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Preface to ”Applications of Information Theory to

Epidemiology”

Applications of Information Theory to Epidemiology collects together a new review article written 
by William Benish with ten original research articles covering aspects of the analysis of diagnostic 
decision making and epidemic dynamics. Overall, there is a balance of theory and applications, 
presented from both clinical medicine and plant pathology perspectives. Previously, epidemiological 
applications of information theory have tended to be widely scattered through the literature, featured 
in specialist medical, phytopathological and statistical journals, for example. While this diversity will 
no doubt continue, the current collection now provides a focal point from which new developments 
can in future emerge and ramify.

Gareth Hughes

Editor
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Applications of Information Theory to Epidemiology

Gareth Hughes

SRUC, Scotland’s Rural College, The King’s Buildings, Edinburgh EH9 3JG, UK; gareth.hughes@sruc.ac.uk

Received: 23 November 2020; Accepted: 4 December 2020; Published: 9 December 2020

This Special Issue of Entropy represents the first wide-ranging overview of epidemiological
applications since the 2012 publication of Applications of Information Theory to Epidemiology [1]. The Special
Issue comprises an outstanding review article by William Benish [2], together with 10 research papers,
five of which have been contributed by authors whose primary interests are in phytopathological
epidemiology, and five by authors primarily interested in clinical epidemiology. Ideally, all readers
will study Benish’s review—it is just as relevant for phytopathologists as it is for clinicians—and then
clinicians and phytopathologists will take advantage of the opportunity to read about each other’s
current approaches to epidemiological applications of information theory.

This opportunity arises especially where there turns out to be an overlap of interests between
the two main groups of contributors. For example, Benish’s review provides detailed insight into
the analysis of diagnostic information via pre-test probabilities and the corresponding post-test
probabilities (predictive values). This theme is then pursued further by means of the predictive receiver
operating characteristic (PROC) curve, a graphical plot of positive predictive value (PPV) against one
minus negative predictive value (1−NPV) [3–5]. Although this format recalls the familiar receiver
operating characteristic (ROC) curve, the dependence of the PROC curve on pre-test probability has
made it more difficult to characterize and deploy. The articles presented here contribute to an improved
understanding of the way that ROC and PROC curves can jointly contribute to the analysis of diagnostic
information. An alternative approach to the diagrammatic analysis of diagnostic information via
pre-test and post-test probabilities is presented in [6] and then taken up for practical application in [7].

Four articles in the Special Issue apply information-theoretic methods to analyze various aspects
of epidemic dynamics [8–11]. Here, the balance is tipped towards contributions from clinical
epidemiology, but information-theoretic applications of time series analysis are presented from both
clinical and phytopathological perspectives. Epidemic analyses of observational studies of course
depend on the availability of appropriate sample data. In this context, Dalton et al. [12] address the
limitations of statistics used to assess balance in observational samples and present an application of
the Jensen–Shannon divergence to quantify lack of balance.

Together, the authors whose contributions are presented in this Special Issue have provided a
range of novel information-theoretic applications of interest to epidemiologists and diagnosticians
in both medicine and plant pathology. While these articles represent the current state of the art,
this Special Issue represents only a beginning in terms of what is possible.

Acknowledgments: On behalf of the authors whose work is presented in this Special Issue of the journal Entropy,
I should like to thank all the anonymous peer-reviewers who have read and critiqued the submissions. As Academic
Editor, I offer my personal thanks to all the MDPI editorial staff who have worked behind the scenes to make the
Special Issue a success.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The fundamental information theory functions of entropy, relative entropy, and mutual
information are directly applicable to clinical diagnostic testing. This is a consequence of the fact
that an individual’s disease state and diagnostic test result are random variables. In this paper, we
review the application of information theory to the quantification of diagnostic uncertainty, diagnostic
information, and diagnostic test performance. An advantage of information theory functions over
more established test performance measures is that they can be used when multiple disease states
are under consideration as well as when the diagnostic test can yield multiple or continuous results.
Since more than one diagnostic test is often required to help determine a patient’s disease state,
we also discuss the application of the theory to situations in which more than one diagnostic test
is used. The total diagnostic information provided by two or more tests can be partitioned into
meaningful components.

Keywords: entropy; information theory; multiple diagnostic tests; mutual information;
relative entropy

1. Introduction

Information theory was developed during the first half of the twentieth century to quantify aspects
of communication. The pioneering work of Ralph Hartley and, subsequently, Claude Shannon was
primarily motivated by problems associated with electronic communication systems [1,2]. Information
theory was probably first used to quantify clinical diagnostic information by Good and Card in
1971 [3]. Subsequent papers helped to clarify the ability of information theory to quantify diagnostic
uncertainty, diagnostic information, and diagnostic test performance, e.g., [4–9]. Although applications
of information theory can be highly technical, fundamental concepts of information theory are not
difficult to understand. Moreover, they are profound in the sense that they apply to situations in which
“communication” is broadly defined.

Fundamental information theory functions are defined on random variables. The ubiquity of
random processes accounts for the wide range of applications of the theory. Examples of areas of
application include meteorology [10], molecular biology [11], quantum mechanics [12], psychology [13],
plant pathology [14], and music [15]. The random variables of interest to the present discussion are an
individual’s disease state (D) and diagnostic test result (R). We require that the possible disease states
be mutually exclusive and that, for each diagnostic test performed, one result is obtained. Hence, it is
meaningful to talk about the probability that an individual randomly selected from a population is in a
certain disease state and has a certain test result.

The primary purpose of this review is to understand the answers that information theory gives to
the following three questions:

Entropy 2020, 22, 97; doi:10.3390/e22010097 www.mdpi.com/journal/entropy3



Entropy 2020, 22, 97

(1) How do we quantify our uncertainty about the disease state of a given individual?
(2) After a diagnostic test is performed and a specific test result is obtained, how do we quantify the

information we have received about the tested individual’s disease state?
(3) Prior to performing a diagnostic test, how do we quantify the amount of information that we

expect to receive about the disease state of the tested individual?

The answers that information theory gives to these questions are calculated using pretest and
posttest probabilities. Whenever the pre-test and post-test probabilities differ, the test has provided
diagnostic information [16]. The functions are applicable to situations in which any number of disease
states are under consideration and in which the diagnostic test can yield any number of results (or
continuous results) [17]. Moreover, a given test result can alter the probabilities of multiple possible
disease states.

Since information theory functions depend only upon the probabilities of states, the information
content of an observation does not take into consideration the meaning or value of the states [18] (p. 8).
For example, the statement that a patient died who had been given a 50-50 chance of survival contains
the same amount of information, from an information theory perspective, as the statement that a tossed
coin turned up heads.

More than one diagnostic test is often required to help clarify a patient’s disease state. Hence, an
additional goal of this review is to answer questions 2 and 3, above, for the case in which two or more
diagnostic tests are performed. We find that it is possible to quantify both the information that we
have received from each of two or more diagnostic tests as well as the information that we expect to
receive by performing two or more diagnostic tests.

The foundational theorem of information theory is the statement proved by Shannon that the
entropy function, discussed below, is the only function that satisfies certain criteria that we require of
a measure of the uncertainty about the outcome of a random variable [2]. As an alternative to this
axiomatic approach to deriving information theory functions, we employ the concept of the surprisal,
with the goal of achieving a more intuitive understanding of these functions. The surprisal function is
explained in the following section. It is then used in Section 3 to answer the above three questions
and, in doing so, derive expressions for three fundamental information theory functions: the entropy
function (Section 3.1), the relative entropy function (Section 3.2), and the mutual information function
(Section 3.3). The application of information theory functions to situations in which more than one
diagnostic test is performed is considered in Section 4. Section 5 provides a brief review of the history
of the application of information theory to clinical diagnostic testing. Examples which offer insight
into what information theory can teach us about clinical diagnostic testing are presented in Section 6.
The paper concludes by briefly summarizing and clarifying important concepts.

2. The Surprisal Function

The surprisal function, μ, quantifies the unlikelihood of an event [19,20]. It is a function of the
probability (p) of the event. As its name suggests, it can be thought of as a measure of the amount we
are surprised when an event occurs. Hence, this function assigns larger values to less likely events.
Another reasonable requirement of the surprisal function is that, for independent events a1 and a2,
the surprisal associated with the occurrence of both events should equal the sum of the surprisals
associated with each event. Since a1 and a2 are independent, p(a1, a2) = p(a1)p(a2). We therefore
require that μ[p(a1)p(a2)] = μ[p(a1)] + μ[p(a2)]. The only non-negative function that meets these
requirements is of the form:

μ(p) = − log(p) (1)

Ref. [21] (pp. 2–5). The choice of the base of the logarithm is arbitrary in the sense that conversion
from one base to another is accomplished by multiplication by a constant. Two is often selected as
the base of the logarithm, giving measurements in units of bits (binary digits). Some authors use the
natural logarithm (giving measurements in units of nats) or log base 10 (giving measurements in units
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of hartleys) [22]. Using log base two, the surprise when a fair coin turns up heads is quantified as
one bit, since − log2(1/2) = 1. Figure 1 plots the surprisal function (in units of bits) over the range of
probabilities. Observe that the surprisal associated with the occurrence of an event that is certain to
occur is zero, and that there is no number large enough to quantify the surprise associated with the
occurrence of an impossible event.

Figure 1. Surprisal (in bits) as a function of probability.

3. Answers to the Questions Asked in the Introduction

3.1. Entropy Quantifies the Uncertainty about the Disease State

Suppose that the possible causes of a patient’s condition consist of four disease states, d1, . . . , d4,
with respective probabilities 1/8, 1/2, 1/8, and 1/4. How uncertain are we about the disease state? The
more certain we are about the disease state the less surprised we will be, on average, when the disease
state becomes known. This suggests that diagnostic uncertainty be quantified as the expected value of
the surprisal. For the current example, the surprisals corresponding to the four probabilities are 3 bits,
1 bit, 3 bits, and 2 bits, respectively. To calculate the expected value of the surprisal we multiply each
surprisal by its probability and then sum the four terms:(1

8

)
(3 bits) +

(1
2

)
(1 bit) +

(1
8

)
(3 bits) +

(1
4

)
(2 bits) = 1.75 bits.

This procedure yields Shannon’s entropy (H) of D, where D is the random variable associated
with the four disease states. For the general case in which there are n possible disease states [2,23]:

H(D) = −
n∑

i=1

p(di) log2 p(di). (2)

We saw above that the surprisal associated with a tossed coin turning up heads is 1 bit.
Consequently, the uncertainty associated with the two possible outcomes of a coin toss is
(1/2)(1 bit) + (1/2)(1 bit) = 1 bit. The uncertainty about the outcome of equally likely events
increases as the number of possible events increases; for example, the uncertainty associated with
three, four, and five equally likely events is 1.59 bits, 2 bits, and 2.32 bits, respectively.

5
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Another way to think about the meaning of entropy is in terms of the average number of yes/no
questions required to learn the outcome of the random variable. This works for cases like the current
example, in which, before asking each question the remaining events can be partitioned into two
groups of equal probability. For the current example, we first ask if the individual is in state d2, and
then, if necessary, ask if the individual is in state d4, and finally, if necessary, ask if the individual is in
state d1 (or state d3). We find that, on average, we will ask 1.75 questions.

In Shannon’s axiomatic approach to the definition of the entropy function, a key requirement
relates to the way in which an entropy calculation can be partitioned [18] (p. 49). As applied to the
current problem, Shannon required, for example, that

H
(1

8
,

1
2

,
1
8

,
1
4

)
= H

(1
8

,
7
8

)
+

7
8

H
(4

7
,

1
7

,
2
7

)
.

This corresponds to first determining the entropy associated with whether the individual is in
state d1 and, if not, determining the entropy of the remaining three options. This latter entropy is
weighted by 7/8, the probability that the individual is not in state d1.

Some authors refer to entropy as self-information [23] (p. 12). In this review, we restrict the
use of the term information (diagnostic information) to measures of the magnitude of changes in the
probabilities of states (disease states) that result from observations (diagnostic test results).

3.2. Relative Entropy Quantifies the Diagnostic Information Provided by a Specific Test Result

Table 1 presents hypothetical data showing characteristics of a population of 96 individuals, each
of whom is in one of four disease states and who, when tested, will yield one of three possible results.
The probabilities that an individual randomly selected from this population will be in the four disease
states is identical to the probabilities in the above example: 1/8, 1/2, 1/8, and 1/4, respectively. If the
diagnostic test is performed and result r3 is obtained, the respective probabilities become 1/8, 1/4, 1/2,
and 1/8. Because the post-test probabilities are the same as the pretest probabilities, even though the
order has changed, the uncertainty about the disease state remains 1.75 bits. Has this test provided us
with diagnostic information and, if so, how much?

Table 1. Hypothetical data showing the number of individuals in a given disease state (d1, d2, d3, or
d4) and with a given test result (r1, r2, or r3).

d1 d2 d3 d4

r1 8 24 4 2 38

r2 2 20 0 20 42

r3 2 4 8 2 16

12 48 12 24 96

The test result, r3 identifies the patient as belonging to a subset within the larger population. It
provides us with diagnostic information because the probabilities of the disease states are different
within this subset than they are within the larger population. We quantify diagnostic information as
the expected value of the reduction in the surprisal that results from testing. To calculate the amount
of information obtained from this test result, we first note that the probabilities change from[1

8
,

1
2

,
1
8

,
1
4

]
to

[1
8

,
1
4

,
1
2

,
1
8

]
,

respectively; the surprisals (in units of bits) change from

[3, 1, 3, 2] to [3, 2, 1, 3],

6
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respectively; and the reductions in the surprisals (in units of bits) are

[0,−1, 2, −1],

respectively. To calculate the expected value of the reduction in the surprisal, we use the updated
probabilities obtained by testing:(1

8

)
(0 bits) +

(1
4

)
(−1 bit) +

(1
2

)
(2 bits) +

(1
8

)
(−1 bit) =

5
8

bits.

Hence, test result r3 provides 5/8 bits of information about the disease state.
For the general case with pretest probabilities: p(d1), p(d2), . . . , p(dn) and posttest probabilities

after receiving result rj: p(d1
∣∣∣rj), p(d2

∣∣∣rj), . . . , p(dn
∣∣∣rj) , the reduction in the surprisal for the i-th disease

state is [
− log2 p(di)

]
− [− log2 p(di|rj)] = log2

p(di|rj)

p(di)
,

with the expected value calculated in terms of the post-test distribution giving

D(post||pre) =
n∑

i=1

p
(
di
∣∣∣rj

)
log2

p
(
di
∣∣∣rj

)
p(di)

. (3)

D(post
∣∣∣∣∣∣pre) is called the relative entropy (or the Kullback-Leibler divergence) from pre (the

pretest probability distribution) to post (the posttest probability distribution) [23,24]. Its value is
always nonnegative [23]. Relative entropy is sometimes thought of as a measure of distance from
one probability distribution (pre) to another probability distribution (post). Since it is an asymmetric
function, i.e., D(post

∣∣∣∣∣∣pre) and D(pre
∣∣∣∣∣∣post) are not necessarily equal, and because it does not satisfy the

triangle inequality, it does not qualify as a true distance metric [23] (p.18). As illustrated by the above
example, the expected value of the reduction in the surprisal (5/8 bits) is different than the reduction in
the expected values of the surprisal (0 bits), i.e., the diagnostic information, in this case, is not simply
pretest entropy minus posttest entropy.

3.3. Mutual Information Quantifies the Diagnostic Information That We Expect to Receive by Testing

Using the same data set (Table 1) we consider the question of how much information we expect to
receive if we randomly select and test an individual from this population. Hence, the question we are
now asking is from the pretest perspective, in contrast to the posttest perspective of the preceding
subsection. Once again, we quantify diagnostic information as the expected value of the reduction
in the surprisal that results from testing. We found above that if the test result is r3, then we obtain
5/8 = 0.625 bits of information. Using the relative entropy function (Equation (3)), we can also calculate
that r1 provides 0.227 bits of information and r2 provides 0.343 bits of information. The probabilities of
obtaining each of the three possible test results are 0.396, 0.438, and 0.167, respectively. Therefore, the
amount of diagnostic information, on average, that we will receive by performing this test is

(0.396)(0.227 bits) + (0.438)(0.343 bits) + (0.167)(0.625 bits) = 0.345 bits.

The expected value of the amount of diagnostic information to be obtained by testing is the
expected value of the relative entropy. For the general case, this is

I(D; R) =
m∑

j=1

p
(
rj
) n∑

i=1

p(di|rj) log2

p(di
∣∣∣rj)

p(di)
=

n∑
i=1

m∑
j=1

p
(
di, rj

)
log2

p
(
di, rj

)
p(di)p

(
rj
) , (4)
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where p(di) is the probability that a patient randomly selected from the population is in disease state
di, p

(
rj
)

is the probability that a patient randomly selected from the population has test result rj, and

p
(
di, rj

)
is the probability that a patient randomly selected from the population is both in disease state

di and has test result rj. I(D; R) is known as the mutual information between the disease state and
the test result [23]. It is called the mutual information between D and R because knowing value of D
provides the same information about the value of R, on average, as knowing the value of R provides
about the value of D, on average, i.e., I(D; R) = I(R; D).

Established consequences of the definitions of entropy and mutual information are that, for
random variables X and Y,

I(X; Y) = H(X) + H(Y) −H(X, Y), (5)

and
H(X|Y) = H(X, Y) −H(Y), (6)

where H(X, Y) is the entropy of the random variable defined by the joint occurrence of the events
defining X and Y and H(X

∣∣∣Y) is the entropy of the random variable defined by the events defining X
conditional upon the events defining Y [23].

A consequence of Equations (5) and (6) is:

H(D|R) = H(D) − I(D; R), (7)

i.e., performing a diagnostic test decreases the uncertainty about the disease state, on average, by
the mutual information between D and R. Recall that, for the current example, H(D) = 1.75 bits
and I(D; R) = 0.345 bits. Hence, the remaining uncertainty after performing this test is, on average,
1.405 bits. A perfect test would provide 1.75 bits of information.

In the preceding subsection we noted that relative entropy is not generally equal to pretest entropy
minus posttest entropy. Here, however, where we are calculating the expected value of the amount of
information that a test will provide, it is equal to pretest entropy minus posttest entropy: rearranging
Equation (7) gives I(D; R) = H(D) −H(D|R).

The mutual information provided by a diagnostic test is a single parameter measure of the
performance of the test. It is dependent upon the pretest probabilities of disease. What is known as
the channel capacity is the maximum possible value of the mutual information across all possible
distributions of pretest probabilities [23].

4. Quantifying the Diagnostic Information Provided by Two or More Tests

More than one diagnostic test is often required to characterize a patient’s disease state. In this
section we extend the theory to situations in which more than one diagnostic test is performed.

4.1. Relative Entropy Applied to the Case of Multiple Diagnostic Tests

Let p0(di) be the pretest probability of the i-th disease state. Let pa(di) be the probability of the i-th
disease state after performing test A and obtaining result ra. Let pb(di) be the probability of the i-th
disease state after performing test B and obtaining result rb. Finally, let pab(di) be the probability of the
i-th disease state after performing both tests A and B and obtaining results ra and rb. The amount of
information provided by test A for the subgroup of patients with result ra, as we saw in Section 3.2,
is D(pa

∣∣∣∣∣∣p0). Similarly, the amount of information provided by test B for the subgroup of patients
with result rb is D(pb

∣∣∣∣∣∣p0), and the amount of information provided by both tests for the subgroup of
patients with results ra and rb is D(pab

∣∣∣∣∣∣p0).
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Now consider a patient belonging to the subset of patients with both result ra and result rb. How
much diagnostic information is obtained if only test A is performed? The reduction in the surprisal for
the i-th disease state is [

− log2 p0(di)
]
−

[
− log2 pa(di)

]
= log2

pa(di)

p0(di)
.

To quantify the diagnostic information, we calculate the expected value of the reduction in the
surprisal. Since the patient belongs to the subset of patients with results ra and rb the expectation is
calculated using the pab(d) distribution. This gives

∑
i

pab(di) log2
pa(di)

p0(di)
. (8)

We will call this the modified relative entropy (I. J. Good called this trientropy [25]). We can think
of it as the distance from the p0(d) probability distribution to the pa(d) probability distribution when
the true probability distribution is pab(d). Expression (8) can yield negative diagnostic information
values. This occurs when the pretest probability distribution is a better estimate of the true probability
distribution than the posttest probability distribution. In Appendix A, we show that the modified
relative entropy satisfies the triangle inequality but still fails to meet the criteria for a distance metric.

As an example of the application of Expression (8) to a case in which two diagnostic tests are
performed, consider a situation in which a person is being evaluated for possible cancer. Assume
two disease states, cancer and not cancer, and that a screening test increases the probability of this
individual having cancer from 0.05 to 0.3, but that a subsequent, more definitive test, decreases the
probability of cancer to 0.01. We can imagine that this person belongs to a theoretical population (A) in
which 5% of its members have cancer. Screening identifies this patient as belonging to a subset (B) of A
in which 30% of its members have cancer. Finally, the second test identifies the patient as belonging to
a subset (C) of B in which 1% of its members have cancer. Using Expression (8) we calculate that the
screening test provided −0.410 bits of information (from a probability of cancer of 0.05 to a probability
of cancer of 0.3 given that the probability of cancer is actually 0.01) and that the second test provided
0.446 bits of information (from a probability of cancer of 0.3 to a probability of cancer of 0.01 given that
the probability of cancer is actually 0.01). The two tests together provided 0.036 bits of information.
We obtain this final value either by summing the information provided by each of the two tests or by
calculating the relative entropy (Equation (3)) given the pretest probability of cancer of 0.05 and the
posttest probability of cancer of 0.01. Although the screening test shifted the probability of cancer in
the wrong direction for this specific individual, there is no reason to conclude that the result of the
screening test was a mistake. The screening test did its job by properly identifying the individual as a
member of subset B.

4.2. Mutual Information Applied to the Case of Multiple Diagnostic Tests

The mutual information common to random variables X, Y and Z is defined as

I(X; Y; Z) = I(X; Y) − I((X; Y)
∣∣∣Z) (9)

where I((X; Y)
∣∣∣Z) = I((X|Z); (Y|Z)) is the mutual information between and Y conditional upon Z [23]

(p. 45). Hence, from Equations (5), (6), and (9):

I(X; Y; Z) = H(X) + H(Y) + H(Z) −H(X, Y) −H(X, Z) −H(Y, Z) + H(X, Y, Z). (10)

Although the mutual information between two random variables is always nonnegative, the
mutual information among three random variables can be positive, negative, or zero [23] (p. 45).
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The expected value of the amount of information that two diagnostic tests, A and B, will provide
about the disease state is I(D; (RA, RB)). This can be expressed in terms of entropies (per Equation (5)) as

I(D; (RA, RB)) = H(D) + H(RA, RB) −H(D, RA, RB), (11)

and it can be partitioned:

I(D; (RA, RB)) = I(D; RA) + I(D; RB) − I(D; RA; RB). (12)

Equation (12) can be proved by using Equations (5), (10), and (11) to replace the four mutual
information terms with their entropy equivalents. Hence, the expected value of the information that
tests A and B provide about disease state D is equal to the sum of the expected values of the information
provided by each test minus I(D; RA; RB), a term that quantifies the interaction among D, RA, and RB.
Since I(D; RA; RB) can be positive, negative, or zero, I(D; (RA, RB)) can be less than, greater than, or
equal to the sum of I(D; (RA)) and I(D; (RB)), respectively.

Alternatively, we can use Equations (9) and (12) to partition I(D; (RA, RB)) as follows:

I(D; (RA, RB)) = I(D; RA) + I((D; RB)
∣∣∣RA), (13)

where I((D; RB)
∣∣∣RA) = I(D|RA; RB|RA) is the average incremental information provided by test B after

performing test A. I((D; RB)
∣∣∣RA) can be expressed in terms of entropies using Equations (5) and (6):

I((D; RB)
∣∣∣RA) = H(D, RA) + H(RA, RB) −H(RA) −H(D, RA, RB). (14)

Although the expressions become more complicated as the number of diagnostic tests increase,
the mutual information between the disease state and the results of multiple diagnostic tests can be
partitioned in fashions analogous to Equations (12) and (13). For the case in which there are three
diagnostic tests:

I(D; (RA, RB, RC)) = I(D; RA) + I(D; RB) + I(D; RC) − I(D; RA; RB) − I(D; RA; RC)

−I(D; RB; RC) + I(D; RA; RB; RC)

= I(D; RA) + I((D; RB)
∣∣∣RA) + I((D; RC)

∣∣∣(RA, RB)).
(15)

These equations can be proven, once again, by replacing the mutual information terms with their
entropy equivalents, recognizing that

I(D; RA; RB; RC) = I(D; RA; RB) − I((D; RA; RB)
∣∣∣RC) (16)

The entropy function, expressed as Equation (2), is not defined for continuous random variables.
Nevertheless, the mutual information between or among continuous random variables, which is
defined, can be approximated numerically as the sum and differences of entropies using Equations (5),
(10), (11), and (14) [23] (pp. 231–232).

5. Historical Background

With this understanding of basic information theory functions, we can briefly consider the
development of information theory and the evolution of its application to a clinical diagnostic testing.
The concept of entropy is probably most familiar within the context of thermodynamics, where it is a
measure of the “degree of randomness” of a physical system [18] (p. 12). Although an understanding
of the basic principles of thermodynamics preceded the development of information theory, the
entropy of thermodynamics can be understood to be an application of the concept of entropy stated
by Equation (2). The difference between the two functions is that in thermodynamics Equation (2)
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is multiplied by the Boltzmann constant to provide the appropriate physical dimensions (joules per
kelvin) [26] (p. 30).

As mentioned in Section 1, Hartley and Shannon were early developers of information theory.
Hartley published a paper in 1928 concerning the relationship between the quantity of information
transmitted over a system and the width of the frequency range of the transmission [1]. He defined
entropy (which he called information) for situations in which the possible states are equally likely.
The more general concept of entropy, stated by Equation (2), was defined in 1948 by Shannon in “A
Mathematical Theory of Communication” [2]. This foundational paper also defined mutual information
and channel capacity. Relative entropy was introduced by Kullback and Leibler in 1951 [24].

The applicability of information theory to a clinical diagnostic testing was not immediately
recognized, has been slow in its development, and remains an area of research. As noted in the
introduction, Good and Card probably published the first paper on the subject in 1971 [3]. Their
contribution was not recognized by many subsequent authors interested in this subject. To a large
extent, the history of the application of information theory to clinical diagnostic testing is the history of
the discovery of concepts previously understood by Good and Card. They recognized that mutual
information (what they called mean information transfer) quantifies the expected value of the amount
of information provided by a test and that this function can be used regardless of the number of disease
states and test results. Implicit in their report is the use of relative entropy and, what we have called,
modified relative entropy (in their language, dinegentropy and trientropy, respectively) to quantify
the information provided by specific test results. They also quantified the information gained by
sequential testing [3,27].

The “weight of evidence in favor of a hypothesis” is a central concept in the Good and Card
paper [3]. The concept was developed independently by C.S. Peirce [28] and A.M. Turing (possibly in
collaboration with I.J. Good) [29]. The weight of evidence in favor of disease state di given result rj, as
opposed to the other disease states, di can be expressed as

log

⎡⎢⎢⎢⎢⎢⎢⎢⎣ p(rj
∣∣∣di)

p(rj

∣∣∣∣di)

⎤⎥⎥⎥⎥⎥⎥⎥⎦.
This is equal to

log
p(di

∣∣∣rj)
p(di)

− log
p(di

∣∣∣∣rj)

p(di)
= [− log p(di) − − log p(di|rj)] − [ − log p

(
di
)
− − log p(di|rj)].

As pointed out by Good and Card, we find by looking at each of the above two expressions in
brackets (which are reductions in surprisals) that weight of evidence can be interpreted in terms of
quantities of information; in this case, as the amount of information that rj provides about di minus the
amount of information that rj provides about di. A second important observation about the weight of
evidence is that it is equal to the logarithm of a likelihood ratio. This point has been used to advantage
by Van den Ende et al. to provide clinicians with an accessible approach to interpreting diagnostic
tests, including the fact that the logarithm of the pretest odds plus the weight of evidence equals the
logarithm of the posttest odds [30]. Since weight of evidence can be interpreted in terms of quantities
of information, the logarithm of a likelihood ratio is an information quantity and so has information
units. When working in log base 10 (as in [30]) the appropriate unit is the hartley. To convert from
hartleys to bits, divide by log10 2 = 0.301.

Most papers on the application of information theory to clinical diagnostic testing are founded
upon a report published by Metz, Goodenough, and Rossmann in 1973 [4]. They derived the expression
for the information content (mutual information) of a diagnostic test as a function of the pretest
probability of disease and the test’s true positive rate (probability of a positive result given disease) and
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false positive rate (probability of a positive result given no disease), i.e., they used these parameters
to calculate the posttest probability distribution and then used the pretest and posttest distributions
to calculate mutual information. They applied the theory to the evaluation of radiographic systems
and noted that this statistic can be used to compare points on the same or different receiver operating
characteristic (ROC) curves (defined below in Section 6.1) [31]. The area under the ROC curve (AUC)
is a popular measure of diagnostic test performance [32]. Relationships between the AUC and mutual
information are discussed in the example presented in Section 6.1. Metz et al. also suggested that
the performance of a diagnostic test be quantified as the maximum of the set of information contents
associated with the points on a test’s ROC curve (Imax). Subsequent authors suggested that Imax can
be used in the selection of the point that partitions test results into normal results and abnormal
results [5,7,33], i.e., the diagnostic cutoff. The use of a diagnostic cutoff, however, can result in some loss
of diagnostic information [6,34,35]. This is illustrated by examples presented in Sections 6.2 and 6.3.

Diamond and colleagues applied information theory in 1981 to the quantification of the
performance of the exercise electrocardiogram (ECG) in the diagnosis of coronary heart disease
(CHD) [6]. This paper is discussed in Section 6.2. The primary theoretical contribution of their paper
is the recognition that it is not necessary to select a single diagnostic cutoff in order to calculate the
information content (mutual information) provided by a diagnostic test. This concept is implicit in the
work of Good and Card [3].

The relative entropy function was applied to clinical diagnostic testing in 1999 by Lee [36]
and, independently, by Benish [8]. Lee used the relative entropy between the distributions of test
results for diseased subjects and disease-free subjects to characterize the potential of a diagnostic
test to rule in (confirm) and rule out (exclude) disease. A different approach to characterizing the
potential of a diagnostic test to rule in or rule out disease states is illustrated by examples presented in
Sections 6.2 and 6.4. Benish recognized that the relative entropy function allows for calculation of the
information provided by a specific test result. Once again, this observation is implicit in the paper
by Good and Card [3]. Use of the relative entropy function for this purpose is discussed above in
Sections 3.2 and 4.1 and is demonstrated in Sections 6.2, 6.4 and 6.5. Benish also discussed the channel
capacity of a medical diagnostic test [37]. Hughes, writing from the perspective of a plant disease
epidemiologist, published the only book on the application of information theory to diagnostic testing
in 2012 [9].

Section 4, above, develops concepts found in the work by Good and Card regarding the
quantification of information provided by multiple diagnostic tests [3,27]. These functions are
illustrated in the examples presented in Sections 6.4 and 6.5.

6. Examples

R code for the calculations and figures in the following examples are available in the
Supplementary Materials.

6.1. The Relationship between I(D;R) and the AUC

ROC curves are often used to describe the performance of a diagnostic test when the test results
lie on a continuum or are otherwise ordered [31]. This methodology is applicable when two disease
states are under consideration, e.g., disease present and disease absent. A ROC curve plots the tradeoff
between the true positive rate (test sensitivity) and the false positive rate (1 − test specificity) as the
cutoff point for defining normal and abnormal test results is moved along the ordered set of results. As
noted above, the AUC is a popular measure of diagnostic test performance [32]. Both the AUC and
I(D; R) are single-parameter measures of diagnostic test performance. It is helpful to understand some
of their differences.
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A classic approach to explaining ROC curves is to assume that test results are normally distributed
for both healthy (d−) and diseased (d+) individuals. This is illustrated by the Figure 2 insert. The ROC
curve is then constructed, as noted above, by plotting test sensitivity as a function of 1−test specificity
for all possible diagnostic cutoffs. As the distance between the means of the two distributions increases,
the ROC curve shifts upward and to the left, increasing the AUC from a value of 0.5 toward its maximal
value of one. This is illustrated in Figure 2, which includes a plot of the AUC as a function of the
separation between the means, for the case in which the standard deviations of both distributions are
one. I(D; R), but not the AUC, is a function of the pretest probability of disease. This is illustrated in the
figure by plots of I(D; R) as a function of the distance between the means of the same two distributions
for three pretest probabilities of disease: 0.1, 0.2, and 0.5. The figure also plots a transformation of
the AUC, AUC*, which is equal to 2(AUC) − 1. This transformation of the AUC changes its range
from [0.5,1] to [0,1]. Collectively, these plots demonstrate that the AUC and I(D; R) are qualitatively
different statistics.

Figure 2. The area under the receiver operating characteristic curve (AUC), a transformation of the
AUC (AUC*), and the mutual information between the disease state and the test result (I(D; R) in units
of bits), as a function of the distance between the means of the distributions of test results for both
healthy (d−) and diseased (d+) individuals (see text). I(D; R) is plotted for three pretest probabilities
of disease: 0.1, 0.2, and 0.5.

6.2. Diagnostic Information from the Exercise Electrocardiogram (ECG)

As noted in the preceding section, Diamond et al. used information theory to evaluate the
performance of the exercise ECG in the diagnosis of CHD [6]. Depression of the ST segment (a portion
of the ECG tracing) during exercise is an indicator of coronary artery disease. The data in Table 2
shows their estimates of the probability of ST segment depression falling into six different categories as
a function of whether the patient has significant CHD.

They first analyzed the data by selecting a criterion to dichotomize the results into positive and
negative categories. For example, if a positive test is defined as ST depression ≥ 1 mm, then, as seen
from the table, p(r+

∣∣∣d+) becomes 0.233 + 0.088 + 0.133 + 0.195 = 0.649 and p(r+
∣∣∣d−) becomes 0.110 +

0.021 + 0.012+ 0.005 = 0.148. Recognizing that p
(
di, rj

)
= p

(
rj
∣∣∣di

)
p(di) and p

(
rj
)
= p

(
d+, rj

)
+ p

(
d−, rj

)
,

Equation (4) can then be used to calculate the information content (mutual information) for the test for
this cutoff as a function of the pretest probability of disease.

13



Entropy 2020, 22, 97

Table 2. Data from Diamond et al. [6] showing the probabilities of various categories of ST segment
depression (the result, r) during an exercise electrocardiogram as a function of the presence (d+) and
absence (d−) of significant CHD.

ST Depression (mm) p(r|d+) p(r|d−)
0 ≤ ST < 0.5 0.143 0.625

0.5 ≤ ST < 1.0 0.208 0.227
1.0 ≤ ST < 1.5 0.233 0.110
1.5 ≤ ST < 2.0 0.088 0.021
2.0 ≤ ST < 2.5 0.133 0.012
2.5 ≤ ST < ∞ 0.195 0.005

They contrast this with a calculation of the information content (mutual information) if the results
are not dichotomized, but rather left partitioned into six categories. If the ST segment is depressed by
2.2 mm for example, it makes sense to calculate the posttest probability using the more accurate test
operating characteristics that apply to the narrower interval of [2, 2.5) than the operating characteristics
that apply to the larger interval of [1,∞). Equation (4) is again used to make the calculation, but in this
case, there are six possible test results rather than two.

Figure 3 (reconstructed from their report with permission) compares mutual information as
a function of pretest probability of significant CHD for the dichotomized and non-dichotomized
approaches. The curve labeled IDEAL is the pretest diagnostic uncertainty as a function of pretest
probability. It indicates the average amount of information that an ideal test would provide, i.e., the
average amount of information needed to reduce the diagnostic uncertainty to zero (by yielding a
posttest probability of either zero or one). We observe that, for most of the range of pre-test probabilities,
approximately one third of the diagnostic information is lost by dichotomizing the results with a
diagnostic cutoff of 1 mm. The issue of information lost as a consequence of dichotomizing test results
is considered again in the following subsection.

Figure 3. Mutual information as a function of pretest probability of significant coronary heart disease
(CHD) for the exercise electrocardiogram. The plot compares the performance of a theoretical ideal
test with the actual performance when the results are either (1) dichotomized using the criterion of
ST segment depression of ≥ 1 mm or (2) not dichotomized. This plot has been reconstructed with
permission from the paper by Diamond et al. [6].
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Although, on average, the exercise ECG does not provide much information about whether
a patient has significant CHD, the possibility remains that specific test results are informative. To
illustrate this, we consider the two results that lie on opposite ends of the test result spectrum: ST
depression < 0.5 mm and ST depression ≥ 2.5 mm. Recall that relative entropy (Equation (3)) quantifies
the amount of diagnostic information provided by a given test result. Figure 4 plots relative entropy as
a function of the pretest probability of significant CHD for these two test results. For comparison, the
figure includes relative entropy plots for a theoretical ideal test when significant CHD is present (d+)
and when significant CHD is absent (d−). Inspecting these curves, we conclude that an ST depression
of <0.5 mm is not helpful in ruling out significant CHD. On the other hand, when significant CHD
is present and as the pre-test probability increases, the information provided by an ST depression of
≥2.5 mm approaches the information provided by the ideal test.

Figure 4. Diagnostic information (relative entropy) provided by the findings of an ST segment
depression (STdep) < 0.5 mm and an ST depression (STdep) ≥ 2.5 mm as a function of pretest probability
of significant coronary heart disease (CHD). Also shown are relative entropy plots for a theoretical ideal
test when significant CHD is present (d+) and when significant CHD is absent (d−). For the theoretical
ideal test when significant CHD is present, relative entropy increases indefinitely as pretest probability
of significant CHD approaches zero; and for the theoretical ideal test when significant CHD is absent,
relative entropy increases indefinitely as pretest probability of significant CHD approaches one.

6.3. Diagnostic Information Lost by Selecting a Diagnostic Cutoff

Diagnostic test results are often continuous or lie along a continuum, e.g., body temperature,
serum glucose, histologic grade. As observed in the preceding example, dichotomizing test results
by selecting a diagnostic cutoff can result in some loss of diagnostic information. As an additional
illustration of this, consider again the classic example in which the probability densities of test results
are normally distributed for both the healthy (d−) and diseased (d+) populations (as illustrated by the
Figure 2 insert). Let us assume that the pretest probability of disease is 0.2, that the standard deviations
of the two distributions are equal to one, and that the means of the two distributions are separated by
one standard deviation.
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The cutoff that maximizes the mutual information provided by this test lies between the means of
the two distributions, approximately 0.66 standard deviations from the mean of the healthy population
(determined by inspection; see the Supplementary Materials). This results in a test sensitivity,

p(r+
∣∣∣d+) , of 0.63 and a test specificity, p(r−

∣∣∣d−) , of 0.75. Recalling that p
(
di, rj

)
= p(rj

∣∣∣∣di)p(di)

and p
(
rj
)
= p

(
d+, rj

)
+ p

(
d−, rj

)
, Equation (4) can be used to calculate that the average amount of

information gained by performing the test with this cutoff is 0.071 bits.
Alternatively, we can calculate the posttest probabilities directly from the obtained results. Since

the test results are continuous, we modify Equation (4) to calculate I(D; R) as follows:

2∑
i=1

∫ ∞

−∞
ρ(di, r) log2

ρ(di, r)
p(di)ρ(r)

dr.

Because r is a continuous variable, we have replaced the summation over index j with an integral
and, for terms involving r, replaced the probabilities (indicated by p) with probability densities
(indicated by ρ). Note that ρ(di, r) = ρ (r

∣∣∣di)p(di) and ρ(r) = ρ(d+, r) + ρ(d−, r). This calculation gives a
mutual information of 0.106 bits. Hence, in this example, approximately one third of the expected value
of the information provided by the test is discarded by selecting a cutoff to dichotomize the results.

6.4. Diagnostic Information Provided by Two Tests with Discrete Results

A study that investigated the value of combining two diagnostic tests in the diagnosis of deep vein
thrombosis (DVT) [38] provides a convenient data set to illustrate information theory functions that
apply when more than one test is used (see Section 4). A DVT is a blood clot of the deep veins, typically
in the lower extremities, that can be fatal if it detaches and travels to the lungs. One of the tests is a
clinical index, based on the patient’s medical history and physical exam findings, that classified the
patient as being at low, moderate, or high risk for a DVT. The other test is a blood test that detects
a protein, the d-dimer, that is often elevated in the presence of a DVT. The d-dimer was reported as
positive or negative. The number of patients found to be in each of the 3 × 2 test result categories as a
function of whether they were ultimately diagnosed with a DVT is shown in Table 3.

Table 3. Data from Anderson et al. [38]. The number of patients with and without a DVT as a function
of the clinical index and the d-dimer test.

Clinical Index d-Dimer DVT+ DVT−
Low risk − 3 313

+ 17 113
Moderate risk − 15 243

+ 61 93
High risk − 15 50

+ 79 55

The study included 1057 patients, 190 of whom were diagnosed as having a DVT. Therefore, the
probability of being diagnosed with a DVT in this population is 190/1057 = 0.180. The uncertainty about
whether a patient randomly selected from this population was diagnosed with a DVT is calculated
using the entropy function (Equation (2)). We find that H(D) = 0.680 bits. Given that only two disease
states are under consideration, the range of possible entropy values is 0–1 bits.

If the clinical index (test A) is applied as a single test within this population, the diagnostic
uncertainty will decrease, on average, by I(D; RA) = 0.111 bits (calculated using Equation (5)). Similarly,
the d-dimer test (test B) will decrease the diagnostic uncertainty, on average, by I(D; RB) = 0.125 bits.
Using the information provided by both tests will decrease the diagnostic uncertainty, on average,
by I(D; (RA, RB)) = 0.197 bits (calculated using Equation (11)), which is less than the sum of the
information provided by each test separately by a value of I(D; RA; RB) = 0.039 bits (see Equation (12);
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this value was calculated using Equation (10)). The residual uncertainty after performing both tests is
substantial: H(D) − I(D; (RA, RB)) = 0.483 bits (an uncertainty reduction of 29%). A perfect test or
combination of tests would reduce the uncertainty to zero.

If the clinical index is found to be high and no additional testing is performed, the posttest
probability of a DVT is 0.472. Using the relative entropy function (Equation (3)), we calculate that the
test has provided 0.323 bits of information. An isolated negative d-dimer yields a posttest probability of
a DVT of 0.052 and 0.106 bits of information. The range of possible relative entropy values is bounded
by the relative entropies associated with reducing the diagnostic uncertainty to zero. For this example,
2.476 bits of information are required to rule in a DVT (going from the pretest probability of 0.180 to a
posttest probability of one) and 0.286 bits of information are required to rule out a DVT (going from
the pretest probability of 0.180 to a post-test probability of zero). Using the pre-test probabilities and
these boundary information values, we calculate that the expected value of the amount of information
provided by a theoretical perfect test is (0.180)(2.476 bits) + (0.820)(0.286 bits) = 0.680 bits = H(D).

Next, consider a patient who belongs to the subset of patients with both a high clinical index and
a negative d-dimer. The probability of a DVT given both results is 0.231 and, per the relative entropy
function (Equation (3)), this combination of results provides 0.012 bits of information. Because the two
test results are discordant, their net effect is to provide very little diagnostic information. Furthermore,
by applying Expression (8) we find that for this subpopulation (patients with a high clinical index and
a negative d-dimer) the information provided by each of the two tests performed separately is negative
(−0.168 bits for the finding of a high clinical index and −0.254 bits for the finding of a negative d-dimer).
The negative results indicate that the baseline probability of a DVT is a more accurate estimate than the
posttest probability when only one test is performed.

Although these two tests do not, on average, provide much information about whether a patient has
a DVT, they have the potential to help rule out a DVT. We saw above that an isolated negative d-dimer
decreases the probability of a DVT from 0.180 to 0.052 and provides 0.106 bits of information. An
isolated low clinical index decreases the probability to 0.045 and provides 0.120 bits of information. The
combination of both findings decreases the probability to 0.009 and provides 0.229 bits of information
(out of the 0.286 bits of information required to decrease the probability of a DVT to zero).

6.5. Diagnostic Information Provided by Two Tests with Continuous Results

Finally, we consider a hypothetical example in which the results of two diagnostic tests (A and B)
are normally distributed for both healthy and diseased patients. We define the means, variances, and
covariance for the binormal distribution of the test results for the healthy population as:

μA = 0, μB = 0, σ2
A = 1, σ2

B = 2, σAB = 1,

and the parameters for the binormal distribution of the test results for the diseased population as:

μA = 2, μB = 1, σ2
A = 2, σ2

B = 1, σAB = −1.

Figure 5 shows probability density contour plots for the two binormal distributions, with test
results expressed as standard deviations from the means of the distribution for healthy patients
(μA = μB = 0).
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Figure 5. Contour plots showing the probability densities of the results of tests A and B for the healthy
and diseased populations. The test results are expressed as standard deviations from the means of the
distribution for healthy patients (μA = μB = 0).

We will assume that the pretest probability of disease is 0.2. The pretest uncertainty of the
disease state, H(D), is then found to be 0.722 bits (calculated using Equation (2)). Test A applied as a
single test within this hypothetical population will decrease the diagnostic uncertainty, on average, by
I(D; RA) = 0.281 bits (calculated numerically using Equation (5)). Test B applied as a single test within
this population will decrease the diagnostic uncertainty, on average, by I(D; RB) = 0.083 bits. Test
A is, on average, more informative than test B because the separation between the means of the
healthy and diseased populations is larger for test A than for test B. Using the information provided
by both tests will decrease the diagnostic uncertainty, on average, by I(D; (RA, RB)) = 0.424 bits
(calculated numerically using Equation (11)), which is more than the sum of the information provided
by each test separately by a value of −I(D; (RA, RB)) = 0.060 bits (see Equation (12); this value was
calculated numerically using Equation (10)). The residual uncertainty after performing both tests is:
H(D) − I(D; (RA, RB)) = 0.298 bits (an uncertainty reduction of 59%).

Figure 6 is a contour plot showing the amount of diagnostic information (relative entropy in units
of bits) provided by possible combinations of the results of the two tests, with test results expressed
as standard deviations from the means of the distribution for healthy patients (μA = μB = 0). The
information value is bounded in two opposing quadrants by the amount of information required to
rule in disease, log2(1/0.2) ≈ 2.322 bits, and in the other two opposing quadrants by the amount of
information required to rule out disease, log2(1/0.8) ≈ 0.322 bits. More information is required to rule
in disease than to rule out disease because the pretest probability of disease is less than 0.5. Given that
the performance of the tests is characterized by binormal distributions, it is theoretically impossible to
rule in or rule out disease with certainty. In the case of ruling in disease, for example, as the results
of test A increase and the results of test B decrease, the probability of disease approaches (but never
equals) one and the amount of information obtained approaches (but never equals) log2(1/0.2) bits.
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Figure 6. Contour plot showing the information (relative entropy in units of bits) provided by specific
combinations of results of tests A and B. The test results are expressed as standard deviations from the
means of the distribution for healthy patients (μA = μB = 0).

7. Discussion

7.1. Summary

Information theory functions are defined on random variables. The recognition that an individual’s
disease state and diagnostic test result are random variables allows for the direct application of
fundamental information theory functions to clinical diagnostic testing. The concept of the surprisal
(discussed in Section 2) provides an intuitive understanding of these functions. The uncertainty about
a patient’s disease state is quantified by the entropy function (discussed in Section 3.1). The amount of
diagnostic information provided by a specific test result is quantified by the relative entropy function
(discussed in Section 3.2). Prior to performing a diagnostic test, the expected value of the amount of
information that the test will provide is quantified by the mutual information function (discussed in
Section 3.3). The mutual information associated with a diagnostic test is a single parameter measure of
diagnostic test performance that is dependent upon the pretest probabilities of the disease states. The
information theory functions are applicable given any number of disease states and any number of
test results (or continuous test results). Information theory functions can also be used to evaluate the
conjoint performance of multiple diagnostic tests: the information provided by each of several test
results can be calculated (discussed in Section 4.1), and the mutual information between the disease
state and the results of multiple diagnostic tests can be partitioned into components corresponding
to the contributions of the individual tests and interactions among the disease states and test results
(discussed in Section 4.2).
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7.2. Points of Emphasis and Clarification

• Diagnostic information does not necessarily decrease diagnostic uncertainty. A screening test,
for example, might change the probability of disease from 0.005 to 0.5. The test has provided
2.826 bits of information (quantified by the relative entropy function), while the uncertainty has
increased from 0.045 bits to one bit (quantified by the entropy function). This is consistent with
the common experience of becoming more perplexed about an issue as more is learned about it.

• The three questions posed in the Introduction all include the word “we”, implying a general
agreement upon the probabilities used to calculate diagnostic uncertainty and diagnostic
information. This is often not the case. Probability estimates usually include a subjective
component. Consequently, two individuals can obtain different amounts of information from the
same test result or observation.

• Mutual information, but not relative entropy, is equal to pretest uncertainty minus posttest
uncertainty. Both functions are equal to the expected value of the reduction in the surprisal.

• The random variables of interest in this review are an individual’s disease state and test result.
The same theory applies when the random variables are defined as any type of state and any type
of observation.

• The goal of clinical diagnostic testing is not to make the diagnosis but, rather, to assign accurate
probabilities to the possible disease states.

• Some diagnostic information is typically lost by dichotomizing continuous or ordered test results.

7.3. Conclusions

Information statistics have a useful role to play in the evaluation and comparison of diagnostic
tests. In some cases, information measures may complement useful concepts such as test sensitivity,
test specificity, and predictive values. In other situations, information measures may replace more
limited statistics. Mutual information, for example, may be better suited as a single parameter index
of diagnostic test performance than alternative statistics. Furthermore, information theory has the
potential to help us learn about and teach about the diagnostic process. Examples include concepts
illustrated above, including the importance of pretest probability as a determinant of diagnostic
information, the amount of information lost by dichotomizing test results, the limited potential of some
diagnostic tests to reduce diagnostic uncertainty, and the ways in which diagnostic tests can interact to
provide diagnostic information. These are concepts that can all be effectively communicated graphically.

It is hoped that this review will help to motivate new applications of information theory to
clinical diagnostic testing, especially as data from newer diagnostic technologies becomes available.
The challenge will be to develop systems that accurately diagnosis and treat patients by integrating
increasingly large amounts of personalized data [39,40]. A potential role for information theory
functions in this process is suggested by their applicability to multidimensional data.

Supplementary Materials: R code for calculations and figures are available online at http://www.mdpi.com/1099-
4300/22/1/97/s1.
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Appendix A Modified Relative Entropy Is not a Distance Metric

We first show that the modified relative entropy function (Expression (8)) satisfies the triangle
equality. Let the modified relative entropy from probability distribution b to probability distribution a
when the true probability distribution is c be expressed as

dc(a, b) =
∑

i

ci log
ai
bi

.

Then,

dc(x, y) + dc(y, z) =
∑

i

ci log
xi
yi

+
∑

i

ci log
yi

zi
=

∑
i

ci log
xi
zi

= dc(x, z).

Despite satisfying the triangle inequality, dc(a, b) does not meet the criteria for a distance metric [41]
(p. 117) because it can be negative. If we try to circumvent this problem by defining the measure as the
absolute value of dc(a, b), then the triangle inequality is still satisfied:∣∣∣dc(x, y)

∣∣∣+ ∣∣∣dc(y, z)
∣∣∣ ≥ ∣∣∣dc(x, y) + dc(y, z)

∣∣∣ =∣∣∣dc(x, z)
∣∣∣.

Nevertheless,
∣∣∣dc(a, b)

∣∣∣ still fails to qualify as a distance metric because it is not necessarily the case
that

∣∣∣dc(a, b)
∣∣∣ = 0 implies that a = b. For example, if a1 = b2 = 1/4 , a2 = b1 = 3/4, and c1 = c2 = 1/2,

then
∣∣∣dc(a, b)

∣∣∣ = 0 but a � b.
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Abstract: The predictive receiver operating characteristic (PROC) curve is a diagrammatic format
with application in the statistical evaluation of probabilistic disease forecasts. The PROC curve
differs from the more well-known receiver operating characteristic (ROC) curve in that it provides a
basis for evaluation using metrics defined conditionally on the outcome of the forecast rather than
metrics defined conditionally on the actual disease status. Starting from the binormal ROC curve
formulation, an overview of some previously published binormal PROC curves is presented in order
to place the PROC curve in the context of other methods used in statistical evaluation of probabilistic
disease forecasts based on the analysis of predictive values; in particular, the index of separation
(PSEP) and the leaf plot. An information theoretic perspective on evaluation is also outlined. Five
straightforward recommendations are made with a view to aiding understanding and interpretation
of the sometimes-complex patterns generated by PROC curve analysis. The PROC curve and related
analyses augment the perspective provided by traditional ROC curve analysis. Here, the binormal
ROC model provides the exemplar for investigation of the PROC curve, but potential application
extends to analysis based on other distributional models as well as to empirical analysis.

Keywords: diagnostic test; evaluation; ROC curve; PROC curve; binormal; prevalence; positive
predictive value; negative predictive value; Bayes’ rule; leaf plot; expected mutual information

1. Introduction

The predictive receiver operating characteristic (PROC) curve is a diagrammatic format introduced
by Shiu and Gatsonis [1] in the context of the statistical evaluation of probabilistic disease forecasts.
Such forecasts are often evaluated by calculation of metrics defined conditionally on the actual disease
status. Metrics defined conditionally on the outcome of the forecast—predictive values—are also
important, although less frequently reported; this motivates the introduction of the PROC curve.
Although this approach is potentially useful, as yet it has not been commonly applied [2]. One possible
reason for this is the apparent complexity of patterns generated by PROC curve analysis [1,3]. Thus
Shiu and Gatsonis note that “It is therefore essential to study and attempt to characterize the geometric
properties of PROC curves before undertaking an investigation of how the curves can be used to
evaluate the performance of a diagnostic test”.

This article is intended as a contribution towards furthering an understanding of some of the
properties of PROC curves as described by Shiu and Gatsonis [1]; and thus, hopefully, increasing
applications of their analysis. The approach taken is to place the PROC curve in the context of some
other methods for the statistical evaluation of probabilistic disease forecasts. In particular, we discuss
the receiver operating characteristic (ROC) curve [4,5], the index of separation PSEP [6], and the leaf
plot [7,8], in terms of their relationship to the PROC curve. The article is set out as follows. Section 2
provides background to the methods discussed as context for PROC curve analysis. Section 3 presents
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an analysis of some particular PROC curves, and the perspective provided by analyses based on
corresponding contextual methods. Section 4 is a concluding general discussion.

2. Methods

The preliminary steps leading towards the calculation and analysis of a PROC curve largely
follow the route mapped by Sackett et al. [4], particularly Chunk #2 and Chunk #3 of Chapter 4 on
the interpretation of diagnostic data. The obvious difference is that the impetus of Sackett et al. is
data-driven, whereas here the required observations are represented by normal distributions. As in
ROC analysis, it is not necessary for test data to follow normal distributions. Here, the normality
assumption is helpful in the investigation of the theoretical properties of the curve and the exploration
of scenarios that lead to different shapes. To begin, we consider two groups of subjects for which the
known actual (‘gold standard’) status is denominated case ‘c’ or non-case ‘nc’. For each subject, a
second observation is available, referred to generically as a risk score. The risk score may be useful as a
proxy variable in diagnosis when obtaining the gold standard at the outset may be considered too
time-consuming, difficult, or expensive; or when an early estimate of risk may facilitate preventative
treatment. By convention, the risk score is calibrated so that c subjects tend to have higher scores than
nc subjects, although typically there is overlap between the ranges of scores for the two groups.

Now consider a threshold on the risk score scale, such that a score above the threshold
(designated ‘+’) is taken as indicative of likely c status, while a score at or below the threshold
(designated ‘−‘) is taken as indicative of likely nc status. The resulting two-way classification of subjects
provides the basis for a 2 × 2 prediction-realization table, which may be based on numerical data as in
Table 4-3 of Sackett et al. [4] or on probabilities as in the present analysis (Table 1). From Table 1, with
i = +, − (for the predictions) and j = c, nc (for the realizations), we write pi ∩ j = pj ∩ i = pi |j · pj = pj |i · pi
via Bayes’ rule. The pj are taken as the Bayesian prior probabilities of case (j = c, ‘prevalence’) or
non-case (j = nc) status, such that pnc = 1 − pc. We can write pi = pi |c · pc + pi |nc · pnc (i = + or −) via the
Law of Total Probability.

Table 1. The prediction-realization table for a test with two categories of realized (actual) status (c, nc)
and two categories of prediction (+, −). In the body of the table are the joint probabilities.

Prediction (i)
Realization (j)

c nc Row sums

+ p+ ∩ c p+ ∩ nc p+
− p− ∩ c p− ∩ nc p−

Column sums pc pnc 1

The conditional probability p+|c is referred to as the true positive proportion (TPP, sometimes
sensitivity). The conditional probability p−|nc is referred to as the true negative proportion (TNP,
sometimes specificity). We refer to the conditional probability p+|nc that is the complement of specificity
as the false positive proportion (FPP = 1 − TNP). TPP and TNP are metrics often used in the evaluation
of tests based on 2 × 2 tables. TPP characterizes the proportion of c subjects that had + test outcomes,
while TNP characterizes the proportion of nc subjects that had – test outcomes. TPP and TNP are
metrics defined conditionally on actual disease status, independent of prevalence.

Returning to the matter of the threshold on the risk score scale, consider now the problem of
placement of this threshold. The effect of different threshold placements can be investigated by
generating a set of 2 × 2 tables derived from a sequence of thresholds on the risk score scale, calculating
the TPP and TNP values from each table, and then plotting the graph of TPP against FPP (= 1 − TNP).
This graph is the receiver operating characteristic (ROC) curve, see [4,5]. Generally, risk score threshold
values increase along an ROC curve from lower values in the top right-hand corner to higher values in
the bottom left-hand corner. When both the case and non-case distributions of risk scores are modeled
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as normal distributions, we have a binormal ROC curve, a format that has been extensively studied,
see for example Section 4.4 of [5].

The conditional probability pc |+ is referred to as the positive predictive value (PPV). This
characterizes the posterior probability of c status given a + test outcome. The conditional probability
pnc |− is referred to as the negative predictive value (NPV). This characterizes the posterior probability
of nc status given a − test outcome. The metrics PPV and NPV are also applicable to the evaluation of
tests based on 2 × 2 tables, but they are less frequently reported than TPP and TNP. At least in part,
this is likely because PPV and NPV vary with prevalence. The effect of prevalence on predictive values
was illustrated diagrammatically by Sackett et al., see Figures 4−9 and 4−10 of [4], and more recently
by Coulthard [7] and by Coulthard and Coulthard [8] as the leaf plot. This diagram shows how the
posterior probabilities PPV and 1−NPV vary with prevalence, given the TPP and TNP values of the test
in question. In effect, the diagram provides a nomogram for calculating probability revisions resulting
from use of a test, via application of Bayes’ rule.

3. Results

3.1. Binormal ROC Curves

Section 3 of [1] is devoted to an exploration of properties of the theoretical PROC curve, and
in particular to a detailed investigation of the shape properties of the PROC curve arising from the
binormal ROC model. The results presented here begin with identification of characteristics of the
binormal ROC curves corresponding to some qualitatively different PROC curves presented in [1]
(Table 2). As in [1], the binormal ROC model is written so that the non-case distribution is standard
normal (see Table 2).

From Table 2, we write a = (μc − μnc)/σc and b = σnc/σc, then the binormal ROC curve is
TPP = f (FPP) = Φ(a+b·Φ−1(FPP)) [5] in which Φ denotes the standard normal cumulative distribution
function and Φ−1 its inverse (Figure 1). Visually, the resulting ROC curves appear to be either
symmetric about the negative diagonal of the graphical plot (Figure 1A), or skewed towards the upper
axis (referred to as TNP-asymmetry, Figure 1B) or the left-hand axis (referred to as TPP-asymmetry,
Figure 1C) of the plot. More formally, the shape (symmetry) properties of ROC curves have been
characterized in terms of the Kullback-Leibler divergences D(fc‖fnc) and D(fnc‖fc) between the case
and non-case distributions [9–11] (with D(fc‖fnc) and D(fnc‖fc) ≥ 0, and equality only if the case
and non-case distributions are identical). In particular, binormal ROC curves may be symmetric,
TNP-asymmetric or TPP-asymmetric [10]; for symmetric binormal ROC curves, D(fc‖fnc) = D(fnc‖fc);
while for TNP-asymmetric binormal ROC curves, D(fc‖fnc)<D(fnc‖fc), and for TPP-asymmetric binormal
ROC curves, D(fc‖fnc) > D(fnc‖fc). For the binormal ROC curve in particular, these conditions reduce
to symmetry when σc = σnc, TNP-asymmetry when σc < σnc, and TPP-asymmetry when σc > σnc [10]
(Table 2, Figure 1).

Table 2. Example data and binormal ROC curve terminology.

Example

Case (fc) Non-case (fnc)

Source μc
i σc

ii μnc
i σnc

ii ROC Curve
Symmetry iii

ROC Curve
Proper or

Improper iv

ROC Curve
Crosses

Diagonal v

1. [1] Figure 1b vi 0.8 1 0 1 Symmetric Proper N/A
2. [1] Figure 1b vii 0.8 1 0 1 Symmetric Proper N/A
3. [1] Figure 2a 1 0.5 0 1 TNP-asymmetric Improper From below
4. [1] Figure 2b 2 2 0 1 TPP-asymmetric Improper From above
5. [1] Figure 6 1.134 1.704 0 1 TPP-asymmetric Improper From above

i Mean; ii Standard deviation; iii Terminology of [10]; iv Terminology of [12]; v As FPP increases; vi Prevalence = 0.7;
vii Prevalence = 0.3.
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Note that the main diagonal of an ROC plot, where TPP = FPP, is indicative of a situation where
the distributions of risk scores for cases and non-cases are identical. A risk score threshold s anywhere
on this line is thus characteristic of a test that provides no discrimination between cases and controls
(a situation which, of course, is undesirable). Looking again at Figure 1, the ROC curves depicted
appear either to fall entirely above the main diagonal of the plot (Figure 1A), or to cross it (Figure 1B,C).
ROC curves of the former type are referred to as ‘proper’, and the latter type as ‘improper’ [12] (where
the part of the curve under the diagonal is sometimes referred to as a ‘hook’). More formally, the
above-noted symmetry conditions also incorporate the conditions for which binormal ROC curves are
either proper or improper. Symmetric curves are proper (σc = σnc, b = 1), TNP-asymmetric curves are
improper (σc < σnc, b > 1) and cross the main diagonal of the plot from below with increasing FPP
(Figure 1B), and TPP-asymmetric curves are improper (σc > σnc, b < 1) and cross the main diagonal of
the plot from above with increasing FPP (Figure 1C). From [12], for improper curves we can calculate
ρ = (μc − μnc)/(σc − σnc), and then t* = Φ(ρ) is the value of FPP where the ROC curve crosses the main
diagonal and s* = −ρ is the risk score threshold on the curve at the point where it crosses the diagonal
(Figure 1).

Figure 1. ROC curves based on data from Table 2. The curves are calibrated at intervals of the risk
score threshold; starting in the top right-hand corner, −2, −1, 0, 1, 2. (A) Examples 1 and 2 (they have
identical ROC curves), Symmetric. (B) Example 3, TNP-asymmetric, t* = 0.02275, s* = 2. (C) Example 4,
TPP-asymmetric, t* = 0.97725, s* = −2.

3.2. The Corresponding PROC Curves

Figure 2 shows the PROC curves corresponding to the binormal ROC curves shown in Figure 1.
These graphs appear in Figures 1 and 2 of [1] (see Table 2), minus the main diagonal and the calibration.
The correspondence is as follows. Take a point on an ROC curve (as characterized by a particular risk
score threshold value) in Figure 1 and note the matching TPP and FPP values. Now, given a value for
the prevalence, we can calculate the corresponding PPV and 1−NPV values via Bayes’ rule. These
values then define a point on the corresponding PROC curve in Figure 2 that is characterized by the
same risk score threshold value as the point on the ROC curve from which we started. Thus we can
denote the risk score threshold on a PROC curve at the point where it crosses the diagonal using the
same notation (s*) as for an ROC curve.

On the main diagonal of the ROC plot, where TPP = FPP, we find via Bayes’ rule
PPV = 1 − NPV = pc (the prior probability, estimated by prevalence). In words: if a test provides
no discrimination between cases and non-cases, its application leaves the posterior probabilities
unchanged from the prior. Typically, test evaluation on the basis of an ROC curve is concentrated on
regions where the curve is above the main diagonal (i.e., TPP > FPP), because via Bayes’ rule this
implies PPV > pc and NPV > pnc.
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Figure 2. PROC curves based on data from Table 2. The curves are calibrated at intervals of the
risk score threshold. (A) Example 1 (solid line, prevalence = 0.7; calibration points starting from the
left-hand vertical axis are −3, −2, −1, 0, 1, 2) and Example 2 (dot-dash line, prevalence = 0.3; calibration
points starting from the left-hand vertical axis are −1, 0, 1, 2, 3, 4). These examples have identical
ROC curves (see Figure 1) but different PROC curves because the prevalence differs. (B) Example 3,
prevalence = 0.5, calibration points starting from the left-hand vertical axis are −1, 0, 1, s* = 2, 3.
(C) Example 4, prevalence = 0.3, calibration points starting from the right-hand vertical upright are
−4, −3, s* = −2, −1, 0, 1, 2.

Figure 2A shows two PROC curves based on the same ROC curve (Figure 1A), the difference
resulting from different prevalence values. The ROC curve is symmetric (proper, b = 1); the
corresponding PROC curves are monotone [1]. In each case, PPV and 1−NPV increase as the
risk score threshold increases (i.e., there is a trade-off between PPV and NPV along the PROC curve),
and the curves do not cross the main diagonal of the plot.

Figure 2B,C show PROC curves based on improper (b � 1) ROC curves (Figure 1B,C, respectively).
The PROC curves are non-monotone [1] and cross the main diagonal of the plot. In Figure 2B the PROC
curve is based on a TNP-asymmetric ROC curve crossing the diagonal from below as FPP increases,
the crossover point (s* = 2) being in the bottom left-hand corner of the ROC plot. In Figure 2C the
PROC curve is based on a TPP-asymmetric ROC curve crossing the main diagonal of the plot from
above as FPP increases, the crossover point (s* = −2) being in the top right-hand corner of the ROC
plot. Although the PROC curves’ shapes are very different to the shapes of the corresponding ROC
curves, interpretation is aided if we note that in each case the same range of risk scores is of interest.
In Figures 1B and 2B, risk scores < 2 fall above the main diagonal of the plots. In Figures 1C and 2C
risk scores > −2 fall above the diagonals. In each case, these are the ranges of risk scores that would
typically be considered as possible test thresholds. The part of the PROC curves in Figure 2B,C below
the main diagonal of the plots, corresponding to the improper ROC ‘hooks’ in Figure 1B,C, appears
more pronounced, but covers the same range of risk score thresholds in each case.

With these interpretations of PROC curves in relation to their corresponding ROC curves, we may
investigate the properties of a putative test by first setting a risk score threshold based on designated
TPP and FPP values, as is typical current practice. If we then locate this threshold value as a point on
the corresponding PROC curve, we can trace from this point to the horizontal and vertical axes of the
PROC plot to establish the x,y coordinates of the point, and so obtain the corresponding predictive
values at that threshold. Thus ROC curves and PROC curves in combination may contribute to
test evaluation.

3.3. Measures of Predictive Performance

Figure 3 shows the PROC curve corresponding to the Example 5 from Table 2. This example
provides a context for Shiu and Gatsonis [1] to address the question of how to evaluate predictive
performance based on the PROC curve. Here, we approach this problem by replotting the data on
which Figure 3 is based in an alternative format. Figure 4 shows predictive values PPV and 1−NPV on
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the vertical axis, with the risk score threshold on the horizontal axis. Only risk score thresholds that
fall above the main diagonal of the PROC plot shown in Figure 3 are included in Figure 4.

Figure 3. The PROC curve based on Example 5 (Table 2), with prevalence = 0.35 [13]. The curve is
calibrated at intervals of the risk score threshold as it increases above the main diagonal at points
−1, 0, 1, 2, and sopt = 3.23 (at which PPV = 0.990, 1 − NPV = 0.326).

Figure 4 embodies two potential measures of predictive performance, the index of separation
PSEP [6] and the distance to perfect prediction r [1]. PSEP provides a measure of ‘prognostic information’
in the situation where a test is applied to a validation data set, PSEP = PPV − (1−NPV). Note that PSEP
is a probability measure [6], and not based on information in the Shannonian sense (see [14] for further
discussion). In Figure 4, PSEP is the distance between the PPV and 1−NPV traces, varying with risk
threshold score. Now suppose we start from the concept of a notionally perfect predictions, for which
PPV =NPV = 1. Shiu and Gatsonis [1] define the distance from a given test to notional perfection as
r = (1−PPV) + (1−NPV), varying with risk score threshold. In Figure 4, r is the sum of the distances
from the PPV trace to 1 and from the 1−NPV trace to 0. Thus we have r = 1−PSEP.

Shiu and Gatsonis [1] interpret the minimum value of r (denoted here ropt) as the notional best
achievable test performance from a given PROC curve, and sopt as the corresponding optimal risk
score threshold. However, as Shiu and Gatsonis [1] point out, there may be practical restrictions that
militate against the operational use of this optimal threshold. The variation in predictive values in the
neighborhood of the threshold identified as optimal is thus likely to be of interest in the process of
selecting a value for operational use.

Let us compare Figure 4 with the corresponding leaf plot [7,8]. To do so, we require values of
TPP and TNP for the test characterized by the risk score threshold value of sopt = 3.23 on the PROC
curve for Example 5 (Table 2). Using the data for Example 5 as given in Table 2, we can calculate
the ROC curve (not shown). We may then refer to the risk score threshold value of 3.23 on this ROC
curve and so obtain the corresponding values of TPP and FPP as 0.109 and 0.001 respectively (so
TNP = 1 − FPP = 0.999). These are the data required for completion of Table 3. The table is calculated
as follows: p+∩c = TPP·pc, p+∩ nc = FPP·(1 − pc), p−∩ c = (1 − TPP)·pc, p−∩ nc = (1 − FPP)·(1 − pc), results
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shown to 2dp. The resulting leaf plot is then shown in Figure 5. From the leaf plot, we see that PPV and
1−NPV increase as prevalence increases. The leaf plot (Figure 5) embodies the predictive performance
measures PSEP and r in the same way as Figure 4. The vertical distance between the leaf margins at
any given prevalence is a PSEP value, and r = 1 − PSEP.

Table 3. The numerical prediction-realization table for a test with two categories of realized (actual)
status (c, nc) and two categories of prediction (+, −) based on Example 5 (Table 2).

Prediction (i)
Realization (j)

c nc Row sums

+ p+ ∩ c = 0.04 p+ ∩ nc = 0.00 p+ = 0.04
− p− ∩ c = 0.31 p− ∩ nc = 0.65 p− = 0.96

Column sums pc = 0.35 pnc = 0.65 1

Figure 4. PPV and 1−NPV vary with the risk score threshold as characterized by the PROC curve
in Figure 3. Only risk score thresholds that correspond to the part of the PROC curve above the
main diagonal of the plot (as calibrated in Figure 3) are shown here. The PPV (dot-dash line) and
1−NPV (solid line) traces characterize the predictive performance measures PSEP = PPV − (1 − NPV)
and r = (1 − PPV) + (1 − NPV). The r trace (dashed line) reaches a minimum value of
ropt = (1 − 0.990) + (1 − 0.674) = 0.336 at risk score threshold sopt = 3.23 [1]. The markers (•) on
the predictive value traces at risk score threshold = 3.23 (PPV = 0.990, 1 − NPV = 0.326) indicate where
this graphical plot coincides with Table 3.

On the vertical (probability scale) axis of both Figures 4 and 5 are PPV and 1−NPV. The two
diagrams differ in terms of what drives variation in these predictive values. In Figure 4, the prevalence
is constant and PPV and 1−NPV vary as TPP and FPP (and thus the risk score threshold) vary. In
Figure 5 (the leaf plot), TPP and FPP (and thus the risk score threshold) are constant and PPV and
1−NPV vary as the prevalence varies. The numerical version of the 2 × 2 prediction-realization table
(Table 3) for the test characterized by the risk score threshold value of sopt = 3.23 on the PROC curve
(Figure 3) describes the point at which Figures 4 and 5 coincide.
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Figure 5. The leaf plot based on Example 5 (Table 2). The PPV trace (dot-dash line) shows that a + test
outcome at almost any prevalence provides a useful indication of case status. However, the 1−NPV
trace (solid line) shows that a − test outcome is of little value in ruling out non-case status. The marker
(•) on the prevalence trace (dashed line) at 0.35 (where PPV = 0.990, 1 − NPV = 0.326) indicates where
this graphical plot coincides with Table 3.

3.4. An Information Theoretic Perspective on Predictive Performance

The predictive performance metrics r and PSEP for PROC curves are measured on a probability
scale; each provides a description of separation between prior and posterior probabilities which varies
with prevalence. The corresponding approach to describing the performance of tests by means of
ROC curves has been discussed in detail by Pepe, see Section 4.3 of [5]. In essence, an ROC curve
provides a description of the separation between the distributions of risk scores for cases and non-cases.
Indices that summarize ROC curves thus provide a summary of the separation between these two
distributions. Separation between the distributions of risk scores is independent of prevalence, so we
require this also of our summary indices. The most commonly-used such summary index is the area
under the ROC curve.

If we wish instead to evaluate performance by measuring distances on an information theoretic
scale, we must similarly distinguish between separation between prior and posterior probabilities
(which depends on prevalence) and separation between (summaries of) distributions of risk scores
(which does not). In both cases we may calculate relative entropies (Kullback-Leibler distances) in order
to characterize separation. On the one hand, relative entropy calculations may be used to describe
distances between distributions of risk scores [15,16], on the other, to describe distances between prior
and posterior probabilities [17]; the details differ in each case as outlined in [18].

As applied in the present context, relative entropies are metrics that quantify diagnostic information
from + and from – test outcomes (as expectations over both actual states). That is to say, diagnostic
information is quantified in terms of prior and posterior probabilities. Then expected relative entropy,
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with the expectation calculated over both test outcomes, is equal to expected mutual information. From
Table 3, we can directly calculate expected mutual information, I, via:

I =
∑

i=+,−

∑
j=c,nc

pi∩ j · ln
[ pi∩ j

pi · pj

]

from which, on substituting the numerical data from the table, we obtain Î = 0.04 nats. This value
corresponds to the risk score threshold sopt = 3.23 on Figures 3 and 4. If we estimate I for further
thresholds along the PROC curve shown in Figure 3, the resulting values form a curve with maximum
value of Î ≈ 0.09 nats at a risk threshold 1 < s < 2. In this way, expected mutual information can provide
an information theoretic perspective on the evaluation of predictive performance for a PROC curve.
For further discussion of the qualitative correspondence between PSEP (on a probability scale) and I
(on an information scale) as measures of separation, see [14].

4. Discussion

Shiu and Gatsonis [1] provide a comprehensive introduction to the predictive receiver operating
characteristic curve for the joint assessment of positive and negative predictive values and its potential
application in the evaluation of diagnostic tests. To realize its applicability, the PROC curve needs
to become part of what Gatsonis [19] has called ‘ROC thinking’—whereby the operational risk score
threshold value is considered not just in relation to TPP and FPP (defined conditionally of the actual
disease status) but also in relation to predictive values (defined conditionally on the outcome of the
forecast). The PROC curve is part of such thinking. The PROC curve provides a format for test
evaluation that is focused on predictive values and, in addition, links to the index of separation PSEP [6]
and the leaf plot [7,8].

Because the PROC curve often displays complex patterns arising from the way that changes in
the risk score threshold affect predictive values, interpreting a PROC curve requires both attention to
detail and appropriate contextual data. The following recommendations are based on investigation of
the PROC curves as characterized in Table 2, based on binormal ROC curves.

• The PROC curve and the ROC curve should not be regarded as mutually exclusive formats. Both
perspectives contribute to test evaluation. In addition, use of both perspectives also serves a
pedagogic function. The ROC curve is estimated conditionally on disease status whereas the
PROC curve is estimated conditionally on test result. With both frames of reference available
for consideration, carefully distinguishing between them becomes a requisite component of the
presentation of a test’s evaluation statistics.

• Generally (and especially in the case where the background distributional model for case and
non-case risk scores may lead to an improper ROC curve) it is useful to include the main diagonal
on the graphical plot of the PROC curve. It is also useful to present the full zero-one range of the
axes of the plot, even if (e.g., in the case of an empirical analysis) the PROC curve data do not
extend over the full range. Standardizing our view of the PROC curve helps in interpretation and
comparison of the apparently complex patterns generated by PROC curve analysis.

• Calibrating a PROC curve at intervals with values of the risk score threshold is useful, because the
way that the threshold changes along PROC curves is less obviously straightforward than for
ROC curves.

• It is always useful to include details of the prevalence value for which a PROC curve has been
calculated along with the graphical plot. Availability of a prevalence value allows further
calculations (via Bayes’ rule) following selection of a test based on a particular risk score threshold
on the PROC curve.

• If a test is characterized on the basis of a threshold on the PROC curve, it is then useful to gain a
wider perspective by determining TPP (sensitivity) and TNP (specificity) and calculating the leaf
plot (for which purpose a spreadsheet is freely available [8]).
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PROC curve analysis draws particular attention to the importance of predictive values in the
evaluation process, and so in turn brings the index of separation PSEP [6] and the leaf plot [7,8] within
the scope of Gatsonis’ [15] ‘ROC thinking’. Here we have considered PROC curves based on binormal
ROC curves; other distributional models are available. When the background distributional models
for case and non-case risk scores are continuous, there is a common information theoretic basis for
understanding the shape properties of ROC curves [11] that can also contribute to our interpretation of
the corresponding PROC curves. There is also an information theoretic approach to the assessment of
predictive performance based on PROC curves.

The suggestions presented here are aimed at furthering adoption of the PROC curve and related
methods for assessment of predictive values in the context of diagnostic test evaluation. As a set of
methods they usefully augment the perspective provided by traditional ROC curve analysis used in
isolation. Here, the binormal ROC model has provided the exemplar, but analysis based on risk score
frequencies described by other distributional models would be of interest, as would empirical analysis
(see, e.g., [20–22]). As yet there are few disease-related PROC analyses in the literature [2]; we expect
this to change as understanding of the contribution that the format can make to test evaluation grows.
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Abstract: Background: This investigation included both a study of potential non-invasive diagnostic
approaches for the bladder cancer biomarker UBC® Rapid Test and a study including comparative
methods about sensitivity–specificity characteristic (SS-ROC) and predictive receiver operating
characteristic (PV-ROC) curves that used bladder cancer as a useful example. Methods: The study
included 289 urine samples from patients with tumors of the urinary bladder, patients with
non-evidence of disease (NED) and healthy controls. The UBC® Rapid Test is a qualitative point
of care assay. Using a photometric reader, quantitative data can also be obtained. Data for pairs
of sensitivity/specificity as well as positive/negative predictive values were created by variation of
threshold values for the whole patient cohort, as well as for the tumor-free control group. Based on
these data, sensitivity–specificity and predictive value threshold distribution curves were constructed
and transformed into SS-ROC and PV-ROC curves, which were included in a single SS/PV-ROC plot.
Results: The curves revealed TPP-asymmetric improper curves which cross the diagonal from above.
Evaluation of the PV-ROC curve showed that two or more distinct positive predictive values (PPV)
can correspond to the same value of a negative predictive value (NPV) and vice versa, indicating
a complexity in PV-ROC curves which did not exist in SS-ROC curves. In contrast to the SS-ROC
curve, the PV-ROC curve had neither an area under the curve (AUC) nor a range from 0% to 100%.
Sensitivity of the qualitative assay was 58.5% and specificity 88.2%, PPV was 75.6% and NPV 77.3%, at
a threshold value of approximately 12.5 μg/L. Conclusions: The SS/PV-ROC plot is a new diagnostic
approach which can be used for direct judgement of gain and loss of predictive values, sensitivity
and specificity according to varied threshold value changes, enabling characterization, comparison
and evaluation of qualitative and quantitative bioassays.

Keywords: predictive ROC curve; ROC curve; PV-ROC curve; SS-ROC curve; SS/PV-ROC plot;
empirical; urinary bladder cancer

1. Introduction

In clinical practice for the detection of urinary bladder cancer, the confirmatory gold-standard
procedure, cystoscopy, is invasive, costly and time consuming. Thus, there is interest in easy to perform
rapid noninvasive bioassays at lower cost for detecting cancer disease in urinary samples from patients
with suspected bladder cancer or for follow-up of the disease in bladder cancer patients.

To date, antigens determined by bioassays for urinary bladder cancer are not tumor specific.
However, since bladder cancer tissue, compared to normal tissue, often expresses higher concentrations
for those antigens, elevated levels can also be found in urine of bladder cancer patients, when compared
to the levels of individuals without cancer. This enables the use of such assays for antigen determination
in the diagnostics of urinary bladder cancer to a certain extent.
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A new type of noninvasive urine-based tumor marker test for detection of urinary bladder cancer
is the UBC® Rapid Test (Urinary Bladder Cancer Antigen Rapid Test). This biomarker test is a visual
point of care (POC) test, detecting antigen fragments of cytokeratin 8 and 18 from urine samples only
qualitatively. These antigens can also be determined quantitatively using the qualitative POC UBC®

Rapid Test, combined with a photometric POC reader. With respect to quantitative assay determinations,
cytokeratin levels are lower in low-grade tumors and benign urological diseases, compared to
high-grade tumors [1,2]. Recent investigations including sensitivity–specificity characteristic (SS-ROC)
curves gave evidence of utility for the UBC® Rapid Test in detecting CIS (carcinoma in situ) and
non-invasive high-risk tumors [3,4].

The aim of this investigation was to evaluate the quality of the non-invasive diagnostic approaches
for the qualitative and quantitative bladder cancer biomarker UBC® Rapid on the basis of tables
and distribution curves for sensitivity, specificity and predictive values. Using the underlying study
of bladder cancer as a useful example, the study was furthermore intended to access preliminary
information about the utility of a newly developed graph consisting of both a sensitivity–specificity
ROC SS-ROC and a predictive value ROC curve (PV-ROC), called a SS/PV-ROC plot. According to the
present literature, there seems to be no publications on empirical PV-ROC-curves, and no SS/PV-ROC
plot has been published to date.

2. Methods

The study was approved by the local Institutional Review Board of Medical Association
Brandenburg (AS 147(bB)/2013).

In total, 289 urine samples were included in this prospective study. Clinical urine samples from
111 patients with tumors of the urinary bladder, 32 patients with non-evidence of disease (NED)
and 146 healthy controls were used. Midstream urine was collected in a sterile plastic container
and processed subsequently. Urine samples were analyzed by the UBC® Rapid Test (concile GmbH,
Freiburg/Breisgau, Germany).

All patients with confirmed bladder cancer underwent cystoscopy, bladder ultrasound and
transurethral resection of bladder tumor in the case of abnormal findings. Exclusion criteria were
any kind of mechanical manipulation (cystoscopy, transrectal ultrasound and catheterization) within
10 days prior to urine sampling. Other exclusion criteria were benign prostate enlargement, urolithiasis
other tumor diseases; severe infections; and pregnancy. All these criteria could influence the test to
yield false positive results. Table 1 illustrates the characteristics of all bladder cancer patients.

The UBC® Rapid Test was performed by qualitative visual estimation of positive/negative results.
Presently used POC-assays use qualitative immuno-chromatographic lateral flow assays which develop
a concentration-dependent color reaction used as a threshold on a test line. A positive reaction is
determined by subjective decision of human operators. The UBC® Rapid Test in combination with a
POC-reader system enables quantitative determination of a tumor-marker under POC-assay conditions.
Photometric readers can transform the concentration-dependent color reaction into quantitative values
and represent a new development including objective, quantitative evaluation of POC-assays.

Data for pairs of sensitivity/specificity as well as positive/negative predictive values were created
by variation of test threshold values for the whole patient cohort as well as for the tumor-free control
group. The cut-offs were only selected to cover the range of the biomarker test used in the study, in
order to have several values for plotting the SS-ROC and the PV-ROC curves. There were no clinical
selection criteria, or criteria concerning an optimal cut-off. Based on these data, sensitivity–specificity
and predictive value distribution curves were constructed and transformed into SS-ROC and PV-ROC
curves, and then drawn together on a single SS/PV-ROC plot. In addition, the values for sensitivity,
specificity and predictive values of the qualitative POC assay were plotted, each as a single point, for
direct assignment to both ROC curves, as well as for estimation of the qualitative test’s threshold values.
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Table 1. Characteristics of bladder cancer patients.

Status n (%)

Tumor stage

pTa 61 (55%)
pT1 14 (12.6%)
pT2 23 (20.7%)
pT3 9 (8.1%)

only CIS 3 (2.7%)
n.a. 1 (1%)

Grading

G1 26 (23.4%)
G2 58 (52.3%)
G3 24 (21.6%)
G4 1 (0.9%)
n.a. 2 (1.8%)

EORTC—Risk

Low risk 9
Intermediate risk 43

High risk 27
n.a. 32

Number of tumors in bladder

1 50
2–7 39
≥8 8

Not specified 14

Diameter of tumors in the bladder
Ø < 3 cm 56
Ø > 3 cm 43

n.a. 12

Primary vs. Recurrent tumors
Primary 58

Recurrent 52
n.a. 1

Number of recurrence

1 25
2 6
3 6
≥4 14
n.a. 1

Gross hematuria
yes 66
no 45

Alguria yes 33
no 78

Explanation of abbreviated medical terminology. Tumor stage: The extent of a cancer in the body. Staging is usually
based on the size of the tumor, whether lymph nodes contain cancer and whether the cancer has spread from the
original site to other parts of the body; pTa tumors are those neoplasms that are confined to the epithelial layer
of the bladder; pT1 tumors are those that invade into the subepithelial connective tissue; CIS (Carcinoma in situ)
is a “flat tumor” of the epithelial layer; T2–T4 are muscle-invasive tumors. Tumor grade (G): A description of a
tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells
are likely to grow and spread; GI are cancer cells that resemble normal cells and are not growing rapidly; GII are
cancer cells that do not look like normal cells and are growing faster than normal cells; GIII are cancer cells that look
abnormal and may grow or spread more aggressively. Gross hematuria: Blood in the urine that can be seen with the
naked eye. Alguria: Burning sensation when voiding.

Statistical Analysis

According to the tables, all statistical analyses were performed using R version 3.2.3 (R Core
Team (2015) [5]. Data are presented descriptively using means and standard deviations for numerical
variables and absolute and relative frequencies for categorical variables.

Data evaluation for the curves was conducted using Excel. True and false positive and true and
false negative results of the qualitative and quantitative assays were calculated and applied for plotting
distribution curves for sensitivity, specificity and positive and negative predictive values, as well as for
SS-ROC and PV-ROC curves with respect to their corresponding set threshold values.
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3. Results

Table 1 illustrates the data of the patients. Tumor stages pTa and pT1 include non-muscle-invasive
(NMI) bladder cancer, while tumor stages pT2 and pT3 include muscle invasive (MI) bladder cancer;
only CIS (carcinoma in situ) is a tumor type with a high risk of recurrence and progress. Grading of
bladder cancer is stratified from high (G1) to low (G3) differentiation. European Organisation for
Research and Treatment of Cancer (EORTC) risk is defined after the definition of the European
Association of Urology [6,7]. Table 2 contains the description of study data. Clinical data were
evaluated with respect to the UBC® Rapid Test. Table 2 shows that pathological concentrations of the
UBC® Rapid Test are detectable in urine of bladder cancer patients. Pathological levels of the UBC®

Rapid Test in urine are higher in patients with bladder cancer in comparison to the control group.

Table 2. Description of study data.

Cancer NED NMI-LG NMI-HG MI-HG Control Total

(n = 111) (n = 32) (n = 56) (n = 22) (n = 33) (n = 146) (n = 289)

Age (years)
Mean
(SD)

71.19
(11.46)

68.78
(13.14)

70.80
(12.35)

72.45
(9.41)

73.23
(9.31)

69.61
(11.94)

70.39
(11.71)

Median 74 70.5 72 75 74 71.5 73
Range 26 to 92 46 to 88 26 to 92 51 to 92 53 to 88 33 to 93 26 to 93

n 111 32 56 22 33 146 289

Gender (M, F) n (%)
F 28 (25.23) 7 (21.88) 14 (25.00) 2 (9.09) 12 (36.36) 46 (31.51) 81 (28.03)

M 83 (74.77) 25 (78.12) 42 (75.00) 20 (90.91) 21 (62.64) 100
(68.49)

208
(71.93)

UBC (μg/L)
Mean
(SD)

53.64
(87.93)

12.37
(11.40)

44.61
(81.98)

109.26
(115.76)

70.85
(97.12)

7.58
(14.00)

30.37
(66.66)

Median 10.5 6.45 6.15 59.4 20.7 5 5
Range 5 to 300 5 to 56.5 5 to 300 5 to 300 5 to 300 5 to 166 5 to 300

n 111 32 56 22 33 146 289

Explanation of abbreviated medical terminology: NED, No evidence of disease according to the Guidelines on
Non-Muscle-Invasive Urothelial Carcinoma [5,6]; NMIBC, Non-Muscle-Invasive Bladder Cancer; (TaT1 or carcinoma
in situ (CIS); NMI-LG, Non-Muscle-Invasive Low-Grade (Bladder Cancer); NMI-HG, Non-Muscle-Invasive
High-Grade (Bladder Cancer); MI-HG, Muscle-Invasive High-Grad (Bladder Cancer).

Figures 1 and 2 show concentration distribution curves calculated from values determined from
samples of bladder cancer patients and cancer-free controls. Figure 1 refers to sensitivity and specificity,
Figure 2 to PPV and NPV. Both figures confirm that the quantitative UBC® Rapid Test can discriminate
between bladder cancer patients and cancer-free controls.

Figure 1. Distribution curves for sensitivity (blue line) and specificity (brown line) from setting various
threshold values over the whole range of the UBC® Rapid Test concentrations (μg/L).
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Figure 2. Distribution curves for positive (blue line) and negative (brown line) predictive values from
setting various threshold values over the whole range of the UBC® Rapid Test concentrations (μg/L).

Figure 3 shows that all results for sensitivity, specificity and positive and negative predictive
results of the risk thresholds can be included in a single SS/PV-ROC plot. The curves are calibrated
at intervals of the risk score threshold and reveal TPP-asymmetric improper curves, which cross
the diagonal from above. The SS-ROC curve (brown line, squares) is related to all created pairs of
true positive rates (TPR) against the false positive rates (FPR) at various threshold value settings for
specificity and sensitivity, and the PV-ROC curve (blue line, triangles) consists of all created pairs of
PPV and NPV as the threshold for test positivity varied. The threshold numbers on the right side
of the graph for sensitivity and PPV are not on a calibrated scale. In addition, the corresponding
points calculated from the qualitative UBC® Rapid Test predictive value POC Test determination for
sensitivity/specificity (black circle) and predictive values (black cross) are included in the graph.

Figure 3 demonstrates that, in contrast to the SS-ROC curve, which (generally) contains an area
under the curve (AUC) and a full range from 0% to 100%, the PV-ROC curve has neither an AUC nor a
range from 0% to 100%.

In addition to Figure 3, a section of this figure was drawn (Figure 4) to provide a detailed
description of the course of the PPV curve, as well as to estimate the threshold concentrations of the
visually judged quantitative test. This was done by correlating the threshold values of the quantitative
assay to points for the sensitivity/specificity, as well as to those of the predictive values visually in
this figure, which led to an approximate threshold value of 12.5 μg/L for both sensitivity and PPV.
The graph shows a decrease of PPV starting at a threshold value of 70 (empty black triangle) and ending
at 160 (empty red triangle), including the threshold values 100 (empty triangle) and 130 (full triangle).

Regarding the course of the predictive values curve, it is evident that two or more distinct values
of PPV can correspond to the same value of NPV and vice versa (Figure 4), indicating a complexity in
PV-ROC curves which does not exist in SS-ROC curves. Evaluation of the PV-ROC curve showed an
(unexpected) decrease of PPV values at threshold values of 70, 100, 130 and 160.

The sensitivity of the qualitative assay at the threshold of 12.5 μg/L was 58.5%, the specificity
was 88.2%, the PPV was 75.6% and the NPV was 77.3%. Figures 3 and 4 show that the values were
located close to the respective curves, which confirms a good agreement of results. Visual estimation of
the threshold concentration for the quantitative assay seemed to be equivalent to the threshold value
range from 10.0 to 12.5 μg/L. At a threshold value of 10 μg/L, the values for the quantitative assay were
55.8, 88.8, 75.6 and 76.3 μg/L. The highest 1-NPV was 0.234 μg/L, close to the NPV threshold of the
quantitative assay at a value of 0.227 μg/L.
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Figure 3. SS-ROC and PV-ROC curves, which were included in a single SS/PV-ROC plot. The curves
are calibrated at intervals of the risk score threshold and reveal TPP-asymmetric improper curves,
which cross the diagonal from above. The SS-ROC curve is shown as a brown line with squares, the
PV-ROC curve as a blue line with triangles. Thresholds on each of the curves can be noted by reading
horizontally across from the appropriate column of values on the right-hand side of the plot to the
corresponding curve. In addition, the corresponding points calculated from the qualitative UBC® Rapid
Test predictive value POC test determination for sensitivity/specificity (black circle) and predictive
values (black cross) are included in the graph.

Figure 4. This figure is a section of Figure 3, which can be used to estimate the threshold value
concentration for the qualitative test, derived from data for sensitivity (black circle) and PPV (black
star), found to be approximately 12.5 μg/L. The graph illustrates decreasing PPV-values starting at
a threshold value of 70 (empty black triangle) and ending at 160 (empty red triangle), including the
threshold values 100 (empty triangle) and 130 (full triangle). The curves are calibrated at intervals of
the risk score threshold. Thresholds on each of the curves can be noted by reading horizontally across
from the appropriate column of values on the right-hand side of the plot to the corresponding curve.
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4. Discussion

The SS/PV-ROC plot may become a good tool to judge patient values received from a biomarker
determination from a more clinical perspective, within the context of the variable parameters seen
in the SS-ROC and PV-ROC curves when both are considered together. Furthermore, it is a valuable
approach to characterize quantitative biomarker assays and to compare them with others, including
qualitative assays. However, evaluation of such diagnostics seems to be a complex procedure and
clinicians will need assistance in learning how to deal with this approach with respect to the complexity
of PV-ROC curves. Recently, articles published by Hughes [8] and Benish [9] provided valuable
information and aid in dealing with this task (Benish does not discuss PV-ROC). A detailed evaluation
of the findings in the presented article would include a discussion via information theory. In this article,
which is primarily focused on establishment of the empirical SS/PV-ROC plot, a detailed analysis via
information theory is not included. Instead, the reader is referred to the articles of Hughes [8] and
Benish [9] who reported on mutual information as a metric for predictive performance for PV-ROC
and SS-ROC, respectively.

The investigation presented in this article includes both a study of the potential non-invasive
diagnostic approaches for the qualitative and quantitative cancer biomarker UBC® Rapid and a study
including empirical SS-ROC and PV-ROC curves, using bladder cancer as an example. The results are
presented in a single SS/PV-ROC plot for direct characterization, comparison and evaluation of two
clinically applied bioassays.

One purpose of this study was to evaluate the clinical usefulness of the UBC® Rapid Test for
diagnosis of bladder cancer with a focus on patients with non-muscle-invasive high-grade tumors
(NMI-HG) of the urinary bladder compared with healthy individuals. The results of the present study
show that cytokeratin concentrations determined by the UBC® Rapid Test measured by POC reader are
statistically significant for patients with bladder cancer compared with healthy controls. Similar results
were shown by Pichler et al. [10] and Styrke et al. [11].

The other purpose of this study was to use the results of a quantitative biomarker assay for
bladder cancer in order to establish empirical PV-ROC curves and combine them with SS-ROC curves
for sensitivity and specificity. Thus, conventional characterization, evaluation and comparability of
bioassays could be applied at a broader scale to use this new tool to improve clinical diagnostics.

Concerning sensitivity and specificity for biomarkers, the first ROC curves were published in
1981 by Oehr et al. [12] for different patient groups affected with cancer of the breast, lung, urinary
bladder and testis, in comparison to groups of healthy persons or patient groups with benign diseases.
Within this first approach, ROC curves were established in order to directly compare different markers
or different test systems independent of the correspondent marker concentrations.

Theoretical predictive value ROC curves including a study of the effect of the positivity threshold
on the pair of PPV and NPV of tests were first published by Shiu and Gatsonis in 2008 [13], defining
the curves mathematically, discussing the geometric patterns of these curves and describing methods
for evaluating a test’s predictive performance. According to the authors, it is essential “to study and
attempt to characterize the geometric properties of PROC curves before undertaking an investigation
of how the curves can be used to evaluate the performance of a diagnostic test” (PROC is a synonym of
PV-ROC). To the best of our knowledge, empirical predictive ROC curves have not yet been published
for bioassays by other authors, and accordingly this would also be valid for the SS/PV-ROC plot
presented in this study.

The underlying investigation of bioassays included the qualitative UBC® Rapid urine-based
point-of-care (POC) test, which can also be evaluated quantitatively by combining it with a reader
system. The first evaluation of both the qualitative and the quantitative UBC® Rapid Tests was
published by Ritter et al. [2]. In this study, the quantitative UBC® Rapid Test showed similar results
when compared to the quantitative determination. The sensitivity of the quantitative assay was 55.7%,
the specificity was 81.0%, the PPV was 56.7% and the NPV was 80.4%. The results for the quantitative
assay were 60.7%, 70.1%, 46.8% and 79.3%, respectively. According to the quantitative assay, the
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optimal threshold value was calculated to be 12.3 μg/L, using the optimal threshold value obtained by
receiver operating characteristic analysis for the quantitative assay according to the highest Youden
index. However, a threshold for the qualitative assay was not known and could not be included for
comparison. For comparing two assays, technically using the same POC test as a base for antigen
detection, it would be optimal to use the same threshold value because at different thresholds the
deviation of the results will normally increase, as can be seen according to threshold changes in the
SS/PV-ROC plot in Figure 3. Without knowledge of both threshold values, however, the resulting
diagnostic values can only reflect the degree of deviation, but such data cannot be interpreted in the
same way as results from a direct comparison under (broadly similar) defined conditions.

With respect to the study presented in this article, the resulting diagnostic values found by
comparison of the qualitative and quantitative assays are much closer to each other. Sensitivity of
the qualitative assay was 58.5%, specificity 88.2%, PPV 75.6% and NPV 77.3%. In comparison, at the
threshold concentration value of 10 μg/L, sensitivity of the quantitative assay was 55.8%, the specificity
was 88.8%, the PPV was 75.6%, and the NPV was 77.3%. These results give evidence that both assays
show a high agreement. The comparison could be made by prior estimation of the threshold by use of
the SS/PV-ROC plot, and the outcome of this approach might be taken as an example for its utility.

The reason for including the thresholds for the resulting values of sensitivity and PPV in Figures 3
and 4 is that developing ROC curves from cut-off distribution curves for sensitivity/specificity or
predictive values involves loss of information about the threshold concentrations. Adding the threshold
values into the SS/PV-ROC plot again is regarded as important supplementary information which
supports the reader in understanding and interpretation of SS/PV-ROC plots. It is important to know
how the thresholds for the curves change and that the changes are not gradual but dynamic. As for
publications using the SS/PV-ROC plot, it is recommended to use this approach.

The optimal threshold is presently calculated by most authors of tumor marker studies according
to the highest Youden index. Ritter et al. [2] published an optimal cutoff at ≥12.3 μg/L. Styrke et al. [11]
calculated an optimal threshold value at ≥8.1 μg/L, resulting in a sensitivity of 70.8%, specificity of
61.4%, PPV of 71.3% and NPV of 60.8%. Pichler et al. [10] reported the best cutoff at a threshold value of
6.7 ng/mL. The sensitivity, specificity, PPV and NPV of the visually evaluated qualitative UBC® Rapid
Test were 61.3%, 77.3%, 65.5% and 73.9%, respectively. For the quantitative UBC® Rapid Test, sensitivity,
specificity, PPV and NPV were 64.5%, 81.8%, 71.4% and 76.6%, respectively. This accumulation of
different optimal threshold values in diagnostics and follow-up of bladder cancer patients seems to be
confusing. The reason for differences in optimal threshold values may be related to different clinical
states of the included patients and/or controls.

To find the appropriate threshold, regarding the clinical situation for requesting an examination
of a patient, deriving threshold decisions from an SS/PV-ROC plot might be an alternative solution.
At present, the calculation of the highest Youden index disregards the predictive values, and the
low specificity of the published optimal values might lead to an increased number of false positive
values, which could involve unnecessary invasive diagnostics in clinical follow-up of patients with
suspected cancer.

Concerning the establishment of the SS/PV-ROC plot for the present study, an artifact appears to
have evolved when plotting the empirical PPV-ROC at high values in a study with low case numbers.
As illustrated in Figure 4, there was an (unexpected) decrease of PPV values at threshold values of
70, 100, 130 and 160. This was due to the fact that in case of all calculations for this threshold range
there was always only a single case result for false positive values (FPR) in the calculations for PPV.
There was no effect on NPV, since FPR values are not included in the calculations. In case a study
includes a higher number of cases, this artifact effect might decrease or disappear. Specificity results
regarding the mentioned FPR values were not markedly affected because the results for specificity
were 99.4% in all cases.

The present study of the SS/PV-ROC plot is regarded as a first step, and application of this
approach in daily clinical work is still regarded a goal. As we understand more about the characteristics
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of SS/PV-ROC plots, there will be opportunities for the re-analysis of existing datasets in order to gain
a more detailed understanding of the operation of risk thresholds. The study by Styrke et al. [11] is one
such example.

At present, evaluation of empirical PV-ROC curves remains a difficult task. Unlike the SS-ROC,
the form of PV-ROC is dependent on prevalence of cases in the dataset, and this has some impact
on the extent to which any particular SS/PV-ROC can be generalized. PPV and 1−NPV increase as
prevalence increases [8]. With respect to urinary bladder cancer, prevalence is known to differ in men
and woman. Here, for the purpose of illustration, we treated the data as homogeneous. However, we
note that, where sources of heterogeneity can be identified statistically within a dataset, this might call
for separate PV-ROC curves for the different sub-sets. This is beyond the scope of the present article
but worth noting as a topic for further research.

Support is necessary to understand the information theoretic perspective on evaluation, as
well as to provide recommendations with a view to aiding understanding and interpretation of the
sometimes-complex patterns generated by PV-ROC curves, their correlations with SS-ROC and their
correlations to other related statistical methods, including estimation of prevalence and the leaf plot.
Furthermore, to obtain agreement on a standardized PV-ROC curve evaluation, it is important to
make future empirical studies by different authors or institutions comparable. Recently published
articles [8,9] will help to develop this new path relating to the diagnostics of bioassays for cancer and
provide a base in other fields of science for general application of the SS/PV-ROC plot.
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Abstract: The predictive receiver operating characteristic (PROC) curve differs from the more
well-known receiver operating characteristic (ROC) curve in that it provides a basis for the evaluation
of binary diagnostic tests using metrics defined conditionally on the outcome of the test rather than
metrics defined conditionally on the actual disease status. Application of PROC curve analysis may
be hindered by the complex graphical patterns that are sometimes generated. Here we present an
information theoretic analysis that allows concurrent evaluation of PROC curves and ROC curves
together in a simple graphical format. The analysis is based on the observation that mutual information
may be viewed both as a function of ROC curve summary statistics (sensitivity and specificity) and
prevalence, and as a function of predictive values and prevalence. Mutual information calculated from
a 2 × 2 prediction-realization table for a specified risk score threshold on an ROC curve is the same as
the mutual information calculated at the same risk score threshold on a corresponding PROC curve.
Thus, for a given value of prevalence, the risk score threshold that maximizes mutual information
is the same on both the ROC curve and the corresponding PROC curve. Phytopathologists and
clinicians who have previously relied solely on ROC curve summary statistics when formulating
risk thresholds for application in practical agricultural or clinical decision-making contexts are thus
presented with a methodology that brings predictive values within the scope of that formulation.

Keywords: diagnostic test; mutual information; prevalence; PROC curve; positive predictive value;
negative predictive value; ROC curve; sensitivity; specificity

1. Introduction

Receiver operating characteristic (ROC) curves and predictive receiver operating characteristic
(PROC) curves are graphical formats with application in the determination of threshold values for
proxy variables used in disease risk assessment when it is, for whatever reason, deemed inappropriate
to use the gold standard. The work described in the present article concerns graphical threshold
determination for binary predictors based on 2 × 2 prediction-realization tables. In crop protection
decision making, binary tests are disease predictors that provide a probabilistic risk assessment
of, for example, epidemic vs. no epidemic, or treatment required vs. no treatment required.
Context for the work described here is provided by four previous articles; in chronological order of
publication, Vermont et al. [1], Shiu and Gatsonis [2], Reibnegger and Schrabmair [3] and Hughes [4].
Vermont et al. [1] described general strategies of threshold determination for both ROC curves and
PROC curves. Shiu and Gatsonis [2] described PROC curves and discussed a probabilistic measure of
performance. Reibnegger and Schrabmair [3] described ROC curves and discussed both probabilistic
and information theoretic measures of performance. Hughes [4] described both ROC curves and PROC

Entropy 2020, 22, 938; doi:10.3390/e22090938 www.mdpi.com/journal/entropy45



Entropy 2020, 22, 938

curves and briefly discussed both probabilistic and information theoretic measures of performance for
the latter.

Both ROC curves and PROC curves are based on graphical plots of conditional probabilities.
In the case of the more well-known ROC curve, the probabilities are conditioned on the actual (gold
standard) disease status. For the PROC curve, the probabilities are conditioned on the outcome of the
test. The shape of an ROC curve is independent of disease prevalence, whereas the shape of a PROC
curve varies with prevalence. Performance measures for both ROC and PROC curves are metrics
that are deployed to search for a suitable balance of the conditional probabilities on which the plots
are based. Much more work has been done on describing performance measures for ROC curves
than for PROC curves, reflecting the historical levels of application of the curves in the evaluation of
disease predictors. The work discussed here is presented as a unifying approach to the description of
performance measures for both types of curve.

To illustrate this approach, we first extend the scope of [3], a study of performance measures
for ROC curves, by calculating the corresponding PROC curves. This then provides a context for
a discussion of performance measures as characterized in [2–4] in a range of ROC curves and the
corresponding PROC curves. In particular we investigate the properties of the information theoretic
performance measure mutual information, applied to both ROC curves and PROC curves. The work
of Vermont et al. [1] is of interest in that although it appears to be one of the earliest studies of the
application of both ROC and PROC curves to the problem of probabilistic risk assessment, it has not
always been cited in the subsequent literature. Thus, we will integrate a discussion of [1] with our
analysis of the findings of the present study.

The methodology described here is applicable to the development of binary prediction tools
in phytopathology and also in clinical medicine. In particular, we show that the adoption of an
information theoretic approach to performance measurement allows the choice of an appropriate risk
score threshold to take both ROC curve and PROC curve characteristics into account in a single analysis.

2. Methods

2.1. Background to ROC Curves and PROC Curves

The present analysis of ROC curves and PROC curves uses the same starting point as a previous
study of some performance measures for ROC curves [3]. However, it is helpful at the outset to place
the analysis in the context of the kind of phytopathological studies in which these graphical formats
find application for the evaluation of disease predictors in practice.

In crop protection decision making, an ROC curve is based on the analysis of a data set that
typically comprises two observations derived from agronomic data collected during the growing
season from each of a set of experimental crops, untreated for the disease in question. One observation
is the gold standard disease assessment, often a measure of disease intensity, yield, or quality, made at
the end of the growing season. The other observation is a risk score, based on data collected earlier in
the season. The risk score provides a basis for crop protection decision making because in practice,
a gold standard observation would come too late for application in decision making. Risk scores are
typically calibrated so that higher scores are indicative of greater probability of a disease outbreak, or of
the need for a disease management intervention. The methods we describe here assume that this data
set of gold standard observations and their corresponding risk scores is already available for analysis.
For further information on the assembly of such a data set, see Hughes [5] for background on methods
for the calculation of risk scores from agronomic data, and Yuen et al. [6] and Twengström et al. [7] for
an example of the experimentation that underlies the necessary agronomic data collection.

Crops are classified as cases (‘c’) or non-cases (‘nc’), based, respectively, on whether or not the
gold standard end-of-season assessment is indicative of economically significant damage. We may
then calculate histograms of risk scores separately for the c and nc crop categories. Now, consider
the introduction of a threshold on the risk score scale. Scores above the threshold are designated ‘+’,
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indicative of (predicted) need for a crop protection intervention. Scores at or below the threshold are
designated ‘−’, indicative of (predicted) no need for a crop protection intervention.

The proportion of + predictions made for c crops is referred to as the true positive proportion
(TPP or sensitivity) written p+|c in conditional probability notation. The complementary false negative
proportion (FNP) is written p−|c. Similarly, the proportion of + predictions made for nc crops is referred
to as the false positive proportion (FPP), written p+|nc. The complementary true negative proportion
(TNP or specificity) is written p−|nc. Thus, sensitivity and specificity are metrics defined conditionally
on actual disease status. The ROC curve, which has become a familiar device in crop protection
decision support following the pioneering work of Jonathan Yuen and colleagues [6,7], is a graphical
plot of probabilities p+|c (sensitivity) against p+|nc (1 − specificity) derived by systematically varying
the position of the threshold on the risk score scale and plotting the resulting probabilities over a range
of risk scores.

In practice, the application of this analysis depends on the adoption of a particular threshold
risk score for use in a given crop protection context. The variable that characterizes the risk score
together with the adopted threshold on the risk score scale characterize a classification rule that may be
referred to as a (binary) test (‘predictor’ is synonymous). Since the values of sensitivity and specificity
are linked, a disease predictor based on a particular threshold must represent values chosen in order
to achieve an appropriate balance; see Madden [8] for discussion. The considerations underlying
adoption of a particular threshold risk score for use in a given crop protection context are beyond the
scope of this article.

While sensitivity and specificity are of interest in characterizing a test, they are of limited
significance in terms of the way we consider test results in the context of crop protection decision
making. This is because they are metrics conditioned on the actual disease status which, in a practical
decision-making context, we do not know. If we begin with a disease prevalence denoted pc, often what
we would really like to know is the predicted probability after a + test result, denoted pc |+. To obtain
this and similar probabilities, we apply Bayes’ Rule.

Generally, we can write i = +, − (for the predictions) and j = c, nc (for the realizations). The pi for
a prediction either of intervention required (i = +) or of intervention not required (i = −) can be written
as pi = pi |c·pc + pi |nc·pnc from the Law of Total Probability. The pj for case (j = c, prevalence) or non-case
(j = nc) status, such that pnc = 1 − pc, are taken as Bayesian prior probabilities (i.e., before the test is
used to make a prediction). From Bayes’ Rule, pi|j·pj = pj |i·pi, so we have pc |+ = (p+|c·pc)/p+ (positive
predictive value, PPV) and the complement pnc |+ = 1 − pc |+. Here, PPV refers to correct predictions
of the need for a crop protection intervention; the complement 1 − PPV refers to incorrect predictions
of the need for an intervention. We also have pnc |− = (p−|nc·pnc)/p− (negative predictive value, NPV) and
the complement pc |− = 1 − pnc |−. Here, NPV refers to correct predictions of no need for an intervention;
the complement 1 − NPV refers to incorrect predictions of no need for an intervention. The predictive
values are Bayesian posterior probabilities, calculated after obtaining the prediction. We note that the
positive and negative predictive values are metrics conditioned on the test outcomes. Also, unlike
sensitivity and specificity, which are independent of disease prevalence, the positive and negative
predictive values vary with prevalence. The PROC curve is a graphical plot of probabilities pc |+ (PPV)
against pc |− (1 − NPV).

2.2. Analytical Scenarios and the Calculation of ROC Curves and Corresponding PROC Curves

Reibnegger and Schrabmair [3] described four scenarios “with quite different distributional
characteristics”. Each scenario comprised a pair of statistical probability distributions, modelling the
separate (normalized) histograms of risk scores for c and nc subject categories. Here, we begin with the
same four scenarios (Table 1).

In Table 1, each scenario’s pair of distributions implicitly describes a parametric ROC curve.
However, Reibnegger and Schrabmair [3] did not make these ROC curves explicit. Instead they used
each pair of distributions as the basis for sampling c and nc data sets of various sizes. Their simulation
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study of ROC curve performance measures was based on the resulting sample data. Understandably,
then, Reibnegger and Schrabmair [3] had no need to discuss the underlying parametric ROC curves
and their properties. Here, however, these curves provide a basis for further analysis, so we explicitly
calculate the ROC curve for each scenario (Figure 1) and discern its properties. An important reason
for using the parametric ROC curves, rather than adopting the simulation approach of [3], is that
we wish to be able to discuss the shape properties of the ROC and corresponding PROC curves for
each scenario. The parametric ROC curves provide us with a non-varying baseline for this purpose.
Visually, the curve for Scenario 4 passes noticeably closer to the top left-hand corner of the plot than
the others, the curve for Scenario 2 stays noticeable further from the top left-hand corner, while the
curves for Scenarios 1 and 3 are intermediate (Figure 1). By visual inspection, none of these ROC
curves appears markedly asymmetrical.

Table 1. The four analytical scenarios i,ii.

Scenario Distribution of c Distribution of nc

1 iii Lognormal; mean = 2.5, s.d. = 0.3 Lognormal; mean = 2.0, s.d. = 0.4
2 iv Chi-squared; d.f. = 10 Chi-squared; d.f. = 7
3 Inverse gamma; shape = 3 Inverse gamma; shape = 6
4 Weibull; shape = 10, scale = 20 Chi-squared; d.f. = 6

i Notation: c, cases; nc, non-cases; s.d., standard deviation; d.f., degrees of freedom. ii See Figure 1 in [3] for a
graphical illustration of these scenarios. Each distribution was plotted over the range from 1 to 30 on the horizontal
axis. iii See [9] for further discussion of the bi-lognormal receiver operating characteristic (ROC) curve. iv See [10]
for further discussion of the bi-chi-squared ROC curve.

Figure 1. ROC curves for: (A) Scenario 1. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4. See Table 1 for
details. Risk score thresholds are calibrated in units of 1 unit on a 1 to 30 scale, following [3]. The risk
score threshold increases along the curve from the top right-hand corner to the bottom left-hand corner.
On each curve a subset of thresholds is indicated.
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ROC curves are often described in terms of being “proper” or “improper”. A proper ROC curve
has a negative second derivative (i.e., decreasing slope) over the whole range; such a proper ROC
curve never crosses the main diagonal of the plot [11]. However, an ROC curve that does not cross the
diagonal may still be improper [11]. From the literature, Scenario 2 provides a proper ROC curve [9],
and it appears from [10] that Scenario 1 provides an improper curve. We found no information relating
to the curves for Scenarios 3 and 4. For the purpose of the present study, it is of more interest whether
or not an ROC curve crosses the diagonal than whether it is strictly defined as proper or improper, so
all we can really draw for certain from the literature is that the ROC curve in Figure 1B does not cross
the main diagonal.

Having described the ROC curves, the first element of further analysis is to calculate the
corresponding PROC curves for each of the four scenarios. The required probabilities can be obtained
by adopting a value of pc (prevalence), systematically varying the position of the threshold on the risk
score scale to obtain values of p+|c (TPP) and p+|nc (FPP = 1 − TNP), then calculating PPV and 1 − NPV
via Bayes’ Rule. For each scenario, a PROC curve is calculated for each of nine prevalence values, from
pc = 0.1 to 0.9 at intervals of 0.1 (Figures 2–5).

Figure 2. Scenario 1: Predictive receiver operating characteristic (PROC) curves corresponding to the
ROC curve in Figure 1A. Each panel is labelled with the prevalence value at which the graph was
calculated. For reference to Figure 1A, the threshold risk score at 9 is marked on each graph. Threshold
risk scores increase along the curves, starting from the vertical axis (where 1 − NPV = 0), crossing the
main diagonal (at which point PPV = 1 −NPV = prevalence) from above, and continuing the horizontal
axis (where PPV = 0). NPV: negative predictive value, PPV: positive predictive value.
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Figure 3. Scenario 2: PROC curves corresponding to the ROC curve in Figure 1B. Each panel is labelled
with the prevalence value at which the graph was calculated. For reference to Figure 1B, the threshold
risk score at 7 is marked on each graph. Threshold risk scores increase along the curves, starting from
the vertical axis (where 1 −NPV = 0) and continuing to the upper horizontal of the plot (where PPV = 1)
without crossing the main diagonal.

As noted in [2], the shapes of PROC curves can appear rather complicated. There is not, as yet,
an accepted vocabulary for discussion of the shapes of PROC curves. Here, we offer a descriptive
account, based on [2,4]. The PROC curves in Figures 3 and 4, corresponding to ROC curves in Figure 1B
(Scenario 2) and Figure 1C (Scenario 3) respectively, do not cross the main diagonal of the PROC plot.
Since we know from [4] that where a PROC crosses the diagonal, it does so at the same risk score
threshold as the corresponding ROC curve, this suggests that neither ROC curve crosses the diagonal.
We know this definitively to be the case for Scenario 2, based on a proper ROC curve.

The PROC curves in Figures 2 and 5, corresponding to ROC curves in Figure 1A (Scenario 1) and
Figure 1D (Scenario 4) respectively, cross the main diagonal of the PROC plot. Qualitatively, the shape
of these PROC curves resembles that of Figure 2B in [4]. Starting at the left-hand vertical (PPV) axis of
the plot, the risk score threshold increases along the curve. The curve cuts the main diagonal of the
plot from above, then continues until meeting the horizontal (1 − NPV) axis. Now consider the ROC
curves in Figure 1A (for corresponding PROC curves in Figure 2) and Figure 1D (for corresponding
PROC curves in Figure 5). From [4], we know that these ROC curves must also cross the diagonal
(in fact, they must cross at the same risk score threshold as the corresponding PROC curve). Starting in
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the top right-hand corner of the ROC plot (FPP = 1, TPP = 1), the risk score threshold increases along
the curve. The curve cuts the main diagonal of the plot from above, then continues to the bottom
left-hand corner of the plot (FPP = 0, TPP = 0). The point where the ROC curve cuts the diagonal is
close to the bottom left-hand corner of the plot in Figure 1A,D, so is not obvious from visual inspection.

At the point where an ROC curve cuts the main diagonal of the plot, TPP = 1 − FPP, and we
know that the positive and negative likelihood ratios (LR+ and LR−, respectively) are both equal to 1.
Now, via the odds form of Bayes’ Rule (i.e., posterior odds = prior odds × LR(+ or − as appropriate)),
the posterior odds of c (given either a + or − test result) is equal to the prior odds of c; and similarly
the posterior odds of nc (given either a + or − test result) is equal to the prior odds of nc. Converting
these odds back to probabilities, we have pc |+ = pc |− = pc and pnc |+ = pnc |− = pnc. In words, the result
means that application of a test based on a threshold positioned on the main diagonal of an ROC plot
is uninformative because it results in no revision of prior probabilities to new posteriors. This is a
well-known observation; we include it here in order to compare the corresponding observation for a
PROC curve. The points where the corresponding PROC curves cut their respective diagonals are
(Figures 2 and 5) visually much clearer. We note that when the PROC curve crosses the diagonal of the
plot, it does so at the point (1 − NPV, PPV), where both these conditional (posterior) probabilities are
equal to the prior, pc. So we can see directly that a test based on a threshold positioned on the main
diagonal of an PROC plot is, by definition, uninformative.

Figure 4. Scenario 3: PROC curves corresponding to the ROC curve in Figure 1C. Each panel is labelled
with the prevalence value at which the graph was calculated. For reference to Figure 1C, the threshold
risk score at 5 is marked on each graph. Threshold risk scores increase along the curves, starting from
the vertical axis (where 1 − NPV = 0) and continuing to the upper horizontal of the plot (where PPV =
1) without crossing the main diagonal.
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Figure 5. Scenario 4: PROC curves corresponding to the ROC curve in Figure 1D. Each panel is labelled
with the prevalence value at which the graph was calculated. For reference to Figure 1D, the threshold
risk score at 13 is marked on each graph. Threshold risk scores increase along the curves, starting from
the vertical axis (where 1 −NPV = 0), crossing the main diagonal (at which point PPV = 1 −NPV =
prevalence) from above, and continuing to the horizontal axis (where PPV = 0).

2.3. Performance Measures for ROC Curves and Corresponding PROC Curves

Performance measures for ROC and PROC curves are metrics that summarize the consequences of
different choices about the position of the threshold on the risk score scale. Thus they provide methods
for identification of what Reibnegger and Schrabmair [3] called the “optimum binary cut-off threshold”.
In [3] three such methods for ROC curves are considered in a simulation study: a probability-scale
metric, an information-scale metric, and a metric based on logistic regression. Here we consider further
the first two of these, but do not pursue their logistic regression analysis.

For ROC curves, Reibnegger and Schrabmair [3] calculated the probability-scale metric Youden’s
index [12], where the index J = TPP + TNP − 1 = TPP − FPP. J was originally proposed as a generic index
for rating diagnostic tests, without reference to ROC curves. For a geometrical interpretation of J in the
context of a test with TPP and FPP described by an ROC curve, consider two points on the ROC plot.
The first is a point on the ROC curve positioned at a value TPP on the vertical axis; the second a point
vertically below the first, positioned on the main diagonal of the plot (where TPP = FPP). The vertical
distance between the two points is thus TPP − FPP. J can thus be thought of as the vertical distance
between the curve and the main diagonal on an ROC plot at a given value of TPP. Reibnegger and
Schrabmair sought the optimum risk score threshold on an ROC curve by systematically varying the

52



Entropy 2020, 22, 938

threshold and observing the value at which J was maximized. In practice, a search for the maximum
value of J would only need to consider thresholds where the ROC curve was above the main diagonal
of the plot.

Now consider the equivalent geometrical examination of two points on a PROC plot. The first
point is on the PROC curve positioned at a given value of PPV on the vertical axis (and, in practice,
above the main diagonal of the plot); the second is a point vertically below the first, positioned on the
main diagonal of the plot (where PPV = 1 − NPV). The vertical distance between the two points is
thus calculated as PPV − (1 − NPV) = PPV + NPV − 1. This probability-scale metric was discussed
in the context of the evaluation of diagnostic tests by Altman and Royston [13], who referred to it as
PSEP. Note that Altman and Royston’s discussion was generic. It concerned neither ROC curves nor
PROC curves. In the present context, one could seek the optimum risk score threshold on an PROC
curve by systematically varying the threshold and observing the value at which PSEP was maximized.
These geometrical interpretations of the performance measures J (as applied to ROC curves) and PSEP
(as applied to PROC curves) are both illustrated in Figure 6. The maximum values of J and of PSEP
occur at different risk score thresholds.

Figure 6. (A) The ROC curve is based on the normal distribution, with c subjects being N~(1.72, 0.42)
and nc subjects N~(1.27, 0.27) (see [1] for details). Qualitatively, the shape of this improper ROC curve
resembles that of Figure 1C in [4]. The risk score threshold increases along the ROC curve from the top
right-hand corner of the plot to the bottom left-hand corner, crossing the main diagonal from below
close to the top right-hand corner. The approximate maximum value of J = 0.494 (correct to 3 d.p.)
occurs at a risk score threshold of 1.5. (B) The corresponding PROC curve was calculated as outlined
in [4], with prevalence set to 180/702 = 0.256 (see [1]). Qualitatively, the shape of this PROC curve
resembles that of Figure 2C in [4]. The risk score threshold increases along the PROC curve from the
right-hand upright of the plot (where 1 − NPV = 1) to the upper horizontal (where PPV = 1), crossing
the main diagonal from below at 1 − NPV = PPV = 0.256 (prevalence). The approximate maximum
value of PSEP = 0.754 (correct to 3 d.p.) occurs at a risk score threshold of 2.0. Risk score thresholds on
both curves are calibrated in units of 0.5 on a −10 to +10 scale (resulting data points may overlap).

We note that the metric r = (1 − PPV) + (1 − NPV) = 1 − PSEP [4] was discussed as a performance
measure for PROC curves by Shiu and Gatsonis [2] (without reference to PSEP). It is a measure of
distance (but not the shortest distance) between a given point on a PROC curve and the point (0, 1)
in the top left-hand corner of the plot, with minimum value denoted r*. In passing, we note that the
ROC curve analogue of r is 1 − J = (1 − TPP) + (1 − TNP). We did not find any discussion of the use of
this metric as a performance measure in the literature. The distance metrics J (and its complement)
(for ROC curves) and PSEP and r (for PROC curves), and other metrics derived from them, have

53



Entropy 2020, 22, 938

application in graphical determination of thresholds, as discussed in, for example, [1] (see Strategies 5
and 6) and [14].

We turn now to the information-scale metric mutual information (denoted here I). In the present
context, mutual information is the expected value of the amount of information gained by application
of a diagnostic test. Metz et al. [15] and McNeil et al. [16] appear to have described the first applications
of I in the particular context of ROC curve analysis. As with J and PSEP, I is not defined specifically for
such application [17]. Reibnegger and Schrabmair [3] sought the optimum risk score threshold on an
ROC curve by systematically varying the threshold and observing the value at which I was maximized.
Here we extend this approach to include the study of both ROC and PROC curves. Hughes [4] briefly
discussed I as a potential performance measure for PROC curves.

Starting from a generic 2 × 2 prediction-realization table (Table 2), and working in natural
logarithms, we obtain mutual information I via:

I =
∑

i=+,−

∑
j=c,nc

pi∩ j · ln
{ pi∩ j

pi · pj

}
(1)

from which, on substituting the appropriate numerical data, we may calculate the required estimates
of I in nats. In the present study, the calculation of I via Equation (1) was carried out on systematically
varying the risk score threshold over the range 1 to 30 (in increments of 1 unit, along the calculated
ROC curves for each scenario shown in Figure 1). In order to apply the results to the corresponding
PROC curves (Figures 2–5), these calculations were carried out using nine different prior probabilities
(prevalence values) over the range 0.1–0.9 in increments of 0.1.

We note at this stage that Equation (1) can be viewed either from an ROC curve perspective (i.e., in
terms of sensitivity and specificity and their complements) or from a PROC curve perspective (i.e., in
terms of predictive values). For the ROC perspective, we rewrite Equation (1) as:

I= p+|c · pc · ln
{

p+|c
p+|c · pc + p+|nc · pnc

}
+p+|nc · pnc · ln

{
p+|nc

p+|c · pc + p+|nc · pnc

}
+p−|c · pc · ln

{
p−|c

p−|c · pc + p−|nc · pnc

}
+p−|nc · pnc · ln

{
p−|nc

p−|c · pc + p−|nc · pnc

}
(2)

in nats, which is Equation (2) from [15] written in the notation of the current article. Here mutual
information is written as a function of sensitivity and specificity (and their complements) and the
prevalence values for cases and non-cases. For the PROC perspective, we rewrite Equation (1) as:

I =
∑

i=+,−
pi

∑
j=c,nc

pj|i · ln
{pj|i

pj

}
(3)

in nats, which is Equation (4) from [18] written in the current notation. Here, mutual information is
written as the information obtained from a specific test outcome (either + or −) averaged over both c
and nc subjects (this is relative entropy), then averaged over both + and − outcomes. Both [15] and [18]
worked in base 2 logarithms rather than natural logarithms. To convert from natural logarithms to
base 2 logarithms, divide by ln(2) ≈ 0.693 (in which case the units are bits).
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Table 2. The prediction-realization table for a test with two categories of realized (actual) status (c, nc)
and two categories of prediction (+, −). In the body of the table are the joint probabilities.

Prediction (i)
Realization (j)

c nc Row Sums

+ p+∩c p+∩nc p+
− p−∩c p−∩nc p−

Column Sums pc pnc 1

3. Results

An immediate consequence of the fact that Equation (1) can be viewed either from the perspective
of an ROC curve (Equation (2)) or a PROC curve (Equation (3)) is that the mutual information calculated
for a given 2 × 2 prediction-realization table applies to the same risk score threshold on both curves.
Thus, mutual information as a performance measure for binary predictors characterized by both ROC
and PROC analysis has the same value at the same risk score threshold on both curves. Having
obtained this result, we do not pursue the separate probability metrics J (for ROC curves) and PSEP
(for PROC curves) further. We focus instead on the information metric I, applicable to both curves.

It is tests based on the part of the ROC curve above the main diagonal of the plot that are of
interest in the context of diagnostic decision making. Here, p+|c > p+|nc, which implies pc |+ > pc and
pnc |− > pnc [4]. And as noted above, we know from [4] that for an ROC curve that crosses the main
diagonal of the ROC plot, the corresponding PROC curve crosses the main diagonal of the PROC plot
at the same threshold risk score. Looking first at Equation (2), recall that pc + pnc = 1, and that at the
point where the ROC curve crosses the diagonal, p+|c = p+|nc and p−|c = p−|nc. Thus at that point, each
of the four terms in curly brackets in Equation (2) is equal to 1, and as ln{1} = 0, I = 0 nats. Looking
now at Equation (3), recall that where the PROC curve crosses the diagonal of the plot, we have pc |+ =

pc |− = pc and pnc |+ = pnc |− = pnc. So in Equation (3), we again have four terms in curly brackets, each
term equal to 1 at the point where the PROC curve crosses the diagonal, so again we have I = 0 nats.
This result confirms that at the risk score threshold where an ROC curve and the corresponding PROC
curve cross the main diagonal of their respective plots, characterizing an uninformative predictor, the
mutual information I is zero nats.

We now return to the scenarios outlined in Table 1. These are arbitrary in the sense that they
represent plausible statistical simulacra of data used in the context of diagnostic test evaluation, rather
than any specific disease diagnostic scenario. So the results presented here (Figures 7–10) are of interest
mainly in terms of their qualitative characteristics. Note, in particular, that in the examples presented
there is always a single maximum value of I (referred to here as Imax) over the range of threshold risk
scores, whatever the shapes of the ROC and PROC curves. Somoza and Mossman [19] also observed
this in a study based on bi-normal ROC curves. The threshold risk score for Imax decreases slowly with
increasing prior probability, as noted in Reibnegger and Schrabmair’s simulation study [3].

For each of Figures 7–10, each of the nine panels shows how I varies with risk score threshold
at a specified prior probability. Imax refers to the maximum value of I for a particular panel. Clearly
there is variation in Imax over the set of panels in each of Figures 7–10. Recall that in Figures 7–10, each
panel applies both to an ROC curve from Figure 1A–D respectively and to a PROC curve from the
corresponding panel from Figures 2–5 respectively. The values of Imax obtained in this way characterize
an information-scale specification of the optimum risk score threshold at a specified prevalence for an
ROC curve as discussed by [3], which is shown here to apply also to the corresponding PROC curves.

Metz et al. [15] were not directly concerned with characterizing the optimum risk score threshold
on an ROC curve. Instead, their application of Imax was as measure of the “system quality” attributable
to a device used in diagnostic decision making and described by an ROC curve, for the purpose of
comparison with other such devices. Nevertheless, the calculations of mutual information in [15]
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are the same as those required for application in characterizing ROC curve thresholds [3], and those
presented here with application further extended to characterizing PROC curve thresholds.

Metz et al. [15] pointed out a distinction between Imax and the global “information capacity” of a
system. Information capacity, which we refer to here as channel capacity (denoted C) is the maximum
value of I at a given risk score threshold taken over all values of prevalence. A (binary) “channel”,
in this case, is represented quantitatively by data from a numerical version of a 2 × 2 table such as
Table 2. Now, for example, suppose we obtain from Figures 7–10 the risk score thresholds at which the
largest value of Imax is observed for each scenario. These thresholds occur at 9 (Scenario 1, Figure 7),
7 (Scenario 2, Figure 8), 5 (Scenario 3, Figure 9), and 13 (Scenario 4, Figure 10). The corresponding
largest observed values of Imax for each respective specified risk score threshold are then Imax = 0.154
nats (Figure 7), Imax = 0.046 nats (Figure 8), Imax = 0.158 nats (Figure 9) and Imax = 0.568 nats (Figure 10).
We note in passing that these values of Imax reflect our earlier visual description of the ROC curves for
the four scenarios in terms of the relative proximity of their paths to the top left-hand corner of the plot
(Figure 1).

What we cannot say without further analysis is that these estimates of Imax are in the vicinity of C.
While the calculation of C from a general prediction-realization table requires application of an iterative
algorithm, there is a relatively simple analytical solution available in the case of a channel represented
by a 2 × 2 table [20,21]. From this, using the same thresholds as above, we obtain for Scenario 1,
C = 0.155 nats; for Scenario 2, C = 0.046 nats; for Scenario 3, C = 0.158 nats; and for Scenario 4, C = 0.569
nats (all to 3 d.p.). We find that the maximum value of Imax, obtained graphically at specified thresholds
from Figures 7–10 for each of the four scenarios, is an approximation of the corresponding value of C.
Thus calculation of the maximum value of Imax at a specified threshold can provide an estimate of what
Metz et al. [15] called information capacity, furnishing an upper limit to their information theoretic
measure of system quality. This result was unforeseen by Metz et al. [15].

Figure 7. Scenario 1: variation of mutual information with risk score threshold. The calculated values
of mutual information apply at risk score thresholds on the ROC curve in Figure 1A and at the same
risk score thresholds on the corresponding PROC curves in Figure 2. Each panel is labelled with the
prevalence value at which the graph was calculated. The vertical axis scales on Figures 7–10 differ.
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Figure 8. Scenario 2: variation of mutual information with risk score threshold. The calculated values
of mutual information apply at risk score thresholds on the ROC curve in Figure 1B and at the same
risk score thresholds on the corresponding PROC curves in Figure 3. Each panel is labelled with the
prevalence value at which the graph was calculated. The vertical axis scales on Figures 7–10 differ.

Figure 9. Scenario 3: variation of mutual information with risk score threshold. The calculated values
of mutual information apply at risk score thresholds on the ROC curve in Figure 1C and at the same
risk score thresholds on the corresponding PROC curves in Figure 4. Each panel is labelled with the
prevalence value at which the graph was calculated. The vertical axis scales on Figures 7–10 differ.
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Figure 10. Scenario 4: variation of mutual information with risk score threshold. The calculated values
of mutual information apply at risk score thresholds on the ROC curve in Figure 1D and at the same
risk score thresholds on the corresponding PROC curves in Figure 5. Each panel is labelled with the
prevalence value at which the graph was calculated. The vertical axis scales on Figures 7–10 differ.

4. Discussion

Vermont et al. [1], concluding their study of the roles of ROC curves and PROC curves in the
context of graphical methods for diagnostic threshold determination, wrote as follows: “we do not
feel that it is possible to choose a segmentation threshold by only using the ROC curve of a variable
when this threshold must be used for diagnostic purposes; the PROC curves are less attractive,
more chaotic and imprecise than the ROC curves but can help to select or reject certain threshold
choice strategies”. Much the same point—that the complex patterns of PROC curves made their
implementation difficult—was later made by Shiu and Gatsonis [2]. The question thus arises as to how
we may realize the advantages of PROC curves in application (that is to say, how to make them more
attractive) in the face of apparent presentational difficulties. Answering this question would facilitate
use of PROC curve analysis to augment what we can learn from the application of ROC curve analysis,
not to substitute for it.

Because of the dependence of PROC curves on prevalence, we displayed an array of PROC curves
corresponding to the ROC curve on which each scenario was based (Figures 2–5). When calibrating
predictive values for a predictor initially based on an ROC curve, there is potential application for
an array of PROC curves such as shown in each of Figures 2–5 if consideration of more than one
prevalence value is deemed necessary. For example, it was noted in [22] that the prevalence of bladder
cancer is known to differ between subgroups of males and females. In such a situation, an array of
PROC curves for different prevalence values may allow a preview of the likely extent of differences
between the curves for each of the subgroups. A similar situation may arise in crop protection decision
making with a predictor based on an ROC curve. For example, a predictor may be used in separate
locations where geographical and/or climatic differences result in subgroups with differing disease
prevalence [23].
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Vermont et al. [1] discussed strategies for threshold determination based on probability measures;
sensitivity and specificity for ROC curves, predictive values for PROC curves. We have discussed
examples of such measures; J [12] for ROC curves and its analogue PSEP [13] for PROC curves.
Probability measures require separate calculation and interpretation of performance measures for
ROC curve analysis and for PROC curve analysis. Mutual information is an information theoretic
performance measure that has had application in the analysis of ROC curves, for example [3,15,16].
We have studied the concurrent application of mutual information to the analysis of ROC curves and
their corresponding PROC curves. The important new result of our study is that mutual information
is a performance measure that is applicable to the analysis of both ROC curves and PROC curves.
In particular, for a given prevalence, mutual information calculated at a specified risk score threshold
on an ROC curve (using Equation (2)) is the same as mutual information calculated at the same risk
score threshold on a PROC curve (using Equation (3)). In our study this result applied to scenarios
based on proper, improper, and unspecified-type ROC curves. It is also applicable to empirical ROC
and PROC analysis, as for example in [22].

The presentation of this result is noteworthy. We begin with an ROC curve, the graphical plot of
sensitivity (TPP) against 1 − specificity (1 − TNP = FPP) (e.g., Figure 1). This curve is independent of
prevalence. However, a PROC curve, the graphical plot of positive predictive value (PPV) against 1 −
negative predictive value (1 −NPV), is not independent of prevalence. Thus, in our study, we calculate
PROC curves corresponding to an ROC curve for a range of prevalence values, from 0.1 to 0.9 at
intervals of 0.1. Then, in each of Figures 2–5, we present an array of nine PROC curves for each ROC
curve shown in Figure 1. Now we can calculate mutual information for risk score thresholds from 1 to
30 at intervals of 1 unit (thus following the methodology of [3]). These mutual information values
apply to risk score thresholds along the ROC curve and to the same thresholds along the corresponding
array of PROC curves. Thus, if we describe a scenario for description of a diagnostic device in terms of
an ROC curve and a set of likely prevalence values in which the device may be operational, we can
present an array of graphical plots of mutual information against risk score threshold as a performance
measure that applies both to the ROC curve and the corresponding PROC curves (e.g., Figures 7–10).

If we set out to integrate ROC curve analysis and PROC curve analysis into a strategy for graphical
threshold determination [1], an array such as shown in each of Figures 7–10 provides an information
theoretic basis on which to meet this objective. We note that the threshold at which Imax is indicated in
the appropriate panel of an array (for the specified prevalence) is not prescriptive. It provides guidance
towards the choice of an appropriate threshold, taking into consideration data on both sensitivity
and specificity (via the ROC curve) and predictive values (via the PROC curve). Values of sensitivity,
specificity (and so J) and predictive values (and so PSEP) in the vicinity of the threshold identified by
Imax can always be investigated if required.

Drawing mutual information contours calculated at a specified prevalence onto ROC space [15]
is another way in which to present the information theoretic analysis of an ROC curve. However,
this approach does not allow for integration of an analysis of the corresponding PROC curves into
the same graphic. Nor, we believe, does this contour plot depict Imax as clearly as a graph of mutual
information against risk score threshold. Metz et al. [15] were concerned with measuring and comparing
system quality via mutual information, specifically by calculating Imax from an ROC curve by means
of Equation (2) applied at a given prevalence. Any one panel from an array of graphical plots of
mutual information against risk score threshold (e.g., Figures 7–10) fulfils this objective for a particular
prevalence value. In addition, the maximum value of Imax at a specified risk score threshold across an
array, independent of prevalence, is an estimate of channel capacity C.

There is little doubt that the complexity of PROC curves [1,2] is an obstacle to their application in
assessment of the performance of binary predictors. Equally, few would disagree that predictive values,
alongside sensitivity and specificity, should have a role to play in characterizing predictor performance.
We have shown that adoption of an information theoretic performance measure, mutual information,
in a graphical format that plots the variation of mutual information over an appropriate range of
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risk score thresholds, allows integration of ROC curve analysis and PROC curve analysis. So the
undoubted difficulties of interpretation that the PROC graph’s complexity presents may be avoided,
while retaining the benefits of considering predictive values alongside ROC curve characteristics in the
evaluation of predictor performance.
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Abstract: Diagrammatic formats are useful for summarizing the processes of evaluation and
comparison of forecasts in plant pathology and other disciplines where decisions about interventions
for the purpose of disease management are often based on a proxy risk variable. We describe a new
diagrammatic format for disease forecasts with two categories of actual status and two categories of
forecast. The format displays relative entropies, functions of the predictive values that characterize
expected information provided by disease forecasts. The new format arises from a consideration of
earlier formats with underlying information properties that were previously unexploited. The new
diagrammatic format requires no additional data for calculation beyond those used for the calculation
of a receiver operating characteristic (ROC) curve. While an ROC curve characterizes a forecast in
terms of sensitivity and specificity, the new format described here characterizes a forecast in terms of
relative entropies based on predictive values. Thus it is complementary to ROC methodology in its
application to the evaluation and comparison of forecasts.

Keywords: probability; forecast; likelihood ratio; positive predictive value; negative predictive value;
diagnostic information; relative entropy

1. Introduction

Forecasting using two categories of actual status and two categories of forecast is common in
many scientific and technical applications where evidence-based risk assessment is required as a basis
for decision-making, including plant pathology and clinical medicine. The statistical evaluation of
probabilistic disease forecasts often involves the calculation of metrics defined conditionally on actual
disease status. For the purpose of disease management decision making, metrics defined conditionally
on forecast outcomes (i.e., predictive values) are also of interest, although these are less frequently
reported. Here we introduce a new diagrammatic format for disease forecasts with two categories
of actual status and two categories of forecast. The format displays relative entropies, functions of
predictive values that characterize expected information provided by disease forecasts. Our aims in
introducing a new diagrammatic format are two-fold. First, we wish to highlight that performance
metrics conditioned on forecast outcomes have a useful role in the overall evaluation of diagnostic tests
and disease forecasters; second, bearing in mind the first aim, we wish to demonstrate that performance
metrics based on information theoretic quantities can help distinguish characteristics of such tests and
forecasters that may not be apparent from probability-scale metrics. The new diagrammatic format we
introduce is intended to provide a generic approach that can applied in any suitable context.

Diagrammatic formats are useful for summarizing the processes of evaluation and comparison
of disease forecasts in plant pathology and other disciplines where decisions about a subject must
often be taken based on a proxy risk variable rather than knowledge of a subject’s actual status. The
receiver operating characteristic (ROC) curve [1] is one such well-known format. In plant pathology,
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ROC curves are widely applied to characterize disease forecasters in terms of probabilities defined
conditionally on actual disease status. Calculating the new diagrammatic format that we describe here
has the same data requirements as the calculation of the ROC curve, but relates to relative entropy, an
information theoretic metric that quantifies the expected amount of diagnostic information consequent
on probability revision from prior to posterior arising from application of a disease forecaster. That is
to say, it depicts (functions of) probabilities defined conditionally on the forecast. Even when the full
underlying ROC curve data are not available, the new format can be constructed simply from ROC
curve summary statistics.

The new diagrammatic format is linked analytically to other formats in ways that may not always
be obvious simply from the resulting diagrams. We describe other formats and the links between them
and the new format, using example data from a previously published study. In a general discussion,
we consider the complementarity of metrics defined conditionally on the actual disease status and
metrics defined conditionally on the outcome of the forecast.

2. Methods

We discuss information graphs for disease forecasters with two categories of actual status for
subjects and two categories of forecast. In the present article, the terms ‘forecast’ and ‘prediction’ are
synonymous. We place our discussion in the context of plant pathology, but the information graphs
we describe likely have wider application. We are not concerned here with the detailed experimental
and analytical methodology that underlies the development of disease forecasters. Readers seeking a
description of such work are referred to Yuen et al. [2], Twengström et al. [3], and Yuen and Hughes [4],
for example. Rather, we will describe some graphical methods for the comparison and evaluation of
forecasters, and will outline some terminology and notation accordingly.

We need forecasters for support in crop protection decision making because the stage of the
growing season at which disease management decisions are taken is usually much earlier than an
assessment of actual (or ‘gold standard’) disease status could be made. For the purpose of development
of a forecaster, two disease assessments are made on each of a series of experimental crops during
the growing season. The actual status of each crop is characterized by an assessment of yield, or of
disease intensity, at the end of the growing season. Crops are classified as cases (‘c’) or non-cases (‘nc’),
based on whether or not the gold standard end-of-season assessment indicates economically significant
damage, respectively. Because the end-of-season assessment takes place too late to provide a basis
for crop protection decision-making, an earlier assessment of disease risk is made, at a stage of the
growing season when appropriate action can still be taken, if necessary. This earlier risk assessment
may take the form of observation of a single variable that provides a risk score for the crop in question,
or observation of a set of variables that are then combined to provide a risk score [5]. The risk score
is a proxy variable, related to the actual status of the crop, that can be obtained at an appropriately
early stage of the growing season for use in crop protection decision-making. Risk scores are usually
calibrated so that higher scores are indicative of greater risk.

Now, consider the introduction of a threshold on the risk score scale. Scores above the threshold
are designated ‘+’, indicative of (predicted) need for a crop protection intervention. Scores at or below
the threshold are designated ‘−’, indicative of (predicted) no need for a crop protection intervention.
The considerations underlying the adoption of a specific threshold risk score for use in a particular
crop protection setting are beyond the scope of this article. Madden [6] discusses this in connection
with an example data set that we consider in more detail below. In all settings, an adopted threshold
characterizes the operational classification rule that is used as a basis for predictions of the need or
otherwise for a crop protection intervention. The variable that characterizes the risk score together
with the adopted threshold risk score that characterizes the operational classification rule together
characterize what we may refer to as a (binary) ‘test’ (‘forecaster’ and ‘predictor’ are synonymous). A
prediction-realization table [7] encapsulates the cross-classified experimental data underlying such a
test. The data provide estimates of probabilities as shown in Table 1. Then, from Table 1 via Bayes’
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Rule, we can write p̂i∩ j =
[
p̂ j∩i

]
= p̂i| j·p̂ j = p̂ j|i·p̂i, with i = +, − (for the predictions) and j = c, nc (for

the realizations). The p̂ j are taken as the Bayesian prior probabilities of case (j = c) or non-case (j = nc)
status, such that p̂nc = 1− p̂c. Note also that the p̂i for intervention required (i = +) and intervention
not required (i = −) can be written as p̂i = p̂i|c·p̂c + p̂i|nc·p̂nc via the Law of Total Probability.

Table 1. The prediction-realization table for a test with two categories of realized (actual) status (c, nc)
and two categories of prediction (+, −). In the body of the table are the joint probabilities.

Realization

Prediction c nc Row Sums

+ p̂+∩ c p̂+∩ nc p̂+
− p̂−∩ c p̂−∩ nc p̂−

Column sums p̂c p̂nc 1

The posterior probability of (gold standard) case status (c) given a + prediction on using a test
is pc |+, referred to as the positive predictive value. Here, this refers to correct predictions of the need
for a crop protection intervention; the complement pnc |+ = 1 − pc |+ refers to incorrect predictions of
the need for an intervention. The posterior probability of (gold standard) non-case (nc) status given
a – prediction on using a test is pnc |−, referred to as the negative predictive value. Here, this refers to
correct predictions of no need for an intervention; the complement pc |− = 1 − pnc |− refers to incorrect
predictions of no need for an intervention. If we think of pj (j = c, nc) as representing the Bayesian
prior probabilities (i.e., before the test is used to make a prediction), the pj |i (i = +, −) then represent the
corresponding posteriors (i.e., after obtaining the prediction). Predictive values are metrics defined
conditionally on forecast outcomes.

The proportion of + predictions made for cases is referred to as the true positive proportion,
or sensitivity, and provides an estimate of the conditional probability p+|c. The complementary false
negative proportion is an estimate of p−|c. The proportion of + predictions made for non-cases is
referred to as the false positive proportion, and provides an estimate of p+|nc. The complementary
true negative proportion, or specificity, is an estimate of p−|nc. Sensitivity and specificity are metrics
defined conditionally on actual disease status. The ROC curve, which has become a familiar device in
crop protection decision support following the pioneering work of Jonathan Yuen and colleagues [2,3],
is a graphical plot of sensitivity against 1−specificity for a set of possible binary tests, based on the
disease assessments made during the growing season and derived by varying the threshold on the risk
score scale. Since sensitivity and specificity values are linked, a disease forecaster based on a particular
threshold represents values chosen to achieve an appropriate balance [8].

3. Results

3.1. Biggerstaff’s Analysis

We denote the likelihood ratio of a + prediction as L+, estimated by:

L̂+ =
p̂+ | c
p̂+ | nc

(1)

(in words, the expression on the RHS is the true positive proportion divided by the false positive
proportion or sensitivity/(1–specificity)). We denote the likelihood ratio of a − prediction as L−,
estimated by:

L̂− =
p̂− | c
p̂− | nc

(2)

(in words, the expression on the RHS is the false negative proportion divided by the true negative
proportion or (1–sensitivity)/specificity). Likelihood ratios are properties of a predictor (i.e., they are
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independent of prior probabilities) [9]. Values L+ > 1 and 0 < L− < 1 are the minimum requirements
for a useful binary test; within these ranges, larger positive values of L+ and smaller positive values of
L− are desirable. L+ characterizes the extent to which a + prediction is more likely from c crops than
from nc crops; L− characterizes the extent to which a − prediction is less likely from c crops than from
nc crops.

Now, working in terms of odds (o) rather than probability (p) (with o = p/(1−p)), we can write
versions of Bayes’ Rule, for example:

ôc|+ = ôc·L̂+ (3)

and:
ôc|− = ôc·L̂−. (4)

Thus, a + prediction increases the posterior odds of c status relative to the prior odds by a factor of L̂+

and a – prediction decreases the posterior odds of c status relative to the prior odds by a factor of L̂−.
Biggerstaff [10] used Equations (3) and (4) to make pairwise comparisons of binary tests (with both tests
applied at the same prior odds), premised on the availability only of the sensitivities and specificities
corresponding to the two tests’ operational classification rules (for example, when considering tests for
application based on their published ROC curve summary statistics, sensitivity and specificity).

At this point, we refer to a previously published phytopathological data set [11] in order to
illustrate our analysis. Note, however, that the analysis we present is generic, and is not restricted to
application in one particular pathosystem. Table 2 summarizes data for five different scenarios, based
in essence on five different normalized prediction-realization tables, derived from the original data set
and discussed previously in [6] in the context of decision making in epidemiology.

Table 2. Example data set. See [6,11] for full details.

Scenario p̂c p̂+| c p̂−| nc p̂c|+ p̂nc|−
A 0.36 0.833 0.844 0.75 0.90
B 0.05 0.833 0.844 0.22 0.99
C 0.05 0.390 0.990 0.67 0.97
D 0.85 0.833 0.844 0.97 0.47
E 0.85 0.944 0.656 0.94 0.67

p̂c: prior probability of an epidemic or for the need for a control intervention, estimated by disease prevalence.
p̂+ | c: estimated probability of an actual epidemic being correctly predicted on using a test (as defined by a
prediction-realization table). Referred to as sensitivity. p̂−| nc: estimated probability of an actual non-epidemic
being correctly predicted on using a test (as defined by a prediction-realization table). Referred to as specificity.
p̂c|+: estimated posterior probability of an epidemic given that one is predicted on using a test (as defined by a
prediction-realization table). Referred to as positive predictive value. p̂nc|−: estimated posterior probability of no
epidemic given that one is not predicted on using a test (as defined by a prediction-realization table). Referred to as
negative predictive value.

Recall that we are interested in probability (or odds) revision calculated on the basis of a forecast.
For illustration, we first consider the pairwise comparison of the tests derived from Scenario B
(reference) and Scenario C (comparison) made at p̂c = 0.05 (Table 2). Madden [6] gives a detailed
comparison based on knowledge of the full ROC curve derived from field experimentation. Biggerstaff’s
analysis essentially represents an attempt to reverse engineer a similar comparison based only on
knowledge of the tests’ published sensitivities and specificities. Scenario B yields sensitivity = 0.833
and specificity = 0.844, so we have L̂+ = 5.333 and L̂− = 0.198. Scenario C yields sensitivity = 0.390 and
specificity = 0.990, so we have L̂+ = 39.000 and L̂− = 0.616. Thus, Scenario C’s test is superior in terms of
L̂+ values but inferior in terms of L̂− values (even though its sensitivity is lower and specificity higher
than that of the reference test). As long as we restrict ourselves to pairwise comparisons of binary tests
at the same prior probability we have a simple analysis that leads, via calculation of likelihood ratios,
to an evaluation of tests made on the basis of Bayesian posteriors (directly in terms of posterior odds,
but these are easily converted to posterior probabilities if so desired). The diagrammatic version of
this comparison is shown in Figure 1. The likelihood ratios graph comprises two single-point ROC
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curves. A similar analysis for Scenario D (reference) and Scenario E (comparison) (Figure 2) shows that
Scenario E’s test is inferior in terms of L̂+ values but superior in terms of L̂− values (even though its
sensitivity is higher and specificity lower than that of the reference test).

Figure 1. Biggerstaff’s likelihood ratios graph for Scenario B (reference) and Scenario C (comparison).
The graph for Scenario B consists of a single point at 1–specificity = 0.156, sensitivity = 0.833 (see Table 2).
The solid red line through (0, 0) and (0.156, 0.833) has slope = sensitivity/(1–specificity) = 5.333 = L̂+. The
dashed red line through (0.156, 0.833) and (1, 1) has slope = (1–sensitivity)/specificity = 0.198 = L̂−. The
graph for Scenario C consists of a single point at 1–specificity = 0.01, sensitivity = 0.39 (see Table 2). The
solid green line through (0.01, 0.39) and (1, 1) has slope = sensitivity/(1–specificity) = 39.0 = L̂+. The
dashed green line through (0.156, 0.833) and (1, 1) has slope = (1–sensitivity)/specificity = 0.616 = L̂−.

Referring back to Table 2, the likelihood ratios, and corresponding graphs, for Scenarios A, B
and D would be numerically identical. It is in this context that the information theoretic properties
of likelihood ratios graphs (not pursued by Biggerstaff) are of interest. To elaborate further, we will
require an estimate of the prior probability p̂c. This is beyond what Biggerstaff’s analysis allowed, but
it is not so unlikely that such an estimate might be available. For example, a p̂c value is provided for
any test for which a numerical version of the prediction-realization table (see Table 1) is accessible.

For information quantities, the specified unit depends on the choice of logarithmic base; bits for
log base 2, nats for log base e, and hartleys (abbreviation: Hart) for log base 10 [12]. Our preference
is to use base e logarithms, symbolized ln, where we need derivatives, following Thiel [7]. In this
article, we will also make use of base 10 logarithms, symbolized log10, where this serves to make
our presentation straightforwardly compatible with previously published work, specifically that of
Johnson [13]. To convert from hartleys to nats, divide by log10(e); or to convert from nats to hartleys,
divide by ln(10). When logarithms are symbolized just by log, as immediately following, this indicates
use of a generic format such that specification of a particular logarithmic base is not required until the
formula in question is used in calculation.
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Figure 2. Biggerstaff’s likelihood ratios graph for Scenario D (reference) and Scenario E (comparison).
The graph for Scenario D consists of a single point at 1–specificity = 0.156, sensitivity = 0.833 (see Table 2).
The solid red line through (0, 0) and (0.156, 0.833) has slope = sensitivity/(1–specificity) = 5.333 = L̂+. The
dashed red line through (0.156, 0.833) and (1, 1) has slope = (1–sensitivity)/specificity = 0.198 = L̂−. The
graph for Scenario E consists of a single point at 1–specificity = 0.344, sensitivity = 0.944 (see Table 2).
The solid blue line through (0, 0) and (0.344, 0.944) has slope = sensitivity/(1–specificity) = 2.744 = L̂+.
The dashed blue line through (0.344, 0.944) and (1, 1) has slope = (1–sensitivity)/specificity = 0.085 = L̂−.

We start with disease prevalence as an estimate of the prior probability p̂c of need for a crop
protection intervention, and seek to update this by application of a predictor. The information required
for certainty (i.e., when the posterior probability of need for an intervention is equal to one) is then
log(1/p̂c) denominated in the appropriate information units. However, a predictor typically does not
provide certainty, but instead updates p̂c to p̂c|i< 1. The information still required for certainty is then
log

(
1/p̂c|i

)
in the appropriate information units. We see from log(1/p̂c) − log

(
1/p̂c| i

)
= log

(
p̂c| i/p̂c

)
that the term log

(
p̂c| i/p̂c

)
represents the information content of prediction i in relation to actual status c

in the appropriate information units. Provided the prediction is correct (i.e., in this case, i = +), the
posterior probability is larger than the prior, and thus information content of the positive predictive
value is > 0. In general, the information content of correct predictions is > 0. Predictions that result in
a posterior unchanged from the prior have zero information content and incorrect predictions have
information content < 0.

Here, we consider the information content of a particular forecast, averaged over the possible
actual states. These quantities are expected information contents, often referred to as relative entropies.
For a binary test:

Î+ =
∑
c,nc

p̂j| +· log
[ p̂ j| +

p̂ j

]
(5)

for the forecast i = + and:

Î− =
∑
c,nc

p̂j| −· log
[ p̂ j| −

p̂ j

]
(6)

for the forecast i = –. Relative entropies measure expected information consequent on probability
revision from prior p̂ j to posterior p̂ j|i after obtaining a forecast. Relative entropies are ≥ 0, with equality
only if the posterior probabilities are the same as the priors. Larger values of both Î+ and Î− are
preferable, as being indicative of forecasts that, on average, provide more diagnostic information.
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We can write the relative entropies Î+ and Î− in terms of sensitivity, specificity and (constant) prior
probability. Working here in natural logarithms, and recalling that p̂− | c = 1− p̂+ | c , p̂− | nc = 1− p̂+ | nc ,
and p̂nc = 1− p̂c we have:

Î+ =
p̂+ | c ·p̂c

p̂+ | c ·p̂c+p̂+ | nc ·p̂nc
· ln

[ p̂+ | c
p̂+ | c ·p̂c+p̂+ | nc ·p̂nc

]
+

p̂+ | nc ·p̂nc
p̂+ | c ·p̂c+p̂+ | nc ·p̂nc

· ln
[ p̂+ | nc

p̂+ | c ·p̂c+p̂+ | nc ·p̂nc

] (7)

in nats and:
Î− =

p̂− | c ·p̂c
p̂− | c ·p̂c+p̂− | nc ·p̂nc

· ln
[ p̂− | c

p̂− | c ·p̂c+p̂− | nc ·p̂nc

]
+

p̂− | nc ·p̂nc
p̂− | c ·p̂c+p̂− | nc ·p̂nc

· ln
[ p̂− | nc

p̂− | c ·p̂c+ p̂− | nc ·p̂nc

] (8)

again in nats. Now we can use these formulas to plot sets of iso-information contours for constant
relative entropies Î+ and Î− on the graph with axes sensitivity and 1 – specificity, for given prior
probabilities. From Equation (7) we obtain:

d(p̂+ | c )
d(p̂+ | nc )

=
p̂+ | c
p̂+ | nc

(9)

the solution of which is the straight line p̂+ | c = a·p̂+ | nc , which yields a = L̂+. From Equation (8)
we obtain:

d(p̂+ | c )
d(p̂+ | nc )

=
1− p̂+ | c
1− p̂+ | nc

(10)

the solution of which is the straight line p̂+ | c = (1− b) + b·p̂+ | nc , which yields b = L̂−. Thus, we find
that iso-information contours for Î+ and Î− are straight lines on the graph with axes sensitivity and
1 – specificity, i.e., Biggerstaff’s likelihood ratios graph (see Figure 3).

Figure 3. Biggerstaff’s likelihood ratios graphs for Scenarios A, B and D (Table 2). The slopes of the
lines are the likelihood ratios L̂+ = 5.333 and L̂− = 0.198, calculated from Table 2. Analysis shows
that the lines themselves are also iso-information contours for the expected information contents of +
and – forecasts. However, the calculated values of these expected information contents depend on
the prior probability as well as on sensitivity and specificity. Making use of the available data on the
prior probabilities allows us to calculate relative entropies in order to distinguish analytically between
scenarios, but the likelihood ratios graph does not distinguish visually between scenarios with the
same sensitivity and specificity.
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Now consider Scenarios A, B and D; from the data in Table 2, we calculate likelihood ratios
L̂+ = 5.333 and L̂− = 0.198 for all three scenarios (these are the slopes of the lines shown in Figure 3).
However, the three scenarios differ in their prior probabilities: p̂c = 0.36, 0.05, 0.85 for A, B, and D
respectively. This situation may arise in practice when a test is developed and used in one geographical
location, and then subsequently evaluated with a view to application in other locations where the
disease prevalence is different. The difference in test performance is reflected by the relative entropy
calculations. For Scenario A, we calculate relative entropies Î+ = 0.315 and Î− = 0.179 (both in nats,
these characterize the lines shown in Figure 3 interpreted as iso-information contours for the expected
information contents of + and – forecasts respectively). For Scenario B, we calculate Î+ = 0.171 and
Î− = 0.024 nats. For Scenario D, Î+ = 0.076 and Î− = 0.289 nats. Thus we may view Biggerstaff’s likelihood
ratios graph from an information theoretic perspective. While likelihood ratios are independent of
prior probability, relative entropies are functions of prior probability. There is further discussion of
relative entropies, including calculations for Scenarios C and E, in Section 3.3.

3.2. Johnson’s Analysis

Johnson [13] suggested transformation of the likelihood ratios graph (e.g., Figures 1–3), such that
the axes of the graph are denominated in log likelihood ratios. At the outset, note that Johnson works in
base 10 logarithms and that this choice is duplicated here, for the sake of compatibility. Thus, although
Johnson’s analysis is not explicitly information theoretic, where we use it as a basis for characterizing
information theoretic quantities, these quantities will have units of hartleys. Note also that Johnson
calculates

∣∣∣log10 L̂+

∣∣∣ and
∣∣∣log10 L̂−

∣∣∣ but here we take account of the signs of the log likelihood ratios.
Fosgate’s [14] correction of Johnson’s terminology is noted, although this does not affect our analysis
at all.

From Equation (3), we write:

log10 ôc| + = log10 ôc+ log10 L̂+ (11)

and from Equation (4):
log10 ôc| − = log10 ôc+ log10 L̂− (12)

with log10 L̂+> 0 (larger positive values are better) and log10 L̂−< 0 (larger negative values are better)
for any useful test. As previously, the objective is to make pairwise comparisons of binary tests (with
both tests applied at the same prior odds), premised on the availability only of the sensitivities and
specificities corresponding to the two tests’ operational classification rules.

With Scenario B as the reference test and Scenario C as the comparison test, we find Scenario C’s
test is superior in terms of log 10L̂+ values but inferior in terms of log 10L̂− values (Figure 4). With
Scenario D as the reference test and Scenario E as the comparison test, we find Scenario E’s test is
inferior in terms of log 10L̂+ values, but superior in terms of log 10L̂− (Figure 4). Moreover, we find
that the transformed likelihood ratios graph still does not distinguish visually between Scenarios A, B
and D (Figure 4). Thus, the initial findings from the analysis of the scenarios in Table 2 are the same
as previously.

Now, as with Biggerstaff’s [10] original analysis, we seek to view Johnson’s analysis from an
information theoretic perspective. As before, we will require an estimate of the prior probability p̂c.
After some rearrangement, we obtain from Equation (11):

log10

[
p̂c |+

p̂c

]
− log10

[
p̂nc |+

p̂nc

]
= log10 L̂+Hart (13)
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where log10[p̂c |+ /p̂c] (> 0) and log10[p̂nc |+ /p̂nc] (< 0) on the LHS are information contents (as outlined
in Section 3.1) with units of hartleys. From Equation (12):

log10

[
p̂c |−

p̂c

]
− log10

[
p̂nc |−

p̂nc

]
= log10 L̂−Hart (14)

where log10[p̂c |− /p̂c] (< 0) and log10[p̂nc |− /p̂nc] (> 0) on the LHS are information contents, again
with units of hartleys. Thus, we recognize that log10 likelihood ratios also have units of hartleys.
Figure 5 shows the information theoretic characteristics of Johnson’s analysis when data on priors are
incorporated, by drawing log10-likelihood contours on a graphical plot that has information contents
on the axes.

Figure 4. A version of Johnson’s log10 likelihood ratios diagram for data from Table 2. Here
log10 L̂+ = 0.727 and log10 L̂−= −0.704 for Scenarios A, B and D (�). For Scenario C (�), log10 L̂+ = 1.591
and log10 L̂−= −0.208. For Scenario E (�), log10 L̂+ = 0.438 and log10 L̂− = −1.071. Valid comparisons
(i.e., for scenarios with equal prior probabilities) are Scenario B (reference) with Scenario C (comparison)
and Scenario D (reference) with Scenario E (comparison).

In Figure 5, both the log10 L̂+ and log10 L̂− contours always have slope = 1. As the decompositions
characterized in Equations (13) and (14) show, any (constant) log10 likelihood ratio is the sum of
two information contents. Looking at the “north-west” corner of Figure 5 and taking Scenarios
A, B, and D from Table 2 as examples, we have log10[p̂c |+ /p̂c] = 0.642, 0.319, 0.056 Hart and
log10[p̂nc |+ /p̂nc] = −0.085, −0.408, −0.671 Hart for p̂c = 0.05 (B), 0.36 (A), 0.85 (D), respectively. In each
case, Equation (13) yields log10 L̂+ = 0.727 Hart. Looking at the “south-east” corner of Figure 5, again
taking Scenarios A, B, and D from Table 2 as examples, we have log10[p̂nc |− /p̂nc] = 0.498, 0.148, 0.018
Hart and log10[p̂c |− /p̂c] = −0.207, −0.556, −0.687 Hart for p̂nc = 0.15 (D), 0.64 (A), 0.95 (B), respectively.
In each case, Equation (14) yields log10 L̂− = −0.704 Hart. Thus we have an information theoretic
perspective on Johnson’s analysis when data on priors are available, and this time one that separates
Scenarios A, B and D visually (Figure 5).
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Figure 5. The “north-west” region of the figure is characterized by Equation (13), so relates to +
predictions (which are correct for c subjects and incorrect for nc subjects). Log10L+ contours are
always straight lines with slope = 1. The solid red line indicates the contour for log10 L̂+ = 0.727 Hart,
corresponding to Scenarios A, B, and D (Table 2). A correct + prediction has a large information content
when p̂c is small (B), and a small information content is when p̂c is large (D) (the arrow indicates the
direction of increasing p̂c along the contour). As the information content log10[p̂c |+ /p̂c] (on the vertical
axis) becomes decreasingly positive, the information content log10[p̂nc |+ /p̂nc] (on the horizontal axis)
becomes increasingly negative. The “south-east” region of the figure is characterized by Equation (14),
so relates to − predictions (which are correct for nc subjects and incorrect for c subjects). Log10L−
contours are always straight lines with slope = 1. The dashed red line indicates the contour for
log10 L̂− = −0.704 Hart, corresponding to Scenarios A, B, and D (Table 2). A correct − prediction has a
large information content when p̂nc is small (D), and a small information content is when p̂nc is large (B)
(the arrow indicates the direction of increasing p̂nc along the contour, p̂nc = 1− p̂c). As the information
content log10[p̂nc |− /p̂nc] (on the horizontal axis) becomes decreasingly positive, the information content
log10[p̂c |− /p̂c] (on the vertical axis) becomes increasingly negative.

3.3. A New Diagrammatic Format

Biggerstaff’s [10] diagrammatic format for binary predictors allows an information theoretic
interpretation once the data on prior probabilities have been incorporated. This distinguishes predictors
with the same likelihood ratios analytically, but not visually. Johnson’s [13] transformed version of
Biggerstaff’s diagrammatic format also allows an information theoretic interpretation once data on
prior probabilities are incorporated. This approach distinguishes predictors with the same likelihood
ratios both analytically and visually, but does not contribute to the comparison and evaluation of
predictive values of disease forecasters.

We now return to the information theoretic interpretation of Biggerstaff’s likelihood ratios graph
(and revert to working in natural logarithms for continuity with previous analysis based on Figure 3).
In Figure 3, the likelihood ratios are the slopes of the lines on the graphical plot. The lines themselves
are relative entropy contours, the value of which depends on prior probability. We can now visually
separate scenarios that have the same likelihood ratios but different relative entropies (e.g., A, B, D in
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Table 2) by calculating the graph with relative entropies Î+ and Î− on the axes of the plot (Figure 6). If
we consider the predictor based on Scenario A as the reference, then the predictor based on Scenario B
falls in the region of Figure 6 indicating comparatively less information is provided by both + and –
predictions, while the predictor based on Scenario D falls in the region indicating comparatively less
diagnostic information is provided by + predictions but comparatively more by − predictions.

Figure 6. Scenario A: from the data in Table 2, we calculate relative entropies Î+ = 0.315, Î− = 0.179 (both
in nats) (p̂c = 0.36) (Equations (3) and (4)). Similarly, for Scenario B we calculate Î+ = 0.171, Î− = 0.024
nats (p̂c = 0.05) and for Scenario D, Î+ = 0.076, Î− = 0.289 nats (p̂c = 0.85).

There is an alternative view of the diagrammatic format presented in Figure 6. Scenarios A, B and
D all have the same likelihood ratios, L̂+= 5.333 and L̂− = 0.198 (see Figure 3). What differs between
scenarios is the prior probability p̂c. We can remove the gridlines indicating the relative entropies for
Scenario A and plot the underlying prior probability contour (Figure 7). In Figure 7, starting at the
origin and moving clockwise, prior probability increases as we move along the contour. The contour
has maximum points with respect to both the horizontal axis and the vertical axis. The maximum
value of the contour with respect to the horizontal axis is:

p̂c =
p̂+| nc·

[
p̂+| c·

(
ln

[ p̂+ | c
p̂+ | nc

]
− 1

)
+ p̂+| nc

]
[p̂+ | c − p̂+ | nc ]

2 (15)

and the maximum value of the contour with respect to the vertical axis is:

p̂c =
p̂−| nc·

[
p̂−| c·

(
ln

[ p̂− | c
p̂− | nc

]
− 1

)
+ p̂−| nc

]
[p̂+ | c − p̂+ | nc ]

2 . (16)

The corresponding values of Î+ and Î−, respectively, can then be calculated by substitution into
Equations (7) and (8). The two maxima (together with the origin) divide the prior probability contour
into three monotone segments (see Figure 7). As p̂c increases, we observe a segment where Î+ and Î−
are both increasing (this includes Scenario B), then one where Î+ is decreasing and Î− is increasing, this
includes Scenario A), and then one where Î+ and Î− are both decreasing (this includes Scenario D).

From Figure 7, we see that for the predictor based on Scenarios A, B and D, a + prediction provides
most diagnostic information around prior probability 0.2 < p̂c < 0.3. A – prediction provides most
diagnostic information around prior probability 0.7 < p̂c < 0.8. Recall that this contour describes
performance (in terms of diagnostic information provided) for predictors with sensitivity = 0.833 and
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specificity = 0.844 (Table 2) (alternatively expressed as likelihood ratios L̂+ = 5.333 and L̂− = 0.198). No
additional data beyond sensitivity and specificity are required in order to produce this graphical plot;
that is to say, by considering the whole range of prior probability we remove the requirement for any
particular values. The point where the contour intersects the main diagonal of the plot is where Î+ = Î−.
In this case, we find that Î+ = Î− at prior probability ≈ 0.5 (Figure 7). At lower prior probabilities, +
predictions provide more diagnostic information than − predictions, while at higher prior probabilities,
the converse is the case. This contour’s balance of relative entropies at prior probability ≈ 0.5 is
noteworthy because it is not necessarily the case that there is always scope for such balance.

Figure 7. The prior probability p̂c contour for Scenarios A, B, and D (solid red line). The contour is
calibrated at 0.1 intervals of p̂c, clockwise from the origin, 0.1 to 0.9 (+ symbol on curve). Scenarios B
(p̂c = 0.05), A (p̂c = 0.36), and D (p̂c = 0.85) as characterized in Table 2 are indicated (�). Also indicated
on the prior probability contour: maximum Î+ = 0.337 nats (�) (p̂c = 0.245), maximum Î− = 0.317 nats
(�) (p̂c = 0.749), Î+ = Î−= 0.251 nats (•) (p̂c = 0.513).

Recall from Section 3.1 that we start with disease prevalence as an estimate of the prior probability
p̂c of need for a crop protection intervention. The information required (from a predictor) for certainty
is then log(1/p̂c) denominated in the appropriate information units. This is the amount of information
that would result in a posterior probability of need for an intervention equal to one. Similarly,
log(1/p̂nc), denominated in the appropriate information units, is the amount of information that would
result in a posterior probability of no need for an intervention equal to one. We can plot the contour
for these information contents on the diagrammatic format of Figure 7. This contour, illustrated in
Figure 8, indicates the upper limit for the performance of any binary predictor. No phytopathological
data are required to calculate this contour.

The diagrammatic format of Figure 7 (for Scenarios A, B and D) can accommodate prior probability
contours for other Scenarios (i.e., for predictors based on different sensitivity and specificity values).
For example, Figure 9 shows, in addition, the prior probability contours for the predictors based on
Scenario C (with sensitivity = 0.39 and specificity = 0.99) and on Scenario E (with sensitivity = 0.944 and
specificity = 0.656). We observe that a predictor based on Scenario C’s sensitivity and specificity values
potentially provides a large amount of diagnostic information from a + prediction, but over a very
narrow range of prior probabilities. Scenario C itself represents one such predictor. The amount of
diagnostic information from − predictions is very low over the whole range of prior probabilities. A
predictor based on Scenario E’s sensitivity and specificity values potentially provides a large amount of
diagnostic information from − predictions over a narrow range of prior probabilities. Scenario E itself
represents one such predictor. The amount of diagnostic information from + predictions remains low
over the whole range of prior probabilities.
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Figure 8. The dashed curve is the prior probability p̂c contour showing the upper limit for performance
of any binary predictor. The contour is calibrated at 0.1 intervals of p̂c from upper left to lower right, 0.1
to 0.9 (+ symbol on curve). The maximum relative entropy for a + test result increases indefinitely
as p̂c approaches 0 while the maximum relative entropy for a – test result increases indefinitely as p̂c

approaches 1. The prior probability contour for Scenarios A, B, and D from Figure 7 (solid red line) is
also shown, for reference (note the rescaled axes).

Figure 9. The prior probability contours for Scenarios C (solid green line) and E (solid blue line).
Starting at the origin, the green prior probability contour passes through points (clockwise from origin):
Scenario C, Î+ = 1.399, Î− = 0.004 (prior = 0.05) (�); maximum Î+ = 1.436 (prior = 0.073) (�); maximum
Î− = 0.029 (prior = 0.580) (�). This contour does not coincide with the main diagonal of the plot other
than at the origin. Starting at the origin, the blue prior probability contour passes through points
(clockwise from origin): Î+ = Î− = 0.080 (•) (prior = 0.109); maximum Î+ = 0.126 (prior = 0.337) (�);
Scenario E, Î+ = 0.039, Î− = 0.700 (prior = 0.850) (�); maximum Î− = 0.701 (prior = 0.842) (point obscured
from view). The prior probability contour for Scenarios A, B, and D (solid red line) is included here
for reference; clockwise from origin, points marked � indicate Scenarios B, A and D (see Figure 7
for details). The dashed curve shows the contour indicating the upper limit for performance of a
binary predictor (see Figure 8 for details). Note the changes in the scales on the axes compared with
Figures 7 and 8.
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4. Discussion

Diagrammatic formats have the potential to aid interpretation in the evaluation and comparison
of disease forecasts. Biggerstaff’s [10] likelihood ratios graph is a particularly interesting example. This
graph uses the format of the ROC curve, as widely applied in exhibiting and explaining sensitivity
and specificity for binary tests. However, while sensitivity and specificity are defined conditionally on
actual disease status, the likelihood ratios graph is used to compare tests on the basis of predictive
values, defined conditionally on the forecast (when tests are applied at the same prior probability). As
Biggerstaff notes, one is less interested in sensitivity and specificity when it comes to the application of
a test, because the conditionality is in the wrong order. The predictive values, or some functions of
them, are also important, and ideally one would be able use these when assessing test performance in
application (Figures 1 and 2).

Altman and Royston [15] discussed this idea in some detail and proposed PSEP as a metric for use
in the assessment of predictor performance (in the binary case, PSEP = positive predictive value + negative
predictive value – 1). Hughes and Burnett [16] later used an information theoretic analysis (including
a diagrammatic representation) to show how PSEP was related to both the Brier score [17] and the
information theoretic divergence score [18] methods of assessing predictor performance. In the current
article, further analysis shows that Biggerstaff’s likelihood ratios graph has underlying information
theoretic properties that specifically relate to predictive values. The lines on the likelihood ratios graph
are relative entropy contours, quantifying the expected information consequent on revising the prior
probability of disease to the posterior probability after obtaining a forecast. However, the likelihood
ratios graph does not visually distinguish relative entropy contours when predictors that have the
same ROC curve summary statistics (sensitivities and specificities, or equivalently, likelihood ratios
for both + and − predictions) are compared at different prior probabilities (Figure 3). A modified
diagrammatic format that does so would therefore be of interest.

Johnson [13] provides a modified format, with log likelihood ratios on the axes of the graph
(Figure 4), and suggests various possible advantages of this format. Our further analysis again shows
that this modified format has underlying information theoretic properties. These properties relate to
the statistical decomposition of log likelihood ratios (Figure 5; see also [5] for further discussion) but do
not appear to be straightforwardly helpful as an aid to interpretation in the evaluation and comparison
of disease forecasters based on predictive values.

Benish [19] applied information graphs for relative entropy to evaluate and compare clinical
diagnostic tests. Here we derive relative entropies from Biggerstaff’s likelihood ratios graph and
present the results in a new diagrammatic format, with relative entropies for + and − predictions on
the axes of the graph. Compared with the likelihood ratios graph, this visually distinguishes between
predictors that have the same ROC curve summary statistics when compared at different (known)
prior probabilities (Figure 6). So, referring to the scenarios listed in Table 2 with likelihood ratios
L̂+ = 5.333 and L̂− = 0.198 (i.e., A, B, and D) we see that Scenario A has the highest relative entropy for
a + prediction, then B, then D. Scenario D has the highest relative entropy for a − prediction, then A,
then B. Recall that relative entropies are functions of the predictive values.

Suppose now that our aim is not to compare predictor performance in particular scenarios,
but to evaluate performance over the range of possible scenarios. We can use our new format not
just to plot relative entropies for a comparison of predictor performance for various known prior
probability (disease prevalence) scenarios (Figure 6), but to also draw the contour showing how relative
entropies change as prior probability of disease varies over the range from zero to one (Figure 7). This
diagrammatic format requires no particular prior probabilities for calculation, only the ROC curve
summary statistics. In the same way that the ROC curve relates to all predictors (by sensitivity and
specificity) until a particular operational threshold is set, Figure 7 relates to all predictors (by relative
entropies based on predictive values) until a particular prior probability value is specified. Maximum
relative entropy points on the contour are calculable analytically in this format. Moreover, we can
include the contours for predictors with different summary statistics. Figure 9 shows the contour
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that includes the predictor based on Scenario C and the contour that includes the predictor based on
Scenario E, in addition to the contour that includes predictors based on Scenarios A, B and D from
Figure 7. In this diagrammatic format, we can easily see the difference between contours that include
predictors with high performance (in terms of relative entropies) in a narrow range of applicability (in
terms of prior probabilities) when compared with a contour that balances predictor performance with
a wider range of applicability. Unless we wish to evaluate and/or compare particular scenarios—in
which case, not unreasonably, estimates of the corresponding prior probability (disease prevalence)
values are required—producing the contour plot (Figures 7 and 9) has no data requirements beyond
those for producing the ROC curve.

Figures 8 and 9 include the contour showing the upper limit for performance of a binary predictor.
This upper limit serves as a qualitative visual calibration of predictor performance, rather in the way
that we look at an ROC curve in relation to the upper left-hand corner of the ROC plot (where sensitivity
and specificity are both equal to one). The contour cuts the main diagonal of the plot at prior probability
p̂c = 0.5, when ln(1/p̂c) = ln(2) = 0.693 nats (Figure 8). This is the amount of information required
to be certain of a binary outcome when the prior probability is equal to 0.5. However, the amount
of information required to be certain of an outcome is not of any great practical significance in crop
protection decision making. Rather than seeking certainty, a realistic objective is to develop predictors
that provide enough information to enable better decisions, on average, than would be made with
reliance only on prior probabilities. Thus we need to be able to consider predictor performance in
terms of predictive values.

Perhaps the most important instrument available to the developer of a binary predictor is the
placement of the threshold on the risk score scale [2,3,6,8]. This determines a predictor’s sensitivity
and specificity, and consequently the likelihood ratios for + and − predictions. However, this does not
guarantee predictor performance in terms of predictive values. ROC curve analysis and diagrammatic
formats that characterize predictive values (or functions of them) are therefore complementary aspects
of predictor evaluation and comparison. For example, the appropriate placement of the threshold on
the risk score scale may be informed by knowledge of disease prevalence for the scenario in which the
predictor is intended for application. This in turn affords an evaluation of likely performance—in terms
of predictive values—for the predictor in operation. Sometimes, however, we may wish to compare
predictors’ likely performances—perhaps in a novel scenario—when we are simply a potential user of
the predictors in question, having had no development input but with access to the predictors’ ROC
curve summary statistics. In both settings, the diagrammatic formats we have discussed have potential
application. They lead to information graphs that are visually distinct but analytically linked. All give
extra insight via the predictive values of disease forecasts.
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Abstract: For millennia humans have benefitted from application of the acute canine sense of smell
to hunt, track and find targets of importance. In this report, canines were evaluated for their ability to
detect the severe exotic phytobacterial arboreal pathogen Xanthomonas citri pv. citri (Xcc), which is
the causal agent of Asiatic citrus canker (Acc). Since Xcc causes only local lesions, infections are
non-systemic, limiting the use of serological and molecular diagnostic tools for field-level detection.
This necessitates reliance on human visual surveys for Acc symptoms, which is highly inefficient
at low disease incidence, and thus for early detection. In simulated orchards the overall combined
performance metrics for a pair of canines were 0.9856, 0.9974, 0.9257 and 0.9970, for sensitivity,
specificity, precision, and accuracy, respectively, with 1–2 s/tree detection time. Detection of trace Xcc
infections on commercial packinghouse fruit resulted in 0.7313, 0.9947, 0.8750, and 0.9821 for the same
performance metrics across a range of cartons with 0–10% Xcc-infected fruit despite the noisy, hot
and potentially distracting environment. In orchards, the sensitivity of canines increased with lesion
incidence, whereas the specificity and overall accuracy was >0.99 across all incidence levels; i.e., false
positive rates were uniformly low. Canines also alerted to a range of 1–12-week-old infections with
equal accuracy. When trained to either Xcc-infected trees or Xcc axenic cultures, canines inherently
detected the homologous and heterologous targets, suggesting they can detect Xcc directly rather
than only volatiles produced by the host following infection. Canines were able to detect the Xcc scent
signature at very low concentrations (10,000× less than 1 bacterial cell per sample), which implies that
the scent signature is composed of bacterial cell volatile organic compound constituents or exudates
that occur at concentrations many fold that of the bacterial cells. The results imply that canines
can be trained as viable early detectors of Xcc and deployed across citrus orchards, packinghouses,
and nurseries.

Keywords: early detection; Asiatic citrus canker; latent class; information theory; field diagnostic;
scent signature; direct assay; deployment

1. Introduction

Asiatic citrus canker (ACC) is a fruit, foliar, and twig lesion disease that has significant international,
national, and local quarantine implications and has been the focus of multiple extensive eradication
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programs. The disease is caused by the bacterium Xanthomonas citri pv. citri (Xcc). When pathogen
infection is severe, leaf drop and up to 69% crop loss can occur due to fruit drop [1]. The bacteria
disperse via meteorological events ranging from gentle rain to tropical storms and hurricanes. The more
severe the meteorological event, the more effective the inoculum dispersal [2,3]. Hurricanes and
tropical storms have been associated with long-range dissemination as well as local increase of the
bacterium [2,4–6]. Xcc inoculum can also be transmitted mechanically by machinery and humans if
the foliage is wet. Inoculum begins to exude from Xcc lesions within 1–5 min of becoming wet [4,6–8].
The maximum concentration of bacteria is exuded within the first 1–2 h period following the beginning
of the rainfall event or wetting of the lesion, although inoculum is produced continuously at a lower
concentration for the duration of the wetting period or storm [2–4]. Infection takes place when
inoculum-laden water passes through stomata of foliage, fruit, or green twigs. Infection can occur
through wounds as well, and it is highly exacerbated by the Asian citrus leafminer (Phyllocnistis citrella
Stainton), whose feeding galleries create a labyrinth of wounds that expose susceptible leaf mesophyll
tissues to splashed inoculum, greatly increasing the probability of infection by Xcc [9,10].

After infection occurs, bacteria propagate within the plant tissues, eventually forming small
blister-like protrusions that become visible 5–7 days post-infection with close examination augmented
by 10× magnification. Within 12–14 days, these protrusions erupt through the epidermis, forming
1–2 mm light brown erumpent lesions. As the lesions age, they darken to brown and develop
water-soaked margins with a surrounding chlorotic halo [7]. The lesion center develops a raised
spongy and corky appearance on adaxial and abaxial foliar surfaces. Older lesions can reach 1 cm in
diameter and can coalesce to form mass infections.

Pathogen detection in the field is almost exclusively by human visual inspection. Confirmation of
Xcc infection can be accomplished by serological or Polymerase Chain Reaction (PCR) assays, both
of which require infected tissue. Therefore, such assays are of minimal use for a field survey of a
pathogen that causes only local lesions, i.e., non-systemic infections. Visual inspection is tedious,
labor intensive, and highly variable due to the elusiveness of Xcc lesions, especially when high in
the canopy. Since mature citrus trees can have in excess of 100,000 leaves, finding initial infections
visually in such a large canopy is challenging and uncertain. As a consequence, multiple infection
cycles must occur before symptoms are of sufficient prevalence to permit visual detection. During
a major epidemic in Florida (1996–2006), the detection time for Xcc by trained regulatory inspectors
averaged 106 days post-infection [11]. In one regulatory exercise, 14 teams of two inspectors per team
examined the same infected orchard in succession. No two teams found the same infected trees, each
successive team found new infected trees previously undetected by prior teams, and no team found all
known infections. [Riley, unpublished results]. Since it is highly improbable that all infected trees in
an orchard will be found by visual inspection, the true incidence of infection cannot be determined,
and thus, calculating the detection accuracy of visual inspection is not possible.

The unpromising results for human visual detection suggest the need for the deployment of
a detection technology with much better performance. Genetic analyses indicate that modern-day
canines (Canis lupus familiaris) were the first domesticated animal, arising from two separate wolf
(Canis lupus) populations ≈ 15,000 years ago [12–17]. The mammalian (including canids) olfactory
system is antediluvian, having evolved from early chemotactic receptors during the Precambrian
over 600 million years ago. Acute olfaction evolved to enhance finding food, mates, detecting
danger, avoiding predators, etc. [18]. An overarching advantage to the human use of canine olfaction
is that all canids non-destructively interrogate their environment for a scent signature of interest.
This scent signature is composed of a specific volatile organic compound (VOC) or complex of VOCs.
In contrast, commonly used molecular or biochemical assays often require destructively sampling a
small proportion of the host or environment and are specific and do not detect complex VOC composites.

Wolves employ acute vision and hearing when prey is in close proximity. However, when tracking
prey, often over great distances, wolves resort to olfactory cues to locate widely dispersed and often
low-density prey [19], as is true for domestic canines [20]. To find rare targets of human interest,
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we exploit the tracking expertise and acute sense of smell handed down to modern canines from
wolves and their evolutionary predecessors. Nonetheless, scent detection is pervasive through the
animal kingdom. Other vertebrates and invertebrate animals have been explored recently in the
burgeoning science of scent detection research with diverse practical applications [21]. However,
canines dominate as olfactory detector tools because of their unsurpassed domestication and easily
deployed tracking skills.

Canines are used broadly to detect and locate a wide array of organic and inorganic odors,
(e.g., explosives, drugs, accelerants, pollutants, toxins, pesticides), tracking humans and game animals,
finding cadavers, and matching the scent of criminal perpetrators to crime scenes [22]. Canines are also
proficient at medical human disease detection, especially cancer (malignant melanoma, non small-cell,
small-cell lung, breast, prostrate, bladder, ovarian, and colorectal cancers) often with equivalent or
superior sensitivity to current medical assays and can detect epileptic seizures prior to onset [22–25].

Relative to agricultural diseases, canines were recently trained extensively to detect Candidatus
Liberibacter asiaticus (CLas), which is the causal pathogen of citrus Huanglongbing with greater
than 99%, 96%, and 92% accuracy in field trials, commercial citrus orchards and citrus in residential
properties, respectively [26]. In the same study, canines detected CLas in the Asian citrus psyllid,
Diaphorina citri, that vectors the bacteria and in bacterial co-cultures devoid of plant or animal host
cells. Additionally, canines have been trained to detect plum pox virus in commercial peach (Prunus
persica) orchards [Gottwald unpublished] and the fungal pathogen Raffaelea lauricola, which is the cause
of Laurel wilt disease of avocado (Persea americana) [27]. Thus, canines have been demonstrated to
detect bacterial, viral, and fungal pathogens in plant hosts.

Canine detection of the plant pathogens as indicated above represents a novel extension of
previous detection targets. For drugs, explosives, pollutants, etc., canines are trained to detect specific
VOC scent signatures of the target compounds. For biologicals such as plants, plant parts, humans,
and other animals, the canines are trained to recognize the volatilome, e.g., unique VOC complex,
emitted by the target. Conversely, when trained to detect pathogenic organisms, the canines must
detect one organism (bacterium, virus, or fungus) within another organism, i.e., the host plant or
animal. The three plant pathogens discussed above, CLas, plum pox virus and R. lauricola, are all
systemic within the vascular system of the host, and therefore, they can be completely or incompletely
distributed within the plant as the infection progresses. In contrast, Xcc is non-systemic and causes
only local lesions, which can range in incidence from a single lesion to thousands per tree and can be
rare, highly aggregated, or diffused within the host.

In this study, we demonstrate proof of concept that canines can discriminate and detect Xcc and
can be trained as viable detectors of the pathogen in agricultural environments. Here we document the
detection of Xcc, an exotic bacterial pathogen by use of canine olfactory surveillance in orchards and
packinghouses. Finally, we determine that canines can directly detect the target bacterium in planta
and in vitro.

2. Materials and Methods

2.1. Initial Sensitization Training of Canines for Xcc Scent Signature Recognition

Eleven canines of various breeds were utilized for the various trials throughout the course of the
study (Table 1).
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Table 1. Canines trained to detect Xanthomonas citri pv.citri (Xcc) scent signature and utilized in
this study.

Canine Breed Trial(s)

Kimba Belgian Malinois Proof of concept studies/scent transfer unit

Tank German Shepherd Proof of concept studies/scent transfer unit

NDD-1 Beagle Proof of concept studies/grapefruit seedlings

NDD-2 Beagle Proof of concept studies/grapefruit seedlings

NDD-3 German Pointer Proof of concept studies/grapefruit seedlings

NDD-4 Labrador retriever Initial orchard detection/grapefruit leaves

Juice Labrador retriever Simulated orchards, Packinghouse, Commercial
orchards, Spatial heterogeneity

Bady German Shepherd Lesion age, Lesion incidence, Abscised/senescing
leaves, spatial heterogeneity

Maxi German Shepherd Lesion age, Lesion incidence, Abscised/senescing
leaves, spatial heterogeneity

Mi German Shepherd/Belgian Malinois Direct bacterial detection, Bacterial dilution

Ti German Shepherd Direct bacterial detection, Bacterial dilution

At the onset of this study, Xcc was considered a quarantine pathogen in Florida [3,6,7,11],
and neither the bacteria nor infected plant material could be transported to new locations for
experimental purposes. Therefore, we used a Scent Transfer Unit (STU) (Model STU-100, Tolhurst
Big “T” Enterprises, Lockport, New York, NY, USA, 14094) vacuum device commonly used in canine
detection work to draw air at a constant rate (≈300 L/min) to collect volatile samples containing the
“scent signature” of the target, in this case Xcc-infected plants, and deposit the scent onto a cotton “scent
pad” [28]. Since the scent pad does not contain the pathogen (Xcc is only splash dispersed, generally
by rain and not dispersed in dry air) nor any potentially infected plant material, it can be safely
transported to non-endemic areas for testing. Scent pad samples were collected from non-infected
and Xcc-infected Ruby Red grapefruit (Citrus paradisii) trees using the STU. A sterile 12.7 × 22.9 cm
(5 × 9 inch) cotton pad was placed into the STU for 10 min by setting the STU within the canopy of a
non-infected or Xcc-infected tree 5–10 cm from leaves, fruit and branches while air was pulled through
the pad. Following each 10 min sampling period, scent pads were aseptically removed, placed in
a volatile-proof plastic bag (K-pak), and heat sealed. The STU was disinfected with ethyl alcohol
between each use. Multiple heat-sealed samples from infected and non-infected trees were segregated,
placed in zip lock plastic bags, and stored at −20 ◦C until transported (Figure 1A–C).

Canine detection companies are for-profit ventures, and therefore, they are often reticent to
undertake non-profitable and time-consuming basic research. Fortuitously, a canine detection company
in California was willing to dedicate two canines to do an initial testing of canine detection of Xcc.
In preliminary studies, it was not feasible to bring canines to the Xcc-infected sites due to quarantine
constraints. Therefore, scent pad samples were collected in South Florida, sealed in a styrofoam
shipping box with ice packs, and transported overnight to the California training facility.

One Belgian Malinois (Kimba) and one German Shepard (Tank), previously trained for criminology
scent detection, were trained to the Xcc scent signature by imprinting, during which the canine was
introduced to the target and other neutral scents. Relative to scent signature training, when the canine
becomes interested in/reacts to the correct target, the experience is immediately encouraged with
verbal and play rewards [18]. In our case, canines were imprinted to the scent signature presented on
Xcc-infected scent pads to discriminate the scent from scent pads without the scent signature. To take
advantage of the candid passion to search and track, a mixed population of mostly non-infected with a
few Xcc-infected scent pad samples were arrayed in a series of rows of metal cans placed outdoors
on metal stands (Figure 1D). Correctly alerting on the Xcc-infected pad placed in the bottom of a can
resulted in the canine receiving verbal praise and a few moments of play with the handler and a ball
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or “kong” (hard rubber ball on a short rope). Initial training used non-frozen scent pads. Canines
subsequently detected both non-frozen and frozen scent pads from Xcc-infected trees. Thereafter, scent
pads were stored frozen until use in training and assessment.

 

Figure 1. Initial training of canines for detection of the phytobacterial arboreal pathogen Xanthomonas
citri pv. citri (Xcc), the causal agent of Asiatic citrus canker (Acc). (A) Xcc-infected red grapefruit fruit
and (B) foliage. (C) Scent Transfer Unit (STU) used to draw in Xcc volatiles and deposit on cotton
scent collection pad. (D) Canine “Kimba” training by interrogating a row of metal cans containing
Xcc-positive and negative scent pads. (E,F) Detector canine NDD-1 and NDD-3 alerting on boxes
containing Xcc-infected foliage at the USDA, APHIS, National Detector Dog Training Center.

Following initial scent training, a series of preliminary studies were conducted in which canines
interrogated scent pads exposed to Xcc-infected red grapefruit for periods of 1, 5, 10, or 30 min versus
pads exposed to non-infected trees for similar times, to determine if there was a lower threshold of
exposure necessary to create scent pad training materials. Additionally, once the scent pads were
removed from the heat-sealed plastic bags, the canines interrogated them every few days to determine
the temporal viability of the scent pads as a training tool.

2.2. Training Canines for Detection of Xcc-Infected Plant Material

During 2004–5, in collaboration with the U.S. Department of Agriculture, Animal and Plant Health
Inspection Service (USDA, APHIS), National Detector Dog Training Center (NDDTC) in Orlando,
Florida, we trained canines to detect Xcc-infected Duncan grapefruit seedlings. At the USDA, ARS
laboratory in Fort Pierce, Florida, quarantine greenhouse, seedlings were infected by placing drops of
Xcc inoculum, ≈106 to 108 cfu/mL prepared from pure cultures on young leaves and using a sterile
needle to wound the leaf lamina, causing 5–10 wounds/leaf of five leaves/seedling. Seedlings were
incubated in the greenhouse for ≈2–3 weeks until symptomatic and then transported under regulatory
permit in sealed containers to the NDDTC in Orlando along with non-infected seedlings as training
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materials where they were maintained until use. At the NDDTC, two beagles (NDD-1 and NDD-2),
one German pointer (NDD-3), and one Labrador retriever (NDD-4) were trained to recognize the Xcc
scent signature by a similar imprinting/reward method as described above. Scent detection proficiency
was tested by placing excised branches or whole potted Xcc-infected or non-infected trees in closed
cardboard boxes and arraying the boxes on the floor of the training facility (Figure 1E,F). In a second
NDDTC study, the trained Labrador was transported to an Xcc-infected orchard in Indian River
County, Florida. To avoid disease quarantine issues, leaves were collected from Xcc-infected and
non-infected trees and placed into separate sealed plastic pipe containers with holes drilled in the sides
to allow the volatiles but not infected plant material to escape for canine interrogation. The canine
interrogated the containers, which were placed on the ground at the edge of the orchard. When the
trial ended, the infected and non-infected plant materials were removed from the containers, discarded
in the infected field, and the containers were disinfected. Due to quarantine issues, intermittent and
uncoordinated testing by NDDTC personnel in absence of the authors, and uncoordinated replacement
of canines assigned to the study, data were not consistently taken with the exception of an overall
assessment of performance by NDDTC personnel.

In all subsequent studies, we collaborated with three commercially certified canine detector
companies who specialize in trained detector canines for military, police and domestic clientele, for the
detection of an array of targets including explosives, drugs, bed bugs, etc. This was important because
professional canine handlers are themselves trained not to give any voluntary or involuntary cues to
the canines while testing their performance. A single handler was used for all replications of most
studies to avoid bias or variation due to handler. These companies trained nine canines (7 were used in
this study) for the detection of Xcc via imprinting on scent pads from Xcc-infected trees or Xcc-infected
grapefruit seedlings until canines gained proficiency at differentiating Xcc-infected from non-infected
samples (Table 1).

2.3. Assessment of Canine Performance

To measure the performance of canines individually and as a group, a binary classification test
was performed on the data from each of the studies below and standard diagnostic accuracy statistics
(latent-class metrics) were calculated:

True Positive (TP) correct canine alert on Xcc-positive target
True Negative (TN) correct rejection, no canine alert on Xcc-negative target
False Positive (FP) incorrect canine alert on Xcc-negative target, Type I error
False Negative (FN) incorrect canine rejection of Xcc-positive target, Type II error
Sensitivity (SEN) or true positive rate,

SEN = TP/(TP + FN)

Specificity (SPE) or True Negative Rate

SPE = TN/(FP + TN)

Precision or Positive Predictive Value (PPV)

PPV = TP/(TP + FP)

Negative Predictive Value (NPV)

NPV = TN/(TN + FN)

False Positive Rate (FPR)
FPR = FP/(FP + TN)
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False Negative Rate (FNR)
FNR = FN/(FN + TP)

False Discovery Rate (FDR)
FDR = FP/(TP + FP)

Accuracy (ACC)
ACC = (TP + TN)/n

where n = total number of samples assessed in each trial.
The above metrics are commonly used to evaluate the performance of diagnostic tests in medicine

and other endeavors, including the evaluation of canine detectors [26,29–32]. No single performance
metric can capture all aspects of canine detection accuracy. Throughout this study, we report the
metrics listed above, with a particular focus on sensitivity, specificity, and accuracy. In addition to
those standard metrics for test evaluation, we also examined the diagnostic capability of the canines
using three graphical approaches that either depend directly on information quantities or which have
direct connections to information theoretic concepts.

To illustrate the use of these methods, we focus on a single set of performance statistics derived
from assessment of the impact of disease prevalence in samples on the detection performance of
the canines (see Section 3.5 below). Using the summary statistics for the overall performance for
canines Bady and Maxi in this set of experiments, we constructed likelihood ratio graphs [33,34], a leaf
plot based on the PPV and NPV for each canine, and a “loop” plot illustrating the expected mutual
information for the positive and negative diagnoses for each animal [34].

2.4. Detection of Xcc in Simulated New Plantings

Ruby Red Grapefruit seedlings were inoculated using a needless syringe tightly appressed to
the abaxial laminar surface of 1/2 to 2/3 expanded leaves and forcing inoculum (≈105 cfu/mL) into the
lamina via pressure injection infiltration; then, they were allowed to develop citrus canker symptoms for
4 weeks prior to canine interrogation [35]. Non-inoculated trees were arrayed in a 100 tree, 10 × 10 grid,
with ≈3 m between trees within row and between rows, and with 1 to 10 Xcc-infected trees randomly
placed within the grid. Canines interrogated each tree in the grid in sequence via a serpentine pattern
up and down the rows. Three detector canines associated with two collaborating commercial canine
training companies assessed the randomized arrays of grapefruit trees.

For the first collaborating company, a single canine, a Labrador retriever “Juice”, interrogated
the simulated orchard with 2, 4, 5, 7, or 10 Xcc-infected trees randomly placed within the 100-tree
grid. Each of the incidence levels was replicated ten times. Tree placement was re-randomized
between each replication. The experiment was repeated during four separate months, July, September,
December, and May to examine the effect of seasonality. Due to commercial handler availability, not all
incidence levels were examined each month (Figure 2A–C). For the second collaborating company,
two canines, German shepherds, “Bady” and “Maxi”, each interrogated the simulated orchard with 1
to 6 Xcc-infected trees randomly placed within the 100-tree grid (Figure 2D,E). Tree placement was
re-randomized between each replication, and care was taken to ensure that only technicians setting
up each grid replicate knew the positions of Xcc-infected and non-infected trees, i.e., both handlers
and canines were unaware of true positive and true negative target positions. This same “blind”
test methodology was implemented through all subsequent trials. However, when a canine alerted
correctly on a true positive, the technician confirmed the correct detection to the handler so the handler
could appropriately reward the canine. The experiment was conducted over a two-month duration,
depending upon commercial handler availability. Each canine interrogated a grid of each Xcc-incidence
level at least twice. Canine alerts were recorded, and latent class metrics were calculated to assess
canine performance.
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Figure 2. Canine detection of Xanthomonas citri pv. citri (Xcc) in simulated and commercial orchards.
(A) Xcc-infected, potted red grapefruit inserted into ground—Xcc lesions indicated by red arrows.
Detector canine “Juice”—(B) interrogating, and (C) alerting on Xcc-infected trees. Detector canine
“Bady”—(D) interrogating, and (E) alerting on Xcc-infected trees. (F) “Juice” alerting on Xcc-infected
grapefruit tree in commercial orchard. (G) Sample of three Xcc-infected grapefruit leaves from
commercial orchard identified by “Juice”—note multiple small brown Xcc lesions surrounded by
chlorotic halos.

2.5. Detection of Xcc Lesions of Various Ages

Ruby Red Grapefruit seedlings were inoculated using the methods described in Section 2.4 above.
Inoculations were conducted over time, such that on the day of canine interrogation, a temporal
array of Xcc-infected seedlings were 1, 3, 6, 9, and 12 weeks post-inoculation. Two canines, Bady
and Maxi, each assessed a 50-tree grid (5 rows of 10 seedlings per row) five times (replications).
For each replication, two seedlings with Xcc infections of the same age were randomly placed within
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a population of 48 additional non-infected seedlings of the same age. The experiment was repeated
7 days later using the same temporal array of seedlings, whose Xcc infections were now 1 week older.
All tests were blinded as described in Section 2.4 above. Since there was no significant difference
between the repeated experimental results, performance metrics were calculated for the combined
data such that Xcc-infection age ranged 1–2, 3–4, 6–7, 9–10, and 12–13 weeks post-infection.

2.6. The Effect of Incidence of Xcc Lesions on Detection

Early observations with the canine “Juice” indicated the potential that he alerted differentially to
trees infected with few versus prevalent lesions. Subsequently, canines were trained to alert to Xcc
infections regardless of infection prevalence. To assess the effect of lesion incidence, Duncan grapefruit
seedling trees were inoculated by pin-prick inoculation as described above to establish trees with 1, 5,
50 and 500 lesions each. Two canines, Bady and Maxi, each interrogated grids of 50 trees with one
Xcc-infected tree of each lesion incidence and 46 non-infected trees. Each Xcc incidence level was
interrogated twice by each canine with the location of the Xcc-infected trees re-randomized (using
a random number generator) between replicates. All tests were blinded as described in Section 2.4
above. The experiment was repeated two months later with the same set of trees. Canine alerts
were recorded, and latent class metrics were calculated to assess canine performance. For each lesion
incidence, performance metrics were calculated considering one infected tree of the specific lesion
incidence being evaluated in a population of 46 non-infected trees, ignoring the canine response of the
other three Xcc-infected trees of other lesion incidence.

2.7. Detection of Xcc Infections in Decaying Foliage

Barring adverse environmental conditions or disease, the lifespan of citrus leaves is 1–3 years
prior to abscission, after which they senesce and decay. However, Xcc-infected leaves experience
foliar accumulation of elevated ethylene and often abscise early. To determine the duration of canine
detection of Xcc-infections in abscised leaves, Duncan grapefruit leaves, in planta, were infected via a
needless syringe inoculation described above. Non-infected leaves were physically abscised from the
trees, and 20–30 leaves were placed in wire cages as non-infected controls. True positive targets were
composed of cages with 20–30 non-infected leaves, with the addition of 2–6 leaves with 30-day Xcc
infections. True positive (TP) and true negative (TN) cages were randomized in an open grassy field
(Figure 3A,B). Two canines, Bady and Maxi, interrogated the leaf cages on 0, 1, 2, 5, 13, and 27 days
post-abscission as the leaves decayed. Each canine interrogated the leaf cages in turn and then repeated
the interrogation for two to five replications on each assay date; the number of replications/day/canine
depended upon weather and handler availability (Figure 3C,D). All tests were blinded as described in
Section 2.4 above. Canine alerts were recorded, data were combined across replications and canines,
and latent class metrics were calculated to assess canine performance.

2.8. Detection of Xcc in Citrus Packinghouse Environments

To examine canine performance for the detection of Xcc in a commercial packinghouse,
commercially packed cardboard boxes, each containing approximately 50 red grapefruit fruits were
arrayed in a 10 × 10 grid, with ≈1.5 m between rows and boxes within a row (Figure 3E,F). Within
target boxes, 2 Xcc-infected fruits, each with 2–20 lesions were randomly placed in the center within
each TP target carton. The target boxes containing Xcc-positive fruit were randomly arrayed on
the concrete packinghouse floor and re-randomized between replications. A single canine, “Juice”,
interrogated each box in the grid in sequence via a serpentine search pattern up and down the
rows. The experiment was repeated twice 5 days apart. On the first day, the canine interrogated nine
randomized arrays (900 cartons) with Xcc-incidence ranging from 1–4%, over a≈3-h period, whereupon
the study was halted due to excessive temperatures in an effort to preserve canine health. On the
second day, the ambient conditions were more favorable, and the canine interrogated 19 randomized
arrays (1900 cartons) with Xcc-incidence ranging from 1–10% over a ≈5-h period. All tests were
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blinded as described in Section 2.4 above. Human inefficiency of detection of packing-house inspected
fruit was indicated by 100 commercial cartons selected at random post packinghouse processing,
2 of which contained 1 and 2 infected fruit with small lesions after passing multiple packing line
inspections stations with trained fruit grader/inspectors and post packinghouse inspection by pathology
technicians trained to detect Xcc symptoms. Canine detection of unknown true positives elucidated
the human error, i.e., false negatives. These true positives were subsequently added into the grid
data and considered true positives incorporated into the grid designs. Canine alerts were recorded,
the results from the two days were combined, and latent class metrics were calculated to assess
canine performance.

 

Figure 3. Canine detection of abscised Xcc-infected grapefruit leaves over time. (A) Mixed Xcc-infected
and non-infected leaves in wire mesh cage, (B) close up of leaves in wire mesh decaying. Canine
“Bady”—(C) interrogating, and (D) alerting on wire mesh cages with decaying Xcc-infected leaves.
(E) Commercially packed grapefruit in cardboard carton with top layer of fruit removed to show
Xcc-infected fruits—red arrows indicate infected fruit with Xcc lesions. (F) Grid of 100 cartons of
commercial packed red grapefruit arrayed on packinghouse floor for canine interrogation; 1–6 cartons
contain Xcc-infected fruits—positions of Xcc-infected cartons randomized between trials.

2.9. Assessment of Xcc Detection in Commercial Citrus Orchards

One canine, “Juice”, surveyed two commercial red grapefruit orchard blocks in Indian River
County, Florida with endemic low incidence Xcc infection (Figure 2F,G). Prior to canine assessment, the
blocks were surveyed visually by human assessors to determine and map the location of Xcc-infected
trees. Two assessors independently examined trees visually requiring ≈5 min/tree. If a tree had
unusual symptoms or was difficult to assess, one to two additional assessors examined it as well.
Subsequent to canine assessment, trees on which canines alerted were visually reassessed in an attempt
to determine if human assessors could confirm the canine detections. However due to the previously
documented inefficiency of human visual assessment ([11,36]; T. Riley, unpublished results), it is likely
that many infected trees were missed and/or could not be confirmed. Canine alerts were recorded,
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and the results and latent class metrics were calculated to assess canine performance against putative
human visual assessment.

2.10. Spatial Heterogeneity of Xcc Detection Errors

It is not uncommon for detector canines to acquire a target scent at some distance from the
true target, occasionally alerting on a negative target within the scent plume [37,38]. To address the
concern of FN and FP canine alerts on grids of Xcc-infected and non-infected targets, respectively,
we analyzed the cumulative randomized placement of Xcc-infected trees and compared it to correct
Xcc true positive (TP) and true negative (TN) tree positions, calculating the distances between TP and
FP and locations. We conducted this spatial assessment for (1) disease incidence of lesions in simulated
orchards, (2) lesion age in simulated orchards, and (3) incidence of cartons with Xcc-infected fruit in
the packinghouse.

2.11. Direct Detection of Xcc Bacteria

Initially, it was assumed that canines trained to detect Xcc-infected trees were alerting to a complex
scent signature composed of VOCs from the bacteria plus unique plant-based VOCs produced in
response to Xcc infection. We questioned if trained canines would alert directly on VOCs from Xcc
bacteria without the background citrus host odor and/or unique VOCs produced by the bacteria/host
interaction. To answer this question, we grew Xcc in axenic culture on nutrient agar for 1 week,
harvested the bacteria, suspended them in sterile phosphate-buffered saline (PBS; 0.14 M NaCl, 1.5 mM
KH2PO4, 6.5 mM Na2HPO4, 2.6 mM KCl (pH7.4)), and adjusted the suspension spectrophotometrically
by diluting with sterile PBS to approximately 106 cfu/mL. Subsequently, 400 μL of the suspension
(containing ≈2 × 105 cfu/mL) or 400 μL of sterile PBS was pipetted onto sterile cotton filter discs.

Prior to this experiment, one canine (Mi) was trained exclusively to detect Xcc in planta from
Xcc-infected plants and a second canine (Ti) was trained to detect Xcc in vitro from axenic culture.
Both canines interrogated a row of 10 metal paint cans ≈2 m apart. Into one can, a sterile cotton filter
disc infused with 400 μL of Xcc dilution in PBS was placed, and into the nine remaining cans, a sterile
cotton filter disc infused with 400 μL sterile PBS was placed. The canines repeatedly interrogated the
line of 10 cans 10 times, the cans were re-randomized between each replication, and the study was
repeated once. All tests were blinded as described in Section 2.4 above. Canine alerts were recorded,
and latent class metrics were calculated to assess canine performance.

The reciprocal experiment was also conducted, wherein we questioned if canines trained
exclusively on cultured bacteria could detect the bacteria in planta, i.e., in Xcc-infected plants. Both
canines repeatedly interrogated a line of 10 trees. The line was composed of one Xcc-infected and
9 non-infected Duncan grapefruit seedlings. The plants were re-randomized between each replication,
and the study was repeated once. Canine alerts were recorded and latent class metrics were calculated
to assess canine performance.

2.12. Estimation of Bacterial Detection Threshold

Having determined that canines trained on either Xcc-infected plants or on Xcc cultures were able
to detect the bacteria directly in vitro as well as in planta, we wanted to determine the sensitivity, i.e.,
lower limit of bacteria needed for canine detection. To answer this question, we grew Xcc in axenic
culture on nutrient agar for 1 week, harvested the bacteria, suspended them in sterile PBS, and adjusted
the suspension spectrophotometrically by diluting with sterile PBS to approximately 104 cfu/mL as
described above. Then, a dilution series (4 × 104, 4 × 102, 0 × 100, 0 × 10−1, and 0 × 10−2) was prepared
using sterile PBS as the diluent, and 400 μL of each bacterial dilution was pipetted onto individual
sterile cotton filter discs. Immediately following the canine detection trials (described below), the
individual dilutions were plated on nutrient agar, incubated for 2 days, enumerated, and the results
were used to calculate the number of bacteria on the cotton filter discs (approximately 26.4, 3.60, 0.27, 0,
or 0 cfu) as presented to the canines at the time of the test.
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The canine (Mi) previously trained to detect Xcc-infected plants and the canine (Ti) trained to
detect Xcc from culture, each interrogated rows of 10 paint cans ≈2 m apart. A sterile cotton filter disc
infused with a specified dilution of Xcc in PBS was placed into one can, and into the nine remaining
cans a sterile cotton filter disc infused with PBS was placed. All dilutions were interrogated by both
canines and the performance was assessed. A known TP consisting of a filter pad with 400 μL of
≈4 × 102 = 25.2 cfu Xcc culture was randomly placed in each line of cans as a TP control. Additionally,
a TN control was assessed consisting of a single location of Bacillus megaterium to ensure that the
canines were performing as expected. The original dilution was determined by subsequent culture to
be 143 cfu/mL with ≈57 cfu/400 μL pipetted onto the sterile cotton filter disc.

To examine if canines were able to detect Xcc subcellular components, Xcc bacteria were collected
from petri plate culture, suspended in PBS, and adjusted spectrophotmetrically to≈102 cfu/mL (25.2 cfu)
by dilution with PBS. Then, the resulting suspension was passed through a 0.2 μm microbiological
filter to remove bacterial cells and 400 μL of the filtrate was pipetted onto a sterile cotton filter disc.
Filtrate was subsequently cultured and resulted in 0 cfu growth.

This “cell-free” suspension was placed in a single can and interrogated by both canines Mi and Ti
in a line of 9 other cans into which were placed sterile cotton filter discs with 400 μL of PBS and one can
with a sterile cotton filter disc infused with 400 μL of Xcc culture adjusted to ≈102 cfu/mL = 25.2 cfu as
a positive control. All tests were blinded as described in Section 2.4 above. Canine alerts were recorded
and performance was assessed.

3. Results

3.1. Initial Training of Canines for Xcc Scent Signature Recognition

The Florida researchers were not involved in the initial training and evaluation of the first
Xcc-detector canines in California. However, the collaborating trainer/handlers indicated that after a
few days of repeated training using STU collected scent pads, the experienced criminology detector
canines quickly learned and imprinted on the Xcc scent signature, alerting on scent pads from
Xcc-infected trees with 95–98% accuracy (data not shown). This was a similar level of accuracy to that
which trainers normally expect and achieve with criminology target scent signatures. This also led us to
believe that training canines for Xcc detection was possible and thus could be viably explored further.

We established that longer sample collection times were better for recognition/training, presumably
because the scent deposition on the pads was stronger, i.e., the concentration of the unique Xcc VOCs
was higher. However, once trained, dogs were capable of detecting the Xcc signature on samples
collected over exposure durations as low as 1 min, i.e., lower scent concentration. We also determined
that the Xcc scent signature was not long lived. Once the heat-sealed, vapor-proof plastic bags were
removed from refrigeration and opened to the ambient environment, the trained canines would alert on
them for 2–3 weeks before the Xcc scent signature diminished to unreliable levels. Scent pad viability
could be lengthened to some extent by reheat-sealing and refrigerating the pads between uses, but due
to scent degradation concerns, we limited scent pad use to 2 weeks from time of collection. Therefore,
the VOC composition of Xcc scent does not appear to be stable over time, unlike some scents such as
human or animal scents that are very stable and can remain on clothing and other objects for long
periods up to years. However, repeated experiments with a canine trained to recognize Xcc resulted in
>95% correct recognition and differentiation from non-infected citrus scents, from properly handled
scent pads.

3.2. Training Canines for Detection of Xcc-Infected Plant Material

During initial proof-of-concept studies, the 11 September 2001 terrorist attacks occurred, and many
of the detector canines throughout the country were diverted to security-related tasks and became
unavailable for research and our studies were curtailed. Over the next three years, Xcc had become
more widely spread in Florida, reducing regulatory concerns for the movement of infected plant
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materials within state. Therefore, in 2004–2005, we were able to resume studies on canine detection
of Xcc in collaboration with the NDDTC. However, the NDDTC’s mission is to train and deploy
agricultural contraband detector canines to US ports of entry and overseas ports of departure for US
travelers and freight. Our research project utilized these same canines, who upon completion of their
training were shipped out to their intended assignments, as were some of the staff. Thus, we did not
have consistency of canines or staff, and we rotated through canines and trainers. Even so, trainers
reported >95% detection accuracy after a few days training with plants in boxes, indicating good
imprinting on Xcc-infected plant materials. When deployed on a single occasion to an infected orchard,
the box-trained Labrador retriever also accurately detected Xcc-infected versus non-infected leaves
from the orchard. Thus, we were able to discern that canines could be trained to detect Xcc using the
differential of infected versus non-infected plant materials. Due to the high turnover rate of canines
and handlers, the project was again curtailed.

3.3. Detection of Xcc in Simulated New Plantings

Canine detection studies resumed in 2006 and continued through 2020 with three collaborative
commercial canine detection companies. The performance of the first canine “Juice” indicated excellent
scent signature recognition (Video S1, see Supplementary Materials). Sensitivity, specificity, precision,
and accuracy ranged from 0.7333–0.9167, 0.9943–1.0, 0.8759–1.0, and 0.9733–0.9967, respectively,
indicating that canine false negative (FN) alerts were slightly more prolific than false positive (FP)
alerts, especially at higher incidence levels. Performance metrics indicated detection was superior for
lower (<5%) Xcc-incidence, eroding slightly when incidence was ≥7%. Even so, overall accuracy was
0.9842 (Table 2).

Table 2. Latent class metrics for canine Xcc-infected tree detection in simulated 100-tree Duncan
grapefruit citrus orchard by tree incidence accumulated over all the months tested.

Metric a Xcc-Infected Plant Incidence

2% 4% 5% 7% 10% Overall

n 600 600 800 700 600 3300
TP 11 21 30 37 44 143
TN 587 573 758 647 540 3105
FP 1 3 3 4 0 11
FN 1 3 9 12 16 41

SEN 0.9167 0.8750 0.7692 0.7551 0.7333 0.7772
SPE 0.9983 0.9948 0.9961 0.9939 1.0000 0.9965
PPV 0.9167 0.8750 0.9091 0.9024 1.0000 0.9286
NPV 0.9983 0.9948 0.9883 0.9818 0.9712 0.9870
FPR 0.0017 0.0052 0.0039 0.0061 0.0000 0.0035
FDR 0.0833 0.1250 0.0909 0.0976 0.0000 0.0714
ACC 0.9967 0.9900 0.9850 0.9771 0.9733 0.9842

Month(s) J,S,D J,S,D J,S,D,M J,S,D,M J,S,D
a Performance metrics as described in Section 2.3 above. Orchard grid consisted of 100 trees with the indicated
Xcc-infected tree incidence. The grid was re-randomized between each replication, at each incidence level and
interrogated by a single canine—“Juice”. Months tested: J = July, S = September, D = December, M =May.

Seasonality (i.e., July, summer; September, fall; December, winter; and May, spring) did not have
a perceptible effect on canine detection performance when assay results were accumulated across
incidence levels (Table 3). Canines were proficient at Xcc detection prior to assessing performance
metrics; however, a training effect was noted. The canines improved notably in sensitivity and slightly
in overall accuracy as they became more comfortable with the “game” of detection over time (Figure 4).
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Table 3. Latent class metrics for canine Xcc-infected tree detection in simulated 100-tree Duncan
grapefruit citrus orchard for each month tested accumulated over all tree incidence levels tested.

Metric a Month of Test

July September December May Overall

n 900 1000 1000 400 3300
TP 42 40 44 17 143
TN 846 942 943 374 3105
FP 5 2 2 2 11
FN 7 16 11 7 41

SEN 0.8571 0.7143 0.8000 0.7083 0.7772
SPE 0.9941 0.9979 0.9979 0.9947 0.9965
PPV 0.8936 0.9524 0.9565 0.8947 0.9286
NPV 0.9918 0.9833 0.9885 0.9816 0.9870
FPR 0.0059 0.0021 0.0021 0.0053 0.0035
FDR 0.1064 0.0476 0.0435 0.1053 0.0714
ACC 0.9867 0.9820 0.9870 0.9775 0.9842

a Performance metrics as described in Section 2.3 above. Orchard grid consisted of 100 trees with the indicated
Xcc-infected tree incidence. The grid was re-randomized between each replication, at each incidence level and
interrogated by a single canine—“Juice”.

 
Figure 4. Latent class metrics for the effect of incidence of Xcc lesions on canine detection. The data
demonstrate a training effect where canine detection of Xcc-infected trees (sensitivity) significantly
improves between the first and second tests, which also improves slightly the overall accuracy metric.
In essence, the canines learn the “game” of detecting Xcc-infected trees when presented with a grid
imposed by the experimental design and become more proficient at detection over time.

Since seasonality effects were not significant in the first study, performance assessment of the
second two canines (Bady and Maxi) was compressed to two separate days separated by 31 days
during the second study. During this second study, randomized Xcc-infected tree incidence ranged
from 1 to 6% to reduce the probability of scent acquisition from nearby Xcc-infected trees when using
higher incidence levels. The sensitivity, specificity, precision, and accuracy performance metrics for
canine Bady ranges were 1.0–1.0, 0.9894–1.0, 0.6667–1.0 and 0.9900–1.0, respectively; whereas the

92



Entropy 2020, 22, 1269

same performance metrics for canine Maxi ranged slightly higher: 0.9167–1.0, 1.0–1.0, 1.0–1.0, and
0.995–1.0, respectively. The overall combined performance for the same metrics for the two canines
were 0.9856, 0.9974, 0.9257, and 0.9970, respectively (Table 4). Canine Bady alerted to 11 FP and 0 FN
over 2200 interrogations, whereas Maxi alerted on 0 FP and 2 FN over 2300 interrogations, suggesting
that Maxi was slightly more accurate overall and both of these newer trained canines were slightly more
accurate compared with Juice, the earlier trained canine. The 11 FP alerts by Bady were distributed
across Xcc-infected tree incidence levels.

3.4. Detection of Xcc Infections of Increasing Age

Latent class performance metrics for detecting Xcc lesions indicated no effect of increasing lesion
age. For canine Bady sensitivity, specificity, precision = positive predicted value, and the accuracy
performance ranges were 0.9–1.0, 1.0–1.0, 1.0–1.0 and 0.9960–1.0, respectively, whereas the same
performance metrics for canine Maxi ranged slightly higher: 0.95–1.0, 1.0–1.0, 1.0–1.0, and 0.9980–1.0,
respectively. The overall combined performance for the same metrics for the two canines were 0.9450,
1.0, 1.0, and 0.9978, respectively (Table 5). Neither canine had any FP alerts, and Bady and Maxi had
eight and three FN alerts, respectively, which were distributed across Xcc-infection age groups with no
apparent effect of age (Figure 5).

 

Figure 5. Latent class metrics for canine detection of Xcc-infections of increasing age. There was no
relationship of lesion age on canine detection of Xcc-infected trees. However, the data demonstrate
a training effect for canine detection of Xcc-infected trees (sensitivity) which significantly improves
between the first (1) and second (2) tests as canines learn the “game” imposed by the experimental
design and become more proficient at detection. Acc= Accuracy.
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3.5. The Effect of Incidence of Xcc Lesions on Detection

Across all lesion incidence levels, both canines had a higher prevalence of FN than FP alerts
(FDR = 0.1159, FPR = 0.0022, overall). Canine Bady had fewer FP than Maxi, but this effect was not
consistent across the range of lesion incidence (Figure 6). The sensitivity of both canines increased with
lesion incidence (0.6750 to 0.8750), whereas specificity remained high (0.9978) as did overall accuracy
(0.9910–0.9952) across all incidence levels (Table 6).

 
Figure 6. Effect of lesion incidence on false negative canine detections. The data demonstrate a
general erosion of canine detection of Xcc-infected trees (sensitivity) as the incidence of infection within
individual trees increases. As the scent signature becomes stronger due to heavy infection in some
trees, canines begin to false alert on nearby trees because they acquire the scent farther away from the
true source.

Table 6. Latent class metrics for the effect of incidence of Xcc lesions on canine detection.

Canines

Lesions/Tree Bady Maxi Combined

Metric a 1 5 50 500 Overall Overall Overall

n 1880 1880 1880 1880 3760 3760 7520
TP 27 31 29 35 61 61 122
TN 1836 1836 1836 1836 3676 3668 7344
FP 4 4 4 4 4 12 16
FN 13 9 11 5 19 19 38

SEN 0.6750 0.7750 0.7250 0.8750 0.7625 0.7625 0.7625
SPE 0.9978 0.9978 0.9978 0.9978 0.9989 0.9967 0.9978
PPV 0.8710 0.8857 0.8788 0.8974 0.9385 0.8356 0.8841
NPV 0.9930 0.9951 0.9940 0.9973 0.9949 0.9948 0.9949
FPR 0.0022 0.0022 0.0022 0.0022 0.0011 0.0033 0.0022
FDR 0.1290 0.1143 0.1212 0.1026 0.0615 0.1644 0.1159
ACC 0.9910 0.9931 0.9920 0.9952 0.9939 0.9918 0.9928

a Performance metrics as described in Section 2.3 above. The simulated orchard grid consisted of 100 trees with
one Xcc-infected tree of each incidence level (1, 5, 50, and 500 lesions/tree) randomly placed within a population of
96 non-infected trees. The grid was re-randomized between each replication and interrogated by two canines—“Bady”
and “Maxi”.

Both PPV (0.8710–0.8974) and NPV (0.9930–0.9973) remained relatively constant across Xcc
incidence, indicating that canines were superior in predicting actual Xcc-non-infected trees (NPV) and
slightly less predictive of actual Xcc-infected trees (PPV), although both canines had low false positive

95



Entropy 2020, 22, 1269

rates (FPR). These data also demonstrated the advantage of repetitive training. This training effect was
seen as a general improvement in the sensitivity of Xcc detection with accumulated experience over
an increasing number of trials. Conversely, accuracy remained high and improved only slightly, and
specificity remained high and stable throughout (Figure 7).

Figure 7. Effect of Xcc lesion incidence on overall accuracy, sensitivity, and specificity of canine
detections. The data demonstrate a general improvement in the sensitivity of canine detection as
training experience for both canines was accumulated over an increasing number of trials, whereas
overall accuracy was high throughout and improved only slightly over accumulated trials and specificity
remained high and stable. We use the overall results for each animal displayed in Table 6 to illustrate
the diagnostic performance of the canines Bady and Maxi in an information theoretic framework.
Figure 8 shows the results of this exercise.

The sequence of plots illustrates the diagnostic performance of the canine starting with the graphical
summary provided by the likelihood ratio plot, which summarizes diagnostic performance using metrics
that are independent of disease prevalence. The positive likelihood ratio (LR+ = TPP/FPP) is the slope of
the solid line segment: for each animal, the values are Bady= 701.5, Maxi= 530.4. The slope of the dashed
line segment is the negative likelihood ratio for each animal (LR− = 1 − TPP/(1 − FPP) = FNP/TNP).
The values for each animal are Bady = 0.24, Maxi = 0.13. Generally, for effective diagnostic performance,
LR+ >> 1 and LR− << 1 are required. Both canines achieved effective positive and negative
diagnostic performance, with positive performance (i.e., confirmation of pathogen presence) being
particularly effective.
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Figure 8. (A) Likelihood ratio plot for canines Bady and Maxi, based on average performance over a
range of pathogen prevalence values in citrus canker detection trials. The axes are the same as those
for a receiver operator characteristic (ROC) curve, each canine being represented by a single point. In
general, the closer the point for the animals to the upper left corner with TPP = 1, FPP = 0, the better
the overall diagnostic performance. The gradient of the solid line section is the positive likelihood ratio
for cases for each canine. The gradient of the dashed section is the negative likelihood ratio. (B) A
predictive value leaf plot for Bady and Maxi based on the likelihood ratio values displayed panel
(A). The plot displays the relationship between possible disease prevalence (or prior in a Bayesian
framework) and the possible post-diagnostic probability of disease given either positive or negative
diagnostic outcomes. The canines have very similar positive alert performance, but they differ in
the information they provide in negative alerts. In general, a negative alert by Maxi provides more
information than one by Bady. For both canines, positive alerts result in a high post-test probability
of disease even at low prior disease values. (C) A relative entropy “loop” plot for each animal based
on the same likelihood ratios. For each animal, disease prevalence increases clockwise around the
loop which shows the expected information supplied (in bits) for a positive vs. negative alert at each
possible disease prevalence between 0 and 1 in steps of 0.0001. In effect, the loop plot shows the
information gain from alerts corresponding to the change in probable disease prevalence following
diagnosis displayed in the leaf plot in panel (B).

Likelihood ratios derived from TPP, FPP, TNP, and FNP allow Bayesian updating of disease
prevalence to give disease prevalence conditional on diagnostic outcomes; i.e., they can be used to
produce predictive values. Figure 8B shows a leaf plot for Bady and Maxi, based on the likelihood
ratios displayed in Figure 8A. The leaf plot shows values for PPV and (1-NPV) as functions of initial
disease prevalence over the range of prevalence (0,1). To interpret the plot, select a value for prior Xcc
prevalence. Locate the value on the diagonal of the plot. To read off the post-diagnostic probability of
Xcc presence following either positive or negative diagnosis, trace up or down (respectively) from the
point on the diagonal until intersecting with the curves for either canine. The PPV and 1-NPV values
can be read off the vertical scale from reading across from the upper and lower curves (respectively);
the 1-NPV value being converted to NPV by simple arithmetic thereafter. We draw attention to the
high posterior (i.e., PPV) probability of Xcc presence generated by both Bady and Maxi even at low
prior disease prevalence. Figure 8B also illustrates that, in general, Bady and Maxi provided more
information in positive than negative diagnostic outcomes.

Following Hughes et al. [34], we calculated the expected mutual information (i.e., relative
entropy) for positive and negative diagnostic outcomes (I+ and I−, respectively) for Bady and Maxi
corresponding to the likelihood ratios in Figure 8A and the predictive values in Figure 8B. The
resulting “loop” plot is shown in Figure 8C. The black curve, descending from left to right across the
plot, shows the theoretical maximum information (in bits) that could be obtained from an error-free
definitive diagnosis of disease status for an unknown sample. Disease prevalence increases from 0 to 1
sequentially along the curve from left to right, indicating that at low disease prevalence, a positive
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diagnostic outcome contains more information than a negative one, with the opposite being true when
disease prevalence is high. The short diagonal line intersecting the curve shows values where I+ = I−.
Note that this diagonal intersects the curve at a value of I+ = I− = 1 bit, which occurs at a disease
prevalence of 0.5; in effect, this corresponds to seeing the result of a coin flip.

Corresponding to the results in Figure 8B, the information loop plot shows clearly that Bady
and Maxi provided more information about Xcc disease status in positive than in negative diagnostic
outcomes. The maximum information supplied in a positive diagnosis for either canine was in the
order of 4.5 bits, whereas the maximum value for negative diagnoses was less than 1 bit.

3.6. Detection of Xcc Infections in Decaying Foliage

On the day the leaves were abscised from infected trees (day 0) canines correctly identified all
positive and negative leaf piles without error. There were very few FP errors throughout the study
(3/448). However, as time post-abscission increased FN errors increased from 1 to 20 for days 1 and
27 post-abscission, respectively. On day 27, neither canine detected any of the decaying 20 Xcc-infected
leaf piles after repeated attempts, i.e., FN error = 100% (Table 7).

Table 7. Latent class metrics for canine detection of Xcc-infections in leaves decaying over time
post abscission.

Days Post-Abscission Totals

Metric a 0 1 2 5 13 27 Over Time

n 32 64 80 80 112 80 448
TP 8 15 8 9 16 0 56
TN 24 48 59 60 82 60 333
FP 0 0 1 0 2 0 3
FN 0 1 12 11 12 20 56

SEN 1.0000 0.9375 0.4000 0.4500 0.5714 0.0000 0.5000
SPE 1.0000 1.0000 0.9833 1.0000 0.9762 1.0000 0.9911
PPV 1.0000 1.0000 0.8889 1.0000 0.8889 NA 0.9492
NPV 1.0000 0.9796 0.8310 0.8451 0.8723 0.7500 0.8560
FPR 0.0000 0.0000 0.0167 0.0000 0.0238 0.0000 0.0089
FDR 0.0000 0.0000 0.1111 0.0000 0.1111 NA 0.0508
ACC 1.0000 0.9844 0.8375 0.8625 0.8750 0.7500 0.8683

a Performance metrics as described in Section 2.3 above. Two canines “Bady” and “Maxi”, interrogated piles of
Xcc-infected and non-infected decaying leaves at various assessment times post-leaf abscission. Leaf piles were
continuously exposed to ambient conditions over time. Data were accumulated and combined over canines and
replications. NA—metric could not be calculated due to a complete lack of canine detection by both canines,
resulting in a calculated TP + FP = 0 value in the denominator.

3.7. Detection of Xcc in Citrus Packinghouse Environments

Canine Juice detected just a few Xcc lesions on 1–2 grapefruit fruits when commercially packed
into cartons of ≈50 fruit per carton, especially at low incidence. FN errors generally exceeded FP errors
throughout the packinghouse study. However, the total number of FN + FP errors began to increase
when ≥4% Xcc-incidence of cartons were arrayed in the grid of 100 cartons on the packinghouse floor
(Table 8, Figure 9 and Video S2, see Supplementary Materials).

We conducted higher Xcc-incidence interrogations later in the day, which corresponded to a
general rise in temperature in the packinghouse environment, resulting in fatigue of the canine. It was
observed that the canine often acquired the Xcc scent signature from cartons farther away depending
on the direction of the airflow. This was evidenced by the canine’s desire to disperse with the required
serpentine search pattern through the grid in favor of going directly to a detected target at some
distance. Additionally, the spatial proximity to other Xcc-infected cartons as well as the prior locations
of Xcc-infected cartons with residual odor led to some FP results (see spatial analyses below).
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Table 8. Latent class metrics for canine detection of Xcc-infections of various incidence in commercially
packed boxes of red grapefruit.

Incidence of Cartons Containing Xcc-Infected Fruit

Metric a 1 2 3 4 5 6 7 8 9 10 Total

n 100 700 400 400 100 200 200 300 200 200 2800
TP 1 12 11 11 3 9 10 15 14 12 98
TN 99 685 387 385 95 186 183 273 180 179 2652
FP 0 1 1 0 1 2 3 3 2 1 14
FN 0 2 1 4 1 3 4 9 4 8 36

SEN 1.0000 0.8571 0.9167 0.7333 0.7500 0.7500 0.7143 0.6250 0.7778 0.6000 0.7313
SPE 1.0000 0.9985 0.9974 1.0000 0.9896 0.9894 0.9839 0.9891 0.9890 0.9944 0.9947
PPV 1.0000 0.9231 0.9167 1.0000 0.7500 0.8182 0.7692 0.8333 0.8750 0.9231 0.8750
NPV 1.0000 0.9971 0.9974 0.9897 0.9896 0.9841 0.9786 0.9681 0.9783 0.9572 0.9866
FPR 0.0000 0.0015 0.0026 0.0000 0.0104 0.0106 0.0161 0.0109 0.0110 0.0056 0.0053
FDR 0.0000 0.0769 0.0833 0.0000 0.2500 0.1818 0.2308 0.1667 0.1250 0.0769 0.1250
ACC 1.0000 0.9957 0.9950 0.9900 0.9800 0.9750 0.9650 0.9600 0.9700 0.9550 0.9821

a Performance metrics as described in Section 2.3 above. Incidence (1–10) indicates the number cartons containing
Xcc-infected fruit placed in a grid of 100 commercially packed boxes each containing ≈50 red grapefruit.

 

Figure 9. Effect of incidence (proportion) of commercial fruit boxes containing Xcc-infected grapefruit
on false negative canine detections. The data demonstrate a general erosion of canine detection of
Xcc-positive boxes (sensitivity) as the incidence of infected boxes increases within the grid in the
packinghouse. As the scent signature becomes more prevalent within the test grid commensurate with
the number of boxes containing Xcc-infected fruit, canines begin to false alert on nearby boxes in close
proximity to boxes with actual infected fruit because the canines acquire the scent farther away for the
true source.

3.8. Assessment of Xcc Detection in Commercial Citrus Orchards

For the canine Juice, sensitivity, specificity, precision= positive predicted value, negative predictive
value and accuracy performance metrics were 1.0, 0.9842, 0.2222, 1.0, and 0.9843 for Orchard 1,
and 0.8667, 0.9848, 0.7222, 0.9939 and 0.9797 for Orchard 2, respectively (Table 9). When we progress
from a known infection status of potted trees in a simulated orchard (composed of confirmed
Xcc-infected and non-infected trees, held in an isolation greenhouse to ensure no additional infections
— see simulated new planting results above) to a commercial orchard (Figure 10) (in which disease
status is unknown and subject to human visual confirmation and errors), detection precision metrics
declined. This decline relates to our inability to determine the infection status unequivocally via
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human visual inspection. As previously demonstrated, in mature trees it is difficult-to-impossible
to detect all incipient and low incidence infections by human visual inspection ([11,39]; T. Riley,
unpublished results).

Table 9. Latent class metrics for canine detection of Xcc-infections in commercial red grapefruit orchards
in Indian River County, Florida.

Orchard 2

Metric a Orchard 1 Orchard 2 Theoretical

n 445 345 345
TP 2 13 18
TN 436 325 325
FP 7 5 0
FN 0 2 2

SEN 1.0000 0.8667 0.9000
SPE 0.9842 0.9848 1.0000
PPV 0.2222 0.7222 1.0000
NPV 1.0000 0.9939 0.9939
FPR 0.0158 0.0152 0.0000
FDR 0.7778 0.2778 0.0000
ACC 0.9843 0.9797 0.9942

a Performance metrics as described in Section 2.3 above. Orchard 1—10 rows of trees, 38 trees per row, 8 missing
trees. Orchard 2—17 rows of trees, 29 trees per row, 47 missing trees. Orchard 2 (theoretical results for discussion)
considers that the 5 FP detections were Xcc-infected but not detected by human visual survey.

Figure 10. Canine versus human visual detection of Xcc-infection in commercial citrus orchards in
Indian River County, Florida. (A) Orchard 1—Mature 42-year-old red grapefruit on sour orange
rootstock, (B) Orchard 2—7-year-old red grapefruit.
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3.9. Analyses for Spatial Heterogeneity of Xcc Detection Errors

Sufficient data were available for the spatial analysis of detection errors for three portions of
the overall Xcc detection study for the following trials: (1) Disease incidence of lesions in simulated
orchards, (2) Lesion age in simulated orchards, and (3) Incidence of cartons with Xcc-infected fruit in
the packinghouse. In all three trials, there were more FN than FP errors. Errors were omnidirectional
and more prevalent at shorter distances, especially <6.5 m from a true positive (TP) (Figure 11).

 

Figure 11. Spatial heterogeneity analysis of canine detection errors for trials of (A) lesion incidence,
(B) lesion age, (C) packinghouse, and (D) combined data A through C. In all three trials there was a
greater number of false negative (FN) than false positive (FP) errors. All trials had a greater prevalence
of FN errors and errors were more prevalent at shorter distances from a true positive (TP). Distance
is presented as multiples of the distance between plants or cartons (packinghouse) in the grid, i.e.,
3.048 m (10 ft) within and between rows.

3.10. Direct Detection of Xcc Bacteria

The canine Mi trained on in planta Xcc-infected trees was competent at detecting Xcc bacteria
harvested from in vitro axenic cultures (Videos S3 and S4, see Supplementary Materials). The reciprocal
was also true, in that the canine Ti trained to detect Xcc from in vitro axenic cultures was able to
detect the pathogen in planta from Xcc-infected trees (Videos S5 and S6, see Supplementary Materials).
Both canines detected the reciprocal target without any additional training. There was a slight trend in
that canine Mi was slightly superior at detecting Xcc-infected plants and canine Ti was slightly better
at detecting Xcc from culture (Table 10).
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Table 10. Latent class metrics for canine detection of Xcc-infected plants versus Xcc culture.

Xcc-Infected Plants Xcc Culture

Metric a Mi Ti Overall Mi Ti Overall

n 120 230 250 140 100 240
TP 10 13 23 11 9 20
TN 107 207 314 123 89 212
FP 1 0 1 3 1 4
FN 2 10 12 3 1 4

SEN 0.8333 0.5652 0.6571 0.7857 0.9000 0.8333
SPE 0.9907 1.0000 0.9968 0.9762 0.9889 0.9815
PPV 0.9091 1.0000 0.9583 0.7857 0.9000 0.8333
NPV 0.9817 0.9539 0.9632 0.9762 0.9889 0.9815
FPR 0.0093 0.0000 0.0032 0.0238 0.0111 0.0185
FDR 0.0909 0.0000 0.0417 0.2143 0.1000 0.1667
ACC 0.9750 0.9565 0.9629 0.9571 0.9800 0.9667

a Performance metrics as described in Section 2.3 above. Two canines, Mi and Ti, were trained to detect Xcc-infected
plants or Xcc cultures, respectively. Both canines interrogated both Xcc-infected plants or Xcc cultures to determine
the effect of target used for training. Data represent the combination of two replications.

3.11. Estimation of Bacterial Detection Threshold

The result that canines trained on either Xcc-infected plants or on Xcc axenic cultures can detect the
bacteria directly in vitro as well as in planta, with near equivalent accuracy, implied that canines may
be detecting the bacteria directly in plants and not volatiles generated by the host plants in response
to infection. Therefore, we sought to determine the detection limits, i.e., the lowest concentration of
bacteria required by the canines for scent detection. Thus, both canines were challenged with the task of
detecting Xcc harvested from axenic culture, suspended in PBS, over a range of dilutions from ≈4 × 102

to 0 × 10−2 cfu as described above, with final bacteria on sterile cotton filter discs estimated to be 26.4,
3.60, 0.27, 0, and 0 cfu. Both canines detected Xcc throughout the dilution range, indicating that a
sufficient concentration of the Xcc scent signature was present throughout the range tested (Table 11 and
Videos S7 and S8, see Supplementary Materials). Neither canine reacted to the B. megaterium isolate at
the estimated 57 cfu on the scent pad, indicating that the scent signature was apparently specific to Xcc
bacteria and not a ubiquitous bacteria scent. Neither canine reacted to a 1 × 102 cfu/mL concentration
of 0.2 μm bacterial culture filtrate, indicating that the subcellular component(s) composing the scent
signature was not diluted out at any concentration tested but instead was filtered out. This indicates
that the canines are detecting Xcc at below the cellular population level, i.e., below a single bacterial cell.
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4. Discussion

4.1. Canine Detection of Xcc in Simulated Plantings and Information Theoretic Analyses

Through the multiple trials of this study, we were able to demonstrate unequivocally that canines
can discriminate and detect Xcc in planta (in infected foliage and fruit) by the use of canine olfactory
surveillance in simulated and commercial orchards and packinghouses.

We found that canines alerted to Xcc infections over a range of lesion ages from 1 to 12 weeks
post-infection with equal accuracy. These results indicate that the scent signature of Xcc-infection as
perceived by canine detectors does not change significantly, if at all, with age of infection. At one
week post-infection, the lesions are not yet erumpent and only visible with 10×magnification. At the
non-erumpent stage, the numbers of bacteria in such lesions are low and do not directly expose the
bacteria to the environment (i.e., lesions have not broken through the intact epidermis and cuticle),
yet a sufficient concentration of scent signature appears to emanate from leaves for canine recognition.

Canines were tested in simulated plantings with 2% to 10% (canine Juice initial test) and 1% to 6%
(canines Bady and Maxi) incidence of infected trees. In the initial test with the canine Juice, sensitivity
increased with lesion incidence, whereas the specificity and overall accuracy remained static across
all incidence levels. In a more expansive test with two more extensively trained canines, sensitivity
for canine Bady appeared to be unaffected by incidence of infected trees, whereas the sensitivity of
canine Maxi seemed to erode slightly with increased incidence of infected trees. Bady had a number of
FN alerts, eroding specificity and precision somewhat that were not related to infected tree incidence,
whereas Maxi had none and experienced no such erosion. Overall, canines were superior at predicting
Xcc-non-infected trees (NPV) and slightly less predictive of actual Xcc-infected trees (PPV). As a field
deployable early detection tool, a slight trend toward false negatives is usually accepted by growers, as
they are willing to tolerate an assay that misses a few infections rather than misidentifying disease-free
trees as diseased, resulting in tree removal and commensurate loss of production.

Xcc lesion populations can range from a single lesion to thousands per tree depending on
inoculum prevalence and the susceptibility of tissues following an inoculum dispersal event. Across
the range of lesion incidence levels assayed, both canines had a higher prevalence of FN than FP alerts.
The sensitivity of both canines increased with lesion incidence, whereas the specificity and overall
accuracy was >99% across all incidence levels with low false positive rates (FPR).

Information theoretic analyses of the overall diagnostic performance of both canines showed very
clearly that the information provided by positive diagnostic outcomes was far in excess of that provided
by negative outcomes, which is in relation to the impact on the probable presence of Xcc. We used a
graphical approach recently developed by Hughes et al. [34] to illustrate the diagnostic capacity of the
animals. One noteworthy aspect of canine performance is their very high positive likelihood ratios for
cases. It has been noted by several authors that disease diagnosis as a tool in decision making at low
disease prevalence is problematic [40,41] because, with the diagnostic capability of many commonly
used approaches, the post-test probability of disease is still relatively low, even after a positive test
outcome, and the sampling error is pervasive (see Section 4.5 below). The positive likelihood ratios
achieved by the canines assessed here are in the region of two orders of magnitude higher than values
reported in the literature for many plant and human diseases [38,42,43]. As illustrated in Figure 8B
this diagnostic capacity allows for effective disease screening even when the background disease
prevalence is low.

4.2. Detection of Xcc Infections in Decaying Foliage

Lesions of Xcc cause the surrounding citrus tissues to produce ethylene, which can cause abscission
if lesions occur near the junction where a leaf petiole joins a stem. When Xcc-infected leaves fall to
the ground near citrus trees, rain or irrigation splash can cause inoculum dispersal and re-infection.
However, Xcc survival in lesions of decaying leaves decreases exponentially over time [44,45]. Canines
were able to detect Xcc in lesions when leaves were newly abscised, but canine detection eroded over
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time. As time post-abscission increased, FN errors increased, and canines were unable to detect Xcc
in leaves 27 days post-abscission. The results indicate a rapid decline in the emanation of Xcc scent
signature over time as Xcc-infected foliage decays live Xcc population concurrently decline, resulting
in an increase in FN errors through time post-abscission and that abscised infected leaves may not be a
reliable indicator of a tree’s infection status.

4.3. Detection of Xcc in Citrus Packinghouse Environments

Canine detection of Xcc lesions in boxed citrus fruit in the packinghouse was exceptional
considering the noisy, hot, and highly distracting environment. Total FN + FP errors increased when
the incidence of Xcc-incidence of cartons was ≥4%. We conducted higher Xcc-incidence interrogations
later in the day, which corresponded to a general rise in temperature in the packinghouse environment,
causing fatigue of the canine. Additionally, the spatial proximity to adjacent or proximal Xcc-infected
cartons may have led to FP alerts. Furthermore, FP alerts occasionally occurred due to persistent
residual odor when Xcc-free cartons were relocated (during re-randomization between replications) to
where a prior Xcc-infected carton had previously resided. This issue has been noted often by canine
trainers across an array of target odor types. Therefore, we re-examined the data for error effects due
to spatial proximity to Xcc-infected cartons and residual scent signature odor temporarily permeating
the concrete packinghouse floor (see Section 4.4 below).

In an initial study prior to the full experiment, we noted that the canine alerted on two cartons
that had recently passed through the packing line. These cartons were visually inspected thoroughly
at multiple points in the packing line by commercial packinghouse inspectors and were determined to
be Xcc-negative. At first, we thought these were FP detections, but when the grid was re-randomized
and the cartons were relocated to different positions, the canine continued to alert on these same two
cartons. Upon careful re-inspection, we determined that these two cartons contained a single fruit
each with one and two small lesions (≈1 mm dia.), respectively. These observations demonstrate the
keen sensitivity of canines to detect even a trace amount of odor and that human visual inspection has
limitations for the detection of low-incidence infections especially with small lesions. Canine detection
in the packinghouse is superior at low incidence levels. Current detection and elimination/discard of
infected fruit were conducted by multiple skilled inspectors observing fruit as it passes through the
multiple designated visual examination stations of the packing line. As expected, small Xcc lesions
are the most difficult for inspectors to detect and differentiate from other small blemishes. However,
Xcc lesions that go undetected can cause a rejection of fruit shipments when inspected at ports of
destination. Thus, a highly sensitive detection tool such as canines that does not depend on visual
detection could greatly enhance the sanitation of packed fruit shipments and diminish the proportion
of rejections at destination markets.

4.4. Spatial Heterogeneity of Xcc Detection Errors

A spatial assessment of the detection data allowed us to determine if the proximity of Xcc-positive
trees positioned immediately adjacent to, at oblique angles to, or upwind from canine FNs or FPs
were related to the cause of the error. In the trials of this study, the majority of errors, both FN and
FP, were within 1 to 2 plant or carton (packinghouse) spaces (within row, across row, or at oblique
angles) of a TP. Errors also became more prevalent when the incidence of TP targets increased within
the trial grids. However, there was no prominent directionality to errors. False positive alerts can be
caused by the dissemination of the odor plume around an odor source. Jezierski states, “Ideally, dogs
should alert as close as possible to the site where the odorous material is hidden by comparing the differences
in odor concentration inside the odor plume. It is common for a dog to enter, then exit and reenter the scent
cone during odor detection, which may account for the number of times a canine passed a hide as demonstrated
in the data. The role of the distribution of the odor plume was evident in our experiment when comparing the
percentage of false alerts in particular searching sites. When searching outdoors, the distribution of the odor
plume may often enable a more easily directional scenting and localization of odor source, which thus takes less
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time with more correct and fewer false alerts” [46]. Craven found that the odor plume of a drug moves and
disperses, depending on air currents, humidity, temperature, or features in the terrain, which may also
influence the detection performance [47]. The fluid dynamics of odor transport during canine scent
detection is highly complex and has not been examined extensively. Angle stated that, “Much more
research needs to be conducted in order to understand the movement of biological VOC within the thermal plume
(e.g., microcurrents) and in the aerodynamic wake/wind currents in order to develop search patterns to optimize
biomedical detection” [39].

Although errors were relatively few overall, FN alerts were more common with Xcc detector
canines than FP alerts. In an orchard environment, airflow is highly channeled between hedge rows of
trees, dynamic, and convoluted with ubiquitous eddies. The complexity of using canines as detectors
in a highly heterogeneous open-air commercial orchard environment, or indoor in a harsh noise and
distraction rich packinghouse, presents a myriad of potential causes for error, not all of which do we
understand or recognize. Our data indicate that the relatively few FN errors increases slightly with
an increase in the incidence of TP targets in the environment, especially when these TP targets are in
close proximity. One explanation could be that when a canine correctly locates a TP (TP1), infrequently,
it can be confused by another TP (TP2) in close proximity. In this example, the canine may misinterpret
that the scent it acquired near TP2 is originating from TP1, disregarding TP2 as an additional scent
source. Conversely, if the scent emanating from TP1 is of significantly greater concentration than the
scent emanating from TP2, the canine might track to the “maximum scent concentration” of TP1, thus
ignoring the “minor” scent signature of TP2.

It is well demonstrated that canine detectors can pick up a target scent at some distance. In our
experience, training canines for Xcc detection, and additionally for CLas [26], plum pox virus,
and vegetable virus detection (unpublished), we have often observed that canines acquire a scent
signature at considerable distance from the known target. This is consistently experienced when training
canines in spatial grids of predominantly non-infected plants with a low incidence of pathogen-infected
plants randomly placed in the grid. Normally, we urge the canine to interrogate each plant in the grid
in a serpentine pattern up and down each row so that we can ensure that all plants are assessed equally
and collect performance data. However, if the canine is allowed to interrogate the grid off leash, it will
often acquire a target scent plume and divert its trajectory obliquely across multiple rows directly to an
infected plant: then, it will alert. In other words, the canine has already acquired a viable target at a
considerable distance, and it is likely that by odor strength and gradient characteristics, the canine
developed a mental picture of the target’s estimated location that the canine refines as it hones in on
the source.

4.5. Assessment of Xcc Detection in Commercial Citrus Orchards

As intimated in the results above, when we examined canine performance in grids for simulated
orchards, lesion age, and lesion incidence, we had unequivocal knowledge of the Xcc infection status
of all individual trees. This is because we performed the inoculations, enumerated the Xcc infections
on each tree, and all trees were maintained in an isolation greenhouse prior to use where disease
spread was highly unlikely. However, in a commercial orchard environment, precise mapping of
disease is immensely more difficult. In orchards, we were hindered by the difficulty of Xcc detection
and our reliance on human visual survey, especially when trying to accurately map low incidence
infections. Tree canopies can be large, composed of >100,000 leaves per tree, and some leaves are in
difficult-to-view positions — high in a tree or visually occluded by surrounding branches and foliage.
Angle and quality of light, cloudy or bright sun can enhance or diminish visual acuity. For example,
when visually surveying trees during the citrus canker epidemic for Xcc infections during the Citrus
Canker Eradication Campaign in Miami, Florida, it required an average of 106 days (range 30–270 da)
post-infection to visually detect Xcc infections in trees on residential properties. Thus, incipient and low
incidence infections were rarely found [11,48]. In a study conducted by USDA, APHIS to determine the
efficacy of visual detection of Xcc, 18 two-person teams of trained inspectors surveyed a 12.1 ha (30 ac)
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block of commercial citrus with known Xcc infections. No two teams detected the same Xcc-infected
trees, no teams detected all Xcc-infected trees, and each team found Xcc infections and infected trees
previously unrecorded. [Riley, unpublished results].

In the current study, in Orchard 2, the canine alerted on five trees previously unconfirmed by
human visual assessment (Figure 10). In an attempt to confirm or refute the canine alert on one of
these trees, two highly trained technicians required over two hours on the ground and climbing in
the 7-year-old tree, ≈3 m tall canopy to find a single leaf lesion that was obscured by sooty mold.
Other lesions may have existed in this tree as well but eluded visual inspection. Visual inspection
was limited due to the large number of trees that needed to be visually scrutinized for low incidence
lesions and because of the immense amount of time needed to fully assess each tree. Therefore, the
infection statuses of these five trees were categorized as FP alerts by the canine (Table 9, Orchard 2).
However, if we give the benefit of the doubt to the canine and assume that these trees escaped human
visual detection, and were thus TP trees that were correctly identified by the canine, the precision
metrics improve considerably, with sensitivity, specificity, precision, negative predictive value, and
accuracy performance metrics rising to 0.9, 1.0, 1.0, 0.9939, and 0.9942 (Table 9, Orchard 2—Theoretical).
Thus, the precision = positive predicted value (PPV) increases from 0.7222 to 1.0 and overall accuracy
increases from 0.9797 to 0.9942, both theoretically.

Humans have great difficulty detecting Xcc in tree canopies with low Xcc-infected leaf incidence.
Whereas the canine was a highly sensitive detector (i.e., discovered one lesion within a large canopy)
that very rapidly detected the infection and alerted within 1–2 s. The differential between canine and
human sensitivity and speed, canine-2 s vs. human team-2 h, becomes apparent and exemplifies the
significant differences in probability of detection. These differences translate directly into cost of survey,
leaning heavily toward the superiority of canine detection. Additionally, from our experience, it was
inappropriate to use a less sensitive detection method (human visual) to validate a more sensitive
method (canines). This is demonstrated by the example of commercial Orchard 2 (Table 9, Figure 10),
for which five TN trees (as determined by human visual survey) were probably incorrect although
identified by the trained canine detector as alerts, and therefore diminished the true estimates of canine
detection performance.

4.6. PPV Versus NPV, the Choice between Risk-Aversion and Risk-Acceptance

Growers and regulatory agencies need to ask themselves what is more important depending
upon their detection requirements. Is it important to detect all Xcc-positive plants (PPV = 1.0), even if
it means a few FP plants (NPV < 1.0) will be indicated as well (i.e., risk averse: willing to cull or
treat some Xcc-negative plants in an attempt to best control/mitigate a disease epidemic)? Conversely,
does a grower prefer a diagnostic that never falsely implicates a plant as Xcc-positive (NPV = 1.0),
and is willing to accept a few FN indications (PPV < 1.0) (i.e., risk accepting: does not want to cull
or treat any non-Xcc-positive plants, for example attempting to avoid an adversely harsh regulatory
response during an eradication campaign)? Ideally, we want a diagnostic with the highest PPV and
NPV possible. However, PPV and NPV are influenced by disease prevalence [30,31]. For example,
if we hold sensitivity and specificity constant, the lower the disease prevalence, the higher the PPV.
In contrast, as the incidence of the disease increases in a population, PPV improves. Therefore, when
evaluating the PPV and NPV metrics for canines or any other diagnostics, we need to consider both
the disease incidence within the population and the population size tested.

In general, near-perfect diagnostics are rare in both medicine and plant pathology for a wide
array of reasons. Even near-perfect diagnostics are often plagued by sampling error. For example, PCR
detection of another citrus bacterial pathogen, CLas, the causal agent of citrus Huanglongbing, is near
100% accurate when testing infected tissue, but when used to assay field trees, it often gives FN results
with accuracy of ≈20% due to sampling error, due to the scarcity of infected cells even in systemically
infected trees [26]. In mature trees with >100,000 leaves, selecting a leaf with CLas even from a
systemically infected tree or even selecting tissue with CLas from an incompletely infected leaf can be
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very improbable. In contrast, the canines are interrogating the tree holistically; that is, the CLas scent
signature can be acquired regardless of where the bacteria are located in the tree, which circumvents
both the potential paucity of CLas-infected tissue and the sampling problem. Canine detection of
Xcc exhibited many of these same CLas hallmarks, although Xcc and CLas are very different types of
phytobacteria. As noted above, in one case, the canine detected Xcc in a 7-year-old field tree with a
single lesion obscured by sooty mold that required two trained technicians over 2 h to locate, and in
another case, the canine detected single small lesions in fruit cartons missed by trained inspectors.
Whereas human inspectors must spend several minutes examining each tree, canines trot along a row
of orchard trees interrogating at a rate of ≈1 tree/2 s, continuously drawing in air parcels multiple times
per second, thus efficiently surveilling large orchard areas quickly. Molecular or serological detection
methods require collecting multiple samples per tree, returning to the lab to process and assay, and the
use of moderate to extensive consumables; in addition, assay results are delayed depending upon
laboratory backlog and are expensive (sampling and assay costs can exceed $40 US per sample at the
time of this writing). Conversely, canines are rapid (1–2 s/tree), results are essentially instantaneous,
more cost effective (≈$4.50/tree depending on orchard size, conditions, access, etc.), and more accurate
due to the lack of sampling issues when using canines versus other detection methodologies [26].

Additionally, Xcc detector canines were successfully deployed by a commercial canine detection
company to assess a commercial citrus nursery and successfully detected multiple Xcc-infected
nursery plants unknown to the nurseryman, although no quantification of detection was documented.
Such early detection can ensure that Xcc-infected plants are identified, eliminated in the nursery,
and thus not transplanted to orchards. Avoiding the introduction of initial inoculum when establishing
new plantings is an obvious advantage to mitigating an otherwise potential epidemic. Our collective
results from this study imply that canines can be trained as viable early detectors of the pathogen in
various agricultural environments, including citrus orchards, packinghouses, and nurseries.

4.7. Direct Detection of Xcc Bacteria and Estimation of Bacterial Detection Threshold

We also trained canines exclusively to two targets: Xcc-infected trees and Xcc axenic cultures.
We found that canines trained to either target inherently detected the heterologous targets, although
both canines were superior at detecting the homologous target they were trained upon as opposed to
the heterologous target. This implies that the scent signature does not need to be augmented with
background citrus host VOCs and/or unique VOCs produced by the bacteria/host interaction. Therefore,
Xcc cultures might be a sufficient training target if Xcc-infected plants are not available such as in a
quarantine situation. In a recent study of five and four respiratory viruses and bacteria, respectively,
researchers detected 12 and six VOC that were associated with bacterial and viral growth, respectively,
and they identified two VOCs that differentiated bacterial and viral infection [49]. Angle and colleagues
discuss the opportunity and complexity of discriminating VOC biomarker detection from diseased
individuals [50]. Thus, the use of canines to detect and discriminate a phytobacterial pathogen is not
unfounded. The precise and discriminating biomarker VOCs detected from Xcc bacterial cultures needs
further examination. Such examination should include multiple canines and perhaps determination of
the optimum Xcc-culture concentration on which to train canines to achieve optimized Xcc-infected
plant detection, which is beyond the scope of this study.

In a deeper examination of direct in vitro detection, canines trained to either target were able to
detect highly dilute Xcc culture solutions as low as 0 × 10−2 cfu, i.e., 100-fold less than a single bacterial
cell. This implies that the scent signature is composed of bacterial cell VOC constituents or exudates
that occur at concentrations many-fold that of the bacterial cells. To explore this further, we had the
canines interrogate a bacterial culture filtrate and found that the canines did not react to the filtrate
without bacterial cells present. When considered concomitantly with the canines reacting to culture
dilutions as low as 10−2 cfu/mL, this led us to suspect that the canines are reacting to a subcellular
component that is larger than the 0.2 μm filter pore size. Axenic bacterial cultures are composed of
both intact cells and fragments of older dead and decomposing cells. One possibility is that bacterial
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cell fragments may play a role in the Xcc scent signature. The chemical fractionation and canine testing
of such of filtrates and eventual identification of the single or multiple VOCs that compose the Xcc
scent signature is beyond this study, as is their individual concentrations necessary for canine detection.
However, the realization of a scent signature composition that is at least in part sub-cellular opens a
clear and exciting path for future explorations.

5. Conclusions

For millennia, humans have benefitted from application of the acute canine sense of smell to hunt,
track, and find targets of importance. In this study, we demonstrated that canines can detect the Xcc
phytobacterial pathogen of Asiatic citrus canker in simulated orchards, commercial orchards, and in a
commercial packinghouse with high sensitivity, specificity, accuracy, and precision. Canines detected
Xcc within 1–2 s of target interrogation time. Canines also alerted across a range of 1–12-week-old
infections as well as across a range of pathogen prevalence with equal accuracy. Information theoretic
analyses illustrate the diagnostic capacity of canines via their very high positive likelihood ratios for
cases across pathogen prevalence at two orders of magnitude higher than values reported for other
plant and human diseases. When trained to either Xcc-infected trees or Xcc axenic cultures, canines
inherently detected the homologous and heterologous targets, suggesting they can detect Xcc directly
rather than only volatiles produced by the host following infection. Canines were also able to detect the
Xcc scent signature across a range of axenically cultured Xcc concentrations (104 to 100 = single cell)
and even <1 bacterial cell, which implies that the scent signature is composed of bacterial cell volatile
organic compound constituents or exudates that occur at concentrations many fold that of the bacterial
cells. These findings indicate that Xcc cultures are a valuable surrogate targeting tool in the absence of
infected plants. Results imply that canines can be trained and deployed as viable early detectors of
Xcc across a diversity of environments and outperform the prevailing detection method, i.e., human
visual detection.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/11/1269/s1,
Video S1: Canine “Juice” surveilling simulated new planting of 100 young grapefruit trees. Trees with Xcc infection
were randomized within rows. Note that the canine hesitates when it acquires the Xcc scent signature and the
handler continues to pull on the leash in an attempt to dissuade the canine and thereby confirm the detection.
Canine cannot be dissuaded to leave the TP Xcc-infected tree and eventually alerts by sitting next to the infected
tree. Canines utilized in future trials were trained to alert (sit) immediately upon detection. Video S2: Canine
“Juice” surveilling for 1–2 fruit with Xcc infections hidden within cardboard cartons of ≈50 commercially packed
red grapefruit in a Florida packinghouse. Note canine hesitates when it acquires the Xcc scent signature and
handler continues to pull on leash in an attempt to dissuade the canine and thereby confirm the detection. Canine
cannot be dissuaded to leave the carton and eventually alerts by sitting next to a carton containing TP fruit with
Xcc infections. Canines utilized in future trials were trained to alert (sit) immediately upon detection. Video S3:
Canine “Mi” training to detect TP Xcc-infected tree randomized within a line of nine other TN trees. Canine alerts
by sitting next to the TP Xcc-infected tree. Video S4: Canine “Mi” previously trained to detect Xcc-infected plants,
correctly detects (alerts by sitting) on a metal can containing a TP cotton pad infused with axenic Xcc-culture
suspension in PBS buffer in a line of cans with one TP and nine TN cans (with cotton pads infused with PBS
buffer only) without prior training on Xcc culture. Video S5: Canine ‘Ti’ previously trained to detect TP cotton
pads infused with axenic Xcc-culture suspension in PBS buffer, correctly detects (alerts by sitting) TP Xcc-infected
tree in a line with one TP and nine TN trees without prior training on trees. Video S6: Canine “Ti” previously
trained to detect TP cotton pads infused with axenic Xcc-culture suspension in PBS buffer, correctly detects (alerts
by sitting) on a metal can containing a TP cotton pad infused with a 100 cfu/mL concentration of Xcc bacteria
(�0.27 bacteria/pad), in a line of nine TN pads in cans. Indicates that canine may be acquiring the Xcc-scent
signature and alerting on subcellular bacterial components. Note canine surveilled line of cans off leash. Video S7:
Canine “Mi” interrogates a row of 11 suspect cans. The canine alerts by sitting next to TP can #6 containing a cotton
pad infused with a 400 μL Xcc bacterial suspension in PBS buffer of 10−2 cfu/mL (�0 bacteria/pad, subsequent
determined via culturing). Remaining 10 cans contained TN cotton pads infused with 400 μL PBS buffer only.
Handler rewards canine for correct detection with a few moments of play with a hard rubber ‘kong’ toy. Detection
of bacterial concentration containing less than one bacteria indicates canine recognizes a scent signature composed
of subcellular bacterial components. Video S8: Canine ‘Ti’ interrogates a row of 11 suspect cans. The canine alerts
by sitting next to TP can #6 containing a cotton pad infused with a 400 μL Xcc bacterial suspension in PBS buffer
of 10−2 cfu/mL (�0 bacteria/pad, subsequent determined via culturing). Remaining 10 cans contained TN cotton
pads infused with 400 μL PBS buffer only. Handler rewards canine for correct detection with a few moments

110



Entropy 2020, 22, 1269

of play with a hard rubber “kong” toy. Detection of bacterial concentration containing less than one bacteria
indicates that the canine recognizes a scent signature composed of subcellular bacterial components.

Author Contributions: Conceptualization, T.G. and G.P.; methodology, T.G., and G.P.; software, W.L, D.P., N.M.;
validation, T.G., G.P., W.S., E.T. and N.M.; formal analysis, T.G., W.L., D.P., and N.M.; investigation, T.G., G.P.,
E.T., W.S., and N.M.; resources, T.G. and W.S.; data curation, T.G., G.P.; writing—original draft preparation, T.G.;
writing—review and editing, G.P., E.T., W.L., D.P., S.A., W.S., and N.M.; visualization, T.G., W.L., D.P. and N.M.;
supervision, T.G., W.S. and G.P.; project administration, T.G.; funding acquisition, T.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by USDA, APHIS Farm Bill grant 13-8130-0313-CA, and HLB MAC Grant
15-8130-0475. Mention of a trademark, warranty, proprietary product, or vendor does not constitute a guarantee by
the USDA and does not imply its approval to the exclusion of other products or vendors that may also be suitable.

Acknowledgments: We thank Alan Hardison (deceased) for bringing canine detection to our attention many years
ago. We thank Jerry Bishop, Bryan Brice, Tyler Meck, and William Moraitis F1-K9, Palm Coast FL for their deep
collaboration and Peggy and Bill Heiser Coast to Coast K9 Teams, New Smyrna, FL specifically, on this project as
well as K-9 Security and Detection International, Orange Co., CA, and Pepe Peruyero J&K Canine Academy, Inc.,
Alachua, FL, and the USDA, Animal and Plant Health Inspection Service (APHIS), National Detector Dog Training
Center (NDDTC), Orlando, FL for their collaborations and assistance. We also thank Daniel Scott Citrus, Vero
Beach, Florida, Dan Richie Riverfront Citrus Inc., Vero Beach, Florida and Michel Sallin, IMG Citrus, Vero Beach,
Florida for research access to commercial orchards and packinghouse. We also thank Phil Berger and Laurene
Levy (deceased), USDA, APHIS for valuable consultation and support. We thank Greg Para, USDA, APHIS, for
administrative oversight and support. Finally we thank Len Therrien, Greg Brock, Joann Hodge, and Leigh Sitler
for technical assistance.

Conflicts of Interest: The authors declare no conflict of interest. In addition, the funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision
to publish the results.

References

1. Graham, J.H.; Brooks, C.; Yonce, H. Importance of early season copper sprays for protection of hamlin orange
fruit against citrus canker infection and premature fruit drop. In Proceedings of the Florida State Horticultural
Society; American Society for Horticultural Sciences: Alexandria, VA, USA, 2016; Volume 129, pp. 74–78.

2. Irey, M.; Gottwald, T.R.; Graham, J.H.; Riley, T.D.; Carlton, G. Post-hurricane analysis of citrus canker spread
and progress towards the development of a predictive model to estimate disease spread due to catastrophic
weather events. Plant Health Prog. 2006. [CrossRef]

3. Gottwald, T.R.; Irey, M. Post-hurricane analysis of citrus canker II: Predictive model estimation of disease
spread and area potentially impacted by various eradication protocols following catastrophic weather events.
Plant Health Prog. 2007. [CrossRef]

4. Bock, C.H.; Parker, P.E.; Gottwald, T.R. Effect of simulated wind-driven rain on duration and distance of
dispersal of Xanthomonas axonopodis pv. citri from canker infected citrus trees. Plant Dis. 2005, 89, 71–80.

5. Gottwald, T.R.; Graham, J.H.; Schubert, T.S. An epidemiological analysis of the spread of citrus canker in
urban Miami, Florida, and synergistic interaction with the Asian citrus leaf miner. Fruits 1997, 52, 383–390.

6. Gottwald, T.R.; Graham, J.H.; Schubert, T.S. Citrus canker in urban Miami: An analysis of spread and
prognosis for the future. Citrus Ind. 1997, 78, 72–78.

7. Schubert, T.S.; Rizvi, S.A.; Sun, X.; Gottwald, T.R.; Graham, J.H.; Dixon, W.N. Meeting the challenge of
eradicating citrus canker in Florida-Again. Plant Dis. 2001, 85, 340–356.

8. Timmer, L.W.; Gottwald, T.R.; Zitco, S.E. Bacterial exudation from lesions of Asiatic citrus canker and citrus
bacterial spot. Plant Dis. 1991, 75, 192–195.

9. Achor, D.S.; Browning, H.W.; Albrigo, L.G. Anatomical and histological modification in citrus leaves caused
by larval feeding of citrus leaf miner (Phyllocnistis citrella Staint). In Proceedings of the International
Conference Citrus Leafminer, Orlando, FL, USA, 23–25 April 1996; p. 69.

10. Graham, J.H.; Gottwald, T.R.; Browning, H.S.; Achor, D.S. Citrus leafminer exacerbated the outbreak of
Asiatic citrus canker in South Florida. In Proceedings of the International Conference Citrus Leafminer,
Orlando, FL, USA, 23–25 April 1996; p. 83.

11. Gottwald, T.R.; Sun, X.; Riley, T.; Graham, J.H.; Ferrandino, F.; Taylor, E.L. Geo-referenced spatiotemporal
analysis of the urban citrus canker epidemic in Florida. Phytopathology 2002, 92, 361–377.

111



Entropy 2020, 22, 1269

12. Frantz, L.A.; Mullin, V.E.; Pionnier-Capitan, M.; Lebrasseur, O.; Ollivier, M.; Perri, A.; Linderholm, A.;
Mattiangeli, V.; Teasdale, M.D.; Dimopoulos, E.A.; et al. Genomic and archaeological evidence suggest a
dual origin of domestic dogs. Science 2016, 352, 1228–1231. [CrossRef]

13. Savolainen, P.; Zhang, Y.-P.; Luo, J.; Lundeberg, J.; Leitner, T. Genetic Evidence for an East Asian Origin of
Domestic Dogs. Science 2002, 298, 1610–1613.

14. Vilà, C.; Savolainen, P.; Maldonado, J.E.; Amorim, I.R.; Rice, J.E.; Honeycutt, R.L.; Crandall, K.A.; Lundeberg, J.;
Wayne, R.K. Multiple and Ancient Origins of the Domestic Dog. Science 1997, 276, 1687–1689.

15. Leonard, J.A.; Wayne, R.K.; Wheeler, J.; Valdez, R.; Guillén, S.; Vilà, C. Ancient DNA evidence for old world
origin of new world dogs. Science 2002, 298, 1613–1615.

16. Lorenzo, N.; Wan, T.L.; Harper, R.J.; Hsu, Y.L.; Chow, M.; Rose, S.; Furton, K.G. Laboratory and field
experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs,
explosives, and humans. Anal. Bioanal. Chem. 2003, 376, 1212–1224.

17. Galibert, F.; Quignon, P.; Hitte, C.; André, C. Toward understanding dog evolutionary and domestication
history. C. R. Biol. 2011, 334, 190–196.

18. Jezierski, T.; Ensminger, J.; Paper, L.E. Canine Olfaction Science and Law: Advances inn Forensic Science,
Mewdicine, Conservation, and Environmental Remediation; CRC Press Taylor and Francis Group: Boca Raton,
FL, USA; London, UK; New York, NY, USA, 2016; p. 482.

19. Peterson, R.O.; Ciucci, P. The wolf is a carnivore. In Wolves, Behavior, Ecology and Conservation; Mech, L.D.,
Boitani, L., Eds.; University of Chicago Press: Chicago, IL, USA, 2003; pp. 104–130.

20. Hall, N.J.; Protopopova, A.; Wynne, C.D.L. The role of environmental and owner-provided consequences in
canine stereotypy and compulsive behavior. J. Vet. Behav. Clin. Appl. Res. 2015, 10, 24–35. [CrossRef]

21. Leitch, O.; Anderson, A.; Kirkbride, K.P.; Lennard, C. Biological organisms as volatile compound detectors:
A review. Forensic Sci. Int. 2013, 232, 92–103.

22. Browne, C.; Stafford, K.; Fordham, R. The use of scent-detection dogs. Irish Vet. J. 2006, 59, 97–104.
23. Moser, E.; McCulloch, M. Canine scent detection of human cancers: A review of methods and accuracy.

J. Vet. Behav. 2010, 5, 145–152.
24. Willis, C.M.; Church, S.M.; Guest, C.M.; Cook, W.A.; McCarthy, N.; Bransbury, A.J.; Church, M.R.T.;

Church, J.C.T. Olfactory detection of human bladder cancer by dogs: Proof of principle study. BMJ 2004, 329,
712–714.

25. Gordon, R.T.; Schatz, C.B.; Myers, L.J.; Kosty, M.; Gonczy, C.; Kroener, J.; Tran, M.; Kurtzhals, P.; Heath, S.;
Koziol, J.A.; et al. The Use of Canines in the Detection of Human Cancers. J. Altern. Complement. Med. 2008,
14, 61–67.

26. Gottwald, T.; Poole, G.; McCollum, T.; Hall, D.; Hartung, J.; Bai, J.; Luo, W.; Posny, D.; Duan, Y.P.;
Taylor, E.; et al. Canine Olfactory Detection of a Vectored Phytobacterial Pathogen. Liberibacter asiaticus, and
Integration with Disease Control. Proc. Natl. Acad. Sci. USA 2020. Available online: https://www.pnas.org/
content/early/2020/01/28/1914296117 (accessed on 7 September 2020). [CrossRef]

27. Mendel, J.; Furton, K.G.; Mills, D. An Evaluation of Scent-discriminating Canines for Rapid Response to
Agricultural Diseases. Hortic. Technol. 2018, 28, 102–108. [CrossRef]

28. Eckenrode, B.A.; Ramsey, S.A.; Stockham, R.A.; Van Berkel, G.J.; Asano, K.G.; Wolf, D.A. Performance
evaluation of the Scent Transfer Unit (STU-100) for organic compound collection and release. J. Forensic Sci.
2006, 51, 780–789. [CrossRef] [PubMed]

29. Formann, A.K.; Kohlmann, T. Latent class analysis in medical research. Stat. Methods Med. Res. 1996, 5,
179–211. [CrossRef] [PubMed]

30. Akobeng, A.K. Understanding diagnostic tests 1: Sensitivity, specificity and predictive Values. Acta Paediatr.
2006, 96, 338–341. [CrossRef]

31. Lalkhen, A.G.; McCluskey, A. Clinical tests: Sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain
2008, 8, 221–223. [CrossRef]

32. Yerushalmy, J. Statistical Problems in Assessing Methods of Medical Diagnosis, with Special Reference to
X-Ray Techniques. Public Health Rep. 1947, 62, 1432–1449. [CrossRef] [PubMed]

33. Biggerstaff, B.J. Comparing diagnostic tests: A simple graphic using likelihood ratios. Stat. Med. 2000, 19,
649–663. [CrossRef]

34. Hughes, G.; Reed, J.; McRoberts, N. Information graphs incorporating predictive values of disease forecasts.
Entropy 2020, 22, 361. [CrossRef]

112



Entropy 2020, 22, 1269

35. Bock, C.H.; Gottwald, T.R.; Graham, J.H. A Comparison of Pathogen Isolation in Culture and
Injection–infiltration Bioassay of Citrus Leaves for Detecting Xanthomonas citri subsp. citri. J. Phytopathol. 2014.
[CrossRef]

36. Gottwald, T.R.; Graham, J.H.; Schubert, T.S. Citrus canker: The pathogen and its impact. Online. Plant Health
Prog. 2002. [CrossRef]

37. Cablik, M.E.; Sagebiel, J.C.; Heaton, J.S.; Valentin, C. Olfaction-based Detection Distance: A quantitative
analysis of how far away dogs recognize tortoise odor and follow it to source. Sensors 2008, 8, 2208–2222.
[CrossRef]

38. Wells, D.L.; Hepper, P.G. Directional tracking in the domestic dog, Canis familiaris. Appl. Anim. Behav. Sci.
2003, 84, 297–305. [CrossRef]

39. Angle, T.C.; Passler, T.; Waggoner, P.L.; Fischer, T.D.; Rogers, B.; Galik, P.K. Real-time detection of a virus
using detection dogs. Front. Vet. Sci. 2016, 2, 79. [CrossRef]

40. Yuen, J.; Hughes, G. Bayesian analysis of plant disease prediction. Plant Pathol. 2002, 51, 407–412. [CrossRef]
41. Madden, L.V. Botanical epidemiology: Some key advances and its continuing role in disease management.

Eur. J. Plant Pathol. 2006, 115, 3–23. [CrossRef]
42. Fabre, F.; Plantegenest, M.; Yuen, J. Financial benefit of using crop protection decision rules over systematic

spraying strategies. Phytopathology 2007, 97, 1484–1490. [CrossRef]
43. United States Preventative Services Task Force. Available online: https://www.uspreventiveservicestaskforce.

org/uspstf/topic_search_results?topic_status=P (accessed on 6 July 2020).
44. Graham, J.H.; McGuire, R.G.; Miller, J.W. Survival of Xanthomonas campestris pv. citri in citrus debris and soil

in Florida and Argentina. Plant Dis. 1987, 71, 1094–1098. [CrossRef]
45. Gottwald, T.; Graham, J.; Bock, C.; Bonn, G.; Civerolo, E.; Irey, M.; Leite, R.; McCollum, G.; Parker, P.;

Ramallo, J.; et al. The epidemiological significance of post-packinghouse survival of Xanthomonas citri subsp.
citri for dissemination of Asiatic citrus canker via infected fruit. Crop Prot. 2009, 29, 508–524.

46. Jezierski, T.; Adamkiewicz, E.; Walczak, M.; Sobczyńska, M.; Górecka-Bruzda, A.; Ensminger, J.; Papet, E.
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Abstract: In recent years the world has witnessed the arrival of deadly infectious diseases that have
taken many lives across the globe. To fight back these diseases or control their spread, mankind relies
on modeling and medicine to control, cure, and predict the behavior of such problems. In the case of
Ebola, we observe spread that follows a fading memory process and also shows crossover behavior.
Therefore, to capture this kind of spread one needs to use differential operators that posses crossover
properties and fading memory. We analyze the Ebola disease model by considering three differential
operators, that is the Caputo, Caputo–Fabrizio, and the Atangana–Baleanu operators. We present brief
detail and some mathematical analysis for each operator applied to the Ebola model. We present a
numerical approach for the solution of each operator. Further, numerical results for each operator
with various values of the fractional order parameter α are presented. A comparison of the suggested
operators on the Ebola disease model in the form of graphics is presented. We show that by decreasing
the value of the fractional order parameter α, the number of individuals infected by Ebola decreases
efficiently and conclude that for disease elimination, the Atangana–Baleanu operator is more useful
than the other two.

Keywords: Ebola model; Caputo derivative; Caputo–Fabrizio derivative; Atangana–Baleanu derivative;
numerical results

1. Introduction

Ebola caused many deaths in Western Africa, especially in the outbreak of 2014. It includes more
than 16 thousand laboratory cases with 70% death cases, which is regarded the deadliest outbreak in
history since 1976 with 20 Ebola threats. It is evident that in each outbreak, the first case of infection
occurred due to contact with infected animals such as monkeys, fruit bats, etc., which shows the spread
of the virus through indirect contact [1]. It is documented in [2] that some percentage of the Ebola-Zaire
type survived after two weeks on glass at 4 ◦C and (10%) on plastic, and on surfaces (3%). Moreover,
0.1% to 1 % of the Ebola virus particle can remain up to 50 days at 4 ◦C [3]. The survival of the Ebola
virus in the environment due to poor sanitary and hygienic conditions considerably become another
source of Ebola infection in Africa. In Africa, regions were affected greatly by the Ebola virus outbreak
due to their inhabitants being involved in hunting food, being close to the rain-forest, and harvesting
forest fruits for food [4,5].

The Ebola disease outbreaks and their transmission have been documented in many articles
(see [6–10] and the references therein) and the main focus was to study the human population and
the direct transmission. Some models of the type SI, SIR, SEIR, and other types also considered the
dynamics of the Ebola disease outbreaks [9,11,12]. Recently, in [13] studied an Ebola virus disease
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through a simple mathematical model of the type SIR with the inclusion of environment effect. Due to
the fact that Ebola virus survives in the environment, this warrants that future epidemics can occur.
Thus, the inclusion of the environment effect in Ebola disease spread should be studied more and some
preventive and other measures should be used to protect people further from this deadly infection.
Therefore, based on the model presented in [13], we aim to study the Ebola disease model in the
framework of the fractional calculus. The reason for the use of the fractional calculus in Ebola disease
is that it has many advantages. Some of them are the heredity and memory effects, the parameter
estimations are better, the crossover behavior of the model, and effective strategies for the case of
arbitrary order. Some other works used it to study the dynamics of complex networks [14–16]. In [14]
the authors studied the dynamics of information and the uses in complex networks. Coupling dynamics
of an epidemic spreading with information diffusion is analyzed in [15]. The events that determine
spreading dynamics and the information transmission through internal and external influences are
considered in [16].

Fractional calculus and its applications to real life problems is found extensively in the literature,
for example [17–21]. In all these mentioned papers the focus is to eliminate the infection from the
community and it is proven that the fractional models have the ability to model such epidemic disease
efficiently and provide reasonable results for the case of non-integer. It is shown that the fractional
models are useful for the data fitting [22]. The results suggest in [22] that fractional models are efficient to
study disease dynamics well. Therefore, motivated with the above applications, we aim to study an Ebola
disease model in the fractional order. We consider three different fractional operators, that is, the Caputo,
Caputo–Fabrizio, and the Atangana–Baleanu derivatives. According to the authors’ knowledge no one
has applied the three operators to an epidemic model. So, this work is a useful study to analyze Ebola
disease with different fractional operators. The rest of the work on Ebola disease is categorized as follows:
The fractional background material are shown in Section 2. A mathematical model on Ebola disease is
presented in Section 3 with basic mathematical results. In Section 4, a mathematical model in the frame
of the Caputo derivative and their numerical results, the Caputo–Fabrizio derivative is used to formulate
the model and their relevant results are presented, and we further consider the Atangana–Baleanu model
for Ebola disease and discuss its existence and uniqueness and a useful numerical scheme for their
solution, and lastly in this section, the comparison results for these operators with various fractional
order parameters are shown. The Ebola disease models and their fractional results are summarized in
Section 5.

2. Fundamental Concepts

Here, we recall the fundamental concepts regarding the Caputo, Caputo–Fabrizio, and the
Atangana–Baleanu derivative.

Definition 1. For a function f : R+ → R, then the fractional integral of order α > 0 is given by

Iα
t ( f (t)) =

1
Γ(α)

∫ t

0
(t − z)α−1 f (z)dz.

where Γ shows the Gamma function and α is the fractional order parameter.

Definition 2. For a function f ∈ Cn, then the Caputo derivative with order α is defined as

CDα
t ( f (t)) = In−αDn f (t) =

1
Γ(n − α)

∫ t

0

f n(z)
(t − z)α+n−1 dz,

that is defined for the absolute continuous functions and n − 1 < α < n ∈ N. Obviously, CDα
t ( f (t)) tends to

f ′(t) as α → 1.
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Definition 3. [23]. Let z ∈ H1(a, b), with b > a, and 0 ≤ α ≤ 1, then the Caputo–Fabrizio derivative can be
written as

Dα
t (z(t)) =

K(α)

1 − α

∫ t

a
z′(x) exp

[
− α

t − x
1 − α

]
dx, (1)

the normalized function is shown by K(α) and it holds K(0) = K(1) = 1. Consider the case for which
z /∈ H1(a, b) then, we have the following:

Dα
t (z(t)) =

α K(α)

1 − α

∫ t

a
(z(t)− z(x)) exp

[
− α

t − x
1 − α

]
dx. (2)

Remark 1. [24]. Let ν = 1−α
α ∈ [0, ∞), α = 1

1+ν ∈ [0, 1], then equation given by (2) can be expressed is
as follows,

Dν
t (z(t)) =

K(ν)

ν

∫ t

a
z′(x) exp

[
− t − x

ν

]
dx, K(0) = K(∞) = 1. (3)

Further,

lim
ν−→0

1
ν

exp
[
− t − x

ν

]
= ϕ(x − t). (4)

Definition 4. Consider α ∈ (0, 1), for a function z(x) then we can write the integral of fractional order α is
as follows,

Iα
t (z(t)) =

2(1 − α)

(2 − α)K(α)
g(t) +

2α

(2 − α)K(α)

∫ t

0
z(s)ds, t ≥ 0. (5)

Remark 2. In Equation (4), the remainder of the Caputo type non-integer order integral of the function with
order α ∈ (0, 1) is a mean into z with integral of order 1. Thus, it requires,

2
2K(α)− αK(α)

= 1, (6)

implies that K(α) = 2
2−α , α ∈ (0, 1). Based on Equation (6), a new Caputo derivative is suggested with

α ∈ (0, 1) and is given by

Dα
t (z(t)) =

1
1 − α

∫ t

0
z′(x) exp

[
− α

t − x
1 − α

]
dx. (7)

In the following we present the new derivative known as the Atangana–Baleanu derivatives
having non-singular and non-local kernel [25].

Definition 5. Let f ∈ H1(a, b), b > a, α ∈ [0, 1], then in the Caputo sense the Atangana–Baleanu derivative
is defined as:

ABC
a Dα

t f (t) =
K(α)

1 − α

∫ t

a
f ′(z)Eα

[
− α

(t − z)α

1 − α

]
dz. (8)

Definition 6. The fractional integral associated with the Atangana–Beleanu derivative is given by:

ABC
a Iα

t f (t) =
1 − α

K(α)
f (t) +

α

K(α)Γ(α)

∫ t

a
f (z)(t − z)α−1dz. (9)

when the fractional order turns to zero, we can obtain the original function.
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Theorem 1. Consider the function f ∈ C[a, b], then the following holds [25]:

‖ABC
a Dα

t ( f (t))‖ <
K(α)

1 − α
‖ f (t)‖, where ‖ f (t)‖ = maxa≤t≤b| f (t)|. (10)

Further, for the newly derivative the Lipschitz condition can be easily satisfied [25]:

‖ABC
a Dα

t f1(t)− ABC
a Dα

t f2(t)‖ < ↔1‖ f1(t)− f2(t)‖. (11)

Theorem 2. A given fractional differential equation:

ABC
a Dα

t f (t) = s(t), (12)

has the unique solution given by [25]:

f (t) =
1 − α

K(α)
s(t) +

α

K(α)Γ(α)

∫ t

a
s(z)(t − z)α−1dz. (13)

3. Model Formulation

We begin to formulate the Ebola epidemic disease by considering the human population in three
compartments, that is, the susceptible individuals, S(t), individuals infected with Ebola virus, I(t),
and the individuals recovered from the Ebola virus, R(t). The individuals infected with Ebola and the
deceased is D(t) and P(t) is the class for the Ebola virus pathogen in the environment. The model that
describes the dynamics of Ebola disease modeled through differential equations is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Λ − λS − dS,

dI
dt = λS − (d + δ + φ1)I,

dR
dt = φ1 I − dR,

dD
dt = (d + δ)I − εD,

dP
dt = 	 + ξ I + θD − κP,

(14)

where λ = β1 I + β2D + ψP, and the appropriate initial conditions are given by

S(0) = S0, I(0) = I0, R(0) = R0, D(0) = D0, P(0) = P0. (15)

The birth rate of the susceptible individuals is recruited by the rate Λ, while the death rate is given
by d. The susceptible individuals become infectious with the effective contact rate β1 and β2 with the
deceased human individuals. The susceptible are able to attract the disease from the contaminated
environment at a rate given by ψ. The death rate of the infected individuals due to Ebola virus is given
by a rate δ, while the recovery from infection is φ1. The deceased people can be directly buried during
funerals at rate ε. At a rate of 	 the environment is contaminated by the Ebola virus. At rates of ξ and
θ the infected and deceased individuals, respectively, shed the virus in the environment. The virus
decay of the Ebola virus from the population is given by parameter κ.

The sum of the first three equations of the Ebola disease model Equation (14) is given by

dN
dt

= Λ − dN − δI, (16)
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where N = S + I + R denotes the total alive human population. It should be noted that ε ≤ (d + δ),
which is an appropriate condition for the compartment D for which the model becomes relevant,
otherwise the deceased human individuals will disappear and the model would be irrelevant. Further,
the model given by Equation (14) is well posed and biologically feasible in the region given by

Φ =
{

M ∈ R
5
+ : N(t) ≤ Λ

d
, D ≤ (d + δ)Λ

εd
, P(t) =

ε(d	 + Λξ) + θΛ(δ + d)
dκε

}
, (17)

where M = (S(t), I(t), R(t), D(t), P(t)).

4. Ebola Model in the Caputo Sense

The purpose of this section is to apply the proposed three operators on the Ebola disease model
Equation (14). Initially, we will apply the Caputo derivative on the Ebola disease model, then,
the Caputo–Fabrizio derivative, and finally the Atangana–Baleanu derivative. For each operator we
will provide the solution procedure and the discussion on the graphical results in details. So, we start
with the Caputo sense.

4.1. Ebola Model in the Caputo Sense

We can express the model given by Equation (14) in the Caputo derivative as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C
0 Dα

t S = Λ − λS − dS,
C
0 Dα

t I = λS − (d + δ + φ1)I,
C
0 Dα

t R = φ1 I − dR,
C
0 Dα

t D = (d + δ)I − εD,
C
0 Dα

t P = 	 + ξ I + θD − κP,

(18)

where λ = β1 I + β2D + ψP, and with the initial conditions, S(0) = S0, I(0) = I0, R(0) = R0,
D(0) = D0, and P(0) = P0.

4.2. Equilibrium Points

For the Ebola disease model Equation (18) in the Caputo sense, there is no disease-free equilibrium
when 	 > 0 and we have the other equilibrium say, E∗ = (S∗, I∗, R∗, D∗, P∗), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = Λ−(d+δ+φ1)I∗
d ,

R∗ = φ1 I∗
d ,

D∗ = (d+δ)I∗
ε ,

P∗ = θ I∗(d+δ)+I∗ξε+	ε
κε

Using these values in the second equation of the model Equation (18), we have

C2 I∗2 − C1 I∗ − C0 = 0, (19)

where
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C2 = (d + δ + φ1) (β1κε + β2κ(d + δ) + ψ(θ(d + δ) + ξε)) ,

C1 = −(−κΛ (β1ε + β2(d + δ))− ψ(θΛ(d + δ)− 	ε(d + δ) + Λξε) + dκε(d + δ))

−εφ1(dκ + 	ψ),

C0 = Λ	ψε.

We have from the coefficient C1,

C1 = dεκ(d + δ + φ1)
(
R0 − 1 − ψ	

dκ

)
,

where

R0 =
Λβ1

d(d + δ + φ1)
+

Λβ2(d + δ)

dε(d + δ + φ1)
+

ψΛ(εξ + θδ + θd)
dεκ(d + δ + φ1)

.

Considering the case when 	 = 0, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = Λ
dR0

,

I∗ = Λ(R0−1)
(d+δ+φ1)R0

,

R∗ = Λφ1(R0−1)
d(d+δ+φ1)R0

,

D∗ = (Λ(d+δ))(R0−1)
ε(d+δ+φ1)R0

,

P∗ = Λ(εξ+θ(d+δ))(R0−1)
εκ(d+δ+φ1)R0

,

and we have a disease-free equilibrium,

E0 = (
Λ
d

, 0, 0, 0),

known as Ebola virus-free equilibrium.

4.3. Numerical Procedure for the Ebola Disease Model in the Caputo Sense

In the present subsection, we present the numerical scheme for the solution of the fractional Ebola
disease model in the Caputo sense Equation (18). The present scheme that we use for the solution of the
fractional Caputo nonlinear ordinary differential equation has been presented in [26,27]. The following
procedure is presented

C
0 Dα

t z(t) = f (t, z(t)). (20)

Using the fundamental theorem on Equation (20), we obtain

z(t)− z(0) =
1

Γ(α)

∫ t

0
f (χ, z(χ))(t − χ)α−1dχ, (21)
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thus, at t = tn+1, n = 0, 1, ..., the following is obtained

z(tn+1)− z(0) =
1

Γ(α)

∫ tn+1

0
(tn+1 − t)α−1 f (t, z(t))dt, (22)

and

z(tn)− z(0) =
1

Γ(α)

∫ tn

0
(tn − t)α−1 f (t, z(t))dt. (23)

From Equations (23) and (22), we have

z(tn+1) = z(tn) +
1

Γ(α)

∫ tn+1

0
(tn+1 − t)α−1 f (t, z(t))dt︸ ︷︷ ︸

Aα,1

− 1
Γ(α)

∫ tn

0
(tn − t)α−1 f (t, z(t))dt︸ ︷︷ ︸

Aα,2

. (24)

where

Aα,1 =
1

Γ(α)

∫ tn+1

0
(tn+1 − t)α−1 f (t, z(t))dt, (25)

and

Aα,2 =
1

Γ(α)

∫ tn

0
(tn − t)α−1 f (t, z(t))dt. (26)

Using the Lagrange approximation for the function f (t, z(t)), we have

P(t) � t − tn−1

tn − tn−1
f (tn, zn) +

t − tn

tn−1 − tn
f (tn−1, zn−1)

=
f (tn, zn)

h
(t − tn−1)− f (tn−1, zn−1)

h
(t − tn). (27)

The use of the above expression leads to

Aα,1 =
f (tn, zn)

hΓ(α)

∫ tn+1

0
(tn+1 − t)α−1(t − tn−1)dt

− f (tn−1, zn−1)

hΓ(α)

∫ tn+1

0
(tn+1 − t)α−1(t − tn)dt. (28)

We have, after further simplification

Aα,1 =
f (tn, zn)

hΓ(α)

[2h
α

tα
n+1 −

tα+1
n+1

α + 1

]
− f (tn−1, zn−1)

hΓ(α)

[ h
α

tα
n+1 −

1
α + 1

tα+1
n+1

]
. (29)

Similarly,

Aα,2 =
1

Γ(α)

∫ tn

0
(tn − t)α−1

[ f (tn, zn)

h
(t − tn−1)

− f (tn−1, zn−1)

h
(t − tn)

]
dt. (30)
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Further simplifying, we get

Aα,2 =
f (tn, zn)

hΓ(α)

[ h
α

tα
n −

tα+1
n

α + 1

]
+

f (tn−1, zn−1)

hΓ(α)

[ 1
α + 1

tα+1
n

]
. (31)

We have the final approximate solution for the fractional nonlinear ordinary differential equation
by substituting the Equations (30) and (31) into (24), given by

z(tn+1) = z(tn) +
f (tn, zn)

hΓ(α)

[2htα
n+1
α

− tα+1
n+1

α + 1
+

h
α

tα
n −

tα+1
n+1

α + 1

]
+

f (tn−1, zn−1)

hΓ(α)

[
− h

α
tα
n+1 +

tα+1
n+1

α + 1
+

tα+1
n

α + 1

]
. (32)

The above scheme is used further for the solution of the Ebola disease model in the Caputo sense
Equation (18) by considering the parameter values, d = 0.05, δ = 0.05, φ = 0.06, Λ = 10, ε = 0.008,
ξ = 0.004, κ = 0.03, ψ = 0.01, β1 = 0.006, β2 = 0.012, 	 = 1, and θ = 0.004, and with various values of
the fractional order parameter α. We have the graphical results for the numerical solution of the Ebola
disease model Equation (18) in Figures 1–7. One can observe in Figures 1–7 by deceasing the value of
α, the individuals infected with Ebola decreases while the population of infected individuals increases.
We use this further to check the graphical results for the case when α = 0.3, 0.1, then, one can see that
infection is almost on the steady state, see Figures 6 and 7.
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Figure 1. The graphical results show the dynamics of the Caputo derivative model (18), when α = 1,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 2. The graphical results show the dynamics of the Caputo derivative model (18), when α = 0.95,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 3. The graphical results show the dynamics of the Caputo derivative model (18), when α = 0.9,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 4. The graphical results show the dynamics of the Caputo derivative model (18), when α = 0.85,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 5. The graphical results show the dynamics of the Caputo derivative model (18), when α = 0.5,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 6. The graphical results show the dynamics of the Caputo derivative model (18), when α = 0.3,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 7. The graphical results show the dynamics of the Caputo derivative model (18), when α = 0.1,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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4.4. Ebola Model in the Caputo–Fabrizio Sense

We can express the model given by Equation (14) in Caputo–Fabrizio derivative as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CF
0 Dα

t S = Λ − λS − dS,
CF
0 Dα

t I = λS − (d + δ + φ1)I,
CF
0 Dα

t R = φ1 I − dR,
CF
0 Dα

t D = (d + δ)I − εD,
CF
0 Dα

t P = 	 + ξ I + θD − κP,

(33)

where λ = β1 I + β2D + ψP, and with the initial conditions, S(0) = S0, I(0) = I0, R(0) = R0, D(0) =
D0, and P(0) = P0.

4.5. Numerical Solution for Caputo–Fabrizio Model

Here we present the numerical solution for the Caputo–Fabrizio model Equation (33) by using
the scheme presented [27]. The following steps are taken as specified in one for the solution of
Equation (33).

S(t)− S(0) =
(1 − α)

B(α)
F1(t, S) +

α

B(α)

∫ t

0
F1(ζ, S)dζ. (34)

For t = tn+1, n = 0, 1, 2, ..., we obtain

S(tn+1)− S0 =
1 − α

B(α)
F1(tn, Sn) +

α

B(α)

∫ tn+1

0
F1(t, S)dt. (35)

The successive terms difference is given as follows:

Sn+1 − Sn =
1 − α

B(α)
{F1(tn, Sn)−F1(tn−1, Sn−1)}+ α

B(α)

∫ tn+1

tn
F1(t, S)dt. (36)

Over the close interval [tk, t(k+1)], the function F1(t, S) can be approximated by the interpolation
polynomial

Pk(t) ∼= f (tk, yk)

h
(t − tk−1)− f (tk−1, yk−1).

h
(t − tk), (37)

where h = tn − tn−1. Calculating the integral in Equation (36) using above polynomial approximation
we get

∫ tn+1

tn
F1(t, S)dt =

∫ tn+1

tn

F1(tn, Sn)

h
(t − tn−1)− F1(tn−1, Sn−1)

h
(t − tn)dt

=
3h
2
F1(tn, Sn)− h

2
F1(tn−1, Sn−1). (38)

Substituting Equation (38) in (36) and after simplification we obtain

Sn+1 = Sn +

(
1 − α

B(α)
+

3h
2B(α)

)
F1(tn, Sn)−

(
1 − α

B(α)
+

αh
2B(α)

)
F1(tn−1, Sn−1). (39)

In a similar way, for the rest of equations of system Equation (33) we obtain the recursive formula
as below

In+1 = I0 +

(
1 − α

B(α)
+

3h
2B(α)

)
F2(tn, In)−

(
1 − α

B(α)
+

αh
2B(α)

)
F2(tn−1, In−1),
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Rn+1 = R0 +

(
1 − α

B(α)
+

3h
2B(α)

)
F3(tn, Rn)−

(
1 − α

B(α)
+

αh
2B(α)

)
F3(tn−1, Rn−1),

Dn+1 = D0 +

(
1 − α

B(α)
+

3h
2B(α)

)
F4(tn, Dn)−

(
1 − α

B(α)
+

αh
2B(α)

)
F4(tn−1, Dn−1),

Pn+1 = P0 +

(
1 − α

B(α)
+

3h
2B(α)

)
F5(tn, Pn)−

(
1 − α

B(α)
+

αh
2B(α)

)
F5(tn−1, Pn−1). (40)

The numerical scheme presented above by considering the parameter values, d = 0.05, δ = 0.05,
φ = 0.06, Λ = 10, ε = 0.008, ξ = 0.004, κ = 0.03, ψ = 0.01, β1 = 0.006, β2 = 0.012, 	 = 1,
and θ = 0.004, we have the graphical results for the Ebola disease model in Caputo–Fabrizio model
Equation (33). Various graphical results considering the fractional order parameter α are presented,
see Figures 8–14. In these Figures, we obtain various graphical results for α, and we observe that by
decreasing the value of α the infected compartments are decreasing well. Especially, when choosing
α = 0.3, 0.1, we can see that the number of infected individuals decreases rapidly.
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Figure 8. The graphical results show the dynamics of the Caputo–Fabrizio model (33), when α = 1,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 9. The graphical results show the dynamics of the Caputo–Fabrizio model (33), when α = 0.95,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 10. The graphical results show the dynamics of the Caputo–Fabrizio model (33), when α = 0.9,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 11. The graphical results show the dynamics of the Caputo–Fabrizio model (33), when α = 0.85,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 12. The graphical results show the dynamics of the Caputo–Fabrizio model (33), when α = 0.5,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 13. The graphical results show the dynamics of the Caputo–Fabrizio model (33), when α = 0.3,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 14. The graphical results show the dynamics of the Caputo–Fabrizio model (33), when α = 0.1,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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4.6. Ebola Model in the Atangana–Baleanu Sense

We can express the model given by Equation (14) in Atangana–Baleanu derivative as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ABC
0 Dα

t S = Λ − λS − dS,
ABC
0 Dα

t I = λS − (d + δ + φ1)I,
ABC
0 Dα

t R = φ1 I − dR,
ABC
0 Dα

t D = (d + δ)I − εD,
ABC
0 Dα

t P = 	 + ξ I + θD − κP,

(41)

where λ = β1 I + β2D + ψP.

4.7. Existence of Solutions for the Atangana–Baleanu Model

It is obvious that the given model Equation (14) shows the dynamics of Ebola disease, which is
described by a nonlinear system of differential equations, so it is not possible to obtain their exact
solution but the existence of an approximate solution can be very effective if we show that the solution
for the Ebola disease model Equation (41) under some conditions exists. To do this, we follow the
results of fixed point theory for the given Ebola disease model Equation (41). We write the Ebola
disease model given by Equation (41) for simplification purposes as follows:{

ABC
0 Dα

t x(t) = F (t, x(t)),
x(0) = x0, 0 < t < T < ∞,

(42)

where x(t) = (S, I, R, D, P) represent the vector with state variables S, I, R, D, P and is a continuous
vector function and can be defined as follows:

F =

⎛⎜⎜⎜⎜⎜⎝
F1

F2

F3

F4

F5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
Λ − λS − dS

λS − (d + δ + φ1)I
φ1 I − dR

(d + δ)I − εD
	 + ξ I + θD − κP

⎞⎟⎟⎟⎟⎟⎠ . (43)

The function F can be shown easily to satisfy the Lipschitz condition and can be represented as:

‖F (t, x1(t))−F (t, x2(t))‖ ≤ K‖x1(t)− x2(t)‖. (44)

Now we have the results for the existence and uniqueness for the Ebola disease model in the
Atangana–Baleanu derivative sense. We state and prove the following theorem:

Theorem 3. The Ebola disease model in the Atangana–Baleanu form Equation (41) can have a unique solution
under some conditions if the following holds

(1 − α)

ABC(α)
K+ α

Tα
max

ABC(α)Γ(α)
K < 1. (45)

Proof. The use of the Atangana–Baleanu fractional integration on model Equation (42) both sides,
the following is obtained,

x(t) = x0 +
1 − α

ABC(α)
F (t, x(t)) +

α

ABC(α)Γ(α)

∫ t

0
(t − η)α−1F (η, x(η))dη. (46)
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Suppose J = (0, T) and the operator Υ : C(J, R5) → C(J, R5) defined by

Υ[x(t)] = x0 +
1 − α

ABC(α)
F (t, x(t)) +

α

ABC(α)Γ(α)

∫ t

0
(t − η)α−1F (η, x(η))dη. (47)

Then we can write Equation (46) as follows:

x(t) = Υ[x(t)]. (48)

We have, after applying the supremum norm on J,

‖x(t)‖J = supt∈J‖x(t)‖, x(t) ∈ C. (49)

Obviously, C(J, R5) and the norm ‖.‖J is a Banach space. Using the operator Equation (48),
the following is presented

‖Υ[x1(t)]− Υ[x2(t)]‖J ≤
∥∥∥∥ (1 − α)

ABC(α)
(F (t, x1(t))−F (t, x2(t)) +

α

ABC(α)Γ(α)
×

∫ t

0
(t − η)α−1(F (η, x1(η))−F (η, x2(η)))dη

∥∥∥∥
J
. (50)

Using the triangular inequality and Lipschitz condition presented in Equation (44) with some
simplifications, we have

‖Υ[x1(t)]− Υ[x1(t)]‖J ≤
(
(1 − α)K
ABC(α)

+
α

ABC(α)Γ(α)
KTα

)
‖x1(t)− x2(t)‖J . (51)

Finally, we have

‖Υ[x1(t)]− Υ[x1(t)]‖J ≤ L‖x1(t)− x2(t)‖J , (52)

where

L =
(1 − α)M
ABC(α)

+
α

ABC(α)Γ(α)
MTα.

If the condition given by Equation (45) holds then the operator Υ will be a contraction. Thus,
the Banach fixed point theorem ensures that a unique solution for the Ebola disease model in the
Atangana–Baleanu form Equation (41) exists, Equation (42).

4.8. Numerical Results for the Atangana–Baleanu Model and Simulation Results

In the present subsection we aim to obtain the numerical results for the Ebola disease model
in the Atangana–Baleanu form given by Equation (41). First, we provide a numerical scheme in
details and then show the graphical results for various values of the fractional order parameter α.
The scheme given in [28] will be used to obtain the approximate solution of the Ebola disease model in
the Atangana–Baleanu form Equation (41).

We write the model Equation (42) after using the fundamental theorem of fractional calculus:

w(t)− w(0) =
(1 − α)

ABC(α)
F (t, w(t)) +

α

ABC(α)× Γ(α)

∫ t

0
F (φ, x(φ))(t − φ)α−1dφ. (53)

At t = tn+1, n = 0, 1, 2, ..., we have
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w(tn+1)− w(0) =
1 − α

ABC(α)
F (tn, w(tn))+

α

ABC(α)× Γ(α)

∫ tn+1

0
F (φ, w(φ))(tn+1 − φ)α−1dφ,

=
1 − α

ABC(α)
F (tn, w(tn))+

α

ABC(α)× Γ(α)

n

∑
j=0

∫ tj+1

tj

F (φ, w(φ))(tn+1 − φ)α−1dφ. (54)

The function F (φ, w(φ)) can be approximated over [tj, tj+1], using the interpolation polynomial

F (φ, w(φ)) ∼= F (tj, w(tj))

h
(t − tj−1)−

F (tj−1, w(tj−1))

h
(t − tj). (55)

Substituting in Equation (54) we get

w(tn+1) = w(0) +
1 − α

ABC(α)
F (tn, w(tn))+

α

ABC(α)× Γ(α)

n

∑
j=0

(F (tj, w(tj))

h

∫ tj+1

tj

(t − tj−1)(tn+1 − t)α−1dt

−F (tj−1, w(tj−1))

h

∫ tj+1

tj

(t − tj)(tn+1 − t)α−1dt
)

. (56)

After some calculation, we obtain the following:

w(tn+1) = w(t0) +
1 − α

ABC(α)
F (tn, w(tn))+

α

ABC(α)

n

∑
j=0(hαF (tj, w(tj))

Γ(α + 2)
((n + 1 − j)α(n − j + 2 + α)− (n − j)α(n − j + 2 + 2α))

− hαF (tj−1, w(tj−1))

Γ(α + 2)
((n + 1 − j)α+1 − (n − j)α(n − j + 1 + α))

)
. (57)

For the Ebola disease model we have the following results:

S(tn+1) = S(t0) +
1 − α

ABC(α)
F1(tn, w(tn))+

α

ABC(α)

n

∑
j=0(hαF1(tj, w(tj))

Γ(α + 2)
((n + 1 − j)α(n − j + 2 + α)− (n − j)α(n − j + 2 + 2α))

− hαF1(tj−1, w(tj−1))

Γ(α + 2)
((n + 1 − j)α+1 − (n − j)α(n − j + 1 + α))

)
,
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I(tn+1) = I(t0) +
1 − α

ABC(α)
F2(tn, w(tn))+

α

ABC(α)

n

∑
j=0(hαF2(tj, w(tj))

Γ(α + 2)
((n + 1 − j)α(n − j + 2 + α)− (n − j)α(n − j + 2 + 2α))

− hαF2(tj−1, w(tj−1))

Γ(α + 2)
((n + 1 − j)α+1 − (n − j)α(n − j + 1 + α))

)
,

R(tn+1) = R(t0) +
1 − α

ABC(α)
F3(tn, w(tn))+

α

ABC(α)

n

∑
j=0(hαF3(tj, w(tj))

Γ(α + 2)
((n + 1 − j)α(n − j + 2 + α)− (n − j)α(n − j + 2 + 2α))

− hαF3(tj−1, w(tj−1))

Γ(α + 2)
((n + 1 − j)α+1 − (n − j)α(n − j + 1 + α))

)
,

D(tn+1) = D(t0) +
1 − α

ABC(α)
F4(tn, w(tn))+

α

ABC(α)

n

∑
j=0(hαF4(tj, w(tj))

Γ(α + 2)
((n + 1 − j)α(n − j + 2 + α)− (n − j)α(n − j + 2 + 2α))

− hαF4(tj−1, w(tj−1))

Γ(α + 2)
((n + 1 − j)α+1 − (n − j)α(n − j + 1 + α))

)
,

P(tn+1) = P(t0) +
1 − α

ABC(α)
F5(tn, w(tn))+

α

ABC(α)

n

∑
j=0(hαF5(tj, w(tj))

Γ(α + 2)
((n + 1 − j)α(n − j + 2 + α)− (n − j)α(n − j + 2 + 2α))

− hαF5(tj−1, w(tj−1))

Γ(α + 2)
((n + 1 − j)α+1 − (n − j)α(n − j + 1 + α))

)
. (58)

We using the above scheme for the numerical solution of the Ebola disease model Equation (41)
and obtain the graphical results shown in Figures 15–21 by considering different values of the fractional
order parameter α. In these Figures 15–21, by decreasing the values of the fractional order parameter α,
the population of infected compartments decreases more efficiently for the cases of α = 0.3, 0.1. One can
see that the numerical results in the form of graphs obtained through the Atangana–Baleanu operator
in comparison to the Caputo and Caputo–Fabrizio operator decrease the infection faster. So, from the
above graphical results, it is suggested that the Atangana–Baleanu operator is more useful for infection
elimination by decreasing the value of α.
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Figure 15. The graphical results show the dynamics of the Atangana–Baleanu model (41), when α = 1,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 16. The graphical results show the dynamics of the Atangana–Baleanu model (41), when α =

0.95, where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 17. The graphical results show the dynamics of the Atangana–Baleanu model (41), when α = 0.9,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 18. The graphical results show the dynamics of the Atangana–Baleanu model (41), when α =

0.85, where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 19. The graphical results show the dynamics of the Atangana–Baleanu model (41), when α = 0.5,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 20. The graphical results show the dynamics of the Atangana–Baleanu model (41), when α = 0.3,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.
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Figure 21. The graphical results show the dynamics of the Atangana–Baleanu model (41), when α = 0.1,
where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals, (d) deceased
individuals, (e) Environment pathogens.

4.9. Graphical Comparison of the Operators

Here, we provide comparison plots for the Caputo, Caputo–Fabrizio, and the Atangana–Baleanu
operators. We considered various values of the fractional order parameter α = 1, 0.9, 0.7, 0.5, 0.3, 0.1
and presented the graphical results for comparison (see Figures 22–27). By decreasing the value of α it
can be seen that the number of infected individuals decreases well, compared to the Caputo–Fabrizio
and Caputo derivatives. Especially, for the cases when α = 0.3, 0.1, the Atangana–Baleanu
derivative provides useful results for the infection elimination in comparison to the Caputo and
the Caputo–Fabrizio operators.
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Figure 22. Comparison graphs for the Caputo, Caputo–Fabrizio, and the Atangana–Baleanu derivatives
when α = 1, where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals,
(d) deceased individuals, (e) Environment pathogens.
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Figure 23. Comparison graphs for the Caputo, Caputo–Fabrizio, and the Atangana–Baleanu derivatives
when α = 0.9, where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals,
(d) deceased individuals, (e) Environment pathogens.
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Figure 24. Comparison graphs for the Caputo, Caputo–Fabrizio, and the Atangana–Baleanu derivatives
when α = 0.7, where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals,
(d) deceased individuals, (e) Environment pathogens.
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Figure 25. Comparison graphs for the Caputo, Caputo–Fabrizio, and the Atangana–Baleanu derivatives
when α = 0.5, where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals,
(d) deceased individuals, (e) Environment pathogens.
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Figure 26. Comparison graphs for the Caputo, Caputo–Fabrizio, and the Atangana–Baleanu derivatives
when α = 0.3, where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals,
(d) deceased individuals, (e) Environment pathogens.
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Figure 27. Comparison graphs for the Caputo, Caputo–Fabrizio, and the Atangana–Baleanu derivatives
when α = 0.1, where (a) Susceptible individuals, (b) Infected individuals, (c) recovered individuals,
(d) deceased individuals, (e) Environment pathogens.

5. Conclusions

We presented the dynamics of an Ebola disease model in the framework of fractional calculus.
We applied three fractional operators, which are the Caputo, Caputo–Fabrizio, and the Atangana–Baleanu
models. Initially, we proposed an epidemic model available literature for Ebola disease and then applied
the proposed operators. The Ebola disease model with the Caputo derivative is presented and an
effective numerical scheme for the numerical solution was provided. We used many values for the
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fractional order parameters and obtained the graphical results. The same model is used further and
applied to the Caputo–Fabrizio derivative and we then presented a numerical solution for their solution.
The solution was obtained and presented in graphical shape with the use of various fractional order
parameter values. Then the newly established derivative known as the Atangana–Baleanu derivative
was successfully applied to the Ebola disease model. The Ebola disease model in the Atangana–Baleanu
sense is used and the uniqueness and existence were presented. Then, we presented a numerical scheme
for the solution and presented various graphical results for α. Comparisons of the proposed three
operators for various values of the fractional order parameter α = 1, 0.9, 0.7, 0.5, 0.3, 0.1 are presented
and discussed. The comparison results show that the Atangana–Baleanu derivative is more helpful for
disease elimination by decreasing the value of α, since the population of infected individuals decreased
well. The use of three different fractional operators on the Ebola disease model suggests that the fractional
order parameter greatly affects disease elimination for the non-integer case when decreasing α. Therefore,
we suggest that the application of the various fractional derivatives on the present disease model shows
the greater effectiveness of the arbitrary order derivative than that of the integer order model for the case
of fractional order parameters.
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Abstract: This paper studies the representation of a general epidemic model by means of a first-order
differential equation with a time-varying log-normal type coefficient. Then the generalization of
the first-order differential system to epidemic models with more subpopulations is focused on by
introducing the inter-subpopulations dynamics couplings and the control interventions information
through the mentioned time-varying coefficient which drives the basic differential equation model.
It is considered a relevant tool the control intervention of the infection along its transient to fight
more efficiently against a potential initial exploding transmission. The study is based on the fact
that the disease-free and endemic equilibrium points and their stability properties depend on the
concrete parameterization while they admit a certain design monitoring by the choice of the control
and treatment gains and the use of feedback information in the corresponding control interventions.
Therefore, special attention is paid to the evolution transients of the infection curve, rather than to the
equilibrium points, in terms of the time instants of its first relative maximum towards its previous
inflection time instant. Such relevant time instants are evaluated via the calculation of an “ad hoc”
Shannon’s entropy. Analytical and numerical examples are included in the study in order to evaluate
the study and its conclusions.

Keywords: Shannon entropy; epidemic model; transient behavior; vaccination and treatment
intervention controls

1. Introduction

Some classical works by Boltzmann, Gibbs and Maxwell have defined entropy under a statistical
framework. A useful entropy concept is the Shannon entropy since it is a basic tool to quantify the
amount of uncertainty in many kinds of physical or biological processes [1–6]. It may be interpreted
as a quantification of information loss [1–3,7–9]. On the other hand, entropy-based tools have been
also proposed to evaluate the propagation of epidemics and related public control interventions
(see, for instance, [10–17] and some of the references therein). There are also models whose basic
framework relies on the use of entropy tools, as for instance [13–16]. It can be also pointed out
that the control designs might be incorporated to some epidemic propagation and other biological
problems, see, for instance, [18–27], and, in particular, for the synthesis of decentralized control in
patchy (or network node-based) interlaced environments [24,27]. A typical situation is that of several
towns each with its own health center, whose susceptible and infectious populations, apart from their
coupled self-dynamics among their integrating subpopulations, might also mutually interact with the
subpopulations of the neighboring nodes through in-coming and out-coming fluxes.

Entropy 2020, 22, 534; doi:10.3390/e22050534 www.mdpi.com/journal/entropy147
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It can be pointed out that the knowledge or estimation of the transient behavior of the infection is
very relevant for the hospital management of the disease since it is necessary to manage the availability
of beds and other sanitary utensils and sanitary means, in general. The work by Wang et al. in [11] pays
mainly attention to the description of the transient behavior of the evolution of epidemics rather than
to the equilibrium states. The main purpose in that paper was to formulate the time interval occurring
between the time instant of the maximum of the infection, which gives a relative maximum of the
infection evolution through time (and which zeroes the first time-derivative of the infection function),
and the time instant giving its previous inflection time instant. It turns out that the knowledge of the
first part of the transient evolution is very relevant to fight against the initial exploding of the illness
since any eventual control intervention is typically much more efficient as far as it is taken as quickly as
possible. The model proposed in [11] is a time-varying differential equation of first-order describing the
infectious population which is the unique explicit one in the model. It is also pointed out in that paper
that the time-varying coefficient might potentially contain the supplementary environment information
to make such an equation well-posed to practically describe a concrete disease evolution. An interesting
point of that work is that the infection evolution is identified with a log-normal distribution whose
parameterization is selected in such a way that the entropy production rate is maximized. The above
proposed theoretical first-order model has been proved to be very efficient to describe the data of SARS
2003. Alternative interpretations of the entropy in terms of maximum entropy or maximum entropy
rate are given, for instance, in [12–14] and some references therein.

This paper studies how to link the extension of the first-order differential system proposed
in [11] for the study of infection propagations to epidemic models with more integrated coupled
subpopulations (such as susceptible, immune, vaccinated etc.) by introducing the coupling and control
information through the time-varying coefficient which drives the basic differential equation model. It
is considered relevant the control of the infection along its transient to fight more efficiently against a
potential initial exploding transmission. Note that the disease-free and endemic equilibrium points
and their stability properties depend on the concrete parameterization while they admit a certain
design monitoring by the choice of the control and treatment gains and the use of feedback information
in the corresponding controls. See, for instance [19,27]. Therefore, special attention is paid to the
transients of the infection curve evolution in terms of the time instants of its first relative maximum
towards its previous inflection time instant since there is a certain gap in the background literature
concerning the study of such transients. The ratio of such time instants is later on considered subject
to some worst-case uncertainty relations via the calculation and analysis of an “ad hoc” Shannon’s
entropy. Note that entropy issues have been considered in the study of biological, evolution and
epidemic models by incorporating techniques of information theory. See, for instance [11–13,28–32]. It
is well-known that the entropy production theorems might be classified according to a generalized
sequence of stable thermodynamic states. Also, the thermodynamic equilibrium, which is characterized
by the absence of gradients of state or kinematic variables, is in a state of maximum entropy and
zero entropy production [33,34]. Furthermore, linear non-equilibrium processes are associated with
entropy production so that the entropy concept may be also invoked in transient processes [35]. On the
other hand, it may be pointed out that uncertainties can appear in the characterization of the infection
evolution through time, even in deterministic models, due to parameterization uncertainties, fluxes
of populations or existing uncertainties in the initial conditions. Other mathematical techniques of
interest which combine analytical and numerical issues have been also been applied to the analysis
and discussion of epidemic models with eventual support of mathematical techniques on homotopy
analysis and distribution functions as, forinstance, the log-normal distribution [36,37]. For instance,
in [38], the SIR and SIS epidemic models are solved through the homotopy analysis method. A
one-parameter family of series solutions is obtained which gives a method to ensure convergent series
solutions for those kinds of models. On the other hand, in [39], the analytic solutions of an SIR epidemic
model are investigated in parametric form. It is also found that the generalization of a SIR model
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including births and mortality with vital dynamics might be reduced to an Abel-type which greatly
simplify the analysis.

The paper is organized as follows: Section 2 gives an extension of the basic model of [11] to
be then compared in subsequent sections with some existing models with several subpopulations.
Such a model only considers the infection evolution through time and it is based on the action of
two auxiliary non-negative functions which define appropriately the time-varying coefficient which
defines the first-order differential equation of the infection evolution. The model includes, as particular
case, that of the abovementioned reference where both such auxiliary functions are identical to the
time argument. Particular choices of those functions make it possible to consider alternative effects
linked to the basic model like, for instance, the influence on the infectious subpopulation of other
coupled subpopulations in more general models like, for instance, the susceptible, exposed, recovered
or vaccinated ones. It is also possible to include the control effects through such a varying coefficient, if
any, like for instance, the vaccination and treatment controls. Some basic formal results are stated and
proved mainly concerning with the first relative maxima and inflection time instants of the infection
curve through time. The above two time instants are relevant to take appropriate control interventions
to fight against an initially exploding infectious disease.

Section 3 links the basic model of Section 2 with some known epidemic models which integrate
more subpopulations than just the infectious one, like for instance, the susceptible and recovered
subpopulations, The time-varying coefficient driving the infection evolution is defined explicitly for
each of the discussed epidemic models. Basically, it is taken in mind that some relevant information of
higher-order differential epidemic models concerning the transient trajectory solution can be captured
by a parameter-dependent and time-varying coefficient which drives a first-order differential equation
to the light of the basic model of Section 2. So, the time-varying coefficient describing the infection
evolution depends in those cases of the remaining subpopulations integrated in the model. The
maximum and inflection time instants are characterized for some given examples involving epidemic
models of several subpopulations. In particular, the last one of the discussed theoretical examples
includes the effects of vaccination and treatment intervention controls generated by linear feedback
of the susceptible and infectious subpopulations, respectively. Later on, Section 4 investigates the
entropy associated with the infection accordingly to the generalizations of Section 2 concerning the
specific structure of the time-varying coefficient describing the infection dynamics and its links with
the theoretical examples discussed in Section 3. The error of the entropy related to the reference one
associated with the log-normal distribution is estimated. In practice, that property can be interpreted
in terms of public medical and social interventions which control the disease propagation when
introducing the controls of the last example discussed in Section 3. The second part of Section 4 is
devoted to linking the entropy and inflection and maximum infection time instants and their reached
values of the discussed multi-population structures to their counterparts of the maximum dissipation
rate being associated to the formulation of a simpler model based on the log-normal distribution and
one-dimensional infection dynamics. Some numerical tests are performed for comparisons of the
entropies and its width of the basic model with two of the discussed examples in the previous sections
which involve the presence of more than one integrated subpopulations. Finally, conclusions end
the paper.

Notation

R+ = { r ∈ R : r > 0}; R0+ = { r ∈ R : r ≥ 0} = R+ ∪ {0}
Z+ = { r ∈ Z : r > 0}; Z0+ = { r ∈ Z : r ≥ 0} = Z+ ∪ {0}

n = {0, 1, · · · , n}
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2. The Basic Model Description and Some Related Technical Results

Since disease propagation can be interpreted as a thermodynamic system, it can be assumed
that the rate of increase or decrease is proportional to the infection at the previous day following the
approach of modelling the rate of chemical reactions, [11]. Thus, assume that the infection evolution
obeys the following time-varying differential equation:

.
I(t) = α(t)I(t); I(0) = I0 > 0 (1)

where α : R0+ → R0+ is continuous and time differentiable on (0, +∞). The particular structure of the
varying coefficient α(t) depends on the balances between the spreading mechanism and the exerted
controls during the public intervention. Such a coefficient contains the available information related to
the incorporation of all the control mechanisms and the coupling dynamics between the infectious
populations and the remaining interacting ones such as the susceptible, immune or vaccinated ones.
By taking time-derivatives with respect to time in (1), one gets:

..
I(t) =

.
α(t)I(t) + α(t)

.
I(t)

=
( .
α(t)/α(t) + α(t)

) .
I(t)

=
( .
α(t) + α2(t)

)
I(t);

.
I(0) =

.
I0 = α(0)I0

(2)

It is proposed in [11] to consider two relevant time instants in the disease evolution, namely:

(1) The inflection time instant of I(t) which is the date in the infection evolution at which the
controlling actions take effect on the evolution. Typically, this time instant is the undulation point
date in the evolution of I(t), that is the zero of

..
I(t), provided that the first non-zero derivative of

I(n)(t) = dnI(t)
dtn , n ≥ 3 occurs for some even n since this last condition ensures that the undulation

time instant is the inflection time instant.
(2) The critical time instant at which the spread rate turns from initial growing to decrease which can

be empirically attributed to the global influence of the control interventions. This time instant is a
relative maximum of I(t) and it satisfies the constraints

.
I(t) = 0 and

..
I(t) < 0 under the reasonable

assumption that
.
I0 > 0.

It turns out that, along the whole disease evolution, several successive inflection points and
relative maxima can happen. The subsequent result which is concerned with the non-negativity,
boundedness and asymptotic vanishing property of the infection as time tends to infinity and its two
first- time derivatives is immediate from the above expressions (1) and (2):

Theorem 1. The following properties hold:

(i) The infection population and its two first-time derivatives obey the following time evolution equations:

I(t) = e
∫ t

0 α(τ)dτI0;
.
I(t) = α(t)e

∫ t
0 α(τ)dτI0;

..
I(t) =

( .
α(t) + α2(t)

)
e
∫ t

0 α(τ)dτI0;∀t ∈ R0+ (3)

(ii) I(t) > 0; ∀t ∈ R0+ if and only if I0 ≥ 0; and I(t) = 0; ∀t ∈ R0+ if and only if I0 = 0.
(iii) If +∞ > I0 ≥ 0 then I(t) ≤ KI0 < +∞; ∀t ∈ R0+ for some K ∈ R+ if and only if α : R0+ → R0+ is

such that
∫ t

0 α(τ)dτ ≤ K < +∞; ∀t ∈ R0+.

(iv) I(t)→ 0 as t→ +∞ for any given finite I0 if and only if lim
t→+∞

∫ t
0 α(τ)dτ = −∞.

(v) If +∞ > I0 ≥ 0 and
∫ t

0 α(τ)dτ ≤ K < +∞; ∀t ∈ R0+ for some K ∈ R0+ then
∣∣∣∣ .I(t)∣∣∣∣ < +∞; ∀t ∈ R0+

if and only if, for some K1 ∈ R+,
∣∣∣α(t)∣∣∣ ≤ K1 < +∞; ∀t ∈ R0+. If +∞ > I0 ≥ 0 then

∣∣∣∣ .I(t)∣∣∣∣ < +∞;

∀t ∈ R0+ if and only if
∣∣∣α(t)∣∣∣e∫ t

0 α(τ)dτ ≤ K2 < +∞; ∀t ∈ R0+, for some K2 ∈ R+ provided that
α(0) < +∞.
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(vi)
.
I(t)→ 0 as t→ +∞ for any given finite I0 if and only if lim

t→+∞

(
α(t)e

∫ t
0 α(τ)dτ

)
= 0. If α : R0+ → R0+

is bounded and I(t)→ 0 as t→ +∞ then
.
I(t)→ 0 as t→ +∞ .

(vii) If +∞ > I0 ≥ 0 then
∣∣∣∣..I(t)∣∣∣∣ < +∞; ∀t ∈ R+ if and only if

∣∣∣ .
α(t) + α2(t)

∣∣∣e∫ t
0 α(τ)dτ ≤ K3 < +∞;

∀t ∈ R0+, for some K3 ∈ R+.
..
I(t)→ 0 as t→ +∞ for any given finite I0 if and only if

lim
t→+∞

(( .
α(t) + α2(t)

)
e
∫ t

0 α(τ)dτ
)
= 0. If

(
α+

.
α
)

: R0+ → R0+ is bounded and I(t)→ 0 as t→ +∞
then

..
I(t)→ 0 as t→ +∞ .

Note that α(t) (respectively, α(t) +
.
α(t)) is infinity at t = 0 while it is bounded for t > 0, as it

happens for instance with the α—function proposed in [11], then
.
I(t) (respectively,

..
I(t)) is still bounded

under the conditions of Theorem 1 (v) (respectively, Theorem 1 (vii)) on R+.
Note also that the vanishing infection condition of Theorem 1 typically occurs under convergence

of the solution to the disease-free equilibrium point if the disease reproduction number is less than
one [19,22–24,27,29,30,36]. However, it can happen that the infection oscillates around some stable
equilibrium or that it converges to a nonzero positive constant defining the corresponding component
of the endemic equilibrium steady-state as it is discussed in the next result.

Corollary 1. The following properties hold:

(i) Assume that there exists some C ∈ R+ such that
∫ t

0 α(τ)dτ→ C as t→ +∞ and that α(t),
.
α(t)→ 0

as t→ +∞ . Then, I(t)→ eCI0 ,
.
I(t)→ 0 and

..
I(t)→ 0 as t→ +∞ .

(ii) Assume that
∫ t

0 α(τ)dτ→ C as t→ +∞ and that α : R0+ → R0+ is uniformly continuous. Then,

α(t) → 0 , I(t)→ eCI0 and
.
I(t)→ 0 as t→ +∞ . Assume, in addition, that

.
α : R0+ → R0+ is

uniformly continuous. Then
..
I(t)→ 0 as t→ +∞ .

Proof of Property (i). Follows directly from (1)–(3). On the other hand, since α : R0+ → R0+ is
uniformly continuous and the limit lim

t→+∞
∫ t

0 α(τ)dτ = C exists and it is finite then α(t)→ 0 as t→ +∞
(Barbalat´s Lemma) and I(t)→ eCI0 as t→ +∞ from (3),

.
I : R+ → R0+ is bounded, since being

continuous, it cannot diverge in finite time, and
.
I(t)→ 0 as t→ +∞ from (1). If, furthermore,

.
α : R0+ → R0+ is uniformly continuous and, since lim

t→+∞
∫ t

0
.
α(τ)dτ = lim

t→+∞α(t) − α(0) = −α(0) then
.
α(t)→ 0 as t→ +∞ (again from Barbalat´s Lemma). Since α(t),

.
α(t)→ 0 as t→ +∞ then

..
I(t)→ 0

as t→ +∞ from (2). �

Let us introduce the following definitions and lemma of usefulness for the proof of the subsequent
theorem [36]:

Definition 1. Let f : R→ R be everywhere continuous and twice differentiable at t0 ∈ R. Then, t0 is an
undulation point (or pre-inflection point) of f if

..
f (t0) = 0.

Inflection points of the continuous and twice-differentiable f : R→ R are the undulation points of the
function where the curvature changes its sign, that is, points of change of local convexity to local concavity or
vice-versa. They are also the isolated extrema of

.
f : R→ R . A well-known technical definition and a related

result on inflection points follow:

Definition 2. Let f : R→ R be everywhere continuous and twice differentiable at t0 ∈ R which is an isolated
extremum of f (that is, a local maximum or minimum, and also an undulation point of, f as a result).

Lemma 1. The following properties hold:
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(i) Let f : R→ R be everywhere continuous and twice differentiable at t0 ∈ R. Then, t0 is an inflection point

of f if
..
f (t + ε)

..
f (t− ε) < 0 for some sufficiently small ε ∈ R+.

(ii) Let f : R→ R be everywhere continuous and an odd number k(≥ 3) -times differentiable, within a
neighborhood of t0 ∈ R which is an undulation point of f satisfying f ( j)(t0) = 0 for j = 2, 3, . . . k − 1
and f (k)(t0) � 0. Then, t0 is an inflection point of f .

The subsequent result has a very technical proof leading to the basic result that the zeros at finite
time instants of

.
I(t) and

..
I(t) alternate if I(t) is sufficiently smooth and α(t) is sufficiently smooth. In

order to simplify the result proof, it is assumed, with no loss in generality, that the disease dynamics
(1)–(2) has no equilibrium points such that the zeros under study are isolated.

Theorem 2. Assume that the function α : R0+ → R0+ defined by α(t) = − cln(g(t)/E)
h(t) , where c , E ∈ R+ and

g, h : R0+ → R0+ are everywhere continuous and time-differentiable such that g(0) = 0 with lim
t→0

ln(g(t)/E)
h(t) ≤

−ε for some ε ∈ R0+, and furthermore, α : R0+ → R0+ fulfills the constraints:

α(Di) = 0;
.
α(Li) = −α2(Li) (4)

h(Li)
.
g(Li) − ln(g(Li)/E)

.
h(Li)g(Li)

g(Li)ln
2(g(Li)/E)

= K > 0; ∀Li ∈ LS ∩
[
0, L

]
(5)

for any given positive real number L, with Di ∈ DS and Li ∈ LS, where DS =
{
D ∈ R+ : α(D) = g(D) = E

} ⊂
R0+ and LS =

{
L ∈ R+ :

.
α(L) + α2(L) = 0

}
⊂ R0+ are assumed to be nonempty and of zero Lebesgue measure.

Then, the following properties hold:

(i) g(Li) = E⇔ h(Li)
.
g(Li) > 0 , equivalently, DS ∩ LS = ∅.

(ii) (a) cardLS = cardDS + ϑ with ϑ = {0, 1}, and (a) if card(DS) = card(LS) ≤ ℵ0 (with ℵ0 denoting the
infinite cardinality of denumerable sets) then Li < Di < Li+1; ∀i ∈ Z0+ for any pairs Di , Di+1 ∈ DS
and Li , Li+1 ∈ LS fulfilling (Di, Di+1) ∩DS = ∅ and (Li, Li+1) ∩ LS = ∅, (b) if 1 ≤ card(LS) =

card(DS) − 1 = � < ∞ then Li < Di < Li+1 for i ∈ � − 1. α : R0+ → R0+ is subject to the constraint
c = K,

.
I(Di) =

..
I(Li) = 0; ∀Li ∈ LS ∩ [0, L] and Di > Li.

(iii) α : R0+ → R0+ is subject to
.
I(Di) =

..
I(Li) = 0; ∀Di ∈ DS ∩ [0, L], ∀Li ∈ LS ∩ [0, L] and D1 > L1 for

any I0 > 0.

Proof. First, note that
.
I(D) =

..
I(L) = 0; ∀D ∈ DS, ∀L ∈ LS since α(D) = 0 even if I(D) � 0. On the

other hand, LS is the set of undulation points of I : R0+ → R0+ and it is clear that DS is contained in
the set of relative maximum and minimum points of I(t). The properties (i)–(iii) are now proved:

Proof of Property (i). It is now proved that DS is the set of extreme points of I(t) which is disjoint to
its set of undulation points LS. Assume, on the contrary, that there is some D � DS such that

.
I(D) = 0.

Then, I(D) = 0 since α(D) � 0, and then the disease-free equilibrium point is reached in finite time

contradicting the fact that α(t) = − cln(g(t)/E)
h(t) is only zero at finite time for a discrete set of time instants

satisfying g(t) = E so that
.
I(D) = 0 if and only if D ∈ DS. Then, I(D) =

.
I(D) =

..
I(D) = 0 is a

disease-free equilibrium point which is reached in finite time which contradicts the given hypothesis.
So, it is easy to see that LS and DS are discrete sets of non-negative real time instants which can be
strictly ordered. Note also from (1)–(2) that:

α(Di) = −cln(g(Di)/E)
h(Di)

= 0; ∀Di ∈ DS (6)

.
α(Li) = −α2(Li); ∀Li ∈ LS (7)
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If Di ≤ D < +∞ then g(Di) = E since c � 0. Also, α(t) = − cln(g(t)/E)
h(t) and, if Li ∈ LS and since

h(Li) > 0, one has:

α2(Li) = − .
α(Li) =

d
dt

[
cln(g(t)/E)

h(t)

]
t=Li

= c h(Li)
.
g(Li)/g(Li)−ln(g(Li)/E)

.
h(Li)

h2(Li)
= c2 ln2(g(Li)/E)

h2(Li)

(8)

c =
h(Li)

.
g(Li) − ln(g(Li)/E)

.
h(Li)g(Li)

g(Li)ln
2(g(Li)/E)

> 0 (9)

Now, if there is some Li ∈ LS ∩DS, equivalently, LS ∩DS � ∅, then g(Li) = E⇔ h(Li)
.
g(Li) � 0

from (9) since c � 0 and ln(g(Li)/E) = 0 and, furthermore, one gets from (8) that
.
α(Li) � 0 since

g(Li) = E. But one also has that
.
α(Li) = α(Li) = 0, since

.
α(Li) = −α2(Li); ∀Li ∈ LS from the first

identity of (8). Then, 0 �
.
α(Li) = 0 is a contradiction so that Li � LS ∩DS. Equivalently, DS ∩ LS = ∅.

Property (i) has been proved. �

Proof of Property (ii). Since
.
α(Li) = −α2(Li) then

..
α(Li) = −2α(Li)

.
α(Li) so that:

..
I(Li) =

( .
α(Li) + α

2(Li)
)
I(Li) = 0

...
I (Li) =

( ..
α(Li) + 2α(Li)

.
α(Li)

)
I(Li) +

( .
α(Li) + α

2(Li)
) .
I(Li)

=
( ..
α(Li) − 2α3(Li)

)
I(Li)

Since the zeros of α(t) and those of its first time- derivative do not coincide since DS ∩ LS = ∅

(from Property (i)), it turns out that the two sets of respective zeros alternate if there are not two zeros
of α(t) within any open time interval of two consecutive zeros of

.
α(t) or vice-versa. One proceeds by

contradiction arguments by assuming two cases which are both rebutted.
Case 1: Assume that there are two consecutive zeros of

.
I(t) between two consecutive zeros of

..
I(t),

then satisfying the constraint 0 ≤ Li < Di < Di+1 < Li+1 for some two consecutive time instants Di , Di+1

in DS and two consecutive time instants Li , Li+1 in LS so that α(Di) = α(Di+1) =
..
I(Li) =

..
I(Li+1) = 0.

Assume that I(t) = 0 for some t ∈ (Di, Di+1) then
.
I(t) = α(t)I(t) = 0 so that t ∈ DS and then Di , Di+1

are not consecutive time instants in DS and this case has to be excluded from further reasoning.
Now, assume that I(t) � 0 for all t ∈ (Di, Di+1) and

.
α(t) � 0, otherwise, if

.
α(t) = 0 then t ∈ Ds

and Di , Di+1 are not consecutive time instants in DS. Thus, α(t) = α(Di) +
∫ t

Di

.
α(τ)dτ =

∫ t
Di

.
α(τ)dτ

for all t ∈ (Di, Di+1). Since
.
α(t) � 0 for all t ∈ (Di, Di+1), it has no sign change in (Di, Di+1) so

that lim
t→D−i+1

α(t) � 0 and since α : R0+ → R0+ is continuous then α(Di+1) � 0 which contradicts that

Di+1 ∈ DS. It has been proved that Case 1 is impossible 0 ≤ Li < Di < Di+1 < Li+1 cannot happen.
Case 2: Assume now that there are two consecutive zeros of

..
I(t) between two consecutive

zeros of
.
I(t), that is 0 ≤ Di < Li < Li+1 < Di+1 for some consecutive time instants Di , Di+1 in DS

and some two consecutive time instants Li , Li+1 in LS. Then, α(t) � 0 for all t ∈ (Li, Li+1) since,
otherwise, there exists some t ∈ (Li, Li+1) such that t ∈ DS, and then the previously claimed constraint
0 ≤ Di < Li < Li+1 < Di+1 does not hold, and also

.
α(t) � −α2(t) < 0 for all t ∈ (Li, Li+1) since,

otherwise, there exists some t ∈ (Li, Li+1) such that t ∈ LS and then Li and Li+1 are not two consecutive
time instants in LS as claimed. Also, note that.

.
α(Li) + α

2(Li) =
.
α(Li) + α

2(Li) = 0 with α(Li) � 0 and α(Li+1) � 0 since Li , Li+1 � DS. But then,
by continuity arguments on

.
α(t) + α2(t), there is a change of sign point t ∈ (Li, Li+1) which zeroes this

function which contradicts
.
α(t) � −α2(t) < 0 for all t ∈ (Li, Li+1). Then, Case 2 is impossible so that

0 ≤ Di < Li < Li+1 < Di+1 cannot happen and Property (ii) has been proved. �

Proof of Property (iii). Assume that, contrarily to the statement, D1 ≤ L1. If L1 = D1 then
.
I(L1) =

..
I(L1)

and the equilibrium point is reached in finite time what is impossible, since I0 > 0, for a non-trivial
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solution of a continuous-time first-order differential equation with continuous-time parameterization.

Then, L1 = D1 is impossible. Now, assume that L1 > D1 and 0 =
.
I(L1) =

.
I(D1) +

∫ D1
L1

..
I(τ)dτ =∫ D1

L1

..
I(τ)dτ with

..
I(L1) = 0 and then it exists some L2 ∈ (L1, D1) such that

..
I(L2) = 0 and L2 ∈ LS. As

a result, there is D1 > L2 > L1 and then there are two consecutive undulation time instants what
contradicts Property (ii). As a result, D1 > L1 as claimed. �

Remark 1. In Theorem 2, note that the sets DS and LS have the following properties:
They are nonempty so that there is at least one D ∈ DS such that α(D) = 0 implying that

.
I(D) = 0 and at

least one L ∈ LS such that
.
α(L) = −α2(L) implying that

..
I(L) = 0. Otherwise, the infection could converge

asymptotically to zero as time goes to infinity but it would not have finite zeros,
They are sets of zero Lebesgue measure so that they are denumerable discrete sets of strictly ordered isolated

real points, for any real numbers,
They fulfill that cardLS = cardDS + ϑ with ϑ = {0, 1} so that they are of either identical finite or infinite

cardinal or the cardinal of LS is finite and exceeds that of DS by one,
If ϑ = 0 then card(DS) = card(LS) ≤ ℵ0, that is, if both sets have infinity cardinal or identical finite one

then any ordered points of LS and DS alternate.

On the other hand, note that:
Equation (4) establishes that DS is the set of zeros of α(t). At those zeros, the first-time derivative

of the infection function is zeroed from (1) without such a function being necessarily zero while on
the other hand, Equation (5) is a nonzero real constant for any finite undulation time instant Li ≤ L of
I : R0+ → R0+ zeroing the second derivative of the infection function according to (2) which holds if
c = K from (5). The fact that (5) is constant follows easily under periodicity conditions of the same or
integer multiple/submultiple periods of g(t) and h(t).

Since α : R0+ → R0+ has no finite zero coincident with a zero of its first time-derivative, by
hypothesis, then g(Li) = E⇔ h(Li)

.
g(Li) � 0 since c � 0 from inspection of (8)–(9). This is equivalent

to DS ∩ LS = ∅, that is, the finite zeros which make zero
.
I(t) and which do not make zero I(t) do not

make zero either
..
I(t). However,

..
I(t) = 0 if I(t) =

.
I(t) = 0 from (2), provided that α : R0+ → R0+ is

twice everywhere continuously differentiable in [0, +∞) but this can only happen as time tends to
infinity for certain structures of g(t) and h(t). Note that the constraint (5) also implies that the auxiliary
functions g, h : R0+ → R0+ used to define the function α : R0+ → R0+ in (1) fulfill the constraint
h(Li)

.
g(Li) � ln(g(Li)/E)

.
h(Li)g(Li); ∀Li ∈ LS.

By examining Definitions 1 and 3 and Lemma 1, it turns out that the set LS of undulation points
of I(t) includes but, maybe non-properly, the set of its inflection points. However, it suffices to
give some further weak conditions on α : R0+ → R0+ , that is, on g, h : R0+ → R0+ to guarantee that
every undulation point of I(t) is also an inflection point. Some such conditions are discussed in the
next corollary.

Corollary 2. The following properties hold:

(i) Assume that:
lim sup
ε→0+

[θ(Li + ε)θ(Li − ε)] < 0; ∀Li ∈ LS

where:
θ(t) = h(t)

.
g(t) − g(t)

.
h(t)ln(g(t)/E); ∀t ∈ R0+

Then, the set LS of undulation points of I(t) is the set of its inflection points.
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(ii) Assume that f , g : R0+ → R0+ are twice continuously differentiable at each undulation point Li ∈ LS.
Then, the sets of undulation points and that of the inflection points of I(t) coincide if

h3(Li)
(
g(Li)

..
g(Li) − .

g2
(Li)

)
h4(Li)g2(Li)

�
2

h3(Li)

(
ln3 g(Li)

E
+

.
h(Li)ln

g(Li)

E

)
; ∀Li ∈ LS

Proof. Note that
..
I(t) =

(
α2(t) +

.
α(t)

)
I(t), ∀t ∈ R0+ so that

..
I(Li ± ε) =

(
α2(Li ± ε) + .

α(Li ± ε)
)
I(Li ± ε).

Since Li > 0, g(t)h(t) > 0 if t > 0 and lim
ε→0

I(Li ± ε) = I(Li), since I(t) is continuous, one gets

that lim sup
ε→0+

[..
I(Li + ε)

..
I(Li − ε)

]
< 0 if and only if lim sup

ε→0+
[θ(Li + ε)θ(Li − ε)] < 0. Property (i) has

been proved.
On the other hand, if f , g : R0+ → R0+ are twice continuously differentiable at each undulation

point Li ∈ LS of I(t), then
..
f ,

..
g exist in LS. Then, defining α̂(t) = −c−1α(t) = ln(g(t)/E)

h(t) ; ∀t ∈ R0+ yields:

.
α̂(t) =

h(t)
.
g(t) − g(t)

.
h(t)ln(g(t)/E)

h2(t)g(t)
; ∀t ∈ LS

..
α̂(t) =

h3(t)
(
g(t)

..
g(t) − .

g2
(t)

)
/g2(t) +

.
h(t)

.
g(t)/g(t) − 2h(t)

.
h(t)ln(g(t)/E)

h4(t)
; ∀t ∈ LS

..
I(t) =

(
α2(t) +

.
α(t)

)
I(t)⇒ ...

I (t) = 0 with α2(t) = − .
α(t) and I(t) > 0; ∀t ∈ LS

...
I (t) =

(
α2(t) +

.
α(t)

) .
I(t) +

(
2α(t)

.
α(t) +

..
α(t)

)
I(t)⇒ ...

I (t) =
(
2α(t)

.
α(t) +

..
α(t)

)
I(t) =

( ..
α(t) − 2α3(t)

)
I(t) ; ∀t ∈ LS

Since I(t) > 0; ∀t ∈ R0+ then
...
I (t) � 0; ∀t ∈ LS if and only if

..
α(t) � 2α3(t); ∀t ∈ LS, equivalently, if

and only if
..
α̂(t) � 2α̂3(t); ∀t ∈ LS which is fully equivalent to the condition of Property (ii). The proof

is complete. �

Remark 2. Note that Theorem 2 applies, in particular, to the case when there are equilibrium points with
the initial conditions being distinct from such points. It can be also extended by including the above case by
redefining finite discrete sets of the zeros of

.
I(t) and

..
I(t) DS → DS ∩ [0, L]¸ LS → LS ∩ [0, L] for any given

L ∈ [0, ∞) in the sense that the eventual zeros at finite time of
.
I(t) and

..
I(t) alternate although an equilibrium

points has not still been reached provided that it exists.

Inspired in Theorem 2, some conditions are discussed in the next result which imply that the first
undulation point of the infection evolution function (i.e., the first zero of its second-time derivative)
precedes the first zero of its first time-derivative. It is not required that the infection has necessarily a
disease-free equilibrium point or that it might be oscillatory leading to successive zeros of its time-
derivative along time.

Theorem 3. Assume that the function α(t) = − cln(g(t)/E)
h(t) , where c , E ∈ R+ and g, h : R0+ → R0+ are

everywhere continuous and time-differentiable and satisfy the constraints:

(1) g(t) < E; ∀t ∈ [0, D), g(D) = E

(2)
.
g(0) <

(
cln2(g(0)/E)

h(0) − |ln(g(0)/E)|
h(0)

.
h(0)

)
g(0)

(3) g(t) > 0 and h(t) > 0 if t > 0

(4) ln(g(0)/E)
h(0) � 0
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Assume also that I0 > 0. Then, min
(
I(t),

.
I(t)

)
> 0; ∀t ∈ [0, D);

.
I(D) = 0 and there is some L ∈ (0, D)

such that
..
I(t) � 0; ∀t ∈ [0, L) and

..
I(L) = 0.

Proof. Note from the definition of α(t), (1), (2) and the given constraints 1 and 2 that

.
α(0) = − c

h(0)

⎛⎜⎜⎜⎜⎜⎝ 1

h(0)
.
h(0)

∣∣∣∣∣∣ln g(0)
E

∣∣∣∣∣∣+
.
g(0)
g(0)

⎞⎟⎟⎟⎟⎟⎠
α(0) > 0, since 0 ≤ g(0) < E, α(D) = 0, since g(D) = E), α2(0) +

.
α(0) > 0, from the condition 2

since α(0) > 0 and since α : R0+ → R0+ is continuous and time-differentiable since g, h : R0+ → R0+

are everywhere continuous and time-differentiable. Note also that, from the given assumptions and
constraints, min

(
I0,

.
I0,

..
I0

)
> 0 since I0 > 0 by hypothesis,

.
I0 = α(0) I0 > 0 and

..
I0 =

(
α2(0) +

.
α(0)

)
I0 > 0.

Furthermore,
.
I(D) = α(D)I(D) = 0. From the constraint 3 and the continuity of g, h : R0+ → R0+ ,

one has that α,
.
α,

..
α : R0+ → R0+ are continuous and bounded on (0,+∞),

.
I(t) > 0; ∀t ∈ [0, D) and

..
I(t) > 0; ∀t ∈ [0, L0) and some L0 ∈ R+. Furthermore since c > 0 and ln(g(0)/E)

h(0) � 0, from the
constraint 4, g(t) < E; ∀t ∈ [0, D), from the constraint 1, and g(t) > 0 and h(t) > 0 if t > 0, from
the constraint 3. Then α(t) > 0; ∀t ∈ [0, D). Since g, h : R0+ → R0+ are continuous and positive
on any bounded interval [0, T) then α(t) is positive and finite on [0, D). It is now proved that
t = D is the first zero of

.
I(t). Assume that this is not the case so that there is some D1 < D such

that
.
I(D1) = 0, with α(D1) � 0, and

.
I(t) > 0; ∀t ∈ [0, D1). Then I(D1) =

.
I(D1) =

.
I(D1) = 0

from (2) and the infection extinguishes in a finite time D1 < D. This leads to a contradiction since

I(D1) = I0 +
∫ D1

0

.
I(τ)dτ > 0 since I0 > 0 and

.
I(t) > 0; ∀t ∈ [0, D1). Therefore, if D1 < D such that

.
I(D1) = 0 then I(D1) > 0. But then α(D1) =

.
I(D1)/I(D1) = 0 from (1) which contradicts that α(t) � 0;

∀t ∈ [0, D). As a result, t = D is the first zero of
.
I(t) and there is no D1 < D such that I(D1) = 0. Since

I,
.
I : R0+ ∩ [0, D]→ R0+ are continuous with

.
I(t) > 0; ∀t ∈ [0, D) and

.
I(D) = 0 and

..
I(t); ∀t ∈ [0, L0)

and some L0 ∈ R+ then there is some L ∈ (0, D) such that
..
I(L) = 0. Assume that this is not the case.

Then, 0 =
.
I(D) =

.
I0 +

∫ D
0

..
I(τ)dτ > 0. Hence, a contradiction arises. Thus, there is some L ∈ (0, D)

such that
..
I(L) = 0. �

Remark 3. Note that, under all the conditions of Theorem 3, α(t) > 0; ∀t ∈ [0, D) and α(D) = 0. Furthermore,
the first zero of

.
I(t) = 0 occurs at t = D, there is no t < D such that I(t) =

.
I(t) = 0 and there is some L < D

such that
..
I(L) = 0.

The following example describes the basic model proposed in [11] under a first-order differential
equation for the infection evolution without any entropy considerations at this stage:

Example 1. The function α(t) = −c ln(t/D)/t, for some D > 0, proposed in [11] satisfies all the conditions of
Theorem 3 with h(t) = g(t) = t and E = D. It satisfies, in addition, that α(0) = +∞. This function satisfies
also the given further conditions of Theorem 2 g(0) = h(0) = 0 with lim

t→0

ln(g(t)/E)
h(t) ≤ −ε.

Note that the condition α(0) > 0 of Theorem 3 avoids that
.
I0 = 0 if I0 � 0 so that t = 0 is a zero of

.
I(t).

It can be argued that the proposed basic model (1) is a very simple time-varying differential
equation of first-order which describes the infective population time-evolution. Note that the use
of appropriate particular structures in the definition of the time-varying coefficient α(t) can take
care of the eventual incorporation of the necessary supplementary environment information to make
such an equation well-posed to practically describe a concrete disease evolution through time. The
incorporation which can be incorporated is the eventual couplings of the infectious subpopulation with
another ones (such as the susceptible, recovered or vaccinated subpopulations and their associated
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dynamics) or the information about the feedback information controls in more elaborated models. The
next section develops some work in this direction.

3. Further Examples of Linking the Basic Model to Some Existing Epidemic Models Incorporating
Other Subpopulations

The infection description via (1) assumes implicitly that it has a first-order dynamics. It has been
argued that α(t) in (1) contains the information about the controls and other coupled subpopulations
influencing the disease evolution through time. It can be of interest to discuss its application to infection
descriptions described by differential equations of orders higher than one which is a very common
situation in disease transmission mathematical models.

It is now seen how a well-known epidemic model can be also discussed under the point of view of
Theorem 3. In the subsequent example, the above characterization, based on the first zero of infection
evolution time-derivative and on the undulation point of the infection evolution, is used for a model
with three subpopulations via an appropriate choice of g(t) and h(t) in the definition of α(t).

Example 2. Consider the following SIR model without demography [30]:

.
S(t) = −βS(t)I(t); .

I(t) = (βS(t) − γ)I(t); .
R(t) = γI(t); ∀t ∈ R0+ (10)

where S(t), I(t) and R(t) are, respectively, the susceptible, infectious and recovered (or immune) subpopulations,
under nonzero initial conditions being subject to min(S(0), I(0), R(0)) ≥ 0, where β is the coefficient
transmission rate and γ is the removal or recovery rate (its inverse γ−1 being the average infectious period).
The mathematical study of this model and their variants is not easy as seen in [30,40]. First, note that the
total population N(t) = S(t) + R(t) + I(t) = S0 + R0 + I0; ∀t ∈ R0+ is constant for all time. The basic
reproductive ratio (or reproduction number) is R∗ = β/γ and, if S0 ≤ R−1

∗ , then
.
I0 ≤ 0 while if S0 > R−1

∗ , it
becomes endemic for all time since

.
I0 > 0. The solution of (10) becomes in closed form:

S(t) = e−β
∫ t

0 I(τ)dτS0; I(t) = e
∫ t

0 (βS(τ)−γ)dτI0; R(t) = S0 + R0 + I0 − S(t) − I(t); ∀t ∈ R0+ (11)

Note that by combining the above equations that:

S(t) = e−βI0
∫ t

0 e
∫ τ
0 (βS(σ)−γ)dσdτS0; I(t) = e

∫ t
0 (βe−β

∫ τ
0 I(σ)dσS0−γ)dτI0 (12)

Note from (11) that S : R0+ → R0+ is non-increasing so that there exists a susceptible equilibrium
subpopulation Se = lim

t→∞S(t) ≤ S0 for any given non-negative initial conditions. Note also from

(10) that
.

N(t) = 0 and then N(t) = N0; ∀t ∈ R0+ Note that If I0 = 0 then I(t) = 0, S(t) = S0 and
R(t) = R0 = N0 − S0; ∀t ∈ R0+. We examine three cases for I0 > 0:

Case (a) if S0 < R−1
∗ then S(t) ≤ S0 and βS(t) − γ < 0; ∀t ∈ R0+, then I(t)→ 0, S(t)→ Se and

R(t)→ Re = N0 − Se as t→∞ . Since S : R0+ → R0+ is non-increasing, Se ≤ S0 < R−1
∗ . This implies

that lim
t→∞

∫ t
0 (βS(τ) − γ)dτ = −∞ and

.
I(t) = −λ(t)I(t) ≤ −λaI(t), I(t)→ 0 at exponential rate as t→∞

for some λa > 0 from (10) and (11) since I0 − I(t) ≥ λa
∫ t

0 I(τ)dτ so that
∫ ∞

0 I(τ)dτ ≤ I0/λa < +∞.

Then, I : R0+ → R0+ is integrable on [0,∞). Thus, C = β
∫ ∞

0 I(t)dt < +∞ so that Se = e−β
∫ ∞

0 I(t)dtS0 =

e−CS0 > 0 (then there is a nonzero susceptible equilibrium level) and Re = N0 − Se < N0.
Case (b) if S0 = R−1

∗ then S(t)→ Se ≤ S0 = γ/β as t→∞ since S : R0+ → R0+ is non-increasing
and then it converges to Se satisfying 0 ≤ Se ≤ S0. By inspection of the second equation of (11), it also
follows that I(t)→ Ie and R(t)→ Re as t→∞ satisfying Ie ≥ 0 and Re ≥ 0. Assume that Ie > 0 then
Se = 0 from the first equation of (11). But if Se = 0 then Ie = 0 since then I : R0+ → R0+ is strictly
decreasing on [ta, ∞) for some finite ta > 0 from the second equation of (11). Hence, a contradiction to
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Ie > 0 follows implying that Ie = 0 if Se = 0. Now, assume that γ/β > Se > 0. Then, from the second
equation of (11), I(t)→ Ie = 0 as t→∞ . But then Se > 0, from the first equation of (12), since γ/β > Se

if I0 > 0 and then Re = N0 − Se. From the second equation of (12) and, under a similar reasoning as
that of Case a, I : R0+ → R0+ is integrable on [0,∞) and Se > 0. In summary, if S0 = R−1

∗ = γ/β and
I0 > 0 then I(t)→ 0, S(t)→ 0 and R(t)→ N0 = S0 + R0 + I0 as t→∞ in the same way as in Case a
if S0 ≤ R−1

∗ .

Case (c) if S0 > R−1
∗ then

.
I0 > 0 from (10) and S : R0+ → R0+ is increasing on some interval [0, t0].

The fact that I : R0+ → R0+ is strictly increasing on some initial time interval is of interest from the point
of view of hospital management of availability of beds and other sanitary specific means in the event
that the disease might have a relevant number of seriously infected individuals. Since S : R0+ → R0+

is non-increasing then either I(t)→ Ie = S0 + I0 + R0 = N0 , S(t)→ Se = 0 and R(t)→ Re = 0 as
t→∞ or S(t)→ Se ∈

(
0, R−1

∗
]

as t→∞ from (11) since S : R0+ → R0+ is non-increasing. The firs
possibility I(t)→ Ie = N0 is unfeasible since from the first equation of (11) I(t)→∞ as t→∞ .
Then, S(t)→ Se ∈

(
0, R−1

∗
]

as t→∞ . Now, first, assume that Se ∈
(
γ/β, R−1

∗
]
. Then, from the first

equation of (12), S(t)→ 0 as t→∞ . Then, Se = 0 which contradicts that Se > γ/β , As a result,
0 ≤ Se ≤ γ/β . Now, assume that Se = 0. Then, from (11), I(t)→ Ie = 0 and I : R0+ → R0+ being
square-integrable, and following a similar argument as that of Cases a–b, one again concludes that
Se > 0 so that Se ∈ (0, γ/β ] and Re = N0 − Se, as a result. But, since Se ≤ γ/β then Ie = 0 from (11)
since I : R0+ → R0+ is strictly decreasing after some finite time instant t0 and integrable on [0,∞)

and a following again the reasoning of Cases a–b, one concludes that Se > 0. As a result, if S0 > R−1
∗

and I0 > 0, then Ie = 0, Se > 0 and Re = N0 − Se. Thus, the relevant conclusions on the disease- free
equilibrium point which is a disease- free one are similar for the three above cases.

On the other hand, since S : R0+ → R0+ it exists a finite t = D > 0 such that S(D) = R−1
∗ = γ/β

and
.
I(D) = α(D)I(D) = (βS(D) − γ)I(D) = 0, I(D) = e

∫ D
0 (βS(τ)−γ)dτI0 � 0, if I0 � 0 and, furthermore,

..
I(D) =

(
β

.
S(D) − γ

)
I(D) + (βS(D) − γ) .

I(D)

=
(
β

.
S(D) − γ

)
I(D) = −β2S(D)I2(D) − γI(D)

= −γ
(
β e

∫ D
0 (βS(τ)−γ)dτI0 + 1

)
e
∫ D

0 (βS(τ)−γ)dτI0 < 0

(13)

and also:
..
I0 = −β2S0I2

0 + (βS0 − γ)
.
I0 = I0

[
(βS0 − γ)2 − β2S0I0

]
(14)

and
..
I0 > 0 under the reasonable assumption that I0 is sufficiently small (the initial numbers of infectious

is usually very small in practice) satisfying I0 <
(βS0−γ)2

β2S0
. As a result, there is some time instant

L ∈ (0, D) such that
..
I(L) = 0 so that it is an undulation point of I : R0+ → R0+ . As a result, we find

that if the basic reproduction number exceeds unity then the infection curve corresponding to the
endemic solution has a minimum at a larger time instant that the one defining its undulation point.
That situation corresponds to the situation of small initial infection force with reproduction number
greater than one. On the other hand, if

..
I0 ≤ 0, then

.
I0 > 0 does not hold.

Comparing the infectious subpopulation evolution to (1) and the structure of the function in
Theorem 3 yields:

α(t) = βS(t) − γ = −cln(g(t)/E)
h(t)

(15)

.
α(t) = β

.
S(t) = −c

d
dt

(
ln(g(t)/E)

h(t)

)
(16)

= −β2S(t)I(t) = − c
h(t)

⎛⎜⎜⎜⎜⎜⎝ 1

h(t)
.
h(t)

∣∣∣∣∣∣ln g(t)
E

∣∣∣∣∣∣+
.
g(t)
g(t)

⎞⎟⎟⎟⎟⎟⎠; (17)
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∀t ∈ R0+. If one defines g(t) = t; ∀t ∈ R0+ and h(t) = cln(t/E)
γ−βS(t) ; ∀t ∈ R0+, then h(t) = c|ln(t/E)|

βS(t)−γ ; ∀t ∈ R0+.
It is easy to verify that these functions satisfy the conditions of Theorem 3.

In the case when the reproduction number is less than unity and it is an upper-bound of the
normalized susceptible population, each primary infection generates, in average, less than one
secondary one so that the infection extinguishes asymptotically. According to this particular model,
also the susceptible subpopulation extinguishes asymptotically. See Case a referred to (11). Thus,

the disease-free equilibrium point is
(
S∗d f , I∗d f , R∗d f

)T
= (0 , 0 , N)T. In this case, I(t),

.
I(t),

..
I(t)→ 0 as

t→∞ but there are no finite time instants of minimum and undulation of the infectious curve to the
light of Theorem 3.

However, we can have a practical visualization of the disease removal by defining a design
quadruple (k1, k2, k3, ε) ∈ R4

+ and the following cut associate time instants:

tIi(ki, ε) = min
(
τ ∈ R0+ :

∣∣∣∣∣∣dI(i−1)

dt

∣∣∣∣∣∣ ≤ kiε : t ∈ [τ , +∞)

)
; i = 1, 2, 3 (18)

Note that tI2(k2, ε) and tI3(k3, ε) generalize the roles of the time instants D and L, that is, the finite
minimum infection and undulation time instants, respectively, within prescribed margins when those
time instants do not exist.

Example 3. Consider Case a of Example 2 so that S(t) ≤ S0 < γ/β leading to I(t)→ 0, S(t)→ Se > 0 and
R(t)→ Re = N0 − Se as t→∞ and I(t) > 0,

.
I(t) < 0 and

..
I(t) < 0 are strictly decreasing on [0, +∞). Take

prescribed constants ε ∈ (0, 1) ki ≥ 1 for i = 1, 2, 3. The solution trajectory converges to the disease-free
equilibrium point at exponential rate. Then, one gets by combining (10)–(12) and (18) that:∣∣∣∣∣∣

∫ tI1

0
(γ− βS(τ))dτ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ tI1

0

(
γ− βe−β

∫ σ
0 I(σ)dσS0

)
dτ

∣∣∣∣∣∣ ≤ lnI0 − lnk1 + |lnε|; ∀t ∈ R0+ (19)

(
γ− βe−β

∫ tI2
0 I(τ)dτS0

)
e−

∫ tI2
0 (γ−βe−β

∫ τ
0 I(σ)dσS0)dτI0 ≤ k2ε; ∀t ∈ R0+ (20)[

β2 S(t)I(t) − (βS(t) − γ)2
]
I(t) ≤ k3ε, ∀t ∈ R0+ (21)

implying that:

tI1 = min
(
t ∈ R0+ : γt− βS0

∫ t

0
e−β

∫ σ
0 I(σ)dσdτ = lnI0 − lnk1 + |lnε|

)
≥ 1
γ
(lnI0 − lnk1 + |lnε|) (22)

2min(k2εI0, βS0)e−β
∫ tI2

0 I(τ)dτ

≤ η(tI2) = k2εe
∫ tI2

0 (γ−βS(τ))dτI0 + βe−β
∫ tI2

0 I(τ)dτS0

≤ (k2εI0 + βS0)e
∫ tI2

0 (γ−βS(τ))dτI0

(23)

which leads to:

e
∫ tI2

0 (γ−βS(τ)+βI(τ))dτ ≥ 2min(k2εI0, βS0)

(k2εI0+βS0)I0

⇒ tI2 ≥ max
(
t > 0 :

∫ t
0 (γ− βS(τ) + βI(τ))dτ

)
= ln

[
2min(k2εI0, βS0)

(k2εI0+βS0)I0

] (24)

e
∫ tI2

0 (βS(τ)−βI(τ)−γ)dτ ≤ (k2εI0+βS0)I0
2min(k2εI0, βS0)

⇒ tI2 ≤ min
(
t > 0 :

∫ t
0 (βS(τ) − βI(τ) − γ)dτ

)
= ln

[
(k2εI0+βS0)I0

2min(k2εI0, βS0)

] (25)

and:
− k3ε ≤

..
I(t) = (βS(t) − γ) .

I(t) + β
.
S(t)I(t) =

[
(γ− βS(t))2 − β2S(t)I(t)

]
I(t) ≤ k3ε
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what implies that
∣∣∣∣..I(t)∣∣∣∣ ≤ k3ε; ∀t ∈ [tI3, ∞) such that:

tI3 ≥ max
(
t > 0 :

[
(γ− βS(t))2 − β2S(t)I(t)

]
I(t)

)
≥ −k3ε,

tI3 ≤ min
(
t > 0 :

[
(γ− βS(t))2 − β2S(t)I(t)

]
I(t)

)
≤ k3ε

Example 4. Consider the following SIS model with vaccination and antiviral or antibiotic controls:

.
S(t) = γI(t) − βS(t)I(t) − kVS(t);

.
I(t) = (βS(t) − γ− kT)I(t); ∀t ∈ R0+ (26)

subject to S(0) = S0, I(0) = I0 with min(S0, I0 ) ≥ 0 where the vaccination and treatment feedback controls
on the susceptible and infectious are, respectively, V(t) = kVS(t) and T(t) = kTI(t) with min(kV, kT) ≥ 0.
If it is assumed that the total population N(t) = N0 = S0 + I0; ∀t ∈ R0+ is constant through time then
there is a complementary recovered (or immune) subpopulation present which obeys the differential equation
.
R(t) = kVS(t) + kTI(t) with R(0) = R0 = 0. The solution is:

S(t) = e−
∫ t

0 (βI(τ)+kV)dτS0 + γ
∫ t

0 e−
∫ t
τ
(βI(σ)+kV)dσI(τ)dτ

= e−kVtS0 −
∫ t

0 e−kV(t−τ)(βS(τ) − γ)I(τ)dτ (27)

I(t) = eβ
∫ t

0 S(τ)dτe−(γ+ kT)tI0 (28)

R(t) =
∫ t

0
(kVS(τ) + kTI(τ))dτ (29)

The following result links the above SIS model with a complementary recovered subpopulation to
the generic one (1) under a minimum number of initial susceptible and sufficiently large number of
initial infectious with initial growing rate.

Theorem 4. Assume that S0 >
γ+kT
β , I0 < 1 + 1

γ (kT + kVS0) and
.
I0 >

β
∣∣∣∣ .
S0

∣∣∣∣I0

βS0−γ−kT
.

Then, the following properties hold:

(i)
.
S0 < 0 and

..
I0 > 0,

(ii) S(t) is strictly decreasing on [0, tSmin] with tSmin = min(t ∈ R0+ : S(t) = γ/β),
(iii) I(t) is strictly increasing on [0, tImax], and Imax = I(tmax) =

max(I(t) : t ∈ [0 , tImax], tImax = min(t ∈ R0+ : S(t) = (γ+ kT)/β)) with tImax ≥ tSmin,
(iv) There is tund < tImax which is an undulation and, furthermore, strict inflection time instant of I(t),

(v) Assume, in addition, that I0 is large enough to satisfy I0 >
(γ+kT)kV

(γ−β(γ+kT))
e−β

∫ tImax
0 S(τ)dτe(γ+ kT)tImax .

Then, the epidemic model (26) can be written in the form (1) on [0, tImax] with the following function
α : [0, tImax]→ R0+ :

α(t) = β
(
e−

∫ t
0 (βI(τ)+kV)dτS0 + γ

∫ t

0
e−

∫ t
τ
(βI(σ)+kV)dσI(τ)dτ

)
− γ− kT; t ∈ [0, tImax] (30)

which is of the form α(t) = − cln(g(t)/E)
h(t) with g : [0, tImax]→ [0, E] ; ∀t ∈ [0, tImax] and any given

E ∈ R+ and h(t) = c|ln(g(t)/E)|
β

(
e−

∫ t
0 (βI(τ)+kV )dτS0+γ

∫ t
0 e−

∫ t
τ (βI(σ)+kV )dσI(τ)dτ

)
−γ−kT

; ∀t ∈ [0, tImax].

(vi) The equilibrium points are S∗1 = I∗1 = 0, R∗1 = N0 if kV � 0 and kT ≥ 0, and S∗2 =
γ+kT
β , I∗2 = 0 and

R∗2 = N0 − γ+kT
β which is only reachable if kV = 0 since, otherwise, I∗2 = − kV

kT

γ+kT
β < 0.
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Proof. Since S0 >
γ+kT
β and I0 < 1 + 1

γ (kT + kVS0) then
.
I0 > 0 and

.
S0 < 0. Also,

..
I0 = β

.
S0I0 +

(βS0 − γ− kT)
.
I0 = (βS0 − γ− kT)

.
I0 − β

∣∣∣∣ .
S0

∣∣∣∣I0 > 0 if
.
I0 >

β
∣∣∣∣ .
S0

∣∣∣∣I0

βS0−γ−kT
. Property (i) has been proved.

Furthermore, S0 >
γ+kT
β ≥ γ

β implies from (27) that S(t) is strictly decreasing on [0, t′] where
t′ = min(t ∈ R0+ : S(t) = γ/β) what proves Property (ii) with tSmin = t′. On the other hand and since
S : R0+ → R0+ is continuous, there exists some t′′ ∈ [0, t′] such that S(t′′) = γ+kT

β with t′′ = t′ if and

only if kT = 0. From (26),
.
I(t′′ ) = 0 and

.
I(t) > 0 for t ∈ [0, t′′) since

.
I0 > 0. On the other hand, one has

from (26) and (28) that:
..
I(t′′) = (βS(t′′) − γ− kT)

.
I(t′′) + β

.
S(t′′)I(t′′)

= β[β(γ− βS(t′′))I(t′′) − kVS(t′′)]I(t′′)

= −
[
β2kTI(t′′) + kV(γ+ kT)

]
I(t′′)

= −
[
β2kTeβ

∫ t
0 S(τ)dτe−(γ+ kT)tI0 + kV(γ+ kT)

]
eβ

∫ t′′
0 S(τ)dτe−(γ+ kT)t′′ I0 < 0

and I(t) has a relative maximum Imax at t = t′′ = tImax which is also the absolute maximum on [0, tmax].
Property (iii) has been proved. Note also that since

..
I(t) is continuous and

..
I0 > 0, there exists some

tund < t′′ such that tund is an undulation point of I(t). Note furthermore that

..
I(tund) = (βS(tund) − γ− kT)

.
I(tund) + β

.
S(tund)I(tund) = 0

From Lemma 1(i),
..
I(tund − ε)

..
I(tund + ε) < 0; ∀ε ∈ B(0, r) and some r ∈ R+ implies that tund is also

an inflection time instant of I(t). The equivalent logic contrapositive proposition establishes that:[
∀r ∈ R+, ∃ ε ∈ [0, r] :

..
I(tund − ε)

..
I(tund + ε) ≥ 0

]
⇒ [tund is not an inflection time instant of I(t)]

Then, if
..
I(tund − ε)

..
I(tund + ε) < 0; ∀ε ∈ B(0, r) and some r ∈ R+ then tund is in fact an inflection time

instant of I(t). Assume that there is some arbitrarily small ε ∈ R+ such that
..
I(tund − ε)

..
I(tund + ε) ≥ 0

Then:
.
I(tund + ε) =

..
I(tund) +

∫ ε
0

..
I(tund + τ)dτ;

.
I(tund − ε) =

..
I(tund) +

∫ −ε
0

..
I(tund + τ)dτ.

Since
..
I(t) is continuous on [tund − ε, tund + ε] and one gets that

.
I(tund + ε) −

.
I(tund − ε) =

∫ ε

0

..
I(tund + τ)dτ−

∫ −ε

0

..
I(tund + τ)dτ

It is known that 0 < εI ≤
.
I(tund) <

.
I0 so that, for some arbitrarily small ε ∈ R+ such that

..
I(tund − ε)

..
I(tund + ε) ≥ 0, there are ε1 ∈ [0, ε] and ε2 ∈ R+ with −ε2 ∈ [−ε, 0] such that the following

joint constraints hold:

(1)
.
I(tund + τ) > 0; ∀τ ∈ [−ε2, ε1] ⊂ [−ε, ε] with

.
I(t) being strictly increasing on [−ε2, ε1].

(2)
∫ ε1

0

..
I(tund + τ)dτ =

∫ −ε2
0

..
I(tund + τ)dτ

Then, one gets from Condition 2 that:

.
I(tund + ε1) −

.
I(tund − ε2) =

∫ ε1

0

..
I(tund + τ)dτ−

∫ −ε2

0

..
I(tund + τ)dτ = 0

so that
.
I(t) is not strictly increasing on [−ε2, ε1], hence a contradiction. As a result, the undulation time

instant tund of I(t) is also a strict inflection time instant of I(t) since
.
I(tund) � 0 since Lemma 1 (ii) holds

and the first zero of
.
I(t) occurs at tImax > tund. Property (iv) has been proved. To prove Property (v),
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note that Equation (30) follows from (26)–(27). Now, we equalize (30) to (1) to get admissible functions
g, h : R0+ → R0+ leading to:

α(t) = β
(
e−

∫ t
0 (βI(τ)+kV)dτS0 + γ

∫ t

0
e−

∫ t
τ
(βI(σ)+kV)dσI(τ)dτ

)
− γ− kT = −cln(g(t)/E)

h(t)
(31)

and note that α(0) = βS0 −γ− kT > 0. Note also that α(0) = +∞
h(0) from the use of (31) in (30) implies that

h(0) = 0 irrespective of g(t) while g(t) is chosen arbitrary and continuous time-differentiable subject
to g(0) = 0 and α(tImax) = 0, g(tImax) = E (so that ln(g(tImax)/E) = 0) with h(t) = c/E

βγI(t)−β(βI(t)+kV)S(t)
for t ∈ [0, tImax].

Now, note that h(tImax) is a primary (0/0)—type indetermination which is resolved through L´H
ô pital rule leading to:

h(tImax) =
c/g(tImax)

β
.
S(tImax)

= c/E
βγI(tImax)−β(βI(tImax)+kV)S(tImax)

=
c/(βE)

γI(tImax)−(βI(tImax)+kV)(γ+kT)

Since I(tImax) = eβ
∫ tImax

0 S(τ)dτe−(γ+ kT)tI0 then for sufficiently large I0 such that

I0 >
(γ+ kT)kV

(γ− β(γ+ kT))
e−β

∫ tImax
0 S(τ)dτe(γ+ kT)tImax

then:

h(t) =
c
∣∣∣ln(g(t)/E)

∣∣∣
β
(
e−

∫ t
0 (βI(τ)+kV)dτS0 + γ

∫ t
0 e−

∫ t
τ
(βI(σ)+kV)dσI(τ)dτ

)
− γ− kT

=
cln(g(t)/E)

γ+ kT − β
(
e−kVtS0 −

∫ t
0 e−kV(t−τ)(βS(τ) − γ)I(τ)dτ

)
fulfilling, in particular:

h(tImax) =
c/(βE)

(γ− β(γ+ kT))ItImax − (γ+ kT)kV

=
c/(βE)

(γ− β(γ+ kT))eβ
∫ tImax

0 S(τ)dτe−(γ+ kT)tImax I0 − (γ+ kT)kV

> 0

Property (v) has been proved. Property (vi) is obvious by zeroing (26). �

Example 4 is tested numerically in the sequel with the following data β = 30, γ = 50 years−1,
implying that the average infectious period is Tγ = 365/50 = 7.3 days, kV = 1 and kT = 50. The time
scale of the figures is in a scale of years accordingly with the above numerical values. In Figure 1, the
solution trajectories of all the subpopulation are shown with the constraints of Theorem 4 being fulfilled
by the initial conditions, in particular S0 >

γ+kT
β , I0 = 1− S0 and R0 = 0 so that N0 is normalized to

unity. It is seen that the infectious subpopulation trajectory has a maximum at a finite time and that
the state trajectory solution converges asymptotically to an endemic equilibrium point. In Figure 2, the
state trajectory solution is shown with N0 = 1 when S0 = (γ+ kT)/β which violates the conditions of
Theorem 4 with

.
I0 = 0. In this case, there is no relative maximum of the infectious subpopulation at

finite time. In both situations, it has been observed by extending the overall simulation time that the
susceptible and the infectious subpopulations converge asymptotically to zero while the recovered
subpopulation converges to unity as time tends to infinity. The controls are suppressed in Figure 3
with N0 = 1. In this case, the recovered subpopulation may be deleted from the model since it is
unnecessary while being identically zero. The infectious and susceptible subpopulations are in an
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endemic equilibrium point for all time so that the infection results to be permanent in the sense that it
cannot be asymptotically removed. See Theorem 4(vi) for the case kV= 0. Figure 4 exhibits a trajectory
solution which agrees with Theorem 4 while there is no normalization of the initial conditions to unity.
In this case, the maximum of the infectious subpopulation at a finite time becomes very apparent.

 
Figure 1. N0 = 1 and the initial conditions constraints of Theorem 4 hold with

.
I0 > 0.

Figure 2. N0 = 1 and the initial conditions constraints of Theorem 4 fail with
.
I0 = 0.

 
Figure 3. N0 = 1 and the initial conditions constraints of Theorem 4 hold with no controls used.

 
Figure 4. S0 > 1, I0 > 1 (unnormalized to unity total population) and the initial conditions constraints
of Theorem 4 hold with

.
I0 > 0.
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4. Links with Entropy and Maximum Dissipation Mechanism Issues

4.1. Comparison of the Epidemic Model and Reference Model Information Entropies

Since (1) is a scalar equation, a valid solution for the particular model-dependent time-varying
coefficient α(t) = −cln(g(t)/E)/h(t) of Theorem 2 and Theorem 3 is, according to Theorem 1:

I(t) = e−c
∫ t

0 h−1(τ) ln(g(τ)/E)dτI0; t ∈ R0+ (32)

Under the particular constraints E = D, c = (1− ln(L/D))/ln2(L/D) and g(t) = h(t) = t, it is got
in [11] that α(t) =

[
(ln(L/D) − 1)/ln2(L/D)

]
t−1ln(t/D) and (32), namely:

Ip(t) = e(ln(L/D)−1)/ln2(L/D)
∫ t

0 τ
−1ln(τ/D)dτI0; t ∈ R+ (33)

approaches the log-normal distribution:

Ir(t) =
k√

2πσrt
e
− (ln t−μr)2

2σ2r ; t ∈ R+ (34)

for reference values D = Dr and L = Lr of the maximum and inflection reference time instants where
μr = lnDr + σ2

r and σr is given by the principle of extreme entropy production rate, typically σr ≈ 0.408
gives the width of the distribution function for the maximum dissipation rate for the usual definition
of the Shannon entropy. The main reason for the limitation of such a width is that the medical and
social interventions are a dissipation mechanism which controls and limits the disease propagation.
Comparing (33) and (34), one gets that k =

√
2πσ3

r I0 after solving the indetermination 0/0 at t = 0 via
L´ Hôpital rule leading to the “infection reference evolution” Ir(t) = Ip(t), that is by equalizing (23)
and (24), under the above set of particular constraints, where:

Ir(t) = t−1σ2
r e
− (lnt−lnDr−σ2r )

2

2σ2r I0; t ∈ R+ (35)

Now, equalize I(t) = Ir(t) + Ĩ(t); ∀t ∈ R+ for some perturbation function Ĩ : R+ → R0+ resulting
to be from (32) and (35) for I0 > 0:

Ĩ(t) =

⎛⎜⎜⎜⎜⎜⎜⎝e−c
∫ t

0 h−1(τ) ln(g(τ)/E)dτ − t−1σ2
r e
− (lnt−lnDr−σ2r )

2

2σ2r

⎞⎟⎟⎟⎟⎟⎟⎠I0; t ∈ R+ (36)

The Shannon entropy of the infection SI(η) results to be given by the following Riemann- Stieljes
integral which quantifies the entropy error S̃I(η) of that associated with any given model related to the
entropy of the “infection reference evolution” given by the log- normal function SIr(η) = SIr(η, σr) for
the given reference width value σr =

√
1/2η:

SI(η) = −
∫ ∞

0 t1−ηI(t)ln
(
t1−ηI(t)

)
dtη

= −∫ ∞0 t1−ηI(t)((1− η)lnt + lnI(t))dtη

= −∫ ∞0 t1−η(Ir(t) + Ĩ(t)
)(
(1− η)lnt + ln

(
Ir(t)

(
1 + I−1

r (t)̃I(t)
)))

dtη

= −∫ ∞0 t1−η(Ir(t) + Ĩ(t)
)(
(1− η)lnt + lnIr(t) + ln

(
1 + I−1

r (t)̃I(t)
))

dtη

= SIr(η) −
∫ ∞

0 t1−ηIr(t)ln
(
1 + I−1

r (t)̃I(t)
)
dtη − ∫ ∞

0 t1−η̃I(t)lnI(t)dtη − (1− η)∫ ∞0 t1−η̃I(t)lntdtη

= SIr(η) −
∫ ∞

0 t1−ηIr(t)ln
(
1 + I−1

r (t)̃I(t)
)
dtη − (1− η)∫ ∞0 t1−η̃I(t)lntdtη

+
∫ ∞

0 t1−ηIr(t)
(
1− I−1

r (t)I(t)
)
lnI(t)dtη

= SIr(η) + S̃I(σ); t ∈ R+

(37)
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after using I(t) = Ir(t)
(
1 + I−1

r (t)̃I(t)
)

and its equivalent expression Ĩ(t) = −Ir(t)
(
1− I−1

r (t)I(t)
)
, where

the reference entropy based on the identification of the log-normal function (34)with the solution of (1),
that is, (33), yields for σr =

√
1/2η:

SIr( η) = −
∫ ∞

0 t1−ηIr(t)ln
(
t1−ηIr(t)

)
dtη

= η
(
ln
(√

π
η

)
+ η

(
lnDr +

1
2η

)
+ 1

2

) (38)

after converting the Riemann-Stieljes integral (39) in a Riemann integral via differentiation of dtη by
using (35). Note that it is assumed that both current and reference entropies are evaluated for the same
parameter η which is typically chosen as η = 3. At the same time, it is assumed that the maximum
dissipation rate proportional to the maximum rate of entropy production is governed by the width of
the distribution function σ. So the current model can potentially have a value σ � σr. See [11] for the
normalized case obtained for I0 = 1, and, also one gets the following entropy error:

S̃I(η) = −
∫ ∞

0 t1−η[ln((I(t)/Ir(t))
Ir(t)

)
+ ln

(
I(t)I(t)−Ir(t)

)]
dtη − (1− η)∫ ∞0 t1−η̃I(t)lntdtη

= −∫ ∞0 t1−η[ln((I(t)/Ir(t))
Ir(t)

(
I(t)I(t)−Ir(t)

))]
dtη + (1− η)∫ ∞0 t1−ηIr(t)

(
1− I−1

r (t)I(t)
)
lntdtη

= −η∫ ∞0 ln
(

I(t)I(t)

Ir(t)
Ir(t)

)
dt + η(η− 1)

∫ ∞
0 ln

(
tIr(t)−I(t)

)
dt

= −η∫ ∞0 ln
(

I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

)
dt; t ∈ R+

(39)

It turns out obvious that the integrand of (39) is identically zero if Ĩ(t) ≡ 0, so that I(t) ≡ Ir(t),
leading to S̃I(η) ≡ 0. The expression (37), subject to (38)–(39), parameterizes the incremental entropy
with the same parameter ηwhich parameterizes the reference entropy SIr( ηr). Now, define the error:

δ(t) =
I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

− 1; t ∈ R0+ (40)

so that S̃I(η) ≡ 0 if δ(t) ≡ 0 and, expanding ln
(

I(t)I(t)

Ir(t)
Ir(t)

)
via the Newton- Mercator series for the

logarithm, leads to:

ln

⎛⎜⎜⎜⎜⎝ I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

⎞⎟⎟⎟⎟⎠ = ln(1 + δ(t)) = δ(t) +
∞∑

n=2

(−1)n+1

n
δn(t); t ∈ R0+ (41)

and such a series converges to ln(1 + δ(t)) for all t ∈ R0+ provided that δ(t) ∈ (−1, 1], equivalently,
Ĩ(t) ∈ (−Ir(t), Ir(t)]; ∀t ∈ R0+; ∀t ∈ R0+. Thus, the following description in linear and higher-order
additive terms of the entropy error follows from (40)–(41) into (39):

S̃I(η) = S̃IL(η) +
˜̃SI(η); t ∈ R0+ (42)

where:

S̃IL(η) = −η
∫ ∞

0

⎛⎜⎜⎜⎜⎝ I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

− 1

⎞⎟⎟⎟⎟⎠dt; t ∈ R0+ (43)

˜̃SI(η) = −η
⎛⎜⎜⎜⎜⎜⎝ ∞∑

n=2

(−1)n+1

n

⎛⎜⎜⎜⎜⎝ I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

− 1

⎞⎟⎟⎟⎟⎠n

dt

⎞⎟⎟⎟⎟⎟⎠; t ∈ R0+ (44)

The subsequent results hold related to the case when the error between the infectious functions of
the model and the reference one associated to the log-normal function converges asymptotically to
zero as time tends to infinity. The first result, stated separately by convenience concerned its proof,
discusses the simplest case for η = 1.
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Proposition 1. Assume that η = 1 and lim
t→+∞

∣∣∣∣∣∫ t
0 ln

(
I(τ)I(τ)

Ir(τ)
Ir(τ)

)
dτ

∣∣∣∣∣ < +∞.

then, S̃I( 1) < +∞ for all t ∈ R0+ and lim
t→+∞(I(t) − Ir(t)) = 0.

Proof. Note from (39) that S̃I(1) =
∫ ∞

0 ln
(

I(t)I(t)

Ir(t)
Ir(t)

)
dt < +∞. Since the function I(t)I(t)

Ir(t)
Ir(t)

is uniformly

continuous on R0+ and lim
t→+∞

∣∣∣∣∣∫ t
0 ln

(
I(τ)I(τ)

Ir(τ)
Ir(τ)

)
dτ

∣∣∣∣∣ < +∞ then ln I(t)I(t)

Ir(t)
Ir(t)
→ 0 as t→ +∞ from Barbalat´s

lemma and then I(t)I(t)

Ir(t)
Ir(t)
→ 1 as t→ +∞ . It is clear that a limit solution which satisfies this constraint

is lim
t→+∞(I(t) − Ir(t)) = 0. It is now proved that no alternative limiting constraint on the pair (I(t), Ir(t))

as t→ +∞ is compatible with lim
t→+∞

I(t)I(t)

Ir(t)
Ir(t)

= 1. Assume that lim inf
t→+∞

∣∣∣ I(t) − Ir(t)
∣∣∣ > 0 It can happen that:

(a) lim inf
t→+∞ (I(t) − Ir(t)) > 0. Then, lim inf

t→+∞ ln I(t)I(t)

Ir(t)
Ir(t)

= lim inf
t→+∞ (I(t)lnI(t) − Ir(t)lnIr(t))>

lim inf
t→+∞ (Ir(t)lnI(t) − Ir(t)lnIr(t)) > lim inf

t→+∞ (Ir(t)lnIr(t) − Ir(t)lnIr(t)) = 0 so that lim inf
t→+∞ ln I(t)I(t)

Ir(t)
Ir(t)
> 0.

Hence, a contradiction to Barbalat´s lemma; or

(b) lim inf
t→+∞ (Ir(t) − I(t)) > 0. Under a similar reasoning to that of a), one gets that lim inf

t→+∞ ln Ir(t)
Ir(t)

I(t)I(t) > 0.

Again, a contradiction to Barbalat´s lemma.

The second result discusses the simplest case for η � 1. It is seen that the basic limit result
lim

t→+∞(I(t) − Ir(t)) = 0 of Proposition 1 is still kept under the reasonable assumption that the infection

and reference infection functions are bounded. �

Proposition 2. Assume that η � 1, I, Ir : R0+ → R0+ are bounded and lim
t→+∞

∣∣∣∣∣∫ t
0 ln

(
I(τ)I(τ)

Ir(τ)
Irτt(η−1)(Ir(ς)−I(τ))

)
dτ

∣∣∣∣∣ <
+∞.

Then, S̃I( η) < +∞ for all t ∈ R0+ and lim
t→+∞(I(t) − Ir(t)) = 0.

Proof. Note that S̃I(1) < +∞ and that, from the uniform continuity of I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

everywhere in R0+, the boundedness of its integral on [0,∞) and Barbalat´s lemma, it follows

that I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

→ 1 as t→ +∞ what implies that:

lim
t→+∞(I(t)lnI(t) − Ir(t)lnIr(t) + (1− η)(Ir(t) − I(t)) ln t) = 0

If η > 1 and lnt→∞ as t→∞ then there exists some strictly increasing real sequence {ti}∞i=0,
such that lim

k→∞
∣∣∣(1− η)(Ir((tk)) − I((tk))) ln tk

∣∣∣ = ∞ with tk ∈ {ti}∞i=0 if lim
t→+∞(I(t) − Ir(t)) � 0. But this

can hold only if lim
k→+∞

∣∣∣ I(tk)lnI(tk) − Ir(tk)lnIr(tk)
∣∣∣ = +∞. But, since Ir : R0+ → R0+ is bounded for all

time, this implies that I(tk)→ +∞ as tk
(
∈ {ti}∞i=0

)
→ +∞ and I : R0+ → R0+ is unbounded. But then

lim
k→+∞

(I(tk)lnI(tk) − Ir(tk)lnIr(tk) + (η− 1)(I(tk) − Ir(tk)) ln tk) = ∞+∞ = ∞

and a contradiction follows to the above limit to be zero. As a result, lim
t→+∞(I(t) − Ir(t)) = 0 if η > 1.

Now, assume that η < 1. Since lim
k→∞

∣∣∣(1− η)(Ir(tk) − I(tk)) ln tk
∣∣∣ = ∞ for tk

(
∈ {ti}∞i=0

)
→ +∞ and

some strictly increasing real sequence {ti}∞i=0, provided that lim
t→+∞(I(t) − Ir(t)) � 0, then I(tk)→ +∞ as

tk
(
∈ {ti}∞i=0

)
→ +∞ since Ir : R0+ → R0+ is bounded. Since I : R0+ → R0+ is unbounded, because it

has a divergent subsequence
{
I(tk)

}∞
k=0 and it is a solution of a unstable time-invariant linear differential
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system, it is of positive exponential order ς0 > 0 and there exists a real constant ς < ς0 such that
I(tk) ≥ eςtk ; ∀tk ∈ {ti}∞i=0 and I(tk)/lntk

(
≥ eςtk /lntk

)
→∞ as tk

(
∈ {ti}∞i=0

)
→∞ and, furthermore,

lim
k→+∞

(I(tk)lnI(tk) − Ir(tk)lnIr(tk)) = (1− η) lim
k→+∞

(I(tk) − Ir(tk)) ln tk = ∞

but the expression below is an infinity limit (and not a∞−∞ indetermination since I(tk)/lntk →∞ ):

lim
k→+∞

(I(tk)lnI(tk) − Ir(tk)lnIr(tk) − (1− η)(I(tk) − Ir(tk)) ln tk) = ∞

which contradicts:

lim
t→+∞(I(t)lnI(t) − Ir(t)lnIr(t) + (1− η)(Ir(t) − I(t)) ln t) = 0

As a result, lim
t→+∞(I(t) − Ir(t)) = 0 if η � 1.

It is now briefly discussed the fact that the boundedness hypothesis of Proposition 2 is not
very restrictive for some of the given examples, like for instance, Examples 2,3, where the infectious
subpopulation converges asymptotically to zero. For such a purpose, note from (35) that Ir(t)→ 0
exponentially fast as t→∞ . In example 2, I(t)→ 0 exponentially as t→∞ so their difference function
also converges to zero exponentially as t→∞ . The integral boundedness invoked in the assumption

of Proposition 2 is of the form F =
∣∣∣ ∫ ∞

0 ln x(t)dt
∣∣∣ < +∞, where x(t) = I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Irt−I(t))

is everywhere

differentiable with respect to time. In order to convert the elevant Riemann-Stieljes integral into a
standard Riemann one, take dx =

.
x(t)dt and, later on, perform the change of variable x→ u defined

by u = lnx, du = dx/x to yield:

F =

∣∣∣∣∣∣
∫ 1

x0

ln x
.
x

dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ 1

x0

ln x
x

x
.
x

dx

∣∣∣∣∣∣ ≤
(

sup
0≤t≤+∞

∣∣∣∣∣∣x(t).
x(t)

∣∣∣∣∣∣
)∣∣∣∣∣∣
∫ 1

x0

ln x
x

dx

∣∣∣∣∣∣
= M(η)

∣∣∣∣∣∣
∫ 0

lnx0

udu

∣∣∣∣∣∣ = M(η)
lnx2

0

2

where x(0) = x0 and M(η) = sup
0≤t≤+∞

∣∣∣∣ x(t)
.
x(t)

∣∣∣∣ ≤ +∞ for the given constant η. Note that M(η) < +∞ if and

only if the set of zeros of
.
x(t) at any finite time instant is empty, that is, if and only if Zxdot(η) = ∅,

where Zxdot(η) =
{
t ≥ 0 :

.
x(t) = 0

}
= ∅ (equivalently, M(η) = +∞ if and only if Zxdot(η) � ∅.

Rewriting x(t) =
y(t)

tη−1z(t)
it follows that

.
x(t) = 0 for any t ≥ 0 if and only the following constraint

holds t =
(η−1)z(t)y(t)

z(t)
.
y(t)−y(t)

.
z(t)

. Therefore, Zxdot(η) =
{
t ≥ 0 : t = (η−1)z(t)y(t)

z(t)
.
y(t)−y(t)

.
z(t)

}
� ∅ is an event of zero

probability. Thus, the boundedness hypothesis of Proposition 2 happens almost surely in the event
that the infectious subpopulation converges asymptotically to zero as time tends to infinity. �

Propositions 1 and 2 yield the direct joint result independently of the value of η:

Proposition 3. Assume that η ∈ R0+, I, Ir : R0+ → R0+ are bounded and

lim
t→+∞

∣∣∣∣∣∫ t
0 ln

(
I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

)
dt
∣∣∣∣∣ < +∞.

Then, S̃I( η) < +∞ for all t ∈ R0+ and lim
t→+∞(I(t) − Ir(t)) = 0.

Concerning Proposition 3, note that the boundedness of S̃I( η) does not guarantee that the linear
part and the remaining part of higher- order terms in the decomposition of (42), subject to (43) and (44),
are both finite. It could “a priori” happen that they both tend to infinity with opposite signs. But if any
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of them is bounded, the other one should be bounded as well according to Proposition 3. Fortunately,
this does not happen under weak extra assumptions. In particular, the following result holds:

Proposition 4. Assume that η ∈ R0+, I, Ir : R0+ → R0+ are bounded, and∫ ∞

0
ln

⎛⎜⎜⎜⎜⎝ I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

− 1

⎞⎟⎟⎟⎟⎠dt < +∞.

Then, S̃IL(η) < +∞; t ∈ R0+.

If, in addition,
∫ ∞

0 ln
(

I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

dt
)
< +∞ then

∣∣∣∣∣̃S̃I(η)

∣∣∣∣∣ < +∞ and S̃I(η) < +∞ for all t ∈ R0+

and lim
t→+∞(I(t) − Ir(t)) = 0.

Proof. It is direct to see that S̃IL(η) < +∞. Also, and again from Barbalat´s lemma,
I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

→ 1 as t→ +∞ . Thus, from Proposition 3, lim
t→+∞(I(t) − Ir(t)) = 0. If,

furthermore,
∫ ∞

0 ln
(

I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

)
dt < +∞ then, again from Proposition 3, S̃I(η) < +∞ and

−∞ < −
∣∣∣∣S̃(η) − S̃IL(η)

∣∣∣∣ ≤ ˜̃SI(η) ≤
∣∣∣∣S̃(η) − S̃IL(η)

∣∣∣∣ < +∞. �

Note that the above results agree with the asymptotic results of Examples 1–4, where I(t)→ 0
as t→∞ , and with Theorem 1, since the reference Ir(t)→ 0 , jointly implying (I(t) − Ir(t))→ 0 as
t→∞ .

Remark 4. The rationale behind the definition of a time-varying coefficient in (1) is to reduce the higher-order
epidemic model with two or more states to a single-order differential equation based on the assumption that the
log-normal distribution is a sufficiently accurate model for the infectious evolution. It is apparent that the profile
of the log-normal distribution remembers the behavior of the strong infections in their blowing–up evolution phase
along time. However, it is obvious that the epidemic models have the concourse of several coupled subpopulations
so that it the model is reduced to a first-order dynamics the influence of the remaining dynamics should be
accounted for through a time-varying parameterization and dynamics uncertainty in (1) since the model order is
reduced to unity. The accuracy of the modeling procedure is evaluated by means of the entropy through (37).
Hence if the actual infectious population curve is close to the reference one, then we have SI(η) = SIr(η) which
generates the dissipation rate of the model. On the other hand, if the current system differs from the reference
model, then the entropy becomes corrected with the additional term S̃I(η). Therefore, the contributing terms in
(37) provide an estimation of the modeling uncertainty based on the assumed log- normal reference distribution.
As a result, the best approximation of the current model to the reference one is that which minimizes the error
entropy S̃I(η), i.e., the one which reduces as much as possible the uncertainty introduced by the approximation.

Remark 5. Note that the entropy of the infection I(t) for η = 1 is defined as SI(1) = −∫ ∞0 I(τ)lnI(τ)dτ
The entropy of the truncated function It(τ) = I(τ) for τ ∈ [0, t] and It(τ) = 0 for τ � [0, t] is
SIt(1) = −∫ ∞0 I

t
(τ)lnIt(τ)dτ = −∫ t

0 I(τ)lnI(τ)dτ. Note also that
.
SIt(1) = −I(t)lnI(t) and

..
SIt(1) =

− .
I(t)(1 + lnI(t)) = 0 if t = D. That is, the inflection point of the truncated entropy occurs at the relative

extreme values of I(t). In particular, if the infection is in its first expanding phase, this occurs at its maximum
t = D.
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4.2. Estimation of Errors of the Distribution Widths between the Log-Normal Reference and Current Model
Information Entropies

One gets from (38) for the usual reference entropy definition based on the log-normal distribution
of width σr =

1√
2η

, [11,33,37], that:

SIr(σr, Dr, η) = η
(
ln
(√

2πσr
)
+ η

(
lnDr + σ

2
r

)
+

1
2

)
(45)

and the particular value:

σr = σr(η) = arg
(
r ∈ R0+ :

d2S(σr, Dr, η)
dr2 = 0

)
(46)

is the width distribution maximum value which makes the reference entropy to cease to increase while
giving the maximum dissipation rate which leads to:

SIr

⎛⎜⎜⎜⎜⎜⎝
√

1
2η

, Dr, η

⎞⎟⎟⎟⎟⎟⎠ = η(ln√
π
η
+ η

(
lnDr + σ

2
r

)
+

1
2

)
= arg

(
SIr(σr, η) :

d2S(σr, η)

dσ2
r

= 0
)

(47)

Note that the above reference description is easily associated to an epidemic model given by
a first-order differential equation involving only the infection evolution. Note also, in particular,
that the infection curve solution is of exponential order as it is the log-normal function. Such an
order is negative if the disease-free equilibrium point is globally asymptotically stable (that is, the
reproduction number is less than one) so that the infection converges exponentially to zero. In other
words, the curves (43) and (44) can be reasonably identified with each other as it has been made in the
above subsection by considering the influence of the initial conditions. In more sophisticated models
involving the concourse of more subpopulations (say susceptible, immune, etc.), like those discussed
in the above section, the differential equation is of higher-order than one so that the α(t) -function
describing the time evolution of I(t) depends on the remaining subpopulations. This translates into
the following facts:

(1) Fact 1: It is known that, for η = 3, σr =
√

1
6 ≈ 0.408; Dr

Lr
= 1.649; I(Dr)

I(Lr)
=

f (Dr)

f (Lr)
= 2.120, [11].

(2) Fact 2: A modification of the relevant time instants D and L of maximum infection and previous
inflection point with respect to Dr and Lr, and the corresponding entropies as it has been discussed
analytically in Section 4.1. Those parameters depend on each particular model. This also will
translate, as a result, into a change of the distribution width σ related to the reference width σr for
the maximum dissipation concerns.

(3) Fact 3: Although the above reference values σr and ratio Dr/Lr are independent on I0, since they
are got from the log-normal distribution function, the current ones are, in general, dependent on
I0. The entropy of the current given multi-subpopulation model is given explicitly by (37), subject
to (38)–(39). The time instants D and L of the respective maximum and inflection infection time
instants and their values I(D) and I(L) are calculated from the first zeros of the curves

.
I(t) and

..
I(t), respectively which also lead directly to their corresponding rates.

(4) Fact 4: The entropy of the current model might be interpreted in terms of the maximum dissipation
rate by assuming a description via a log-normal distribution. However, it is easy to verify that
the log-normal function is zeroed as its argument is either zero or +∞, although its profile is
close, but not identical, to the solution of a first-order differential equation describing a decaying
exponential infection evolution towards a disease- free equilibrium point. For this reason, and
having in mind the comparison of the solution of models with more than one subpopulation (with
associated differential system of order larger than one) to the log-normal distribution f (t) which
is zero at zero and at infinity and which satisfies

∫ ∞
0 f (t)d(t) = 1, we first normalize the infectious
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subpopulation of the current model in order to get a comparable entropy to the reference one
associated with the log-normal function, that is, we define:

In(t) =
I(t)∫ ∞

0 I(τ)dτ
; SIn(η) = −

∫ ∞

0
In(τ)ln

(
In(τ)/tη−1

)
dτ (48)

4.3. Some Numerical Tests on Reference and Current Model Entropies

Now Example 2 and Example 4 are compared to the infection study of [11], by introducing the
appropriate tools of normalized infection entropy (48) associated with the maximum dissipation rate
for the choice η = 1. Recall the basic notation Dr, Lr, D and L being the first time instants such that
.
I(Dr) = 0,

..
I(Lr) = 0,

.
I(D) = 0,

..
I(L) = 0 (Examples 2 and 4). One gets from (45) for η = 1 and,

correspondingly, σr =
√

1/2 that the parameterized reference entropy is:

SIr

⎛⎜⎜⎜⎜⎝
√

1
2

, Dr, 1

⎞⎟⎟⎟⎟⎠ = (
ln
√
π+ lnDr + 1

)
(49)

and one gets for Example 2 that its associated normalized entropy for η = 1 being un-parameterized in
(D, σ) becomes from (48):

SIn(1) = −
∫ ∞

0
In(t)lnIn(t)dt (50)

Numerical experimentation with Example 2: Note that D is the first time instant such that
.
I(D) = 0

and I(D) is a relative maximum, which in practice, gives the maximum expected infectious numbers.
Also, L is the first time instant such that

..
I(L) = 0. Note also that the basic model, of response being

close to a log- normal function, has only an infectious subpopulation while the examples of Section 3
have more subpopulations integrated in the models. Therefore, the reasonable condition that the initial
conditions of the infectious subpopulation are the one percent of the total population, we consider a
total population of N0 = S0 + I0 + R0 = 1 for Example 2 in order to get a feasible comparison.

Thus, we perform several alternative experiments as follows:

(a) We get the values of the time instants D and L and the corresponding infection numbers I(D)

and I(L), from the solution trajectory of Example 2 and its first two-time derivatives trajectories
through time, as well as the normalized entropy SIn(1) from (50). Later on, by equalizing (50) to
(49), one then gets the value of Drm which specifies the time instant given a maximum infectious
subpopulation with a maximum dissipation rate in a log normal distribution. This equalization
yields:

Drm = eSIn (1)−1/
√
π (51)

(b) We equalize again (49) by fixing Dr = D in (50). Then, we get the necessary value σrm for such an
equality to hold.

(c) We define the variance with distribution function In(t) and log- normal distribution resulting to
be:

var(ω) =
∫ ∞

0
ω(t)

(
t−

∫ ∞

0
ω(t)tdt

)2

dt (52)

where ω(t) = In(t) or ω(t) = x(t, Dr, σr), the log-normal distribution. Then, we obtain the
necessary σrmv = σrmv(var(In), D) got from

var(In) = var(x(Dr = D, σrmv)) (53)

One observes that, in general, σrmv � σr = 1√
2

which ensures that the variance of log- normal

distribution is equal to var(In) for such a value of σrmv. Some numerical data on Example 2 are now
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compared with the log-normal distribution function. The model parameters are β = 13,065 and
γ = 50.1 year−1 what means that the average infectious period is Tγ= 1/γ = 365/50.1 = 7.29 days. The
initial infectious subpopulation is the one percent of the normalized total one N0 = 1. For those
initialization, the quotient S0/I0 (percentage of initial susceptible subpopulation versus recovered
subpopulation) is used to plot Figures 5–8 whose time scale are in years. Figure 5 displays the time
instants of maximum infection and inflection point versus different values of S0/R0. The values of
Drm from (51) is also plotted. The corresponding infectious subpopulations are displayed in Figure 6.
Figure 7 gives the entropies of (50) and (49). On the other hand, Figure 8 displays σrm, σrmv and
the variance of the normalized infectious In(t) of (52). It is basically concluded that for the model
of example 2 which has three subpopulations, the results are distinct from to those obtained from
the log-normal distribution which we can recall that behave closely to the solution of a first-order
differential equation involving the infectious only for initial infection being close to zero and small
susceptible amounts. The above discrepancy increases as the quotient S0/I0 increases. The reason
of the approximation discrepancy is that the couplings of the infectious subpopulations with the
remaining ones becomes increasingly relevant to the transient responses evolution as the proportion of
susceptible to infectious increases.

Figure 5. D (maximum infection time) and L (inflection point time) for Example 2.

Figure 6. Maximum infection and inflection reached values I(D) and I(L) for Example 2.
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Figure 7. Reference and model entropies of Example 2.

Figure 8. σrm , σrmv and variance for Example 2.

Numerical experimentation with Example 4: The initial values satisfy a normalization constraint
N0 = S0 + R0 = 1 with subpopulations S0 = 0.99, io = 0.01 (that, is the initial infectious subpopulation
is 1% of the total one) and R0 = 0 since the recovered populations is compensatory in the model in
order to take into account the effects of the intervention controls. The parameters β and γ are fixed
as in Example 2. In particular, Figures 9 and 10 show the maximum infection and its previous value
at the inflection time instant and the corresponding time instants without vaccination and with a
vaccination effort rate of kT = 290 for different values of the vaccination control gain. It is basically seen
that the maximum and inflection amounts decrease as the treatment control gain gives a skip from
zero to an important effort as that, in parallel, the above values also decrease as the vaccination control
gain increases. Figures 10 and 11 describe parallel experiments where the roles of the vaccination
and treatment control gains are reversed with respect to the data of Figures 9 and 10. The obtained
conclusions are similar. The time instants of maximum infection and the inflection value are reached
without and with vaccination control as the treatment control effort increases for Example 4 are plotted
in Figure 12. The corresponding entropies for those to experiments compared to the reference entropy
are displayed in Figures 13 and 14. Note that the entropies (48) and (50) reach negative values because
of the normalization of the infection by the total infection integral contribution (48) used to evaluate the
normalized entropy (50). Note that the vaccination control does not affect to the entropy as significantly
as the treatment control gains since it influences less significantly to the model dynamics.
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Figure 9. Maximum infection and its values at the inflection time instants without and with treatment
control as the vaccination control effort increases for Example 4.

Figure 10. Time instants at which the maximum infection and the inflection value are reached without
and with treatment control as the vaccination control effort increases for Example 4.

Figure 11. Maximum infection and its values at the inflection time instants without and with vaccination
control as the treatment control gain increases for Example 4.
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Figure 12. Time instants at which the maximum infection and the inflection value are reached without
and with vaccination control as the treatment control effort increases for Example 4.

 

Figure 13. Entropies of the reference and the normalized model of Example 4 without and with
treatment control as the vaccination control effort increases.

Figure 14. Entropies of the reference and the normalized model of Example 4 without and with
vaccination control as the treatment control effort increases.

5. Conclusions

This paper has investigated the extensions of a first-order differential system describing the
infection propagation through time to epidemic models integrating more than one subpopulation. The
main involved tool has been the consideration of the coupling of inter-populations dynamics and the
control intervention information through the structure of the time-varying coefficient which drives the
basic differential equation model of first-order. The control of the infection along its transient to fight
more efficiently against a potential initial exploding transmission from a high initial growth rate is
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considered relevant. Special attention has been paid throughout the manuscript to the discussion of the
profiles of the transients of the infection curve in terms of the time instants of its first relative maximum
towards its previous inflection time instant, so the study is mainly focused on the transient behavior
characterization rather than on the steady-state equilibrium points. The time instants leading to the
maximum infection and inflection numbers have been investigated via the Shannon´s information
entropy for the maximum dissipation rate linked to a previous background study for a first-order
differential equation describing the infection propagation. Since it is relevant to know the time instants
of maximum infection and inflection as well as its numbers in order to monitor the availability of
hospitalization resources, some examples related to existing epidemic models integrated by more than a
subpopulation have been studied. The obtained results have been compared, both via theoretical work
and also by numerical experimentation, to the background results obtained from a reference model, just
involving a single infectious population, which is based on a description via a log-normal distribution
which has a close profile to the solution response of a first-order differential equation. In those examples,
special attention is paid to the comparisons of the maximum infection and inflection time dates for
different values of initial conditions and to the entropy discrepancies related to the reference one. It
can be concluded that the influence of the couplings of the dynamics of other subpopulations in the
model to the infectious one is relevant to the infection evolution, especially, in the cases when the initial
amounts of the susceptible are significantly large compared to the initial amounts of the infectious.
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Abstract: Sub-Saharan Africa has been the epicenter of the outbreak since the spread of acquired
immunodeficiency syndrome (AIDS) began to be prevalent. This article proposes several regression
models to investigate the relationships between the HIV/AIDS epidemic and socioeconomic factors (the
gross domestic product per capita, and population density) in ten countries of Sub-Saharan Africa, for
2011–2016. The maximum likelihood method was used to estimate the unknown parameters of these
models along with the Newton–Raphson procedure and Fisher scoring algorithm. Comparing these
regression models, there exist significant spatiotemporal non-stationarity and auto-correlations between
the HIV/AIDS epidemic and two socioeconomic factors. Based on the empirical results, we suggest that
the geographically and temporally weighted Poisson autoregressive (GTWPAR) model is more suitable
than other models, and has the better fitting results.

Keywords: HIV/AIDS epidemic; regression model; Newton–Raphson procedure; Fisher scoring
algorithm; time series

1. Introduction

Acquired immunodeficiency syndrome (AIDS) is a malignant infectious disease with a high fatality
rate caused by human immunodeficiency virus (HIV). The HIV/AIDS epidemic has been one of the
greatest global public health and social development problems since 1981, particularly in Sub-Saharan
Africa. As of 31 December 2016, over 30 million people had died from the disease [1]. More than 70% of
the 35 million people are infected with the HIV/AIDS disease in Sub-Saharan Africa. Thus, the HIV/AIDS
epidemic of Sub-Saharan Africa has attracted extensive attention from researchers around the world [2–4].

In earlier studies, Janet et al. [5] and Hallman et al. [6] demonstrated the relationship between
the disease and socioeconomic status. Chris et al. [7] indicated socioeconomic factors to explain this
disease outperformed cultural ones in South Africa. Mathematical models always play an important role
in evaluating the trends of the HIV/AIDS epidemic [8]. For example, regression models have been widely
used in the study of the relationship between this disease and influencing factors. Shiboski et al. [9]
considered a generalized linear model to obtain the statistical analysis of the HIV/AIDS disease.
A mixed-effects linear regression model was used to analyze the correlation between national population
and antenatal care [10]. Laurence et al. [11] applied a spatial regression model to show that the epidemic
had substantial geographic variance across Sub-Saharan Africa.

This paper proposes several regressive models to investigate the relationships between the HIV/AIDS
epidemic, the gross domestic product (GDP) per capita and the population density in ten countries of
Sub-Saharan Africa. The Poisson regression model is introduced in Section 2.1. Sections 2.2 and 2.3

Entropy 2020, 22, 1230; doi:10.3390/e22111230 www.mdpi.com/journal/entropy
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describe two spatial models, respectively. A spatiotemporal autoregressive model is proposed in Section
2.4. The maximum likelihood method is used to obtain the iterative formulas of coefficient estimations in
Section 3. The main results are shown in Section 4, followed by discussion in Section 5.

2. Methodologies

2.1. Poisson Regression Model

Regression models are a set of statistical processes for estimating the relationships between response
and explanatory variables. The classical model is a linear regression. Nelder and Wedderburn [12] extended
the linear model to a generalized linear regression for solving the discrete data problem. This kind of
models are very important in ecology, medicine and economics [13–15]. Suppose that Y = (Y1, Y2, . . . , Yn)

is the response variable, where Yi(i = 1, . . . , n) are independent. The density function is

f (yi; θi, φi) = exp
(yiθi − b(θi)

a(φi)
+ c(yi, φi)

)
,

where a(·), b(·), c(·, ·) are known functions, and θi, φi are unknown parameters for i = 1, 2, . . . , n. Denote
μi = E(Yi), and g(μi) = ln(μi) is a link function. Let Xij be explanatory variables for the ith observation
in the jth variable. Then, the Poisson regression (PR) model is given by

g(μi) � ηi =
p

∑
j=1

β jXij, (1)

where i = 1, 2, . . . , n, and β j(j = 1, 2, . . . , p) are unknown parameters.

2.2. Geographically Weighted Poisson Regression Model

With in-depth study, regression models have been frequently applied in epidemiology and health
geography for trying to investigate the persistent geographical variations in disease [16]. Based on the
generalized linear regression, Brunsdon et al. [17] proposed the geographically weighted regression model
to analyze the spatial non-stationary processes of discrete data. The disease maps arising from this process
are considered through the establishment of the geographically weighted Poisson regression (GWPR)
model [18–20] below

g(μi) � ηi =
p

∑
j=1

β j(ui, vi)Xij, (2)

where (ui, vi)(i = 1, 2, . . . , n) are the geographical locations, and β j(ui, vi)(j = 1, 2, . . . , p) are unknown
parameters at the position (ui, vi).

2.3. Geographically Weighted Poisson Autoregressive Model

Another issue deserving of special attention is whether there exists an interaction between different
regions in terms of spatial data. Previous studies [21–24] showed that spatial data has not only
spatial non-stationarity but also correlation. Zhang [25] proposed the geographically weighted Poisson
autoregressive (GWPAR) model as follows:

g(μi) � ηi = ρ
n

∑
k=1

cikηk +
p

∑
j=1

β j(ui, vi)Xij, (3)
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where ρ is a scalar autoregressive parameter, and cik(i, k = 1, 2, . . . , n) is the adjacency relation between
the ith and kth locations. Let ci be the number of regions adjacent to the ith position. If the kth position is
next to the ith’s, then cik = 1/ci. Otherwise, cik = 0.

2.4. Geographically and Temporally Weighted Poisson Autoregressive Model

Recently, many spatiotemporal models have been proposed to describe the spatiotemporal variations
in the relationships of response and explanatory variables [26,27]. Concerning the modeling of
spatiotemporal data, there are two important properties: non-stationarity and auto-correlation. The
non-stationarity indicates that there exists more than one linear relation between response and explanatory
variables. It can be used to identify where interesting relationships are likely to occur or where detailed
investigation is necessary in the study areas [28]. Spatiotemporal auto-correlation is an important factor to
determine the temporal correlations of observations [29]. These two problems always appeared together
[30]. A geographically and temporally weighted autoregressive (GTWPAR) model can be applied to
account for non-stationary and auto-correlated effects simultaneously.

Let Y be the response variable, and Yik(i = 1, 2, . . . , nk, k = 1, 2, . . . , T) be the independent variables
of Y in the ith position and the kth time. The density function can be defined as follows:

f (yik; θik, φik) = exp
(yikθik − b(θik)

a(φik)
+ c(yik, φik)

)
,

where the parameters are similar to Section 2.1. Denote μik = E(Yik), and g(μik) = ln(μik).
Let Xijk(j = 1, 2, . . . , p) be the jth explanatory variable. The GTWPAR model is expressed by

g(μik) � ηik = ρ
T

∑
m=1

nk

∑
l=1

c(ik)lm ηlm +
p

∑
j=1

T

∑
k=1

β jk(uik, vik, tk)Xijk, (4)

where {β jk(uik, vik, tk)} is a set of unknown parameters at the ith position in the kth time, and c(ik)lm is
the adjacent relation between the location (uik, vik, tk) and (ulm, vlm, tm). Following the work of [31], the
spatiotemporal distance between the locations (uik, vik, tk) and (ulm, vlm, tm) can be defined as

d(ik)lm =
√

λ[(uik − ulm)2 + (vik − vlm)2] + μ(tk − tm)2,

where μ and λ are used to balance spatiotemporal distances. Suppose that

c(ik)lm =

{
1/cik, 0 < d(ik)lm < d,
0, otherwise,

where d is a constant and satisfies min{d(ik)lm } < d < max{d(ik)lm }.
Next, we rewrite the model (4) in a matrix form

η = ρCη + B′X′,

where η = (η11, · · · , ηn11, η12, · · · , ηn22, · · · , η1T , · · · , ηnT T)
′
, C = (c(ik)lm ), X = (Xijk) and B =

(β jk(uik, vik, tk)). For convenience, define ηK as the Kth element of η; CIK and XIK are the Ith row and the
Kth column of the matrices C and X, respectively. The detailed expressions of C, X and B are given in
Appendix A.1.
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Remark 1. For the GTWPAR model (4), if ρ = 0 and β jk(uik, vik, tk) is independent of the spatiotemporal effect,
the model is a PR model. If ρ = 0 and β jk(uik, vik, tk) is dependent on spatial effect but independent of temporal
effect, the model becomes GWPR model. If ρ = 0 and β jk(uik, vik, tk) is independent of temporal effect, it is the
GWPAR model. Thus, PR, GWPR and GWPAR models are the special cases of the GTWPAR model.

3. Coefficient Estimation

In this section, we only provide the estimation method of the GTWPAR model since the PR, GWPR and
GWPAR models are its special cases (Remark 1). Let (uik, vik, tk)(i = 1, 2, . . . , nk, k = 1, 2, . . . , T) be any
point in the studied spatiotemporal region. We fix a point (u00, v00, t0) and assume that β jk(uik, vik, tk) ≈
β j0(u00, v00, t0)(j = 1, 2, . . . , p). Then, the model (4) can be rewritten by

ηik = g(μik) = ρ
T

∑
m=1

nk

∑
l=1

c(ik)lm ηlm +
p

∑
j=1

T

∑
k=1

β j0(u00, v00, t0)Xijk. (5)

Denote β(u00, v00, t0) = (β10, . . . , βp0)
′, X = diag(Xi.) and Xi· = (Xi1, . . . , Xip). The corresponding

matrix form can be represented as η = ρCη + β′(u00, v00, t0)X
′.

3.1. Estimation of Parameter Vector β

For the fixed point (u00, v00, t0), we define a spatiotemporal distance d(0)ik from this point to (uik, vik, tk)

as d(0)ik =
√

λ[(u00 − uik)2 + (v00 − vik)2] + μ(t0 − tk)2. The Gauss kernel function of these two points can
be written by

wik(u00, v00, t0) =
1√
2π

exp
{
− 1

2

(d(0)ik
hST

)2}
=

1√
2π

exp
{
− 1

2
λ[(u00 − uik)

2 + (v00 − vik)
2] + μ(t0 − tk)

2

h2
ST

}
=

1√
2π

exp
{
− 1

2

( (u00 − uik)
2 + (v00 − vik)

2

h2
S

+
(t0 − tk)

2

τh2
S

)}
,

where hST and hS are the space-time bandwidth and space bandwidth, respectively. Meanwhile, we have
h2

ST = λh2
S, and τ = λ/μ is a spatiotemporal factor. Without loss of generality, let λ = 1. Then, the

weighted maximum likelihood of Yik(i = 1, 2, . . . , nk, k = 1, 2, . . . , T) at the point (u00, v00, t0) is

L(β10, β20, · · · , βp0) =
T

∏
k=1

nk

∏
i=1

f (yik; θik, φik)wik(u00, v00, t0),

where f (yik; θik, φik) is the density function. The log-likelihood can be obtained as follows:

L1(β(u00, v00, t0)) =
T

∑
k=1

nk

∑
i=1

( yikθik − b(θik)

a(φik)
+ c(yik, φik)

)
wik(u00, v00, t0).
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Note that c(yik, φik) = − ln(yik!), b(θik) = μik = exp(θik), and a(φik) = φik = 1. Thus, E(Yik) =

b′(θik) = exp(θik) = μik, Var(Yik) = b′′(θik)a(φik) = exp(θik) = μik. Differentiating L1 with respect to
β(u00, v00, t0) yields

∂L1

∂βr0
=

T

∑
k=1

nk

∑
i=1

(yik − μik
aikφ

∂θik
∂βr0

)
wik(u00, v00, t0) = 0, (6)

where βr0 = βr(u00, v00, t0)(r = 1, 2, · · · , p), and

∂θik
∂βr0

=
(∂μik

∂θik

)−1 ∂μik
∂g(μik)

∂g(μik)

∂βr0
=

1
b′′(θik)

1
g′(μik)

∂ηik
∂βr0

.

For convenience, let N = ∑N
k=1 nk and W = (wik(u00, v00, t0))N×N . Denote A = (IN −

ρC)−1, Y = (Y11, · · · , Yn11, · · · , Y1T , · · · , YnT T)
′
, μ = (μ11, · · · , μn11, · · · , μ1T , · · · , μnT T)

′
, θ =

(θ11, · · · , θn11, · · · , θ1T , · · · , θnT T)
′
, φ = (φ11, · · · , φn11, · · · , φ1T , · · · , φnT T)

′
. Suppose that YK, μK, θK and

φK are the Kth elements of Y, μ, θ and φ, respectively. Then, we take the derivative of the model (5) with
respect to βr0, and obtain

∂ηl
∂βr0

=
N

∑
h=1

AlhXhr = Al·X·r, l = 1, 2, . . . , N.

The calculation process is given in Appendix A.2. Thus, the Equation (6) can be rewritten as

∂L1

∂βr0
=

1
φ

N

∑
l=1

Tl Al·X·r(Yl − μl)g′(μl)Wl(u00, v00, t0) = 0.

However, there is not a close-form solution for β(u00, v00, t0). The Newton–Raphson procedure and
Fisher scoring algorithm are used to get the estimation of β. The iterative formula is expressed as

β̂(m+1)(u00, v00, t0) = β̂(m)(u00, v00, t0) + I−1(β̂(m)(u00, v00, t0))S(β̂(m)(u00, v00, t0))

= ((A(m)X)′T(m)W(u00, v00, t0)(A(m)X))−1

×(A(m)X)′T(m)W(u00, v00, t0)Z(m), (7)

where the Fisher information matrix I(β) = E(I(β)), and

S(β̂(m)(u00, v00, t0)) =
( ∂L1

∂β10
,

∂L1

∂β20
, · · · ,

∂L1

∂βp0

)′
is the scalar vector. The detail process is provided in Appendix A.2. For the fixed point (uik, vik, tk)(i =
1, 2, . . . , nk; k = 1, 2, . . . , T), β̂ jk(uik, vik, tk) can be obtained by (7).

Remark 2. The estimations β̂(uik, vik, tk)(i, l = 1, 2, . . . , nk, k, m = 1, 2, . . . , T) are related to the temporal and
spatial effects in the GTWPAR model. If m = k, wik(ulm, vlm, tm) = 0 and c(ik)lm = 0, then β̂(uik, vik, tk) = β̂(ui, vi)

correspond to the parameter estimations of the GWPAR model. If wik(ulm, vlm, tm) = 0(m = k) and C = 0, they
are the estimations of the GWPR model. If W = 0 and C = 0, then β̂(uik, vik, tk) = β̂ are the global estimation
values of the PR model.
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3.2. Estimation of Parameter ρ

Based on the density function, the log-likelihood function of ρ is

L2(ρ) =
T

∑
k=1

nk

∑
i=1

(yikθik − b(θik)

a(φik)
+ c(yik, φik)

)
.

Differentiating L2(ρ) with respect to ρ, we have

∂L2

∂ρ
=

T

∑
k=1

nk

∑
i=1

(yik − μik
aikφ

∂θik
∂ρ

)
= 0, (8)

where dθik
dρ = 1

b′′(θik)g′(μik)
dηik
dρ . Then, we take the derivative of the model (5) with respect to ρ as follows:

dηl
dρ

=
dg(μl)

dρ
=

N

∑
h=1

Al·C·hηh.

The detail calculation is given in Appendix A.3. Then, the Equation (8) can be rewritten in the following
nonlinear form

dL2

dρ
=

N

∑
l=1

(Yl − μl)∑N
h=1 Al·C·hηh

alφV(μl)g′(μl)
= 0.

According to the Newton–Raphson procedure and Fisher scoring algorithm, the iterative formula of
ρ̂(m+1) is

ρ̂(m+1) = ρ̂(m) + I−1(ρ̂(m))S(ρ̂(m))

= ρ̂(m) + ((A(m)Cη(m))′T(m)(A(m)Cη(m)))−1

×(A(m)Cη(m))′T(m)(Z(m) − η(m)), (9)

where the scalar vector S(ρ̂(m)) = 1
φ (ACη)′T(Z − η) and the Fisher information matrix I(ρ) =

1
φ (ACη)′T(ACη). The calculation process of the scalar vector S(ρ̂(m)) and the information matrix I
is given in Appendix A.3.

4. Main Results

In this section, we apply the PR, GWPR, GWPAR and GTWPAR models to analyze the relationships
between the HIV/AIDS epidemic, the GDP per capita and population density in ten countries of
Sub-Saharan Africa from 2011 to 2016. The ten countries are Angola, Botswana, Lesotho, Malawi,
Mozambique, Namibia, South Africa, Swaziland, Zimbabwe and Zambia. The parameters of these four
models are estimated by the Newton–Raphson procedure and Fisher scoring algorithm. The coefficient of
determination R2, the corrected Akaike information criterion (AICc), the deviation (D) and mean-square
error (MSE) are used to compare the performances of the four models [18].

4.1. The HIV/AIDS Epidemic Models

The data of HIV/AIDS incidence, GDP per capita and population density were derived from http:
//data.cnki.net/InternationalData/Report. Readers should note that authorization is required to access
the database on this website. Figure 1 describes the HIV/AIDS incidence in ten countries from 2011 to
2016. It shows that the incidence varies significantly in different regions. Angola has a minimum incidence
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of less than 5%, while Botswana and Swaziland have higher incidences of more than 20% every years.
Therefore, it may be necessary to consider the temporal and spatial factors in analyzing the HIV/AIDS
epidemic.

Figure 1. Spatiotemporal HIV/AIDS incidence of ten countries, 2011–2016.

The distributions of HIV/AIDS cases, GDP per capita and population density are displayed in Figure
2. The Pearson correlation coefficients between these cases and GDP per capita and population density are
0.2739 and −0.1179, respectively. Meanwhile, the two socioeconomic factors have different effects on the
HIV/AIDS cases at the spatiotemporal locations. These reflect a spatiotemporal non-stationarity between
the cases and two factors in ten countries from 2011 to 2016. Table 1 lists the p-values of the first-order
autocorrelation of HIV/AIDS cases in the different years of the same region or the different regions of
the same year. Each region has a significant spatial autocorrelation (p-value < 0.01) each year. Lesotho
and South Africa had temporal autocorrelation during 2011 to 2016. Thus, the spatial and temporal
autocorrelation should not be ignored.

Figure 2. Distributions of HIV/AIDS cases, GDP per capita and population density of ten countries,
2011–2016.
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Table 1. p-values of the spatial and temporal autocorrelation analysis.

Time 2011 2012 2013 2014 2015 2016

p-value 0.0024 0.0028 0.0021 0.0019 0.0017 0.0022

Regions Angola Botswana Lesotho Malawi Mozambique Namibia

p-value 0.9094 0.8807 0.0092 0.5300 0.1289 0.8267

South Africa Swaziland Zimbabwe Zambia

0.0045 0.1491 0.5688 0.2231

Next, we standardized the two socioeconomic factors. The multiplex collinear test [32] was performed
by the condition number k =

√
λmax/λmin = 1.804(≤ 15) (λ is the eigenvalue of explanatory variable

matrix). If k > 15, then the data have collinearity. Otherwise, there is no collinearity. Thus, there is no
collinearity between the two factors. Let μik, rik and Pik be the annual HIV/AIDS cases (Unit: 1/1000
people), incidence (Unit: 1/100) and total population (unit: 100,000 people) in the kth year of the ith region,
respectively. Denote g(μik) = ηik = ln μik = ln rik + ln Pik(μik = rikPik, i = 1, 2, . . . , 10 and k = 1, 2, . . . , 6).
Let Xi1k and Xi2k be the GDP per capita and population density in the ith region at the kth year, respectively.
The PR model is written by

g(μik) = β0 + β1Xi1k + β2Xi2k, i = 1, 2, . . . , 10, k = 1, 2, . . . , 6, (10)

where β j(j = 0, 1, 2) are unknown constants. The GWPR model is introduced as

g(μik) = β0(uik, vik) + β1(uik, vik)Xi1k + β2(uik, vik)Xi2k, i = 1, 2, . . . , 10, (11)

where k is a fixed constant taken from {1, 2, . . . , 6}, and β j(uik, vik) are unknown spatial parameters for the
ith country (uik, vik) in the kth year. Let ρ be a scalar autoregressive parameter, and cil be a constant that
represents an adjacency relation. The GWPAR model is

g(μik) = ρ
n

∑
l=1

cilηik + β0(uik, vik) + β1(uik, vik)Xi1k + β2(uik, vik)Xi2k, (12)

where n = 10, k is a fixed constant, and β j(uik, vik) are defined as above. Let c(ik)lm be a spatiotemporal
adjacency relation, and β jk(uik, vik, tk)(k = 1, 2, . . . , 6) be unknown spatiotemporal parameters in the ith
country (uik, vik) in the kth year. The GTWPAR model is established as follows:

g(μik) = ρ
T

∑
m=1

nk

∑
l=1

c(ik)lm ηlm + β0k(uik, vik, tk)

+β1k(uik, vik, tk)Xi1k + β2k(uik, vik, tk)Xi2k, (13)

where T = 6; nk = 10 for every k years; and ρ is defined as above.
Algorithms I, II, III and IV of PR, GWPR, GWPAR and GTWPAR models are provided in Appendix A.4,

respectively.

4.2. Statistical Analysis

For the PR model, we get the estimated values of unknown parameters by Algorithm I. Then, the best
space bandwidth is chosen by the cross-validation method. Following Huang et al. [28], the range
[0.09, 2.49] of the space bandwidth is selected according to the minimum and maximum distance of the
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geographical positions. In the GWPR model, the best space bandwidth is h = 0.62, 0.59, 0.62, 0.61, 0.60, 0.60,
and the estimations of coefficient functions are given by Algorithm II. The optimal space
bandwidth of the GWPAR model is selected as h = 1.2895, 1.1316, 1.1316, 1.0526, 1.0526, 1.0526. Based
on Algorithm III, we can get the estimations of coefficient functions and the scalar autoregressive
parameter ρ̂ = 0.267, 0.269, 0.263, 0.264, 0.264, 0.264. For the GTWPAR model, we chose hs =

1.1316, 0.9737, 0.8947, 0.9211, 0.7842, 0.8789 and τ = 0.1, where τ(> 0) is a balanced parameter. The
coefficient estimations and scalar autoregressive parameter ρ̂ = 0.126 can be obtained by Algorithm IV.
The quantile and mean values of coefficient estimations and response variables are shown in Table 2.
We note that the GWPR, GWPAR and GTWPAR models can reflect the non-stationarity property of the
influencing factors; the PR model cannot. Moreover, the GTWPAR model has a better performance than
other models by comparing the true and fitted values.

Table 2. The quantile and mean values of coefficient estimations and response variables.

Model Coefficient Min 1st Qu Median 3rd Qu Max Mean

True η 5.293 5.644 6.455 7.288 8.871 6.559

PR β̂1 0.581 0.581 0.581 0.581 0.581 0.581
β̂2 0.385 0.385 0.385 0.385 0.385 0.385
η̂ 6.344 6.527 7.185 7.447 8.162 7.078

GWPR β̂1 −0.519 −0.249 0.009 0.641 1.774 0.288
β̂2 −0.672 −0.139 0.068 2.044 3.803 0.747
η̂ 5.618 6.422 7.022 7.202 8.813 6.932

GWPAR β̂1 −6.286 −1.258 −0.910 0.240 3.036 −0.556
β̂2 −2.089 −0.669 0.019 2.281 9.152 0.912
η̂ 5.176 5.625 6.435 7.219 8.940 6.539

GTWPAR β̂1 −5.642 −0.956 −0.677 0.186 2.992 −0.443
β̂2 −1.865 −0.464 0.215 2.134 9.104 0.988
η̂ 5.200 5.589 6.387 7.215 8.803 6.489

The average estimated coefficients are visualized in Figure 3. For the PR model, the GDP per capita
and population density had the same effect on the HIV/AIDS epidemic for ten countries in six years.
However, there exist significant spatial non-stationarity and auto-correlation for different countries under
the GWPR, GWPAR and GTWPAR models. Figure 4 shows the spatial distribution of the average MSE
of their response variables. The lighter the color, the smaller the average error is. Thus, the GWPAR and
GTWPAR models have the better fitting results.
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Figure 3. The spatial distribution of the average coefficient estimations in four models.

Figure 4. The average MSE of response variables.

These four indicators can effectively compare the performances of the proposed models (Table 3). The
calculation formulas of R2, AICc, D and MSE are given in Appendix A.5. The coefficient of determination
R2 gradually increases from 12.91% of the PR model to 99.57% of the GTWPAR model. The MSE, AICc and
D values of the GTWPAR model are smaller than those of other models. Therefore, the GTWPAR model is
more suitable to investigate the spatiotemporal HIV/AIDS epidemic.

Table 3. The comparison of the four models.

Model R2 AICc D MSE

PR 0.1291 42,504.40 42,624.07 1.6488
GWPR 0.6139 6495.12 6613.02 0.4326
GWPAR 0.9940 155.46 236.02 0.0067
GTWPAR 0.9957 115.25 190.05 0.0048

Based on the GTWPAR model, the mean values and 95% confidence intervals of the coefficient
estimations are shown in Figure 5. The mean estimations are represented by the dot, and the 95%
confidence intervals are given by the upper and lower lines. Note that the GDP per capita in Botswana,
Namibia and South Africa has a positive effect on the HIV/AIDS cases. Six other countries (except Lesotho)
had the opposite results. The population density for five countries had a positive effect on the HIV/AIDS
cases—Angola, Botswana, Namibia, South Africa and Zambia. The population density of other five
countries had the negative effect. Moreover, the impact of the GDP per capita on HIV/AIDS epidemic had

188



Entropy 2020, 22, 1230

a strong spatiotemporal non-stationarity in Lesotho, Malawi and Zimbabwe, while the population density
had a strong spatiotemporal non-stationarity in Angola.

Figure 5. The mean values and 95% confidence intervals of coefficient estimations.

5. Conclusions

In this paper, we propose four regression models, including the PR, GWPR, GWPAR and GTWPAR, to
investigate the non-stationary and auto-correlation properties. The relationships between the HIV/AIDS
epidemic, GDP per capita and population density were analyzed in ten countries of Sub-Saharan Africa
from 2011 to 2016. The unknown parameters of these models can be estimated by the Newton–Raphson
procedure and Fisher scoring algorithm.

The PR model is a classical generalized model, which considers the global relationships between the
response and explanatory variables. The GWPR and GWPAR models have been introduced to determine
the spatial non-stationarity or auto-correlation. The GTWPAR model proposed by this article can be used
to investigate not only spatiotemporal non-stationary but also auto-correlation. Thus, the PR, GWPR
and GWPAR models are several special cases of the GTWPAR model (see Remark 1 and Remark 2). The
performances of these models were evaluated by analyzing the correlations between the HIV/AIDS
epidemic and two socioeconomic factors. The parameter estimations of the models can be obtained by
Algorithms I, II, III and IV in Appendix A.4.

The results show that the impacts of GDP per capita and population density on HIV /AIDS cases
had significant spatiotemporal non-stationarity and auto-correlation. The GWPR, GWPAR and GTWPAR
models can reflect the strong spatial or spatiotemporal non-stationarity. The auto-correlation can be
reflected in the GWPAR and GTWPAR models. Compared with other models, the GTWPAR model is
more effective in terms of four comparison indicators. Thus, we suggest that the GTWPAR model can be
used to analyze the spatiotemporal characteristics of the HIV/AIDS epidemic and the influences of the
GDP per capita and population density.

Further work also exists in our study. For example, we observed that the effects of the GDP per
capita for Lesotho, Malawi and Zimbabwe and the population density for Angola on HIV/AIDS had
strong spatiotemporal non-stationarity. These may be the result of local environmental or political factors.
Whether the fitting results of these regions will perform better if explanatory variables such as local unique
environmental or political factors are added needs to be further investigated.
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GTWPAR Geographically and temporally weighted Poisson autoregressive model
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Appendix A. Detailed Processes

Appendix A.1. The Expressions of C, X and B

In model η = ρCη + B′X′, the expressions of C, X and B are

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(11)
11 · · · c(n11)

11 · · · c(1T)
11 · · · c(nT T)

11
...

...
...

...
...

...
...

c(11)
(n11) · · · c(n11)

(n11) · · · c(1T)
(n11) · · · c(nT T)

(n11)
...

...
...

...
...

...
...

c(11)
1T · · · c(n11)

1T · · · c(1T)
1T · · · c(nT T)

1T
...

...
...

...
...

...
...

c(11)
(nT T) · · · c(n11)

(nT T) · · · c(1T)
(nT T) · · · c(nT T)

(nT T)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X111 X121 · · · X1p1
...

...
...

...
Xn111 Xn121 · · · Xn1 p1

...
...

...
...

X11T X12T · · · X1pT
...

...
...

...
XnT1T XnT2T · · · XnT pT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where CIK, XIK are respectively the Ith row and the Kth column of the matrices C and X. Moreover,

B = (β11(u11, v11, t1), · · · , βp1(u11, v11, t1), · · · , β11(un11, vn11, t1), · · · , βp1(un11, vn11, t1), · · · ,

β1T(u1T , v1T , tT), · · · , βpT(u1T , v1T , tT), · · · , β1T(unT1, vnT1, t1), · · · , βpT(unT1, vnT1, t1))
′.

Appendix A.2. Formula and Information Matrix of β(u, v, t)

(1) For the matrix form of model (5), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ρC11)η1 − ρC12η2 − · · · − ρC1NηN =
p

∑
j=1

β j0X1j,

−ρC21η1 + (1 − ρC22)η2 − · · · − ρC2NηN =
p

∑
j=1

β j0X2j,

...

−ρCN1η1 − ρCN2η2 − · · ·+ (1 − ρCNN)ηN =
p

∑
j=1

β j0XNj.
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Differentiating the above equations with βr0 yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ρC11)
∂η1
∂βr0

− ρC12
∂η2
∂βr0

− · · · − ρC1N
∂ηN
∂βr0

= X1r,

− ρC21
∂η1
∂βr0

+ (1 − ρC22)
∂η2
∂βr0

− · · · − ρC2N
∂ηN
∂βr0

= X2r,

...

− ρCN1
∂η1
∂βr0

− ρCN2
∂η2
∂βr0

− · · ·+ (1 − ρCNN)
∂ηN
∂βr0

= XNr.

Then, ⎛⎜⎜⎜⎜⎝
1 − ρC11 −ρC12 · · · −ρC1N
−ρC21 1 − ρC22 · · · −ρC2N

...
...

...
...

−ρCN1 −ρCN2 · · · 1 − ρCNN

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

∂η1
∂βr0
∂η2
∂βr0

...
∂ηN
∂βr0

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
X1r
X2r

...
XNr

⎞⎟⎟⎟⎟⎠ .

Denote ∂η
∂βr0

= ( ∂η1
∂βr0

, ∂η2
∂βr0

, . . . , ∂ηN
∂βr0

)′ and

A =

⎛⎜⎜⎜⎜⎝
1 − ρC11 −ρC12 · · · −ρC1N
−ρC21 1 − ρC22 · · · −ρC2N

...
...

...
...

−ρCN1 −ρCN2 · · · 1 − ρCNN

⎞⎟⎟⎟⎟⎠
−1

,

X·r = (X1r, X2r, . . . , XNr)
′, Al· = (Al1, Al2, . . . , AlN)

′.

Thus, ∂η
∂βr0

= AX·r, that is

∂ηl
∂βr0

=
N

∑
h=1

AlhXhr = Al·X·r, l = 1, 2, . . . , N.

(2) The element Irb of I(β) satisfies

Irb(β) = − ∂2L1

∂βb0∂βr0

= − ∂

∂βb0

( N

∑
l=1

(Yl − μl
alφ

)( Al·X·r
V(μl)g′(μl)

)
Wl(u00, v00, t0)

)
= −

N

∑
l=1

(Yl − μl
alφ

) ∂

∂βb0

( Al·X·r
V(μl)g′(μl)

)
Wl(u00, v00, t0)

−
N

∑
l=1

( Al·X·r
V(μl)g′(μl)

) ∂

∂βb0

(Yl − μl
alφ

)
Wl(u00, v00, t0)

= −
N

∑
l=1

(Yl − μl
alφ

) ∂

∂βb0

( Al·X·r
V(μl)g′(μl)

)
Wl(u00, v00, t0)

+
N

∑
l=1

Al·X·r Al·X·b
alφV(μl)(g′(μl))2 Wl(u00, v00, t0).
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The Fisher information matrix is

I(β) = E(I(β)) = E((Irb(β))p×p) =
N

∑
l=1

Al·X·r Al·X·b
alφV(μl)(g′(μl))2 Wl(u00, v00, t0)

=
1
φ

N

∑
l=1

Tl Al·X·r Al·X·bWl(u00, v00, t0).

Appendix A.3. Formula and Information Matrix of ρ

(1) Differentiating (4) with ρ yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ρC11)
dη1
dρ

− ρC12
dη2
dρ

− · · · − ρC1N
dηN
dρ

= C11η1 + C12η2 + · · ·+ C1NηN ,

− ρC21
dη1
dρ

+ (1 − ρC22)
dη2
dρ

− · · · − ρC2N
dηN
dρ

= C21η1 + C22η2 + · · ·+ C2NηN ,

...

− ρCN1
dη1
dρ

− ρCN2
dη2
dρ

− · · ·+ (1 − ρCNN)
dηN
dρ

= CN1η1 + CN2η2 + · · ·+ CNNηN .

That is to say

⎛⎜⎜⎜⎜⎝
1 − ρC11 −ρC12 · · · −ρC1N
−ρC21 1 − ρC22 · · · −ρC2N

...
...

...
...

−ρCN1 −ρCN2 · · · 1 − ρCNN

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

dη1
dρ
dη2
dρ

...
dηN
dρ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
C11 C12 · · · C1N
C21 C22 · · · C2N

...
...

...
...

CN1 CN2 · · · CNN

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

η1
η2
...

ηN

⎞⎟⎟⎟⎟⎠ .

Let dη
dρ = ( dη1

dρ , . . . , dηN
dρ )′. Then, dη

dρ = ACη, where

dηl
dρ

=
dg(μl)

dρ
=

N

∑
h=1

Al·C·hηh, l = 1, 2, · · · , N.

(2) The scalar vector of ρ is

S(ρ) =
dL2

dρ
=

1
φ

N

∑
l=1

Tl

( N

∑
h=1

Al·C·hηh

)
(Yl − μl)g′(μl)

=
1
φ
(ACη)′T(Z − η).

The information matrix is

I(ρ) = −∂2L2

∂ρ2 = − d
dρ

N

∑
l=1

(Yl − μl
alφ

)(∑N
h=1 Al·C·hηh

V(μl)g′(μl)

)
= −

N

∑
l=1

(Yl − μl
alφ

) d
dρ

(∑N
h=1 Al·C·hηh

V(μl)g′(μl)

)
−

N

∑
l=1

(∑N
h=1 Al·C·hηh

V(μl)g′(μl)

) d
dρ

(Yl − μl
alφ

)
,
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where
dμl
dρ

=
dμl

dg(μl)

dg(μl)

dρ
=

1
g′(μl)

N

∑
h=1

Al·C·hηh.

Thus,

I(ρ) = −
N

∑
l=1

(Yl − μl
alφ

) d
dρ

(∑N
h=1 Al·C·hηh

V(μl)g′(μl)

)
+

N

∑
l=1

(∑N
h=1 Al·C·hηh)

2

alφV(μl)(g′(μl))2 .

The Fisher information matrix is

I(ρ) = E(I(ρ)) =
N

∑
l=1

(∑N
h=1 Al·C·hηh)

2

alφV(μl)(g′(μl))2

=
1
φ

N

∑
l=1

Tl

( N

∑
h=1

Al·C·hηh

)2
=

1
φ
(ACη)′T(ACη).

Appendix A.4. Algorithms of Coefficient Estimation

We provide four algorithms to estimate the unknown coefficients of PR, GWPR, GWPAR and
GTWPAR models in Section 4.

Algorithm I: Estimate the unknown parameters in the PR model. Take the initial values g(μ(0)
ik ) =

η
(0)
ik = ln μ

(0)
ik , yik = μ

(0)
ik , Z(0)

ik = η
(0)
ik + g′(μ(0)

ik )(yik − μ
(0)
ik ), and

w(0)
ik =

1

aikV(μ
(0)
ik )(g′(μ(0)

ik ))2
, i = 1, 2, . . . , 10, k = 1, 2, . . . , 6.

The iterative formula of β̂(m+1) is

β̂(m+1) =
(

X′W(m)X
)−1

X′W(m)Z(m).

Repeat the above step until convergence yields. The estimated value β̂ = β̂(m) can be obtained.

Algorithm II: Estimate the unknown coefficients in the GWPR model. (Note that k is a fixed constant
taken from {1, 2, . . . , 6} and the following steps should be repeated six times independently). Take the
initial values η

(0)
ik = g(μ(0)

ik ), yik = μ
(0)
ik , Z(0)

ik = η
(0)
ik + g′(μ(0)

ik )(yik − μ
(0)
ik ), and

t(0)ik =
1

aikV(μ
(0)
ik )(g′(μ(0)

ik ))2
, i = 1, 2, . . . , 10.

Let Z(0) = (Z(0)
1k , Z(0)

2k , · · · , Z(0)
10k)

′ and T(0) = diag(T(0)
1k , T(0)

2k , · · · , T(0)
10k). The iterative formula of β̂(m+1) at

the location (u0k, v0k) is

β̂(m+1)(u0k, v0k) = (A′(u0k, v0k)T(m)W(u0k, v0k)A(u0k, v0k))
−1 A′(u0k, v0k)T(m)W(u0k, v0k)Z(m),

where W(u0k, v0k) = diag(w1(u0k, v0k), w2(u0k, v0k), · · · , w10(u0k, v0k)) and

wi(u0k, v0k) =
1√
2π

exp
(
− 1

2

(d(0)ik
h

)2)
.
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Repeat the above step until convergence. When (u0k, v0k) takes all the locations (uik, vik), we will get the
estimated value β̂ = β̂(m) in a fixed the kth year.

Algorithm III: Estimate unknown coefficients in the GWPAR model. (Note that k is a fixed constant
and the following steps should be repeated six times as in Algorithm II). Take the initial value β

(0)
1 ,

β
(0)
2 from Algorithm II, and ρ(0) is the absolute value of spatial Moran’s I = 0.4480. The initial values

η(0) = (I − ρ(0)C)−1Xβ(0), μ
(0)
ik = g−1(η

(0)
ik ), and

Z(0)
ik = g(μ(0)

ik ) + g′(μ(0)
ik )(yik − μ

(0)
ik ), t(0)ik =

1

aikV(μ
(0)
ik )(g′(μ(0)

ik ))2
, i = 1, 2, · · · , 10.

The (m + 1)th iterative estimation β̂(m+1)(u0k, v0k) and ρ̂(m+1) is

β̂(m+1)(u0k, v0k) = ((A(m)X)′T(m)W(A(m)X))−1(A(m)X)′T(m)WZ(m),

ρ̂(m+1) = ρ(m) + ((A(m)Cη(m))′T(m)(A(m)Cη(m)))−1(A(m)Cη(m))′T(m)(Z(m) − η(m)).

If (u0k, v0k) takes all the locations (uik, vik), the estimate β̂(m+1) can be given. When all estimated values
arrive to converge, we will get β̂ = β̂(m)(uik, vik) and ρ̂ = ρ̂(m) in a fixed the kth year.

Algorithm IV: Estimate the unknown coefficients in the GTWPAR model. Take the initial values
β
(0)
1k (uik, vik, tk), β

(0)
2k (uik, vik, tk), i = 1, 2, . . . , 10, k = 1, 2, . . . , 6 from Algorithm III, and ρ(0) is the absolute

value of spatiotemporal Moran’s I= 0.2143. The initial value vector η(0) = (I − ρ(0)C)−1Xβ(0), μ
(0)
ik =

g−1(η
(0)
ik ), Z(0) = (Z(0)

1 , Z(0)
2 , · · · , Z(0)

60 )′, T(0) = diag(T(0)
1 , T(0)

2 , . . . , T(0)
60 ) and

Z(0)
ik = g(μ(0)

ik ) + g′(μ(0)
ik )(yik − μ

(0)
ik ), T(0)

ik =
1

aikV(μ
(0)
ik )(g′(μ(0)

ik ))2
.

The (m + 1)th iterative estimations β̂(u00, v00, t0) and ρ̂ are

β̂(m+1)(u00, v00, t0) = ((A(m)X)′T(0)W(A(m)X))−1

×(A(m)X)′T(m)WZ(m),

ρ̂(m+1) = ρ(m) + ((A(m)Cη(m))′T(m)(A(m)Cη(m)))−1

×(A(m)Cη(m))′T(m)(Z(m) − η(m)).

where W = {wik(u00, v00, t0)} and

wik(u00, v00, t0) =
1√
2π

exp
{
− 1

2

( (u00 − uik)
2 + (v00 − vik)

2

h2
S

+
(t0 − tk)

2

τh2
S

)}
.

A detailed definition is given in Section 3.1. If (u00, v00, t0) takes all the locations (uik, vik, tk) and all
estimations converge, we will get β̂ = β̂(m)(uik, vik, tk) and ρ̂ = ρ̂(m).

It is worth noting that we use the parameter estimates of the previous model as the initial values of
the next model to reduce the number of iterations and improve the operational efficiency. For example, the
estimations of the GWPR model are selected as the initial values of the GWPAR model.
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Appendix A.5. The Model Comparison Indicators (See Table 3)

(1) The coefficient of determination is defined by

R2 = 1 − ∑(η − η̂)2

∑(η − η̄)2 ,

where η is a set of vectors {ηik}, η̂ and η̄ are the parameter estimate and the mean value of η, respectively.
(2) Deviation can be defined as

D = ∑(yln(
μ̂

y
) + (y − μ̂)),

where y is a set of response variables, and μ̂ is the estimation of μ=E(y).
(3) The corrected Akaike information criterion is

AICc = D + 2P + 2
P(P + 1)

N − P − 1
,

where D, P and N are the deviation, the number of parameters and the number of samples, respectively.
(4) Mean-square error is given by

MSE =
1

N − P ∑(η̂ − η)2,

where the parameter settings are the same as above.
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Abstract: In a previous study, air sampling using vortex air samplers combined with species-specific
amplification of pathogen DNA was carried out over two years in four or five locations in the
Salinas Valley of California. The resulting time series data for the abundance of pathogen DNA
trapped per day displayed complex dynamics with features of both deterministic (chaotic) and
stochastic uncertainty. Methods of nonlinear time series analysis developed for the reconstruction
of low dimensional attractors provided new insights into the complexity of pathogen abundance
data. In particular, the analyses suggested that the length of time series data that it is practical
or cost-effective to collect may limit the ability to definitively classify the uncertainty in the data.
Over the two years of the study, five location/year combinations were classified as having stochastic
linear dynamics and four were not. Calculation of entropy values for either the number of pathogen
DNA copies or for a binary string indicating whether the pathogen abundance data were increasing
revealed (1) some robust differences in the dynamics between seasons that were not obvious in the
time series data themselves and (2) that the series were almost all at their theoretical maximum
entropy value when considered from the simple perspective of whether instantaneous change along
the sequence was positive.

Keywords: time series; entropy; average mutual information; stochastic processes; deterministic dynamics

1. Introduction

“We now have to look at apparently random time series of data, be they from the stock market,
or currency exchanges, or in ecology and ask are we seeing “random walks down Wall street” or
deterministic chaos, or, often more likely, some mixture of the two.”

—Sir Robert May [1]

The study of disease dynamics in plant pathology has been dominated by analysis of situations
where disease increases monotonically within single growing seasons or over several seasons [2].
Reflecting this focus, the literature on the use of monotonic growth curve models or, more recently,
compartment models consisting of linked differential equations is extensive and the methodology
is well developed. In contrast, the literature on how to handle long, oscillating data series for plant
pathogen populations is rather thin, with only isolated case studies [3–7] employing a range of statistical
approaches. To date, there has been no concerted effort in botanical epidemiology to establish general
properties of time series data associated with pathogen populations or disease intensity. This is due
in part, no doubt, to the fact that time series methods have been considered relevant mostly for
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multi-season contexts, and multi-season datasets are scarce in plant pathology. However, with the
advent of molecular probes for studying the airborne inoculum of plant pathogens, it has become
much easier to capture time series data within single growing seasons [5,6,8].

Developments in technology for monitoring airborne inoculum of target species offer a promise of
methodological advance to epidemiologists with an interest in creating evidence-based, within-season
decision rules for disease management in crops. Given such potential applications for spore traps
and quantification of target nucleic acid sequences, it is important that efforts are made to develop an
analytical approach which takes into account the relevant statistical properties of the data that these
monitoring methods generate. What can experimenters expect to see when they collect such data?
What types of dynamical behavior are likely to be apparent, and how should the results be interpreted
in relation to the use of the data in disease management?

The work we report here falls into the broad theme on decision-making that runs through several
of the contributions to this Special Issue of Entropy. In the case of the current work, our effort is aimed
more at understanding the basic properties of the data than in deriving decision rules from them.
The work is motivated by our belief that it is important to be aware of any informational limitations
inherent in the data, so that efforts to use air sampling as a means of forecasting interventions occur
with realistic expectations. The work is intended to be an initial contribution to the literature; one
from which we hope a range of further investigations covering a wider range of pathogen systems
will develop.

As already noted, airborne concentrations of pathogen inoculum have been monitored using
vortex (spinning rod) air samplers combined with species-specific quantitative polymerase chain
reaction (qPCR) in a number of situations. In some cases, the approach has already been used
commercially for disease management. Carisse and colleagues were pioneers, developing one of the
first examples in commercial agriculture; in their case, to manage fungicide applications to control
Botrytis leaf blight in onion in Quebec, Canada [5,9,10]. Their work (along with characterization of
effective fungicide regimes and conducive weather conditions) helped to improve monitoring and to
reduce disease outbreaks.

The use of spore traps linked with qPCR assays has been developed successfully for disease
monitoring in several other pathosystems, including monitoring for early season inoculum for grape
powdery mildew [11], where mitigating early season inoculum can reduce yield losses in susceptible
varieties. These studies show that managing disease based on the binary presence or absence of
pathogen primary inoculum can be quite successful, since what is needed in that situation is to detect
the first occurrence of pathogen activity at the start of the growing season. The use of these systems for
mitigating the impacts from secondary inoculum is more challenging.

Spinach downy mildew, caused by the obligate oomycete pathogen Peronospora effusa, is the
most important threat to spinach production worldwide. Choudhury et al. [6] examined several sets
of qPCR-based spore trap data collected from the Salinas Valley in California. The resulting time
series were analyzed by fitting statistical models to characterize both trend and periodicity. While
the approach was successful in producing a description of the observed dynamics, and in linking
important statistical features to plausible biological mechanisms, it offered little in the way of general
understanding of inoculum dynamics. Analyses of the coefficients of prediction and the Lyapunov
exponents of the time series suggested that the datasets were quasi-chaotic. Further analyses of this
example dataset could reveal general dynamics of airborne inoculum for plant pathogens.

Recent developments in time series analysis [12] based on information-theoretic quantities offer
some promise in being able to extract more generic properties from the available data. Our objectives
in this paper are to revisit the data originally studied by Choudhury et al. [6] and to apply the methods
suggested by Huffaker et al. [12] in order to describe the dynamics of pathogen airborne inoculum
in information theoretic terms. The analyses also place our data from botanical epidemiology in
the wider context of the analysis of dynamical systems allowing interdisciplinary comparison. Our
primary intended audience is plant pathologists and epidemiologists who might be interested in an
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introduction to these topics. For that reason, our approach is somewhat pedagogical and does not
delve deeply into the underlying technical details.

2. Materials and Methods

2.1. Data Collection

Airborne inoculum of P. effusa was sampled at four locations in the Salinas Valley of California
in 2013 and 2014 using vortex air samplers constructed by Dr. Walt Mahaffee (USDA-ARS Corvallis,
Corvallis, OR, USA) and operated by Dr. Steven Klosterman (USDA-ARS Salinas, Salinas, CA, USA).
The presence of the inoculum and quantification were achieved using qPCR amplification of a
species-specific DNA sequence in the total DNA extract from the sampler rods. Details of the sampling
procedure, qPCR primers, reaction conditions, and translation of the qPCR cycle threshold number to
daily pathogen DNA copy number are described in Klosterman et al. [8].

2.2. Data Preparation

Samples were recovered from the air samplers on an irregular sampling interval of two or three
days depending on the availability of technical staff. In the original 2016 study [6], we accommodated
the irregular sampling interval by fitting a flexible sine function to the observations, having first
removed any temporal trend by linear regression. In the current work, in order to utilize nonlinear
methods incorporating information quantities, we interpolated the raw data to produce time series
with a regular time step of one day. All nine data series were processed in the same way so that we
could compare their statistical properties directly. The interpolation was achieved by linear averaging
between the measured data points. The interpolation method will have the effect of smoothing the data
to some extent, and the interpretation of the results takes that into account. We avoid overinterpretation
of fine-grain aspects of the analyzed series and focus on the major dynamic features that are unlikely
to be strongly influenced by the interpolation.

2.3. Basic Time Series Analysis

After interpolation of the data to a daily time step, each of the nine time series consisted of
129 observations of the estimated target DNA copy number of P. effusa trapped over the preceding
24 h period. The nine time series were first inspected for evidence of an overall trend in copy number
with time. Increasing trends were detected in 7 of the 9 series, and the series were tagged accordingly
to indicate their status. Irrespective of whether or not the initial inspection suggested a trend to be
present, in order to standardize the pretreatment of the data, a simple linear regression with time
(i.e., data point in sequence, t = 1, 2, 3,... 129) was fitted to the natural logarithm of the estimated
copy number. The residuals from the regression were then exponentiated to produce the detrended
series that were subsequently used analysis. In what follows, we refer to these series as Nt, indicating
the (detrended) copy number on day t. When corresponding log-transformed values are analyzed,
they are denoted nt.

For each series, we obtained the autocorrelation function (ACF), the partial autocorrelation
function (PACF), and the phase plot of the log-transformed series with nt+1 = ln(Nt+1) on the ordinate
and nt = ln(Nt) on the abscissa. The PACF differs from the standard autocorrelation function in that it
considers only the direct effect of observations at one point in the series on observations separated by
lag τ, indirect effects, operating through the interposing points in the series that are removed.

2.4. Nonlinear Time Series Analysis

To characterize the time series in terms of nonlinear dynamics, we followed an approach
suggested by Huffaker et al. [12] and by Kantz and Schreiber [13]. The various quantities estimated
for each series were obtained using functions provided in the R packages “nonlinearTseries” [14],
“TseriesChaos” [15], or “TseriesEntropy” [16]. Additional calculations to obtain empirical entropy values
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used the package “entropy” [17] or were coded directly in R. As with many other aspects of applied
data analysis, for several of the steps in a nonlinear time series analysis, there is no single method
that is guaranteed to provide optimal results under every circumstance. For many of the procedures,
there are no formal test statistics to indicate that a “significant” result has been obtained; we followed
the approaches suggested in the references. We provide R code and data necessary to replicate a
full set of analyses for one of the 9 time series analyzed in the repository at the following URL:
https://github.com/robchoudhury/spore_trap_information_theory. The R code is provided as is, and
we offer no guarantee that it will work when adapted to other data sets.

2.4.1. Surrogate Testing for Nonlinear Dependence

Since nonlinear analysis (NLTS) can be time-consuming, an initial step should be to test for lack
of linear dependence in the observed data. An agreed approach for performing this is to perform
surrogate tests [12,14]. Different versions of the surrogate test are implemented in nonlinearTseries and
TseriesChaos. The basic idea in both cases is to construct an empirical hypothesis test by resampling from
the observed data, with the test statistic being a suitable property of the data that will hold under linear
dependence but not otherwise. One of the simplest approaches, the one implemented in nonlinearTseries,
relies on the idea that a Gaussian linear process will show time reversibility. Randomized permutations
are obtained using a method in which the phases of the Fourier transform of the observed data are
randomized. A two-sided hypothesis test is implemented to examine whether there is evidence that
the value calculated from the observed data differs from the set of surrogates generated in the data
resampling routine. We set the “significance level” option at 0.02, which results in the observed
data being treated as one observation in a set of 100, with the two-sided test examining whether the
observed data are in the p = 0.02 upper or lower tail of the sample. The supplied function includes
a built-in diagnostic plot of the resampling test, but we implemented our own diagnostic graphical
representation of the outcome for the test.

TseriesEntropy implements a more complex surrogate testing procedure. First, the best-fitting
linear autoregressive (AR) model is selected on the basis of the Akaike Information Criterion (AIC).
The residuals of the best AR model are resampled (with replacement). For each resampled series,
a metric entropy measure (the Bhattacharya–Matusita–Hellinger measure, Sp) [18] is calculated at
different lags. Based on the relevant properties of the resampled data, the 95% confidence band for
Sp can be calculated and the values for the observed series are compared with the confidence band.
If Sp for the observed series falls outside the band, the series can be considered to show nonlinear
as opposed to linear dependence at the relevant lags. The entropy-based approach in TseriesEntropy
is computationally more demanding than the expectation-based approach in nonlinearTseries. In the
initial work, we examined both approaches. The results reported here are for the time-reversibility
approach implemented in nonlinearTseries. The code supplied in the Supplemental Materials includes
an example of the regression-based approach, deactivated by comment markers.

2.4.2. Characterizing Nonlinear Properties

Assuming that the surrogate tests indicate sufficient reason to proceed with NLTS, characterization
of the dynamics in terms of their tendency to chaotic versus stochastic uncertainty is an important
component of the ensuing effort. Following the pioneering work of Takens [19], one widely accepted
approach to NLTS proceeds by attempting to reconstruct important features of the complete (and only
partially observed) phase space of the whole system, using the methods of time delay embedding to
characterize the time series of a single observed component of the system.

In the current context, where the ultimate motivation is the hope of using similar series in disease
management, the capacity to reconstruct the phase portrait of the whole system is of secondary
importance to characterizing the dynamics of the observed series. However in this initial study the
focus is on understanding the dynamics rather than immediate practical application, and the time delay
embedding approach may be valuable because the features of the dynamics it reveals are informative.
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Three properties of the series are important in NLTS, these being (i) the average mutual information
(AMI), I(Nt,; Nt-τ), of the time series data at successive lags, τ = 0, 1, 2, . . . τmax; (ii) the Theiler Window,
tw; and (iii) the embedding dimension, m.

The AMI Function

The AMI function is calculated by binning observations and by calculating the mutual information
obtained about observation Nt being in the ith bin from knowing observation Nt-τ is in the jth bin.
The results are averaged over all of the available data to produce the average mutual information.
A graphical plot of I(Nt,; Nt-τ) against lag, τ = 0, 1, 2, . . . τmax produces an information-theoretic
analogue of the ACF plot, but one in which the AMI’s general measure of lagged association, as
opposed to the linear lagged dependence captured by ACF, is visualized. The first minimum, or the
first occurrence of a value below an empirical threshold, of the AMI function is taken to be an indication
of the embedding time delay, d, of the series, since this value indicates a time lag at which observations
have, in a general sense, low correlation.

The Theiler Window (tw)

The Theiler Window [20,21] is used to define the minimum separation along the time series that
two points must have in order to be included in procedures used to find the embedding dimension,
m (see below). Theiler’s review [21] gives a detailed and technical account of the issues and the various
approaches suggested (up to that time) for finding the embedding dimension.

For long time series, both TseriesChaos and nonlinearTseries offer functions to generate a space-time
plot [22] from which tw can be selected by choosing a value at which there is a low probability of points
being close in the phase space for a given time lag separation. For short time series, such as what we
have in the present study, the space-time plot approach may not give usable results and other options
may be needed; this was the case with our datasets which consist of 129 observations.

As an easily obtained first approximation, Huffaker et al. [12] suggested using the first minimum
of the standard autocorrelation function (ACF). Since ACF is a linear function, there are risks in using it
to estimate correlation structure of nonlinear data [23]; indeed, this issue was one of the motivations for
Theiler’s review [21] of methods for identifying the dimensionality of nonlinear attractors. The problem,
in general, appears to be that nonlinear correlation may occur at a larger lag separation that would be
suggested by the ACF.

In the current case, lacking a reasonable alternative, we opted for a trial-and-error approach. With
both the AMI function and the ACF available, we had estimates of both general association and linear
correlation with lag, while the original time series and the corresponding phase plots also help to
indicate suitable values of tw. For each series, we started with the value suggested by the first minimum
of the ACF, noting also whether this lag separation was longer or shorter than the value suggested by
the AMI. Where the AMI reached its first minimum at longer lag than the ACF, we used a range of
estimates for tw and examined the effect of changing tw on the estimated embedding dimension, m.

The Embedding Dimension, m

Options for estimating, m, are either the method of False Nearest Neighbors (FNN) offered in
TseriesChaos (Huffaker et al. [12] pp. 67–69) or Cao’s [24] algorithm implemented in nonlinearTseries.
Briefly, the motivation for the FNN approach comes from the idea that (in the current case), the observed
time series of pathogen DNA copies represent only one dimension of a higher-order dynamical system.
We can think of the observed series as representing the whole higher-order dynamical system projected
onto a single dimension. With this perspective, points that appear close to one another may actually be
widely separated in the full dimensional space of the dynamical system. The idea of FNN computation
is to select a subset of points within a given “radius” of each other but separated by at least the value
of tw and to track whether they remain as neighbors as the dimensionality of the assumed attractor
is incrementally increased. If the proportion of FNN is plotted against the number of dimensions,

201



Entropy 2020, 22, 1343

m, the first value of m at which the proportion of FNN is minimized provides an estimate of the
embedding dimension.

In the approach suggested by Cao [24], the embedding dimension is identified by calculating a
pair of functions, referred to as E1(m) and E2(m), of putative values for the embedding dimension, m.
Note that Cao’s original notation used d in place of m. Cao’s method starts by calculating an overall
Euclidean distance measure between pairs of points on time delay vectors for successively larger
assumed values of m. Function E1(m) calculates the ratio of the distance measure at successive pairs
of values, (m+1, m). Cao’s insight was that this ratio stabilizes close to 1 if the data are generated by
an attractor. The second function, E2(m), focuses on the distance between only the nearest neighbors
in the time delay vectors and operates on the distance measure based only on those. As with E1(m),
the function returns the ratio between successive pairs (m+1, m). If the data are generated by a
deterministic attractor, E2(m) has the property that, at some value m*, E2(m*)! = 1, whereas if the
data are generated by a process dominated by stochastic noise, E2(m) � 1, ∀m. Thus, in addition to
providing an estimate of the relevant embedding dimension, Cao’s method offers the advantage over
the FNN approach of providing an indication of whether the data-generating process is characterized
by deterministic or stochastic uncertainty.

2.5. Additional Entropy Measures

In addition to the characterization of the dynamics provided by the time-delay-embedding
approach, we calculated two empirical entropy values to help in understanding the uncertainty in the
data for airborne pathogen DNA. The first approach worked directly on the DNA copy number time
series (following detrending if necessary, see above). The entropy () function from the R package entropy
was used to calculate empirical estimates of the entropy in the data at each time point by iteratively
adding the datum for each time point to the entropy calculation. Calculation using this approach
starts by constructing a binning structure for the data and then by estimating the entropy based on the
frequencies of observation in each bin. We started the iterative process at the 10th time point, so that
the first estimate of entropy was based on the first 10 observations of each series. The calculation then
proceeded as just outlined, with the second estimate being based on the first 11 data points and so on.
The maximum likelihood option for the entropy function was used throughout.

As a second approach to characterize uncertainty in the time series data in relation to decision
making, we first transformed each series into a binary string of length (tmax-1). First differences between
successive pairs of values were calculated, and if the resulting difference was greater than 0 (indicating
Nt+1 > Nt), then 1 was entered for the corresponding value of the string; Nt+1 ≤ Nt resulted in 0.
The calculation then proceeded along similar lines to those outlined for the entropy of the copy number,
iteratively increasing the size of the dataset by one time point and calculating a new entropy value.
In the current case, at each time point, we calculated the proportion of the data that were 1s and then
used Shannon’s equation for expected information to give an entropy value in bits for the string at each
time point (including all data up to that time). The calculation was coded directly in R. We initiated the
calculation with the first two observations and then iterated the calculation one time point at a time.

2.6. Linear Autoregressive Models

In discussing the analysis of time series data for biological populations, Royama [25] noted that
for autoregressive (AR) models where an instantaneous growth rate is modeled as a function of lagged
population sizes, there is a qualitative difference in the types of behavior that a second-order lag
model can display compared with a first-order model. Further, given the capacity for second-order
linear models to generate quite complex oscillatory patterns, even when completely deterministic,
Royama [25] suggested they could be expected to approximate the behavior of simple nonlinear models.
Since the main aim of our investigation is to look at the utility of nonlinear methods, the linear AR
models included here were fitted for the purpose of illustrating the extent to which a linear model can
account for the observed behavior of the data collected from air samplers.
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We followed a conceptual approach that draws on the work of Royama [25] and Turchin [26] in
fitting the AR linear models. The process starts with the log-transformed (loge) time series, denoted nt.
The instantaneous log growth rate Rt is defined as nt+1 − nt, and the estimated linear AR model is then

Rt = a0 + a1nt + a2nt-τ+ ε, τ = 1, 2, ... τmax (1)

in which a0, a1, etc. are parameters to be estimated; ε is an error term; and τ is an index indicating
lag dependence. Selection of the order of lag dependence (i.e., the value τmax) to use in fitting the
AR models in each case was guided by the estimates of ACF and AMI functions (see Section 2.4.2
above). Parameter estimation was achieved by the standard least-squares approach implemented in
the lm () function in the R base statistics package. For the selected model in each case, we noted the
percent variance accounted for by the model in form of the standard adjusted-R2 and a coefficient of
prediction similar to the one proposed by Turchin [26]. The coefficient was obtained as follows: We
fitted a model consisting of only the mean value of the dependent variable and captured the residual
sum of squares, (RSSmn). Next, we calculated 1−(RSSmod/RSSmn), in which RSSmod is the residual sum
of squares from the selected model. When RSSmod > RSSmn, the coefficient has a negative value and
indicates that the model fits noise. Values approaching 1 occur when the observed series has a pattern
of oscillations that can be captured reasonably well in simple autoregressive models. Finally, values in
the region of 0 indicate that the series is dominated by noise and, possibly, too short and complex to be
characterized well.

3. Results

3.1. Time Series Properties and Nonlinearity

Time series graphs for the nine series of spore trap DNA copy number data are shown in Figure 1.
Two of the nine series did not require detrending prior to analysis, these being King City South,
2014 and Gonzales, 2014. The results of testing for evidence of nonlinear dependence using Cao’s
method are shown in Table 1 along with other summary parameters of interest for the nine series.
For four series—Salinas 2013, Soledad 2013, King City North 2013, and Gonzales 2014—the surrogate
(bootstrap) test led to rejection of the null hypothesis that the data were compatible with a stochastic
linear (i.e., time-reversible) process. The output from the bootstrap analysis for each series is shown in
Figure 2.

The results of using Cao’s [24] method to test for deterministic versus stochastic dynamics
indicated that all 9 series had a stochastic nature; the value of function E2(m) stayed close to the value 1
for all values of m tested. Graphical output from the R function is given in Appendix A in Figure A1.
Note that the R function uses the symbol d in the place of m.

The phase plots (Figure 3) for the detrended series show a strong tendency for the points to lie
along the diagonal on which nt = nt+1, with short orbits away from this line, typically lasting no more
than three to four time steps. These features are indicative of stochastic variation around a fixed value
with a mixture of immediate and time-delayed feedback Turchin [26].
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(a)

(b)

(c)

(f)

(d)

(e)

(g)

(h)

(i)

Figure 1. Detrended daily pathogen DNA copy number trapped (right axis scale) and cumulative
entropy (nats, left axis scale) in the copy number series for 9 location/year combinations in which vortex
air samplers were used to sample for the presence of DNA from the downy mildew pathogen of spinach,
P. effuse, in the Salinas Valley of California: (a–e), 2013; (f–i), 2014. The King City, North location was
sampled only in 2013.
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Table 1. Summary statistics for the 9 time series of pathogen DNA copy number.

Sal13 Sal14 Gon13 Gon14 Sol13 Sol14 KcN13 KcS13 KcS14 2

ACF 1 3 6 9 7 5 8 5 7 5
PACF 4 8 3 10 6 5 4 5 5
AMI 5 11 6 10 4 10 6 7 6

m 6 6 6 6 9 6 6 7 7
λ1 0.05 0.16 0.09 0.06 0.13 0.18 0.04 0.04 0.05

Linear? N Y Y N N Y N Y Y
Entropy, nats

(copy no.) 1.00 0.98 1.58 0.88 1.70 0.88 0.63 2.04 1.14

Entropy, bits
(binary) 0.99 0.99 1.00 1.00 0.98 0.98 1.00 1.00 1.00

%VAF 11.4 6.6 3.6 4.2 7.1 17.0 26.4 20.1 7.5
pred Coeff 0.14 0.14 0.10 0.06 0.08 0.18 0.30 0.22 0.09

1 ACF, lag at which series autocorrelation function has first minimum; PACF, lag at which the partial autocorrelation
function has its first minimum; AMI, lag at which the series average mutual information function has its first
minimum; m, estimated embedding dimension; λ1, the maximum Lyapunov exponent; Linear?, outcome of surrogate
test for compatibility of the series with stochastic linearity; Entropy copy no., estimated entropy (nats) of the copy
number time series; Entropy binary, entropy (bits) of the binary series indicating if the copy number increased
between successive pairs of observations; %VAF, percent variance accounted for in the best autoregressive linear
model for the series of instantaneous rates of change in the log copy number data; pred Coeff, prediction coefficient
for the autoregressive linear model (see text for details). 2 Location/year combination: Sal, Salinas; Gon, Gonzales;
Sol, Soledad; KcN, King City, North; KcS, King City, South; 13, 2013; 14, 2014.

For all 9 series, the value of the dominant Lyapunov exponent (λ1) was greater than 0, indicating
that chaotic divergence would occur in independent realizations generated by the same data generating
process. Although positive, the values of λ1 were small, ranging from 0.04 to 0.17 (Table 1). Across the
nine series, the value of the Lyapunov exponent was negatively correlated with the percent variance
accounted for in fitting linear regression models to the series of instantaneous log growth rates and the
coefficient of prediction for the linear fits; series with a higher Lyapunov exponent gave rise to poorer
linear autoregressive models.

The best fitting autoregressive models for the time series of instantaneous rates generally captured
only a low proportion of the variance in the series (Table 1). In general, the fitted values from the
models showed less variability than the observed data, although in some cases, the qualitative fit to
the series, in tracking the direction of the oscillations, was reasonably good. The main result from
these analyses was that, while the data neither exhibited oscillations that could be easily attributed to a
low-dimensional nonlinear attractor nor were they easily described by autoregressive linear models.
The fitted autoregressive models and series of Rt for each location/year combination are shown in
Figure A3 in Appendix A.

The AMI and ACF functions were correlated, but there was no consistent tendency for the AMI to
reach its first minimum at higher lag than ACF. The AMI function minimized at higher lag than the
ACF in 6 of the 9 cases; the functions minimized at the same lag in one case; and in the remaining two
cases, the AMI minimized at lower lag than the ACF. In general, the estimated embedding dimension,
m, was similar to the value suggested by the first minimum of the AMI and ACF functions; across the
nine series, m was negatively correlated with both AMI and ACF. The relatively large estimated values
for m are indicative of complex dynamics in the observed data, but we note, again, that the data series
are relatively short, which may affect the accuracy of the estimated parameter.
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Figure 2. Results from surrogate tests (i.e., bootstrap data resampling) to assess the compatibility of
spore trap data giving daily pathogen DNA copy numbers with time reversibility: the initial bar (in
red) in each graph is the test statistic calculated for the original data. The remaining bars are the
values calculated for bootstrap resamples of the data constructed in such a way to break any temporal
autocorrelation in the original data. The dashed horizontal lines show the standard deviation of
the surrogates above and below zero. Four of the nine series fail the two-sided hypothesis test for
compatibility with time reversibility (i.e., stochastic linearity). Further details are given in the main text.
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Figure 3. Phase space plots for the 9 series of detrended daily pathogen DNA copy numbers: the data
are loge values of the detrended data. Series orbiting a fixed attractor or a limit cycle show clockwise
orbits. The obvious tendency for the phase portraits to lie along the diagonal for which nt = nt+1 is
partly an artifact of detrending and partly a result of the fact that the series all contain sequences of
observations that are very close to the mean value of the detrended series.
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3.2. Entropy Measures of Time Series Uncertainty

We calculated entropy values along the time series for each location/year combination in two
different ways. For the detrended copy number data, the entropy was calculated (in nats) using an
automated binning procedure. The resulting series of entropy values are shown together with the data
in Figure 1.

In the second year of observations (2014), the detection of pathogen DNA on the traps was
sporadic. All four series showed an early peak in copy numbers around day 10 and then a long period
of low-to-no detection until around day 80, when all locations experienced another peak in detection.
Apart from these two shared features, the time series of trap counts were superficially dissimilar across
the four locations sampled in 2014, but the series of cumulative entropy values showed a similar
pattern in all four cases, with an initial peak corresponding to the trap data at day 10 followed by a
long reduction as successive, similar trap results resulted in a reduction in heterogeneity in the data.
The peak in trap counts caused a further peak in entropy around day 80, followed by a second period
of decline. In general, the cumulative entropies in 2014 did not exceed 1.5 nats except in the case of
King City, South, for which the initial peak was 1.78 nats. The final values for the entropy of the four
series in 2014 are given in Table 1 and range from 0.88 to 1.14 nats.

In contrast to the more or less consistent pattern revealed by the 2014 data, the cumulative entropy
values for the 2013 data sets were more variable. The final values for the five series tended to be higher
than those in 2014 ranging from 1.00 to 2.04 nats with the exception of the King City North location,
which had a final entropy value of 0.63 nats. In Salinas and Gonzales, the entropy value peaked early
at over 2 nats and declined somewhat over the course of the season, although still finishing at or
above 1.00 nats. In contrast to this early peak and decline pattern, at the remaining three sites in 2013,
uncertainty increased through much of the season, in association with repeated oscillations in the trap
copy number data.

In addition to characterizing uncertainty in the daily trap data directly, we also assessed the
uncertainty in the simpler issue of whether the observed series increased between each successive pair
of days. Figure 4 shows the time series for the entropy of the cumulative binary series together with
the corresponding series of Rt, the instantaneous change in the log copy numbers between pairs of
observations. The analysis showed that, in all nine series, the entropy remained close to its theoretical
maximum value (i.e., 1 bit) over much of the season following an initial transient period lasting
approximately 30 days. In three of the series (King City, North 2013; Soledad, 2013; and Salinas, 2014),
the entropy did not settle close to its maximum until later in the season, but even in these cases, the final
entropy value was close to the theoretical maximum of 1 bit. Note that, in Figure 4, the entropy values
are shown on a log scale to allow detail of the changes over time to be visible.
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Figure 4. Graphs for 9 location years showing the series of instantaneous growth rates between
successive time points (right axis scale) and the cumulative entropy (bits) of the series of binary values
indicating whether the growth rate series is positive (left axis scale): the left axis is shown on a loge

scale to allow the variation in the entropy values to be visible. Note that, on this scale, the theoretical
maximum value is 0.

4. Discussion

The quotation from the late Sir Robert May’s introduction to the Landmark edition [1] of his
monograph Stability and Complexity in Model Ecosystems was chosen deliberately and for more than one
reason. First, May’s point that the dynamics of real systems are likely to be a mixture of stochastic and
deterministic processes applies directly to our observations on the time series of spore trap DNA copy
numbers for P. effusa in the Salinas Valley of California. Secondly, May was an advocate of the idea
that models can and should be used in biology in a strategic way to try to understand broad types of
behavior without necessarily considering immediate questions of application or numerical accuracy
in any specific case, while our analyses are predominantly statistical in nature, they are nonetheless
carried out from a strategic perspective. Our aim in this study was not so much to produce accurate
predictive models of any of the series as it was to use the tools of nonlinear time series analysis, together
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with some linear methods, to investigate the broad properties of pathogen DNA copy data collected
from vortex air samplers.

A correlation matrix plot for the numerical data in Table 1 is given as Figure A2 in Appendix A.
Summarizing the results for the diagnosis of time series properties, a mixture of findings resulted.
In some cases, there were indications of deterministic chaos—i.e., positive estimated values for the
Lyapunov coefficient, failure of time reversibility test in surrogates—while others were indicative
of stochastic noise, i.e., in 5 out of 9 cases, the surrogate test failed to reject the hypothesis of time
reversibility, and the first minimum values of the ACF and AMI functions were generally similar,
indicating that the more general information-theoretic test of association based on average mutual
information did not detect dependence in the series beyond the linear association measured by the ACF.

All of the series had positive Lyapunov exponents, indicating a tendency for deterministic
sensitivity to initial conditions [26]. On the other hand, application of Cao’s approach [24] indicated
that the series were stochastic. The surrogate (bootstrap) test of time reversibility indicated that five
series were compatible with the hypothesis that they were generated by a stochastic linear process
while four were not. Relatively low values for the coefficient of prediction and adjusted-R2 calculated
from linear autoregressive models, ranging from a minimum of 3.6% (Gonzales, 2013) to a maximum
of 26.4% (King City, N, 2013), also suggested that the series were strongly influenced by stochastic
noise. Taken together, these results indicated that the series lie in the transition between stochastic
and deterministic uncertainty in what Turchin [26] refers to as quasi-chaotic territory at the boundary
between the two types of dynamics.

It seems reasonable, based on the dependence of oomycete pathogens such as P. effusa on suitable
weather for spore production and release, that the copy number on air sampler traps would show
appreciable stochasticity. Not only is the number of DNA copies detected dependent on the response
of the pathogen to uncertain weather conditions, the physical processes of dispersal, and transport
in air, together with the vortex sampling process itself, meaning that there are multiple sources of
stochasticity between the release of spores and subsequent trapping events. However, at the same
time, crop management practices such as planting and harvesting salad spinach happen on cycles
of between 21 and 45 days, and may be a source of deterministic forcing in the data complicating
the dynamics. If the data are predominantly stochastic in nature, then traditional statistical models
should be able to describe the pattern and to characterize the uncertainty. Similarly, Turchin [26] argues
that dynamic patterns generated by low-dimensional attractors can also successfully be described
by relatively simple models. Our analyses indicate that, at least in the case of P. effusa in the Salinas
Valley in California, the observed dynamics may fall between these two preferred situations, making
characterization of the dynamics difficult and leading to low overall predictability. The estimated
embedding dimension for the series (after detrending) ranged from 6 to 9, indicating that they did not
have dynamics compatible with a low-dimensional attractor.

If we consider the data in relation to variability in time and space, there are clear implications for
making robust inferences about the quantity of pathogen inoculum in the air. For example, at three of the
four locations where samplers were deployed in two successive years, the dynamics were classed as linear
in one year and not linear in the other. The four locations sampled span a linear distance of approximately
80 km from Salinas in the north to King City in the south. In 2014, a year with relatively little pathogen
activity, peaks in trap counts, and corresponding time series of entropy values showed relatively good
agreement. In contrast, in 2013, when inoculum pressure was higher, generally, there was much less
agreement between locations, and extrapolation from one location to another would not necessarily have
yielded robust conclusions about the dynamics of the pathogen. The most striking example is the contrast
between Salinas and King City S. In Salinas between day 20 and day 80, trap catches were relatively low
and the cumulative value of the entropy showed a steady decline from approximately 1.5 nats to under 1
nat. In contrast, over the same period in King City, multiple peaks in trap catches were noted and entropy
in the catch data rose from approximately 1 nat to approximately 2 nats.
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Inevitably, in a first use of a new methodology in a specific field of application, there are numerous
things that could have been done that were not. The focus of our analyses was on the dynamics and
properties of the times series when analyzed on a daily time step. It is probably not surprising that
the binary series indicating the direction of change was close to its maximum entropy value over
much of the season in both years at most locations. This result suggests that, on average on any given
day, a sample from the next day is as likely to be higher as it is to be lower than the sample from the
current day. Technical advances in sample preparation are reducing the time it takes to process nucleic
acid samples from spore traps. As a consequence, the apparent possibility of real-time forecasting
of disease risk on a daily basis is increasing. One possible interpretation of our findings is, however,
that the usefulness of such forecasts may be limited by the inherent uncertainty of the data. Is there
predictive value for decision making in knowing today’s trap value if tomorrow’s value may be higher
or lower with equal probability? The results obtained here indicate that the binary strings derived
from the time series data are close to being simple sequences of independent Bernoulli trials with a
probability of 0.5 determining the outcome. As Grünwald [27] points out, model selection and fitting
can be considered as analogous to data compression, and when a string of bits is essentially random, it
is difficult to achieve an accurate description (i.e., compression) of the data that is more concise than
simply writing the data out.

Aggregating results to form moving averages over longer runs of days would perhaps lead to
information values that were more easily linked to disease outcomes, but the detailed work to examine
this issue lies beyond the scope of this study. The objective of our work was not to explore whether
entropy values can be used as a predictive indicator for disease risk but to characterize the uncertainty
of time series data from spore traps to give practitioners a richer perspective on the level and nature of
the uncertainty inherent in the data they collect.

Looking at the entropy values for the two seasons retrospectively, it is clear (Figure 1) that the
cumulative entropy values have a qualitatively different nature in the two seasons. Moving from
consideration of uncertainty within a season to differences in uncertainty between seasons, the results
presented here suggest that information quantities might provide an alternative means of classifying
growing seasons, but the extra value to epidemiology (compared with what can be learned from direct
comparison of the trap data themselves, for example) that might be gained from long-term comparative
analyses is not known at this time. We hope others will be encouraged to further analyze the open
questions raised here; this is a new field for future research.

Our analyses suggest that there may be quite severe practical limitations to being able to
characterize pathogen dynamics using the combination of vortex air sampling and DNA target
amplification. There are clear cases where detection of primary inoculum helps to improve disease
management [9,11], but the situation regarding season-long disease management based on measuring
secondary inoculum is much less clear. There are few, if any, other published datasets for comparison
so the potential remains uncertain. However, even with data series extending to over 100 data points,
the fact that the coefficient of prediction for autoregressive models was close to zero is an indication
that the time series may be so noisy that extracting a useful, succinct model of the dynamics may
be difficult. While our results point to restrictions in the utility of dynamical analysis for helping
with practical problems in disease risk forecasting, at the same time, they suggest a great deal of
interesting investigative research on inoculum dynamics and their positions on the continuum form
pure deterministic complexity to pure stochastic noise.

Supplementary Materials: The following are available online at https://github.com/robchoudhury/spore_trap_
information_theory, R code to reproduce results for Salinas, 2013:Sal_13.R, Data required to run the analysis for
Salinas 2013: spore_fill.csv, R Project file:spore_trap_information_theory.Rproj.
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Appendix A

Figure A1. Output from the R function estimateEmbeddingDim for each series: the dimension, d, at which
function E1 first falls within the critical region around 1 is taken to be the embedding dimension.
The behavior of function E2 indicates the nature of the series. E2 is approximately equal to 1 for all
values of d for all series, indicating that the series are stochastic in nature. Note that the embedding
dimension is denoted with the letter m in the main text of the paper.
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Figure A2. Correlation matrix plot indicating the numerical value and direction of correlations among
the summary variables for time series properties across the 9 example times series. Abbreviations:
ACF, autocorrelation function; PACF, partial autocorrelation function; AMI, average mutual information;
m estimated embedding dimension; ly1, dominant Lyapunov exponent; Enctopy_CN, entropy (nats) for
the pathogen DNA copy number; Entropy_bin, entropy (bits) for the binary series indicating whether
first differences in trap copy numbers are positive; VAF, adjusted percentage variance accounting
for (adjusted R2) the autoregressive linear model; Coeff_pred, prediction coefficient comparing the
autoregressive model with the mean of the series used as a simple predictor.
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Figure A3. Observed data and fitted values for linear autoregressive models fitted to Equation (1) in
the main text in the case of each of the nine series. Observed data: gray dashed line with open symbols;
fitted values: black open symbols. The simple autoregressive models are capable of capturing some of
the dynamic behavior in the series but generally lack the amplitude of the observed data and are poor
at representing abrupt changes from large positive to large negative growth rates.
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Abstract: Limitations of statistics currently used to assess balance in observation samples include their
insensitivity to shape discrepancies and their dependence upon sample size. The Jensen–Shannon
divergence (JSD) is an alternative approach to quantifying the lack of balance among treatment
groups that does not have these limitations. The JSD is an information-theoretic statistic derived from
relative entropy, with three specific advantages relative to using standardized difference scores. First,
it is applicable to cases in which the covariate is categorical or continuous. Second, it generalizes to
studies in which there are more than two exposure or treatment groups. Third, it is decomposable,
allowing for the identification of specific covariate values, treatment groups or combinations thereof
that are responsible for any observed imbalance.

Keywords: balance; Jensen–Shannon divergence; observational study; relative entropy; selection bias

1. Introduction

The goal of comparative studies is to measure the effect of two or more treatment (or exposure)
groups on an outcome. A potential source of bias in these studies is the association between the
treatment groups and one or more confounding variables. Randomized clinical trials mitigate this risk
through randomization of treatments, resulting in balanced groups with respect to the confounding
variables. We say that the relationship between treatment T and outcome O is confounded by a
covariate C if C is associated with O and T but is not a consequence of T (i.e., not a mediator of the
effect of T on O) [1].

A common strategy for evaluating the potential for confounding in such a study is to identify all
covariates that may meet these criteria and evaluate their association with T. When treatment groups T
are balanced on a variable C, that is, when T and C are probabilistically independent, then C cannot
confound the estimation of the relationship between T and O.

A variety of techniques are typically employed to assess balance in observational samples,
including estimation of simple univariate descriptive statistics, univariate tests of association, and
estimation of standardized difference scores (defined as the difference in means between groups divided
by a combined estimate of standard deviation). Depending on the situation, however, each of these three
approaches may lead to erroneous conclusions. Univariate descriptive statistics may not adequately
capture complex distributions (e.g., those with multiple modes) [2]. Tests of association are heavily
dependent on sample size, and thus can be as indicative of sample size as they are of imbalance. And
standardized difference scores—despite their popularity—are not sensitive to discrepancies in higher
order moments (e.g., skewness, kurtosis) and/or multimodalities among continuous distributions.

In this article, we propose the use of an information-theoretic measure known as the
Jensen–Shannon divergence (JSD) [3] to assess treatment group balance. The JSD offers several
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advantages over the aforementioned approaches. First, it is universally defined for binary, multilevel,
and continuous distributions (although, in practice, computation for continuous distributions is
facilitated by binning the variables into a number of discrete levels), for any number of treatment

groups, and for multivariate distributions (i.e., vectorized covariate values
→
C) across treatment groups.

Second, it allows for the identification of specific levels of C or T—and, moreover, specific combinations
of C and T—that contribute most to imbalances across groups or treatments in relation to others. And
third, it is sensitive to high order imbalances (e.g., differences in variability, skewness, bimodality, etc.)
in addition to location shifts.

A brief introduction to information theory and the JSD is presented in the next section of this
report (Section 2). Properties of the JSD as a measure of covariate imbalance are discussed in Section 3.
Examples are presented in Section 4. We conclude with a brief summary (Section 5).

2. Information Theory and the JSD

The JSD is an information-theoretic measure of dissimilarity among two or more probability
distributions [3]. It is derived from relative entropy (or Kullback–Leibler divergence) [4] and is therefore
related to mutual information [5] (pp. 18–21). These measures are fundamentally tied to Shannon’s
entropy [6]. The goal of this section is to describe the JSD in intuitive terms, beginning with the
definition of entropy.

2.1. Entropy

Let X be a discrete random variable which takes on values xi ∈ {x1, x2, . . . , xM}. Let the probability
distribution of X be denoted as f (X). The entropy of X, denoted H(X), is a measure of the uncertainty
of the outcome of X and is defined as:

H(X) = E(− log2 f (X)) = −
M∑

i=1

f (xi) log2 f (xi). (1)

The base of the logarithm is arbitrary. Log base two is often used, giving entropy units of bits
(binary digits).

One approach to understanding the concept of entropy is to explore its relationship to the average
number of bits (e.g., 0 s and 1 s) required to efficiently encode a sequence of outcomes of the random
variable. Consider, for example, the case where the sample space is {A, B, C, D} with corresponding
probabilities f (X) = {0.25, 0.125, 0.5, 0.125}. With four possible outcomes, it may be tempting to
encode a single outcome using two bits, e.g., 00→ A, 01→ B, 10→ C, and 11→ D. A more efficient
mapping is 0→ C, 10→ A, 110→ B, and 111→ D. Since A, B, C, and D have probabilities of 0.25, 0.125,
0.5, and 0.125, respectively, and are encoded with 2, 3, 1, and 3 bits, respectively, the expected value of
the number of bits required to transmit the outcome of X with this coding scheme is 0.25 × 2 bits +
0.125 × 3 bits + 0.5 × 1 bit + 0.125 × 3 bits = 1.75 bits.

Shannon demonstrated that H(X) defines a limit beyond which codes cannot be made more
efficient. Using either of the above coding schemes allows for the unambiguous encoding of a series
of outcomes of X, but the second scheme is optimal in that the expected number of bits required to
transmit the outcome of X is H(X) = 1.75 rather than two. To achieve (or to become arbitrarily close) to
the efficiency specified by H(X) may require a mapping that associates each code with a sequence of
outcomes of X [5] (p. 104). For example, in the case of two possible outcomes A and B, with respective
probabilities 2/3 and 1/3, a code that is more efficient than simply 0→ A and 1→ B is 0→ AA, 10→
AB, 110→ BA, and 111→ BB. The length of the inefficient code required to indicate the outcome is 1
bit, but the average length of the more efficient code, per outcome, is 0.9444 bits (compared to the ideal
of H(X) = 0.9183 bits).
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2.2. Joint and Conditional Entropy

The joint entropy H(X, Y) of two random variables is a natural extension of the concept of entropy
for a single random variable:

H(X, Y) = E(− log2 f (X, Y)) = −
M∑

i=1

N∑
j=1

f
(
xi, yj

)
log2 f

(
xi, yj

)
. (2)

Similar to that described above for a single random varible, the joint entropy defines the lower
limit of the average number of bits required to encode the observations from the joint distribution.

Conditional entropy, denoted H(X|Y), is a measure of residual uncertainty in X, given the
observation of some other random variable Y. It is defined as:

H(X|Y) = E(− log2 f (X|Y)) = −
M∑

i=1

N∑
j=1

f
(
xi, yj

)
log2 f (xi|yj). (3)

Conditional entropy is also equal to the difference between joint and marginal entropies, i.e.,
H(X|Y) = H(X, Y) −H(Y). In this sense, conditional entropy represents the number of bits needed
to encode X after the value of Y is observed. Joint and conditional entropy naturally extend to
distributions that are defined across three or more random variables (we omit these equations for the
purposes of this discussion).

2.3. Mutual Information

The mutual information between the random variables X and Y, denoted I(X; Y), is the expected
value of the amount of information that knowledge of the outcome of Y provides about the outcome of
X. Mutual information is symmetric with respect to X and Y, and is a function of both the variables’
marginal entropies and their joint entropy:

I(X; Y) = H(X) + H(Y) −H(X, Y)
= H(X) −H(X|Y)
= H(Y) −H(Y|X)

= I(Y; X).

, (4)

2.4. Relative Entropy

Relative entropy is an information-theoretic measure expressing the divergence from a given
probability distribution f (X) to a reference (or target) distribution g(X). It is defined as

D(g(X) ‖ f (X)) = Eg(X)

[
− log2

f (X)

g(X)

]
=

M∑
i=1

g(xi) log2
g(xi)

f (xi)
. (5)

The relative entropy is interpreted as the number of bits required to “correct” the probabilities in
the distribution f so that they match those of the reference distribution g (under an optimal coding
scheme) [5] (p. 18).

Since the expectation in Equation (5) is taken with respect to the target distribution g(X), the relative
entropy function is asymmetric, i.e., it is not necessarily the case that D(g(X) ‖ f (X)) = D( f (X) ‖ g(X)).
Given this asymmetry, it is not a suitable candidate for a measure of covariate balance among
groups: the divergence between two groups would depend upon which group is taken to be the
Reference group. Jeffrey’s divergence (J) is a symmetric version of relative entropy, defined as
J(g(x); f (x)) = D(g(x)

∣∣∣∣∣∣ f (x)) + D( f (x)
∣∣∣∣∣∣g(x)) [7]. One reason why it is not a suitable candidate for

the task of assessing covariate balance among groups is that there may be more than two groups.
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2.5. Jensen–Shannon Divergence (JSD)

The JSD is a modified version of relative entropy, that addresses the asymmetry problem described
above by expressing divergences with respect to a common distribution f̃ (X). Assume that there are
N distributions of X: f1(X), f2(X), . . . , fN(X). The common distribution is taken as the (unweighted)
mean of the component densities:

f̃ (x) =
1
N

N∑
k=1

fk(x). (6)

The JSD of the set of distributions fk(X) is defined as the average relative entropy from the
common distribution f̃ (X) to the specific distributions fk(X) :

JSD =
1
N

N∑
k=1

D
(

fk(X) ‖ f̃ (X)
)
. (7)

2.6. The JSD of Covariate Distributions Across Treatment Groups

Equations (6) and (7) can be modified to calculate the JSD for a set of N treatment groups. We
replace the continuous random variable X with the discrete covariate random variable C. Similary, we
replace the probability density function f with the probability mass function p. Assuming that C can
assume M values, we have, for i = 1, · · · , M:

p̃(ci) =
1
N

N∑
k=1

pk(ci), (8)

and

JSD =
1
N

N∑
k=1

D(pk(C) ‖ p̃(C)) =
1
N

N∑
k=1

M∑
i=1

pk(ci) log2

⎛⎜⎜⎜⎜⎝ pk(ci)
1
N

∑N
k=1 pk(ci)

⎞⎟⎟⎟⎟⎠. (9)

3. Properties of the JSD

The JSD is non-negative and is equal to zero when the covariate distributions are identical for
all treatment groups. It is interpreted as the average relative entropy from the common covariate
distribution, f̃ (C), to the group-specific distributions. As noted in the Introduction, the JSD can be
applied to binary random variables, categorical random variables, or continuous random variables.

Being defined additively in terms of units of information, the JSD is decomposable. One may
calculate the JSD across all the treatment groups or determine the contribution of a subset of groups to
the overall JSD. Similarly, specific levels of the covariate(s) of interest may be examined to identify
regions of the covariate space exhibiting the greatest degree of imbalance across groups. Furthermore,
contributions of individual treatment/covariate combinations to the overall JSD can be studied and
compared. The decomposability of the JSD is illustrated in Section 4.

As a function of the densities themselves (and not their moments), the JSD allows for the evaluation
of balance in a manner that does not assume that continuous densities belong to any particular family
of distributions. It is sensitive to shape discrepancies among groups. In contrast, the standardized
difference score converges to zero (with increasing group sample sizes) whenever the means of the two
samples are equal (see Figure 1).

In practice, computation of the JSD using observational data can be difficult for continuous
densities, especially mixture distributions [2]. Our approach relies on the binning of continuous
variables (as is done with histograms). When small numbers of categories are used, this simplification
can mask subtle features of group-specific probability densities. A further limitation of the JSD is that
density estimates for categorical variables are increasingly variable among small samples.
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Figure 1. Four pairs of continuous distributions, each of which has a standardized difference score
equal to zero.

4. Applications

Table 1 summarizes findings from 93,583 outpatients in the Cleveland Clinic Health System who
had a lipid panel drawn between 2007 and 2010 (first visit meeting these criteria). The patients are
partitioned into three treatment groups: Disadvantaged (age < 80 years and living in a census tract
that is in the top 25% of all tracts in the United States with respect to the Area Deprivation Index [8]),
Elderly (not living in a disadvantaged neighborhood per the above definition but aged 80 or older), and
Reference (neither disadvantaged nor elderly). The covariate is baseline diabetes state defined by blood
sugars < 109 mg/dL, 109–125 mg/dL, and > 125 mg/dL. A stand-alone R package for implementing the
JSD computations illustrated in this section is provided at http://github.com/jarrod-dalton/jsd, and the
code used for this section is given in the Appendix A.

Table 1. Number of individuals in three treatment groups (Disadvantaged, Elderly, Reference) and
three covariate groups (defined by blood sugar ranges).

Glucose Disadvantaged Elderly Reference

<109 7191 3637 64,265
109–125 1025 835 7298
>125 1715 685 6932

Table 2 presents the probability distributions of glucose levels within each treatment group. The
average of these distributions, i.e., the common distribution, f̃ (C), is shown in the final column.

Table 2. Probability distributions of glucose levels within each treatment group (Disadvantaged,
Elderly, Reference). The common distribution, f̃ (C), is shown in the final column.

Glucose Disadvantaged Elderly Reference
~
f(C)

<109 0.724 0.705 0.819 0.749
109–125 0.103 0.162 0.093 0.119
>125 0.173 0.133 0.088 0.131

Table 3 presents contributions of individual cells, the three treatment groups, and the three
covariate groups to the overall JSD, which is 0.0144 bits. This is the average of the relative entropies
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from the common distribution to the treatment group-specific distributions. Given three treatment
groups, the maximum possible JSD is log2(3) = 1.5850 bits.

Table 3. Contributions of individual cells, treatment groups, and levels of the covariate to the overall
JSD (in units of bits).

Glucose Disadvantaged Elderly Reference Total

<109 −0.0119 −0.0206 0.0349 0.0023
109–125 −0.0072 0.0237 −0.0112 0.0053
>125 0.0228 0.0008 −0.0168 0.0067
Total 0.0036 0.0039 0.0068 0.0144 *

* Note: row/column sums do not equal 0.0144 due to rounding error.

The Reference group is the largest treatment group contributor to the JSD, and the Glucose > 125
category is the largest covariate group contributor to the JSD. Moreover, by considering the absolute
values of the individual cell components, we conclude that the largest contributor to the JSD is from
individuals in the Reference group with serum glucose values less than 109 mg/dL.

A problem with using any method to quantify covariate imbalance among treatment groups is
that there is no obvious point that defines an acceptable amount of imbalance [9]. For the current
example, the JSD value of 0.0144 bits is small relative to its maximal possible value of 1.5850 bits,
but it is clear from Table 2 that individuals in the Reference group tend to have lower blood sugars
than individuals in the other two treatment groups. An important factor in deciding what constitutes
acceptable balance is the potential of the covariate to affect the outcome [10].

In order to further examine differences between the JSD and standardized difference scores,
we consider the case in which there are two treatment groups with normally distributed covariates.
Figure 2 plots the JSD as a function of the standardized difference score, when the standard deviation
of one of the two distributions is one and the standard deviation of the other distribution is either one
(plotted in black), two (plotted in blue), or three (plotted in red). Since there are two treatment groups,
the JSD curves asymptote at one bit (since log2(2) = 1). The standardized difference score curves, on
the other hand, are unbounded in the positive direction. As expected, both the JSDs and the standard
difference scores increase as the two distributions diverge. The plot also illustrates the point made in
Section 3 that the JSD, but not the standardized difference score, is sensitive to differences between the
standard deviations of the two distributions when the means of two distributions are identical.

Figure 2. The JSD as a function of the standardized difference score when there are two treatment
groups with normally distributed covariates. Three cases are shown: the standard deviation of one of
the two distributions is set equal to one, while the standard deviation of the second distribution is set
to equal either one (black curve), two (blue curve), or three (red curve).
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5. Summary

We propose that the JSD be used to assess treatment group balance on known potential confounding
variables in comparative clinical studies. This information-theoretic measure is equal to the average
relative entropy between the covariate distributions for each treatment group and a common distribution,
defined as the average of the individual distributions. Advantages of the JSD over alternative measures
of treatment group balance include its sensitivity to the shape of distributions and its insensitivity to
sample size. The JSD is applicable to both categorical and continuous random variables. Moreover, the
JSD is decomposable, allowing for comparisons among specific levels of covariates of interest.
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Appendix A

The jsd R package can be found at https://github.com/jarrod-dalton/jsd. The package can be
installed using the following command (run the first command if the remotes package has not already
been installed):

#install.packages("remotes") 
remotes::install_github("jarrod-dalton/jsd") 

The library is then loaded as follows:

library(jsd) 

The glucose dataset contains the data used for the example in Section 4. Note that the actual
glucose values are simulated.

data(glucose) 
head(glucose) 
##      cohort     glucose 
## 1 Reference  79.16898 
## 2   Elderly   124.66537 
## 3   Elderly    95.61820 
## 4 Reference  90.11065 
## 5 Reference 105.50799 
## 6 Reference  89.35060 
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There is a helper function in the package, called chop, which will convert numeric variables
into categorical variables. See help(chop) for details. Here, we convert the glucose variable into a
categorical variable with 3 levels:

glucose$glucose_cat <  chop(glucose$glucose, cuts = c(0, 109, 125, Inf)) 

The jsd_balance function is then used to compute the JSD measures. The output of the jsd_balance
function contains the cell contributions to the JSD, marginal contributions of each treatment group to
the JSD, marginal contributions of each covariate level to the JSD and the overall JSD value (see Table 3
for details). The first argument to the jsd_balance function is a formula in which the group variable is
on the left hand side of the tilde and the covariate(s) is/are on the right hand side of the tilde (separated
by ‘+’ – see help(jsd_balance) for details and examples):

jsd_balance(cohort ~ glucose_cat, data = glucose) 
## $glucose_cat 
## $freqs 
##            cohort 
## glucose_cat Disadvantaged Elderly Reference 
##   [  0,109)            7191    3637     64265 
##   [109,125)              1025     835      7298 
##   [125,Inf]             1715     685      6932 
##  
## $cell_contribs 
##            cohort 
## glucose_cat   Disadvantaged         Elderly       Reference 
##   [  0,109)   0.0119399530 0.0205710889    0.0348528681 
##   [109,125)   0.0072178122  0.0237387920 0.0111726329 
##   [125,Inf]       0.0227710815  0.0007506513 0.0168364804 
##  
## $group_contribs 
## Disadvantaged       Elderly     Reference 
##    0.003613316   0.003918354   0.006843755 
##  
## $cov_contribs 
##     [  0,109)    [109,125)      [125,Inf] 
## 0.002341826  0.005348347  0.006685252 
##  
## $jsd 
## [1] 0.01437543 
##  
## attr(,"class") 
## [1] "jsd_balance" 
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