could be
found for Manhattan. In particular, gas-use intensity is the highest in the winter for heating purposes
and much lower in the other three seasons. Moreover, spatially varied patterns of gas-use intensity
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could also be found in Figure 8. The central area and southern corner of Manhattan have a little bit
lower gas-use intensity in the winter as some buildings are renovated with improved HVAC systems
or built after 1980 with improved energy-use efficiency.

Figure 8. Seasonal energy-use intensity in Manhattan, NYC, in 2012.

To examine the monthly profiles of the building energy use in Manhattan, I aggregated the hourly
electricity and gas consumption to the monthly scale. Figure 9 illustrates strong monthly electricity-
and gas-use variations. Both residential and commercial buildings show only one peak for both
electricity and gas consumption in 2012. Specifically, the peak of electricity use is in the summer
(around July and August) due to high cooling demand, and the peak of gas consumption is in the
winter (around December and January) owing to high heating demand. In particular, the electricity
use is stable from January to April and October to December; it starts jumping up in May, reaching
the peak in July and August owing to high cooling demand, and finally drops in September. The gas
consumption is relatively stable from May to September but starts jumping in October, reaching a peak
in December and January due to high heating demand, and finally drops in April.
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Figure 9. Monthly electricity and gas consumption in Manhattan in 2012.

Figures 10 and 11 illustrate hourly building energy use and energy-use intensity for the hottest
(07-18-2012) and coldest (01-04-2012) days in Manhattan in 2012. The summer energy-use profiles
show only one peak around noon, and the summer peak is mainly contributed by the high cooling
demand from both residential and commercial buildings as it is the hottest time during a day. It is very
consistent with the hourly building occupancy schedule provided in Figure 5 and hourly energy-use
intensity provided in Figure 11. Most buildings such as offices, schools, retail stores, and supermarkets
are opening around 7 or 8 a.m. in the morning, with the highest occupancy around noon from 11 a.m. to
1 p.m. The summer energy-use peak is contributed by both high building occupancy and high outside
temperature. Figure 10 also shows a low demand for gas consumption as gas is only used for water
heating at this time. In winter, energy consumption is much higher than in the summer. Two peaks
could be found in Figures 10 and 11, with one significant peak in the morning and another peak in
the evening. The first peak is mainly caused by high heating demand from commercial buildings.
The residential building occupancy in Figure 5 shows that people are leaving home around 7 a.m. and
most commercial buildings, such as offices, retail stores, and supermarkets, open at 7 or 8 a.m. It does
support the conclusion that the first-morning energy-use peak is caused by high heating demand in
the morning. The second peak is mainly contributed by residential buildings, as illustrated in Figure 5,
in that people finish their work and return home around 6 p.m., and a high heating demand was
caused by low outside temperatures.

Figure 11 also shows the improvement in energy-use efficiency for buildings built after 1980.
Significant energy-use reduction could be found for some specific building types. For building electricity
consumption, the strip mall, large office, and secondary school have all been improved significantly.
The peak electricity-use intensity of strip mall, large office, and secondary school drops from around
0.09 kWh/m2 to around 0.08 kWh/m2, around 0.06 kWh/m2 to 0.05 kWh/m2, and around 0.04 kWh/m2 to
0.02 kWh/m2, respectively. Moreover, the efficiency of gas consumption was also improved. The peak
gas-use intensity of the secondary schools also drops from around 0.25 kWh/m2 to 0.19 kWh/m2,
and the peak gas-use intensity of the strip malls drops from 0.3 kWh/m2 to 0.2 kWh/m2. A similar
situation could also be detected in Figure 9 for other building types. In summary, the energy-use
efficiency of buildings built after 1980 has been improved significantly.
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Figure 10. Hourly building energy use for summer and winter peak days.

 

  

Figure 11. Hourly energy-use intensity (major building types) in Manhattan, NYC.

4.4. Sensitivity Analysis

Figure 12 illustrates the significant differences in building energy use between applying the TMY
weather data and the localized weather data. In particular, residential buildings have a much higher
electricity consumption in the summer and lower gas consumption in the winter in 2012 compared to
the TMY as the temperature in 2012 was much higher than in other years. When the TMY weather data
are applied, significant underestimation of electricity consumption (up to 16%) and overestimation of
gas consumption (up to 24%) occur, due to underestimating the cooling demand and overestimating
the heating demand. Similar patterns could also be found for commercial buildings. The application
of TMY weather data in building energy modeling could result in underestimation of electricity use
(up to 18%) in the summer and overestimation of gas consumption (up to 21%) in the winter, as there is
unreasonable cooling and heating demand generated by the TMY weather data. In summary, electricity
consumption for cooling and gas consumption for heating are all very important components of
building energy consumption. When inappropriate weather data are applied, the building energy
consumption will be highly misunderstood. Therefore, it is important to generate and apply localized
weather data in building energy-use modeling.
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Figure 12. Comparative analysis of the modeled energy use by using localized weather data and TMY
weather data.

5. Conclusions

In this study, the building energy-use dynamics of Manhattan, NYC, was modeled through
integrating localized weather data and UBEM. Specifically, this study generated localized weather
data based on the collected urban physical parameters and observed hourly weather data using
UWG. A building energy-use model was established and calibrated for Manhattan, NYC, based on the
collected RECS and CBEC reference data. Finally, building energy use was simulated and explored,
to observe the spatial and temporal patterns of Manhattan, NYC.

The analysis results suggest several major conclusions. Firstly, the largest building electricity and
gas uses are located in the center of Manhattan, which is mainly covered by commercial buildings with
the largest building density and height. Secondly, similar seasonal electricity-use patterns and different
seasonal gas-use patterns could be found in Manhattan. Specifically, the building electricity use is
stable throughout all seasons. The largest gas consumption could be found in the winter due to high
heating demand and low gas consumption in the summer as the gas is only used for water heating and
cooking purpose. Thirdly, the summer energy use hourly profiles show only one peak for electricity
use, mainly contributed by the high cooling demand. Winter energy use hourly profiles suggest two
gas-use peaks. The first one is in the morning as people started working with high heating demand,
and the second peak is associated with high heating demand from residential buildings when people
finish their daily work and get back home.

While building energy use has been improved with localized weather data, there are still some other
issues that need to be considered in the future, such as including the economic activity in the energy-use
model. This study only modeled building energy use in the past. However, the understanding
of future building energy use may be even more important as it could provide reference support
for sustainable city planning. In 2014, the Intergovernmental Panel on Climate Change (IPCC) has
released the fifth assessment report about future climate change, and the simulated future weather
under different socio-development scenarios have been widely used in many studies already [52–54].
Therefore, one possible future research direction could be estimating future building energy use with
consideration of both the local microclimate and future climate change under different scenarios.
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In addition, the same building occupancy schedule was applied in the same building group in this
study. However, buildings located in a different part of the city may have different occupancy schedules.
Therefore, another future research direction could be improving building energy-use modeling with
actual building occupancy schedules extracted from other data sources, such as socio-media data (e.g.,
Twitter. Facebook, etc.). Moreover, more accurate reference data is needed to improve the model
performance. In this study, only the RECS and CBECS data from EIA in 2009 and 2012 were used as
the reference data for model calibration. While the calibration performance is acceptable, the collected
RECS and CBECS data are not very recent data; thus, the calibrated model may not be able to consider
the current energy use conditions as impacted by the economy. The EIA is going to release new data
in the future. The model could be updated later with new recent data to improve the performance.
Moreover, the RECS and CBECS data are reported only at the regional level and the calibrated model
may have a much better reflection of energy use at the regional level instead of the individual building
level. In addition, the spatial information of the reference data from RECS and CBECS has been blocked
to for privacy purposes. Only one energy-use model can be calibrated for one building type, and the
spatial variation in energy use of each building type was ignored. When smart-metered utility data
become available, the proposed model can be updated and improved for better modeling of building
energy use at the individual building level, with consideration of the spatial variation in energy use
within each building type.
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