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Anna Parra-Llorca, Máximo Vento, Julia Kuligowski and Guillermo Quintás

Current Practice in Untargeted Human Milk Metabolomics
Reprinted from: Metabolites 2020, 10, 43, doi:10.3390/metabo10020043 . . . . . . . . . . . . . . . 129

Mohamed A. Salem, Leonardo Perez de Souza, Ahmed Serag, Alisdair R. Fernie, 
Mohamed A. Farag, Shahira M. Ezzat and Saleh Alseekh

Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to 
Metabolite Analysis
Reprinted from: Metabolites 2020, 10, 37, doi:10.3390/metabo10010037 . . . . . . . . . . . . . . . 147

Ana M. Rodrigues, Ana I. Ribeiro-Barros and Carla António

Experimental Design and Sample Preparation in Forest Tree Metabolomics
Reprinted from: Metabolites 2019, 9, 285, doi:10.3390/metabo9120285 . . . . . . . . . . . . . . . . 177

vi



About the Editors

Julia Kuligowski, Ph.D., is a postdoctoral researcher at the Health Research Institute La Fe,

in Valencia, Spain, where her main research focus is on clinical metabolomics and advanced data

analysis tools. She studied biotechnological processes at the University of Applied Sciences Wiener

Neustadt, Tulln (Austria) and was trained as an analytical chemist at the Vienna University of

Technology (Austria) and the University of Valencia (Spain) where she earned her Ph.D. in 2011.

As part of the Neonatal Research Unit, her research focused on the quantification of metabolites and

biomarkers in biological samples obtained from clinical trials and animal models employing mass

spectrometry-based techniques and vibrational spectroscopy. At present, she continues her research

activities in the field of neonatology, focusing on the discovery of molecular biomarkers for an early,

minimally invasive assessment of brain injury secondary to hypoxic-ischemic encephalopathy and

the impact of nutrition on growth and development of preterm infants.

Guillermo Quintas, Ph.D., is a researcher at the LEITAT Technological Center (Barcelona, Spain).

After completing his Ph.D. at the University of Valencia (Spain) in 2004, he obtained a post-doctoral

fellowship at the Public Health Laboratory Valencia (Spain), the Vienna University of Technology

(Austria), and the University of Valencia, where his research focused on hyphenated systems and

infrared spectroscopy. In 2009, he made the transition to a position as senior researcher in Advancell

(Barcelona, Spain) and at the Analytical Unit of the Health Research Institute La Fe (Valencia), where

his activities were focused on providing tailored analytical solutions for clinical and pre-clinical

research studies aiming at biomarker discovery and validation and drug development. In 2011,

he moved to the Health and Biomedicine division of LEITAT. Currently, his main research is directed

toward the joint analysis of information from multiple platforms and clinical data, developing novel

chemometric approaches.

vii





Preface to ”Sample Preparation in Metabolomics”

Metabolomics aims at the comprehensive analysis of all low molecular weight metabolites 
present in a biological system under consideration. This is a demanding task due to the chemical, 
physicochemical, and biological diversity of metabolites; the broad range of rapidly changing 
concentrations; and the limited stability of some compound classes. Furthermore, the choice of the 
sample preparation method needs to be made in alignment with the study aim and the selected 
analytical approach. To generate high-quality data, sample preparation is a particularly important 
aspect, as, generally, a major source of error in analytical results is associated with pre-analytical 
steps. Despite its importance, sample preparation is often an overlooked aspect of studies involving 
metabolomics, so the spotlight of this book is on the latest developments in sample collection, 
preparation, and optimization for targeted and untargeted analysis using different analysis platforms 
in a diverse field of applications.

Expanding metabolome coverage to include complex lipids and polar metabolites is critical for 
the generation of well-founded hypotheses in biological assays. The performance of single-step 
sample preparation methods for the simultaneous extraction of the complex lipidome and polar 
metabolome from human plasma was evaluated [1]. Method performance was assessed using 
high-coverage hydrophilic interaction liquid chromatography-ESI coupled with tandem mass 
spectrometry (HILIC-ESI-MS/MS) targeting a panel of 1159 lipids and 374 polar metabolites. Among 
the tested methods, the isopropanol (IPA) and 1-butanol:methanol (BUME) mixtures were selected 
as the best compromises for the simultaneous extraction of complex lipids and polar metabolites, 
allowing for the detection of 584 lipid species and 116 polar metabolites in plasma.

The analysis of highly polar and small molecules in complex biolfuids is especially troublesome 
as widely employed reversed-phase liquid chromatography methods do not achieve adequate 
retention and co-elution with matrix compounds, eventually leading to strong ion suppression effects 
when using mass spectrometry detection. A smart set-up involves the electromembrane extraction of 
five polar metabolites from several plasma samples, in parallel, dramatically increasing the extraction 
throughput. Extracted compounds were analyzed using a multi-segment injection—capillary 
electrophoresis—mass spectrometry (MSI-CE-MS) method and fast-liquid chromatography—tandem 
mass spectrometry, achieving recoveries of up to 100% with variability as low as 2% [2].

Nuclear magnetic resonance (NMR) is one of the principal spectroscopic methods employed 
in metabolomics studies for the analysis of biofluids. Recently, high-resolution micro-magic angle 
spinning (HR-µMAS), has been introduced, paving the way for investigating microscopic specimens 
(<500 μg) with NMR spectroscopy. Sample preparation for HR-μMAS is challenging due to the 
μgscale specimen. This book addresses this topic with a special emphasis on three specimen types: 
biofluids, fluid matrices, and tissues [3]. In biomedical research, the use of cell lines is frequently 
employed to gain insights into mechanisms of diseases, as well as new treatment approaches. 
Dedicated protocols for cell harvesting, disruption, and metabolite quenching and extraction were 
recently developed and critically assessed [3–6]. Using Caulobacter crescentus as a model for Gram-

negative bacteria, eight different sample preparation techniques were evaluated using a full-factorial 
experimental design in combination with the ANOVA multiblock orthogonal partial least squares 
(AMOPLS) algorithm for decomposing the contribution of each studied factor. All of the main effects 
of the studied factors were found to significantly contribute to the total observed variability, with cell 
retrieval having the biggest impact. The protocol showing the best performance in terms of recovery, 
versatility, and variability was centrifugation for cell retrieval in
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combination with MeOH:H2O (8:2) as quenching and extraction solvent, and freeze–thaw cycles as

the cell disrupting mechanism [4].

Another study evaluated the effect of the choice of drying technique, i.e., centrifugal evaporation

under vacuum vs. lyophilization, on the retrieved NMR spectroscopic profiles of hydrophilic extracts

of three human pancreatic cancer cell lines [4]. Between 40 and 50 metabolites showed statistically

significant differences in abundance in redissolved sample extract depending on the drying technique

employed. Metabolite coverage was also differing, with a set of metabolites being exclusively

detected in samples subjected to each drying technique. Hence, these observations showcase the

impact of sample preparation on the final result. A three-dimensional multicellular tumor spheroid

(3D MTS) model was the focus of another study [6]. Careful optimization of multiple steps of

sample preparation enabled the probing of the metabolome of single MTSs in a highly repeatable

manner at a considerable throughput and provided absolute concentrations with average biological

repeatability of <20%. In a proof-of-principle study, distinct metabolic shifts upon MTS exposure to

two metal-based anticancer drugs, which exhibit distinctly different modes of action, were retrieved.

Therefore, biological variation among single spheroids can be assessed using the presented analytical

strategy that is applicable for in-depth anticancer drug metabolite profiling. Finally, a sample

preparation strategy for gas chromatography–mass spectrometry (GC-MS)-untargeted metabolomics

of adherent cells grown under high (20%) fetal calf serum conditions was developed [7]. The

reproducibility of using different proportions of methanol for the quenching of cells was compared

for sample harvest, and the efficiency and reproducibility of intracellular metabolite extraction were

tested by employing different volumes and ratios of chloroform. Additionally, the use of total protein

amount versus cell mass for normalization purposes was assessed.

The last chapters of this book provide an overview of the state of the art in a selection of

fields of applications. Cell-secreted extracellular vesicles (EVs) have rapidly gained prominence as

sources of biomarkers, owing to their ubiquity across human biofluids and physiological stability.

Many studies have been devoted to their protein, nucleic acid, lipid, and glycan content, but more

recently the metabolomic profile of EV content has also gained attention. Beyond clinical applications,

metabolomics has also elucidated possible mechanisms of action underlying EV function. There

are challenges inherent to working with EVs, particularly concerning sample production and

preparation. This chapter outlines recent advances in EV metabolomics whilst highlighting practical

pitfalls in applying metabolomics to EV studies [8].

Human milk (HM) is the gold standard for infant nutrition, and, as such, it is an outstandingly

complex biofluid with a dynamically changing composition. The use of novel, cutting-edge

techniques involving different metabolomics platforms has permitted the expansion of knowledge

on HM composition. This chapter presents the state of the art in untargeted metabolomic studies

of HM, with an emphasis on sampling, extraction, and analysis approaches with a special focus on

the achievable metabolome coverage. Finally, current knowledge gaps and potential future research

directions are pointed out [9].

Plant-derived natural products are a valuable source of active compounds. Natural extracts are

rich in different classes of metabolites, whereby the bioactivity of natural extracts can be a synergistic

effect of several compounds. In recent years, metabolomics has emerged as an indispensable tool for

the analysis of crude natural extracts, leading to a paradigm shift in natural products drug research.

In this chapter, current advancements in plant sample preparation, analysis, and data processing are

presented alongside several case studies of the successful applications of these processes in plant

natural product drug discovery [10].
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Finally, the last chapter is focused on the peculiarities of forest tree metabolomics. Tree tissues

are intrinsically complex matrices, and the presence of several compounds, such as oleoresins and

cellulose, might interfere during their analysis. Additionally, in this field of application, experimental

design, tissue harvest conditions, and sample preparation are crucial factors to ensure consistency

and reproducibility among datasets. This chapter discusses the main challenges when setting up a

forest tree metabolomics experiment for mass spectrometry (MS)-based analysis covering technical

aspects of all stages of the workflow. The importance of forest tree metadata standardization in

metabolomics studies is also highlighted [11].
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Abstract: Expanding metabolome coverage to include complex lipids and polar metabolites
is essential in the generation of well-founded hypotheses in biological assays. Traditionally,
lipid extraction is performed by liquid-liquid extraction using either methyl-tert-butyl ether
(MTBE) or chloroform, and polar metabolite extraction using methanol. Here, we evaluated
the performance of single-step sample preparation methods for simultaneous extraction of the
complex lipidome and polar metabolome from human plasma. The method performance was
evaluated using high-coverage Hydrophilic Interaction Liquid Chromatography-ESI coupled to
tandem mass spectrometry (HILIC-ESI-MS/MS) methodology targeting a panel of 1159 lipids and 374
polar metabolites. The criteria used for method evaluation comprised protein precipitation efficiency,
and relative MS signal abundance and repeatability of detectable lipid and polar metabolites in human
plasma. Among the tested methods, the isopropanol (IPA) and 1-butanol:methanol (BUME) mixtures
were selected as the best compromises for the simultaneous extraction of complex lipids and polar
metabolites, allowing for the detection of 584 lipid species and 116 polar metabolites. The extraction
with IPA showed the greatest reproducibility with the highest number of lipid species detected with
the coefficient of variation (CV) < 30%. Besides this difference, both IPA and BUME allowed for the
high-throughput extraction and reproducible measurement of a large panel of complex lipids and
polar metabolites, thus warranting their application in large-scale human population studies.

Keywords: sample preparation; extraction; lipidomics; metabolomics; LC-MS/MS; human plasma

1. Introduction

Blood plasma is one of the most commonly used biofluids for metabolic phenotyping, specifically in
human population studies. This is mainly due to its easy access with minimally invasive
sampling and the ability of its metabolic profile to inform about the systemic physiological status.
Blood has a vital physiological role in the transport of circulating metabolites; it supplies tissues
with nutrients and oxygen, and it carries away the metabolic by-products and carbon dioxide.

Metabolites 2020, 10, 495; doi:10.3390/metabo10120495 www.mdpi.com/journal/metabolites1
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Human plasma contains a wide diversity of low molecular weight metabolites, including amino
acids, other organic acids, fatty acids, sugars, and complex lipids [1]. Lipids represent more than
70% of plasma metabolome diversity and so far, more than 600 distinct lipid molecular species
have been detected in human plasma [2]. These lipids can be classified, depending on their
chemical structure, according to Lipid Maps consortium (http://www.lipidmaps.org) into sphingolipids,
glycerophospholipids, fatty acids, glycerolipids, sterols, and prenols [3,4]. Their main functions
comprise energy storage, signal transduction, and plasma membrane and organelles constituents,
thus enabling the cell growth, proliferation, activation, and apoptosis [5]. When compared to total lipid
content, the total polar metabolite content (comprising mainly carbohydrates, amino acids, and other
organic acids), represents a minor part of plasma metabolome [2]. These polar metabolites are known
to regulate the intracellular energy metabolism, including glucose, lipid, and amino acid oxidation [6,7].
The concentrations of endogenous, polar, and lipid metabolites in plasma are determined by cellular
activity, and additional internal (e.g., microbiome, inflammation) and external factors (e.g., diet,
physical activity, medication, environmental exposures, etc.). Therefore, the recorded changes in
respective metabolite concentrations can serve as a readout of cellular biochemical activity and its
response to changes in the environment. Hence, an approach to extract and measure the broadest
possible range of lipids and polar metabolites in human plasma is fundamental for better understanding
of metabolic changes in different physiological conditions [8,9].

Despite having the same analytical principle, lipidomics and metabolomicshave been considered
as distinct technological approaches, which is mainly due to the application of different sample
preparation and data acquisition protocols. Traditionally, polar metabolite extraction is performed
in a single-step using methanol (MeOH) [10–12], and lipid extraction using biphasic Folch or Bligh
and Dyer protocols with a mixture of methanol, chloroform, or dichloromethane, and water [13,14].
The main advantage of these protocols is the recovery of a wide range of lipid classes in the organic
phase and polar metabolites in the aqueous phase and, therefore, their applicability for multicomponent
analyses [4,15,16]. However, the main drawback constitutes the reproducible recovery of the bottom
organic phase when analyzing large sample sets. Consequently, in order to overcome this issue,
chloroform and dichloromethane were replaced by methyl-tert-butyl ether (MTBE) in the Matyash
method, where lipids are recovered in the upper organic phase [17]. Still, the reproducible separation
of organic and aqueous phase remains laborious and can introduce a bias to the measurement accuracy
of some amphiphilic metabolites partitioned between these two phases [15].

Recently, the Alshehry method or 1-BUtanol:MEthanol mixture (1:1, BUME) and isopropanol
(IPA, 100%) were introduced as an efficient single-step alternative for complex lipid extraction,
also suitable for automation [18–20]. Single-step methods are advantageous because they require
minimal sample handling to ensure reproducible sample preparation in large-scale studies. In addition,
they allow for the simultaneous multicomponent extraction and sample cleaning (deproteinization).
Systematic evaluations of single-step versus traditionally used biphasic extractions are sparse and
the potential of these straightforward protocols to simultaneously extract complex lipids and polar
metabolites has not yet been assessed. So far, sample preparation using the Matyash biphasic protocol
was evaluated as the best compromise for the comprehensive extraction of complex lipids and an
adequate yield of polar metabolites [21,22].

In this work, we demonstrate the performance of two single-step sample preparation methods,
i.e., using BUME and IPA, for the simultaneous extraction of complex lipids and polar metabolites
from human plasma. The extraction method evaluation was based on protein removal efficiency,
relative signal intensity and signal reproducibility of the complex lipid and polar metabolite profiles
acquired by high-coverage targeted HILIC-MS/MS. The complex lipidome and polar metabolome
coverage was assessed for both BUME and IPA by considering the signal reproducibility (the coefficient
of variation (CV) < 30%) as a prerequisite for the measurement accuracy and precision, rather than
only focusing on the diversity of detectable metabolome and lipidome.
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2. Results

2.1. Sample Preparation Methods and Evaluation Workflow

The ability of single-step methods to simultaneously extract complex lipids and polar metabolites
was evaluated using relative abundance and repeatability of metabolite signal, against the commonly
applied protocols, a biphasic extraction with MTBE for lipids, and a single-step MeOH for polar
metabolites (Figure 1). The extracts were analyzed with high-coverage targeted profiling using
HILIC-MS/MS in positive and in negative ionization mode (see Materials and Methods). These methods
targeted a total of 1159 lipids from five different lipid classes (sphingolipids, cholesterol esters,
glycerolipids, glycerophospholipids, and free fatty acids, Tables S1 and S2), and 374 polar metabolites
from 12 different classes (amino acids and their derivatives, carboxylic acids, acylcarnitines, nucleotides,
etc., Tables S3 and S4). The classification of polar metabolites was based on the Human Metabolome
Database (HMDB) while the complex lipids were classified according to LipidMaps [4,23]. The protein
precipitation efficeincy, the relative abundance and the coefficient of variation of each detected
metabolite were used to evaluate the extraction performance for each lipid and polar metabolite class
(Figure 1).

Figure 1. Sample preparation and evaluation workflow. The performance of single step extraction
methods, including methanol (MeOH), ethanol (EtOH), BUtanol:MEthanol (BUME), and isopropanol
(IPA), was compared to the solvent mixture considered as the best compromise, i.e., MTBE:MeOH:H2O
for complex lipid and MeOH for polar metabolite extraction. The criteria used for evaluation of solvent
performance are shown on the right side of the figure. For the repeatability experiments, the extraction
was done by four independent operators each performing five technical replicates per extraction
protocol (n = 4 operators x 5 replicates).

Firstly, we examined the performance of single-step methods, using MeOH, ethanol (EtOH),
BUME, and IPA, to extract lipids. Following the lipid extraction, the protein precipitation efficiency of
these four solvents was evaluated by measuring the total protein content in the supernatant and in the
pellet (see Materials and Methods section for more details). The equivalent to 95% of protein removal
was achieved with all four methods (See Table S5).

3
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Secondly, the relative signal abundance of the entire panel of detected lipid species was evaluated in
all four plasma extracts (Figure S1). Methanol demonstrated the poorest performance for complex lipid
extraction, with the exception of lysophosphatidylcholines (LPCs) and lysophosphatidylinositols
(LPIs). A significantly lower signal for several lipid classes (i.e., sphingomyelins, fatty acids,
and lysophospholipids) was also obtained from ethanol extracts, when compared to IPA and BUME.
Therefore, MeOH and EtOH were excluded from further evaluation as non-suitable or less performant
for complex lipid extraction, respectively. The best candidates, BUME and IPA, were further evaluated
against biphasic Matyash method, for their capacity to reproducibly extract lipids and polar metabolites.

2.2. Relative Signal Abundance

BUME and IPA extractions were selected as the best single-step methods when considering the
relative abundance of extracted lipids. Therefore, they were further evaluated for lipid and polar
metabolite extraction against commonly used biphasic extraction MTBE:MeOH:H2O in lipidomics
studies, and MeOH in polar metabolome studies.

Pooled plasma samples were extracted, and the supernatant of each solvent was evaluated per
metabolite and lipid class covered by targeted HILIC-MS/MS methods. To acquire the lipid and polar
metabolite profiles, the metabolite separation was based on the interaction with the HILIC stationary
phase: amide-based for complex lipids in positive and in negative ionization mode, and amide-based
and with zwitterionic exchange for polar metabolites in positive and in negative ionization mode,
respectively [11]. The extraction capacity of each solvent was evaluated by the relative abundance of
each lipid and metabolite class to the average signal abundance obtained by the reference solvents
(MTBE mixture for lipids and MeOH for polar metabolites, Figure 2, Figure 3 and Figures S2–S4).

Figure 2. Relative signal abundance (per lipid class) to signal recovered with biphasic extraction
with methyl-tert-butyl ether (MTBE). Values indicated on spider plots represent the relative signal
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abundance (or fold change) for each single-step method, using IPA or BUME, to the
reference MTBE extract. For statistical significance see Figure S2 in the Supplementary
Information (data are given in Tables S7 and S8). Lipid classification abbreviations:
SM—sphingomyelin, CER—ceramides, DCER—dihydroceramides, LCER—lactosylceramiedes,
HCER—hexosylceramides, MAG—monoacylglycerol, DAG—diacylglycerol, TAG—triacylglycerol,
CE—cholesterol esters, FFA—free fatty acids, PI—phosphatidylinositol, PC—phosphatidylcholine,
PG—phosphatidylglycerol, PE—phosphatidylethanolamine, PS—phosphatidylserine, LPC—
lysophospha- tidylcholine, LPG—lysophosphatidylglycerol, LPE—lysophosphatidylethanolamine,
LPI—lysophosphatidylinositol, LPS—lysophosphatidylserine.

Figure 3. The relative abundance of polar metabolite classes in IPA and BUME extracts as compared
to MeOH plasma extract. Values indicated on spider plots represent the relative signal abundance
(or fold change) for each single-step method, using IPA or BUME, to the reference MeOH extract.
For statistical significance, see Figure S7 in the Supplementary Information (data are provided in
Table S9). For the comparison with aqueous phase from Matyash method see Figure S8. The class
“Others”, i.e., other polar metabolites comprise glycocholate, hydroquinone, hydroxyphenyllactate,
pyridoxine, salsolinol, trigonelline, and tryptamine (Table S6). Carboxylic acids comprised mono-, di-,
and tri-carboxylic acids.

2.2.1. Complex Lipid Profile

Initially, twenty lipid sub-classes were targeted by monitoring 1159 characteristic MRM
transitions combining positive and negative ionization mode. Following the filtering of noisy signals,
the detectable lipidome in human plasma was resumed to 584 lipid species. In the positive mode,
324 lipids were detected, including sphingomyelins (SM), ceramides (CER), dihydroceramides
(DCer), lactosylceramides (LCer), hexosylceramides (HCer), mono, di, triacylglycerols (MAG,
DAG, TAG, respectively), and cholesterol esters (CE). In negative mode, 260 lipids were detected,
comprising phosphatidylinositols (PI), phosphatidylcholines (PC), phosphatidylglycerols (PG),

5



Metabolites 2020, 10, 495

phosphatidylethanolamines (PE), phosphatidylserines (PS), and their lysophospholipid analogues
(LPC, LPG, LPE, LPI, LPS), and free fatty acids (FFA).

The signal abundance recovered (with each extraction method) was evaluated by relative
comparison to the average signal of the reference extract, in this case, the MTBE for lipid extraction.
Lipid species that were representative of all different lipid classes were successfully extracted by
all three solvents tested, with the exception of LPIs, for which the signal in the MTBE extract was
close to the limit of detection, as shown in Figure 2. Among sphingolipids, the highest signal was
obtained with IPA and BUME extracts for all sub-classes, including sphingomyelins, ceramides,
dihydroceramides, lactosylceramides and hexosylceramides. In the case of glycerolipids (MAGs,
DAGs, and TAGs) the highest signals were obtained following single-step extraction with BUME and
IPA, although the relative signal was not significantly different from the reference signal of the MTBE
extract. Among glycerophospholipids, the significantly higher signal was obtained with IPA for PSs.
For other subclasses the difference between three solvents was not significant. For lysophospholipids,
the relative signal abundance was in general significantly higher for IPA and BUME extracts when
compared to MTBE phase (Figure 2 and Figure S2, Tables S7 and S8).

To confirm these observations, six internal standards (IS), analogues for TAGs, PCs, LPCs, PEs,
LPEs, and SMs, were spiked to the samples with the addition of organic solvent (see Figure S3).
Based on relative signal abundance these internal standards demonstrated the similar tendency as the
endogenous metabolites, depending on the lipid class. Globally, a higher signal was obtained for all
different IS following IPA and BUME extraction compared to the organic MTBE phase from Matyash
extraction, with the exception of TAG-d7, for which the signal was also the most variable (Figure S3).

In addition, in order to evaluate the extent of interference between lipids and polar metabolites
when using one-step extraction coupled to HILIC-MS/MS analysis, the most abundant polar metabolites
in human plasma (including different amino acids, organic acids, and acylcarnitines) were added to
the MRM method for complex lipid analysis. We could appreciate that the selected polar metabolites,
in the applied HILIC conditions, did not co-elute with complex lipids, therefore minimizing the
potential effect of ion suppression on lipids (see Figures S4 and S5). Polar metabolites were effectively
retained, but due to their high hydrophilicity, they eluted (with the exception of hydroquinone and
hypoxanthine) after complex lipids in the chromatographic gradient.. Interestingly, similar results
were found for the long chain acylcarnitines that did not co-elute with lipids, such as sphingomyelins
when profiled in the positive ionization mode.

Finally, different organic solvents can lead to different contamination levels from plastic agents
and, therefore, cause differences in matrix effects. To examine the potential influence of contaminants
on lipid abundances, the background noise from blank extractions was examined using HRMS analysis
(see Figure S6). Overall, no significant differences in the contaminant background were observed
among the different solvent extracts, with the exception of MTBE extract profile in negative ionization
mode, which showed several intense peaks eluting between 1 and 4 min. A few of these peaks likely
represent fatty acids (stearic acid with m/z 283.26 and palmitic acid with m/z 255.23) that, in addition
to being endogenous lipids, also represent the potential contaminants from plastics (confirmed with
matching against MaConDa (https://www.maconda.bham.ac.uk/)).

2.2.2. Polar Metabolite Profile

The same plasma extracts were analyzed for the detection and abundance of polar metabolites
(as described in Materials and Methods). The HILIC-MS/MS method initially targeted 374 polar
metabolites that were classified into 12 categories: proteinogenic amino acids, amino acid derivatives,
nucleosides, nucleic acids, alkylamines, short and long chain acylcarnitines (SCACs and LCACs,
respectively), carbohydrate conjugates, mono-, di-, and tri-carboxylic acids (Mono-COOHs, Di-COOHs,
Tri-COOHs, respectively), and others (comprising glycocholate, hydroquinone, hydroxyphenyllactate,
pyridoxine, salsolinol, trigonelline, and tryptamine, see Table S6 for more information). Similar to the
complex lipid evaluation, we have evaluated the capacity of the BUME and IPA extractions methods
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to recover different polar metabolite classes with respect to signal abundance in the MeOH, as the
reference method.

Significantly higher signals for the proteinogenic amino acids, carboxylic acids and carbohydrates
were observed following the extraction with MeOH, while the nucleosides, alkylamines, short and
long-chain acylcarnitines, and other polar metabolites showed significantly higher signals following
the extraction with IPA, compared to BUME and MeOH (Figure 3 and Figure S7, Table S9). For amino
acid derivatives and nucleic acids the signal intensity did not differ significantly between the MeOH,
BUME, and IPA extracts.

Finally, the aqueous phase from biphasic Matyash extraction was also analyzed in order to evaluate
the polar metabolite profile when compared to the profiles that were derived from other single-step
methods (rich in lipids). For the majority of polar metabolites, with the exception of nucleic acids,
amines, and alkylamines, the signal from the aqueous phase (following the Matyash protocol) was
significantly lower when compared to single-step methods (Figure S8).

2.3. Reproducibility and Size of Measurable Lipidome and Metabolome

The analytical variability of the selected single-step extraction methods using IPA and BUME was
evaluated through independent preparation of pooled plasma samples by four different operators
(n = 5 samples per operator and per solvent). The intra-batch coefficient of variation (CV) across
20 replicates, analyzed in a randomized fashion, was determined for both complex lipids and polar
metabolites. Figure 4 represents the lipid and polar metabolite count, depending on the coefficient of
variation across all replicates and operators (Tables S10–S12).

Figure 4. Signal reproducibility for complex lipids and polar metabolites. Coefficient of variation (CV)
of all detected lipids (A) and polar metabolites (B) is presented in frequency histograms. The CV was
evaluated across 20 independently prepared plasma samples (5 replicates × 4 different operators) using
IPA and BUME. Red line indicates the threshold CV = 30% (data provided in Tables S10–S12).

Out of 584 lipid species that were detected in pooled human plasma samples, 345 from the IPA
extract had CV< 30% vs. 294 lipid species from the BUME extract (Figure 4A). The lipids with CV > 30%
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mainly included TAGs (169), ceramides (13, comprising DCER LCER, HCER), diacylglycerols (8),
phosphatidylethanolamines (8), lysophosphatidylinositols (6), and cholesterol esters (6).

For polar metabolites, out of the 116 metabolites detected in pooled plasma samples, 109 from the
IPA extract had a CV < 30% vs. 115 metabolites from the BUME extract (Figure 4B).

Following the filtering based on this analytical variability (CV < 30%), the size and diversity of the
measurable lipidome and polar metabolome is shown in Figure 5 for the IPA extract, and in Figure S9
for the BUME extract.

Figure 5. Diversity and size of measurable lipidome and polar metabolome. Complex lipids
(A) and polar metabolites (B) that were reproducibly measured from IPA extract (CV < 30%,
see Figure 4) are presented in the pie charts to show the broadest and most reproducible coverage.
Lipid classification abbreviations: SM—sphingomyelin, CER—ceramides, DCER—dihydroceramides,
LCER—lactosylceramiedes, HCER—hexosylceramides, MAG—monoacylglycerol, DAG—diacylgly-
cerol, TAG—triacylglycerol, CE—cholesterol esters, FFA—free fatty acids, PI—phosphatidylinositol,
PC—phosphatidylcholine, PG—phosphatidylglycerol, PE—phosphatidylethanolamine, PS—phospha-
tidylserine, LPC—lysophosphatidylcholine, LPG—lysophosphatidylglycerol, LPE—lysophosphatidy-
lethanolamine, LPI—lysophosphatidylinositol, LPS—lysophosphatidylserine. Class abbreviations for
polar metabolites: short (SCACs) and long chain (LCACs) acylcarnitines, mono- (Mono-COOHs)-,
di- (Di-COOHs)-, and tri- (Tri-COOHs) carboxylic acids and others (comprising glycocholate,
hydroquinone, hydroxyphenyllactate, pyridoxine, salsolinol, trigonelline, and tryptamine, see Table S6
for more information).

3. Discussion

In this study, we have evaluated the performance of several single-step protocols for the
simultaneous extraction of complex lipids and polar metabolites from the human plasma in a
high-throughput manner. The extractions were performed with solvents that cover the following range
of polarity indexes H2O >MeOH > EtOH > IPA > BuOH >MTBE, with the BUME mixture expected
to be in the middle of this range [24,25]. Therefore, the extraction affinity of BUME is likely driven by
the interaction of both butanol and methanol solvent, with the resulting polarity effect for the more
hydrophobic (lipids) and hydrophilic (polar metabolites) compounds.

HILIC chromatography was chosen as the best compromise for performing complex lipid and
polar metabolite analysis. It is important to note that different HILIC methods with different gradients
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and mobiles phases (see Materials and methods for details) were used for complex lipid and polar
metabolite profiling, respectively. In addition to offering high chromatographic resolution for polar
metabolite profiling, the HILIC approach is also advantageous for lipid analysis, since it allows for
the separation of lipids classes based on their head groups. The separation by lipid class facilitates
the development of quantitative methods, because each class can be covered by its corresponding
internal standard. When compared to Reversed Phase (RPLC), the separation using HILIC also better
corrects the matrix effects, since the endogenous lipids and their corresponding Internal Standards
(IS) co-elute [26]. Importantly, HILIC separation also allows for the chromatography-assisted lipid
quantification in large-scale population studies, due to the acceptable cost of a relatively low number
of required internal standards.

The aim of our study was to evaluate whether the use of a single-step extraction generates the
lipid and polar metabolite coverage equivalent to the commonly used biphasic protocols. To this end,
we evaluated the abundance and repeatability of the MS signal of all detected endogenous lipids
and polar metabolites in human plasma extracts instead of estimating the extraction efficiency of
each solvent with the recovery assessment using pre- and post-extraction internal standard spike.
Because complex lipids bind to protein carriers (i.e., lipoproteins), a property that cannot be reproduced
by an internal standard spike, our strategy to evaluate the extraction method performance using the
signal of extracted endogenous metabolites was considered as the best compromise. We argue that the
best strategy to quantify the recovery of endogenous compounds is by using reference materials due to
the complexity of biological matrices in general [27,28]. This approach is commonly applied for the
validation of the measurement accuracy of analytical methods and was out of the scope of this study.

3.1. Complex Lipid Extraction

The extraction of lipids depends on their structure and substitute groups (i.e., headgroups that are
representative of each lipid class), their polarity (determined by the head group and length of the alkyl
chain) and their spatial configuration (e.g., degree of unsaturation). These structural characteristics
play an important role in the interaction with the extraction solvent. As previously reported for BUME
and IPA extraction, in general, more than 90% of the total lipid content of a plasma sample is extracted,
and it is not deemed necessary to perform a re-extraction of the pellet [18,19].

Among different lipid classes, the relative signal abundance for sphingolipids was higher in IPA
and BUME extracts when compared to MTBE. This can be explained by the polar character of the head
group in the sphingolipid structure (Figure S10). The extraction of the sphingolipids with more polar
character, such as lactosylceramides (LCer), was improved with more polar BUME mixture, owing to
the lactosyl group. Conversely, in the case of hexosylceramides (HCER), significantly higher signal
abundance was observed with IPA solvent as compared to MTBE and BUME (see Figure S11, showing
the signal abundance of specific hexosylceramides and lactosylceramides with the same alkyl chain
composition, across different solvents).

Glycerolipids and mono-, di-, and tri-alkyl substituted glycerols followed a similar trend of
solvent affinity, MTBE < IPA < BUME, although this was observed without a statistically significant
difference among the tested extraction methods. The arrangement of fatty acid chains located in any of
three positions (sn-1/sn-2/sn-3) in the glycerol backbone may play an important role in the extraction
affinity of this lipid class [29]. The highest affinity for BUME was the most pronounced for MAGs and
DAGs having lower hydrophobicity, due to only one or two fatty acyl chains and the exposition of the
hydroxyl group.

For cholesterol esters, which also have a highly lipophilic character similar to TAGs, no significant
difference was observed between three extraction protocols, which could be due to the low intensity
and high variability of signal due to their low electrospray ionization efficiency. The highest and the
most reproducible response for these lipids was observed when using IPA as extraction solvent.

In the case of glycerophospholipids, the extraction appeared to be primarily driven by their
hydrophobic character (due to their alkyl chains), since all subclasses were most efficiently recovered
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with the MTBE and IPA. These results, showing the strong affinity of PIs for the MTBE, and PGs,
PCs and PEs for all three solvents, are in agreement with the previous reports of Lee et al. and Matyash
et al. [17,30]. Importantly, the performance of the single-step extraction with IPA was at the same level
as the reference method with MTBE for all glycerophospholipid classes. Even more, a significantly
higher signal for PSs was obtained following the extraction with IPA (see Figure 2).

Finally, lysoglycerophospholipids, which are composed of a single fatty acyl chain, have lower
hydrophobicity and, thus, their solubility mainly relies on the head group. Consequently, the extraction
of lysophospholipids was more efficient with BUME and IPA. This effect was exacerbated for LPIs that
were poorly recovered using the biphasic method with MTBE, thus limiting the LC-MS analysis of this
class of lipids (i.e., signals close the level of detection).

3.2. Polar Metabolite Extraction

Large population studies require high-throughput methods, with minimal and highly reproducible
sample preparation. Therefore, in this study, we investigated the viability of measuring polar
metabolites from the same plasma extract that was obtained in single-step extraction used for the
lipidome analysis. Polar metabolite analysis was performed using the optimized targeted HILIC-based
methods (in acidic and basic conditions in positive and negative ionization mode, respectively) and
methanol extraction was used as a reference for comparison [11,31].

Because BUME and IPA demonstrated the best performance for lipid extraction in a single
step, we investigated their capacity to simultaneously extract polar metabolites implicated in central
carbon metabolism (Table S9). Similar to lipid analysis, all of the polar metabolite classes were
efficiently extracted by both methods. However, for the most polar classes, i.e., proteinogenic amino
acids, carboxylic acids (mono-, di-, and tri-), and carbohydrate conjugates, the recovered signal was
significantly lower while using IPA and BUME, as compared to methanol. Besides the hydrophilicity
of these metabolites, the signal decrease following BUME and IPA extraction is also likely to be a
consequence of ion suppression that is caused by co-eluting complex lipids (extracted with IPA and
BUME) particularly in ESI positive mode, in the chromatographic conditions for polar metabolite
analysis. Despite its decrease, the signal remained well defined and reproducible—a prerequisite for
quantitative measurement.

For the majority of other polar metabolites and specifically nucleosides and alkylamines a
significantly higher signal was observed with IPA when compared to BUME and MEOH. We hypothesize
that this may be due to the representative heterocyclic compounds.

For acylcarnitines, the signal abundance varied, depending on the length of the acyl chain.
Acylcarnitines are zwitterion molecules that are composed of a quaternary ammonium linked to a
fatty acyl chain and their polarity varies, depending on the length of the acyl chain. The hydrophobic
character of long-chain carnitines is evident, since the signal intensity was significantly higher in the
IPA extract. For more polar short-chain acylcarnitines, the intensity of the recovered signal was also
significantly higher in IPA extract but to a lesser extent. For both of these classes, methanol performance
was significantly lower when compared to IPA.

It is important to note that when applying biphasic methods for lipid extraction, polar metabolites
were previously reported to be successfully measured from the aqueous layer [32]. Interestingly,
our results clearly showed the significantly lower signal abundance for the majority of polar metabolites
following the biphasic Matyash protocol—as a result of the analysis of aqueous phase (when compared
to BUME, IPA, and MEOH extracts, Figure S8). This observation is likely due to the partition of polar
metabolites between the aqueous and organic phase in the Matyash extraction.

3.3. Extraction Method and Measurement Reproducibility

In terms of lipidome coverage, the single-step lipid extraction using IPA or BUME efficiently
recovered all lipid sub-classes, which was already reported using untargeted approaches for the
comparison of Matyash, Folch, Alshery (1:1, BUME), and IPA protocols [19,33–35]. Importantly,
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one-phase extraction using MMC solvent mixture (MeOH/MTBE/CHCl3) showed significantly better
extraction efficiencies for moderate and highly non-polar lipid species in comparison with biphasic
Folch, Bligh and Dyer, and MTBE extraction systems [32]. While the size of detectable lipidome was
extensively explored in several previous studies, the relative abundance and repeatability of lipid
signal was rarely evaluated. When evaluating the size of measurable lipidome and polar metabolome
we observed a difference in lipid signal variability between IPA and BUME extracts following the
reproducibility test (CV < 30% across independently extracted replicates). This difference was mainly
due to the higher variability of specific lipid signals recovered from BUME extracts, comprising
TAGs (20), some phospholipids, free fatty acids, and cholesterol esters. We hypothesize that the
presence of MeOH and thus the mixture of two solvents, methanol, and butanol (vs. pure IPA) could
contribute to this difference in CVs [36]. In general, high CVs that were observed for TAGs were likely
caused by ion suppression as a consequence of high degree of co-elution in the void volume (using
HILIC chromatography). The difference in terms of signal reproducibility was not observed for polar
metabolites, likely thanks to a significantly higher degree of separation of hydrophilic metabolites and,
thereby, the lower degree of co-elution throughout the chromatographic gradient.

The robustness of IPA and BUME extractions for lipidome analysis was previously assessed by
independent studies using untargeted lipidomics approaches. For example, Calderón et al. compared
the extraction methods while using CHCl3, MTBE, and IPA, after which IPA was reported as the most
robust [37]. In another study, extraction protocols using MeOH, acetonitrile (ACN), IPA, IPA-ACN,
CH2Cl2, CHCl3, MTBE, and Hexane were compared, and IPA was revealed as the best compromise to
extract lipids [19]. In an additional study, where Folch, Matyash, and Alshery methods were tested,
and the Alshery method was reported with high recoveries and lowest CV values for lipids [33]. All of
these previous results highlight the differences in terms of signal reproducibility, depending on the
lipid class and show that the most robust methods are the least biased single-step methods.

Beside robustness, the application of single-step plasma extraction in human population
studies [38] is also advantageous in terms of high throughput. For instance, BUME extraction
was applied to the study of differences in lipidome composition in the Singaporean population
where three main communities, Chinese, Indian, and Malays were characterized [39]. It was also
recently used in large-scale plasma lipidomic profiling to reveal the associations between lipid levels
and cardiometabolic risk factors [40]. When compared to BUME that has been used in lipidomics
community for more than 12 years now, the potential of IPA extraction for lipidome analysis was
only recently revealed and it was therefore less commonly applied in lipidomics studies. However,
several recent human population phenotyping studies warrant its application [19,41,42].

4. Materials and Methods

4.1. Chemicals and Reagents

Human pooled plasma samples were purchased from Sera Laboratories International Ltd. Trading
as BioIVT (West Sussex, UK). A mixture of pooled male and female (40–60 years old) plasma was
prepared and aliquoted for the extraction experiments.

Internal Standards, including sphingomyelin SM-18:1(d9) (1.96 μg/mL), triacylglycerol
TAG-15:0/18:1/15:0(d7) (3.5 μg/mL), phosphatidylcholine PC-15:0/18:1(d7) (9.99 μg/mL),
phosphatidylethanolamine PE-15:0/18:1(d7) (0.35 μg/mL), lysophosphatidylcholine LPC-18:1(d7)
(1.58 μg/mL), and lysophosphatidylethanolamine LPE-18:1(d7) (0.32 μg/mL), were purchased from
Avanti (Alabaster, AL, USA).

4.2. Metabolite Extraction Protocols

Human blood plasma (25 μL) was extracted with MeOH (125 μL), EtOH (125 μL),
BUtanol:MEthanol (BUME, 125 μL), or isopropanol (IPA, 125 μL) that were pre-spiked with the above
indicated mixture of internal standards in order to evaluate the performance of different extraction
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solvents. For the biphasic MTBE extraction 10 μL plasma was extracted with MTBE:MeOH:H2O
(750/225/188 μL) [43]. Because plasma is homeostatically regulated no normalization to protein amount
is required [44]. All of the samples were vortexed and kept at −20 ◦C for one hour to facilitate protein
precipitation. These extracts were then centrifuged for 15 min at 20,000× g at 4 ◦C and the resulting
supernatants, from MeOH, EtOH, BUME, and IPA, were collected and transferred to LC-MS vials for
injection. The upper phase resulting from biphasic MTBE:MeOH:H2O extraction was evaporated to
dryness (in a vacuum concentrator LabConco) and re-suspended in 50 μL of IPA for lipid extraction
evaluation in order to maintain the same sample to solvent ratio (1/5), as in the single step extraction.
Prior to LC-MS analysis, the extracted pooled plasma samples were randomized per operator and
extraction solvent.

4.3. Protein Quantification

BCA Protein Assay Kit (Thermo Scientific, Waltham, MA, USA) was used in order to measure
(A562nm) total protein concentration (Hidex, Turku, Finland). For this, the protein pellets were
evaporated and reconstituted in the lysis buffer (20 mM Tris-HCl (pH 7.5), 4M guanidine hydrochloride,
150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM
beta-glycerophosphate, and 1 mM Na3VO4, 1 μg/mL leupeptin) using the Cryolys Precellys 24 sample
Homogenizer (2 × 20 s at 10,000 rpm, Bertin Technologies, Rockville, MD, USA) with ceramic beads.

Protein quantification was performed on supernatant and plasma pellets in order to evaluate the
efficiency of each solvent to precipitate proteins. The precipitation efficiency (Table S5) was calculated,
as follows:

Proteinprecipitatione f f iciency =
protein content in plasma pellet

protein content in plasma pellet + supernatant
× 100

4.4. LC-MS/MS Analysis

4.4.1. High-Coverage Targeted Lipidome Analysis

For the lipidome analysis, the extracted plasma samples were analyzed by Hydrophilic Interaction
Liquid Chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) in positive and
negative ionization modes using a Q-TRAP 6500 plus LC-MS/MS system (Sciex, Darmstadt, Germany).
In both positive and negative ionization mode, the chromatographic separation was carried out on an
Acquity BEH Amide, 1.7 μm, 100 mm × 2.1 mm I.D. column (Waters, Milford, MA, USA). Mobile phase
was composed of A = 10 mM ammonium acetate in Acetonitrile:H2O (95:5) (pH = 8.2) and B = 10 mM
ammonium acetate in Acetonitrile:H2O (50:50) (pH = 7.4). The linear gradient elution from 0.1% to 20%
B was applied for 2 min, from 20% to 80% B for 3 min, followed by 3 min of re-equilibration to the initial
chromatographic conditions. The flow rate was 600 μL/min, column temperature 45 ◦C, and sample
injection volume 3 μL. Optimized ESI Ion Drive Turbo V source parameters were set, as follows:
Ion Spray (IS) voltage 5500 V in positive mode and −4500 V in negative mode, curtain gas 35 psi,
nebulizer gas (GS1) 50 psi, auxiliary gas (GS2) 60 psi, and source temperature 550 ◦C. Nitrogen was
used as the nebulizer and collision gas. Optimized compound-dependent parameters were used
for data acquisition in scheduled multiple reaction monitoring (sMRM) mode. Transitions for the
entire panel of targeted lipids were optimized by SCIEX while using the Lipidyzer™ Platform [45].
The pooled plasma sample was first analyzed by MRM (non-scheduled) in order to obtain the retention
time of each lipid class in the applied chromatographic system and added later to the scheduled MRM
method (Tables S1 and S2).

4.4.2. High-Coverage Targeted Metabolome Analysis

For the polar metabolome analysis, the extracted plasma samples were analyzed by HILIC-MS/MS
in both positive and negative ionization modes while using a 6495 triple quadrupole system (QqQ)
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interfaced with 1290 UHPLC system (Agilent Technologies, Santa Clara, CA, USA). In the positive mode,
the chromatographic separation was carried out in an Acquity BEH Amide, 1.7 μm, 100 mm × 2.1 mm
I.D. column (Waters, MA, USA). Mobile phase was composed of A = 20 mM ammonium formate
and 0.1% FA in water and B = 0.1% formic acid in ACN. The linear gradient elution from 95% B
(0–1.5 min) down to 45% B was applied (from 1.5 to 17 min) and these conditions were held for
2 min. Subsequently, initial chromatographic condition were maintained as a post-run during 5 min
for column re-equilibration. The flow rate was 400 μL/min, column temperature 25 ◦C, and sample
injection volume 2 μL. In negative mode, a SeQuant ZIC-pHILIC (100 mm, 2.1 mm I.D., and 5 μm
particle size (Merck, Darmstadt, Germany) column was used. The mobile phase was composed of
A = 20 mM ammonium Acetate and 20 mM NH4OH in water at pH 9.7 and B = 100% ACN. The linear
gradient elution from 90% (0–1.5 min) to 50% B (8–11 min) down to 45% B (12–15 min). Finally, the initial
chromatographic conditions were established as a post-run during 9 min for column re-equilibration.
The flow rate was 300 μL/min, column temperature 30 ◦C, and sample injection volume 2 μL.

ESI source conditions were set, as follows: dry gas temperature 290 ◦C, nebulizer 35 psi and
flow 14 L/min, sheath gas temperature 350 ◦C and flow 12 L/min, nozzle voltage 0 V, and capillary
voltage +2000 V and −2000 V in positive and negative mode, respectively. Dynamic Multiple Reaction
Monitoring (DMRM) was used as an acquisition mode with a total cycle time of 600 ms. The MRM
transitions were optimized from the direct analysis of pure chemical standards that were obtained from
Sigma–Aldrich (The Mass Spectrometry Metabolite Library of Standards—MSMLS) (Tables S3 and S4).
These transitions are publicly available in the Metlin-MRM spectral library [46].

4.5. Data (Pre)Processing

Raw LC-MS/MS lipidome data were processed (i.e., peak extraction and alignment) while
using the Multi Quant Software (version 3.0.3, Sciex, Framingham, MA, USA) and raw metabolome
data was processed using the Agilent Quantitative analysis software (version B.07.00, MassHunter,
Agilent technologies, Santa Clara, CA, USA). The data on peak height and peak area were extracted for
each lipid and polar metabolite based on its extracted ion chromatograms (EICs) for the monitored
MRM transitions. The peaks were filtered based on their presence (in 100% of replicates across all
operators) and the intensity threshold (of 5 × 103 ion counts), and the obtained tables (containing
peak areas of detected metabolites across all replicates) were exported to R version 3.5.1 software
http://cran.r-project.org/ and RStudio version 1.1.463. For a quality control, the peaks were filtered
based on their coefficient of variation calculated per solvent, while using the independent replicates
analyzed across the entire run, when considering all four operators. Peaks with CV > 30% were
removed from further analysis with the aim to determine the size of measurable and not only detectable
lipidome and metabolome.

4.6. Statistical Data Analysis

R packages “tidyverse” and “ggplot2” were used to format the data and plot the figures,
respectively. Fold changes were calculated while using the peak area values (no transformation and/or
scaling was applied). GraphPad Prism 6 (GraphPad Software Inc., La Jolla, CA, USA) was used
for statistical data analysis. One-way ANOVA was used in order to test the significance of signal
abundance between replicates that were extracted with different solvents with an arbitrary level of
significance p-value = 0.05.

5. Conclusions

Two single-step sample preparation methods, using IPA and BUME, were evaluated as the best
compromise for the simultaneous and reproducible extraction of complex lipids and polar metabolites
from human plasma. The relative signal abundance of complex lipids in IPA and BUME extracts was
greater or equivalent to the signal that was recovered with the Matyash method using MTBE (commonly
applied in lipidomics). Importantly, the MTBE showed limited performance for the extraction of
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lysophospholipids, and particularly lysophosphatidylinositols (LPIs). Although the breadth of coverage
was the same for both single-step methods, the most robust lipid profiling was achieved following
IPA extraction with the greatest number of profiled lipids with CV < 30%, and specifically TAGs.
In addition to complex lipids, both IPA and BUME method extracted polar metabolites successfully,
but less efficiently than methanol. These polar metabolites included proteinogenic amino acids and
acylcarnitines, di- and tri-carboxylic acids, carbohydrates, and nucleosides. Based on the examined
lipidome and polar metabolome coverage, extraction efficiencies, effectiveness of protein precipitation,
and reproducibility, we conclude that both methods, IPA and BUME, are suitable for merged lipid and
polar metabolite analysis in large-scale human population studies.

Supplementary Materials: The following supplementary figures and tables are available online at http://www.
mdpi.com/2218-1989/10/12/495/s1: Figure S1. Relative signal abundance of different lipid classes in MeOH, EtOH,
IPA and BUME extracts of human plasma, Figure S2. Relative signal abundance (per lipid class) to signal recovered
with biphasic extraction using MTBE, Figure S3. Signal abundance of internal standards (representing six lipid
classes) spiked into plasma samples during single step IPA, BUME and biphasic Matyash extraction (organic MTBE
phase), Figure S4. Retention of polar metabolites and complex lipids throughout the chromatographic gradient
applied for complex lipid analysis using HILIC-MS/MS in positive ionization mode, Figure S5. Retention of polar
metabolites and complex lipids throughout the chromatographic gradient applied for complex lipid analysis using
HILIC-MS/MS in negative ionization mode, Figure S6. Background noise from blank extractions performed with
(A) methanol, (B) Matyash extraction (organic MTBE phase), (C) IPA and (D) BUME, Figure S7. Relative signal
abundance (per polar metabolite class) to signal recovered with MeOH extract, Figure S8. Relative signal
abundance of polar metabolites detected in the aqueous phase of Matyash extraction compared to other extraction
protocols (including methanol extract as a reference), Figure S9. Diversity and size of measurable lipidome
and polar metabolome from BUME extract, Figure S10. Signal intensity of the sphingomyelins detected in the
method, Figure S11. Signal intensity of specific hexosylceramides and lactosylceramides with the same alkyl chain
composition in IPA, BUME and MTBE extracts, Table S1. MRM transitions of lipids in positive mode, Table S2.
MRM transitions of lipids in negative mode, Table S3. MRM transitions of polar metabolites in positive mode,
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Abstract: Cardiovascular diseases (CVDs) represent a major concern in today’s society, with more
than 17.5 million deaths reported annually worldwide. Recently, five metabolites related to the gut
metabolism of phospholipids were identified as promising predictive biomarker candidates for CVD.
Validation of those biomarker candidates is crucial for applications to the clinic, showing the need
for high-throughput analysis of large numbers of samples. These five compounds, trimethylamine
N-oxide (TMAO), choline, betaine, l-carnitine, and deoxy-l-carnitine (4-trimethylammoniobutanoic
acid), are highly polar compounds and show poor retention on conventional reversed phase
chromatography, which can lead to strong matrix effects when using mass spectrometry detection,
especially when high-throughput analysis approaches are used with limited separation of analytes
from interferences. In order to reduce the potential matrix effects, we propose a novel fast parallel
electromembrane extraction (Pa-EME) method for the analysis of these metabolites in plasma samples.
The evaluation of Pa-EME parameters was performed using multi segment injection–capillary
electrophoresis–mass spectrometry (MSI-CE-MS). Recoveries up to 100% were achieved, with
variability as low as 2%. Overall, this study highlights the necessity of protein precipitation prior to
EME for the extraction of highly polar compounds. The developed Pa-EME method was evaluated in
terms of concentration range and response function, as well as matrix effects using fast-LC-MS/MS.
Finally, the developed workflow was compared to conventional sample pre-treatment, i.e., protein
precipitation using methanol, and fast-LC-MS/MS. Data show very strong correlations between both
workflows, highlighting the great potential of Pa-EME for high-throughput biological applications.

Keywords: electromembrane extraction; cardiovascular disease; multi-segment injection; capillary
electrophoresis–mass spectrometry; liquid chromatography–mass spectrometry

1. Introduction

With 17.5 million deaths per year, cardiovascular disease (CVD) represents the leading cause
of death worldwide and is thus considered a major public health issue [1]. Gut flora-dependent
metabolism has been recently reported as a risk factor for CVD, most notably the metabolic pathway
for dietary phosphatidylcholine which includes trimethylamine oxide (TMAO), choline, betaine,
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l-carnitine, and deoxy-l-carnitine. These metabolites are related to the development of various CVDs
including stroke and myocardial dysfunction [2–5].

Mass spectrometry (MS) coupled with separation techniques is a widely used tool in metabolomics,
enabling the identification and quantitation of metabolites via the analysis of thousands of samples.
Hydrophilic interaction chromatography (HILIC)-based methods allow for an efficient separation of
polar compounds such as the ones involved in the dietary phosphatidylcholine metabolic pathway,
but they require long re-equilibration times, resulting in low throughput [6]. Fast chromatography is
often preferred in combination with fast sample pre-treatment. However, this approach may lead to
significant matrix effects (MEs), i.e., the alteration of the analyte signal due to the presence of co-eluting
matrix interference. Deuterated internal standards (dISTDs) can be added to correct for the deleterious
effect of ME on quantitation. However, even though quantitative corrections can be applied, ion
suppression will still lead to decreased signal intensity and lower sensitivity, showing the need for
alternative approaches.

In order to reduce MEs, a sample preparation step is highly recommended. The most common
practice in metabolomics is to remove proteins by protein precipitation [7] or ultrafiltration [8]. However,
these two approaches cannot separate the compounds of interest from interferences such as salts or
phospholipids [9,10]. To do this, more complex sample preparation approaches, e.g., liquid–liquid
extraction or reversed phase solid phase extraction are often considered. However, in the present case
the metabolites of interest are quaternary ammoniums. Therefore, only weak cation exchanger resins
are conceivable. However, this extraction mode is complicated and expensive.

Electromembrane extraction (EME) is a recently developed electro-driven sample preparation
method developed for the extraction of charged compounds [11]. In this approach, two compartments,
namely, the donor and acceptor compartments, are separated by a supported liquid membrane (SLM)
containing an organic solvent. When applying an electric field between the two compartments, the
ions present in the donor compartment are selectively extracted to the acceptor compartment [12,13].
With this approach, it is possible to reach very high recovery (up to 100%) and enrichment factor (up to
50-fold) in a few minutes [14,15]. In addition, this method allows for an efficient sample clean-up by
separation of metabolites of interest from phospholipids and salts, as well as proteins [16–18]. EME
has extensively been applied to the extraction of non-polar and moderately polar drugs (1 < logP < 5).
Recent work has also demonstrated the great potential of EME for the extraction of highly polar
compounds (logP < −1) [19–22]. TMAO, choline betaine, l-carnitine, and deoxy-l-carnitine, as
quaternary ammonium compounds, are excellent candidates for EME due to their permanent positive
charge. Indeed, acylcarnitines have been already successfully extracted by electroextraction [23–25].
However, the EME set-ups described are not suited for high throughput workflows necessary for large
cohort studies.

In this study, we developed and optimized a parallel EME (Pa-EME) extraction method for the
these five metabolites from human plasma samples. This approach enabled the extraction from several
samples in parallel, dramatically increasing the extraction throughput. A non-polar drug, bupivacaine,
was also added to the set of selected compounds to monitor the extraction process. The influence
of the applied voltage as well as the composition of the donor compartment were investigated.
For method optimization, the extracted compounds were analyzed using a multi segment-capillary
electrophoresis-mass spectrometry (MSI-CE-MS) method to both improve the throughput of the analysis
and reduce the analytical variability. The optimized method was then combined with fast-liquid
chromatography–tandem mass spectrometry (Fast-LC-MS/MS) for further evaluation of response
function and dynamic range. ME was evaluated by comparing the developed extraction method
to a sample pre-treatment method conventionally used in metabolomics, i.e., protein precipitation
using methanol (PP-MeOH) [26,27]. Finally, the developed EME-LC-MS/MS method was applied to
the analysis of 40 plasma samples and compared to PP-MeOH to show the strength of the method.
This highlighted the relevance of such approaches for large-scale metabolomics studies, where the
analysis of highly polar metabolites in complex matrices remains challenging.
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2. Experimental

2.1. Chemical and Reagents

MS-grade acetic acid and sodium hydroxide (≥ 99%) were purchased from VWR International BV
(Amsterdam, The Netherlands). MS-grade methanol (MeOH), isopropanol (iPrOH), and acetonitrile
(MeCN) were supplied from Actu-All Chemicals (Oss, the Netherlands). Model compounds
(purity ≥ 95%) as well as 6.1 N trichloroacetic acid (TCA) and 2-nitrophenyl pentyl ether (NPPE, ≥ 99%)
were purchased from Sigma-Aldrich Chemie NV (Zwijndrecht, The Netherlands). Deuterated internal
standards (dISTDs), isotopic purity ≥ 99%, were purchased from Cambridge Isotopes Laboratories, Inc.
(Tewksbury, MA, USA), except TMAO-d9 (CDM Isotopes, Pointe-Claire, Quebec, Canada). MS-grade
formic acid (FA) and 37% (v/v) hydrochloric acid were obtained from Thermo Fisher Acros Organics
(Geel, Belgium)

2.2. Preparation of Standard Solutions

Individual stock solutions of both standard and deuterated internal standard (dISTD) were
prepared in water/MeCN/FA (94.9:5:0.1, v/v) to reach a final concentration of 5 mg/mL. The method
development was performed using neat standards of carnitine-d3, deoxycarnitine-d9, choline-d4,
betaine-d9, TMAO-d9, and bupivacaine prepared in 5% MeCN and 0.1% FA at 100 μg/mL. This mixture
was diluted in the donor solution to a final concentration of 2.5 μg/mL before use. The acceptor solution
consisted of a solution of 1% acetic acid.

In addition, for MeOH for protein precipitation, dISTD solutions were also prepared in MeOH at
the following concentrations: 4 μg/mL for carnitine-d3, 0.2 μg/mL for deoxycarnitine-d9, 2 μg/mL for
choline-d4, 4 μg/mL for betaine-d9, and 0.3 μg/mL for TMAO-d9.

2.3. Plasma Samples

The method development was carried out using citrate plasma samples collected from eight
healthy volunteers obtained from Sanquin (Amsterdam, The Netherlands) and pooled together.

The method comparison was performed with 40 plasma samples collected from healthy volunteers
from the Growing Old Together (GOTO) study [28].

2.4. Sample Preparation: Protein Precipitation

In order to enhance extraction performance of Pa-EME, three different PP methods were
investigated during this study, namely, (1) PP using 6.1 N TCA (referred to as PP-TCA), (2) adjusted
PP-TCA, and (3) PP using MeOH with a ratio MeOH/sample of 9:1 ratio (referred to as PP-MeOH).
The resulting solutions were used as donor solution during the Pa-EME procedure.

The PP-TCA was performed using a solution of 6.1 N TCA with a ratio of 0.05:1 (TCA/sample, v/v).
Briefly, 25 μL of 6.1 N TCA were added to 475 μL of plasma. After 30 min of agitation at 1400 rpm at
23 ◦C using a Thermomixer (Vaudaux-Eppendorf AG, Bale, Switzerland), the sample was centrifuged
at 15,000 rpm for 15 min at 4 ◦C. Supernatant was then collected. In order to avoid potential variability,
multiple PPs were performed and their supernatants were mixed together prior to further division
into aliquots. Aliquots were then kept at −20 ◦C until analysis. As a donor solution for Pa-EME, the
aliquots were then diluted with adequate volume of water to reach an equivalent concentration of 10,
20, and 50% of untreated plasma, respectively.

This PP-TCA method was then adapted for the analysis of the 40 different plasma samples due to
the small volume of sample available, i.e., ca. 25 μL. Briefly, 20 μL of plasma were mixed with 20 μL of
dISTD solution. Then, 2 μL of 6.1 N TCA were added to obtain a final ratio of TCA/sample of 0.05:1
(v/v). After agitation at 1400 rpm for 30 min at 23 ◦C, 358 μL of water was added prior to centrifugation
at 24,400× g during 20 min at 4 ◦C. The supernatant was then collected and stored at −20 ◦C prior to
electroextraction. For EME, 300 μL of the supernatant was used, leading to an equivalent untreated
plasma content of 5% in the donor compartment.
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The third method, namely, PP-MeOH, was performed using 90 μL of MeOH containing dISTD
added to 10 μL of plasma. After vortex agitation for 1 min, samples were centrifuged for 5 min at
18,300× g. The supernatant was then collected, leading to a corresponding concentration of 10% of
untreated plasma in the analyzed sample.

2.5. Pa-EME Set-Up and Procedure

The electroextraction procedure and the Pa-EME device used in this study have been already
described elsewhere [28]. Briefly, the Pa-EME device consisted of a donor and an acceptor 96 well-plate,
as is illustrated in Figure 1. The acceptor plate consists of a custom made conductive 96 well-plate
in polyether ether ketone (PEEK) polymer. Conductivity was ensured by a piece of aluminum foil
with a thickness of 0.14 mm placed on the bottom of the well plate. In order to limit carryover and
cross contamination, the donor plate used was a disposable MultiScreen-IP Filter Plate of 300 μL with
a polyvinyldifluoride (PVDF) membrane with a thickness of 100 to 145 μm and a pore size of 0.45 μm,
and purchased from Millipore (Milford, MA, USA).

Figure 1. Schematic representation of the parallel electromembrane extraction (Pa-EME) device.
Reprinted with permission [29]. SLM: supported liquid membrane; PAMPA: Parallel artificial membrane
permeability assay; PVDF: polyvinyldifluoride.

Impregnation of the PVDF membrane was performed by pipetting 3 μL of 2-nitrophenylpentyl
ether (NPPE) on the external face of the PVDF. Then, the excess of SLM is removed by placing the
plate on a tissue and by application of a 2.5 psi for 5s in each well using a positive pressure manifold
(Biotage, Uppsala, Sweden). This cleaning step was repeated until the tissue appeared dry. The donor
compartment was then filled with 300 μL of sample and was sealed using an adhesive sealing film
(PCR-TS, Axygen, MA, USA).

After filling of the acceptor plate with 300 μL of acceptor solution made of 1% acetic acid, the
donor plate was inserted into the acceptor one and the Pa-EME system was placed on a thermomixer
for agitation. The electrode needles were then inserted in the donor compartment. Extraction took
place for 15 min at 1400 rpm, with application of a constant voltage or current between the needles
and the aluminum foil of the conductive well-plate using a Power Supply ES 0300–0.45 from Delta
Elektronica (Zierikzee, the Netherlands). After 15 min, the power supply was turned off, needles were
removed from the acceptor plate, and both plates were separated. Finally, the extracts present in the
acceptor compartment are collected and were ready to be analyzed.
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In order to avoid potential carry over, the donor plate was discarded after use and the acceptor plate
was rinsed with a mixture of iPrOH/H2O 50:50 (v/v) and dried under nitrogen after each experiment.

2.6. Capillary Electrophoresis–Mass Spectrometry

CE separations were carried out using a G7100 capillary electrophoresis (CE) system from
Agilent (Waldbronn, Germany) using a fused silica capillary (BGB Analytik Benelux B.V, Harderwijk,
The Netherlands) with a length of 90 cm and an internal diameter of 50 μm. Separation was carried out
using a background electrolyte (BGE) composed of 10% acetic acid (v/v). Prior to first use, the capillary
was conditioned with MeOH, H2O, 1 M NaOH, H2O, 1 M HCl, H2O, 0.1 M HCl, H2O, and BGE at
5 bar. Between each run, the capillary was rinsed with MeOH and BGE at 5 bar for 130 s. CE-MS
analyses were performed using a MSI-CE-MS approach with electrokinetic plugs between samples
which were hydrodynamically injected [20]. Briefly, the first sample was hydrodynamically injected at
100 mbar for 20 s (corresponding to 1.6% of total length of the capillary). Prior to the second sample
injection, a voltage of +30 kV was applied during 60 s. This process was repeated until 7 samples were
injected. Typically, the first sample injected consisted of the neat standard at 2.5 μg/mL, followed by six
injections of other samples consisting of the replicates of a specific extraction condition. The samples
were kept at 7–8 ◦C in the auto-sampler using an external water cooling system.

The CE system was hyphenated with an Agilent 6230 TOF mass spectrometer (Santa Clara, CA,
USA) via an electrospray ionization (ESI) source and a coaxial sheath-flow ESI interface equipped
with a stainless-steel triple-tube sprayer (P/N G1607A) from Agilent Technologies. The sheath liquid
was composed of a mixture of H2O/iPrOH/acetic acid 50:50:1 (v/v/v) and delivered at a flow rate of
3 μL/min using a 2300 Series isocratic pump (Agilent Technologies) equipped with a 1:100 split ratio.
MS experiments were acquired in positive mode between 50 and 1000 m/z with an acquisition rate of
1.5 spectrum/s. The nebulizer gas was set to 0 psi, while the sheath gas flow rate and temperature
were set at 11 L/min and 100 ◦C, respectively. The ESI capillary voltage was adjusted to 5500 V.
Fragmentor and skimmer voltages were set at 150 V and 50 V, respectively. MassHunter version B.06.00
(Agilent, Santa Clara, CA, USA) was used for data acquisition, instrument control, and data treatment.
Isopropanol acetate adduct [CH3COOH-C3H8O+H]+ (m/z 121.08592) was used as reference mass for
TOF calibration of each spectrum.

2.7. Fast-Liquid Chromatography–Mass Spectrometry

A previously developed fast LC-MS/MS method for analysis of metabolites linked to gut
metabolism was used in this study [10]. Briefly, a 1290 Infinity II ultra-high pressure liquid
chromatography (UHPLC) system from Agilent Technologies (Waldbronn, Germany) was used
for fast LC-MS/MS experiments. The instrument was equipped with an autosampler, a column oven
and a binary pump with a maximum delivery flow rate of 5 mL/min. Separations were performed
with a Waters AccQ-TagTM Ultra column (2.1 mm × 100 mm, 1.7 μm) maintained at 60 ◦C. The mobile
phases consisted of 0.1% formic acid (A) and MeCN (B). The injection volume was 1 μL and the flow
rate of the mobile phase was set at 0.7 mL/min.

The separation was carried out using the following gradient: (B) maintained at 5% for 0.8 min,
further increased to 50% over 0.05 min, followed by an increase to 100% in 0.1 min. These conditions
were kept during 1.25 min before returning to initial conditions in 0.02 min and re-equilibration over
0.8 min. The total analysis time was 3 min.

The UHPLC system was hyphenated with an AB Sciex 6500 Q-Trap MS (AB Sciex, Concord, ON,
Canada) equipped with a Turbo Spray ionDrive source. MS experiments were performed in the positive
ionization mode using the selected reaction monitoring (SRM) acquisition mode. The precursor and
product ions that were monitored for each compound, as well as the respective collision energies, are
reported in Table S1. The SRM experiments were acquired with a chromatographic time window of
60 s and a cycle time of 0.2 s. The drying gas temperature and flow rate were set at 220 ◦C and 14 L/min,
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respectively. The ion source gas 1 and 2 pressures were fixed at 80 and 70 psi, respectively, with a
temperature of 350 ◦C for both.

The ion spray voltage, declustering potential, and collision cell exit potential were adjusted to 2500 V,
70 V, and 10 V, respectively. The curtain and collision gas were set at 20 psi and “medium”, respectively.

Data acquisition and instrument control were monitored using AB Sciex Analyst version 1.6.2 (AB
Sciex, Concord ON, Canada). Data treatment was performed using Skyline-daily version 4.1 (MacCoss
Lab, Seattle, WA, USA).

2.8. Calculation of Extraction Yield, Process Efficiency, and Matrix Effect

The extraction yield (EY) is described as the recovery in absence of matrix. In this study, EY was
determined by comparing a neat standard solution (2.5 μg/mL) with a neat spiked solution (2.5 μg/mL
in 50 mM FA) extracted with Pa-EME [30], according to Equation (1).

EY =
AUCextract

AUCneat standard
× Vdonor

Vacceptor
(1)

where AUCextract is the peak area of the compound measured in the acceptor solution, AUCneat standard

the peak area of the compound in the neat standard solution, Vdonor the volume of the donor
compartment, and Vacceptor the theoretical volume recovered in the acceptor compartment.

Process efficiency (PE) describes the extraction performance in presence of matrix and is determined
by comparing a neat standard solution (2.5 μg/mL) to a spiked biological sample (2.5 μg/mL) extracted
with Pa-EME [31]. The PE was calculated according to Equation (2).

PE =
AUCextracted plasma

AUCneat standard
× Vdonor

Vacceptor
(2)

where AUCextracted plasma is the peak area of the compound measured in the acceptor solution.
The ME is defined as the difference in signal due to ion suppression or signal enhancement. The

ME was evaluated using a method described by Matuszewski et al. [31]. In this case, the sample
was first extracted and then spiked with compounds of interest to a known final concentration. This
post-extraction spiked sample was then compared to a neat standard at the same concentration.

The ME was calculated according to Equation (3).

ME = 1− AUCpost extraction spiked matrix

AUCneat standard
(3)

where AUCpost extraction spiked matrix corresponds to the peak area of compounds detected in a biological
matrix spiked after extraction with a known analyte concentration and AUCneat standard the peak area
of the compound at known concentration measured in neat standard.

3. Results and Discussion

TMAO, choline, betaine, l-carnitine, and deoxy-l-carnitine, known predictive biomarkers for
CVD [2], were used as model compounds. All these metabolites are very polar compounds with logP
between −4.49 and −0.93 (Table 1). Due to their very low lipophilicity, these highly polar molecules
are difficult to extract using conventional sample preparation methods such as solid-phase extraction
or reversed-phase SPE [9], which are based on the partition coefficients of analytes in two-phase
systems. Indeed, only PP has been reported as efficient sample pre-treatment for these class metabolites
so far [31,32]. PP is typically used in metabolomics, especially in large-scale studies where high
throughput is essential. Fast analytical techniques are also required, such as fast LC-MS, but may
lead to strong ME, typically for poorly-retained compounds and particularly in combination with
straightforward sample pre-treatments [9,33]. This ME issue highlights the needs for novel sample
preparation approaches adapted to the extraction of highly polar compounds.
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Table 1. Physicochemical properties of the compounds of interest.

Molecular
Weight (Da)

LogP * pKa * Structure ChEBI

TMAO 75.11 −0.9 4.7

 

15724

Choline 104.17 −4.7 14.1

 

15354

Betaine 117.15 −4.5 2.3

 

17750

Deoxy-l-carnitine
(4-trimethylammoniobutanoic

acid)
145.20 −4.0 4.5

 

16244

l-carnitine 161.20 −4.9 4.2 17126

Bupivacaine 288.43 4.5 13.6

 

3215

*: calculated using Chemaxon, www.chemicalize.org. TMAO: trimethylamine N-oxide.

3.1. Optimization of the Parallel Electromembrane Extraction Set-Up

The EME experimental conditions, i.e., applied voltage and sample composition, were first
optimized to reach the highest EY and PE while lowering ME. Because most of the compounds
of interest are endogenously present in human plasma, dISTDs were used during the Pa-EME
optimization step, except for bupivacaine, which is a xenobiotic compound. Based on previous
work [20], 2-nitrophenylpentyl ether (NPPE) as SLM and 1% acetic acid (pH 2.8) as both acceptor
and donor solutions were used as starting conditions. NPPE was selected due the expected good
extraction recovery and low extraction variability for the selected compounds, while 1% acetic acid
allowed for both protonation of the basic moiety and neutralization of carboxylic group of l-carnitine,
deoxy-l-carnitine and betaine. Moreover, 1% acetic acid generated a relatively low current which
allowed for the application of higher voltages without generating excessive Joule heating. The obtained
extracts were then analyzed using MSI-CE-MS. MSI-CE-MS consists of consecutive injections of up to
seven different samples within the same analytical run. This leads to a significant increase in analysis
throughput as well as decrease of analytical variability for sample injected in the same run [34–36].

First, the extraction voltage was investigated, since EME recoveries are known to be directly
correlated to the electric field applied during the electroextraction process [14,29]. Figures 2 and 3
illustrate the results obtained for three compounds, i.e., choline (positively charged and polar),
l-carnitine (partially charged and polar), and bupivacaine (positively charged and non-polar). As shown
in Figure 2, the EY (calculated according to Equation (1)) increased for all compounds with an increased
extraction voltage. The gain in EY was especially important for l-carnitine, where the EY showed
a 5-fold enhancement when increasing the voltage from 75 V to 100 V. At 100 V, EYs up to 92%
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were obtained, with relative standard deviations (RSDs) as low as 4%. Choline and l-carnitine are
close compounds with logD values in the same range, i.e., −4.6 and −4.8 at pH 2.8, respectively.
The difference observed in EY between both compounds might be explained by the higher molecular
charge of l-carnitine and the partial deprotonation of its carboxylic group (pKa 4.2) at pH 2.8, leading
to a decrease of its net charge [37,38] and thereby its susceptibility to electromigration. As expected,
bupivacaine was easily extracted with EY above 85% with all tested voltages, showing that the Pa-EME
setup was functioning well.

Figure 2. Effect of applied voltage on extraction yield (n = 3). Error bars are expressed as the
standard deviations.

Figure 3. Effect of untreated plasma content in the acceptor compartment on process efficiency (n = 3).

The highest voltage tested, i.e., 120 V, led to the highest EYs for all compounds. However,
at this voltage, a significant fluid leakage between the acceptor and donor plate was observed.
This was explained by gas production caused by electrolysis in the acceptor compartment, leading
to an overpressure in this closed compartment and, ultimately, to the loss of the acceptor phase.
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This supports the apparent higher EY that were observed due to an overestimation of the acceptor
compartment volume according to Equation (1).

Therefore, an applied voltage value of 100 V was selected for further experiments, leading to the
highest EYs without any volume loss observed.

The influence of the concentration of untreated plasma in the donor compartment on the extraction
was then investigated. As shown in Figure 3, a significant drop of PE was observed for highly polar
compounds in the presence of 10% untreated plasma or higher. The strong decrease in PE for betaine,
l-carnitine, and deoxy-l-carnitine might be explained by partial deprotonation of their carboxylic
acid group due to a pH increase in the compartment caused by addition of plasma (up to pH 4.5
with 50% of plasma) and the poor buffer capacity of acetic acid 1%. Therefore, the pH increase of the
donor compartment led to a decrease of metabolite net charge. In these conditions, TMAO and choline
remained both fully ionized, irrespective of the pH.

The observed decrease in PE for the two polar compounds might be further explained by the drastic
reduction of the electric field in the system due to the plasma ionic strength, leading to lower logD
values of polar compounds and slower migration into the SLM [39]. On the other hand, bupivacaine
was more slightly affected by this phenomenon when using up to 20% of plasma content, due to the
known high logD of non-polar compounds in the SLM. However, when using 50% of plasma content,
the important increase of ionic strength decreased the electric field, leading to a significantly lower PE
for this analyte.

Another hypothesis, i.e., the disturbance of the interface between the organic layer and the plasma
sample due to a superficial protein precipitation in this region, seems unlikely since a vortex is created
in the donor compartment thanks to the very high agitation rate (i.e., 1400 rpm). In addition, since
bupivacaine is a drug known to be 95% linked to plasmatic proteins but showed high PE values, the
protein-binding hypothesis was discarded. However, PVDF material is well-known for its very high
affinity and protein binding capacity. Therefore, this might lead to perturbation of the organic layer by
competition between the organic solvent and proteins.

Finally, as high sensitivity is essential in metabolomics, an untreated plasma content of 10% was
selected for further experiments.

In order to test our two hypotheses, we evaluated two approaches to modify the sample
composition, namely, (1) addition of an organic solvent to the sample (e.g., MeOH) to enhance the
electric field, and (2) PP prior to extraction to remove proteins.

Various proportions of MeOH were added to the donor compartment, i.e., 10%, 20%, and 50%,
but no significant difference in PE was observed (data not shown). Higher concentrations of organic
modifier were not tested to avoid possible SLM dissolution [40].

PP using TCA is known to allow for an efficient protein removal (i.e., above 99%) with a limited
dilution factor [41,42]. The PP-TCA method takes place in pure aqueous phase, showing the benefit of
avoiding the evaporation step that is necessary when using organic solvents for PP, which is favorable
for compatibility with the EME approach. Moreover, the low pH that occurs when using PP-TCA
is suitable for the extraction of cationic compounds. Therefore, PP-TCA was selected for further
investigations, in a 0.05:1 ratio (TCA:sample). After a 10-fold dilution of the precipitated plasma,
the TCA concentration was close to 30 mM, which was sufficient to obtain a pH of 2.0 and ensure
protonation of all the compounds of interest. With an applied voltage of 100 V, a high current (more than
1–2 mA/well) was observed. This relatively high current could be explained by higher conductivity
of the solution of 30 mM TCA compared to 1% acetic acid. In order to avoid the potential issues
generated by a high current, the extraction current was set to 400 μA/well to minimize electrolysis and
gas production, while maximizing both EY and PE. As presented in Figure 4, good EY (up to 75% for
polar compounds) and low variability (as low as 7%) were obtained using the optimal conditions.
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Figure 4. Influence of protein precipitation (PP) on process efficiency (PE) (n = 6). Experimental
conditions: current, 400 μA/well; extraction time, 15 min; agitation, 1400 rpm, 1% acetic acid as acceptor
compartment. TCA: trichloroacetic acid; PP-TCA: protein precipitation using trichloroacetic acid, ratio
trichloroacetic acid/sample 0.05:1 (v/v).

For all the selected compounds, similar or higher PE (up to 100%) and low variability (as low
as 2%) were obtained on protein precipitated plasma samples compared to neat solutions, especially
for betaine and l-carnitine where PE were 3.3 and 2.7-fold higher, respectively, when PP-TCA was
used. This increase in PE remains unexplained and requires further investigations. Nevertheless, a PP
step appears essential prior to EME of highly polar compounds to reduce both ionic strength and
buffer capacity of biological fluids. To assess the maximal precipitated plasma volume extractable with
the developed approach, different plasma contents, i.e., up to 50%, were evaluated. Using the same
PP-TCA method, an increase of the precipitated plasma content into the donor compartment involved
an increase of TCA concentration, up to 150 mM. The results are summarized in Table 2.

Table 2. PE (RSD) in % (n = 6) according to the precipitated plasma amount in the sample using
the PP-TCA method and linearity ranges obtained using 30 mM TCA in water. RSD: relative
standard deviations.

PE (RSD) in %
Dynamic

Range (μM) R2
10% Plasma
30 mM TCA

20% Plasma
60 mM TCA

50% Plasma
150 mM TCA

TMAO 104 (16) 96 (13) 94 (13) 0.27–43.19 0.997

Choline 100 (5) 84 (4) 89 (4) 1.8–286.5 0.996

Betaine 55 (12) 66 (14) 71 (9) 4.6–716.1 0.994

Deoxy-l-carnitine 84 (2) 60 (14) 60 (10) 0.1–17.6 0.997

l-carnitine 34 (14) 18 (54) 12 (6) 3.5–556.5 0.995

Bupivacaine 102 (7) 101 (3) 105 (3) n.d.

Except for L-carnitine, good PE (between 50% and 100%) values were obtained for all tested
precipitated plasma amounts. No change in PE was observed for TMAO, choline, and bupivacaine.
An increase of PE for betaine with an increased plasma content and TCA concentration was obtained,
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explained by the lower pH observed, i.e., a pH value of 1.0–1.5 with 50% of plasma and 150 mM of TCA
versus pH of 2.0 with 30 mM of TCA and 10% of plasma content. This decrease of pH induces a higher
positive net charge on betaine, leading to an increase of its electrophoretic mobility. Nevertheless, the
decrease in PE observed for deoxy-l-carnitine and carnitine remain unexplained but might be the
consequence of stability issues of these metabolites in highly acidic conditions (pH ~1).

Finally, the linear response function of the developed method was evaluated. For this purpose,
a fast LC-MS/MS method was used to be in similar conditions as what is observed in the context
of large cohort studies with thousands of samples. The calibration curve was plotted using ratios
of non-deuterated compounds and dISTDs in a neat solution. Calibration samples with increasing
concentrations of TMAO, choline, betaine, l-carnitine and deoxy-l-carnitine (Table 2) were made and
mixed to constant concentrations of their dISTD in 30 mM TCA, to mimic EME conditions of the donor
compartment composition. These calibration samples were extracted using the optimized Pa-EME
setup and the selected experimental parameters (i.e., 400 μA/well, 15 min, 1400 rpm). As shown in
Table 2, a linear response function (R2 > 0.995) was obtained on concentration ranges of two orders of
magnitude for all compounds of interest (Figure S1).

3.2. Evaluation of Matrix Effects

The ME were evaluated for the developed Pa-EME set-up in combination with fast-LC-MS/MS.
The observed ME when using a conventional PP-MeOH were compared to the method combining

PP-TCA and Pa-EME. For all these experiments, the same amount of untreated plasma concentration
was used, i.e., 10 μL of untreated plasma for 100 μL of precipitated plasma for PP-MeOH and 30 μL
of untreated plasma for 300 μL of donor solution for EME, respectively, leading in both case to an
equivalent of 10% of untreated plasma after PP. As shown in Figure 5, lower MEs were observed
using the combination of PP-TCA and Pa-EME. Compared to the conventional PP-MeOH approach,
a noticeable decreased ME was observed, especially in the case of TMAO and betaine where the
observed ME was 2-fold lower with the combined approach versus MeOH-PP alone. This decrease
might be explained by the cationic selectivity of EME and efficient salt removal.

Figure 5. Comparison of matrix effect between conventional PP-MeOH and combination of PP-TCA
and Pa-EME using optimal conditions. PP-MeOH: protein precipitation using methanol, ratio
methanol/sample 9:1 (v/v).
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Along with the decrease in ME and high PE, a 2.9-fold increase of peak intensity was observed with
EME compared to PP-MeOH for TMAO. The sensitivity observed for choline and deoxy-l-carnitine
was not significantly impacted, with an increased factor of 1.2 and 1.1, respectively. With same signal
intensity, the lower ME observed for betaine compared to PP-MEOH compensated for the low PE of
this compound (i.e., 55%). Finally, l-carnitine, which was the compound with the lower PE (i.e., 34%),
showed reduced ME but was detected with a signal intensity 0.6-fold lower than with PP-MeOH.

3.3. Application to Metabolomics Studies

The potential of the developed Pa-EME set-up for large scale metabolomics studies has been
investigated by correlating the data obtained with this optimized extraction method (combination
of PP-TCA+EME) versus a typically used sample clean-up, i.e., PP-MeOH, on a set of 40 human
plasma samples.

Due to limited volume of plasma available (ca. 25μL), the developed PP-TCA was first downscaled.
This adjusted PP-TCA method led to an equivalent of 5% of untreated plasma after PP. The downscaled
method led to similar extraction performance compared to the conventional PP-TCA (data not shown),
and was therefore used for subsequent experiments.

As shown in Figure 6, excellent correlations were obtained between the two evaluated sample
preparation approaches for TMAO, choline, l-carnitine, and deoxy-l-carnitine, with correlation
coefficients (R) between 0.88 and 0.98. In addition, the linear models are highly significant, with p-values
between 1.4 × 10−14 and 1.3 × 10−32. These results highlight the relevance of the developed Pa-EME
method in comparison with gold standard methods used for sample preparation in metabolomics.
However, a poor correlation was observed for betaine (R = 0.46), probably due to a contamination of
the milliQ water used for preparation of acceptor and donor solution with a compound detected in the
same SRM transition as betaine.

During the analysis of these clinical samples, an unexpected boiling and loss of acceptor
compartment was observed for many samples during the EME process. This unexpected phenomenon
was likely explained by the differences in plasma composition. Indeed, the optimization phase was
carried out using the same sample split in six aliquots which were simultaneously extracted using
Pa-EME. Therefore, the total applied current (2.4 mA) was equally distributed over the six wells, leading
to a current of 400 μA/well. No boiling or loss of acceptor phase was observed during the optimization
process. However, with a parallel extraction of six different plasma samples, the applied current was
not uniformly distributed over the wells. Indeed, due to small differences of sample composition (e.g.,
ionic strength, residual proteins, etc.), plasma samples possess different conductivities. According to
Kirchhoff’s current law, these different conductivities lead to different current in every parallel circuit.
Consequently, several samples were subjected to currents lower than 400 μA and other samples to
a current above this limit, the latter leading to boiling and loss of acceptor volume. However, this
variability was successfully corrected using a dISTD for each compounds of interest, as shown by
the good correlation obtained with PP-MeOH (Figure 6). A solution to circumvent this issue could
be to use lower currents to stay below the limit of 400 μA/well, but this solution requires enhanced
extraction times or would lead to lower PE.
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Figure 6. Area ratio correlations observed for analyte response between PP-TCA + EME (x-axis)
and PP-MeOH (y-axis). 95 % confidence intervals were calculated using Pearson correlation. dISTD:
deuterated internal standard.

4. Conclusions

This study demonstrated the power of EME approaches for the extraction of highly polar
compounds from biological fluids and its potential for metabolomics studies. In this study, we
presented an optimized Pa-EME method for the efficient extraction of highly polar compounds from
plasma. The developed Pa-EME method involves a PP step using TCA before the actual EME process;
this is an essential step to reduce the buffer capacity of plasma, and additionally to avoid possible
interferences with the PVDF membrane. We demonstrated that the combination of PP-TCA with
Pa-EME allowed for high PE (up to 100%) as well as low variabilities (RSD as low as 7%) for the
extraction of selected highly polar compounds from plasma samples. Moreover, the PP-TCA-Pa-EME
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set-up led to decreased ME in comparison to conventional PP-MeOH when using fast chromatography
(up to 2-fold matrix effect reduction for TMAO and betaine). A 3-fold gain in sensitivity was observed
for TMAO with PP-TCA-Pa-EME compared to PP-MeOH. Similar sensitivity was obtained for choline,
betaine, and deoxy-l-carnitine. However, using PP-TCA-PaEME, l-carnitine presented a decrease of
sensitivity in comparison with PP-MeOH due to incomplete extraction. This poor sensitivity could
be nevertheless improved with further experiments and the development of a new Pa-EME set-up
for higher enrichment with favorable acceptor/donor volume ratio. The developed method showed
a linear response function (R2 between 0.994 and 0.997) of more than two orders of concentration
magnitude for all the metabolites of interest.

Finally, the developed PP-TCA-Pa-EME method was compared to PP-MeOH using 40
different plasma samples. The influence of sample conductivity, which is a common concern in
electromigration-based sample pre-treatment, was highlighted but was fully compensated using
dISTDs for each compound. Overall, the combination of PP-TCA and EME showed excellent
correlation with the conventional PP-MeOH.

The great potential of electromembrane extraction in bioanalysis is highlighted by its analytical
merit in terms of high recovery (up to 100%) and low variability (down to 7%) of highly polar
metabolites from a complex matrix such as plasma, a significant reduction of the matrix effect, and the
strong correlation to gold standard sample preparation practices in metabolomics.

The development of a new Pa-EME device to further reach higher enrichment factors for such
metabolites will represent the next logical step for application of this method to state-of-the-art
metabolomics-based analysis.
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Table S1: SRM transitions and collision energies used in the developed Fast-LC-MS/MS method. Figure S1:
Calibration curves built for TMAO, choline, betaine, l-carnitine and deoxy-l-carnitine in water.
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Abbreviations

CVD cardiovascular disease
CE-MS capillary electrophoresis–mass spectrometry
dISTD deuterated internal standard
EME electromembrane extraction
EY extraction yield
FA formic acid
Fast-LC-MS/MS fast liquid chromatography–tandem mass spectrometry
HILIC hydrophilic interaction chromatography
ME matrix effect
MSI-CE-MS multisegment injection–capillary electrophoresis–mass spectrometry
NPPE 2-nitrophenylpentyl ether
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MeCN acetonitrile
MeOH methanol
Pa-EME parallel electromembrane extraction
PE process efficiency
PEEK polyether ether ketone
PP protein precipitation
PP-MeOH protein precipitation using methanol, ratio methanol/sample 9:1 (v/v)

PP-TCA
protein precipitation using trichloroacetic acid, ratio trichloroacetic acid/sample 0.05:1
(v/v)

PVDF polyvinyldifluoride
SLM supported liquid membrane
SRM selected reaction monitoring
TCA trichloroacetic acid
TMAO trimethylamine N-oxide
UHPLC ultra-high pressure liquid chromatography
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Abstract: The study of the metabolome within tissues, organisms, cells or biofluids can be carried
out by several bioanalytical techniques. Among them, nuclear magnetic resonance (NMR) is one
of the principal spectroscopic methods. This is due to a sample rotation technique, high-resolution
magic angle spinning (HR-MAS), which targets the analysis of heterogeneous specimens with a
bulk sample mass from 5 to 10 mg. Recently, a new approach, high-resolution micro-magic angle
spinning (HR-μMAS), has been introduced. It opens, for the first time, the possibility of investigating
microscopic specimens (<500 μg) with NMR spectroscopy, strengthening the concept of homogeneous
sampling in a heterogeneous specimen. As in all bioanalytical approaches, a clean and reliable sample
preparation strategy is a significant component in designing metabolomics (or -omics, in general)
studies. The sample preparation for HR-μMAS is consequentially complicated by the μg-scale
specimen and has yet to be addressed. This report details the strategies for three specimen types:
biofluids, fluid matrices and tissues. It also provides the basis for designing future μMAS NMR
studies of microscopic specimens.

Keywords: high-resolution magic angle spinning; NMR; microscopic samples; metabolomics;
sample preparation

1. Introduction

Sample preparation is an essential component in metabolomics [1,2]. It requires dedication in
designing protocols for precise and reliable acquisition of data with the appropriate analytical platform
(i.e., gas (GC) [3] or liquid (LC) chromatography [4], mass spectrometry (MS) [5,6] and nuclear magnetic
resonance (NMR) [7,8]). In any case, incorporating a convenient and reliable strategy is of underlying
importance for avoiding any metabolic loss, for ensuring reproducibility and for the valid biological
interpretation of the data [9,10].

NMR spectroscopy has been present in the development of metabolomics for decades. Strategies for
sample preparations for both the standard high-resolution liquid [7] and high-resolution magic angle
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spinning (HR-MAS) [11] NMR are well documented and established. The fundamental basis is to
minimize the sample exposure to unfavorable conditions (such as contamination, temperature, time,
etc.) during the preparation so as to preserve sample integrity and experimental reproducibility.
In general, the procedure is straightforward. For example, in HR-MAS with a Bruker 4 mm rotor,
it consists of introducing the mg (or μL) level of a sample into a Kel-F bio-insert (Figure 1a) by either a
pipette or a biopsy punch, depending on the sample morphology (liquid or semi-solid); if necessary,
this is followed by adding sufficient D2O (or buffer) to homogenize the content for high-quality data
acquisition; and lastly, the insert and the rotor are sealed with the corresponding use of dedicated
toolsets (Figure 1). The entire procedure takes about 5–10 min [11–15].

Recently, a new NMR technology, high-resolution micro-magic angle spinning (HR-μMAS),
was introduced [16]. It targets the microgram (μg) level of specimens and has shown promising results
towards metabolomics [17,18]. HR-μMAS could open a new and unexplored NMR platform [19], such as
the possibility of carrying out longitudinal metabolic investigation on living animals. This contributes
to the fact that μg scale analysis permits (1) minimal surgical tissue excision and (2) homogenous
sampling from a heterogeneous specimen.

However, the sample preparation for HR-μMAS NMR spectroscopy (i.e., with a 1 mm μ-rotor) is a
strenuous task [19] compared to the mg sampling with HR-MAS (i.e., 4 mm rotor). As trivial as it may
seem at first glance, handling delicate specimens at the μg level requires high precision skills and tools.
One has to consider that displacing such a minuscule sample mass (<500 μg) in a confined volume
(<500 nL), in a clean and efficient manner, creates an inevitable difference with HR-MAS. Moreover,
unlike HR-MAS, different sample morphologies also require different strategies with different toolsets,
constituting additional steps for HR-μMAS.

Presently, the sample preparation for HR-μMAS has yet to be fully described and documented.
The main bottleneck lies in the necessary requirements, namely methodical sample collection, feasible
sample filling and quick μ-rotor sealing. Few attempts have been made to simplify the preparation
of μMAS for metabolomics [20–22]. One example is the use of a 1 mm disposable Kel-F μ-rotor along
with the concept of sampling insert (i.e. a 4 mm Kel-F bioinsert) using a glass capillary [20]. The intent
is to facilitate the sample filling and eliminate the rotor sealing. However, the overall procedure
is not efficient due to the limitations of handling a non-rigid Kel-F rotor. Moreover, the use of an
insert lowers the filling factor and, hence, lowers the detection sensitivity by, in this case, nearly
one-third. In addition, this approach presents a high risk of damaging the MAS stator due to the
spinning of a fragile glass capillary insert. As such, new strategies must be explored and attuned to
metabolomics studies.

After over 500 sample preparations in a span of two years with μ-rotor, this report summarizes
these experiences and outlines the general preparation strategies for different specimens targeting
to HR-μMAS NMR metabolomics. The strategies adopt three principal criteria: (1) rapid and clean
sampling, (2) direct, clean and consistent sample filling and (3) quick μ-rotor sealing. Although the
guidelines herein are based on a JEOL 1 mm μ-rotor, the strategies could provide the basis for designing
new procedures for metabolomics studies including with μ-rotors from other manufacturers.

2. HR-μMAS Sample Preparation

As an initial and major modification from HR-MAS, all manipulations with both the sample and
the μ-rotor are carried out under a stereomicroscope (Figure 1b) with a large set of high-precision
tools (Figure 1a), each with a specific function. For example, a holder (Figure 1a, iii) facilitates all
manipulations of the μ-rotor and is an essential tool in all sample filling procedures described below.
The use of a holder also prevents a constant contamination on the rotor surface. Specific toolsets are
dedicated for closing (Figure 1a, iv and 1a, v) and opening (Figure 1a, vi and 1a, vii) the μ-rotor caps.
Since there are different toolset designs for different μ-rotors (e.g., Bruker, JEOL, etc.), the report will
omit the descriptions of operating the tools. Formal training from the vendor is recommended.
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Figure 1. (a) Toolsets for (left) high-resolution magic angle spinning (HR-MAS) sample preparation
compared to (right) high-resolution micro-magic angle spinning (HR-μMAS) with details of ZrO2 rotor of
different sizes and packing tools. (i) Clamp tool for opening the rotor cap, (ii) screw drivers for handling
Kel-F insert, (iii) μ-rotor holder, (iv) and (v) toolset for closing the μ-rotor caps, (vi) and (vii) toolset for
opening the μ-rotor caps. (b) Cold workstation and stereomicroscope. A dry ice bucket is placed under
a metallic platform, which will be consequently cooled down for allocating the sample manipulations
with the μ-rotor under the stereomicroscope.

Due to the small sample volume, <500 nL, even the tiniest contamination is in line with the
sample metabolic content. As a result, the unwanted signals will inevitably disrupt the metabolic
spectral profile. Therefore, prior to the sample preparation, special attention to the cleanness of
the rotor, the toolsets (i.e., contact with the rotor) and even the working space entirely is essential.
Supplementary Materials Figure S1 shows an example of a contamination from a cleaning solvent,
ethanol, even after a long drying period. Tips: (1) It is strongly recommended to avoid using solvent
other than water for cleaning (i.e., rotor, toolsets, workspace); (2) sonicating the μ-rotor in a warm
water bath is recommended to assist in eliminating the tiniest residues.

2.1. μg Sampling

As aforementioned, ensuring the sample integrity is crucial [10], and therefore preconditions
must be regulated. For example, the time for the samples to be exposed to an unfavorable temperature
must be short. Therefore, the availability of dry ice during all procedures is important. While working
with the stereomicroscope, one of the complications, the use of a cold platform (Figure 1b) is highly
recommended for carrying out the entire sample preparation for keeping the specimens under a
favorable environment. Ideally, the entire procedure from sampling to filling would be better performed
inside a walk-in cold room facility.

Prior to μg sampling, specific preconditions must be considered for different specimens.
For example, intact cells are generally susceptible to their surroundings, and the permeability of the
membrane should be considered. In that sense, the pH should be controlled using a buffer [23], as well
as the cell concentration in the suspensions; it should be efficient for spectral sensitivity but avoiding a
crowding effect causing cell asphyxiation or rupture [24]. In addition, cells are particularly sensitive to
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the changes in temperature, so the freeze/thawing cycles have to be avoided as the formation of ice
crystals will damage the cell membrane [25].

For animal tissues, the presence of excessive blood content distorts spectral resolution due to the
existence of paramagnetic species [11]. Unlike in HR-MAS, even a very small content of blood in a
500 μg sample could render a significant paramagnetic effect on the spectrum. Therefore, it is advised
to wash the tissue with D2O or saline solution (0.9% NaCl w/v) prior to filling. However, caution
must be applied to prevent removal of the metabolic content. We recommend a swift immersion into a
deuterated saline solution.

Depending on the sample morphologies, the μg sampling procedure is performed either by a
pipette for biofluids or fluid matrices (i.e., intact specimens suspended in a liquid) or by a microsized
biopsy punch for tissues.

Tips: (1) With a pipette, it is recommended to use a micropipette tip with hydrophilic surface
(ideally with glass) to avoid surface tensions with the individual specimens; (2) with a microbiopsy
punch, it is recommended to cool down the tip to prevent a complete thawing of the tissue during the
collection and transferring.

2.2. Sample Filling

The sample filling procedure can be considered the most significant step in the sample preparation.
This is because of its extensive manipulation of the sample. Unfortunately, it is not straightforward to
fill μg specimens into a tiny rotor (with a 0.5 mm inner diameter). It should comply with the following
criteria: (1) a good sample homogeneity inside the μ-rotor to achieve high spectral resolution data
(i.e., avoiding the presence of air bubbles). For example, the tiniest air pocket can worsen the spectral
resolution; (2) a correct sample displacement inside the μ-rotor for maximum sensitivity detection; (3) a
sufficient sample mass to achieve a good sensitivity; (4) a good weight balance of the μ-rotor to avoid
spinning deficiency; and (5) a repeatable sampling procedure for data reproducibility. Subtle deviations
in all these criteria could affect the individual spectral data and diminish both the data repeatability and
reproducibility. What follows are the details of three strategies, each with different toolsets targeting
different specimens.

2.2.1. Micropipette or Microsyringe

Target samples: biofluids such as serum, plasma, urine and tissue extract.
Pipette tip/fine-needle characteristics: both must be narrow in diameter (i.e., < 0.5 mm) to be able to

traverse through the entire μ-rotor length (e.g., Eppendorf GELoader®tips, Hilgenberg glass needles).
μ-rotor requirements: one closed end (i.e., one end is open while the other is closed with

a μ-rotor cap).
Guidelines:

� Convey 1–2 μL of fluid inside the μ-rotor by placing the tip (or needle) at the bottom. Tip:
the μ-rotor is placed in the holder (Figure 1a, iii) to facilitate the handling.

� Release the fluid slowly while moving upwards to avoid air bubbles.
� Centrifuge (~3000 rpm, ~30 s; recommended at 4 ◦C) the filled μ-rotor to ensure the exclusion of

air bubbles.
� Seal the μ-rotor with a designated μ-rotor cap using the dedicated toolset (e.g., Figure 1a). Caution:

Ensure a sufficient space for the sealing; if not, the sealing would be impossible.

Estimated time: 5–10 min.

2.2.2. Centrifugal Microfunnel

Target samples: fluid matrix samples such as cells or whole organisms in biofluids (e.g., blood,
nematode and microbe).
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Funnel characteristics: biocompatible material (ideally with glass or parylene coating, etc.).
Caution: The surface must be smooth and hydrophilic to prevent sample shearing, and to assist the
transference into the μ-rotor.

μ-rotor requirement: one closed end.
Guidelines (based on a 3D-printed microfunnel shown in Figure 2a):

� Place the μ-rotor inside the designated space in the funnel.
� Convey (by either pipette or glass syringe) the matrix into the funnel reservoir.
� Centrifuge at 4 ◦C. The speed and time depend on the funnel materials (polymers such as Kel-F

and Teflon allow for faster centrifugation, while glass will only tolerate a gentle centrifugation).
� Close the μ-rotor.

Estimated time: 10–15 min.

2.2.3. Microbiopsy Punch

Target samples: semi-solids such as animal and food tissues, or cell pellets.
Punch characteristics: sharp edges for clean-cut and reproducibility. The outer diameter must be

smaller than or equal to the inner diameter of the μ-rotor (i.e., <0.5 mm, examples in Figure 2b).
μ-rotor requirements: Both ends must be opened to prevent the effect of the air pressure during

the filling.
Guidelines:

� Extract μg sample by punching. Tip: Frozen samples facilitate a clean excision.
� Fast transfer of the excised sample into the μ-rotor (placed in a holder).
� Follow by adding a drop of D2O (or buffer) into the sample to homogenize and to avoid

dehydration. Note: Water content in the sample can have a large effect on the spectral quality
(Supplementary Materials Figure S2).

� Close one end of the μ-rotor followed by a gentle centrifugation (~1500 rpm, ~30 s, at 4 ◦C) for
sample positioning and releasing air bubbles.

� Fill the remaining μ-rotor volume with D2O or buffer. Tip: Use the holder.
� A second centrifugation should be applied to further homogenize the sample.
� Close the μ-rotor.

Estimated time: 15–20 min.

41



Metabolites 2020, 10, 54

 
Figure 2. (a) (i) 3D-printed funnel. It consists of a bulk polymeric funnel, which leaves a space for
the μ-rotor, and a μ-channel connecting the rotor volume with the sample reservoir. After printing, the
funnel should be submitted to a coating process with deposited poly(p-xylylene) (i.e., parylene), which
adds a layer of 0.5 μm and generates a biocompatible and smoother surface. (ii) Custom-made glass
funnel. It connects the funnel reservoir with the μ-rotor through a short channel. Suggested convenient
dimensions are shown in the picture for both types of funnel. (b) Different biopsy punch models.
(i) 2 mm biopsy punch used for sample collection and filling process inside the standard HR-MAS Kel-F
insert. (ii) Disposable and (iii) reusable 0.5 mm biopsy punch fitting the inner diameter of the μ-rotor
for HR-μMAS to facilitate the filling process.

2.3. Pre-Acquisition Considerations

After the sample filling, a few critical precautions must be applied prior to inserting the μ-rotor
into the probe. Under the stereomicroscope, one must carefully inspect the μ-rotor caps to see if
they are in good condition (i.e., no sign of damage) to ensure a good and stable sample spinning,
and that the caps are tightly fit and secure in the μ-rotor to prevent sample leakage. In addition, the
cleanliness on the rotor surface is absolute; any tiny particles (i.e., dried sample residue, dust, etc.)
could damage the stator. Hence, for the same reason, it is advised to clean the entire μ-rotor surface,
including the caps, with high-quality tissue (e.g., Kimtech wipe) and/or with sticky pens (e.g., standard
JEOL RESONANCE Inc. preparation tool set, Supplementary Materials Figure S3) prior to displacing
the μ-rotor into the stator.

Once the μ-rotor is introduced in the stator, sample spinning must proceed with caution. A manual
adjustment to the desired spinning frequency is recommended. Typical spinning rates ranging from 4
to 6 kHz are sufficient to suppress the susceptibility broadening in MAS NMR spectra of semi-solids
such as tissues and cells [11]. Such moderate rate prevents the sample temperature from increasing and
provides adequate conditions during the data acquisition. As an example, Figure 3 shows excellent
spectral quality from a spinning rate of 4 kHz. The spinning side-bands are displaced outside the
metabolites’ chemical shift range, and the metabolic isotropic signals are with good resolution.

2H-field locking can be difficult due to the low 2H content in the sample volume; the signal is often
weak and unreliable for field shimming. Consequently, the strategy of field shimming with HR-μMAS
is different to that with HR-MAS. Despite the applied MAS shim sets being the same [26], the metabolic
signals are generally weak with HR-μMAS to shim with a continuous acquisition; therefore, it is
recommended to shim first on the water signal with continuous mode, followed by an incremental
acquisition on metabolic signals. Consequently, the shimming can be a long and demanding process;
hence, the use of sacrificed sample(s) is strongly recommended. One can also consider adding a
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small content of a known metabolite (e.g., <1 mM alanine, sucrose) in the sacrificed sample rendering
a shimming process with a continuous acquisition. Supplementary Materials Figure S4 shows the
resultant signals of the metabolic additive used for shimming.

Provided the sample filling into a μ-rotor is identical, then the same shim set of the sacrificed
sample can be applied, with minor adjustments. However, one should note that a slight deviation in
the sample filling, resulting in an air pocket or insufficient water content, can deviate the shims from a
sacrificed sample.

The experimental parameters used in the spectral acquisitions are no different with the standard
NMR experiments, except with one exception: the power level for a 90◦ pulse is low owing to the high
B1 efficiency with a μ-size coil.

Figure 3 shows the resultant NMR spectra of different specimens (biofluid, cell matrix, small
organism and animal tissue), each prepared by the different strategies described above. The details of
the preparations are summarized in the Supplementary Materials (Protocol S1) and should provide the
basis for future metabolomic studies with HR-μMAS or with μMAS in general.

 

Figure 3. 1H HR-μMAS nuclear magnetic resonance (NMR) spectra spinning at 4 kHz from (a) rat
urine in PBS/D2O prepared with automatic pipette, (b) 400 nL K562 cell suspension in PBS/D2O buffer
(pH = 7.4) prepared with a 3D-printed funnel, (c) 400 nL of C. elegans (n = 30) suspension in D2O
prepared with a custom-made glass funnel and (d) 500 μg brain tissue prepared with a disposable
0.5 mm biopsy punch. Total acquisition times are indicated for each spectrum. Spectra (b) and (d) were
acquired using the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence (d20 = 0.2 ms, loop = 200),
and spectra (a) and (c) were acquired using the NOESY pulse sequence (mixing time 0.1 s). The main
metabolic signatures are identified on the spectra. The preparation for each specimen is detailed in the
Supplementary Protocol S1.
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3. Final Remarks

Acknowledging the difficulties for preparingμg-scale specimens in a specific tiny sampling volume
for HR-μMAS NMR spectroscopy, this report presents general guidelines of the sample preparation
strategies for the different type of specimens (biofluid, fluid matrix and tissue). Although the basis
of these preparations is similar to those for HR-MAS, they are considerably complicated by the fact
that the manipulation of the minuscule specimens along with a tiny rotor must be performed in a
repeatable, clean and timely manner. A slight deviation could affect the overall data, resulting in
non-reproducible data acquisition and consequently in variable or misinterpreted analysis.

The guidelines herein can provide a good basis for designing NMR-based metabolomics studies
of μg-scale heterogeneous specimens with HR-μMAS or with μMAS in general. An example is shown in
Figure 4; over 100 sampling data on tissue (control and disease) were acquired adopting the guidelines
stated in this report. The results offer good data reproducibility for reliable multivariate data analysis.
The Principal Component Analysis (PCA) score plots (Figure 4a) clearly display two groups within the
data set. Its quality parameters (R2X = 0.85, Q2 = 0.63) demonstrate the data acquisition is trustworthy
where the sample preparation has an important contribution. Figure 4b exhibits good regularity of the
NMR spectral profiles within the groups. Acceptable values of the relative standard deviation (%RSD)
of the individual spectral bins are found with a median of 30.7% for control and 37.6% for disease
(Figure 4c). The slightly higher value of the latter is attributed to the accentuated heterogeneity of the
tissue itself.

 
Figure 4. (a) PCA scores plot obtained from a model study containing 102 data on brain tissue (control
and disease) from an initial 112 samples, where 10 (9%) were discarded due to either extra peaks from
contamination or poor spectral quality from air pockets or dryness. Quality parameters: 14 components,
R2X= 0.85, Q2 = 0.63. (b) Overlaid 1H-HR-μMAS NMR spectra of (blue) 62 control and (red) 40 diseased
tissue samples. (c) Boxplots of the relative standard deviation (%RSD) values calculated from the
individual bucket intensity (Δ = 0.04 ppm) of both groups across the spectral region (0.76–5.28 ppm).
It summarizes the lower, median and upper quartiles, with the black whiskers displaying the range of
data, and the red cross indicating the outlier data points.

It should be noted that among the different types of specimens, fluid matrices are the most
challenging of all. This is due to the difficulty in achieving a required quantity of intact specimens
(e.g., tiny organisms and cells) in a nL scale volume. Although the strategy (centrifugal microfunnel)
described above improves the sample filling, it is still a primitive and tedious approach. One should
consider redesigning the μ-rotor to incorporate a filtration system that can improve sample filling for
fluid matrices, which would be a great advantage. For example, an internal filter inside the rotor would
retain the matrix (i.e., specimens), while the fluid would be guided out. This method of collecting
and filling the sample would assist in concentrating the specimens inside the μ-rotor and render an
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increase in the sensitivity of the experiments. In addition, this potential methodology would benefit
from the use of microfluidic technology for gently guiding the susceptible specimens inside the μ-rotor.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/2/54/s1,
Protocol S1: Detailed preparation for the samples generating the spectra in Figure 3, Figure S1: Garlic and brain
tissue displaying ethanol impurity signals. Figure S2: Differences in the spectral resolution depending on the
water content shown in different specimens. Figure S3: μ-rotor handling and cleaning tools. Figure S4: Example
of spectrum obtained by adding a known amount of sucrose embedded in a brain tissue sample.
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Abstract: Untargeted metabolomics aims to provide a global picture of the metabolites present in
the system under study. To this end, making a careful choice of sample preparation is mandatory
to obtain reliable and reproducible biological information. In this study, eight different sample
preparation techniques were evaluated using Caulobacter crescentus as a model for Gram-negative
bacteria. Two cell retrieval systems, two quenching and extraction solvents, and two cell disruption
procedures were combined in a full factorial experimental design. To fully exploit the multivariate
structure of the generated data, the ANOVA multiblock orthogonal partial least squares (AMOPLS)
algorithm was employed to decompose the contribution of each factor studied and their potential
interactions for a set of annotated metabolites. All main effects of the factors studied were found
to have a significant contribution on the total observed variability. Cell retrieval, quenching and
extraction solvent, and cell disrupting mechanism accounted respectively for 27.6%, 8.4%, and 7.0%
of the total variability. The reproducibility and metabolome coverage of the sample preparation
procedures were then compared and evaluated in terms of relative standard deviation (RSD) on the
area for the detected metabolites. The protocol showing the best performance in terms of recovery,
versatility, and variability was centrifugation for cell retrieval, using MeOH:H2O (8:2) as quenching
and extraction solvent, and freeze-thaw cycles as the cell disrupting mechanism.

Keywords: metabolomics; sample preparation; hydrophilic interaction liquid chromatography; ion
mobility spectrometry; high resolution mass spectrometry; design of experiments; AMOPLS

1. Introduction

Untargeted metabolomic approaches aim to analyze the metabolic composition of biological
samples in a holistic manner, with the goal of retrieving and storing as much chemical information as
possible. To this end, adequate sample preparation is one of the most critical steps to obtain reliable
biological insights [1]. Moreover, for an optimal interpretation of the information gathered from such
systems, the annotation of metabolites of interest is a requirement. Indeed, the recent advances in
liquid chromatography (LC) coupled with high resolution mass spectrometry (LC-HRMS) and the
development of in-house and external databases have made possible the identification and relative
quantification of an increasing number of metabolites in many types of biological samples [2,3].
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When analyzing polar metabolites, techniques with separation mechanisms that are orthogonal
to those of the classical reversed phase LC (RPLC) are needed [4]. Among these, hydrophilic
liquid interaction chromatography (HILIC) has proven to be an attractive strategy for such classes
of compounds and is well referenced in the literature [5–11]. Several groups have recently
demonstrated that different HILIC stationary phases enable the analysis of many chemical classes of
metabolites [12–14]. It has been shown that polymeric columns with zwitterionic stationary phases are
interesting for the analysis of compounds related to the tricarboxylic acid cycle (TCA) [14].

To perform metabolite annotation in untargeted metabolomics, several criteria must be fulfilled
to provide a certain level of confidence to the putatively identified compounds, as defined by the
metabolomics standards initiative (MSI) [15]. To maximize the reliability of the identification of
features, the retention time, exact mass, isotopic pattern, and MS/MS pattern must be used to match
compound properties to those of standards measured under identical experimental conditions [16,17].
With the advent of the latest generation of quadrupole time-of-flight instruments (QTOF), coupled
with ion mobility (IM), peak capacity and dynamic range have been increased, enabling to perform all
ion fragmentation (AIF) approaches and including the measurement of collision cross section (CCS),
which offers another structural information for identification [18,19]. Indeed, CCS values provide
valuable physicochemical information about the ions such as three-dimensional conformations [20,21].
Furthermore, the IM technology allows to selectively isolate coeluting peaks resulting in cleaner MS
and MS/MS spectra [22].

In untargeted metabolomics experiments, it has already been demonstrated that various sample
preparation procedures result in very different metabolite recovery rates, regardless of the biological
matrix studied, e.g., human plasma [23–27], mammalian cell cultures [28–31], and microbial cell
cultures [32–35]. During sample preparation, subtle modifications of the conditions, such as slight
changes in the composition of the extraction solvents, can have remarkable effects on the recovery
of some metabolites [36]. In vitro metabolomic studies on cell cultures offer many advantages over
more complex biological systems including an easily controlled environment, greater reproducibility,
lower cost, and easier method transfer to external laboratories for validation [30]. However, when it
comes to microbial cell cultures, sample preparation faces challenges such as fast metabolite turnover,
degradation, leakage, and poor extraction reproducibility [30,37,38]. These cell cultures require harsher
sample processing procedures than body fluids. Metabolite leakage must be prevented during the
cell retrieval step [38]. While metabolite losses can be minimized by reducing the number of steps
and simplifying the protocol, reproducible sample preparation procedures are necessary to ensure an
accurate determination of small changes in metabolite levels [39]. As a rule of thumb, cell metabolism
must be quenched quickly, and metabolites extracted rapidly, non-selectively, and reproducibly upon
cell sampling [39]. Quenching and extraction steps are of upmost importance in the sample preparation
process to obtain metabolic profiles which are representative of the physiological status at the time of
sampling [30].

In this study, we aimed to perform a systematic evaluation of the influence of different
sample preparation conditions on the nature and variability of the recovered metabolomic profile in
Gram-negative bacterium Caulobacter crescentus. The latter was chosen as a model for Gram-negative
bacteria because its central carbon metabolism, closely linked to cell cycle regulation and cell division,
remains to be fully understood [40]. After a comprehensive evaluation of the literature on sample
preparation for bacterial cell cultures [32–35], it was found that no systematic evaluation of different
protocols supported by a design of experiment (DOE) approach was available. In the present study, two
techniques of cell retrieval, two quenching and extraction solvents, and two cell disrupting mechanisms
were investigated. Considering a full factorial design (FFD), eight different sample preparation
protocols were tested for the relative quantification of polar metabolites from diverse chemical classes.
The simultaneous investigation of several experimental factors constitutes a powerful approach to
assess the impact of the metabolites extraction capabilities of each studied combination. Even if
principal component analysis (PCA) constitutes often a potent tool to detect relevant variables and
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patterns [41], an approach dedicated to fully exploit the data structure of complex omics data generated
from DOE, i.e., analysis of variance multiblock orthogonal partial least squares (AMOPLS) [42–44],
was used to assess the contribution of each studied factor on the annotated metabolites.

2. Materials and Methods

2.1. Chemicals

UPLC-MS grade acetonitrile (ACN), methanol (MeOH), and water (H2O) were obtained from
Fisher Scientific ( Loughborough, UK). UPLC-MS grade formic acid (FA) was supplied by Biosolve
(Valkenswaard, Netherlands). Chloroform (CHCl3) was provided by Acros Organics (Geel, Belgium).
Ammonium hydroxide and ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA) were
obtained from Sigma-Aldrich (Buchs, Switzerland). The major mix IMS/T of calibration kit and
leucine-encephalin were acquired from Waters (Milford, MA, USA).

2.2. Bacterial Sample Preparation

The eight evaluated sample preparation protocols are summarized in Table 1. Two cell retrieval
procedures, two systems of quenching and extraction solvents, and two cell disrupting mechanisms
were compared.

Table 1. Design of experiment (DOE) of the eight sample preparations, each investigated in triplicate,
with differing cell retrieval systems (filter or centrifugation), quenching and extraction solvents
(MeOH:H2O 8:2 or MeOH:H2O:CHCl3 7:2:1 + EDTA 1 mM), and cell disruption mechanisms (bead
beating or freeze-thaw cycles).

Filter/Centrifugation Solvent MeOH/Solvent CHCl3 F/T Cycles/Beadbeating Combination

+ + + Filter MeOH F/T
- + + Centri MeOH F/T
+ - + Filter CHCl3 F/T
- - + Centri CHCl3 F/T
+ + - Filter MeOH Beads
- + - Centri MeOH Beads
+ - - Filter CHCl3 Beads
- - - Centri CHCl3 Beads

2.2.1. Bacterial Cell Cultures and Cell Retrieval

C. crescentus cells were grown overnight at 30 ◦C in a PYE rich medium (2 g/L bactopeptone, 1 g/L
yeast extract, 1 mM MgSO4, and 0.5 mM CaCl2). Two cell retrieval methods were tested, the first one
in a liquid medium, and the second as an adaptation of a filter culture-based method [40].

For the liquid culture, overnight cultures were diluted to reach OD600nm ~ 0.4 and 10 mL of cells
were centrifuged at 8000 g for 5 min at 4 ◦C, then cells were resuspended in the desired precooled
quenching and extracting solution. For metabolite extraction from filter cultures, overnight cultures
were diluted at 30 ◦C in PYE medium until reaching OD600nm ~ 0.2. Then, 10 mL of culture were
transferred onto 0.22 μm mixed cellulose ester (MCE) membrane filter (Millipore) by vacuum filtration.
The filters were then deposited on the surface of PYE-agar made with the same growth medium, and
the cells were allowed to continue growing at 30 ◦C for 3 h. Finally, filters were dropped directly into
desired precooled quenching and extraction solution.

2.2.2. Quenching and Extraction Methods

The two cold solvents (−20 ◦C) for quenching and extraction were respectively MeOH:H2O 8:2 and
MeOH:H2O:CHCl3 7:2:1 + EDTA 1 mM. For each bacterial culture sample, 1 mL of solvent was added.
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2.2.3. Cell Disruption

Two lysis methods were compared, one by freeze and thaw (F/T) and another by bead beating.
Cells were subjected either to lysis by 5 cycles of F/T (−80 ◦C/40 ◦C) or to mechanical lysis using 0.1 mm
zirconia beads in a Fast prep-24 (MP) disruption instrument (5 cycles of 15” on, 1’ off) maintained
at 4 ◦C. In both cases, cellular debris were removed by centrifugation at 14,000 g, 20 min at 4 ◦C.
Metabolite extracts were kept at −80 ◦C.

2.2.4. Extract Preparation for LC-MS Analysis

The supernatants were collected, evaporated to dryness using a SpeedVac (ThermoFisher,
Langenselbold, Germany) and reconstituted in 100μL ACN:H2O 50:50. Quality control (QC) and diluted
QC (dQC) samples were respectively prepared by pooling equivalent volumes of all reconstituted
samples and by 1:1 dilution of a certain amount of the QC pool with ACN:H2O 50:50. QC and dQC
were injected at regular intervals throughout the LC-MS analyses to assess analytical variability.

2.3. Liquid Chromatography Conditions

For the LC experiments, a Waters H-Class Acquity UPLC system composed of a quaternary pump,
an autosampler including a 15 μL flow-through-needle injector for which temperature was set at 7 ◦C,
and a two-way column manager (Waters, Milford, MA, USA) were used. The injected volume was
10 μL. HILIC separations were performed on a Merck SeQuant ZIC-pHILIC column (150 × 2.1 mm,
5 μm) with the appropriate guard kit (Merck KGaA, Darmstadt, Germany). Solvent A was ACN and
solvent B was H2O containing 2.8 mM ammonium formate adjusted at pH 9.00. The pH of the solution
was checked and found to be stable during one week at room temperature. Column temperature and
flow rate were set at 40 ◦C and 300 μL min−1, respectively. The gradient elution was as follows: 5% B
for 1 min, increasing to 51% B during 9 min, holding for 3 min at 51% B, and then returning back to 5%
B in 0.1 min and re-equilibrating the column for 6.9 min.

2.4. Mass Spectrometric Conditions

HRMS was carried out on a Vion TWIMS-QTOF (Waters, Manchester, UK) equipped with an ESI
source. Analyses were performed in negative ESI mode to acquire continuum data in the range of
50–1000 m/z with a scan time of 0.2 s. The source parameters were set as follows: capillary voltage
was −2.0 kV, source and desolvation temperatures were set at 120 and 500 ◦C, respectively, cone
and desolvation gas flow were 50 and 800 L/h, respectively. Velocity and height of StepWave1 and
StepWave2 were set to 300 m/s and 5 V and to 200 m/s and 30 V, respectively. The high definition MSE

(HDMSE, using ion mobility) settings consisted of trap wave velocity at 100 m/s; trap pulse height
A at 10 V; trap pulse height B at 5 V; ion mobility spectrometry (IMS) wave velocity at 250 m/s; IMS
pulse height at 45 V; wave delay set at 20 pushes, and gate delay at 0 ms. Gas flows of ion mobility
instrument were set to 1.60 L/min for trap gas, and 25 mL/min for IMS gas. Buffer gas was nitrogen.

Fragmentation was performed in HDMSE mode. For the collision energy, 6.0 eV was used
for low energy and high energy was a ramp from 10 to 60 eV. Nitrogen was used as collision gas.
Leucine-encephalin served as a lock mass (554.2615 m/z for ESI-) infused at 5 min intervals. The CCS
and mass calibration of the instrument were done with the calibration mix “Major mix IMS-TOF
calibration” (Waters, Manchester, UK).

2.5. Analysis of Raw Data

Chromatogram alignment, peak picking, adduct deconvolution, and feature annotation were
sequentially performed on Progenesis QI v2.3 (Nonlinear Dynamics, Waters, Newcastle upon Tyne,
UK). The following tolerances were used for feature annotation with regard to a set of pure reference
standards (MSMLS Library of Standards, Sigma-Aldrich) measured in the same instrument: 2.5 ppm
for precursor and fragment mass, 10% for Rt, and 5% in the case of CCS. Data pretreatment was
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performed with SUPreMe, an in-house software with capabilities for drift correction, noise filtering,
and sample normalization. Finally, data were transferred to SIMCA-P 15.0 software (Umetrics, Umea,
Sweden) to perform Principal Component Analysis (PCA). AMOPLS analysis was conducted after unit
variance scaling as previously described [42] under the MATLAB® 8 environment (The MathWorks,
Natick, MA, USA). A series of 104 random permutations was performed to validate the AMOPLS
model and assess the statistical significance of the effects.

3. Results and Discussion

Bacterial cell cultures are an interesting resource to evaluate how a given system reacts upon
the deletion of certain genes, modifications in the conditions of the growing media, or changes
happening in the cell morphogenesis during the cell growth and proliferation processes. To increase
our understanding of the endogenous metabolic changes appearing in such biological systems,
untargeted metabolomics has already proven to be a valuable approach [39,40,45].

To study the effects of each sample preparation procedure on the extraction of polar metabolites,
three parameters, namely cell retrieval, quenching and extraction solvent, and cell disruption, were
systematically investigated by two methods. Medium filtering and centrifugation were compared for
cell retrieval, cold MeOH:H2O 8:2 and cold MeOH:H2O:CHCl3 7:3:1 + EDTA 1 mM were compared as
two quenching and extraction solvents and, finally, two cell disruption mechanisms (bead beating and
freeze-thaw cycles) were tested. In total, the overall performance of eight different procedures was
evaluated and compared against the others for the metabolomic analysis of C. crescentus cell cultures
(Table 1).

The cell retrieval procedures were chosen on the basis of (i) their ability to separate the cells
from media, (ii) their ease of application, and (iii) their recognized suitability for the determination
of intracellular metabolites [46]. The quenching and extraction solvent mixtures were chosen due
to their aptitude to (i) freeze the metabolic status after cell harvesting, (ii) inactivate intracellular
enzymes and extract at the same time metabolites, and (iii) extract hydrophilic compounds as widely as
possible with the best recoveries [46]. CHCl3 was studied because of its potential usefulness to enhance
cell wall disruption and to inactivate enzymes, and EDTA due to its ability to chelate metal ions
preventing metabolite oxidation and degradation [30,35,37]. Cell disrupting mechanisms were selected
due to their capacity to (i) disrupt cell walls and facilitate metabolite extraction [30], (ii) complete the
denaturation of all enzymes to avoid further metabolite interconversions, and (iii) prevent significant
degradation and chemical conversion of the extracted metabolites [47]. Finally, metabolomic analyses
were performed in HILIC mode coupled to a Vion TWIMS-QTOF operating in negative ESI polarity.
The choice of this UHPLC-HRMS platform enables the investigation of highly polar metabolites such
as those related to the energy metabolism with excellent performance, as described in our previous
paper [14]. Of course, the use of other LC-MS platforms to analyze samples issued from the same
experimental design would provide different results, since the performance of each method to retain
and ionize different classes of metabolites will be different.

3.1. Evaluation of the Extraction

The first goal of the investigation was to assess the recovery and the overall variability on annotated
metabolites. Analyses were performed in triplicate for each combination of conditions and evaluated
with the help of various procedures such as relative standard deviation (RSD) and multivariate analysis
(MVA). PCA was used to evaluate the similarity and dissimilarity of the different extraction conditions,
while AMOPLS was used to estimate the contribution of experimental factors to variations annotated
metabolites abundances.

The performance reached by each sample preparation protocol was first assessed on the overall
set of features remaining after data pretreatment. From the raw dataset, more than 8500 features were
found in the initial peak-picking step. Data pretreatment included filtering of the features based on
QC-to-dQC peak area ratio and RSD in QC samples, LOESS drift correction by interpolation with
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the QC samples, and probabilistic quotient normalization (PQN) methods [48]. These respectively
eliminate noisy features, alleviate the changes in the per-metabolite variations of the instrument’s
response factor, and fix any sample normalization issues remaining from the sample preparation.
In particular, LOESS has the advantage of being nonparametric, so no external information needs to be
introduced, which would unnecessarily increase variability. The only requirement is the presence of
QC samples. PQN was chosen for similar reasons, since it is highly robust and does not depend either
on external information that would introduce uncertainty into the correction. Its only drawback is
the need for enough variables to derive the ratio distribution, but that need is more than fulfilled in
untargeted analyses such as the present one. The whole pretreatment procedure reduces the analytical
variability in the data, so as to present a dataset to the statistical analyses, where as much variability as
possible is of biological origin. Altogether, a total of 904 filtered and corrected features were found to
be analytically reliable across all the samples in the experimental design, and they were retained for
the posterior analysis (Supplementary Materials, Table S1).

3.2. Metabolites Annotation

For the purpose of completing the LC-MS untargeted workflow of such experiments, feature
annotation must be used to assess which metabolites are preferentially retrieved by each sample
preparation procedure, thus enabling the study of certain metabolic pathways in future experiments
with C. crescentus. In the present study, features were first annotated by using their m/z and retention
time [15] and their identities were then confirmed by MS/MS or CCS data. MS/MS acquisitions were
carried out in all ion fragmentation (AIF) mode by using an energy ramp (10–60 eV). The AIF mode
presents the potential that a simultaneous acquisition of both precursor and product ions can be
considered in the same analytical run. However, AIF suffers from inaccuracies, which can happen
when LC coeluting peaks with similar peak shapes possess similar MS/MS spectra (common product
ions). This limitation can be overcome by (i) computational deconvolution algorithms that link the
precursor ions (at low energy) and the product ions (at high energy) [49] and (ii) the IMS technology,
i.e., HDMSE, which allows the separation of LC coeluting precursor ions on the drift time dimension
before fragmentation. Therefore precursor and product ions can be IMS-aligned, allowing to filter
out fragments that do not match the precursor’s drift time [18]. Moreover, IMS offers the potential to
gain further structural information by providing CCS values, and therefore a gain in confidence in the
metabolites annotation. An example of how both precursor and product ions can be cleared with the
help of the IMS technology is presented in Figure 1 with the example of acetyl-CoA. Cleaner MS/MS
also reduces the false positives rate during the annotation step. Among the 904 kept features, 133 of
them were annotated with the help of m/z and retention time and 106 were confirmed by MS/MS or
CCS values (Table S2). This result highlights the fact that false positive annotations (27 unconfirmed
annotations) can occur when they are not validated by other orthogonal molecular descriptors. Most of
the 106 identified metabolites (almost 55% of the confirmed compounds) belong to one of the following
chemical groups: amino acids, nucleotides, and organic acids [50], as presented in Figure 2. This shows
the ability of the developed analytical method to detect compounds related to fundamental metabolic
pathways in biological samples, such as the energy metabolism.
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Figure 1. Example of MS and MS/MS spectra without and with IMS filtration for the precursor ion of
acetyl-CoA (M-H). Precursor ion and fragment ions are highlighted in filled bars. Cleaner MS and
MS/MS spectra are obtained thanks to the IMS separation. Fragment ions were matched to the MS/MS
spectra of the chemical standard analyzed under the same analytical conditions.

Figure 2. Annotated metabolites chemical groups. Percentage based on the total number of annotated
metabolites (106).

3.3. AMOPLS for Assessing the Contribution of Each Studied Factor to the Overall Variability

To obtain an overview of the major sources of variability in the dataset, unsupervised data analysis
was first performed on the 106 annotated metabolites, as measured from the eight sample preparation
procedures. According to the PCA score plot presented in Figure 3, the sample preparation approaches
that appear well clustered, indicating low intragroup variability, are: centrifugation-CHCl3-F/T,
centrifugation-MeOH-F/T, and filter-CHCl3-F/T. An important difference in the sample preparation
between centrifugation and filtering can also be highlighted. Both centrifugation-CHCl3-F/T and
centrifugation-MeOH-F/T are separated, while filter procedures are regrouped at the top-left region of
the PCA.

As a second step of data analysis, AMOPLS was used to get a deeper insight into the specific
contribution of each experimental factor (i.e. main effects), and their potential interactions, to the total
observed variability. This approach allows us to decompose, quantify, and evaluate the significance
of each effect in large datasets issued from full factorial designs. The proposed experimental setup
allows the simultaneous evaluation of the three experimental factors under study, i.e., the cell retrieval
procedure, the quenching and extraction solvent, and cell disrupting mechanisms, as well as their
interactions. The interpretation of the signal variations is performed using effect-specific scores
and loadings.
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Figure 3. Principal component analysis (PCA) score plot of the eight sample preparation procedures
evaluated in triplicates.

The results of the AMOPLS model are presented in Table 2. All main effects had a significant
contribution to the total observed variability, but no interaction between them was found to be
statistically significant. The cell retrieval procedure accounted for 27.6% of the total variability, the
quenching and extraction solvent for 8.4%, and the cell disrupting mechanism for 7.0%. Remarkably,
the cell retrieval procedure (filter/centrifugation) is the most influential parameter. The residuals
accounted for 57.0% of the total observed variability, suggesting an important contribution of other
sources of variation not formally considered in the experimental design and possibly coming from the
biological variability or the sample preparation itself.

Table 2. Relative variability and block contributions of the AMOPLS model of the data acquired from
the investigated biological samples. RSR: residual structure ratio, tp1-3: predictive components, to:
orthogonal component.

Effect Contribution RSR p-Value tp1 tp2 tp3 to

Cell retrieval 27.6% 1.92 0.2% 96.7% 1 3.9% 1.8% 15.9%

Quenching/
extraction solvent 8.4% 1.17 0.1% 1.0% 81.8% 3.1% 26.7%

Cell disrupting
mechanisms 7.0% 1.14 0.4% 1.0% 6.7% 91.6% 26.9%

Residuals 57.0% 1.00 N/A 1.2% 7.6% 3.5% 30.5%
1 The highest contribution for each component is reported in bold.

The model was then interpreted with the help of the distribution of the observations (groupings)
and the contribution of the variables to the specific predictive component associated with each main
effect. The score plots are presented in Figure S1, generated with data coming from Table S3. Squared
variable importance in the projection (VIP2) values were then calculated (Table S3) and taken as the
quantitative measure of the contribution of all modelled effects coming from a single variable [44].
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VIP2 values are helpful to rank compounds and spot the ones that play a major role in the model for
each studied effect. Figure 4 presents the VIP2 values for each studied effect, for the 50 most relevant
metabolites out of the 106 annotated ones. Larger VIP2 values indicate which effect(s) are the most
important ones for each annotated metabolite. In Figure 4, metabolites are ranked according to the
importance of the cell retrieval effect and compounds on the left side are those for which this procedure
had the strongest impact (largest VIP2 values). On the contrary, this effect exerted little influence on
metabolites appearing towards the right side of the plot (Figure S2). Some metabolites belonging
to the groups of sugars (2-deoxy-glucose, glucose, and xylose) and nucleosides (cytidine, guanine,
and xanthine) are among the most influenced ones. Besides the scores and corresponding loading
plots (Figures S1 and S3, representing the data from Tables S4 and S5, respectively), these metabolites
were found in higher abundance in the filtering procedure. Secondly, highly polar metabolites
related to the amino acid family (L-histidine, L-glutamine, and L-asparagine), phosphorylated sugars
(ribose-5-phosphate, glucose-6-phosphate, fructose-1, and 5-bisphosphate) and nucleotides (5’-CMP,
IDP, IMP, and GTP) were highly influenced by the quenching and extraction solvent. Probably, the
polarity of the used solvents accounts for these observed results, since MeOH:H2O 8:2 is more polar
than the second system used, thus enhancing the recovery of more polar molecules. Indeed, by
looking at the scores and corresponding loading plots (Figures S1 and S3), almost all metabolites
given as examples were found in higher abundance in MeOH:H2O extracting solvent, except IDP,
GTP, and fructose-1,5-bisphosphate which were found in higher abundance when CHCl3 was present,
an observation that can be explained by an enhanced enzyme-denaturing process expected when
this solvent was added. Finally, the effect of cells lysis was studied. Metabolites related to lipids
(petroselinic acid, palmitic acid, and stearic acid) and nucleotides (ADP, CTP, GDP, CDP, GTP, and ATP)
were the most influenced chemical classes. All of these metabolites were found in higher abundance in
the F/T procedure except for palmitic acid and petroselinic acid (Figures S1 and S3). One hypothesis
to explain these results would be the fact that both cell disrupting mechanisms are quite different in
terms of the amount of energy applied to the sample. Indeed, beads beating is a harsher procedure
compared to F/T cycles and metabolites amenable to degradation via hydrolysis, decarboxylation or
oxidation could be more easily impacted.

 
Figure 4. Effect-specific variable importance in the projection (VIP)2 values for the 50 out of the
106 annotated metabolites ranked according to the impact of the cell retrieval effect.
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3.4. Assessing the Recovery and the Variability of the Annotated Metabolites

A larger number of metabolites were found in higher abundance with the following combination
of factors: cell filtering, MeOH:H2O, and F/T cycles (Figure S3). First, nucleosides (guanine, guanosine,
cytidine, inosine, xanthosine, and xanthine) were more abundant in sample preparations starting with
a filtering step, regardless of what other following procedures were used. One explanation could be
that these metabolites leak from cells more easily during the longer centrifugation procedure, as it has
already been found for Escherichia coli [51]. Second, the MeOH:H2O condition enables the retrieval of
more metabolites in higher proportion. This can be explained by the medium’s polarity, since this
solvent enables a better extraction of polar compounds as compared to the CHCl3 system. However, it
was expected that the addition of CHCl3 and EDTA would prevent metabolite turnover, and oxidation
and degradation by metals for nucleotides, CoA, and CoA thioesters derivatives, as described in the
literature [37]. This is confirmed for ATP, succinyl-CoA, and CoA which are found in higher proportion
in the presence of CHCl3 (Figure S3). Interestingly, ADP was found in higher proportion in MeOH.
This result supports that in these conditions ATP gets hydrolyzed into ADP, confirming that EDTA
and CHCl3 prevents the degradation of ATP into ADP. For the cell disruption mechanisms, a large
majority of metabolites were found in higher abundance in the F/T cycles procedure (Figure S3). Indeed,
some nucleotides, CoA and CoA thioester derivatives, and some organic acids (citric acid), which
are highly relevant indicators of the metabolic status of the cells, are found more abundantly when
F/T was applied. This could be explained by the facilitation of non-enzymatic degradations in the
case of bead beating, as previously discussed. Finally, acetyl-CoA, CoA, TMP, and DAMP, were more
abundant in either centrifugation-CHCl3-F/T or centrifugation-MeOH:H2O-F/T. It can be seen that all
four metabolites are more abundant after using centrifugation as cell retrieval, MeOH:H2O (except for
CoA, found at the same abundance for both solvent systems used) and F/T cycles (except for TMP
and DAMP, found at the same abundance for both cells disrupting mechanisms used). These results
support that either centrifugation-CHCl3-F/T or centrifugation-MeOH:H2O-F/T conditions should be
chosen in the case of interest towards these particular metabolites.

The recovery obtained using each sample preparation procedure was assessed on the 106 confirmed
metabolites and results are shown in Figure S4. Metabolite integration was manually curated among
the features of the preprocessed data and considered as undetected when an intensity value of zero was
found (total absence). The recoveries of each sample preparation varied from 88% to 95%. It has been
noticed that for each different sample preparation, more metabolites were recovered when MeOH:H2O
solvent was used as compared to MeOH:H2O:CHCl3 + 1 mM EDTA. The sample preparation
Filter-MeOH:H2O-F/T had the highest recovery percentage (95%) and centrifugation-CHCl3-F/T
yielded the lowest recovery percentage (88%). Figure S4 also shows that more metabolites can be
recovered when the filtering procedure is used, as opposed to centrifugation.

On the other hand, the RSD is crucial since the most repeatable procedures will guarantee data
of higher quality in further metabolomics experiments. It was possible to calculate the RSD on the
area of each metabolite obtained in triplicate. These results are presented in Figure 5. The RSD values
(X) were classified into five categories: 0 < X ≤ 10%, 10 < X ≤ 20%, 20 < X ≤ 30%, 30 < X ≤ 40%, or
>40%. The sample preparation extracting the largest number of metabolites, i.e., filter-MeOH:H2O-F/T,
presents the worst RSD (>40%) results. On the other hand, we found sample preparation such as
centrifugation-CHCl3-F/T and centrifugation-MeOH:H2O-F/T, encompassing RSDs of 0 < X ≤ 10%,
10 < X ≤ 20% and 20 < X ≤ 30% for the highest number of metabolites. Therefore, we would recommend
use of the latter two sample preparation procedures when the metabolite extraction rate must be well
balanced with repeatability.
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Figure 5. Relative standard deviation (RSD) values calculated on the area reached by each detected
metabolite for the eight sample preparations investigated. RSD (X) are classified into 5 categories: 0 <
X ≤ 10%, 10 < X ≤ 20%, 20 < X ≤ 30%, 30 < X ≤ 40%, or >40%.

4. Conclusions

It is currently recognized that sample preparation is a crucial step in untargeted metabolomics
workflows as biological outputs will only be drawn from retrieved metabolites. In this work, eight
different sample preparation protocols for Gram-negative bacteria C. crescentus, combining two cell
retrieval systems, two quenching and extraction solvents, and two cell disruption procedures were
investigated. The use of a full factorial design to evaluate the contribution of various factors, with the
help of an AMOPLS model, provided a potent way to examine their effect on the metabolite recovery
rates. Moreover, annotated metabolite variability was assessed with the help of univariate data analysis
via the RSD of the area of each metabolite.

The major conclusions about the studied experimental parameters are:

(a) For cell harvesting, the centrifugation procedure could lead to a higher number of metabolites
leaking out of the cells as compared to filtering, as the latter is faster, preventing metabolite
turnover and degradation and leakage which could take place during centrifugation.

(b) For quenching and extraction solvent, the combination MeOH:H2O enables a better extraction of
polar metabolites.

(c) For cell disruption, bead beating could lead to higher temperature and more degradation
because of its rougher nature. The mechanical disruption obtained by this method is often very
advantageous when dealing with tissue fractions, but unnecessary in the studied samples, as it
leads only to a larger degradation rate.

To summarize, even if filtering enables the retrieval of more metabolites with higher abundances,
RSD evaluation demonstrated a detrimental extraction variability for any of the conditions, as compared
to the centrifugation procedures. Therefore, centrifugation should be the selected method for cell
retrieval. For the quenching and extraction solvent, the choice should be driven by the needs of the
study regarding the specific nature of the metabolites to extract. If the target would be acetyl-CoA,
an important metabolite for many biological pathways, MeOH should be used. The F/T cycles retrieve
more metabolites at higher abundance and present much better RSD values as compared to bead
beating for the cell disrupting mechanism. Finally, the combination of centrifugation-MeOH-F/T
appears to perform the best among those evaluated in the present study.
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Supplementary Materials: The following supplementary materials are available online at http://www.mdpi.
com/2218-1989/9/10/193/s1, Table S1: Analytical variability of the 904 retained features after data filtration and
processing. More than 90% of them presented an RSD below 30% in the QC samples; Table S2: 106 annotated
metabolites’ names, adapted name, observed Rt, m/z, CCS, adduct(s), CAS identifier, molecular properties
confirmation steps (Rt, MS/MS, CCS, MS/MS, and CCS), and chemical class; Table S3: Ranking of the variables
accounting for the cells retrieval effect. The VIP2 values of all metabolites were calculated for each variable (cells
retrieval, solvent, and cells disruption); Figure S1: Score plots obtained from the AMOPLS model related to the
predictive components bearing the variability coming from respectively (a) cells retrieval (tp1), (b) solvent (tp2),
and (c) cells disruption (tp3) effects and the orthogonal component to. Plots were generated according to Table S4;
Table S4: Data from the AMOPLS model for the predictive components tp1 (cells retrieval), tp2 (solvent), tp3
(cells disruption), and to (orthogonal component); Figure S2: Effect-specific VIP2 values for the 106 annotated
metabolites ranked according to the impact of the cell retrieval effect; Figure S3: Loading plots generated from
the AMOPLS predictive components related to the effect of (a) cells retrieval, (b) solvent, and (c) cells disruption
on the metabolites extraction. Plots were generated according to Table S5; Table S5: Data from the AMOPLS
model for the predictive components pp1 (cells retrieval), pp2 (solvent), pp3 (cells disruption), and po (orthogonal
component); Figure S4: Metabolites overall recovery for each sample preparation evaluated. Percentage based on
the number of metabolites detected for each condition on the total annotated metabolites (106).
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17. Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software Tools and Approaches for Compound Identification of
LC-MS/MS Data in Metabolomics. Metabolites 2018, 8, 31. [CrossRef]

18. Paglia, G.; Williams, J.P.; Menikarachchi, L.; Thompson, J.W.; Tyldesley-Worster, R.; Halldorsson, S.;
Rolfsson, O.; Moseley, A.; Grant, D.; Langridge, J.; et al. Ion Mobility Derived Collision Cross Sections to
Support Metabolomics Applications. Anal. Chem. 2014, 86, 3985–3993. [CrossRef]

19. Ma, X.; Liu, J.; Zhang, Z.; Bo, T.; Bai, Y.; Liu, H. Drift tube ion mobility and four-dimensional molecular
feature extraction enable data-independent tandem mass spectrometric ’omics’ analysis without quadrupole
selection. Rapid Commun. Mass Spectrom. 2017, 31, 33–38. [CrossRef]

20. Mairinger, T.; Causon, T.J.; Hann, S. The potential of ion mobility–mass spectrometry for non-targeted
metabolomics. Curr. Opin. Chem. Biol. 2018, 42, 9–15. [CrossRef]

21. Hernández-Mesa, M.; Le Bizec, B.; Monteau, F.; García-Campaña, A.M.; Dervilly-Pinel, G. Collision Cross
Section (CCS) Database: An Additional Measure to Characterize Steroids. Anal. Chem. 2018, 90, 4616–4625.
[CrossRef]

22. Dwivedi, P.; Schultz, A.J.; Hill, H.H. Metabolic Profiling of Human Blood by High Resolution Ion Mobility
Mass Spectrometry (IM-MS). Int. J. Mass Spectrom. 2010, 298, 78–90. [CrossRef]

23. Want, E.J.; O’Maille, G.; Smith, C.A.; Brandon, T.R.; Uritboonthai, W.; Qin, C.; Trauger, S.A.; Siuzdak, G.
Solvent-Dependent Metabolite Distribution, Clustering, and Protein Extraction for Serum Profiling with
Mass Spectrometry. Anal. Chem. 2006, 78, 743–752. [CrossRef]

24. Michopoulos, F.; Lai, L.; Gika, H.; Theodoridis, G.; Wilson, I. UPLC-MS-Based Analysis of Human Plasma
for Metabonomics Using Solvent Precipitation or Solid Phase Extraction. J. Proteome Res. 2009, 8, 2114–2121.
[CrossRef]

25. Bruce, S.J.; Tavazzi, I.; Parisod, V.; Rezzi, S.; Kochhar, S.; Guy, P.A. Investigation of Human
Blood Plasma Sample Preparation for Performing Metabolomics Using Ultrahigh Performance Liquid
Chromatography/Mass Spectrometry. Anal. Chem. 2009, 81, 3285–3296. [CrossRef]

26. Yang, Y.; Cruickshank, C.; Armstrong, M.; Mahaffey, S.; Reisdorph, R.; Reisdorph, N. New sample preparation
approach for mass spectrometry-based profiling of plasma results in improved coverage of metabolome.
J. Chromatogr. A 2013, 1300, 217–226. [CrossRef]

27. Rico, E.; Gonzalez, O.; Blanco, M.E.; Alonso, R.M. Evaluation of human plasma sample preparation protocols
for untargeted metabolic profiles analyzed by UHPLC-ESI-TOF-MS. Anal. Bioanal. Chem. 2014, 406,
7641–7652. [CrossRef]

59



Metabolites 2019, 9, 193

28. Lorenz, M.A.; Burant, C.F.; Kennedy, R.T. Reducing Time and Increasing Sensitivity in Sample Preparation
for Adherent Mammalian Cell Metabolomics. Anal. Chem. 2011, 83, 3406–3414. [CrossRef]

29. Panopoulos, A.D.; Yanes, O.; Ruiz, S.; Kida, Y.S.; Diep, D.; Tautenhahn, R.; Herrerías, A.; Batchelder, E.M.;
Plongthongkum, N.; Lutz, M.; et al. The metabolome of induced pluripotent stem cells reveals metabolic
changes occurring in somatic cell reprogramming. Cell Res. 2012, 22, 168–177. [CrossRef]

30. León, Z.; García-Cañaveras, J.C.; Donato, M.T.; Lahoz, A.; García-Cañaveras, J.C. Mammalian cell
metabolomics: Experimental design and sample preparation. Electrophoresis 2013, 34, 2762–2775. [CrossRef]

31. Kapoore, R.V.; Coyle, R.; Staton, C.A.; Brown, N.J.; Vaidyanathan, S. Cell line dependence of metabolite
leakage in metabolome analyses of adherent normal and cancer cell lines. Metabolomics 2015, 11, 1743–1755.
[CrossRef]

32. Rabinowitz, J.D.; Kimball, E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli.
Anal. Chem. 2007, 79, 6167–6173. [CrossRef]

33. Spura, J.; Reimer, L.C.; Wieloch, P.; Schreiber, K.; Buchinger, S.; Schomburg, D. A method for enzyme
quenching in microbial metabolome analysis successfully applied to gram-positive and gram-negative
bacteria and yeast. Anal. Biochem. 2009, 394, 192–201. [CrossRef]

34. Xu, Y.-J.; Wang, C.; Ho, W.E.; Ong, C.N. Recent developments and applications of metabolomics in
microbiological investigations. TrAC Trends Anal. Chem. 2014, 56, 37–48. [CrossRef]

35. Patejko, M.; Jacyna, J.; Markuszewski, M.J. Sample preparation procedures utilized in microbial metabolomics:
An overview. J. Chromatogr. B 2017, 1043, 150–157. [CrossRef]

36. Dettmer, K.; Nurnberger, N.; Kaspar, H.; Gruber, M.A.; Almstetter, M.F.; Oefner, P.J. Metabolite extraction
from adherently growing mammalian cells for metabolomics studies: Optimization of harvesting and
extraction protocols. Anal. Bioanal. Chem. 2011, 399, 1127–1139. [CrossRef]

37. Siegel, D.; Permentier, H.; Reijngoud, D.-J.; Bischoff, R. Chemical and technical challenges in the analysis of
central carbon metabolites by liquid-chromatography mass spectrometry. J. Chromatogr. B 2014, 966, 21–33.
[CrossRef]

38. Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite Measurement: Pitfalls to Avoid
and Practices to Follow. Annu. Rev. Biochem. 2017, 86, 277–304. [CrossRef]

39. Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid
chromatography–mass spectrometry. Anal. Bioanal. Chem. 2012, 403, 1523–1548. [CrossRef]

40. Irnov, I.; Wang, Z.; Jannetty, N.D.; Bustamante, J.A.; Rhee, K.Y.; Jacobs-Wagner, C. Crosstalk between the
tricarboxylic acid cycle and peptidoglycan synthesis in Caulobacter crescentus through the homeostatic
control of alpha-ketoglutarate. PLoS Genet 2017, 13, e1006978. [CrossRef]

41. Boccard, J.; Veuthey, J.-L.; Rudaz, S. Knowledge discovery in metabolomics: An overview of MS data
handling. J. Sep. Sci. 2010, 33, 290–304. [CrossRef] [PubMed]

42. Boccard, J.; Rudaz, S. Exploring Omics data from designed experiments using analysis of variance multiblock
Orthogonal Partial Least Squares. Anal. Chim. Acta 2016, 920, 18–28. [CrossRef] [PubMed]

43. Ponzetto, F.; Boccard, J.; Baume, N.; Kuuranne, T.; Rudaz, S.; Saugy, M.; Nicoli, R. High-resolution mass
spectrometry as an alternative detection method to tandem mass spectrometry for the analysis of endogenous
steroids in serum. J. Chromatogr. B 2017, 1052, 34–42. [CrossRef] [PubMed]

44. González-Ruiz, V.; Pezzatti, J.; Roux, A.; Stoppini, L.; Boccard, J.; Rudaz, S. Unravelling the effects of multiple
experimental factors in metabolomics, analysis of human neural cells with hydrophilic interaction liquid
chromatography hyphenated to high resolution mass spectrometry. J. Chromatogr. A 2017, 1527, 53–60.
[CrossRef] [PubMed]

45. Tang, J. Microbial metabolomics. Curr. Genom. 2011, 12, 391–403. [CrossRef]
46. Shen, Y.; Fatemeh, T.; Tang, L.; Cai, Z. Quantitative metabolic network profiling of Escherichia coli:

An overview of analytical methods for measurement of intracellular metabolites. TrAC Trends Anal. Chem.
2016, 75, 141–150. [CrossRef]

47. van Gulik, W.M.; Canelas, A.B.; Seifar, R.M.; Heijnen, J.J. The Sampling and Sample Preparation Problem in
Microbial Metabolomics. In Metabolomics in Practice: Successful Strategies to Generate and Analyze Metabolic
Data; Lämmerhofer, M., Weckwerth, W., Eds.; Wiley-VCH Verlag Gmbh & Co: Weinheim, Germany, 2013;
pp. 1–19.

60



Metabolites 2019, 9, 193

48. Gagnebin, Y.; Tonoli, D.; Lescuyer, P.; Ponte, B.; De Seigneux, S.; Martin, P.-Y.; Schappler, J.; Boccard, J.;
Rudaz, S. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies.
Anal. Chim. Acta 2017, 955, 27–35. [CrossRef]

49. Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based
Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [CrossRef]

50. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.;
Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46,
D608–D617. [CrossRef]

51. Nikaido, H.; Bavoil, P.; Hirota, Y. Outer membranes of gram-negative bacteria. XV. Transmembrane diffusion
rates in lipoprotein-deficient mutants of Escherichia coli. J. Bacteriol. 1977, 132, 1045–1047.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

61





metabolites

H

OH

OH

Article

Influence of Drying Method on NMR-Based
Metabolic Profiling of Human Cell Lines

Irina Petrova, Shenyuan Xu, William C. Joesten, Shuisong Ni and Michael A. Kennedy *

Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA;
petrovi@miamioh.edu (I.P.); xus2@miamioh.edu (S.X.); joestewc@miamioh.edu (W.C.J.); nis@miamioh.edu (S.N.)
* Correspondence: kennedm4@miamioh.edu; Tel.: +1-513-529-8267

Received: 30 August 2019; Accepted: 28 October 2019; Published: 31 October 2019

Abstract: Metabolic profiling of cell line and tissue extracts involves sample processing that includes
a drying step prior to re-dissolving the cell or tissue extracts in a buffer for analysis by GC/LC-MS or
NMR. Two of the most commonly used drying techniques are centrifugal evaporation under vacuum
(SpeedVac) and lyophilization. Here, NMR spectroscopy was used to determine how the metabolic
profiles of hydrophilic extracts of three human pancreatic cancer cell lines, MiaPaCa-2, Panc-1 and
AsPC-1, were influenced by the choice of drying technique. In each of the three cell lines, 40–50
metabolites were identified as having statistically significant differences in abundance in redissolved
extract samples depending on the drying technique used during sample preparation. In addition
to these differences, some metabolites were only present in the lyophilized samples, for example,
n-methyl-α-aminoisobutyric acid, n-methylnicotimamide, sarcosine and 3-hydroxyisovaleric acid,
whereas some metabolites were only present in SpeedVac dried samples, for example, trimethylamine.
This research demonstrates that the choice of drying technique used during the preparation of samples
of human cell lines or tissue extracts can significantly influence the observed metabolome, making it
important to carefully consider the selection of a drying method prior to preparation of such samples
for metabolic profiling.

Keywords: metabonomics; metabolomics; metabolic profiling; NMR; nuclear magnetic resonance
spectroscopy; cell line; human cell line; MiaPaCa-2; Panc-1; AsPC-1

1. Introduction

Metabonomics is a metabolic profiling technique first described in 1999 [1]. Metabonomics studies,
which can be used for biomarker identification for early disease detection and drug development,
are accomplished by examining the differences in metabolic profiles of biological fluids between control
samples and samples obtained under some form of transformative change or intrinsic difference
such as the presence, progression or treatment of disease [2–5]. Metabonomics has been employed in
food science to assess food quality and in nutrition studies to identify diet–health relationships by
examination of dietary biomarkers [6–10], in fields such as toxicology and immunology to understand
the mechanisms of chemical toxicity and viral infections [11,12], to determine how the use of oral
antibiotics alters the gut microbiome based on analysis of fecal extracts [13,14], and to assess the
consequences of different forms of acute kidney injury [15–17], among many other applications. A recent
overview of applications of metabonomic studies was published by Liu and Locasale in 2017 [18].
Metabonomics research has grown exponentially since its inception in 1999, as can be appreciated by
considering the number of publications per year determined from a recent literature search of the
PubMed citation database (www.ncbi.nlm.nih.gov/pubmed) with the search terms “metabonomics OR
metabolomics” specified in the “Title/Abstract” field, which returned over 44,000 publications overall
and more than 3000 publications in 2018 alone. Biological fluids, cell line cultures and tissue extracts
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are common samples used in metabonomics analyses [3,14,16,19–21]. Metabolic profiling studies of
human cancer cell lines in particular have played a major role in drug discovery as they allow for
comparatively inexpensive high-throughput screening to reveal potential drug targets and to study
metabolic responses to various stimuli [21–24]. Metabonomics studies in general can either be targeted,
with a focus on specific metabolites, or untargeted where an entire metabolome is analyzed in order to
identify and quantify changes in all measurable metabolites [25]. Mass spectrometry (MS) coupled to
gas chromatography (GC-MS) or liquid chromatography (LC-MS) and nuclear magnetic resonance
spectroscopy (NMR) are the most common analytical techniques used for metabolic profiling [26,27].

Cell lines have been used as models for studying human diseases and metabolic pathways since
as early as 1956 [28]. As with metabonomics research itself, the number of metabonomic studies of cell
line cultures has also experienced significant growth over the last 15 years, reaching over 400 published
studies based on a literature search on the PubMed citation database (www.ncbi.nlm.nih.gov/pubmed)
with the search terms “metabonomics OR metabolomics” AND “cell line” OR “cell culture” in the
“Title/Abstract” field. Major research areas that employ metabonomics studies of human cell cultures
include investigations of many human diseases, pharmacology, systems biology and toxicology [29–32].
Tumor cells have also been valuable for studying metabolic pathways involved in the biology of
cancer and modeling of cancerous formations [33–36]. In the area of metabolic profiling-based cancer
research, human cancer cell line cultures have been utilized in studies of breast cancer, bladder cancer,
prostate cancer, oral cancer, brain cancer and pancreatic cancer, among others [37–42]. Cell cultures
are advantageous in that they represent study systems that are capable of self-replication, thereby
providing an infinite amount of material for study, and unlike biological samples that come from animal
models and human hosts, cell lines can be easily modified, manipulated and studied in a controlled
environment, and used in relatively inexpensive high-throughput screening studies compared to
animal model studies [22,43]. Because the cells are cultured in isolation from the original tumor
environment and pure cell line cultures, there is a lack of communication between tumor cells and
other host and tumor stroma components, which allows for simplified characterization of the tumor
cells; however, the lack of the presence of a tumor stroma is limiting, since it participates in formation,
maintenance of tumors, cancer cell differentiation and cancer development [36]. Consequently, because
of the absence of a biologically relevant tumor stroma context, and due to the absence of interaction
with an intact immune system, human cancer cells culture studies cannot perfectly replicate cancer cell
metabolism expected in intact tumors in vivo [23,36].

Metabolic profiling of human cell cultures typically follows a five-step procedure post cell
culture, including sample preparation and processing, data collection, data analysis, identification of
metabolites, and determination and analysis of metabolic pathways to which identified metabolites
belong [43]. It has been previously reported that the choice of technique used for sample extraction or
cell lifting can have an impact on the observed metabolome of the cell culture [44–51]. In light of this fact,
it has been suggested that the sample preparation protocols and minimum reporting information should
be standardized to provide consistent and accurate results in metabolomic studies [29,48–50,52–54].
One of the steps that has not been given much attention in the literature up to this point is the influence
of the method used to dry the extracts prior to preparation of the concentrated cell extract samples
for analysis [29,55,56]. The two most widely used methods of drying cell and tissue extracts are
speed-vacuum and lyophilization [29,55–57]. In speed-vacuum (SpeedVac) drying, the extract is
centrifuged and the solvent evaporated under vacuum at (typically unregulated) room temperature.
In lyophilization (freeze-drying), the sample is first frozen with liquid nitrogen, followed by sublimation
of the solvent, a process in which the solvent evaporates from its frozen solid state without going
through a liquid phase. The temperature inside the trap chamber of a lyophilizer is typically –40 ◦C to
–50 ◦C and the sample remains frozen throughout the drying process, while temperature inside the
speed-vacuum chamber ranges anywhere between 25 ◦C and 35 ◦C and, as stated above, is generally
unregulated. The vacuum levels in a freeze-dryer typically range between 60 mTorr to 300 mTorr,
whereas the vacuum level in a typical SpeedVac is around 10 Torr. Although the relative performance
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of drying techniques in metabonomics studies has been raised before [57], the issue has not been
examined considering the preparation of human cell line extracts with all other procedural steps being
the same in the comparison of the two drying techniques.

Here, we investigated how the observed metabolome of three human pancreatic cancer cell
lines, MiaPaCa-2, Panc-1 and AsPC-1, was influenced by application of drying either by SpeedVac or
lyophilization. Ten replicate extract samples from each cell line were dried using each technique, and the
metabolic profiles of the dried sample extracts were measured by NMR spectroscopy. The resulting
metabolic profiles were compared to determine the influence of the choice of drying technique on the
observed metabolic profiles.

2. Results

2.1. Analysis of MiaPaCa-2 Cells

2.1.1. Representative NMR Data

Representative 1D NMR spectra of samples prepared from redissolved speed vacuum dried and
lyophilized cell extracts of MiaPaCa-2 cells used for metabolic profiling analysis are shown in Figure 1
with the spectrum of a SpeedVac-dried sample shown in Figure 1A and the spectrum of a lyopilized
sample shown in Figure 1B.

 
Figure 1. Representative 1D 1H NMR spectra of SpeedVac dried and lyophilized MiaPaCa-2, Panc-1
and AsPC-1 cell extracts. 1D CPMG NMR spectra are shown for representative SpeedVac-dried cell
extracts for (A) MiaPaCa-2, (C) Panc-1 and (E) AsPC-1 cells and for representative lyophilized cell
extracts for (B) MiaPaCa-2, (D) Panc-1 and (F) AsPC-1 cells.
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2.1.2. Unsupervised Principal Component Analysis (PCA) and Partial Least Squares-Discriminant
Analysis (PLS-DA) of MiaPaCa-2 Cells

A total of 407 manually defined spectral buckets were included in the analysis of MiaPaCa-2 cells.
The PCA scores plot for MiaPaCa-2 samples showed significant cluster separation at 95% confidence
interval based on an F-test analysis (Mahalanobis distance = 1.35, F-statistic = 3.38, F-critical = 2.10)
(Figure 2A) with 87% of the variance accounted for by the first two principal components (PCs)
(PC-1 72%, PC-2 15%). Based on a Welch’s t-test, four buckets out of 407 were statistically significant
based on the Bonferroni-corrected critical alpha value (0.0001229), and 173 buckets had p-values less
than 0.05, which are depicted in the PCA loadings plot in Figure S1A.

Figure 2. Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis
(PLS-DA) scores plots for MiaPaCa-2, Panc-1 and AsPC-1 cell line comparisons. PCA scores plots using
the first two principal components for comparisons between lyophilized (blue) and SpeedVac (black)
samples from (A) MiaPaCa-2, (C) Panc-1 and (E) AsPC-1 cells. The 95% confidence intervals of the
Hotelling’s T2 distributions are indicated by the overlaid ovals. PLS-DA scores plots computed using
the first two principal components for (B) MiaPaCa-2, (D) Panc-1 and (F) AsPC-1 cell comparisons.
Scores indicating lyophilized samples are colored blue and encircled by a solid blue oval line. Scores
indicating SpeedVac samples are colored red and encircled by a dashed red line. The 95% confidence
intervals of the Hotelling’s T2 distributions are indicated by the overlaid black solid oval lines.
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The PLS-DA scores plot for MiaPaCa-2 also exhibited statistically significant separation between
data set clusters based on the F-test (Mahalanobis distance = 3.75, F-statistic = 26.17, F-critical = 2.10)
(Figure 2B). PLS-DA cross-validation revealed an excellent fit with the model (R2 = 0.95) and good
predictive power (Q2 = 0.75) using three PCs. In the PLS-DA, 120 buckets out of 407 had variable
importance in projection (VIP) scores greater than 1.0, indicating that these buckets carried the most
weight in being responsible for cluster separation.

2.1.3. Prominent Differences in Metabolite Abundances Depending on Drying Method

To be considered significant, a bucket had to have either a p-value <0.05 or an AUC >0.70 [58].
In MiaPaCa-2 cells, 53 (Table S1) metabolites out of a total of 74 metabolites identified (Table S2)
were present at significantly different abundances depending on drying technique. Out of these 53
metabolites, one metabolite was observed only in the lyophilized samples, zero metabolites were
only observed in SpeedVac samples, and 52 metabolites were present in both samples, but at different
abundances depending on the drying technique used. Figure 3 shows examples where the differences
were apparent from visual comparison of the spectra from each MiaPaCa-2 drying group. Ethanol was
detected predominantly in the lyophilized samples (Figure 3A) and made a considerable contribution
to the PLS-DA cluster separation between the drying techniques as it had the four highest VIP scored
buckets. The absence of metabolites such as ethanol in SpeedVac-dried samples was potentially due
to more rapid evaporation at room temperature due to higher vapor pressure at this temperature.
On the other hand, formic acid was present in both samples but at a higher abundance in those
dried by speed-vacuum (Figure 3B). The absence of metabolites such as formic acid in the lyophilized
samples may be due to chemical conversion during speed-vacuum drying at a higher temperature.
In addition to the different abundances of the identified metabolites in the MiaPaCa-2 extract samples,
an additional 54 buckets were identified that had statistically significant differences in intensities
between groups based on at least one of our four criteria depending on the drying technique used to
prepare the samples, but could not be assigned to a specific metabolite (Table S3) due to limitations of
existing databases. An NMR spectrum of the DMEM media was also collected to determine if carry
over from the media influenced the profile of metabolites identified from cell extracts (Figure S2A).
Of the 19 metabolites identified in the DMEM media (Table S4), 11 were also detected in cell extracts,
but eight were not detected in cell extracts, indicating the 11 metabolites detected in the cell extracts
originated from the cells and not from carryover from the media since eight metabolites present in the
media were absent from the cell extracts.
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Figure 3. Highlighted spectral differences observed in MiaPaCa-2, Panc-1 and AsPC-1 cell extract
comparisons depending on the drying method used for sample preparation. (A) Ethanol present in
the lyophilized MiaPaCa-2 samples only. (B) Formic acid present in both groups of MiaPaCa-2 cell
extracts but at higher concentration in SpeedVac samples. The bottom eight spectra were lyophilized
samples (L) and the top eight spectra were SpeedVac samples (SV). (C) Leucine present only in the
lyophilized Panc-1 samples. (D) Isoleucine present in both groups of Panc-1 cell extracts but at a
higher abundance in the lyophilized samples. (E) Trimethylamine present only in SpeedVac dried
Panc-1 samples. The bottom nine spectra were SpeedVac samples (SV) and the top 10 spectra were
lyophilized samples (L). (F) N-methyl-α-aminobutyric acid present only in the lyophilized AsPC-1
samples. (G) Acetate was present in both groups but at a higher concentration in SpeedVac samples.
The bottom nine spectra were SpeedVac (SV) samples and the top 10 spectra were lyophilized samples
(L). Peaks of interest are boxed in each comparison of stacked spectra.

2.2. Analysis of Panc-1 Cells

2.2.1. Representative NMR Data

Representative 1D NMR spectra of samples prepared from redissolved speed vacuum dried and
lyophilized Panc-1 cell extracts used for metabolic profiling analysis are shown in Figure 1 with a
spectrum of a SpeedVac sample shown in Figure 2C and a spectrum of a lyophilized sample shown in
Figure 2D.
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2.2.2. Unsupervised Principal Component Analysis (PCA) and Partial Least Squares-Discriminant
Analysis (PLS-DA) of Panc-1 Cells

A total of 359 manually defined spectral buckets were included in the analysis of Panc-1 cells.
The PCA scores plot for Panc-1 exhibited significant cluster separation (Mahalanobis distance = 3.11,
F-statistic = 21.51, F-critical = 1.95) (Figure 2C) with 74% of the variance accounted for by the first two
PCs (PC-1 51%, PC-2 23%). Based on a Welch’s t-test analysis, 18 buckets out of 359 were statistically
significant based on the Bonferroni-corrected critical alpha value (0.0001393), which are depicted in the
PCA loadings plot in Figure S2B, and 142 buckets had p-values less than 0.05.

The PLS-DA scores plot for Panc-1 showed statistically significant separation between data sets
based on F-test analysis (Mahalanobis distance = 8.47, F-statistic = 159.95, F-critical = 1.95) (Figure 2D).
Cross-validation of PLS-DA using three PCs indicated excellent fit of the data to the model (R2 = 0.98)
and high predictive capability of the model (Q2 = 0.90). In the PLS-DA, 160 buckets out of 359 had VIP
scores greater than 1.0, indicating that these buckets carried the most weight in being responsible for
cluster separation.

2.2.3. Prominent Differences in Metabolite Abundances Depending on Drying Method

In Panc-1 cells, 49 metabolites (Table S5) out of a total of 63 identified (Table S6) were present
at significantly different abundances depending on drying technique. Out of these 49 metabolites,
two metabolites were observed only in the lyophilized samples, two metabolites were only observed
in SpeedVac samples, and 47 metabolites were present in both samples, but at different abundances
depending on the drying technique used. Figure 3C–E demonstrates differences in metabolite
abundances that are visually apparent between drying groups for Panc-1 sample extracts. Leucine
was detected only in the lyophilized samples (Figure 3C) and had considerable contribution towards
differences between the drying techniques as it had the highest VIP bucket. Isoleucine was
present in both samples but at a higher abundance in those dried by lyophilization (Figure 3D).
Trimethylamine was detected only in speed-vacuumed samples (Figure 3E). The absence of metabolites
such as trimethylamine in the lyophilized samples was potentially due to chemical degradation.
Trimethylamine was most likely converted from glycerophosphocholine which was at a higher
abundance in the lyophilized samples. In addition to the different abundances of identified metabolites
in Panc-1 extract samples prepared by different drying techniques, there were an additional 35 buckets
that had statistically significant differences in intensities, based on at least one of our four criteria,
depending on the drying technique used to prepare the samples that could not be assigned to a specific
metabolite (Table S7). Based on the analysis of the NMR spectrum of the DMEM media (Figure S2A),
of the 19 metabolites identified in the DMEM media (Table S3), 11 were also detected in cell extracts,
but eight were not detected in cell extracts, indicating the 11 metabolites detected in the cell extracts
originated from the cells and not from carryover from the media since eight metabolites present in the
media were absent from the cell extracts.

2.3. Analysis of AsPC-1 Cells

2.3.1. Representative NMR Data

Representative 1D NMR spectra of samples prepared from redissolved speed vacuum dried and
lyophilized AsPC-1 cell extracts used for metabolic profiling analysis are shown in Figure 1, with a
spectrum of a SpeedVac sample shown in Figure 1D and a spectrum of a lyophilized sample shown in
Figure 1E.

2.3.2. Unsupervised Principal Component Analysis (PCA) and Partial Least Squares-Discriminant
Analysis (PLS-DA) of AsPC-1 Cells

A total of 307 manually defined spectral buckets were included in the analysis of Panc-1 cells.
The PCA scores plot for AsPC-1 also displayed clear cluster separation at 95% confidence interval
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(Mahalanobis distance = 11.80, F-statistic = 310.40, F-critical = 1.95) (Figure 2E) with 85% of the
variance accounted for by the first two PCs (PC-1 51%, PC-2 34%). Based on a Welch’s t-test analysis,
21 buckets out of 307 were statistically significant based on the Bonferroni-corrected critical alpha
value (0.0001629), which are depicted in the PCA loadings plot in Figure S1C, and 107 buckets had
p-values less than 0.05.

The PLS-DA scores plot for AsPC-1 cell line samples showed separation of the two groups that
was statistically significant based on F-test analysis (Mahalanobis distance = 7.64, F-statistic = 130.05,
F-critical = 1.95) (Figure 3A). PLS-DA cross-validation using two PCs (Figure 2F) generated R2 = 0.80
indicating excellent data agreement with the model, and Q2 = 0.94, indicating great model predictive
power. In the PLS-DA, 113 buckets out of 307 had VIP scores greater than 1.0, indicating that these
buckets carried the most weight in being responsible for cluster separation.

2.3.3. Prominent Differences in Metabolite Abundances Depending on Drying Method

In AsPC-1 cells, 44 metabolites (Table S8) out of a total of 60 identified (Table S9) were present
at significantly different abundances depending on drying technique. Out of these 44 metabolites,
four metabolites were observed only in the lyophilized samples, zero metabolites were only observed
in SpeedVac samples, and 40 metabolites were present in both samples, but at different abundances
depending on the drying technique used. Figure 3F–G displays visual differences between each
group by comparing spectra from each AsPC-1 sample. N-methyl-α-aminobutyric acid was detected
only in the lyophilized samples (Figure 3F). Acetate was found in both samples but at a higher
concentration in those dried by speed-vacuum (Figure 3G). The absence of metabolites such as acetate
in the lyophilized samples was likely due to chemical conversion at the relatively high temperature
compared to lyophilization during speed-vacuum drying. In addition to the different abundances of
identified metabolites in AsPC-1 extract samples prepared by different drying techniques, an additional
60 buckets that had statistically significant differences in intensities based on at least one of our four
criteria depending on the drying technique used to prepare the samples could not be assigned to a
specific metabolite (Table S10). An NMR spectrum of the RPMI media was also collected (Figure S2B)
to determine if carry over from the media influenced the profile of metabolites identified from cell
extracts. Of the 22 metabolites identified in the RPMI media (Table S11), nine were also detected in cell
extracts, but 13 were not detected in cell extracts, indicating the nine metabolites detected in the cell
extracts originated from the cells and not from carryover from the media since 13 metabolites present
in the media were absent from the cell extracts.

3. Discussion

The data presented here indicate that the choice of drying technique used to prepare extracts from
human cell lines for metabolic profiling has a significant impact on the observed metabolic profiles.
70–75% of all the buckets intensities were significantly different depending on the drying technique
in the observed metabolome in each of the three cell lines. In the three human pancreatic cancer
cell lines investigated in this study, the number of metabolites whose abundances were significantly
different depending on drying technique ranged from 44 in AsPC-1 cell extracts to 53 in MiaPaCa-2
cell extracts. A prominent difference in the metabolic profiles depending on drying technique was that
some metabolites were present in samples prepared by one drying technique but completely absent
in the other (Table 1). For instance, n-methyl-α-aminoisobutyric acid was present in the lyophilized
samples but undetected in speed-vacuum dried samples in cell extracts prepared from all three cell
lines. Other metabolites detected in lyophilized cell extracts but undetected in SpeedVac samples
included 3-hydroyvaleric acid, N-methyl nicotinamide and sarcosine, which was only detected in
AsPC1 cells.

On the other hand, one metabolite was present in speed-vacuumed samples but absent in the
lyophilized samples (Table 1), i.e., trimethylamine, which was only present in Panc-1 cell extracts
prepared by SpeedVac. The absence of trimethylamine in the lyophilized samples could be due to
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chemical conversion during speed-vacuum drying that takes place at a higher temperature compared
to during lyophilization.

Table 1. Summary of metabolite differences in resuspended MiaPaCa-2, Panc-1 and AsPC-1 cell extract
samples depending on the drying method used for sample preparation.

Only in Lyophilized
More Abundant in Lyophilized

Cell Extracts
More Abundant in

Speed-Vacuum Dried Extracts

3-Hydroxyisovaleric acid 3 1,3,7-trimethyluric acid13 Acetate 2,3

N-methyl-α-aminoisobutyric acid 1,2,3 Creatinine13 1,9-Dimethyluric acid 1,3

N-Methylnicotinamide 3 Methanol13 Cytidine Triphosphate 3

Sarcosine 3 3-Cresotinic acid 3 Glucose-6-phosphate 3

Leucine 2 Threonine 3 Glucose 3

Ethanol 1 1,3-Dihydroxyacetone 3 1-methyladenosine 1,3

Only in Speed-Vacuum l-Aspartic acid 1,3 Carnosine 3

Trimethylamine 2 2-phosphoglycerate 3 l-Threonine 3

l-Methionine 1,3 Tyramine 3

Creatine 2,3 Mannose-6-phosphate 3

Glycerophosphocholine 1,3 Uracil 3

Butanone 3 D-Alanine13

Methylcysteine 3 Glycine 3

Leucine 1,3 l-Lactic acid 3

Capric acid 3 l-Valine 3

Galactaric acid 3 Isoleucine 3

Phosphocreatine 3 l-Phenylalanine 3

Pyruvate 3 Glycerate 3

Uridine diphosphategalactose 1,2 N-Carbamoyl-β-alanine 3

Glucaric acid 1 Glycerol 3

Threonic acid 1 Trimethylamine 1

Uracil 1 Fumaric acid 1

Acetylglycine 1 Formic acid 1,2

l-Phenylalanine 1,2 1-Butanol 1

creatine phosphate 1,2 2-hydroxybutyrate 1

2,3-Diphosphoglyceric acid 1 Taurine 1

l-Tyrosine 1,2 1-Methyluric acid 1

l-Isoleucine 1,2 NAD+1

Uridine 1 l-Malic acid 1

Inosine 1,2 Methanol 2

S-Adenosylhomocysteine 1 l-Aspartic acid 2

1-Butanol 2 Uracil 2

S-Adenosylhomocysteine 1,2 Acetylcholine 2

Histidine 2 l-Methionine 2

Glutathione 1,2 Glycerophosphocholine 2

Methionine sulfoxide 1 Phosphoenolpyruvic acid 2

Phosphorylcholine 1 1-methylguanosine 2

Cellobiose 1 3-Methyladipic acid 2

3-Hydroxyisovaleric acid 1 Oxypurinol 2

l-Valine 1,2 Adenine 2

Pyroglutamate 1 Guanosine 2

Acetylphosphate 1

Glucose 1,2

Glucose-6-phosphate 1

Myoinositol 1,2

1-Methylguanine 1

1,1-Dimethylbiguanide 1

Pyruvatoxime 1,2

l-lactic acid 1,2

3,7-Dimethyluric acid 2

Succinic acid 2

71



Metabolites 2019, 9, 256

Table 1. Cont.

Only in Lyophilized
More Abundant in Lyophilized

Cell Extracts
More Abundant in

Speed-Vacuum Dried Extracts

Adenosine phosphosulfate 2

Mannose 6-phosphate 2

3-Phosphoglyceric acid 2

NAD+2

N-acetylneuraminic acid 2

Lysine 2

5-aminolevulinate 2

Trimethylamine N-oxide 2

Taurine 2

1 MiPaCa-2 cell extracts, 2 Panc-1 cell extracts, 3 AsPC-1 cell extracts.

The majority of metabolites that were present at different abundances depending on drying
technique were present in extracts prepared by both drying techniques (Table 1). Forty-one metabolites
were found to be more concentrated in samples dried by speed-vacuum. Fifteen out of 41 metabolites
that were present at higher abundances in SpeedVac samples were found only in AsPC-1. The AsPC-1
cell line also had more metabolites present in greater amounts in samples dried by speed-vacuum
compared to the MiaPaCa-2 and Panc-1 cells. This could be due to two factors: the differences in cellular
composition in cancer cell lines [21] and the different optimal growth media, i.e., RPMI, used to culture
the AsPC-1 cells [51]. Sixty-one metabolites were present at higher concentrations in the lyophilized
samples. The lower abundances of these metabolites in speed-vacuumed samples was likely caused by
more rapid evaporation at room temperature (or higher) during speed vacuum drying compared to
freeze-drying, since metabolites generally have higher vapor pressures at higher temperatures, and a
higher rate of chemical conversion of heat labile metabolites to different compounds at the higher
temperature of the SpeedVac during drying.

About 10–15% of all significant buckets in each cell line could not be identified from the existing
databases (i.e., no matching peaks could be identified in from the existing databases) therefore limiting
our ability to draw specific conclusions from this missing fraction of data. While some metabolites were
more abundant after SpeedVac drying, lyophilization seems to be the generally superior technique
compared to centrifugal evaporation under vacuum as it seemed to preserve the original metabolome
of the cell lines to a higher degree based on the general observation of including more metabolites,
or the same metabolites at higher concentrations compared to SpeedVac prepared samples.

4. Materials and Methods

4.1. Cell Cultures and Preparation of Cell Extracts

MiaPaCa-2, Panc-1, and AsPC-1 were purchased from the American Type Culture Collection
(Manassas, VA, USA). MiaPaCa-2 and Panc-1 were grown in high glucose Dulbecco’s Modified
Eagle Medium, (DMEM) and AsPC-1 cells were grown in Roswell Park Memorial Institute (RPMI)
medium. Both media were supplemented with 10% fetal bovine serum and 1% penicillin–streptomycin.
Sixty 100 mm × 15 mm petri dishes per cell line were harvested and extracted as previously described
by Watanabe et al. [21]. Briefly, the cells were scraped using chilled phosphate-buffered saline (PBS),
washed 3× in cold PBS buffer, and then stored in −80 ◦C prior to cell extraction. Frozen cells thawed
on ice, resuspended in 1.5 mL of ice-cold chloroform-methanol-water (1:1:1) solution and vortexed,
after which they were chilled on ice for 15 min. The tubes were then centrifuged for 15 min at 15,000× g.
The top layer (hydrophilic) and the bottom layer (lipophilic) were separated and transferred to new
Eppendorf tubes. Hydrophilic extracts were dried and used for NMR spectroscopic analysis.
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4.2. Drying Methods

Thirty samples of each cell line were dried in a speed vacuum centrifugal concentrator (UVS800DA
THERMO Savant Sunnyvale, CA). Another thirty samples of each cell line were frozen in liquid
nitrogen and dried using a lyophilizer (Labconco 7740020, Kansas City, MO, USA). The drying time
used for both SpeedVac and lyophilization were kept constant. MiaPaCa-2 and Panc-1 cells were dried
for 21 h, and AsPC-1 for 20 h. For lyophilization, it was ensured that the samples remained frozen
throughout the sublimation process and did not thaw into a liquid prior to complete lyophilization.

4.3. Preparation of Samples for NMR Data Collection

Following resuspension in 150 μL of buffer (150 mM potassium phosphate at pH 7.4, 1 mM
trimethylsilyl propionate (TSP), 0.01% sodium azide in 100% deuterium oxide (the buffer was first
prepared in 100% H2O, lyophilized, and then reconstituted in 100% D2O)) [21], cell line extracts
were combined in the following manner: ten were combined to generate a representative sample for
lyophilized samples for 2D NMR experiments needed for confirmation of metabolite assignments,
another ten were combined and used as a representative sample for speed vacuumed samples for 2D
NMR experiments needed for confirmation of metabolite assignments, and the last forty were used
to create ten replicate samples (two samples combined for each NMR sample to increase the extract
concentration for NMR analysis) per drying method for 1D NMR experiments. Overall, a total of 60
samples were prepared for 1D NMR spectroscopy analysis. A total of six representative samples were
made for analysis using 2D NMR spectroscopy. Samples of both the DMEM and RPMI media were
also prepared for NMR analysis as controls.

4.4. NMR Data Collection

All NMR experiments were recorded at 850.104 MHz at 298K on a Bruker Avance Spectrometer.
150 microliters of redissolved extracts were transferred to 3 mm NMR tubes for 1D experiments.
Two hundred and fifty microliters of redissolved extracts were transferred to 5 mm Shigemi tubes for
2D experiments. One-dimensional 1H Carr-Purcell-Meiboom-Gill (CPMG) NMR spectra were collected
using a spectral width of 20.0 ppm and 32K points resulting in 1.21 s acquisition time, 512 scans,
4 dummy scans, 1.80 s recycle delay and 1 ms mixing time. Two-dimensional 1H-1H TOCSY NMR
experiments were performed using a spectral width of 10.0 ppm and 2K points, 1.5 s recycle time
and 60 ms mixing time [14,17,19–21,58–61]. Two-dimensional 1H-13C HSQC NMR experiments were
performed using non-uniform sampling in the indirect carbon dimension [62,63].

4.5. Data Analysis

NMR spectra were phase adjusted, baseline corrected, referenced to 0.0 ppm using the internal
TSP standard manually using Top-Spin 3.6.1 (Bruker BioSpin, Billerica, MA, USA) and normalized
to the total intensity prior to statistical analysis. Manual peak bucketing and principal components
analyses (PCA) were performed using AMIX (Bruker BioSpin, Billerica, MA, USA) as we have described
previously [21,58,60,61]. PCA scores plot cluster analyses using the Mahalanobis distance and F-test
calculations were performed as described previously [61]. Statistical significance analysis of bucket
intensity differences were carried out as previously described [60] using a Bonferroni-corrected critical
alpha values for p-values calculated using a Welch’s t-test and fold change (FC) were calculated using
Excel. Partial least squared-discriminant analysis (PLS-DA), and variable importance in projection
(VIP) scores were obtained using the SIMCA-P software (Umetrics, Santorious Stedim, Umeå, Sweden).
Area under the curve (AUC) of the receiver operating characteristic (AUROC) was conducted using
the MetaboAnalyst (www.metaboanalyst.ca) [17,58].
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4.6. Metabolite Identification

One-dimensional NMR peaks that were statistically different between the groups were initially and
putatively identified using ChenomX Profiler (https://www.chenomx.com/), the Biological Resonance
Data Bank (BMRB) [64,65] and the Human Metabolome Database (HMDB) [66–69]. Two-dimensional
NMR data were analyzed using the COLMAR software [70,71] (https://ccic.ohio-state.edu/) to confirm
metabolite assignments. The confidence in metabolite assignments was ranked using the RANCM
scheme developed in our laboratory [72].

5. Conclusions

Sample preparation of cell line cultures for metabolomic analyses generally requires a drying
step. In the case of metabolic profiling of human cell line cultures, a chloroform/methanol extraction
procedure is normally used to isolate the hydrophobic and hydrophilic fractions that must be dried
prior to reconstitution in a buffer appropriate for instrumental analysis. Considering absence of
standardized procedures for sample preparation for metabolic profiling studies, we examined whether
the choice of drying method had any influence on the observed metabolome of hydrophilic extracts
measured by NMR of three different human pancreatic cell line cultures. We determined that the
metabolic profiles of each cell line differed significantly depending on the drying technique used
during sample preparation. Certain metabolites were only found in samples dried by a specific drying
technique, suggesting either that some metabolites evaporated during drying by one method and
not the other, or that some metabolites went through chemical transformation in one of the sample
preparation methods compared to the other. Metabolites undetected in speed-vacuum-dried samples
may have been lost due to more rapid evaporation over time due to their having higher vapor pressure
near room temperatures compared to at the relatively low temperature of the sample maintained during
lyophilization. Overall, the lyophilized samples contained more metabolites at higher concentrations
in two out of the three cell lines tested, i.e., MiaPaCa-2 and Panc-1, appearing to make it the technique
of choice for the sample drying step during sample preparation. However, the two cell lines that had
more metabolites more abundant in the lyophilized samples, MiaPaCa-2 and Panc-1, were grown
on the same DMEM media whereas the one cell line that had more metabolites abundant in the
SpeedVac samples were cultured using a different media, i.e., RPMI. Therefore, future experiments
should examine whether the choice of media used to culture human cell lines for metabolic profiling
can influence the efficiency of metabolite recovery using different drying methods and potentially
explain the difference in the abundances of metabolites following one drying method over the other.
Another aspect of the research that warrants further investigation is simple replication of the reported
experiments. For example, in the case of the MiaPaCa-2 samples, the PCA indicates that the lyophilized
samples were widely scattered in the PCA eigenspace of the scores plot in comparison to the SpeedVac
samples. In contrast, in the AsPC-1 cells, the lyophilized and SpeedVac samples were tightly clustered
and well separated in the PCA scores plot. These disparate observations indicated that the experiments
should be repeated to determine if these observations are reproducible. Future work could also include
working with the database developers to generate more complete databases since approximately half
of the observed NMR resonances could not be assigned to a metabolite. Finally, it would be beneficial
to repeat the experiment using an MS-based analytical technique for data collection to achieve more
comprehensive metabolic profiles. In conclusion, this research demonstrates that the drying technique
used in the preparation of human cell culture samples for metabolic profiling can have a significant
effect on the observed metabolomes and the selection of the drying technique used during sample
preparation should be given careful consideration when designing the sample preparation strategy.
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list of identified metabolites in the Panc-1 cell extracts; Table S7. Full list of unidentified buckets for Panc-1 that
were determined to be significant; Table S8. Identified metabolites that were found significant for AsPC-1 cell line.
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Abstract: Tumor spheroids are important model systems due to the capability of capturing in vivo
tumor complexity. In this work, the experimental design of metabolomics workflows using
three-dimensional multicellular tumor spheroid (3D MTS) models is addressed. Non-scaffold
based cultures of the HCT116 colon carcinoma cell line delivered highly reproducible MTSs with
regard to size and other key parameters (such as protein content and fraction of viable cells) as a
prerequisite. Carefully optimizing the multiple steps of sample preparation, the developed procedure
enabled us to probe the metabolome of single MTSs (diameter range 790 ± 22 μm) in a highly
repeatable manner at a considerable throughput. The final protocol consisted of rapid washing of
the spheroids on the cultivation plate, followed by cold methanol extraction. 13C enriched internal
standards, added upon extraction, were key to obtaining the excellent analytical figures of merit.
Targeted metabolomics provided absolute concentrations with average biological repeatabilities
of <20% probing MTSs individually. In a proof of principle study, MTSs were exposed to two
metal-based anticancer drugs, oxaliplatin and the investigational anticancer drug KP1339 (sodium
trans-[tetrachloridobis(1H-indazole)ruthenate(III)]), which exhibit distinctly different modes of action.
This difference could be recapitulated in individual metabolic shifts observed from replicate single
MTSs. Therefore, biological variation among single spheroids can be assessed using the presented
analytical strategy, applicable for in-depth anticancer drug metabolite profiling.

Keywords: multicellular tumor spheroids; metabolomics; metallodrugs; oxaliplatin; KP1339; method
development; LC-MS; IT-139

1. Introduction

Three-dimensional multicellular tumor spheroids (3D MTSs) emerged as essential tools in cancer
research with the aim of increasing the efficiency of oncologic drug development. Indeed, MTSs provide
a cancer model of intermediate complexity, not replacing animal models entirely, but constituting a
substantial improvement compared to two-dimensional (2D) monolayer cell cultures [1,2]. 3D MTSs
grown from established cancer cell lines resemble more closely early-stage avascular tumors than 2D
monolayer cell cultures in many aspects. For example, nutrient and oxygen concentration gradients
as present in tumors are established in 3D MTS models, which in turn results in a concentration of
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proliferating cancer cells in the outer layers of the MTS, while in the inner zone, deprived of nutrients
and oxygen, necrotic cells accumulate (depending on the MTS size). In addition, viable quiescent
cells are found in a transition zone between the necrotic core and outer layer of proliferating cells [3].
This inhomogeneity is an important feature of in vivo tumors, which 2D monolayer cell cultures fail to
recapitulate as they predominantly contain normoxic, actively proliferating cells [2,4]. Many anticancer
drugs exert their cytotoxicity against proliferating cells, with quiescent cells evading the treatment [5].
Thus, a model system such as 3D MTSs, which involve quiescent cells, is of utmost importance.

Another key aspect is the fact that the three-dimensionality intrinsically affects the cell morphology
(rather round instead of stretched-out on a plastic surface), which relates to cell-to-cell contacts, stimuli
exerted by cell surface receptors, and, ultimately, transcription and protein expression levels [6].
Furthermore, reduced oxygen levels and hypoxia lead to the generation of reactive oxygen species
(ROS) and hypoxia-inducible factor-1 (HIF-1) stabilization, which is a major transcription factor
responsible for metabolic transformation and tumor progression [7–10].

In the recent past, the combination of cancer models with cutting edge –omics type of analysis
showed to be a powerful approach for generating new hypotheses regarding the prediction of drug
susceptibility, drug resistance, and mode of action [11,12]. This was accompanied by a reemerging
interest in cancer metabolism [13]. Metabolic signatures are accepted as the closest proxy for a
phenotype [14,15]. One of the biggest hopes in cancer metabolomics is the discovery of molecular
signatures with predictive power in cancer therapy [16]. As a consequence of this renewed interest in
metabolism, dedicated workflows were introduced, addressing the needs of preclinical and clinical
studies [17–19]. Cancer cell model studies required the development and validation of multi-step
sample preparation protocols [20]. While today metabolomics experiments with 2D monolayer cell
cultures are routine, sample preparation protocols for 3D MTSs are rarely discussed in detail. Up to
date, only a few reports on metabolomics in 3D MTS models exist. The studies involved a range
of LC-MS-based metabolomics workflows including lipidomics and fluxomics applications [21–25].
Despite showing the power of combining advanced models such as 3D MTSs and metabolomics,
the validation of sample preparation was not addressed comprehensively. Even a detailed description
of the experimental design (e.g., whether MTS samples were pooled for the analysis or how gels
established in 3D culture were removed upon metabolome extraction) was lacking.

In this work, we focus on the experimental design enabling metabolomics in 3D MTSs,
using non-scaffold based cell cultures grown on ultra-low attachment plates from cell suspensions.
This approach avoids 3D scaffolds or gels for obtaining a three-dimensional structure, which facilitates
metabolomics measurements. More specifically, sample preparation protocols are developed with
the goal to provide a validated procedure capable of probing single MTSs; at the same time not
compromising on analytical throughput and, thus, the number of biological replicates. The validity
of the established preclinical tool-set was shown for the example of metal-based anticancer drug
development. Metal-based drugs are a prime example since a clear cut mechanism remains to be
elucidated despite extensive clinical use and fundamental research [26,27]. In fact, how the drugs exert
their cytotoxicity differs even for the three clinically approved platinum(II) drugs [28–30]. Although
massive research efforts resulted in a plethora of promising candidate drugs, the failure rate upon
translation into clinics was/is extremely high for metal-based anticancer drugs [31]. Discovering
potential metabolic pertubations specific for drug exposure, by measuring molecular signatures in
advanced 3D MTS models, bear the potential of accelerating discoveries with regard to the mode of
action and susceptibility towards the drug. In this work, a 3D human colon cancer model was studied.
Metabolic shifts, as exerted by the clinically established oxaliplatin and KP1339, a promising candidate
drug, were investigated.
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2. Results

2.1. Establishment and Validation of Sample Preparation Procedures Suitable for Probing the Metabolome of
Spheroids

2.1.1. Determining the Minimal Number of MTS Required for Metabolomics Experiment

A uniform size distribution of MTSs was obtained by using the colon cancer model HCT116;
seeding of 3 × 103 cells and cultivation for 4 days following the suspension-based procedure described
in the experimental section. The average resulting spheroid diameter was 560 ± 30 μm (n = 56).
Suspension-based 3D cultivation enabled a straightforward establishment of metabolomics workflows
otherwise hampered by tedious washing procedures in hydrogel and other scaffold-based techniques.
The investigated size range amounted to 9.9 × 103 ± 3.9 × 103 cells with 81% ± 5% viable cells (Table S1,
“cellNumbers” sheet). The estimation was based on disaggregating the MTS with a recombinant
enzyme reagent, staining with a dye, and subsequent measurement with a flow cytometer to determine
cell counts and viability in the final suspension.

In order to exclude poor extraction efficiencies for MTSs in this work, metabolomics experiments
resorted to boiling ethanol extractions, implementing the yeast-derived fully 13C labeled (U13C)
internal standard. More specifically, extractions were carried out on single spheroids (three biological
replicates, N = 3) and pooled spheroid samples, i.e., pools of 5 (N = 3), 10 (N = 3) and 15 spheroids
(N = 2), respectively. The applied boiling ethanol protocol is the established gold standard in yeast
metabolomics, offering nearly 100% extraction efficiency and recovery for a large panel of primary
metabolites [32,33]. In cancer cell monolayer cultures, less tedious cold extraction protocols are
established, which demand thorough validation when applied to MTS investigations [20,34].

Targeted metabolomics measurements were performed implementing reversed-phase
chromatography coupled to tandem mass spectrometry using a 100%-wettable column providing
enhanced separation for branched amino acids and organic acids [35]. Metabolite abundances relative
to the isotopically enriched internal standard, i.e., relative response ratios, were addressed in single MTS
extractions versus pooled extractions. The validation considered 29 metabolites (amino acids, organic
acids, nucleotides, nucleosides). Single spheroid extractions resulted on average in repeatabilities
of 28%, while pooled samples showed repeatabilites of 17% and 32% for 5 and 10 MTSs pooled,
respectively (Table S1, “metabolitesExtract” sheet). In order to evaluate whether the number of pooled
MTSs correlated with cell number and protein content, the cell pellets remaining upon boiling ethanol
were submitted to acidic hydrolysis. Absolute amounts of 8 amino acids (alanine, arginine, glycine,
histidine, lysine, phenylalanine, proline, tyrosine) were determined. The selected amino acids were
quantitatively recovered [36] by the applied sample preparation protocol and were used for traceable
protein quantification. The obtained absolute amino acid amounts displayed a strong linear correlation
with the number of MTSs (Table S1, “aminoAcids_pellet”, and Figure A3). This linear correlation
(coefficient of determination above 0.99) was a prerequisite for further evaluation of metabolome
abundances in single versus pooled MTS samples, depending on the assumption of linear correlation
between cell number, protein concentration, and the number of spheroids (for a uniformly sized MTS
sample set). Upon transforming the linear regressions of metabolite abundances from intracellular cell
extracts versus number of spheroids by normalizing the metabolite abundances to average abundance
found in single MTS samples, the parameters of the linear regression became comparable: assuming an
ideal scenario (as represented by 100% extraction efficiency and recovery regardless of whether pooled
or single samples are investigated) for these plots, a slope of 1 is expected and can be observed for the
investigated metabolites, the ideal case of slope of 1 is nearly met (Table S1, “regressionNormalized”,
Figures A2 and A3). On average, the slope of the normalized regression is 1.11 and the average
coefficient of determination is 0.94. Overall, the strong linear correlation of the relative responses with
the number of uniform-size spheroids indicates that metabolomics experiments, even from single
spheroids, are highly repeatable.
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These findings are captured in a correlation matrix (Figure 1), which reveals that most of the
investigated metabolites have a strong positive correlation with the amino acids measured from the
corresponding pellet as well as from the number of MTSs they were extracted from.

Figure 1. Correlation matrix of number of multicellular tumor spheroids (MTS), relative responses
(12C/13C) of 29 metabolites from boiling ethanolic extracts with 13C internal standardization, absolute
amounts of 8 amino acids [nmol] measured from hydrolyzed pellet (indicated with the “pellet” suffix)
from samples containing 1 (N = 3), 5 (N = 3), 10 (N = 3), and 15 MTS (N = 2) from the same population.
Most metabolites show a strong correlation with all the amino acids hydrolyzed from the pellet and the
number of MTSs.

2.1.2. Speeding Up the Sample Preparation

In the next step, alternative extraction protocols were addressed with the aim of increasing
analytical throughput without compromising overall accuracy. The workflow based on boiling ethanol,
involved the transfer of MTSs into tubes, three washing steps, and quenching by flash freezing with
liquid nitrogen, which was followed by hot extraction. As a drawback, the procedure is rather
time-consuming and on top of that, only a very limited number of MTS samples can be prepared in
parallel. In fact, during collection and washing, only a limited number of spheroids can be handled at
a given time. Only after the handled samples are quenched can be the next MTS collected. This often
implies different durations of incubation at uncontrolled temperatures and CO2 partial pressure,
which might lead to systematic metabolic biases. Thus, it is key to decrease the time until quenching,
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as only a high degree of synchronization enables reasonable study sizes (number of replicates) and
investigations of cells upon multiple metabolic perturbations [20].

In this work, the reduction of cell manipulations was addressed as follows: First, comparative
metabolomics experiments compared different strategies regarding the first washing steps. Instead of
transferring MTSs to tubes for repeated washing, single-step washing was performed on the cultivation
plate directly. (For the sake of clarity the first approach was denoted as “OFF”, while the single
washing step on the well-plate was denoted as “ON”.) Second, the extraction procedure was optimized.
More specifically, the hot extraction (boiling ethanol, “BE”) was compared to a cold methanol-based
extraction (“CM”). In the past, it was shown that the harsh conditions of hot ethanol were not a
stringent requirement for monolayer mammalian cell cultures [34], where mild cold extractions proved
to be valid strategies.

The already-mentioned studies [18–22] with 3D cultures involving LC-MS-based metabolomics
workflows, including lipidomics and fluxomics applications utilized washing of the samples and
organic solvents (methanol, acetonitrile) with an aqueous proportion for extraction, mostly in cold
state. To the best of our knowledge, a thorough evaluation of 3D cancer cell models is still lacking.

Figure 2 depicts the two sample preparation strategies involving washing, quenching, internal
standardization using 13C internal standards and extraction. The validation experiments were carried
out using replicates of single spheroids. The cultivation was designed to produce large spheroids
(diameter = 744 ± 15 μm, 4-day long cultivation, and 104 cells seeded) representing a “worst-case
scenario” for efficient extraction. Four different sample preparation strategies were compared, namely
OFF and ON plate washing, both followed by either BE or CM, respectively, all involving U13C
internal standardization upon extraction. The extracts were measured as described in [37]. In brief,
a hydrophilic interaction liquid chromatography (HILIC) separation at pH 4 was used combined with
high-resolution MS. Targeted absolute quantification of 26 metabolites based on external calibration
with internal standardization served as validation of the sample preparation.

Figure 2. The study design for speeding up the sample preparation. Two different washing procedures
(“ON”: washing the multicellular tumor spheroid once with PBS on the 96-well plate vs. “OFF”
washing three-times in an Eppendorf-tube after transfer from cultivation well) and two alternative
extractions (boiling ethanol vs. cold methanol extraction) were tested on large multicellular tumor
spheroids (744 ± 15 μm), which in combination resulted in four sample groups.
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In addition to the biological repeatability, the technical repeatability was assessed by injections of
a pooled sample over the measurement series (denoted as QC). Figure 3 summarizes the quantitative
metabolome data. Overall, it was found that the accelerated workflow with the reduced washing steps
was key to improve repeatability, as this resulted in the lowest average relative standard deviations
(18% and 19% for ON/BE and ON/CM, respectively. See Table 1.). Moreover, it could be shown that the
cold methanol (CM) extraction was comparable to boiling ethanol (BE) in terms of extraction efficiency,
as the quantitative values were in good agreement (within their uncertainty).

Table 1. Average relative standard deviations based on absolute concentrations of 26 analytes in four
investigated sample preparation strategies for single multicellular tumor spheroids. The four different
sample preparation methods involved two washing procedures (“ON”: washing the multicellular
tumor spheroid once with PBS on the 96-well plate vs. “OFF” washing three times in an Eppendorf
tube after transfer from cultivation well) and two alternative extractions are combined (boiling ethanol
“BE” vs. cold methanol extraction “CM”). OFF/BE (N = 6), ON/BE (N = 4), OFF/CM (N = 5), ON/CM
(N = 7) One pooled sample from independent OFF/CM and ON/CM samples, QC was a mixture of
one OFF/CM and ON/CM sample and was measured as quality control throughout the measurement
(N = 4). Measurement was performed with liquid chromatography (HILIC separation) high-resolution
Orbitrap mass spectrometry. All extractions utilized U13C internal standardization.

Sample Preparation Average RSD [%]

OFF/BE 34%
ON/BE 19%

OFF/CM 24%
ON/CM 18%

QC 7%

Thus it can be concluded that the protocol ON/CM offers a fast and convenient fit-for-purpose
method to generate 60 biological replicates in parallel. The 60 replicates were treated and washed within a
few minutes (depending on the operator) and then were quenched at the same time by flash freezing them
with liquid nitrogen. Overall, a 96-well plate accommodates up to 60 spheroid cultivations since wells at
the edges are not used to avoid the “edge effect” (artifacts due to inhomogeneity in evaporation rates).

Figure 3. Barplots of the absolute amounts (pmol) of 26 selected metabolites extracted from single
multicellular tumor spheroids with four different sample preparation method as well as two washing
procedures (“ON”: washing the multicellular tumor spheroid once with PBS on the 96-well plate
vs. “OFF” washing three times in an Eppendorf-tube after transfer from the culture plate) and
two alternative extractions (boiling ethanol, “BE” vs. cold methanol extraction “CM”). OFF/BE
(N = 6), ON/BE (N = 4), OFF/CM (N = 5), ON/CM (N = 7) Measurement with liquid chromatography
(HILIC separation) high-resolution Orbitrap mass spectrometry. All extractions utilized U13C internal
standardization. For the abbreviations of compounds, see Appendix A.
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2.2. Assessing Metabolic Shifts in Single MTS Exposed to Metal-Based Anticancer Drugs

Finally, the optimized ON/CM workflow was applied in a proof of principle study addressing
metabolic perturbations in single MTSs due to exposure of metal-based anticancer drugs. Again human
colon cancer cells (HCT116) were selected. The spheroids were grown from 104 cells for 8 days
(790 ± 22 μm). Two drugs of distinctly different proposed modes of action were investigated,
namely the clinically established oxaliplatin and the investigational anticancer drug sodium
trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (denoted as KP1339). While oxaliplatin exerts
its cytotoxic effects through DNA damage and ribosome biogenesis stress [38], there is growing
evidence that KP1339 is not a DNA-damaging agent but its primary mode of action is through
endoplasmic reticulum stress [39]. Furthermore, KP1339 shows a prodrug nature, as it is thought to be
preferentially reduced in the more reductive milieu of solid tumors to the active Ru(II) form. Finally,
while oxaliplatin is considered a bona fide immunogenic cell death inducer [40], KP1339 also exhibits
the hallmarks of immunogenic cell death [41,42].

The choice of incubation time and drug concentration was based on previous studies using
monolayer cultures, which showed prominent metabolomic shifts only after 24 h exposure to
sub-cytotoxic drug concentrations [37]. Specifically, the applied concentrations were 20 and 200 μM for
oxaliplatin and KP1339, respectively. As the dissolution and thus the application of KP1339 involved
dimethyl sulfoxide (DMSO), an additional control group resembling the DMSO background in the
medium was included. Figure A4 and Table S3 (protein_μg sheet) show the protein concentrations
obtained in replicate single MTSs for the different conditions under investigation. The plotted protein
content was assessed by measuring the concentration in the remaining cell pellets of the individual
MTS samples. As can be readily observed, oxaliplatin treatment resulted in a minor reduction of the
overall protein content; otherwise the average mean protein concentration was comparable (within its
uncertainty) for all conditions, pointing towards comparable growth rates. On top of that, the data
clearly showed that using the average protein content of parallel MTS cultivations would compromise
the quality of comparative metabolomics experiments. When aiming at the investigation at single MTS
level, it is a requirement to normalize metabolic abundances to the corresponding protein content
obtained from the same sample. Finally, the ON/CM sample preparation procedure optimized for
single MTS analysis comprised the addition of yeast 13C standards. The measurements relied on
hydrophilic interaction chromatography—Orbitrap MS and included external calibrants with internal
standards for a large panel of metabolites [37]. Implementing the internal standardization approach
together with the use of high-resolution Orbitrap MS enabled us to perform targeted and non-targeted
metabolomics in a single analytical run.

As suggested by the standardization initiative of the Metabolomics Society, pooled MTS extracts
were used as quality control samples [43,44]. Combining positive and negative data, absolute
concentration values were obtained. Only analytes with technical repeatability obtained from repeated
injections of the QC sample below 30% were considered, which resulted in a total number of 58
remaining analytes. The average relative standard deviation (RSD) for the 58 metabolites was 6.5%
for the technical replicates and 13% for biological replicates considering each four group (Table S3,
pmolMetabolite sheet). The average RSD after the protein content normalization was 15.2% (Table S3,
pmolMetabolitePerμgProtein sheet).

Unsupervised statistical analysis of the targeted, protein content normalized data revealed that
there is group clustering according to the type of drug treatment in the case of KP1339 treatment (PCA
plot in Figure A5 and heat map in Figure 4). The KP1339-treated samples showed significant regulation
of 19 metabolites (proline, propionyl-L-carnitine, ribulose-5-phosphate/ribose-5-phosphate, adenosine
monophosphate, lactate, aspartate, reduced glutathione, guanosine monophosphate, glutamine,
inosine, glutamate, N-acetylserine, adenosine, dihydroxyacetone phosphate, asparagine, mevalonic
acid, alanine, and sarcosine; Table S3, (“significant_cmpds_KP1339”) compared to six metabolites
(adenosine, guanosine monophosphate, cytidine monophosphate, nicotinamide adenine dinucleotide
phosphate (oxidized), uridine monophosphate, and uracil; from Table S3 “significant_cmpds_oxaliPt”)
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in oxaliplatin-treated samples. The stronger metabolic change caused by the ruthenium drug (KP1339)
treatment compared to oxaliplatin treatment was further confirmed by hierarchical cluster analysis,
where KP1339-treated samples were separated from both controls, which was not the case for
oxaliplatin-treated samples (Figure 4). Overall, the fact that we see a stronger effect in the metabolome
with KP1339 treatment than with oxaliplatin treatment is not surprising, since in a study with monolayer
cell cultures of the same cell line, we observed considerably milder effects with oxaliplatin, as well [37].

Figure 4. Heatmap displaying absolute amounts of metabolites normalized to total protein content
(pmol/μg) of samples from single 3D MTS. Spheroids were treated for 24 h with either 200 μM KP1339,
20 μM oxaliplatin (OxPt), medium (CntrlOxPt) or medium with 0.5% DMSO (CntrlKP1339). Numbers
in sample names refer to independent biological replicates. Extraction with cold methanol and internal
standardization, measurement by HILIC high-resolution Orbitrap MS.

Pathway enrichment analysis using targeted data revealed that oxaliplatin exposure affected
purine metabolism (GMP and adenosine being most significantly down-regulated; glutamine, IMP,
inosine, guanosine, guanine, adenine, and AMP were also affected) and pyrimidine synthesis (UMP
and CMP being most significantly down-regulated; but cytidine, uracil, glutamine and thymine were
also affected), which is in agreement with the accepted mechanism of action of DNA targeting [45]
(Figure 5a, Table S3, “pathways_pathways_oxaliplatin”). These findings were also supported by
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other significant metabolic shifts involving DNA building blocks. Other retrieved pathways could
be related to redox stress such as the pentose phosphate pathway, glutathione metabolism, and
nicotinamide metabolism, but also purine metabolism, which is in accordance with the ribosome
biogenesis stress only recently proposed as the primary reason for the cytotoxic effect [38]—a hypothesis
generated based on transcriptomic analysis. In our work, the measurement of the metabolome provided
additional evidence supporting this hypothesis, as the levels of many RNA monomers were significantly
altered upon drug exposure (Table S3, “pathways_pathways_oxaliplatin”), and RNA being one of the
major component of ribosomes. This was further supported by the fact that the “aminoacyl-tRNA
biosynthesis” pathway was also among the affected pathways (see Table S3 for the complete list).
Finally, the MetaboAnalyst 4.0 Pathway Analysis module [46] revealed another interesting pathway to
be further investigated, namely, the “pantothenate and CoA biosynthesis” pathway (through uracil
downregulation). A recent study [29] addressed signature genes for patients responding to oxaliplatin
therapy by machine learning. Among the most accurate signature genes for oxaliplatin treatment
was PANK3 which encodes for pantothenate kinase, a key regulatory enzyme in the biosynthesis of
coenzyme A (CoA). A seminal study correlating transcriptomics and metabolomics for the NCI60
cell line panel showed the involvement of the TCA cycle, pyruvate metabolism, lipoprotein uptake
and nucleotide synthesis in platinum sensitivity [47,48]. Again, the metabolomics data of this study
support the generated hypothesis as the TCA cycle, purine and pyrimidine metabolism, and pyruvate
metabolism were indicated by pathway enrichment analysis.

(a) (b) 

Figure 5. KEGG pathways with MetaboAnalyst affected by oxaliplatin treatment (a) and KP1339
treatment (b) using pathway enrichment and topology analysis with the MetaboAnalyst pathway
analysis module.

The hypothesized difference in the mode of action of the two investigated drugs was reflected by the
distinct metabolic shifts, which were observed upon exposing MTSs to the candidate ruthenium drug
KP1339. There are indications that this drug is a GRP78 inhibitor, an ER stress sensing chaperone [39,49].
It not only induces ER stress and unfolded protein response, but it has also been shown that it exhibits
the hallmarks of immunogenic cell death, calreticulin exposure, and ATP secretion among others [42].
Less is known about the metabolic effects of this compound. In this work, we could individuate the
impact on biochemical pathways related to redox stress: glutathione metabolism (glutathione, oxidized
glutathione and NADP+ are up-, glutamate down-regulated), purine metabolism, pentose phosphate
pathway (ribulose 5-phosphate/ribose 5-phosphate down-regulated), which could be explained by the
hypothesized reduction of the drug. Redox stress and elevation of ROS protective proteins [42,50]
were confirmed by previous proteomics studies. Finally, pathways such as glycerophospholipid
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metabolism (strong choline down-regulation) and various amino acid metabolism-related pathways
were pinpointed (glutamine and glutamate metabolism, alanine, aspartate and glutamate metabolism,
arginine biosynthesis). Altered amino acid synthesis is related to the fact that the unfolded protein
response induces changes in the expression of genes of amino acid transport and synthesis [51].

3. Discussion

In this work, we present a carefully optimized sample preparation workflow for metabolomics
experiments in 3D MTS samples. To the best of our knowledge, this is the first study performing
extraction optimization (n ≥ 4) for single tumor spheroids. The comparison of different extraction
strategies, namely ON/BE, OFF/BE, OFF/CM, ON/CM, revealed that cold 80% methanol extraction
with a single washing step on the plate was most promising for single tumor spheroid analysis.
Using the presented workflow increased throughput and convenience as well as resulted in superior
analytical figures of merit including the highest analyte concentration and lowest RSDs observed for
26 metabolites in the pmol to nmol range. The sample preparation strategy is limited to spheroids with
diameters >400–500 μm and with maximum diameters of 900–1000 μm due to potential error-prone
handling and growth limitation, respectively. Other studies in tumor spheroid analysis were performed
using various culturing and extraction protocols such as (1) gelatinous cultivation of spheroids and
methanol-water extraction [21], (2) magnetized cells to form 3D cultures and cold acetonitrile, 70%
methanol or 80% acetone extraction [22], (3) gel-based ultra-low attachment plates of 20–25 spheroids
per sample followed by derivatization and chloroform/methanol extraction [23]. Overall, most
–omics mass spectrometry-based studies on tumor spheroid analysis rely on extraction strategies
with cold organic solvents such as methanol, ethanol or isopropanol [21–24]. This is consistent
with our tumor spheroid workflow based on non-scaffold based cultivation on ultra-low attachment
plates and the optimized cold 80% methanol extraction with a single washing step. The obtained
strong linear correlation with the number of (uniform-size) spheroids and relative responses indicates
highly repeatable metabolomics readout from single spheroids. The use of 13C labeled standards for
quantification represents a significant advance compared to label-free quantification approaches as
the internal standardization allowed to account for sample losses during sample preparation, storage
and measurement. Additionally, 13C metabolites represent an interesting normalization strategy for
comprehensive non-targeted metabolomics experiments on tumor spheroids. The novel procedure
enabled us to probe individual spheroids with excellent biological repeatability (average RSD of 18%)
in a considerable throughput. An experiment with a single 96-well plate allows the investigation of up
to 60 single spheroids (since wells at the edges are not used). However, high throughput analysis is
feasible as there is no theoretical limit in the number of biological replicates or investigated conditions
when multiple plates are combined.

The proposed methodology enabled us to investigate different conditions of 3D human cancer
models in a parallelized manner comparable to the degree obtained in 2D monolayer cell cultures.
The applicability of the method was shown on the example of the metal-based anticancer drugs KP1339
and oxaliplatin. Comparison of the two drugs (n ≥ 4) revealed stronger metabolic changes caused by
the ruthenium drug (KP1339) treatment compared to oxaliplatin treatment, which is consistent with the
literature on monolayer cell cultures [37]. We observed significant metabolic changes with purine and
pyrimidine pathways after oxaliplatin treatment, which is in agreement with the accepted mechanism
of action of DNA targeting of oxaliplatin [45] and consistent with the proposed induction of ribosome
biogenesis stress [38]. Further biological interpretation of the data is beyond the scope of this work.

The presented optimized sample preparation workflow is the ideal starting point for single
spheroid metabolomics experiments. A relatively large proportion of clinically tested drugs fail in
phase 3 of the trials due to insufficient efficacy or unacceptable toxicity, which means a substantial
financial loss [6,52]. Since tumor spheroids are three-dimensional models derived from established
human cell lines, it is possible to capture more of the complexity of a tumor compared to standard
2D monolayer cultures [1]. Ultimately, metabolomics studies on tumor spheroids could be integrated
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into anticancer drug screening, helping to prevent late clinical failure of drug candidates. Future
studies will focus on in-depth metabolomics analysis of different anticancer drugs effects using tumor
spheroids. Overall, we strongly believe that drug development will benefit significantly from the new
discovery tools provided by the unique combination of 3D MTSs and metabolomics.

4. Materials and Methods

4.1. Cell Culture

4.1.1. Cultivation of Spheroids

The human colon carcinoma cell line HCT116 was kindly provided by Brigitte Marian, Institute of
Cancer Research, Department of Medicine I, Medical University of Vienna. HCT116 cells were cultured
as adherent monolayers in 75 cm2 flasks (StarLab Germany) in McCoy’s 5a medium (Sigma-Aldrich)
supplemented with 10% fetal calf serum (FCS) (BioWest) and 4 mM L-glutamine without antibiotics
at 37 ◦C (StarLab) under a humidified atmosphere containing 5% CO2. All cell culture media and
reagents were obtained from Sigma-Aldrich (Vienna, Austria), and all plastic dishes, plates and flasks
were from StarLab (Germany) unless stated otherwise. For spheroid generation, HCT116 cells were
harvested from culture flasks by trypsinization, resuspended in their respective supplemented medium,
and seeded in 200 μL on ultra-low attachment round-bottom 96-well plates (Nunclon SpheraTM,
Thermo Fisher Scientific). To avoid effects caused by evaporation, the outermost wells were not used
for spheroid production and filled with 200 mL of PBS instead. In the experiment where 1, 5, 10,
15 spheroids were investigated, the spheroids were seeded at a density of 3 × 103 viable cells per
well in 200 μL. Plates were incubated at 37 ◦C with 5% CO2 for 96 h to allow spheroid formation.
In the experiment where washing procedures and extraction methods were compared, 10 × 103 viable
cells were seeded in 200 μL medium and cultivated at 37 ◦C with 5% CO2 for 96 h to allow spheroid
formation. In the proof of concept experiment with metallodrugs, 10 × 103 viable cells were seeded in
200 μL medium and cultivated at 37 ◦C with 5% CO2 for 96 h to allow spheroid formation, and then
100 μL medium was aspirated and exchanged for fresh medium. After 192 h (8 days) of total incubation,
the diameter of the spheroids was measured, 100 μL of medium was exchanged for the respective
treatment solution and 24 h of incubation followed either with the drug or with control medium.
KP1339 was first dissolved in DMSO, and stock solutions were prepared in the respective medium
with FCS and glutamine supplement. Oxaliplatin was dissolved freshly before the experiments in the
supplemented medium only.

4.1.2. Microscopy

An Olympus CKX41 (Olympus, Vienna, Austria) microscope was used to measure the diameter
of the spheroids in horizontal and vertical directions with cellF 2.7 imaging software and the average
diameter was calculated.

4.1.3. Cell Number Estimation

Spheroids grown from 3 × 103 viable cells for 96 h were transferred from the plate to Eppendorf-
tubes as single spheroids. After washing once with PBS, dissociation in 100 μL TrypLE Express (Gibco,
Vienna, Austria) followed for 15 min at 37 ◦C. Samples were thoroughly pipetted to disperse any
remaining cell aggregates, and 100 μL colorless McCoy’s 5a medium (Sigma-Aldrich) with 2% FCS
were added followed by 0.8 mL Guava ViaCount reagent (Merck/Millipore, Germany). Samples were
measured immediately by using a Guava Soft flow cytometer (Merck/Millipore, Darmstadt, Germany).
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4.2. Methods for Determining the Minimal Number of MTS Required for a Metabolomics Experiment

4.2.1. Sampling 1, 5, 10, 15 Multicellular Tumor Spheroids

3D MTS were seeded with 3 × 103 cells in 200 μL McCoys medium and cultivated for 4 days,
reaching a diameter of 560 ± 30 μm. Upon extraction, spheroids were transferred by pipetting to
a Petri-dish, where little droplets of PBS had been pre-pipetted. Each spheroid was transferred
sequentially into three fresh PBS droplets corresponding to three washing steps. After that, each
spheroid was transferred into a conical screw cap vial (Bioquote Limited, York, United Kingdom).
The vial was put into liquid nitrogen in order to quench the enzymatic activity and put on wet ice,
while more spheroids were collected. As soon as the last spheroid for a given sample was washed and
sampled to the vial, it was put on −20 ◦C. When all the samples were collected, they were stored at
−80 ◦C until boiling ethanol extraction.

4.2.2. Internal Standardization

A fully 13C labeled yeast extract of Pichia pastoris (2 billion cells) from ISOtopic Solutions e.U.,
(Vienna, Austria) was reconstituted in 2 mL of water and added in equal amounts to the samples.
The final dilution of the internal standard for the measurement was 1:10.

4.2.3. Boiling Ethanol Extraction for 1×-5×-10×-15×MTSs

The protocol was implemented from the works [32,33]. Shortly, 75% ethanol was prepared
from ethanol, abs. 100%, HPLC grade (Chem-Lab, Vienna, Austria), H2O (Sigma, Vienna, Austria,
LC-MS-grade), and pre-heated in a clean glass beaker in a 95 ◦C water bath. The 50 μL of U13C
internal standard was added to samples. Once the ethanol–water was boiling in the glass beaker,
the hot extraction solvent was added to the conical screw cap vials (Bioquote Limited, York, United
Kingdom) to dilute the internal standard amount 1:10 and, subsequently, a 5-min incubation in the
95 ◦C water bath followed. The vials were closed, vortexed, and centrifuged (14,000 rcf, 4 ◦C, 5 min).
The supernatant was carefully transferred to an MS-vial (Macherey-Nagel, Vienna, Austria), without
disturbing the pellet. Extracts were evaporated until dryness. Extracts and resulting pellets were
stored at −80 ◦C until measurement.

4.2.4. Metabolomics Measurement of Extracts 1×-5×-10×-15×MTSs

Samples were reconstituted in 100 μL LC-MS-grade H2O and analyzed with reversed phase liquid
chromatography coupled to high-resolution Orbitrap mass spectrometry. Waters Acquity HSS T3
(2.1 × 150 mm, 1.8 μm) column was used, mobile phase A was H2O (0.1% formic acid), and mobile
phase B was 100% methanol. The following gradient was used at a flow rate of 0.3 mL min−1 and 40 ◦C:
0.0–2.0 min 0% B, 2–6 min 0–40% B, 6–8 min 40–100% B, 8–11 min 100% B, and at 11.1 min switch to 0%
B, 11.1–15 min 0% B. The injection volume was 10 μL. The Vanquish Duo UHPLC-system (Thermo
Fisher Scientific) was used.

High-resolution mass spectrometry was done with a high field Thermo Scientific™ Q Exactive
HF™ quadrupole-Orbitrap mass spectrometer equipped with an electrospray source. The ESI source
parameters were the following: sheath gas 40, auxiliary gas 3, spray voltage 2.8 kV in negative and 3.5 kV
in the positive mode, capillary temperature 280 ◦C, S-Lens RF level 30 and auxiliary gas heater 320 ◦C.
Spectral data were acquired in profile mode. Resolution = 60.000, mass range = 60–900 m/z, AGC target
106, both in positive and negative polarities. Quantification was done through the areas of extracted ion
chromatograms of [M+H]+ and [M-H]− with 5 ppm mass tolerance on the U12C to U13C ratio.

4.2.5. Acidic Hydrolysis of the Pellet and Amino Acid Analysis

Acidic hydrolysis of the pellet resulting from the boiling ethanol extraction of samples of 1, 5,
10, and 15 spheroids pooled was based on a procedure described in detail elsewhere [53,54]. In short,
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1 mL 6 M hydrochloric acid (Fluka, TraceSELECT from ≥37%) was added to the pellets, already in the
conical screw cap vials (Bioquote Limited, York, United Kingdom); screw caps were tightly closed and
the samples were hydrolyzed at 100 ◦C for 24 h. The hydrolyzed samples were evaporated to dryness
and stored at −80 ◦C until analysis. Procedural blanks were also prepared to investigate possible
background. Upon measurement, samples were reconstituted in 1 mL H2O. A 1-to-10 dilution was
done by taking 50 μL from the sample, adding 50 μL ISTD and 400 μL acetonitrile. NIST SRM 2389a
amino acid standard (Sigma-Aldrich) was used to prepare an external calibration with internal standard
and achieve absolute concentrations. The eight amino acids were subject to quantitative extraction and
measurement according to [36] (alanine, arginine, glycine, histidine, lysine, phenylalanine, proline,
tyrosine) were measured with a method described in detail elsewhere [35]. Shortly, the Agilent Infinity
LC-System coupled to an Agilent 6490 triple quadrupole mass spectrometer was used with a HILIC
separation, Waters Acquity BEH Amide (1.7 μm, 100 × 0.786 mm) column with 10 mM ammonium
formate (pH 3.25) as eluent A and 80% acetonitrile 20% 10 mM ammonium formate (pH 3.25) as eluent
B. Multiple reaction monitoring transitions were acquired in positive polarity.

4.3. Methods for Comparison Boiling Ethanol (BE) and Cold Methanol (CM) Extraction and Washing
Procedures (OFF vs. ON) of 3D MTS

For this experiment, 3D MTS were grown as described above from 10 × 103 cells for 96 h.

4.3.1. Transfer of Spheroids

Sampling and transfer of spheroids were carried out with a 200 μL (Eppendorf, Vienna, Austria)
pipette. The tip of the pipette tip was cut with a scissor (washed before in methanol:H2O 50:50) so that
the opening was slightly enlarged. The spheroid was taken up with the surrounding solution by the
suction generated by the pipette and transferred from the plate into an Eppendorf tube.

4.3.2. “BE-OFF” Sample Preparation

The spheroids were transferred from the plate into conical screw cap vials (Bioquote Limited,
York, United Kingdom), where they were washed three times with phosphate-buffered saline (PBS,
Sigma-Aldrich, Vienna, Austria), quenched immediately with liquid nitrogen and stored at −80 ◦C
until extraction. Upon extraction, 20 μL U13C internal standard was added as well as 180 μL 75%
ethanol and put on 95 ◦C in the water bath for 5 min. After 5 min of sonication, samples were vortexed
and centrifuged (14,000 rcf, 5 min, 4 ◦C) and supernatants transferred into MS-vials. Samples were
measured directly without evaporation.

4.3.3. “CM-OFF” Sample Preparation

The spheroids were transferred from the plate into an Eppendorf tube, where they were washed
three times with PBS and quenched immediately in liquid nitrogen and stored at −80 ◦C until extraction.
Upon extraction, 20 μL U13C internal standard was added as well as 180 μL cold 80% methanol
(−20 ◦C). After 5 min of sonication, samples were vortexed and centrifuged (14,000 rcf, 5 min, 4 ◦C)
and supernatants transferred into MS-vials. Samples were measured directly without evaporation.

4.3.4. “BE-ON” Sample Preparation

The medium of spheroids was carefully aspirated by a multichannel pipette, while spheroids
remained in the wells. Subsequently, the spheroids were washed with 200 μL PBS and quenched by
liquid nitrogen. The spheroids still in the wells were stored at −80 ◦C until extraction. Plates were
kept on ice during extraction. Upon extraction, 20 μL U13C internal standard was added to the well,
then 80 μL 75% ethanol (room temperature, not hot yet) was added; in this amount, the spheroid was
transferred to conical screw cap vials (Bioquote Limited, York, United Kingdom). One hundred μL
more 75% ethanol was added to wash the well and transferred to the conical screw cap vials (Bioquote
Limited, York, United Kingdom). Samples were kept on ice until the extraction of all samples was
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completed. Samples were vortexed and put on 95 ◦C in the water bath for 5 min, then 5 min of
sonication followed. Finally, samples were centrifuged (14,000 rcf, 5 min, 4 ◦C), and supernatants were
transferred into MS-vials. Samples were measured directly without evaporation.

4.3.5. “CM-ON” Sample Preparation

The medium of spheroids was carefully aspirated by a multichannel pipette, while spheroids
remained in the wells. Subsequently, the spheroids were washed with 200 μL PBS and quenched
by liquid nitrogen. The spheroids still in the wells were stored at −80 ◦C until extraction. Plates
were kept on ice during extraction. Upon extraction, 20 μL of the U13C internal standard was added,
then 80 μL cold 80% methanol was added (−20 ◦C); in this amount, the spheroid was transferred to
an Eppendorf-tube and 100 μL more cold 80% methanol was added to wash the well and transferred
to the Eppendorf tube. Samples were kept on ice until the extraction of all samples was completed.
After 5 min of sonication, samples were vortexed and centrifuged (14,000 rcf, 5 min, 4 ◦C), and the
supernatants were transferred into MS-vials. Samples were measured directly without evaporation.

4.3.6. LC-MS Method Applied for Proof of Principle Experiment with Metallodrugs

The metabolite standards were purchased from Sigma-Aldrich or Fluka (Vienna, Austria) except
for malic acid which was purchased from Merck (Vienna, Austria). The metabolomics experiment also
included an external calibration with a calibration mix of 133 substances and internal standardization
with U13C-labeled yeast extract. Within every 10 injections, a blank was injected, as well as a pooled QC
from extracts (all four groups represented in each: 200 μM KP1339-treated, 20 μM oxaliplatin-treated,
control, control with 0.5% dimethylsulfoxid (DMSO)). We used high resolution Orbitrap MS coupled to
Vanquish UPLC and with a HILIC separation, as described elsewhere [37]. MS-data were acquired with
positive–negative switching and the extracted ion chromatograms were evaluated with Thermo Trace
Finder, with the help of external calibration and the internal standard, absolute amounts were calculated
in pmol. The normalization with total protein content resulted in pmol metabolite per μg protein.

4.3.7. Total Protein Content Determination

The protein concentration was assessed from the precipitate dissolved in 200 μL 0.05 M NaOH.
For that purpose, the commercially available micro BCA protein assay kit (Thermo Fisher Scientific,
Pierce Biotechnology, Rockford, IL, USA) was employed, according to the manufacturer’s instructions.

4.4. Data Analysis

4.4.1. Targeted Metabolomics Data Treatment and Normalization

Targeted data evaluation of high-resolution mass spectrometry data of metabolites was performed
in Thermo Trace Finder 4.1, while for the triple quadrupole data of amino acids hydrolyzed from pellet
Agilent MassHunter was used. 13C internal standardization using external calibration was employed
for metabolites. All calibration curves were linear.

The dataset with absolute metabolite amounts and total protein contents was exported to Python,
where the normalization with protein content was carried out, as well as filtering the dataset based on
the performance of pooled quality control samples. (Missing values > 50%, relative standard deviation
above 30%).

4.4.2. Exploratory Data Analysis

The MetaboAnalyst 4.0 Statistical Analysis module was used for further exploratory data analysis
of dataset with absolute metabolite amounts normalized to total protein content. The default missing
values imputation was used with a small number; autoscaling was applied before multivariate analysis.
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4.4.3. Pathway Analysis

The MetaboAnalyst 4.0 [46] Pathway Analysis module was used, which combines pathway
enrichment analysis and pathway topology analysis to identify the most relevant pathways involved
in the conditions under study. As data input, the whole dataset with protein content normalized
concentrations was used. Normalized concentrations were autoscaled; missing values imputed with a
small number. The following parameters were used: pathway enrichment with “global test”, pathway
topology analysis with “relative-betweenness centrality”, pathway library was homo sapiens KEGG,
KEGG version Oct 2019.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/12/304/
s1, Table S1: 1x_5x_10x_15x_MTS. Table S2: washing extractions comparison, Table S3: proof Experiment
Metallodrugs.
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Abbreviations

Abbreviations of metabolites and their explanation used in this work.
Abbreviation Explanation
5AMP, AMP adenosine monophosphate
5CMP, CMP cytidine monophosphate
5GMP, UMP guanosine monophosphate
5UMP uridine monophosphate
AAA alpha aminoadipic acid
Ade adenine
ADP adenosine diphosphate
Ala alanine
Arg arginine
Asin adenosine
Asn aspragine
Asp aspartic acid
DHAP dihydroxyacetone phosphate
Gln glutamine
Glu glutamate
Gly glycine
GMP guanosine monophosphate
GSH glutathione (reduced)
Gsin guanosine
GSSG Glutathione (oxidized)
His histidine
H-Ser homoserine
IMP inosine monophosphate
Isin inosine
K-Ile ketoisoleucine
Lys lysine
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Met methionine
NAD+ nicotinamide adenine dinucleotide (oxidized)
NADP+ nicotinamide adenine dinucleotide phosphate (oxidized)
OAS O-acetylserine
Phe phenylalanine
Pro proline
Pyr pyruvate
Rib-5-P ribose 5-phosphate/ribulose 5-phosphate
Ser serine
Thr threonine
Trp tryptophan
Tyr tyrosine

Appendix A

Table S1. Summary of the experiment which had the aim of determining the minimal number of MTS
required for a metabolomics experiment. Relative responses of 1, 5, 10 and 15 MTS from the boiling ethanol
extracts. Absolute amounts of amino acids [nmol] from hydrolysed pellets. Cell numbers and viability. Parameters
of the normalized linear regressions.

Figure A1. Relative responses (12C/13C) of alanine and glutamate as selected examples from a single
(N = 3), 5 (N = 3), 10 (N = 3), 15 (N = 2) multicellular tumor spheroids. Sample preparation applied
boiling ethanol extraction with U13C internal standardization and LC high-resolution mass spectrometry.
Investigated metabolites showed high linear correlation.

Figure A2. Scaled relative responses (12C/13C) of alanine and glutamate as selected examples from a
single (N = 3), 5 (N = 3), 10 (N = 3), 15 (N = 2) multicellular tumor spheroids: relative responses were
scaled to the mean relative response in single multicellular tumor spheroids (N = 3). Sample preparation
applied boiling ethanol extraction with U13C internal standardization and LC high-resolution mass
spectrometry. Alanine and glutamate are shown from the investigated compounds.
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Figure A3. Absolute amounts in nmol of amino acids after acidic hydrolysis of the pellet containing 1
(N = 3), 5 (N = 3), 10 (N = 3) and 15 (N = 2) multicellular tumor spheroids. The pellets are resulting from
the high molecular fraction of the boiling ethanol extraction and centrifugation. Amino acid amounts
from the proteins show a strong linear correlation with the number of spheroids in the sample.
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Table S2. Summary of the experiment comparing the different sample preparation strategies with three
washing steps vs. single washing on the plate and boiling ethanol vs. cold methanol extraction. Summary of the
absolute amounts of selected metabolites. Individual absolute amounts in samples.

Table S3. Summary of the proof of principle experiment with metallodrugs. Absolute amounts of metabolites
in samples and RSDs. Absolute amounts of metabolites normalized to total protein content and RSDs. Absolute
amounts of metabolites normalized to total protein content with missing value imputation. Absolute amounts of
metabolites normalized to total protein content with missing value imputation and autoscaling. Total protein
content in the samples. KEGG pathways affected by Oxaliplatin treatment. KEGG pathways affected by KP1339
treatment. Significant compounds (p < 0.05) based on oxaliplatin treatment. Significant compounds (p < 0.05)
based on KP1339 treatment.

Figure A4. Swarm and violinplot of total protein content [μg] in single 3D MTS cultures (10 × 103 cells
seeded, 8 days cultivation diameter 790 ± 22 μm at time of treatment) after 24 h of incubation with
200 μM KP1339, 20 μM Oxaliplatin, growth medium (CntrlOxPt), growth medium with 0.5% DMSO
(CntrlKP1339). Protein content is determined by the Thermo micro BCA kit from the high molecular
fraction in the pellet.

Figure A5. PCA scores plot of absolute amounts of metabolites normalized to protein content of
samples from single 3D MTS. Spheroids were treated for 24 h with either 200 μM KP1339, 20 μM
Oxaliplatin (OxPt), medium (CntrlOxPt) or medium with 0.5% DMSO (CntrlKP1339). Extraction with
cold methanol and internal standardization, measurement by HILIC high-resolution Orbitrap MS.
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Abstract: A gas chromatography mass spectrometry (GC-MS) metabolomics protocol was modified
for quenching, harvesting, and extraction of metabolites from adherent cells grown under high (20%)
fetal calf serum conditions. The reproducibility of using either 50% or 80% methanol for quenching of
cells was compared for sample harvest. To investigate the efficiency and reproducibility of intracellular
metabolite extraction, different volumes and ratios of chloroform were tested. Additionally, we
compared the use of total protein amount versus cell mass as normalization parameters. We
demonstrate that the method involving 50% methanol as quenching buffer followed by an extraction
step using an equal ratio of methanol:chloroform:water (1:1:1, v/v/v) followed by the collection of 6 mL
polar phase for GC-MS measurement was superior to the other methods tested. Especially for large
sample sets, its comparative ease of measurement leads us to recommend normalization to protein
amount for the investigation of intracellular metabolites of adherent human cells grown under high
(or standard) fetal calf serum conditions. To avoid bias, care should be taken beforehand to ensure
that the ratio of total protein to cell number are consistent among the groups tested. For this reason,
it may not be suitable where culture conditions or cell types have very different protein outputs
(e.g., hypoxia vs. normoxia). The full modified protocol is available in the Supplementary Materials.

Keywords: GC-MS; 20% FCS; harvesting; extraction; metabolites; normalization

1. Introduction

Reproducibility and robustness when performing metabolomics experiments are essential to
guarantee that resulting biological information is both accurate and meaningful, and to reduce the
likelihood of false discovery due to technical variation [1]. Cell cultures are often used as models
for testing biological concepts. Therefore, an optimized and standardized protocol for efficient
quenching, harvesting, and extraction of cells is required. There are many studies focusing on sample
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preparation methods, and many cell-dependent methods have been optimized for the application of
cell metabolomics for analyzing metabolic fingerprints [2–10]. However, no preparation method is
broadly applicable for all cell types or cultivation conditions. We had previously discovered that, in our
hands, certain cell extraction methods were inappropriate for the cell types we were using, typically
because they did not adequately separate the protein layer from the solvents. This was assumed to be
a result of inappropriate volumes and ratios of the solvents to adequately extract the cell lipid content.

To prepare cells for metabolomics analyses, quenching at the point of harvesting aims to inactivate
intracellular enzymes and stop metabolism to avoid degradation and alterations of sample composition.
Sample preparation should be highly reproducible, robust, and fast to allow high-throughput studies [5].
As is known, metabolic reactions occur in milliseconds [11]. Therefore, it is necessary to quench
metabolism quickly, most often by using ice-cold organic solvents. After the quenching and harvesting
step, metabolite extraction is crucial and often the rate-limiting step. Extraction is the process by
which specific compounds, or whole classes of compounds, e.g., polar metabolites are selectively
separated from others (e.g., lipids, proteins) and is normally conducted to yield cleaner sample
preparations for analysis. There has been much discussions over which extraction solvents are the best
for quenching and measurement of metabolites [12]. Biphasic, liquid-liquid extraction is often used
to extract metabolites, typically based on Folch or Bligh–Dyer methods [13–15]. Polar solutions like
methanol (MeOH) in water (H2O) are often paired with nonpolar organic solvents, such as chloroform
(CHCl3), to form a two-phase system. The chemical properties, volumes, and solvent ratios of the
organic and aqueous solvents must be considered carefully. These parameters can significantly affect
the extraction efficiency of metabolites and the experimental reproducibility.

Fetal calf serum (FCS) contains a large number of nutritional and macromolecular factors such as
amino acids, sugars, lipids, and hormones essential for cell culture growth. For most cell lines, 10% FCS
is used; however, some primary cells, such as human umbilical vein endothelial cells (HUVECs), need
to be cultured in higher FCS conditions (e.g., medium with 20% FCS) [16–22]. To our knowledge, there
have been no reports to date documenting the robustness and efficiency of harvesting and extraction
protocols for metabolic profiling of adherent cells grown under high FCS conditions. Ideally, this would
be undertaken using a full design-of-experiments approach investigating and fully testing multiple
parameters to optimize the method. However, due to limitations in both resources and numbers
of primary cell cultures, an incremental optimization approach can be taken to reach a predefined
reproducibility and metabolite detection threshold. This approach enables an early exclusion of
conditions that do not fit one’s criteria, therefore making the most out of the material available.

Therefore, the aim of this study was to compare and enhance our existing protocol for a reliable
and reproducible harvesting and extraction of adherent cells grown in media supplemented with
20% FCS. As a comparison, standard cell culture conditions (10% FCS) were also investigated. All
analyses were conducted by gas chromatography-mass spectrometry (GC-MS). The use of either 50%
or 80% MeOH for quenching of cells were compared for sample harvest. In addition, two different
ratios and three different final volumes of MeOH to CHCl3 to H2O were compared to investigate the
efficiency and reproducibility of intracellular metabolite extraction. To achieve robust normalization of
the samples, total protein amount versus absolute cell mass was tested.

2. Results

2.1. Preliminary Experiments on Phase Separation

A previous protocol used in our lab for adherent cells growing under 10% FCS was a modified
Bligh–Dyer extraction to separate lipid and polar metabolites [23,24]. The protocol includes the use
of 50% MeOH for cell quenching followed by an extraction using a 1:0.4:1, v/v/v MeOH:CHCl3:H2O
ratio. Routinely, 3 mL of the polar phase is collected and used for further GC-MS measurement. For
HUVECs cultured under conditions of 20% FCS, we discovered that this protocol was not sufficient
to properly extract the cells. We discovered a fluffy protein pellet rather than the compacted, well
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demarcated protein pellet we normally achieve. This had consequences for the reproducibility of the
measured total protein amount resulting in a relative standard deviation (RSD) for HUVECs of over
25% (European Medicine Agency (EMA) recommendation is RSD < 15%, http://www.ema.europa.eu/).
To check this was not a cell-specific effect, the HCT116 colorectal carcinoma cell line was cultured and
extracted in an identical way. Results were similar for the HCT116 cells with total protein RSDs also
over 25% for high and standard FCS conditions, as seen in Table 1 and Figure 1 50_LOW. This suggests
that extraction may not be complete and thus the technical reproducibility was larger than necessary.
This prompted us to look at the entire process of harvesting and extraction.

In our study, four different extraction conditions were tested. The four conditions can be
summarized here as: (1) 50_LOW: 50% MeOH quenching solution with 1 mL of CHCl3 for extraction
with a final ratio of 1:0.4:1 (MeOH:CHCl3:H2O) and collection of 3 mL polar phase for analysis;
(2) 50_MEDIUM: 50% MeOH quenching solution with 2.5 mL of CHCl3 for extraction with a final ratio
of 1:1:1 (MeOH:CHCl3:H2O) and collection of 3 mL polar phase for analysis; (3) 80_HIGH: 80% MeOH
quenching solution with 4 mL of CHCl3 for extraction with a final ratio of 1:1:1 (MeOH:CHCl3:H2O)
and collection of 6 mL polar phase for analysis; and (4) 50_HIGH: 50% MeOH quenching solution with
4 mL of CHCl3 for extraction with a final ratio of 1:1:1 (MeOH:CHCl3:H2O) and collection of 6 mL
polar phase for analysis.

 

Figure 1. Extraction of HCT116 cells cultured in 10% and 20% fetal calf serum (FCS) conditions using
different quenching solvents, extraction ratios, and polar volumes (protein layer shown by extra arrow
on picture).

Table 1. Relative standard deviation (RSD) of measured protein amount of HCT116 cells cultured in
10% and 20% FCS conditions using different quenching solvents, extraction ratios, and polar volumes.

Condition Name 50_LOW 50_MEDIUM 50_HIGH 80_HIGH

Biological replicates 10% FCS 4 3 4 5
Biological replicates 20% FCS 5 3 4 4

HCT116 (10% FCS) 51 20 14 13

HCT116 (20% FCS) 30 42 16 8
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2.2. Experiment 1: Determining the Optimum Concentration of MeOH as a Quenching and Extraction
Solution for Cell Harvesting

The quenching solution used is important as it has a dual function of being the first extraction step
and being required to quench metabolism quickly. Many reports suggest 80% MeOH for metabolite
quenching and extraction [7,25,26]; our current protocol uses 50% MeOH (50_LOW). Therefore, both
50% and 80% MeOH solutions were tested as quenching and extraction buffers for harvesting of
adherent cells cultured in 10% and 20% FCS. The modified Bligh–Dyer extraction step which follows
the quenching step will influence the results. In a first test, we used the same volume of 1 mL CHCl3
for the extraction step (as used in our current protocol) and observed that for 80% MeOH, no phase
separation occurred, as seen in Figure S1. This is assumed to be due to the relative ratios of CHCl3 and
to polar solvents. Increasing the ratio of MeOH:CHCl3:H2O to 1:1:1 v/v/v resulted in a phase separation.
In order to keep the ratio of the final solvent composition constant, the extracted volumes of H2O and
MeOH needed to be adjusted accordingly to account for whether 50% or 80% MeOH was used in the
first extraction step.

The performance of individual quenching solvents was determined by a range of measures
including (i) number of detected metabolites, (ii) median RSD of all detected metabolites (a measure
of reproducibility), (iii) the percentage of metabolites with an individual RSD < 30% (a generally
accepted tolerance limit for GC-MS metabolomics for any individual metabolite [27]), and (iv) the sum
of normalized peak area for all annotated metabolites (henceforth referred to as sum of area), a proxy
measure of the overall sensitivity of the method.

In the HCT116 cells, the conditions were equivalent in terms of number of metabolites detected,
as seen in Figure S2, except for the detection of fructose-6-phosphate, when 80% MeOH was used with
10% culture conditions, as seen in Table S1, comparing 50_HIGH and 80_HIGH. For the HUVECs, a
lower number of metabolites was found, as seen in Table S2 and Figure S2; 34 metabolites for 50_HIGH
and 36 for 80_HIGH. We assume this lower number of metabolites is due to the generally lower average
cell count achieved by the HUVECs (mean cell counts: male HUVECs: 1.5 × 106 cells; female HUVECs:
3 × 106 cells; HCT116: 6 × 106 cells). The metabolites detected also had some very minor differences
(e.g., proline was only detected in 50_HIGH and tyrosine, uracil, and ribose-5-phosphate were only
detected in 80_HIGH).

The reproducibility of both quenching solvents was then assessed using RSDs as an indicator.
For HCT116 cells and HUVECs in both culture conditions, 50% MeOH performed better overall as a
quenching solvent compared to 80% MeOH, comparing 50_HIGH and 80_HIGH in Table 2, Table 3,
Figure 2, Table S1, Table S2, Table S3, Table S4, and Figure S3. In HCT116 cells 50_HIGH has a lower
median RSD compared to 80_HIGH (14% compared to 23%, and 26% compared to 30%, for 10% FCS
and 20% FCS, respectively). In addition, there was a higher percentage of individual metabolites with
RSD < 30% in the 50_HIGH (79% compared to 67%, and 73% compared to 53%, for 10% FCS and 20%
FCS, respectively). In line, the sum of the area was higher in 50_HIGH compared to 80_HIGH for both
FCS culture conditions (Figure 3; 74 compared to 56, and 35 compared to 26, for 10% FCS and 20%
FCS, respectively). In HUVECs, the median RSD was lower in 50_HIGH (13%) compared to 80_HIGH
conditions (36%), with a higher percentage of individual metabolite with RSDs < 30% (74% 50_HIGH
compared to 44% 80_HIGH). The measured sum of area for HUVECs was also better for 50_HIGH (3.8
compared to 3.2) According to these results, 50% MeOH was deemed to be a better quenching solvent
for both types of cells. However, for particular metabolites, 80% MeOH may be more appropriate.
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Table 2. Median relative standard deviation (RSD) per metabolite of HCT116 cells cultured in 10% and
20% FCS conditions using different quenching solvents, extraction ratios, and polar volumes.

Condition Name 50_LOW 50_MEDIUM 50_HIGH 80_HIGH

Biological replicates 10% FCS 4 3 4 5
Biological replicates 20% FCS 5 3 4 4

HCT116 (10% FCS) 68% 22% 14% 23%

HCT116 (20% FCS) 33% 55% 26% 30%

Table 3. Percentage of metabolites with a relative standard deviation (RSD) < 30% of HCT116 cells
cultured in 10% and 20% FCS conditions using different quenching solvents, extraction ratios, and
polar volumes.

Condition Name 50_LOW 50_MEDIUM 50_HIGH 80_HIGH

Biological replicates 10% FCS 4 3 4 5
Biological replicates 20% FCS 5 3 4 4

HCT116 (10% FCS) 0% 73% 79% 67%

HCT116 (20% FCS) 15% 3% 73% 53%

 
Figure 2. Median relative standard deviation (RSD) of individual metabolites separated by biological
metabolite pathways of HCT116 cells cultured in 10% and 20% FCS conditions using different quenching
solvents, extraction ratios, and polar volumes. The dashed line represents the maximum 30% RSD
threshold advised by the Federal Drug Administration (FDA). AA: Amino acids. PPP: Pentose
phosphate pathway. TCA: Tricarboxylic acid cycle.
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Figure 3. Comparison of the mean of sum of normalized peak area for different quenching and
extraction methods. Data from a minimum three out of five HCT116 cells cultured in (a) 10% and
(b) 20% FCS. The error bars represent the standard deviation of the biological replicates. Samples were
analyzed using an unpaired Student’s t-test with p < 0.05 deemed as statistically significant.

2.3. Experiment 2: Determination of the Optimal Volume and Ratio of MeOH:CHCl3:H2O for a Metabolite
Extraction Solution

The ratio of MeOH:CHCl3:H2O is important for: (i) the efficiency and reproducibility of extraction;
(ii) a clear phase separation; and (iii) a robust method for protein collection for normalization or
for concurrent proteomics (see Section 2.1). Different ratios, final volumes, and polar phase volume
collection for extraction were evaluated, as seen in Table 4. This step was carried out before 50_HIGH
was deemed to be optimum for quenching, but, for convenience, is presented here in the same order
in which it appears in the standard operating protocol. As the different extraction methods led to
different final volumes, leading to different theoretical concentrations, more volume was analyzed in
some samples to normalize and compensate for this concentration difference.

Table 4. Experimental set up for the conditions analyzed in the study.

Condition Name 50_LOW ( ) 50_MEDIUM ( ) 50_HIGH ( ) 80_HIGH ( )

5 mL of MeOH harvest 50%
(2.5 + 2.5) *

50%
(2.5 + 2.5) *

50%
(2.5 + 2.5) *

80%
(4.0 + 1.0) *

MeOH [mL] for extraction - - 1.5 -

H2O [mL] for extraction - - 1.5 3.0

CHCl3 [mL] for extraction 1.0 2.5 4.0 4.0

Final volume [mL] 6.0 7.5 12 12

Final ratio v/v/v 1:0.4:1 1:1:1 1:1:1 1:1:1

Final polar volume [mL] 5.0 5.0 8.0 8.0

Used polar volume [mL] 3.0 3.0 6.0 6.0

*: mL of MeOH + H2O.
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The evaluation of the different ratios and volumes revealed no significant changes in either the
number of detected metabolites, as seen in Table 5, or particular metabolite classes independent of the
analyzed cells and growth conditions, as seen in Figure S2.

Table 5. Number of annotated central carbon metabolites of HCT116 cells cultured in 10% and 20%
FCS conditions using different quenching solvents, extraction ratios, and polar volumes.

Condition Name 50_LOW 50_MEDIUM 50_HIGH 80_HIGH

Biological replicates 10% FCS 4 3 4 5
Biological replicates 20% FCS 5 3 4 4

HCT116 (10% FCS) 38/45 39/45 38/45 39/45

HCT116 (20% FCS) 41/45 41/45 40/45 40/45

In HCT116 cells, the use of 50_MEDIUM compared to 50_LOW led to lower RSDs (20% compared
to 51%) for total protein measurement in cells grown under 10% FCS. HCT116 cells cultured with
20% FCS showed increased RSDs (42% compared to 30%) in the 50_MEDIUM condition, as seen in
Table 1. When using 80_HIGH conditions, the pellet was more compact, as seen in Figure 1, and easier
to extract, which is reflected in a low RSD (13% for 10% FCS and 8% for 20% FCS) of the measured
protein amount in HCT116 cells. When using 50_HIGH conditions, a compact protein pellet could
be observed, leading to a more efficient protein extraction, and resulting in RSDs (14% for 10% FCS
and 16% for 20% FCS) similar to 80_HIGH conditions. For HUVECs, the RSD of the measured total
protein was reduced when using 80_HIGH compared to 50_MEDIUM and 50_HIGH conditions, as
seen in Table S5. 50_MEDIUM compared to 50_LOW conditions showed a lower RSD (15% compared
to 49%, respectively).

The reproducibility of GC-MS analysis as measured by the median RSD of the individual
metabolites or combined as biological pathways, and the percentage of metabolites with RSD < 30%,
revealed the best results when using 50_HIGH conditions for HCT116 cells, as seen in Table 2, Table 3
and Figure 2. Likewise, in HUVECs, the best results were shown using 50_HIGH conditions, as seen in
Table S3, Table S4 and Figure S3.

Independent of the FCS setting in HCT116 cells, the highest sum of area was found using 50_HIGH
conditions, as seen in Figure 3. For HUVECs, the highest sum of area was found in cells in the
50_MEDIUM condition; however, the variability was high, as seen in Figure S4. Comparing 80_HIGH
and 50_HIGH conditions measured as a separate batch, a higher sum of area was found using 50%
MeOH as quenching buffer.

In summary, our results indicate that using an extraction ratio of 1:1:1, v/v/v MeOH:CHCl3:H2O and
a polar phase volume of 6 mL achieved good results for samples used for both GC-MS measurement
and protein extraction for cells grown under 10% and 20% FCS. Lower individual and combined RSDs
and higher peak areas could be detected. The direct comparison of 50% or 80% MeOH as quenching
buffer showed a higher sum of area and lower median RSDs when using 50_HIGH conditions for the
analyzed cells and FCS conditions. The number of annotated metabolites was equal across all methods.
The full modified protocol is available in the Supplementary Materials.

2.4. Experiment 3: Total Protein versus Cell Mass as a Normalization Strategy

Adherent cells need to be detached from the bottom of the cell culture flask for further metabolomics
analyses. Trypsinization is known to lead to alteration of metabolism, so we employed direct quenching
of cells with physical scraping as an alternative [5,28]. However, this complicates the utilization of
the cell count as a normalization parameter. Therefore, we compared the use of total protein amount
versus the cell mass as a normalization strategy.

After normalizing to total protein, HCT116 cells grown under 10% FCS showed a slightly lower
median RSD of 24% for individual metabolite detection compared to normalization with cell mass
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(median RSD 28%), as seen in Table 6. For HCT116 cells cultivated in 20% FCS, a median RSD of 35%
and 25%, respectively, was found if normalized to total protein or cell mass. For HUVECs, the median
RSD was lower when using protein (52%) for normalization compared to cell mass (61%), as seen
in Table S6. The percentage of individual metabolite RSDs < 30% threshold was higher when using
total protein (26%) compared to cell mass (18%) for normalization. Judging from Table 6 and Table S6,
neither of the normalization methods was superior. However, total protein was considerably easier
to measure.

Table 6. Median relative standard deviation (RSD) and percentage of metabolites with a RSD < 30%
from four replicates of HCT116 cells cultured in 10% and 20% FCS conditions.

HCT116 (10% FCS) HCT116 (20% FCS)

Cell Mass Protein Cell Mass Protein

Median RSD [%] 28 24 25 35

RSD < 30% [%] 55 60 60 33

3. Discussion

Metabolomics has long been used for the analysis of human body fluids for clinical
indications [29,30]. More recently, it is also being applied to cells or tissue [30]. Metabolite profiling
of adherent growing mammalian cells is challenging, particularly due to the special requirements
with respect to the sampling procedure. While harvesting of suspension cultures can generally be
achieved through rapid centrifugation, the adherent cells first need to be detached from the bottom
of the cell culture flask [30]. With a large number of metabolites to be analyzed simultaneously, it
becomes difficult to find a single optimal extraction method. In this work, we set out to solve a
particular challenge, which was the visible suboptimal extraction of cells grown under high (20%) FCS
conditions. We focused on optimizing a liquid-liquid extraction protocol for the harvest and extraction
of cells grown both under high (20%) or normal (10%) FCS conditions to enable reproducible and
robust analysis of the detected metabolites. We compared our existing protocol using 50% MeOH
to 80% MeOH as a quenching buffer, followed by an extraction using different ratios and volumes
of CHCl3 and polar phases. Environmental and personal safety should also be considered and has
resulted in a move away from CHCl3 towards other nonorganic solvents such as methyl-tert-butylether
(MTBE) in recent years [31]. MTBE is both highly volatile and floats on the surface of the resulting
biphasic mixture. As we were interested in analyzing only the polar metabolites in this study, it was
excluded from the test solvents. We also looked at whether cell mass or total protein represented a
better normalization strategy, since cell count cannot easily be used for adherent cells harvested for a
metabolomics approach [32].

Direct quenching of the metabolism in adherent cells needs extraction with organic solvents
such as MeOH. Various reports on the best solvent composition for metabolite extraction suggests
80% MeOH in H2O [7,26]; however, 50% MeOH is also used for metabolite extraction of adherent
cells grown under 10% FCS [23]. We tried using both 50% MeOH and 80% MeOH as quenching
buffers, followed by an extraction using different ratios and volumes of CHCl3 and polar phases in
cells cultured with 20% FCS compared to standard cell culture conditions. Using the 50_HIGH method
(50% MeOH followed by extraction using a 1:1:1, v/v/v MeOH:CHCl3:H2O ratio and collection of 6 mL
polar phase) was considered to be the best of the extraction methods we tested. Using a higher ratio of
CHCl3 and higher extraction solvent volumes gives a better phase separation and results in a dense
protein pellet allowing a robust normalization. The percentage of highly polar solutions in the final
ratio is also likely to be important for efficient extraction of polar metabolites and is reflected in the
quenching results. The results may be different if nonpolar metabolites are also considered.

Normalization methods for cell culture are often problematic. Normalization is used to eliminate
inter-run variability and biological variation [25]. Cell counts are inaccurate and are often performed
on separate culture plates to the ones that are analyzed [33]. This is labor-intensive, impractical, and
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inefficient, especially with regard to large studies. Using cell count for normalization requires cell
detachment using trypsin solutions, which can lead to metabolite leakage and changes in the metabolic
pattern [5]. Total protein or cell mass has the advantage over cell counts that they can be performed
using the same plate as that for the metabolomics analysis. One difficulty in using cell mass for
normalization is the removal of the quenching buffer after centrifugation. Remnants of the quenching
solution left in the vials will affect the final recorded cell mass, leading to more technical error. Further,
the process of weighing the samples is technically laborious. Metabolites are contained in the buffer,
meaning that it needs to be first removed for the weighing process and then re-added. This all needs to
take place as quickly as possible, while keeping the sample as cold as possible so that it has minimal
effects on reproducibility. As total protein can be measured following extraction, it can be done with
more ease, although it has the disadvantage that samples cannot then be extracted according to their
mass. They can, however, be reconstituted to equivalent concentrations before being analyzed if a
drying down step is employed immediately after extraction. We have shown in the results that the
extraction of the protein was reproducible enough to be considered an effective normalization method
when the 50_HIGH method was used. For large numbers of samples, protein extraction is easier since
the critical step of weighing and cooling is missing. Therefore, we recommend using total protein as a
potential normalization strategy. We are aware of certain cell culture conditions that reduce the protein
amount per cell. For this reason, full consideration should be given to whether the total protein is
likely to be a good reflection of cell count or cell volume before it is used. In our hands, we have seen
certain culture conditions, e.g., hypoxia, where cell protein production is not equivalent in the same
cell type as in normoxia. In these circumstances, cell protein would probably not be recommended as a
suitable normalization strategy.

In this study, we have tested and improved our existing method to enhance our reproducibility
when analyzing adherent mammalian cells cultured under 20% FCS. For a truly optimized method, a
design of experiments (DoE) approach is recommended. However, due to the difficulties of working
with large numbers of cell cultures per batch, the cost of repeated experiments and the statistical
understanding required to pursue a DoE approach, we instead chose to trial and optimize our existing
method. We are aware that this incremental optimization approach may not result in the truly optimal
method; however, it enables a faster development that limits material waste. The method is deemed to
be optimal once certain reproducibility and metabolite detection criteria are reached. This represents a
more realistic scenario for the thousands of labs required to run samples each year without the time
and resources to fully optimize methods for each sample type.

In summary, the final modified 50_HIGH quenching, extraction, and normalization method (50%
MeOH for harvest followed by extraction using a 1:1:1, v/v/v MeOH:CHCl3:H2O ratio and collection of
6 mL polar phase) can be recommended for the investigation of intracellular metabolites from adherent
human cells grown under standard (10%) or high (20%) FCS conditions using a GC-MS platform.

4. Materials and Methods

4.1. Cell Culture

Two different human cell types were used in this study. We were interested mainly in a robust
analysis of HUVEC male and female twin pair cells, but since these are human derived and therefore
in limited supply, HCT116 cells were used to enable more replicates to be tested. For the same reason,
a mix of male and female HUVECs were used.

The colorectal carcinoma cell line HCT116 was obtained from ATCC (American Type Culture
Collection, Teddington, UK). The HCT116 cell line was maintained in DMEM (Dulbecco’s Modified
Eagle Medium, Thermo Fischer Scientific, Waltham, MA, USA) supplemented with 10% or 20% FCS
(Thermo Fischer Scientific, Waltham, MA, USA), 1% penicillin/streptomycin (Thermo Fischer Scientific,
Waltham, MA, USA), 2 mM glutamine (Thermo Fischer Scientific, Waltham, MA, USA) and 1 g/L
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glucose (Sigma-Aldrich, St. Louis, MO, USA). HUVECs were isolated as previously described [17]. All
cells were incubated in a humidified atmosphere of 5% CO2 in air at 37 ◦C.

4.2. Experiment 1: Determination of the Optimum Concentration of Methanol as a Quenching and Extraction
Solution for Cell Harvesting

Cells were rapidly washed (20 s) with washing buffer (140 mM NaCl, 5 mM HEPES, pH 7.4, 37 ◦C)
before they were quenched by ice-cold MeOH solution. Two solutions were tested: either 5 mL of
50% or 80% MeOH in H2O with a final concentration of 2 μg/mL cinnamic acid (for use as an internal
standard). Immediately as the MeOH solution was added to the culture plate, cells were scraped
into the methanol solution and the methanolic lysates were collected. The extracts were agitated to
complete cell lysis and centrifuged to separate the layers (see Section 4.3).

4.3. Experiment 2: Determination of the Optimal Volume and Ratio of MeOH:CHCl3:H2O for a Metabolite
Extraction Solution

After cell harvest, CHCl3 was added to the methanolic cell extracts, shaken for 60 min at 4 ◦C, and
centrifuged at 4149× g for 10 min at 4 ◦C to separate the phases. Both the final ratio of MeOH:CHCl3:H2O
and the final total volume was tested. Test conditions are summarized in Table 4.

The polar phase was collected and dried overnight at 30 ◦C at a speed of 1550× g at 0.1 mbar using
a rotational vacuum concentrator (RVC 2-33 CDplus, Christ, Osterode am Harz, Germany). Samples
were pooled after extraction and used as a quality control (QC) sample to test the technical variability
of the instrument. QC samples were prepared alongside the samples in the same way. To generate
backup samples, the dried polar phases were resuspended and split into two aliquots.

To further test whether the results of changing the ratios of MeOH:CHCl3:H2O are an effect of
the ratio or of the total volume, we investigated changing the ratios while maintaining the volume.
For the harvesting condition of 50% MeOH, a final volume of 6 mL was tested, resulting in 3 mL of
polar phase that could be collected for analysis. For the harvesting condition using 80% MeOH, a
final extraction volume of 12 mL was tested with 6 mL polar phase collected and dried for analysis.
To perform a direct comparison of the same volume we used 5 mL of 50% MeOH for cell quenching
followed by increased extraction volumes (4 mL CHCl3, additional 1.5 mL MeOH and 1.5 mL H2O)
leading to a 1:1:1, v/v/v ratio of MeOH:CHCl3:H2O. With the increased volumes, 6 mL of polar phase
could be collected and used for GC-MS measurement. The 80_LOW condition (5 mL 80% MeOH for
quenching and 1 mL of CHCl3 for extraction) was discarded from the optimization tests since no phase
separation could be achieved, as seen in Figure S1.

4.4. Experiment 3: Total Protein versus Cell Mass as a Normalization Strategy

To measure cell mass, at the point immediately following quenching and harvest of the cells, the
quenched cells (50% MeOH) were centrifuged for 10 min at 10,000× g at 4 ◦C and the supernatant was
carefully removed and collected into a new 15 mL Falcon tube stored on ice. The cell pellet, also kept
on ice, was immediately weighed as fast as possible and the collected supernatant was added back
to it, ready for metabolite extraction. The metabolites were extracted using a high volume of CHCl3
(4 mL) as determined in the previous section. After collection of the polar phases (6 mL), proteins were
precipitated for each sample by addition of 8 mL 100% MeOH to avoid phase separation followed by
centrifugation at 16,000× g speed for 10 min. The supernatant was carefully discarded. The pellet was
air dried at room temperature and used for protein lysis and protein determination as described in
Section 4.5.

4.5. Protein Extraction and Determination

For measurement of total protein amount, the pellet was resuspended in 8 M urea buffer (in 50 mM
HEPES, pH 8.5). The protein concentration was determined using a bicinchoninic acid (BCA) assay
(Thermo Fischer Scientific, Waltham, MA, USA) following the manufacturer’s instructions. In brief,
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2 μL from each protein lysate was added to 2 μL reagent A, followed by the addition of 100 μL reagent
B. After 30 min, absorbance was read at 562 nm using an Infinite M200Pro plate reader (TECAN,
Männedorf, Switzerland). In order to calculate a calibration curve, a dilution series of bovine serum
albumin (BSA, 1 mg/mL to 0.05 mg/mL) was included in the measurement.

4.6. GC-MS Metabolomics Measurement of Key Central Carbon Pathway Metabolites

All polar cell extracts were stored dry at −80 ◦C until analysis. Extracts were removed from the
freezer and further dried in a rotational vacuum concentrator for 60 min before further processing
to ensure there was no residual water which may influence derivatization efficiency. Dried cell
extracts were dissolved in 15 μL of methoxyamine hydrochloride solution (40 mg/mL in pyridine)
and incubated for 90 min at 30 ◦C with constant shaking, followed by the addition of 50 μL of
N-methyl-N-[trimethylsilyl]trifluoroacetamide (MSTFA) and incubation at 37 ◦C for 60 min. The
extracts were centrifuged for 10 min at 10,000× g, and aliquots of 25 μL were transferred into glass vials
for GC-MS measurement. An identification mixture for reliable compound identification was prepared
and derivatized in the same way and an alkane mixture for reliable retention index calculation was
included [23]. Metabolite analysis was performed on a Pegasus 4D GC×GC TOF-MS-System (LECO
Corporation, St. Joseph, MN, USA) complemented with an auto-sampler (Gerstel MPS DualHead
with CAS4 injector, Mühlheim an der Ruhr, Germany). The samples were injected in split mode (split
1:5, injection volume 1 μL) in a temperature-controlled injector with a baffled glass liner (Gerstel,
Mühlheim an der Ruhr, Germany). The following temperature program was applied during sample
injection: for 2 min the column was allowed to equilibrate at 68 ◦C, a first temperature gradient was
started with a rate of increase of 5 ◦C/min until a maximum of 120 ◦C was reached. Subsequently,
the temperature gradient was changed such that the rate of increase was 7 ◦C/min up to a maximum
temperature of 200 ◦C. This was increased to a 12 ◦C/min gradient up to a maximum temperature
of 320 ◦C which was then held for 7.5 min. Gas chromatographic separation was performed on an
Agilent 7890 (Agilent Technologies, Santa Clara, CA, USA), equipped with a VF-5ms column (Agilent
Technologies, Santa Clara, CA, USA) of 30 m length, 250 μm inner diameter, and 0.25 μm film thickness.
Helium was used as the carrier gas with a flow rate of 1.2 mL/min. The spectra were recorded in a mass
range of 60 to 600 m/z with 10 spectra/s. The GC-MS chromatograms were processed with ChromaTOF
software (LECO Corporation, St. Joseph, MN, USA) including baseline assessment, peak picking, and
computation of the area.

4.7. Data Analysis

An in-house-created library and reference search including 45 most relevant metabolites from the
central carbon metabolism (CCM) were used, as seen in Table S7. The data were exported and merged
by an in-house R script. The metabolites were considered valid when they appeared in a minimum of
three out of five biological replicates (BR) in HCT116, two or three in female HUVECs, and two BR
for male HUVECs. Male and female HUVECs were analyzed separately because of the availability
of the material. The peak area of each metabolite was calculated by normalization to the internal
standard, cinnamic acid, and additionally to the protein content (or cell mass). The performance of the
different MeOH percentages were evaluated according to the following criteria: (1) number of detected
metabolites, (2) relative peak area, and (3) reproducibility. The technical variation of the GC-MS run is
shown in Table S8.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/1/2/s1,
Table S1. Individual metabolite relative standard deviation (RSD) of HCT116 cells cultured in 10% and 20%
FCS conditions using different quenching solvents, extraction ratios, and polar volumes. *: phosphate. Table
S2. Individual metabolite relative standard deviation (RSD) of HUVECs cultured in 20% FCS conditions using
different quenching solvents, extraction ratios and polar volumes for the different protocols. Cells were measured
in different batches (dashed line). *: 50_Medium. Table S3. Median of the relative standard deviation (RSD)
per metabolite of HUVECs cultured in 20% FCS conditions using different quenching solvents, extraction ratios,
and polar volumes for the different protocols. Cells were measured in different batches. Table S4. Percentage of
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metabolites with a relative standard deviation (RSD) < 30% of HUVECs cultured in 20% FCS conditions using
different quenching solvents, extraction ratios, and polar volumes for the different protocols. Cells were measured
in different batches. Table S5. Relative standard deviation (RSD) of measured protein amount of HUVECs cultured
in 20% FCS conditions using different quenching solvents, extraction ratios, and polar volumes for the different
protocols. Cells were measured in different batches. Table S6. Median of the relative standard deviation (RSD) per
metabolite and percentage of metabolites with a RSD < 30% of HUVECs (three biological replicates) cultured
in 20% FCS conditions. Table S7. List of metabolite derivatives and their biological group used for reference
search. AA: Amino acids. PPP: Pentose phosphate pathway. TCA: Tricarboxylic acid cycle. TMS: Trimethylsilyl
derivatives. MeOX: Methoxyamine hydrochloride. Table S8. Technical variation during gas chromatography mass
spectrometry (GC-MS) run of four pooled samples. RSD: Relative standard deviation. Figure S1. 50% and 80% of
MeOH quenching buffer and different ratios of MeOH:CHCL3:H2O were mixed for extraction steps. Sudan I was
added to aid visualization of phase separation. No phase separation could be observed using 80_LOW condition.
Therefore, the condition was not used for further testing. Figure S2. Recovery of annotated metabolites per
biological group for different quenching and extraction methods. (a) HCT116 cells were cultivated in 10% FCS (in
minimum three out of five biological replicates). (b) HCT116 cells were cultivated in 20% FCS (in minimum four
out of five biological replicates). (c) HUVECs were cultured in 20% FCS (in minimum two out of three biological
replicates). HCT116 cells were measured in one batch while HUVECs were measured in different batches (dashed
line). The column data represents the number of annotated metabolites for each protocol. AA: Amino acids. PPP:
Pentose phosphate pathway. TCA: Tricarboxylic acid cycle. Figure S3. Median relative standard deviation (RSD)
of individual metabolites separated by metabolite classes from in minimum two out of three replicates of HUVECs
cultured in 20% FCS conditions using different quenching solvents, extraction ratios, and polar volumes. The
dashed line represents the maximum 30% RSD threshold advised by the Food and Drug Administration (FDA).
Condition details see Table 3. Cells were measured in different batches reflected by the three graphs. AA: Amino
acids. PPP: Pentose phosphate pathway. TCA: Tricarboxylic acid cycle. Figure S4. Comparison of the mean
of sum of normalized peak area for different quenching and extraction methods. HUVECs were cultured in
20% FCS. The cells were measured in 2 different batches (dashed line). Data from in minimum two out of three
biological replicates. The peak area was normalized to cinnamic acid and protein amount. Due to the low number
of biological replicates no significances were measured. File S1. Standard operating protocol for harvest and
extraction of adherent cells grown under 10% or 20% fetal calf serum (FCS) conditions version 1.
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Abstract: Cell-secreted extracellular vesicles (EVs) have rapidly gained prominence as sources of
biomarkers for non-invasive biopsies, owing to their ubiquity across human biofluids and physiological
stability. There are many characterisation studies directed towards their protein, nucleic acid, lipid
and glycan content, but more recently the metabolomic analysis of EV content has also gained traction.
Several EV metabolite biomarker candidates have been identified across a range of diseases, including
liver disease and cancers of the prostate and pancreas. Beyond clinical applications, metabolomics has
also elucidated possible mechanisms of action underlying EV function, such as the arginase-mediated
relaxation of pulmonary arteries or the delivery of nutrients to tumours by vesicles. However,
whilst the value of EV metabolomics is clear, there are challenges inherent to working with these
entities—particularly in relation to sample production and preparation. The biomolecular composition
of EVs is known to change drastically depending on the isolation method used, and recent evidence
has demonstrated that changes in cell culture systems impact upon the metabolome of the resulting
EVs. This review aims to collect recent advances in the EV metabolomics field whilst also introducing
researchers interested in this area to practical pitfalls in applying metabolomics to EV studies.

Keywords: extracellular vesicles; exosomes; microvesicles; biomarkers; diagnostics; metabolic pathways

1. Introduction

Extracellular vesicles (EVs) are bioactive nanosized vesicles that are secreted by cells that mediate
intercellular communication through the transmission of functional biomolecules [1]. The term “EV”
encompasses multiple designations as determined by the biogenetic pathway in question or biophysical
characteristics of EVs [2]. Multivesicular-body-derived exosomes, for example, are created via the
inward budding of endosomes, with the resulting intraluminal vesicles released through fusion of the
endosome with the cell membrane. Elsewise, microvesicles directly bud off from the cell membrane and
apoptotic bodies are the products of fragmented, dying cells. In addition to these three known classes of
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EV, uncharacterised subtypes are likely to exist differing in their composition, ultrastructure, or size [3,4].
Since the discovery in the mid-2000s that EVs can transfer functional mRNA [5,6], there have been
increasing reports ascribing biological functions to EVs across an astounding range of contexts [1].
From developmental biology [7] and cardiovascular homeostasis [8] through to immunity [9] and
angiogenesis [10], there appears to be a role for EVs in every instance where biological material is
exchanged between cells. Correspondingly, the pathological dysregulation of these processes has also
been reported in cancer [11], neurodegeneration [12], obesity [13] and inflammatory diseases [14],
whilst the deployment of EVs by pathogens and microbiota is informing new paradigms on how we
interact with microorganisms [15–17].

Consisting essentially of a lipid bilayer, EVs also comprise a repertoire of proteins, glycans
and nucleic acids [1]. Some of these components are incorporated into vesicles during biogenesis
and are thought to be characteristic markers of EVs. Notable examples include CD9, CD63 and
CD81 of the tetraspanin protein family [18], high phosphatidylserine lipid content [19] and a
conserved glycosylation signature that has been described for mammalian EVs [20]. Depending
on the EV class in question, markers differ and guidelines from the Minimal information
for studies of extracellular vesicles (MISEV) working group recommend that transmembrane/
glycosylphosphatidylinositol-anchored(GPI-anchored) proteins and cytosolic proteins be analysed
in all bulk EV preparations in order to demonstrate the presence of EVs as well as non-EV structural
proteins for purity control [21]. However, the comparatively limited repertoire of molecular markers
cannot account for the diversity of functions ascribed to EVs, and online databases of EV omics studies
show a vast assortment of EV-associated compounds beyond these [22,23], signifying other means
of cargo packaging. Molecules may be trafficked directly to EVs through interactions with other
biomolecules or indirectly packaged during vesicle formation processes that encapsulate pockets
of cytosol [24]. Moreover, EV content is dynamic and shifts in response to perturbations in culture
conditions [25]. As such, EVs present as reflections of their cellular source, and the analysis of vesicle
content provides a nanoscopic window into the physiopathological state of said cells. There are
various examples of this concept in action with the identification of EV protein, lipid and nucleic acid
biomarkers for several diseases [26–28]. Additionally, EVs have been isolated from many human
biofluids [1], engendering a huge interest in the use of EVs for non-invasive liquid biopsies, and the
EV diagnostics sector is projected to reach a value of $100 million by 2021 [29]. In recent years, several
examples of metabolite biomarkers have been published [30,31] and EV metabolomics holds great
promise against this backdrop.

Metabolites are described as any biologically relevant molecule <2 kDa in size. This comprises a
large range of molecular species, from steroid hormones and lipids to the metabolic intermediates of
nutrient anabolism and the monomers of the major biopolymer classes. Considering that all cellular
processes involve metabolites in some form, assaying of metabolomes can provide information on
any dysregulation to these in a manner analogous to using EVs to study cellular status. For example,
UHPLC-MS analysis of urinary EVs from prostate cancer patients identified abnormal levels of the
steroid hormone dehydroepiandrosterone sulphate (DHEAS), suggesting this metabolite as a potential
marker of prostate cancer and also as a means of monitoring disease progression [32]. Beyond
providing disease biomarkers, metabolomics can also illuminate fundamental EV biology. It was
shown that cancer-derived fibroblasts can supply nutrients to cancer cells through EVs, which further
illuminates the mechanisms of the tumour niche [33]. Elsewise, EVs can also act as “metabolically
active machines”, as proven by the metabolomic analysis of serum samples mixed with hepatocyte
EVs. Therein, alterations in the levels of over 90 metabolites were detected, signifying the presence of
functional enzymes in EVs [34].

Whilst EVs present exciting opportunities for metabolomics researchers, there are intractable
practical difficulties inherent to working with EVs that must be considered from the outset of any
potential projects—difficulties that mainly relate to the different classes of EVs and the heterogeneity
within these. For example, whilst isolation protocols can be targeted towards exosomes, the physical
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and biomolecular properties of exosomes, microvesicles and apoptotic bodies overlap, meaning that
any exosome-targeted preparation likely also contains other EVs as contaminants and it is difficult
to assign vesicle designation with full certainty [21,35]. Even then, supposing totally pure exosome
purification, the stochastic nature of vesicle biogenesis gives each exosome a potentially unique
composition [2]. Any subsequent omics characterisation thus provides information for the bulk vesicle
population and ignores the possible contribution of relevant subpopulations. EV subpopulations
are also problematic for sample preparation, as multiple reports have shown how different isolation
methods generate different results during downstream characterization [36–39]. The matrix from which
EVs are obtained may partially dictate the isolation method, but the choice is further complicated by the
increasing number of commercial and published EV isolation methods. Finally, production methods
can also bias EV composition. This has been demonstrated for EVs from two prostate cancer cell
lines produced from either standard culture flatware or from bioreactors, with the metabolic signature
of these models shifting depending on the cell culture conditions [40]. Fortunately, despite these
complexities, the actual metabolomic analysis of a purified EV sample is straightforward and does not
present any sample-specific issues. In our hands, established techniques of metabolite extraction and
analysis have proven sufficient in generating sufficient data. A workflow of possible methodologies
for an EV metabolomics study is presented below (Figure 1).

 
Figure 1. Key stages of the metabolomic analysis workflow for extracellular vesicle (EV) samples.
Methodologies of EV isolation can impact the metabolome and should be carefully considered
when comparing results from different studies. (CCM, cell conditioned medium; SEC, size
exclusion chromatography; GC, gas chromatography; HILIC, hydrophilic interaction chromatography;
RP, reversed-phase chromatography; Targeted analysis, detailed analysis of a predefined subset of the
metabolome; Non-targeted analysis, maximum metabolite coverage).

Herein, we aim to cover the recent findings from EV metabolomics studies whilst placing
an emphasis on the EV isolation and analysis methodologies used to highlight the best practices.
The key studies so far and their salient information have been collected in Table 1 for easy reference.
Consideration will also be given to the EV origins within studies, how the wider body of EV research
can inform future EV metabolomics studies and whether a gold standard of EV sample preparation
can ever be achieved. We will also cover how metabolomics of other sample types has been useful in
understanding the role of EVs as metabolically active machines. It should be noted that there is crossover
between EV metabolomics and lipidomics, as the size of biologically relevant lipids categorises them
as metabolites. Since EV lipidomics is a more established field and has been excellently reviewed
elsewhere [41,42], we have focused on metabolites as small polar molecules involved in cellular
processes of metabolism.
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2. Metabolomics of Patient-Derived EVs

Considering the potential of EVs for non-invasive liquid biopsies, the identification of robust
metabolite biomarkers in EVs is a key goal. Such studies necessitate the use of EVs extracted from
clinical samples for greater impact and translation. An instructive example comes from a metabolomics
study of urinary EVs (uEVs) in the context of prostate cancer [32]. Therein, 50 mL of urine from
patients with either prostate cancer (PCa) or benign prostatic hyperplasia (BPH) was sterile filtered
and frozen at −80 ◦C immediately following collection. Subsequent EV isolation from the urine was
performed by differential ultracentrifugation—first centrifuged for 30 min at 10,000 × g to remove the
majority of larger vesicles before pelleting of small uEVs at 100,000 × g for 75 min. Processing of all
uEV samples was performed by fractionation with methanol and chloroform into different phases
of metabolites for UHPLC-MS analysis. Through this methodology, researchers detected differential
metabolite content in the patient-derived uEVs and highlighted 76 of these as statistically significantly
different between the PBH and PCa samples. Crucially, 3beta-hydroxyandors-5-en-17-one-3-sulphate
(dehydroepiandrosterone sulphate, DHEAS) was raised in the uEVs from PCa patients compared to
BHP patients, potentially enabling clinicians to distinguish between these often-confused diagnoses.
The study continued with bioinformatics analysis of published gene expression data to identify a
decrease in steroid sulphatase in the PCa samples, correlating with disease progression. DHEAS is a
substrate for this enzyme, and its loss in advanced PCa suggests that DHEAS accumulation could also be
used to stratify patients according to disease progression. The question remains as to whether a baseline
DHEAS level could be established to show meaningful DHEAS deviations as a biomarker for initial
PCa identification. Furthermore, the pathological relevance of EV-associated DHEAS is potentially
interesting. No more than 10% of DHEAS is produced from the gonads of healthy males, instead
primarily originating from the adrenal glands [51]. It is possible that the dysregulation of the steroid
sulphatase gene in the cancer context could lead to more constitutive DHEAS signalling, exacerbating
prostate tumour severity. In all, this study highlights how a combinatorial approach of metabolomics in
combination with other methods can add value to diagnostics and provide new insights to disease.

Another proof-of-concept study for extracting EV metabolite biomarkers from biofluids was
established with the plasma of endometrial adenocarcinoma (EAC) patients [43]. Plasma was
obtained from 10 mL samples of blood from both EAC patients and control subjects before storage at
−80 ◦C. EVs were again isolated through ultracentrifugation, although with a first centrifugation at
16,500× g and the second at 100,000× g for 120 min. Methanol–chloroform fractionation was employed
to release metabolites and UPLC-ESI-MS was used for data acquisition. Due to inconsistencies
between the data and metabolite databases, accurate mass-based identification of the detected
metabolites could not be performed, beyond a few amino acids and substituted sugars. However,
principal component analysis of metabolites revealed a clear separation between the plasma of healthy
control subjects and those of the cancer patients, indicating the potential for even incomplete EV
metabolomics in disease identification. Both these studies used ultracentrifugation for EV purification,
albeit with some differences to their protocols. Previously described as the “gold standard” of EV
isolation [52], this approach is straightforward and well suited to generating proof-of-concept data.
However, ultracentrifugation is not appropriate for clinical diagnostics due to specific equipment
requirements [53]. Other isolation methods are also available, such as size exclusion chromatography,
immunoaffinity and precipitation-based methods. Each has their own advantages and drawbacks
in terms of selectivity and yield, and these have been described with detail in a recent review [54].
In the case of urinary EVs, different clinically relevant EV purification methods were compared against
ultracentrifugation, selected on the basis of minimal equipment requirement [37]. Said methodologies
comprised several commercially available EV isolation kits working on precipitation principals and a
method of lectin-based EV capture [55]. The protein and RNA composition of purified EVs was found
to be heavily influenced by the isolation method, with EV markers CD9 and CD63 nearly absent in some
purified samples. Inter-donor samples were also found to vary wildly in marker content when the same
isolation method was used, highlighting the difficulty of establishing biomarker baselines. Considering
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this evidence, it is essential that this comparative approach is extended to EV metabolomics in order to
ascertain whether there are similar method-dependent effects on EV metabolite content.

3. Metabolomics of EVs from Cell Culture

Whilst extracting EVs directly from biofluids has direct clinical prospects, there are advantages
to culturing patient-derived cells in vitro for understanding disease. Specifically, the EVs of
cancer-associated fibroblasts have been examined and a potential role found for their EVs in modulating
the metabolism of cells from the cancerous PC3 line [33]. This study took fibroblasts originally isolated
from cancer patient tumours and cultured these in either normal conditions or in media supplemented
with various 13C-labeled molecules including glucose, pyruvate, and lysine. Therein, the commercial
Total Exosome Isolation Reagent from Thermo Fisher was used to isolate EVs directly from the cell
culture media and the study employed complementary metabolomics approaches to characterise the
cargo of these EVs. GC-MS (gas chromatography) highlighted a high vesicular content of the nutrients
pyruvate and citrate, whilst UHPLC identified a number of essential amino acids, with glutamine
and arginine particularly enriched. Downstream functional studies proved that these metabolites,
which were supplied by the EVs produced in the presence of 13C-labeled molecules, could be taken up
and utilised by the receiving PC3 cells. The EVs were found to be within the size range for exosomes
(30–100nm) according to nanoparticle tracking analysis, and were positive for CD63.

Beyond considerations in EV sample preparation, some forethought must also be given to the
types of molecules one wishes to analyse. No single method is able to cover the entire spectrum of the
metabolome. This is well exemplified with the EVs from red blood cells in relation to malaria and the
transmission of the Plasmodium falciparum parasite by Anopheles spp. [44]. Understanding the processes
of mosquito attraction to humans requires the study of volatile organic compounds as the transmitters
of human scent over distances. Red blood cells from infected and non-infected volunteers were
cultured ex vivo and the resulting conditioned media subjected to differential ultracentrifugation for
30 min at 15,000× g and 110,000× g for 70 min for EV purification. Metabolite extraction was performed
concurrently with GC-MS using the headspace solid phase microextraction (HS-SPME) method. Briefly,
EV samples were sealed in GC vials in the presence of a divinylbenzene/carboxen/polydimethylsiloxane
fibre for 12 h at 37 ◦C before injection to the mass spectrometer. The HS-SPME GC-MS method
was chosen to select for volatile organic compounds, and 18 of such were identified from EVs,
of which diacetin was found to be increased in the EVs derived from infected red blood cells.
The ultracentrifugation supernatants were also analysed, and in turn, hexanal was found solely in
infected supernatants. Together, these are possible mosquito chemoattractants upregulated after
infection with P. falciparum. which were discovered by metabolomics.

Importantly, the method of cell culture can also impact upon the metabolite composition of
EVs, and may need to be considered when results of different studies are compared. This issue was
highlighted by a recent article comparing the EVs of two prostate cancer cell lines produced either in
conventional cell culture flatware or bioreactor culture [40]. Large and small EVs from either 20,000× g
or 110,000× g ultracentrifugation steps were collected from both the VCaP and PC-3 lines cultured
in either condition. EV samples were disassembled in acetonitrile and subjected to LC-ESI-MS with
separation with either reversed-phase or hydrophilic columns. EVs were found to possess broadly
similar physical characteristics regardless of the culture method, but significantly different levels of
459 metabolites were seen across both cell lines. Indeed, some molecules were unique to bioreactor or
flatware culture, indicating different pathways of metabolic activity in the producing cells altering the
identity of the resulting EVs. Whilst illustrative of the issues in EV sample generation, the implications
of this work go beyond the differential metabolite results. There is significant interest in translating
EVs as therapeutics to the clinic which will necessitate production scale-up to bioreactor levels from
the flatware of standard research laboratories. Functional metabolite cargoes have already been proven
in the case of cancer nutrient supply [33] and depending on the treatment modality of the candidate
therapy, their efficacy may be impacted upon changes in metabolite content. This study should serve as
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a warning to therapy developers to characterise their products at all levels during process development.
Moreover, understanding how the production conditions influence the metabolite content of the EVs
may highlight novel methods to modulate their innate content.

4. Enrichment of Metabolites in EVs vs. EV Source

Metabolite enrichment in exosomes can sometimes facilitate the detection of certain low-abundance
disease markers which are below the detection limit using the sample matrix alone. However, careful
quantification of metabolite concentrations in both exosomes and matrices is required to validate
enrichment. Failure to actively prove enrichment can have varied consequences. In the best-case
scenario, it may be that a raw matrix shows biomarkers at sufficient concentrations to enable diagnosis,
forgoing the need for advanced EV-targeted methods. However, it is more likely that a putative EV
biomarker is not significantly enriched when compared to the biofluid, invalidating EV-associated
biomarker application. More concerning outcomes are also possible. For the EV field, this is best
exemplified by the contamination of EV preparations by exogenous nucleic acids from foetal bovine
serum (FBS) media additives in a number of high-profile studies [56,57]. Prior to these cases, it was
assumed that the ultracentrifugation-mediated EV-depletion of FBS was sufficient to remove excipient
contaminants. Now, the findings of many publications have been called into question—a warning to
all not to take EV sample preparation pitfalls lightly. Similarly, the recent identification of “exomeres”
as distinct, functional nanoparticulate entities that can copurify with EV preparations may also present
issues in future [58,59].

Therefore, it is important to always analyse the EV source matrix alongside the processed
EV sample (e.g., the cell culture media direct from the bottle and without exposure to cells).
For ultracentrifugation-based EV studies, retention and analysis of the supernatant can also suffice
to determine any carryover from the cell culture media or biofluids, depending on the project.
Alternatively, commercial isolation kits typically function by precipitation methods, and the work
and supernatants from these should also be tested. A practical example comes from a comparative
study on uEVs and platelet-derived EVs (pEVs) [45]. Therein, the metabolite content of uEVs purified
by ultracentrifugation was measured by UHPLC-MS and compared to that of the originating urine
filtrate, alongside pEVs compared with the parental platelets. In both systems, there was a high degree
of metabolite overlap between the EVs and the source material, but certain classes of metabolites
were enriched in the EV samples, suggesting an active recruitment of these molecules into the EVs.
The largest changes in uEVs were observed for spermidine, ornithine and nicotinamide adenine
dinucleotide (NAD), each enriched >600-fold compared to urine. Nucleotide and amino acid pathway
metabolites were also significantly enriched. On the other hand, pEVs contained 11 unique molecules
compared to the source platelets which only had one, but the enrichments were less dramatic for
common metabolites. For example, a 250-fold upregulation of adenosine was the largest of these,
followed by carnitine and various carnitine derivatives with 10- to 50-fold enrichments. Finally,
inter-sample comparison of uEVs showed larger differences between the prostate cancer patients
and the healthy controls than in the comparison between urine samples. Further comparison of the
metabolite profiles from uEVs against pEVs revealed some common metabolites but also a broad range
of unique molecules, highlighting the point that specific biofluids will be better starting points for
specific diseases. Together, these data support the isolation of EVs as carriers of metabolites to identify
otherwise missable biomarkers.

5. Metabolomics of Non-EV Samples

It is interesting to note how the metabolomics toolkit can be applied to questions of EV biology
without direct EV analysis. This approach is well exemplified by complementary studies proving EVs
as metabolically active entities by assaying the blood metabolome after incubation with EVs from
rat primary hepatocyte culture [34,60]. Therein, small volumes of rat serum were incubated for 1 h
with the EVs collected from 110,000× g ultracentrifugation and the metabolites then extracted through
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methanol–chloroform fractionation for UHPLC-MS analysis. In both studies, blood metabolome
shifts were observed after incubation with EVs, specifically molecules of the arginine biosynthesis
pathway, demonstrating that EVs are capable of actively modulating metabolites with their enzymatic
content. This provides a novel concept of EVs as metabolic machines. These findings were further
developed for arginase-positive EVs in an assay of pulmonary endothelial induction [34], based on the
action of arginine as a nitric oxide precursor. The EVs inhibited the relaxation of isolated pulmonary
arteries, providing direct proof that EVs can effect physiological changes through metabolome
alteration. In related stories of active enzyme content, the presence of functional asparaginase,
α2-6-sialyltransferase 1 (ST6Gal-I) and extracellular nicotinamide phosphoribosyltransferase (eNAMPT)
have all been demonstrated in EVs [59,61,62]. eNAMPT is of particular note for its role in nicotinamide
adenine dinucleotide metabolism, heavily associated with mechanisms of aging. Given the rapid rate
of publication for these recent discoveries, it is exceedingly likely that metabolomics will reveal more
such metabolically active EVs in future [63].

6. Conclusions and Future Directions

EV metabolomics is a nascent field but one with great potential, as evidenced by the interesting and
varied findings presented in this review. The issues of EV sample preparation will always be inherent
but are not insurmountable, as long as methods are clearly reported alongside sufficient controls and a
suite of vesicle characterisation tests. That said, understanding in the field is continually evolving, as
exemplified by the issues of contaminating nucleic acids from FBS media [57] or the disputed use of
previously accepted EV markers [64]. To better facilitate inter-study comparison now and in posterity,
full reporting is essential. It is worth consulting the MISEV and EV-TRACK (Transparent Reporting
and Centralizing Knowledge in Extracellular Vesicle Research) guidelines in this regard [21,65].
These initiatives detail the minimal reporting requirements that should be included in a reproducible,
quality study. However, there are no specific instructions for metabolomics reporting as yet, and
these also need to be established or perhaps adopted from previous metabolomics standardisation
initiatives [66]. EVpedia has allowances for metabolomics datasets [22], and we encourage researchers
to fully utilise this resource and upload any findings to facilitate future bioinformatics analyses.

There is a great interest in using EVs for diagnostic purposes. However, the validation of
biomarkers of any sort is a lengthy pursuit with many regulatory hurdles where failure is possible [67].
In these early days of EV metabolomics, it is worth pre-empting these challenges as much as possible
through careful methodological planning. In this regard, it may be necessary to further standardise
working practices. For example, the amount of EVs used for metabolomics varies across studies.
One such work gives a vesicle count of 1010 particles for their experiments [45], and a similar number
should perhaps be adopted by the field to ensure consistency between datasets. Moreover, the vast
majority of studies presented here have used ultracentrifugation and the supremacy of this method as
the “gold standard” has been challenged in recent years. With the ever-increasing amount of published
methods, it is unlikely that a single best method will emerge and instead the choice of isolation method
will be determined by the end application. Toward this end, we recommend that clinically relevant
methods be adopted as soon as possible for biomarker studies [37,53]. Finally, the practical challenge
of detecting biomarker shifts in a given patient is also worth considering. These may be too subtle to
detect without previous patient sample data, necessitating a program of routine EV metabolite analysis
that is unfeasible in practice. Future efforts should be made to establish a baseline EV metabolome for
healthy humans from which deviations can be inferred.

EV metabolomics is useful for understanding certain EV functions, but questions remain regarding
fundamental EV biology. For example, the investigation of EV subpopulation metabolomes has not been
described, but may prove valuable to this area of high interest. This is a challenging task to undertake
due the already low yield of total EV samples, particularly with the highly selective purification
methods of marker-targeted affinity isolation or ultracentrifugation in combination with further
chromatography steps [21]. Nonetheless, inevitable improvements in the sensitivity of metabolomics,
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such as nanoflow liquid chromatography-nanoelectrospray ionization (nLC-nESI) [68], along with
more refined purification techniques, will hopefully enable these questions to be answered.

Despite the encouraging results collected herein, the full power of EV metabolomics is yet to
be realized. We have used examples from biological pathologies, but the metabolome changes from
physical stimuli can also be detected—as in the case of primates exposed to damaging radiation [46],
which could potentially prove useful in monitoring exposure levels of radiotherapy technicians.
Moreover, the metabolomics of pathogen EVs may further the understanding of infection from bacterial
species [47]. Elsewise, the studies with patient-derived EVs presented here have focused on cancer,
but metabolite biomarkers have already been suggested in neurodegeneration and even psychiatric
disorders [69]. Such pathologies present different challenges in identifying valid patient–control
cohorts but there is no reason that EV-targeted metabolomics may not prove useful in enriching the
scanty biomarkers in these contexts. We hope that having read this review, metabolomics and EV
researchers are encouraged to seek EV metabolite-related projects and contribute materially to this
promising field.
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Abstract: Human milk (HM) is considered the gold standard for infant nutrition. HM contains macro-
and micronutrients, as well as a range of bioactive compounds (hormones, growth factors, cell debris,
etc.). The analysis of the complex and dynamic composition of HM has been a permanent challenge
for researchers. The use of novel, cutting-edge techniques involving different metabolomics platforms
has permitted to expand knowledge on the variable composition of HM. This review aims to present
the state-of-the-art in untargeted metabolomic studies of HM, with emphasis on sampling, extraction
and analysis steps. Workflows available from the literature have been critically revised and compared,
including a comprehensive assessment of the achievable metabolome coverage. Based on the scientific
evidence available, recommendations for future untargeted HM metabolomics studies are included.

Keywords: human milk; metabolome; sampling; extraction; liquid chromatography–mass
spectrometry (LC-MS); nuclear magnetic resonance (NMR); gas chromatography–mass spectrometry
(GC-MS); capillary electrophoresis—mass spectrometry (CE-MS)

1. Introduction

Human milk (HM) has been markedly established as the optimal way of providing infants with
the necessary nutrients and bioactive factors for their early development. Many health associations and
organisms, including World Health Organization, recommend exclusive breastfeeding for the first six
months of life [1]. Health benefits of HM for infants include reduced mortality and morbidity, including
sepsis, respiratory diseases, otitis media, gastroenteritis, and urinary tract infections, among others [2].
In addition, studies reporting on long-term benefits of HM consumption such as lower risk of suffering
from type 1 diabetes and inflammatory bowel disease or overweight in adulthood emerged [3]. HM
may also be associated with a slightly improved neurological outcome as cohort studies report [4],
especially in preterm infants [5], although potential confounders must be accounted for [6].

HM composition is dynamic and influenced by several factors including genetics, gestational
and infant’s age, circadian rhythm, maternal nutrition, or ethnicity. It provides a series of nutrients
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such as lipids, proteins, carbohydrates, and vitamins, jointly with a number of bioactive factors that
contribute to several physiological activities in the newborn infant as well as to short- and long-term
outcomes [7,8]. Living cells including stem cells, hormones, growth factors, enzymes, microbiota, and
even genetic material are part of this vast array of HM components with impact in early development,
particularly the immune system [9]. In addition, HM appears to be one of the richest sources of
microRNAs [10]. On the other hand, because of the maternal environmental exposure and lifestyle,
the presence of some contaminants such as persistent organic pollutants or pharmacologically active
substances in HM has been described [11,12].

Due to its complex composition, the analysis of HM is not straightforward. While the advent
of “omics” approaches has offered valuable insights into the composition of this unique biofluid,
untargeted metabolomic and lipidomic studies have only recently been applied to HM [13]. The
comprehensive study of the HM metabolome, which includes the intermediate and end products of
metabolism, can shed light on maternal status or phenotype [14,15]. The generation, analysis, and
integration of large and complex data sets obtained in metabolomic studies go hand in hand with
the following challenges: (i) the intrinsic complexity of the sample: a rich variety of jointly present,
structurally heterogeneous compounds at concentrations that strongly vary covering several orders of
magnitude; (ii) pre-analytical steps related to sampling, storage, and pre-processing (e.g., extraction,
clean-up); and (iii) the diversity of platforms currently available including nuclear magnetic resonance
(NMR), as well as gas chromatography (GC), liquid chromatography (LC), and capillary electrophoresis
(CE) coupled to mass spectrometry (MS). The analysis of the HM metabolome has been approached
employing a variety of extraction and analytical techniques to respond to a spectrum of clinically
relevant questions. Several studies have compared HM metabolome with formula milk [13,16–20] or
with milk from other mammalian species including monkey [21], donkey [17], and cow [18], whereas
others have made efforts in defining the metabolome of preterm milk [13,16,22–26] and the evaluation
of the HM metabolome during the course of lactation [15,23,27–30]. Furthermore, the influence of
maternal diet [14,15,31], phenotype [14,32], obesity [30], or atopy status [33], as well as geographical
location [33,34], time of the day [29,35], chemotherapy [36], or preeclampsia during pregnancy [31] on
the HM metabolome have been reported.

Recent review articles that address the HM metabolome or lipidome [12,37–41] are available. For
information on the compounds and compound families typically found in HM and their function the
reader is referred to [37–40]. Readers with a particular interest in HM lipidomics are referred to a recent
compilation study [41]. Technical aspects of HM analysis when performing metabolomics studies
in HM have been recently described [12]. This review article gathers recent literature available on
metabolomic analysis of HM, particularly focusing on untargeted approaches as indicated in Figure 1,
to provide an up-to-date overview of the key factors that may influence HM metabolome coverage.
Based on the information provided within the available literature, recommendations to guide study
design and analytical method development of untargeted HM metabolomics assays were developed.

Figure 1. Flow diagram of literature selection and review process. Search “criterion 1”: term (“human
milk” OR “breast milk”), AND “metabolom*”, AND “infant”; only articles. Search “criterion 2”: term
(“human milk” OR “breast milk”), AND “metabolom*”, AND (“GC” OR “LC” OR “NMR” OR “CE”);
only articles. Web of Science database was employed for literature search.

130



Metabolites 2020, 10, 43

2. Considerations Regarding the Study Design

HM is a biofluid characterized by a dynamically varying composition according to several factors
including lactation time, time of the day, throughout each feed, maternal status, and the environmental
exposure. Although compositional variations have been mainly studied regarding the protein content
of HM [42], changes of other compound classes such as fat or vitamins have been also reported [43,44].
Considering the intrinsic variability of HM, the complexity of obtaining representative HM samples
is not negligible. Sources of variation related to sample manipulation and compositional variation
can be minimized using standard operational procedures (SOPs). SOPs are fundamental to maintain
quality assurance (QA) and quality control (QC) process and facilitate repeatable and reproducible
research within and across laboratories. However, biologically meaningful results across studies
will only be obtained if several key factors during the sample collection process are successfully
controlled. This is of special importance in untargeted approaches, where the interpretation of results is
especially challenging, and confounding factors introduced by a non-exhaustive sampling protocol can
be wrongly attributed to differences between subjects of a studied population. Conversely, biologically
meaningful information can be missed or remain unnoticed due to unwanted bias introduced during
sample collection.

The information regarding study design provided in HM metabolomics studies varies
considerably [13–24,26–32,34–36,45–47] as shown in Figure 2. Repeatedly reported factors
have been grouped into three categories and are discussed in detail in the following sections:
(1) maternal-infant-related factors (blue bars), (2) time-related factors (green bars), and (3) HM
collection-related factors (orange bars). It should be noted that, although the importance of each
factor might vary with the scientific question of each study, the authors encourage (i) the use of SOPs
employed during sample collection to assure homogenous and representative sampling and (ii) the
reporting of all documented factors in order to enhance comparability between results of metabolomic
studies on HM. In case of HM, samples are typically collected, handled and sometimes temporary
stored and transported by the mothers and not, such as it is the case for other biofluids (e.g., plasma
or serum), by health professionals. During study design it is therefore very important to assure that
mothers receive detailed instructions and/or training for the correct handling of collected samples. In
addition, one should keep in mind that sampling protocols should neither interfere with infant feeding
nor negatively impact on the mother-baby bonding. Hence, the collection of transitional and mature
milk is usually preferred over colostrum, especially in studies involving mothers of preterm infants,
where colostrum is usually kept exclusively for the infant’s supply.

2.1. Maternal-Infant-Related Factors

In HM metabolomic studies, gestational age is frequently reported (see Figure 2), although the
impact of this factor on the HM metabolome has not been fully characterized. Studies focused on
preterm milk showed that, analogously to full-term milk, its composition is dynamic throughout
the first month of lactation [13,16,22]. However, after 5–7 weeks, metabolite composition of HM
from mothers of preterm infants resembled that collected from mothers of full-term infants [23]. On
the other hand, Marincola et al. [13] observed that HM from mothers of early preterm infants (26
weeks of gestation) differentiated from milk samples from term infants. However, the low number of
samples involved in the study (n = 20 and n = 3 mothers of preterm and term infants, respectively)
hindered the assessment of the statistical significance of the impact of gestational age on the milk
metabolite composition. Sundekilde et al. [23] carried out a longitudinal study on milk from mothers
of preterm and full-term infants covering similar lactation periods (3–14 weeks and 3–26 weeks after
birth, respectively) and showed that some metabolites were present at significantly different levels in
full-term milk compared to preterm milk. On the contrary, Longini et al. [16] did not observe significant
differences between preterm and full-term milk within the first week after delivery, only being able
to discriminate milk samples from early preterm infants (<29 weeks of gestation). It is worth noting
that the effect of gestational age on the HM metabolome has been mainly studied employing NMR
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platforms [13,16,22,23], in which metabolite coverage is limited (see Figure 5) and some metabolite
classes (e.g., lipids) are barely accessible. For this reason, and in order to further evaluate the impact
of gestational age on the milk metabolome, we warrant more comprehensive metabolomic studies
employing complementary analytical platforms.

0 20 40 60 80 100
Percentage (%)

From 1 / 2 breast(s)
Breast cleansing
Full expression

Manual / Pump expression
Total volume

Sample container
Time with respect to baby’s feed

Time of the day
Time after delivery
Maternal diet

Parity
Birth mode
Infant gender
Maternal BMI
Maternal age
Gestational age

Figure 2. Reporting frequency of factors relevant to the human milk (HM) sampling process:
Maternal-infant-related factors (blue bars), time-related factors (green bars), and HM collection-related
factors (orange bars). Note: BMI = body mass index.

Other potentially relevant, miscellaneous information about the studied population of
mother-infant pairs such as infant gender, parity, and birth mode, have been frequently reported in
metabolomic studies (see Figure 2), although these characteristics often remain in the background since
the studies focus on other aspects. The influence of these factors on the metabolite composition of
HM has not been elucidated yet, and this might be addressed in forthcoming studies. An additional
factor that is not typically reported in HM metabolomics studies is maternal secretor status. Significant
differences in the oligosaccharides profile of milk between so-called secretors (Se+), which are those
mothers that provide a functional FUT2 gene, and non-secretors (Se−) have been reported [48]. Secretor
status is mainly established based on the presence (Se+) or absence (Se−) of 2’-fucosyllactose, with
a prevalence rate of approximately 80% of secretors over non-secretors [14,22,23,26,32,49]. Maternal
secretor status is therefore usually determined a posteriori during data processing and analysis.
Oligosaccharides are polar compounds that are present at concentrations in the mM range that will
likely be preserved during sample extraction procedures employed for metabolomics studies. As their
presence/absence might potentially affect clustering of milk based on maternal secretor status [24], to
provide this information, when available, might be of interest.

2.2. Time-Related Factors

HM undergoes significant changes over time, having established three differentiated lactation
stages: colostrum, transitional milk and mature milk. As can be seen in Figure 2, lactation time is
reported in the vast majority of metabolomic studies. In particular, several studies have focused on the
HM metabolome throughout lactation [15,23,27–30], all of them concluding that significant differences
in the metabolic profile over time exist. Therefore, it seems reasonable to report this factor. On the
other hand, although it has been demonstrated that diurnal variation affects HM fat content [50], its
effect on the overall metabolite composition is a controversial issue which has not yet been adequately
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addressed in the available literature. Whereas no significant changes in some lipids and small polar
metabolites have been observed [29,35], differences in some micronutrients (e.g., vitamins) could be
evidenced [44]. The use of a pool of a 24-h expression of HM should compensate for changes due
to diurnal variation, thus, obtaining more representative samples [13,24,25] in longitudinal studies.
However, the drawback is that this practice is incompatible with breastfeeding of the infant, which, in
turn, might raise severe ethical concerns. A feasible compromise for ameliorating diurnal variations is
the use of pooled morning and evening samples [29,35].

Regarding time of collection with respect to baby’s feed, the influence of this variable has not been
studied to date, but given the differences found between fore- and hindmilk [51], it seems reasonable
to assume that this factor might be potentially relevant.

2.3. HM Collection-Related Factors

Any uncontrolled variable within an experiment can result in a potential source of bias. In this
sense, although less attention has been payed to other factors related to the expression and storage of
HM (see Figure 2, orange bars), they may be relevant to the outcomes of metabolomic studies. As can
be seen, the type of sample container is indicated in 50% of the studies, whereas other specifications
regarding HM expression are included scarcely. The latter factor deserves some special attention, since
differences in the milk fat content between foremilk (initial milk of a feed) and hindmilk (last milk of a
feed) have been reported [51]. Therefore, full expression of breast(s) is desirable in order to obtain a
representative HM aliquot [52]. The influence of all other factors, to date, remains unstudied.

2.4. Pasteurization and Storage

HM banks rely on stringent protocols in which pasteurization, indispensable for minimizing
the potential to transmit infectious agents, as well as freezing and long-term storage procedures are
established. The pasteurization process affects some of the nutritional and biological properties of
HM [53–55]. In this review, three studies that use milk from HM banks are included [16,20,23], but
only one specifies whether or not HM has undergone pasteurization [23]. Variability of the metabolite
profile of HM caused by pasteurization has not been comprehensively explored to date. Future studies
focused on the systematic exploration of the effect of thermal treatment on HM are warranted.

HM is usually stored frozen employing −20 ◦C and −80 ◦C for short- and long-term storage,
respectively. However, duration of storage and the effect of repeated freeze-thaw cycles are identified
as additional factors with potential impact on HM composition that are missing in most published
studies. In lipidomic studies, the integrity of HM samples is preserved by subjecting HM to inactivation
of endogenous enzymes such as lipases in order to minimize lipolysis and lipogenesis. In this sense,
immediate storage at −80 ◦C is advisable [41]. Particularly for metabolite composition analysis, storage
at −80 ◦C is widespread [13,15,18,19,24–26,28,31,45,46], sometimes with a prior short-term storage at
−20 ◦C [14,21,22,27,29,33,34]. Wu et al. [29] investigated the effect of storage conditions by keeping
samples for different times at −20 ◦C and then transferring them to −80 ◦C versus storing samples
directly at −80 ◦C. Variations in duration of storage at −20 ◦C versus −80 ◦C showed no detectable
effect on the metabolites considered (e.g., lactose and other carbohydrates, choline and its derivatives,
and a variety of amino acids) by visual inspection of sample clusters in principal component analysis
scores plots. However, analysis of variance evidenced differences in butyrate, caprate, and acetate
contents. However, time of storage considered in this study was limited to two weeks, which is not
representative for conditions employed in clinical studies or standard home routines. It is therefore
clear that further studies are required in this regard.

On the other hand, HM employed for research studies is typically stored in small aliquots.
When working with raw milk, this procedure might introduce bias due to phase separation prior to
the preparation of the aliquots. Hence, the homogenization of HM with a disruptor, resulting in a
stable emulsion with reduced size of milk fat globules [56], as employed prior to the quantitation of
macronutrients with HM analyzers, might be advisable.
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3. Metabolite Extraction from HM

For metabolite extraction from HM, an array of methods has been reported. An overview of the
employed approaches is shown in Figure 3. The selection of the extraction method is conditioned
by the study objective and the subsequent analysis method. As in other untargeted metabolomics
workflows, for HM metabolomics, the selected sample preparation approach should enable a high
degree of metabolome coverage while making the sample matrix compatible with the analytical
platform. Other considerations might include the available amount of sample volume and the use
of one sample extraction procedure for subsequent analysis by multiple, complementary analytical
platforms [13,27,28].

Figure 3. Sample preparation approaches employed in human milk (HM) metabolomics.

Liquid-liquid extraction (LLE) is the classical extraction method employed in metabolomics and
lipidomics. This method, developed by Folch et al. [57] in 1957, uses a chloroform-methanol mixture
(2:1, v/v), which results in two differentiate phases: an upper phase containing polar metabolites and a
lower phase containing nonpolar metabolites. Subsequently, in 1959 Bligh and Dyer [58] developed a
modified method using a miscible chloroform-methanol-water mixture and later separated into two
phases by adding chloroform or water. Both approaches enable the separation of polar and nonpolar
metabolites, thus, allowing the analysis of a wide range of metabolites and making them compatible
with several analytical platforms. While the use of Bligh and Dyer LLE is widely extended for HM
metabolomics studies (see Table 1) [13,16–19,24,25,29,32], only Andreas et al. [28] used a modified
Folch extraction protocol for processing HM samples.

Methyl tert-butyl ether (MTBE) in combination with methanol has recently been proposed for
single-phase extraction [27]. MTBE is a nontoxic and noncarcinogenic solvent and it is therefore
considered a safe and environmentally friendly alternative to harmful solvents employed in traditional
LLE methods, such as chloroform, which is a suspected human carcinogen. In this extraction method,
a unique phase containing both, polar and nonpolar metabolites is obtained with a protein pellet at
the bottom (see Figure 3). Thus, the simultaneous analysis of lipidome and metabolome in a very
small amount of biological sample is achievable. This method has been successfully employed to
determine polar metabolites and fatty acids (FAs) in HM by GC-MS [27,28], as well as lipids and polar
metabolites by LC-MS [15,27,28], thus, increasing the metabolome coverage by the combined use of
complementary analytical platforms.
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Ultrafiltration makes use of centrifugal molecular weight cutoff filters. Different molecular weight
cut-off filters are commercially available for this purpose and repeated centrifugation steps might be
employed to remove proteins and lipids (see Table 1). Unlike single-phase extraction, ultrafiltration
allows to separate polar metabolites from the HM without dilution [14,21,22,29], however this method
does not have the capacity to study the global metabolome of HM. At present, this extraction method
has only been used in combination with NMR analyses [14,21,22,29].

Precipitation with organic solvents separates the polar and nonpolar metabolites of the proteins
that settle at the bottom of the tube which can then be easily removed by centrifugation. This simple
method has been employed for the analysis of polar metabolites by GC-MS after derivatization [36] as
well as for the analysis of polar and nonpolar metabolites by LC-MS without further pre-processing [18].
Furthermore, this approach has been implemented in more sophisticated workflows as recently
shown by Hewelt-Belka et al. [35]. Here, the authors combined LLE and a protein precipitation and
solid-phase extraction (SPE) procedure to prepare HM samples, thereby, enabling the detection of high-
and low-abundant lipid species (e.g., glycerolipids and phospholipids) in one LC-MS run.

4. Analytical Platforms Employed in HM Metabolomics

As reflected in Table 1, the use of all analytical platforms that are commonly employed in
untargeted metabolomics studies, such as LC-MS, GC-MS, NMR, and, to a lesser extent, CE-MS, has
been reported for performing HM metabolomics. 1H-NMR is the most frequently used technique [13,14,
16,20–22,26,28,29,31–33] for both, the analysis of polar and hydrophobic metabolites in HM. 13C-NMR
has been reported for the detection of triacylglycerols [20]. NMR is a highly reproducible technique that
allows a straightforward library matching after spectral alignment, while at the same time supporting
structural elucidation of detected metabolites. However, it presents lower sensitivity, and hence, the
achievable metabolome coverage is low in comparison to other analytical platforms.

All other analytical platforms rely on the use of MS detection. LC-MS provides high sensitivity and
is characterized by a huge versatility due to the availability of (i) a large selection of chromatographic
columns with a variety of stationary phases, that in combination with appropriate mobile phases achieve
compound separation based on different retention mechanisms and (ii) an array of different instrumental
configurations (i.e. different ion sources and mass analyzers). For example, reversed phase (C8, C18)
LC-quadrupole time of flight MS (LC-QTOF-MS) [15,18,27,28,35,46] and LC-Orbitrap-MS [24,25]
have been reported for the detection of both, polar and lipidic metabolites in HM; and hydrophilic
interaction LC (HILIC)-QTOF-MS for polar metabolite detection [35]. On the other hand, for the
successful screening of HM oligosaccharides, a porous graphitic carbon column installed on a LC-triple
quadrupole (TQD)-MS instrument was used [24].

GC-MS is the most suitable platform for measuring volatile compounds, while other non-volatile
compounds must be derivatized prior to analysis. For HM analysis, methoximation followed by
silylation or methylation are commonly employed (see Table 1). The most frequently used column is
the DB-5ms column for both polar and FA detection [13,17–19], in some cases with an integrated 10 m
pre-column (deactivated fused silica) [27,28,36].

Regarding CE-MS, only one study has been reported for polar metabolite detection in HM [28].
CE provides a series of advantages over other techniques, mainly due to the small sample volumes
employed and the efficient separation of polar compounds that is difficult to be achieved by LC
columns. However, issues with poor reproducibility, matrix effects and sensitivity may be hindering a
widely extended use of this technique for the analysis of complex biological samples such as HM.

Due to the diversified composition of HM, no single analytic technique can resolve the entire HM
metabolome. Only multiplatform approaches enable a comprehensive characterization providing a
high metabolome coverage including polar and nonpolar metabolites present in HM. In this sense,
two studies performing a multiplatform approach were found in the literature combining LC-MS and
GC-MS [18,27], and only one study that performed analysis using four different techniques (LC-MS,
GC-MS, NMR, and CE-MS) was reported [28].
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The use of high-end analytical platforms requires the implementation of QA and QC processes to
improve data quality, repeatability, and reproducibility, especially in untargeted metabolomics. For
practical guidelines on the use of QC measures in untargeted, MS-based assays the reader is referred
to [59]. Pooled QC samples are prepared by mixing small aliquots of the study samples, and therefore,
they are considered representative in terms of matrix composition and concentration ranges of the
metabolites present in the study samples. QC samples are analyzed repeatedly throughout the analytical
sequence alongside the study samples. The signal of each feature detected in QC samples can be used
to model and correct systematic changes in the instrument response during the analytical sequence.
Additionally, the obtained data can be used to perform intra-study reproducibility assessments
and to correct for systematic variation across batches. In HM metabolomics, Smilowitz et al. [14],
Andreas et al. [28], and Gay et al. [33] used QC samples for NMR studies, while Villaseñor et al. [27],
Mung et al. [46], Hewelt-Belka et al. [35], and Alexandre-Gouabau et al. [24,25] used pooled HM
samples for QC purposes in LC-MS-based assays. Considering the highly complex sample matrix of
HM, the authors strongly recommend the implementation of QC measures, including the analysis of
QC samples, to increase reproducibility and facilitate the joint analysis of data from different studies.

5. The HM Metabolome: Compound Annotation and Coverage

As in other areas of metabolomic research, compound identification is still a major bottleneck in
data analysis and interpretation. The Metabolomics Standards Initiative’s (MSI) defines four levels
of metabolite identification, which include: identified metabolites (level 1); putatively annotated
compounds (level 2); putatively annotated compound classes (level 3); and unknown compounds (level
4) [60]. Due to the limited availability of pure analytical standards required to reach level 1, biological
databanks and spectral databases are the most important resources for metabolite annotation (levels
2 and 3). A large number of databases are available today, providing different levels of information
and complementary data on chemical structures, physicochemical properties, biological functions,
and pathway mapping of metabolites [61]. The metabolomics community classifies these resources in
several categories: (i) chemical databases; (ii) spectral libraries; (iii) pathway databases; (iv) knowledge
databases; and (v) references repositories [62].

Regarding HM metabolomics, the most frequently used databases and libraries are: Human
Metabolome Database (HMDB) [63], Metabolite and Chemical Entity Database (METLIN) [64], National
Institute of Science and Technology (NIST) library, Fiehn RTL Library [65], LipidMAPS Structure
Database (LMSD) [66], Milk Metabolome Database (MCDB) [67,68], Kyoto Encyclopedia of Genes
and Genomes (KEGG) [69], MycompoundID with the evidence-based metabolome library (EML) [70],
Chenomx NMR Suite Profiles and other online university databases, such as CEU-mass mediator [71,72].

Metabolite assignment in NMR spectra has been performed based on literature data and
commercial resonance databases, such as Chenomx NMR Suite Profiles. Metabolite annotation
was contrasted with in-house libraries containing pure compound spectra. Some of the proposed
assignments were confirmed by two-dimensional NMR spectra, such as Correlation Spectroscopy
(COSY) [13,29,31,32], Homonuclear Correlation Spectroscopy (TOCSY) [13,31,32,34], Diffusion-Ordered
Spectroscopy (DOSY) [32], Heteronuclear Single Quantum Coherence Spectroscopy (HSQC) [32,34],
and Heteronuclear Multiple Bond Correlation (HMBC) [32].

In LC-MS and CE-MS-based studies of the HM metabolome, tentative metabolite annotation has
been carried out by matching of accurate masses, isotopic profiles, and/or fragmentation patterns
to candidate metabolites in online databases such as KEGG, METLIN, LipidMAPS, and HMDB [18,
24,25,27,28,35]. In-house built databases generated by the analysis of commercial standards are also
commonly employed [24,25]. In GC-MS, retention index (RI) corrections are made by analyzing a
fatty acid methyl ester (FAME) mixture standard solution and assigning a match score between the
experimental FAME mixture and theoretical RI values based on the values contained in the Fiehn
RTL library. Furthermore, metabolites were complementarily annotated by comparing their mass
fragmentation patterns with those available in Fiehn RTL and NIST libraries [13,17–19,27,28,36].
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A comprehensive list of annotated and/or identified metabolites in HM from untargeted
metabolomics studies [14,15,17–19,21–29,31–36] is reported in Table S1. This table contains information
about the metabolites reported in each reference, such as their molecular formula, IDs (LipidMAPS
and/or HMDB IDs), the extraction procedure performed, the analytical platform used, and the detected
metabolite class. Readers can select metabolites dynamically by filtering data according to the latter
information. A total of 1187, 111, and 128 metabolites were reported using LC-MS, GC-MS, and NMR,
respectively (see Figure 4). As shown in the Venn diagram, LC-MS and GC-MS allowed the detection of
36 common metabolites (mainly carbohydrates and FAs); a total of 29 metabolites overlapped between
LC-MS and NMR (principally oligosaccharides); and 21 metabolites (predominantly amino acids and
organic acids) were commonly reported in GC-MS and NMR based studies. Only 13 metabolites
were reported by all three platforms, i.e., creatine, tyrosine, arabinose, galactose, glucose, lactose,
maltose, capric acid/caprate, caprylic acid/ caprylate, citric acid/citrate, pyruvic acid/pyruvate, hippuric
acid/hippurate, and myo-inositol. These metabolites were assigned to different classes including amino
acids, carbohydrates, FAs, and organic acids.

Figure 4. Venn diagram of metabolites reported in human milk (HM) according to the technique in [73].
Note: GC-MS, gas chromatography—mass spectrometry; LC-MS, liquid chromatography—mass
spectrometry; NMR, nuclear magnetic resonance.

Based on the available data from the literature, the distribution of metabolite classes present in
HM according to each technique was assessed. As can be seen in Figure 5, the difference in detected
metabolite classes as observed by LC-MS in comparison to GC-MS and NMR is evident. Using GC-MS
and NMR, carbohydrates are the most reported metabolites in HM, followed by amino acids, organic
acids, organooxygen compounds, and organoheterocyclic compounds, with all these metabolite classes
being certainly less abundant in LC-MS studies. In the case of NMR, organonitrogen compounds
have also been reported, as well as nucleosides and nucleotides on a smaller scale. In the case of lipid
classes, fatty acyls have been identified by LC-MS and GC-MS with similar incidence and in lesser
extent by NMR. It is indubitable that lipid classes are more comprehensively studied by LC-MS assays,
where glycerophospholipids, glycerolipids, and fatty acyls are detected at relatively high abundances,
followed by sphingolipids, sterol lipids, and, to a lesser extent, prenol lipids.

Table 2 shows a list of metabolites reported in > 80% of studies employing either LC-MS, GC-MS,
or NMR-based assays. This table is intended to aid method development of future untargeted
metabolomics workflows tailored to the study of the HM metabolome, as it shows a shortlist of
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metabolites that should be detected by each platform regardless of the instrumental settings employed.
It should be noted that due to the high versatility of LC-MS, there is a greater variation in metabolites
recorded and in return, the list of consistently reported metabolites in HM across studies is shorter
than for NMR and GC-MS, where differences in experimental conditions and variations between the
employed detection parameters and instruments are smaller. Again, this table represents the high
orthogonality between the detected metabolites using NMR and LC-MS. While the use of LC-MS is
clearly of advantage for the measurement of different lipids, NMR provides information on amino
acids and small organic acids. Metabolome coverage provided by GC-MS falls in-between the other
two platforms, consistently providing information on lipids, sugars, amino acids, and organic acids.

Figure 5. Distribution of metabolite classes annotated and/or identified in HM according to technique.
Note: GC-MS, gas chromatography—mass spectrometry; LC-MS, liquid chromatography—mass
spectrometry; NMR, nuclear magnetic resonance.

Table 2. Most frequently reported metabolites (>80% of studies) according to technique.

Metabolite class LC-MS GC-MS NMR

Fatty acyls
Linoleic acid (C18:2) Oleic acid (C18:1)

-Oleic acid (C18:1) Palmitic acid (C16:0)
Palmitoleic acid (C16:1) Stearic acid (C18:0)

Glycerolipids DG (36:1) - -
Glycerophospholipids LysoPC (16:0) - -

Carbohydrates and
carbohydrate conjugates

-
Fructose

LactoseFucose
Ribose

Organic acids and
derivatives

- Malic acid
Urea

Acetate
Citrate
Lactate

Organo nitrogen
compounds - - Choline

Amino acids, peptides,
and analogues -

Alanine
Glutamate

Glycine
Pyroglutamic acid

Serine
Valine

Alanine
Creatine

Glutamate
Glutamine
Isoleucine
Leucine
Tyrosine

Valine

GC-MS, gas chromatography—mass spectrometry; LC-MS, liquid chromatography—mass spectrometry; NMR,
nuclear magnetic resonance; DG, diacylglycerol; PC, phosphatidylcholine.
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6. Conclusions and Future Perspectives

In less than a decade, 26 research papers have been published trying to shed light on the complex
and dynamic composition of HM and the feasibility of different options for sample extraction and
metabolite detection has been demonstrated. Due to the many factors that influence HM composition,
a thorough study design including SOPs for milk extraction, collection, and storage is indispensable for
obtaining biologically meaningful results. Multi-platform approaches are encouraged for providing
adequate metabolome coverage, as the diversity of compounds contained in HM will not be properly
reflected using one single assay. In line with metabolomics workflows tailored to other sample types,
the reproducibility of HM metabolomics studies will benefit from the implementation of QA/QC
procedures. Automated metabolite annotation and identification with pure chemical standards is
warranted and the authors encourage the use of publicly accessible platforms for enabling the exchange
of raw data for comparison between studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/2/43/s1,
Table S1: List of metabolites annotated and/or identified in HM metabolomic studies.
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Abstract: Plant-derived natural products have long been considered a valuable source of lead
compounds for drug development. Natural extracts are usually composed of hundreds to thousands
of metabolites, whereby the bioactivity of natural extracts can be represented by synergism between
several metabolites. However, isolating every single compound from a natural extract is not always
possible due to the complex chemistry and presence of most secondary metabolites at very low levels.
Metabolomics has emerged in recent years as an indispensable tool for the analysis of thousands of
metabolites from crude natural extracts, leading to a paradigm shift in natural products drug research.
Analytical methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) are used
to comprehensively annotate the constituents of plant natural products for screening, drug discovery
as well as for quality control purposes such as those required for phytomedicine. In this review,
the current advancements in plant sample preparation, sample measurements, and data analysis
are presented alongside a few case studies of the successful applications of these processes in plant
natural product drug discovery.

Keywords: metabolomics; plant natural products; drug discovery; metabolite extraction; liquid
chromatography; gas chromatography; mass spectrometry; NMR

1. Introduction

Nature provides a rich source of numerous bioactive compounds that have been extensively
employed in traditional medicine since time immemorial [1]. In recent years, the Food and Drug
Administration (FDA) has approved an impressive number of modern drugs that are also natural
products or directly derived therefrom [2]. These mostly constitute compounds belonging to secondary
metabolic pathways with prominent examples including taxol from Taxus brevifolia, vinblastine from
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Catharanthus roseus, doxorubicin from Streptomyces peucetius, and cyclosporine from Tolypocladium
inflatum [3,4]. The first step in the discovery of lead compounds from natural sources is the release
of bioactive metabolites from their biomass through various extraction techniques viz., supercritical
fluid extraction [5,6], microwave-assisted and ultrasonic-assisted extraction [7], molecular distillation
methods [8], and membrane separation technology [9]. Moreover, bioassay-guided fractionation using
chromatographic methods such as preparative high performance liquid chromatography (HPLC) is
applied for the isolation and purification of active metabolites from their crude extracts [10]. Further
technologies such as nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS), and
ultraviolet-visible spectroscopy (UV–Vis) have allowed the detailed characterization and ultimately, the
structural elucidation of these agents [11]. Finally, the bioactivity (effects in cell lines, animal models,
and human volunteers) is investigated for assessing the pharmacological potential of the candidate
compounds. Nevertheless, some pitfalls were observed when employing this classical approach for
lead compound discovery, where degradation or chemical modification of the bioactive compounds
during the process of isolation and purification often occurs. Furthermore, important biological
information that was present in the original extract might be lost during activity-guided fractionation
as the samples are not fully analyzed [12]. Moreover, better therapeutic effects were reported when
using the whole extracts, as practiced in traditional medicine, rather than a single-compound based
remedy. This effect could be attributed to the synergy between bioactive components (e.g., studies
showed the synergistic effects of different plant extracts and doxorubicin in cancer treatment [13],
Apocynaceae plants and antibiotics against Acinetobacter baumannii [14], and catechin and resveratrol
as antioxidants [15]).

Unlike the classical approach in natural products research, metabolomics experiments offer an
improved expedited route for drug discovery [16]. The basic goal of metabolomics is to provide a
comprehensive qualitative and/or quantitative analysis of all metabolites present in a living system [17].
Interestingly, this concept could be extended in natural product drug discovery via studying the
relationship between the whole metabolome of natural-derived remedies and their biological effects [18].
Implementing such an approach not only overcomes the aforementioned pitfalls of the classical
techniques used in natural product research, but also provides a broader insight of the biochemical
status and gene functions of the studied organisms. Furthermore, the signature between specific
compounds in the metabolome and their bioactivity could also be revealed, aided by advanced
bioinformatics tools, a process that can be highly useful in pharmacological standardization and
biological fingerprinting of natural extracts [19]. The workflow of metabolomics experiments involves
an efficient extraction of these endogenous metabolites to be subjected for qualitative and quantitative
analysis. However, unlike other omics technologies, no single analytical platform is capable of
analyzing all metabolites simultaneously due to their extreme complexity and huge chemical diversity.
Recent developments in analytical chemistry platforms such as hyphenating mass spectrometry
with gas chromatography (GC), liquid chromatography (LC) or capillary electrophoresis (CE), and
nuclear magnetic resonance (NMR) spectroscopy have led to a highly efficient set up for metabolome
analysis [20], however, these do not yet reach comprehensibility [21]. Although huge datasets are
generated from these instruments, the evolution of chemometrics and multivariate data analysis
algorithms provides a powerful tool for extracting useful information from such high dimensionality
results [22]. They enable, for example, the detection of compounds that correlate to the medicinal
efficacy in test animal or human systems based on their analytical spectral fingerprints [23]. Moreover,
pattern recognition and classification algorithms have also allowed the implementation of metabolomics
as an effective tool for the quality control of herbal medicinal products [24,25]. Nevertheless, metabolite
identification remains the most challenging aspect of metabolomics experiments [26]. Large mass
spectral and NMR spectral databases have been created to untangle such problems [27]. Furthermore,
bioinformatics tools based on molecular networking such as GNPS [28] and MetGem [29] have been
implemented not only to assign known metabolites from their complex mixtures, but also to elucidate
the chemical structures of novel compounds of interest.
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This review will discuss the recent developments of metabolomics in the context of plant natural
product drug discovery including current advances in sample preparation techniques and analytical
profiling platforms. In addition, computational tools employed for metabolomics data processing and
metabolites identification are reviewed. Finally, some successful applications of metabolomics in the
identification of bioactive agents and in the quality control of natural products are outlined, and an
outlook for the increasing use of metabolomics in these fields is provided.

2. Sample Preparation for Metabolomic Studies

In metabolomics studies, biological samples are collected, extracted, measured, and finally, the
resulting data are analyzed (Figure 1). Sample preparation is a crucial step in metabolomics as it greatly
affects the reliability of the metabolomics results. Minor changes in the sample collection, extraction,
or storage greatly affect metabolite stability and hence can lead to major changes in the observed
metabolome. Metabolomics samples have to be collected uniformly and rapidly to avoid changes due
to the fast enzymatic turnover rate [30]. The ultimate aim is to minimize the biologically-irrelevant
changes resulting from sample processing. Improper handling of biological samples is the most
likely source of bias in metabolomic studies [30]. In order to validate plant metabolomics studies, the
minimum parameters related to experimental design, sample extraction to data analysis should ideally
follow the Metabolomics Standards Initiative (MSI) [31].

Figure 1. Key steps of a plant metabolomics study. Additional steps can be performed or modified in
certain approaches based on the analytical methods or point of interest.
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2.1. Sample Collection

A wide range of biological samples have been extensively reported in metabolomics studies. This
includes tissues (animal-and plant-derived tissues), fluids (such as urine, whole blood, serum, sweat,
cerebrospinal fluid, breast milk, amniotic fluid, saliva, etc.), and cell cultures (human, animal, plant,
algae, etc.) [32,33]. Such complex samples have different matrices, and therefore, require different
sample preparation protocols. Here, we focus on natural products that are mainly derived from plant
origin, while also giving a general overview of other tissues. Depending on the natural abundance of
some metabolites and the level of detection, various amounts of biological material per sample have to
be considered. Usually, 1–100 mg of tissue, 10−250 μL of fluids, or 105−107 cells per each biological
replicate is required [33]. A minimum number of 3–5 biological replicates is recommended for each
condition in metabolomic studies [31]. Biological replicates (parallel measurements of samples from
different individuals) rather than technical replicates (repeated measurements of the same sample) are
to be considered [34].

2.2. Harvesting Methods

Sample freezing methods such as using dry ice or liquid nitrogen are highly recommended during
the harvesting of fresh samples to avoid enzyme-induced metabolic changes [31]. Removing unwanted
components such as soil particles is also recommended before collection. Long-term storage of samples
prior to extraction should, however, be avoided. For short term storage (e.g., for few days up to two
weeks), samples can be kept in liquid nitrogen, dry ice, or a −80 ◦C freezer [31]. Prior to extraction,
the harvested samples can be exposed to processing methods such as lyophilization, cell lysis, and/or
grinding, depending on the biological material. The conditions related to cultivation parameters,
collected tissue type, seasonality, developmental stage, harvesting time, and sample processing should
be reported for each condition since metabolites are greatly affected by such parameters [35], with
environmental aspects being reported to induce both qualitative and quantitative variations in the
metabolite composition of both plant primary and secondary metabolites [36].

2.3. Sample Extraction

Unlike the genome and proteome, which can be captured using a single extraction protocol, the
metabolome is difficult to capture within a single solvent due to the diverse chemistry of metabolites [37].
Therefore, complex biological samples, which as stated above, have different matrices, and therefore,
require different extraction protocols. Generally, metabolites are preferentially extracted with the
solvent following the rule of thumb “like dissolves like”. Polar and semi-polar metabolites can be
extracted with hydrophilic solvents such as hydro-alcoholic solutions, while, lipids can be extracted
with more hydrophobic solvents. Several protocols for metabolome extraction have been developed
and extensively reviewed [32,33,35,38–40]. The selected method must be rapid and efficient, whilst at
the same time, cover a wide range of target metabolites, thus maintaining a high level of precision
and accuracy.

Liquid–liquid fractionation provides significant simplifying steps compared to single extraction
methods [41]. Partial purification of each fraction is achieved via removing interfering compounds
such as hydrophobic molecules that are enriched in lipophilic solvents and more polar metabolites
in hydrophilic solvents [42]. While different extraction protocols are varied with regard to the
selected solvent(s) and the amount that is to be used, most protocols include a deproteinization
step. The presence of proteins in the analyzed samples can severely affect the instrument’s accuracy,
precision, and lifetime [43]. Extraction efficiency can usually be enhanced by selecting an extraction
solvent mixture consisting of one or two steps compared to single extraction solvent [33]. Liquid–liquid
extraction methods were based on the so called gold standard extraction protocols of the ‘Folch’ and
‘Bligh and Dyer’ methods utilizing chloroform/methanol mixture in different proportions [44,45].
Liquid–liquid extraction using chloroform/methanol/water have been used for the analysis of lipids
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and polar metabolites [46–49]. As a cleaner and safer solvent, methyl tert-butyl ether (MTBE) has
also been used as an alternative to chloroform for liquid–liquid extraction [50], particularly for
the recovery of metabolites and lipids from bacterial, plant, algal, flies, and diverse mammalian
samples [41,42,51–60]. The use of isotope-labeled internal standards during sample preparation is
recommended to assess matrix effects [39,61]. For the selection of suitable solvent(s) and an extraction
method that is suitable for different metabolite classes, readers are referred to the available extraction
protocol reviews [32,35,39,40,62,63].

2.4. Extract Concentration, Dilution, Enrichment, and Re-Suspension

In addition to liquid–liquid extraction, other methods such as organic solvent precipitation as
well as single step or multiple step solid-phase extraction (SPE) have also been used to partially purify
samples prior to analytical measurement [64]. After sample extraction, solvents are evaporated to
concentrate the metabolites. Samples are typically concentrated in a vacuum concentrator at room
temperature without heating. The use a nitrogen flow evaporator is recommended in cases where
metabolites are sensitive to oxidative modifications as, for example, some lipids. Finally, the dry
extracts are typically resuspended in an analysis-compatible solvent [43]. Dried samples can be
subjected to further steps such as derivatization before GC/MS analysis [49]. Short term storage of
extracted liquid samples, even at low temperature (−20 ◦C), is not recommended, however, samples
can be stored, if necessary, in a dry state for a short time prior to analysis [65].

3. Analytical Methods for Metabolites Analysis

The diversity of metabolites in the plant kingdom is staggering; a commonly quoted estimate
is that plants produce somewhere between 100,000 and one million metabolites [66,67]. Metabolite
measurements have been carried out for decades because of the fundamental regulatory importance of
metabolites as components of biochemical pathways, the importance of certain metabolites in the human
diet, and their use as diagnostic markers for a wide range of biological conditions including disease
and response to chemical treatment [37]. There are wide ranges of metabolomics approaches, which
ultimately aim to measure the entire small molecule complement of the cell. Current metabolomics
strategies are mainly reliant on four major approaches: gas chromatography-mass spectrometry
(GC-MS), liquid chromatography–mass spectrometry (LC-MS), capillary electrophoresis–mass
spectrometry (CE-MS), and nuclear magnetic resonance (NMR) spectroscopy. A number of detailed
protocols [49,63,68,69], in addition to several excellent technical reviews [70,71] regarding the utilization
of these analytical tools in metabolomics experiments, have been published, however, a brief technical
overview of these four major methods is provided herein.

3.1. Gas Chromatography-Mass Spectrometry (GC-MS)

GC-MS has been one of the most popular metabolomics techniques to measure the levels of volatile
and semi-volatile organic compounds in a wide variety of samples. In GC-MS, polar metabolites are
derivitized to render them volatile and then separated by GC. Various derivatization methods such as
alkylation, acylation, methoximation, trimethylsilylation, and silylation can be used [72,73]. Electron
impact ionization results in highly reproducible fragmentation patterns that are essential for large-scale
experiments [37]. A great advantage of GC-MS is that it is both relatively sensitive and highly robust, and
can routinely and reproducibly measure hundreds of analytes across thousands of samples [72,74–76].
That said, a technical challenge in GC-MS profiling is to separate each metabolite signal from overlapping
peaks in the raw GC-MS chromatogram [77]. Several peak-picking software packages equipped with
sophisticated peak deconvolution functions are available to deal with a relatively high-throughput data
of thousands of samples [77]. In addition, various databases have been developed to aid in assigning
structures to spectral peaks observed in metabolomics experiments [78–80]. Furthermore, limitations of
GC-MS have recently been improved by the development of two-dimensional GC × GC coupled with
high resolution mass spectrometry [81–84]. In this approach, two columns with different properties
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(non-polar vs. polar) are connected through a modulator, allowing further separation of compounds
that co-elute from the first column, thereby giving rise to enhanced resolution and peak capacity [85,86].
The GC-MS method has had myriad applications in plant, pharmacological, and medical metabolomics
studies, and is considered as one of most suitable techniques of the accurate determination of primary
metabolites, however, it is severely compromised in measuring some secondary metabolites. Several
classes of volatile and non-volatile metabolites such as phenolics, alkaloids, and terpenoids have been
analyzed and identified by GC-MS [79,87].

3.2. Liquid Chromatography-Mass Spectrometry (LC-MS)

Liquid chromatography-mass spectrometry (LC-MS) has become the most comprehensive
technique to measure a wide range of diverse metabolites. Unlike GC-MS, it does not require
prior sample treatment, and crude extracts obtained by simple extraction can be introduced directly
to the LC-MS. The choice of columns including reversed phase, ion exchange, and hydrophobic
interaction provides metabolite separation on the basis of differential chemical properties. Nowadays,
reversed-phase columns such as C18 or C8 are the most commonly used for LC gradient separation [63].
The development of ultra-performance LC rendered the technique even more powerful with regard to
resolution, sensitivity, and throughput. LC-MS is a unique method for measuring plant secondary
metabolites such as flavonoids and alkaloids [88–90], membrane lipids (lipidomics) [60,91,92], and
primary metabolites such as amino acids [93]. Despite the fact that LC-MS is the most comprehensive
technique in hand, LC-MS by no means approaches the metabolic complement of a typical plant cell [21].
This is mainly due to the poor availability of standard compounds for secondary metabolites [94].
In the past years, a considerable improvement in the number of metabolites that can be measured and
annotated has been realized, which is mainly due to the improved machine performance afforded by
the development of Ultra-Performance Liquid Chromatography (UPLC) coupled with high-resolution
mass analysis methods such as time-of-flight (TOF) MS, Fourier transform (FT) MS, and Orbitrap-based
MS [88,90,95,96]. In addition, this improvement has relied on increased efforts in the collection of
standard compounds and sharing of reference extracts [97–99] for use in peak annotation authentication
and by the increased sophistication of computational approaches for compound annotation (see the
web resources listed in [27,100]).

3.3. Capillary Electrophoresis-Mass Spectrometry (CE-MS)

Capillary electrophoresis (CE) separates polar and charged compounds on the basis of their
charge-to-mass ratio [74]. CE offers fast and high-resolution separation of charged analytes from small
injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique
providing (exact) mass information and enables molecular characterization based on fragmentation.
Although exquisitely sensitive and able to readily capture metabolite classes that the other platforms
do not, including nucleotides and highly charged metabolites [101], CE is time consuming and is
further hampered by the fact that it covers a range of metabolites that have highly diverse extraction
requirements. Therefore, the use of CE-MS in plant metabolism remains relatively rare [74,102].
In addition, CE has poor migration time reproducibility and a lack of reference libraries, which may
only be partially overcome by the prediction of migration time [103,104]. However, CE has some
distinct advantages over other instruments employed for metabolomics: mainly the facts that it
utilizes low separation volume, which is particularly suitable for the study of biological fluids in small
experimental animals, and operates under a homogeneous separation environment [105].

3.4. Nuclear Magnetic Resonance (NMR)

NMR spectroscopy is a powerful analytical tool that has traditionally occupied a vital position for
structure elucidation of natural products [106–110]. Unlike MS, NMR is not discriminatory and is less
biased as the results does not rely on the type of ionization condition or the preferences of the used
instruments [111]. Hence, this technique allows for the simultaneous detection of the abundant primary
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metabolites (organic acids, amino acids, and sugars) alongside secondary metabolites (alkaloids,
terpenoids, and flavonoids) as typically found in plant natural extracts [112]. In addition, NMR
is a very useful technique for the structure elucidation of novel and/or unexpected compounds
including those with identical masses and/or different isotopomer distributions [12,113]. Moreover,
NMR-based methods are highly reproducible, noninvasive, nondestructive, and require minimal
sample preparation as the sample does not get in physical contact with the device as in MS [114].
Another major strength in NMR spectroscopy lies in the direct proportionality between the NMR
spectrum signals and the corresponding real molar levels of the detected metabolites, making absolute
quantification of all detected metabolites possible without the need for calibration curves of individual
analytes, posing it as a powerful tool in quality control purposes of drug extracts [115]. However, a
five times delay of the spin–lattice relaxation times (T1) of the slowest relaxing nuclei in the extract is
essential in such quantitative experiments to avoid baseline distortions and increase the accuracy of
signal integration. This will significantly increase the duration of these experiments compared to other
routine NMR metabolomics methods.

Nevertheless, NMR also has a number of disadvantages in metabolomics analysis [116].
The technique’s major disadvantage is the low sensitivity as the polarization rate of the active
NMR nuclei obeys the Boltzmann distribution law. However, recent developments in NMR hardware
have at least partially improved this drawback to some extent. The use of superconducting magnets
that are commonly operated in metabolomics experiments at field resonance of 600 MHz can increase
the sensitivity and resolution of the detected signals [117]. Moreover, the development of cryogenic
probes in which the electronics are cooled down to a very low temperature (e.g., 20 K) has resulted in a
better sensitivity than standard probes via keeping the noise generated due to random thermal motion
of electrons at a minimum [118]. There are currently two types of cryoprobe available, the first is cooled
by a closed cycle helium cooler system, which yields a signal-to-noise enhancement up to a factor of
five. The second type is a liquid nitrogen-cooled system, commonly used in metabolomics experiments,
that is able to provide a sensitivity enhancement of up to a factor of three, but with the capability to
be cooled down and warmed up relatively quickly [119]. However, such probes may be of limited
relevance for samples with high ionic and/or dielectric conductivity such as those with salts or polar
solvents, commonly encountered in plant-derived samples [120]. That said, the low concentrations
of natural products remains a limitation of NMR analysis. To partially compensate for this, special
probes known as microprobes have been also developed in which the analysis of a few microliters of
samples could be possible, thus overcoming the limited availability of the samples [121] as is typical in
natural product studies. Dynamic nuclear polarization (DNP) is another interesting advancement that
has also been employed to enhance the sensitivity of NMR signals. The fundamental principle behind
DNP involves transferring the polarization of the electron spins to the nuclei of interest via microwave
irradiation close to the electron Larmor frequency, resulting in a temporary hyperpolarization in this
spin-active nuclei (usually naturally abundant 13C, 15N, and 1H). After the polarization transfer step is
completed, the sample is transferred to the NMR spectrometer to collect the enhanced (>1000-fold)
NMR signals [122].

3.4.1. 2D NMR Based Metabolomics Strategies

Although NMR methods have largely been employed primarily to identify compounds from pure
samples as in classical natural product research, they have recently played a larger role in the analysis
of mixtures of unfractionated natural extracts [123]. The bottleneck in such complicated analysis is the
congregation of the 1H NMR spectra, which could be untangled using two main strategies. The first
strategy aims to simplify the abundant 1H NMR spectra through the use of diffusion and/or relaxation
filters or through creating a projection of the 1H decoupled spectrum like in 2D 1H J-resolved NMR
experiments. Relaxation filters are pulse sequences that selectively attenuate, or even remove, signals
of components with shorter T1 or spin–spin relaxation times, T2 [124]. Hence, they could be utilized to
simplify the 1H NMR spectra through selective elimination of signals belonging to high molecular
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weight or rigid structure (quickly relaxing) compounds. They have also been implemented to attenuate
water signals using the water attenuation T2 relaxation Carr-Purcell-Meiboom-Gill (WATR-CPMG)
pulse sequence [125]. On the other hand, diffusion filter based experiments such as diffusion ordered
spectroscopy (DOSY) commonly simplify 1H NMR spectra based on the difference of the translational
diffusion coefficients between molecules of different molecular size, achieving what has be described
as “NMR chromatography” [126]. The DOSY experiments can be performed in 1D mode, where two
or more 1H NMR experiments are acquired for compounds possessing different diffusion coefficients
or in 2D mode (2D DOSY), where the proton spectrum is depicted in one dimension and the diffusion
coefficient is spread in an orthogonal dimension [127]. Interestingly, the extension of 2D DOSY to 3D
DOSY is gaining much popularity in metabolomics analysis via incorporating another proton dimension
as in 3D COSY-DOSY and 3D TOCSY-DOSY, or another carbon dimension as in 3D DOSY-HSQC [128].
Such DOSY methods have been recently applied in quality control and metabolic fingerprinting
of commercial natural extracts [128,129]. Furthermore, they have also been used to identify novel
metabolites from natural resources, for example, novel bromopyrrole alkaloids, and agesamides A and
B were identified in the crude bromopyrrole fractions from Okinawan marine sponges using the 2D
DOSY method [130]. 2D 1H J-resolved NMR experiments represent another approach that simplify 1H
NMR spectra where the overlapping resonance of the 1H dimension is resolved through representing
the coupling constant of each signal (J value) in a second dimension [131]. 2D 1H J-resolved NMR
has been widely used in metabolomics classifications studies [24,132], however, prior knowledge of
the chemical composition of the studied samples is required, which make this experiment of limited
utility in the analysis of novel compound discovery [108]. On the other hand, a newer approach called
pure-shift 1H NMR spectroscopy has emerged in which better removal of homonuclear J couplings has
been achieved [133]. In this experiment, J coupling multiplicities are collapsed into single lines via
implementing specific pulse sequences that result in a broadband homo-decoupled spectrum. This
method has been applied recently to investigate the metabolome of Physalis peruviana fruit aqueous
extracts [134]. The simplified data allowed for the identification of glutamic acid, a metabolite not
observed in previous studies of the same extract due to the heavy overlap of its NMR signals.

The second strategy that can reliably handle 1H NMR overlapping peaks is the spreading of
the crowded 1H NMR peaks in a second frequency dimension via magnetization transfer [135]. This
transfer could be between nuclei of the same type as in H–H correlated spectroscopy (COSY) and H–H
total correlated spectroscopy (TOCSY), nuclei of different types such as heteronuclear single quantum
coherence spectroscopy (HSQC) and heteronuclear multiple bond correlation (HMBC) experiments, or
through space as in nuclear overhauser effect spectroscopy (NOESY) and rotating frame overhauser
enhancement spectroscopy (ROESY) experiments [135]. Full details of these common 2D NMR methods
that have been used extensively in metabolomics analysis of natural products, and are thus beyond the
scope of this review, but can be found elsewhere [12,108,135,136]. It is noteworthy to mention that
spreading the crowded signals in indirect proton dimensions such as in COSY and TOCSY results
in a relatively short acquisition time due to the high natural abundance of protons, however, some
overlap might still exist as a region of only 10 ppm is employed. In contrast, using carbon as a second
dimension such as in HSQC and HMBC will require a much longer acquisition time, but allow the
resolution of the overlapping signals and the indirect dimension to be increased to more than 200
ppm units. Nevertheless, it should be noted that acquiring data using HSQC or HMBC can aid
in the detection of less abundant compounds compared to the direct acquisition from the carbon
channel as it is typical in 13C-NMR. It is worth mentioning that different pulse sequences have been
developed for quantitative HSQC experiments. For example, a new phase modulated pulse sequence
called the quantitative, offset-compensated, CPMG-adjusted HSQC (Q-OCCAHSQC) experiment
has been proposed to enable the use of HSQC spectra for the quantitative determination of many
primary metabolites [137]. However, a combination of different 2D NMR experiments is favored for
better analytical performance and enhanced identification strategies (e.g., COSY, (1H,13C)-HMQC,
(1H,13C)-HMBC, and NOESY) were used to analyze the unfractionated defensive secretion of the
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walking stick Parectatosoma mocquerysi identifying the novel monoterpene parectadial [138]. COSY,
HMQC, and HMBC have also aided in the identification of six terpenoids/sterol secondary metabolites
in the crude extract of Sarcophyton marine coral [139]. Similarly, a combination of 1H, 1H COSY,
HSQC, and HMBC have identified and quantified structurally related α- and β-bitter acids and
their degradation products in hop resin [140] using run times comparable to those used in HPLC.
Interestingly, in the same study, HMBC spectra coupled with multivariate techniques were utilized
as a novel approach for the classification of 13 commercial hop cultivars. Application of 2D-NMR
metabolomics for drug discovery is considerably easier in cases where the secondary metabolites are
naturally abundant as typical in the case of hop resin, which contains much lower levels of primary
metabolites [54]. In an interesting application of 2D NMR methods, differential analyses of NMR
spectra (DANS) has been oriented for natural products drug discovery and comparative metabolomics.
DANS uses a simple algorithm that graphically compares the 2D NMR spectra of different biological
states to spot the peaks that are discriminatory among this set of spectra. For example, 2D double
quantum filtered (DQF)-COSY was employed for DANS analysis of seven different culturing protocols
of the filamentous fungus, Tolypocladium cylindrosporum, leading to the detection and identification of
two novel indole alkaloids, TC-705A and TC-705B, in the unfractionated extracts [141]. Furthermore,
DQF-COSY experiments have been applied for the identification of signaling molecules in the model
organism Caenorhabditis elegans [142] and polyene antibiotic “bacillaene” from Bacillus subtilis [143]. On
the other hand, multidimensional NMR experiments have already been used to increase the resolution
of the newly developed benchtop NMR instruments [144]. Benchtop NMR provides inexpensive and
direct NMR access within any metabolomics laboratory, however, they suffer from decreased chemical
shift dispersion and peaks overlapping as they are typically operated in the range of 40–80 MHz proton
resonance frequency [145]. Benchtop NMR maintain the same J-coupling frequency as the high field
instruments since it is independent of the Larmor frequency, making it suitable for some metabolomics
and quality control applications, particularly in 2D modes [146].

3.4.2. Solid State NMR Based Metabolomics

Another exciting application of NMR spectroscopy is the analysis of semi-solid samples such
as fresh plant leaf or intact tissues via the implementation of high resolution solid state magic angle
spinning (HR-MAS) NMR [147]. In this technique, the sample is mixed with a minimal volume of
solvent. Next, an NMR spectrum is acquired using a special HR-MAS probe rotated at the angle
of 54.74◦ (the ‘magic angle’) and a spinning rate of 4 kHz. HR-MAS NMR provides spectra with a
similar resolution to that of classical liquid-state NMR techniques due to the elimination of chemical
anisotropies and dipolar coupling that hamper analysis of the solid states samples. This technique
requires few sample preparation steps, thus it is gaining much attention in the quality control of
herbal medicine and food analysis [148,149]. HR-MAS NMR has been also reported for the metabolic
profiling of red algae [150], carrot [151], and Arabidopsis [152] tissues. However, the method is
not fully quantitative as the local microenvironment in tissues or cells (e.g., pH) could affect the
metabolite chemical shifts, thus hindering its potential, as does the difficulty in incorporating a
reference compound [153].

3.4.3. Hyphenated NMR-Based Metabolomics

Whereas standalone NMR spectroscopy has unquestionable merits, on-line hyphenation of
separation techniques and NMR spectroscopy (HPLC-NMR) can provide another powerful workflow for
de novo identification of novo natural products in crude extracts [154,155]. In hyphenated HPLC-NMR,
a flow cell matching the HPLC module is used instead of conventional NMR probes [156]. The separated
analytes are eluted from the HPLC column to the crossed flow cell, and their on-line—1H NMR spectra
are recorded. Some drawbacks were observed in this setup, particularly in the case of applying a gradient
mobile phase [157]. Hence, most instrumental setups have changed from on-flow cell to stopped
flow HPLC-NMR, and further to the loop/cartridge storage devices that showed wider application
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in natural product chemistry [158,159] and secondary metabolite identification [160]. Another major
development in hyphenated NMR techniques is high-performance liquid chromatography-solid
phase extraction-NMR spectroscopy (HPLC-SPE-NMR)where a post-column SPE cartridge is used
as an analyte enrichment device prior to NMR acquisition [161]. In this setup, the HPLC eluted
component is allowed to be captured onto a solid adsorbent, allowing the HPLC mobile phase
to be removed. The adsorbed analyte is then transferred to the NMR probe using the minimal
volume of solvents with sufficient elution power (e.g., CD3OD, CD3CN). The decrease in analyte
chromatographic peak volume via the use of minimal solvent confers increased sensitivity of this
technique over conventional HPLC-NMR, in addition to significant cost reduction since employing
a deuterated HPLC mobile phase is no longer mandatory [162]. However, careful optimization of
SPE trapping is necessary from an analytical point of view, as some metabolites may not be trapped
onto the SPE stationary phase. In addition, the use of a small volume of deuterated NMR solvents for
flushing the required analyte from the SPE stationary phase is a critical parameter that needs to be
carefully optimized. HPLC-SPE-NMR has been applied in the structural characterization of secondary
metabolites belonging to different classes including flavonoids [163], terpenoids [164], steroids [165],
aromatic alkaloids [166], diarylheptanoids [167], iridoids [168], and saponins [169] and has great
potential in fields such as chemical ecology in which targeted metabolites are often signaling molecules
present at low levels [170]. Furthermore, multiple complementary hyphenated approaches including
PDA and MS have been integrated with HPLC-SPE-NMR as versatile platforms for authentication and
the structural identification of secondary metabolites directly from extracts [171,172]. The sample is
split after the initial HPLC separation with a small portion being routed for PDA and MS analysis and
the remainder to the SPE cartridges for collection [173]. HPLC–PDA–MS–SPE–NMR has been used for
the dereplication of six novel quinolinone alkaloids, named haplacutine A–F from the Haplophyllum
acutifolium crude extract [174] and 23 coumarins including six new compounds from the crude ethyl
acetate extract of Coleonema album leaves [175] and even minor metabolites could also be detected and
fully characterized using this advanced platform [176]. These developments thus suggest that NMR,
despite its lower sensitivity will retain a role in role in drug discovery in the decades to come.

4. Metabolomic Data Processing and Interpretation

GC-MS, LC-MS, and NMR are arguably the most relevant techniques within the context of natural
product discovery. GC-MS is a robust platform with great peak resolution in the chromatographic
dimension, capable of providing both stable separation and mass spectra fragmentation via its most
common ionization source, namely electron ionization (EI). This renders data processing as well as
metabolite annotation relatively facile for GC-MS. Well established methods for obtaining robust
retention indexes based on series of standards [49], together with the great stability of EI spectra,
result in an outstanding machine independent reproducibility of the results obtained and facilitate the
use of standard databases for the identification of analytes such as the Golm Metabolome Database
(GMD) and MassBank of North America (MoNA), among others [27]. The high resolution of the
chromatographic separation and stability of ionization also facilitates the deconvolution of mass
features into compound mass spectra and several relatively user-friendly tools are available that
are capable of performing all steps from the raw data to peak area and assessment and metabolite
annotation matching against databases [177–179]. However, the portion of the metabolome that can
be covered by GC is significantly limited by the necessary properties of its analytes, namely, being
volatile and stable at the high temperatures of analysis. Several compounds can be derivatized to fit
such properties, this is unfortunately not the case for most natural products. Moreover, compound
annotation relies almost exclusively in matching against known compounds in databases. De novo
annotation of compounds based solely on an analyte mass spectra and chromatographic behavior is
uncommon. This is because the interpretation of EI spectra is very complex due to the high degree
of fragmentation, which can be partially mitigated by the adoption of a milder ionization source
such as chemical ionization. Finally, GC has a disadvantage in relation to LC as it cannot be easily
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translated into a purification technique for further characterization of unknowns by more powerful
structural techniques such as NMR. Still, a few interesting attempts have been made in expanding
GC-MS structural elucidation such as the work by Matsuo et al. [180]. Here, the authors achieved
considerable improvements over traditional spectra and retention index matching approaches by
integrating multiple cheminformatics procedures including the use of quality controls to reduce mass
spectra background noise and remove artifact peaks, principal component analysis for the selection of
biologically relevant variables, EI-MS spectral search in databases, and both retention index filtering
and predictions [180]. A further peculiarity of GC-MS is the lack of linearity with respect to quantitation
across peaks, requiring quantitative analysis to be made on an analyte by analyte basis [181,182].

LC-MS is the most versatile technique in terms of metabolome coverage and certainly the most
relevant for rapid dereplication of natural products in complex mixtures. Its high sensitivity combined
with the multitude of stationary phases with different chemistries and ionization sources covering
a broad spectra of different compounds allows it to be optimized for nearly every class of natural
product. The greatest challenges faced by LC-MS are related to the susceptibility of the results to the
many factors influencing separation and ionization efficiency such as changes in solvent composition,
column stability, electrospray formation, ion suppression, and other so-called matrix effects. These
factors negatively affect spectra and retention reproducibility. The resulting shifts of compound
retention times across multiple runs are hard to predict or account for with procedures such as the
calculation of retention indexes for GC. The lack of reproducibility in both retention and spectra make
the identification of known compounds based on database matches significantly less efficient than for
GC. Data processing is also a more challenging task since the lack of ionization stability combined with
the lower resolution of LC separation complicates combining mass features into compound spectra,
resulting in much more complex datasets with an overwhelming amount of mass features. Despite all
of these challenges, the great flexibility of LC-MS can lead to intensive developments for this technique
within the context of metabolomics and several pipelines are available to process, analyze, and interpret
LC-MS based metabolomics data [32].

Considering that the focus of this review is on the discovery of plant natural products, we mainly
describe the processing of untargeted metabolomics experiments, defined as the unbiased processing of
all signals within a dataset. Several excellent freeware are currently available for the processing of mass
chromatograms with some popular options including XCMS [183], MZmine 2 [184], OpenMS [185],
and MS-DIAL [179], all of which have been extensively used for diverse sets of metabolomics data.
All of these software work on similar principles, identifying m/z signals above a certain threshold as
well as the boundaries confining the chromatographic peak representing these signals over time (often
referred as features) and returning the respective peak areas/heights. After peak detection, they are
usually aligned across multiple samples prior to data analysis. One of the first challenges in processing
the resulting data matrixes is the sheer number of features resulting from this process, usually in
the order of tens of thousands, much of which are uninformative or redundant, being attributed, for
example, to background noise, contaminations and in source fragmentation. Several practices are
commonly included in experimental design to assist in the elimination of these signals in the initial
steps of data analysis. The inclusion of extraction blanks and technical replicates of quality controls are
good examples of such practices and have been shown to be useful for the identification of features
that do not originate from the samples or that exhibit low reproducibility [186]. This data cleaning
process can significantly facilitate further steps of data analysis, particularly for the identification
of features that are most relevant for the separation of experimental groups, for instance, in activity
guided fractionation of complex extracts [187]. Another challenging and essential aspect of processing
untargeted metabolomics experiments is the identification of features representing fragments, adducts,
and isotopes of a same compound. As mentioned before, this process is much more challenging
for LC-MS in relation to GC-MS, however, there are a few tools such as CAMERA [188], which can
assign putative identity for features based on their retention time and correlation in relation to one
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another as well as mass differences matching common adducts and in source fragmentation patterns
in electrospray ionization.

Particularly relevant for the identification of compounds by mass spectrometry are the experiments
including tandem MS fragmentation of either specific ions in a data-dependent acquisition mode (DDA),
or of all ions in a data-independent acquisition mode (DIA). Both types of experiment provide second
order MS spectra (MS/MS), which are more informative and suitable for compound identification
based on matching spectra signals against databases. In DDA experiments, specific ions are isolated
and fragmented, therefore all signals in the MS/MS spectra correspond to fragments of the isolated
ions. In DIA experiments, larger isolation windows are combined to fragment all ions in first order
spectra, therefore there is no link between parental and daughter ions but with the advantage of a
comprehensive fragmentation. Several specialized tools as well as extensions to the tools previously
mentioned were developed to process such MS/MS data, a few examples including MetDIA [189],
which is based on algorithms from XCMS, and MS-DIAL [179], which was developed with a particular
focus on processing DIA data despite also being able to process DDA and GC-MS data.

MS/MS spectra are currently the starting point for most mass spectrometry based structural
elucidation approaches. The initial procedure usually consists of using the experimental data to search
matches through different databases. Several relevant databases for natural product discovery were
recently reviewed by Wolfender et al. [190]. We highlight here some of the open source alternatives
that are particularly interesting for including curated experimental MS/MS data. Some extensive
metabolome databases such as Metlin [191], MassBank [192], MoNA, European MassBank, Global
Natural Products Social Molecular Networking resource (GNPS) [28], and Human Metabolome
Database (HMDB) [193] include experimental MS/MS data from a large number of natural products
from different sources. Additionally, other databases oriented toward specific organisms such as
ECMDB for E. coli, YMDB for yeast, and ResPect for plants, also provide access to extensive collections
of experimental MS/MS data [194]. Most of these alternatives have their own inner structures,
hence the functionalities for querying and extracting data vary. An interesting feature that is worth
noting for large scale metabolomics is a database integration with other data processing and analysis
pipelines. Metlin provides the largest individual collection of MS/MS experimental data acquired
in multiple collision energies and despite being the only one of the larger databases mentioned to
impose restrictions on downloading data, it is directly integrated with the XCMS online processing
platform [191]. MZmine 2 incorporates functions to directly query Kyoto Encyclopedia of Genes and
Genomes (KEGG), HMDB, Yeast Metabolome Database (YMDB), LipidMaps, the European MassBank,
Chemspider, and Metacyc [184]. MS-DIAL allows for the uploading and automatic matching of
spectra against user-defined libraries in the msp. format, the commonly used text-based format for
metabolomics spectra [179]. It also provides multiple libraries for download in this format including
MassBank, ReSpect, and GNPS, among others.

One of the major obstacles for mass spectrometry based annotation in metabolomics is the lack of
characterized standards for the majority of the different compounds found in nature. Therefore, several
alternatives have been developed to cope with this limitation. Most large metabolomics databases
such as Metlin and HMDB have significantly expanded their coverage by including in silico generated
MS/MS spectra of known compounds for which no experimental data are available, usually based on
machine learning or quantum mechanics calculations [195]. Similar approaches have also been used to
predict putative compounds based on the MS/MS spectra. These functionalities are provided in tools
such as CSI:fingerID [196] and MS-FINDER [197]. Another interesting and popular approach provided
via the GNPS database is to construct networks based on spectra similarity and extend annotations
based on the assumption that related metabolites exhibit similar second order spectra [28].

Additionally to the mass spectra, LC-MS provides another measure with intrinsic structural
information, which is the retention time. However, as previously mentioned, there are multiple factors
affecting retention time in liquid chromatography that are hard to predict and control to a similar
extent of what is done in gas chromatography. Therefore, few approaches for metabolite annotation
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and cataloguing include retention time information. It is worth mentioning a few recent efforts in
integrating this extra information in spectral libraries such as the WEIZMASS [97] as well as strategies
for in silico prediction of retention indexes as that provided by PredRet [198].

Finally, there are also approaches for compound annotation that are independent of the acquisition
of tandem mass spectra fragmentation. Most untargeted metabolomics platforms nowadays rely on
high resolution and high accuracy m/z measurements provided mainly by QTOF and Orbitrap-based
systems. Directly matching putative molecular ion masses against databases is not as reliable as MS/MS
spectral matching, it can however, still bring valuable insights in putative structures and the higher
accuracy measurements provided by those systems can provide a significantly smaller search space.
This is particularly useful when genomics and taxonomic data can be integrated into the search to
even further restrict the space of reasonable matches. Unfortunately, this information is still often
scarce and not well structured, with few databases providing extensive collections of curated data.
One exception worth mentioning is the KNApSack database, which provides the distribution of over
50,000 compounds across over 20,000 different species [199].

5. Successful Applications of Metabolomics in Natural Products Discovery

5.1. Metabolomics for Secondary Metabolites Identification

In the science of natural product discovery using metabolomics, the separation of metabolites
is usually performed using GC or HPLC, which is generally coupled with on-line MS detection. MS
fragmentation spectra provide precise information on the structures, and it is thus common to record
multiple-stage MS data with the spectra of two or more products (MS2, MSn, where n is the number of
production stages) [200]. As above-mentioned, several MS-based databases and software tools are now
applied for natural products identification; these databases include the Golm Metabolome Database
(GMD) that uses GC retention indices and electron impact (EI) mass spectra, all acquired under defined
conditions as mass spectral tags (MSTs) for both neat authentic standards as well as plant extracts in
GC-MS data [78]. When GC-MS data of a plant extract are obtained, the MST of its components can be
matched to the GMD to record either known metabolites or unique identifiers for unidentified peaks in
complex plant extracts. There is also the decision tree search, which predicts substructures of unknown
metabolites, even if the full structure cannot be predicted [78]. METLIN, a MS/MS database, includes
about 62,000 spectra representing more than 12,000 metabolites. These spectra were acquired under
standardized conditions using electrospray ionization in positive and negative ionization modes on a
quadrupole time-of-flight (QTOF) mass spectrometer [201]. The limitations of this database are the lack
of chromatographic data and closed design. Meanwhile, MassBank is a database of high resolution
MS-based platforms (GC-MS and HPLC-MS). All MassBank has spectral information, and some have
chromatographic information, but there are no retention times (or indices) data [192]. In contrast,
ReSpect is an MS2 database specific to plant metabolites. The main advantage of this database is that
spectral records are annotated with taxonomic information about the species from which a particular
metabolite has been extracted and to which structural class the metabolite belongs [202]. Similarly, the
Global Natural Products Social Molecular Networking resource (GNPS) is an MS2 database for natural
products [28]. Several databases are considered as an important tool to facilitate the dereplication
process [80,203].

NMR is the most powerful technique with respect to structure elucidation, as it is highly
reproducible, quantitative, requires simple sample preparation, and is able to measure analytes over a
wide range of solvent conditions [204]. It is, however, limited by being slower and less sensitive than MS,
and as such, it cannot easily be used as a routine technology in metabolomics. Instead, its application
is mainly limited to measuring the most abundant metabolites in the sample [205,206]. In natural
product discovery, fractions with the metabolites of interest are separated through chromatographic
runs and then subjected to off-line NMR analysis. It is more common in applications of metabolomics
to make NMR analysis of plant extracts or biological fluids without chromatographic separation [80].
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The applications and limitations of NMR databases that are particularly useful for natural products
discovery are discussed in Table 1. To search in one of the mentioned NMR databases, the obtained
spectra should be processed and interpreted using external software and entered into a web interface
as a peak table. The rNMR software interfaces convert spectral peaks to a searchable file format, so can
be used in the MMCD database [207]. On the other hand, SpinAssign is used for the identification
of compounds using the 13C-HSQC spectra of complex cell extracts [208], while the MetaboHunter
and COLMAR tools are designed to search the NMR spectra of mixtures against those of a subset of
metabolites in HMDB and BMRB [209,210].

Table 1. Nuclear magnetic resonance (NMR) databases and computational methods.

Database Applications Notes References

NAPROC-13

Is useful in cases of
dereplication as it has more

than 20.000 of natural product
spectra and inclusion of
metabolite classification

Its closed design, there is no user
access to spectral data.

13C-NMR spectra, molecular formula
or predicted molecular weight can

only be searched separately.

[211]

NMRShiftDB
Not limited to NP and has

51,000 collected spectra.
It accepts submissions

It lists NMR chemical shifts, but not
peak size. [212,213]

SDBS

Not limited to NP and has
29,000 collected spectra.
It uses multiple kinds of

spectra in a single search.

Does not accept submissions. [214]

BML-NMR

The spectral depth of 16
different one- and

two-dimensional experiments
for each compound provides

high quality references

Covers only 208 compounds, but each
compound is measured with 16

different NMR parameter sets which
provides high quality references.

These metabolites were selected based
on their importance within metabolic

pathways and their detection
potential by NMR. They were

analyzed at pH 6.6, 7.0, and 7.4.

[215]

BMRB database

Contains NMR data for
various biomolecules with a

focus on protein, peptide, and
nucleic acid spectra.

Spectra are available for
downloading in raw and
processed data formats

The database mainly covers the
compounds involved in the lignin

biosynthesis which is a plant cell wall
constituent and the compounds

obtained by plant cell wall
deconstruction.

[216]

NAPROC-13: Carbon-13 Database of Natural Products and Related Substances; DB: Database; SDBS: Spectral
Database for Organic Compounds; BML-NMR: Birmingham Metabolite Library; BMRB: Biological Magnetic
Resonance Data Bank.

There is an increasing tendency in metabolomics to analyze the same sample by both NMR and
MS. Taking advantage of both methods enables a better coverage of the metabolome [217,218]. NMR
allows the identification of trends in metabolic alteration across core metabolic pathways, while MS
provides the identification of the minor metabolites. The integration of NMR and MS can increase
the size of the obtained dataset with the added complexity of the simultaneous processing, analysis,
and interpretation of two dissimilar data types [218,219]. Indeed, as described below, LC-online-NMR
has been proposed as a route toward improving coverage of the metabolome. However, despite the
advocacy of this approach, relatively few examples of its utility have been published to date [106,114].
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5.2. Metabolomics in Defining or Refining the Pathway Structure of Plant Natural Products

Given that this subject has been extensively reviewed [3], we will keep this section short, suffice to
say that the chemistry of many medicinal plants has remained largely unexplored. Despite the advances
of synthetic biology for the production of medicinal compounds in heterologous hosts (described
in the section below), the native plant species often remain the most reliable and economic source
for their production. It is thus of fundamental importance to investigate the metabolic composition
of medicinal plants to characterize their natural metabolic diversity and to define their in planta
biosynthetic routes in order to develop strategies to further increase their content. In this vein, the
cases of benzoisoquinoline and monoterpenoid indole alkaloids, cannabinoids, caffeine, ginsenosides,
withanolides, artemisinin, and taxol represent interesting case studies in which the contribution of
recent integrative metabolomics and genomic approaches in augmenting earlier biochemical strategies
have helped to elucidate their metabolic pathways and cellular compartmentation [3].

5.3. Metabolomics to Aid Metabolic Engineering of Secondary Metabolites Production

A recent approach in the field of metabolomics is its use as a generic debugging tool for engineered
microbial production systems that arise as a result of advanced synthetic biology. The synthetic
biology of secondary metabolite production is not restricted to the awakening of the cryptic metabolite
production encoded in newly sequenced genomes, but it also serves in modifying and recombining the
modular biosynthesis apparatus found in nature, which leads to the generation of novel chemistry, in
addition to the more ambitious re-engineering strategies such as refactoring, which means replacing
the native regulatory machinery by fine-tuned designer systems or the improvement of production
levels through the redeployment of primary metabolism [220].

In a metabolomics study of the consequences of an overexpression of ncRNA-based regulatory
element in Streptomyces coelicolor [221], where ncRNA affected not only the nearby metabolites, but also
the metabolite levels that showed rapid changes throughout the metabolic network of the organism.
The reproducibility of the metabolite dynamics was ensured by repeated metabolite profiling. Another
application is the detection of the accumulated toxic side products and intermediates, or the depletion
of required precursors, which is considered as metabolic bottlenecks. In these cases, metabolomics
provides an unbiased overview of the metabolic status of a system and its changes due to the
overproduction of compounds of interest, which in combination with systems biological modeling can
drive cycles of refined engineering [222]. The Streptomyces lydicus metabolome was characterized in
various cultures where the critical precursors of streptolydigin were identified through the depletion
in overproducing cultures. Here, the added precursors (glutamic acid and proline) led to an increase
in streptolydigin production, with no effect on the strain growth. Therefore, metabolomics approaches
enabled the identification of the major bottleneck in the system with no need for understanding the
underlying metabolic and regulatory network [223].

Given the massive diversity of secondary metabolism in plants, a recent approach to metabolic
engineering has been combinatorial biosynthesis, an engineering strategy that allows for the generation
of novel, structurally similar, but distinct compounds, which is achieved by combining biosynthetic
genes of related metabolic pathways from different organisms in a single host [224–226]. This requires
the use of enzymes that have relaxed specificity and thus are able to incorporate derivatives of
their natural substrates. Other than pioneering studies on the synthesis of novel carotenoids in
nonphotosynthetic Escherichia coli [227], a few other reports of successful targeted combinatorial
biosynthesis of (novel) terpenoids in plants exist. For example, the biosynthesis of monoterpenoid
indole alkaloids (MIAs) in the Madagascar periwinkle (Catharanthus roseus) was carried out following
the expression of two different bacterial halogenases, yielding new-to-nature halogenated MIA
derivatives [228]. Similarly, biosynthetic genes of five different plants were combined in yeast
to produce a monoglycosylated triterpene saponin that does not occur in any of the parent plant
species [229]. Moreover, artemisinin was recently transferred from the medicinal plant of origin into the
crop plant tobacco [230]. In all of the examples above, metabolomics was instrumental in confirming
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the novel natural products. It is important to note that this subject area is currently in bloom and it
seems reasonable to anticipate that many more examples will follow shortly. Furthermore, the labelling
approach in metabolomics such as 13C-based metabolomics studies, can also be applied for discovering
novel secondary metabolism [231–233]. Although this technique needs a single source of carbon or
nitrogen, this can be achieved by tracing the distribution of a class-specific precursor to side branches
of the metabolic network [234].

5.4. Metabolomics and Dereplication

Another application of metabolomics is the dereplication of the natural product biosynthesis
at different development stages through the use of various analytical methods, the bioassay guided
isolation, thus rapid dereplication of known activities is efficiently delivered [235]. High resolution
Fourier transform mass spectrometry (HRFTMS) is usually used for dereplication of secondary
metabolites together with LTQ-Orbitrap and high resolution NMR. Identification of high resolution
MS and NMR of the metabolomes is undertaken using the online and in-house databases. Multivariate
analysis allows the Fourier transformation of the FID (free induction decay) of multiple samples
data, in order to statistically validate the parameters to produce biologically novel secondary
metabolites [236,237]. Combining PCA with dereplication and molecular networking was applied on
microbial extracts for the discovery of novel compounds where the molecular networking provided a
chance to compare the metabolic profiles of complex crude fermentation extracts, leading to efficient
chemical dereplication [238].

The dereplication process was summarized by Tawfike et al. (2013, Figure 2) where the extracts,
fractions, and purified secondary metabolites were first tested for possible biological activity. After
that, the chemical profiling of the active extract or fraction was analyzed using high resolution mass
spectrometry and NMR spectroscopy to identify the constituents of interest at an early stage to minimize
the efforts by focusing on the active principles. Following the application of various metabolomic tools
and multivariate statistics, the obtained huge datasets could be utilized for the identification of the
biomarkers of the biologically-active extracts. The identified biomarkers can then be employed in the
production of the novel secondary metabolites to provide sustainability of the interesting metabolites
in genetic and metabolic engineering [113].

Figure 2. A flowchart showing the application of metabolomics in dereplication.

In this section, we will discuss some examples for the application of metabolomics in dereplication.
Dereplication was applied for the identification and quantification of tocopherol using HPLC analysis
of Brazil oil nut from different geographic locations in Brazil. This study proved the presence of the
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different amounts of α- and β-tocopherol in some samples with the absence of tocopherols in other
samples [239]. Dereplication was also used to select superior banana genotypes for breeding based
on the phenolic contents and carotenoid profiles, where the HPLC analysis showed an appreciable
amount of pro-vitamin A carotenoids in the active germosplasm samples compared with the main
cultivars that are currently marketed [240]. Coffee genotypes of three different regions in Brazil were
distinguished using GC-MS coupled with statistical analysis where 44 metabolites were characterized
as the chemomarkers for differentiation of the origin and genotype [241]. Design of experiments
(DoE) and partial least squares (PLS) were used to prove that the physicochemical properties of the
solvent have a significant effect on its extraction capacity [242]. Moreover, dereplication was used
to detect bromotyrosine-derived metabolites in 14 species of sponge belonging to genus Aplysina
through measuring their UV absorption using LC-photodiode array detector (PDA)-MS analysis [243].
Additionally, dereplication could differentiate between green and brown Brazilian propolis bead
on their terpenoid content using GC-MS [244] as well as the discovery of biomarkers and novel
active constituents that may be active against different neglected diseases [245]. UHPLC-(TOF)-MS,
together with hierarchical clustering analyses (HCA), was applied to differentiate between six Lippia
species based on their chemical constituents [246]. In addition, dereplication was successfully applied
to determine 11 anti-inflammatory biomarkers in 57 extracts of Asteraceae leaves using HPLC-MS
among 1241 peaks [247]. Similarly, 44 metabolites were identified as chemomarkers to determine the
geographical origin and genotype of coffee in Brazil using GC-Q-MS [241].

5.5. Metabolomics for Quality Control of Natural Products

Metabolomics is also finding utility in the quality control of natural products, being used to
monitor the variation of metabolic profiles among individuals, environmental alterations during
growth and harvesting, post harvesting treatment, extraction, and method of isolation. The change
in the chemical profiles have a significant effect on the efficacy of phytomedicines prepared from
these herbs [18]. Unsupervised principal component analysis (PCA) and supervised partial least
square analysis/partial least square analysis with discriminant analysis (PLS/PLS-DA), combined with
1H-NMR, are the most common techniques used in quality control. These methods were used to study
the effect of location on the percentage of various constituents of chamomile (Matricaria recutita L.) [248].
Determination of Δ9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) was carried
out to discriminate between different Cannabis sativa [249]. Similarly, discrimination of different samples
of St John’s Wort (Hypericum perforatum) from different batches of the same supplier, according to the
variation of the content of the antidepressant flavonoids, has also been reported [250]. Metabolomics
has also been applied to detect adulterations of herbal preparations with similar species but with
low levels of constituents responsible for the activity. A company produced antimalarial capsules
containing Artemisia afra, which is free from artemisinin instead of Artemisia annua, and this could
be easily detected by 1H-NMR and PCA [251]. Metabolomics can additionally be used to profile the
biofluids of individuals who have been medicated with natural products and a vast literature describes
such studies [30,252,253].

6. Conclusions and Future Perspectives

Metabolomics experiments offer an improved expedited route for plant natural product drug
discovery and is increasingly applied in a bioactivity-guided approach from natural extracts. This review
provides an overview for the most widely employed analytical tools in metabolomics experiments for
natural products’ drug ability viz. GC-MS, LC-MS, CE-MS, and NMR with recent advances in their
applications. Furthermore, different sample preparation protocols, data processing tools, and some
successful applications of metabolomics in natural products discovery are outlined, highlighting its
advantages and limitations. Although metabolomics has clearly transcended the classical approach of
lead compound discovery as previously mentioned, the main challenge in such experiments appears to
simultaneously explore the extreme complexity and the huge chemical diversity of metabolites present
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in any natural organism. In addition, the annotation of metabolites in such complicated environments
remains another obstacle that needs to be tackled. The establishment of organism databases and
sharing of spectral data in public repositories will aid in that regard, and avoid dereplication of already
existing metabolites in bioactivity guided studies for active agents. Bioinformatic tools that can link
the metabolomics dataset with bioactivity results have yet to be implemented for all spectral datasets.
Finally, we believe that there is urgent need to apply the integrative approaches of genomics and
metabolomics to understanding the metabolism of natural products in plants and elucidate their
metabolic pathways.
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effect of resveratrol with other phenolic compounds: A case of binary phenolic mixtures. J. Food Compos.
Anal. 2015, 38, 13–18. [CrossRef]

16. Shyur, L.-F.; Yang, N.-S. Metabolomics for phytomedicine research and drug development. Curr. Opin. Chem.
Biol. 2008, 12, 66–71. [CrossRef] [PubMed]

17. Goodacre, R.; Vaidyanathan, S.; Dunn, W.B.; Harrigan, G.G.; Kell, D.B. Metabolomics by numbers: Acquiring
and understanding global metabolite data. Trends Biotechnol. 2004, 22, 245–252. [CrossRef] [PubMed]

18. Wang, M.; Lamers, R.J.; Korthout, H.A.; van Nesselrooij, J.H.; Witkamp, R.F.; van der Heijden, R.; Voshol, P.J.;
Havekes, L.M.; Verpoorte, R.; van der Greef, J. Metabolomics in the context of systems biology: Bridging
traditional Chinese medicine and molecular pharmacology. Phytother. Res. 2005, 19, 173–182. [CrossRef]

19. Ulrich-Merzenich, G.; Zeitler, H.; Jobst, D.; Panek, D.; Vetter, H.; Wagner, H. Application of the “-Omic-”
technologies in phytomedicine. Phytomedicine 2007, 14, 70–82. [CrossRef]

20. Tebani, A.; Afonso, C.; Bekri, S. Advances in metabolome information retrieval: Turning chemistry into
biology. Part I: Analytical chemistry of the metabolome. J. Inherit. Metab. Dis. 2018, 41, 379–391. [CrossRef]

21. Alseekh, S.; Fernie, A.R. Metabolomics 20 years on: What have we learned and what hurdles remain? Plant J.
2018, 94, 933–942. [CrossRef]

22. Pinto, R.C. Chemometrics Methods and Strategies in Metabolomics. In Metabolomics: From Fundamentals
to Clinical Applications; Sussulini, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017;
pp. 163–190. [CrossRef]

23. Farrag, A.R.H.; Abdallah, H.M.I.; Khattab, A.R.; Elshamy, A.I.; Gendy, A.E.-N.G.E.; Mohamed, T.A.;
Farag, M.A.; Efferth, T.; Hegazy, M.-E.F. Antiulcer activity of Cyperus alternifolius in relation to its UPLC-MS
metabolite fingerprint: A mechanistic study. Phytomedicine 2019, 62, 152970. [CrossRef]

24. Yang, S.Y.; Kim, H.K.; Lefeber, A.W.M.; Erkelens, C.; Angelova, N.; Choi, Y.H.; Verpoorte, R. Application of
Two-Dimensional Nuclear Magnetic Resonance Spectroscopy to Quality Control of Ginseng Commercial
Products. Planta Med. 2006, 72, 364–369. [CrossRef]

25. Zeng, Z.-D.; Liang, Y.-Z.; Chau, F.-T.; Chen, S.; Daniel, M.K.-W.; Chan, C.-O. Mass spectral profiling: An
effective tool for quality control of herbal medicines. Anal. Chim. Acta 2007, 604, 89–98. [CrossRef]

26. Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.;
Neumann, S.; Kopka, J.; et al. Mass appeal: Metabolite identification in mass spectrometry-focused
untargeted metabolomics. Metabolomics 2013, 9, 44–66. [CrossRef]

27. Perez de Souza, L.; Naake, T.; Tohge, T.; Fernie, A.R. From chromatogram to analyte to metabolite. How to
pick horses for courses from the massive web resources for mass spectral plant metabolomics. GigaScience
2017, 6, gix037. [CrossRef] [PubMed]

28. Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.;
Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural
Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828. [CrossRef]

29. Olivon, F.; Elie, N.; Grelier, G.; Roussi, F.; Litaudon, M.; Touboul, D. MetGem Software for the Generation of
Molecular Networks Based on the t-SNE Algorithm. Anal. Chem. 2018, 90, 13900–13908. [CrossRef]

30. Riekeberg, E.; Powers, R. New frontiers in metabolomics: From measurement to insight. F1000Research 2017,
6, 1148. [CrossRef]

31. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.;
Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working
Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef] [PubMed]

32. Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid
chromatography-mass spectrometry. Anal. Bioanal. Chem. 2012, 403, 1523–1548. [CrossRef] [PubMed]

33. Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based
Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [CrossRef] [PubMed]

34. Blainey, P.; Krzywinski, M.; Altman, N. Replication. Nat. Methods 2014, 11, 879–880. [CrossRef] [PubMed]
35. Kim, H.K.; Verpoorte, R. Sample preparation for plant metabolomics. Phytochem. Anal. 2010, 21, 4–13.

[CrossRef]

165



Metabolites 2020, 10, 37

36. Ernst, M.; Silva, D.B.; Silva, R.R.; Vencio, R.Z.; Lopes, N.P. Mass spectrometry in plant metabolomics strategies:
From analytical platforms to data acquisition and processing. Nat. Prod. Rep. 2014, 31, 784–806. [CrossRef]

37. Fernie, A.R.; Trethewey, R.N.; Krotzky, A.J.; Willmitzer, L. Innovation—Metabolite profiling: From diagnostics
to systems biology. Nat. Rev. Mol. Cell Biol. 2004, 5, 763–769. [CrossRef]

38. Dunn, W.B.; Winder, C.L. Sample Preparation Related to the Intracellular Metabolome of Yeast: Methods for
Quenching, Extraction, and Metabolite Quantitation. Method Enzym. 2011, 500, 277–297. [CrossRef]

39. Bylda, C.; Thiele, R.; Kobold, U.; Volmer, D.A. Recent advances in sample preparation techniques to overcome
difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS.
Analyst 2014, 139, 2265–2276. [CrossRef]

40. Mushtaq, M.Y.; Choi, Y.H.; Verpoorte, R.; Wilson, E.G. Extraction for Metabolomics: Access to the Metabolome.
Phytochem. Anal. 2014, 25, 291–306. [CrossRef]

41. Salem, M.A.; Giavalisco, P. Semi-targeted Lipidomics of Plant Acyl Lipids Using UPLC-HR-MS in
Combination with a Data-Independent Acquisition Mode. In Plant Metabolomics: Methods and Protocols,
Methods in Molecular Biology; António, C., Ed.; Springer: New York, NY, USA; Humana Press: Totowa, NJ,
USA, 2018; Volume 1778, pp. 137–155.

42. Salem, M.; Bernach, M.; Bajdzienko, K.; Giavalisco, P. A Simple Fractionated Extraction Method for the
Comprehensive Analysis of Metabolites, Lipids, and Proteins from a Single Sample. J. Vis. Exp. 2017, 124,
e55802. [CrossRef] [PubMed]

43. Raterink, R.-J.; Lindenburg, P.W.; Vreeken, R.J.; Ramautar, R.; Hankemeier, T. Recent developments in
sample-pretreatment techniques for mass spectrometry-based metabolomics. TrAC Trends Anal. Chem. 2014,
61, 157–167. [CrossRef]

44. Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol.
1959, 37, 911–917. [CrossRef] [PubMed]

45. Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from
Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [PubMed]

46. Weckwerth, W.; Wenzel, K.; Fiehn, O. Process for the integrated extraction, identification and quantification
of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 2004, 4,
78–83. [CrossRef] [PubMed]

47. Fiehn, O.; Kopka, J.; Trethewey, R.N.; Willmitzer, L. Identification of uncommon plant metabolites based on
calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal.
Chem. 2000, 72, 3573–3580. [CrossRef]

48. Fiehn, O.; Kopka, J.; Dormann, P.; Altmann, T.; Trethewey, R.N.; Willmitzer, L. Metabolite profiling for plant
functional genomics. Nat. Biotechnol. 2000, 18, 1157–1161. [CrossRef]

49. Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry-based
metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [CrossRef]

50. Giavalisco, P.; Li, Y.; Matthes, A.; Eckhardt, A.; Hubberten, H.M.; Hesse, H.; Segu, S.; Hummel, J.; Kohl, K.;
Willmitzer, L. Elemental formula annotation of polar and lipophilic metabolites using 13C, 15N and 34S
isotope labelling, in combination with high-resolution mass spectrometry. Plant J. Cell Mol. Biol. 2011, 68,
364–376. [CrossRef]

51. Bozek, K.; Wei, Y.; Yan, Z.; Liu, X.; Xiong, J.; Sugimoto, M.; Tomita, M.; Paabo, S.; Sherwood, C.C.; Hof, P.R.;
et al. Organization and evolution of brain lipidome revealed by large-scale analysis of human, chimpanzee,
macaque, and mouse tissues. Neuron 2015, 85, 695–702. [CrossRef]

52. Khrameeva, E.E.; Bozek, K.; He, L.; Yan, Z.; Jiang, X.; Wei, Y.; Tang, K.; Gelfand, M.S.; Prufer, K.; Kelso, J.;
et al. Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans. Nat. Commun.
2014, 5, 3584. [CrossRef]

53. Bozek, K.; Wei, Y.; Yan, Z.; Liu, X.; Xiong, J.; Sugimoto, M.; Tomita, M.; Paabo, S.; Pieszek, R.; Sherwood, C.C.;
et al. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human
cognitive and physical uniqueness. PLoS Biol. 2014, 12, e1001871. [CrossRef]

54. Kuyukina, M.S.; Ivshina, I.B.; Philp, J.C.; Christofi, N.; Dunbar, S.A.; Ritchkova, M.I. Recovery of Rhodococcus
biosurfactants using methyl tertiary-butyl ether extraction. J. Microbiol. Methods 2001, 46, 149–156. [CrossRef]

55. Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by methyl-tert-butyl
ether for high-throughput lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [CrossRef] [PubMed]

166



Metabolites 2020, 10, 37

56. Salem, M.A.; Li, Y.; Bajdzienko, K.; Fisahn, J.; Watanabe, M.; Hoefgen, R.; Schottler, M.A.; Giavalisco, P.
RAPTOR Controls Developmental Growth Transitions by Altering the Hormonal and Metabolic Balance.
Plant Physiol. 2018, 177, 565–593. [CrossRef] [PubMed]

57. Farag, M.A.; Meyer, A.; Ali, S.E.; Salem, M.A.; Giavalisco, P.; Westphal, H.; Wessjohann, L.A. Comparative
Metabolomics Approach Detects Stress-Specific Responses during Coral Bleaching in Soft Corals. J. Proteome
Res. 2018, 17, 2060–2071. [CrossRef] [PubMed]

58. Alhajturki, D.; Muralidharan, S.; Nurmi, M.; Rowan, B.A.; Lunn, J.E.; Boldt, H.; Salem, M.A.; Alseekh, S.;
Jorzig, C.; Feil, R.; et al. Dose-dependent interactions between two loci trigger altered shoot growth in BG-5 x
Krotzenburg-0 (Kro-0) hybrids of Arabidopsis thaliana. New Phytol. 2018, 217, 392–406. [CrossRef] [PubMed]

59. Salem, M.A.; Li, Y.; Wiszniewski, A.; Giavalisco, P. Regulatory-associated protein of TOR (RAPTOR) alters
the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and
germination potential. Plant J. Cell Mol. Biol. 2017, 92, 525–545. [CrossRef]

60. Salem, M.A.; Juppner, J.; Bajdzienko, K.; Giavalisco, P. Protocol: A fast, comprehensive and reproducible
one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins,
starch and cell wall polymers from a single sample. Plant Methods 2016, 12, 45. [CrossRef]

61. Doppler, M.; Kluger, B.; Bueschl, C.; Schneider, C.; Krska, R.; Delcambre, S.; Hiller, K.; Lemmens, M.;
Schuhmacher, R. Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted
Metabolomics of Plants. Int. J. Mol. Sci. 2016, 17, 1017. [CrossRef]

62. Roessner, U.; Dias, D.A. Plant Tissue Extraction for Metabolomics. Metab. Tools Nat. Prod. Discov. Methods
Protoc. 2013, 1055, 21–28. [CrossRef]

63. De Vos, R.C.; Moco, S.; Lommen, A.; Keurentjes, J.J.; Bino, R.J.; Hall, R.D. Untargeted large-scale plant
metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2007, 2, 778–791.
[CrossRef]

64. Cajka, T.; Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass
spectrometry. Trends Anal. Chem. TrAC 2014, 61, 192–206. [CrossRef] [PubMed]

65. Fernie, A.R.; Aharoni, A.; Willmitzer, L.; Stitt, M.; Tohge, T.; Kopka, J.; Carroll, A.J.; Saito, K.; Fraser, P.D.;
DeLuca, V. Recommendations for reporting metabolite data. Plant Cell 2011, 23, 2477–2482. [CrossRef]
[PubMed]

66. Dixon, R.A.; Strack, D. Phytochemistry meets genome analysis, and beyond. Phytochemistry 2003, 62, 815–816.
[CrossRef]

67. Rai, A.; Saito, K.; Yamazaki, M. Integrated omics analysis of specialized metabolism in medicinal plants.
Plant J. Cell Mol. Biol. 2017, 90, 764–787. [CrossRef] [PubMed]

68. Kruger, N.J.; Troncoso-Ponce, M.A.; Ratcliffe, R.G. 1H NMR metabolite fingerprinting and metabolomic
analysis of perchloric acid extracts from plant tissues. Nat. Protoc. 2008, 3, 1001–1012. [CrossRef] [PubMed]

69. Tohge, T.; Fernie, A.R. Combining genetic diversity, informatics and metabolomics to facilitate annotation of
plant gene function. Nat. Protoc. 2010, 5, 1210–1227. [CrossRef]

70. Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics: Large-scale phytochemistry in the functional
genomics era. Phytochemistry 2003, 62, 817–836. [CrossRef]

71. Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite Measurement: Pitfalls to Avoid
and Practices to Follow. Annu. Rev. Biochem. 2017, 86, 277–304. [CrossRef] [PubMed]

72. Fiehn, O. Metabolomic—The link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171.
[CrossRef] [PubMed]

73. Kopka, J.; Fernie, A.; Weckwerth, W.; Gibon, Y.; Stitt, M. Metabolite profiling in plant biology: Platforms and
destinations. Genome Biol. 2004, 5, 109. [CrossRef]

74. Obata, T.; Fernie, A.R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life
Sci. 2012, 69, 3225–3243. [CrossRef]

75. Roessner, U.; Luedemann, A.; Brust, D.; Fiehn, O.; Linke, T.; Willmitzer, L.; Fernie, A. Metabolic profiling
allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell
2001, 13, 11–29. [CrossRef]

76. Halket, J.M.; Przyborowska, A.; Stein, S.E.; Mallard, W.G.; Down, S.; Chalmers, R.A. Deconvolution gas
chromatography/mass spectrometry of urinary organic acids-potential for pattern recognition and automated
identification of metabolic disorders. Rapid Commun. Mass Spectrom. 1999, 13, 279–284. [CrossRef]

167



Metabolites 2020, 10, 37

77. Saito, K.; Matsuda, F. Metabolomics for Functional Genomics, Systems Biology, and Biotechnology. Annu.
Rev. Plant Biol. 2010, 61, 463–489. [CrossRef]

78. Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmuller, E.; Dormann, P.; Weckwerth, W.;
Gibon, Y.; Stitt, M.; et al. GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics 2005, 21, 1635–1638.
[CrossRef] [PubMed]

79. Schauer, N.; Steinhauser, D.; Strelkov, S.; Schomburg, D.; Allison, G.; Moritz, T.; Lundgren, K.;
Roessner-Tunali, U.; Forbes, M.G.; Willmitzer, L.; et al. GC-MS libraries for the rapid identification
of metabolites in complex biological samples. FEBS Lett. 2005, 579, 1332–1337. [CrossRef] [PubMed]

80. Johnson, S.R.; Lange, B.M. Open-access metabolomics databases for natural product research: Present
capabilities and future potential. Front. Bioeng. Biotechnol. 2015, 3, 22. [CrossRef] [PubMed]

81. Liu, Z.; Sirimanne, S.R.; Patterson, D.G., Jr.; Needham, L.L. Comprehensive two-dimensional gas
chromatography for the fast separation and determination of pesticides extracted from human serum.
Anal. Chem. 1994, 66, 3086–3092. [CrossRef]

82. Mondello, L.; Casillia, A.; Tranchida, P.Q.; Dugo, G.; Dugo, P. Comprehensive two-dimensional gas
chromatography in combination with rapid scanning quadrupole mass spectrometry in perfume analysis. J.
Chromatogr. A 2005, 1067, 235–243. [CrossRef]

83. Yu, Z.; Huang, H.; Reim, A.; Charles, P.D.; Northage, A.; Jackson, D.; Parry, I.; Kessler, B.M. Optimizing 2D
gas chromatography mass spectrometry for robust tissue, serum and urine metabolite profiling. Talanta 2017,
165, 685–691. [CrossRef]

84. Egert, B.; Weinert, C.H.; Kulling, S.E. A peaklet-based generic strategy for the untargeted analysis of
comprehensive two-dimensional gas chromatography mass spectrometry data sets. J. Chromatogr. A 2015,
1405, 168–177. [CrossRef] [PubMed]

85. Wong, Y.F.; Hartmann, C.; J Marriott, P. Multidimensional gas chromatography methods for bioanalytical
research. Bioanalysis 2014, 6, 2461–2479. [CrossRef] [PubMed]

86. Mostafa, A.; Edwards, M.; Gorecki, T. Optimization aspects of comprehensive two-dimensional gas
chromatography. J. Chromatogr. A 2012, 1255, 38–55. [CrossRef]

87. Hill, C.B.; Roessner, U. Metabolic Profiling of Plants by GC–MS. In The Handbook of Plant Metabolomics;
Weckwerth, W., Kahl, G., Eds.; Wiley-VCH: Weinheim, Germany, 2013; pp. 1–23. [CrossRef]

88. Iijima, Y.; Nakamura, Y.; Ogata, Y.; Tanaka, K.; Sakurai, N.; Suda, K.; Suzuki, T.; Suzuki, H.; Okazaki, K.;
Kitayama, M.; et al. Metabolite annotations based on the integration of mass spectral information. Plant J.
Cell Mol. Biol. 2008, 54, 949–962. [CrossRef] [PubMed]

89. Matsuda, F.; Hirai, M.Y.; Sasaki, E.; Akiyama, K.; Yonekura-Sakakibara, K.; Provart, N.J.; Sakurai, T.;
Shimada, Y.; Saito, K. AtMetExpress development: A phytochemical atlas of Arabidopsis development.
Plant Physiol. 2010, 152, 566–578. [CrossRef]

90. Matsuda, F.; Yonekura-Sakakibara, K.; Niida, R.; Kuromori, T.; Shinozaki, K.; Saito, K. MS/MS spectral
tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J. Cell Mol. Biol. 2009, 57,
555–577. [CrossRef] [PubMed]

91. Okazaki, Y.; Shimojima, M.; Sawada, Y.; Toyooka, K.; Narisawa, T.; Mochida, K.; Tanaka, H.; Matsuda, F.;
Hirai, A.; Hirai, M.Y.; et al. A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the
committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 2009, 21, 892–909. [CrossRef]
[PubMed]

92. Salem, M.A.; Giavalisco, P. Semi-targeted Lipidomics of Plant Acyl Lipids Using UPLC-HR-MS in
Combination with a Data-Independent Acquisition Mode. Methods Mol. Biol. 2018, 1778, 137–155.
[CrossRef] [PubMed]

93. Gu, L.; Jones, A.D.; Last, R.L. LC-MS/MS assay for protein amino acids and metabolically related compounds
for large-scale screening of metabolic phenotypes. Anal. Chem. 2007, 79, 8067–8075. [CrossRef]

94. Bocker, S.; Rasche, F. Towards de novo identification of metabolites by analyzing tandem mass spectra.
Bioinformatics 2008, 24, i49–i55. [CrossRef]

95. Keurentjes, J.J.; Fu, J.; de Vos, C.H.; Lommen, A.; Hall, R.D.; Bino, R.J.; van der Plas, L.H.; Jansen, R.C.;
Vreugdenhil, D.; Koornneef, M. The genetics of plant metabolism. Nat. Genet. 2006, 38, 842–849. [CrossRef]
[PubMed]

168



Metabolites 2020, 10, 37

96. Giavalisco, P.; Kohl, K.; Hummel, J.; Seiwert, B.; Willmitzer, L. 13C isotope-labeled metabolomes
allowing for improved compound annotation and relative quantification in liquid chromatography-mass
spectrometry-based metabolomic research. Anal. Chem. 2009, 81, 6546–6551. [CrossRef] [PubMed]

97. Shahaf, N.; Rogachev, I.; Heinig, U.; Meir, S.; Malitsky, S.; Battat, M.; Wyner, H.; Zheng, S.; Wehrens, R.;
Aharoni, A. The WEIZMASS spectral library for high-confidence metabolite identification. Nat. Commun.
2016, 7, 12423. [CrossRef] [PubMed]

98. Giavalisco, P.; Hummel, J.; Lisec, J.; Inostroza, A.C.; Catchpole, G.; Willmitzer, L. High-resolution direct
infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows
unambiguous assignment of chemical sum formulas. Anal. Chem. 2008, 80, 9417–9425. [CrossRef]

99. Nakabayashi, R.; Kusano, M.; Kobayashi, M.; Tohge, T.; Yonekura-Sakakibara, K.; Kogure, N.; Yamazaki, M.;
Kitajima, M.; Saito, K.; Takayama, H. Metabolomics-oriented isolation and structure elucidation of 37
compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 2009, 70, 1017–1029.
[CrossRef]

100. Tohge, T.; Fernie, A.R. Web-based resources for mass-spectrometry-based metabolomics: A user’s guide.
Phytochemistry 2009, 70, 450–456. [CrossRef]

101. Ishii, N.; Nakahigashi, K.; Baba, T.; Robert, M.; Soga, T.; Kanai, A.; Hirasawa, T.; Naba, M.; Hirai, K.;
Hoque, A.; et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science
2007, 316, 593–597. [CrossRef]

102. Fernie, A.R.; Tohge, T. The Genetics of Plant Metabolism. Annu. Rev. Genet. 2017, 51, 287–310. [CrossRef]
103. Williams, B.J.; Cameron, C.J.; Workman, R.; Broeckling, C.D.; Sumner, L.W.; Smith, J.T. Amino acid profiling in

plant cell cultures: An inter-laboratory comparison of CE-MS and GC-MS. Electrophoresis 2007, 28, 1371–1379.
[CrossRef]

104. Soga, T.; Imaizumi, M. Capillary electrophoresis method for the analysis of inorganic anions, organic acids,
amino acids, nucleotides, carbohydrates and other anionic compounds. Electrophoresis 2001, 22, 3418–3425.
[CrossRef]

105. Ren, J.-L.; Zhang, A.-H.; Kong, L.; Wang, X.-J. Advances in mass spectrometry-based metabolomics for
investigation of metabolites. RSC Adv. 2018, 8, 22335–22350. [CrossRef]

106. Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based plant metabolomics: Where do we stand, where do we go?
Trends Biotechnol. 2011, 29, 267–275. [CrossRef] [PubMed]

107. Kim, H.K.; Saifullah; Khan, S.; Wilson, E.G.; Kricun, S.D.P.; Meissner, A.; Goraler, S.; Deelder, A.M.;
Choi, Y.H.; Verpoorte, R. Metabolic classification of South American Ilex species by NMR-based metabolomics.
Phytochemistry 2010, 71, 773–784. [CrossRef] [PubMed]

108. Mahrous, E.A.; Farag, M.A. Two dimensional NMR spectroscopic approaches for exploring plant metabolome:
A review. J. Adv. Res. 2015, 6, 3–15. [CrossRef] [PubMed]

109. Grkovic, T.; Pouwer, R.H.; Vial, M.-L.; Gambini, L.; Noël, A.; Hooper, J.N.A.; Wood, S.A.; Mellick, G.D.;
Quinn, R.J. NMR Fingerprints of the Drug-like Natural-Product Space Identify Iotrochotazine A: A Chemical
Probe to Study Parkinson’s Disease. Angew. Chem. Int. Ed. 2014, 53, 6070–6074. [CrossRef] [PubMed]

110. Starks, C.M.; Williams, R.B.; Norman, V.L.; Lawrence, J.A.; O’Neil-Johnson, M.; Eldridge, G.R.
Phenylpropanoids from Phragmipedium calurum and their antiproliferative activity. Phytochemistry 2012,
82, 172–175. [CrossRef]

111. Cai, S.-S.; Short, L.C.; Syage, J.A.; Potvin, M.; Curtis, J.M. Liquid chromatography–atmospheric pressure
photoionization-mass spectrometry analysis of triacylglycerol lipids—Effects of mobile phases on sensitivity.
J. Chromatogr. A 2007, 1173, 88–97. [CrossRef]

112. Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010, 5, 536.
[CrossRef]

113. Tawfike, A.F.; Viegelmann, C.; Edrada-Ebel, R. Metabolomics and Dereplication Strategies in Natural
Products. In Metabolomics Tools for Natural Product Discovery: Methods and Protocols; Roessner, U., Dias, D.A.,
Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 227–244. [CrossRef]

114. Zhang, L.; Hatzakis, E.; Patterson, A.D. NMR-Based Metabolomics and Its Application in Drug Metabolism
and Cancer Research. Curr. Pharmacol. Rep. 2016, 2, 231–240. [CrossRef]

115. Simmler, C.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.-N.; Pauli, G.F. Universal quantitative NMR analysis of
complex natural samples. Curr. Opin. Biotechnol. 2014, 25, 51–59. [CrossRef]

169



Metabolites 2020, 10, 37

116. Nagana Gowda, G.A.; Raftery, D. Can NMR solve some significant challenges in metabolomics? J. Magn.
Reson. 2015, 260, 144–160. [CrossRef] [PubMed]

117. Halabalaki, M.; Vougogiannopoulou, K.; Mikros, E.; Skaltsounis, A.L. Recent advances and new strategies in
the NMR-based identification of natural products. Curr. Opin. Biotechnol. 2014, 25, 1–7. [CrossRef] [PubMed]

118. Kovacs, H.; Moskau, D.; Spraul, M. Cryogenically cooled probes—A leap in NMR technology. Prog. Nucl.
Magn. Reson. Spectrosc. 2005, 46, 131–155. [CrossRef]

119. Dona, A.C. CHAPTER 1 Instrumental Platforms for NMR-based Metabolomics. In NMR-Based Metabolomics;
The Royal Society of Chemistry: London, UK, 2018; pp. 1–21.

120. Deborde, C.; Moing, A.; Roch, L.; Jacob, D.; Rolin, D.; Giraudeau, P. Plant metabolism as studied by NMR
spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 102–103, 61–97. [CrossRef] [PubMed]

121. Anklin, C. Chapter 3 Small-volume NMR: Microprobes and Cryoprobes. In Modern NMR Approaches to
the Structure Elucidation of Natural Products: Volume 1: Instrumentation and Software; The Royal Society of
Chemistry: London, UK, 2016; Volume 1, pp. 38–57.

122. Ardenkjær-Larsen, J.H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M.H.; Servin, R.;
Thaning, M.; Golman, K. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl.
Acad. Sci. USA 2003, 100, 10158–10163. [CrossRef] [PubMed]

123. Forseth, R.R.; Schroeder, F.C. NMR-spectroscopic analysis of mixtures: From structure to function. Curr.
Opin. Chem. Biol. 2011, 15, 38–47. [CrossRef] [PubMed]

124. Novoa-Carballal, R.; Fernandez-Megia, E.; Jimenez, C.; Riguera, R. NMR methods for unravelling the spectra
of complex mixtures. Nat. Prod. Rep. 2011, 28, 78–98. [CrossRef]

125. Rabenstein, D.L.; Fan, S. Proton nuclear magnetic resonance spectroscopy of aqueous solutions: Complete
elimination of the water resonance by spin-spin relaxation. Anal. Chem. 1986, 58, 3178–3184. [CrossRef]

126. Johnson, C.S. Diffusion ordered nuclear magnetic resonance spectroscopy: Principles and applications. Prog.
Nucl. Magn. Reson. Spectrosc. 1999, 34, 203–256. [CrossRef]

127. Morris, K.F.; Johnson, C.S. Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J.
Am. Chem. Soc. 1992, 114, 3139–3141. [CrossRef]

128. Balayssac, S.; Trefi, S.; Gilard, V.; Malet-Martino, M.; Martino, R.; Delsuc, M.-A. 2D and 3D DOSY 1H NMR, a
useful tool for analysis of complex mixtures: Application to herbal drugs or dietary supplements for erectile
dysfunction. J. Pharm. Biomed. Anal. 2009, 50, 602–612. [CrossRef] [PubMed]

129. Politi, M.; Zloh, M.; Pintado, M.E.; Castro, P.M.L.; Heinrich, M.; Prieto, J.M. Direct metabolic fingerprinting of
commercial herbal tinctures by nuclear magnetic resonance spectroscopy and mass spectrometry. Phytochem.
Anal. 2009, 20, 328–334. [CrossRef] [PubMed]

130. Tsuda, M.; Yasuda, T.; Fukushi, E.; Kawabata, J.; Sekiguchi, M.; Fromont, J.; Kobayashi, J. Agesamides A and
B, Bromopyrrole Alkaloids from Sponge Agelas Species: Application of DOSY for Chemical Screening of
New Metabolites. Org. Lett. 2006, 8, 4235–4238. [CrossRef] [PubMed]

131. Ludwig, C.; Viant, M.R. Two-dimensional J-resolved NMR spectroscopy: Review of a key methodology in
the metabolomics toolbox. Phytochem. Anal. 2010, 21, 22–32. [CrossRef]

132. Georgiev, M.I.; Ali, K.; Alipieva, K.; Verpoorte, R.; Choi, Y.H. Metabolic differentiations and classification of
Verbascum species by NMR-based metabolomics. Phytochemistry 2011, 72, 2045–2051. [CrossRef] [PubMed]

133. Aguilar, J.A.; Faulkner, S.; Nilsson, M.; Morris, G.A. Pure Shift 1H NMR: A Resolution of the Resolution
Problem? Angew. Chem. 2010, 122, 3993–3995. [CrossRef]

134. Lopez, J.M.; Cabrera, R.; Maruenda, H. Ultra-Clean Pure Shift 1H-NMR applied to metabolomics profiling.
Sci. Rep. 2019, 9, 6900. [CrossRef]

135. Breton, R.C.; Reynolds, W.F. Using NMR to identify and characterize natural products. Nat. Prod. Rep. 2013,
30, 501–524. [CrossRef]

136. Parkinson, J.A. Chapter 2—NMR Spectroscopy Methods in Metabolic Phenotyping. In The Handbook of
Metabolic Phenotyping; Lindon, J.C., Nicholson, J.K., Holmes, E., Eds.; Elsevier: Amsterdam, The Netherlands,
2019; pp. 53–96. [CrossRef]

137. Koskela, H.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S. Quantitative two-dimensional HSQC experiment for
high magnetic field NMR spectrometers. J. Magn. Reson. 2010, 202, 24–33. [CrossRef]

138. Dossey, A.T.; Walse, S.S.; Conle, O.V.; Edison, A.S. Parectadial, a Monoterpenoid from the Defensive Spray of
Parectatosoma mocquerysi. J. Nat. Prod. 2007, 70, 1335–1338. [CrossRef]

170



Metabolites 2020, 10, 37

139. Farag, M.A.; Porzel, A.; Al-Hammady, M.A.; Hegazy, M.-E.F.; Meyer, A.; Mohamed, T.A.; Westphal, H.;
Wessjohann, L.A. Soft Corals Biodiversity in the Egyptian Red Sea: A Comparative MS and NMR
Metabolomics Approach of Wild and Aquarium Grown Species. J. Proteome Res. 2016, 15, 1274–1287.
[CrossRef] [PubMed]

140. Farag, M.A.; Mahrous, E.A.; Lübken, T.; Porzel, A.; Wessjohann, L. Classification of commercial cultivars of
Humulus lupulus L. (hop) by chemometric pixel analysis of two dimensional nuclear magnetic resonance
spectra. Metabolomics 2014, 10, 21–32. [CrossRef]

141. Schroeder, F.C.; Gibson, D.M.; Churchill, A.C.L.; Sojikul, P.; Wursthorn, E.J.; Krasnoff, S.B.; Clardy, J.
Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library.
Angew. Chem. Int. Ed. 2007, 46, 901–904. [CrossRef] [PubMed]

142. Pungaliya, C.; Srinivasan, J.; Fox, B.W.; Malik, R.U.; Ludewig, A.H.; Sternberg, P.W.; Schroeder, F.C. A
shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis
elegans. Proc. Natl. Acad. Sci. USA 2009, 106, 7708–7713. [CrossRef]

143. Butcher, R.A.; Schroeder, F.C.; Fischbach, M.A.; Straight, P.D.; Kolter, R.; Walsh, C.T.; Clardy, J. The
identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl. Acad. Sci.
USA 2007, 104, 1506–1509. [CrossRef]

144. McCarney, E.R.; Dykstra, R.; Galvosas, P. Evaluation of benchtop NMR Diffusion Ordered Spectroscopy for
small molecule mixture analysis. Magn. Reson. Imaging 2019, 56, 103–109. [CrossRef]

145. Blümich, B. Low-field and benchtop NMR. J. Magn. Reson. 2019, 306, 27–35. [CrossRef]
146. Gouilleux, B.; Marchand, J.; Charrier, B.; Remaud, G.S.; Giraudeau, P. High-throughput authentication of

edible oils with benchtop Ultrafast 2D NMR. Food Chem. 2018, 244, 153–158. [CrossRef]
147. Kruk, J.; Doskocz, M.; Jodłowska, E.; Zacharzewska, A.; Łakomiec, J.; Czaja, K.; Kujawski, J. NMR Techniques

in Metabolomic Studies: A Quick Overview on Examples of Utilization. Appl. Magn. Reson. 2017, 48, 1–21.
[CrossRef] [PubMed]

148. Pérez, E.M.S.; Iglesias, M.J.; Ortiz, F.L.; Pérez, I.S.; Galera, M.M. Study of the suitability of HRMAS NMR for
metabolic profiling of tomatoes: Application to tissue differentiation and fruit ripening. Food Chem. 2010,
122, 877–887. [CrossRef]

149. Daolio, C.; Beltrame, F.L.; Ferreira, A.G.; Cass, Q.B.; Cortez, D.A.G.; Ferreira, M.M.C. Classification of
commercial Catuaba samples by NMR, HPLC and chemometrics. Phytochem. Anal. 2008, 19, 218–228.
[CrossRef] [PubMed]

150. Broberg, A.; Kenne, L. Use of High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance
Spectroscopy for in Situ Studies of Low-Molecular-Mass Compounds in Red Algae. Anal. Biochem. 2000, 284,
367–374. [CrossRef] [PubMed]

151. Miglietta, M.L.; Lamanna, R. 1H HR-MAS NMR of carotenoids in aqueous samples and raw vegetables.
Magn. Reson. Chem. 2006, 44, 675–685. [CrossRef] [PubMed]

152. Sekiyama, Y.; Chikayama, E.; Kikuchi, J. Profiling Polar and Semipolar Plant Metabolites throughout
Extraction Processes Using a Combined Solution-State and High-Resolution Magic Angle Spinning NMR
Approach. Anal. Chem. 2010, 82, 1643–1652. [CrossRef] [PubMed]

153. Van der Graaf, M.; Heerschap, A. Effect of Cation Binding on the Proton Chemical Shifts and the Spin–Spin
Coupling Constant of Citrate. J. Magn. Reson. Ser. B 1996, 112, 58–62. [CrossRef]

154. Jaroszewski, J.W. Hyphenated NMR Methods in Natural Products Research, Part 1: Direct Hyphenation.
Planta Med. 2005, 71, 691–700. [CrossRef]

155. Seger, C.; Sturm, S.; Stuppner, H. Mass spectrometry and NMR spectroscopy: Modern high-end detectors
for high resolution separation techniques—State of the art in natural product HPLC-MS, HPLC-NMR, and
CE-MS hyphenations. Nat. Prod. Rep. 2013, 30, 970–987. [CrossRef]

156. Gebretsadik, T.; Linert, W.; Thomas, M.; Berhanu, T.; Frew, R. LC-NMR for Natural Products Analysis: A
Journey from an Academic Curiosity to a Robust Analytical Tool. Sci 2019, 1, 31. [CrossRef]

157. Keifer, P.A. Chemical-shift referencing and resolution stability in methanol:water gradient LC–NMR. J. Magn.
Reson. 2010, 205, 130–140. [CrossRef]

158. Bringmann, G.; Wohlfarth, M.; Rischer, H.; Heubes, M.; Saeb, W.; Diem, S.; Herderich, M.; Schlauer, J.
A Photometric Screening Method for Dimeric Naphthylisoquinoline Alkaloids and Complete On-Line
Structural Elucidation of a Dimer in Crude Plant Extracts, by the LC−MS/LC−NMR/LC−CD Triad. Anal.
Chem. 2001, 73, 2571–2577. [CrossRef]

171



Metabolites 2020, 10, 37

159. Waridel, P.; Wolfender, J.-L.; Lachavanne, J.-B.; Hostettmann, K. ent-Labdane glycosides from the aquatic plant
Potamogeton lucens and analytical evaluation of the lipophilic extract constituents of various Potamogeton
species. Phytochemistry 2004, 65, 945–954. [CrossRef] [PubMed]

160. Zehl, M.; Braunberger, C.; Conrad, J.; Crnogorac, M.; Krasteva, S.; Vogler, B.; Beifuss, U.; Krenn, L.
Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically important
Drosera species by LC–DAD, LC–NMR, NMR, and LC–MS. Anal. Bioanal. Chem. 2011, 400, 2565–2576.
[CrossRef]

161. Clarkson, C.; Sibum, M.; Mensen, R.; Jaroszewski, J.W. Evaluation of on-line solid-phase extraction
parameters for hyphenated, high-performance liquid chromatography–solid-phase extraction–nuclear
magnetic resonance applications. J. Chromatogr. A 2007, 1165, 1–9. [CrossRef] [PubMed]

162. Griffiths, L.; Horton, R. Optimization of LC–NMR. III—Increased signal-to-noise ratio through column
trapping. Magn. Reson. Chem. 1998, 36, 104–109. [CrossRef]

163. Xu, Y.-J.; Capistrano, R.; Dhooghe, L.; Foubert, K.; Lemière, F.; Maregesi, S.; Baldé, A.; Apers, S.; Pieters, L.
Herbal Medicines and Infectious Diseases: Characterization by LC-SPE-NMR of Some Medicinal Plant
Extracts Used against Malaria. Planta Med. 2011, 77, 1139–1148. [CrossRef] [PubMed]

164. Castro, A.; Moco, S.; Coll, J.; Vervoort, J. LC-MS-SPE-NMR for the Isolation and Characterization of
neo-Clerodane Diterpenoids from Teucrium luteum subsp. flavovirens. J. Nat. Prod. 2010, 73, 962–965.
[CrossRef]

165. Gao, H.; Zehl, M.; Kaehlig, H.; Schneider, P.; Stuppner, H.; Moreno, Y.; Banuls, L.; Kiss, R.; Kopp, B. Rapid
Structural Identification of Cytotoxic Bufadienolide Sulfates in Toad Venom from Bufo melanosticus by
LC-DAD-MSn and LC-SPE-NMR. J. Nat. Prod. 2010, 73, 603–608. [CrossRef]

166. Chen, C.-K.; Lin, F.-H.; Tseng, L.-H.; Jiang, C.-L.; Lee, S.-S. Comprehensive Study of Alkaloids from Crinum
asiaticum var. sinicum Assisted by HPLC-DAD-SPE-NMR. J. Nat. Prod. 2011, 74, 411–419. [CrossRef]

167. Lai, Y.-C.; Chen, C.-K.; Lin, W.-W.; Lee, S.-S. A comprehensive investigation of anti-inflammatory
diarylheptanoids from the leaves of Alnus formosana. Phytochemistry 2012, 73, 84–94. [CrossRef]

168. Clarkson, C.; Hansen, S.H.; Smith, P.J.; Jaroszewski, J.W. Identification of Major and Minor Constituents of
Harpagophytum procumbens (Devil’s Claw) Using HPLC-SPE-NMR and HPLC-ESIMS/APCIMS. J. Nat.
Prod. 2006, 69, 1280–1288. [CrossRef]

169. Nyberg, N.T.; Baumann, H.; Kenne, L. Solid-Phase Extraction NMR Studies of Chromatographic Fractions of
Saponins from Quillaja saponaria. Anal. Chem. 2003, 75, 268–274. [CrossRef] [PubMed]

170. Kuhlisch, C.; Pohnert, G. Metabolomics in chemical ecology. Nat. Prod. Rep. 2015, 32. [CrossRef] [PubMed]
171. Kongstad, K.T.; Özdemir, C.; Barzak, A.; Wubshet, S.G.; Staerk, D. Combined Use of High-Resolution

α-Glucosidase Inhibition Profiling and High-Performance Liquid Chromatography–High-Resolution Mass
Spectrometry–Solid-Phase Extraction–Nuclear Magnetic Resonance Spectroscopy for Investigation of
Antidiabetic Principles in Crude Plant Extracts. J. Agric. Food Chem. 2015, 63, 2257–2263. [CrossRef]
[PubMed]

172. Agnolet, S.; Jaroszewski, J.W.; Verpoorte, R.; Staerk, D. 1H NMR-based metabolomics combined with
HPLC-PDA-MS-SPE-NMR for investigation of standardized Ginkgo biloba preparations. Metabolomics 2010,
6, 292–302. [CrossRef]

173. Tang, H.; Xiao, C.; Wang, Y. Important roles of the hyphenated HPLC-DAD-MS-SPE-NMR technique in
metabonomics. Magn. Reson. Chem. 2009, 47, S157–S162. [CrossRef] [PubMed]

174. Staerk, D.; Kesting, J.R.; Sairafianpour, M.; Witt, M.; Asili, J.; Emami, S.A.; Jaroszewski, J.W. Accelerated
dereplication of crude extracts using HPLC–PDA–MS–SPE–NMR: Quinolinone alkaloids of Haplophyllum
acutifolium. Phytochemistry 2009, 70, 1055–1061. [CrossRef] [PubMed]

175. Lima, R.d.C.L.; Gramsbergen, S.M.; Van Staden, J.; Jäger, A.K.; Kongstad, K.T.; Staerk, D. Advancing
HPLC-PDA-HRMS-SPE-NMR Analysis of Coumarins in Coleonema album by Use of Orthogonal
Reversed-Phase C18 and Pentafluorophenyl Separations. J. Nat. Prod. 2017, 80, 1020–1027. [CrossRef]

176. Liu, B.; Kongstad, K.T.; Qinglei, S.; Nyberg, N.T.; Jäger, A.K.; Staerk, D. Dual High-Resolution α-Glucosidase
and Radical Scavenging Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Minor and
Major Constituents Directly from the Crude Extract of Pueraria lobata. J. Nat. Prod. 2015, 78, 294–300.
[CrossRef]

172



Metabolites 2020, 10, 37

177. Luedemann, A.; Strassburg, K.; Erban, A.; Kopka, J. TagFinder for the quantitative analysis of gas
chromatography—Mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics
2008, 24, 732–737. [CrossRef]

178. Cuadros-Inostroza, Á.; Caldana, C.; Redestig, H.; Kusano, M.; Lisec, J.; Peña-Cortés, H.; Willmitzer, L.;
Hannah, M.A. TargetSearch—A Bioconductor package for the efficient preprocessing of GC-MS metabolite
profiling data. BMC Bioinform. 2009, 10, 428. [CrossRef]

179. Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.;
Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat.
Methods 2015, 12, 523. [CrossRef] [PubMed]

180. Matsuo, T.; Tsugawa, H.; Miyagawa, H.; Fukusaki, E. Integrated Strategy for Unknown EI–MS Identification
Using Quality Control Calibration Curve, Multivariate Analysis, EI–MS Spectral Database, and Retention
Index Prediction. Anal. Chem. 2017, 89, 6766–6773. [CrossRef] [PubMed]

181. Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Narayana, V.K.; Boughton, B.A.; Kanojia, K.;
Dayalan, S.; Jones, O.A.H.; Dias, D.A. Review of recent developments in GC–MS approaches to
metabolomics-based research. Metabolomics 2018, 14, 152. [CrossRef] [PubMed]

182. Fiehn, O. Metabolomics by Gas Chromatography—Mass Spectrometry: Combined Targeted and Untargeted
Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [CrossRef] [PubMed]

183. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data
for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006,
78, 779–787. [CrossRef]

184. Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing,
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Abstract: Appropriate experimental design and sample preparation are key steps in metabolomics
experiments, highly influencing the biological interpretation of the results. The sample preparation
workflow for plant metabolomics studies includes several steps before metabolite extraction and
analysis. These include the optimization of laboratory procedures, which should be optimized
for different plants and tissues. This is particularly the case for trees, whose tissues are complex
matrices to work with due to the presence of several interferents, such as oleoresins, cellulose. A good
experimental design, tree tissue harvest conditions, and sample preparation are crucial to ensure
consistency and reproducibility of the metadata among datasets. In this review, we discuss the main
challenges when setting up a forest tree metabolomics experiment for mass spectrometry (MS)-based
analysis covering all technical aspects from the biological question formulation and experimental
design to sample processing and metabolite extraction and data acquisition. We also highlight the
importance of forest tree metadata standardization in metabolomics studies.

Keywords: plant metabolomics; forestry; trees; mass spectrometry; metabolite extraction; GC-MS;
LC-MS; metadata standardization; databases

1. Introduction

Metabolomics is an “omics” technology used to obtain comprehensive information on the
metabolome: a diverse pool of low molecular weight molecules (metabolites), present in a cell or
organism, and at a particular physiological or developmental stage [1]. For the past 20 years, the
number of mass spectrometry (MS)-based metabolomics studies in plants has grown exponentially
and plant metabolomics has established itself as a powerful tool to address biological questions related
to plant growth and development and plant responses to environmental perturbations [2,3]. Despite
the continuous advances in MS technology, the coverage of the plant metabolome is a major challenge
in plant metabolomics research mainly due to the high chemical diversity, broad dynamic range
of concentration, and specific cellular compartmentalization of metabolites. In addition, no single
analytical technology can cover the entire plant metabolome, and different extraction techniques
and combinations of complementary analytical technologies are often employed [4]. In general,
preparing a plant sample for a metabolomics study involves the establishment of a good experimental
design, followed by several standard steps for sample preparation, namely: harvest immediately
followed by quenching, aliquot weighing, metabolite extraction, pre-analytical procedures (if required,
e.g., chemical derivatization), and finally, metabolite analysis [2,5–7]. The standardization of these
metabolomics workflows ensures data consistency and allows the reproducibility of the generated data
and metadata (information about data origins). Although most steps are common to any metabolomics
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experiment, the optimization of laboratory procedures is often adopted, according to the requirement
of the sample (species or tissue) under study. This is particularly the case of metabolomics studies on
tree species. Forest tree metabolomics represents additional challenges when compared to other plant
metabolomics studies. These include an experimental design that takes into account the long life cycle
and the genetic variability of forest tree species as well the presence of interferents that can require
additional steps during sample preparation (e.g., additional concentration steps) [8]. In this review,
we highlight the major challenges when setting up an MS-based forest tree metabolomics experiment.
Although this review is focused mainly on forest tree species, the methodology here reviewed can be
applied to other woody species.

2. Experimental Design for Forest Tree Metabolomics

In a plant metabolomics study, after the formulation of the biological question, experimental design
planning is the first crucial step of the metabolomics workflow. The experimental design includes
the complete planning of the experiment, including plant growth conditions and the treatments to
be applied to the plants. In this section, all the critical steps and important decisions for a good
experimental design are discussed.

2.1. Biological Question Formulation

A plant metabolomics experiment starts with the formulation of a good hypothesis (i.e., biological
question) to plan an appropriate experimental design, sample preparation, and statistical strategies
for data analysis. Without a clear biological question, the observed changes can be misinterpreted
or have multiple possible interpretations that would not reveal important information related to the
biological system. Thus, it is absolutely crucial to understand the biological system under study to
not only select the suitable tissue(s) for analysis but also the appropriate controls. Understanding the
biological system will allow the elaboration of an accurate experimental design, and ultimately, to
answer the biological question. It is important to highlight that frequently (and wrongly) experiments
are designed for other “omics” technologies (i.e., transcriptomics, proteomics), and the leftover samples
are later used for metabolomics analysis. This can extensively compromise the entire metabolomics
analysis because the objective of the study might be different, the number of replicates may not be
sufficient, or the sample storage conditions were not ideal, thereby affecting the stability of metabolites
within the sample [9].

Forests represent a crucial driver to achieve the sustainable development goals (SDG) from
Agenda 2030 of the United Nations through the provision of a wide range of ecosystem goods and
services with a direct impact on socio-economic development and environmental balance [10,11]. In
addition to the direct economic benefits provided by tree species, i.e., timber and non-timber products,
gaming and tourism, forests have an immensurable ecological value, being the major determinants for
water, oxygen, carbon, and energy balance and can be seen as a major opportunity to mitigate climate
change effects [12], i.e., continued drought, increased soil and water salinization and acidification, and
intensification of extreme temperatures [13]. In forest tree metabolomics research, most biological
questions are indeed related to the responses towards the acclimation and adaptation to a permanently
changing environment [14–26] as well as to the identification of potentially active components in tree
species of pharmacological, agricultural, environmental, or industrial importance [27–33].

2.2. Experimental Design

The experimental design should ensure that the analytical data derived from the collected
biological material would allow answering the initially proposed biological question through a reliable
statistical analysis. Therefore, the experimental design (Figure 1) typically includes all variables of
the experiment, from the plant growth and treatments (e.g., plant growth conditions, randomization,
replicates, controls), sample preparation conditions (e.g., harvested tissue, quenching method, pool
material or not, metabolite extraction protocol), and analytical platform (e.g., GC-MS, LC-MS, mass
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spectrometry imaging, targeted or untargeted approach) to statistical treatments [7,9,34]. Added to these
factors, all sources of additional variation (e.g., genotype, sample size, tissue selection, developmental
stage, environmental conditions, batch/block effect) should be investigated and minimized to avoid
misleading conclusions [7,9,35]. The experimental design should also take into account the time
frame of the metabolomics experiment. Because metabolites are highly dynamic (in time and space),
a metabolomics study can reflect the steady state (or instant snap-shot) of the metabolism or its
dynamic time-course evaluation [9,36–38]. In plant metabolomics, due to the destructive nature of
the sampling procedure, most conducted studies are transversal (i.e., cross-sectional), where different
samples are used for each time point, whereas in human metabolomics, longitudinal studies are fairly
common [39,40]. Even if the harvesting procedure is not completely destructive, the wounding effect
in plants should be taken into account as it can affect metabolite profiles. Longitudinal studies in plant
metabolomics include the analysis of volatile organic compounds (VOCs) through non-destructive
headspace techniques (further details in Section 3).

Figure 1. Experimental design and workflow in a plant metabolomics experiment.

Forest tree experiments are particularly difficult to execute, mainly because of the tree’s long
life cycle and lack of genomic tools [41], which in turn leads to highly costly, and time-consuming
long-term studies. Thus, a rigorously elaborated experimental design can help to control time and
costs and assure that the experiment and respective derived data are reliable and reproducible [42].

2.2.1. Experimental Conditions

The experimental design should clearly define the experimental conditions of the study (i.e.,
plant growth conditions and treatment(s) to be applied). Plants can be grown under controlled
environmental conditions (e.g., growth chambers, nurseries, greenhouses) or in field conditions. From
growth chamber to field conditions, there is a gradual decrease in the level of environmental control and
a gradual increase in its complexity. Therefore, most metabolomics studies are essentially comparative,
i.e., controls (healthy and/or mock treatments in the case of plant–pathogen interactions) vs. treated
samples, and always provided that plants are grown under the same conditions [35]. However, in
the field, plants are subjected to uncontrolled variations in the environment (e.g., variations in light
intensity, temperature, water availability). Despite the plant’s metabolism degree of plasticity acting as
a buffer against sudden fluctuations in the environment, this complex set of variables deeply impact
the plant’s physiology and metabolism [9], which is often the case of forest tree long-term research.
Hence, care must be taken when making comparisons amongst field-grown individuals or even
when extrapolating results or establishing correlations between trees grown under controlled and
uncontrolled (i.e., field) environmental conditions [43].
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In vitro assays are an alternative biotechnological approach to in vivo field studies as it drastically
reduces the time needed for the experiment to be conducted and eliminates environmental related
fluctuations, allowing the manipulation of single variables in a controlled environment, which is
impossible to achieve in field or greenhouse conditions. In vitro cultures have been applied to forest
tree research, namely in the establishment of co-cultures to study plant–pathogen interactions, namely
co-cultures of Pinus pinaster and Bursaphelenchus xylophilus as an alternative biotechnological approach
to study the pine wilt disease [44] or for rapid clonal propagation of Populus spp. [45]. The analysis of
plant–pathogen interactions poses a particular challenge in metabolomics studies due to the difficulty
in discriminating between plant and pathogen. In this case, in vitro cell co-cultures can be regarded
as an alternative dual metabolomics approach to study such metabolite responses in plant–pathogen
interactions. This technique allows discrimination between plant cells and pathogens and can further
be applied to compare the metabolite response to different pathogenic strains [46]. However, this
biotechnological approach should be regarded as a preliminary tool for forest tree research; it is crucial
to assess if these systems reflect the real physiological conditions of the plant to only later extrapolate the
findings to the whole organism [9]. Another approach to study plant–pathogen interactions, without
the need for cell cultures but also allowing the assessment of the spatial distribution of metabolites in
plant and pathogen, is with mass spectrometry imaging [47]. However, this technique has not yet been
applied in forest tree metabolomics research.

2.2.2. Replicates and Randomization

To compensate for quantitative and qualitative variations in metabolomics analyses, biological
replicates are essential for powerful statistical analysis and reliable biological interpretation of the
results. Technical replicates can compensate for protocol or instrumental variations but do not improve
the statistical analysis of the results [9,48]. In plant metabolomics, the minimum acceptable number of
biological replicates should be six [2,49,50]. The biological replicates should be representative of the
population under study. For a stronger and significant statistical analysis, the number of replicates
needed can be established by power analysis determined from the degree of analytical variance within
the populations under study [50]. Statistical power analysis relates sample size, effect size (i.e., the
difference of two group means divided by the pooled standard deviation) and significance level to
the chance of detecting an effect in a dataset, and thus, should be performed before conducting the
experiment as a key step in the experimental design [51,52]. Information for power analysis can be
obtained through pilot studies or extrapolated from the literature [51]. Sample size determination
modules can be found in bioinformatic tools for metabolite data analysis, such as MetaboAnalyst
3.0, based on the Bioconductor R package Sample Size and Power Analysis (SSPA) and using data
from a pilot metabolomic study [52]. However, power analysis is often avoided, and sample size
determination becomes driven by sample availability [51]. In the case of limited amounts of sample and
high biological variation, pooling samples is a common procedure [7,9,38]. However, this information
should be taken into account when performing the data analysis as it may compromise the quality of the
data (e.g., a pool containing an odd sample or individual not grown under the same exact conditions).

Randomization is critical for reducing experimental error and biological variability. If working
under controlled environmental conditions (e.g., growth chamber), plants should be rotated during
the course of the experiment to compensate for variations in light intensity or ventilation that can
ultimately affect metabolism and the reproducibility of the data [7,9,53,54]. If plants are grown in a
greenhouse or field conditions, variation in environmental conditions is likely to be observed. In all
cases, it is crucial to keep a record of all observed changes in the course of the experiment and include
them in the metadata and storage databases to ensure data reusability [49,54]. A common strategy to
compensate for the impossibility of performing randomization (especially when working with a high
number of individuals) is to arrange plants in a block design [9]. In a block design, the individuals are
divided into homogeneous groups (i.e., blocks), and treatments are assigned randomly within the block.
Treatment comparisons are then performed within blocks because the variability within each block is
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lower than the variability between blocks. Additionally, harvest should be performed randomly in
each block to minimize block effect. The use of an appropriate design is particularly important in forest
tree studies because of the long-term nature of the experiments. The variation between blocks (i.e.,
block factors), such as time, operator, or location, can be later included in the analysis. The randomized
complete block design is the standard design pattern because of its simplicity. In this block design, the
same number of individuals from each treatment and/or genotype is randomly allocated per block,
and act as biological replicates. This block design is most effective when the site is relatively uniform;
however, this is rarely the case in forestry studies. To overcome this limitation, other designs, such as
the spatially-balanced complete block design [55] or the incomplete block design [56], that allow for
better control of heterogeneity are becoming widely popular.

3. Sample Preparation for Forest Tree Metabolomics

In metabolomics, as in any analytical science, the sample preparation protocol has a crucial
impact on the obtained analytical data. The workflow includes the harvest of the biological material
and immediate quenching of metabolism and storing prior sample homogenization and metabolite
extraction [2,6,7,34,53,57]. Sample preparation must be meticulously planned to identify potential
sources of experimental variation and errors that might compromise data analysis, re-usability of the
data, or biological interpretation of the results [6]. To obtain a standard protocol, the sample preparation
method should be validated for the plant tissue under study using technical replicate extractions to
determine the method precision and quantitative reproducibility [57]. In this section, the importance
and challenges of performing harvest and quenching of tree material, especially in field conditions, are
discussed, followed by the most common metabolomic workflows in forest tree metabolomics.

3.1. Harvest and Quenching

The precise time and process of sampling, or harvest, is a decisive step in a metabolomics
experiment because it determines the “metabolic snapshot” of the organism to be analyzed, which
directly influences the biological interpretation of the results [6,7,38]. In addition, the harvest should
be performed as quickly as possible to avoid diurnal variations and the loss of metabolites with high
turnover rates [2,6,7,37,50]. When working with forest tree species, samples are, in most cases, collected
in the field and should be properly stored until lab processing. Ideally, biological samples should be
immediately frozen in liquid nitrogen to avoid loss or degradation of biomolecules. However, this
method is practically impossible to apply to samples harvested in natural ecosystems. In these cases,
the best approach is to use silica gel to dehydrate the samples, thus stopping biochemical reactions [58].
Nevertheless, volatile compounds are often difficult to recover. In addition to the sample storage
under field conditions, data relative to the exact geographical location and edaphic–climatic conditions
should be described in as much detail as possible, to provide a more complete characterization of the
provenance [58].

After the harvest, the second step in sample preparation is to instantly quench metabolism, usually
by flash-freeze, using liquid nitrogen (shock freezing). Quenching is a crucial step in metabolomics
workflows to immediately stop the metabolism and avoid further changes occurring in the sample, such
as metabolite degradation or variations in their concentration, chemical, or physical properties [2,6,34].
Other methods include freeze-drying or the use of ice-cold methanol. Despite the risk of lower
extraction reproducibility when working with frozen fresh samples, freeze-drying is a slower process
that can lead to the production of artifacts, and potentially lead to the irreversible adsorption of
metabolites on cell walls and membranes [36,59]. Freeze-drying can be a convenient method when
weighing large sample sets, but it has been reported to reduce extraction yields by 25% [60]. In a
comparative phytohormone quantification study between fresh-frozen and freeze-dried plant material,
namely needles of P. pinaster, leaves of Eucalyptus globulus, and cotyledons of P. pinea, higher recoveries
were obtained when using fresh material [61]. Freeze drying methods enhance lipid extraction by
eliminating all the water, and consequently, generating a more complex matrix making phytohormone
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quantification in the presence of these interferences difficult. The appropriate sample treatment should
always be evaluated according to the plant tissue under study.

In plant metabolomics, quenching is usually followed by homogenization of the sample, typically
using a pestle and mortar or ball mill for plant–cell–wall breakage and sample weighing. These steps
are always performed under liquid nitrogen to prevent tissue from thawing [2,6,7].

3.2. Metabolite Extraction

The choice of a metabolite extraction protocol is extremely important in metabolomics studies
as it can directly affect the metabolite coverage and metabolite concentration. Ideally, a metabolite
extraction protocol aims to (i) efficiently isolate metabolites from the sample in a high-throughput
manner; (ii) be as non-selective as possible to ensure adequate metabolite coverage; (iii) prevent
metabolite loss or degradation; (iv) be reproducible; (v) remove interferents that can affect the analysis;
(vi) be compatible with the chosen analytical technique; and, when necessary, (vii) concentrate low
abundance metabolites before analysis [2,34,59,62]. Typically, a metabolomics experiment follows
two alternative approaches, targeted or untargeted. In targeted metabolomics, a well-defined group
of known annotated metabolites is identified, whereas an untargeted approach aims to provide an
overview of all the measurable analytes in the biological sample, including unknown compounds.
However, it is important to highlight that, due to the vast variety of metabolites present in the plant
metabolome, at different concentration levels and with distinct physical–chemical properties, it is
impossible to extract the whole range of metabolites using a single extraction protocol [2,6,38].

In a metabolomics extraction protocol, several aspects have to be considered, namely the choice of
an appropriate solvent system, solvent solubility, solvent to sample ratio, duration, and temperature of
the extraction [2,5,6,36,63]. The choice of the appropriate solvent depends not only on the metabolite
properties to be extracted but also has to meet the specific requirements of the analytical platform
to be used (e.g., GC-MS, LC-MS). The exception is the use of headspace extraction (e.g., solid-phase
microextraction, SPME) for the extraction of volatile components without the need for solvents [5,38].
For LC-MS, the only main limitation is that the solvent in which the sample is injected must be miscible
and should be similar to the LC mobile phases used. For the typical reverse-phase separations, solvents
used are generally aqueous eluents with 5–50% of an organic solvent (e.g., methanol, acetonitrile) [6].
Moreover, the addition of stable isotopically labeled internal standards to the extraction buffer (e.g.,
15N and 13C labeling strategies) in targeted plant metabolomics approach is an excellent tool (i) to
monitor extraction reproducibility; (ii) to compensate for ionization suppression/enhancement effects,
accuracy, precision, and matrix effects of an analytical method or during method validation; and (iii)
for normalization in data analysis [9,62,64].

3.2.1. GC-MS Metabolite Profiling

In forest tree research, GC coupled to either a time-of-flight MS (GC-TOF-MS) or a fast scanning
quadrupole MS (GC-qMS) have often been employed for high-throughput plant primary metabolite
profiling allowing the measurement of complex mixtures of primary metabolites (e.g., organic
acids, sugars, sugar alcohols, amino acids) in a single extract [8]. GC-TOF-MS shows numerous
advantages over GC-qMS, namely, higher mass accuracy, higher duty cycles, and faster acquisition
rates that ultimately contribute to a better deconvolution of overlapping peaks and higher sample
throughput [2,3,65].

Despite the low number of publications in forest tree metabolomics, when compared to other
omics studies [66], GC-TOF-MS has been the method of choice for the primary metabolite profiling of
forest tree responses to abiotic and biotic stresses [24,25,58,67–69] as well as other plant growth-related
processes [17,26,70–77]. In these forest tree metabolomics studies, as for plant metabolomics in general,
primary metabolites for GC-TOF-MS analysis are commonly extracted using the well-established
chloroform:methanol:water extraction protocol, with minor optimization variations across studies
(e.g., time of extraction, temperature, solvent ratio, or addition order), and further derivatized with
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N-methyl-N-(trimethylsilyl)trifloracetamide (MSTFA), containing a mixture of fatty acid methyl
esters (FAMEs) with different chain length as time standards (i.e., standard for retention time
calibration) [2,34,50,63]. This two-phase solvent system has the advantage of fractionating the
metabolites from a single sample into a polar aqueous phase (methanol:water) and a lipophilic organic
phase (chloroform), which can be further analyzed separately [63].

Additional GC-qMS studies in forest tree species include the profile of the volatile fraction,
namely volatile organic compounds (VOCs) and essential oil (EO). This volatile fraction is mainly
dominated by terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid
derivatives [78]. Despite the similarity in their qualitative chemical composition, the relative amounts
of metabolites found in these two volatile fractions can differ greatly due to the distinct extraction
processes involved [79]. VOCs are commonly collected with headspace techniques (e.g., SPME), while
EOs are obtained exclusively with hydro-, steam- or dry-distillation, or in the case of citrus fruits,
mechanically without heating [80]. EO screening studies are popular among forest tree species, namely
Eucalyptus and Pinus spp., mainly due to the occurrence of EO chemotypes [81–84]. The non-destructive
nature of headspace techniques, such as SPME, allow for time-course evaluation of VOCs emission
and have been widely applied in forest tree research not only for plant chemotype classification but
also for plant–pathogen interactions or plant–insect communication [85,86]. This technique simply
requires the optimization of the type of fiber, exposure time and temperature, and desorption time and
temperature [87].

3.2.2. LC-MS Metabolite Profiling

In forest tree research, LC-MS instruments have also been used for untargeted secondary metabolite
profiling and phytohormone quantification studies. The focus of these studies was related with abiotic
stress responses [19–24,67,88,89]; and to a smaller extent to biotic stress responses [90,91] and plant
growth and developmental processes [77,92,93].

Metabolite extraction for LC-MS untargeted analysis are usually performed using a simple
protocol based on methanol [19] or methanol:water 80:20, v/v [20,91] or 50:50, v/v [90] as extraction
solvents. However, most untargeted secondary metabolite profiling studies in forest tree metabolomics
research are performed in combination with GC-qMS or GC-TOF-MS primary metabolite profiling,
ultimately allowing for more comprehensive coverage of the tree metabolome. In these cases, the
chloroform:methanol:water two-phase solvent system is used, and the polar phase is evaporated
to dryness and used for both GC-MS (after derivatization) and LC-MS metabolite profiling (after
reconstitution in methanol:water) [21,77,88,89]. To take full advantage of the chloroform:methanol:water
two-phase solvent system, the non-polar metabolites (lipophilic fraction) are analyzed by GC-MS after
derivatization, for example, with tertmethyl–butyl–ether (MTBE) and trimethylsulfoniumhydroxide
(TMSH) [23,92].

LC coupled to triple quadrupole-MS (LC-QqQ-MS) has been often employed in method
development to quantify phytohormones in plant tissues [94]. Delatorre and co-workers [61] developed
and validated an LC-QqQ-MS analytical method to quantify 20 phytohormones in forest tree species
tissues, using 2-propanal:water:hydrochloric acid (2:1:0.002 v/v/v) and dichloromethane for a two-phase
solvent system, a protocol originally described by Pan and co-workers [95]. Other metabolite extraction
protocols for phytohormone quantification in forest tree species include a modified version of the
well-established solvent extraction protocol described by Bieleski [96], namely methanol:water:formic
acid (15:4:1, v/v/v) [97], methanol:water (80:20, v/v) [98,99], methanol:water:acetic acid (90:9:1, v/v/v) [16],
or water:diethyl ether:acetic acid [22]. The Bieleski solvent extraction protocol [96] has been used for
the extraction of phytohormones, particularly cytokines [100].

3.3. Pre-Analytical Requirements

In targeted and untargeted metabolomic approaches, the presence of matrix interferents can hinder
the MS-based metabolite analysis by adding further complexity in regards to metabolite ionization
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and interfering molecules that influence the signal response of the metabolites under study. Although
in targeted approaches, the use of stable isotopically labeled internal standards can compensate
for matrix-induced ionization effects, the availability of standards in untargeted approaches can be
very limited. In both cases, metabolite concentration and further sample clean-up steps to remove
interferents might be necessary. Solid-phase extraction (SPE) is the method of choice in these cases [5].
SPE is a simple sample preparation technique based on the removal of analytes from a liquid sample
by retention on a solid sorbent (e.g., silica, alkylated silica), based on the functional group interactions
of the analytes, flowing solvent, and the solid sorbent [5,6,101]. The retained analytes are subsequently
eluted from the sorbent using a solvent or solvent mixture with sufficient elution strength. Because it
involves the use of large amounts of solvents and requires several steps of concentration, this technique
is time-consuming and not high-throughput, resulting in an added risk of losing components during
the process. To improve sample high-throughput and reproducibility, 96-well solid-phase extraction
plates, and robotic SPE-MS systems have been developed and are commercially available [101]. An
SPE step is often included in sample preparation for MS-based phytohormone analysis in forest tree
studies to remove interfering components from the matrix, such as pigments, resinic acids, terpenes,
carotenoids, flavonoids, cellulose, and lipids, and increase the recovery rates of the phytohormones
under study [61,64,99].

4. The Importance of Forest Tree Metadata Standardization

Advances in high-throughput MS-based platforms have been responsible for the generation of
extremely large metabolomics datasets. For a comprehensive understanding of biochemical pathways
and regulatory networks involved in different plant processes and responses, metabolomics datasets
can be further integrated with other “omics” studies (e.g., transcriptomics, proteomics), providing
the data is available in a standardized and reproducible way. Thus, the description of metabolomics
studies should include all the information needed to allow the repetition of the experiment and the
re-usability of the data.

To promote standardization of all stages of a metabolomics analysis (i.e., experimental design,
biological context, chemical analysis, and data processing) and ensure metadata consistency,
in 2007, members of the metabolomics community established the Metabolomics Standard Initiative
(MSI) [102,103]. The MSI aimed at reporting standards and provide a clear description of the biological
system under study and of the metabolomics analysis workflows to allow data to be efficiently applied,
shared, and reused. A decade later, a set of guideline principles known as the FAIR principles (i.e.,
Findable, Accessible, Interoperable, and Re-usable) were also designed to assure good (meta)data
management by data holders and data publishers [104]. ELIXIR, the European infrastructure for
biological data (https://elixir-europe.org), has also brought together several communities (e.g., plant
sciences, metabolomics) with the common interest of dealing with the increasing complexity of
data, ultimately making data easier to find, analyze and share. Challenges currently faced by the
metabolomics community, namely (i) minimum information standards and early data capture; (ii)
global spectral databases; (iii) tools and standards registries; (iv) compound identifier mapping; (v)
omics data integration, and (vi) metabolite identification, have also been reported by ELIXIR in a
dedicated workshop [105]. However, despite these initiatives, the compliance with these reporting
standards still varies greatly across public repositories [106], and data and metadata sharing remain a
critical issue in metabolomics publications [107,108].

Within the field of plant metabolomics, forest tree metabolomics studies present additional
challenges concerning the standardization of metadata. Forest trees are species with long life cycles,
and details of the experimental metadata (e.g., parental original or field growth conditions) are often
not described. To re-use data derived from these studies, the description of the metadata should
include detailed information of the harvested material (e.g., geographical location, growth conditions,
biological growth stages, and phenological parameters) [8]. These parameters might reflect adaptive
traits mediated by epigenetic changes that affect the material under study [109,110]. Thus, as epigenetic
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changes affect the transcriptome, proteome, and ultimately the metabolome, the integration of these
“omics” data strongly depends on the availability of detailed information of the harvested material.
Plant phenotyping has been developed significantly over the past years due to the progress in novel
sensors, automation tools, and quantitative data analysis methods. Yet, the consequent increase of
data generation is still a struggle for the standardization of data acquisition and its re-usability [111].

The urge for metadata standardization for plant phenotyping experiments has been addressed
by community-driven projects, for example, the MIAPPE project (Minimal Information About a
Phenotypic Experiment), the ISA framework (investigation, study, assay) [112,113] or the GnpIS data
repository (genetic and genomic information system) [114]. MIAPPE is available as a checklist of
metadata to adequately describe a plant phenotyping experiment and as software to validate, store, and
disseminate MIAPPE-compliant data (https://www.miappe.org/). In early 2019, MIAPPE version 1.1
was released as an extended version to include woody plants and compatibility with other phenotyping
frameworks (e.g., ISA framework), which represents an important step towards the standardization of
forest tree metadata. By providing curated databases, and in accordance with the FAIR principles,
these platforms allow data and metadata to be easier to find, integrate, and analyze. Due to the amount
of data generated in forest tree studies, dedicated databases or extensions to existing databases have
been developed. Dedicated tree databases (e.g., PlantGenIE, TreeGenes, and Hardwood Genomics
Project) covering mostly genetic data have now the goal of associating phenotypic and environmental
data [115].

Integrated into crop ontology, the woody plant ontology has been established as an additional
platform for the annotation of forest tree metadata [116]. The woody plant ontology adds a set of
definitions to the existing crop ontology to describe specific tree traits (e.g., secondary growth in wood
and cork formation). Studies with forest tree species, particularly in field experiments, can take several
years to develop, and it is crucial to adequately annotate all metadata across the tree’s long life cycles.
Such case studies that use machine-accessible metadata can be found in the literature. One example is
the forest growth measurements from individual Picea abies trees over the course of 109 years [117].
The metadata file describing the reported data is openly available in an ISA-tab format and can be
further used to analyze and validate forest growth.

5. Conclusion

Metabolomics studies are often regarded as the ultimate response of biological systems to genetic
or environmental alterations. Although most MS-based plant metabolomics research is performed on
crop and non-tree model species, in recent years, studies on forest tree species have generated particular
interest, especially after major genomics breakthroughs in forest tree research (e.g., availability of
the Populus trichocarpa reference genome in 2006). In this area, MS-based metabolomics represents
a unique opportunity to explore the forest tree’s adaptation to environmental fluctuations as well
as other economic and ecological relevant developmental processes. However, and as previously
discussed, to successfully obtain significant data from metabolomics analyses, it is crucial to have
a well-planned experimental design and an appropriate sample preparation. Any metabolomics
study should include, in great detail, a clear description of the design of the experiment as well as of
other technical parameters. Despite the struggles, continuous efforts from the metabolomics scientific
community have been made to ensure data and metadata reproducibility between laboratories and to
promote the availability of curated databases and repositories containing high-quality data (including
dedicated woody species platforms).
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85. Szmigielski, R.; Cieslak, M.; Rudziński, K.J.; Maciejewska, B. Identification of volatiles from Pinus silvestris
attractive for Monochamus galloprovincialis using a SPME-GC/MS platform. Environ. Sci. Pollut. Res. Int. 2011,
9, 2860–2869. [CrossRef] [PubMed]

86. Gonçalves, E.; Figueiredo, A.C.; Barroso, J.G.; Henriques, J.; Sousa, E.; Bonifácio, L. Effect of Monochamus
galloprovincialis feeding on Pinus pinaster and Pinus pinea, oleoresin and insect volatiles. Phytochemistry 2020,
169, 112159. [CrossRef]

87. Schäfer, B.; Hennig, P.; Engewald, W. Analysis of monoterpenes from conifer needles using solid phase
microextraction. J. High Res. Chromatogr. 1995, 18, 587–592. [CrossRef]

88. Riikonen, J.; Kontunen-Soppela, S.; Ossipov, V.; Tervahauta, A.; Tuomainen, M.; Oksanen, E.; Vapaavouri, E.;
Heinonen, J.; Kivimäenpää, M. Needle metabolome, freezing tolerance and gas exchange in Norway spruce
seedlings exposed to elevated temperature and ozone concentration. Tree Physiol. 2012, 32, 1102–1112.
[CrossRef]

89. De Símon, B.F.; Cadahía, E.; Aranda, I. Metabolic response to elevated CO2 levels in Pinus pinaster Aiton
needles in an ontogenetic and genotypic-dependent way. Plant Physiol. Biochem. 2018, 132, 202–212.
[CrossRef] [PubMed]

90. Hantao, L.W.; Ribeiro, F.A.L.; Passador, M.M.; Furtado, E.L.; Poppi, R.J.; Gozzo, F.C.; Augusto, F. Metabolic
profiling by ultra-performance liquid chromatography mass spectrometry and parallel factor analysis for the
determination of disease biomarkers in Eucalyptus. Metabolomics 2014, 13, 1318–1325. [CrossRef]

91. Rivas-Ubach, A.; Sardans, J.; Hódar, J.A.; Garcia-Porta, J.; Guenther, A.; Paša-Tolić, L.; Oravec, M.; Urban, O.;
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