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Figure 5. (a) Measured absorption spectrum (blue line) and Voigt theoretical spectrum (red line) via
the LOP-DAST method. (b) Residual curve calculated by aforementioned two spectrums.

Figure 6. Allan deviation of the acquisition data of 60 ppmv CO.

It can be seen from the figure that the initial value of Allan deviation was about 340 ppbv, and the
minimum value reached 61 ppbv with integration time of 40 s. This result is also similar to the value
obtained from previous residual analyses.

5. Discussion and Conclusions

In this paper, a high-performance trace CO sensor using mid-infrared QCL combined with
LOP-DAST is introduced. The working principle of LOP-DAST and calculating method of the
absorption cross section are described, respectively. The stability of the sensor reached 1.7 × 10−2

by testing standard gas sample for a long period, and the MDL achieved approximate 100 ppbv by
comparing the residual difference method and the Allan deviation method. Besides, the sensor
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is capable of detecting a variety of trace gases by changing the luminous source with different
excitation wavelengths.

Comparing to state-of-the-art trace gas sensors using mid-infrared luminous source, simplified
optical structure is utilized to achieve miniaturization and practicality, and maintain high measurement
detection performance. Nevertheless, the shortcoming of the bulky package of the optical core devices
and the auxiliary modules is obvious, such as bulky electrical power supply and Peltier temperature
controller for QCL and HgCdTe detector, and multi-reflection cell with the size similar to a shoe box.
Although the described sensor obtained ppbv levels of MDL, it was too large to be convenient for
some special applications with compact volume requirement, such as gas detection in mobile and
airborne platforms.

To meet the compact requirements of these specific applications, the challenge of fabrication technique
on a chip level is of critical importance. Fortunately, the core components of the described mid-infrared gas
sensor have been minimized, such as mid-infrared MEMS luminous source [22], micro-cavity absorption
cell using silicon microring resonators [23,24], and on-chip HgCdTe photodiode detectors [25].
The advanced comments combined with integrated packaging technology to constitute new concept
sensors on a chip level can potentially rival current infrared absorption spectrum sensors. Thus, micro
mid-infrared gas sensors with ultra-compact size and high sensitivity appear to be very promising for
future gas sensing.
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Abstract: In this study, tunable diode laser absorption spectroscopy (TDLAS) combined with
wavelength modulation spectroscopy (WMS) was used to develop a trace C2H2 sensor based on
the principle of gas absorption spectroscopy. The core of this sensor is an interband cascade laser
that releases wavelength locks to the best absorption line of C2H2 at 3305 cm−1 (3026 nm) using a
driving current and a working temperature control. As the detected result was influenced by 1/f
noise caused by the laser or external environmental factors, the TDLAS-WMS technology was used
to suppress the 1/f noise effectively, to obtain a better minimum detection limit (MDL) performance.
The experimental results using C2H2 gas with five different concentrations show a good linear
relationship between the peak value of the second harmonic signal and the gas concentration, with a
linearity of 0.9987 and detection accuracy of 0.4%. In total, 1 ppmv of C2H2 gas sample was used for
a 2 h observation experiment. The data show that the MDL is low as 1 ppbv at an integration time
of 63 s. In addition, the sensor can be realized by changing the wavelength of the laser to detect a
variety of gases, which shows the flexibility and practicability of the proposed sensor.

Keywords: trace C2H2 detection; mid-infrared spectrum; interband cascade laser; tunable semiconductor
laser absorption spectroscopy; wavelength modulation technology; minimum detection limit

1. Introduction

Acetylene (C2H2) is one of the most important industrial gases used in industrial production, and
it easily decomposes, burns, and explodes. Compared with other inflammable and explosive gases,
C2H2 has a lower explosion limit. In recent years, there have been many reports of C2H2 explosion,
which has brought great loss to people’s safety and social production. Therefore, developing a sensor
to monitor C2H2 with high accuracy and sensitivity in real time is highly important.

The absorption intensity of gas molecules in the mid-infrared band is nearly three orders
of magnitude stronger than that in the visible or near-infrared spectrum band [1]. Under the
same measurement conditions, the signal intensity obtained via gas concentration detection in the
mid-infrared band is several times higher than that obtained in the visible and near infrared bands,
which behaves with better detection accuracy and minimum detection limit (MDL) in the ppbv
level [2–7]. Therefore, high sensitivity detection of essential C2H2 gas in chemical production using
the spectrum absorption lines in mid-infrared band is an effective detection method [8,9].

Interband cascade lasers (ICLs), combined with tunable diode laser absorption spectroscopy
(TDLAS)-wavelength modulation spectroscopy (WMS), are used to detect trace C2H2. The emitting
light of ICL with a center wavelength of 3026 nm is tuned by the driving current and working
temperature, which sweep the best absorption lines of C2H2. According to the Beer–Lambert law,
the C2H2 concentration is deduced by measuring the attenuation of laser intensity. The proposed

Micromachines 2018, 9, 530; doi:10.3390/mi9100530 www.mdpi.com/journal/micromachines137
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C2H2 sensor’s detection accuracy is 0.4%, the MDL is as low as 1 ppbv, and the stability is better than
1.776 × 10−2.

2. Detection Principle of C2H2 Using Absorption Spectroscopy

2.1. Selection of C2H2 Absorption Line

The absorption spectrum refers to the fraction of incident radiation that is absorbed by the material
over a range of frequencies. The absorption spectrum is primarily determined by the molecular
composition of the material [10,11]. Except for diatomic and inert gases without polar symmetrical
structure, each material has its own characteristic absorption spectrum. Thus, this characteristic can
be used to identify gas molecules [12,13]. According to the high-resolution transmission molecular
absorption database (HITRAN) database [14], the mid-infrared band absorption spectrum of C2H2 was
searched to determine the absorption capacity of C2H2 at different wavelengths. As shown in Figure 1,
C2H2 has a significant absorption spectrum line in the range of 3290–3320 cm−1 in comparison to H2O,
which may be present in significant amounts in the gas mixture.

Figure 1. Absorption lines of C2H2 and H2O in the range of 3290–3320 cm−1.

As shown in Figure 1, the x coordinate is the wave number (reciprocal centimeters, cm−1), the y
coordinate is the absorption intensity (a.u.), the black lines represent the C2H2 gas absorption lines,
and blue lines are H2O absorption lines. To improve the accuracy of the measured results, a C2H2

absorption line centered at 3305 cm−1 (3026 nm) with an absorption magnitude of 10−19 was selected
as the optimum C2H2 target line. All of the H2O absorption lines (the two closest lines are located at
3303 cm−1 and 3308 cm−1) under an absolute humidity of 2% did not interfere with the selected C2H2

line at 3305 cm−1, since they were ∼2 to 3 cm−1 away. With a higher relative humidity, the dryers could
be used to lower the H2O concentration and thereby reduce the absolute humidity to an acceptable
level, e.g., below 2%. In that case, the sensor could operate normally.
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2.2. Derivation of TDLAS-WMS

TDLAS is based on the principle of the Beer–Lambert law, which states that absorbance is
proportional to the concentrations of the attenuating species in the material sample [15,16]. It can be
expressed as follows:

I1 = I0e−α(v)PCL (1)

where I0 is the emitting light intensity of the laser, I1 is the light intensity after passing the measured
gas, L is the effective length of absorption optical path, P is the pressure in the cell, C is the gas
concentration, and α(v) is the molecular absorption coefficient. Then, α(v) can be expressed as follows:

α(v) = T(t)× g(v − v′)× N (2)

where T(t) is the absorption intensity of gas at time point t, g(v− v′) is a linear function of the measured
gas, v′ is the initial frequency of energy level transition of the gas molecule, and N is the number
of molecules per volume. To improve the MDL performance of the C2H2 sensor, TDLAS-WMS was
adopted to eliminate the 1/f noise caused by ICL or external environmental disturbances [17]. The time
dependent wavelength of the ICL can be described as [17–19]:

v1(t) = v0(t) + A cos(ωt) (3)

where v0(t) is the central frequency of emitting light, which is determined by the low-frequency
component of driving signal, and A and ω are the amplitude and frequency of the high-frequency
component of the driving signal, respectively. By substituting Formula (3) into Formula (1) and
expanding it in the form of cosine Fourier series:

v1(t) = v0(t) + A cos(ωt) (4)

where An is the amplitude of each harmonic component and can be expressed as follows [20]:

An(v0) =
I0 × 21−n × C × L

n!
× An × dnα

dvn

∣∣∣∣∣ v = v0
(5)

According to Formula (5), the amplitude of the first harmonic component is:

A1(ν0) = I0LA
dα

dν
|ν=ν0 (6)

The amplitude of the second harmonic component is:

A2(v0) =
I0CL

4
A2 d2α

dv2

∣∣∣∣∣ v = v0
(7)

Based on the above formulas, the amplitudes of the odd harmonic components at the center
frequency were 0, and the even harmonic components at the center frequency reached maximum values,
which were positively proportional to the gas concentration. As the order increased, the amplitude
decreased gradually. In summary, TDLAS-WMS is the optimum choice to analyze the measured
gas concentration, which can effectively reduce the 1/f noise, increase the signal-to-noise ratio,
and improve the MDL performance of the sensor [17].

3. System Configuration

The ICL laser produced by Nanoplus Co., Gerbrunn, Germany, was used as the light source.
Its output wavelength is in the range of 3023 nm to 3027 nm, and the central wavelength is 3025 nm.
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The embedded thermoelectric cooler Peltier was combined with negative temperature feedback
control to guarantee the stability of working temperature of ICL during operation. In terms of the
multi-reflection gas cell, the physical length was 40 cm with a volume of 500 mL. The laser was reflected
52 times in the cell, and the effective optical length was increased by up to 20 m. The photodetector is
a mid-infrared photoelectric detector: VL5T0 produced by Thorlabs. The detector has good linearity
in the spectrum range of 2.7 μm to 4.5 μm, and the response time is less than 120 ns. In addition,
the Signal Recovery 7280 lock-in amplifier (LIA) was used to demodulate the second harmonic signal.
The trace C2H2 detector was mainly divided into two modules: electrical and optical. The overall
schematic diagram is shown in Figure 2.

Figure 2. Schematic diagram of the C2H2 detector.

The master controller controls signal generator 1, which generates a sinusoidal wave signal with
5 kHz frequency and 0.026 V amplitude, and signal generator 2, which generates a triangular wave
signal with 0.5 Hz frequency and 0.2 V amplitude. A high-frequency sinusoidal signal is transmitted
to the phase lock-in amplifier as a reference signal. Besides, it is added with a low-frequency triangular
wave signal to drive the ICL laser. The emitting light of the ICL with a center wavelength of 3026 nm is
tuned by the driving current and the working temperature, which converges through the aperture (L)
and goes into the gas cell reflected by the lens (M). Through the measured C2H2 gas, the output beam is
transformed into an electric signal by a photoelectric detector, and then transmitted to the phase locked
amplifier. Signal generator 2 provides the phase-locked amplifier with a synchronous signal to ensure
phase synchronization. At the output terminal of the phase-locked amplifier, the second harmonic
signal can be obtained. Finally, the data acquisition unit processes the measured gas concentration.

4. Experiment

4.1. Response

To observe the working performance of the trace C2H2 gas detector, five C2H2 gases with different
standard concentrations (20, 40, 60, 80, and 100 ppbv) were prepared using a dynamic gas dilution
equipment. The prepared C2H2 gases were pumped into the gas cell in sequence at 5 min intervals, and
the corresponding peak voltages of the second harmonic signal were obtained and denoted as max(2f ).

As shown in Figure 3, the x coordinate is the measured time, and the y coordinate is the peak of
the second harmonic signal. By analyzing the absorption of the emitting light power from the C2H2

gas, the peak of the second harmonic signal was linearly decreased by the C2H2 gas concentration.
As a result, this peak was used to represent the C2H2 gas concentration.

Nevertheless, due to fluctuations of ICL output power, the value of max(2f ) changed slowly over
a long observation time (longer than 1 h), and the measured results of different concentrations showed

140



Micromachines 2018, 9, 530

the same growth trend. Seen from Formulas (6) and (7), the laser-induced intensity I0 as a critical factor
of system long-term drift is contained in both of them. The ratio of the second harmonic component to
first harmonic component, named as the 2f /1f -WMS technique, can be utilized to reduce the impact
caused by the ICL output power fluctuations [21].

Figure 3. Max(2f ) at different concentrations.

4.2. Precision

Detection precision is a critical parameter for evaluating the sensor performance. The relationship
curves of max(2f ) between standard concentration and the measured concentration are shown in
Figure 4.

Figure 4. Relationship curves of max(2f ) between the standard concentration and the measured
concentration.

As shown in Figure 4, the x coordinate is the standard concentration of C2H2, and the y coordinate
is the measured peak value of the second harmonic signal. The mean value of each data is expressed
in the form of error bars, and the solid blue line is the relationship between the average voltage
value of the measured data and the concentration of C2H2 gas. The black dotted line shows the
relationship between the C2H2 gas concentration and the peak value of the second harmonic signal
under theoretical conditions. The results showed that the maximum deviation of the measured data is
0.0412 V, and that the accuracy is 0.4%.

Formula (8) can be obtained by linearly fitting the measured data:

max(2f ) = 0.0305C + 0.0122 (8)

141



Micromachines 2018, 9, 530

where C (parts-per-billion volume, ppbv) is the concentration of C2H2, and then:

C = 32.7869 × max(2f ) − 0.4 (9)

Formula (9) can be used to convert the measured peak value of the second harmonic signal into
the corresponding C2H2 gas concentration.

4.3. Stability

The stability deals with the degree to which sensor characteristics remain constant over time,
which is determined by computing the ratio of the maximum deviation and the mean value for a long
time of observation at a specific concentration of C2H2 gas [22]. At room temperature, the C2H2 gas
with a concentration of 1 ppmv was observed for 2 h, the relationship between the gas concentrations
was detected using the proposed sensor, and the detection time was recorded. The results are shown
in Figure 5.

Figure 5. Detection results of 1 ppmv C2H2 gas concentration in 2 h.

The x coordinate is the detection time, and the y coordinate is the measured concentration.
During the 2 h experimental observation, the peak value of the second harmonic signal ranged from
980 ppbv to 1020 ppbv, and more than 90% of the results were in the range of 990 ppbv to 1010 ppbv
with ± 10 ppbv fluctuation. The mean of the measured results was 1000.52 ppbv, and the maximum
deviation of the actual data was 17.76 ppbv. Thus, the stability was better than 1.776 × 10−2.

In addition, the experimental results changed slowly with the ppbv level during the 2 h
observation because of the drift noise of the proposed sensor, indicating that the measurement precision
was a critical factor in long-term observation. A reference cell fully filled with pure nitrogen could be
utilized to suppress the long-term common noise in future work.

4.4. MDL

As the measured output data drift with time when detecting gas concentration, Allan variance [23]
was used to evaluate the experimental data of 1 ppmv C2H2, as shown in Figure 6.

The results were carried out under laboratory conditions, and the system sampling rate was 10 Hz.
As illustrated in Figure 6, the obtained MDL of the proposed sensor was 30 ppbv, with an integration
time of 0.1 s. The results of Allan variance analysis showed an appropriate integration time of 63 s,
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corresponding to an MDL of ~0.958 ppbv. In addition, white noise, one of the main sensor noises, is a
random signal having equal intensity at different frequencies. The decreasing red solid line, which is
about –1/2, indicates that the theoretical expected behavior of a system is dominated by white noise
(before 63 s) [21]. The MDL began to increase after an integration time of 63 s, because the system drift
noise dominated in this area.

Figure 6. Allan variance of 1 ppmv C2H2.

4.5. Recovery Time and Reproducibility

Two C2H2 samples with different concentration levels of 0 ppmv (Pure Nitrogen 99.999%) and
1 ppmv, generated by dynamic gas dilution equipment, were measured to test the performance of
the recovery time and reproducibility of the proposed sensor, and the dynamic measured results are
shown in Figure 7.

Figure 7. Dynamic measured results of C2H2 sensor.

The total measurement time is 130 s under a pressure condition of 760 torr. To test the
reproducibility performance, the C2H2 concentration was initially changed from 0 ppmv to 1 ppmv,
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then it decreased to 0 ppmv, and finally increases to 1 ppmv. The recovery time includes the gas
distribution time, and the process of gas preparation is related to PID control algorithm utilized
by dynamic gas dilution equipment. The recovery time for gas sample preparation from a low
concentration to high concentration is longer than from high concentration to low concentration, 10 s
(0 to 1 ppmv), 15 s (1 to 0 ppmv).

4.6. Performance Comparison

In recent years, many researchers have conducted in-depth studies on the detection of C2H2 gas.
The C2H2 sensor developed in this study is compared with the reported C2H2 sensors, as shown in
Table 1.

Table 1. Performance comparison of the proposed C2H2 sensor and the reported C2H2 sensors.

Ref/Type Wavelength/Maximum Intensity Technique MDL (ppmv) Error (%)

[24] 1.533 μm/1.211 × 10−20 DAS 1.8 4
[25] 1.534 nm/8.572 × 10−21 TDLAS-WMS 2 1

LGA-4500 1.533 μm/1.211 × 10−20 TDLAS-WMS 0.1 1
[26] 1.523 μm/3.145 × 10−20 CRDS 0.00034 /
[27] Broad mid-infrared range CEAS 0.5 /

This study 1.533 μm/1.211 × 10−20 TDLAS-WMS 0.001 0.4

Both sensors in [24,25] and the LGA-4500 C2H2 sensor can detect the gas concentration using the
near-infrared band, where the absorption intensity of C2H2 ranges from 10−21 to 10−20. Because of
the absorption of C2H2 in the near-infrared band, which is three orders of magnitude weaker than
that in the mid-infrared band, the MDL of C2H2 sensor using absorption line in the near-infrared
band remains at the order of ppmv. In addition, because of the use of traditional direct absorption
spectroscopy (DAS) in [24], the MDL is still far behind that of the LGA-4500 sensor, although they
both use the same absorption band. Therefore, TDLAS-WMS has better MDL performance compared
with traditional DAS. In this study, the proposed C2H2 sensor uses strong absorption line in the
mid-infrared band and high-sensitivity TDLAS to obtain superior MDL.

To improve the poor MDL caused by weak absorption intensity in the near-infrared band, one of
the most common cavity-enhanced absorption techniques, cavity ring-down spectroscopy (CRDS),
is utilized [26]. The MDL of 340 pptv is achieved by employing an external optical cavity with
high-reflectivity mirrors as a sample cell. Compared with TDLAS-WMS, CRDS has some disadvantages.
First, spectra data cannot be acquired rapidly due to the monochromatic laser source, and the response
time is usually at the minute level. Second, analysis is limited by the availability of the tunable laser
light at the appropriate wavelength and also at the availability of high-reflectivity mirrors at these
wavelengths. Finally, the requirement for laser systems and high-reflectivity mirrors often makes
CRDS more expensive than TDLAS-WMS.

Another different spectroscopic method has been developed to obtain gas concentrations with
high sensitivity: cavity-enhanced absorption spectroscopy (CEAS). Taking advantage of the high
spatial coherence and high brightness of the broadband supercontinuum source, methane and C2H2

are detected using a mid-infrared spectrum over a bandwidth as large as 450 nm [27]. A MDL of
0.5 ppm for C2H2 and 0.25 ppm for methane is measured simultaneously, according to the linear
response function. Although this gas sensor prototype can retrieve gas concentrations with sub-ppm
levels, the MDL and measurement speed of the CEAS technique should be improved in further studies.
First, the power spectral density of the mid-infrared source coupled into the chamber can be increased
by reducing the connection losses between the light source and the fiber. Second, the measurement
speed is currently limited to 30 nm/min, due to monochromator scanning and the long integration
time that is needed to improve the signal-to-noise ratio. Although this could be significantly reduced
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by using a spectrometer with a detector array, a detector with high sensitivity is generally required,
which makes this technique more expensive and impractical.

5. Conclusions

A trace C2H2 gas sensor was developed using TDLAS-WMS with an absorption spectrum line at
3305 cm−1 (3026 nm). The sensor included an ICL laser, a gas chamber with a 20 m-long optical path,
a photodetector, and a phase-locked amplifier. The detection results of the C2H2 gas with five different
concentrations showed a good linear relationship between the peak value of the second harmonic
signal and the gas concentration, with a linearity of 0.9987 and a detection accuracy of 0.4%. In total,
1 ppmv of C2H2 gas sample was used for a 2 h observation, and the measured data show the MDL is
as low as 1 ppbv at an integration time of 63 s. In addition, the sensor can be realized by changing the
wavelength of the laser to detect a variety of gases, demonstrating flexibility and practicability.

Although the proposed sensor achieved ppbv scales of MDL, it was too large to be suitable and
convenient for some applications, such as field measurements (e.g., mobile and airborne). Our new
motivation is to develop a gas sensor that is compact and rugged, because mechanical fiber coupling
of the diode lasers did not need to be adjusted over several months. Fiber delivery and a fiber
beam-coupler will be utilized in our future design, which can reduce the size and thus the ease
of operation.
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Abstract: Remote measurements of thermal radiation are very important for analyzing the solar
effect in various environments. This paper presents a novel real-time remote temperature estimation
method by applying a deep learning-based regression method to midwave infrared hyperspectral
images. A conventional remote temperature estimation using only one channel or multiple
channels cannot provide a reliable temperature in dynamic weather environments because of the
unknown atmospheric transmissivities. This paper solves the issue (real-time remote temperature
measurement with high accuracy) with the proposed surface temperature-deep convolutional neural
network (ST-DCNN) and a hyperspectral thermal camera (TELOPS HYPER-CAM MWE). The 27-layer
ST-DCNN regressor can learn and predict the underlying temperatures from 75 spectral channels.
Midwave infrared hyperspectral image data of a remote object were acquired three times a day
(10:00, 13:00, 15:00) for 7 months to consider the dynamic weather variations. The experimental
results validate the feasibility of the novel remote temperature estimation method in real-world
dynamic environments. In addition, the thermal stealth properties of two types of paint were
demonstrated by the proposed ST-DCNN as a real-world application.

Keywords: midwave infrared; thermal radiation; hyperspectral; remote surface temperature; weather
variation; deep learning; regressor; thermal stealth

1. Introduction

The relationships between solar radiance and emitted thermal radiative energy are important
for infrared stealth technology. Radiated solar energy (6000 K) heats an object, which then radiates
thermal energy according to Planck’s law [1]. One of the core technologies in infrared stealth research
is to measure the surface temperature of a remote object.

The surface temperature of an object is independent of the wavelength, and can be estimated from
even a single spectral band with a known atmospheric transmissivity and surface emissivity. In addition,
the atmospheric conditions are crucial for surface temperature estimation [2]. The atmospheric weather
conditions (e.g., temperature, humidity) change dynamically on earth, which leads to wide variations of
spectral transmissivity. An incorrect atmospheric transmissivity hinders remote temperature estimation.
Many studies have been conducted to measure remote temperature as correctly as possible.

Conventional approaches usually require an atmospheric correction to remotely estimate the
temperature [3]. A previous study proposed a temperature estimation using single-channel infrared
information and known atmospheric transmissivity [4]. A single band-based temperature emissivity
separation (TES) was applied to estimate absolute land surface temperature from the MODerate
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resolution atmospheric TRANsmission (MODTRAN) -based atmospheric transmissivity information [2].
A single channel-based temperature estimation is impractical because of the inaccurate atmospheric
profile information.

A two-channel-based method such as a split window algorithm can estimate the surface
temperature as a linear function of two brightness temperatures [5]. Although the split-window
method does not require information on the atmospheric transmissivity at the time of the temperature
measurement, it requires accurate differential water vapor absorption in two adjacent thermal
infrared channels [6].

A four channel-based surface temperature estimation method was proposed in Reference [7].
They reported an improved surface temperature estimation using three longwave thermal channels
(8.7, 10.8, 12.0 μm) and one midwave thermal channel (3.9 μm) compared to the split window methods.

A multi-channel method was proposed using longwave hyperspectral thermal infrared for
high-emissivity surfaces [8]. They used ten manually selected channels and applied a least square
minimization to estimate the parameters. The multi-channel method [9] was improved by considering
thirty-six channels and unknown emissivity in a linear system [8].

An accurate remote surface temperature estimation is difficult under dynamically varying weather
conditions. The above-mentioned approaches (1-channel, 2-channel, 4-channel, and multi-channel)
have their own advantages and disadvantages. These methods work if the specific conditions are
satisfied, such as the known atmospheric transmissivity, known water vapor contents, and known
surface emissivity. On the other hand, they cannot guarantee the temperature accuracy if the required
atmospheric information is unavailable online or the weather conditions change abruptly.

In this paper, the problem of a remote surface temperature estimation in a dynamic weather
environment is solved by focusing on the sensor, database (DB), and deep learning scheme.
A new hyperspectral thermal infrared camera (HYPER-CAM MWE, TELOPS, Quebec, QC, Canada)
was adopted to analyze both the solar radiance and thermal radiation in the 1.5–5.5 μm band.
This hyperspectral camera can provide 374 spectral bands with a calibrated spectral radiance.
A dynamic weather database was recorded three times a day (10:00, 13:00, and 15:00) for 7 months
to cover a wide range of atmospheric variations in a coastal environment. The proposed surface
temperature-deep convolutional neural network (ST-DCNN) can estimate the temperatures by learning
the network on a huge spectral DB.

The remainder of this paper is organized as follows. Section 2 introduces the background of
Fourier transform infrared (FTIR)-based brightness temperature measurement process. Section 3
explains the overall structure of the paper, including the hyperspectral database construction method
and deep convolutional neural network-based temperature estimation with the ST-DCNN. Section 4
evaluates the remote surface temperature estimation performance of the proposed method by
comparing it with the baseline methods. The paper is concluded in Section 5.

2. Background: Passive Open Path Fourier Transform Infrared (OP-FTIR)

The remote surface temperature estimation was based on the brightness temperature as shown in
Figure 1. The research objective was to estimate the temperature of a surface heated by solar energy.
The surface heated by direct sunlight was rotated 180◦ after 20 min to determine the thermal radiation.
The thermal energy radiated by the rotated surface passes through the atmosphere, which alters the
spectral radiation. The atmospheric transmittance changes according to the molecular contents, such as
carbon dioxide and water vapor. Additional thermal energy coming from the atmosphere was added
to the remote surface radiation. This thermal radiation was recorded in a Michelson interferometer
and the spectra were obtained by applying the Fourier transform to the interferograms. The brightness
temperatures were obtained through the spectral-radiometric calibration and inverse of Planck’s law.
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Figure 1. Overall process of the brightness temperature extraction using the passive open path Fourier
transform infrared (FTIR) imaging system.

2.1. Passive Open Path Michelson Interferometer

An open path Michelson interferometer can be prepared using an active or passive approach for
outdoor applications [10]. The former uses an active IR source that usually heats between 1000 and
1800 ◦C. The maximum range for an active source open path Fourier transform infrared (OP-FTIR)
system is approximately 500 m. On the other hand, the latter has no sending unit. The infrared
source is generally the sun (absorption) or a preheated object surface (emission). In the sun source,
solar energy passes through gaseous material and the amount of absorbed energy can be measured.
Figure 2 presents the basic diagram of a passive open path Michelson interferometer. Although the
sensitivity of the passive OP-FTIR is generally less than that of the active method, the effective range is
longer (i.e., up to several kilometers), which is suitable for remote sensing applications.

Figure 2. Basic diagram of a Michelson interferometer for passive open path applications.

A Michelson interferometer receives an input beam of radiation, divides the beam into two paths,
and then recombines the two beams after a path difference [11]. A beam splitter divides the beam
into two paths, and two mirrors, where one of the mirrors is movable, can make a path difference
after the beams reflect off the mirrors. The recombined two beams at the beam splitter generate
an interference pattern that is recorded in the detector (indium antimonide, InSb). This interference
pattern is called an interferogram, which is the raw data from a passive OP-FTIR sensor. Figure 3a
presents an interferogram image at zero path difference (ZPD), whose equivalent optical path
difference (OPD) ID is 593. Figure 3b gives an example of the whole interferogram at pixel (190, 10).
The following subsections outline the mathematical formulations of how to convert raw interferograms
to a brightness temperature [12].
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Figure 3. Spectral calibration process: (a) interferogram image at optical path difference (OPD) ID = 592
(ZPD); (b) interferogram at a pixel ((row, col) = (190, 10)); (c) fast Fourier transform (FFT) results;
(d) wavenumber calibration results.

2.2. Fourier Transform

The intensity as a function of the path difference in the interferometer p and wavenumber ν̃ = 1/λ

is expressed as Equation (1) [13]:

I(p, ν̃) = I(ν̃)[1 + cos(2πν̃p)], (1)

where I(ν̃) is the spectrum to be found. The total intensity at the detector is

I(p) =
∫ ∞

0
I(p, ν̃)dν̃ =

∫ ∞

0
I(ν̃)[1 + cos(2πν̃p)]dν̃. (2)

This is a Fourier cosine transformation. The inverse transform can extract the desired spectrum
(I(ν̃)) using Equation (3). The fast Fourier transform (FFT) is used in the implementation stage.
Figure 3c shows the results of spectrum extraction by applying the FFT to the interferogram (Figure 3b).
The unit of the y-axis in Figure 3c is just spectral intensity in arbitrary units.

I(ν̃) = 4
∫ ∞

0
[I(p)− 0.5I(p = 0)]cos(2πν̃p)dp. (3)
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2.3. Spectral Wavenumber Calibration

A spectral or wavenumber calibration of the FTIR can be performed using the sampling theorem
in digital signal processing [14]. The HYPER-CAM MWE uses a HeNe laser with wavelength
λ = 632.8 nm, whose light also travels through the interferometer. The peaks of the laser signal
are used to sample the received infrared (IR) source. The Nyquist sampling rate (ν̃Nyquist) was
1/λ · 0.01 (cm−1) and the wavenumber spacing (Δν̃) was calculated by ν̃Nyquist/N, where the number
of samples is denoted as N. In the present system, N was 1186 and Δν̃ was 13.3244 cycles (cm−1).
Therefore, the ideal wavenumber range was 0 to 13.3244 × 1186/2 = 7901.4 (cm−1). On the other
hand, the response bands of the detector (InSb) were 1807.9–6659.3 (cm−1). Only 374 wavenumbers
were used in the present FTIR system. Figure 3d shows the wavenumber calibrated spectrum.

2.4. Radiometric Calibration

A radiometric calibration is needed to acquire calibrated spectra in units of radiance [15]. In a space
application, a blackbody (BB) and cold space can be used [16]. The HYPER-CAM MWE can provide
the spectral radiance data using two BBs (hot, cold) [16,17].

The radiometric calibration involves characterizing the FTIR response by a linear equation,
as expressed in Equation (4):

M(ν̃) = G(ν̃) · (L(ν̃) + O(ν̃)), (4)

where M(ν̃) is the complex spectrum from the instrument measurement, and G(ν̃) and O(ν̃)

are the gain and offset of the instrument, respectively. L(ν̃) means the true spectral radiance
(W/(m2 · sr · cm−1)). The gain and offset can be estimated by measuring the radiance of two known
BBs. The theoretical radiance follows Planck’s law, defined in Equation (5):

LBB(ν̃, T) =
2hc2ν̃3

ehcν̃/kT − 1
, (5)

where LBB(ν̃, T) denotes the spectral radiance (W/(m2 · sr · cm−1)) of a blackbody, h is Planck’s
constant, c is the speed of light, k is Boltzmann’s constant, and T is the blackbody temperature (K).
If two BBs with known temperatures (TH , TC) are given, two radiances (L(ν̃, TH), L(ν̃, TC)) and two
corresponding spectral measurements (MH(ν̃), ML(ν̃)) are prepared. The unknown gain and offset
can be obtained by solving the two equations: Equations (6) and (7). Figure 4 shows the acquired
interferograms, spectra (arbitrary units), and calculated spectral radiances for the hot (95 ◦C) and cold
(25 ◦C) blackbodies (first row and second row, respectively). Figure 5a,b show the estimated gain
magnitude and offset magnitude at pixel (190, 10), respectively. Figure 5c presents the final estimated
spectral radiance at the same pixel by comparing the data obtained by the built-in (TELOPS) calibration
method. The built-in method means the spectral and radiometric calibration provided by the TELOPS
instrument (Quebec, QC, Canada), which is regarded as truth. Note that similar spectral radiance can
be obtained in the spectral range of 1807.9–3355.7 (cm−1) using Equation (8).

G(ν̃) =
MH(ν̃)− MC(ν̃)

L(ν̃, TH)− L(ν̃, TC)
(6)

O(ν̃) =
MC(ν̃)L(ν̃, TH)− MH(ν̃)L(ν̃, TC)

MH(ν̃)− MC(ν̃)
(7)
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If an unknown scene spectrum is measured (MS(ν̃)), the radiometrically calibrated radiance
(LS(ν̃)) can be obtained using Equation (8):

LS(ν̃) =
L(ν̃, TH)− L(ν̃, TC)

MH(ν̃)− MC(ν̃)
· MS(ν̃)− MC(ν̃)L(ν̃, TH)− MH(ν̃)L(ν̃, TC)

MH(ν̃)− MC(ν̃)
. (8)

Figure 4. Blackbody spectrum and spectral radiance extraction for a radiometric calibration:
(a) interferogram image of a hot blackbody (95 ◦C); (b) spectrum of a hot blackbody; (c) calculated
spectral radiance at hot temperature; (d) interferogram image of a cold blackbody (25 ◦C); (e) spectrum
of a cold blackbody; (f) calculated spectral radiance at cold temperature.

2.5. Brightness Temperature

The amount of spectral radiance energy can be converted into equivalent brightness
temperatures [1]. By inverting Equation (5), the temperature T (K) can be obtained as

T =
(hc/k)ν̃

ln[2hc2ν̃3/LS(ν̃) + 1]
. (9)

Figure 5d shows the spectral brightness temperature by applying Equation (9) to the calibrated
spectral radiance at pixel (190, 10). Note that there were inaccurate values due to the spectral radiance
noise. The gaps in Figure 5d were generated by negative spectral radiances that were obtained during
the radiometric calibration for noisy spectral radiance values. Negative spectral radiances cannot
provide physical temperatures in Equation (9).
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Figure 5. Radiometric calibration and brightness temperature extraction: (a) estimated gain magnitude;
(b) estimated offset magnitude; (c) comparison of the radiometric calibration between the implemented
method and built-in method; (d) calculated brightness temperature.

3. Proposed Temperature Estimation: ST-DCNN

An evaluation of thermal infrared stealth property is important for various applications, such as
ships, cars, and houses. This paper focuses on the effects of solar radiation on objects. As shown in
Figure 6 (top row), the sun heats up the surface of an object painted with specially developed materials.
After 20 min (thermal equilibrium), the heated surface is rotated by 180◦ and radiates thermal energy
(Figure 6, bottom row), which is measured by an FTIR detector. Note that the solar radiation (6000 K) is
dominant in the higher wavenumber band (short wavelength region: 1.5–3.0 μm, or 3333–6667 cm−1)
and the energy is used to heat the surface (approximately 0–40◦) of an object as indicated by the cross
point. Therefore, the radiation by the heated surface is dominant in the lower wavenumber band
(mid-wavelength region: 3.6–5.5 μm, or 1818–2778 cm−1). The strength of the solar radiation in the
shadowed region (opposite side of the direct sun) decreased to 10%–20%.
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Figure 6. Thermal stealth evaluation flow caused by solar radiation at day time.

In remote surface temperature sensing, the infrared spectral radiance at the FTIR detector can be
represented by radiative transfer, as per Equation (10):

L(ν̃) = ε0(ν̃)LBB(ν̃, T)τ(ν̃) + La(ν̃), (10)

where ε0 is the surface spectral emissivity, τ(ν̃) is the transmissivity at the FTIR detector, and La(τ(ν̃))

represents the thermal path radiance [18]. The surface temperature (T) can be estimated from the
spectral radiance (L(ν̃)) if the object emissivity, atmospheric transmissivity, and path radiance are
available. On the other hand, the environmental parameters are difficult to estimate in real-time due to
the wide variations of weather conditions. Figure 7 gives an example of atmospheric transmissivity
according to the object distance and weather conditions. Therefore, the one-channel method
(atmospheric transmissivity is required), two-channel method (water vapor content is required),
and multi-channel method (surface emissivity is required) are not applicable.

The key ideas are based on three aspects. First, a midwave thermal hyperspectral imager
(HYPER-CAM MWE) is adopted to extract the spectral information. The midwave thermal hyperspectral
images usually show lower sensitivity than longwave thermal hyperspectral images on the surface
emissivity in a remote temperature estimation [19]. The surface emissivity can affect the temperature
estimation. The low sensitivity means that the uncertainty of emissivity produces low uncertainty
in temperature estimation. On a normal surface, the typical values of emissivity for MWIR are
approximately 0.90–0.95. Second, the imager can acquire huge hyperspectral radiance and a temperature
database at various times (10:00, 13:00, 15:00), seasons (winter, spring, summer), and weather
conditions (clear, cloudy, foggy). Third, a novel surface temperature-deep convolutional neural network
(ST-DCNN) was adopted to estimate the remote surface temperatures by learning the network with
huge spectral radiance DB (equivalently, brightness temperature DB).
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Figure 7. Atmospheric transmissivity variations according to the distance and weather conditions.

The proposed ST-DCNN consisted of 27 layers, as shown in Figure 8. The input data size was
75 × 1, corresponding to the midwave band (1807–2270 cm−1 or 3.6–5.5 μm). Two 9 × 1 convolutions
with 64 filters, batch normalization (BN), and rectified linear unit (ReLU) were conducted to extract
the temperature features in the spectral domain. The 2 × 1 max pooling can reduce the dimensions by
removing the redundant features. Such processes (except for the last layer-1 × 1 Conv + BN + ReLU)
were repeated twice to extract the higher spectral temperature. A 1× 1 convolution was used to reduce
the channel size with the same spectral feature size. The last two fully connected layers were used to
regress the physical surface temperature. L2 norm was used to calculate the loss.

Figure 8. Proposed structure of the surface temperature-deep convolutional neural network (ST-DCNN).
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4. Experimental Results

The TELOPS HYPER-CAM MWE model was used in this study, as shown in Figure 9. This model
can provide a high-resolution spectrum by a Michelson interferometer (TELOPS, Quebec, QC,
Canada) from the midwave to the shortwave band. The noise equivalent spectral radiance (NESR) is
7 (nW/(cm2 · sr · cm−1)) and the radiometric accuracy is approximately 2 K.

Figure 9. Specifications of the TELOPS Hyper-Cam MWE sensor.

The object surface was painted with a gray color and was located in a coastal area with a 78 m
distance to the FTIR sensor system. The object surface data were acquired from 1 December–30 June,
three times a day (10:00, 13:00, 15:00) with 75 spectral bands (3.6–5.5 μm), as shown in Table 1.

Figure 10 presents an example of data preparation for deep learning. The brightness temperature
data were extracted at the center region (20 × 20) and the built-in temperature sensor on the object
surface provided the corresponding ground truth temperature information. Therefore, 400 brightness
temperature profiles had the same physical temperature.

Figure 10. Preparing the spectral brightness temperature and physical temperature pair for deep learning.
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Table 1. Database acquisition environment of the midwave hyperspectral spectrum.

Object Location Duration Time Spectral Band

gray painted metal coast (78 m to sensor) 1/1–6/30 10:00, 13:00, 15:00 3.6–5.5 μm

Table 2 presents details of the spectral brightness temperature for deep learning. The number of
valid hyperspectral images was 208, where each image provides 400 spectral brightness temperature
profiles. The total number of spectrum–temperature pairs was 82,400, and the DB was divided into
three groups: training (80%), validation (10%), and testing (10%).

Figure 11 shows the weather variations for the 208 hyperspectral images acquired from
1 December 2017–30 June 2018 in terms of the air temperature, relative humidity, and solar radiation.
The air temperature ranged from −10 to 28 ◦C, the relative humidity varied from 20% to 100%, and the
solar radiation varied from 0 to 1000 W/m2 .

Figure 11. Preparing the spectral brightness temperature and physical temperature pairs for deep learning.

157



Micromachines 2018, 9, 495

Table 2. Composition of the spectral brightness temperature data for deep learning.

No. of Valid Images Crop Size No. of Training (80%) No. of Validation (10%) No. of Testing (10%)

208 20×20 65,920 8240 8240

The proposed ST-DCNN consisted of 27 layers that were optimized to produce the best regression
performance, as shown in Table 3. The number of pooling layers was two, where the max pooling
showed better performance than the average pooling. The VGG-style convolutions with the kernel
size 9 showed the best root mean square error (RMSE) among the kernel sizes (3, 5, 7, 9, 11, and 13).
Additional batch normalization was helpful, and drop-out was useless. A 1 × 1 convolution was used
to reduce the feature dimension, and the regression performance was upgraded if the 1× 1 convolution
was inserted at the end of the last Conv–BN–ReLU stage. The best performance was seen with 32 fully
connected layers, among 8, 16, 32, 64, and 128.

Figure 12 shows the training process with the optimized network parameters. Approximately
seven minutes were needed to train the ST-DCNN with a mini-batch size of 128, max epochs of 30,
initial learning rate of 1.0 × 10−4, learning rate drop factor of 0.2, learning rate drop period of 20,
and shuffle in every epoch.

Figure 12. Training process: (top) root mean square error curve; (bottom) loss curve.
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Table 3. Optimization results of deep learning parameters. RMSE: root mean square error.

No. of pooling layers 1 2 3 4 -
RMSE 1.33 1.14 1.26 1.28 -

No. of filters 16–32–64 32–64–128 64–128–256 128–256–512 256–512–1024
RMSE 1.29 1.23 1.14 1.29 1.37

Filter size 5 7 9 11 13
RMSE 1.27 1.22 1.14 1.19 1.23

No. of nodes in FC 8 16 32 64 128
RMSE 1.19 1.18 1.14 1.21 1.23

Dropout rate 0.2 0.3 0.4 0.5 W/O
RMSE 1.21 1.21 1.21 1.29 1.14

1 × 1 conv. size 16 32 64 128 W/O
RMSE 1.23 1.14 1.22 1.22 1.25

Batch norm. (BN) W/ W/O
RMSE 1.14 1.77

The proposed ST-DCNN-based temperature estimation method was compared with the
multi-layer perceptron (MLP) [20] and mean brightness temperature [19]. The MLP consisted of
two hidden layers with 128 nodes. Figure 13 shows the partial results tested on the unlearned
8240 samples. Figure 13b is an enlarged graph of Figure 13a. Note that the proposed ST-DCNN could
predict the true temperatures better than the other methods. Table 4 lists the quantitative comparison
results in terms of the RMSE measures. The RMSE value of the direct temperature estimation using
the mean brightness temperature was 2.0934 ◦C and that of the MLP was 1.7863 ◦C. The proposed
ST-DCNN showed an RMSE of 1.1446 ◦C. This was improved by 45.32% compared to the base method
(mean brightness temperature (BT)). Note that the RMSE of the brightness temperature method
was similar to the manufacturer’s radiometric accuracy (2 K). Although the RMSE of the proposed
ST-DCNN was approximately 1.14 ◦C, it was reasonably accurate considering the wide weather
variations along the three seasons, as shown in Figure 11. Figure 14 presents the remote temperature
estimation results for March 29, 15:00 DB. The ground truth temperature of the center region was
19.8 ◦C, and the proposed ST-DCNN predicted correctly. On the other hand, the MLP and mean BT
methods estimated incorrectly by 1 ◦C.

Table 4. Comparison of the temperature estimation in terms of the RMSE.

Method RMSE (◦C) Improvement (%)

MLP [20] 1.7863 14.67
Proposed (ST-DCNN) 1.1446 45.32

Brightness temperature [19] 2.0934 0
TELOPS MWE: radiometric accuracy 2 -

One of many applications of remote temperature estimation is to check the thermal stealth effect
of different types of paint on ships, buildings, etc. by solar radiation. Figure 15 shows a quantitative
visualization of the physical surface temperature on an object. The surface temperature was estimated
using the proposed ST-DCNN with the best network parameters. Figure 15a represents a broadband
image of the experimental environment imaged on 5 March 2018. Figure 15b,c show the temperature
distributions of Plate-C and Plate-D, respectively. Each plate was painted with different types of
surface material. The weather conditions at 15:40 were as follows: atmospheric temperature 10.2 ◦C,
humidity 55%, and solar radiation 550 W/m2. The estimated average temperature of Plate-C was
14.7 ◦C, whereas that of Plate-D was 12.7 ◦C. Therefore, the paint on Plate-D had 2.0 ◦C better thermal
stealth capability. In addition, the physical temperature distribution of Plate-C and Plate-D could
be compared.
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Figure 13. Comparison of the temperature estimation: (a) overall temperature; (b) enlarged view of the
probe region. MLP: multi-layer perceptron.
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Figure 14. Visualized comparison of temperature estimation: (a) broadband image; (b) proposed
method (ST-DCNN); (c) MLP; and (d) mean brightness temperature (BT).

Figure 15. Thermal stealth application of a remote temperature estimation: (a) broadband image;
(b) temperature distribution of Plate-C; (c) temperature distribution of Plate-D.

5. Conclusions and Further Works

This paper proposed a novel remote surface temperature estimation method using a surface
temperature-deep convolutional neural network (ST-DCNN) from midwave hyperspectral thermal
images. Estimating the surface temperature remotely in a dynamically varying weather environment
is a very challenging problem. The key idea was to apply the specially designed 27-layer deep
convolutional neural network to a huge database consisting of spectral radiance–surface temperature
sensor pairs. The spectral radiance data were extracted successfully by applying the FFT to the
interferogram followed by wavenumber calibration and two blackbody-based radiometric calibrations.
The inverse of Planck’s law to the spectral radiance produced the spectral brightness temperature
containing both the surface emissivity and atmospheric transmissivity implicitly. The proposed
ST-DCNN learned the weight parameters successfully using the 65,920 training samples. According to
the experimental results, the proposed ST-DCNN showed an RMSE of 1.1446 ◦C, which is 45% better
than the average brightness temperature. The remote temperature estimation scheme was applied
to evaluate the thermal stealth effects by the solar radiance on different types of paint. In the future,
a multi-sensor fusion-based deep learning structure will be developed to improve the accuracy of
temperature estimation.
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