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Preface to ”Nonlinear Functional Analysis and Its

Applications”

Originally, functional analysis was that branch of mathematics capable of investigating in

an abstract way a series of linear mathematical models from science. The study of these linear

models—in fact, only first approximations of real models—proved insufficient, so the theory had

to be extended to be able to describe the nonlinear phenomena themselves. In this way nonlinear

functional analysis was born and continues to develop, becoming a vast and fascinating field of

mathematics, with deep applications to increasingly complex problems in physics, biology, chemistry,

and economics.

This book consists of nine papers covering a number of basic ideas, concepts, and methods of

nonlinear analysis, as well as some current research problems. Thus, the reader is introduced to the

fascinating theory around Brouwer’s fixed point theorem, which is the basis of important extensions

to infinitely dimensional spaces with numerous applications to boundary value problems for various

classes of ordinary and partial differential equations. New results for nonstandard elliptic equations

obtained with methods such as the technique of upper and lower solutions, advanced methods of

critical point theory, and minimax techniques are then presented. The reader is also introduced to

Granas’ theory of topological transversality, an alternative to the theory of topological degree. Several

contributions address current research issues, such as the problem of discontinuous term equations,

results of metric fixed point theory, robust tracker design problems for various classes of nonlinear

systems, or the problem of periodic solutions in computer virus propagation models.

I would like to particularly thank Professor Jean Mawhin, Professor Dumitru Motreanu,

Professor Donal O’Regan, and Professor Biagio Ricceri, who have positively answered our invitation

to contribute a paper to this Special Issue. I am sure that their extremely valuable papers will interest

the readers and will stimulate new research work in this direction. I would also like to thank the

other contributors for their articles that open new perspectives over some specific problems and

applications.

Finally, I would like to thank the editors of the journal Mathematics, particularly Assistant Editor

Grace Du and Marketing Assistant Rainy Han, for their great support throughout the editing process

of the Special Issue for Mathematics and its present MDPI Reprint Book.

Radu Precup

Editor
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1. Introduction

The Bolzano theorem for continuous functions f : [a, b] ⊂ R→ R, which states that f has a zero in
[a, b] if f (a) f (b) ≤ 0, was first proved in 1817 by Bolzano [1] and, independently and differently in 1821
by Cauchy [2]. Its various proofs are not very long, and depend only upon the order and completeness
properties of R. A consequence of the Bolzano theorem applied to I − T is that T : [−R, R] → R,
continuous, has a fixed point in [−R, R] if T(−R) ∈ [−R, R] and T(R) ∈ [−R, R]. This is the case if
T : [−R, R]→ [−R, R].

As [−R, R] is the closed ball of center 0 and radius R in R, a natural question is to know if,
BR denoting the closed ball BR ⊂ Rn of center 0 and radius R > 0, any continuous mapping T : BR → Rn

such that T(∂BR) ⊂ BR has a fixed point, and, in particular, if any continuous mapping T : BR → BR has a
fixed point. The answer is yes, and the first result, usually called the Rothe fixed point theorem (FPT),
is more correctly referred as the Birkhoff–Kellog FPT, and the second one as the Brouwer FPT.

Many different proofs of those results have been given since the first published one of the Brouwer
FPT by Hadamard in 1910 [3]. Brouwer’s original proof [4], published in 1912, was topological and
based on some fixed point theorems on spheres proved with the help of the topological degree
introduced in the same paper. The Birkhoff–Kellogg FPT was first proved by Birkhoff and Kellogg in
1922 [5]. Its standard name Rothe FPT refers to its extension to Banach spaces by Rothe [6] in 1937.

The existing proofs use ideas from various areas of mathematics such as algebraic topology,
combinatorics, differential topology, analysis, algebraic geometry, and even mathematical economics.
A survey and a bibliography can be found in [7]. Even for n = 2, they cease to be elementary and/or
can be technically complicated. The aim of this paper is to survey recent results on some elementary
approaches to the Birkhoff–Kellogg and Brouwer FPT, and on how to deduce from them in a simple and
systematic way other fixed point and existence theorems for mappings in Rn. Recall that these results,
combined with basic facts of functional analysis, are fundamental in obtaining useful extensions to
some classes of mappings in infinite-dimensional normed spaces.

After recalling the simple concept of curvilinear integral in R2, we first propose in Section 2 an
elementary proof of the Birkhoff–Kellogg FPT for n = 2, based upon such integrals. As the extension to
arbitrary n, using differential (n− 1) forms in Rn, leads to very cumbersome computations, we adopt

Mathematics 2020, 8, 501; doi:10.3390/math8040501 www.mdpi.com/journal/mathematics1
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in Section 3 a variant given in [8], using differential n-forms, which in dimension n happens to be
significantly simpler than the direct extension of the approach of Section 2.

The generalizations of the Birkhoff–Kellogg and Brouwer FPT to a closed ball in Rn and their
homeomorphic images are stated in Section 4. After the concepts of retract and retraction are
introduced, the Leray–Schauder–Schaefer FPT on a closed ball is deduced from the Brouwer FPT,
whose statement is also extended to retracts of a closed ball in Rn. Finally, the equivalence of the
Birkhoff–Kellogg and Brouwer FPT on a closed ball is established.

The Brouwer FPT and retractions are then used in Section 5 to prove, in a very simple and unified
way inspired by the approach of [9], several conditions for the existence of zeros continuous mappings
in Rn, namely the Poincaré–Bohl theorem on a closed ball, the Hadamard theorem on a compact convex
set, the Poincaré–Miranda theorem on a closed n-interval, and the Hartman–Stampacchia theorem on
variational inequalities.

Finally, in Section 6, following the method introduced in [10], simple versions of the Cauchy
integral theorem provide criterions for the existence of zeros of a holomorphic function in same spirit
of the approach in Section 2. They allow very simple proofs of the Hadamard and Poincaré–Miranda
theorems and of the Birkhoff–Kellogg and Brouwer FPT for holomorphic functions.

2. A Proof the Birkhoff–Kellogg Theorem on a Closed Disc Based on Curvilinear Integrals

Let D ⊂ R2 be open and nonempty and let 〈·, ·〉 denote the usual inner product
in R2. Given f = ( f1, f2) : D → R2, x �→ f (x) and ϕ = (ϕ1, ϕ2) : [a, b]→ D, t �→ ϕ(t) of class C1,
we consider the corresponding curvilinear integral defined by

∫ b
a 〈 f (ϕ(t), ϕ′(t)〉dt where ′ denotes

the derivative with respect to t.
The following result is fundamental for our proof of the Birkhoff–Kellogg FPT on a closed disc.

Lemma 1. If f = ( f1, f2) : D → R2 is of class C1 and such that ∂1 f2 = ∂2 f1 and if Φ : [a, b]× [0, 1] → D
is of class C2 and such that Φ(b, λ) = Φ(a, λ) for all λ ∈ [0, 1], then λ →

∫ b
a 〈 f (Φ(t, λ), ∂tΦ(t, λ)〉dt is

constant on [0, 1].

Proof. It suffices to prove that ∂λ

∫ b
a 〈 f (Φ(t, λ), ∂tΦ(t, λ)〉dt = 0 for all λ ∈ [0, 1]. We have, with

differentiation under integral sign easily justified and the use of assumptions, the Schwarz theorem
and the fundamental theorem of calculus, and omitting the arguments (t, λ) for the sake of brevity

∂λ

∫ b

a
〈 f (Φ), ∂tΦ〉dt =

∫ b

a
∂λ[〈 f (Φ), ∂tΦ〉]dt

=
∫ b

a
{〈∂λ[ f (Φ)], ∂tΦ〉+ 〈 f (Φ), ∂λ∂tΦ〉}dt

=
∫ b

a

[〈
2

∑
j=1

∂j f (Φ)∂λΦj, ∂tΦ

〉
+ 〈 f (Φ), ∂t∂λΦ〉

]
dt

=
∫ b

a

[
2

∑
k=1

2

∑
j=1

∂j fk(Φ)∂λΦj∂tΦk + 〈 f (Φ), ∂t∂λΦ〉
]

dt

=
∫ b

a

[
2

∑
k=1

2

∑
j=1

∂k fj(Φ)∂tΦk∂λΦj + 〈 f (Φ), ∂t∂λΦ〉
]

dt

=
∫ b

a

[
2

∑
j=1

∂t f j(Φ)∂λΦj + 〈 f (Φ), ∂t∂λΦ〉
]

dt

=
∫ b

a
{〈∂t[ f (Φ)], ∂λΦ〉+ 〈 f (Φ), ∂t∂λΦ〉} dt

=
∫ b

a
∂t[〈 f (Φ), ∂λΦ〉]dt = f (Φ(b, λ))− f (Φ(a, λ)) = 0.

2
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Let BR := {x ∈ R2 : |x| ≤ R}, with |x| the Euclidian norm. We prove the Birkhoff–Kellogg FPT

on a closed disc.

Theorem 1. Any continuous mapping T : BR → R2 such that T(∂BR) ⊂ BR has a fixed point in BR.

Proof. Assume that T has no fixed point in BR. Then, |y− T(y)| > 0 for all y ∈ ∂BR, and, as T(∂BR) ⊂
BR, |y− λT(y)| ≥ |y| − λ|T(y)| ≥ 1− λ > 0, for all (y, λ) ∈ ∂BR × [0, 1). Similarly, λy− T(λy) �= 0
for all (y, λ) ∈ ∂BR × [0, 1]. As T is continuous, there exists δ > 0 such that |y − λT(y)| ≥ δ and
|λy− T(λy)| ≥ δ for all (y, λ) ∈ ∂BR × [0, 1]. From the Weierstrass approximation theorem, there is a
polynomial P : R2 → R2 such that |T(y)− P(y)| ≤ δ

2 for all y ∈ BR. Consequently, letting F(y, λ) :=
y − λP(y) and G(y, λ) := λy − P(λy), we have, for all (y, λ) ∈ ∂BR × [0, 1], |F(y, λ)| ≥ δ

2 and
|G(y, λ)| ≥ δ

2 . Hence, there exists an open neighborhood Δ of ∂BR such that F(y, λ) �= 0 and G(y, λ) �=
0 for all (y, λ) ∈ Δ× [0, 1]. If

f1 : R2 \ {0} → R, x �→ −|x|−2x2, f2 : R2 \ {0} → R, x �→ |x|−2x1,

then ∂2 f1(x) = |x|−4(x2
2 − x2

1) = ∂1 f2(x). If γR : [0, 2π] → R2, t �→ R(cos t, sin t) is a parametric
representation of ∂BR, so that γR(0) = γR(2π), it follows from Lemma 1 that the integrals

∫ 2π

0
〈 f [F(γR(t), λ)], ∂tF(γR(t), λ)〉dt and

∫ 2π

0
〈 f [G(γR(t), λ)], ∂tG(γR(t), λ)〉dt

are constant for λ ∈ [0, 1]. Hence, noticing that F(·, 1) = G(·, 1) = I − P,

∫ 2π

0
〈 f [F(γR(t), 0)], ∂tF(γR(t), 0)〉dt =

∫ 2π

0
〈 f [F(γR(t), 1)], ∂tF(γR(t), 1)〉dt

=
∫ 2π

0
〈 f [G(γR(t), 1)], ∂tG(γR(t), 1)〉dt =

∫ 2π

0
〈 f [G(γR(t), 0)], ∂tG(γR(t), 0)〉dt.

However, as G(·, 0) = −P(0) is constant and F(·, 0) = I,

0 =
∫ 2π

0
〈 f [G(γR(t), 0)], ∂tG(γR(t), 0)〉dt

=
∫ 2π

0
〈 f [F(γR(t), 0)], ∂tF(γR(t), 0)〉dt

=
∫ 2π

0
〈 f (γR(t)), γ′R(t)〉 dt =

∫ 2π

0
(sin2 t + cos2 t) dt = 2π,

a contradiction.

A direct consequence is the Brouwer FPT on a closed disc.

Corollary 1. Any continuous mapping T : BR → BR has a fixed point in BR.

3. A Proof of the Birkhoff–Kellogg Theorem on a Closed n-Ball Based on Differential n-Forms

The argument used in Section 2 for mappings in R2 can be extended to mappings in Rn, using the
basic properties of differential k-forms in Rn. For n = 2, the differential 1-forms and differential
(n− 1)-forms coincide, and it is the last ones that are requested for extending the proof of Theorem 1
to arbitrary n. We leave to the motivated reader the work to write down this extension of the first
approach and to realize that this generalization to dimension n of Lemma 1 is very cumbersome and
lengthy. Fortunately a similar approach based on differential n-forms instead of (n− 1)-forms has been

3
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introduced in [8], which, for n = 2, has the same length and technicality as the one used in Section 2,
but keeps its simplicity for arbitrary n. We describe it in this section.

For D ⊂ Rn open, bounded and nonempty, we need the concept of differential (n− 1)-forms
and n-forms and suppose that the reader is familiar with the notions, notations and properties of
differential k-forms (1 ≤ k ≤ n) on D, wedge products, pull backs, exterior differentials and the
Stokes–Cartan theorem for differential forms with compact support [11]. All the functions involved in
differential forms are supposed to be of class C2. We associate to the functions f j : D → R (j = 1, . . . , n)
the differential 1-form ω f := ∑n

j=1 f j dxj in D, and the differential (n− 1)-form

ν f =
n

∑
j=1

(−1)j−1 f j dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn,

where d̂xj means that the corresponding term is missing. We associate also to g : D → Rn the
differential n-form μg = g dx1 ∧ . . . ∧ dxn. For example, given the function w : D → R with partial
derivatives ∂jw, its differential dw := ∑n

j=1(∂jw) dxj is the differential 1-form ω∇w.
Let Δ ⊂ Rn be open, bounded and nonempty, F : Δ× [0, 1]→ D, (y, λ) �→ F(y, λ). For each fixed

λ ∈ [0, 1],

F∗(·, λ)ω f =
n

∑
j=1

[ f j ◦ F(·, λ)] dFj(·, λ)

=
n

∑
k=1

[
n

∑
j=1

[ f j ◦ F(·, λ)]∂kFj(·, λ)

]
dyk (j = 1, . . . , n)

is well defined. To shorten the notations, we write Fj for Fj(·, λ). We define the derivative with respect

to λ of F∗ω f by

∂λ(F∗ω f ) :=
n

∑
k=1

∂λ

[
n

∑
j=1

( f j ◦ F)∂kFj

]
dyk.

so that

∂λ(F∗ω f ) =
n

∑
k=1

n

∑
j=1

[
∂λ( f j ◦ F)∂kFj + ( f j ◦ F)∂λ∂kFj

]
dyk

=
n

∑
j=1

[∂λ( f j ◦ F) dFj + ( f j ◦ F) ∂λ(dFj)].

Furthermore,

∂λ(dFj) =
n

∑
k=1

(∂λ∂kFj) dyk =
n

∑
k=1

(∂k∂λFj) dyk = d(∂λFj) (j = 1, . . . , n).

On the other hand,
dF1 ∧ . . . ∧ dFn = JF dy1 ∧ . . . dyn,

where JF(·,λ)(y, λ) denotes the Jacobian of F(·, λ) at (y, λ) ∈ Δ× [0, 1], and

∂λ[dF1 ∧ . . . ∧ dFn] =
n

∑
j=1

dF1 ∧ . . . ∧ ∂λdFj ∧ . . . ∧ dFn.

The following two results replace Lemma 1 in Section 2. The first one shows that the differential
n-form ∂λ(F∗μg) is exact in Δ, i.e., is the exterior differential of a (n− 1)-differential form in Δ.

4
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Lemma 2. For each λ ∈ [0, 1], we have

∂λ(F∗μg) = d

[
(g ◦ F)

(
n

∑
j=1

(−1)j−1∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

)]
.

Proof. We have

∂λ(F∗μg) = ∂λ(g ◦ F) dF1 ∧ . . . ∧ dFn + (g ◦ F) ∂λ (dF1 ∧ . . . ∧ dFn)

=

(
n

∑
j=1

(∂jg ◦ F)∂λFj

)
dF1 ∧ . . . ∧ dFn

+ (g ◦ F)

(
n

∑
j=1

dF1 ∧ . . . ∧ ∂λdFj ∧ . . . ∧ dFn

)

=
n

∑
j=1

(−1)j−1(∂jg ◦ F) dFj ∧ ∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

+ (g ◦ F)

(
n

∑
j=1

(−1)j−1d
(
∂λFj

)
∧ dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

)

=
n

∑
j=1

(−1)j−1

(
n

∑
k=1

(∂kg ◦ F) dFk

)
∧ ∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

+ (g ◦ F)

(
n

∑
j=1

(−1)j−1d
(

∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

))

= d(g ◦ F) ∧
(

n

∑
j=1

(−1)j−1∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

)

+ (g ◦ F) d

(
n

∑
j=1

(−1)j−1∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

)

= d

[
(g ◦ F)

(
n

∑
j=1

(−1)j−1∂λFj dF1 ∧ . . . ∧ d̂Fj ∧ . . . ∧ dFn

)]
:= dνg,F.

Corollary 2. If w ∈ C2(Rn,R), Δ is open, bounded and F ∈ C2(Δ × [0, 1],Rn) verify F(∂Δ × [0, 1]) ∩
supp w = ∅, then

∫
Δ F∗μw is independent of λ on [0, 1].

Proof. Using Lemma 2, the assumption and Stokes–Cartan theorem, we get

∂λ

∫
Δ

F∗μw =
∫

Δ
∂λ(F∗μw) =

∫
Δ

dνw,F =
∫

∂Δ
νw,F = 0.

Let BR := {x ∈ Rn : |x| ≤ R}with |x| the Euclidian norm. We now show that Proposition 2 allows
a simple proof of the Birkhoff–Kellogg FPT on a closed n-ball, quite similar to that of Theorem 1.

Theorem 2. Any continuous mapping T : BR → Rn such that T(∂BR) ⊂ BR has a fixed point in BR.

Proof. Assume that T has no fixed point in BR. Then, x − T(x) �= 0 for x ∈ ∂BR, and for (x, λ) ∈
∂BR × [0, 1), we have |x − λT(x)| ≥ R − λ|T(x)| ≥ (1 − λ)R > 0. Thus, |x − λT(x)| > 0 for all
(x, λ) ∈ ∂BR × [0, 1]. On the other hand, for (x, λ) ∈ ∂BR × [0, 1], we have λx ∈ BR, λx− T(λx) �= 0,

5
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and hence |λx− T(λx)| > 0 for all (x, λ) ∈ ∂B(R)× [0, 1]. By continuity, there exists δ > 0 such that
|x− λT(x)| > δ for all (x, λ) ∈ ∂BR × [0, 1]. Let P : Rn → Rn be a polynomial such that maxBR |P− T|
≤ δ/2, and define F ∈ C∞(Rn × [0, 1],Rn) and G ∈ C∞(Rn × [0, 1],Rn) by F(x, λ) = λx− P(λx) and
G(x, λ) = x− λP(x), so that |F(x, λ)| ≥ δ/2 and |G(x, λ)| ≥ δ/2 for all (x, λ) ∈ ∂BR × [0, 1]. Let w ∈
C2(Rn,R) with supp w ⊂ B(δ/2), the open ball of center 0 and radius δ/2, and

∫
BR

w(y) dy = 1. Then,
by Proposition 2 with Δ = BR, we get

0 =
∫

BR

F∗(·, 0)μw =
∫

BR

F∗(·, 1)μw =
∫

BR

(I − P)∗μW ,

and ∫
BR

(I − P)∗μw =
∫

BR

G∗(·, 1)μw =
∫

BR

G∗(·, 0)μw =
∫

BR

μw

=
∫

BR

w(y) dy = 1,

a contradiction.

The Brouwer FPT on a closed n-ball is a special case.

Corollary 3. Any continuous mapping T : BR → BR has a fixed point in BR.

4. Fixed Points, Homeomorphisms and Retractions in Rn

Now, if K ⊂ Rn, if there exists a homeomorphism h : Bn → K, and if T : K → K is continuous,
h−1 ◦ T ◦ h : Bn → Bn is continuous, has a fixed point x∗ by Theorem 3, and h(x∗) ∈ K is a fixed point
of T. Consequently, we have a Brouwer FPT for homeomorphic images of a closed n-ball.

Theorem 3. If K ⊂ Rn is homeomorphic to BR, any continuous mapping T : K → K has a fixed point in K.

For example, K can be any closed n-interval [a1, b1]× . . .× [an, bn], or an n-simplex Rn
+ := {x =

∑n
j=1 xjej ∈ Rn : xj ≥ 0, ∑n

j=1 xj ≤ 1}.

Remark 1. In Theorem 3, the boundedness assumption on K cannot be omitted: a translation x �→ x + a in
Rn with a �= 0 has no fixed point. The closedness assumption on K cannot be omitted as well: T : (0, 1) →
(0, 1), x �→ x2 has no fixed point in (0, 1). Theorem 3 does not hold for any closed bounded set: a nontrivial
rotation of the closed annulus A = {x ∈ R2 : r1 ≤ |x| ≤ r2} has no fixed point in A.

We now introduce concepts and results due to Borsuk [12] which provide another class of sets on
which the Brouwer FPT holds and simple proofs of various equivalent formulations of this theorem.
We say that U ⊂ V ⊂ Rn is a retract of V if there exists a continuous mapping r : V → U such that
r = I on U (retraction of V in U). For example, BR is a retract of Rn, with a retraction r given by

r(x) =

{
x if |x| ≤ R

R x
|x| if |x| > R. (1)

Similarly, for any 0 < R1 ≤ R2, BR1 is a retract of BR2 .

Remark 2. The Brouwer FPT on BR implies the Birkhoff–Kellogg FPT on BR. Indeed, if T : BR → Rn is
continuous, T(∂BR) ⊂ BR, and r is given by (1), then r ◦ T : BR → BR is continuous and, by the Brouwer
FPT 3, has a fixed point x∗ ∈ BR. If |T(x∗)| > R, |x∗| = |r(T(x∗))| = R and |T(x∗)| ≤ R, a contradiction.
Thus, |T(x∗)| ≤ R and x∗ = T(x∗). Thus, the two statements are equivalent.

6
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Remark 3. The Brouwer FPT has for immediate topological consequence the well-known no-retraction

theorem, stating that ∂BR is not a retract of BR in Rn. We do not repeat here the simple proof of this
result and the proof of Brouwer FPT from the no-retraction theorem.

An easy consequence of Theorem 3 is the Leray–Schauder–Schaefer fixed point theorem,
a special case of a more general result obtained in 1934 by Leray and Schauder [13]. The proof
given here is due to Schaefer [14].

Theorem 4. Any continuous mapping T : BR ⊂ Rn → Rn such that x �= λT(x) for all (x, λ) ∈ ∂BR× (0, 1)
has a fixed point in BR.

Proof. Let r : Rn → BR be the retraction of Rn onto BR defined in Equation (1). Theorem 3 implies the
existence of x∗ ∈ BR such that x∗ = r(T(x∗)). If |T(x∗)| > R, then x∗ = R

|T(x∗)|T(x∗), so that |x∗| = R

and x∗ = λ∗T(x∗) with λ∗ = R
|T(x∗)| < 1, a contradiction with the assumption. Hence, |T(x∗)| ≤ R

and x∗ = T(x∗).

Remark 4. If T : ∂BR → BR, it is clear that the assumption of Theorem 4 is satisfied. Thus the
Leray–Schauder–Schaefer FPT implies the Birkhoff–Kellogg FPT, and hence the two statements are quivalent.

The Brouwer FPT holds for retracts of a closed ball.

Theorem 5. If U ⊂ Rn is a retract of BR, any continuous mapping T : U → U has a fixed point.

Proof. Let U = r(BR) for some retraction r : BR → U. Then, T ◦ r : BR → U ⊂ BR has a fixed point
x∗ ∈ U. Hence, x∗ = r(x∗), and x∗ = T(x∗).

If C ⊂ Rn is non- empty, closed and convex, the orthogonal projection pC(x) on C of x ∈ Rn,
defined by |pC(x)− x| = miny∈C |y− x|, is a retraction of Rn onto C [15]. Consequently, C is a retract
of any BR ⊃ C, giving a Brouwer FPT on compact convex sets.

Corollary 4. If C ⊂ Rn is compact and convex, any continuous mapping T : C → C has a fixed point in C.

5. Zeros of Continuous Mappings in Rn

The first theorem on the existence of a zero for a mapping from BR into Rn was first stated and
proved for C1 mappings by Bohl [16] in 1904, and extended to continuous mappings by Hadamard in
1910 [3], under the name Poincaré–Bohl theorem. It is a reformulation of the Leray–Schauder–Schaefer
FPT Theorem 4.

Theorem 6. Any continuous mapping f : BR → Rn such that f (x) �= μx for all x ∈ ∂BR and for all μ < 0
has a zero in BR.

Proof. Define the continuous mapping T : BR → Rn by T(x) = x− f (x). For (x, λ) ∈ ∂BR × (0, 1),
we have, by assumption,

x− λT(x) = (1− λ)x + λ f (x) = λ

[
f (x)− λ− 1

λ
x
]
�= 0.

By Theorem 4, T has a fixed point x∗ in BR, which is a zero of f .

In 1910, two years before the publication of [4], Hadamard, informed by a letter from Brouwer
of the statement of his fixed point theorem, published a simple proof based on the Kronecker index
(a forerunner of the Brouwer topological degree) in an appendix to an introductory analysis book

7
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of Tannery [3]. Hadamard’s proof consisted in showing that Brouwer’s assumption implies that the
condition 〈x, x− T(x)〉 ≥ 0 holds for all x ∈ ∂BR, where 〈·, ·〉 denotes the usual inner product in Rn.
This condition implies the existence of a zero of I − T, because the assumption of the Poincaré–Bohl
theorem 6 is satisfied. Hadamard’s reasoning using the Kronecker index does not depend upon the
special structure I − T of the mapping in the inner product. Hence, it is natural (although not usual) to
call Hadamard theorem the statement of existence of a zero for a continuous mapping f : BR → Rn,
when x− T(x) is replaced by f (x) in the inequality above, a statement which became in the year 1960 a
key ingredient in the theory of monotone operators in reflexive Banach spaces. Using convex analysis,
we give an extension to compact convex sets.

Let C ⊂ Rn be compact and convex and pC : Rn → C be the orthogonal projection of x on C [15].
Recall that pC(x) is characterized by the condition

〈x− pC(x), y− pC(x)〉 ≤ 0 for all y ∈ C. (2)

For x ∈ ∂C, the set

Nx := {ν ∈ R
n : 〈ν, y− x〉 ≤ 0 for all y ∈ C}

is nonempty and called the normal cone to C at x, and its elements ν are called the outer normals to C at
x. The relation in Equation (2) shows that, for each x �∈ C, x− p(x) ∈ Np(x) \ {0}. It can also be shown
that each x ∈ ∂C is the orthogonal projection of some z �∈ C, so that Nx = {z ∈ Rn \ C : p(z) = x}.
The Hadamard theorem on a convex compact set follows in a similar way as Theorem 6 from the
Brouwer FPT 3.

Theorem 7. If C ⊂ Rn is a compact and convex, any continuous f : C → Rn such that 〈ν, f (x)〉 ≥ 0 for all
x ∈ ∂C and all ν ∈ Nx has a zero in C.

Proof. Let T : Rn → Rn be defined by T = pC − f ◦ pC. Then, for all x ∈ Rn,

|T(x)| ≤ |pC(x)|+ | f (pC(x))| ≤ max
x∈C

|x|+ max
y∈C

| f (y)| := R,

and T maps BR into itself. By Theorem 3, there exists x∗ ∈ BR such that x∗ = pC(x∗)− f (pC(x∗)).
If x∗ �∈ C, the assumption implies that

0 < |x∗ − pC(x∗)|2 = −〈x∗ − pC(x∗), f (pC(x∗))〉 ≤ 0,

a contradiction. Thus, x∗ ∈ C, x∗ = pC(x∗) and f (x∗) = 0.

Corollary 5. Any continuous mapping f : BR → Rn such that 〈x, f (x)〉 ≥ 0 for all x ∈ ∂BR has a zero in BR.

Proof. For each x ∈ ∂BR, Nx = {λx : λ > 0}, and we apply Theorem 7.

Remark 5. As shown when mentioning Hadamard’s contribution, Theorem 5 implies the Brouwer FPT,
and even the Birkhoff–Kellopg FPT, on BR. Consequently, those statements are equivalent.

Some twenty years before the publication of Brouwer’s paper [4], Poincaré [17] stated in 1883 a
theorem about the existence of a zero of a continuous mapping f : P = [−R1, R1]× · · · × [−Rn, Rn]→
Rn when, for each i = 1, . . . , n, fi takes opposite signs on the opposite faces of P

P−i := {x ∈ P : xi = −Ri}, P+
i := {x ∈ P : xi = Ri} (i = 1, . . . , n).

8
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Poincaré’s proof just told that the result was a consequence of the Kronecker index, which is correct
but sketchy. The statement, forgotten for a while, was rediscovered by Cinquini [18] in 1940 with an
inconclusive proof, and shown to be equivalent to the Brouwer FPT on P one year later by Miranda [19].
Many other proofs have been given since, and we again refer to [7,20] for a more complete history,
variations and references, and to [21–23] for useful generalizations to more complicated sets than
closed n-intervals. Here, we obtain the Poincaré–Miranda theorem on a closed n-interval as a special
case of Theorem 7.

Corollary 6. Any continuous mapping f : P → Rn such that fi(x) ≤ 0 for all x ∈ P−i and fi(x) ≥ 0 for all
x ∈ P+

i (i = 1, . . . , n) has a zero in P.

Proof. If x is in the (relative) interior of the face P−i , then Nx = {−λei : λ > 0}, where (e1, e2, . . . , en)

is the orthonormal basis in Rn, and the assumption of Theorem 7 becomes − fi(x) ≥ 0, i.e., fi(x) ≤ 0.
Similarly, if x is in the (relative) interior to the face P+

i , then Nx = {λei : λ > 0}, and the assumption
of Theorem 7 becomes fi(x) ≥ 0. Of course, −λei and λei (λ > 0) also belong to the respective normal
cones for x ∈ P−i and P+

i respectively, and if, say, x ∈ P−i ∩ P+
j then ν = −λei + μej ∈ Nx for all

λ, μ > 0, and 〈ν, f (x)〉 = −λ fi(x) + μ fk(x) ≥ 0. In general, when x belongs to the intersection of
several faces of P, Nx will be made of the linear combination of the ei corresponding to the indices
of the faces, with a negative coefficient for a face having symbol − and positive coefficient for a face
having symbol +, so that, using the assumption, 〈ν, f (x)〉 ≥ 0 for all x ∈ ∂P and all ν ∈ Nx. The result
follows from Theorem 7.

Remark 6. Corollary 6 implies the Brouwer FPT on P. Indeed, if T : P → P is continuous, and if we set
f = I − T, then, as −Ri ≤ Ti(x) ≤ Ri for all x ∈ ∂P, we have, for x ∈ P such that xi = −Ri, fi(x) =

xi − Ti(x) = −Ri − Ti(x) ≤ 0, and, for x ∈ P such that xi = Ri, fi(x) = xi − Ti(x) = Ri − Ti(x) ≥ 0.
Thus f has at least one zero in P, which is a fixed point of T. Consequently, the two statements are equivalent.

Remark 7. Both the Hadamard theorem on BR and the Poincaré–Miranda theorem can be seen as distinct
n-dimensional generalizations of the Bolzano theorem to closed ball and n-intervals respectively.

Remark 8. Using the Brouwer degree, it is easy to obtain the conclusion of the Hadamard Theorem 7 for a
compact convex neighborhood of 0 under the weaker condition that for each x ∈ ∂C, there exists ν ∈ Nx such
that 〈ν, f (x)〉 ≥ 0. No proof based only upon the Brouwer FPT seems to be known.

If C ⊂ Rn is a compact convex set and g : C → R is of class C1, then g reaches its minimum on C
at some x∗ ∈ C for which

g(x∗ + λ(v− x∗))− g(x∗) ≥ 0 for all v ∈ C and for all λ ∈ [0, 1],

so that, dividing both members by λ and letting λ → 0+, we obtain 〈∇g(x∗), v− x∗〉 ≥ 0 for all v ∈ C,
where ∇g denotes the gradient of g. For example, if u ∈ Rn is fixed and g : C → R is defined
by g(x) = (1/2)|x − u|2, the minimization problem corresponds to the definition of pC(u), and,
as ∇g(x) = x− u, the inequality above is just Equation (2). In 1966, Hartman and Stampacchia [24]
proved that the existence of such a x∗ still holds when ∇g is replaced by an arbitrary continuous
function f : C → Rn. When C is a simplex, the same result was proved independently the same year
by Karamardian [25]. We give here a proof, due to Brezis (see [26]) and based upon Brouwer’s FPT,
of the Hartman–Stampacchia theorem on variational inequalities.

Theorem 8. If C ⊂ Rn is compact, convex and f : C → Rn continuous, there exists x∗ ∈ C such that
〈 f (x∗), v− x∗〉 ≥ 0 for all v ∈ C.

9
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Proof. The Brouwer FPT on C (Corollary 4) applied to the continuous mapping pC ◦ (I − f ) : C → C
implies the existence of x∗ ∈ C such that

x∗ = pC(x∗ − f (x∗)). (3)

Taking x = x∗ − f (x∗) in Equation (2) and using Equation (3), one gets

〈x∗ − f (x∗)− x∗, v− x∗〉 ≤ 0 for all v ∈ C,

which is the requested inequality.

Remark 9. The conclusion of Theorem 8 is called a variational inequality. In the terminology of the theory
of convex sets [15], the conclusion of Theorem 8 means that there exists x∗ ∈ C such that either f (x∗) = 0 or
f (x∗) �= 0 and H := {y ∈ Rn : 〈 f (x∗), y− x∗〉 = 0} is a supporting hyperplane for C passing through
x∗ i.e., C is entirely contained in one of the two closed half-spaces determined by H.

Remark 10. The Brouwer FPT on C (Corollary 4) also follows from the Hartman–Stampacchia theorem. Indeed,
if T : C → C is continuous and x∗ is given by Theorem 8 applied to f = I − T, then, taking v = T(x∗) ∈ C
in the variational inequality, we obtain 0 ≤ 〈x∗ − T(x∗), T(x∗) − x∗〉 = −|x∗ − T(x∗)|2 ≤ 0, so that
x∗ = T(x∗). Hence, the two statements are equivalent.

Remark 11. If x∗ and x# are two distinct solutions of the variational inequality, then

〈 f (x∗), x# − x∗〉 ≥ 0, 〈 f (x#), x∗ − x#〉 ≥ 0,

and hence 〈 f (x∗)− f (x#), x∗ − x#〉 ≤ 0. Consequently, the variational inequality has a unique solution if f
satisfies the condition 〈 f (x)− f (y), x− y〉 > 0 for all x �= y ∈ C, i.e., if f is strictly monotone on C.

6. A Direct Approach for Holomorphic Functions in C

The assumption of the Bolzano theorem for a continuous function f : [−R, R] → R can be,
without loss of generality, be written f (−R) ≤ 0 ≤ f (R) or, equivalently, x f (x) ≥ 0 for |x| = R.
In 1982, Shih [27] proposed a version of the Bolzano theorem for a complex function f holomorphic
on a suitable bounded open neighborhood Ω ⊂ C of 0 and continuous on Ω. He showed that f
has a unique zero in Ω when �[z f (z)] > 0 on ∂Ω, using the Rouché theorem applied to f (z) and
g(z) = αz for a suitable real α. As �[z f (z)] = �z · � f (z) + �z · � f (z), Shih’s condition is just
Hadamard’s one in Theorem 5 with strict inequality sign. Following the approach introduced in [10],
we show in this section that, when the (non strict) Hadamard condition holds on the boundary of a
ball, the existence of a zero of a holomorphic function results in a very simple way from an immediate
consequence of the Cauchy integral theorem. The same is true for a Poincaré–Miranda theorem on a
rectangle, giving another extension of the Bolzano theorem to complex functions. The Brouwer’s FPT
for holomorphic functions on a closed ball or a closed rectangle follow immediately.

We suppose the reader familiar with the concepts of holomorphic function f , piecewise Ck cycle

γ, and integral
∫

γ f (z) dz of f along γ [28]. We denote by B(R) the open disc of center 0 and radius

R > 0 in C, and by BR the corresponding closed disc. Let γR : [0, 2π]→ ∂BR, t �→ Reit be the standard
C∞-cycle whose image is ∂BR. The Cauchy integral theorem on a circle is proved here in a simple
way, reminiscent of Cauchy’s proof in 1825 [29], reworked by Falk in 1883 [30], and similar in spirit to
the proof of Lemma 2.

Proposition 1. If f : BR → C is continuous on BR and holomorphic on B(R), then
∫

γR
f (z) dz = 0.

10
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Proof. Define Γ : [0, 1] × [0, 2π] → BR by Γ(λ, t) = λγR(t), so that Γ(1, ·) = γR and Γ(0, ·) is
the constant zero mapping. To show that λ �→

∫
Γ(λ,·) f (z) dz is constant in (0, 1), we have (with

differentiation under the integral sign easily justified and ′ denoting the derivative with respect to z)

∂λ

∫
Γ(λ,·)

f (z) dz = ∂λ

∫ 2π

0
f (Γ(λ, t))∂tΓ(λ, t) dt

=
∫ 2π

0
[ f ′(Γ(λ, t))∂λΓ(s, t)∂tΓ(λ, t) + f (Γ(λ, t))∂λ∂tΓ(λ, t)] dt

=
∫ 2π

0
[∂t{ f (Γ(λ, t))}∂λΓ(λ, t) + f (Γ(λ, t))∂t∂λΓ(λ, t)] dt

=
∫ 2π

0
∂t[ f (Γ(λ, t))∂λΓ(λ, t)] dt

= f (Γ(λ, 2π))∂λΓ(λ, 2π)− f (Γ(λ, 0))∂λΓ(λ, 0) = 0.

By continuity, λ �→
∫

Γ(λ,·) f (z) dz is constant in [0, 1], and hence

∫
γR

f (z) dz =
∫

Γ(1,·)
f (z) dz =

∫
Γ(0,·)

f (z) dz = 0.

Let a > 0, b > 0, P = {z ∈ C : −a ≤ �z ≤ a, −b ≤ �z ≤ b} be the corresponding
closed rectangle in C, and let us introduce the continuous mapping ρ : [0, 4] → ∂P of class C∞ on
(0, 1) ∪ (1, 2) ∪ (2, 3) ∪ (3, 4) defined by

ρ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−a + 2ta− ib if t ∈ [0, 1]

a + i[−b + 2(t− 1)b] if t ∈ [1, 2]
a− 2(t− 2)a + ib if t ∈ [2, 3]
−a + i[b− 2(t− 3)b] if t ∈ [3, 4],

(4)

whose image ρ([0, 4]) = ∂P. We state and prove the Cauchy’s integral theorem on the boundary of

a rectangle.

Proposition 2. If f : P → C is continuous on P and holomorphic on int P, then
∫

ρ f (z) dz = 0.

Proof. It is entirely similar to that of Proposition 1. If we define R : [0, 1] × [0, 4] → P by
R(λ, t) = λρ(t), the integral

∫
R(λ,·) f (z) dz has to be decomposed into four integrals over [0, 1], [1, 2],

[2, 3], and [3, 4], respectively, of f (R(λ, t))∂tR(λ, t), and each integral has to be differentiated with
respect to λ separately. The details are left to the reader.

Propositions 1 and 2 immediately imply the following simple theorem for the existence of a zero

of f .

Proposition 3. Any function f : BR → C (respectively, f : P → C) holomorphic on B(R) (respectively,
int P), continuous on BR (respectively, P), different from zero on ∂BR (respectively, ∂P) and such that

∫
γR

dz
f (z)

�= 0
(

resp.
∫

ρ

dz
f (z)

�= 0)
)

has a zero in B(R) (respectively, P).

11
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Proof. It is entirely similar in both cases and we prove it for BR. If f has no zero in B(R), then z �→ 1
f (z)

is holomorphic on B(R) and continuous on BR. By Proposition 1,
∫

γR
dz

f (z) = 0, a contradiction to
the assumption.

Proposition 3 provides a very simple proof of the Hadamard theorem for a holomorphic function

on BR.

Theorem 9. Any function f : BR → C holomorphic on B(R), continuous on BR and such that �[z f (z)] ≥ 0
for all z ∈ ∂BR, has a zero in BR.

Proof. For each integer k ≥ 1, define fk : BR → C by fk(z) = k−1z + f (z). Each fk has the regularity
properties of f and is such that, for any z ∈ ∂BR, �[z fk(z)] = k−1R2 +�[z f (z)] > 0, so that fk(z) �= 0
for all z ∈ ∂BR, and

�
[∫

γR

dz
fk(z)

]
= �

[∫
γR

zz
z fk(z)

dz
z

]
= �

[∫
γR

|z|2{�[z fk(z)]− i�[z fk(z)]}
|z fk(z)|2

dz
z

]
= �

[∫ 2π

0

i�[Re−it fk(Reit)] +�[Re−it f (Reit)]

| fk(Reit)|2 dt
]

=
∫ 2π

0

�[Re−it fk(Reit)]

| fk(Reit)|2 dt > 0.

By Proposition 3, for each k ≥ 1, fk has a zero zk in B(R), and, by the Bolzano–Weierstrass theorem,
a subsequence (zkn)n≥1 of (zk)k≥1 converges to some z∗ ∈ BR such that 0 = limn→∞[k−1

n zkn + f (zkn)] =

f (z∗).

The Birkhoff–Kellog FPT for a holomorphic function on a disc is a direct consequence of
Theorem 9.

Corollary 7. Any function T : BR → C continuous on BR, holomorphic on B(R) and such that T(∂BR) ⊂ BR
has a fixed point in BR.

Proof. For each z ∈ ∂BR, one has �{z[z− T(z)]} ≥ R2 − |z||T(z)| ≥ 0.

Example 1. For any integer m ≥ 1, the mapping T defined by T(z) = z
2 (z

m + 1) is such that for |z| = 1,
|T(z)| ≤ |z|

2 (|z|m + 1) ≤ 1. There is no uniqueness as T has the fixed points 0 and 1 in B1.

Let P−1 = {−a + iy : y ∈ [−b, b]}, P−1+ = {a + iy : y ∈ [−b, b]}, P−2 = {x − ib : x ∈ [−a, a]}
and P+

2 = {x + ib : x ∈ [−a, a]} be the opposite vertical and horizontal sides of P, respectively.
Proposition 3 provides a Poincaré–Miranda theorem for a holomorphic function on a rectangle.

Theorem 10. Any function f : P → C continuous on P, holomorphic on int P and such that � f (z) ≤ 0 for all
z ∈ P−1 , � f (z) ≥ 0 for all z ∈ P+

1 , � f (z) ≤ 0 for all z ∈ P−2 and � f (z) ≥ 0 for all z ∈ P+
2 has a zero in P.

Proof. For each integer k ≥ 1, the function fk defined on P by fk(z) = k−1z + f (z) is such that
� fk(z) < 0 for z ∈ P−1 , � fk(z) > 0 for z ∈ P+

1 , � fk(z) < 0 for z ∈ P−2 , and � fk(z) < 0 for

12
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z ∈ P+
2 . Hence, fk(z) �= 0 for each z ∈ ∂P. Let ρ : [0, 4] → Ω be the cycle defined by Equation (4).

By the assumptions,

�
[∫

ρ

dz
fk(z)

]
= �

{∫
ρ
| fk(z)|−2[� fk(z)− i� fk(z)] dz

}
=

∫
ρ
| fk(z)|−2[−� fk(z) dx +� fk(z) dy]

= −
∫ 1

0
| fk(ρ(t))|−2� fk[ρ(t)]2a dt +

∫ 2

1
| fk(ρ(t))|−2� fk[ρ(t)]2b dt

−
∫ 3

2
| fk(ρ(t))|−2� fk[ρ(t)]2a dt +

∫ 4

3
| fk(ρ(t))|−2� fk[ρ(t)]2b dt

= −
∫ a

−a
| fk(s− ib)|−2� fk(s− ib) ds +

∫ b

−b
| fk(a + it)|−2� fk(a + it) ds

+
∫ a

−a
| fk(s + ib)|−2� fk(s + ib) dt−

∫ b

−b
| fk(−a + is)|−2� fk(−a + is) ds

=
∫ a

−a

[
−| fk(s− ib)|−2� fk(s− ib) + | fk(s + ib)|2� fk(s + ib)

]
ds

+
∫ b

−b

[
| fk(a + is)|−2� fk(a + is)− | fk(−a + is)|−2� fk(−a + is)

]
ds > 0,

For k ≥ 1, Proposition 3 implies the existence of zk ∈ int P such that k−1zk + f (zk) = 0. Using the
Bolzano–Weierstrass theorem, a subsequence (zkn)n≥1 converges to some z∗ ∈ P such that 0 =

limn→∞
[
k−1

n zkn + f (zkn)
]
= f (z∗).

Example 2. Let the holomorphic function f : C → C be defined by f (z) = z3 + 4z + 1 + i.
Taking P = {z ∈ C : �z ∈ [−1, 1] and �z ∈ [−1, 1]}, one has

z ∈ P−1 ⇒ � f (z) = −4 + 3y2 < 0, z ∈ P+
1 ⇒ � f (z) = 6− 3y2 > 0

z ∈ P−2 ⇒ � f (z) = −3x2 − 2 < 0, z ∈ P+
2 ⇒ � f (z) = 3x2 + 4 > 0,

and f has a zero in [−1, 1]× [−1, 1].

A direct consequence of Theorem 10 is the Birkhoff–Kellogg FPT for a holomorphic function

on a rectangle.

Corollary 8. Any function T : P → C continuous on P, holomorphic on int P, and such that T(∂P) ⊂ P has
a fixed point in P.

Proof. Define f : P → C by f (z) = z− T(z) for all z ∈ P. The assumption T(∂P) ⊂ P is equivalent to
−a ≤ �T(z) ≤ a and −b ≤ �T(z) ≤ b for all z ∈ ∂P, and, hence, if z ∈ P−1 , � f (z) = −a−�T(z) ≤ 0,
if z ∈ P+

1 , � f (z) = a− �T(z) ≥ 0, if z ∈ P−2 , � f (z) = −b− �T(z) ≤ 0, and if z ∈ P+
2 , � f (z) =

b−�T(z) ≥ 0. Thus, by Theorem 10, f has a zero in P and T a fixed point in P.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Bolzano, B. Rein analytisches Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetzetes
Resultat gewähren, wenigsten eine reelle Wurzel der Gleichung liege; Abh. K. Gesells. Wiss.: Prag, Czech, 1817.

2. Cauchy, A. Cours d’analyse de l’École Royale Polytechnique; Ire Partie Analyse Algébrique: Debure, Paris, 1821.

13



Mathematics 2020, 8, 501

3. Hadamard, J. Sur quelques applications de l’indice de Kronecker, Note additionnelle, 2nd ed.; ‘Introduction à la
théorie des Fonctions d’une Variable’ de J. Tannery; Hermann: Paris, France, 1910; Volume 2, pp. 437–477.

4. Brouwer, L.E.J. Ueber Abbildungen von Mannigfaltigkeiten. Math. Ann. 1912, 71, 97–115. [CrossRef]
5. Birkhoff, G.D.; Kellogg, O.D. Invariant points in function space. Trans. Amer. Math. Soc. 1992, 23, 96–115.

[CrossRef]
6. Rothe, E. Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen.

Compos. Math. 1937, 5, 177–197.
7. Mawhin, J. Le théorème du point fixe de Brouwer: Un siècle de métamorphoses. Sci. Tech. Perspect. 2007, 10,

175–220.
8. Mawhin, J. Simple proofs of various fixed point and existence theorems based on exterior calculus.

Math. Nachr. 2005, 278, 1607–1614. [CrossRef]
9. Mawhin, J. Simple proofs of the Hadamard and Poincaré–Miranda theorems using the Brouwer fixed point

theorem. Am. Math. Mon. 2019, 126, 260–263. [CrossRef]
10. Mawhin, J. Bolzano’s theorems for holomorphic mappings. Chin. Ann. Math. 2017, 38, 563–578. [CrossRef]
11. Flanders, H. Differential Forms with Applications to the Physical Sciences; Academic Press: New York, NY, USA,

Reprinted Dover: New York, NY, USA, 1989.
12. Borsuk, K. Sur les rétractes. Fundam. Math. 1931, 17, 152–170. [CrossRef]
13. Leray, J.; Schauder, J. Topologie et équations fonctionnelles. Ann. Scient. École Norm. Sup. 1934, 51, 45–78.

[CrossRef]
14. Schaefer, H. Ueber die Methode der a priori Schranken. Math. Ann. 1955, 129, 415–416. [CrossRef]
15. Hiriart-Urruty, J.B.; Lemaréchal, C. Convex Analysis and Minimization Algorithms I; Springer: Berlin,

Germany, 1993.
16. Bohl, P. Ueber die Bewegung eines mechanischen Systems in der Nähe einer Gleichgewichtslage. J. Reine

Angew. Math. 1904, 127, 179–276.
17. Poincaré, H. Sur certaines solutions particulières du problème des trois corps. C R. Acad. Sci. Paris 1883, 97,

251–252.
18. Cinquini, S. Problemi di valori al contorno per equazioni differenziali di ordine n. Ann. Della Sc. Norm.

Super.-Pisa Sci. 1940, 9, 61–77.
19. Miranda, C. Un’ osservazione su un teorema di Brouwer. Cons. Naz. Delle Ric. 1940, 3, 5–7.
20. Mawhin, J. Variations on Poincaré-Miranda’s theorem. Adv. Nonlinear Stud. 2013, 13, 209–217. [CrossRef]
21. Fonda, A.; Gidoni, P. Generalizing the Poincaré-Miranda theorem: The avoiding cones condition. Ann. Mat.

Pura Appl. 2016, 195, 1347–1371. [CrossRef]
22. Pireddu, M.; Zanolin, F. Fixed points for dissipative-repulsive systems and topological dynamics of mappings

defined on N-dimensional cells. Adv. Nonlinear Stud. 2005, 5, 411–440. [CrossRef]
23. Pireddu, M.; Zanolin, F. Cutting surfaces and applications to periodic points and chaotic-like dynamics.

Topol. Methods Nonlinear Anal. 2007, 30, 279–319.
24. Hartman, P.; Stampacchia, G. On some non-linear elliptic differential-functional equations. Acta Math. 1966,

115, 271–310. [CrossRef]
25. Karamardian, S. Duality in Mathematical Programming; ORC 66-2; Operations Research Center, University

California: Berkeley, CA, USA, 1966.
26. Kinderlehrer, D.; Stampacchia, G. An Introduction to Variational Inequalities and Their Applications;

Academic Press: New York, NY, USA, 1980.
27. Shih, M.H. An analog of Bolzano’s theorem for functions of a complex variable. Am. Math. Mon. 1982, 89,

210–211. [CrossRef]
28. Ahlfors, L. Complex Analysis, 2nd ed.; Academic Press: New York, NY, USA, 1966.
29. Cauchy, A. Mémoire sur les intégrales définies. Mém. Acad. Sci. Paris 1827, 15, 41–89.
30. Falk, M. Extrait d’une lettre adressée à M. Hermite. Bull. Sci. Math. Astron. 1883, 7, 137–139.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

14



mathematics

Article

A Sub-Supersolution Approach for Robin Boundary
Value Problems with Full Gradient Dependence

Dumitru Motreanu 1,*, Angela Sciammetta 2 and Elisabetta Tornatore 2

1 Department of Mathematics, University of Perpignan, 66860 Perpignan, France
2 Department of Mathematics and Computer Science, University of Palermo, 90123 Palermo, Italy;

angela.sciammetta@unipa.it (A.S.); elisa.tornatore@unipa.it (E.T.)
* Correspondence: motreanu@univ-perp.fr

Received: 19 March 2020; Accepted: 19 April 2020; Published: 27 April 2020

Abstract: The paper investigates a nonlinear elliptic problem with a Robin boundary condition,
which exhibits a convection term with full dependence on the solution and its gradient. A sub-
supersolution approach is developed for this type of problems. The main result establishes the
existence of a solution enclosed in the ordered interval formed by a sub-supersolution. The result is
applied to find positive solutions.
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1. Introduction

In this paper we study the following nonlinear elliptic boundary value problem{
−div(A(x,∇u)) + α(x)|u|p−2u = f (x, u,∇u) in Ω

A(x,∇u) · ν(x) + β(x)|u|p−2u = 0 on ∂Ω
(1)

on a bounded domain Ω ⊂ RN with N ≥ 3 and with a boundary ∂Ω of class C1. The notation ν(x)
stands for the unit exterior normal at any x ∈ ∂Ω and p is a real number with 1 < p < +∞. We note
that, in the stated problem, the boundary condition is of Robin type.

We describe the data entering our problem. The leading differential part of the equation in (1) is
the term div(A(x,∇u)) in divergence form driven by the map A : Ω×RN → RN which is composed
with the (weak) gradient ∇u of the solution u : Ω → R. No homogeneity condition is required for the
map A. Precisely, we assume that A : Ω×RN → RN is continuous and fulfills the conditions:

(A1) There exist constants c1 and c2 with 0 < c1 ≤ c2 such that

A(x, ξ) · ξ ≥ c1|ξ|p and |A(x, ξ)| ≤ c2(|ξ|p−1 + 1) for all (x, ξ) ∈ Ω×R
N .

(A2) For all x ∈ Ω, A(x, ξ) is strictly monotone in ξ.

Here and subsequently we denote by | · | and · the standard Euclidean norm and scalar product
on RN , respectively.

As important examples of operators div(A(x,∇u)) complying with the preceding hypotheses
we mention: the p-Laplacian Δpu := div(|∇u|p−2∇u) where A(x, ξ) = |ξ|p−2ξ, the (p, q)-Laplacian
Δpu + Δqu := div((|∇u|p−2 + |∇u|q−2)∇u) where 1 < q < p < +∞ and A(x, ξ) = |ξ|p−2ξ + |ξ|q−2ξ,

the generalized p-mean curvature operator div((1 + |∇u|2) p−2
2 ∇u) where A(x, ξ) = (1 + |ξ|2) p−2

2 as
well as numerous weighted versions.

Mathematics 2020, 8, 658; doi:10.3390/math8050658 www.mdpi.com/journal/mathematics15
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The values of u on ∂Ω in the boundary condition of (1) are in the trace sense, whereas A(x,∇u) ·
ν(x) represents the co-normal derivative of u associated with A. For more details we refer to ([1],
pages 7–9) and ([2], Section 2). In the statement of problem (1) we fix the functions α ∈ L∞(Ω) and
β ∈ L∞(∂Ω) satisfying α(x) ≥ 0 for almost everywhere (in short a.e.) x ∈ Ω and β(x) ≥ 0 for a.e.
x ∈ ∂Ω, β �≡ 0, where ∂Ω is endowed with the (N − 1)-dimensional Hausdorff measure. Contrary to
the Neumann problem, here it is allowed to have α = 0. Recall that if α ∈ L∞(Ω) with α ≥ 0, α �≡ 0, the
term α(x)|u|p−2u was essential to develop the method of sub-supersolution under Neumann boundary
condition (see [3]). Actually, in the Robin problem, the hypothesis β(x) ≥ 0 for a.e. x ∈ ∂Ω, β �≡ 0, is a
substitute for the condition α(x) ≥ 0 for a.e. x ∈ Ω, α �≡ 0, assumed for the Neumann problem.

The reaction term f (x, u,∇u) in the equation (1) is determined by a Carathéodory function
f : Ω×R×RN → R, i.e., f (·, s, ξ) is measurable for all (s, ξ) ∈ R×RN and f (x, ·, ·) is continuous
for a.e. x ∈ Ω. This term, depending not only on the solution u but also on its gradient ∇u, is called
convection. It prevents to have a variational structure for problem (1) and thus the variational methods
are not applicable, which creates a serious difficulty for handling (1).

The Robin problems exhibiting convection term as is the case in (1) have only recently been
studied. We refer to [4–8] for results on the existence of solutions to such problems, where the approach
is based on fixed point theorems or on surjectivity criteria for monotone-type operators. We also
mention that a singular Robin problem involving convection has recently been treated in [9]. There are
many results for Robin problems with variational structure, thus without a convection term. In this
direction, we cite, e.g., [10–15]. The aim of the present work is to study the Robin problem (1) with
general gradient dependence through the method of sub-supersolution. Due to the lack of variational
structure, one cannot handle such a problem by variational methods. We recall that in the study
of non-variational elliptic problems one develops arguments as, for instance, the lower and upper
solution method with monotone iterations, approximation approach of Galerkin-type, surjectivity
theorems for monotone-type operators, fixed point theorems, topological degree theory, bifurcation
theory examining phenomena as branches of solutions and blow-up. It is beyond the scope of our
paper to review this huge amount of work. We only illustrate certain of these topics with a few recent
references: a comparison principle and approximation process relying on a Schauder basis in [16], a
fixed point approach using minimal solutions in [17], estimates based on Trudinger-Moser inequality
for problems with exponential nonlinearities in [18]. We also mention the classical monographs [19,20],
which are fundamental references for general elliptic equations.

According to our knowledge, this is the first time when the method of sub-supersolution is
systematically implemented for nonlinear Robin problems with convection. We prove a general
existence and location result for a solution to be enclosed in the ordered interval determined by a
sub-supersolution. Specifically, given a subsolution u and a supersolution u for problem (1) with u ≤ u
a.e. in Ω (see Section 2 for the relevant definitions), our main abstract result provides the existence of a
solution u to problem (1) satisfying u ≤ u ≤ u a.e. in Ω. This is an important qualitative property of
the solution u offering a priori estimates. The growth condition that we suppose in the variable s for
the nonlinearity f (x, s, ξ) concerns only the real interval [u(x), u(x)]. We emphasize that our abstract
result can be applied provided we know sub-supersolutions, i.e., ordered pairs of a subsolution u and a
supersolution u for problem (1) with u ≤ u i.e., in Ω, so the task to find such ordered pairs becomes the
primary task in applying the method. In this sense, we provide an application of our main result to get
positive solutions for a class of nonlinear Robin problem with convection term by showing explicitly
how one can effectively determine sub-supersolutions. Results, as are given here, have recently been
established in [21] for nonlinear Dirichlet problems with convection and in [3] for nonlinear Neumann
problems with convection. General ideas regarding the method of sub-supersolution can be found
in [1,22].

The rest of the paper is organized as follows. Section 2 discusses the background needed in the
sequel. Section 3 focuses on a related operator equation, which is of independent interest. Section 4
sets forth our main result. Section 5 contains our application to produce positive solutions.
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2. Prerequisites of Sub-Supersolution Method

This section contains preliminaries that will be used in the sequel. First, we fix some notation.
For any r ∈ R, we set r+ = max{r, 0} (the positive part of r). If r > 1, we also set r′ = r

r−1 (the Hölder
conjugate of r). In particular, for p ∈ (1,+∞) we have p′ = p

p−1 .

As indicated in Section 1, Ω is a bounded domain in RN with N ≥ 3 whose boundary ∂Ω is of
class C1. In order to avoid repetitive arguments, we suppose that N > p. The complementary case
N ≤ p can be treated along the same lines and actually is easier. By ‖ · ‖Lr(Ω) we denote the usual
norm on the Banach space Lr(Ω).

We seek the solutions to problem (1) in the Sobolebv space W1,p(Ω), which is a Banach space
equipped with the norm

‖u‖1,p :=
(
‖u‖p

Lp(Ω)
+ ‖∇u‖p

Lp(Ω)

) 1
p .

For our study of problem (1) it is convenient to use the following equivalent norm on W1,p(Ω)

(see, e.g., ([23], Lemma 2.7) or ([15], Proposition 2.8))

‖u‖β,1,p :=
(∫

∂Ω
β(σ)|u(σ)|pdσ + ‖∇u‖p

Lp(Ω)

) 1
p

. (2)

The dual space of W1,p(Ω) is denoted (W1,p(Ω))∗, while the notation 〈·, ·〉 designates the duality
pairing between W1,p(Ω) and (W1,p(Ω))∗, we denote by → the strong convergence and by ⇀ the
weak convergence. The Sobolev embedding theorem ensures that the space W1,p(Ω) is continuously
embedded in Lp∗(Ω), where p∗ is the Sobolev critical exponent p∗ = Np

N−p (we have supposed N > p).

Moreover, by the Rellich–Kondrachov theorem, W1,p(Ω) is compactly embedded in Lr(Ω) for every
r ∈ [1, p∗).

Corresponding to the map A : Ω×RN → RN describing the principal part of the equation in
problem (1), we introduce the operator Ã : W1,p(Ω)→ (W1,p(Ω))∗ defined by

〈Ã(u), v〉 =
∫

Ω
A(x,∇u) · ∇vdx for all u, (3)

which is well defined thanks to assumption (A1). It turns out from assumption (A2) and the continuity
of A that A(x, ξ) is maximal monotone in the variable ξ for all x ∈ Ω. This allows us to invoke ([2],
Proposition 10), which yields:

Proposition 1. Assume that the continuous map A : Ω × RN → RN satisfies the conditions (A1) and
(A2). Then the map Ã : W1,p(Ω) → (W1,p(Ω))∗ in (3) has the (S+)-property, that is, any sequence
{un} ⊂ W1,p(Ω) with un ⇀ u in W1,p(Ω) and lim sup

n→+∞
〈Ã(un), un − u〉 ≤ 0 fulfills un → u in W1,p(Ω).

There exists a unique continuous linear map γ : W1,p(Ω)→ Lp(∂Ω) called the trace map such that

γ(u) = u|∂Ω
for all u ∈ W1,p(Ω) ∩ C(Ω).

The kernel of γ : W1,p(Ω) → Lp(∂Ω) is W1,p
0 (Ω). Recalling that N > p, the trace map γ is

compact from W1,p(Ω) into Lη(∂Ω) for all η ∈ [1, (N−1)p
N−p ) (see, e.g., ([22], Theorem 2.79)). As usual,

we drop the notation of the trace map γ writing simply u in place of γ(u). The co-normal derivative
A(x,∇u) · ν(x), appearing in the boundary condition in problem (1), is obtained by extending the map
u(·) �→ A(·,∇u(·)) · ν(·), from C1(Ω) to W1,p(Ω).
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By a (weak) solution to problem (1) we mean a function u ∈ W1,p(Ω) such that f (x, u,∇u) ∈
L(p∗)′(Ω) and∫

Ω
A(x,∇u) · ∇v dx +

∫
Ω

α(x)|u|p−2uv dx +
∫

∂Ω
β(x)|u|p−2uvdσ =

∫
Ω

f (x, u,∇u)v dx (4)

for all v ∈ W1,p(Ω).
A function u ∈ W1,p(Ω) is called a subsolution for problem (1) if f (·, u(·),∇u(·)) ∈ L(p∗)′(Ω) and∫

Ω

(
A(x,∇u) · ∇v + α(x)|u|p−2uv

)
dx +

∫
∂Ω

β(x)|u|p−2uvdσ ≤
∫

Ω
f (x, u,∇u)vdx, (5)

for all v ∈ W1,p(Ω), v ≥ 0 a.e. in Ω.
Symmetrically, a function u ∈ W1,p(Ω) is called a supersolution for problem (1) if

f (·, u(·),∇u(·)) ∈ L(p∗)′(Ω) and∫
Ω

(
A(x,∇u) · ∇v + α(x)|u|p−2uv

)
dx +

∫
∂Ω

β(x)|u|p−2uvdσ ≥
∫

Ω
f (x, u,∇u)v dx, (6)

for all v ∈ W1,p(Ω), v ≥ 0 a.e. in Ω.
Due to assumption (A1), the integrals in the above definitions exist. We notice that u ∈ W1,p(Ω)

is a solution of (1) if and only if u is simultaneously a subsolution and a supersolution.
We are going to argue with a sub-supersolution for problem (1), that is, an ordered pair of a

subsolution u and a supersolution u such that u ≤ u, which means the pointwise inequality u(x) ≤ u(x)
for a.e. x ∈ Ω. Then we can associate the ordered interval

[u, u] = {w ∈ W1,p(Ω) : u ≤ w ≤ u}.

Our goal is to obtain a solution u ∈ W1,p(Ω) of problem (1) with the location property u ∈ [u, u],
which will be achieved through comparison by means of a truncation operator that we now describe.
Corresponding to a subsolution u and a supersolution u satisfying u ≤ u a.e. in Ω, we define the
truncation operator T = T(u, u) : W1,p(Ω)→ W1,p(Ω) by

T(u)(x) =

⎧⎪⎨⎪⎩
u(x) if u(x) < u(x)
u(x) if u(x) ≤ u(x) ≤ u(x)
u(x) if u(x) > u(x)

(7)

for all u ∈ W1,p(Ω) and a.e. x ∈ Ω. It readily follows that T : W1,p(Ω)→ W1,p(Ω) is continuous and
bounded (in the sense that it maps bounded sets into bounded sets).

We shall also need the (negative) Dirichlet p-Laplacian, which is the operator −Δp : W1,p
0 (Ω)→

W−1,p′(Ω) = (W1,p
0 (Ω))∗ given by

〈−Δpu, v〉 =
∫

Ω
|∇u|p−2∇u · ∇vdx for all u, v ∈ W1,p

0 (Ω).

It is well-known (see, e.g., ([1], Proposition 9.47)) that there exists a least positive number λ1 > 0
(called the first eigenvalue of −Δp) for which the Dirichlet problem{

−Δp ϕ1 = λ1|ϕ1|p−2 ϕ1 in Ω

ϕ1 = 0 on ∂Ω
(8)

has a nontrivial solution ϕ1 ∈ W1,p
0 (Ω). By the regularity theory we have ϕ1 ∈ C1(Ω). Moreover, we

can choose ϕ1 to satisfy ϕ1 > 0 in Ω.
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Finally, we mention a few things about the pseudomonotone operators. Let X be a Banach space
with the norm ‖ · ‖ and its dual X∗. We denote by 〈·, ·〉 the duality pairing between X and X∗. A map
A : X → X∗ is called bounded if it maps bounded sets into bounded sets. The map A : X → X∗ is
said to be coercive if

lim
‖u‖→+∞

〈A(u), u〉
‖u‖ = +∞.

The map A : X → X∗ is called pseudomonotone if for each sequence (un) ⊂ X satisfying un ⇀ u
in X and lim supn→∞ 〈A(un), un − u〉 ≤ 0, it holds

〈A(v), u− v〉 ≤ lim inf
n→∞

〈A(un), un − v〉 for all v ∈ X.

The main theorem for pseudomonotone operators reads as follows (see, e.g., ([22], Theorem 2.99)).

Theorem 1. Let X be a reflexive Banach space. If A : X → X∗ is a pseudomonotone, bounded and coercive
map, then A is surjective.

3. The Associated Operator Equation

Assume that a subsolution u and a supersolution u for problem (1) with u ≤ u are given and that
f : Ω×R×RN → R satisfies the following growth condition adapted to the ordered interval [u, u]:

(H) There exist a function σ ∈ Lr′(Ω) with r ∈ (1, p∗) and constants a > 0 and r1 ∈ (0, p
(p∗)′ ) such that

| f (x, s, ξ)| ≤ σ(x) + a|ξ|r1 for a.e. x ∈ Ω, all s ∈ [u(x), u(x)], ξ ∈ R
N .

We introduce the cut-off function π : Ω×R→ R defined by

π(x, s) =

⎧⎪⎪⎨⎪⎪⎩
−(u(x)− s)

r1
p−r1 if s < u(x),

0 if u(x) ≤ s ≤ u(x),

(s− u(x))
r1

p−r1 if s > u(x),

(9)

where r1 > 0 is the constant postulated in hypothesis (H). From (9) and the fact that u, u ∈ Lp∗(Ω) we
infer that π verifies the growth condition

|π(x, s)| ≤ c|s|
r1

p−r1 + �(x) for a.e. x ∈ Ω, all s ∈ R, (10)

with a constant c > 0 and a function � ∈ L
p∗(p−r1)

r1 (Ω).
Now for every λ > 0 we define the nonlinear operator Aλ : W1,p(Ω)→ (W1,p(Ω))∗ by

〈Aλ(u), v〉 =
∫

Ω
A(x,∇u) · ∇v dx +

∫
Ω

α(x)|u|p−2uv dx +
∫

∂Ω
β(x)|u|p−2uv dσ (11)

+ λ
∫

Ω
π(x, u)v dx−

∫
Ω

f (x, Tu,∇Tu)v dx for all u, v ∈ W1,p(Ω).

Hypothesis (H) guarantees that the operator Aλ in (11) is well defined.

Due to (10), we may consider the Nemytskij operator Π : Lp∗(Ω) → L
p∗(p−r1)

r1 (Ω), associated to
the function π in (10), namely Π(u) = π(·, u(·)) for all u ∈ Lp∗(Ω). It is well defined, continuous
and bounded. The condition in (H) that r1 < p

(p∗)′ is equivalent to p∗(p−r1)
r1

> (p∗)′. Hence, by

the Rellich–Kondrachov compact embedding theorem, the Nemytskij operator Π : W1,p(Ω) →
(W1,p(Ω))∗ is completely continuous.
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Thanks to hypothesis (H) we also have the Nemytskij operator Nf : [u, u]→ (W1,p(Ω))∗ on the
ordered interval [u, u] which is associated to the function f : Ω×R×RN → R, that is

〈Nf (u), v〉 =
∫

Ω
f (x, u(x),∇u(x))v(x) dx

for all u ∈ [u, u] and v ∈ W1,p(Ω). Using (H) we see that f (·, u(·),∇u(·)) ∈ L
p

r1 (Ω). As v ∈
Lp∗(Ω) and p

r1
> (p∗)′, the above integral exists. By virtue of the strict inequality p

r1
> (p∗)′, the

Rellich–Kondrachov compact embedding theorem implies that the Nemytskij operator Nf : [u, u]→
(W1,p(Ω))∗ is completely continuous.

Again through the Rellich–Kondrachov compact embedding theorem we can show that the
operator B : W1,p(Ω)→ (W1,p(Ω))∗ given by

〈B(u), v〉 =
∫

Ω
α(x)|u(x)|p−2u(x)v(x) dx

for all u, v ∈ W1,p(Ω) is completely continuous.
Consider also the operator Γ : W1,p(Ω)→ (W1,p(Ω))∗ given by

〈Γ(u), v〉 =
∫

∂Ω
β(σ)|u(σ)|p−2u(σ)v(σ)dσ (12)

for all u, v ∈ W1,p(Ω), where the integration is done with respect to the (N− 1)-dimensional Hausdorff
(surface) measure on ∂Ω.

Let us check that the map Γ : W1,p(Ω)→ (W1,p(Ω))∗ is completely continuous. To this end, let
un ⇀ u in W1,p(Ω). Then the compactness of the trace map γ : W1,p(Ω)→ Lp(∂Ω) ensures the strong
convergence un ≡ γ(un) → u ≡ γ(u) in Lp(∂Ω), thus the strong convergence |un|p−2un → |u|p−2u
in Lp′(∂Ω). Taking into account (12) we deduce that Γ(un)→ Γ(u) in (W1,p(Ω))∗, so Γ : W1,p(Ω)→
(W1,p(Ω))∗ is completely continuous.

For every λ > 0, the operator Aλ : W1,p(Ω)→ (W1,p(Ω))∗ in (11) has the expression

Aλ = Ã + B + Γ + λΠ− Nf ◦ T. (13)

The composition Nf ◦ T makes sense because T takes values in the ordered interval [u, u] as seen
from (7). The following theorem asserts the solvability of the equation

Aλ(u) = 0. (14)

Theorem 2. Assume that the conditions (A1), (A2) and (H) are satisfied. Then Equation (14) possesses at
least a solution u ∈ W1,p(Ω) provided λ > 0 is sufficiently large.

Proof. In order to prove the solvability of operator Equation (14) we apply Theorem 1. We have
to prove that the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ in (13) is bounded, pseudomonotone
and coercive.

By (3) and hypothesis (A1), in conjunction with Hölder’s inequality and the Sobolev embedding
theorem, we find that
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‖Ã(u)‖p
(W1,p(Ω))∗

= sup
‖v‖β,1,p≤1

|〈Ã(u), v〉|

= sup
‖v‖β,1,p≤1

∣∣∣∣∫Ω
A(x,∇u) · ∇vdx

∣∣∣∣
≤c2 sup

‖v‖β,1,p≤1

∫
Ω
(|∇u|p−1 + 1)|∇v|dx

≤C(‖u‖p−1
β,1,p + 1)

for all u ∈ W1,p(Ω), with a constant C > 0. This shows that the operator Ã : W1,p(Ω)→ (W1,p(Ω))∗

is bounded.
The composed operator Nf ◦ T is bounded because T is bounded and Nf is completely continuous.

Since B, Π and Γ are completely continuous, it follows from (13) that Aλ : W1,p(Ω) → (W1,p(Ω))∗

is bounded.
We claim that Aλ : W1,p(Ω) → (W1,p(Ω))∗ is a pseudomonotone operator. Let a sequence

{un} ⊂ W1,p(Ω) satisfy un ⇀ u in W1,p(Ω) and

lim sup
n→∞

〈Aλ(un), un − u〉 ≤ 0. (15)

The complete continuity of the operators B, Π and Γ yields the strong convergent sequences
B(un)→ B(u), Π(un)→ Π(u) and Γ(un)→ Γ(u) in (W1,p(Ω))∗. This results in

lim
n→∞

〈B(un), un − v〉 = 〈B(u), u− v〉, lim
n→∞

〈Π(un), un − v〉 = 〈Π(u), u− v〉,

lim
n→∞

〈Γ(un), un − u〉 = 〈Γ(u), u− v〉
(16)

for all v ∈ W1,p(Ω). We infer that

lim
n→∞

〈B(un), un − u〉 = lim
n→∞

〈Π(un), un − u〉 = lim
n→∞

〈Γ(un), un − u〉 = 0,

so (15) reduces to
lim sup

n→∞
〈Ã(un), un − u〉 ≤ 0. (17)

Inequality (17) enables us to apply Proposition 1 ensuring that the strong convergence un → u in
W1,p(Ω) holds.

At this point, we know that the strong convergence ∇(un) → ∇(u) holds in (Lp(Ω))N , so the
second inequality in (A1) entails A(·,∇un(·)) → A(·,∇u(·)) strongly in (Lp′(Ω))N . Then for each
v ∈ W1,p(Ω) one has

lim
n→∞

〈Ã(un), un − v〉 = lim
n→∞

∫
Ω

A(x,∇un) · ∇(un − v)dx

=
∫

Ω
A(x,∇u) · ∇(u− v)dx

=〈Ã(u), u− v〉.

(18)

Taking into account of (13), (16) and (18), we arrive at

lim
n→∞

〈Aλ(un), un − v〉 = 〈Aλ(u), u− v〉

for all v ∈ W1,p(Ω) and λ > 0. Therefore the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ is
pseudomonotone.

21



Mathematics 2020, 8, 658

Next we show that the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ is coercive whenever λ > 0 is
sufficiently large.

Since α ∈ L∞(Ω), α ≥ 0, from (11) we note that

〈Aλ(u), u〉 ≥ 〈Ã(u), u〉+
∫

∂Ω
β(σ)|u(σ)|p dσ + λ

∫
Ω

π(x, u)u dx−
∫

Ω
f (x, Tu,∇(Tu))u dx (19)

for all u ∈ W1,p(Ω). We estimate from below the terms in the right-hand side of (19). Assumption
(A1) and (3) yield

〈Ãu, u〉 ≥ c1‖∇u‖p
Lp(Ω)

for all u ∈ W1,p(Ω). (20)

From (9) we derive that

∫
Ω

π(x, u(x))u(x) dx ≥ b1‖u‖
p

p−r1

L
p

p−r1 (Ω)

− b2 for all u ∈ W1,p(Ω), (21)

with positive constants b1 and b2 (see [3]).
In view of (7), we have that u ≤ Tu ≤ u a.e. in Ω whenever u ∈ W1,p(Ω). Consequently, we may

set s = (Tu)(x) in the statement of hypothesis (H). Then, for each ε > 0, we obtain through Hölder’s
and Young’s inequalities and the Sobolev embedding theorem the estimate∣∣∣∣∫Ω

f (x, Tu,∇(Tu))u dx
∣∣∣∣ ≤ ∫

Ω
(σ|u|+ a|∇(Tu)|r1 |u|) dx

≤ ε‖∇u‖p
Lp(Ω)

+ c(ε)‖u‖
p

p−r1

L
p

p−r1 (Ω)

+ d‖u‖β,1,p,
(22)

with positive constants c(ε) (depending on ε) and d.
Gathering (19)–(22) leads to

〈Aλ(u), u〉 ≥ (c1 − ε)‖∇u‖p
Lp(Ω)

+
∫

∂Ω β(σ)|u(σ)|p dσ + (λb1 − c(ε))‖u‖
p

p−r1

L
p

p−r1 (Ω)

− d‖u‖β,1,p − λb2 (23)

for all u ∈ W1,p(Ω) and λ > 0. Now we fix ε and λ to verify ε ∈ (0, c1) and λ > c(ε)
b1

. From (2) and (23)
it is clear that

〈Aλ(u), u〉 ≥ c0‖u‖p
β,1,p − d‖u‖β,1,p − λb2

for all u ∈ W1,p(Ω), with a constant c0 > 0. Due to the fact that p > 1, it turns out

lim
‖u‖β,1,p→+∞

〈Aλ(u), u〉
‖u‖β,1,p

= +∞,

thereby the operator Aλ is coercive.
Summarizing, we have proved that the operator Aλ : W1,p(Ω) → (W1,p(Ω))∗ is bounded,

pseudomonotone and coercive. This allows us to apply Theorem 1 with A = Aλ for λ > 0 sufficiently
large. The surjectivity of Aλ implies the existence of a solution u ∈ W1,p(Ω) of Equation (14),
thus completing the proof.

Remark 1. As a consequence of (23), we can precisely determine the threshold of λ > 0 in the statement of
Theorem 2.

4. Main Abstract Result for Problem (1)

Our result regarding the method of sub-supersolution for problem (1) is stated as follows.
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Theorem 3. Assume that the conditions (A1), (A2) and (H) are satisfied. Then problem (P) possesses a
solution u ∈ W1,p(Ω) satisfying u ≤ u ≤ u a.e. in Ω, where u and u are the subsolution and the supersolution
that are postulated in assumption (H).

Proof. According to Theorem 2 we can fix λ > 0 sufficiently large such that equation (14) admits a
solution u ∈ W1,p(Ω). Explicitly, this reads as

〈Ã(u), v〉+
∫

Ω
α(x)|u|p−2uvdx + λ

∫
Ω

π(x, u)vdx +
∫

∂Ω
β(x)|u|p−2uvdσ

=
∫

Ω
f (x, Tu,∇(Tu))vdx for all v ∈ W1,p(Ω).

(24)

Let us prove that u ≤ u a.e. in Ω. Inserting v = (u− u)+ ∈ W1,p(Ω) in (6) and (24) renders

〈Ã(u), (u− u)+〉+
∫

Ω
α(x)|u|p−2u(u− u)+dx +

∫
∂Ω

β(x)|u|p−2u(u− u)+dσ

≥
∫

Ω
f (x, u,∇u)(u− u)+dx

(25)

and

〈Ã(u), (u− u)+〉+
∫

Ω
α(x)|u|p−2u(u− u)+dx + λ

∫
Ω

π(x, u)(u− u)+dx

+
∫

∂Ω
β(x)|u|p−2u(u− u)+dσ

=
∫

Ω
f (x, Tu,∇(Tu))(u− u)+dx.

(26)

Subtract (25) from (26) and use (3) and (7) to deduce that∫
Ω
(A(x,∇u)− A(x,∇u))∇(u− u)+dx +

∫
∂Ω

β(x)(|u|p−2u− |u|p−2u)(u− u)+dσ

+
∫

Ω
α(x)(|u|p−2u− |u|p−2u)(u− u)+dx + λ

∫
Ω

π(x, u)(u− u)+dx

≤
∫

Ω

(
f (x, Tu,∇(Tu))− f (x, u,∇u)

)
(u− u)+ dx

=
∫
{u>u}

(
f (x, Tu,∇(Tu))− f (x, u,∇u)

)
(u− u)dx = 0.

(27)

The monotonicity of A(x, ·), guaranteed by assumption (A2), and the monotonicity of the map
ξ �→ |ξ|p−2ξ on RN give ∫

Ω
(A(x,∇u)− A(x,∇u))∇(u− u)+dx

=
∫
{u>u}

(A(x,∇u)− A(x,∇u))(∇u−∇u)dx ≥ 0,

∫
Ω

α(x)(|u|p−2u− |u|p−2u)(u− u)+dx

=
∫
{u>u}

α(x)(|u|p−2u− |u|p−2u)(u− u)dx ≥ 0,

∫
∂Ω

β(σ)(|u|p−2u− |u|p−2u)(u− u)+dσ

=
∫
{σ∈∂Ω : u>u}

β(σ)(|u|p−2u− |u|p−2u)(u− u)dσ ≥ 0.
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From (27) and (9) we obtain∫
{u>u}

(u− u)
p

p−r1 dx =
∫

Ω
π(x, u)(u− u)+dx ≤ 0,

where u ≤ u a.e in Ω.
Next we show that u ≤ u a.e in Ω. Setting v = (u− u)+ ∈ W1,p(Ω) in (5) and (24) produces

〈Ã(u), (u− u)+〉+
∫

Ω
α(x)|u|p−2u(u− u)+dx +

∫
∂Ω

β(x)|u|p−2u(u− u)+dσ

≤
∫

Ω
f (x, u,∇u)(u− u)+dx

(28)

and

〈Ã(u), (u− u)+〉+
∫

Ω
α(x)|u|p−2u(u− u)+dx + λ

∫
Ω

π(x, u)(u− u)+dx

+
∫

∂Ω
β(x)|u|p−2u(u− u)+dσ

=
∫

Ω
f (x, Tu,∇(Tu))(u− u)+dx.

(29)

By subtracting (29) from (28) and taking into account (3) we arrive at∫
Ω
(A(x,∇u)− A(x,∇u))∇(u− u)+dx +

∫
∂Ω

β(x)(|u|p−2u− |u|p−2u)(u− u)+dσ

+
∫

Ω
α(x)(|u|p−2u− |u|p−2u)(u− u)+dx− λ

∫
Ω

π(x, u)(u− u)+dx

≤
∫

Ω

(
f (x, u,∇u)− f (x, Tu,∇(Tu)

)
(u− u)+dx

=
∫
{u>u}

(
f (x, u,∇u)− f (x, Tu,∇(Tu))

)
(u− u)+dx = 0.

(30)

Along (9) and proceeding as above, (30) results in

−
∫
{u>u}

−(u− u)
p

p−r1 dx = −
∫

Ω
π(x, u)(u− u)+dx ≤ 0,

which entails that u ≤ u a.e in Ω, thus proving the claim.
Therefore the solution u ∈ W1,p(Ω) of the operator equation (14) verifies the enclosure property

u ≤ u ≤ u a.e. in Ω. Then we obtain from (7) and (9) that Tu = u and Π(u) = 0. Hence for our
function u the equalities (24) and (4) coincide. We see that u ∈ W1,p(Ω) is a solution of the original
problem (1) fulfilling in addition u ≤ u ≤ u a.e. in Ω. This completes the proof.

5. An Application

The aim of this section is to apply Theorem 3 to establish the existence of positive solutions of
Robin problem (1). The main point is to find appropriate ordered sub-supersolutions. The approach
can be used to get other types of solutions.

In order to simplify the presentation, we focus on problem (1) driven by the Robin p-Laplacian,
1 < p < +∞, and when α(x) ≡ 0 and the x-dependence in the convection term f (x, s, ξ) is dropped.
We emphasize that α ≡ 0 marks a sharp distinction in regard to the Neumann problem. Specifically,
we consider the (purely) Robin problem{

−Δpu = f (u,∇u) in Ω

|∇u|p−2∇u · ν(x) + β(x)|u|p−2u = 0 on ∂Ω,
(31)
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with β(x) ≥ 0 for a.e. x ∈ ∂Ω, β �≡ 0.
We suppose that f : R×RN → R is a continuous function verifying the following assumption:

(H′) There exist constants a0 > 0, a1 > 0, b > 0 and r1 ∈ (0, p
(p∗)′ ) such that

| f (s, ξ)| ≤ a1(1 + |ξ|r1) for all s ∈ (0, b], ξ ∈ R
N , (32)

λ1sp−1 ≤ f (s, ξ) for all s ∈ (0, a0), |ξ| < a0 (33)

and
f (b, 0) = 0. (34)

The condition (33) involves the first eigenvalue λ1 of the (negative) Dirichlet p-Laplacian as given
in (8). Let us note that u = b is not a solution to problem (31) because the boundary condition is not
verified. We formulate the following result concerning problem (31).

Theorem 4. Assume that the conditions (A1), (A2) and (H′) are satisfied. Then the Robin problem (31)
possesses a (positive) solution u ∈ W1,p(Ω) satisfying 0 < u ≤ b a.e. in Ω.

Proof. Fix an eigenfunction ϕ1 of −Δp on W1,p
0 (Ω), with ϕ1 > 0 in Ω, corresponding to the first

eigenvalue λ1 (see (8) and the related comments). Since ϕ1 ∈ C1(Ω), we can choose an ε > 0 such that

εϕ1(x) < a0 and ε|∇ϕ1(x)| < a0 for all x ∈ Ω, (35)

where a0 is the positive constant prescribed in hypothesis (H′).
We note that u = εϕ1 is a subsolution in the sense of (5) for the Robin problem (31). Indeed, by (8),

(33) and (35) and since the trace of u on ∂Ω vanishes, we infer that∫
Ω
|∇u|p−2∇u · ∇vdx +

∫
∂Ω

β(x)|u|p−2uvdσ = εp−1
∫

Ω
|∇ϕ1(x)|p−2∇ϕ1(x) · ∇v(x)dx

= λ1

∫
Ω
(εϕ1(x))p−1v(x)dx

≤
∫

Ω
f (εϕ1(x), ε∇ϕ1(x))v(x)dx

=
∫

Ω
f (u(x),∇u(x))v(x)dx for all v ∈ W1,p(Ω), v ≥ 0.

This proves that u = εϕ1 is a subsolution of problem (31).
Now we observe that the constant function u = b is a supersolution of problem (31). Indeed,

let us notice from assumption (34) that∫
Ω
|∇u|p−2∇u · ∇vdx +

∫
∂Ω

β(x)|u|p−2uvdσ =
∫

∂Ω
β(x)bp−1v(x)dσ

≥ 0 =
∫

Ω
f (b, 0)v(x)dx

=
∫

Ω
f (u(x),∇u(x))v(x)dx

for all v ∈ W1,p(Ω) with v ≥ 0, which confirms that u = b is a supersolution of problem (31) in the
sense of (6).

For a possibly smaller ε > 0 to be fulfilled εϕ1(x) ≤ b whenever x ∈ Ω, the inequality u ≤ u holds
true. The growth condition in (H) is satisfied due to (32) because the pointwise intervals [u(x), u(x)]
are all included in the bounded interval (0, b]. Altogether we are in a position to apply Theorem 3,
which yields the desired conclusion.

We provide a simple example illustrating the applicability of Theorem 4.

25



Mathematics 2020, 8, 658

Example 1. Let f : R×RN → R be defined by

f (s, ξ) = g(s) + h(ξ) for all (s, ξ) ∈ R×R
N ,

with g : R→ R defined by

g(s) =

⎧⎪⎪⎨⎪⎪⎩
0 if s < 0 or s > 2

λ1sp−1 if 0 ≤ s ≤ 1

λ1(2− s)p−1 if 1 < s ≤ 2

and any continuous function h : RN → R satisfying h(ξ) ≥ 0, h(0) = 0 and

0 ≤ h(ξ) ≤ a2(1 + |ξ|r1) for all ξ ∈ R
N ,

with constants a2 > 0 and r1 ∈ (0, p
(p∗)′ ). We note that f (2, 0) = 0 and

f (s, ξ) = g(s) + h(ξ) ≥ λ1sp−1 for all 0 ≤ s ≤ 1, ξ ∈ R
N .

Hypothesis (H′) is verified taking a0 = 1 and b = 2. Theorem 4 can be applied to problem (31) with
f (s, ξ) given above.
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1. Introduction

In this paper, we consider multivalued maps F and G with continuous, compact selections and
F ∼= G in this setting. The topological transversality theorem will state that F is essential if and only
if G is essential (essential maps were introduced by Granas [1] and extended by Precup [2], Gabor,
Gorniewicz, and Slosarsk [3], and O’Regan [4,5]). For an approach to other classes of maps, we refer the
reader to O’Regan [6], where one sees that ∼= in the appropriate class can be challenging. However, the
topological transversality theorem for multivalued maps with continuous compact selections has not
been considered in detail. In this paper, we present a simple result that immediately yields a topological
transversality theorem in this setting. In particular, we show that, for two maps F and G with continuous
compact selections and F ∼= G, then one map being essential (or d–essential) guarantees that the other
is essential (or d–essential). We also discuss these maps in the weak topology setting.

2. Topological Transversality Theorem

We will consider a class A of maps. Let E be a completely regular space (i.e., a Tychonoff space)
and U an open subset of E.

Definition 1. We say f ∈ D(U, E) if f : U → E is a continuous, compact map; here, U denotes the closure of
U in E.

Definition 2. We say f ∈ D∂U(U, E) if f ∈ D(U, E) and x �= f (x) for x ∈ ∂U; here, ∂U denotes the
boundary of U in E.

Definition 3. We say F ∈ A(U, E) if F : U → 2E with F ∈ A(U, E) and there exists a selection f ∈ D(U, E)
of F; here, 2E denotes the family of nonempty subsets of E.

Remark 1. Let Z and W be subsets of Hausdorff topological vector spaces Y1 and Y2 and F a multifunction.
We say F ∈ PK(Z, W) if W is convex and there exists a map S : Z → W with Z = ∪ {int S−1(w) : w ∈ W},
co (S(x)) ⊆ F(x) for x ∈ Z and S(x) �= ∅ for each x ∈ Z; here, S−1(w) = {z : w ∈ S(z)}. Let E be
a Hausdorff topological vector space (note topological vector spaces are completely regular), U an open subset
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of E and U paracompact. In this case, we say F ∈ A(U, E) if F ∈ PK(U, E) is a compact map. Now, [7]
guarantees that there exists a continuous, compact selection f : U → E of F.

Definition 4. We say F ∈ A∂U(U, E) if F ∈ A(U, E) and x /∈ F(x) for x ∈ ∂U.

Definition 5. We say F ∈ A∂U(U, E) is essential in A∂U(U, E) if for any selection f ∈ D(U, E) of F and
any map g ∈ D∂U(U, E) with f |∂U = g|∂U there exists a x ∈ U with x = g(x).

Remark 2. If F ∈ A∂U(U, E) is essential in A∂U(U, E) and if f ∈ D(U, E) is any selection of F then there
exists a x ∈ U with x = f (x) (take g = f in Definition 5), so in particular there exists a x ∈ U with x ∈ F(x).

Definition 6. Let f , g ∈ D∂U(U, E). We say f ∼= g in D∂U(U, E) if there exists a continuous, compact map
h : U× [0, 1]→ E with x �= ht(x) for any x ∈ ∂ U and t ∈ (0, 1) (here ht(x) = h(x, t)), h0 = f and h1 = g.

Remark 3. A standard argument guarantees that ∼= in D∂U(U, E) is an equivalence relation.

Definition 7. Let F, G ∈ A∂U(U, E). We say F ∼= G in A∂U(U, E) if for any selection f ∈ D∂U(U, E)
(respectively, g ∈ D∂U(U, E)) of F (respectively, of G) we have f ∼= g in D∂U(U, E).

Theorem 1. Let E be a completely regular topological space, U an open subset of E, F ∈ A∂U(U, E) and
G ∈ A∂U(U, E) is essential in A∂U(U, E). In addition, suppose⎧⎪⎨⎪⎩

for any selection f ∈ D∂U(U, E) (respectively, g ∈ D∂U(U, E))
of F (respectively, of G) and any map θ ∈ D∂U(U, E)
with θ|∂U = f |∂U we have g ∼= θ in D∂U(U, E).

(1)

Then, F is essential in A∂U(U, E).

Proof. Let f ∈ D∂U(U, E) be any selection of F and consider any map θ ∈ D∂U(U, E) with θ|∂U = f |∂U .
We must show that there exists a x ∈ U with x = θ(x). Let g ∈ D∂U(U, E) be any selection of G. Now,
(1) guarantees that there exists a continuous, compact map h : U × [0, 1]→ E with x �= ht(x) for any
x ∈ ∂ U and t ∈ (0, 1) (here, ht(x) = h(x, t)), h0 = g and h1 = θ. Let

Ω =
{

x ∈ U : x = h(x, t) for some t ∈ [0, 1]
}

.

Now, Ω �= ∅ (note G is essential in A∂U(U, E)) and Ω is closed (note h is continuous) and so Ω is
compact (note h is a compact map). In addition, note Ω ∩ ∂U = ∅ since x �= ht(x) for any x ∈ ∂ U and
t ∈ [0, 1]. Then, since E is Tychonoff, there exists a continuous map μ : U → [0, 1] with μ(∂U) = 0
and μ(Ω) = 1. Define the map r by r(x) = h(x, μ(x)) = h ◦ g(x), where g : U → U × [0, 1] is given
by g(x) = (x, μ(x)). Note that r ∈ D∂U(U, E) (i.e., r is a continuous compact map) with r|∂U = g|∂U
(note if x ∈ ∂U then r(x) = h(x, 0) = g(x)) so since G is essential in A∂U(U, E) there exists a x ∈ U
with x = r(x) (i.e., x = hμ(x)(x)). Thus, x ∈ Ω so μ(x) = 1 and thus x = h1(x) = θ(x).

Let E be a topological vector space. Before we prove the topological transversality theorem,
we note the following:

(a) If f , g ∈ D∂U(U, E) with f |∂U = g|∂U , then f ∼= g in D∂U(U, E). To see this, let h(x, t) =

(1− t) f (x) + t g(x) and note h : U × [0, 1]→ E is a continuous, compact map with x �= ht(x) for
any x ∈ ∂ U and t ∈ (0, 1) (note f |∂U = g|∂U).

Theorem 2. Let E be a topological vector space and U an open subset of E. Suppose that F and G are two
maps in A∂U(U, E) with F ∼= G in A∂U(U, E). Now, F is essential in A∂U(U, E) if and only if G is essential
in A∂U(U, E).
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Proof. Assume G is essential in A∂U(U, E). We will use Theorem 1 to show F is essential in A∂U(U, E).
Let f ∈ D∂U(U, E) be any selection of F, g ∈ D∂U(U, E) be any selection of G and consider any map
θ ∈ D∂U(U, E) with θ|∂U = f |∂U . Now, (a) above guarantees that f ∼= θ in D∂U(U, E) and this together
with F ∼= G in A∂U(U, E) (so f ∼= g in D∂U(U, E)) and Remark 3 guarantees that g ∼= θ in D∂U(U, E).
Thus, (1) holds so Theorem 1 guarantees that F is essential in A∂U(U, E). A similar argument shows
that, if F is essential in A∂U(U, E), then G is essential in A∂U(U, E).

Theorem 3. Let E be a Hausdorff locally convex topological vector space, U an open subset of E and 0 ∈ U.
Assume the zero map is in A(U, E). Then, the zero map is essential in A∂U(U, E).

Proof. Note F(x) = {0} for x ∈ U (i.e., F is the zero map) and let f ∈ D∂U(U, E) be any selection of F.
Note f (x) = 0 for x ∈ U. Consider any map g ∈ D∂U(U, E) with g|∂U = f |∂U = {0}. We must show
there exists a x ∈ U with x = g(x). Let

r(x) =

{
g(x), x ∈ U,
0, x ∈ E\U.

Note r : E → E is a continuous, compact map so [8] guarantees that there exists a x ∈ E with
x = r(x). If x ∈ E \U, then r(x) = 0, a contradiction since 0 ∈ U. Thus, x ∈ U and so x = g(x).

Now, we consider the above in the weak topology setting. Let X be a Hausdorff locally convex
topological vector space and U a weakly open subset of C where C is a closed convex subset of X.
Again, we consider a class A of maps.

Definition 8. We say f ∈ WD(Uw, C) if f : Uw → C is a weakly continuous, weakly compact map; here, Uw

denotes the weak closure of U in C.

Definition 9. We say f ∈ WD∂U(Uw, C) if f ∈ WD(Uw, C) and x �= f (x) for x ∈ ∂U; here, ∂U denotes
the weak boundary of U in C.

Definition 10. We say F ∈ WA(Uw, C) if F : Uw → 2C with F ∈ A(Uw, C) and there exists a selection
f ∈ WD(Uw, C) of F.

Definition 11. We say F ∈ WA∂U(Uw, C) if F ∈ WA(Uw, C) and x /∈ F(x) for x ∈ ∂U.

Definition 12. We say F ∈ WA∂U(Uw, C) is essential in WA∂U(Uw, C) if for any selection f ∈ WD(Uw, C)
of F and any map g ∈ WD∂U(Uw, C) with f |∂U = g|∂U there exists a x ∈ U with x = g(x).

Definition 13. Let f , g ∈ WD∂U(Uw, C). We say f ∼= g in WD∂U(Uw, C) if there exists a weakly
continuous, weakly compact map h : Uw × [0, 1] → C with x �= ht(x) for any x ∈ ∂ U and t ∈ (0, 1)
(here ht(x) = h(x, t)), h0 = f and h1 = g.

Definition 14. Let F, G ∈ WA∂U(Uw, C). We say F ∼= G in WA∂U(Uw, C) if for any selection f ∈
WD∂U(Uw, C) (respectively, g ∈ WD∂U(Uw, C)) of F (respectively, of G) we have f ∼= g in WD∂U(Uw, C).

Theorem 4. Let X be a Hausdorff locally convex topological vector space and U a weakly open subset of C,
where C is a closed convex subset of X. Suppose F ∈ WA∂U(Uw, C) and G ∈ WA∂U(Uw, C) is essential in
WA∂U(Uw, C) and⎧⎪⎨⎪⎩

for any selection f ∈ WD∂U(Uw, C) (respectively, g ∈ WD∂U(Uw, C))
of F (respectively, of G) and any map θ ∈ WD∂U(Uw, C)
with θ|∂U = f |∂U we have g ∼= θ in WD∂U(Uw, C).

(2)
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Then, F is essential in WA∂U(Uw, C).

Proof. Let f ∈ WD∂U(Uw, C) be any selection of F and consider any map θ ∈ WD∂U(Uw, C) with
θ|∂U = f |∂U . Let g ∈ WD∂U(Uw, C) be any selection of G. Now, (2) guarantees that there exists
a weakly continuous, weakly compact map h : Uw × [0, 1] → C with x �= ht(x) for any x ∈ ∂ U and
t ∈ (0, 1) (here ht(x) = h(x, t)), h0 = g and h1 = θ. Let

Ω =
{

x ∈ Uw : x = h(x, t) for some t ∈ [0, 1]
}

.

Recall that X = (X, w), the space X endowed with the weak topology, is completely regular.
Now, Ω �= ∅ is weakly closed and is in fact weakly compact with Ω ∩ ∂U = ∅. Thus, there exists
a weakly continuous map μ : Uw → [0, 1] with μ(∂U) = 0 and μ(Ω) = 1. Define the map r by
r(x) = h(x, μ(x)) and note r ∈ WD∂U(Uw, C) with r|∂U = g|∂U . Since G is essential in WA∂U(Uw, C),
there exists a x ∈ U with x = r(x). Thus, x ∈ Ω so x = h1(x) = θ(x).

An obvious modification of the argument in Theorem 2 immediately yields the following result.

Theorem 5. Let X be a Hausdorff locally convex topological vector space and U a weakly open subset of
C, where C is a closed convex subset of X. Suppose F and G are two maps in WA∂U(U, C) with F ∼= G in
WA∂U(U, C). Now, F is essential in WA∂U(U, C) if and only if G is essential in WA∂U(U, C).

Now, we consider a generalization of essential maps, namely the d–essential maps [2]. Let E be
a completely regular topological space and U an open subset of E. For any map f ∈ D(U, E), let
f � = I × f : U → U × E, with I : U → U given by I(x) = x, and let

d :
{
( f �)−1 (B)

}
∪ {∅} → K (3)

be any map with values in the nonempty set K; here, B =
{
(x, x) : x ∈ U

}
.

Definition 15. Let F ∈ A∂U(U, E) with F� = I × F. We say F� : U → 2U×E is d–essential if, for any
selection f ∈ D(U, E) of F and any map g ∈ D∂U(U, E) with f |∂U = g|∂U , we have that d

(
( f �)−1 (B)

)
=

d
(
(g�)−1 (B)

)
�= d(∅); here, f � = I × f and g� = I × g.

Remark 4. If F� is d–essential, then, for any selection f ∈ D(U, E) of F (with f � = I × f ), we have

∅ �= ( f �)−1 (B) = {x ∈ U : (x, f (x)) ∈ B},

so there exists a x ∈ U with x = f (x) (so, in particular, x ∈ F(x)).

Theorem 6. Let E be a completely regular topological space, U an open subset of E, B =
{
(x, x) : x ∈ U

}
,

d is defined in(3), F ∈ A∂U(U, E), G ∈ A∂U(U, E) with F� = I × F and G� = I × G. Suppose G� is
d–essential and ⎧⎪⎪⎪⎨⎪⎪⎪⎩

for any selection f ∈ D∂U(U, E) (respectively, g ∈ D∂U(U, E))
of F (respectively, of G) and any map θ ∈ D∂U(U, E)
with θ|∂U = f |∂U we have g ∼= θ in D∂U(U, E) and
d
(
( f �)−1 (B)

)
= d

(
(g�)−1 (B)

)
; here f � = I × f and g� = I × g.

(4)

Then, F� is d–essential.
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Proof. Let f ∈ D∂U(U, E) be any selection of F and consider any map θ ∈ D∂U(U, E) with θ|∂U =

f |∂U . We must show d
(
( f �)−1 (B)

)
= d

(
(θ�)−1 (B)

)
�= d(∅); here, f � = I × f and θ� = I × θ.

Let g ∈ D∂U(U, E) be any selection of G. Now, (4) guarantees that there exists a continuous, compact
map h : U × [0, 1] → E with x �= ht(x) for any x ∈ ∂ U and t ∈ (0, 1) (here ht(x) = h(x, t)), h0 = g,
h1 = θ and d

(
( f �)−1 (B)

)
= d

(
(g�)−1 (B)

)
; here, g� = I × g. Let h� : U × [0, 1]→ U × E be given

by h�(x, t) = (x, h(x, t)) and let

Ω =
{

x ∈ U : h�(x, t) ∈ B for some t ∈ [0, 1]
}

.

Now, Ω �= ∅ is closed, compact and Ω ∩ ∂U = ∅ so there exists a continuous map μ : U → [0, 1]
with μ(∂U) = 0 and μ(Ω) = 1. Define the map r by r(x) = h(x, μ(x)) and r� = I × r. Now,
r ∈ D∂U(U, E) with r|∂U = g|∂U . Since G� is d–essential, then

d
(
(g�)−1 (B)

)
= d

(
(r�)−1 (B)

)
�= d(∅). (5)

Now, since μ(Ω) = 1, we have

(r�)−1 (B) =
{

x ∈ U : (x, h(x, μ(x))) ∈ B
}
=
{

x ∈ U : (x, h(x, 1)) ∈ B
}

= (θ�)−1 (B),

so, from the above and Equation (5), we have d
(
( f �)−1 (B)

)
= d

(
(θ�)−1 (B)

)
�= d(∅).

Theorem 7. Let E be a completely regular topological space, U an open subset of E, B =
{
(x, x) : x ∈ U

}
and d is defined in (3). Suppose F and G are two maps in A∂U(U, E) with F� = I × F, G� = I × G and
F ∼= G in A∂U(U, E). Then, F� is d–essential if and only if G� is d–essential.

Proof. Assume G� is d–essential. Let f ∈ D∂U(U, E) be any selection of F, g ∈ D∂U(U, E) be any
selection of G and consider any map θ ∈ D∂U(U, E) with θ|∂U = f |∂U . If we show (4), then F� is
d–essential from Theorem 6. Now, f ∼= θ in D∂U(U, E) together with F ∼= G in A∂U(U, E) (so f ∼= g in
D∂U(U, E)) guarantees that g ∼= θ in D∂U(U, E). To complete (4), we need to show d

(
( f �)−1 (B)

)
=

d
(
(g�)−1 (B)

)
; here, f � = I × f and g� = I × g. We will show this by following the argument in

Theorem 6. Note G ∼= F in A∂U(U, E) and let h : U × [0, 1] → E be a continuous, compact map
with x �= ht(x) for any x ∈ ∂ U and t ∈ (0, 1) (here ht(x) = h(x, t)), h0 = g and h1 = f . Let
h� : U × [0, 1]→ U × E be given by h�(x, t) = (x, h(x, t)) and let

Ω =
{

x ∈ U : h�(x, t) ∈ B for some t ∈ [0, 1]
}

.

Now, Ω �= ∅ and there exists a continuous map μ : U → [0, 1] with μ(∂U) = 0 and μ(Ω) = 1.
Define the map r by r(x) = h(x, μ(x)) and r� = I × r. Now, r ∈ D∂U(U, E) with r|∂U = g|∂U so, since
G� is d–essential, then d

(
(g�)−1 (B)

)
= d

(
(r�)−1 (B)

)
�= d(∅). Now, since μ(Ω) = 1, we have (see

the argument in Theorem 6) (r�)−1 (B) = ( f �)−1 (B) and, as a result, we have d
(
( f �)−1 (B)

)
=

d
(
(g�)−1 (B)

)
.

Remark 5. It is also easy to extend the above ideas to other natural situations. Let E be a (Hausdorff) topological
vector space (so automatically completely regular), Y a topological vector space, and U an open subset of
E. In addition, let L : dom L ⊆ E → Y be a linear (not necessarily continuous) single valued map; here,
dom L is a vector subspace of E. Finally, T : E → Y will be a linear, continuous single valued map with
L + T : dom L → Y an isomorphism (i.e., a linear homeomorphism); for convenience we say T ∈ HL(E, Y).
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We say F ∈ A(U, Y; L, T) if (L + T)−1 (F + T) ∈ A(U, E) and we could discuss essential and d–essential in
this situation.

Now, we present an example to illustrate our theory.

Example 1. Let E be a Hausdorff locally convex topological vector space, U an open subset of E , 0 ∈ U
and U paracompact. In this case, we say that F ∈ A(U, E) if F ∈ PK(U, E) (see Remark 1) is a compact
map. Let F ∈ A∂U(U, E) and assume x /∈ λF (x) for x ∈ ∂U and λ ∈ (0, 1). Then, F ∼= 0 in A∂U(U, E).
To see this, let f ∈ D∂U(U, E) be any selection of F and let h : U × [0, 1] be given by h(x, t) = t f (x). Note
that h0 = 0, h1 = f and x /∈ ht(x) for x ∈ ∂U and λ ∈ (0, 1) so f ∼= 0 in D∂U(U, E). Now, Theorems 2 and 3
guarantee that F is essential in A∂U(U, E).

3. Conclusions

In this paper, we prove that, for two set-valued maps F and G with continuous compact selections
and F ∼= G, then one being essential (or d–essential) guarantees that the other is essential (or d–essential).
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Abstract: Here is one of the results obtained in this paper: Let Ω ⊂ Rn be a smooth bounded domain,
let q > 1, with q < n+2

n−2 if n ≥ 3 and let λ1 be the first eigenvalue of the problem −Δu = λu in
Ω, u = 0 on ∂Ω. Then, for every λ > λ1 and for every convex set S ⊆ L∞(Ω) dense in L2(Ω),
there exists α ∈ S such that the problem −Δu = λ(u+ − (u+)q) + α(x) in Ω, u = 0 on ∂Ω, has
at least three weak solutions, two of which are global minima in H1

0(Ω) of the functional u →
1
2

∫
Ω |∇u(x)|2dx− λ

∫
Ω

(
1
2 |u+(x)|2 − 1

q+1 |u+(x)|q+1
)

dx−
∫

Ω α(x)u(x)dx where u+ = max{u, 0}.

Keywords: minimax; multiplicity; global minima

1. Introduction

There is no doubt that the study of nonlinear PDEs lies in the core of Nonlinear Analysis. In turn,
one of the most studied topics concerning nonlinear PDEs is the multiplicity of solutions. On the other
hand, the study of the global minima of integral functionals is essentially the central subject of the
Calculus of Variations. In the light of these facts, it is hardly understable why the number of the known
results on multiple global minima of integral functionals is extremely low. Certainly, this is not due to
a lack of intrinsic mathematical interest. Probably, the reason could reside in the fact that there is not an
abstract tool which has the same popularity as the one that, for instance, the Lyusternik–Schnirelmann
theory and the Morse theory have in dealing with multiple solutions for nonlinear PDEs.

Abstract results on the multiplicity of global minima, however, are already present in the literature.
We allude to the result first obtained in [1] and then extended in [2,3] which ensures the existence of at
least two global minima provided that a strict minimax inequality holds. We already have obtained a
variety of applications upon different ways of checking the required strict inequality ([4–6]).

The aim of the present paper is to establish an application of Theorem 1 of [7] which is itself an
application of the main result in [3]. Precisely, we first establish a general result which ensures the
existence of three solutions for a certain equation provided that another related one has no non-zero
solutions (Theorem 1). Then, we present an application to nonlinear elliptic equations (Theorem 2).

2. Results

In the sequel, (X, ‖ · ‖X) is a reflexive real Banach space, (Y, 〈·, ·〉Y) is a real Hilbert space, I, ψ :
X → R are two C1 functionals, with I(0) = ψ(0) = 0 and supR ψ > 0, ϕ : X → Y is a C1 operator,
with ϕ(0) = 0. For each fixed y ∈ Y, we denote by ∂x〈ϕ(·), y〉 the derivative of the functional
x → 〈ϕ(x), y〉. Clearly, one has

∂x〈ϕ(x), y〉(u) = 〈ϕ′(x)(u), y〉

for all x, u ∈ X.
We say that I is coercive if lim‖x‖X→+∞ I(x) = +∞. We also say that I′ admits a continuous

inverse on X∗ if there exists a continuous operator T : X∗ → X such that T(I′(x)) = x for all x ∈ X.
Here is our abstract result:

Mathematics 2020, 8, 478; doi:10.3390/math8040478 www.mdpi.com/journal/mathematics35
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Theorem 1. Let I be weakly lower semicontinuous and coercive, and let I′ admit a continuous inverse on X∗.
Moreover, assume that the operators ϕ′ and ψ′ are compact and that

lim
‖x‖X→+∞

〈ϕ(x), y〉Y
I(x)

= 0 (1)

for all y in a convex and dense set V ⊆ Y.
Set

θ∗ := inf
x∈ψ−1(]0,+∞[)

I(x)
ψ(x)

,

θ̃ :=

{
lim infx∈ψ−1(]0,+∞[),‖x‖X→+∞

I(x)
ψ(x) if ψ−1(]0,+∞[) is unbounded

+∞ otherwise

and assume that
θ∗ < θ̃ .

Then, for each λ ∈]θ∗, θ̃[, with λ ≥ 0, either the equation

I′(x) = −∂x〈ϕ(x), ϕ(x)〉+ λψ′(x)

has a non-zero solution, or, for each convex set S ⊆ V dense in Y, there exists ỹ ∈ S such that the equation

I′(x) = ∂x〈ϕ(x), ỹ〉Y + λψ′(x)

has at least three solutions, two of which are global minima in X of the functional

x → I(x)− 〈ϕ(x), ỹ〉Y − λψ(x) .

As it was said in the Introduction, the main tool to prove Theorem 1 is a result recently obtained
in [7]. For reader’s convenience, we now recall its statement:

Theorem 2. ([7], Theorem 1). - Let X, E be two real reflexive Banach spaces and let Φ : X× E → R be a C1

functional satisfying the following conditions:

(a) the functional Φ(x, ·) is quasi-concave for all x ∈ X and the functional −Φ(x0, ·) is coercive for some
x0 ∈ X;

(b) there exists a convex set S ⊆ E dense in E, such that, for each y ∈ S, the functional Φ(·, y) is weakly
lower semicontinuous, coercive and satisfies the Palais-Smale condition.

Then, either the system {
Φ′x(x, y) = 0
Φ′y(x, y) = 0

has a solution (x∗, y∗) such that

Φ(x∗, y∗) = inf
x∈X

Φ(x, y∗) = sup
y∈E

Φ(x∗, y) ,

or, for every convex set T ⊆ S dense in E, there exists ỹ ∈ T such that equation

Φ′x(x, ỹ) = 0

has at least three solutions, two of which are global minima in X of the functional Φ(·, ỹ).
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Proof of Theorem 1. Fix λ ∈]θ∗, θ̃[, with λ ≥ 0. Assume that the equation

I′(x) = −∂x〈ϕ(x), ϕ(x)〉+ λψ′(x)

has no non-zero solution. Fix a convex set S ⊆ Y dense in Y. We have to show that there exists ỹ ∈ S
such that the equation

I′(x) = ∂x〈ϕ(x), ỹ〉Y + λψ′(x)

has at least three solutions, two of which are global minima in X of the functional x → I(x) −
〈ϕ(x), ỹ〉Y − λψ(x). To this end, let us apply Theorem 2. Consider the functional Φ : X × Y → R

defined by

Φ(x, y) = I(x)− 1
2
‖y‖2

Y − 〈ϕ(x), y〉 − λψ(x)

for all (x, y) ∈ X × Y. Of course, Φ is C1 and, for each x ∈ X, Φ(x, ·) is concave and −Φ(x, ·) is
coercive. Fix y ∈ Y. Let us show that the operator ∂x〈ϕ(·), y〉 is compact. To this end, let {xn} be a
bounded sequence in X. Since ϕ′ is compact, up to a subsequence, {ϕ′(xn)} converges in L(X, Y) to
some η. That is

lim
n→∞

sup
‖u‖X=1

‖ϕ′(xn)(u)− η(u)‖Y = 0 .

On the other hand, we have

sup
‖u‖X=1

|∂x〈ϕ(xn), y〉(u)− 〈η(u), y〉| = sup
‖u‖X=1

|〈ϕ′(xn)(u), y〉 − 〈η(u), y〉|

≤ sup
‖u‖X=1

‖ϕ′(xn)(u)− η(u)‖Y‖y‖Y

and so the sequence {∂x〈ϕ(xn), y〉(·)} converges in X∗ to η(·)(y). Then, since ψ′ is compact,
the operator ∂x〈ϕ(·), y〉 + λψ′(·) is compact too. From this, it follows that 〈ϕ(·), y〉 + λψ(·) is
sequentially weakly continuous ([8], Corollary 41.9). If ‖x‖X is large enough, we have I(x) > 0
and so we can write

Φ(x, y) = I(x)

(
1−

1
2‖y‖2

Y + 〈ϕ(x), y〉+ λψ(x)
I(x)

)
. (2)

In view of (1), we also have

lim inf
‖x‖X→+∞

(
1−

1
2‖y‖2

Y + 〈ϕ(x), y〉+ λψ(x)
I(x)

)
= 1− lim sup

‖x‖X→+∞

λψ(x)
I(x)

. (3)

We claim that

lim sup
‖x‖→+∞

λψ(x)
I(x)

< 1 . (4)

This is clear if either λ = 0 or lim sup‖x‖X→+∞
ψ(x)
I(x) ≤ 0. If λ > 0 and lim sup‖x‖X→+∞

ψ(x)
I(x) > 0,

then (4) is equivalent to

lim sup
‖x‖X→+∞

ψ(x)
I(x)

< +∞

and
λ <

1

lim sup‖x‖X→+∞
ψ(x)
I(x)

. (5)

But
1

lim sup‖x‖X→+∞
ψ(x)
I(x)

= lim inf
x∈ψ−1(]0,+∞[),‖x‖X→+∞

I(x)
ψ(x)

,
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and so (5) is satisfied just since λ < θ̃. Since I is coercive and weakly lower semicontinuous,
the functional Φ(·, y) turns out to be coercive, in view of (2), (3), (4), and weakly lower semicontinuous,
in view of the Eberlein-Smulyan theorem. Finally, since I′ admits a continuous inverse on X∗,
Φ(·, y) satisfies the Palais-Smale condition in view of Example 38.25 of [8]. Hence, Φ satisfies the
assumptions of Theorem 2. Now, we claim that there is no solution (x∗, y∗) of the system{

Φ′x(x, y) = 0
Φ′y(x, y) = 0

such that
Φ(x∗, y∗) = inf

x∈X
Φ(x, y∗) .

Arguing by contradiction, assume that such a (x∗, y∗) does exist. This amounts to say that{
I′(x∗) = ∂x〈ϕ(x∗), y∗〉+ λψ′(x∗)
y∗ = −ϕ(x∗)

and
I(x∗)− 〈ϕ(x∗), y∗〉 − λψ(x∗) = inf

x∈X
(I(x)− 〈ϕ(x), y∗〉 − λψ(x)) . (6)

Therefore
I′(x∗) = −∂x〈ϕ(x∗), ϕ(x∗)〉+ λψ′(x∗) .

So, by the initial assumption, we have x∗ = 0 and hence y∗ = 0 (recall that ϕ(0) = 0). As a
consequence, since I(0) = ψ(0) = 0, (6) becomes

inf
x∈X

(I(x)− λψ(x)) = 0 . (7)

Now, notice that (7) contradicts the fact that λ > θ∗. Hence, a fortiori, the system{
Φ′x(x, y) = 0
Φ′y(x, y) = 0

has no solution (x∗, y∗) such that

Φ(x∗, y∗) = inf
x∈X

Φ(x, y∗) = sup
y∈Y

Φ(x∗, y)

and then the existence of ỹ ∈ S is directly ensured by Theorem 2.

We now present an application of Theorem 1 to a class of nonlinear elliptic equations. Let Ω ⊂ Rn

be a smooth bounded domain. We denote byA the class of all Carathéodory’s functions f : Ω×R → R

such that, for each u, v ∈ H1
0(Ω), the function x → f (x, u(x))v(x) lies in L1(Ω). For f ∈ A, we consider

the Dirichlet problem {
−Δu = f (x, u) in Ω
u = 0 on ∂Ω .

As usual, a weak solution of the problem is any u ∈ H1
0(Ω) such that∫

Ω
∇u(x)∇v(x)dx =

∫
Ω

f (x, u(x))v(x)dx

for all v ∈ H1
0(Ω).
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Also, we denote by λ1 the first eigenvalue of the Dirichlet problem{
−Δu = λu in Ω
u = 0 on ∂Ω .

For any continuous function f : R → R, we set F(ξ) =
∫ ξ

0 f (t)dt for all ξ ∈ R.

Theorem 3. Let f , g : R → R be two continuous functions satisfying the following growth conditions:

(a) if n ≤ 3, one has

lim
|ξ|→+∞

|F(ξ)|
ξ2 = 0 ;

(b) if n ≥ 2, there exist p, q > 0, with p < 2
n−2 , q < n+2

n−2 if n ≥ 3, such that

sup
ξ∈R

| f (ξ)|
1 + |ξ|p < +∞ ,

sup
ξ∈R

|g(ξ)|
1 + |ξ|q < +∞ .

Set

ρ := lim sup
|ξ|→+∞

G(ξ)

ξ2 ,

σ := max
{

lim inf
ξ→0+

G(ξ)

ξ2 , lim inf
ξ→0−

G(ξ)

ξ2

}
and assume that

max{ρ, 0} < σ .

Then, for every λ ∈
]

λ1
2σ , λ1

2 max{ρ,0}

[
(with the conventions λ1

+∞ = 0, λ1
0 = +∞), either the problem

{
−Δu = −F(u) f (u) + λg(u) in Ω
u = 0 on ∂Ω

(8)

has a non-zero weak solution, or, for every convex set S ⊆ L∞(Ω) dense in L2(Ω), there exists α ∈ S such that
the problem {

−Δu = α(x) f (u) + λg(u) in Ω
u = 0 on ∂Ω

(9)

has at least three weak solutions, two of which are global minima in H1
0(Ω) of the functional

u → 1
2

∫
Ω
|∇u(x)|2dx−

∫
Ω

α(x)F(u(x))dx− λ
∫

Ω
G(u(x))dx .

Proof. We are going to apply Theorem 1 taking X = H1
0(Ω), Y = L2(Ω), with their usual scalar

products (that is, 〈u, v〉X =
∫

Ω∇u(x)∇v(x)dx and 〈u, v〉Y =
∫

Ω u(x)v(x)dx), V = L∞(Ω) and

I(u) =
1
2
‖u‖2

X ,

ϕ(u) = F ◦ u ,

ψ(u) =
∫

Ω
G(u(x))dx
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for all u ∈ X. In view of (b), thanks to the Sobolev embedding theorem, the operator ϕ and the
functional ψ are C1, with compact derivative. Moreover, the solutions of the equation

I′(u) = −∂u〈ϕ(u), ϕ(u)〉Y + λψ′(u)

are weak solutions of (8) and, for each α ∈ Y, the solutions of the equation

I′(u) = ∂u〈ϕ(u), α〉Y + λψ′(u)

are weak solutions of (9). Moreover, condition (1) follows readily from (a) which is automatically
satisfied when n ≥ 4 since p < 2

n−2 . We claim that

lim sup
‖u‖X→+∞

ψ(u)
‖u‖2

X
≤ ρ

λ1
. (10)

Indeed, fix ν > ρ. Then, there exists δ > 0 such that

G(ξ) ≤ νξ2 (11)

for all x ∈ R \ [−δ, δ]. Fix u ∈ X \ {0}. From (11) we clearly obtain

ψ(u) ≤ ν‖u‖2
Y + meas(Ω) sup

[−δ,δ]
G ≤ ν

‖u‖2
X

λ1
+ meas(Ω) sup

[−δ,δ]
G

and so

lim sup
‖u‖X→+∞

ψ(u)
‖u‖2

X
≤ ν

λ1
. (12)

Now, we get (10) passing in (12) to the limit for ν tending to ρ. We also claim that

σ

λ1
≤ sup

u∈X\{0}

ψ(u)
‖u‖2

X
. (13)

Indeed, fix η < σ. For instance, let σ = lim infξ→0+
G(ξ)

ξ2 . Then, there exists η > 0 such that

G(ξ) ≥ ηξ2 (14)

for all ξ ∈ [0, η]. Fix any v ∈ H1
0(Ω) such that ‖v‖2

X = λ1‖v‖2
Y and v(Ω) ⊆ [0, η]. From (14) we obtain

ψ(v) ≥ η‖v‖2
Y

and so

sup
u∈X\{0}

ψ(u)
‖u‖2

X
≥ ψ(v)
‖v‖2

X
≥ η

λ1
. (15)

Now, (13) is obtained from (15) passing to the limit for η tending to σ. Now, fix λ ∈
]

λ1
2σ , λ1

2 max{ρ,0}

[
.

Then, from (10) and (13), we obtain

lim sup
‖u‖X→+∞

ψ(u)
I(u)

<
1
λ
< sup

u∈X\{0}

ψ(u)
I(u)

.

This readily implies that θ∗ < λ < θ̃ and the conclusion is directly provided by Theorem 1.
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Corollary 1. Let the assumptions of Theorem 3 be satisfied and let λ ∈
]

λ1
2σ , λ1

2 max{ρ,0}

[
satisfy

sup
ξ∈R

(λg(ξ)− F(ξ) f (ξ))ξ ≤ 0 . (16)

Then, for every convex set S ⊆ L∞(Ω) dense in L2(Ω), there exists α ∈ S such that the problem{
−Δu = α(x) f (u) + λg(u) in Ω
u = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0(Ω) of the functional

u → 1
2

∫
Ω
|∇u(x)|2dx−

∫
Ω

α(x)F(u(x))dx− λ
∫

Ω
G(u(x))dx .

Proof. It suffices to observe that, in view of (16), 0 is the only solution of (8) and then to apply
Theorem 3.

Finally, notice the following remarkable corollary of Corollary 1:

Corollary 2. Let q > 1, with q < n+2
n−2 if n ≥ 3. Let h : R → R be a non-negative continuous function,

with inf[0,1] h > 0, satisfying conditions (a) and (b) of Theorem 3 for f = h.
Then, for every λ > λ1 and for every convex set S ⊆ L∞(Ω) dense in L2(Ω), there exists α ∈ S such that

the problem {
−Δu = α(x)h(u) + λ(u+ − (u+)q) in Ω
u = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0(Ω) of the functional

u → 1
2

∫
Ω
|∇u(x)|2dx−

∫
Ω

α(x)H(u(x))dx− λ
∫

Ω

(
1
2
|u+(x)|2 − 1

q + 1
|u+(x)|q+1

)
dx .

Proof. Fix λ > λ1. Notice that, since inf[0,1] h > 0, the number

γ := inf
ξ∈]0,1]

H(ξ)h(ξ)
ξ

is positive. Now, we are going to apply Corollary 1 taking

f (ξ) =

√
λ

γ
h(ξ)

and
g(ξ) = ξ+ − (ξ+)q .

Of course (with the notations of Theorem 3), ρ = 0 and σ = 1
2 . Since f in non-negative, F f is so in

[0,+∞[ and non-positive in ]−∞, 0]. Therefore, (16) is satisfied for all ξ ∈ R \ [0, 1] since g has the
opposite sign of F f in that set. Now, let ξ ∈]0, 1]. We have

F(ξ) f (ξ)
ξ

=
λ

γ

H(ξ)h(ξ)
ξ

≥ λ ≥ λ(1− ξq−1)

which gives (16). Now, let S ⊆ L∞(Ω) be any convex set dense in L2(Ω). Then, the set
√

γ
λ S is convex

and dense in L2(Ω) and the conclusion follows applying Corollary 1 with this set.
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Remark 1. We are not aware of known results close enough to Theorems 1 and 3 in order to do a proper
comparison. We refer to the monographs [9,10] for an account on multiplicity results for nonlinear PDEs.
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The author wishes to make the following correction to this paper [1]:
Everywhere it occurs, the phrase “for every convex set S ⊆ H1

0(Ω) dense in H1
0(Ω)” should be

replaced with “for every convex set S ⊆ L∞(Ω) dense in L2(Ω)”.
Actually, thanks to (b) of Theorem 2, condition (1) can be weakened to

lim
‖x‖X→+∞

〈ϕ(x), y〉Y
I(x)

= 0 (1)

for all y in a convex and dense set V ⊆ Y. Then, in the conclusion of Theorem 1, we can replace “S ⊆ Y”
with “S ⊆ V”. Finally, in the proof of Theorem 3, we take V = L∞(Ω), so that condition (a) is actually
enough to prove equality (1).

The author would like to apologize for any inconvenience caused to the readers by these changes.
The changes do not affect the scientific results. The original article has been updated.
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Abstract: We establish the existence of positive solutions for systems of second–order differential
equations with discontinuous nonlinear terms. To this aim, we give a multivalued vector version of
Krasnosel’skiı̆’s fixed point theorem in cones which we apply to a regularization of the discontinuous
integral operator associated to the differential system. We include several examples to illustrate
our theory.

Keywords: Krasnosel’skiı̆’s fixed point theorem; positive solutions; discontinuous differential
equations; differential system

1. Introduction

We study the existence and localization of positive solutions for the system{
u′′1 (t) + g1(t) f1(t, u1(t), u2(t)) = 0,
u′′2 (t) + g2(t) f2(t, u1(t), u2(t)) = 0,

subject to the Sturm–Liouville boundary conditions (7).
The novelties in this paper are in two directions. On the one hand, we allow the functions

fi (i = 1, 2) to be discontinuous with respect to the unknown over some time-dependent sets, see
Definitions 1 and 2. On the other hand, in order to localize the solutions of the system, we shall
establish a multivalued vector version of Krasnosel’skiı̆’s fixed point theorem which allows different
asymptotic behaviors in the nonlinearities f1 and f2, see Remark 3.

The existence of discontinuities in the functions f1 or f2 makes impossible to apply directly the
standard fixed point theorems in cones for compact operators since the integral operator corresponding
to the differential problem is not necessarily continuous. In order to avoid this difficulty, we regularize
the possibly discontinuous operator obtaining an upper semicontinuous multivalued one. Then we
look for fixed points of this multivalued mapping that are proved to be Carathéodory solutions for the
differential system. In the case of scalar problems, similar ideas appear in the papers [1–3].

This approach of using set-valued analysis in the study of discontinuous problems is a classical
one, see [4]. Nevertheless, the regularization is usually made in the nonlinearities transforming the
problem into a differential inclusion and the solutions are often given in the sense of the set-valued
analysis (Krasovskij and Filippov solutions [5,6]), see e.g., [7,8]. Similar ideas are also used in
the papers [5,9] where there are provided some sufficient conditions for the Krasovskij solutions
to be Carathéodory solutions. Recently, second-order scalar discontinuous problems have been

Mathematics 2019, 7, 451; doi:10.3390/math7050451 www.mdpi.com/journal/mathematics45
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investigated by using variational methods [10–12]. However, in these papers there are not considered
time-dependent discontinuity sets. Observe also that a lot of existence results for discontinuous
differential problems are based on monotonicity hypotheses on their nonlinear parts, see [13], but such
assumptions are not necessary in our approach.

Going from scalar discontinuous problems to systems of discontinuous equations is not trivial
and it makes possible to consider two different notions for the discontinuity sets. The first approach
(see Definition 1 and Theorem 3) allows to study the discontinuities in each variable independently.
For instance, it guarantees the existence of a positive solution for the following particular system{

−x′′(t) = x2 + x2y2H(1− x)H(1− y),
−y′′(t) =

√
x +

√
y + H(x− 1)H(y− 1),

subject to the Sturm–Liouville boundary conditions, where H : R→ R is the Heaviside step function
given by

H(x) =

{
0, if x ≤ 0,
1, if x > 0,

see Example 1. Notice that the nonlinearities in this example are discontinuous at x = 1 for each
y ∈ R+ and at y = 1 for every x ∈ R+. Moreover, the first nonlinearity has a superlinear behavior
and the second one has a sublinear one. Our second approach allows to study functions which are
discontinuous over time-dependent curves in R2

+ and the conditions imposed to these curves are local,
see Definition 2 and Theorem 4. In particular, we establish the existence of a positive solution for
the system {

−x′′(t) = (xy)1/3,

−y′′(t) =
(

1 + (xy)1/3
)

H(x2 + y2),

subject to the Sturm–Liouville boundary conditions.
As mentioned above, our results rely on fixed point theory for multivalued operators in cones.

We finish this introductory part by recalling the version of Krasnosel’skiı̆’s fixed point theorem for
set-valued maps given by Fitzpatrick–Petryshyn [14].

Theorem 1. Let X be a Fréchet space with a cone K ⊂ X. Let d be a metric on X and let r1, r2 ∈ (0, ∞),
r = min {r1, r2}, R = max {r1, r2} and F : BR(0) ∩ K −→ 2K usc and condensing. Suppose there exists a
continuous seminorm p such that (I − F)

(
Br1(0) ∩ K

)
is p-bounded. Moreover, suppose that F satisfies:

1. There is some w ∈ K with p(w) �= 0 and such that x �∈ F(x) + tw for any t > 0 and x ∈ ∂KBr1(0);
2. λx �∈ F(x) for any λ > 1 and x ∈ ∂KBr2(0).

Then F has a fixed point x0 with r ≤ d(x0, 0) ≤ R.

In the case of a Banach space (X, ‖·‖X) and of an operator F = (F1, F2) : K ⊂ X2 → 2K under the
hypotheses of the previous theorem, we obtain the existence of a fixed point x = (x1, x2) for F such
that r ≤ ‖x‖ ≤ R, where ‖·‖ denotes a norm in X2, for example, ‖(x1, x2)‖ = ‖x1‖X + ‖x2‖X. Then
0 ≤ ‖x1‖X ≤ R and 0 ≤ ‖x2‖X ≤ R, but it is not possible to obtain a lower bound for the norm of every
component. This fact motivates the use of a vector version of Krasnosel’skiı̆’s fixed point theorem.
Such a version was introduced in [15] for single-valued operators. Another advantage of the vector
approach is that it allows different behaviors in each component of the system.
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2. Multivalued Vector Version of Krasnosel’skiı̆’s Fixed Point Theorem

In the sequel, let (X, ‖·‖) be a Banach space, K1, K2 ⊂ X two cones and K := K1 × K2 the
corresponding cone of X2 = X× X. For r, R ∈ R2

+, r = (r1, r2), R = (R1, R2), we denote

(Ki)ri ,Ri := {u ∈ Ki : ri ≤ ‖u‖ ≤ Ri} (i = 1, 2),

Kr,R := {u ∈ K : ri ≤ ‖ui‖ ≤ Ri for i = 1, 2} .

The following fixed point theorem is an extension of the vector version of Krasnosel’skiı̆’s
fixed point theorem given in [15,16] to the class of upper semicontinuous (usc, for short)
multivalued mappings.

Theorem 2. Let αi, βi > 0 with αi �= βi, ri = min{αi, βi} and Ri = max {αi, βi} for i = 1, 2. Assume that
N : Kr,R → 2K, N = (N1, N2), is an usc map with nonempty closed and convex values such that N(Kr,R)

is compact, and there exist hi ∈ Ki \ {0}, i = 1, 2, such that for each i ∈ {1, 2} the following conditions
are satisfied:

λui �∈ Niu for any u ∈ Kr,R with ‖ui‖ = αi and any λ > 1; (1)

ui �∈ Niu + μhi for any u ∈ Kr,R with ‖ui‖ = βi and any μ > 0. (2)

Then N has a fixed point u = (u1, u2) in K, that is, u ∈ Nu, with ri ≤ ‖ui‖ ≤ Ri for i = 1, 2.

Proof. We shall consider the four possible combinations of compression-expansion conditions for N1

and N2.

1. Assume first that βi < αi for both i = 1, 2 (compression for N1 and N2). Then ri = βi and Ri = αi
for i = 1, 2. Denote h = (h1, h2) and define the map Ñ : K → K given, for u ∈ K, by

Ñu = min
{‖u1‖

r1
,
‖u2‖

r2
, 1
}

N
(

δ1(u1)
u1

‖u1‖
, δ2(u2)

u2

‖u2‖

)
+

(
1−min

{‖u1‖
r1

,
‖u2‖

r2
, 1
})

h,

where δi(ui) = max{min{ui, Ri}, ri} for i = 1, 2.

The map Ñ is usc (the composition of usc maps is usc, see [17], Theorem 17.23) and Ñ(K) is
relatively compact since its values belong to the compact set co (N(Kr,R) ∪ {h}). Then Kakutani’s
fixed point theorem implies that there exists u ∈ K such that u ∈ Ñu.

It remains to prove that u ∈ Kr,R. It is clear that ‖ui‖ > 0 since hi �= 0 for i = 1, 2. Assume 0 <

‖u1‖ < r1 and 0 < ‖u2‖ < r2. If min
{
‖u1‖

r1
, ‖u2‖

r2

}
= ‖u1‖

r1
, then

u ∈ ‖u1‖
r1

N
(

r1

‖u1‖
u1,

r2

‖u2‖
u2

)
+

(
1− ‖u1‖

r1

)
h,

so
r1

‖u1‖
u1 ∈ N1

(
r1

‖u1‖
u1,

r2

‖u2‖
u2

)
+

r1

‖u1‖

(
1− ‖u1‖

r1

)
h1,

what contradicts (2) for i = 1. Analogously, we can obtain contradictions for any other point
u �∈ Kr,R, as done in [15,16] for single-valued maps.
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2. Assume that β1 < α1 (compression for N1) and β2 > α2 (expansion for N2). Let N∗i : Kr,R → Ki
(i = 1, 2) be given by

N∗1 u = N1

(
u1,

(
R2

‖u2‖
+

r2

‖u2‖
− 1

)
u2

)
,

N∗2 u =

(
R2

‖u2‖
+

r2

‖u2‖
− 1

)−1
N2

(
u1,

(
R2

‖u2‖
+

r2

‖u2‖
− 1

)
u2

)
. (3)

Notice that the map N∗ = (N∗1 , N∗2 ) is in case 1, and thus N∗ has a fixed point v ∈ Kr,R. Further,

the point u defined as u1 = v1 and u2 =
(

R2
‖v2‖ +

r2
‖v2‖ − 1

)
v2 is a fixed point of the operator N.

3. The case β1 > α1 (expansion for N1) and β2 < α2 (compression for N2) is similar to the previous
one by taking the map N∗ = (N∗1 , N∗2 ) defined as

N∗1 u =

(
R1

‖u1‖
+

r1

‖u1‖
− 1

)−1
N1

((
R1

‖u1‖
+

r1

‖u1‖
− 1

)
u1, u2

)
, (4)

N∗2 u = N2

((
R1

‖u1‖
+

r1

‖u1‖
− 1

)
u1, u2

)
.

4. The case βi > αi for i = 1, 2 (expansion for N1 and N2) reduces to case 1, if we consider the map
N∗ = (N∗1 , N∗2 ) where N∗1 is defined by (4) and N∗2 , by (3).

Therefore, the proof is over.

Remark 1 (Multiplicity). Although we are interested in fixed points for the operator N satisfying that both
components are nonzero, if we replace conditions (1) and (2) in Theorem 2 by the following ones:

λui �∈ Niu for ‖ui‖ = αi,
∥∥uj

∥∥ ≤ Rj (j �= i) and λ ≥ 1;

ui �∈ Niu + μhi for ‖ui‖ = βi,
∥∥uj

∥∥ ≤ Rj (j �= i) and μ ≥ 0,

then we can achieve multiplicity results.
Indeed, if βi > αi for i = 1 or i = 2, then the operator N has one additional fixed point v = (v1, v2) such

that ‖vi‖ < ri and rj <
∥∥vj

∥∥ < Rj with j �= i. Furthermore, if βi > αi for i = 1, 2, then N has three nontrivial
fixed points. Such cases are considered in the paper [18] in connection with (p, q)-Laplacian systems.

Our purpose is to apply Theorem 2 to a multivalued regularization of a discontinuous system
of single-valued operators associated to a system of differential equations with discontinuous
nonlinearities. Our aim is to obtain new existence and localization results for such kind of problems.

In order to do that, we need the following definitions and results.
Let U be a relatively open subset of the cone K := K1 × K2 and T : U → K, T = (T1, T2), an

operator not necessarily continuous. We associate to the operator T the following multivalued map
T : U → 2K given by

T = (T1,T2), Tiu =
⋂
ε>0

co Ti
(

Bε(u) ∩U
)

for every u ∈ U (i = 1, 2), (5)

where Bε(u) :=
{

v ∈ X2 : ‖ui − vi‖ ≤ ε for i = 1, 2
}

, U denotes the closure of the set U with the
relative topology of K and co means closed convex hull. The map Ti is called the closed-convex
envelope of Ti and it satisfies the following properties, see [2].

Proposition 1. Let T be the closed-convex envelope of an operator T : U −→ K. The following properties
are satisfied:

1. If T maps bounded sets into relatively compact sets, then T assumes compact values and it is usc;

48



Mathematics 2019, 7, 451

2. If T U is relatively compact, then TU is relatively compact too.

Remark 2. The following two statements are equivalent:

(a) y ∈ Ti(u) (i = 1, 2);
(b) for every ε > 0 and every ρ > 0 there exist m ∈ N and a finite family of vectors xj ∈ Bε(u) ∩U and

coefficients λj ∈ [0, 1] (j = 1, 2, . . . , m) such that ∑ λj = 1 and∥∥∥∥∥y−
m

∑
j=1

λj Tixj

∥∥∥∥∥ < ρ.

3. Positive Solutions of Discontinuous Systems

We study the existence and localization of positive solutions for the following second-order
coupled differential system {

u′′1 (t) + g1(t) f1(t, u1(t), u2(t)) = 0,
u′′2 (t) + g2(t) f2(t, u1(t), u2(t)) = 0,

(6)

for t ∈ I = [0, 1], with the following boundary conditions

aiui(0)− biu′i(0) = 0, ciui(1) + diu′i(1) = 0, (7)

for i = 1, 2, where ai, bi, ci, di ∈ R+ ≡ [0, ∞) and ρi := bici + aici + aidi > 0 for i = 1, 2. Assume that,
for i = 1, 2,

(H1) gi ∈ L1(I), gi(t) ≥ 0 for a.e. t ∈ I and
∫ 3/4

1/4 g(s) ds > 0;
(H2) fi : I ×R2

+ → R+ satisfies that

(i) fi(·, u1(·), u2(·)) are measurable whenever (u1, u2) ∈ C(I)2;
(ii) for each ρ > 0 there exists Ri,ρ > 0 such that

fi(t, u1, u2) ≤ Ri,r for u1, u2 ∈ [0, ρ] and a.e. t ∈ I.

Notice that condition (H2) (i) is satisfied if fi(·, u1, u2) is measurable for all constants u1, u2, and
if fi(t, ·, ·) is continuous for a.a. t, which is not necessarily the case in this paper.

Let X = C(I) be the space of continuous functions defined on I endowed with the usual norm
‖v‖ := ‖v‖∞ = maxt∈I |v(t)| and let P be the cone of all nonnegative functions of X. A positive
solution to (6)–(7) is a function u = (u1, u2) with ui ∈ P ∩W2,1(I), ui �≡ 0 (i = 1, 2) such that u satisfies
(6) for a.a. t ∈ I and the boundary conditions (7). The existence of positive solutions to problems
(6)–(7) is equivalent to the existence of fixed points of the integral operator T : P2 → P2, T = (T1, T2),
given by

(Tiu)(t) =
∫ 1

0
Gi(t, s)gi(s) fi(s, u1(s), u2(s)) ds, i = 1, 2, (8)

where Gi(t, s) are the corresponding Green’s functions which are explicitly given by

Gi(t, s) =
1
ρi

{
(ci + di − cit)(bi + ais), if 0 ≤ s ≤ t ≤ 1,
(bi + ait)(ci + di − cis), if 0 ≤ t ≤ s ≤ 1.

Denote

Mi := min
{

ci + 4di
4(ci + di)

,
ai + 4bi

4(ai + bi)

}
,
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then it is possible to check the following inequalities:

Gi(t, s) ≤ Gi(s, s) for t, s ∈ I,
MiGi(s, s) ≤ Gi(t, s) for t ∈ [1/4, 3/4], s ∈ I.

Consider in X the cones K1 and K2 defined as

Ki = {v ∈ P : v(t) ≥ Mi ‖v‖∞ for all t ∈ [1/4, 3/4]} ,

and the corresponding cone K := K1 × K2 in X2. Then, T(K) ⊂ K. Indeed, for u ∈ K and i = 1, 2,

Mi ‖Tiu‖ = Mi max
t∈[0,1]

∫ 1

0
Gi(t, s)gi(s) fi(s, u1(s), u2(s)) ds

≤ Mi

∫ 1

0
Gi(s, s)gi(s) fi(s, u1(s), u2(s)) ds ≤ min

t∈[1/4,3/4]
Tiu(t).

Hence, Tiu ∈ Ki for every u ∈ K and i = 1, 2.
Therefore, it must be clear that we intend to apply Theorem 2 in a subset of K to the multivalued

operator T associated to the discontinuous operator T. Later, we shall provide conditions about the
functions fi (i = 1, 2) which guarantee that Fix(T) ⊂ Fix(T), where Fix(S) stands for the set of fixed
points of the mapping S. As a consequence, we obtain some results concerning the existence of positive
solutions for system (6)–(7).

Let us introduce some notations. For αi, βi > 0 with αi �= βi and ε > 0, we let ri = min{αi, βi},
Ri = max{αi, βi} (i = 1, 2) and

f β,ε
1 := inf{ f1(t, u1, u2) : t ∈ [1/4, 3/4], M1(β1 − ε) ≤ u1 ≤ β1 + ε, M2r2 ≤ u2 ≤ R2},

f β,ε
2 := inf{ f2(t, u1, u2) : t ∈ [1/4, 3/4], M1r1 ≤ u1 ≤ R1, M2(β2 − ε) ≤ u2 ≤ β2 + ε},

f α,ε
1 := sup{ f1(t, u1, u2) : t ∈ [0, 1], 0 ≤ u1 ≤ α1 + ε, 0 ≤ u2 ≤ R2},

f α,ε
2 := sup{ f2(t, u1, u2) : t ∈ [0, 1], 0 ≤ u1 ≤ R1, 0 ≤ u2 ≤ α2 + ε}.

Also, denote

Ai := inf
t∈[1/4,3/4]

∫ 3/4

1/4
Gi(t, s)gi(s) ds, Bi := sup

t∈[0,1]

∫ 1

0
Gi(t, s)gi(s) ds

for i = 1, 2.

Lemma 1. Assume that there exist αi, βi > 0 with αi �= βi, i = 1, 2, and ε > 0 such that

Bi f α,ε
i < αi, Ai f β,ε

i > βi for i = 1, 2. (9)

Then, for each i ∈ {1, 2}, the following conditions are satisfied:

λui �∈ Tiu for any u ∈ Kr,R with ‖ui‖∞ = αi and any λ > 1; (10)

ui �∈ Tiu + μhi for any u ∈ Kr,R with ‖ui‖∞ = βi and any μ > 0, (11)

where h1 and h2 are constant functions equal to 1.
Moreover, the map T defined as in (5) has at least one fixed point in Kr,R.
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Proof. First, observe that if v ∈ Kr,R, then

Miri ≤ vi(t) ≤ Ri for all t ∈
[

1
4

,
3
4

]
(i = 1, 2),

and if v ∈ Bε(u) ∩ Kr,R for some u ∈ Kr,R, and ‖u1‖∞ = α1, then v1(t) ≤ α1 + ε for all t ∈ [0, 1] and

M1(α1 − ε) ≤ v1(t) ≤ α1 + ε for all t ∈
[

1
4

,
3
4

]
.

Now we prove (10) for i = 1. Assume that ‖u1‖∞ = α1 and let us see that λu1 �∈ T1u for λ > 1.
First, we shall show that given a family of vectors vk ∈ Bε(u) ∩ Kr,R and numbers λk ∈ [0, 1] such that
∑ λk = 1 (k = 1, . . . , m), then

λu1 �=
m

∑
k=1

λk T1vk,

what implies that λu1 �∈ co
(
T1
(

Bε(u) ∩ Kr,R
))

. Indeed, if not, taking the supremum for t ∈ [0, 1],

λα1 ≤ sup
t∈[0,1]

m

∑
k=1

λk

∫ 1

0
G1(t, s)g1(s) f1(s, vk,1(s), vk,2(s)) ds

≤
m

∑
k=1

λk sup
t∈[0,1]

∫ 1

0
G1(t, s)g1(s) f1(s, vk,1(s), vk,2(s)) ds

≤
m

∑
k=1

λk f α,ε
1 B1 = f α,ε

1 B1 < α1,

a contradiction. Notice that if λu1 ∈ co
(
T1
(

Bε(u) ∩ Kr,R
))

, then it is the limit of a sequence of functions
satisfying the previous inequality and thus, as a limit, it satisfies λ α1 ≤ α1 which is also a contradiction
since λ > 1. Therefore, λu1 �∈ T1u for λ > 1.

In order to prove (11) for i = 1, assume that ‖u1‖∞ = β1 and u1 = ∑m
k=1 λk T1vk + μ for some

family of vectors vk ∈ Bε(u)∩ Kr,R and numbers λk ∈ [0, 1] such that ∑ λk = 1 (k = 1, . . . , m) and some
μ > 0. Then for t ∈ [1/4, 3/4], we have

u1(t) =
m

∑
k=1

λk

∫ 1

0
G1(t, s)g1(s) f1(s, vk,1(s), vk,2(s)) ds + μ

≥
m

∑
k=1

λk

∫ 3/4

1/4
G1(t, s)g1(s) f1(s, vk,1(s), vk,2(s)) ds + μ

≥
m

∑
k=1

λk f β,ε
1

∫ 3/4

1/4
G1(t, s)g1(s) ds + μ

≥ f β,ε
1 A1 + μ > β1 + μ,

so β1 > β1 + μ, a contradiction. Hence, u1 �∈ co
(
T1
(

Bε(u) ∩ Kr,R
))

+ μh1. As before,

u1 �∈ co
(
T1
(

Bε(u) ∩ Kr,R
))

+ μh1

because in that case we arrive to the inequality β1 ≥ β1 + μ for μ > 0. Therefore, u1 �∈ T1(u) + μh1.
Similarly, it is possible to prove conditions (10) and (11) for i = 2.
To finish, the conclusion is obtained by applying Theorem 2 to the operator T.

Remark 3 (Asymptotic conditions). The existence of αi, βi > 0 with αi �= βi, i = 1, 2, and ε > 0 satisfying
(9) is guaranteed, in the autonomous case, by the following sufficient conditions:

51



Mathematics 2019, 7, 451

(a) f1 has a superlinear behavior and f2, a sublinear one, that is,

lim
x→∞

f1(x, y)
x

= +∞ for all y > 0, lim
x→0

f1(x, y)
x

= 0 for all y ≥ 0;

lim
y→∞

f2(x, y)
y

= 0 for all x ≥ 0, lim
y→0

f2(x, y)
y

= +∞ for all x > 0.

(b) Both f1 and f2 have a superlinear behavior, that is,

lim
x→∞

f1(x, y)
x

= +∞ for all y > 0, lim
x→0

f1(x, y)
x

= 0 for all y ≥ 0;

lim
y→∞

f2(x, y)
y

= +∞ for all x > 0, lim
y→0

f2(x, y)
y

= 0 for all x ≥ 0.

(c) Both f1 and f2 have a sublinear behavior, that is,

lim
x→∞

f1(x, y)
x

= 0 for all y ≥ 0, lim
x→0

f1(x, y)
x

= +∞ for all y > 0;

lim
y→∞

f2(x, y)
y

= 0 for all x ≥ 0, lim
y→0

f2(x, y)
y

= +∞ for all x > 0.

Remark 4. If f1 and f2 are monotone in both variables, it is possible to specify the numbers f α,ε
i and f β,ε

i
(i = 1, 2), so in this case, conditions (9) only depend on the behavior of the functions at four points in R2

+,
see [15,16].

Note that Lemma 1 gives us sufficient conditions for the existence of a fixed point in Kr,R of
the multivalued operator T. Hence, it remains to provide hypothesis on the functions fi (i = 1, 2)
which imply Fix(T) ⊂ Fix(T) in order to obtain a solution for the system (6)–(7). Observe also that no
continuity hypotheses were required to the functions fi until now.

The following definition introduces some curves where we allow the functions fi to be
discontinuous in each variable. The idea of using such curves can be found in some recent papers
for second-order discontinuous scalar problems [1–3] and, in some sense, it recalls the notion of
time-depending discontinuity sets from [9].

Definition 1. We say that Γ1 : [a1, b1] ⊂ I = [0, 1] → R+, Γ1 ∈ W2,1(a1, b1), is an inviable discontinuity
curve with respect to the first variable u1 if there exist ε > 0 and ψ1 ∈ L1(a1, b1), ψ1(t) > 0 for a.e. t ∈ [a1, b1]

such that either

Γ′′1 (t) + ψ1(t) < −g1(t) f1(t, y, z) for a.e. t ∈ [a1, b1], all y ∈ [Γ1(t)− ε, Γ1(t) + ε] and all z ∈ R+, (12)

or

Γ′′1 (t)− ψ1(t) > −g1(t) f1(t, y, z) for a.e. t ∈ [a1, b1], all y ∈ [Γ1(t)− ε, Γ1(t) + ε] and all z ∈ R+. (13)

Similarly, we say that Γ2 : [a2, b2] ⊂ I = [0, 1] → R+, Γ2 ∈ W2,1(a2, b2), is an inviable discontinuity
curve with respect to the second variable u2 if there exist ε > 0 and ψ2 ∈ L1(a2, b2), ψ2(t) > 0 for a.e.
t ∈ [a2, b2] such that either

Γ′′2 (t) + ψ2(t) < −g2(t) f2(t, y, z) for a.e. t ∈ [a2, b2], all y ∈ R+ and all z ∈ [Γ2(t)− ε, Γ2(t) + ε] ,

or

Γ′′2 (t)− ψ2(t) > −g2(t) f2(t, y, z) for a.e. t ∈ [a2, b2], all y ∈ R+ and all z ∈ [Γ2(t)− ε, Γ2(t) + ε] .
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Now we state some technical results that we need in the proof of the condition Fix(T) ⊂ Fix(T).
Their proofs can be found in [3]. In the sequel, m denotes the Lebesgue measure in R.

Lemma 2 ([3], Lemma 4.1). Let a, b ∈ R, a < b, and let g, h ∈ L1(a, b), g ≥ 0 a.e., and h > 0 a.e. in (a, b).
For every measurable set J ⊂ (a, b) with m(J) > 0 there is a measurable set J0 ⊂ J with m(J \ J0) = 0 such
that for every τ0 ∈ J0 we have

lim
t→τ+0

∫
[τ0,t]\J g(s) ds∫ t

τ0
h(s) ds

= 0 = lim
t→τ−0

∫
[t,τ0]\J g(s) ds∫ τ0

t h(s) ds
.

Corollary 1 ([3], Corollary 4.2). Let a, b ∈ R, a < b, and let h ∈ L1(a, b) be such that h > 0 a.e. in (a, b).
For every measurable set J ⊂ (a, b) with m(J) > 0 there is a measurable set J0 ⊂ J with m(J \ J0) = 0 such
that for all τ0 ∈ J0 we have

lim
t→τ+0

∫
[τ0,t]∩J h(s) ds∫ t

τ0
h(s) ds

= 1 = lim
t→τ−0

∫
[t,τ0]∩J h(s) ds∫ τ0

t h(s) ds
.

We shall also need the following lemma, see [2], Lemma 3.11.

Lemma 3. If M ∈ L1(0, 1), M ≥ 0 almost everywhere, then the set

Q =

{
u ∈ C1([0, 1]) :

∣∣u′(t)− u′(s)
∣∣ ≤ ∫ t

s
M(r) dr whenever 0 ≤ s ≤ t ≤ 1

}
is closed in C([0, 1]) endowed with the maximum norm topology.

Moreover, if un ∈ Q for all n ∈ N and un → u uniformly in [0, 1], then there exists a subsequence {unk}
which tends to u in the C1 norm.

Now we are ready to present the following existence and localization result for the differential
system (6)–(7).

Theorem 3. Suppose that the functions fi and gi (i = 1, 2) satisfy conditions (H1), (H2) and

(H3) There exist inviable discontinuity curves Γ1,n : I1,n := [a1,n, b1,n] ⊂ I → R+ with respect to the
first variable, n ∈ N, and inviable discontinuity curves Γ2,n : I2,n := [a2,n, b2,n] ⊂ I → R+ with
respect to the second variable, n ∈ N, such that for each i ∈ {1, 2} and for a.e. t ∈ I the function
(u1, u2) �→ fi(t, u1, u2) is continuous on⎛⎜⎝R+ \

⋃
{n:t∈I1,n}

{Γ1,n(t)}

⎞⎟⎠×
⎛⎝R+ \

⋃
{n:t∈I2,n}

{Γ2,n(t)}

⎞⎠ .

Moreover, assume that there exist αi, βi > 0 with αi �= βi, i = 1, 2, and ε > 0 such that

Bi f α,ε
i < αi, Ai f β,ε

i > βi for i = 1, 2.

Then system (6)–(7) has at least one solution in Kr,R.

Proof. The operator T : Kr,R → K, T = (T1, T2), given by (8) is well-defined and the hypotheses
(H1) and (H2) imply that T(Kr,R) is relatively compact as an immediate consequence of the
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Ascoli–Arzelá theorem. Moreover, by (H1) and (H2), there exist functions ηi ∈ L1(I) (i = 1, 2)
such that

gi(t) fi(t, u1, u2) ≤ ηi(t) for a.e. t ∈ I and all u1 ∈ [0, R1], u2 ∈ [0, R2]. (14)

Therefore, T(Kr,R) ⊂ Q1 ×Q2, where

Qi =

{
u ∈ C1([0, 1]) :

∣∣u′(t)− u′(s)
∣∣ ≤ ∫ t

s
ηi(r) dr whenever 0 ≤ s ≤ t ≤ 1

}
,

for i = 1, 2, which by virtue of Lemma 3 is a closed and convex subset of X = C(I). Then, by
‘convexification’, T(Kr,R) ⊂ Q1 ×Q2, where T is the multivalued map associated to T defined as in (5).

By Lemma 1, the multivalued map T has a fixed point in Kr,R. Hence, if we show that all the fixed
points of the operator T are fixed points of T, the conclusion is obtained. To do so, we fix an arbitrary
function u ∈ Kr,R ∩ (Q1 ×Q2) and we consider three different cases.

Case 1: m({t ∈ I1,n : u1(t) = Γ1,n(t)} ∪ {t ∈ I2,n : u2(t) = Γ2,n(t)}) = 0 for all n ∈ N. Let us
prove that T is continuous at u, which implies that Tu = {Tu}, and therefore the relation u ∈ Tu gives
that u = Tu.

The assumption implies that for a.a. t ∈ I the mappings f1(t, ·) and f2(t, ·) are continuous at
u(t) = (u1(t), u2(t)). Hence if uk → u in Kr,R then

fi(t, uk(t))→ fi(t, u(t)) for a.a. t ∈ I and for i = 1, 2,

which, along with (14), yield Tuk → Tu in C(I)2, so T is continuous at u.

Case 2: m({t ∈ I1,n : u1(t) = Γ1,n(t)}) > 0 for some n ∈ N. In this case we can prove that
u1 �∈ T1u, and thus u �∈ Tu.

To this aim, first, we fix some notation. Let us assume that for some n ∈ N we have m({t ∈ I1,n :
u1(t) = Γ1,n(t)}) > 0 and there exist ε > 0 and ψ ∈ L1(I1,n), ψ(t) > 0 for a.a. t ∈ I1,n, such that (13)
holds with Γ1 replaced by Γ1,n. (The proof is similar if we assume (12) instead of (13), so we omit it.)

We denote J = {t ∈ I1,n : u1(t) = Γ1,n(t)}, and we deduce from Lemma 2 that there is a
measurable set J0 ⊂ J with m(J0) = m(J) > 0 such that for all τ0 ∈ J0 we have

lim
t→τ+0

2
∫
[τ0,t]\J η1(s) ds

(1/4)
∫ t

τ0
ψ(s) ds

= 0 = lim
t→τ−0

2
∫
[t,τ0]\J η1(s) ds

(1/4)
∫ τ0

t ψ(s) ds
. (15)

By Corollary 1 there exists J1 ⊂ J0 with m(J0 \ J1) = 0 such that for all τ0 ∈ J1 we have

lim
t→τ+0

∫
[τ0,t]∩J0

ψ(s) ds∫ t
τ0

ψ(s) ds
= 1 = lim

t→τ−0

∫
[t,τ0]∩J0

ψ(s) ds∫ τ0
t ψ(s) ds

. (16)

Let us now fix a point τ0 ∈ J1. From (15) and (16) we deduce that there exist t− < t̃− < τ0

and t+ > t̃+ > τ0, t± sufficiently close to τ0 so that the following inequalities are satisfied for all
t ∈ [t̃+, t+]:

2
∫
[τ0,t]\J

η1(s) ds <
1
4

∫ t

τ0

ψ(s) ds, (17)∫
[τ0,t]∩J

ψ(s) ds ≥
∫
[τ0,t]∩J0

ψ(s) ds >
1
2

∫ t

τ0

ψ(s) ds, (18)
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and for all t ∈ [t−, t̃−]:

2
∫
[t,τ0]\J

η1(s) ds <
1
4

∫ τ0

t
ψ(s) ds, (19)∫

[t,τ0]∩J
ψ(s) ds >

1
2

∫ τ0

t
ψ(s) ds. (20)

Finally, we define a positive number

ρ̃ = min
{

1
4

∫ τ0

t̃−
ψ(s) ds,

1
4

∫ t̃+

τ0

ψ(s) ds
}

, (21)

and we are ready to prove that u1 �∈ T1u. It suffices to prove the following claim:

Claim: let ε > 0 be given by our assumptions over Γ1,n as Definition 1 shows, and let ρ =
ρ̃

2
min {t̃− − t−, t+ − t̃+}, where ρ̃ is as in (21). For every finite family xj ∈ Bε(u) ∩ Kr,R and λj ∈ [0, 1]

(j = 1, 2, . . . , m), with ∑ λj = 1, we have ‖u1 −∑ λjT1xj‖∞ ≥ ρ.

Let xj and λj be as in the Claim and, for simplicity, denote y = ∑ λjT1xj. For a.a. t ∈ J = {t ∈
I1,n : u1(t) = Γ1,n(t)} we have

y′′(t) =
m

∑
j=1

λj(T1xj)
′′(t) = −

m

∑
j=1

λj g1(t) f1(t, xj,1(t), xj,2(t)). (22)

On the other hand, for every j ∈ {1, 2, . . . , m} and every t ∈ J we have

|xj,1(t)− Γ1,n(t)| = |xj,1(t)− u1(t)| < ε,

and then the assumptions on Γ1,n ensure that for a.a. t ∈ J we have

y′′(t) = −
m

∑
j=1

λj g1(t) f1(t, xj,1(t), xj,2(t)) <
m

∑
j=1

λj (Γ′′1,n(t)− ψ(t)) = u′′1 (t)− ψ(t). (23)

Now for t ∈ [t−, t̃−] we compute

y′(τ0)− y′(t) =
∫ τ0

t
y′′(s) ds =

∫
[t,τ0]∩J

y′′(s) ds +
∫
[t,τ0]\J

y′′(s) ds

<
∫
[t,τ0]∩J

u′′1 (s) ds−
∫
[t,τ0]∩J

ψ(s) ds

+
∫
[t,τ0]\J

η1(s) ds (by (23), (22) and (14))

= u′1(τ0)− u′1(t)−
∫
[t,τ0]\J

u′′1 (s) ds−
∫
[t,τ0]∩J

ψ(s) ds +
∫
[t,τ0]\J

η1(s) ds

≤ u′1(τ0)− u′1(t)−
∫
[t,τ0]∩J

ψ(s) ds + 2
∫
[t,τ0]\J

η1(s) ds

< u′1(τ0)− u′1(t)−
1
4

∫ τ0

t
ψ(s) ds (by (19) and (20)),

hence y′(t)− u′1(t) ≥ ρ̃ provided that y′(τ0) ≥ u′1(τ0). Therefore, by integration we obtain

y(t̃−)− u1(t̃−) = y(t−)− u1(t−) +
∫ t̃−

t−
(y′(t)− u′1(t)) dt ≥ y(t−)− u1(t−) + ρ̃(t̃− − t−).
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So, if y(t−)− u1(t−) ≤ −ρ, then ‖y− u1‖∞ ≥ ρ. Otherwise, if y(t−)− u1(t−) > −ρ, then we have
y(t̃−)− u1(t̃−) > ρ and thus ‖y− u1‖∞ ≥ ρ, too.

Similar computations in the interval [t̃+, t+] instead of [t−, t̃−] show that if y′(τ0) ≤ u′1(τ0) then
we have u′1(t)− y′(t) ≥ ρ̃ for all t ∈ [t̃+, t+] and this also implies ‖y− u1‖ ≥ ρ. The claim is proven.

Case 3: m({t ∈ I2,n : u2(t) = Γ2,n(t)}) > 0 for some n ∈ N. In this case it is possible to prove that
u2 �∈ T2u. The details are similar to those in Case 2, with obvious changes, so we omit them.

Remark 5. Observe that Definition 1 allows to study the discontinuities of the functions fi independently in
each variable u1 and u2, as shown in condition (H3).

In addition, a continuum set of discontinuity points is possible: for instance, the function f1 may be
discontinuous at the point u1 = 1 for all u2 ∈ R+ provided that the constant function Γ1 ≡ 1 is an inviable
discontinuity curve with respect to the first variable. This fact improves the ideas given in [5] for first-order
autonomous systems where “only” a countable set of discontinuity points are allowed.

Remark 6. Notice that conditions (12) and (13) are not local in the last variable. However, the condition

inf
t∈I,x,y∈R+

f1(t, x, y) > 0

implies that any constant function stands for an inviable discontinuity curve with respect to the first variable
(since condition (13) holds). Moreover, any function with strictly positive second derivative is always an inviable
discontinuity curve with respect to the variable u1 without any additional condition on f1.

Now we illustrate our existence result by some examples.

Example 1. Consider the coupled system{
−x′′(t) = x2 + x2y2H(a− x)H(b− y),
−y′′(t) =

√
x +

√
y + H(x− c)H(y− d),

(24)

subject to the boundary conditions (7) (replacing u1 and u2 by x and y, respectively) where a, b, c, d > 0 and H
denotes the Heaviside function.

The existence of numbers αi and βi in the conditions of (9) is guaranteed by Remark 3 (a) since f1(x, y) =
x2 + x2y2H(a− x)H(b− y) is a superlinear function and f2(x, y) =

√
x +

√
y + H(x− c)H(y− d) is a

sublinear function.
On the other hand, the function (x, y) �→ f1(x, y) is continuous on (R+ \ {a})× (R+ \ {b}) and the

constant function Γ1 ≡ a stands for an inviable curve with respect to the first variable. Indeed,

−Γ′′1 (t) +
a2

8
=

a2

8
< f1(y, z) for a.a. t ∈ [0, 1] and for all y ∈

[
a
2

,
3a
2

]
and z ∈ R+,

hence (13) holds with ψ1 ≡ a2/8.
Moreover, the constant function Γ2 ≡ b is an inviable curve with respect to the second variable, according

to Remark 6 since
inf

x,y∈R+

f2(x, y) > 0.

Similarly, the function f2(x, y) =
√

x +
√

y + H(x − c)H(y − d) satisfies the hypothesis (H3) in
Theorem 3, so the system (7)–(24) has at least one positive solution.

Example 2. Consider the system{
−x′′(t) = x2 + x2y2H(a + t2 − x)H(b + mt− y),
−y′′(t) =

√
x +

√
y + H(x− c)H(y− d),

(25)
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subject to the boundary conditions (7), where a, b, c, d > 0 and m ∈ R.
Now, for a.a. t ∈ I, the function (x, y) �→ f1(t, x, y), where

f1(t, x, y) = x2 + x2y2H(a + t2 − x)H(b + mt− y),

is continuous on
(
R+ \ {a + t2}

)
× (R+ \ {b + mt}) and the curve Γ1(t) = a + t2 is inviable with respect to

the first variable. Indeed, (13) is satisfied with ψ1 ≡ 1, since

−Γ′′1 (t) + 1 = −1 < f1(t, y, z) for a.a. t ∈ [0, 1] and for all y, z ∈ R+.

On the other hand, the curve Γ2(t) = b + mt is inviable with respect to the variable y, according to Remark
6, since Γ′′2 (t) ≡ 0 and infx,y∈R+

f2(x, y) > 0.
Therefore, Theorem 3 ensures the existence of one positive solution for problem (7)–(25).

Nevertheless, the conditions of Definition 1 are too strong for functions f1 which are discontinuous
at a single isolated point (x0, y0) or, more generally, over a curve (γ1(t), γ2(t)) for t ∈ Ī ⊂ I. This
is the motivation for another definition of the notion of discontinuity curves. This notion will be a
generalization of the admissible curves presented in [2] for one equation.

Definition 2. We say that γ = (γ1, γ2) : [a, b] ⊂ I = [0, 1] → R2
+, γi ∈ W2,1(a, b) (i = 1, 2), is

an admissible discontinuity curve for the differential equation u′′1 = −g1(t) f1(t, u1(t), u2(t)) if one of the
following conditions holds:

(a) γ′′1 (t) = −g1(t) f1(t, γ1(t), γ2(t)) for a.e. t ∈ [a, b] (then we say γ is viable for the differential equation),
(b) There exist ε > 0 and ψ ∈ L1(a, b), ψ(t) > 0 for a.e. t ∈ [a, b] such that either

γ′′1 (t) + ψ(t) < −g1(t) f1(t, y, z) for a.e. t ∈ [a, b] all y ∈ [γ1(t)− ε, γ1(t) + ε]

and all z ∈ [γ2(t)− ε, γ2(t) + ε] ,

or

γ′′1 (t)− ψ(t) > −g1(t) f1(t, y, z) for a.e. t ∈ [a, b] all y ∈ [γ1(t)− ε, γ1(t) + ε]

and all z ∈ [γ2(t)− ε, γ2(t) + ε] .

In this case we say that γ is inviable.

Similarly, we can define admissible discontinuity curves for u′′2 = −g2(t) f2(t, u1(t), u2(t)).

Theorem 4. Suppose that the functions fi and gi (i = 1, 2) satisfy conditions (H1), (H2) and

(H∗3 ) There exist admissible discontinuity curves for the first differential equation γn : In := [an, bn]→ R2
+,

n ∈ N, such that for a.e. t ∈ I the function (u1, u2) �→ f1(t, u1, u2) is continuous on R2
+ \⋃

{n:t∈In} {(γn,1(t), γn,2(t))};
(H∗4 ) There exist admissible discontinuity curves for the second differential equation γ̃n : Ĩn := [ãn, b̃n]→

R2
+, n ∈ N, such that for a.e. t ∈ I the function (u1, u2) �→ f2(t, u1, u2) is continuous on R2

+ \⋃
{n:t∈ Ĩn} {(γ̃n,1(t), γ̃n,2(t))}.

Moreover, assume that there exist αi, βi > 0 with αi �= βi, i = 1, 2, and ε > 0 such that

Bi f α,ε
i < αi, Ai f β,ε

i > βi for i = 1, 2.

Then the differential system (6)–(7) has at least one solution in Kr,R.

57



Mathematics 2019, 7, 451

Proof. Notice that in virtue of Lemma 1 it is sufficient to show that Fix(T) ⊂ Fix(T). Reasoning as
in the proof of Theorem 3, if we fix a function u ∈ Kr,R ∩ (Q1 × Q2), we have to consider three
different cases.

Case 1: m({t ∈ In : u(t) = γn(t)} ∪ {t ∈ Ĩn : u(t) = γ̃n(t)}) = 0 for all n ∈ N. Then T is
continuous at u.

Case 2: m({t ∈ In : u(t) = γn(t)}) > 0 or m({t ∈ Ĩn : u(t) = γ̃n(t)}) > 0 for some γn or
γ̃n inviable. Then u �∈ Tu. The proof follows the ideas from Case 2 in Theorem 3.

Case 3: m({t ∈ In : u(t) = γn(t)}) > 0 or m({t ∈ Ĩn : u(t) = γ̃n(t)}) > 0 only for viable curves.
Then the relation u ∈ Tu implies u = Tu. In this case the idea is to show that u is a solution of the
differential system. The proof is analogus to that of the equivalent case in [2], Theorem 3.12 or [3],
Theorem 4.4, so we omit it here.

Remark 7. Notice that, in the case of a function (u1, u2) �→ f1(t, u1, u2) which is discontinuous at a single
point (x0, y0), Definition 2 requires that one of the following two conditions holds:

(i) f1(t, x0, y0) = 0 for a.e. t ∈ [0, 1];
(ii) there exist ε > 0 and ψ ∈ L1(0, 1), ψ(t) > 0 for a.e. t ∈ I such that

0 < ψ(t) < g1(t) f1(t, x, y) for a.e. t ∈ I, all x ∈ [x0 − ε, x0 + ε] and all y ∈ [y0 − ε, y0 + ε].

In particular, for (ii), it suffices that there exist ε, δ > 0 such that

0 < δ < f1(t, x, y) for a.e. t ∈ I, all x ∈ [x0 − ε, x0 + ε] and all y ∈ [y0 − ε, y0 + ε].

To finish, we present two simple examples which fall outside of the applicability of Theorem 3,
but which can be studied by means of Theorem 4.

Example 3. Consider the problem{
−x′′(t) = f1(x, y) = (xy)1/3 (2− cos

(
1/((x− 1)2 + (y− 1)2)

)
H
(
(x− 1)2 + (y− 1)2)) ,

−y′′(t) = f2(x, y) = (xy)1/3,
(26)

subject to the boundary conditions (7).
It is clear that f1 and f2 have a sublinear behavior, see Remark 3.
The function (x, y) �→ f1(x, y) is continuous on R2

+ \ {(1, 1)} and the constant function γ(t) =

(γ1(t), γ2(t)) ≡ (1, 1) is an inviable admissible discontinuity curve for the differential equation −x′′(t) =
f1(x, y) since 0 < 1/ 3

√
4 ≤ f1(x, y) for all x ∈ [1/2, 3/2] and all y ∈ [1/2, 3/2]; and γ′′1 (t) = 0.

Therefore, Theorem 4 guarantees the existence of a positive solution for problem (7)–(26).

Example 4. Consider the following system{
−x′′(t) = f1(x, y) = (xy)1/3,

−y′′(t) = f2(x, y) =
(

1 + (xy)1/3
)

H(x2 + y2),
(27)

subject to the boundary conditions (7).
The nonlinearities of the system have again a sublinear behavior. Now, the function (x, y) �→ f2(x, y) is

continuous on R2
+ \ {(0, 0)} and the constant function γ(t) = (γ1(t), γ2(t)) ≡ (0, 0) is a viable admissible

discontinuity curve for the differential equation.
Hence, by application of Theorem 4, one obtains that the system (7)–(27) has at least one positive solution.
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Abstract: This paper is devoted to investigating a class of nonhomogeneous Choquard equations
with perturbation involving p-Laplacian. Under suitable hypotheses about the perturbation term,
the existence of at least two nontrivial solutions for the given problems is obtained using Nehari
manifold and minimax methods.
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1. Introduction and Main Results

In this paper we are interested in the following generalized nonlinear Choquard equation with
perturbation involving p-Laplacian

− Δpu + V(x)|u|p−2u =

⎛⎜⎜⎜⎜⎜⎝
∫
�N

∣∣∣u(y)
∣∣∣q∣∣∣x− y
∣∣∣μ dy

⎞⎟⎟⎟⎟⎟⎠|u|q−2u + g(x), x ∈ �N (1)

where N ≥ 3, 2 ≤ p < N, 0 < μ < N, p
2 (2 − μN ) < q < p∗

2 (2 − μN ), 0 < V ∈ C1(�N,�),
Δp = div(

∣∣∣∇u
∣∣∣p−2∇u) is the p-Laplacian operator, and g :�N →� is perturbation. Here p∗ =

Np/(N − p) denotes the Sobolev conjugate of p.
The homogeneous, a.e. g(x) ≡ 0, which means zero is a solution of problem (1). It was investigated

in [1]. A special case of problem (1) is the well-known Choquard-Pekar equation

− Δu + u =

(
1
|x|μ ∗ |u|

2
)
u, x ∈ �N (2)

which was investigated by Pekar [2] in relationship with the quantum field theory of a polaron. In
particular, when u is a solution to (2), we know that φ(x, t) = u(x)e−it is a solitary wave of the following
Hartree equation

i
∂φ

∂t
= −Δφ−

(
1
|x|μ ∗ |φ|

2
)
φ, in�3 ×�+

which was introduced by Choquard in 1976 to describe an electron trapped in its own hole as
approximation to Hartree-Fock theory of a one-component plasma; see [3,4]. This equation was also
proposed by Penrose in [5] as a model of self-gravitating matter and is usually known in that context as
the nonlinear Schrödinger-Newton equation. For more details, discussion about the physical aspects
of the problem we refer the readers to [6–11] and the references therein.

From a mathematical point of view, the Choquard-Pekar Equation (2) and its generalizations
have been widely studied. Take for instance, Lieb [4] investigated the existence and uniqueness, up
to translations, of the ground state to problem (2) by using symmetric decreasing rearrangement
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inequalities. Later, Lions [6] proved the existence of infinitely many radially symmetric solutions to
problem (2) via critical point theory. Ackermann [12] established some existence and multiplicity results
for a type of periodic Choquard-Pekar equation with nonlocal superlinear part. Further interesting
results on Choquard equations may be found in [13–26], the survey [27], and the references therein.

In [15], Ma and Zhao investigated the generalized stationary nonlinear Choquard equation

− Δu + u =

⎛⎜⎜⎜⎜⎜⎝
∫
�N

∣∣∣u(y)
∣∣∣q∣∣∣x− y
∣∣∣μ dy

⎞⎟⎟⎟⎟⎟⎠|u|q−2u, x ∈ �N (3)

where N ≥ 3, 0 < μ < N, q ≥ 2 Under the suitable conditions on μ, N, and q, which include the classical
case, they showed that every positive solution to problem (3) is radially symmetric and monotone
decreasing on some point. Using the same condition, Cingolani et al. [9] treated (3) with the case where
both the vector and the scalar potential have some symmetries, and they established the regularity
and some decay asymptotically at infinity of the ground states to problem (3). In [28], Moroz and
Van Schaftingen eliminated this restriction and in the optimal range of parameters they derived the
regularity, positivity, and radial symmetry of the ground states, and also gave decay asymptotically at
infinity for them.

When the potential V(x) is continuous and bounded below in�N, Alves and Yang [13] studied
the multiplicity and concentration behavior of positive solutions for quasilinear Choquard equation
involving p-Laplacian:

− εpΔpu + V(x)|u|p−2u = εμ−N

⎛⎜⎜⎜⎜⎜⎝
∫
�N

Q(y)F(u(y))∣∣∣x− y
∣∣∣μ dy

⎞⎟⎟⎟⎟⎟⎠Q(x) f (u), x ∈ �N (4)

where N ≥ 3, 0 < μ < N, V, and Q are two continuous real functions in�N, ε is a positive parameter and
F(t) be the primate function of f (t), and Δp = div(

∣∣∣∇u
∣∣∣p−2∇u) is p-Laplacian operator, 1 < p < N In [1],

suppose that the potential V and the nonlinearity f satisfy suitable assumption, Sun considered the case
ε = 1 and Q = 1, and proved the existence of solutions in the level of mountain pass for problem (4).
Further, Alves et al. [29] considered a class of generalized Choquard equation with the nonlinearities
involving N-functions, and they obtained the existence of solutions for the given Choquard equation
involving the ΔΦ-Laplacian operator, where ΔΦ = div(φ(

∣∣∣∇u
∣∣∣)∇u) and Φ :�→� is a N-function.

Other related results about Choquard equation involving p-Laplacian can be found in [25,30–36] and
the references therein.

In 2003, Küpper et al. [37] studied the existence of positive solutions and the bifurcation point for
the following Choquard equation

− Δu + u =

⎛⎜⎜⎜⎜⎜⎜⎝
∫
�3

∣∣∣u(y)
∣∣∣2∣∣∣x− y
∣∣∣ dy

⎞⎟⎟⎟⎟⎟⎟⎠u + λg(x), x ∈ �3 (5)

where g(x) ∈ H−1(�3), g(x) ≥ 0, g(x) ≡ 0. They proved that there exist positive constants λ∗ and λ∗∗
such that problem (5) has at least two positive solutions for λ ∈ (0,λ∗), and no positive solution for
λ > λ∗∗ Furthermore, they showed that λ∗ = λ∗∗ is a bifurcation point of problem (5).

Very recently, Xie et al. [23] showed the following nonhomogeneous Choquard equation

− Δu + V(x)u =

⎛⎜⎜⎜⎜⎜⎝
∫
�N

∣∣∣u(y)
∣∣∣q∣∣∣x− y
∣∣∣μ dy

⎞⎟⎟⎟⎟⎟⎠|u|q−2u + g(x), x ∈ �N

had two nontrivial solutions if 2− μ/N < q < (2N − μ)/(N − 2) satisfies the following compactness
condition:

(A1) V ∈ C(�N,�+) is coercive, i.e., lim|x|→+∞V(x) = +∞.
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In [24], Zhang, Xu and Zhang also investigated the bound and ground states for nonhomogeneous
Choquard equation under the following assumption.

(A2) V ∈ C(�N,�+), inf�N V > 0, and there exists a positive constant r such that, for any M > 0,
meas

{
x ∈ �N :

∣∣∣x− y
∣∣∣≤ r , V(x) ≤M

}→ 0 as
∣∣∣y∣∣∣→ +∞ , where meas stands for the Lebesgue measure.

In [38], Shen, Gao and Yang considered a class of critical nonhomogeneous Choquard equation

− Δu =

⎛⎜⎜⎜⎜⎜⎝
∫
�N

∣∣∣u(y)
∣∣∣q∗∣∣∣x− y
∣∣∣μ dy

⎞⎟⎟⎟⎟⎟⎠|u|q∗−2u + λu + g(x), x ∈ Ω

where Ω is a smooth bounded domain of �N, 0 in interior of Ω, λ ∈ �, 0 < μ < N, N ≥ 7,
q∗ = (2N − μ)/(N − 2) is the upper critical exponent. By applying variational methods, they obtain
the existence of multiple solutions for the above problem when λ ∈ (0,λ1), where λ1 is the first
eigenvalue of −Δ. Other related results about non-homogeneous Choquard equation can be found
in [1,29,33,39–43] and the references therein.

Our work is motivated by the above work [23,37,41,44] where authors used the structure of
associated Nehari manifold to obtain the multiplicity of solutions for the studied problems. Concerning
the nonhomogeneous problem, Wang [41] dealt with the problem (1) in the case p = 2, V ≡ 1 and
obtained the multiple solutions of problem (1). In this paper, we investigate the nonhomogeneous
problem (1) in case of 2 ≤ p < N and extend the results in the literatures [23,24,41,44]. The used
approach of our paper comes from the literatures [23,24,41]. However, owe to dealing with p-Laplacian
and nonlocal terms the calculation of our problem will be more complicated.

Before giving our main results, we need the following function spaces. W1,p(�N) is the usual
Sobolev space with norm

||u||p1 =

∫
�N

(
∣∣∣∇u

∣∣∣p + |u| p)dx

and Lr(�N), for 1 ≤ r ≤ ∞ denotes the Lebesgue space with the norm

||u||r =
(∫
�N
|u|

r
dx

)1/r

, if 1 ≤ r < ∞

In what follows, we consider the following Banach space

EV =

{
u ∈W1,p(�N) :

∫
�N

V(x)|u|pdx < +∞
}

endowed with the inner product and norm

〈u, v〉 =
∫
�N
|∇u|p−2∇u∇vdx +

∫
�N
|u|

p−2
uvdx,‖u‖p =

∫
�N

(|∇u|
p
+ V(x)|u|pdx

Throughout this paper, we assume the following condition on the function V.
(A0) V ∈ C(�N,�), infx∈�N V(x) > 0 and there exists a constant M > 0 such that

meas
{
x ∈ �N : V(x) ≤M

}
< ∞, where meas is the Lebesgue measure.

Now we recall the well-known embedding results in [45] (Lemma 2.1).

Lemma 1. The following statements hold.
(i) There exists a continuous embedding from W1,p(�N) into Lr(�N) for any r ∈ [p, p∗).
(ii) Under the condition (A0) on V, the embedding from EV into Lr(�N) is compact for any r ∈ [p, p∗).

Denote Sr be the best constant of the embedding from EV into Lr(�N) as

|u|r ≤ Sr‖u‖, ∀u ∈ EV
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To obtain our result, we make the following assumption on perturbation term g:

(G). The perturbation function g ∈ L
2Nq

2N(q−1)+μ (�N), g is nonzero, and there is a positive constant

α = α(N, p, q,μ, S 2Nq
2N−μ

), such that

∣∣∣∣∣∣g
∣∣∣∣∣∣ 2Nq

2N(q−1)+μ
< α .

Obviously, if g = 0, then we always get a solution for problem (1) that is the trivial solution. Now,
the main result of this article reads as follows.

Theorem 1. Suppose (A0), g ≡ 0 , and (G) hold. Then problem (1) admits two weak solutions. One of which is
a local minimum solution with the ground state energy, and another is bound state solution. In additional, if
g ≥ 0 then the two weak solutions are nonnegative.

This paper is organized as follows. In Section 2, we introduce the variational setting for problem
(1) and give some related preliminaries. In Section 3, we study the Palais-Smale sequences and the
minimization problems. Finally, we give the proof of Theorem 1 in Section 4.

2. Variational Setting and Fibering Map Analysis

This section is devoted to stating the variational setting and giving some lemmas which
will be used as tools to prove our main results. The key inequality is the following classical
Hardy-Littlewood-Sobolev inequality [3].

Lemma 2. (Hardy-Littlewood-Sobolev inequality [3]). Let t, s > 1 , and 0 < μ < N with μ/N + 1/s+ 1/t = 2
, f ∈ Lt(RN) and g ∈ Ls(RN). Then there exists a constant C(N, t,μ, s) independent of f , g such that∫

�N

∫
�N

f (x)g(y)∣∣∣x− y
∣∣∣μ dxdy ≤ C(N, t,μ, s)

∣∣∣ f ∣∣∣Lt ·
∣∣∣g∣∣∣Ls

By the Hardy-Littlewood-Sobolev inequality we have that

∫
�N

∫
�N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣μ dxdy

is well defined if
∣∣∣u∣∣∣q ∈ Lt(RN) for some t > 1 satisfying

μ

N
+

2
t
= 2

For we will be working in the space W1,p(�N), by Sobolev embedding theorem we obtain that
qt ∈ [p, p∗], where p∗ = Np/(N − p); that is

p
2
(2− μ

N
) ≤ q ≤ p∗

2
(2− μ

N
) =

p
2

(
2N − μ
N − p

)

Define

ql :=
p
2
(2− μ

N
), and qu :=

p
2

(
2N − μ
N − p

)
Therefore, ql and qu are called as lower and upper critical exponents in the sense of the

Hardy-Littlewood-Sobolev inequality. We constrain our discussion only when q ∈ (ql, qu) We define
the energy functional corresponding to problem (1) as

I(u) =
1
p

∫
�N

(|∇u|p + V(x)|u|
p
)dx− 1

2q

∫
�N

∫
�N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣μ dxdy−
∫
�N

g(x)udx, u ∈ EV

64



Mathematics 2019, 7, 871

By the condition (G), Hardy-Littlewood-Sobolev inequality and Sobolev inequality, we have

∫
�N

∫
�N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣μ dxdy ≤ C(N,μ)
∣∣∣uq

∣∣∣22Nq
2N−μ
≤ C(N,μ)S2q

2Nq
2N−μ
‖u‖2q (6)

and ∫
�N

g(x)udx ≤
∣∣∣g∣∣∣ 2Nq

2N(q−1)+μ
|u| 2Nq

2N−μ
≤

∣∣∣g∣∣∣ 2Nq
2N(q−1)+μ

S 2Nq
2N−μ
‖u‖ (7)

for any uq ∈ Lr(�N), r > 1,μ ∈ (0, N) and ql ≤ q ≤ qu, g ∈ L
2Nq

2N(q−1)+μ (�N). Therefore, one knows that I is
well defined and I(u) ∈ C2(EV,�) and its critical points are weak solutions of problem (1). Moreover,

〈I′(u), v〉 =
∫
�N

(|∇u|p−2∇u∇v + V(x)|u|p−2uv)dx

−
∫
�N

∫
�N

∣∣∣u(y)
∣∣∣q∣∣∣u(x)∣∣∣q−2u(x)v(x)∣∣∣x− y

∣∣∣μ dxdy−
∫
�N

g(x)vdx

for all v ∈ EV. Thus, we will constrain our functional I on the Nehari manifold

Λ = {u ∈ EV :
〈
I′(u), u

〉
= 0

}
Clearly, every nontrivial weak solution of problem (1) belongs to Λ. Denote Ψ(u) =

〈
I′(u), u

〉
, so

we can see that

〈I′(u), u〉 = ‖u‖p −
∫
�N

∫
�N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣μ dxdy−
∫
�N

g(x)u(x)dx

and

〈Ψ′(u), u〉 = p‖u‖p − 2q
∫
�N

∫
�N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣μ dxdy−
∫
�N

g(x)u(x)dx

Notice that, if u0 is a local minimum solution of the functional I, one has

〈
I′(u0), u0

〉
= 0,

〈
Ψ′(u0) , u0

〉
≥ 0

Thus, we can subdivide the Nehari manifold Λ into three parts as follows:

Λ+ =
{
u ∈ Λ :

〈
Ψ′(u), u

〉
> 0

}
Λ− =

{
u ∈ Λ :

〈
Ψ′(u), u

〉
< 0

}
Λ0 =

{
u ∈ Λ :

〈
Ψ′(u), u

〉
= 0

}
Clearly, only Λ0 contains the element 0. It is easy to see that Λ0 ∪Λ+ and Λ0 ∪Λ− are closed

subsets of EV . In the due course of this paper, we will subsequently give reason to divide the set Λ into
above three subsets.

For the convenience of calculations, for u ∈ EV, we denote

A := A(u) =
∫
�N

(|∇u|p−1∇u + V(x)|u|p−1u)dx = ‖u‖p

B := B(u) =
∫
�N

∫
�N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣μ dxdy
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C := C(u) =
∫
�N

g(x)udx

For u ∈ EV, we define the fibering map ϕ : (0,+∞)→� as

ϕ(t) := I(tu) =
A
p

tp − B
2q

t2q −Ct, t > 0 (8)

From (8) we have

ϕ′(t) = 1
t
〈I′(tu), tu〉 = Ψ(tu)

t
= Atp−1 − Bt2q−1 −C (9)

which implies that u ∈ Λ if and only if ϕ′(1) = 0. It is easy to see that tu ∈ Λ with t > 0 if and only if
ϕ′(t) = 0, i.e., Λ =

{
u ∈ EV : ϕ′(t) = 0

}
. Moreover,

ϕ′′ (t) =
〈
Ψ′(tu), tu

〉−Ψ(tu)
t2 = (p− 1)Atp−2 − (2q− 1)Bt2q−2 (10)

which implies that for u ∈ Λ,
〈
Ψ′(tu), tu

〉
> 0 or < 0 if and only if ϕ′′ (t) > 0 or < 0, respectively. That is

to say, from the sign of ϕ′′ (t) the stationary points of ϕ(t) can be divided into three types, namely local
minimum, local maximum, and turning point. Thus, Λ± and Λ0 can also be written as

Λ± =
{
tu ∈ Λ : ϕ′′ (t) > 0 or < 0}, and Λ0 =

{
u ∈ Λ : ϕ′′ (t) = 0

}

Lemma 3. Assume that g ≡ 0 and satisfies (G). Then for any u ∈ EV\{0}, there exists a unique t1 = t1(u) > 0
such that t1u ∈ Λ−. In particular,

t1 >

[
(p− 1)A
(2q− 1)B

]1/(2q−p)

:= t0

and I(t1u) = maxt≥0I(tu) for
∫
�N gudx ≤ 0.

Moreover, if
∫
�N gudx > 0, then there exist unique 0 < t2 = t2(u) < t3 = t3(u) such that t2u ∈ Λ+.

In particular, I(t3u) = maxt≥t2 I(tu), I(t2u) = min
0≤t≤t3

I(tu).

Proof. Set k(t) = Atp−1 − Bt2q−1, then ϕ′(t) = k(t) −C and k′(t) = ϕ′′ (t) Obviously, limt→0+k(t) = 0,
limt→+∞k(t) = −∞ and k(t) > 0 for t > 0 sufficiently small. Due to 2q > p, if k′(t0) = 0, then

t0 = (
(p−1)A
(2q−1)B )

1/(2q−p)
. Thus, we have k′(t) > 0 for t ∈ (0, t0), and k′(t) < 0 for t ∈ (t0,+∞).

In the case C =
∫
�N g(x)udx ≤ 0, there exists a unique t1 with t1 > t0 such that k(t1) =

∫
�N gudx

and k′(t1) < 0. Therefore,

〈
I′(t1u), t1u

〉
= At1

p − Bt1
2q −Ct1 = t1(At1

p−1 − Bt1
2q−1 −C) = t1(k(t1) −C) = 0

This implies t1u ∈ Λ. Moreover,

〈
Ψ′(t1u), t1u

〉
= Aptp

1 − 2Bqt2q
1 −Ct1 = (p− 1)Atp

1 − (2q− 1)Bt2q
1 = t2

1k′(t1) < 0

which implies that t1u ∈ Λ−, and I(t1u) = maxt≥0I(tu).
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In the case C =
∫
�N g(x)udx > 0, for any u ∈ E1, where E1 = {u ∈ EV : ‖u‖ = 1}. By the assumption

(G) and t̃0 = t̃0(u) = (
p−1

(2q−1)B̃(u)
)

1/(2q−p)
, we have

max
t≥0
ϕ′(t) ≥ ϕ′ (̃t0) = t̃p−1

0 − B̃̃t2q−1
0 − C̃

= [
p−1

(2q−1)B̃
]

p−1
2q−p − B̃[ p−1

(2q−1)B̃
]

2q−1
2q−p − C̃

= [
p−1

(2q−1)B̃
]

p−1
2q−p − B̃[ p−1

(2q−1)B̃
]

2q−p
2q−p

[
p−1

(2q−1)B̃
]

p−1
2q−p − C̃

= [
p−1

(2q−1)B̃
]

p−1
2q−p − p−1

2q−1 [
p−1

(2q−1)B̃
]

p−1
2q−p − C̃

≥ (p−1)
p−1
2q−p (2q−p)

(2q−1)
2q−1
2q−p B0

p−1
2q−p
−

∣∣∣g∣∣∣ 2Nq
2N(q−1)+μ

S 2Nq
2N−μ

≥ (α−
∣∣∣g∣∣∣ 2Nq

2N(q−1)+μ
)S 2Nq

2N−μ
> 0

(11)

where

B0 = sup
‖u‖=1

∫
�N

∫
�N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣μ dxdy, andα = α(N, p, q,μ, S 2Nq
2N−μ

) :=
(p− 1)

p−1
2q−p (2q− p)

(2q− 1)
2q−1
2q−p B0

p−1
2q−p S 2Nq

2N−μ

From (27), we have for u ∈ E1,

lim
t→0+

k(t) = 0 <
∫
�N

g(x)udx ≤
∣∣∣g∣∣∣ 2Nq

2N(q−1)+μ
S 2Nq

2N−μ
‖u‖ =

∣∣∣g∣∣∣ 2Nq
2N(q−1)+μ

S 2Nq
2N−μ
≤ k(̃t0)

Hence, there exist unique 0 < t2 = t2(u) < t̃0 < t3 = t3(u) such that

k(t2) =

∫
�N

g(x)udx = k(t3) and k′(t3) < 0 < k′(t2)

Consequently, t2u ∈ Λ+ and t3u ∈ Λ− It is easy to see that d
dt I(tu) = ϕ′(t) = 0 for t = t2 or t = t3,

andϕ′′ (t) > 0 for t ∈ (0, t̃0) andϕ′′ (t) < 0 for t ∈ (̃t0,+∞). Then I(t3u) = max
t≥t2

I(tu), I(t2u) = min
0≤t≤t3

I(tu).

This proof is completed. �

Lemma 4. For g ≡ 0, the condition (G) is satisfied, then Λ0 = {0}.

Proof. To prove Λ0 = {0}, we need to show that for any u ∈ EV\{0}, the fibering map ϕ(t) has no critical
point that is a turning point. For any u ∈ Λ−, set ũ = u(‖u‖)−1, then ũ ∈ E1. By the proof of Lemma 3,

k(t) has a unique global maximum point t0 = (
p−1

(2q−1)B(ũ) )
1/(2q−p)

, and

k(t0) =
(2q− p)
2q− 1

[
p− 1

(2q− 1)B(ũ)

] p−1
2q−p

:= k0

According to (8)–(10), we deduce that if 0 < C(ũ) < k0, the equation ϕ′(t) = 0 has exactly two
roots t1, t2 satisfying 0 < t1 < t0 < t2 and if C(ũ) ≤ 0, ϕ′(t) = 0 has only one point t3 such that t3 > t0.
Since ϕ′′ (t) = k′(t), we have ϕ′′ (t1) > 0, ϕ′′ (t2) < 0 and ϕ′′ (t3) < 0. Hence, if 0 < C(ũ) < k0, then
t1ũ ∈ Λ+, t2ũ ∈ Λ− and if C(ũ) ≤ 0, then t3ũ ∈ Λ−. This implies Λ± ∩ {

u ∈ EV : ũ ∈ E1, 0 < C(ũ) < k0
}
�

∅ and Λ−∩ {u ∈ EV : ũ ∈ E1, C(ũ) ≤ 0
}
� ∅. As a consequence, we infer that Λ± are nonempty. It is

easy to see that for any sign of C(ũ), critical point of the fibering map ϕ(t) is either a point of local
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maximum or local minimum which implies Λ0 = {0}. Therefore, it remains to show that k0 > C(ũ). By
the condition (G) and Lemma 3 we have

k0 −C(ũ) = k(t0) −C(ũ) = t
p−1
0 − B(ũ)t

2q−1
0 −C(ũ) > 0

This completes the proof. �

Lemma 5. Assume the condition (G) holds, then Λ− is closed.

Proof. Let cl(Λ−) denote the closure of Λ−. Due to cl(Λ−) ⊂ Λ− ∪ {0}, it is sufficient to prove that
0 � cl(Λ−) or equivalently the distance dist(u, Λ−) > 0. Set u ∈ Λ− and denote ũ = u(‖u‖)−1, then
ũ ∈ E1. Under the assumption (G) and the proof of Lemma 4, one has

C(ũ) < t̃p−1
0 − B(ũ)̃t2q−1

0 =

[
p− 1

(2q− 1)B(ũ)

] p−1
2q−p

− B(ũ)
[

p− 1
(2q− 1)B(ũ)

] 2q−1
2q−p

=
2q− p
2q− 1

·
[

p− 1
(2q− 1)B(ũ)

] p−1
2q−p

= k0

(12)
Moreover, we have that if C(ũ) ≤ 0 then ϕ′(t) = 0 has only one point t3 > t0 such that t3ũ ∈ Λ−.

Then we have t3ũ = u with
∣∣∣∣∣∣u∣∣∣∣∣∣= t3 > t0 . Also, if 0 < C(ũ) < k0, the equation ϕ′(t) = 0 has exactly

two roots t1, t2 with 0 < t1 < t0 < t2 such that t1ũ ∈ Λ+ and t2ũ ∈ Λ−. Hence, we have t2ũ = u and∣∣∣∣∣∣u∣∣∣∣∣∣= t2 > t0 . In a word, for any u ∈ Λ−, we get
∣∣∣∣∣∣u∣∣∣∣∣∣> t0 . By (7) we know that B(ũ) is bounded from

above. It follows from definition of t0 that

t0 =

[
p− 1

(2q− 1)B(ũ)

]1/(2q−p)

≥
⎡⎢⎢⎢⎢⎣ p− 1

(2q− 1)B̃0

⎤⎥⎥⎥⎥⎦
1/(2q−p)

:= τ (13)

where

B̃0 = sup
‖ũ‖=1

∫
�N

∫
�N

∣∣∣ũ(x)∣∣∣q∣∣∣ũ(y)
∣∣∣q∣∣∣x− y

∣∣∣μ dxdy

which implies that dist(u, Λ−) = infu∈Λ−
∣∣∣∣∣∣u∣∣∣∣∣∣≥ τ > 0 . Hence cl(Λ−) = Λ− and this proves the Lemma.

�

Lemma 6. Assume (A0) and (G) hold. Then the functional I(u) is coercive and bounded below on Λ Thus I(u)
is bounded below on Λ+ and Λ−.

Proof. Let u ∈ Λ, from
〈
I′(u), u

〉
= 0 and (7) we derive that

I(u) = 1
p

∫
�N (|∇u|p + V(x)|u|p)dx− 1

2q

∫
�N

∫
�N
|u(x)|q|u(y)|q
|x−y|μ dxdy− ∫

�N g(x)udx

= 1
p A(u) − 1

2q B(u) −C(u)
= ( 1

p − 1
2q )A(u) − (1− 1

2q )
∫
�N g(x)udx

≥ 2q−p
2pq ‖u‖p − 2q−1

2q

∣∣∣g∣∣∣ 2Nq
2N(q−1)+μ

S 2Nq
2N−μ
‖u‖

(14)

where S 2Nq
2N−μ

denotes the best constant of the embedding from EV into L
2Nq

2N−μ (�N). It is to see that I is

coercive and bounded below in the manifold Λ. This completes the proof. �

3. Minimization Problems and Palais-Smale Analysis

According to Lemma 6, we can define the following two minimization problems:

i− := infu∈Λ− I(u) (15)
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i+ := infu∈Λ+ I(u) (16)

Clearly, if the infimum of (15) and (16) are achieved, then we can show that they produce a weak
solution of our problem (1).

Lemma 7. If u is a local minimizers of I on Λ+ and Λ− respectively, then I′(u) = 0.

Proof. If u is a local minimizers of I on Λ±, then ∇(I
∣∣∣N±)(u) = 0 . Using Theorem 4.1.1 of [46] we infer

that there exists Lagrangian multiplier λ ∈ � such that

〈
I′(u), u

〉
= λ

〈
Ψ(u), u

〉
Since u ∈ Λ±,

〈
I′(u), u

〉
= 0 and

〈
Ψ(u), u

〉
� 0. This implies λ = 0. Thus u is a nontrivial weak

solution of our problem (1). �

By Lemma 6 we know that the problem of investigating solutions of problem (1) can be translated
into that of studying minimizers of (15) and (16).

Lemma 8. Assume (A0) and (G) are satisfied. Then the functional I(u) satisfies (PS)c condition with c ∈ �.
That is, if {un} is a sequence in EV satisfying

I(un)→ c and I′(un)→ 0, as n→ +∞ (17)

for some c ∈ �, then {un} possesses a convergent subsequence.

Proof. If {un} be a sequence in EV satisfies (17), then similar to Lemma 6 we get that un is bounded in
EV . Since EV is reflexive Banach space, up to a subsequence, we may assume that un weakly converges
to u in EV. By using compact embedding of EV in Lr(�N) for r ∈ [p, p∗), un strongly converges to u in
Lr(�N). Since q ∈ (ql, qu) and p < 2Nq

2N−μ < p∗, it follows from Hardy-Littlewood-Sobolev inequality that

∫
�N

∫
�N

∣∣∣un(y)
∣∣∣q∣∣∣un(x)

∣∣∣q−2
un(x)[un(x) − u(x)]∣∣∣x− y

∣∣∣μ dxdy ≤ C(N,μ)|un|2q−1
2Nq

2N−μ
|un − u| 2Nq

2N−μ
→ 0

as n→∞ . Then, we also get

∫
�N

∫
�N

∣∣∣un(y)
∣∣∣q∣∣∣un(x)

∣∣∣q−2
un(x)[un(x) − u(x)]∣∣∣x− y

∣∣∣μ dxdy→ 0, n→∞

Thus
o(1) =

〈
I′(un) − I′(u), un − u

〉
= ||un − u||p − ∫

�N

∫
�N
|un(y)|q|un(x)|q−2un(x)[un(x)−u(x)]

|x−y|μ dxdy

+
∫
�N

∫
�N
|u(y)|q|u(x)|q−2u(x)[un(x)−u(x)]

|x−y|μ dxdy

=
∣∣∣∣∣∣un − u

∣∣∣∣∣∣p + o(1)

which implies that un → u in EV and consequently ends the proof. �

The following result is an observation regarding the minimizers of Λ+ and Λ−.

Lemma 9. Assume (A0) and (G) are satisfied. Then i+ < 0 and i− > 0.
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Proof. Let u ∈ Λ, by the proof of Lemma 4 we have that if 0 < C(ũ) < k0 corresponding to

ũ = u (
∣∣∣∣∣∣u∣∣∣∣∣∣)−1 ∈ E1, then ϕ′(t) = 0 has exactly two roots t1, t2 such that 0 < t1 < t0 < t2 and t1ũ ∈ Λ+

and t2ũ ∈ Λ−. Since ϕ′(t) = tp−1 − B(ũ)t2q−1 − C(ũ), we get that limt→0+ϕ
′(t) = −C(ũ) < 0 and

ϕ′′ (t) > 0 for any t ∈ (0, t0). Due to t1 is point of local minimum of ϕ(t) and t1 > 0, we have that
ϕ(t1) < limt→0+ϕ(t) = 0 and then i+ ≤ I(t1ũ) = ϕ(t1) < 0. Moreover i := infu∈ΛI(u) ≤ infu∈Λ+ I(u) =
i+ < 0.

Now we claim that i− > 0. In fact, from (7) we know that B ≤M0||u||2q, where M0 = C(N,μ)S2q
2Nq

2N−μ
.

This implies that there is a positive constant M1 which is independent of u such that

(
∣∣∣∣∣∣u∣∣∣∣∣∣p) 2q/(2q−p)

Bp/(2q−p)
=

A2q/(2q−p)

Bp/(2q−p)
≥M1 (18)

By the given assumption and (18) we discuss ϕ(t0) corresponding to u as

ϕ(t0) =
1
p

∣∣∣∣∣∣∣∣u∣∣∣∣∣∣∣∣ptp
0 − 1

2q Bt2q
0 −Ct0

= A
p

[
(p−1)A
(2q−1)B

]p/(2q−p)
− B

2q

[
(p−1)A
(2q−1)B

]2q/(2q−p)
−C

[
(p−1)A
(2q−1)B

]1/(2q−p)

=
(2q−p)(2q+p−1)

2pq(2q−1) · A2q/(2q−p)

Bp/(2q−p) −C
( p−1

2q−1

)1/(2q−p) · A1/(2q−p)

B1/(2q−p)

≥ (2q−p)(2q+p−1)
2pq(2q−1) · A2q/(2q−p)

Bp/(2q−p)

≥ (2q−p)(2q+p−1)
2pq(2q−1) ·M1 := M∗

where the positive constant M∗ is independent of u. Hence,

i− = infu∈Λ\{0}max
{
I(u)

} ≥ infu∈Λ\{0}ϕ(t0) ≥M∗ > 0.

This completes the proof. �

Now we study the nature of minimizing sequences for the functional I(u). Using the idea of [44]
to obtain a (PS)i+ sequence from the minimization sequence of our problem (1). The following lemma
is a consequence of Lemma 4.

Lemma 10. Assume (A0) and (G) hold. Then for u ∈ Λ+, there exists a constant ρ > 0 and a differentiable
function η+ : B(0,ρ)→�+ := (0,+∞) such that η+(0) = 1, η+(w)(u−w) ∈ Λ+, and

〈(η+)′(0), w〉 = M∗[p
∫
�N (|∇u|p−2∇u∇w + V(x)|u|p−2uw)dx

−2q
∫
�N

∫
�N
|u(y)|q|u(x)|q−2u(x)w(x)

|x−y|μ dxdy− ∫
�N gwdx]

(19)

for any w ∈ B(0,ρ), where B(0,ρ) denotes the ball centered at 0 with radius ρ, and M∗ =

[(p− 1)‖u‖p − (2q− 1)B(u)]−1.

Proof. Fixing a function u ∈ Λ+, we define a C1 mapping Φ :�× EV →� as follows

Φ(t, w) = tp−1‖u−w‖p − t2q−1
∫
�N

∫
�N

∣∣∣(u−w)(y)
∣∣∣q∣∣∣(u−w)(x)

∣∣∣q∣∣∣x− y
∣∣∣μ dxdy−

∫
�N

g(x)(u−w)dx

Notice that Φ(1, 0) =
〈
I′(u), u

〉
= 0. Moreover

Φ(t, 0) = Atp−1 − t2q−1B−C = ϕ′(t)
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where ϕ is the fibering map defined in (8). Since u ∈ Λ+, we have ϕ′′ (1) > 0, and then so
Φt(1, 0) = ϕ′′ (1) � 0. By Applying the implicit function theorem at point (1,0), we get that there is
ρ = ρ(u) > 0 and a differentiable function η+ : B(0,ρ)→�+ such that η+(0) = 1, η+(w)(u−w) ∈ Λ
for any w ∈ B(0,ρ), and

〈(η+)′(0), w〉 = −
〈
Φw(1, 0), w

〉
Φt(1, 0)

Now we only show that η+(w)(u−w) ∈ Λ+ for any w ∈ B(0,ρ). In fact, from Lemma 5 it follows
that Λ− ∪Λ0 is closed, then the distance dist(u, Λ− ∪Λ0) > 0. Since the function η+(w)(u − w) is
continuous with respect to w, taking ρ = ρ(u) > 0 sufficiently small, such that

||η+(w)(u−w) − u|| < 1
4

dist(u, Λ− ∪Λ0),∀w ∈ B(0,ρ)

Then η+(w)(u −w) does not belong to Λ− ∪Λ0. Thus η+(w)(u −w) ∈ Λ+. Finally, (19) can be
obtained by direct differentiating Φ(w, η+(w)) = 0 with respect to w.

This completes the proof. �

To derive a sequence (PS)i− from the minimizing sequence of our problem (1), similar to Lemma
10 we can obtain the following proposition.

Proposition 1. If (A0) and (G) are satisfied. Then for u ∈ Λ−, there exists a constant ρ > 0 and a differentiable
function η− : B(0,ρ)→�+ such that η−(0) = 1, η−(w)(u−w) ∈ Λ−, and

〈(η−)′(0), w〉 = M∗[p
∫
�N (|∇u|p−2∇u∇w + V(x)|u|p−2uw)dx

−2q
∫
�N

∫
�N
|u(y)|q|u(x)|q−2u(x)w(x)

|x−y|μ dxdy− ∫
�N gwdx]

for any w ∈ B(0,ρ), and M∗ = [(p− 1)‖u‖p − (2q− 1)B(u)]−1.

Lemma 11. If (A0) and (G) are satisfied. There exists a positive constant M such that

− (2q− p)(p− 1)
2pq

θ
p

p−1 ≤ i = infu∈ΛI(u) ≤ − (2pq− 2q− p)(2q− p)
4pq2 ·M (20)

where θ =
2q−1
2q−p

∣∣∣g∣∣∣ 2Nq
2N(q−1)

S 2Nq
2N−μ

Proof. For any u ∈ Λ, According to (13) one has

I(u) ≥ 2q− p
2pq

‖u‖p − 2q− 1
2q

∣∣∣g∣∣∣ 2Nq
2N(q−1)+μ

S 2Nq
2N−μ
‖u‖≥ − (2q− p)(p− 1)

2pq
θ

p
p−1

Thus,

i ≥ − (2q− p)(p− 1)
2pq

θ
p

p−1

On the other hand, set u0 ∈ Λ be the unique solution of the following equation

−Δpu + V(x)
∣∣∣u∣∣∣p−1u = g(x), ∀x ∈ �N
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Due to g � 0,
∫
�N g(x)u0dx = ||u0||p > 0. Then by Lemma 4, there exists t1 > 0 such that

t1u0 ∈ Λ+. Therefore,
I(t1u0) =

1−p
p ||u0||ptp

1 +
2q−1

2q t2q
1 B(u0)

<
1−p

p ||u0||ptp
1 +

p(2q−1)
4q2 tp

1||u0||p
= − (2pq−2q−p)(2q−p)

4pq2 tp
1||u0||p < 0

Choose M = tp
1

∣∣∣∣∣∣u0
∣∣∣∣∣∣p we obtain the result. �

Lemma 12. If (A0) and (G) are satisfied, then there exists a sequence {un} ⊂ Λ+ such that I(un)→ i+ and
I′(un)→ 0 as n→∞ .

Proof. From Lemma 6, we already show that I is bounded from below on Λ, and Λ+ ∪ {0} is closed in
Λ. Obviously Ekeland’s variational principle (see [44]) applies to the minimization problem (16). It
admits a minimizing sequence {un} ⊂ Λ+ such that

(i) I(un) < infu∈Λ+∪{0}
{
I(u)

}
+ 1

n , and
(ii) I(w) ≥ I(un) − 1

n

∣∣∣∣∣∣w− un
∣∣∣∣∣∣,∀w ∈ Λ+ ∪ {0}

Then by (i) we have

I(u) =
2q− p

p
||un||p − 2q− 1

2q

∫
�N

g(x)undx < i +
1
n

(21)

for n large enough. This together with Lemma 11 shows∫
�N

g(x)undx ≥ (2pq− 2q− p)(2q− p)
2pq(2q− 1)

M > 0 (22)

which implies un � 0 for any n. By Lemma 4, we know i ≤ infu∈Λ+ I(u) = i+ < 0. Notice that I(0) = 0,
then infu∈Λ+∪{0}

{
I(u)

}
= i+. Hence I(un)→ i+ as n→∞ , and we can assume that un ∈ Λ+. Then

||un||p = B(un) + C(un). Furthermore, we deduce from (13) and (i) that

i+ +
1
n
≥ I(un) ≥ 2q− p

2pq
||u||p − 2q− 1

2q

∣∣∣g∣∣∣ 2Nq
2N(q−1)+μ

S 2Nq
2N−μ
||u|| (23)

which implies that {un} is bounded. Now we claim that infn||un||≥ ξ > 0 for some constant ξ. In fact, if
not, by (23), I(un)→ 0 , as n→∞ . Using (23) which is a contradiction to first assertion. Therefore,
there exist positive constants ξ2 > ξ1 such that

ξ1 ≤ ||un|| ≤ ξ2 (24)

Now to finish the proof, we only need to show that I′(un)→ 0 , as n→∞ . By Lemma 10, for each
n, we get a differentiable function η+n : B(0, ε)→�+ for ε > 0 as follows

η+n (δ) := η+n (δhn),−ε < δ < ε

where hn =
I′(un)

||I′(un)|| . According to Lemma 10, we get η+n (0) = 1, and

wδ := η+n (δ)[un − δhn] ∈ Λ+

By Taylor’s expansion and (ii), since wδ ∈ Λ+ we have

1
n

∣∣∣∣∣∣wδ − un
∣∣∣∣∣∣≥ I(un) − I(wδ)

= (1− η+n (δ))
〈
I′(wδ), un

〉
+ δη+n (δ)

〈
I′(wδ), hn

〉
+ o(

∣∣∣∣∣∣wδ − un
∣∣∣∣∣∣)
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which implies

(
1
n
+ o(1))||wδ − un|| ≥ (1− η+n (δ))〈I′(wδ), un〉+ δη+n (δ)〈I′(wδ), hn〉 (25)

Dividing (25) by δ for δ � 0 and passing to the limit as δ→ 0 , we obtain

(
1
n
+ o(1))(1 +

∣∣∣(η+n )′(0)∣∣∣||un||) ≥ −(η+n )′(0)〈I′(un), un〉+ ||I′(un)|| (26)

Since un ∈ Λ+, it follows from (26) that

||I′(un)|| ≤ (
1
n
+ o(1))(1 +

∣∣∣(η+n )′(0)∣∣∣ · ||un||) (27)

From (24) we know that un is bounded. Then it remains to prove that
∣∣∣(η+n )′(0)∣∣∣ is uniformly

bounded with respect to n. In fact, according to the definition of η+n and Lemma 5, we have

〈(η+n )′(0), hn〉 = 1
(p−1)||un||p−(2q−1)B(un)

[p
∫
�N (|∇un|p−2∇un∇hn + V(x)|un|p−2unhn)dx

−2q
∫
�N

∫
�N
|un(y)|q|un(x)|q−2un(x)hn(x)

|x−y|μ dxdy− ∫
�N ghndx]

(28)

By the boundedness of un and (28), we say that there exists a constant λ such that

∣∣∣(η+n )′(0)∣∣∣ = ∣∣∣∣〈(η+n )′(0), hn
〉∣∣∣∣ ≤ λ

(p− 1)
∣∣∣∣∣∣un

∣∣∣∣∣∣p − (2q− 1)B(un)

Therefore, it remains to show that χ(un) := (p− 1)
∣∣∣∣∣∣un

∣∣∣∣∣∣p − (2q− 1)B(un) possesses a positive
lower bound.

To prove the existence of positive lower bound of χ(un), passing to a subsequence, we assume

χ(un) = (p− 1)‖un‖p − (2q− 1)B(un) = o(1),n→∞ (29)

Since un ∈ Λ+, we obtain
‖un‖p − B(un) = C(un)

This along with (29) gives

C(un) =
2q− p
2q− 1

‖un‖p + o(1) (30)

It follows from the condition (G) that there is a sufficiently small μ > 0 such that
∣∣∣g∣∣∣ 2Nq

2N(q−1)+μ
≤

(1− μ)α. Similarly to the proof of (12), we have

C(u) <
2q− p
2q− 1

(1− μ)
(

p− 1
(2q− 1)B(u)

) p−1
2q−p

(31)

for any u ∈ E1. Therefore, by the principle of homogeneity,

2q− p
2q− 1

+
o(1)
‖un‖p =

C(un)

‖un‖p <
2q− p
2q− 1

(1− τ)
(
(p− 1)‖un‖p
(2q− 1)B(un)

) p−1
2q−p

(32)

If ‖un‖ → 0 , then similar to (7) one has C(un)→ 0 . Therefore

i+ + on(1) = I(un) − 1
2q
〈I′(un), un〉 = 2q− p

2pq
‖un‖p − 2q− 1

2q
C(un)→ 0
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which is a contradiction with i+ < 0. Thus ‖un‖ → 0, as n→∞ . Consequently, from (30)–(32) we can
deduce that

2q− p
2q− 1

≤ 2q− p
2q− 1

(1− μ),n→∞

which is a contradiction. Therefore, we conclude that I′(un)→ 0, as n→∞ . The proof is completed.
�

Proposition 2. Under assumptions (A0) and (G), there exists a sequence {ûn} ⊂ Λ− such that I(ûn)→ i−
and I′(ûn)→ 0 as n→∞ .

Proof. By Lemma 5 we know that Λ− is closed. Thus, by Ekeland’s variational principle on Λ− we get
a sequence {ûn} ⊂ Λ− such that

(iii) I(ûn) < infu∈Λ−
{
I(u)

}
+ 1

n , and (iv) I(w) ≥ I(ûn) − 1
n

∣∣∣∣∣∣w− ûn
∣∣∣∣∣∣,∀w ∈ Λ− .

From (24) we know that ûn is bounded. By coercivity of I, {ûn} forms a bounded sequence in Λ.
Moreover, from Lemma 5 we know that infu∈Λ−

∣∣∣∣∣∣u∣∣∣∣∣∣≥ τ > 0 , which implies that Λ− stays away from
the origin. Then using Proposition 1 and following the proof of Lemma 12 we conclude the result. �

4. The Proof of Theorem 1

In this section, we show that the minimums are achieved for i+ and i−, and also give the proof of
Theorem 1.

Proposition 3. Assume g � 0, (A0) and (G) are satisfied. Then i can be achieved at point u∗ ∈ Λ, which is a
weak solution of problem (1). Moreover, u∗ ∈ Λ+ and u∗ is a local minimum for I on EV.

Proof. By Lemma 8, there exists a sequence {un} ⊂ Λ such that I(un)→ i and I′(un)→ 0 as n→∞ .
Set u∗ be the weak limit of the sequence {un} on EV, then un ∈ Λ satisfies (22) we get∫

�N
g(x)u∗(x)dx > 0 (33)

On the other hand, I′(un)→ 0 as n→∞ implies that

〈
I′(u∗), v

〉
= 0, for every v ∈ Λ

i.e., u∗ is a weak solution of problem (1). In particular, u∗ ∈ Λ, and

i ≤ I(u∗) ≤ lim
n→+∞inf{I(un)} = i

This implies that u∗ is the minimum of I over EV.
For u∗ ∈ Λ be such that i = I(u∗), using Lemma 9 we have I(u∗) < 0. Then we get u∗ � 0. Therefore

u∗ is a nontrivial weak solution of problem (1). Since (33) holds, applying Lemma 4 we see that there
exist t1, t2 > 0 such that u1 := t1u∗ ∈ Λ+ and t2u∗ ∈ Λ−. We claim that t1 = 1 i.e., u∗ ∈ Λ+. If t1 < 1,
then t2 = 1 which means u∗ ∈ Λ−. Now I(t1u∗) ≤ I(u∗) = i < 0 which is a contradiction with t1u∗ ∈ Λ+.

Next we will prove that u∗ is also a local minimum of I on EV. Obviously, for any u ∈ Λ with
C(u) > 0 we can deduce that

I(̃t2u) ≤ I(̃tu) for any t̃ ∈ (0, t0)

where t0 = (
(p−1)A
(2q−1)B )

1/(2q−p)
, t̃2 is corresponding to u. Moreover, if u = u∗ then

t̃2 = 1 < t̂0 =

[
(p− 1)A(u∗)
(2q− 1)B(u∗)

]1/(2q−p)

74



Mathematics 2019, 7, 871

Taking ρ > 0 small enough so that

1 < t̂w =

[
(p− 1)A(u∗ −w)

(2q− 1)B(u∗ −w)

]1/(2q−p)∣∣∣∣∣∣w∣∣∣∣∣∣< ρ (34)

Thus, it follows from Lemma 10 that there exists a differentiable map η+ : B(0,ρ) →�+ such
that η+(w)(u∗ −w) ∈ Λ+ for

∣∣∣∣∣∣w∣∣∣∣∣∣< ρ small. Then for any t̃ ∈ (0, t̂w) we have

I(̃t(u∗ −w)) ≥ I(η+(w)(u∗ −w)) ≥ I(u∗) (35)

Since (34) holds, taking t̃ = 1 in (35) we get I(u∗) ≤ I(u∗ −w) for
∣∣∣∣∣∣w∣∣∣∣∣∣< ρ , which implies that u∗ is

a local minimum of I on EV. The proof is completed. �

Proof of Theorem 1. Firstly, we deal with the minimization problem (16). According to Proposition
3, we only need to show that there exist a nonnegative solution on Λ+ if g ≥ 0. Assume g ≥ 0, from
the proof of Lemma 3, it is easy to see that B(u∗) = B(

∣∣∣u∗∣∣∣) and C(u∗) ≤ C(
∣∣∣u∗∣∣∣) . Moreover, it follows

from the proof of Lemma 4 that there exists t1 > 0 such that t1
∣∣∣u∗∣∣∣∈ Λ+ and t1|u∗|> 0 . If ϕu(t) denotes

the fibering map corresponding to u ∈ EV as introduced in Section 2, we have ϕ′|u∗|(1) ≤ ϕ′u∗(1) = 0.
Since t1 is the point of local minimum of ϕ|u∗|(t) for t ∈ (0, t0(

∣∣∣u∗∣∣∣)) , where

t0(|u∗|) =
⎡⎢⎢⎢⎢⎣ (p− 1)A(

∣∣∣u∗∣∣∣)
(2q− 1)B(

∣∣∣u∗∣∣∣)
⎤⎥⎥⎥⎥⎦

1/(2q−p)

and t1 ≥ 1. Consequently, we have that I(t1
∣∣∣u∗∣∣∣) ≤ I(

∣∣∣u∗∣∣∣) . Then

i+ ≤ I(t1
∣∣∣u∗∣∣∣) ≤ I(

∣∣∣u∗∣∣∣) ≤ I(u∗) = i+

This means that t1|u∗| solves the minimization problem (16). Therefore, we find a nonnegative
solution for problem (1) using the maximum principle.

Now we show that the infimum i− is achieved and the minimizer is second weak solution of
problem (1). Consider the minimization problem (15). From Proposition 2, we know that there exists a
sequence {ûn} ⊂ Λ− such that I(ûn)→ i− and I′(ûn)→ 0 as n→∞ . By Lemma 4, we get that there
exists ũ∗ ∈ cl(Λ−) = Λ− such that I(ũ∗) = i−, I′(ũ∗) = 0. Therefore, Lemma 7 implies that ũ∗ is a weak
solution of problem (1). In addition, if g ≥ 0, it follows from the proof of Lemma 4 and Proposition 1
that there exists t2 > 0 such that t2

∣∣∣ũ∗∣∣∣∈ Λ− . Let

t0(|ũ∗|) =
⎡⎢⎢⎢⎢⎣ (p− 1)A(

∣∣∣ũ∗∣∣∣)
(2q− 1)B(

∣∣∣ũ∗∣∣∣)
⎤⎥⎥⎥⎥⎦

1/(2q−p)

then since ũ∗ ∈ Λ−, taking account of the graph of the fibering map corresponding to ũ∗ we can
deduce that

i− ≤ I(t2
∣∣∣ũ∗∣∣∣) ≤ I(t2ũ∗) ≤ maxt≥t0(|ũ∗|)

{
I(t2ũ∗)

}
= I(ũ∗) = i−

This means that t2
∣∣∣ũ∗∣∣∣ solves the minimization problem (15) and then we know that it is a

nonnegative weak solution of problem (1) using the maximum principle again. Due to Λ+ ∩Λ− = ∅

and Lemma 9 shows that i+ < i−, then u∗ � ũ∗. This ends the proof. �

5. Conclusions

In this work, we study a class of nonhomogeneous Choquard equations with perturbation
involving p-Laplacian. We give sufficient conditions of the existence of at least two nontrivial solutions
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for problems (1). Next it is worth investigating infinitely many solutions for nonhomogeneous
Choquard equations involving p-Laplacian.
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1. Introduction

Let (W, ρ) be a metric space. For each a ∈ W and any nonempty subset M of W, let

ρ(a, M) = inf
b∈M

ρ(a, b).

Denote by N (W), the family of all nonempty subsets of W, and by CB(W), the class of all
nonempty closed and bounded subsets of W. A functionH : CB(W)× CB(W)→ [0,+∞) defined by

H(C, D) = max

{
sup
a∈D

ρ(a, C), sup
a∈C

ρ(a, D)

}

is said to be the Hausdorff metric on CB(W) induced by the metric ρ on W. A point z in W is a
fixed point of a mapping T if z = Tz (when T : W → W is a single-valued mapping) or z ∈ Tz
(when T : W → N (W) is a multivalued mapping). The set of fixed points of T is denoted by F (T).

Fixed point theory is a fascinating mathematical theory that has a wide range of applications
in many areas of mathematics, including nonlinear analysis, optimization, variational inequality
problems, integral and differential equations and inclusions, critical point theory, nonsmooth analysis,
dynamic system theory, control theory, economics, game theory, finance mathematics and so on.
The famous Banach contraction principle [1] is undoubtedly one of the most important and applicable
fixed point theorems which has played a significant role in nonlinear analysis and applied mathematical
analysis. Many authors have devoted their attentions to study generalizations in various different
directions of the Banach contraction principle; see, e.g., [2–23] and references therein.
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Theorem 1. (Banach [1]) Let (W, ρ ) be a complete metric space and T:W→W be a selfmapping. Assume that
there exists a nonnegative number λ < 1 such that

ρ(Ta, Tb) ≤ λρ(a, b) for all a, b ∈ W.

Then T has a unique fixed point in W.

Nadler’s fixed point theorem [21] was established in 1969 to extend the Banach contraction
principle for multivalued mappings.

Theorem 2. (Nadler [21]) Let (W, ρ ) be a complete metric space and T : W → CB(W) be a multivalued
mapping. Suppose that there exists a nonnegative number λ < 1 such that

H(Ta, Tb) ≤ λρ(a, b) for all a, b ∈ W.

Then T has a fixed point in W.

Later, in 1989, Mizoguchi and Takahashi [20] presented a celebrated generalization of
Nadler’s fixed point theorem. In 2008, Suzuki gave an example [22] (Example 1) to show that
Mizoguchi-Takahashi’s fixed point theorem is a real generalization of Nadler’s fixed point theorem.

Theorem 3. (MizoguchiandTakahashi [20]) Let (W, ρ) be a complete metric space and T : W → CB(W) be
a multivalued mapping. Assume that

H(Ta, Tb) ≤ μ(ρ(a, b))ρ(a, b) for all a, b ∈ W,

where μ: [0,+∞) → [0, 1) is an MT -function; that is, μ satisfies lim sup
x→s+

μ(x) < 1 for all s ∈ [0,+∞).

Then T has a fixed point in W.

A number of generalizations of Mizoguchi-Takahashi’s fixed point theorem were studied;
see [2,4,8–13,15,16] and references therein. In 2016, Du and Hung [10] established the following
generalized Mizoguchi-Takahashi’s fixed point theorem.

Theorem 4. (Du and Hung [10]) Let (W, ρ) be a complete metric space, T : W → CB(W) be a multivalued
mapping and μ : [0,+∞)→ [0, 1) be anMT -function. Suppose that

min{H(Ta, Tb), ρ(a, Ta)} ≤ μ(ρ(a, b))ρ(a, b) for all a, b ∈ W with a �= b.

Then T admits a fixed point in W.

Theorem 4 is different from known generalizations in the existing literature and was illustrated
by [7] (Example A) in which Mizoguchi-Takahashi’s fixed point theorem is not applicable.

In this paper, we establish some new generalizations of Mizoguchi-Takahashi’s fixed point
theorem which also improve and extend Du-Hung’s fixed point theorem. Some new examples
illustrating our results are also given. By applying our new results, we obtained some new fixed point
theorems for essential distances and e0-metrics.

2. Preliminaries

Let (W, ρ) be a metric space. A real valued function f : W → R is called lower semicontinuous if
{x ∈ W : f (x) ≤ r} is closed for any r ∈ R. Recall that a function κ : W ×W → [0,+∞) is called a
w-distance [14,18], if the following are satisfied:
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(w1) κ(a, c) ≤ κ(a, b) + κ(b, c) for any a, b, c ∈ W;
(w2) For any a ∈ W, κ(a, ·) : W → [0,+∞) is lower semicontinuous;
(w3) For any ε > 0, there exists δ > 0 such that κ(c, a) ≤ δ and κ(c, b) ≤ δ imply ρ(a, b) ≤ ε.

A function κ : W ×W → [0,+∞) is said to be a τ-function [2,3,6,8,9,17,19], if the following
conditions hold:

(τ1) κ(a, c) ≤ κ(a, b) + κ(b, c) for any a, b, c ∈ W;
(τ2) If a ∈ W and {bn} in W with limn→∞ bn = b such that κ(a, bn) ≤ β for some β = β(a) > 0,

then κ(a, b) ≤ β;
(τ3) For any sequence {an} in W with lim supn→∞{κ(an, am) : m > n} = 0, if there exists a sequence

{bn} in X such that limn→∞ κ(an, bn) = 0, then limn→∞ ρ(an, bn) = 0;
(τ4) For a, b, c ∈ W, κ(a, b) = 0 and κ(a, c) = 0 imply b = c.

It is obvious that the metric ρ is a w-distance and any w-distance is a τ-function, but the converse
is not true; see [2,17] for more details.

The following result is useful in our proofs.

Lemma 1. (See [6] (Lemma 1.1).) If condition (τ4) is weakened to the following condition (τ4)′ :

(τ4)′ for any a ∈ W with κ(a, a) = 0, if κ(a, b) = 0 and κ(a, c) = 0, then b = c,

then (τ3) implies (τ4)′.

In 2016, Du [6] introduced the concept of essential distance; see also [8].

Definition 1. (See [6] (Definition 1.2).) Let (W, d) be a metric space. A function κ : W ×W → [0,+∞) is
called an essential distance (abbreviated as “e-distance") if conditions (τ1), (τ2) and (τ3) hold.

Remark 1.

(i) Clearly, any τ-function is an e-distance.
(ii) By Lemma 1, we know that if κ is an e-distance, then condition (τ4)′ holds.

The following known result is crucial in this paper.

Lemma 2. (See [3] (Lemma 2.1).) Let (W, ρ) be a metric space and κ : W ×W → [0,+∞) be a function.
Assume that κ satisfies the condition (τ3). If a sequence {an} in W with lim

n→∞
sup{κ(an, am) : m > n} = 0,

then {an} is a Cauchy sequence in W.

In 2016, Du introduced the concept ofMT (λ)-function [5] as follows (see also [7]).

Definition 2. Let λ > 0. A function τ : [0,+∞) → [0, λ) is said to be an MT (λ)-function
[5] if lim sup

x→γ+

τ(x) < λ for all γ ∈ [0,+∞). As usual, we simply write “MT -function” instead of

“MT (1)-function”.

A useful characterization theorem for MT (λ)-functions was established by Du [5] in 2016
as follows.

Theorem 5. (See [5] (Theorem 2.4).) Let λ > 0 and let τ : [0,+∞)→ [0, λ) be a function. Then the following
statements are equivalent.

(1) τ is anMT (λ)-function.
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(2) λ−1τ is anMT -function.

(3) For each γ ∈ [0,+∞), there exists ξ
(1)
t ∈ [0, λ) and ε

(1)
t > 0 such that τ(x) ≤ ξ

(1)
t for all x ∈

(γ, γ + ε
(1)
t ).

(4) For each γ ∈ [0,+∞), there exists ξ
(2)
t ∈ [0, λ) and ε

(2)
t > 0 such that τ(x) ≤ ξ

(2)
t for all x ∈

[γ, γ + ε
(2)
t ].

(5) For each γ ∈ [0,+∞), there exists ξ
(3)
t ∈ [0, λ) and ε

(3)
t > 0 such that τ(x) ≤ ξ

(3)
t for all x ∈

(γ, γ + ε
(3)
t ].

(6) For each γ ∈ [0,+∞), there exists ξ
(4)
t ∈ [0, λ) and ε

(4)
t > 0 such that τ(x) ≤ ξ

(4)
t for all x ∈

[γ, γ + ε
(4)
t ).

(7) For any nonincreasing sequence {βn}n∈N in [0,+∞), we have 0 ≤ sup
n∈N

τ(βn) < λ.

(8) For any strictly decreasing sequence {βn}n∈N in [0,+∞), we have 0 ≤ sup
n∈N

τ(βn) < λ.

(9) For any eventually nonincreasing sequence {βn}n∈N (i.e., there exists α ∈ N such that βn+1 ≤ βn for all
n ∈ N with n ≥ α) in [0,+∞), we have 0 ≤ sup

n∈N
τ(βn) < λ.

(10) For any eventually strictly decreasing sequence {βn}n∈N (i.e., there exists α ∈ N such that βn+1 < βn

for all n ∈ N with n ≥ α) in [0,+∞), we have 0 ≤ sup
n∈N

τ(βn) < λ.

Let κ be an e-distance on a metric space (W, ρ). For each a ∈ W and any nonempty subset G of W,
we define κ(a, G) by

κ(a, G) = inf
b∈G

κ(a, b).

The following Lemma is essentially proved in [2].

Lemma 3. (See [2] (Lemma 1.2).) Let G be a closed subset of a metric space (W, ρ) and κ be a function
satisfying the condition (τ3). Suppose that there exists c ∈ W such that κ(c, c) = 0. Then κ(c, G) = 0 if and
only if c ∈ G.

Very recently, Du introduced and studied the concept of e0-distance [9].

Definition 3. (See [9] (Definition 1.3).) Let (W, ρ) be a metric space. A function κ : W ×W → [0,+∞)

is called an e0-distance if it is an e-distance on W with κ(a, a) = 0 for all a ∈ W.

Remark 2. By applying Lemma 1, if κ is an e0-distance on W, then for a, b ∈ W, κ(a, b) = 0⇐⇒ a = b.

Example 1. Let W = R with the metric ρ(a, b) = |a− b|. Then (W, ρ) is a metric space. Define the function
κ : W ×W → [0,+∞) by

κ(x, y) = max{9(x− y), 5(y− x)}.

Therefore κ is not a metric due to its asymmetry. It is easy to see that κ is an e0-distance on W.

The following concept of e0-metric was studied by Du in [9] which generalizes the concept of
Hausdorff metric.

Definition 4. (See [9] (Definition 1.4).) Let (W, ρ) be a metric space and κ be an e0-distance. For any E,
F ∈ CB(W), define a function Dκ : CB(W)× CB(W)→ [0,+∞) by

Dκ(E, F) = max{ξκ(E, F), ξκ(F, E)},

where ξκ(E, F) = supx∈E κ(x, F), and then Dκ is said to be the e0-metric on CB(W) induced by κ.
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The following result presented in [9] (Theorem 1.3) is quite important in our proofs. Although its
proof is similar to the proof of [2] (Theorem 1.2), we give it here for the sake of completeness and the
readers convenience.

Theorem 6. (See [9] (Theorem 1.3).) Let (W, ρ) be a metric space and Dκ be an e0-metric defined as in
Definition 4 on CB(W) induced by an e0-distance κ. Then, for E, F, G ∈ CB(W), the following hold:

(i) ξκ(E, F) = 0⇐⇒ E ⊆ F;
(ii) ξκ(E, F) ≤ ξκ(E, G) + ξκ(G, F);

(iii) Every e0-metric Dκ is a metric on CB(W).

Proof. To see (i), if ξκ(E, F) = 0, then κ(a, F) = 0 for all a ∈ E. By Lemma 3, we get E ⊆ F. Conversely,
if E ⊆ F, by Lemma 3 again, we obtain ξκ(E, F) = 0 and (i) is proven. Fix a ∈ E and c ∈ G.
Then we have

κ(a, F) ≤ κ(a, b) ≤ κ(a, c) + κ(c, b) for all b ∈ F,

which deduces
κ(a, F) ≤ κ(a, c) + κ(c, F).

So, for any a ∈ E, we obtain

κ(a, F) ≤ inf{κ(a, c) + κ(c, F) : c ∈ G} ≤ κ(a, G) + ξκ(G, F).

Taking the supremum on both sides of the last inequality over all a ∈ E, we can obtain (ii). Finally,
we verify (iii). Obviously, Dκ(E, F) ≥ 0 and Dκ(E, F) = Dκ(F, E). By using (i), we have Dκ(E, F) = 0
⇐⇒ E = F. Applying (ii), we have

Dκ(E, F) = max{ξκ(E, F), ξκ(F, E)}
≤ max{ξκ(E, G) + ξκ(G, F), ξκ(F, G) + ξκ(G, E)}
≤ Dκ(E, G) +Dκ(G, F).

These arguments show that Dκ is a metric on CB(W).

Definition 5. Let U be a nonempty subset of a metric space (W, ρ) and κ be an e-distance on W. A multivalued
mapping T:U → N (W) is said to have the κ-approximate fixed point property in U provided inf

a∈U
κ(a, Ta) = 0.

In particular, if κ ≡ ρ, then T is said to have the approximate fixed point property in U.

Remark 3. Let U be a nonempty subset of a metric space (W, ρ) and T : U → N (W) be a multivalued
mapping. Clearly, F (T) ∩U �= ∅ implies that T has the approximate fixed point property in U.

3. Main Results

In this section, we first prove a new generalized Mizoguchi-Takahashi’s fixed point theorem with
a new nonlinear condition.

Theorem 7. Let (W, ρ) be a metric space and Dκ be an e0-metric on CB(W) induced by an e0-distance κ.
Let T : W → CB(W) be a multivalued mapping and ϕ : [0,+∞)→ [0, 1) be anMT -function. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx (1)

and
min{Dκ(Tu, Tv), κ(u, Tu)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v. (2)

Then, the following statements hold:
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(a) For any z0 ∈ W, there exists a Cauchy sequence {zn}∞
n=0 in W started at z0 satisfying zn ∈ Tzn−1 for

each n ∈ N and

lim
n→∞

κ(zn, zn−1) = lim
n→∞

κ(zn−1, zn) = inf
n∈N

κ(zn, zn−1) = inf
n∈N

κ(zn−1, zn) = 0;

(b) T has the κ-approximate fixed point property in W.

Moreover, if W is complete and T further satisfies one of the following conditions:

(D1) T is closed; that is, GrT = {(a, b) ∈ W ×W : b ∈ Ta}, the graph of T, is closed in W ×W;
(D2) The function f : W → R defined by f (a) = κ(a, Ta) is lower semicontinuous;
(D3) The function g : W → R defined by g(a) = ρ(a, Ta) is lower semicontinuous;
(D4) For each sequence {zn} in W with zn+1 ∈ Tzn, n ∈ N and limn→∞ zn = w, we have

limn→∞ κ(zn, Tw) = 0;
(D5) inf{κ(a, v) + κ(a, Ta) : a ∈ W} > 0 for every v /∈ F (T),

then T admits a fixed point in W.

Proof. Let τ : [0,+∞)→ [0, 1) be defined by

τ(x) =
1
2
(ϕ(x) + 1) for all x ∈ [0,+∞).

Hence 0 ≤ ϕ(x) < τ(x) < 1 for all x ∈ [0, ∞). Given b ∈ W. Take z0 = b ∈ W and choose
z1 ∈ Tz0. If z1 = z0, then z0 ∈ F (T) and we are done. Otherwise, if z1 �= z0, then κ(z1, z0) > 0 and we
obtain from (2) that

min{Dκ(Tz1, Tz0), κ(z1, Tz1)} ≤ ϕ(κ(z1, z0))κ(z1, z0) < τ(κ(z1, z0))κ(z1, z0). (3)

Since
κ(z1, Tz1) ≤ sup

w∈Tx0

κ(w, Tz1) ≤ Dκ(Tz0, Tz1) = Dκ(Tz1, Tz0),

we get
min{Dκ(Tz1, Tz0), κ(z1, Tz1)} = κ(z1, Tz1). (4)

Hence, by (3) and (4), we obtain

κ(z1, Tz1) < τ(κ(z1, z0))κ(z1, z0),

which deduces that there exists z2 ∈ Tz1 such that

κ(z1, z2) < τ(κ(z1, z0))κ(z1, z0).

Since z2 ∈ Tz1, by (1), we have

κ(z2, z1) < τ(κ(z1, z0))κ(z1, z0).

Next, if z2 = z1, then z1 ∈ F (T) and we finish the proof. Otherwise, since

κ(z2, Tz2) = min{Dκ(Tz2, Tz1), κ(z2, Tz2)} < τ(κ(z2, z1))κ(z2, z1),

there exists z3 ∈ Tz2 such that
κ(z2, z3) < τ(κ(z2, z1))κ(z2, z1).

By (1), we have
κ(z3, z2) < τ(κ(z2, z1))κ(z2, z1).
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So, by induction, we can obtain a sequence {zn}n∈N∪{0} in W satisfying the following: for each
n ∈ N,

(i) zn ∈ Tzn−1 with zn �= zn−1;
(ii) κ(zn, zn+1) < τ(κ(zn, zn−1))κ(zn, zn−1);

(iii) κ(zn+1, zn) < τ(κ(zn, zn−1))κ(zn, zn−1).

By (iii), the sequence {κ(zn, zn−1)}n∈N is strictly decreasing in [0,+∞). Hence

lim
n→∞

κ(zn, zn−1) = inf
n∈N

κ(zn, zn−1) exists. (5)

Since ϕ is anMT -function, by applying (8) of Theorem 5 with λ = 1, we obtain

0 ≤ sup
n∈N

ϕ(κ(zn, zn−1)) < 1.

So we get

0 < sup
n∈N

τ(κ(zn, zn−1)) =
1
2

[
1 + sup

n∈N
ϕ(κ(zn, zn−1))

]
< 1.

Put γ := sup
n∈N

τ(κ(zn, zn−1)). Thus γ ∈ (0, 1). For any n ∈ N, by (iii) again, we have

κ(zn+1, zn) < τ(κ(zn, zn−1))κ(zn, zn−1) ≤ γκ(zn, zn−1). (6)

By (6), we get

κ(zn+1, zn) < γκ(zn, zn−1) < · · · < γnκ(z1, z0) for each n ∈ N. (7)

Since 0 < γ < 1, by taking the limit as n → ∞ in (7), we obtain

lim
n→∞

κ(zn, zn−1) = 0. (8)

Taking into account (5) and (8), we obtain

lim
n→∞

κ(zn, zn−1) = inf
n∈N

κ(zn, zn−1) = 0.

On the other hand, from (ii) and using (1), we have

κ(zn, zn+1) < γκ(zn, zn−1) ≤ γκ(zn−1, zn) for each n ∈ N.

which shows that the sequence {κ(zn−1, zn)}n∈N is also strictly decreasing in [0,+∞), and hence, we
can deduce

κ(zn, zn+1) < γnκ(z0, z1) for each n ∈ N. (9)

So, by (9), we get
lim

n→∞
κ(zn−1, zn) = inf

n∈N
κ(zn−1, zn) = 0. (10)

Since zn ∈ Tzn−1 for all n ∈ N, by (10), we prove

inf
a∈W

κ(a, Ta) = inf
n∈N

κ(zn−1, zn) = 0;
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that is, T has the κ-approximate fixed point property in W. Next, we claim that {zn}n∈N∪{0} is a
Cauchy sequence in W. For m, n ∈ N with m > n, we have from (9) that

κ(zn, zm) ≤
m−1

∑
j=n

κ(zj, zj+1) <
γn

1− γ
κ(z0, z1). (11)

Since 0 < γ < 1, the last inequality implies

lim
n→∞

sup{κ(zn, zm) : m > n} = 0. (12)

Applying Lemma 2, we prove that {zn}n∈N∪{0} is a Cauchy sequence in W.
Now, we assume that W is complete. We want to show F (T) �= ∅ if T further satisfies one of

conditions (D1)–(D5). Since {zn}n∈N∪{0} is Cauchy in W and W is complete, there exists w ∈ W such
that zm → w as m → ∞. From (τ2) and (11), we have

κ(zn, w) ≤ γn

1− γ
κ(z0, z1) for all n ∈ N. (13)

In order to finish the proof, it is sufficient to show w ∈ F (T). If (D1) holds, since T is closed and
zn ∈ Tzn−1 and zn → w as n → ∞, we get w ∈ Tw. If (D2) holds, by the lower semicontinuity of f ,
zn → w as n → ∞ and (10), we obtain

κ(w, Tw) = f (w)

≤ lim inf
n→∞

κ(zn, Tzn)

≤ lim
n→∞

k(zn, zn+1) = 0.

By Lemma 3, w ∈ F (T). Suppose that (D3) is satisfied. Since {zn} is Cauchy, we have
limn→∞ ρ(zn, zn+1) = 0. So, by the lower semicontinuity of g and zn → w as n → ∞, we get

ρ(w, Tw) = g(w) ≤ lim
n→∞

ρ(zn, zn+1) = 0.

By the closedness of Tw, we show w ∈ F (T). Assume that (D4) holds. By (12), there exists
{un} ⊂ {zn} with lim supn→∞{κ(un, um) : m > n} = 0 and {vn} ⊂ Tw such that limn→∞ κ(un, vn) =

0. By (τ3), limn→∞ ρ(un, vn) = 0. Since ρ(vn, w) ≤ ρ(vn, un) + ρ(un, w), we have vn → w as n → ∞.
By the closedness of Tw, we obtain w ∈ Tw. Finally, suppose that (D5) holds. If w /∈ Tw, then, by (11)
and (13), we obtain

0 < inf
a∈W

{k(a, w) + k(a, Ta)}

≤ inf
n∈N
{k(zn, w) + k(zn, Tzn)}

≤ inf
n∈N
{k(zn, w) + k(zn, zn+1)}

≤ lim
n→∞

2γn

1− γ
κ(z0, z1)

= 0,

which leads to a contradiction. Therefore, it must be w ∈ F (T). The proof is completed.

Here, we give a simple example illustrating Theorem 7.
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Example 2. Let W = [0,+∞) with the metric ρ(x, y) = |x− y| for x, y ∈ W. Let Tx = [0, x] for x ∈ W.
It is obvious that each x ∈ W is a fixed point of T. Let ϕ be anyMT -function. Let κ : W ×W → [0,+∞) be
defined by

κ(u, v) = max{9(u− v), 5(v− u)} for u, v ∈ W.

Then, κ is an e0-metric on W. Given x ∈ W. For any a ∈ Tx = [0, x], we have

κ(a, x) = 5(x− a) ≤ 9(x− a) = κ(x, a),

which shows that (1) holds. Clearly, the function x �→ ρ(x, Tx) is a zero function on W, so it is lower
semicontinuous. Hence (D3) holds. We now claim

min{Dκ(Tu, Tv), κ(u, Tu)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v.

We consider the following two possible cases:

Case 1. If 0 ≤ u < v, we have
κ(u, Tu) = 0,

Dκ(Tu, Tv) = max

{
sup
z∈Tu

κ(z, Tv), sup
z∈Tv

κ(z, Tu)

}
= 9(v− u)

and
κ(u, v) = 5(v− u).

So, min{Dκ(Tu, Tv), κ(u, Tu)} = 0 ≤ ϕ(κ(u, v))κ(u, v).
Case 2. If 0 ≤ v < u, we obtain

κ(u, Tu) = 0,

Dκ(Tu, Tv) = 9(u− v)

and
κ(u, v) = 9(u− v).

Hence, min{Dκ(Tu, Tv), κ(u, Tu)} = 0 ≤ ϕ(κ(u, v))κ(u, v).

By Cases 1 and 2, our claim is verified, and hence, (2) holds. Therefore, all the assumptions of Theorem 7
are satisfied and we also show that T has a fixed point in W from Theorem 7. Notice that

H(T(5), T(9)) = 4 > ϕ(ρ(5, 9))ρ(5, 9),

so Mizoguchi-Takahashi’s fixed point theorem is not applicable here. This example shows that Theorem 7 is a real
generalization of Mizoguchi-Takahashi’s fixed point theorem.

Remark 4. Du-Hung’s fixed point theorem (i.e., Theorem 4) can be proven immediately from Theorem 7. Indeed,
let κ ≡ ρ. Then, (1) and (2), as in Theorem 7, are satisfied. We claim that (D4) as in Theorem 7 holds. Let {zn}
in X with zn+1 ∈ Tzn, n ∈ N and limn→∞ zn = w. We obtain

lim
n→∞

ρ(zn+1, Tw) ≤ lim
n→∞

H(Tzn, Tw)

≤ lim
n→∞

{ϕ(ρ(zn, w))ρ(zn, w)} = 0,

which shows that (D4) holds. Therefore, all the assumptions of Theorem 7 are satisfied. By applying Theorem 7,
we prove F (T) �= ∅.

In Theorem 7, if T : W → W is a self-mapping, then we obtain the following new fixed point
theorem which generalizes Banach contraction principle.
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Corollary 1. Let (W, ρ) be a metric space, T : W → W be a self-mapping and ϕ : [0,+∞) → [0, 1) be an
MT -function. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx

and
min{κ(Tu, Tv), κ(u, Tu)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v.

Then the following statements hold:

(a) For any z0 ∈ W, there exists a Cauchy sequence {zn}∞
n=0 in W started at z0 satisfying zn = Tzn−1 for

each n ∈ N and

lim
n→∞

κ(zn, zn−1) = lim
n→∞

κ(zn−1, zn) = inf
n∈N

κ(zn, zn−1) = inf
n∈N

κ(zn−1, zn) = 0;

(b) T has the κ-approximate fixed point property in W.

Moreover, if W is complete and T further satisfies one of conditions (D1)-(D5) as in Theorem 7, then T
admits a fixed point in W.

By applying Theorem 7, we establish some new fixed point theorems for e0-metrics and
e0-distances.

Corollary 2. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx

and
Dκ(Tu, Tu) + κ(u, Tu) ≤ 2ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v. (14)

Then T admits a fixed point in W.

Proof. For any u, v ∈ W with u �= v, by (14), we have

min{Dκ(Tu, Tv), κ(u, Tu)} ≤ 1
2
(Dκ(Tu, Tu) + κ(u, Tu)) ≤ ϕ(κ(u, v))κ(u, v).

Hence the condition (2) in Theorem 7 holds. Therefore, the conclusion is immediate from
Theorem 7.

Corollary 3. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx

and √
Dκ(Tu, Tv)κ(u, Tu) ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v. (15)

Then T admits a fixed point in W.

Proof. For any u, v ∈ W with u �= v, from (15), we obtain

min{Dκ(Tu, Tv), κ(u, Tu)} ≤
√
Dκ(Tu, Tv)κ(u, Tu) ≤ ϕ(κ(u, v))κ(u, v).
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So the condition (2) in Theorem 7 holds. Hence, the conclusion is immediate from Theorem 7.

In fact, we can establish a wide generalization of Corollary 2 as follows.

Corollary 4. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : X → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that

κ(a, x) ≤ κ(x, a) for all a ∈ Tx

and
sDκ(Tu, Tv) + tκ(u, Tv)

s + t
≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v, (16)

where s, t ≥ 0 with s + t > 0. Then T admits a fixed point in W.

Proof. For any u, v ∈ W with u �= v, by (16), we get

min{Dκ(Tu, Tv), κ(u, Tu)} ≤ sDκ(Tu, Tv) + tκ(u, Tv)
s + t

≤ ϕ(κ(u, v))κ(u, v),

and hence the condition (2) in Theorem 7 is satisfied. So the desired conclusion follows from Theorem 7
immediately.

Now, we focus the following new fixed point theorem without the assumption (1) and satisfy
another new condition

min{Dκ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v,

which is different from (2) as in Theorem 7. It is worth mentioning that this new fixed point theorem is
meaningful because an e0-distance is asymmetric in general.

Theorem 8. Let (W, ρ) be a metric space and Dκ be an e0-metric on CB(W) induced by an e0-distance κ.
Let T : W → CB(W) be a multivalued mapping and ϕ : [0,+∞)→ [0, 1) be anMT -function. Assume that

min{Dκ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v. (17)

Then the following statements hold:

(a) For any z0 ∈ W, there exists a Cauchy sequence {zn}∞
n=0 in W started at z0 satisfying zn ∈ Tzn−1 for

each n ∈ N and
lim

n→∞
κ(zn−1, zn) = inf

n∈N
κ(zn−1, zn) = 0;

(b) T has the κ-approximate fixed point property in W.

Moreover, if W is complete and T further satisfies one of conditions (D1)-(D5) as in Theorem 7,
then F (T) �= ∅.

Proof. Define τ(x) = 1
2 (ϕ(x) + 1) for all x ∈ [0,+∞). Then 0 ≤ ϕ(x) < τ(x) < 1 for all x ∈ [0,+∞).

Let b ∈ W. Take z0 = b ∈ W and choose z1 ∈ Tz0. If z1 = z0, then z0 ∈ F (T) and we are done.
Otherwise, if z1 �= z0, then κ(z0, z1) > 0. By (17), we have

κ(z1, Tz1) = min{Dκ(Tz0, Tz1), κ(z1, Tz1)}
≤ ϕ(κ(z0, z1))κ(z0, z1)

< τ(κ(z0, z1))κ(z0, z1),
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from which one can deduce that there exists z2 ∈ Tz1 such that

κ(z1, z2) < τ(κ(z0, z1))κ(z0, z1).

Next, if z2 = z1, then z1 ∈ F (T), and we finish the proof. Otherwise, since

κ(z2, Tz2) = min{Dκ(Tz1, Tz2), κ(z2, Tz2)} < τ(κ(z1, z2))κ(z1, z2),

then there exists z3 ∈ Tz2 such that

κ(z2, z3) < τ(κ(z1, z2))κ(z1, z2).

Hence, by induction, we can obtain a sequence {zn}n∈N∪{0} satisfying the following: for each
n ∈ N,

(iv) zn ∈ Tzn−1 with zn �= zn−1;
(v) κ(zn, zn+1) < τ(κ(zn−1, zn))κ(zn−1, zn).

By (v), the sequence {κ(zn−1, zn)}n∈N is strictly decreasing in [0,+∞). So

lim
n→∞

κ(zn−1, zn) = inf
n∈N

κ(zn−1, zn) exists. (18)

Since ϕ is anMT -function, by applying (8) of Theorem 5 with λ = 1, we obtain

0 ≤ sup
n∈N

ϕ(κ(zn−1, zn)) < 1.

So we get

0 < sup
n∈N

τ(κ(zn−1, zn)) =
1
2

[
1 + sup

n∈N
ϕ(κ(zn−1, zn))

]
< 1.

Hence c := sup
n∈N

τ(κ(zn−1, zn)) ∈ (0, 1). For any n ∈ N, by (v) again, we obtain

κ(zn, zn+1) < τ(κ(zn−1, zn))κ(zn−1, zn) ≤ cκ(zn−1, zn).

which implies
κ(zn, zn+1) < cnκ(z0, z1) for each n ∈ N. (19)

Since 0 < c < 1, by taking the limit as n → ∞ in (19), we have

lim
n→∞

κ(zn, zn+1) = 0. (20)

Combining (18) and (20), we obtain

lim
n→∞

κ(zn−1, zn) = inf
n∈N

κ(zn−1, zn) = 0 (21)

and hence (a) is proven. To see (b), since zn ∈ Tzn−1 for all n ∈ N, by (21), we show that

inf
a∈W

κ(a, Ta) = inf
n∈N

κ(zn−1, zn) = 0.

Using a similar argument as in the proof of Theorem 7, one can verify that F (T) �= ∅ and finish
this proof.

The following example not only illustrates Theorem 8 but also shows that Theorem 8 is different
from Theorem 7.

90



Mathematics 2019, 7, 1224

Example 3. Let W = [0,+∞) with the metric ρ(x, y) = |x− y| for x, y ∈ W. Let Tx = [0, x] for x ∈ W.
So each x ∈ W is a fixed point of T. Let ϕ be anyMT -function. Let κ : W ×W → [0,+∞) be defined by

κ(u, v) = max{4(u− v), 7(v− u)} for u, v ∈ W.

Then κ is an e0-metric on W. Clearly, the function x �→ ρ(x, Tx) is a zero function on W, so it is lower
and semicontinuous. Hence, (D3) holds. Using a similar argument as in Example 2, we can prove that

min{Dκ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v.

Hence, all the assumptions of Theorem 8 are satisfied. Applying Theorem 8, we also prove that T has a fixed
point in W. Notice that 1 ∈ T(2) = [0, 2] and

κ(1, 2) = 7 > 4 = κ(2, 1),

so (1) does not hold and hence Theorem 7 is not applicable here. Moreover, since

H(T(3), T(8)) = 5 > ϕ(ρ(3, 8))ρ(3, 8),

Mizoguchi-Takahashi’s fixed point theorem is also not applicable.

Some new fixed point theorems are established by Theorem 8 immediately.

Corollary 5. Let (W, ρ) be a metric space, T : W → W be a selfmapping and ϕ : [0,+∞) → [0, 1) be an
MT -function. Assume that

min{κ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v.

Then the following statements hold:

(a) For any z0 ∈ W, there exists a Cauchy sequence {zn}∞
n=0 in W started at z0 satisfying zn = Tzn−1 for

each n ∈ N and
lim

n→∞
κ(zn−1, zn) = inf

n∈N
κ(zn−1, zn) = 0;

(b) T has the κ-approximate fixed point property in W.

Moreover, if W is complete and T further satisfies one of conditions (D1)-(D5) as in Theorem 7, then T
admits a fixed point in W.

Corollary 6. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)–(D5) as in Theorem 7. Assume that

Dκ(Tu, Tv) + κ(v, Tv) ≤ 2ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v.

Then F (T) �= ∅.

Corollary 7. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that√

Dκ(Tu, Tv)κ(v, Tv) ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v.

Then F (T) �= ∅.
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Corollary 8. Let (W, ρ) be a complete metric space andDκ be an e0-metric on CB(W) induced by an e0-distance
κ. Let ϕ : [0,+∞)→ [0, 1) be anMT -function and T : W → CB(W) be a multivalued mapping satisfying
one of conditions (D1)-(D5) as in Theorem 7. Assume that

sDκ(Tu, Tv) + tκ(v, Tv)
s + t

≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v,

where s, t ≥ 0 with s + t > 0. Then F (T) �= ∅.

Remark 5.

(a) Theorem 7, Corollary 4, Theorem 8 and Corollary 8 all generalize and extend Mizoguchi-Takahashi’s fixed
point theorem;

(b) All results in [10] are special cases of our results established in this paper.
(c) Theorems 7 and 8 improve and generalize some of the existence results on the topic in the literature; see,

e.g., [1,2,4,7,8,10,11,13–16,20–23] and references therein.

4. Conclusions

Our main purpose in this paper is to establish new generalizations of Mizoguchi-Takahashi’s
fixed point theorem for essential distances and e0-metrics satisfying the following new conditions:

• min{Dκ(Tu, Tv), κ(u, Tu)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v (see Theorem 7
for details),

• min{Dκ(Tu, Tv), κ(v, Tv)} ≤ ϕ(κ(u, v))κ(u, v) for all u, v ∈ W with u �= v (see Theorem 8
for details).

We give new examples to illustrate our results. As applications, some new fixed point theorems
for essential distances and e0-metrics are also established by applying these new generalized
Mizoguchi-Takahashi’s fixed point theorems. Our new results generalize and improve some of known
results on the topic in the literature.
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Abstract: A robust linear quadratic analog tracker (LQAT) consisting of proportional-integral-
derivative (PID) controller, sliding mode control (SMC), and perturbation estimator is proposed for
a class of nonlinear systems with unknown nonlinear perturbation and direct feed-through term.
Since the derivative type (D-type) controller is very sensitive to the state varying, a new D-type
controller design algorithm is developed to avoid an unreasonable large value of the controller
gain. Moreover, the boundary of D-type controller is discussed. To cope with the unknown
perturbation effect, SMC is utilized. Based on the fast response of SMC controlled systems, the
proposed perturbation estimator can estimate unknown nonlinear perturbation and improve the
tracking performance. Furthermore, in order to tune the PID controller gains in the designed tracker,
the nonlinear perturbation is eliminated by the SMC-based perturbation estimator first, then a
hybrid Taguchi real coded DNA (HTRDNA) algorithm is newly proposed for the PID controller
optimization. Compared with traditional DNA, a new HTRDNA is developed to improve the
convergence performance and effectiveness. Numerical simulations are given to demonstrate the
performance of the proposed method.

Keywords: PID controller; sliding mode control; hybrid Taguchi real coded DNA algorithm;
perturbation estimator

1. Introduction

As well known, the PID controller is one of the popular control strategies and widely adopted
to control engineering due to its simple structure and robust feature [1–3]. Hence, the PID controller
has been widely implemented in many industrial applications. For tuning the PID controller
gains, the traditional method Ziegler–Nichols rule is developed, but it is difficult to adjust the
optimal or near optimal PID controller gains when the controlled system is with nonlinearity
and high order dimension [3,4]. Paper [5] proposes the closed-loop controlled system by using
a state-derivative feedback controller, and it illustrates the difficulty of calculating the controller based
on the state-feedback control approach; hence, this paper transforms the single input single output
(SISO) system into Frobenius canonical form and the pole-placement method is employed to cope with
the state-derivative feedback control problem. Research work [6] processes the state-derivative feedback
controller design by transforming the state-derivative feedback control problem to state-feedback
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control problem, but the limitation is that the system matrix A is invertible. Recently, the linear matrix
inequality (LMI) approach is adopted to achieve the PID controller design. For example, the work
in [7] deals with the PID controller design for the controlled system without a direct feed-through term
and the output variable transformation method is adopted, but if the controlled system is with a direct
feed-through term, the PID controller will become difficult to design. The authors of [8] discussed the
robust PID controller for the linear uncertain system by LMI and D-stability approach. The singular
system structure is used to calculate the PD controller with the H∞ performance [9]; the H∞ PD/PI
controller design is presented in [10]. Compared with the literature in [9,10], the proposed design
algorithm of PID controller is without additional singular structure. However, this paper discusses
the PID-type controller in detail. For instance, the D-type controller is discussed to be bounded by a
selected parameter, and the parameter is bounded in a range (0, 1); hence, the D-type controller can
avoid unreasonable gain value (large gain value) through a simple proposed method.

The Laplace transform method and the final-value theorem are employed to design the tracking
controller [11,12]. To shape the tracking performance, the literature in [13,14] designed the augmented
state for PID filter then the controlled system is transformed to the augmented controlled system with a
direct feed-through term. Moreover, the disturbance observer and functional observer are developed to
measure the external disturbance [13–15]. However, the proposed design approaches [13,14] cannot be
directly applied to the systems with a direct feed-through term and unknown nonlinear perturbation;
hence, the PID controller is worth being developed, especially if the controlled system is with nonlinear
perturbations and direct feed-through term. With the design of the PI-type controller, the controlled
system has the augmented structure, and this structure may result in an uncontrollable augmented
controlled system. In paper [16], the authors present a method which is placed in the closed-loop
system eigenvalues on the left of the negative vertical that lies by the selected non-positive constant;
hence, the proposed method is utilized to overcome the uncontrollable issue in this paper. Since
the forward gain cannot be designed by using the traditional LQAT approach due to the method
in [16], therefore, the final-value theorem can be adopted to overcome this problem by discussing the
final-value theorem for the proposed robust tracker design in this paper.

SMC is inherently robust to external disturbance and nonlinear system and with fast response.
In [17], the adaptive robust PID controller with SMC is proposed for the uncertain chaotic system.
In [18], the fuzzy sliding mode control is designed for induction machine. The work in [19] designs
an adaptive integral SMC for the system with uncertainty and applies the controller to the vertical
take-off and landing (VTOL) aircraft system. Therefore, the SMC can be successfully utilized in many
applications. Suppressing disturbance is the main target of SMC, but it cannot eliminate disturbance
completely. Some researches utilize the disturbance estimators to overcome external disturbance [20,21];
the papers develop SMC to integrate with the disturbance estimator for the controlled system with
undesired disturbance [22–25]. The authors of [25] propose the observer-based SMC for the controlled
system with external disturbances. A robust SMC and disturbance observer via the augmented state for
the multi-axis coordinated motion system is studied [26]. However, in our knowledge, the SMC-based
LQAT integrated with PID controller has not been well discussed, especially if the controlled system
is with a direct feed-through term. To deal with the external perturbation, this paper develops the
perturbation estimator design based on the SMC due to its fast response.

The three PID controller gains must be determined properly; otherwise, it might result in
undesirable performance. In the works of [27,28], the authors developed an optimization method
for the PID controller design subjected to the expected performance index though the frequency
response. In the work of [29], the authors proposed a methodology for designing the controller and
the loop shaping with the standard performance such as H2 and H∞ performance. However, these
proposed methodologies do not take the disturbance estimator into account [27–29]. To improve the
tracking performance and control force, the disturbance estimator is adopted to the proposed controller.
Recently, many popular heuristic algorithms have been applied in optimization problems. Particle
swarm optimization (PSO) [3,4,30], DNA algorithm [31,32], and genetic algorithm (GA) [33–38] are
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stochastic searching methods for solving optimal problems. For example, some works in [33–38] based
on the GA method integrated their research to the proposed controller and parameters optimization;
in papers [31,32], the DNA algorithm is proposed for the PID controller optimization, and the difference
between GA and DNA algorithms is the mutation operator which is not only with the same mutation
operator but also consists of enzyme and virus, whereby the different PID structure can exchange
their information. On the other hand, the Taguchi method is a low cost and high effective method for
quality engineering [39,40]. Compared with full factorial experiments, the Taguchi method is a simple
experimental design method that is less experiment. It emphasizes and focuses on the improvement
of product quality not through testing but through design. Some papers apply the Taguchi method
to improve the performance of GA [33,34]. Paper [33] mentions that the hybrid Taguchi–genetic
algorithm (HTGA) has a quick convergent. Among the above methods, the DNA algorithm is a
multiple functional method which is not only adjusted to the parameters but also changed the PID
structure to find the optimal or near-optimal solution. Thus, this paper utilizes the advantage of
Taguchi method to enhance the efficiency for our proposed algorithm.

Based on the above description, this paper aims to design a robust LQAT consisting of PID
controller, SMC, and perturbation estimator for a class of nonlinear systems with unknown nonlinear
perturbation, and the proposed HTRDNA algorithm is designed for the PID controller optimization.
To avoid unreasonable gain value in the controller, a simple algorithm for D-type controller design is
studied. Due to the SMC fast response, the perturbation estimator is proposed based on SMC. Since
the undesirable nonlinear perturbation is eliminated by the SMC-based perturbation estimator first, it
becomes easy to optimize the PID controller with the new design procedure of HTRDNA algorithm
proposed in this paper.

This paper is organized as follows. Section 2 presents the whole derivation for the robust tracker
design. Section 3 proposes the design procedure of HTRDNA algorithm. The illustrative examples
demonstrate the feasibility and validity of the proposed approaches in Section 4 and a conclusion is
given in Section 5.

Notations: wT is used to denote the transpose for the matrix w, w† denotes the matrix generalized
inverse for the matrix w and ‖ w ‖ denotes the Euclidean norm of the matrix w or vector w. | w |
represents the absolute value of w. In is the n × n identity matrix. sign(s) is the sign function of s,
if s > 0, sign(s) = 1; if s < 0, sign(s) = −1; if s = 0, sign(s) = 0.

2. Robust Tracker and Perturbation Estimator Design

For a class of nonlinear systems with a direct feed-through term, the robust tracker and perturbation
estimator are proposed. In real engineering systems, there are many controlled systems with nonlinear
vector and disturbances such as the chaotic systems and robotic systems. To cope with these undesired
perturbations, the SMC-based perturbation estimator is proposed. Now, consider a class of nonlinear
time-invariant system described by

.
x(t) = Ax(t) + B(u(t) + g(x, t) + d(x, t)), (1)

y(t) = Cx(t) + Du(t), (2)

where A ∈ �n×n, B ∈ �n×m, C ∈ �p×n, and D ∈ �p×m denote the system matrices. The pair (A, B) is
controllable. In order to deal with the LQAT problem, the condition m ≥ p has to satisfy. x(t) ∈ �n is the
state vector, u(t) ∈ �m is the control input, g(x, t) ∈ �m is the system nonlinear vector, and y(t) ∈ �p

is the measurable output of the system. d(x, t) ∈ �m is the unknown nonlinear perturbation at time t.
Notices that the proposed approach still works for the special case where y(t) = Cx(t) (such as chaotic
systems). Moreover, u(t) = u∗(t) + KD

.
x(t) where the gain KD is D-type controller gain.
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In [5,8], the closed-loop controlled system of D-type controller is discussed. Therefore, the linear
transformation can be founded. To merge the derivative term

.
x(t) in (1), theoretically it can be written to

(In − BKD)
.
x(t) = Ax(t) + B(u∗(t) + g(x, t) + d(x, t)). (3)

After being transformed, (1) can be rewritten to the following state space equation

.
x(t) = Apidx(t) + Bpid

(
u∗(t) + dg(x, t)

)
, (4)

y(t) = Cpidx(t) + Dpid1u∗(t) + Dpid2dg(x, t), (5)

where M = In − BKD, Apid = M−1A, Bpid = M−1B, Cpid = C + DKDM−1A, Dpid1 = D + DKDM−1B,
Dpid2 = DKDM−1B, and dg(x, t) = g(x, t) + d(x, t).

To avoid the D-type controller KD with unreasonable values, the gain should be discussed and
selected properly. In order to keep the original system feature, let the matrix M be M = In − BKD ≥
αIn > 0 where parameter α is positive definite so that the transformed system can remain its stability.
Therefore, a simple D-type controller algorithm is proposed. Since the rank of BKD is m so that
In − BKD only m poles can be placed, some methods can be utilized to deal with this problem such
as pole-placement and LMI approach. To implement minimal parameters, one solution of KD can be
obtained by

KD = (1− α)B†, (6)

then, the matrix M is equivalent to

M = In − (1− α)BB† > 0, (7)

which implies
In > (1− α)BB†. (8)

To find out the range of α, we take 2 norm for both sides of (8)

‖In‖ > (1− α)‖BB†‖ = (1− α), (9)

and the parameter α has the range 0 < α ≤ 1. Moreover, for the requirement of the transformed matrix
M being invertible. In (7)–(9), we assume that the rank of B is m, and BB† is positive definite so that KD

should be a reasonable matrix with 0 < α ≤ 1. From Equation (9), the system matrix B and B† can be
described in the singular value decomposition (SVD) form as

B = Ur

∑
r

VT
r and B† = Vr

∑−1

r
UT

r ,

where Ur ∈ �n×r is a unitary matrix,
∑

r ∈ �r×r is the matrix with r singular values, and Vr ∈ �r×m is a
unitary matrix. One has

‖BB†‖ = ‖Ur
∑

r VT
r Vr

∑−1
r UT

r ‖
= ‖UrIrUT

r ‖ = 1.

For the above calculation, the inverse of matrix M exists, thus, we can ensure that the transformed
matrix is invertible for the linear transformation in our proposed method.

Remark 1. If the D-type controller (6) satisfies the above design algorithm, then invertible matrix M can be
computed. Since the D-type controller is sensitive to the system states varying, the gain should be selected
properly. If the gain KD is with the high gain property, then the Kp and KI gains (to be appear later) will be
unreasonable large. Therefore, a simple D-type controller algorithm is important.
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To construct an augmented matrix with PI-type controller. Let

η(t) =
[

x(t)∫
ey(t)dt

]

to be the new state variable in the modified state space equation, where

ey(t) = y(t) − r(t) (10)

denotes the tracking error and r(t) is the reference trajectory. In light of the new state variable, the
system in (4) and (5) can be arranged to the new state-space equation described as

.
η(t) = Apidη(t) + Bpid1u∗(t) + Bpid2dg(x, t) − rpid(t), (11)

y(t) = Cpidη(t) + Dpid1u∗(t) + Dpid2dg(x, t), (12)

where Apid =

[
Apid 0
Cpid 0

]
, Bpid1 =

[
Bpid

Dpid1

]
, Bpid2 =

[
Bpid

Dpid2

]
, Cpid =

[
Cpid 0

]
, Dpid1 = Dpid1,

Dpid2 = Dpid2 and rpid(t) =
[

0
r(t)

]
. We give a sliding surface as

s(t) = Csη(t) −
∫ t

0

(
CsApidη(t) −Kη(t) + u(t)

)
dt, (13)

where
Cs =

[
Bpid

† 0
]
, (14)

the equivalent control u∗eq(t) in the sliding manifold
( .
s(t) = 0

)
is obtained by

u∗eq(t) = −Kη(t) + u(t) − dg(x, t). (15)

We lack of the information of perturbation dg(x, t); hence, the underdetermined estimation of
dg(x, t) named by d̂g(t) will be design first, then the PI-type controller gain K and control law u(t) will
be discussed in detail later, respectively.

Lemma 1. In the works [15,21], the authors indicate that the perturbation is assumed to be slowly time-varying;
therefore, the derivative of perturbation equal is (near) to zero. Generally, it is reasonable to suppose that

.
dg(x, t) = 0, (16)

when the perturbation is slowly time-varying and changes slightly relative to the observer dynamics with high
gain property.

Give the perturbation estimator as

d̂g(t) = ko

(
s(t) +

∫
(γs(t) + σsat(s(t)))dt

)
, (17)

where ko is the positive parameter for the perturbation estimator. In the control law (15), the nonlinear
perturbation dg(x, t) is unknown so that the control law cannot be achieved. Therefore, the perturbation
estimator (17) can be utilized to replace the unknown nonlinear perturbation dg(x, t). Now, the SMC
controller u±(t) and SMC-based control law can be designed by

u±(t) = −γs(t) − σsat(s(t)), (18)
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u∗(t) = −Kη(t) − d̂g(t) + u±(t) + u(t), (19)

where γ and σ denote arbitrary nonnegative value so that the trajectories of SMC converge to the
sliding manifold and the unknown nonlinear perturbation is estimated consequently.

Theorem 1. The estimation in (17) leads to the error between the external perturbation and the estimated
perturbation converge to zero closely, which implies

d̃g(t) = dg(x, t) − d̂g(t) ≈ 0. (20)

Proof. See Appendix A. �

Remark 2. To avoid the undesired chattering phenomenon in the SMC, the sign function can be replaced by a
smooth and continuous saturation function [41].

sat(s(t)) =
[

s1(t)|s1(t)|+δ1
· · · si(t)|si(t)|+δi

]T
, (21)

where δi is an arbitrary small positive constant. If δi equals to zero, the saturation function sat(s(t)) is
equivalent to the sign function sign(s(t)). While the controlled system with direct feed-though term, the
undesired chattering phenomenon affects the controlled system output directly. Hence, the saturation function
should be smooth enough; in other words, the parameter δi should be selected properly. Therefore, the undesired
chattering phenomenon can be avoided, especially if the controlled system has direct feed-though term.

According to Theorem 1, the sliding manifold is reached and substituting (19) and (20) into (11)
and (12), one has

.
η(t) = Apidcη(t) + Bpid1u(t) − Bpid3d̂g(t) − rpid(t), (22)

y(t) = Cpidcη(t) + Dpid1u(t) −Dd̂g(t), (23)

where Apidc = Apid − Bpid1K, Cpidc = Cpid −Dpid1K, Bpid3 =

[
0n×m

D

]
and d̃g(t) = dg(x, t) − d̂g(t).

Lemma 2. [16] Let
(
Apid, Bpid1

)
be the pair of the given open-loop system and h ≥ 0 represent the prescribed

degree of relative stability. The eigenvalues of the closed-loop system Apid − Bpid1

(
R−1Bpid1

TP
)

lie on the left of
the −h vertical line with the matrix P being the solution of the Riccati equation

(
Apid + hIn

)T
P + P

(
Apid + hIn

)
− PBpid1R−1Bpid1

TP + Q = 0, (24)

where the matrix In is an identity matrix.

In order to track the reference trajectory, the linear quadratic method is applied to the tracker
design. The PI controller gain K can be described as

K =
[

KP KI
]
= Rc

−1
(
Bpid1

TP + NT
)
,

where Rc = R + Dpid1
TQDpid1, N = Cpid

TQDpid1, KP ∈ �m×n, and KI ∈ �m×p. To design the controller
gain K consisting of KP and KI, we temporarily do not take the perturbation estimator d̂g(x, t) and the
control law u(t) into consideration in (22) and (23). Both the d̂g(x, t) and u(t) will be discussed based
on the final-value theorem in detail.
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Let the quadratic performance index for the output tracking problem be defined as

J =
1
2

∫ t f

0

{
[y(τ) − r(τ)]TQ[y(τ) − r(τ)] + u∗T(τ)Ru∗(τ)

}
dτ, (25)

where t f denotes the final time, as well as Q = 10qIp ∈ �p×p with q ≥ 0 and R = Im ∈ �m×m are
the appropriate weighting matrices. Consider the performance index in (25), to calculate the lower
value for the controlled system output y(t); hence, we obtain r(t) = 0 (r(τ) = 0) first, then utilize
the final-value theorem to minimize the performance index [11]. Thus, consider Lemma 2 and (25),
the algebraic Riccati equation is given by

(
Apid + hIn

)T
P + P

(
Apid + hIn

)
−

(
Bpid1

TP + NT
)T

R−1
(
Bpid1

TP + NT
)
+ Cpid

TQCpid = 0. (26)

Solving the matrix P from the algebraic Riccati equation then the control gain K can be constructed.
Notice that the PI gains in K are determined based on the linear model

(
Apid, Bpid1, Cpid, Dpid1

)
first,

then take the perturbation estimator d̂g(t) into consideration to determine the control law u(t) in (22)
and (23), based on the final-value theorem which will be discussed in detail later.

Finally, it is desirable to determine the u(t) term in (19). Since Lemma 2 is utilized, then the
traditional LQAT cannot be adopted to design the control law u(t). Therefore, the final-value theorem
can be utilized to find out the control law u(t). Since, the PI controller gain K has been chosen, the
sliding mode is reached and d̃(t) is convergence then the control law u(t) can be calculated by the
final-value theorem.

Theorem 2. The u(t) term is determined based on the integration-term-free augmented system in (22) and (23),

where u(t) =
[
Cpidc(−Apidc)

−1B + Dpid1

]†{
r(t) + Dd̂g(t)

}
.

Proof. See Appendix B. �

Finally, based on Theorem 2, the desire control law can be described as

u(t) = −Kη(t) − d̂g(t) + u±(t) + u(t) + KD
.
x . (27)

Remark 3. If the α equals to 1, the PID-type controller reduces to the PI-type controller. The control law in (27)
is utilized to minimize the tracking performance in (25). Therefore, the controlled system output y(t) can track
the reference trajectory r(t) and the tracking error can be minimized.

3. Introduction of DNA Algorithm and Taguchi Method

3.1. DNA Algorithm

The following statements demonstrate the detailed information of DNA algorithm [31,32] operators.
A. Definition of cost function: This step defines a cost function to calculate the cost value of each

individual, retain excellent chromosomes, and eliminate adverse chromosomes.
B. Reproduction: Similar to cell division, reproduction is focused on survival of the fittest. Hence,

the worse chromosomes will decrease in every generation. Roulette wheel selection is one common
technique to implement the proportional selection. Another way to reproduce the better population is
the tournament selection. Compared with the roulette wheel selection, the tournament selection only
requires the better cost values of the chromosome.

C. Crossover: After reproduction, the chromosomes mate with each other to execute the crossover
operator. Crossover exchanges information between two individuals and generates two offspring.
The crossover probability pc can be decided to our demand where pc > 0.
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D. Mutation: In natural biological system, creatures mutate by themselves in order to adapt to
the external environment. Each chromosome undergoes mutation with a fixed probability pm where
pm > 0. Generally, pm is set to be much lower than pc in order to prevent from being unable to converge.

E. Enzyme/Virus: Enzyme and virus operators are similar to mutation operator, but the most
different part is to change structure of the chromosome instead of value of the chromosome. Enzyme
operator loses part of segments in chromosome; on the other hand, the virus operator increases
an additional part of chromosome. Each chromosome undergoes enzyme and virus with positive
probabilities pe and pv, respectively.

F. Termination criteria: This step provides two methods to establish a termination criterion. One is
the pre-specified iteration number. Another one is reaching the tolerable error representing the
algorithm that converges to the optimal solution or approaching optimal solution.

3.2. Taguchi Method

Taguchi method is a powerful and functional tool in optimization for quality [33,34,39,40]. Taguchi
method uses less combination of experiments to obtain the useful information and searches the
tendency of optimization to prevent from the cause of sensitive variation. The primary tools of the
Taguchi method are the orthogonal array and the signal-to-noise ratio (SNR).

A. Orthogonal array: An orthogonal array can use fewer experiments than full factorial experiments.
The normal expression of two-level orthogonal arrays is

LNt(2
Nt−1), (28)

where Nt = 2kt denotes number of experimental runs, kt denotes a positive integer which is greater
than one, 2 denotes number of levels for each factor, and Nt − 1 denotes number of columns in the
orthogonal array.

B. SNR: Two criteria are used to determine SNR, i.e., smaller is better or larger is better. In the
case of the smaller is better characteristic, let two sets of data be described by [z1 , z2 , . . . , zns ] and
[z1 , z2 , . . . , zns ]. The mean squared deviations from the target value of the quality characteristic are
described by

S1 =
1
ns

ns∑
is=1

zis
2 (29)

and

S2 =
1
ns

ns∑
is=1

zis
2. (30)

In order to shift the mean squared deviation to a suitable situation, utilize the transformation and
describe the ratio in decibels

S1 = −10 log

⎛⎜⎜⎜⎜⎜⎜⎝ 1
ns

ns∑
is=1

zis
2

⎞⎟⎟⎟⎟⎟⎟⎠ (31)

and

S2 = −10 log

⎛⎜⎜⎜⎜⎜⎜⎝ 1
ns

ns∑
is=1

zis
2

⎞⎟⎟⎟⎟⎟⎟⎠. (32)

After calculating, the SNRs will be compared to decide the better level. Therefore, we can
determine the better levels for each factor in less experiment. In the case of larger is better characteristic
can refer to the literature [34].
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4. Hybrid Taguchi and Real Coded DNA Algorithm

In this section, we are going to take advantage of DNA algorithm and Taguchi method in real
coded scheme and combine with the controller design mentioned previously to select a suitable tracking
controller. The detailed steps are described in Figure 1 and illustrated in the following statements.

Step 1: Coding strategy: Define a set of chromosomes including the PID gain matrices KP, KI, KD in
the block vector form as follows

C =
[

KP KI KD
]
. (33)

The previously mentioned controllers can be composed of P controller, PI controller, PD controller,
and PID controller. Therefore, definitions of various controller variables are Ci

P =
[

Ki
P 0 0

]
,

Ci
PI =

[
Ki

P Ki
I 0

]
, Ci

PD =
[

Ki
P 0 Ki

D

]
, and Ci

PID =
[

Ki
P Ki

I Ki
D

]
, where i denotes the i th

chromosome in the whole group.
Step 2: Initialization: Before we search a solution to approximate the optimal solution, we need

to generate T chromosomes for the population, which is called primitive group. To determine the
different gain values in every chromosome, we select the parameters α in [0.3, 1] and q in [0, q] (for
example q = 2) randomly to create four optimal chromosomes for each type controller, and select
a gain matrix βI ∈ �m×m randomly to multiply the optimal chromosomes for other chromosomes
until the population is reached. Each component of βI is given a range by [0, 1]. Generally, the size of
the primitive group depends on the problem complexity; in other words, the more complicated the
problem, the larger the primitive group we need. In the experiment, we generate T/4 chromosomes for
each type of controller.

Step 3: Reproduction: Tournament selection can be adopted to find the lower cost value for the
next population.

Step 4: Crossover: The offspring chromosome has the partial characteristic from the parents after
crossover. Refer to [31,34,35], a real coded crossover operator is defined and rewritten as follows

Co f f spring1 = βcCparent1 + (1− βc)Cparent2, (34)

where Cparent1 and Cparent2 represent different chromosomes. The parameter βc is randomly selected
and defined in a range [0, 1]. The crossover operator is allowed to mate with identical type controllers
in the mating pool. For instance, a PI-type controller parameter Ci

PI only mates with the same feature
chromosome.

Step 5: Choosing a proper orthogonal array: Determine the number of factors and levels to construct a
suitable orthogonal array L4(23) for the problem demand. In the simulation, we choose three factors to
make an experiment and the factors are the PID parameters. A two-level orthogonal array is studied.

Step 6: Selecting chromosomes and Taguchi experiments: This step can do ρ runs to generate ρ
better chromosomes into every generation. Select a best chromosome and randomly choose another
chromosome from the population. Both chromosomes are obtained to execute Taguchi method and
find the better solution. In each generation, both chromosomes can be the same type of controllers
or different type controllers. For example, both chromosomes C1(P1, I1, D1) and C2(P2, I2, D2) are the
levels to be selected and each PID parameter is the factor in the orthogonal array. In this paper, the
orthogonal array selects L4(23). The P1, I1 and D1 are represented level 1 and the P2, I2 and D2 are
represented level 2. Calculate the SNR of each experiment in the orthogonal array, then calculate
the effect of the various factors. The tracking performance is obtained and the small one is best.

The formulation of SNR can be rewritten as ρκ j =
1
2

2∑
is=1

Jcjis
where κ represents the number of factor,

j represents the number of level (Jc to be defined later), and the smaller one can be obtained. After
the orthogonal array experiment, the smaller SNRs are obtained to find the best factors and the best
chromosome can be found by each level. For example, level 1 is obtained in the factor P such that P1 is
selected; level 2 is obtained in the factor I, such that I2 can be selected; level 1 is obtained in the factor
D such that D1 is selected. Based on the above description, the best chromosome is CBT(P1, I2, D1).
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Step 7: Mutation: Real coded changes its value by extending or shortening the scalar. Refer
to [31,34,35], we can re-implement the mutation operator as the following

Co f f spring2 = Cparent + 2βmCparent, (35)

where βm is randomly selected in a range [−1 , 1]. By doing this way, it changes both the scalar and the
direction to achieve mutation operator.

Step 8: Enzyme/Virus: Select two chromosomes from the population. Enzyme and virus operators
can provide us with a suitable controller type. Two different type chromosomes from the pool of {P, PI,
PD, PID} are randomly selected. For instance, the former operator can transform PID controller to P
controller, PI controller or PD controller; the latter operator transforms P controller to PI controller,
PD controller, or PID controller.

Step 9: Calculating cost value: In order to evolve the population, the cost function is employed to
evaluate the value of each chromosome and the minimum one is the best chromosome. We define the
cost function as

Jc =

∫ t f

0

⎧⎪⎪⎪⎨⎪⎪⎪⎩w1(

p∑
j1=1

|eyj1
(τ)|) + w2(

m∑
j2=1

|uj2(τ)|)
⎫⎪⎪⎪⎬⎪⎪⎪⎭dτ, (36)

where ey(τ) =
[

ey1(τ), ey2(τ), · · · , eyp(τ)
]T

denotes the error between the output and the

pre-specified trajectory, u(τ) =
[

u1(τ), u2(τ), · · · , um(τ)
]T

denotes the control force, and Jc

denotes the cost value.
Step 10: Stopping criterion: If the stopping criterion is reached, then the algorithm is terminated.

Otherwise, return to Step 3 and continue to Step 10.

5. Illustrative Examples

In this section, two numerical simulations are given to illustrate the proposed fixed (optimal-based
robust tracker) and flexible (HTRDNA-based robust tracker) trackers, respectively.

5.1. Fixed PID-Type Controller

To verify effectiveness of the proposed PID-based robust tracker, the following example is
considered. Consider the nonlinear, Chen’s chaotic system described as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x1(t) = a(x2(t) − x1(t))
.
x2(t) = (c− a)x1(t) − x1(t)x3(t) + cx2(t) + u1(t) + d1(x, t)
.
x3(t) = x1(t)x2(t) − bx3(t) + u2(t) + d2(x, t)

, (37)

or in the general form
.
x(t) = Ax(t) + B(u(t) + g(x, t) + d(x, t)), (38)

where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−a a 0

c− a c 0
0 0 −b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t)
x2(t)
x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, u∗(t) =

[
u1
∗(t)

u2
∗(t)

]
, g(x, t) =

[ −x1(t)x3(t)
x1(t)x2(t)

]
, d(x, t) =

[
d1(x, t)
d2(x, t)

]
, in which a = 35, b = 3, c = 28, x ∈ �3, u(t) ∈ �2 and the

initial condition is selected as x(0) =
[
−0.5 0.2 0.3

]T
. The bounded nonlinear perturbation and

the reference trajectory r(t) are, respectively, given by

dg(x, t) =
[

cos(x1) 0
0 sin(x2)

][
0.3 0 0
0 −0.4 0.1

]
x(t) + g(x, t)
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and

r(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

5 sin(2πt/1.5) 5 sin(2πt/1.5)
]T

, t ≤ 1.5 sec[
5 5

]T
, t > 1.5 sec

.

Let the output be represented by the general form

y(t) = Cx(t) + Du(t), (39)

where C =

[ −0.5 5 0
0 0 0.5

]
, D =

[
0.1 0
0 0.2

]
, y(t) =

[
y1(t)
y2(t)

]
, in which y ∈ �2.

We set the matrix pair {Q, R} =
{
103I2, I2

}
for the controller design, ko = 350, h = 5

and α = 0.8 to yield KD =

[
0 0.2 0
0 0 0.2

]
, M = I3 − BKD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 0.8 0
0 0 0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Apid =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−35 35 0 0 0
−8.75 35 0 0 0

0 0 −3.75 0 0
−0.675 5.7 0 0 0

0 0 0.35 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bpid =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1.25 0

0 1.25
0.125 0

0 0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cpid =

[ −0.675 5.70 0 0 0
0 0 0.35 0 0

]
, Dpid1 =

[
0.125 0

0 0.25

]
, Dpid2 =

[
0.025 0

0 0.05

]
, Cs =

[
0 0.8 0 0 0
0 0 0.8 0 0

]
, γ = 100, σ = 0.1 and δ = 10−3.

The PI gain matrices can be obtained as below

K =
[

KP KI
]
=

[ −5.503 46.1477 0 82.7264 0
0 0 1.3867 0 40.1473

]
,

where KP ∈ �2×3 and KI ∈ �2×2. The sliding surface and fixed PID-type controller are given in (13)
and (27), respectively.

Figures 2–4 demonstrate the tracking performance between the controlled system output y(t) and
the pre-specify trajectory r(t). The sliding surface is shown in Figure 5. The estimation error between
perturbation estimator and perturbation is shown in Figure 6. Figures 2–6 demonstrate a satisfied
performance based on the proposed robust tracker for the system with unknown perturbation.

5.2. Flexible PID-Type Controller Based on the HTRDNA

To improve the tracking performance of the proposed PID-based robust tracker, the proposed
HTRDNA is adopted. Consider the same Chen’s chaotic system given in Section 5.1. For searching the
best cost value during the iterative process, we define the cost function as

Jc =

∫ t f

0

⎧⎪⎪⎪⎨⎪⎪⎪⎩w1(

p∑
j1=1

|eyj1
(τ)|) + w2(

m∑
j2=1

|uj2(τ)|)
⎫⎪⎪⎪⎬⎪⎪⎪⎭dτ, (40)

where ey(τ) =
[

ey1(τ), ey2(τ), · · · , eyp(τ)
]T

denotes the error between the output and the

pre-specified trajectory, u(τ) =
[

u1(τ), u2(τ), · · · , um(τ)
]T

denotes the control force, Jc denotes
the cost value.

Here, we hope to apply the HTRDNA algorithm to seek for the best one from four kinds of PID-type
controllers. The parameters are chosen as follows: The maximum iteration number is 100, probability
of crossover pc = 0.5, probability of mutation pm = 0.01, probability of enzyme pe = 0.01, probability of
virus pv = 0.01, the orthogonal array select L4(23), the weighting w1 = 1 and w2 = 10−3. The resultant
controller selected based on the HTRDNA algorithm is the PID-type controller and its parameters are
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KP =

[ −5.0668 49.8911 0
0 0 2.4501

]
, KI =

[
102.4782 0.0001

0.0002 50.7663

]
and KD =

[
0 0.0081 0.0061
0 0.0019 0.0096

]
.

The sliding surface and fixed PID-type controller are given in (13) and (27), respectively.
Figures 7–11 demonstrate a quite satisfied tracking performance based on the proposed method.

According to Figures 3 and 8, the proposed HTRDNA algorithm can improve the error performance by
considering the performance index in (40). Figures 4 and 9 show the control input without undesired
chartering phenomenon by using the proposed control law (27). Compare Figure 4 with Figure 9,
Figure 9 shows that the control input is constrained by the performance index in (40). Figures 6 and 11
show that the error of perturbation estimation is converged. The simulation results demonstrate the
validity of the proposed perturbation estimator method. Furthermore, based on the cost function
(40), Figure 12 shows that the proposed flexible PID-type controller outperforms the fixed PID-type
controller. In addition, Figure 12 shows that the proposed HTRDNA algorithm outperforms the real
code DNA (RDNA) algorithm. Consider the performance index (40) to Section 5.1, the cost value is
0.2129. After HTRDNA algorithm optimization, the cost value is 0.1793. Compare Section 5.1 with
Section 5.2, the proposed HTRDNA algorithm can optimize the controller and improve the tracking
performance. Based on the above description, the newly proposed HTRDNA algorithm can improve
the performance for the proposed controller.

Figure 1. Flow chart for HTRDNA algorithm.
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Figure 2. Time responses of the closed-loop system with the fixed PID controller and unknown perturbation.

Figure 3. Tracking errors of the closed-loop system with the fixed PID controller and unknown perturbation.

Figure 4. Control inputs based on the fixed PID controller and unknown perturbation.
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Figure 5. Sliding manifolds for the fixed PID controller with unknown perturbation.

Figure 6. Error between unknown and estimated perturbations.

Figure 7. Time responses of the closed-loop system with the flexible PID controller and unknown perturbation.
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Figure 8. Tracking errors of the closed-loop system with the flexible PID controller and unknown perturbation.

Figure 9. Control inputs based on the flexible PID controller and unknown perturbation.

Figure 10. Sliding manifolds for the flexible PID controller with unknown perturbation.
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Figure 11. Error between unknown and estimated perturbations.

Figure 12. Evolution of RDNA and HTRDNA algorithm.

6. Conclusions

A robust tracker design for a class of nonlinear controlled systems with/without direct feed-through
term and unknown nonlinear perturbation is proposed in this paper. Based on LQAT, by taking linear
transformation and augmented state, a simple approach for the PID-type controller with SMC and
perturbation estimator is proposed. The designed perturbation estimator is employed to eliminate
the unknown nonlinear perturbation so that the better performance can be achieved. To improve the
efficiency of real coded DNA algorithm, this paper utilizes the advantage of the Taguchi method to
real coded DNA algorithm so that the HTRDNA algorithm is newly proposed for the PID controller
optimization. Due to the SMC with fast response, SMC is employed to cope with the nonlinear
perturbation and then HTRDNA algorithm can be utilized to tune the PID controller type and its
parameters. Simulation results demonstrate the validity of our proposed method.
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Appendix A

Proof of Theorem A1. Substitute (19) and (20) into the derivative of sliding surface in (13) to obtain

.
s(t) = d̃g(t) − γs(t). (A1)

Differentiating (17), one has

.
d̂(t) = ko

( .
s(t) + γs(t)

)
= ko

(
d̃g(t) − γs(t) + γs(t)

)
= kod̃g(t).

(A2)

Substituting (16) and (A2) into the differentiation of (20) yields

.
d̃g(t) =

.
dg(x, t) −

.
d̂g(t) =

.
dg(x, t) − kod̃g(t)

= −kod̃g(t).
(A3)

If the gain ko is selected to be a positive value, the error of (20) can converge and approximate to
zero. In other words, the estimated perturbation can approximate to the unknown perturbation at the
steady state.

Consider a candidate Lyapunov function as

v(s) =
1
2

sTs, (A4)

and taking the derivative of v(s) in (A4) gives

.
v(s) = sT .

s = sT
(
d̃g(x, t) − γs− σsat(s(t))

)
≤ ‖d̃g(x, t)‖‖s‖ − γ‖s‖2 − σ‖s‖

≤ −γ‖s‖2 − σ‖s‖.
(A5)

Equations (A3)–(A5) show that the sliding mode states can reach the defined sliding manifold
in finite time with the given parameters γ > 0 and σ > 0; therefore, (17) can estimate the unknown
external perturbation and eliminate its impact directly. In addition, when d̃g(t) equals or closes to zero,
the controller in (19) can achieve a desired tracking performance. �

Appendix B

Proof of Theorem A2. Consider a linear time-invariant system with the PI-type controller and
underdetermined u(t) term described by

.
x(t) = Ax(t) + B

(
u(t) −KPx(t) −KI

∫
ey(t)dt

)
, (A6)

y(t) = Cx(t) + D
(
u(t) −KPx(t) −KI

∫
ey(t)dt

)
. (A7)

Take the Laplace transform of the tracking error to obtain the following equations

Ey(s) = Y(s) −Rs =
{
(C−DKP)[sIn − (A− BKP)]

−1B + D
}(Us

s
−KI

E(s)
s

)
− Rs

s
, (A8)
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where Us and Rs are the steady-state values of u(t) and r(t), respectively, during any time period, if
u(t) and r(t) change slightly relative to the high gain property controlled system dynamics. Using the
final-value theorem to (A8), one has

lim
s→0

sEy(s) = lim
s→0

s
[
W

(
Us

s
−Ki

E(s)
s

)
− Rs

s

]
= lim

s→0

[
W

(
U(s) −KiE(s)

)
−Rs

]
, (A9)

where
W = (C−DKP)[sIn − (A− BKP)]

−1B + D. (A10)

Rearrange (A9) to have

lim
s→0

(sIn + KIW)Ey(s) = lim
s→0

(
WUs −Rs

)
,

which implies
lim
s→0

{
(C−DKP)[sIn − (A− BKP)]

−1B + D
}
Us −Rs = 0

for lim
s→0

sEy(s) = 0. From (A10), we can infer that it is sufficient to derive the controller u(t) in (22) and

(23) by applying the final-value theorem without the integral term.
According to Theorem 1 and Theorem 2, SMC is reached and the perturbation is estimated by the

perturbation estimator. Then, take Laplace transforms of (22) and (23) without integral term to obtain

Y(s) = Cpidc(sIn −Apidc)
−1Bpid

Us
s + Dpid1

(
Us
s −

D̂gs
s

)
=

[
Cpidc(sIn −Apidc)

−1Bpid + Dpid1

]
Us
s −D

D̂gs
s ,

(A11)

where D̂gs is the steady-state values of d̂g(t), during any time period, if d̂g(t) changes slightly relative to
the high gain property controlled system dynamics. Applying the final-value theorem to the tracking
error and forcing it to be zero yields

lim
s→0

sEy(s) = lim
s→0

s(Y(s) −Rs)

=
[
Cpidc(−Apidc)

−1Bpid + Dpid1

]
Us −DD̂gs −Rs

= 0,

so that in general, one has

u(t) =
[
Cpidc(−Apidc)

−1B + Dpid1

]†{
r(t) + Dd̂g(t)

}
, (A12)

where
Apidc = Apid − BpidKP,

�
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Abstract: In this work we develop a study of positive periodic solutions for a mathematical model
of the dynamics of computer virus propagation. We propose a generalized compartment model
of SEIR-KS type, since we consider that the population is partitioned in five classes: susceptible
(S); exposed (E); infected (I); recovered (R); and kill signals (K), and assume that the rates of virus
propagation are time dependent functions. Then, we introduce a sufficient condition for the existence
of positive periodic solutions of the generalized SEIR-KS model. The proof of the main results are
based on a priori estimates of the SEIR-KS system solutions and the application of coincidence degree
theory. Moreover, we present an example of a generalized system satisfying the sufficient condition.

Keywords: periodic solutions; positive solutions; SEIR-KS model; computer virus model
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1. Introduction

1.1. Scope

In the last decades, due to its theoretical and practical importance and significance,
the mathematical models for dynamics of propagation for epidemics have been extensively studied,
see for instance [1–10] and references in those works. In particular, mathematical models are powerful
tools since it permits to explain, estimate and simulate the spread of infectious disease propagation,
and consequently help to design and test control strategies like an optimal time of vaccination.

From the historical point of view, the earliest mathematical models in epidemiology were
introduced in 1927 [11]. Following the presentation given in [12], we have that the basic idea considered
in [11], in order to describe the dynamics of a virus, was the partition of the total population N in
three classes: the susceptible class S formed for those individuals capable of contracting the disease
and becoming themselves infectives; the infective class I formed for those individuals capable of
transmitting the disease to susceptibles; the removed or recovered class R formed for those individuals
which having contracted the disease, have died or, are permanently immune, or have been isolated,
thus being unable to further transmit the disease. Moreover, they consider the three assumptions:
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the period of the epidemic is too short such that N is constant, the transfer process from S to I is
modeled by the mass action law and the transfer process from I to R is of exponential decay type.
Then, the called SIR model is given by the following system

dS(t)
dt

= −kI(t)S(t),
dI(t)

dt
= kI(t)S(t)− λI(t),

dR(t)
dt

= λI(t),

where k and λ are some positive constants. A particular case of SIR model is the well known SIS
model, which is deduced by considering the partition of the population in two classes of individuals:
susceptible and infected. Afterwards, numerous generalizations are given by several authors, who have
improved the SIR mathematical model by incorporating for instance the vital dynamics, a generalized
transmission forces, other classes of individuals and vaccination.

It is well known that the outbreaks of parasite population, which generate the epidemics occur
around the same time of each year. Then becomes natural to study the periodicity or model these
diseases by incorporating periodic functions into the epidemic models. For instance, in the case of the
SIR model the periodic models are introduced by considering the facts that k and λ are time dependent
periodic functions.

On the other hand, the compartmental models were introduced for biological epidemics. However,
by the newest observation that the diffusion of biological virus is analogous to several processes in
other areas, the ideas have been widely adapted and used to describe other phenomenon. For instance,
the computer virus propagation in a network [13–18]. In particular, in this paper our aim is to study
the periodicity of the mathematical model for virus propagation introduced in [18].

1.2. The Generalized SEIR-KS Mathematical Model

In [18] the authors construct a compartmental model for computer virus propagation.
They consider that the population of individuals is given by computers or nodes in a network which
are in corresponding communications all the time. The population is partitioned in five classes:
the susceptible class S formed by the nodes which are virus-free uninfected; the exposed class E
formed by the nodes which are infected, but the virus is latent; the infected class I formed by the nodes
which are infected and the virus is breaking out; the recovered class R formed by the nodes which
have recovered from virus infection and acquired immunization; and the kill signals class K formed by
special nodes, which are a sort of anti-virus epidemic riding on the back of the virus propagation and
all of them constitute a new compartment, which is generated among the infectious nodes then they
can spontaneously transmit it to their neighboring nodes. The dynamic of computer virus transmission
is studied by considering the following list of assumptions:

(A1) The network at time t is formed by a total of N(t) nodes. Then, we have the following relation
N(t) = S(t) + E(t) + I(t) + R(t) + K(t) at each time t.

(A2) There is a behavior similar to vital dynamics of biological virus. More specifically, related with
births and deaths, there is two characteristics in the process: (i) the new nodes are connected to
the network at constant rate b and a fraction p are of susceptible type and the remaining fraction
q = 1− p are of exposed type; and (ii) each node, by system crash or network interruption,
are disconnected from the network at constant rate μ.

(A3) The dynamics of exposed nodes are characterized by three facts: (i) the susceptible nodes
are transformed in exposed nodes with probability per unit time βE(t) with β a constant;
(ii) the exposed nodes are converted into infected ones at constant rate α; and (iii) the exposed
nodes are converted into kill signals ones at constant rate χ.

(A4) The infected nodes are converted into kill signals nodes or recovered ones at constant rates γ

and ε, respectively.
(A5) The kill signal nodes satisfy two additional premises: (i) the susceptible nodes receive the kill

signal and converted into recovered ones with probability φK(t); and (ii) the infected nodes
receives and relays the kill signal nodes with probability δK(t). Here φ and δ are constants.
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Then, the following ordinary differential equation system

dS(t)
dt

= pb− βS(t)E(t)− φS(t)K(t)− μS(t), (1a)

dE(t)
dt

= qb + βS(t)E(t)− αE(t)− χE(t)− μE(t), (1b)

dI(t)
dt

= αE(t)− δI(t)K(t)− γI(t)− εI(t)− μI(t), (1c)

dK(t)
dt

= δI(t)K(t) + γI(t) + χE(t)− μK(t), (1d)

dR(t)
dt

= φS(t)K(t) + εI(t)− μR(t), (1e)

is introduced as the mathematical model for computer virus propagation.
In this work, with the purpose to study the existence of periodic solutions for systems

of Equation (1), we consider a more general model by assuming that constants on the
assumptions (A2)–(A5) are time dependent real functions, i.e., the parameters b, p, q, p, α, β, γ,
χ, φ, δ, μ and ε are time dependent real functions. More precisely, we are motivated by the analysis of
the following generalized model:

dS(t)
dt

= p(t)b(t)− β(t)S(t)E(t)− φ(t)S(t)K(t)− μ(t)S(t), (2a)

dE(t)
dt

= q(t)b(t) + β(t)S(t)E(t)− α(t)E(t)− χ(t)E(t)− μ(t)E(t), (2b)

dI(t)
dt

= α(t)E(t)− δ(t)I(t)K(t)− γ(t)I(t)− ε(t)I(t)− μ(t)I(t), (2c)

dK(t)
dt

= δ(t)I(t)K(t) + γ(t)I(t) + χ(t)E(t)− μ(t)K(t), (2d)

dR(t)
dt

= φ(t)S(t)K(t) + ε(t)I(t)− μ(t)R(t). (2e)

We observe that the system in Equation (2) can be uncoupled in the study of the system in
Equation (2)a–e. Indeed, it is the strategy considered in [18] to analyze the stability. However, to study
the existence of periodic solutions is more convenient to consider the full system, since it is not
straightforward the fact that the existence of positive periodic solutions for Equation (2)a–d implies
the existence of positive periodic solution for Equation (2)e.

1.3. Reformulation of System in Equation (2) as Operator Equation

Firstly, we introduce a change of variable such that the system in Equation (2) is replaced by
an equivalent system. Then, we reformulate the new system as seen in Equation (4) as an operator
equation which will be analyzed by the topological degree theory.

For S, E, I, K and R satisfying the system in Equation (2), we consider the new functions
S∗, E∗, I∗, K∗ and R∗ defined explicitly by the relation

(S, E, I, K, R)(t) =
(

exp(S∗(t)), exp(E∗(t)), exp(I∗(t)), exp(K∗(t)), exp(R∗(t))
)

. (3)

Then, by differentiation in Equation (3) and using the fact that (S, E, I, K, R) satisfy the
mathematical model in Equation (2), we deduce that (S∗, E∗, I∗, K∗, R∗) is a solution of the system
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dS∗(t)
dt

= p(t)b(t) exp(−S∗(t))− β(t) exp(E∗(t))− φ(t) exp((K∗ − S∗)(t))− μ(t), (4a)

dE∗(t)
dt

= q(t)b(t) exp(−E∗(t)) + β(t) exp(S∗(t))− α(t)− χ(t)− μ(t), (4b)

dI∗(t)
dt

= α(t) exp((E∗ − I∗)(t))− δ(t) exp(K∗(t))− γ(t)− ε(t)− μ(t), (4c)

dK∗(t)
dt

= δ(t) exp(I∗(t)) + γ(t) exp((I∗ − K∗)(t)) + χ(t) exp((E∗ − K∗)(t))− μ(t). (4d)

dR∗(t)
dt

= φ(t) exp((K∗ + S∗ − R∗)(t)) + ε(t) exp((I∗ − R∗)(t))− μ(t). (4e)

Thus, our aim is to study the positive periodic solutions of Equation (2) equivalently replaced by
the analysis of positive periodic solution of the new system (4).

Theorem 1. Consider the sets of functions {S, E, I, K, R} and {S∗, E∗, I∗, K∗, R∗} are related by Equation (3).
Then, the functions S, E, I, K and R are a solution of the system in Equation (2) if and only if the functions
S∗, E∗, I∗, K∗ and R∗ are a solution of the system in Equation (4). In particular, we have that the following two
assertions are valid: (a) If S∗, E∗, I∗, K∗ and R∗ satisfying the system in Equation (4) are ω-periodic functions,
then the functions S, E, I, K and R satisfying the system in Equation (2) are ω-periodic; and (b) The existence of
a solution for the system in Equation (4) imply the existence of a positive solution for the system in Equation (2).

Proof. The proof fact that {S, E, I, K, R} is a solution of the system in Equation (2) if and only if
{S∗, E∗, I∗, K∗, R∗} is straightforward by the change of variable (3), differentiation and algebraic
rearrangements. Now, we get the proof of item (a) by using the change of variable (3), for illustration,
we consider the case of function S and we have that S(t + ω) = exp(S∗(t + ω)) = exp(S∗(t)) = S(t).
The item (b) is a straightforward consequence of the definition of the functions S∗, E∗, I∗, K∗ and R∗

given in Equation (3).

In order to define the operator equation, we consider the normed vector spaces X and Y and
introduce the operators L : Dom L ⊂ X → Y and N : X → Y explicitly defined by the relations

L
(
(x1, x2, x3, x4, x5)

T
)

=

(
dx1

dt
,

dx2

dt
,

dx3

dt
,

dx4

dt
,

dx5

dt

)T
(5)

N
(
(x1, x2, x3, x4, x5)

T
)

= (N1,N2,N3,N4, ,N5)
T , (6)

where

N1(t) = p(t)b(t) exp(−x1(t))− β(t) exp(x2(t))− φ(t) exp((x4 − x1)(t))− μ(t), (7)

N2(t) = q(t)b(t) exp(−x2(t)) + β(t) exp(x1(t))− α(t)− χ(t)− μ(t), (8)

N3(t) = α(t) exp((x2 − x3)(t))− δ(t) exp(x4(t))− γ(t)− ε(t)− μ(t), (9)

N4(t) = δ(t) exp(x3(t)) + γ(t) exp((x3 − x4)(t)) + χ(t) exp((x2 − x4)(t))− μ(t), (10)

N5(t) = φ(t) exp((x1 + x4 − x5)(t)) + ε(t) exp((x3 − x5)(t))− μ(t). (11)

The operator notation implies that the system in Equation (4) can be rewritten as the following
operator equation

L
(
(S∗, E∗, I∗, K∗, R∗)T

)
= N

(
(S∗, E∗, I∗, K∗, R∗)T

)
, (S∗, E∗, I∗, K∗, R∗) ∈ Dom L ⊂ X, (12)
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where the appropriate Banach spaces X and Y are defined by

X = Y =
{

xT ∈ C(R,R5) : x(t + ω) = x(t),
∥∥∥x
∥∥∥ =

5

∑
i=1

max
t∈[0,ω]

|xi(t)| < ∞
}

. (13)

Hereinafter we use the bold notation xT := (x1, x2, x3, x4, x5)
T . We notice that the spaces in

Equation (13) are the more convenient, since we are concerned with the analysis of ω-periodic solutions.
However, if the interest is to analyze other properties we should be consider a suitable definition of
X and Y.

1.4. Main Results

By convenience of presentation, we introduce the notation

f =
1
ω

∫ ω

0
f (t)dt, f⊥ = min

x∈[0,ω]
f (x), and f� = max

x∈[0,ω]
f (x), (14)

for any positive real valued bounded function f defined on [0, ω].
Let us consider the following assumption

The initial condition (S(0), E(0), I(0), K(0), R(0)) ∈ R5
+; the coefficient functions b, p,

q, α, β, γ, χ, φ, δ, μ and ε are positive, continuous, ω-periodic on [0, ω]; and there are the
strictly positive constants κ1 and κ2 such that
(pb)⊥ − φ�(φ⊥)−1b exp(2ωμ) ≥ κ1 > 0

1− ε�α�b
μ�(γ + ε + μ)⊥(α + χ + μ)⊥

exp
(

ω
[
(γ + ε + μ)� + φ�(φ⊥)−1b + μ�

])
≥ κ2 > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(15)

Then, the main result of the paper are given by the following three theorems.

Theorem 2. Let X and Y the spaces defined on Equation (13); Q : Y → Y defined by
Q(xT) = ω−1

∫ ω
0 x(τ)Tdτ; and the operators L : X → Y and N : X → Y defined on Equations (5) and (6),

respectively. Moreover, assume that the hypothesis in Equation (15) is satisfied. Then, there are the positive
constants ρ1, ρ2, ρ3, d1, d2, d3, δ1, δ2 and δ3, such that the following two assertions are valid

(a) If λ ∈]0, 1[ and x ∈ Dom L are such that L(x) = λN(x), the following inequalities

xi(t) < ln(ρi/ω) + di, i = 1, . . . , 5 (16)

ln(δi) < xi(t), i = 1, . . . , 5, (17)

holds for all t ∈ [0, ω].
(b) If x ∈ Ker L are such that QNx = 0, the following inequalities

xi(t) < ln(ρi/ω), i = 1, . . . , 5, (18)

ln(δi) < xi(t), i = 1, . . . , 5, (19)

holds for all t ∈ [0, ω].

Theorem 3. If the hypothesis in Equation (15) is satisfied, there exists at least one ω-periodic solution of
Equation (4).

Theorem 4. Consider that the hypothesis in Equation (15) is satisfied. Then, the system in Equation (2) has at
least one positive ω-periodic solution.
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1.5. Related Works

There are several works where the study of positive periodic solutions is developed, for instance
in [13,19–33]. In particular, recently in [13] was proved the existence of at one positive periodic solution
of the following system modeling the dynamics of a computer virus

dS(t)
dt

= b(t)− μ1(t)S(t)− β1(t)S(t)L(t)− β2(t)S(t)A(t) + γ1(t)L(t) + γ2(t)A(t),

dL(t)
dt

= β1(t)S(t)L(t) + β2(t)S(t)A(t) + α2(t)A(t)− [μ2(t) + α1(t) + γ1(t)]L(t),

dA(t)
dt

= α1(t)L(t)− [μ3(t) + α1(t) + γ2(t)]A(t),

by assuming that S(0), L(0) and A(0) are strictly positive and the functions b, μ1, μ2, μ3, β1, β2, γ1, γ2, α1

and α2 are positive, continuous, ω-periodic on [0, ω] and(
α1

α1 + μ2

)�
(α2 + γ2)

� < (μ3 + α2 + γ2)
⊥

We observe that S, L and A denotes the susceptible computers, the latent computers and the
infectious computers, respectively.

1.6. Outline of the Paper

The paper is organized as follows. In Section 2, we introduce some terminology related to
the coincidence degree theory and some useful results. In Sections 3–5 we develop the proof of
Theorems 2–4, respectively. Finally, in Section 6, we present an examples of a system with coefficients
satisfying Equation (15).

2. Preliminaries

In this paper, we utilize the standard notation and terminology of topological degree theory.
However, for self-contained presentation, we recall some notation, concepts and results related to the
statement of of Mawhin’s theorem, [34]. Moreover, we prove some properties for the operators L and
N defining on the operator Equation (12).

2.1. The Mawhin’s Continuation Theorem

Definition 1. Let X and Y be normed vector spaces and L : Dom L ⊂ X → Y a linear operator. Then, L is
called a Fredholm operator of index zero, if the following assertions

dim(Ker L) = codim(Im L) < ∞ and Im L is closed in Y, (20)

are valid.

Proposition 1. Let X and Y be normed vector spaces and L : Dom L ⊂ X → Y a linear operator. If L is
a Fredholm mapping of index zero, then

(i) There are two continuous projectors P : X → X and Q : Y → Y such that Im P = Ker L and
Im L = Ker Q = Im (I −Q).

(ii) LP := L|Dom L∩Ker P : (I − P)X → Im L is invertible and its inverse is denoted by KP.
(iii) There is an isomorphism J : Im Q → Ker L.

Definition 2. Let X and Y be normed vector spaces and L : Dom L ⊂ X → Y a Fredholm mapping of
index zero. Let P : X → X and Q : Y → Y be two continuous projectors such that Im P = Ker L and
Im L = Ker Q = Im (I − Q). Let us consider N : X → Y a continuous operator and Ω ⊂ X an open
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bounded set. Then, N is called L−compact on Ω if QN(Ω) is a bounded set and the operator KP(I −Q)N is
compact on Ω.

Definition 3. Let Ω ⊂ Rn be an open bounded set, f ∈ C1(Ω,Rn) ∩ C(Ω,Rn) and y ∈ Rn\ f (∂Ω ∪ Nf ),
i.e., y is a regular value of f . Here, Nf = {x ∈ Ω : J f (x) = 0} the critical set of f and J f the Jacobian of f
at x. Then, the degree deg{ f , Ω, y} is defined by deg{ f , Ω, y} = ∑x∈ f−1(y) sgnJ f (x), with the agreement
that ∑

∅
= 0.

Theorem 5. Assume that (X, ‖.‖X) and (Y, ‖.‖Y) are two Banach spaces and Ω is an open bounded set.
Consider that L : Dom L ⊂ X → Y be a Fredholm mapping of index zero and N : X → Y be L-compact on Ω.
If the following hypotheses

(C1) Lx �= λNx for each (λ, x) ∈]0, 1[×(∂Ω ∩Dom L).
(C2) QNx �= 0 for each x ∈ ∂Ω ∩Ker L.
(C3) deg(JQN, Ω ∩Ker L, 0) �= 0.

are valid. Then the operator equation Lx = Nx has at least one solution in Dom L ∩Ω.

2.2. L Is a Fredholm Operator of Index Zero

Lemma 1. The operator L : Dom L ⊂ X → Y defined on Equation (5), with X and Y the Banach spaces given
on Equation (13), is a Fredholm operator of index zero. Moreover the sets Ker L and Im L are characterized by

Ker L ∼= R5 and Im L =
{

y ∈ Y :
∫ ω

0 y(τ)Tdτ = 0
}

, respectively.

Proof. In order to prove the Lemma we apply the Definition 1 or more precisely we prove that L
satisfy Equation (20).

The left condition in Equation (20) is proved as follows. Let (s0, l0, i0, k0, r0) ∈ R5 such that
x(t0) = (s0, l0, i0, k0, r0), we observe that xT ∈ Ker L is equivalent to x(t) = (s0, l0, i0, k0, r0) for all
t ≥ t0. Then, we have that Ker L ∼= R5. Now, if we select arbitrarily yT ∈ Im L, we have that
there is x ∈ Dom L such that LxT = yT . Then, from Equation (5) and ω-periodic behavior of x,

we deduce that
∫ t+ω

t y(τ)Tdτ = 0 for each t ≥ t0 or equivalently Im L =
{

y ∈ Y :
∫ ω

0 y(τ)Tdτ = 0
}

.

Now, by linear algebra results, we recall the existence of isomorphisms X ∼= Im L ⊕ (X/Im L),
X ∼= Ker L⊕ (X/Ker L), and Im L ∼= X/Ker L. Thus, we have that Ker L ∼= X/Im L and we get that
dim(Ker L) = codim(Im L) = 4.

To prove the left condition in Equation (20) we introduce the linear continuous mapping
F : Im L ⊂ Y → R5 defined by F(xT) =

∫ ω
0 xT(τ)dτ and observe that F−1(0) = Im L. Thus, clearly

Im L is a closed set of the space Y.

2.3. Construction of the Projectors P, Q and the Operator KP

We remark that the existence of three abstract projectors P, Q and KP associated to L, is guaranteed
by Proposition 1. However, by convenience of some calculus in the following sections we introduce
explicitly the definitions of P and Q given by

P : X → X, Q : Y → Y, P
(

xT
)
= Q

(
xT
)
=

1
ω

∫ ω

0
x(τ)Tdτ (21)

and notice that satisfy the relations in Proposition 1. More precisely, we have that

(a) Ker L = Im P. We prove that Ker L ⊂ Im P as follows: from the isomorphism Ker L ∼= R5

given on Lemma 1, we observe that xT ∈ Ker L is equivalent to the fact that x(t) is constant for
all t ≥ t0, which at the same time implies that x ∈ Im P, since for x(t) constant we have that
P
(
xT) = xT Conversely, the proof of the inclusion Im P ⊂ Ker L is deduced by the following
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facts: for yT ∈ Im P there is z ∈ X such that P(zT) = yT and from Equation (21) we obtain that
ω−1

∫ ω
0 z(τ)Tdτ = yT which implies by differentiation the fact that L(yT) = 0 or y ∈ Ker L.

(b) Ker Q = Im L. From the definition of Q given in Equation (21) we have that yT ∈ Ker Q is
equivalent to

∫ ω
0 y(τ)Tdτ = 0 and from the characterization of Im L given on Lemma 1 is at the

same time equivalent to yT ∈ Im L.
(c) Im (I −Q) = Im L. Let yT ∈ Im (I − Q), then there is z ∈ X such that (I − Q)

(
zT
)

= yT ,
which implies that

∫ ω

0
y(τ)Tdτ =

∫ ω

0

(
z(τ)T − 1

ω

∫ ω

0
z(m)Tdm

)
dτ = (0, 0, 0, 0)

and, from the characterization of Im L given on Lemma 1, we get that y(τ)T ∈ Im L.
Thus, we obtain that Im (I −Q) ⊂ Im L. By analogous arguments, we can prove the inclusion
Im L ⊂ Im (I −Q).

(d) Operators KP and LP. The notation LP is is introduced for the restriction of L to Dom L ∩Ker P,
i.e., LP is the operator defined from Dom L ∩ Ker P to Im L and LP = L on Dom L ∩ Ker P.
The symbol KP is used to denote the inverse of LP, and is precisely defined as the operator
such that

KP

(
xT
)
(t) =

∫ t

0
x(τ)Tdτ − 1

ω

∫ ω

0

∫ η

0
x(m)Tdmdη. (22)

We notice that, we can prove that the operator KP is the inverse of the operator LP by application
of the following identity

∫ t

0

d
ds

x(s)ds− 1
ω

∫ ω

0

∫ t

0

d
dm

x(m)dmdt = x(t),

which is valid only for all xT ∈ Dom L ∩Ker P.

Thus, the projectors P and Q defined on Equation (21) satisfy the Proposition 1, since we can
follow (i) and (ii) are satisfied from (a)–(c) and (d), respectively.

2.4. N Defined on Equation (6) Is a Continuous Operator

Lemma 2. The operator N : X → Y defined on Equation (5), with X and Y the Banach spaces given on
Equation (13), is a continuous operator.

Proof. Let us choose arbitrarily the sequence {xn} ⊂ X which converges to x in the norm induced
topology of X. By the definition of N given on Equation (6) and applying componentwise the inequality

| exp(z2)− exp(z1)| =
∣∣∣∣∫ z1

z2

exp(s)ds
∣∣∣∣ ≤ max

{
exp(z1), exp(z2)

}
|z2 − z1|, ∀z1, z2 ∈ R,

we get the existence of C > 0 depending only on b, μ1, β1, β2, γ1, γ2, α1 and α2 such that
‖N(xn)− N(x)‖ ≤ C‖xn − x‖. Thus, the sequence {N(xn)} ⊂ X converges to N(x) in the topology of
X induced by the norm. Hence, we can deduce that N is a continuous operator.

2.5. N Defined on Equation (6) Is L-Compact on any Ball of X Centered at (0, 0, 0, 0, 0).

Lemma 3. Assuming that h ∈ R+ is an arbitrary and fix number defining the radius h of an open ball of X
centered at (0, 0, 0, 0, 0), denoted by Ω ⊂ X, i.e.,

Ω =
{
(x1, x2, x3, x4, x5) ∈ X : ‖(x1, x2, x3, x4, x5)‖ < h

}
. (23)
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Moreover, consider L and N defined on Eqautions (5) and (6), respectively. If the assumption in Equation (15) is
satisfied, the operator N is L-compact on Ω.

Proof. The proof is focused in the verification of the fact that L satisfy the two requirements of
Definition 2: QN(Ω) is a bounded set and KP(I −Q)N is a compact operator on Ω, since Ω is an open
bounded set by the its definition given on Equation (23) and L is a Fredholm operator of index zero by
application of Lemma 1.

To prove that QN(Ω) is bounded we proceed as follows. We observe that

QN(xT) =
1
ω

∫ ω

0
N(τ)Tdτ. (24)

Then, for x ∈ Ω we have that ‖QN(xT)‖ ≤ 1
ω

∫ ω
0 ‖N‖dτ = ‖N‖, which implies that QN(Ω)

is bounded.
In order to prove that KP(I − Q)N is a compact operator on Ω, we observe that from

Equations (6), (21) and (22) we get

(KP(I −Q)N)(xT)(t) =
∫ t

0
N(τ)Tdτ +

(
1
2
− t

ω

) ∫ ω

0
N(τ)Tdτ − 1

ω

∫ ω

0

∫ η

0
N(m)Tdmdη.

Then, we deduce that ‖KP(I − Q)N‖ ≤ 2ω‖N‖, as a result we have that (KP(I − Q)N)(Ω) is
a bounded, since the operator N is bounded on Ω. Moreover, we can prove the bound

|(KP(I −Q)N)(xT)(t)− (KP(I −Q)N)(xT)(s)| ≤ 2‖N‖ |t− s|, ∀t, s ∈ [t0, ∞[,

i.e., KP(I − Q)N is an equicontinuous operator. Hence, by Arzela Ascoli’s theorem we get that
KP(I −Q)N is a compact operator on Ω.

2.6. A Useful Auxiliary Result

Proposition 2. [13] Let ψ : [0, ω] ⊂ R+ → R be an absolutely continuous function satisfying the
differential inequality

d
dt

ψ(t) + m(t)ψ(t) ≥ 0, ∀t ∈ [0, ω], (25)

with m ∈ L1([0, ω]) such that 0 < m1 ≤ m(t) ≤ m2 for all t ∈ [0, ω] and for some positive constants m1

and m2. Then, if ψ(0) > 0 we have that ψ(t) ≥ ψ(0) exp(−m2ω) > 0 for all t ∈ [0, ω].

3. Proof of Theorem 2

3.1. Four Useful Lemmata

We introduce four Lemmmata related with some estimates for the operator equation Lx = λNx,
which is equivalent to the following system
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dx1

dt
= λ [pb exp(−x1)− β exp(x2)− φ exp(x4 − x1)− μ] , (26a)

dx2

dt
= λ [qb exp(−x2) + β exp(x1)− α− χ− μ] , (26b)

dx3

dt
= λ [α exp(x2 − x3)− δ exp(x4)− γ− ε− μ] , (26c)

dx4

dt
= λ [δ exp(x3) + γ exp(x3 − x4) + χ exp(x2 − x4)− μ] , (26d)

dx5

dt
= λ [φ exp(x1 + x4 − x5) + ε exp(x3 − x4)− μ] , (26e)

and also can be rewritten as the system

d
dt

exp(x1) + λμ exp(x1) = λ [pb− β exp(x1 + x2)− φ exp(x4)] , (27a)

d
dt

exp(x2) + λ(α + χ + μ) exp(x2) = λ [qb + β exp(x1 + x2)] , (27b)

d
dt

exp(x3) + λ(γ + ε + μ) exp(x3) = λ [α exp(x2)− δ exp(x3 + x4)] , (27c)

d
dt

exp(x4) + λμ exp(x4) = λ [δ exp(x3 + x4) + γ exp(x3) + χ exp(x2)] , (27d)

d
dt

exp(x5) + λμ exp(x5) = λ [φ exp(x1 + x4) + ε exp(x3 − x4 + x5)] . (27e)

We notice that to deduce Equation (27) we multiply the i-th equation of the system in Equation (26)
by exp(xi). Thus, the proof of estimates for Lx = λNx is focused in to get the estimates of the solutions
of Equation (26) (or equivalently of Equation (27)).

Lemma 4. Assume that (S(0), E(0), I(0), K(0), R(0)) ∈ R5
+; the coefficient functions b, p, q, α, β, γ, χ, φ, δ, μ

and ε are positive, continuous and ω-periodic on [0, ω]; and the operators L : Dom L ⊂ X → Y and defined
on Equations (5) and (6), with X and Y the Banach spaces given on Equation (13). Then, the solution of the
operator equation Lx = λNx with λ ∈]0, 1[ satisfy the following inequalities

exp(x2(t)) ≥ exp
(

E(0)− (α + χ + μ)�ω
)

, (28)

exp(x4(t)) ≥ exp
(

K(0)− μ�ω
)

, (29)

exp(x5(t)) ≥ exp
(

R(0)− μ�ω
)

, (30)

(pb)⊥ ≤
[
μ� + β� max

t∈[0,ω]
exp(x2(t))

]
exp(x1(t)) + φ� max

t∈[0,ω]
exp(x4(t)), (31)

α⊥ exp
(

E(0)− (α + χ + μ)�ω
)
≤
[
(γ + ε + μ)� + δ� max

t∈[0,ω]
exp(x4(t))

]
exp(x3(t)), (32)

for any t ∈ [0, ω].

Proof. By the continuity of the coefficient functions and the fact that λ ∈]0, 1[, we have that
λ(α + χ + μ)(t) ∈ [λ(α + χ + μ)⊥, (α + χ + μ)�] ⊂ R+ and λμ(t) ∈ [λμ⊥, μ�] ⊂ R+, for any
t ∈ [0, ω]. Then, we can prove Equations (28)–(30), by straightforward application of Proposition 2 to
Equations (27)b,d,e, respectively, since we have that
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exp(x2(t)) ≥ exp(x2(0)) exp(−(α + χ + μ)�ω) = exp
(

E(0)− (α + χ + μ)�ω
)

,

exp(x4(t)) ≥ exp(x4(0)) exp(−μ�ω) = exp
(

K(0)− μ�ω
)

,

exp(x5(t)) ≥ exp(x5(0)) exp(−μ�ω) = exp
(

R(0)− μ�ω
)

,

for any t ∈ [0, ω]. Now, to prove Equations (31) and (32), for i = 1, 3, we introduce the notation
τi ∈ [0, ω] for the points where xi has a minimum. Then, using the notation in Equation (14),
from Equations (27)a,c, and (28) we get

(pb)⊥ ≤ (pb)(τ1)

= μ(τ1) exp(x1(τ1)) + β(τ1) exp((x1 + x2)(τ1)) + φ(τ1) exp(x4(τ1))

=
[
μ(τ1) + β(τ1) exp(x2(τ1))

]
exp(x1(τ1)) + φ(τ1) exp(x4(τ1))

≤
[
μ� + β� max

t∈[0,ω]
exp(x2(t))

]
exp(x1(t)) + φ� max

t∈[0,ω]
exp(x4(t)),

α⊥ exp
(

E(0)− (α + χ + μ)�ω
)
≤ α(τ3) exp(x2(τ3))

= (γ + ε + μ)(τ3) exp(x3(τ3)) + δ(τ3) exp((x3 + x4)(τ3))

≤
[
(γ + ε + μ)� + δ� max

t∈[0,ω]
exp(x4(t))

]
exp(x3(t)),

for any t ∈ [0, ω].

Lemma 5. Assume that hypotheses of Lemma 4. Then, the solution of the operator equation Lx = λNx with
λ ∈]0, 1[ satisfy the integral inequalities

∫ ω

0
exp(x1(t))dt ≤ ωb

μ⊥
, (33)

∫ ω

0
exp(x2(t))dt ≤ ωb

(α + χ + μ)⊥
, (34)

∫ ω

0
exp(x3(t))dt ≤ ωα�b

(α + χ + μ)⊥(γ + ε + μ)⊥
, (35)

∫ ω

0
exp(x4(t))dt ≤ ωb

φ⊥
, (36)

∫ ω

0
exp(x5(t))dt ≤ ωbφ�

μ⊥φ⊥
max

t∈[0,ω]
exp(x1(t)) +

ε� maxt∈[0,ω] exp(x3(t))

μ⊥ exp(K(0)− μ�ω)

∫ ω

0
exp(x5(t))dt. (37)
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Proof. We integrate the equations of the system in Equation (27) on [0, ω] and using the ω-periodicity
of x we deduce the following identities∫ ω

0
p(t)b(t)dt =

∫ ω

0
[β(t) exp((x1 + x2)(t)) + φ(t) exp(x4(t)) + μ(t) exp(x1(t))] dt, (38a)∫ ω

0
q(t)b(t)dt =

∫ ω

0
[−β(t) exp((x1 + x2)(t)) + (α + χ + μ)(t) exp(x2(t))] dt, (38b)∫ ω

0
α(t) exp(x2(t))dt =

∫ ω

0
[δ(t) exp((x3 + x4)(t)) + (γ + ε + μ)(t) exp(x3(t))] dt, (38c)∫ ω

0
μ(t) exp(x4(t))dt =

∫ ω

0
[δ(t) exp((x3 + x4)(t)) + γ(t) exp(x3(t)) + χ(t) exp(x2(t))] dt, (38d)∫ ω

0
μ(t) exp(x5(t))dt =

∫ ω

0
[φ(t) exp((x1 + x4)(t)) + ε(t) exp((x3 − x4 + x5)(t))] dt. (38e)

Then, adding Equation (38)a,b, using the ω-periodicity of x1 and x2, and the fact that
p(t) + q(t) = 1, we deduce that∫ ω

0
b(t)dt =

∫ ω

0
[μ(t) exp(x1(t)) + {α(t) + χ(t) + μ(t)} exp(x2(t)) + φ(t) exp(x4(t))] dt,

which implies Equations (33), (34) and (36), since, by the positivity of α, χ, μ and φ and the notation in
Equation (14), we get the inequalities∫ ω

0
exp(x1(t))dt ≤ 1

min
t∈[0,ω]

μ(t)

∫ ω

0
μ(t) exp(x1(t))dt

≤ 1
μ⊥

∫ ω

0
[μ(t) exp(x1(t)) + {α(t) + χ(t) + μ(t)} exp(x2(t)) + φ(t) exp(x4(t))] dt

=
1

μ⊥

∫ ω

0
b(t)dt =

ωb
μ⊥

,∫ ω

0
exp(x2(t))dt ≤ 1

min
t∈[0,ω]

(α + χ + μ)(t)(t)

∫ ω

0
(α + χ + μ)(t) exp(x2(t))dt

≤ 1
(α + χ + μ)⊥

∫ ω

0
[μ(t) exp(x1(t)) + {α(t) + χ(t) + μ(t)} exp(x2(t)) + φ(t) exp(x4(t))] dt

=
1

(α + χ + μ)⊥

∫ ω

0
b(t)dt =

ωb
(α + χ + μ)⊥

,∫ ω

0
exp(x4(t))dt ≤ 1

min
t∈[0,ω]

φ(t)

∫ ω

0
φ(t) exp(x4(t))dt

≤ 1
φ⊥

∫ ω

0
[μ(t) exp(x1(t)) + {α(t) + χ(t) + μ(t)} exp(x2(t)) + φ(t) exp(x4(t))] dt

=
1

φ⊥

∫ ω

0
b(t)dt =

ωb
φ⊥

.
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The inequality in Equation (35) is a consequence of Equations (38)c and (34), since∫ ω

0
exp(x3(t))dt ≤ 1

min
t∈[0,ω]

(γ + ε + μ)(t)

∫ ω

0
(γ + ε + μ)(t) exp(x3(t))dt

≤ 1
(γ + ε + μ)⊥

∫ ω

0
[δ(t) exp((x3 + x4)(t)) + (γ + ε + μ)(t) exp(x3(t))] dt

=
1

(γ + ε + μ)⊥

∫ ω

0
α(t) exp(x2(t))dt

≤ ωα�b
(γ + ε + μ)⊥(α + χ + μ)⊥

·

Now, from Equations (38)e, (36) and (32), we deduce the following estimate

μ⊥
∫ ω

0
exp(x5(t))dt ≤

∫ ω

0
μ(t) exp(x5(t))dt

=
∫ ω

0

[
φ(t) exp((x1 + x4)(t)) + ε(t) exp((x3 − x4 + x5)(t))

]
dt

≤ ωbφ�

φ⊥
max

t∈[0,ω]
exp(x1(t)) + ε�

maxt∈[0,ω] exp(x3(t))
mint∈[0,ω] exp(x4(t))

∫ ω

0
exp(x5(t))dt

≤ ωbφ�

φ⊥
max

t∈[0,ω]
exp(x1(t)) + ε�

maxt∈[0,ω] exp(x3(t))

exp(K(0)− μ�ω)

∫ ω

0
exp(x5(t))dt,

which implies Equation (37).

Lemma 6. Assume that hypotheses of Lemma 4. Then, the solution of the operator equation Lx = λNx with
λ ∈]0, 1[ satisfy the integral inequalities

∫ ω

0

∣∣∣∣dx1

dt
(t)

∣∣∣∣ dt ≤ 2ωb max
t∈[0,ω]

exp(−x1(t)), (39)∫ ω

0

∣∣∣∣dx2

dt
(t)

∣∣∣∣ dt < 2ω(α + χ + μ)�, (40)∫ ω

0

∣∣∣∣dx3

dt
(t)

∣∣∣∣ dt < 2ω
(
(γ + ε + μ)� + δ�b(φ�)−1

)
, (41)∫ ω

0

∣∣∣∣dx4

dt
(t)

∣∣∣∣ dt < 2ωμ, (42)∫ ω

0

∣∣∣∣dx5

dt
(t)

∣∣∣∣ dt < 2ωμ max
t∈[0,ω]

exp(x4(t)− x5(t)). (43)

Proof. We integrate the system in Equation (26) on [0, ω] and by using the ω-periodicity behavior of x,
we have that∫ ω

0
p(t)b(t) exp(−x1(t))dt =

∫ ω

0
[β(t) exp(x2(t))− φ(t) exp(x4(t)− x1(t))− μ(t)] dt, (44a)∫ ω

0
[q(t)b(t) exp(−x2(t)) + β(t) exp(x1(t))] dt =

∫ ω

0
[α(t) + χ(t) + μ(t)] dt, (44b)∫ ω

0
[α(t) exp (x2(t)− x3(t))− δ(t) exp(x4(t))] dt =

∫ ω

0
[γ(t) + ε(t) + μ(t)] dt, (44c)∫ ω

0
[δ(t) exp(x3(t)) + γ(t) exp(x3(t)− x4(t)) + χ(t) exp(x2(t)− x4(t))] dt =

∫ ω

0
μ(t)dt, (44d)∫ ω

0
φ(t) exp(x1(t) + x4(t)− x5(t)) + ε(t) exp(x3(t)− x4(t))− μ(t) exp(x4(t)− x5(t))dt = 0. (44e)
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Then, taking the modulus of the each equations defining the system in Equation (26); integrating
each resulting equations on [0, ω]; using the information that λ ∈]0, 1[; employing the relations of
Equation (44); and applying the inequalities on Lemmas 4 and 5, we obtain the following estimates

∫ ω

0

∣∣∣∣dx1

dt
(t)

∣∣∣∣ dt < 2
∫ ω

0
p(t)b(t) exp(−x1(t))dt ≤ 2ωb max

t∈[0,ω]
exp(−x1(t)),∫ ω

0

∣∣∣∣dx2

dt
(t)

∣∣∣∣ dt < 2
∫ ω

0
(α + χ + μ)(t)dt ≤ 2ω(α + χ + μ)�,∫ ω

0

∣∣∣∣dx3

dt
(t)

∣∣∣∣ dt < 2
∫ ω

0
[(γ + ε + μ)(t) + δ(t) exp(x4(t))] dt

≤ 2ω
(
(γ + ε + μ)� + δ�b(φ�)−1

)
,∫ ω

0

∣∣∣∣dx4

dt
(t)

∣∣∣∣ dt < 2
∫ ω

0
μ(t)dt = 2ωμ,∫ ω

0

∣∣∣∣dx5

dt
(t)

∣∣∣∣ dt < 2
∫ ω

0
μ(t) exp(x4(t)− x5(t))dt

≤ 2ωμ max
t∈[0,ω]

exp(x4(t)− x5(t)),

which conclude the proof of lemma.

Lemma 7. Assume that hypotheses of Lemma 4. Moreover consider that the hypotheses (15) and x is the
solution of the operator equation Lx = λNx with λ ∈]0, 1[ the following estimates

there exists δi > 0 such that exp(xi(t)) > δi, t ∈ [0, ω], i = 1, . . . , 5, (45)

there exists ρi > 0 such that
∫ ω

0
exp(xi(t))dt < ρi, i = 1, . . . , 5, (46)

there exists di > 0 such that
∫ ω

0

∣∣∣∣dxi
dt

(t)
∣∣∣∣ dt < di, i = 1, . . . , 5, (47)

are satisfied. In particular, maxt∈[0,ω] exp(xi(t)) ≤ ρi(ω)−1 exp(di) and xi(t) < ln(ρi/ω) + di for
t ∈ [0, ω] and i = 1, . . . , 5.

Proof. We get the proof by application of Lemmas 4, 5 and 6, and the hypotheses in Equation (15).
We notice that we can prove some relations in Equations (45)–(47) by a straightforward consequence of
Lemmas 4, 5 and 6. More precisely, we can deduce

(45) for i = 2, 4, 5, with δ2 = exp
(
− (α + χ + μ)�ω

)
, δ4 = exp

(
− μ�ω

)
, δ5 = δ4; (48)

(46) for i = 1, 2, 3, 4, with ρ1 =
ωb
μ⊥

, ρ2 =
ωb

(α + χ + μ)⊥
, ρ3 =

α�ρ2

(γ + ε + μ)⊥
, ρ4 =

ωb
φ⊥

; (49)

(47) for i = 2, 3, 4, with d2 = 2ω(α + χ + μ)�, d3 = 2
(

ω(γ + ε + μ)� + δ�ρ4

)
, d4 = 2ωμ; (50)

from Equations (28)–(30); (33)–(36); and (40)–(42); respectively. Meanwhile, to prove the remaining
inequalities we proceed as follows:

(i) we prove that maxt∈[0,ω] exp(xi(t)) ≤ ρi(ω)−1 exp(di) for i = 2, 3, 4;
(ii) we prove Equation (45) for i = 1, 3;

(iii) we prove Equation (47) for i = 1;
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(iv) we prove Equation (46) for i = 5;
(v) we prove Equation (47) for i = 5.

Proof of (i). From Equation (49) and the intermediate value for integrals we can deduce that there exist
ξi ∈ [0, ω] satisfying the inequality xi(ξi) < ln(ρi/ω) for i = 2, 3, 4. Then, by the fundamental theorem
of calculus and Equation (50), we deduce that

xi(t) = xi(ξi) +
∫ t

ξi

dxi
dt

(t)dt < ln(ρi/ω) +
∫ t

ξi

dxi
dt

(t)dt < ln(ρi/ω) + di, i = 2, 3, 4,

for any t ∈ [0, ω], which clearly implies (i).

Proof of (ii). We notice that the assertion proved in (i) for i = 2, 4 and Equation (31) imply that

(pb)⊥ ≤
[
μ� + β�ρ2(ω)−1 exp(d2)

]
exp(x1(t)) + φ�ρ4(ω)−1 exp(d4), (51)

for any t ∈ [0, ω]. By hypotheses in Equation (15) we have that (pb)⊥ − φ�ρ4(ω)−1 exp(d4) ≥ κ1,
then Equation (51) implies Equation (45) for i = 1 with δ1 = κ1[μ

� + β�ρ2(ω)−1 exp(d2)]
−1.

Now, from the assertion proved in (i) for i = 4 and Equation (32) we can deduce Equation (45)

for i = 3 with δ3 = α⊥
[
(γ + ε + μ)� + δ�ρ4(ω)−1 exp(d4)

]−1
.

Proof of (iii). From Equation (48) and Lemma 6, we can follow that Equation (47) for i = 1 is satisfied
with d1 = 2ωb/δ1.

Proof of (iv). Form similar arguments and notation to the proof of step (i), Equation (47) and
Equation (47) for i = 1, we can deduce that

x1(t) = x1(ξ1) +
∫ t

ξ1

dx1

dt
(t)dt < ln(ρ1/ω) +

∫ t

ξ1

dx1

dt
(t)dt < ln(ρ1/ω) + d1,

for some ξ1 ∈ [0, ω] and any t ∈ [0, ω]. Then, maxt∈[0,ω] exp(x1(t)) ≤ ρ1(ω)−1 exp(d1).
Now, from Equation (37) and the assertion proved in (i) for i = 3 we deduce that

∫ ω

0
exp(x5(t))dt ≤ ωbφ�

μ⊥φ⊥
max

t∈[0,ω]
exp(x1(t)) +

ε� maxt∈[0,ω] exp(x3(t))

μ⊥ exp(K(0)− μ�ω)

∫ ω

0
exp(x5(t))dt

≤ ωbφ�ρ1

μ⊥φ⊥ω
exp(d1) +

ε�ρ3 exp(d3)

μ⊥ω exp(−μ�ω)

∫ ω

0
exp(x5(t))dt. (52)

Thus, the hypotheses in Equation (15) implies

κ2

∫ ω

0
exp(x5(t))dt ≤

(
1− ε�ρ3 exp(d3)

μ⊥ω exp(−μ�ω)

)∫ ω

0
exp(x5(t))dt (53)

≤ ωbφ�ρ1

μ⊥φ⊥ω
exp(d1), (54)

which implies Equation (46) for i = 5 with ρ5 = ωbφ�ρ1 exp(d1)
[
μ⊥φ⊥ωκ2

]−1.
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Proof of (iv). From (i) with i = 4 and Equation (48)

∫ ω

0

∣∣∣∣dx5

dt
(t)

∣∣∣∣ dt < 2ωμ max
t∈[0,ω]

exp(x4(t)− x5(t))

≤ 2μρ exp(d4)

d5
:= d5.

Then, Equation (47) for i = 5 is satisfied.
Summarizing we have that Equation (45) is followed by Equation (48) and (ii); Equation (46) is a

consequence of Equation (49) and (iv); and Equation (47) is proved from Equation (50), and (iii) and
(v). Moreover, we observe that a sequence of similar arguments and notation to the proof of step (i),
Equations (47) and (47) for i = 5, implies that

x5(t) = x5(ξ5) +
∫ t

ξ5

dx5

dt
(t)dt < ln(ρ5/ω) +

∫ t

ξ5

dx5

dt
(t)dt < ln(ρ5/ω) + d5,

for some ξ5 ∈ [0, ω] and any t ∈ [0, ω]. Then, maxt∈[0,ω] exp(x5(t)) ≤ ρ5(ω)−1 exp(d5). Then, we get
the additional and particular inequalities are followed from (i) and (iv).

3.2. Proof of (a)

We can prove the estimate in Equation (17) by application of Lemma (7).

3.3. Proof of (b)

If x ∈ Ker L, then by the results of Section 2.3, we have that x(t) ∈ R5 is constant for any t ∈ [0, ω].
By notational convenience we consider that x(t) = (S0, E0, I0, K0, R0). Then, from Equation (24) the
condition QN(xT) = QN((S0, E0, I0, K0, R0)

T) = 0 implies that

0 = pb exp(−S0)− β exp(E0)− φ exp(K0 − S0)− μ, (55a)

0 = qb exp(−E0) + β exp(S0)− α− χ− μ, (55b)

0 = α exp(E0 − I0)− δ exp(K0)− γ− ε− μ, (55c)

0 = δ exp(I0) + γ exp(I0 − K0) + χ exp(E0 − K0)− μ, (55d)

0 = φ exp(S0 + K0 − R0) + ε exp(I0 − R0)− μ. (55e)

Then, from Equation (55) and following similar arguments to the proof of Lemma 7, we can
deduce that in this case an inequality of the type in Equation (46) is also valid, i.e.,

exp(S0) <
ρ1

ω
, exp(E0) <

ρ2

ω
exp(I0) <

ρ3

ω
, exp(K0) <

ρ4

ω
and exp(R0) <

ρ5

ω
·

which implies Equation (18). Moreover, from Lemma 7 and the fact that Ker L ⊂ Dom L, we can
deduce that

exp(S0) > δ1, exp(E0) > δ2, exp(I0) > δ3, exp(K0) > δ4, and exp(R0) > δ5·

Thus, the inequality in Equation (19) is also satisfied.
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4. Proof of Theorem 3

4.1. A Previous Lemma

Lemma 8. Let X and Y be the spaces defined on Equation (13); Ω ⊂ X the open ball centered at (0, 0, 0, 0, 0)
with radius

h =
3

∑
i=1

max
{∣∣∣ ln(δi)

∣∣∣, ∣∣∣∣ln( ρi
ωi

)∣∣∣∣+ di

}
, (56)

where δi, ρi and di are defined in the proof of Lemma 7; and L, N and Q the operators defined on Equations (5),
(6) and (21), respectively. If Equation (15) is satisfied, the operators L and N satisfy the properties (C1)–(C3) of
Theorem 5.

Proof. We prove (C1) and (C2) by contradiction argument and we prove (C3) by application of
invariance property of the topological degree. Indeed, we have that

(C1) Let us assume that there are δ ∈]0, 1[ and x ∈ ∂Ω ∩ Dom L such that Lx = δNx. Then, by
application of Theorem 2-(a) we deduce that x ∈ Int Ω which is a contradiction to the assumption
that x ∈ ∂Ω.

(C2) Let us assume that there is x ∈ ∂Ω ∩ Ker L such that QNx = 0. Then, by application of
Theorem 2-(b) we deduce that x ∈ Int Ω which is a contradiction to the assumption that x ∈ ∂Ω.

(C3) Let us define the mapping Φ : Dom L× [0, 1]→ X by the following relation

Φ(x, υ) =

⎡⎢⎢⎢⎢⎢⎣
pb exp(−x1)− β exp(x2)− φ exp(x4 − x1)− μ

qb exp(−x2)− α + χ + μ

α exp(x2 − x3)− δ exp(x4)− γ + ε + μ

δ exp(x3) + χ exp(x2 − x4)− μ

exp(x1 + x4 − x5)− μ

⎤⎥⎥⎥⎥⎥⎦+ υ

⎡⎢⎢⎢⎢⎢⎣
0
β exp(x1)

0
γ exp(x3 − x4)

ε exp(x3 − x5)

⎤⎥⎥⎥⎥⎥⎦ .

We prove that Φ(x, υ) �= 0 when xT ∈ ∂Ω ∩ Ker L and υ ∈ [0, 1]. From Lemma 1 we
recall that xT(t) = (S0, E0, I0, K0, R0) ∈ R5 is a constant. Let us consider that the conclusion
is false, then the constant vector (S0, E0, I0, K0, R0)

T with ‖(S0, E0, I0, K0, R0)‖ = h satisfies
Φ(S0, E0, I0, K0, R0, υ) = 0, that is,

0 = pb exp(−S0)− β exp(E0)− φ exp(K0 − S0)− μ,

0 = qb exp(−E0)− α + χ + μ + υβ exp(S0),

0 = α exp(E0 − I0)− δ exp(K0)− γ + ε + μ,

0 = δ exp(I0) + χ exp(E0 − K0)− μ + υγ exp(I0 − K0),

0 = φ exp(S0 + K0 − R0)− μ + υε exp(I0 − R0).

Then, by following similar reasoning steps to the proof of Theorem 2-(a) we get that
‖(S0, E0, I0, K0, R0)

T‖ < h, which contradicts to the assumption that ‖(S0, E0, I0, K0, R0)
T‖ = h.

Let us consider J = I : Im Q → Ker L such that xT �→ xT , then by applying the Homotopy
Invariance Theorem of Topology Degree, using the fact that the system

0 = pb exp(−x1(t))− β exp(x2(t))− φ exp(x4(t)− x1(t))− μ,

0 = qb exp(−x2(t)) + β exp(x1(t))− α + χ + μ,

0 = α exp(x2(t)− x3(t))− δ exp(x4(t))− γ + ε + μ,

0 = δ exp(x3(t)) + χ exp(x2(t)− x4(t)) + γ exp(x3(t)− x4(t))− μ,

0 = φ exp(x1(t) + x4(t)− x5(t)) + ε exp(x3(t)− x5(t))− μ.
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has a unique solution x�T ∈ ∂Ω ∩Ker L, noticing that the determinant of the Jacobian of Φ at
x�T is given by∣∣∣JΦ(x

�T)
∣∣∣ = −[φ exp(x�1 + x�4 − x�5) + ε exp(x�3 − x�5)

](
Π1 + Π2),

with Π1 and Π2 the positive functions

Π1 =
[
− β exp(x�2)− μ

][
− qb exp(x�2)

][
α exp(x�2 − x�3)

(
χ exp(x�2 − x�4) + γ exp(x�3 − x�4)

)
+ δ exp(x�4)

(
δ exp(x�3) + γ exp(x�3 − x�4)

)]
Π2 =− β exp(x�1)

{[
− β exp(x�2)

][
α exp(x�2 − x�3)

(
χ exp(x�2 − x�4) + γ exp(x�3 − x�4)

)
+ δ exp(x�4)

(
δ exp(x�3) + γ exp(x�3 − x�4)

)]
+
[
− φ exp(x�2 − x�1)

]
[
α exp(x�2 − x�3)

(
δ exp(x�3) + γ exp(x�3 − x�4)

)
+ χα exp(2x�2 − x�3 − x�4)

]]}
,

and by Definition 3, we have that

deg
(

JQN(xT , Ω ∩Ker L, 0T
)
= deg

(
Φ(x, 1), Ω ∩Ker L, 0T

)
= sgn

∣∣∣JΦ(x
�T)

∣∣∣ = −1.

Hence, we get that deg(JQN, Ω ∩Ker L, 0) �= 0 and prove that (C3) is valid.

Therefore, the assertions on items (C1)-(C3) of the Theorem 5 are valid for the given operators.

4.2. Proof of Theorem 3

By Lemmata 7 and 8, we notice that the assumptions of the Theorem 5 are satisfied.
Thus, there exist at least one solution of operator equation in Equation (12) belong Dom L ∩Ω ⊂ X,
which implies the existence of at least one ω−periodic solution of the system in Equation (4).

5. Proof of Theorem 4

The proof of Theorem 4 is a consequence of Theorems 3 and 1. Indeed, from Theorem 3 we deduce
that there exists at least one ω−periodic solution of Equation (4). Then, we get the proof of Theorem 4
by application of Theorem 1.

6. An Example

Let us consider that

b(t) = 100 + cos(πt), p(t) =
2
3

(
1 +

1
2

sin(πt)
)

,

q(t) = 1− p(t), α(t) = 1.1960e− 90 sin2
(π

2
t
)

,

β(t) = cos2
(π

2
t
)

, φ(t) = 1.1 + 1.0e− 10 sin(πt), (57)

μ(t) = 1.0e− 15(1 + sin(πt)), γ(t) =
1
2
(1.1 + 1.0e− 10 sin(πt)),

χ(t) =
1
4
(1.1 + 1.0e− 10 sin(πt)), δ(t) =

3
4
(1.1 + 1.0e− 10 sin(πt)),

ε(t) =
1.0e− 15

4
(1 + sin(πt)),
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which are 2-periodic functions. We notice that

(pb)⊥ − φ�(φ⊥)−1b exp(2ωμ) ≈ 0.15,

1− ε�α�b
μ�(γ + ε + μ)⊥(α + χ + μ)⊥

exp
(

ω
[
(γ + ε + μ)� + φ�(φ⊥)−1b + μ�

])
≈ 0.857,

and we have that the hypothesis in Equation (15) is satisfied by selecting κ1 ∈]0, 0.15[ and κ2 ∈]0, 0.857[.
Thus, by application of Theorem 4, we deduce that the system in Equation (2) with coefficients defined
by Equation (57) has at least one positive 2-periodic solution.
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