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Figure 3. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29)
and n = 0.14: Figure (a) phase portrait; and Figure (b) time series.

Notice that, in Figures 2-5, we see that both model with Caputo operator (6) and
Atangana-Baleanu operator (16) have similar dynamical behavior. The noticeable difference between
them is the orbit of solutions and the diameter of the limit-cycle. In Figure 4, the diameter of the
limit-cycle of the model with ABC operator looks shorter than that of the Caputo operator, which may
give different dynamics when a Hopf bifurcation occurs. To get more detail view, we plot a bifurcation
diagram by varying the order of the fractional derivative («) (see Figure 6). In this simulation, we use
parameter values as in Figure 4 and vary the order-« in the interval [0.6,0.9]. It is clearly seen that,
besides the diameter of the limit-cycle, the bifurcation points of Caputo model and ABC model are also
different. The Caputo model has an earlier bifurcation point than that of the ABC model. To show this
situation, we show some numerical simulations using different values of « (see Figure 7). For « = 0.7,
the equilibrium point E of both model are asymptotically stable. For a = 0.772, the equilibrium point
E of the Caputo model loses its stability, while that of the ABC model remains asymtotically stable.
For & = 0.83, the equilibrium point £ of both models are unstable.
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Figure 4. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29)
and n = 0.2: Figure (a) phase portrait; and Figure (b) time series.
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the fractional-derivative (a) with constant parameter values (29) and n = 0.2. There exists a Hopf
bifurcation where the bifurcation points of the Caputo model and ABC model are different.
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Figure 7. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29),
n =0.2,and « = {0.7,0.772,0.83}: Figure (a) phase portrait; and Figure (b) time series.

From the biological point of view, all previous numerical simulations show that the dynamical
properties of both Caputo model and ABC model are similar except when the eigenvalues of the
Jacobian matrix evaluated at the interior equilibrium point £ are a pair of complex conjugate with
positive real part. There is a biological condition such that the prey and predator densities are
eventually periodic for the Caputo model, while for ABC model, the densities of both predator and
prey are eventually constant.

5. Conclusions

The dynamics of a Rosenzweig-MacArthur model with continuous threshold harvesting in
predator involving the Caputo fractional-order derivative and ABC fractional-order derivative are
studied. We prove the existence and uniqueness of solutions of both Caputo and ABC models.
Particularly, we completely investigate the dynamics of the Caputo model including the non-negativity,
boundedness, local stability, global stability, and the existence of Hopf bifurcation. From the biological
meanings, the extinction of both populations never occurs since the origin point (E) is a saddle point.
Some of the situations that might occur are: (1) the predator goes extinct while the prey still survives,
which is indicated by the stability of E;; (2) both predator and prey co-exist and converge to a constant
population density, which happens if the interior point £ or E* are asymptotically stable; and (3) both
predator and prey co-exist where both population densities change periodically, namely when a Hopf
bifurcation occurs. We show numerically that our model may undergo a forward bifurcation or a
Hopf bifurcation. The Hopf bifurcation in models with both Caputo operator and ABC operator can
be driven by the conversion rate of consumed prey into the predator birth rate or by the order of
fractional derivative. Our numerical simulations show that the Hopf bifurcation point of both models
are different.
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Abstract: The questions of the one-value solvability of an inverse boundary value problem for a
mixed type integro-differential equation with Caputo operators of different fractional orders and
spectral parameters are considered. The mixed type integro-differential equation with respect to the
main unknown function is an inhomogeneous partial integro-differential equation of fractional order
in both positive and negative parts of the multidimensional rectangular domain under consideration.
This mixed type of equation, with respect to redefinition functions, is a nonlinear Fredholm type
integral equation. The fractional Caputo operators” orders are smaller in the positive part of the
domain than the orders of Caputo operators in the negative part of the domain under consideration.
Using the method of Fourier series, two systems of countable systems of ordinary fractional
integro-differential equations with degenerate kernels and different orders of integro-differentation
are obtained. Furthermore, a method of degenerate kernels is used. In order to determine arbitrary
integration constants, a linear system of functional algebraic equations is obtained. From the
solvability condition of this system are calculated the regular and irregular values of the spectral
parameters. The solution of the inverse problem under consideration is obtained in the form of Fourier
series. The unique solvability of the problem for regular values of spectral parameters is proved.
During the proof of the convergence of the Fourier series, certain properties of the Mittag—Leffler
function of two variables, the Cauchy-Schwarz inequality and Bessel inequality, are used. We also
studied the continuous dependence of the solution of the problem on small parameters for regular
values of spectral parameters. The existence and uniqueness of redefined functions have been justified
by solving the systems of two countable systems of nonlinear integral equations. The results are
formulated as a theorem.

Keywords: integro-differential equation; mixed type equation; small parameter; spectral parameters;
Caputo operators of different fractional orders; inverse problem; one value solvability

1. Introduction

Fractional calculus plays an important role in the mathematical modeling of many natural and
engineering processes (see [1]). We can gladly refer to many examples of applied research works,
where fractional integro-differential operators are successfully and widely used. For example, in [2]
some applications of basic problems in continuum and statistical mechanics are considered. In [3],
the mathematical problems of an Ebola epidemic model by fractional order equations are studied.
In [4,5], fractional models of the dynamics of tuberculosis infection and novel coronavirus (nCoV-2019)
are studied, respectively. The construction of various models for studying problems of theoretical
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physics by the aid of fractional calculus is described in [6] (vol. 4, 5), [7,8]. A specific physical
interpretation of the fractional derivatives, describing the random motion of a particle moving on the
real line at Poisson-paced times with finite velocity, is given in [9]. A detailed review of the applications
of fractional calculus in solving practical problems is given in [6] (vol. 6-8), [10]. More detailed
information, as well as a bibliography related to the theory of fractional integro-differentiation and
fractional derivatives, can also be found in [11-18].

We also note the special role of generalized special functions, such as polynomials, in solving
fractional differential equations. In [19], using Hermite polynomials of higher and fractional order,
some operational techniques to find general solutions of extended forms to d’Alembert and Fourier
equations. In [20], the solutions of various generalized forms of the Heat Equation, by means of
different tools ranging from the use of Hermite-Kampé de Fériet polynomials of higher and fractional
order to operational techniques, are discussed. In [21], the combined use of integral transforms and
special polynomials provides a powerful tool to deal with fractional derivatives and integrals. The real
need to know the properties of such special functions in solving direct and inverse problems for
fractional partial differential equations has been shown in [22].

Applications for equations of mixed type are studied in the works of many researchers.
For example, in [23], an example of gas motion in a channel surrounded by a porous medium was
studied, with the gas motion in a channel being described by a wave equation, while—outside the
channel—a diffusion equation was posed. In [24], a problem related to the propagation of electric
oscillations in compound lines, when the losses on a semi-infinite line were neglected and the rest
of the line was treated as a cable with no leaks, was investigated. This reduced the problem under
consideration to a mixed parabolic-hyperbolic type equation. In [25], a hyperbolic—parabolic system,
in relation to pulse combustion, is investigated. Mixed type fractional differential equations are studied
in many works by scientists—particularly in [26-35].

The theories of integral and integro-differential equations are important in studying the large
directions of the general theory of equations of mathematical physics. The presence of an integral
term in differential equations of the first and second order has an important role in the theory of
dynamical systems of automatic control [36,37]. Boundary value problems for integro-differential
equations with spectral parameters have singularities in studying the questions of one-value
solvability [38,39]. Mixed type integer order integro-differential equations with degenerate kernels
and spectral parameters are studied in [40,41].

To find the solutions of direct mixed and boundary value problems of mathematical physics, it is
required to set the coefficients of the equation, the boundary of the domain under consideration,
and the initial and boundary data. It usually happens that, in solving the applied problems
experimentally, the quantitative characteristics of the object under study are not available for direct
observation, or it is impossible to carry out the experiment itself for one reason or another. Then,
in practice, the researchers can obtain some indirect information and draw a conclusion about the
properties of the studied object. This information is determined by the nature of the object under study
and here requires mathematical processing and the interpretation of research results. Nonlocal integral
conditions often arise when the experiment gives averaged information about this object. When the
structure of the mathematical model of the studying process is known, the problem of redefining the
mathematical model is posed. Such problems belong to the class of inverse problems. By inverse
problems we mean problems whose solution consists of determining the parameters of a model
based on the available observation results and other experimental information. Inverse problems for
equations of mixed type are studied relatively rarely due to the complexity of the studying process.

In the present paper, we study the questions of the one-value solvability of an inverse boundary
value problem for a mixed type integro-differential equation with Caputo operators of different
fractional orders and spectral parameters in a multidimensional rectangular domain.

The rest of this paper is organized as follows. In Section 2, we state the problem, which we will
investigate in this work. Section 3 is devoted to formally expanding the solution of the direct problem
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into Fourier series. In Section 4, we formally determine the redefinition functions. Section 5 contains
the proof of existence and uniqueness of Fourier coefficients of redefinition functions from a countable
system of nonlinear integral equations. Section 6 is devoted to the justification of convergence and the
possibility of the term by term differentiation of the obtained Fourier series. Section 7 contains the
proof of the continuous dependence of the solution on the small parameter. In the last Section 8, as a
conclusion, we formulate the theorem, which we have proved in this paper.

2. Statement of the Problem

We recall that the Caputo differential operator of fractional order m — 1 < a < m has the form

t
eDIF 1) = gy [ ="M 0)ds

where I' (z) is Euler gamma function.
In the multidimensional domain QO = {-T < t < T, 0 < xy,...,Xx, < I}, a mixed type
integro-differential equation of the following form is considered:

vaKl(t, s)U(s, x)ds+Fq(t, x), t>0,
A(U) — By (U) = % (@)
v [ Ka(t,s)U(s, x)ds+Fp(t, x), t <0,
-T

where

Filt,x) =ki(0) |0+ fi | % [ @w)gimdy ||, i=12,

ar
Cdwsgn() [ e 9E g
AS(U)* 2 CDOt eg axiaxiCD‘” u(t/ X)
1—sgn(t) 2 LR B
+ > CD()t EgaxiaxiCDOt U(t, X),

Bw(u) = =1 m

T and | are given as positive real numbers, w is a positive spectral parameter, ¢ is a positive small
parameter, v is a real non-zero spectral parameter, 0 # K;(t, s) = a;(t) b;(s), a;(t) € C2[-T; T], bi(s) €
1 1
CI-T;T], fi € C(Q) xR), [ |0i(y)[dy < oo, [[Oi(y)|dy=[...[1Oi(y)][dy1-... dYm,
ay ary 0 0
i,j=1,2,ki(t) € C?[0; T], ko(t) € C2[~T; 0], while g1(x) and g2 (x) are redefinition functions,
R=(-00;00), xc Q" =[0;]]",0< 1< <1, 1< Pa<ap <2
Problem. Find in the domain Q) a triple of unknown function

U(t x) € C(Q)NCUH(Q)NCH2(Q) NC22(Q)NCY 2 (Q4) NCRTA(Q)

#4240+ ...+0 2 +240+ .40 a1 +0424+0+ .40
mct,xl,xz,...,xm (Q+) N Ct,xl,xz/...,xm (Q*) N Ct,xl,xz,X3,...,x,,, (Q+) (2)

ﬂC“2+0+2+0+“'+0(Q,) A, O CMH0+ 4042 Q)N 0+ +0+2 Q)

b X1, X2, X3, 0 X b X1, ey X1, X b X1, ey X1, X
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and redefinition functions g;(x) € C (Q"), i = 1,2, satisfying the mixed integro-differential
Equation (1) and the following boundary conditions

U(-T,x)=¢1(x), CD& U(=T, x) = ¢a(x), x€Qff, 3)
U(t0)=U(1)=0, -T<t<T )
and additional conditions

[eru 0 =px), xeap, ©)

0

0
/q?z(t) U(t, x) =1(x), xeQf, (6)

ey
where 0 < 0 < 1, ¢;(x), ¥;(x) are given smooth functions, ¢;(0) = ¢;(I) = 0, ¥;(0) =
gi(l) = 0, i=1,2, C"(Q) is a class of functions U (t, x1, ..., x;u) with continuous derivatives
aa)th[' g 'xll{, ., g;% in ), Ctri(ﬂ) is a class of functions U (t, x1, ..., X;;) with continuous derivatives
aay—},l, 3%51, ., 31%’ inQ, C {tqtg*;r”?(ﬂ) is a class of functions U (¢, x1, ..., xp) with continuous

oAt 902U 740+ .40+ - . -
derivative araxy N O,..., Ct/th/xuﬂ/xm(()) is a class of functions U (¢, xq, ..., ;) with

continuous derivative aatfi% in Q), r, s are positive real numbers, Q= {fT <t<T, x¢€ Q;”},
Q'=0QU{xy, ...,y =0}U{xy, ..., xm=1}, Q- = {-T <t < 0,0 < x1, ..., %5 < I},
Q. ={0<t<T, 0<xy, ..., xm <I}.

3. Expansion of the Solution of the Direct Problem (1)—(4) into Fourier Series

Our investigation is based on the application of sine Fourier series to the mixed type
integro-differential Equation (1) of the complicated form. Hence, the solution of the mixed
integro-differential Equation (1) in domain () is sought in the form of the following Fourier series

0

U(t, X) = Z unibm,nm(t) 19711,»»»/"m(x)/ (7)
Ny, e, =1
where
”:fl,...,nm(t) = [ Ut x)B,. 0, (x)dx, t>0,

+ _ ar
t) = 8
unpm,nm( ) ”;1,.../11", (t) _ f U(t, x) 19111,444,nm(x)dx/ F< 0/ ( )

Q;ﬂ

1 1
/Ll(t, x)ﬂ,,l,,,,,,,m(x)dx:/.../U(t, ) Oy (X)d e d i,
0 0

m
2 .TTm . TNy
ﬂnl,m,nm(x) = (\/? s Txl cee.cSIN Txmr ny, ..., mm=1,2,...

In this order, we also suppose that the redefinition functions and nonlinear functions on the
right-hand side of the integro-differential Equation (1) are representable as the following Fourier series

gi(x) = Z ginl,“.,11ml9n1,m,Vlm(x)/ fi(x/ Vt) = Z finl,m,nm(vi) 19n1,...,nm(x)/ (9)
Ny, e, =1 ny, .., =1

114



Axioms 2020, 9,121

where

Sing, oty = / 8i(X) Oy, (X)X, finy, o on, (Vi) = / Fiy, Vi) Oy, eon (y) Ay,
Qr Qr

v =filv [@@a@dz|, i=12

Substituting series (7) and (9) into mixed Equation (1), we obtain two fractional countable systems
of ordinary integro-differential equations

CDgltth““,ﬂ”; (t) +e V’%l,...,n,,,CDgiunJrl,m,nm (t) + V%l,...,nm un+1, wee iy (t)
T (10)

=v [a(t)bi(s) .. n, ()45 + Finy, . m, (£, £>0,
0

DSy () F €2 DY (DR Pl (1)

0 (11)

=v [ a(t)ba(s) thy,,  p, (8)ds+ Fauy, .o, (1), £ <0,
-T

where iy, . n, = F/03+ ...+ 0k,
Finl,...,m,,(t) = ki(t) [ginl,...,nm +finl,m,nm(Vi” ’ i= 1, 2. (12)

We use the method of degenerate kernels. In this order, by the aid of designations

T

Tnl, 1 _/ ”nl, S (8)ds, (13)
0

L / b2(5) i, ., (5) 5 (14)

we present the countable systems of ordinary integro-differential Equations (10) and (11) as follows

CDM u;Tl, N ( ) + s,unl, ,nmCDﬁ 111, A,nm(t) + V%l,m,nm”rt,m,n,,,(t) (15)

— Vﬂ](t) 1/,+1 T +F1n1,m,nm (t)/ t> O/

DRy () F e DR () 3 @ity () »
=vay(t) T, m, ,+F2nl,...,nm(t)/ < 0.

The solutions of the countable systems of differential Equations (15) and (16), satisfying conditions

d
+ + - — — —
unl,m,nm( ) C1 My, ey M ” unl,m,nm( ) C1 N, ey My’ E”nl/ ey My (O) - Cz N1, e My

have the following form:

u:rrl,...,nm (t) =v Trj;,444,;1,,,‘F11;11,...,nm (tr 8) + ‘Y12n1,...,nm (tr E) + C+

1nq,...,ny,

‘Yl?ml,.“,nm(trg)/ t>0, (17)

115



Axioms 2020, 9,121

MI;I,..., W,(t) = VT;l,M,nlezl Ny, e, My (tr % (U) +‘Y22711,M/Ylm(t' & w)
(18)

+CIn1,..4,nmlF23771,~-,11m(t’ & w)— anl,m,n,,,lyz‘l”lr»»»r”m(t’ g w), t<0,
(i =1, 2) are for unknown constants to be uniquely determined,

+ _
where Cl Ny, e M’ Cinl, ey

t
_ ap—1 2 ny— 2 o«
T]]nl’___’nm(t, S) = /u](tfs)s 1 E(“l*ﬁl:“l)""l (*Sﬂnl,___,nms 1 ﬁl, 7””17»-.,74,”5 1) ds/
0

¢
' -1 2 - 2 ‘
Yizm, . n, (8 &) = / Frng, oo (E=8) 8" By ), (75}‘n1,m,nmsal P, 7}47’1/«-~/”n1504) ds,
0

2 — 2
‘Y13nl,...,nm(tl 8) = E(le—ﬁl, ar),1 (78 an,.u,n,,,t‘xl /Slr Hn ,...,nmt’ll>

0
ot b @) = [ aa(s = 1) (=51 Wasi (1 6, w)ds,
t

0
‘Y22n1,m,nm(t/ g w) = /Fan,...,n,,l (5 - t) (75)0‘271‘1;25;11,.“,11,”0/ £, w)d S,
t

‘Y23n1,...,nm (t/ g w) = E(aczfﬁrz/ ay),1 (_S ‘u%ll/m/nm(_t)ﬂ’z*ﬁz, _Hil,AAA,nmwz(_t)M) ’

az)
’

‘F24H1,---,ﬂm(tf & w) = tE(az—/Sz, ay),2 (78 V%l,...,nm(ft)lxz_ﬁz/ 7?‘%1,.“,11,,, w2( t)
Y25n1,...,nm(tr & (‘)) = E(zxzfﬁz,az), ay (75 ‘u%l/m/nm(is)véz*ﬁz’ 774%11,“”1", (")2(75)“2) ’

The function E, g),, (21, 22) is a Mittag-Leffler function of two variables:

0 Z"llzmz
E (er ZZ) = #/
(e B)y ,,11,;2:0 T (y +amy +pmy)

wherez;, a, B, v € C, Re(a) >0, Re(B) >0.
From the statement of the problem (properties in (2)), it follows that the continuous conjugation

condition is fulfilled for the main unknown function: U (0 + 0, x) = U (0 — 0, x). Therefore, by taking
Formula (6) into account, we have the conditions for Fourier coefficients of the main unknown function

u;l,...,?lm (O + 0) = f u (O + O' x) ﬂ"l/m/"m (x) d X
a
19
= [U©O0,x) B, () dx =7, (0-0) 4
a
We put
Ping,....nm = / (Pi(x) 19711,..‘,71”, (x) dx, i=1,2.
ar

Then, taking (8) into account, from the conditions in (3), we obtain

@3 = [ Q1) by (A5 = 1y
ar

(20)

uﬁl,.u,n,,, (_T)
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Dty (=T) = [ cD§U(=T, x) 8y, ..n, (x) d x
Q;”
= f q)z(x) lgnl,m,nm(x)dx = P2ny, .., np-
Q;”

1)

By the aid of the continuous conjugation condition (19) from (17) and (18), we have the relation

that CTnl oty = CInl ot To find the unknown coefficients of the integration CInl ot and
Conyyoiy N (18), we use the conditions (20) and (21) and deduce the following system of linear

algebraic equations:

v Tn_l,m,nm‘{fﬂ nl,m,nm(_T/ & w) + 1i1221/11,444,1/t,,,(_T/ 19 w)+
+C1n],m,nm‘fr23n1,m,nm(*T/ g w)— C2n1,m,nm‘Y24nl,...,nm(*Tr g w) = Ping, ..., 0y

VT oD oty g (T, & @) DY ¥, (T, € )+ e
+Cogoo i D8, Yoz, (—T, 8, w) — Conprooim D8 Faany, (=T, & @) = @ony,. s
where by DY ¥ (—T) is denoted D%t‘l"(t)| i—_1 - We assume that
Ty, ey (@) = ¥2amy, .y (=T, & @) - DG ¥oay, i, (—T, & W) 2
Y231,y (=T, & @) - DG ¥4y, (=T, & @) #0.
If the condition (23) is fulfilled, then the system (22) with respect to C Tng, ot and C 20y,

is uniquely solvable. By solving this system (22), we arrive at the following presentations for these
unknown coefficients
o 3 1
1ng, . nm — Tyt ((U)

0
X |:§01 Ny, e, i DOtYZ4 n1,4..,nm(_Tl g UJ) + q’an,...,nm‘Y24n1,...,nm (_T/ g, w)_ VTn1,M,nm

X (‘1’24;11,...,%,(*7", &) D8 ¥o1ny,. i, (—T,6,0) = ¥o1n,. 0 (—T,6,0) Dg;‘l'zm,_.,nm(*T,S,w)>

c, =— -
201y, e, My Unl, ity (w)

0 _
X |:¢1n1,wn,,, DOtT23n1,444,;1m (_Tr g, W) + (PZn],...,nm‘FZSnl,...,nm (_T/ g W) — VT, i,

X (T23n1,...,nm (7T/ [ W) Dgt‘YZlm,...,nm (7 T,e, w) —Youuy,. (7 Te, w) Dgt‘YBnl,...,nm (7T/ £, w))

By substituting these results into (18) and taking into account Cfnl ot = Cny, oy 0 (17)
and designation (12), we obtain the following representations for the Fourier coefficients of the main

unknown functions in the positive and negative parts of the domain:

unJrl,,,,,n,,l(tr £ W, V) = [(Pl [y + (P2n1,...,nm} N1 nl,m,nm(tl g w)
+v TIl,m,n,,, N1z nl,.,,,n,,,(tr 8) - VTrTl,M/nm N13n1/m,nm (t/ g w) + [g1 et + fl 11, ey i (Vl)} (24)

XN]4n1/...,14,,l(tr E) + [San,“.,nm +f2n1,...,nm(vz)] N15141,...,71m(tr g, (‘J)/ t>0,

”nl,m,n,,,(t/ & W, V) =@ nl,m,nmNZI nl,m,nm(t/ & W) + (Pan,...,nmNZan,...,nm(t/ g, w)
(25)

+v Tnil,m,nmNZSnl,...,nm(tr £ w) + [anl,.“,nm +f2n1,...,nm(v2)] N24n1,wnm(t/ & ‘U)/ t <0,
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where

1
Nitng, ccyny (b & W) = ) Y130y, (£ €) ¥ouny, (=T, € w),

ity oy (W

Nizuy, i (b €) = F11ny, . nn ( €),
1

0
m [YZ‘I”I""'”"I(*T' g, w) Do Yorn,, . nn (=T, & w)

Nizny, . ny(t & W) =

—Yo1ny,en (=T, & W) Dgt‘l’za‘nl,...,nm(*T, g, w)] Y13y, (t €),

Nigny, ., n(t €) = F12ny, ., (1 €),
1

Oy, i (Oj)

—Youny,.on (=T, & W) Dgﬁzznlwnm(fT, g, w)] Y1z, o (t €),

Nisi, .ol & @) = [?22"1"“’""'(771’ £ w) D(G)fly24n1,-..,nm(*T, €, w)

1
Notny, .oyt & w) = m {T23Vl1/...,nm(t/ g, w) Dgt‘I’menm(_T, e w)
17+ m
~Youny, .. ny(t, & w) Dgt‘fzsnl,...,nm(—T, €, Q;)] ,
1
Nozny, ooy (t & W) = T (@) (Y230, (£ & @) ¥ouny, o (T, & @)
oo T

Y210y, (t & @) Y23y, (=T, & )], Nogiy,my, (E & @) = ¥o1y, . m,, (1 & W)
1

0
,m [‘Yzz;nl,...,nm(*T, & w) DGy Yoruy, .., n, (=T, & w)

71F21n1,m,”m(7T/ g, CU) D(G)t‘Y24n1,...,nm(*T, g, a])] ‘I[23n1,m,n,,,(t, g, w)

1

IR
I ()

[‘I’zam,--.,nm(*T, €, W) Dgt‘I’n gy (=T, &, @)

Y21y, (=T, & @) DG Y2301, (=T &, w)] Yoany,onu (b & @),

N24”lr~v”m(tf £ w) = W7.2711/...,n,,, (tr £, w)
1 __
+7(w) [‘Yzzm,...,nm(—T, €, W) Dgt‘I’M,,lwnm(_T, £ w)

Ony,..om,

1

4 -
Ty, iy (UJ)

[?221«1,“4,:1”,(—1 €, w) DgtYZ?)nl,m,nm(—T/ £, w)

Y23, n, (=T, & @) Dgf?ﬂnl,...,nm(*]’, g, w)] Youny,..,nn(t, & @),
t

?12n1,,,.,nm(t, ) = / ki(t—s) g1 E(a17ﬁ1la]>,a1 (—8 Vri,.,.,n,,,sal_/sl, _Vr%l,,,,,nmslh) ds,
0

0
o2y, (b €& @) = /k2(5 — 1) (=) " Wosp,, o (t & w)ds.
t
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According to the degenerate kernels method, we substitute these presentations, (24) and (25),
into designations (13) and (14):
TnJlr,...,nm [l —VX12nq,...,np (8r w)} +v Ty, vt X131, o0y (51 (U)
= [(Pl 1, eyt + P2 nl,,,.,n,,,} X11nq, ..., npy (81 ‘U) + [glnl,...,nm + fl N1, ey (Vl)] X14n1,.,.,nm(5/ w) (26)

+ [anl,m,nm +f2n1/m,n,,l(v2)] XlSnl,m,nm(E, ‘U),

Tars i 1= VX211, (& @)] = @1y, oomy X211, ooy (& @)+ @201, o1y X201, o1y (€5 W)

(27)
+ [San,m,nm +f2n1,m,nm(V2)] X24nq,...,ny (8/ w),
where
T
Xing, .. n (& W) = /hl(s) Niiny,..,n, (5, €& w)ds, i=1,5,
0
0
X2ing, . ny (& W) = / b2(s) Nojny, ... ny (5, € w)ds, i=1, 4.
T

We solve the linear algebraic Equations (26) and (27) as a system of algebraic equations with
respect to quantities 7,/ ‘and T, _ , .If the following conditions are fulfilled

VX120, (& @) F 1, VX2 0y, o (6 @) # 1, (28)

then, from (26) and (27), we derive

Tnt,,.,,n,,, =@ nl,.A.,anll Y, ey iy (Er W) + (P2111,.4.,n,,,M12n1,,“/ ™ (&, w) (29)
+ [glnl/m,nm + flugei (V)] Mizn,,...n, (& @) + [$20,.my T+ f21,0 1 (V2)] Mign,,...n,, (e, w),
Tn_l,m,n,,, =9 111,4“,an21 M1y ey i (5r w) + (P2n1,...,an22 N1y ey i (gz w)
(30)
+ (8201, e+ f2myy ey (V2)] Mz, oy (€ @),
where
1 X13n4,...,n (E,Ld) X2iny,...n (s,w)
My, (6, W) = ———— | X11ny,..n, (W) =V Lo Lo ,
Lin.e.n ( ) 171’?(]2}11,...,;1”,(8/“)) [ et ( ) 171/7(23141,,“/11",(5/“7)
. Xidny,.,n, (& W)
i=1,2, M13n1,...,nm (Sr w) = e oo o ’
1- VX12ny,...,nm (81 W)
1 X13ny,...,1n (glw) X24ny,...n (s,a})
Mign,,...n, (8, 0) = — [}(15 ity (8, ) — v Lo ,
et (€1 0) 1=vxim,.n, (& w) i (6160) 1—vxam,.m, (8 W)
X2iny,...,n, (Sr w) . X24ny,...,n (51 “7)
My; yw) = ———re————, i=1,2, M , W) = e
2t (s OJ) 1- VXZSnl,A.A,nm (er UJ) ! B <€ w) 1- VXZSnl,A,A,n,,, (5/ ‘U)
Substituting presentations (29) and (30) of Tnil,m,nm into (24) and (25), we derive
un+1,...,nm (tr g W, V) =@ Vll,m,fllel M1, ey M (t' & W, V) + 902?11/m,anlznll---,nm(t' & w, V)
+ [glnl,...,nm +f1 nl,...,nm(vl)] QlSnl,...,nm(tr £ w, V) (31)

+ [anl,...,n,,, +f2n1,m,11m(v2)} Q14n1,m,n”,(t: g W, V)/ t> O,
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Ui, oo (b & @0, V) = @1y, 1, Q2 ny, o (& @, V) + @20, Qo2 my (E € 0, V) )
32
+ [anl,m,nm +f2n1,wnm(v2)] Q23n1,m,nm(tr £ w, V)r < 0/

where

Qlinl,m,nm(tr g w, V) = Nn M1, ey i (t/ g ‘U) + VNlan,m,n,,,(t/ g w) Mlinl,...,nm (‘S/ w)
-V Nl?ynl,...,n,,,(tr g w) Moin,, ... i (6 w), i=1,2,
Q1311 (t & @, V) = Niguy, o0y (B & @) +V N2y, oy (B & @) M1z, . ny, (8, @),
Quany, ...yt & @, V) = Nisny, _u,(t, & )+ Nigu, ., (t & @) Mian,, ., n, (& w)
VN, i (b € @) Moz, oy (€ W),
Qaing, ooy (b €& W, V) = Nojyy o (E &, @) +V N3y, ., (b € @) Maig, o, (6, @), i=1,2,
Q23ny, .y (B & @, V) = Noguy, oy (t € @) +V N3y, iy (E & @) Moz, (8, @).
Now, we substitute presentations (31) and (32) into the Fourier series (7) and obtain the following
formal solution of the direct problem (1)—(4)

0

u (t/ X, & W, V) = r ﬂ”lr»w”m (x) [(Pl N, ey Qu MY ey i (t/ £ w, V)

ny, .., =1

+(P2nl,...,nmQlZm,,,,,nm(tr & w, V) + (glm,...,nm +f1n1,...,n,“ (Vl)) Q13n1,,,.,nm (tr & w, V) (33)

+ (ngxl,...,nm +f2nl,...,nm<v2)) Q14I’l1/.--/”m<t’ & w, 1/)} , E> 0’

o]
u (t/ X, & W, V) = T 19711,---, i (Y) [901 MY, ey i Qo1 MY, ey i (t/ g w, V) + P2ny, . iy
e =1 (34

XQZan,..,,nm(t/ £ w, V) + (82711,,,,,»1,,, +f2n1,,,,,n,,,(v2)) Q23n1,,,,,nm (t/ & w, V)] , t<0.

We suppose that the conditions of (23) were violated for some values of spectral parameter w. So,
we have to consider the algebraic equation with respect to spectral parameter w

7111,...,71,,,(0-7) = 1Fzzirn],m,n,,,(_Tr £, w) : D%tT23n1,444,n,,1(_Tr g, W)
(35)
Y23, ., n, (—T, & @) - D§¥oan,, . n, (=T, & w) = 0.

The set of positive solutions of this algebraic Equation (35) with respect to the spectral parameter
w, we denote by ;. We call these values w € S as irregular values and, for these values,
the condition (23) is violated. Another set A; = (0; o)\ J; is called the set of regular values of
the spectral parameter w and, for these regular values, the condition (23) is fulfilled.

Now, we assume that the conditions in (28) are violated
VX120, ...,nm (S, w) =1 vxas M1, o i (‘C-r w) = 1. Hence, we have

1 1
v =

= V) = .
X12n1,wnm (Sr (,())/ X23ny,..., 1y (E/ (4})

For regular values w € Ay there hold X121, ... n,, (& @) # 0, X23ny,...,ny (& @) # 0. So, we denote
the set {vy, 12} by §». Then aset A, = (—o0; 0) U (0; o0) \ I3 is called the set of regular values of
the spectral parameter v. Therefore, for all values of v € A5, condition (28) is satisfied. We use the
following notation X = {ny, ..., n,, € N; w € Ay; v € Ay}, where N is the set of natural numbers.
This is the set on which all values of the spectral parameters w and v are regular. Therefore, in this case,
we study the solution of the direct problem (1)—(4) in the domain () as Fourier series (33) and (34).
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4. Redefinition Functions
Suppose that the functions ¢;(x) expand in the Fourier series

lpi(x) = Z lpin],...,nmﬂnl,wnm (x), (36)

ny, .., npy=1

where
Pinsonn = [ 90 By (A, 1 =12, 11,y = 1,2,
Q}”

By virtue of series (33), (34) and (36), we apply conditions (5) and (6):

[ee] (o)
Z 1 ”114441”11119”1:---/”m(x) = Z Ory, ooy (x)
ny, e, =1 ny, .., np=1
T
X /q)l (t) [‘Pl nl,...,anll M1, e i (t/ g w, V) + (Pan,m,nmglznl,...,nm(tz £ W, V)
0

+ (glnl,m,nm + flugtn (W) Q131101 (te,w,v) + (82ny,..my + forsn, (V2)) Q14ny,.. iy, (t,e,w,v)]dt,

[ee] [e°)
E lPZnl,,“,n,,,ﬁnl,m,nn,(x) = Z 19nl,...,nm(x)
Ny, e, =1 ny, ..., =1
0
X / (DZ(t) [(Pl nl,...,anZI nl,...,nm(t/ g w, V) + Qony, . Q22n1,m,nm(t/ g w, V)
-T

+ (anl,m,nm +f2n1,...,nm(v2)) Q23n1,...,n,,,(t/ & W, V)] dt.

Hence, we obtain
Ylugym = Pligyeein Y11y (& W, V) + @211 i Y1201, 1 (€, 00, V)
F(S1ng, e+ F11, i (V1)) Y130y, (€ @, V) (37)
+ (82111, oo T L2111 (V2)) Y1any, .. (6, @, V),

[02) i, ety — P1 nl,m,n,,,Y21 11, ey i (Er w, V) + @2 nl,...,anZan,...,nm (S/ w, V)

(38)
+ (8201, eyt T S21, s (V2)) Y2301,y (€ 0, V),
where ,
Ylinl/...,nm (S/ w, V) = /q)l(t) Qlinl,...,n,,,(t/ g W, V) dt, i=1,4,
0

0
Yoing, ., (& w, v) = /<1>z(t) Qaing, . nn(t, & w,v)dt, i=1,3.
-T

The relations of (37) and (38) we consider as a system of functional algebraic equations with respect
to coefficients of redefinition functions. By solving this system, we obtain the following representations

81ny,im (ar w, V) + flnl,...,nm (V1) = lplnl,m,nmAllnl,.“,nm (S/ w, V) + lpZn],...,nmA]an/...,nm (E/ w, V) ( )
39

F Py, i D131y, oy (8 O, V) + P2y, Didiny, oy (6 @, V),
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g2"1/~~«/"nz(€’ w, V) + fz N1y i (VZ) = 11]2 nl,m,n,,,A21 Vll,m,nm(sl w, V)
(40)
F P11, 1 B2y, 1 (& W, V) A Q2111 D23y, (€ O, V),
where
—1
Ay MY, ey M (Sr w, V) = (Y13n1,m,nm (gr w, V)) ’
-1
A2y, (80, V) = =Yo30,, o (& @0, V) Y13y, ony (& @, V),
-1
A3y, i (3/ ‘UIV) = [_Yllm,...,nm (Er ‘U/V) + Y21n1,.4.,71m (8/ w, V) Y23n1,...,n,,, (3/ er)] (Y13m,...,nm (51 w, V)) ,
A14nl,.“ My (8/ u),V) = [_Y12n1w,ﬂm (Sr w, V) +You,,. (Sr w, V) Y230, 1 (5: w, V)] (Yli’ml/m,nm (Sr w, V))71 ’
-1
Aoty (8 0, V) = (Y03, oy (65 @0, 1)),
-1
Doy, (& @, V) = —Yorp, (&, w, V) (Yosny, nn (e w, v)) ",

-1
A23n1,m,nm (E/ w, V) = 7Y22n],m,n”x (sr w, V) (Y23n1,...,n,,, (51 w, V)) .

We rewrite Formulas (39) and (40) in the form of countable systems of nonlinear integral
equations (CSNIE)
ginl/m,nm(er w, V) =1 (ginl,m,nm) = Cing, ooyt (S/ w, V)

(41)

- f fi Y, f ®i(z) 2 ginl,m/nm (S/ w, V) ﬁ”lr-w”m (Z) dz ﬂnl:mrnm (]/) dy' i= l’ 2'
Q;n Q;n ny, .., =1

where
Clng,...,ny, (‘C—/ w, V) =1 n],...,n,,,All Ny, ey My (Sr w, V) + ¢ nl,.“,n,,,AIZn],.“,nm (5/ w, V)

+¢1 nl,...,nmA13 M1, ey i (8/ w, V) + (P2n1,m,nmA14 N1, ey M (€/ w, V),
2y, (& W, V) = Y20y, ny Bty .y (& W, V)
P11, B2211, (&, w,v) + Q211 . n D23 nl,...,n"[(sl w, V).

5. Unique Solvability of CSNIE (41)

We use the concepts of the following well-known Banach spaces, including a Hilbert coordinate

space (; of number sequences {bn,,...,n, },,, 1 with the norm

eoer M=

oo
2
1o, = Y bl ® <o

ny, e, =1

We also use the space L»(Q)f") of square-summable functions on the domain ()" with the norm

18 () | Lyeapry =

In the process of proofing the unique solvability of CSNIE (41), we need the following conditions.
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Smoothness conditions. Let functions

¢i(x), pi(x) € CHQP), fi | x, /®i(y)gi(y)dy €CHO"xR), i=1,2
O}?l

in the domain Q" have piecewise continuous third order derivatives.
Then, by integrating them in parts three times over all variables x1, x», ..., x;;, we obtain the
following formulas [41]

2
o (3m) 2< <%>m/ aSm(Pi(x) p n
I
d (3m) 2 2\ " a?;mwi(x) ’
< (= IS 0 S
) anl[l"’ml o] —(1) / ax3axd...0x5| 1V @)
17 s tm O.;"
(3m) (3m)
| , ‘7 i 3m (Pznl oo |7 i Sm’lpinr,l...,nm (44)
¢zn1,4..,nn, - - n?“.nm S | — - }’Z?A..Tl% ’
where
a3m
(pml m,nm /ax3ax2 axmﬂm,m,nm(x)dx,
(3m) 85m1,l71 .
l/]l?ll S s 1 /ax3ax 19”1:m:7”ltl(x)dx’ 121’ 2.
2
We obtain also that
(8m)
1 3m finl,,“,n,,,(x’ Vl)
; Viyl=1{— —_—L 45
im0 = () 7 )
= (3m) 2 2\" aSmfi(x Vl) ’
Z {finl,...,nm(vi)] < <7> / dx30x3 3 dx, (46)
11, oy =1 O X70x3 ... 9 x5
I
where

3m g, g
fl(nitn)n (Vl) = o fl(x, Vl) 197’1:---rnm(x)dx’ i=1,2

m i ox3ox3 ... 0x}
We use also the following well known properties of the Mittag-Leffler function:

(1) For all &k > 0, a0, Bo,70 € (02, a0 < PBo < 7, t > 0 the function
tPOYE o, go,vo (—k %, —ktP) is complete and monotonous and there holds

(=1 [tﬁOilE(zxo/ﬁo)/”m <_kta0r _ktﬁoﬂ v >0, s=0,1,2,... (47)

(2) Forall ag, Bo € (0,2), v € Rand argz; = 7, there hold the following estimates

Cq
<
’E(IXOrﬁO)r'YO (21, 22) ‘ =15 |Z1 ’ (48)
2
E (ay, o), 70 (€121, 22) = E (aq, pg), o (€271, 22) ‘ <ler—e| T‘er @
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where 0 < C; = const does not depend on z, ¢; € (0; €9), 0 < ey = const, i =1, 2.

According to the properties of the Mittag-Leffler function (Formulas (47) and (48)) the quantities
A, yny (& @, v) (j=T1,4)and Ay, . u, (¢, w, v) (j =1, 3) are uniformly bounded. So, for any
positive integers ny, ..., ny, there exist finite constant numbers Cy; (i = 1, 2), by which the following
estimates take place

max max ‘Al 111, eyt (&5 W, V) | <Co, j=14 (50)

ny, .., npeN j

A e, w, V)| <Cqp, j=1,3, 51
11, ooy M € /mathbbN ] ! 2/jm, - n,,,( ) ‘ stoy ) (1)
where 0 < Cp; = const, i =1, 2.
Lemma 1. Suppose that the smoothness conditions are fulfilled and

| filx, Vaii) — fi(x, Vai) | < Kqi(%) | Vi — Vaai |, p < 1,

3m
where p = Cos73 || ©i(x) || L) 13 = Cos (%) "

[ee]
1 93MK 4;(x .
Co3 = Z ——— < 00; max 71’() <Cpu<oo, i=1,2.
no ... .nb i |[ox%9x3...0x3
ny, .., ip=1"1 +"tm 1 2 m LZ(Q['")

Then, for regular values of spectral parameters w and v, CSNIE (41) is uniquely solvable in the space (5.
In this case, successive approximations are defined as follows:

gionl/...,nm (8, w, V) - C1n1, My gznt,l on m(E, w, V) = Iinl,.“,nm (gf), i= 1r 2. (52)
Proof. We apply the method of successive approximations and the method of compressive mappings.
We use Formulas (42)-(44) and estimates (50) and (51). By the aid of the Cauchy-Schwartz inequality
and the Bessel inequality for the zeroth approximation of the coefficients of the redefinition functions
from successive approximations (52), we obtain

[e°]
Hg?(e, w, V) ”[2 < x |Cln1,“,/nm(£r w, V) ‘
N1, e =
. m .
< > ‘ P nl,.,.,w,,,Allnl,,.,,nn, (5/ w, V) | + r ‘ oy, oy D120, 1 (5/ w, V) ‘
Ny, e, Myy=1 11,y My =1
(e°] [ee]
+ r | P1 nl,,A./nmA13111,.A.,n,,, (Sr w, V) ‘ + x ‘ 4)27“,-~-,nmA14n1,«»«,nm (Er w, V) |
A1y ey M =1 1, ey M=

[e°] [e°] [ee] oo
< Cn r |1/71n1,“./n",‘ + r |1p2n1,...,n,,,‘ + )y |(Pln1/ ,nm‘ + r ‘(P2n1,4.4,nm|

o= et =1 e =1 11, =1
(3 G
<ca (£)™ {le e imzl e -
Ny, e, My =1 1 m 11, ey =1 1M
cen ()" E e Uw Ao, o7, 1o,

H 037y (x) | +| 9" (x) |

9xJ9x3 ..9x3, Lz(Q}") 0x30x3..0x3, Lz(an)
2" g1 (%) R 2169)

+ | s soela) <o
0x30x3..0x3, LZ(Q]") 9x30x3...0x}, LZ(Q}") 4
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[}

3m
where 71 = Cg1Co3 (2)" (L,I) , Coz = r ﬁ <09

P R
0 oo oo
H ga(e w, v) ” 05 < r lean, ., (e w, V)| < r [ Y20, mu D210y, . my (& W, V) |
Ny, e, Ny =1 Ny, ey M=
[ee] [e*]
+ r | Plag, i D201, 1 (3/ w, V) ‘ + r | P21,y i D230, 1 (5/ w, V) ‘
M1, ey M= ny, e, Mp=1
@ (3m) (3m) 54
con(@)"] oMl g oldtel, § ol ©9
ny..nj, ny..nj, _,onp.ny,
ny, ., y=1 N1,y =1 11,y =1
" a(x) | %" g1 (x) 93" s (x)
B T Y [P R P
=72 |: 0x3023...0 X3, Ly (an) 0x3023...0 %3, Ly (QIn) 0x3023...0 %3, Ly (Qrz) 4

3m
where Y2 = C02C03 (%) " (i

T

By Formulas (45) and (46), using the Cauchy-Schwartz inequality and Bessel inequality for the
first difference of approximation (52), we obtain

s (e w,v) = giew v, < ¥

fﬁ( Jows y,ewvw) By () dx

ety =1 |
(55)
3m ) 3'”) ( ) ) ?3mf, (x VO)
< (i) nl Ylm < i < oo,
e m,...,zr:rmzl g, =T 9x70x3..9x, LZ(Q;")
I 3m o i
where 73 = Cg3 (;) (£, = [0;x)&x & w v)dx, i=1,2.

QYH
Analogously, by the condition of the lemma and expansion (9), using the Cauchy-Schwartz
inequality and Bessel inequality for an arbitrary difference of approximation (52), we obtain

H e, w,v) — g¥(e, w, v) H
3
aSlu k— 1
g H ax79x3.-0x], |ff(x' Vi) = filx, Vi || L)
<73 [ 10i(y)] "g-k(y,& wv)-gi Ny 6w, V)‘ dy H Skl (56)
hS a i i dxidx3...0x} Lao(Q")
<Cura [ 10:(v)] b @ =gl e @) |18 ) |dy
" n, n,,,
<p Hgf“(e, w, v) —glfl(s, w, V) H[Z, i=1,2,
where
33K yi(x)

SC04<OO, i=1,2.

L2(op)

By the condition of the lemma, p < 1. Therefore, it follows from estimate (56) that the operators
on the right-hand side of (41) are contracting. From the estimates (53)—(56), it is implied that there
exists a unique pair of fixed points {g1,,.n, (& @, V); $2ny,..,n, (€, @, v)}, which is a solution of
CSNIE (41) in the space £5. The Lemma 1 is proved. [

p=Corvs |0i(1) I, (qy - max

i |[ox30x3...0x}
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6. Convergence of Fourier Series (57)

Now, we determine the redefinition functions. In this order, we substitute representations (41)
into the Fourier series (9) and obtain

=)

gi(x/ & W, V) = x 19711,...,71"1 (x) [Cin1,...,nm (5/ w, V)
ny, ., Mp=1

) (57)
- f fi Y, f ®i(z) Y 8ing,im (81 w, V) ﬂnl,..mm (Z) dz 19111,‘“,14,,, (y) d]/ ,i=1,2.
Qp ar e tm=1

We prove that the following lemma holds.

Lemma 2. Assume that the conditions of Lemma 1 are satisfied. Then for reqular values of spectral parameters
w and v, the series (57) converge absolutely.

Proof. We use estimates (53)—(55). Using the Cauchy-Schwartz inequality and Bessel inequality for
series (57), we obtain the following estimates

(o)
S0 B (B ()] [|1 (e w, V)|

Ny, ey Mp=1
Qf A (y, f O4(z X 181 11, ey (& @, V) Oy, oy, (2) dz) B,y () dy H
m n P ——
B3 3 3
<Coup (7) (%) [Cm 1P1( ™) . +Cm H‘IJ( B 0
C (3m) (3m) (58)
+Con[[ o]+ canf| 8™+ 52 0]
2 2
a'imlp (') a'imlp (\, a?ww
S |:H 9x30x3..0x}, Lz(om H ax*ax: 0x3, Lz Qm H Bx*arzl 0x3, ‘ LZ(O;n)
33!"(’7 (Y) a?mf (Jf V
+H EFSCFS ) L.(ap) H EFSCr =) 81:( LZ(Q;NJ <o
5256001 < E (00 e2mm e 0, 0)
N1y ey M=
Qfm f (y, f O (z n Z;; 7132711,‘.‘,71"1 (& @, v) Oy, my (z)dz) B, enn () dy H
P (59)

a:im(P1 (x)

a3mlp2(x) H
<l R E
S745 Lo(ap) 37073 ..0x%

9x39x3 3
xX70X3...0 X3,

L2(y)

93Mgy(x)

_ 9" ¢galx) %" f(x, Va)
+ H 0x30x3..0x3,

eI
LZ(QIYH) 9x30x3..0x3,

’

o)

where

H 9" fi(x, V3) / { 2 V) 17,
_Y JiNb P2) — 7 i\ ) X,
Bxi'axg...ax%, Lz(OI’”) Q.;n axﬁax%...ax%

Vi= / ®i(y) Z 8ing, ...,y (51 w, V) 19/11,...,71", (Z) dz, i=1,2,
Qm 1y, ey =1
1
2 % 1 3m

74 = Co3Cos (7> (;) , Cos = max {Co1; Cop; 1}.

From (58) and (59) the convergence of series (57) is implied. Lemma 2 is proved. O
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So, we determined the redefinition functions as a Fourier series (57). Using representations (39)
and (40),we can present Fourier series (33) and (34) of the main unknown functions as

[e<]
U(t, X, €W, V) = r ﬂnl,...,n,,, (X) [lplm,m,nmW11n1,4..,n,,,(trgl w, V) + 1P2n1,,.,,n,,,W12n| ,,,,, n,,,(tr & w, V)
Ny ey =1 (60)
+¢1 nl,.,4,n,,,W13n1,4.4,n,,,(tr £ W, V) + P2ny, .0 W14n1,...,n,,,(tr & W, V)] , t>0,
[ee]
u (t, X, & W, V) = x ﬂm,.u,nm (x) [¢2r11,.“,n,,, Wo1 M1, ey My (tr g W, V)
Ny, ey Nyp=1 (61)

F @1 W22y, o (£ € 0, V) + @200 Wz, o (E €, w0, V)], 1 <0,
where
Wi nl,...,nm(tr & w, V) =Ajy nl,...,nm(‘c-r w, V) Qi3nl,...,nm(t/ g w, l/), i=1,2,
Wi, (t €@, V) = Moy, n,, (8@, V) Quany,..n,, (£ € @, V) + Botpy,. oy, (8,0, V) Quany,..m, (£ € @, V),
len1,4.4,n,,,(tr g w, V)= Qlj—Zm,...,n,,,(t/ g w, V) + Aljm,...,nm (&, w, v) Q13n1,,.,,n,,,(tr g w, V)
FA2 1y, (& @, V) Quany, ., (& w0, V), j=3,4,
Wzknl,...,n,,,(tr & wr‘/) = sz—lnl,...,nm(tl g,a),v) + AZk;zl,.n,nm (51 wrv) Q23n1,...,nm(tr 8,(4),1/), k=2,3.

To establish the uniqueness of the function U (t, x, ¢, w, V), we suppose that there are two
solutions U and U, to this problem. Then, their difference U = U; — Uj is a solution of Equation (1),
satisfying conditions (2)~(6) with functions ¢;(x) = 0, ¢;(x) = 0 (i = 1, 2). Then, for ¢;,,,  n, =
Ging,..,ny =0 (i =1, 2),it follows from Formulas (60) and (61) in the domain (2 that

/ Ut x, e w, V)0, .  ny(x)dx =0.
ar

Hence, by virtue of the completeness of the systems of eigenfunctions { %sin %xl},

%sin %xz} L. { %sin nfmxm} in L, (Q}"), we deduce that U (t, x, ¢, w, v) = 0 for all

xeQ=[0;]]"andt € [-T; T].
Therefore, for regular values of spectral parameters w and v, the function U (t, x, ¢, w, v) is a

unique solution tp the mixed type integro-differential Equation (1) with conditions (2)—(6), if this
function exists in the domain Q.

Lemma 3. Let smoothness conditions hold. Then, for regular values of spectral parameters w and v, series (60)
and (61) converge. At the same time, their term by term differentiation is possible.

Proof. According to the properties of the Mittag-Leffler function (Formulas (47) and (48)), the functions
Wiing, ony (£ & @, v) (i = 1,4) and Wajp,,.. n,(t, & w, v) (j = 1,3) are uniformly bounded on
the segment [—T; T]. So, for any positive integers ny, ..., ny,, there exist finite constant numbers
Cqx (k =1, 2); then, the following estimates take place

max_max | Wi, n, (& w,v) | <Ci1,  max  max |Wyjy,, ., (Lew,v) | <Cp,  (62)
1, M €N (=14 ny,e.. i €N =13

”

where Cq; = const, k=1, 2.
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Analogously to the estimates (58) and (59), by applying estimates (62), the Cauchy-Schwartz
inequality and Bessel inequality for series (60) and (61), we

[e<]
[u, x,ewv)] < ¥ 1 [0y, (& @, V) | [ Oy () ]
Ny, ey Nip=
m oo
- (\/? Cii X U rmyem | 1020, | @1y, | @200, ]
N1 ey M=
(63)
93mypy (x) 2 O ’
<7 [\/Qfm [W] dx+ f, [axsaxwz ax%,] dx
1
Prer(r) 12 93™ ) (x)
W, tom] 4x ) el dx} o
1
3m
5 5 / 3m
where 75 = \/; C1u1Cos <E> ’
(o]
Ut x, e, w,v)] < % g, an(b & @, v) || By, (%) ]
1, ey =1
- 93myy (x) Zd
_97 M) gy
<6 Q@ 5230%] .oxh (64)
- 2 2
337 (x) d 922 (x)
Mgy (x) X 2 | dx | < oo,
+ Qj;‘" _ax?ax;..axgl + Qf;n Bx%axg...axgz

where ¢ = <\/?> v C12Co3 (%)3”1.

It follows from estimates (63) and (64) that the series (60) and (61) are convergent absolutely and
uniformly in the domain Q) for the

(m, ..., np, w,v) €R={ny, ..., nu €N; we Ay; veAy}.

Therefore, for the (ny, ...
required number of times

, N, w, V) € X functions, (63) and (64) formally differentiate in Q the

)

r

ny, e, =1

cDgiu(t, x, ¢, w,v) = Oy (X)

X [lIJl 111,m,n,,,CDg1tW11 nl,,,,,nm(tr £ w, V) + lPan,..4,nmCDgltW12n1,m,nm(t/ g w, V) (65)
+¢1 111,m,n,,,CDg1tW13n1/m,n,,,(t/ £ W, V) + (P2n1,...,nmCDgl[WMnl,m,nm(t/ & W, V)] , t>0,
e ® e
DUt x, 6,0, v) = L Buy, (%) [Y204, Dt Wat g, oo (£ € 0, V)
Ny, e, =1 (66)
F@1my, . mm DY W2y, o (b & @, V) + @211y, D Was g, oy (B €, w0, V)], £ <0,
[ee]
2
Uyy(t x, 6w, v)=— ¥ : () " Oy, (%) (1111, o Wity o (1 € 0, V)
N, ey M=
‘H/)Zm,m,nm W12 Ny M (t, g w, V) + (Plnl,...,nm W13n1,...,nm (tr g w, V) (67)
+0 201w Widng,mn (£ €& w, V)], £>0,
[ee]
2
uxlxl(t/ X, € w, V) = - r (%) 19nl,...,n,,,(x) [lp2n1,...,an21 n],...,n,,,(tr £ w, V)
11, ey =1 (68)

+ P1ag, ey i Woz i, oy (b € @0, V) + @211y, i Wosiy, o (£ € w0, V)], £ <0,

128



Axioms 2020, 9,121

(o)
2
Uy, (t, %, 6, w, v) = — )y , (%) By, (X) [lpl 11wt W11 V’lr-»»:nm(t’ € w, V)
1 ey =
+W2uy,. 0 W12n1,.../nm (tr g w, V) + @1nq, Wis [y (t, & w, V) (69)

+(P2n1,m,nm W14n1,“.,nm (t/ & w, V)] , t>0,
> Ty 2
UXZJ(z(t/ X, 6w, V)= — r (TZ) ﬂ;il,...,n,,,(x) [1/]2711,...,an21n1,m,nm(f/ g, w, V)
1, eey =1 (70)
+ ¢1 n1,...,an22n1,...,nm(tr £ w, V) + (Pan,...,anZSnl,...,nm(tr £ w, V)] , t<0.
The expansions of the following functions into Fourier series are defined in the domain () in a
similar way

Usyxs (8 X, 6, w, V), ..., Uxyry (8 X, 6 w, V), ¢ DglUxx (t X, &, w, v),

cDG2Usyx (t x, & w, V), ¢ Dytliys, (X, € w, V), ..., c Dgily,x, (t, x, 6, w, V), ...,
CDgltuxmxm(t’ X, & w, V)’ CDS%Uxmxnl(t/ X, € W, V)'
The convergence of series (65) and (66) is proved similarly to the proof of the convergence of
series (60) and (61). So, it is enough to show the convergence of series (67) and (70). Taking into

account Formulas (42)—(44) and estimates (62) and applying the Cauchy-Schwartz inequality and
Bessel inequality, we obtain

> TNy 2
Unn(txew )< 8 (F52) 1, (t & @, v) [ 8y, ()
ny, .., ip=1

m
2 7T\ 2 &
< < 7) (T) Cn Z "% U1, | 10200, [ @1, |+ 920, ]

N1y eeey Mg =1

( 2)’" 1 3m—2 0 @m) ©

B D S B S P R

= 1ny, eyt 3 201, ey
! T N1, ey M =1 ”1”2 ! ey =1 111713 !

o 3m) > 1 (3m)
+ — 3 3 + P
ny,. gmfl 111112 ‘ qvlnl, " "1,---/21%:1 I’lli’lg o 'n;’n ‘ 2t ‘:|
By, (x) 93y (x) ?
1 2
< d d
- Q/ {axlaxz axm o axlax2 -9x ] '
1
a3m a3m 2
+ / 3# dx+ _ @) gy < oo,
9x30x3 ...0xy 0x3 .. axm
a
5 o 1\ 3m-2
where ;7 = <\/;> C11Cos6 (;) » Cos = L | 7S
N1, oo = "

TNy 2 _
Uit g 0[S 8 (F52) Tt & @,0) | By ()

ny, .., np=1
fee]

m
2 7T 2
< < l) <7) Ci Z n% H 1/12711,‘“/71”, } + | (%51 nl,...,n,,,| + | P2ny, .. H

ny, .., =1
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_ \/g mc i 3m—2 i 7‘ o
< i 2 w3 %nl, .

3 1 8™ |+ 5 1 o2
3 3 3 1ny,....n 3 3 3 21q,...,1
1y, gty =1 11712103 - i " ny, oy ig=1 11213 - . iy "

2
N

0x30x5 ...0x3

+

ar
2 2
a3mq)1(x) aSm(Pz(x)
) P L e
A [axi’axg ...0x3, A axi’Bxg L.0xX,
| 1
3m
2 3m—2 )
where g = (\/?) C12Co7 (%) ,Coy = . En » 77’?”%1_””%.

The convergence of series (68) and (69) is similar to the convergence of series (67) and (70).
The convergence of Fourier series for functions

o
Uy (8 X, 8, 0, V), ..., Uy, (8 X, 6 0, V), ¢ DUy (t, X, € w, v),

1§ & o
c Dyl xy(t X, €, w, v), ¢ DytUxyny(t, X, 8, w, V), ..., c Dyt (t X, 8, w, V), ...,
® e
CDOtlumem(t/ X, & w, V), CDO?umem(t’ X, € W, V)

is proved in a similar way in the domain Q). It follows from these last estimates that functions (60)
and (61) possess the properties of (2) for the regular values of spectral parameters w and v. O

7. Continuous Dependence of Solution on the Small Parameter

We consider the continuous dependence of the solution to the problem (1)-(4) on small-parameter
& > 0 for regular values of spectral parameters w and v. Let £1 and ¢; be two different values of small
positive parameter ¢. It is easy to check from (47)—(49) that the following estimates hold

mi?feN Eg)r( | Waing, i (€1, @0,V) = Whin, o (t60,w,v) | < Coy &1 —e2|, i=1,4,  (71)

X ten[ﬂa%(O] [ Wairey,.oot (£ €1,@0,V) = Wai, o (b €2,0,v) | < Cpp |1 —€2], i=1,3,  (72)

where 0 < Cp; = const, ¢; € (0; ¢9), 0 < gy =const, i =1, 2.
Then, taking estimates (63), (64), (71) and (72) into account and applying the Cauchy-Schwartz
inequality and Bessel inequality, from series (60) and (61), we obtain

[U(t, x, €1, w,v)—U(t x, €9 w, V|

oo
s X Lt (B 81 @, v) =l (22, @, v) [ B,y (2) ]
Moy M=

[eo]
< <\/?> Cales 7€2| Z U1, | 10200, | 1 P10y [ [ 9201,y ] 73)
nrn*

23myp, (x) . 231y, (x) 2
Svoler—ea |:\/j 8r38x31 9x} ] dx+ J [Bx?axgz...ax%l dx
Q;H L

93¢y (x) _Pmga(x) B B 4
Qf [BX‘BX EE) “ax f, axjoxn].. axs Cdx =le1—22] - Ca,
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3m
2 3m
where yg = (ﬁ) CynCo3 (%) ,0 < C3; = const < oo;

[U(t, x, €1, w,v)—U(t x, €2, w, V|

)

< L gy ten @) —ug (b er, @, v) | [ By, (2)]
ny, .., np=1

< 70ler— €2 0x30x3 .03,

2
aSmwz(x) :| dx+ (74)

m
Q 1

2
93y, (x)
| I [ x|
Jolm 0x70X5..0Xy an
3m
> A ! 3m
where y19 = \/; C2Co3 (E) ,0 < C3 = const < oo.

It follows from estimates (73) and (74) that |U(t, x, €1, w, v) — U (t, x, €2, w, v| is small
if |1 — £5 | is small in the domain Q for the (11, ..., 1y, w, v) € X.

2
83111 z(x)
Sfrsaxg | 9%| =lei—e2l-Ca

8. Conclusions and Statement of the Theorem

In the present paper, we study the questions of the one-value solvability of an inverse boundary
value problem (1)—(6) for a mixed type integro-differential equation with Caputo operators of
different fractional orders and spectral parameters in a multidimensional rectangular domain.
For (ny, ..., ny, w, v) € R, we proved four lemmas under the following conditions A: Let functions

i(x), i(x) € C2(QP), fi | x, / Oi(y)giy)dy | € CHOQ' xR), i=1,2
ar
in the domain QO]" have piecewise continuous third order derivatives.
We will formulate a theorem as generalizing the above four proved lemmas. Thus, the following
theorem is true.

Theorem 1. Let the conditions of A be fulfilled. Then, for the possible numbers ny, ..., ny and regular values
of spectral parameters w and v from the set X, the inverse boundary value problem (1)—(6) is uniquely solvable
in the domain Q) and the triple of solutions is represented in the form of series (57), (60) and (61). Moreover, it is
true that

lim U (t, x, ¢, w,v)=U(t x,0, w,v),
e—0

where U (t, x, 0, w, v) is the solution of the mixed type fractional integro-differential equation of the form

T
v [Kq(t s)U(s, x)ds+Fy(t, x), t>0,
Ao(U) = Bo(U) =1 %
v [ Ka(t, s)U(s, x)ds+ Fa(t, x), t <O,
-
v U 0
xi, b>
1+ sgn (t 1—sgn(t S TR ’
Aou) = |5 ") psr ¢ 5 W pslu, x), Bowy={ =

m
w2 Y Uyy, t<0
i=1
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with boundary value conditions (3)—(6) under consideration,

Rl x) =ki(t) |si) + fi | % [ @) giwdy ||, i=1,2
ar

As a conclusion, we say that the numerical methods for solving fractional differential equations
are important in the implementation of applied problems. In the future, we will also try to consider the
applications of the numerical solution to the problems that we are solving. There are many methods
for the numerical implementation of fractional differential equations. In this regard, we note the work
done in [42]. In this paper, a new class of (C, Gy)-invex functions is introduced and given nontrivial
numerical examples, which justify the existence of such functions. Moreover, we construct generalized
convexity definitions (such as, (F, Gy)-invexity, C-convex etc.).

Author Contributions: Conceptualization, TK.Y. and E.T.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications;
Gordon and Breach: Yverdon, Switzerland, 1993.

2. Mainardi, F. Fractional calculus: some basic problems in continuum and statistical mechanics. In Fractals and
Fractional Calculus in Continuum Mechanics; Carpinteri A., Mainardi E,, Eds.; Springer: Wien, Austria, 1997.

3. Area, I; Batarfi, H.; Losada, J.; Nieto, ].J.; Shammakh, W.; Torres, A. On a fractional order Ebola epidemic
model. Adv. Differ. Equ. 2015, 278, doi:10.1186/513662-015-0613-5. [CrossRef]

4. Hussain, A.; Baleanu, D.; Adeel, M. Existence of solution and stability for the fractional order novel
coronavirus (nCoV-2019) model. Adv. Differ. Equ. 2020, 384. [CrossRef] [PubMed]

5. Ullah, S.; Khan, M.A.; Farooq, M.; Hammouch, Z.; Baleanu, D. A fractional model for the dynamics of
tuberculosis infection using Caputo-Fabrizio derivative. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 975-993.
[CrossRef]

6.  Tenreiro Machado, J.A. Handbook of Fractional Calculus with Applications in 8 Volumes; Walter de Gruyter
GmbH: Berlin, Germany; Boston, MA, USA, 2019.

7. Kumar, D.; Baleanu, D. Fractional Calculus and Its Applications in Physics. Front. Phys. 2019, 7, 81.
[CrossRef]

8. Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations:
Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal.
2019, 22, 27-59. [CrossRef]

9.  Saxena Ram, K; Garra, R.; Orsingher, E. Analytical solution of space-time fractional telegraph-type equations
involving Hilfer and Hadamard derivatives. Integral Transform. Spec. Funct. 2015, 27, 30-42. [CrossRef]

10. Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review.
Proc. R. Soc. 2020, 476, 2234. [CrossRef]

11. Garra, R.; Gorenflo, R.; Polito, F; Tomovski, Z. Hilfer-Prabhakar derivatives and some applications.
Appl. Math. Comput. 2014, 242, 576-589. [CrossRef]

12.  Tenreiro Machado, J.A. (Ed.) Handbook of Fractional Calculus with Applications; Walter de Gruyter GmbH:
Berlin, Germany, 2019; Volumes 8.

13.  Hilfer, R. Application of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000.

14. Hilfer, R. On fractional relaxation. Fractals 2003, 11, 251-257. [CrossRef]

15. Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chen. Phys. 2002,
284, 399-408. [CrossRef]

16. Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics, Recent Advances; World Scientific: Singapore, 2011;
Chapter 9.

132



Axioms 2020, 9,121

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Sandev, T.; Tomovski, Z. Fractional Equations and Models: Theory and Applications; Springer Nature Switzerland
AG: Cham, Switzerland, 2019.

Xu, C.; Yu, Y; Chen, Y.Q.; Lu, Z. Forecast analysis of the epidemic trend of COVID-19 in the United States by
a generalized fractional-order SEIR model. medRxiv 2020. [CrossRef]

Cesarano, C. Generalized special functions in the description of fractional diffusive equations. Commun. Appl.
Ind. Math. 2019, 10, 31-40. [CrossRef]

Assante, D.; Cesarano, C.; Fornaro, C.; Vazquez, L. Higher Order and Fractional Diffusive Equations. J. Eng.
Sci. Technol. Rev. 2015, 8, 202-204. [CrossRef]

Dattoli, G.; Cesarano, C.; Ricci, P; Vazquez, L. Special Polynomials and Fractional Calculus. Math. Comput. Model.
2003, 37, 729-733. [CrossRef]

Restrepo, J.; Ruzhansky, M.; Suragan, D. Explicit representations of solutions for linear fractional differential
equations with variable coefficients. arXiv 2020, arXiv:2006.1535v1.

Gel'fand, .M. Some questions of analysis and differential equations. Uspekhi Mat. Nauk. 1959, 14, 3-19.
(In Russian)

Uflyand, Y.S. On oscillation propagation in compound electric lines. Inzhenerno-Phizicheskiy Zhurnal 1964, 7,
89-92. (In Russian)

Terlyga, O.; Bellout, H.; Bloom, F. A hyperbolic-parabolic system arising in pulse combustion: existence of
solutions for the linearized problem. Electron. |. Differ. Equ. 2013, 2013, 1-42.

Abdullaev, O.K.; Sadarangani, K. Nonlocal problems with integral gluing condition for loaded mixed
type equations involving the Caputo fractional derivative. Electron. |. Differ. Equ. 2016, 2016, 164, 1-10.
Available online: http:/ /ejde.math.txstate.edu (accessed on 25 September 2020).

Agarwal, P; Berdyshev, A.S.; Karimov, E.T. Solvability of a nonlocal problem with integral transmitting
condition for mixed type equation with Caputo fractional derivative. Results Math. 2017, 71, 1235-1257.
[CrossRef]

Zarubin, A.N. Boundary value problem for a differential-difference mixed-compound equation with
fractional derivative and with functional delay and advance. Differ. Equ. 2019, 55, 220-230. [CrossRef]
Karimov, E.T.; Al-Salti, N.; Kerbal, S. An inverse source non-local problem for a mixed type
equation with a Caputo fractional differential operator. East Asian . Appl. Math. 2017, 7, 417-438.
d0i:10.4208 / eajam.051216.280217a52079736217000268. [CrossRef]

Karimov, E. T.; Kerbal, S.; Al-Salti, N. Inverse source problem for multi-term fractional mixed type equation.
In Advanes in Real and Complex Analysis with Applications; Springer Nature Singapore Pte Ltd.: Singapore,
2017; pp. 289-301. [CrossRef]

Repin, O.A. Nonlocal problem with Saigo operators for mixed type equation of the third order. Russ. Math.
2019, 63, 55-60. [CrossRef]

Repin, O.A. On a problem for a mixed-type equation with fractional derivative. Russ. Math. 2018, 62, 38-42.
[CrossRef]

Salakhitdinov, M.S.; Karimov, E.T. Uniqueness of an inverse source non-local problem for fractional order
mixed type equations. Eurasian Math. ]. 2016, 7, 74-83. Available online: http://mi.mathnet.ru/rus/emj/
v7/il/p74(accessed on 25 September 2020).

Yuldashev, T.K.; Kadirkulov, B.]. Boundary value problem for weak nonlinear partial differential equations
of mixed type with fractional Hilfer operator. Axioms 2020, 9, 68. [CrossRef]

Yuldashev, TK.; Kadirkulov, B.J. Nonlocal problem for a mixed type fourth-order differential equation with
Hilfer fractional operator. Ural Math. |. 2020, 6, 153-167. [CrossRef]

Yuldashev, T.K. Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation
with degenerate kernel. Differ. Equ. 2018, 54, 1646-1653. [CrossRef]

Yuldashev, T.K. On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential
equation with a degenerate kernel. Comput. Math. Math. Phys. 2019, 59, 241-252. [CrossRef]

Yuldashev, T.K. Spectral features of the solving of a Fredholm homogeneous integro-differential equation
with integral conditions and reflecting deviation. Lobachevskii |. Math. 2019, 40, 2116-2123. [CrossRef]
Yuldashev, T.K. On a boundary-value problem for Boussinesq type nonlinear integro-differential equation
with reflecting argument. Lobachevskii ]. Math. 2020, 41, 111-123. [CrossRef]

133



Axioms 2020, 9,121

40. Yuldashev, TK. On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with
degenerate kernels. Proc. YSU Phys. Math. Sci. 2018, 52, 19-26. Available online: http://mi.mathnet.
ru/rus/uzeru/v52/il/p1914(accessed on 25 September 2020). [CrossRef]

41.  Yuldashev, T.K. Nonlocal inverse problem for a pseudohyperbolic-pseudoelliptic type integro-differential
equations. Axioms 2020, 9, 45, doi:10.3390/axioms9020045. [CrossRef]

42. Dubey R., Mishra L. N., Cesarano C. Multiobjective fractional symmetric duality in mathematical
programming with (C, Gy)-invexity assumptions. Axioms 2019, 8, 97. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).



@ axioms ﬁw\o\w

Article

Distributed-Order Non-Local Optimal Control

Faical Ndairou ¥+ and Delfim F. M. Torres *#

Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics,

University of Aveiro, 3810-193 Aveiro, Portugal; faical@ua.pt

* Correspondence: delfim@ua.pt; Tel.: +351-234-370-668

t This research is part of first author’s Ph.D. project, which is carried out at the University of Aveiro under the
Doctoral Program in Applied Mathematics of Universities of Minho, Aveiro, and Porto (MAP-PDMA).

1 These authors contributed equally to this work.

Received: 9 September 2020; Accepted: 22 October; Published: 25 October 2020

Abstract: Distributed-order fractional non-local operators were introduced and studied by Caputo at
the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that
such operators are defined by a weighted integral of different orders of differentiation over a certain
range. The subject of distributed-order non-local derivatives is currently under strong development
due to its applications in modeling some complex real world phenomena. Fractional optimal
control theory deals with the optimization of a performance index functional, subject to a fractional
control system. One of the most important results in classical and fractional optimal control is the
Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to
the optimization problem must verify. In our work, we extend the fractional optimal control theory
by considering dynamical system constraints depending on distributed-order fractional derivatives.
Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality
condition under appropriate convexity assumptions.

Keywords: distributed-order fractional calculus; basic optimal control problem; Pontryagin extremals

MSC: 26A33; 49K15

1. Introduction

Distributed-order fractional operators were introduced and studied by Caputo at the end
of the previous century [1,2]. They can be seen as a kind of generalization of fractional order
derivatives/integrals in the sense that these operators are defined by a weighted integral of different
orders of differentiation over a certain range. This subject gained more interest at the beginning of
the current century by researchers from different mathematical disciplines, through attempts to solve
differential equations with distributed-order derivatives [3-6]. Moreover, at the same time, in the
domain of applied mathematics, those distributed-order fractional operators have started to be used,
in a satisfactory way, to describe some complex phenomena modeling real world problems—see,
for instance, works in viscoelasticity [7,8] and in diffusion [9]. Today, the study of distributed-order
systems with fractional derivatives is a hot subject—see, e.g., [10-12] and references therein.

Fractional optimal control deals with optimization problems involving fractional differential
equations, as well as a performance index functional. One of the most important results is the
Pontryagin Maximum Principle, which gives a first-order necessary optimality condition that
every solution to the dynamic optimization problem must verify. By applying such a result, it
is possible to find and identify candidate solutions to the optimal control problem. For the state
of the art on fractional optimal control, we refer the readers to [13-15] and references therein.
Recently, distributed-order fractional problems of the calculus of variations were introduced and

Axioms 2020, 9, 124; d0i:10.3390/axioms9040124 135 www.mdpi.com/journal /axioms
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investigated in [16]. Here, our main aim is to extend the distributed-order fractional Euler-Lagrange
equation of [16] to the Pontryagin setting (see Remark 2).

Regarding optimal control for problems with distributed-order fractional operators, the results are
rare and reduce to the following two papers: [17,18]. Both works develop numerical methods while,
in contrast, here we are interested in analytical results (not in numerical approaches). Moreover,
our results are new and bring new insights. Indeed, in [17], the problem is considered with
Riemann-Liouville distributed derivatives, while in our case we consider optimal control problems
with Caputo distributed derivatives. We must also note an inconsistency in [17]: when one defines the
control system with a Riemann-Liouville derivative, then in the adjoint system it should appear as a
Caputo derivative—when one considers optimal control problems with a control system with Caputo
derivatives, the adjoint equation should involve a Riemann-Liouville operator—as a consequence
of integration by parts (cf. Lemma 1). This inconsistency has been corrected in [18], where optimal
control problems with Caputo distributed derivatives (as in this paper) are considered. Unfortunately,
there is still an inconsistency in the necessary optimality conditions of both [17,18]: the transversality
conditions are written there exactly as in the classical case, with the multiplier vanishing at the end of
the interval, while the correct condition, as we prove in our Theorem 1, should involve a distributed
integral operator—see condition (3).

The text is organized as follows. We begin by recalling definitions and necessary results of the
literature in Section 2 of preliminaries. Our original results are then given in Section 3. More precisely,
we consider fractional optimal control problems where the dynamical system constraints depend
on distributed-order fractional derivatives. We prove a weak version of Pontryagin’s maximum
principle for the considered distributed-order fractional problems (see Theorem 1) and investigate
a Mangasarian-type sufficient optimality condition (see Theorem 2). An example, illustrating the
usefulness of the obtained results, is given (see Examples 1 and 2). We end with Section 4 of conclusions,
mentioning also some possibilities of future research.

2. Preliminaries

In this section, we recall necessary results and fix notations. We assume the reader to be familiar
with the standard Riemann-Liouville and Caputo fractional calculi [19,20].

Let o be a real number in [0, 1] and let ¢ be a non-negative continuous function defined on [0, 1]
such that

/01 P(a)da > 0.

This function ¢ will act as a distribution of the order of differentiation.

Definition 1 (See [1]). The left and right-sided Riemann—Liouville distributed-order fractional derivatives of a
function x : [a,b] — R are defined, respectively, by

POy [ e vO) oy [ o
D) x(t) (a) - Dyex(t)da  and  Dp2 7 x(t) ¢(a) - Dy-x(t)da,
0 0
where Dy, and Dy are, respectively, the left and right-sided Riemann-Liouville fractional derivatives of order a.

Definition 2 (See [1]). The left and right-sided Caputo distributed-order fractional derivatives of a function
x : [a,b] — R are defined, respectively, by

C]D);pi')x(t) = /Ol ¥(a) -C D% x(t)da  and C]D)Z,(‘)x(t) = /(: P(a) - DE_x(t)da,

where CDZ‘+ and CD¥_ are, respectively, the left and right-sided Caputo fractional derivatives of order .
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As noted in [16], there is a relation between the Riemann-Liouville and the Caputo
distributed-order fractional derivatives:

C]D):fi')x(t) = D;”px(t) —x(a) /O.l r(lli(i),x) (t—a) “da

and

DfOx() =0 x(0) ~x) [ h -t

Along the text, we use the notation

1
1—¢(- —
I~ v )x(t) = /0 P(a) - I;, “x(t)dw,
where I;f * represents the right Riemann-Liouville fractional integral of order 1 — a.
The next result has an essential role in the proofs of our main results; that is, in the proofs of

Theorems 1 and 2.

Lemma 1 (Integration by parts formula [16]). Let x be a continuous function and y a continuously
differentiable function. Then,

/ab x(t) DIy (Bt = [y(t) H;j‘“')x(t)]z + /ﬂby(t) DYVx(t)dt.
Next, we recall the standard notion of concave function, which will be used in Section 3.3.
Definition 3 (See [21]). A function h : R" — R is concave if
h(Bo1 + (1 —B)62) = ph(61) + (1 — B)h(62)
forall B € [0,1] and for all 0y, 0, in R".

Lemma 2 (See [21]). Let h : R" — R be a continuously differentiable function. Then h is a concave function if
and only if it satisfies the so called gradient inequality:

h(61) — h(62) > Vh(61)(61 — 62)
forall 61,6, € R™.

Finally, we recall a fractional version of Gronwall’s inequality, which will be useful to prove the
continuity of solutions in Section 3.1.

Lemma 3 (See [22]). Let a be a positive real number and let a(-), b(-), and u(-) be non-negative continuous
functions on [0, T with b(-) monotonic increasing on [0, T). If

then

forallt € [0,T).
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3. Main Results

The basic problem of optimal control we consider in this work, denoted by (BP), consists in
finding a piecewise continuous control # € PC and the corresponding piecewise smooth state trajectory
x € PC! solution of the distributed-order non-local variational problem

b
T ()] = [ L 6x(e),u(e)) dt — max,

DYVx(t) = £ (£ x(t),u(t)), te€ [ab), (BP)
x(-) € PCY, u(-) € PC,
x(a) = xg,

where functions L and f, both defined on [a,b] x R x R, are assumed to be continuously differentiable
in all their three arguments: L € C!, f € C!. Our main contribution is to prove necessary (Section 3.2)
and sufficient (Section 3.3) optimality conditions.

3.1. Sensitivity Analysis

Before we can prove necessary optimality conditions to problem (BP), we need to establish
continuity and differentiability results on the state solutions for any control perturbation (Lemmas 4
and 5), which are then used in Section 3.2. The proof of Lemma 4 makes use of the following mean
value theorem for integration, that can be found in any textbook of calculus (see Lemma 1 of [23]): if
F :[0,1] — Ris a continuous function and # is an integrable function that does not change the sign on
the interval, then there exists a number &, such that

1 1
/ P(a)F(a)da = F(w) / P(a)da.
Jo 0

Lemma 4 (Continuity of solutions). Let u€ be a control perturbation around the optimal control u*, that is,

forall t € [a,b], u¢(t) = u*(t) + eh(t), where h(-) € PC is a variation and ¢ € R. Denote by x€ its
corresponding state trajectory, solution of

DI () = £ (42,15 (), 2(a) = xa.
Then, we have that x€ converges to the optimal state trajectory x* when e tends to zero.
Proof. Starting from the definition, we have, for all ¢ € [a, b], that
DY x (6) = DI (1) = 1 (66 (1), (1) = £ (" (1), 7 ()]
Then, by linearity,
D (1) —C DI x (1)) = [CDE (e (1) — (1)) = I (8 6 (1), 4 (1) = £ (1% (1), 0* (1)

and it follows, by definition of the distributed operator, that

[ 9@ ) 1) da] = 1 (120, 5(0) ~ f (63 ()" )]

Now, using the mean value theorem for integration, and denoting m := fol P(a)da, we obtain
that there exists an & such that

Lf (8, x<(8), uc () = f (&, x"(8),u” (1)) |

m

D5 (<€ (1) - 5 ()| <
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Clearly, one has

= ’

m

CD5+ (XE(t) _ X*(i‘)) < )CD§+ (xE(t) _ X*(i‘))‘ < |f (t,xe(t),ue(t)) 7f(t/x96(t)’u*(t))|

which leads to

m

X (8) — (1) < {'f(tx() wB) —f (b (f%u*(t))\]

Moreover, because f is Lipschitz-continuous, we have

SK] x€

‘f(t,xs, u) — f(t,x*,u")

By setting K = max{Kj, Ky}, it follows that
(1) —x'(1)] < % 5 (@ — )] + [entn))
[t o)+ o0
- % {|e|1§‘+ (‘h(t)D n ﬁ /ut(t — o)1y (s) — x*(s))ds]

for all t € [a,b]. Now, by applying Lemma 3 (the fractional Gronwall inequality), it follows that
{|e|l§+ (|rw]) + |e|/ <°° yaE, ([ D)ds}
—ﬁhwwwf@w;wﬂwohmﬁ
<t [ (o)« [ (£t (o)) o

The series in the last inequality is a Mittag-Leffler function and thus convergent. Hence, by taking
the limit when € tends to zero, we obtain the desired result: x* — x* forallt € [a,b]. [

X(t) — x*(t)’

IA

Lemma 5 (Differentiation of the perturbed trajectory). There exists a function 1 defined on [a, b] such that
x€(8) = x*(t) +en(t) +o(e).
Proof. Since f € C!, we have that

ft,x%u¢) = f(t,x*,u") + (x€ fx*)w + (u€ — M*)’aiu’ Fo(]x® —x*|, [u® —u]).

Observe that u¢ — u* = eh(t) and u® — u* when € — 0 and, by Lemma 4, we have x¢ — x*
when € — 0. Thus, the residue term can be expressed in terms of € only, that is, the residue is o(€).
Therefore, we have

. . of (t, x*, u* of (t,x*, u*
CDZJJE)xe(t) _C Dfpx*(t)—i—(xe—x*) f(’x S U )+€h(t) f(/x U )+0(€),

dx Ju
which leads to
C]D)lp(‘) € _ ok € _ % ok * ok
lim e (x x)_(x x*) of (t, x*,u )_h(t)af(t,x,u ) _o,
e—0 € € dx u
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meaning that

Crp() (1o XS =X\ L x€ —x*Of(t,x%,u¥) of (t,x*,u*)
Dy (?E(l) € ) 7?&(1) € ox +h(t) ou ’
x€ —x*
We want to prove the existence of the limit lim =: 1, that is, to prove that

e—0 €
x€(t) = x*(t) + en(t) +o(e). This is indeed the case, since 7 is solution of the distributed order

fractional differential equation

DYy () = Py 1) + LU ),

1(a) = 0.
The intended result is proven. [

3.2. Pontryagin’s Maximum Principle of Distributed-Order

The following result is a necessary condition of Pontryagin type [24] for the basic distributed-order
non-local optimal control problem (BP).

Theorem 1 (Pontryagin Maximum Principle for (BP)). If (x*(-),u*(-)) is an optimal pair for (BP),
then there exists A € PC, called the adjoint function variable, such that the following conditions hold for all t
in the interval [a, b):

e The optimality condition

aL . aof

g (X, (8) + A () 5 (87 (1), 0" (1)) = 0; 1
®  The adjoint equation
¥(-) _ ai * * ﬁ * * .
DYOA(E) = 2= (627 (1) 0 (6) + A S (8,27 (1), " (1) @
e The transversality condition
L, "YA@p) =o. 3)

Proof. Let (x*(-), u*(-)) be the solution to problem (BP), i(-) € PC be a variation, and € a real constant.
Define u€(t) = u*(t) + €h(t), so that u¢ € PC. Let x€ be the state corresponding to the control u*,
that is, the state solution of

DR () = £ (1,6°(0),5°(), 2(a) = %o @
Note that u¢(t) — u*(t) for all t € [a,b] whenever € — 0. Furthermore,

ouc(t)

= h(t). ®)

Something similar is also true for x¢. Because f € C1, it follows from Lemma 4 that, for each
oxe(t)

exists for each t.
de e=0

fixed t, x°(t) — x*(t) as € — 0. Moreover, by Lemma 5, the derivative

The objective functional at (x¢, 1) is

Jx€,u€] = /abL(t,xe(t),ue(t))dt.
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Next, we introduce the adjoint function A. Let A(-) be in PC!, to be determined. By the integration
by parts formula (see Lemma 1),

/b A € DI w0y = [(1) .ﬂ;j‘“‘u(t)]z + /b (1) - DY A (1)t

and one has
b b
/ A() €D xe (1)t — / 2 () - DYVt — x5 (0) - TV (b) + 2¥(a) - T\ (2) = 0.
Ja Ja

Adding this zero to the expression J[x€, u€] gives

ple) = J[x<,u] = /ab [L (k2 (8),u () + A(t) DI xe (1) — (1) - DIA()] at

—x°(0) - [, IA®) + x5(a) - T A (a),

which by (4) is equivalent to

b
ple) = I, = [ [L (L0, 0) + A0 £ (12,0 (1) = 2°(1) - DI A()]
—x¥(0) - L POAD) + %, - TP A ().

Since the process (x*,u*) = (x0,u’) is assumed to be a maximizer of problem (BP), the derivative
of ¢(e) with respect to € must vanish at e = 0; that is,

/ d € €
0=¢/(0) = L1 lecg
[P aLax(t) AL due (1) af ax<(t)
*/,, {ﬁ 3e leo T 3u e lemo Y (ﬁ 9
() ox€(t) 7axe(b)
D= ALE) de e 0} dt de

L),

where the partial derivatives of L and f, with respect to x and u, are evaluated at (t, x*(t), u*(t)).
Rearranging the term and using (5), we obtain that

/a {(BL A - Dgff‘u(t))a"e“) (au At )af)h(t)} ar— 2x(0)

ezon;j‘/’%(b) =0.

dx dx de d de

e=0

Setting H (¢, x,u,A) = L(t,x,u) + Af(t, x,u), it follows that

NCER0E=

where the partial derivatives of H are evaluated at (¢, x*(t), u*(t), A(t)). Now, choosing

2] -

e=0 du

ax€(b)

. I¥Orp) =0,

e=0 b

(t)——(tx(t) “(1),A8),  with T, *OA@p) =0,

that is, given the adjoint equation (2) and the transversality condition (3), it yields

[ 4,00 0,20 ) =0
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and, by the fundamental lemma of the calculus of variations [25], we have the optimality condition (1):

This concludes the proof. [

Remark 1. If we change the basic optimal control problem (BP) by changing the boundary condition given
on the state variable at initial time, x(a) = x,, to a terminal condition, then the optimality condition and the
adjoint equation of the Pontryagin Maximum Principle (Theorem 1) remain exactly the same. Changes appear
only on the transversality condition:

e A boundary condition at final/terminal time—that is, fixing the value x(b) = x, with x(a) remaining free,
leads to
I'¥YA@) =o;
e In the case when no boundary conditions is given (i.e., both x(a) and x(b) are free), then we have
LYOA®) =0 and TYYA(a) =o.
Remark 2. If f (t,x,u) = u, that is, C]D)fi)x(t) = u(t), then our problem (BP) gives a basic problem of the

calculus of variations, in the distributed-order fractional sense of [16]. In this very particular case, we obtain
from our Theorem 1 the Euler-Lagrange equation of [16] (cf. Theorem 2 of [16]).

Remark 3. Our distributed-order fractional optimal control problem (BP) can be easily extended to the vector
setting. Precisely, let x 1= (x1,...,xy) and u = (uy,...,uy) with (n,m) € N2, such that m < n,
and functions f : [a,b] x R" x R™ — R" and L : [a,b] x R" x R™ — R be continuously differentiable with
respect to all its components. If (x*,u*) is an optimal pair, then the following conditions hold for t € [a, b):

e The optimality conditions

%(t,x*(t),u*(t)) +A(t) - %:(t,x*(t),u*(t)) =0, i=1,...,m

e The adjoint equations

W)y gy 871‘ * * . i * * _
D2 Aj(t) = ax; (&, x* (), u™(t)) + A(t) axj(t,x (t),u*(t), j=1,...,m;
e The transversality conditions
L'ONG) =0, j=1,...,n ®)

Definition 4. The candidates to solutions of (BP), obtained by the application of our Theorem 1, will be called
(Pontryagin) extremals.

We now illustrate the usefulness of our Theorem 1 with an example.

Example 1. The triple (%, A) given by ¥(t) = t2, i(t) = %, and A(t) = 0, for t € [0,1], is an
extremal of the following distributed-order fractional optimal control problem:

el = [ = (x0—2) (1= DY e

Int

DY x(t) = u(t) 7

u(t), telo,1],
x(0) = 0.
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Indeed, by defining the Hamiltonian function as

H(t,x,u,A) = — [(xtz) + (uf

it follows:

oH
e From the optimality condition i 0,

e From the adjoint equation Doio‘)/\(t) = %—CI,

DYA() = —2(x - £);
. From the transversality condition,
L") =o0.
We easily see that (9), (10) and (11) are satisfied for

B =2 ult) = t(tln‘tl)

. A =0.

3.3. Sufficient Condition for Global Optimality

®)

)

(10)

(11

We now prove a Mangasarian type theorem for the distributed-order fractional optimal control

problem (BP).

Theorem 2. Consider the basic distributed-order fractional optimal control problem (BP). If (x,u) — L(t, x,u)

and (x,u) — f(t,x,u) are concave and (%, i, A) is a Pontryagin extremal with A(t) > 0, t € [a, b], then

JI%,d] > J[x, u]

for any admissible pair (x, ).

Proof. Because L is concave as a function of x and 1, we have from Lemma 2 that

oL oL

L(t,x(t),a(t)) — L (8, x(t),u(t)) = = (£ 2(8), (1)) - (2(t) = x(8)) + 5 (£, 2(8), () - (

for any control 1 and its associated trajectory x. This gives
b
JIECAC)] = J[x() u()] = /” (L (& x(8), a(8)) = L (£, x(t),u(t))] dt

dx

> /ub {ai (%), () - (£(t) — x(t)) + % (t,%(£), @(t)) - (ii(t) — u(t))} dt
= /ub {% (t,%(8),a(t)) - (R(t) — x(t)) — % (£, %(t),a(t)) - (a(t) — u(t))] dt.

From the adjoint equation (2), we have

9 (6 (0, a(1)) = DEOA) ~ A0 2L (1, 5(0), ).
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From the optimality condition (1), we know that

L, .o f 1
5, (L E(E),(1) = —A(t) 5 (8, %(1), a(t))-

It follows from (12) that

Tz a0] = T = [ (B840 - 20 6200, - (20— x(6)

Using the integration by parts formula of Lemma 1,

/bA(t) DI (2(t) — x(1)) di = [(x(1) 7x(t)).11;j"’(‘))\(t)]z + /b (#(t) — (1)) - DIOA(b)dt,

a

meaning that

—/ t)-C ¢ ()—x(t))dt—[(f(t)—x(t)).n};w(‘u(t)]: (14)

Substituting (14) into (13), we get

JIRC), ) = [x(), ()] > / (1) ()
~f (x(), () = & o0 ),a(t»-(f(t)—x(t))—%(m(w,a(m-(a(t)—um)] at.

Finally, taking into account that A(t) > 0 and f is concave in both x and u, we conclude that

JIEC),a()] = x(),u()] =0 O

Example 2. The extremal (%, i, A) given in Example 1 is a global minimizer for problem (7). This is easily
checked from Theorem 2 since the Hamiltonian defined in (8) is a concave function with respect to both variables
x and u and, furthermore, A(t) = 0. In Figure 1, we give the plots of the optimal solution to problem (7).

109 — x'(t)=t2
— u'(t)=t(t—1)/Int
0.8
0.6
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
time (t)

Figure 1. The optimal control #* and corresponding optimal state variable x*, solution of problem (7).
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4. Conclusions

In this paper we investigated fractional optimal control problems depending on distributed-order
fractional operators. We have proven a necessary optimality condition of Pontryagin’s type and a
Mangasarian-type sufficient optimality condition. The new results were illustrated with an example.
As for future work, it would be interesting to develop proper numerical approaches to solve problems
of optimal control with distributed-order fractional derivatives. In this direction, the approaches found
in [17,18] can be easily adapted.
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