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The term “gene” was introduced more than a hundred years ago to define a “fundamental physical
and functional unit of heredity” [1]. Its use refers back to Mendel’s idea about discrete hereditable
units, and it also serves as a reminiscence of Darwin’s pangenesis theory. Watson and Crick’s
double helix discovery in 1962, which rationalized the molecular basis of replication and Crick’s
central dogma, claiming the one-directional information flow from DNA to proteins via RNA,
conceptually represent milestones linking heredity with traits, and thus, genes with cellular function.
From a practical perspective, after first determination of a gene sequence (coding bacteriophage MS2
coat protein, 1972), discoveries of Sanger sequencing (1977) and polymerase chain reaction (1983)
mark technological milestones that enabled the decoding of the human genome until the end of
the 20th century and, with the advent of expression microarray technology, the deciphering of the
human transcriptome during the following decade (ENCODE project). Instead of solving the basic
mysteries of life, these discoveries probably raised more questions about gene functioning than they
answered. RNA appeared as a complex information flow machinery with highly specific nucleotide
interactions fulfilling a large variety of functions in fine-tuning gene activity beyond transcription and
translation. Moreover, DNA appeared not only as a one-dimensional textbook of the genetic code as
thought previously. Instead, it was found to represent a highly complex three-dimensional polymer,
where genetic information is managed via a multitude of conformations, interactions, and molecular
components. Information management includes many tasks, such as reading, writing, erasing,
repairing, transferring, and translating, where each of these steps must act in a proper way in space and
time to ensure the functioning of life on cellular and organismal levels. Now, the central dogma appears
less dogmatic because of the multidirectional nature of these interactions including feedback loops
from the transcribed and translated parts towards their information source. Biological information
management involves epigenetic mechanisms forming another feedback loop linking the phenotype
and environmental factors back to genetics. Presently, diverse variants of next-generation sequencing
technologies that have now reached single-cell resolution together with advanced metabolomics
and proteomics methods provide an immensely powerful toolbox to discover mechanisms of gene
functioning on the cellular level with increasing practical impact in healthcare and biotechnology.
The latest cutting-edge examples from these areas are immuno-therapy against cancer (Nobel Price in
Medicine 2019), CRISPR/Cas9 gene scissor (Nobel Price in Medicine 2020), and the mRNA vaccination
technique just now becoming a sword against COVID-19.

This Special Issue collects seven publications addressing different topics around genomic regulation
of cell functions at the gene level as examples illustrating various aspects of this field of discovery.
Two original research publications deal with temporal aspects stored in the genome on completely
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different timescales; one on the scale of thousands of years and the other on the scale of minutes
to hours [2,3]. Both works make use of similarity relations, with one considering the genomes of
vine accessions [2] and the other considering the transcriptomes of single cells extracted from the
flatworm [3]. The vine genome reveals “slow” mutational modifications, which enable reconstructing
paths of distribution of wine agriculture and usage from the Middle East towards Western Europe on a
long time-scale over many centuries. The single-cell transcriptome of the flatworm, on the other hand,
reflects relatively “fast” changes of cellular programs upon differentiation of tissues proceeding on
a much shorter time scale. Both applications illustrate the impact of another methodical ingredient,
namely bioinformatics (also called computational biology), in order to process huge amounts of data
generated by the novel high-throughput technologies and to “translate” them into useful (systems)
biological information. Algorithmic developments, data science, and computational pipelines for
effective practical use are inevitable parts of realizing “from-gene-to-cell-function” discoveries. Due to
the size, and most importantly, the complex, often unknown intrinsic relations between the data,
machine learning is an adequate approach to extract hidden information from the data. Both papers
apply self-organizing map machine learning as a so-called “molecular portrayal” approach because
data are reduced into handy dimensions and visualized in terms of easy-to-interpret images on an
“individual” basis, e.g., for each measured unit (vine accession or worm single cell, respectively),
making it an interesting approach for personalized medicine as well.

A topic with a medical impact has been presented in the paper of Filipenko et al. [4], who reported
that the protective properties of a peptide drug (Semax) against ischemic stroke are associated with
the compensation of mRNA expression patterns that are disrupted during ischaemic conditions.
Leitao et al. [5] reviewed the geographic distribution of genetic variants of the CYP2D6 gene which are
associated with different metabolization profiles, with a focus on Amerindian populations. This study
underlines the impact of genomic variability on lifestyle factors and disease incidence in different
ethnicities. In their in silico study, Chetta et al. [6] addressed mechanisms of the small noncoding RNA
level of genomic regulation, a field that has risen in importance only in the last 15 years. Short sequence
motifs of micro- and pi-RNA transcribed from non- (protein) coding regions of the DNA modify
activity via binding to mRNA and transposons, and in this way, form intricate molecular networks
between the different RNA-species and transcription factors with high impact for genomic regulation.
Khokhlova et al. [7] reviewed DNA repair mechanisms in the early stages of mammalian embryonic
development. In general, DNA repair links cell activity back to the genome because improper function
causes errors in the genetic code to accumulate and result in the appearance of diseases and/or genetic
drifts. Mutations that occur in somatic cells lead to dysfunction in certain tissues or organs, while a
violation of genomic integrity during the embryonic period often leads to death. A mammalian
embryo’s ability to respond to damaged DNA and repair it, as well as its sensitivity to specific lesions,
is not well understood. In their review, Lesne et al. [8] addressed a supramolecular aspect of genomic
regulation, particularly the formation of nuclear bodies, membraneless organelles with crucial impact
in regulating genome functions by promoting efficient interactions between distant genomic regions of
the same or different chromosomes.

Overall, this collection of four original research papers and three reviews covers a series of
mechanisms of genomic regulation and bioinformatics methods for their analysis; it provides examples
and applications ranging from biotechnology to developmental biology to healthcare which will
be of interest to researchers in different fields of molecular biology and medicine, agriculture,
and computational biology.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Background: Whole-genome studies of vine cultivars have brought novel knowledge
about the diversity, geographical relatedness, historical origin and dissemination, phenotype
associations and genetic markers. Method: We applied SOM (self-organizing maps) portrayal,
a neural network-based machine learning method, to re-analyze the genome-wide Single Nucleotide
Polymorphism (SNP) data of nearly eight hundred grapevine cultivars. The method generates
genome-specific data landscapes. Their topology reflects the geographical distribution of cultivars,
indicates paths of cultivar dissemination in history and genome-phenotype associations about
grape utilization. Results: The landscape of vine genomes resembles the geographic map of the
Mediterranean world, reflecting two major dissemination paths from South Caucasus along a
northern route via Balkan towards Western Europe and along a southern route via Palestine and
Maghreb towards Iberian Peninsula. The Mediterranean and Black Sea, as well as the Pyrenees,
constitute barriers for genetic exchange. On the coarsest level of stratification, cultivars divide into
three major groups: Western Europe and Italian grapes, Iberian grapes and vine cultivars from Near
East and Maghreb regions. Genetic landmarks were associated with agronomic traits, referring to
their utilization as table and wine grapes. Pseudotime analysis describes the dissemination of
grapevines in an East to West direction in different waves of cultivation. Conclusion: In analogy
to the tasks of the wine waiter in gastronomy, the sommelier, our ‘SOMmelier’-approach supports
understanding the diversity of grapevine genomes in the context of their geographic and historical
background, using SOM portrayal. It offers an option to supplement vine cultivar passports by
genome fingerprint portraits.

Keywords: grapevine genomes; genetic diversity; dissemination of vine; genome passporting;
self-organizing maps; genome portrayal

1. Introduction

Grapes are not only tasty, but also one of the most economically and culturally important crops.
They are used for both winemaking and fresh (‘table’) consumption. Grape is unique, not only because
it is a major global perennial crop, but also because of its historical and cultural connections with the

Genes 2020, 11, 817; doi:10.3390/genes11070817 www.mdpi.com/journal/genes5
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development of humans. According to the OIV (International Organization of Vine and Wine) the
surface area of the world vineyard is estimated at 7.4 million hectares, with a production of 76 million tons
of fresh grapes and 260 million hectoliters of wine (http://www.oiv.int/). Grapevine (Vitis Vinifera) is
one of the oldest of the cultivated plants for which living progenitors still exist. The broad geographic
area of the wild grapes and a bewildering number of different forms expanding from Europe to Asia and
Caucasus continue to intrigued researchers, with a crucial question about the origin and domestication
of the grape. Archaeological and historical studies suggested that the cultivation of the domesticated
grape (V. vinifera L. subsp. sativa) started about 10,000 to 8000 years ago, from its putative wild
ancestor (V. vinifera L. subsp. sylvestris), and the primary center of domestication was located between
the Near East [1] and the Transcaucasian region [2]. These regions were populated by the Neolithic
Shulaveri-Shomu, and later Kura-Araxes cultures, in the South Caucasus and Fertile Crescent regions,
ranging from (today’s) Georgia, through Azerbaijan, Armenia, northern Iran and eastern Anatolia [3].
Later, grapevine disseminated into the Southern Balkans and East Mediterranean Basin, then to the
Western Europe and, finally, domesticated grapes were introduced to Central Europe during the first
millennium BCE [4]. Hereby, wine grapes have followed human civilization from South Caucasus,
southwards and westwards, spread first by seafaring Phoenicians and Greeks, and later affected by
Roman and Ottoman Empires throughout the Mediterranean world [5]. During its spreading across
the regions, grapes slowly mutated and adapted to their environments. The slow divergence over
thousands of years in combination with the spontaneous hybridization, somatic variation and selection
by humans created the incredible diversity of the more than 6000 cultivated varieties, which, in
contrast to its wild progenitor, is more diverse and heterozygous according to OIV (http://www.oiv.int/).
Different authors evidenced the presence of secondary domestication centers, where spontaneous
hybridizations among wild plants and cultivated forms or targeted selection, created the pattern
of the modern Western European cultivars [4]. M.A. Negrul, an outstanding pioneer researcher
of vine, subdivided the varieties based on geographic origin and morpho-ecological traits into the
ecotypes occidentalis (France, Germany, Spain, Portugal), pontica (Asia Minor, Romania, Hungary,
Greece, Georgia, Bessarabia) and orientalis (Armenia, Iran, Afghanistan, Azerbaijan and Central Asia),
where the primary center of a given plant is the region of the richest genetic diversity [6].

In the last years, whole-genome studies of vine cultivars using genotyping and sequencing
technologies have added novel knowledge about the diversity, geographical relatedness,
historical origin, phenotype associations, genetic markers and distribution paths of the vine [4,7–11].
Genetic relatedness between cultivated (V. Vinifera L. subsp. sativa) and wild (V. Vinifera L. subsp.
sylvestris) grapes suggest at minimum two separate domestication events, one derived from
the Transcaucasian wild grape and another one in Western Europe, where cultivars experienced
introgression from local wild grape [4,7]. Associations between candidate genes and important
agronomic traits, such as berry shape and aromatic compounds, provide possible genetic targets for
grapevine improvement [9]. Breeding for larger berries has been related to genetic signatures of positive
selection for table grapes in geographic regions, where alcohol was prohibited by religious rules [8].
The further impact of genomic studies will depend on the understanding of the genotype-phenotype
associations, especially for complex traits governed by polygenic architecture, genotype-environment
interactions in different geographic regions [11]. These tasks challenge activities and research
infrastructure for collecting cultivar accessions, sequencing and data deposition, for providing
phenotype-genotype databases and vine passporting projects, and, last but not least, the development
of bioinformatics methods and tools which enable an analysis of these data, in terms of knowledge
mining and feature extraction, in an easy and intuitive fashion.

Here, we apply SOM (self-organizing maps) portrayal [12], a neural network-based machine
learning method with strong visualization capabilities to genome-wide Single nucleotide polymorphism
(SNP) data of nearly eight hundred grapevine cultivars collected from Middle Asia in the East to Iberian
peninsula in the West and from overseas regions [11]. SOM portrayal has been developed by us for the
detailed analysis of high-dimensional omics data, including diversity and developmental issues, feature
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selection, knowledge mining and phenotype association of transcriptomic [13–15], epigenetic [16,17],
proteomics [18] and genetic data [19], and of combinations of them [20]. In the context of plants,
SOM-portrayal has been previously applied by us for the typing of algae of the genus Prototheca [21]
and by others for studying early seed maturation in garden pea [22]. This work aims at providing
a prototypic application of SOM machine learning and linked downstream analytics to illustrate its
potency for studying plant genomes.

Strengths of the applied method are dimension reduction and visualization capabilities [23].
Particularly, our method generates accession-specific images of the data landscapes. These personalized
omics-portraits provide options for the intuitive evaluation of feature space, and for mutual comparisons
between the individual accessions. The recent application of SOM-portrayal to population-level
distributions of disease-related human SNP-variants demonstrated its capability to extract genetic
features and to describe genetic diversity, based on the topology of the SNP-landscapes [19].

This study aims at applying SOM-portrayal to the genetics of vine, in order to generate
SNP-landscape of grape genotypes, to relate its topology to the geographical distribution, to possible
paths of cultivar distribution, to selected genetic markers, and link them to grape utilization.
In gastronomy, the sommelier is the wine ‘waiter’ (or ‘waitress’), who recommends combining
wine with food based on traditional knowledge about the character of wine varieties, their taste and
geographic origin, and thus to support the decision-making of guests for a successful dinner. In analogy,
our ‘SOMmelier’-approach aims at supporting understanding genetic diversity and relatedness of
grapevine genomes in the context of their geographic and historical background by application of
SOM portrayal.

2. Materials and Methods

2.1. Data and Preprocessing

Grape cultivars data: grapevine genetic SNP- and phenotype data were taken from [11]. The data
set consists of 783 grapevine samples originated from 4 grapevine collections (Table S1, Passport data of
783 cultivars included in the study) collected from eleven geographic regions, ranging from Middle Asia
to Iberia and New World accessions. The genotype data matrix of 10,207 SNPs for 783 unique samples
was taken from https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genotyping-data repository.

Human population data: For a comparison of genomic relatedness between worldwide geographic
strata, we analyzed genome-wide microarray SNP data (Illumina 650Y arrays) from the Human Genome
Diversity Project (HGDP) [24], as described previously [19]. This data consists of 650,0000 SNPs for
940 individuals from 8 geographical regions (Africa, Europe, Middle East, South and Central Asia,
East Asia, Oceania, and America). Genotypes for 99 individuals of Armenian ethnicity (Illumina
Human Omniexpress microarray platform) were taken from a publication by Haber et al. [25]

2.2. Conceptual Overview

Our analysis concept is based on the following main ingredients: (i) transformation of SNP
data into excess minor allele frequencies (eMAF), which increases sensitivity for subtle differences
between the genomes of the vine accessions; (ii) dimension reduction of the more than 10,000 SNP
data into a matrix of 2500 so-called ‘meta-SNPs’, using unsupervised clustering and their visualization
in terms of individual accession portraits using SOM machine learning. (iii) further reduction of
dimension by segmentation of the SNP-portraits into about one-to-two dozen so-called spot clusters
of correlated SNPs, which serve as fingerprint features of the vine genomes; (iv) diversity analysis
of accessions using different approaches (principal component analysis, correlation networks, t-SNE,
minimum spanning tree). Each of the approaches used enables discovering different aspects of the
mutual relatedness between the cultivars. (v) So-called pseudotime analysis as a special type of
diversity analysis to analyze genetic similarities in terms of multibranched trees with possible impact
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for temporal diversification of vine cultivars; (vi) phenotype associations to map information of vine
utilization on the SNP landscapes.

2.3. Allele Coding and SNP-Score

In order to further process the data, we coded the genotype of each SNP using a trinary code,
with ‘0′ for homozygous major alleles (AA), ‘1′ for heterozygous alleles (Aa and aA), and ‘2′ for
homozygous minor alleles (aa).

First, let us consider one SNP in the data set of N cases, e.g., of N =783 cultivar samples.
The fractions of the three genotypes of this SNP are defined as pij = Nij/N (i,j = A, a), where Nij is
the number of SNPs with the respective allele in the data set. The minor allele frequency of a SNP is
MAF = 2 paa + 1 (paA + pAa) with paa < pAA. With the SNP-code introduced above one finds for its
mean value averaged over all cases, <SNP-code> = pAA * 0 + (pAa + paA) * 1 + paa * 2 = 2 MAF, i.e.,
the mean SNP-code of a SNP equals twice its MAF. For further data processing, we define a SNP-score
by centralizing the SNP-code of each SNP with respect to its mean value, SNP-score = SNP-code
– 2 MAF. One obtains SNP-score = −2 MAF for the major allelic SNPs, SNP-score = 1 – 2 MAF for
heterozygous SNPs and SNP-score = 2 (1 – MAF) for the minor allelic SNPs.

Second, let us consider a group of n correlated SNPs in the data set, and calculate the mean of their
SNP-score in one selected sample. In the next subsection, we show that such a group of SNPs is given,
e.g., by a meta-SNP, or a ‘spot-module’ as obtained below in SOM-analysis. Analogous consideration as
above deliver the result for the group-averaged SNP-score, <SNP-score> = 2 (MAF - <MAF>) where
< . . . > here denotes group averaging referring to one selected sample. Hence, the group-averaged
SNP-score estimates the deviation of the mean MAF of the considered SNPs, in a certain sample
from their mean in the considered population. Accordingly, it can be understood as an excess
MAF-value (eMAF), where positive SNP-scores mean higher frequencies than in the population while
negative values refer to reduced frequencies. The centralization of each feature (here the SNP-code
of each SNP) with respect to its mean value averaged over all samples is applied as a standard
preprocessing step in SOM analysis. Features space of centralized values is more sensitive to subtle
differences between samples than the feature space of non-centralized values.

2.4. SOM Portrayal and Spot Detection

SOM-portrayal of SNP data was performed as described previously [19]. In short: our SOM
implementation used a ternary code with the values 0, 1 and 2 for major homozygous, heterozygous
and minor heterozygous genotypes, respectively, as introduced above. Next, SNP data were mean
centralized and then clustered using the self-organizing map (SOM) machine learning. SOM training
translates the original data matrix consisting of the allele scores of N = 10,206 SNPs collected from
M = 783 cultivar accessions into a data matrix of reduced dimensionality of K = 2500, so-called
meta-SNP profiles. Hereby, the term ‘profile’ denotes the vector of eMAF score values across
the cultivars. The SOM training algorithm distributes the SNPs over the K micro-clusters of meta-SNPs,
by minimizing the Euclidean distance between the SNP- profiles as a similarity measure. It ensures that
SNPs with similar profiles cluster together in the same or in closely located meta-SNPs. Each meta-SNP
profile can be interpreted as the mean profile averaged over all SNP profiles of the respective meta-SNP
cluster. For each cultivar accession, the meta-SNP score obtained provides the excess MAF (eMAF,
see above). It is defined as the difference between the mean minor allele frequency (MAF of meta-SNP)
of all SNPs collected in this meta-SNP in this particular sample, minus the mean MAF of these SNPs
averaged over all samples. The eMAF values of each cultivar accession are visualized by arranging
them into a two-dimensional M = 50 × 50 grid, and by using a red to blue color-code for maximum
to minimum eMAF-values in each of the grid images. These images ‘portray’ the genetic landscape
of each accession studied in units of the eMAF SNP-score. We used SOM as implemented in the
“oposSOM” R package [23]. Cultivars were labelled according to the geographical region where they
were selected (see [4] for details) and, alternatively, using different cluster assignments (see below).
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Mean SNP-SOM portraits of cultivars from the same geographic regions were obtained by averaging
the meta-SNP values of the respective individual SNP-portraits. The self-organizing properties of
the SOM algorithm generates red spot-like regions referring to correlated SNP-profiles showing high
eMAF-values in the respective accession portraits. We used segmentation algorithms developed
previously [23] to extract so-called spot-clusters from these (red) regions. Each of these spot-clusters
includes hundreds of SNPs.

2.5. Phenotype Association, Accession Diversity, Pseudotime Analysis and Clustering

Categorical phenotypes such as the utilization of grapes for table or wine usage were associated
with the SOM SNP-landscape by performing ANOVA (analysis of variance) of SNP-metagenes of the
sub-collection of cultivars of a certain phenotype (e.g., of all cultivars of table-vine usage) and coloring
the meta-SNP pixels in the SOM according to the obtained p-value (in units of -log(p)), from red (high)
to blue (low). Phenotype correlation maps were obtained by calculating the point biserial correlation
between the eMAF profile of each metagene and the respective phenotype profile, which is given, e.g.,
for ‘table vine utilization’ by categorical values ‘0′ (no table usage) and ‘1′ (table usage). The metagenes
of the map were then colored between red (maximum correlation) and blue (minimum correlation).
Point serial correlation de facto provides difference portraits between cultivars of the respective
phenotype and all others, e.g., between the mean portrait of cultivars of wine utilization, minus the
mean portraits of cultivars of non-wine utilization.

Accession diversity analysis was performed based on meta-SNPs using principal component
analysis (PCA), similarity net and minimum spanning tree plots, based on correlation metrics between
the individual SOM-portraits as implemented in oposSOM [23]. t-SNE (t-distributed Stochastic
Neighbour Embedding), URD-plots and pseudotime plots were generated using the program ‘URD’ [26].
URD estimates multibranched developmental trajectories based on mutual similarities between the
accessions, a k-nearest neighbor graph presentation and directed (from ‘root’ to ‘tip’) simulation of a
diffusion-like process. It provides a pseudotime (PT) value between zero and unity for each accession,
where values near zero mean closer similarity to the root accessions, and values near unity mean closer
similarity to tip-accessions. URD generates branched tree structure by joining diffusion trajectories
passing through the same accessions.

Grapevine cultivars were stratified according to the geographic region in agreement with [10],
where they were collected and using an eight cluster C1–C8 (C-clusters) division, according to [11].
Independent ‘t-SNE’ clustering was performed using the Jaccard-algorithm implemented in ‘URD’
software [26], which provided ten clusters (see below).

3. Results

3.1. SOM Portrayal of Cultivars among Geographical Regions

SOM-training of the SNP-data of 783 grapevine cultivars provided a SNP-portrait of each accession.
Each portrait represents a two-dimensional pixel-plot, where each of the pixels, the so-called meta-SNP,
is colored according to its excess minor allele frequency (eMAF) of correlated meta-SNPs in the chosen
cultivar (Additional File 1). According to their origin, the SNP-portraits were stratified into nine
geographic regions, ranging from Middle and Far East (MFEA), Eastern Mediterranean and Caucasus
(EMCA) over Russia and Ukraine (RUUK), Balkan (BALK), Western and Central Europe (WCEU),
Italian Peninsula (ITAP) to Maghreb (MAGH) and Iberia (IBER) in the ‘Old World’ (Figure 1A). Cultivars
from Armenia (ARM) and from the New World (NEWO), including America, Australia, New Zealand
and South Africa, were separately considered (see Abbreviations for glossary of geographic regions).
The mean SNP-portrait of each region reveals specific patterns of red spot-like areas which visualizes
the respective genotype in terms of the ‘meta-SNP’ score landscape, where red/blue areas refer to
positive/negative eMAF values, meaning that the mean minor allele frequency (MAF) of the SNPs
in this spot from this region exceeds/falls below their mean MAF value averaged over all cultivars
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studied of all geographic regions (Figure 1B). The diversity of cultivars from Armenia and the portrait
averaging applied is illustrated in terms of a hierarchical clustering tree (Figure 1C). The vine accessions
roughly split into three major groups in the similarity net (Figure 1B), namely into cultivars from
WCEU (and ITAP), from IBER and from the other regions, where the former two groups distribute
along the first two principal component PC1 and PC2 of principal component analysis, while PC3
segregates cultivars of BALK from RUUK, MFEA and EUCA (Figure 1D).

Figure 1. Self-organizing maps (SOM) portrayal of grapevine Single Nucleotide Polymorphism
(SNP)-data: (A) Sampling of grapevine cultivars from different geographic regions. The thin lines
visualize minimum spanning relations between the samples. (B) SOM-portraits of cultivars from
different geographic regions indicate specific spot patterns of SNPs. The similarity net shows three
major clusters of cultivars originating from the Iberian Peninsula (IBER), western and central Europe
(WCEU) and Italian Peninsula (ITAP), and the other accessions originating mostly from Eastern
Europe, Maghreb, Near East and Middle Asia (see dashed lines). (C) Hierarchical clustering tree of
the cultivars originated from Armenia. The SOM portraits were progressively averaged in upwards
direction. The mean portrait shows the weighted average of the spot patterns of the individual portraits.
(D) Principal component plots reveal the distribution of accessions from WCEU (and from the Italian
peninsula, ITAP) and IBER, along the first two principal components PC1 and PC2, respectively, and the
split of the samples from Russia and Ukraine (RUUK) and the Balkan (BALK) along PC3. Color code of
samples is provided in part B.
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3.2. The Topology of SNP-Landscapes Characterizes the Diversity of Cultivars

The inspection of the individual accession portraits (Additional File 1) reveals a high diversity
of textures. They reflect the allelic landscapes in terms of areas of positive and negative eMAF
values, colored in red and blue, respectively, referring to enriched or depleted minor allelic genotypes.
The spot summary map collects the ‘red’ spots most frequently observed in the individual maps
(Figure 2A). It provides the SNP-landscape of the accessions studied by distributing the SNPs across the
x-y-plane, making use of the self-organizing properties of SOM machine learning, and then, plotting
the respective eMAF values along the ‘height’ dimension. The topology of this landscape is given
by the eMAF-height profile. Overall, we identified fifteen such spots labelled with capital letters
A–O. Overall, they agree with the spot patterns observed in the mean portraits of the geographic
regions considered (Figure 2B). Lists of SNPs collected in the spots are provided in Additional File 2.
The ‘variance map’ indicates that the spot regions contain SNPs of the largest variance of their eMAF
SNP-score among the cultivars. The maps can be divided into three major regions of spots observed
predominantly in the SNP-portraits of IBER, WCEU and ‘the East’ (from Central Europe), respectively
(Figure 2A). The spot frequency distributions of the different geographical regions clearly reflect these
three different patterns, in terms of bar plots centered around spot G frequently expressed in grapevine
cultivars from IBER (see the vertical dashed line for orientation). In contrast, cultivars from WCEU
and ITAP frequently express spots H–J (to the right from G), while grapevine cultivars from the
‘East’ frequently express spots A–F located to the left from spot G. BALK and RUUK cultivars reveal
intermediate patterns. Most SNPs, namely between 300 and 550 per spot, were included in spots E–H,
while each of the remaining ones contains about 200 SNPs.

The spot-profiles show the mean values of the eMAF-scores averaged over all meta-SNPs included
in the respective spot among the cultivars and, particularly, their region-specific alterations (Figure 2C).
Largest SNP-score values, and thus high excess frequencies of the minor alleles included in the spot,
were observed for WCEU and ITAP, followed by IBER and the ‘East’ (see boxplots below the heatmap
in Figure 2C). Hence, one finds a tri-partition of accessions with respect to the amplitude of the
SNP-score as found also for spot-distributions. The variance of the SNP-score (and entropy, which
estimates the degree of randomness of spot patterns) is largest for WCEU and IBER, and to a less
degree MFEA and EMCA, paralleled by the largest number of spots per accession, reflecting the largest
genetic diversity in these regions (see also the spot-number distribution in the last row of plots in
Figure 2C), which are assumed to serve as criteria of centers of vine cultivation [6]. The correlation
map shows that SNP-scores are strongly anti-correlated between spots in the right upper corner (red in
MFEA, EMCA) and left lower corner (red in WCEU, ITAP) of the map, which reflects antagonistic
switching of the mean SNP-scores of the respective spots (Figure 2D, left map, red lines). About 1000
SNPs (about 10% of all SNPs tested) were collected in these two major clusters. SNP-scores between
WCEU and ITAP one hand and between a series of spots characteristic for MFEA and EMCA, on
the other hand, were mutually correlated, indicating closer similarity (blue lines). Spot implication
analysis complements this picture by identifying spots appearing together in the individual portraits
of the cultivars. Implications are visualized in the map by connecting such joint spot appearance by
lines. Again, we find three major patterns, namely co-occurrence of spots in the left, the upper and the
right part of the map, respectively. Interestingly, implication and correlations links along the lower
border of the map are virtually absent, which means that spots from WCEU and IBER virtually don’t
co-occur and are not correlated. This lack of links suggests a barrier for genomic exchange between
these regions. In summary, SOM portraits visualize the genomic diversity of grapevine cultivars
with single-accession and regional resolution. Overall, we identified the characteristic differences of
genomic features (SNP-profiles, variance, implications and correlations) between WCEU and ITAP,
IBER and cultivars from more eastern regions ranging from BALK to EMCA, MFEA and NEWO.

11



Genes 2020, 11, 817

 

Figure 2. SNP-spot characteristics: (A) The SNP-maps provide information about SNP-spots (spot
summary map) and variance of the allele-score (variance map). The maps roughly divide into
three main areas, accumulating cultivars from WCEU, IBER and the ‘East’ (i.e., BALK, RUUK,
MFEA, EMCA, MAGH). (B) Spot frequency distributions of different geographic regions assign
region-specific spots, namely around G (vertical dashed line) for IBER, to the right from G (spots
H–K) for WCEU and ITAP and to the left (spots A–E) for vines from the East. BALK and RUUK vines
show mixed properties of WCEU and East vines. The number of SNPs per spot is largest in spots
E–H. (C) SNP-score profiles of the spots and their geographic group-wise characteristics (mean eMAF,
variance, entropy, mean spot number and spot number distributions). (D) Correlations between spot
profiles and co-occurrence (implication) of spots. Correlations were calculated using the weighted
topology-overlap (WTO) algorithm [27]. Implications were shown for all groups and separately for
each of the geographic groups. The lines link spots which frequently co-occur and thus imply each
other due to associations between the SNPs covered by them [13].
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3.3. SNP Distributions and Associations with Vine Utilization

Next, we analyzed the distribution of selected SNPs across the map. Laucou et al. [11] identified
14 SNPs that allow one to assign the 783 cultivars studied. These SNPs are found mostly in areas
of our map, which are attributed to red positive eMAF regions observed for WCEU/ITAP and IBER
geographic regions (Figure S1A in Additional File 4: Supplementary Figures). Hence, cultivars were
identified using SNP-markers, showing increased eMAF values in European cultivars and decreased
values in Eastern ones. Interestingly, the number of these SNP-markers roughly agrees with the
number of ‘spot-modules’ of correlated SNPs found in our SOM-analysis. Hence, our data-driven
dimension reduction of feature space confirms previous results, namely, that about one-two dozen
single SNPs’s are sufficient to describe roughly the genetic diversity of vine cultivars [11]. Spot clusters
contain typically a few hundreds of correlated SNPs that make them robust fingerprint markers of
cultivar diversity. Moreover, our SNP portrayals clearly show that more subtle and more diverse SNP
patterns are hidden beyond this first, relatively coarse level of genetic diversity. In principle, each
accession is genetically unique with possible impacts for diverse phenotypic traits and associated
genetic patterns. Their discovery requires more extended genetic characterization, e.g., by means of
sequencing approaches, and more detailed genomewide association data. Our SNP-portrayal provides
an option to deal with such increased data in future applications.

The chromosome-wise distribution of SNPs shows local enrichment in most cases (see the
distribution of SNPs from Chr. 1 and 2 in Figure S1B in Additional File 4 as examples), however,
overall there is no clear relation between the distribution of SNPs along the genome and their location
in the map. Mapping of SNPs from the different spots along the chromosomes shows a similar result,
namely that overall there is no clear one-to-one relation between distribution along the chromosomes
and across the map, despite the local accumulation of spot-SNPs on different chromosomes (examples
for six spots are shown in Figure S1C, Additional File 4).

Phenotype maps visualize the correlation between the SNP-scores and the utilization for the table,
wine or double usage (Figure 3A). We find strong correlations (Pearson’s correlation coefficients r = 0.7)
for table usage in the right upper corner of the maps, while wine usage correlates with SNPs enriched
in the lower-left corner. Correlation with double usage cultivars is smaller (r = 0.3) and refers to SNPs
accumulation around spot D. The top hundred SNPs with the largest correlation coefficients localize
in narrow areas in the genetic landscape. They also accumulate in different chromosomal regions
(Figure 3A).

The phenotype map reflects the preferential utilization of cultivars used for table consumption in
the East, while wine utilization dominates in Europe (WCEU, ITAP, BALK, IBER). Overall, we find
an association between vine utilization and specific areas of the SOM, which reflects an East-to-West
gradient with preferential table usage in the East and wine usage in the West in agreement with [8].
Note that these two spot-areas of the table- and wine-vine enrichment constitute the major ‘axis’ of
anticorrelated SNP-patterns (compare with correlation net in Figure 2D), which, in turn, refers to the
east-to-west ‘gradient’ of vine utilization established previously [10]. Interestingly, grapes for double
wine and table usage refer to a region of the map linking MAGH and IBER cultivars, i.e., a region
merging Islamic and Christian traditions (see [10] and Discussion). Another ‘transition’ region are
BALK and ITAP, where however wine and table grapes are used in parallel. Additionally, the frequency
distributions of cultivars, according to their utilization, supports the East-West gradient (Figure 4C).
The table utilization of grapes dominates in the east and in MAGH while wine utilization dominates
in Europe, where the region between MAGH and IBER forms a transition range enriching grape of
double wine and table usage.
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Figure 3. Association with vine utilization: (A) Phenotype maps color code correlation between
SNP-scores and cultivar-utilization (table, wine, double) between red (high correlation) and blue
(low correlation). Top 100 correlated SNPs accumulate in narrow regions of the SNP map (see arrows)
in and around spots E (table utilization), H (wine) and D (double) and on selected chromosomes
(assembly version 12X.V2). (B) Distribution of vine utilization (percentage of the respective vine
cultivars) indicates enrichment of table utilization (T) in Eastern cultivars, of wine utilization (W)
in western ones (WCEU, ITAP, IBER, BALK), while the distribution of double usage cultivars partly
resembles that of wine vines however with increased frequencies in MFEA and MAGH.
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Figure 4. Distribution of grapevines around the Mediterranean and Black Sea: (A) Country-wise
ANOVA portraits of cultivars are linked by a ‘metro-net’, which visualizes the relatedness between
similar portraits in neighboring countries. (B) The network of mutual correlations between the
SNP-portraits arranges them in a ring-shaped fashion, resembling the ordering of geographic regions
around the Mediterranean and Black Sea. Moreover, the activated spots in the SOM order roughly
in this way. Recoloring of the cultivars using the eight ‘C’-clusters taken from [11] sorts them in a
consecutive way.

3.4. Genetic Relatedness of Cultivars around the Mediterranean Sea

To increase geographic resolution, we calculated country-wise SNP-landscapes using ANOVA
(analysis of variance)-portrayal (Figure 4A). The ANOVA-portraits show regions of the large variance
of the SNP-score in red and of low variance in blue. Inspection of the country-related portraits reveals
overall a high diversity, where, however, portraits of countries from the same region often resemble
each other. Moreover, the textures alter in a systematic way between the regions, e.g., from the
east (EMCA, MFEA) to the west (via RUUK, BALK to WCEU, ITAP and IBER), as visualized by the
‘metro-net’ lines linking similar country portraits. Accordingly, one finds similarities of these portraits
for neighboring countries from Georgia, via Russia, Ukraine and Moldova, towards Balkan countries
into the west direction and from Georgia and Armenia via Iran towards Tadjikistan, Uzbekistan and
Afghanistan, into the Middle Asia region (MFEA). Another route is directed from the Caucasus via
Lebanon, Israel towards North Africa (MAGH) and Iberian Peninsula (IBER). The South Caucasus is
also linked via Anatolia (Turkey), Cyprus with the Balkan. In the western part of Europe, portraits from
Spain show similarities with Northern African countries (MAGH), and only partly with French and
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German portraits, which, in turn, show similarity links via Switzerland, Austria and the Czech Republic
towards Balkan. Mexican cultivars resemble Spanish ones according to their SNP-portraits while
cultivars from USA, Australia and Argentina, on average, reflect more similarities with grapevines
from MFEA and EMCA.

In order to evaluate the relatedness between the individual SNP-portraits of cultivars, we calculated
similarity nets. They are based on Pearson′s-correlation coefficients between the individual
SOM-portraits and arrange them in a way that highly correlated cultivars were connected by lines and
locate in the close mutual distance (Figure 4B, left). The net divides into the three major clusters enriched
in cultivars from WCEU (and ITAP), MFEA and IBER, respectively, which were separated by regions
of decreased accession density, especially between the WCEU and IBER clusters, reflecting reduced
numbers of correlation links. The spot summary map (Figure 4B, right part) indicates exactly the same
properties in SNP-feature space: the blue, low eMAF region separates spots of high eMAF-values
observed in WCEU, IBER and the ‘East’. Importantly, these regions group around the Mediterranean
and Black Seas, suggesting more close genetic relatedness among the cultivars along a northern
and a southern coast-route, respectively (see arrows in Figure 4B). Besides the clear enrichment of
cultivars from different geographic regions in the clusters, one also finds the considerable intermixing
of them, reflecting genetic exchanges between the regions (see next subsection). The stratification of
accessions into eight clusters (C1–C8), as proposed previously [11], provides a better ‘resolution of the
correlation structure of cultivars in the similarity net (Figure 4B, C-clusters). Hence, ‘country-wise’
SNP-(ANOVA)-portrayal provides an intermediate level of resolution in-between the geographic
regions and the individual cultivar portraits. It enabled us to establish their mutual relatedness, and to
identify similarity links between them, ranging from the Middle East and the Caucasus to Iberia. Main
roads of relatedness between the SNP-portraits of grapevine cultivars are found along a northern and
a southern route about the Mediterranean and the Black Sea. A marked genetic gap is found between
IBER and WCEU, suggesting that the Pyrenees are the main genetic barrier in the West. ‘Eastern’
cultivars, especially from the MFEA and EMCA regions, form a relatively tight cluster of mutually
similar genomes. It links to the western cultivars via BALK and MAGH, along the northern and
southern routes, respectively.

3.5. Diversity Trees Suggest South Caucasus as a Crossroad of Grapevine Dissemination

In the next step, we analyzed SNP-portraits and their diversity on the level of individual cultivars.
An inspection of their gallery (Additional File 1) indicates typical patterns for their geographic regions,
which, however, partly mix between them. Hierarchical clustering trees of cultivar portraits selected
from four different regions illustrate this mixing effect (Figure 5A). For example, cultivars from RUUK
split into groups resembling genomic patterns from EMCA, BALK and WCEU, respectively. Cultivars
from MAGH divide into groups resembling IBER and ITAP patterns, but also a larger group of
‘local’, MAGH-like ones. To quantify this intermixing, we applied re-distribution analysis (Figure 5B),
which uses a cluster stability score to estimate whether a certain accession better fits into its geographic
region (positive score value) or into another one (negative score value). MFEA cultivars show high
intra-cluster stability, followed by WCEU, BALK and MAGH, while, e.g., RUUK cultivars tend to
distribute virtually completely into other clusters. Hence, the MFEA region can be interpreted as a
sink for cultivars from other geographic regions, except for ITAP and, partly, WCEU. EMCA genomes
are similar to MEFA genomes, as indicated by the fact that the latter ones (including ARM) nearly
exclusively tend to shift into the cluster of the former one.
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Figure 5. Genome diversity in and between the geographic regions: (A) Hierarchical clustering of
vine cultivars from selected regions shows overlapping genomic properties. (B) The cluster stability
plot (‘silhouette plot’) indicates intra- and inter-cluster similarities. The similarity score is positive for
stable cluster-assignment of cultivars and negative, if a cultivar better matches into another cluster
(the best-matching cluster for each cultivar is indicated by the colored bar below the silhouette plot).
The arc-lines link unfavorable cluster assignments with the respective sink (best matching)-cluster.
(C) The minimum spanning tree (MST) of the vine cultivars reveals four major leafs enriching IBER
(and MAGH), BALK (and ITAP), WCEUR and MFEAS (and NEWO) grapes, respectively. The central
‘cross-road’ linking the four leafs enriches EMCA-cultivars. Particularly, cultivars from Lebanon, Israel
and Syria locate within the ‘cross-road’ region (see an enlargement in the right part). Vines from
Georgia form the trunk of the European part. Armenian and Turkish vines spread more widely along
the MST. Re-coloring the MST according to grape utilization shows that table usage predominates
along the vertical trunk of the MST (MCEU, EMCA) and along the MAGH-branch, while wine usage is
found mainly for European grapes. Alternative clustering, as proposed previously (C-clusters) [11],
better separates the clusters along the MST. The MST of human genomes of modern populations from
Africa to Oceania taken from the Human Genome Project (HGP) shows a more linear arrangement
(left part), reflecting different dissemination patterns. The dashed rectangle includes populations of the
same geographic regions, as studied for the grapevine cultivars.
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To further evaluate the relatedness between the cultivars, we calculated a minimum spanning
tree (MST), which, in contrast to the correlation net discussed above, connects only most similar
cultivars and, in consequence, generates ‘paths’ of closest similarities (Figure 5C). The MST obtained
reveals a cross-like shape, showing four major branches. Cultivars from IBER (left branch), WCEU
(right branch), BALK and ITAP (top) and MEFA (down) accumulate in the four major branches, while
EMCA cultivars are found predominantly in the central crossroad area (Figure 5C). The ‘cross-like’
structure of grapevine cultivars suggests their distribution along four paths with their common origin
in the EMCA area. Zooming in reveals that Georgian cultivars form the trunk of the WCEU-branch to
the right, while cultivars from Syria, Lebanon and Israel are at the origin of the trunk to the left IBER
and MAGH branch. Notably, Georgian accessions split in portraits more similar to western Europeans,
to Greek ones and to typical EMCA portraits (see the hierarchical clustering tree of Georgian vines
in Figure 5C), which reflects a large variability of their genomes. Armenian and Turkish cultivars
distribute more in the vertical direction along the MFEA and BALK branches. Coloring of the MST
according to grape utilization shows strong enrichment of table cultivars along the vertical trunk
enriching MFEA grapes, while wine cultivars enrich in the European vine branches referring to WCEU,
IBER and BALK. Alternative recoloring the MST using the alternative ‘C‘-clustering [11] better adjusts
to the cross-like structure, where C5 collects the cultivars from the crossroad area, except the Georgian
ones (C6) (Figure 5C). Interestingly, WCEU cultivars split into a C1 and C2 clusters with C1 collecting
cultivars from Germany and Austria, while C2 enriches cultivars from Italy.

Note, that the structure of the vine-MST is completely different from the MST of human genomes
of worldwide populations taken from the human genome project. This MST of human genomes
possesses an almost linear backbone, with only a few side branches. It reflects the ‘out of Africa’
basic migration history of modern humans, which initially proceeded mostly along one major path.
Hence, MST presentation seems to reflect the mechanisms and paths of genome dissemination.
In summary, diversity analysis on single cultivar level reveals a marked intermixing between the
different geographic regions where, however, cultivars from the South-Caucasus and Near East from
the trunk for diverging branches of vines are typical for IBER (and ITAP), WCEU, MFEA and BALK
(and RUUK) regions, respectively.

3.6. ‘Pseudotime’ Suggests Different Scales of Cultivar Diversification

For a more detailed study of possible paths of the distribution of grapevine, we applied so-called
‘pseudotime’ (PT) analysis. It arranges cultivars according to their mutual genetic similarity along
possible multi-branched paths, using a diffusion-law based algorithm [26]. The obtained paths
thus describe the dissemination of grapevine cultivars between the geographic regions, assuming a
starting area which we set to cultivars from the ‘cross-road’ part of the MST (see the previous section).
PT-analysis assigns a similarity measure called ‘pseudotime’, normalized between zero (start) and
unity (end). The grapevine accessions sort into four branches, where each of them collects cultivars
of mixed geographic origin (Figure 6A, left part). At the root the tree divides into two branches
(numbered ‘0′ and ‘4′), where ‘0′ collects predominantly MFEA, BALK and ITAP cultivars and ‘4′
enriches grapes from IBER and MAGH. Branch ‘0′ further splits at larger PTs into three sub-branches
(‘0–1′ to ‘0–3′) accumulating WCEU, ITAP and again IBER vines, respectively. Mean SOM-portraits
along the branches reveal clear differences in the SNP-landscapes, supporting their assignment to
BALK and RUUK (branch 0), WCEU and ITAP (0–1), WCEU (0–2), IBER (0–3) and MFEA and EMCA
(4) characteristics (Figure 6A, middle column). Moreover, t-SNE clustering provides a more diverse
stratification of cultivars into ten groups, where most of them were characterized by one-to-two major
spots in their portraits (Figure 6A, right part). Importantly, spots appear in a consecutive fashion along
the paths; this way providing developmental traces in the SNP-landscape as illustrated by the white
curves in the SOM-overview map (Figure 6A, right part).
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Figure 6. Multibranched pseudotime analysis: (A) Similarity paths using URD [26] reveal a ‘Kraken’
like distribution of vine cultivars which is described by four ‘tentacles’ as pseudotime branches.
They accumulate cultivars preferentially from WCEU and IBER (see pie diagrams), respectively.
t-SNE clustering provides ten clusters labelled by the most prominent SNP-spot expressed in each of
them (right part). The grey and white curves visualize the paths of cultivar similarities in the t-SNE
accession- and SOM SNP-space, respectively. (B) Pseudotime analysis reveals increasing (marked
by red dashed rectangles) and decaying (blue rectangles) courses, indicating, e.g., accumulation or
depletion of WCEU cultivar features and accessions at later PT values. Arrows indicate points of
increasing (red) and decreasing (blue) slopes. Composition of the geographic origin of the cultivars is
shown as barplot (middle). Enlarged SNP-profiles, as shown in the right part of the figure, reveal details
of cultivar distribution around the LOESS-fits (locally weighted scatterplot smoothing, black curves).
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(C) The utilization of grapes (wine, table, double wine and table) along the developmental paths
indicates that wine usage appeared at later PT and along all branches compared with table utilization.
The pie diagrams show percentages of grape utilization along the branches (larger diagrams) and
relative percentages (smaller pie diagrams) as ratio percentage along the branch divided by the overall
percentage (wine: 61%, table: 25%, double: 12%). The mean SOM-portraits refer to cultivars of different
utilization along the branches. SNP-spots shift into the direction as indicated by the arrows.

The consecutive alterations in feature space observed were supported by PT-profiles of selected
spots (Figure 6B). The eMAF SNP-score of spot A (up in EMCA) decays along all branches (blue,
dashed frames), reflecting increasing genetic distance from this region with increasing PT. In contrast,
spot F (up in MFEA and MAGH) remains relatively invariant along branch 4. The IBER and WCEU
related spots gain in ‘later’ PT along different paths (red dashed frames), namely, path 4, 0–1 and 0–2,
respectively. These courses, however, differ in their turning points where eMAF starts to increase
and in their slopes. For example, the gain of 0–2 starts at later PTs and it is steeper compared with
0–1, suggesting different ‘switching points’ and time-scales of grapevine distribution (see red arrows).
Interestingly, ITAP-cultivars accumulate at intermediate PTs along the spot profile J of all subbranches
0–1, –2 and –3. Bar plots of the composition of cultivars along the branches, as a function of PT, support
the accumulation of MFEA, EMCA, RUUK, MAGH, and partly ITAP vines at early and intermediate
PTs while WCEU and IBER (and partly BALK along path 4) cultivars accumulate at later PTs. Hence,
PT-scaling obviously quantifies aspects of dissemination of cultivars in East-to-West direction via
different routes.

The consideration of grape utilization along the different PT-paths clearly reveals the enrichment
of table vines in branches 0 and 4, while wine cultivars strongly enrich in the branches 1–3 at later PTs
(Figure 6C, pie diagrams). The gain of wine usage also becomes evident in the PT-profiles at PT > 0.5,
and, on the other hand, table vine enrichment at PT < 0.5 (Figure 6C, bar plot). Stratification of the
portraits along the paths reflects the systematic shift of spot patterns between the portraits of the table
and wine vines from the upper to the lower parts of the maps along the paths shown in Figure 6A (see
also the arrows in Figure 6C, middle). The URD- and t-SNR plots support this result by the separation
between table (red color) and wine (blue) cultivars in top-to-down direction (right part in Figure 6C).

In summary, multibranched PT-analysis resolves the ‘transverse’ distribution of cultivars among
geographic regions also in ‘longitudinal’ PT-dimension, by sorting them according to mutual similarities
of their genomic landscapes. We find the accumulation of grapes used for wine production at later PTs
especially in Europe, which suggests the diversification of wine cultivars at later times compared with
table grapes.

4. Discussion

We applied SOM artificial neural network-based machine learning to genome-wide SNP data
of 783 grapevine cultivars, in order to visualize and to analyze the landscape of grapevine genomes,
in terms of topological features such as ‘mountains’ and ‘valleys’, referring to positive and negative
eMAF values, respectively (Figure 7).
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Figure 7. Genomic landscapes of grapevine cultivars: The SNP-landscapes of all 783 cultivars (examples
from different regions are shown as small images) were summarized into a mean ‘overview’ landscape
(large image with flags). Correlated SNP-profile self-organized together due to Figure 7 examples
are shown as small images). The ‘portraits’ project the multidimensional similarity space spanned
by the excess minor allele frequencies (eMAF) of the 10,207 SNPs under study into two dimensions.
The vertical ‘height’ dimension visualizes the eMAF-value of the SNPs defined as the deviation of
its minor allele frequency (MAF) in a certain cultivar from its mean MAF-value averaged over all
cultivars. The algorithm ‘self-organizes’ similar SNP-profiles more closely together than different
ones. In the result, we obtained 783 different SNP landscapes, each showing a unique combination of
red ‘mountain-ridges’ and blue ‘valleys’ referring to positive and negative eMAF-values, respectively.
The overview landscape summarizes the diversity of the individual portraits in terms of frequently
observed SNP-patterns (Figure 7, large image). Its topology reveals several ‘mountain areas’ which
refer to cultivars from different geographic regions. It relates to the geographic origin of grape cultivars,
their phenotypes and history of distribution throughout the ‘classical’ world, starting from its origin of
domestication about 10,000 years ago. Particularly, the genomic landscape resembles the geographic
map around the Mediterranean and the Black Sea. Namely, the eMAF-‘mountains’ order cultivars
from the Caucasus along a northern route’ via Balkan towards Western Europe and along a southern
route via Palestine and Maghreb towards the Iberian Peninsula. A central ‘blue valley’ referring to
predominantly negative eMAF-values separates both routes. It can be interpreted geographically as
the Mediterranean and Black Sea areas, which obviously constitute areas of reduced genetic exchange.
Interestingly, the largest barrier is found between grapes from the Iberian Peninsula and Western
Europe (France, Italy), while the street of Gibraltar appears only as a small sidearm of the central
‘genetic’ valley, thus indicating a relatively moderate genetic barrier between North Africa and Iberia.
Hence, Iberian Peninsula and northern Africa could be considered subcontinents of Europe, being
separated by the Pyrenees according to vine genetics, which also agrees with the recent comparison
of human genomes from these areas [28]. Another moderate genetic barrier is found between grapes
from the Balkan and Western Europe (Germany, Switzerland and Italy). According to these barriers,
cultivars divide into three major groups on the coarsest level of classification, namely Western Europe
and Italian grapes, Iberian grapes and vine cultivars from Eastern and Maghreb regions. Detailed
inspection of the mountain range of ‘eastern’ grapes reveals fine internal structure of valleys separating,
e.g., Armenian from Georgian grapes and vines from Anatolia and Greece from Balkan ones.
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We complemented this genetic feature (SNP-) landscape by grapevine accession-similarity plots.
Each of them visualizes different aspects of the mutual relatedness of cultivars. Principal component
plots distribute accessions in (eMAF) distance-scale. It results in local overcrowding of cultivars with
similar genomes, e.g., from Near East, Caucasus and Middle Asia while Western European and Iberian
cultivars separate into virtually different data clouds of large variability between sample genomes.
PCA requires separate projection-plots to cover the essential properties of similarity space. The
(correlation) similarity net projects multidimensional sample space into two dimensions. It reveals
major routes of grape distribution around the Mediterranean Sea and the genetic barrier between Iberian
and Western European cultivars, evident also in the feature landscape. In contrast, the minimum
spanning tree (MST) generates path-like structures. For worldwide human genomes, the MST
reflects roughly the ‘out-of-Africa’ migration history, in terms of a virtually linear path starting from
Sub-Saharan Africa and ending in East Asia, with side branches towards Europe, America and Oceania.
Interestingly, the grapevine MST splits into four mean branches, enriching West European, Iberian,
Balkan and Middle East grapes, and with cultivars from South Caucasus and Fertile Crescent (Syria,
Lebanon, East Anatolia) at their central crossroad. A detailed comparison of individual (ANOVA-)
portraits further supports this result, using the feature landscapes in a country-wise resolution.

Overall, our genomic landscape and the different sample similarity plots are consistent with the
historical knowledge and previous genetic findings of grapevine domestication and distribution [7,10].
Accordingly, cultivated grapes occurred initially in South Caucasus (Georgia, Armenia) and Fertile
Crescent (East Anatolia and North Lebanon and Syria) [29,30]. Indeed, grapes from this region form the
crossroad in the MST, presumably due to footprints of initial cultivation in their genomes. Grapes then
distributed towards the ‘classical’, Mediterranean world into the west direction and into East towards
Iran and the Middle East (Tadjikistan, Uzbekistan), Afghanistan and India. The northern and southern
ways into the West agree with the distribution of settlements of Greeks (the Black Sea, including Crimea,
Anatolia, Southern Italy and Sicily, Southern France and Northern Spain along the Northern coast
of Mediterranean Sea) and Phoenicians (Lebanon, Carthago/Tunis, Maghreb and South-West Spain),
respectively. Genomes of vines from the Italian Peninsula are very diverse and reflect links to almost
all parts of the Mediterranean area (BALK, EMCA, MAGH, IBER) and Western Europe, presumably
due to intense cultural exchange in the Greek world, and later within the Roman empire [31].

Hence, grape growing and winemaking in classical time disseminated from ‘Iberia-to-Iberia’,
starting in or near the ancient kingdom Iberia in Middle Georgia in South Caucasus in the East and
ending at the Iberian Peninsula in the west. The combined action of selection, breeding, admixture
and migration have shaped the cultivated grape diversity. Substantial genetic diversity has been
maintained, subsequent to domestication derived from Transcaucasian Wild Grape, possibly due to
several events of introgression from local wild vine Silvestris-varieties, Wild grapes (V. vinifera ssp.
sylvestris), particularly in Western Europe [7]. Although Mediterranean and Black Seas served rather
as highways of cultural exchange than as barriers, vine distribution obviously followed primarily
‘country ways’ along with the coastal areas.

We visualize grape utilization in terms of phenotype maps which associate table, wine and
double usage with different geographic regions (Figure 7, part below). Grapes for fresh consumption
(table vines) predominate in Eastern and North African areas, while wine utilization is found mostly in
Western Europe (RUUK, BALK, WCEU, ITAP, IBER). This division has been associated with different
religious rules concerning alcohol consumption in Islamic and Christian regions [8]. Interestingly, the
red region of wine-utilization covers the WCEU and IBER geographic regions, and thus it bridges the
genetic border formed by the Pyrenees in the overview landscape (Figure 7).

In order to extract additional information about the dissemination of cultivars, we applied
pseudo-time (PT) analysis. This method has been originally developed for describing cell differentiation
using single-cell transcriptomic data [26,32], and it was applied to study human cancer progression
using single-cell and bulk transcriptome data [14,33]. In the context of this study, PT sorts and scales
vine genomes according to their genetic similarity, into a directed, branched graph. Starting with the
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assumption of initial Eastern domestication of the grapevine PT then describes its dissemination in an
East to West direction. Vines from the Caucasus and the East refer to small PT-values and vines from
the Balkan and Italian peninsula mostly to intermediate PTs. Interestingly, the genetic characteristics of
Western European and Iberian grapes follow different courses at later PTs along different branches,
which eventually reflects different waves of cultivation, since the Roman Empire times. Particularly,
recent pedigree analyses uncover a putative Middle Age cultivar melting pot, giving rise to many of
today’s cultivars, suggesting even secondary domestication events taking place in Western Europe
and the Iberian Peninsula ending in the cultivars that are used in viticulture today [8]. Different
PT-branches show different slopes and switching points in their grow regimes at later PTs. Table grapes
mostly accumulate at early PTs. Hence, our ‘SOMelier’ transforms vine genomes into a landscape
resembling the topology of the geographic regions of grape cultivation and/or the diversity of their
genomes. Different methods of similarity analyses in SNP-feature and cultivar space enable extracting
details of dissemination history and the utilization of grapes.

5. Conclusions

Our ‘SOMmelier’ approach visualizes essential aspects of grapevine genomes related to geographic
distribution, paths of dissemination and vine utilization. ‘SOMmelier’ portrays vine genomes in
terms of individualized images. They are intuitive, meaning that they don’t need specialized genetic
knowledge for interpretation. Together with vine genome landscapes described here, we propose to
use individual genomic portraits as an option to supplement vine cultivar passports as fingerprint
characteristics of their genomes. Such fingerprint portraits consider virtually the whole diversity of
the vine. Note also that we here discuss accession portraits mainly on the level of geographic regions
as a sort of worked example to support the interpretation of genomes of individual accession portraits.
Our study also demonstrates that bioinformatics methods proven before in analytic tasks on different
omics realms, mostly transcriptomics, but also epigenomics, proteomics and human genomics, provide
reasonable results if applied to vine cultivars as an example of plant genomes. Our approach thus
extends the methods toolbox for plant genetics by providing novel approaches which complement
established ones. Their pros and cons should be evaluated in future applications. The ‘SOMelier
‘method opens the opportunity to process larger genotype data, obtained by, e.g., whole genome
sequencing and/or increased number of cultivars included.
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Additional File 1: Individual cultivar accession portraits (PDF-format). Samples are assigned according to sample
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list of SNPs for all SOM spots (A - O) (XLS-format). Additional File 3: Summary annotation of SNPs, used in this
study [11] (CNV-format). Additional File 4: Additional figures Figure S1 and Figure S2 (PDF-format): Figure S1:
SNP maps, eMAF profiles and associations with selected phenotypes. (a) 14 SNPs (assembly version 12X.V0)
selected in [11] to identify the 783 vine cultivars accumulate in WCEU/ITAP and IBER regions of the map. Their
mean SNP profile shows large eMAF-values for cultivars from these regions on the average. Profiles of selected
individual SNPs reveal a nearly bi-modal distribution of eMAF-values. (b) SNPs from different chromosomes
distribute over several spot regions (red frames). (c) Distribution of SNPs from selected spots (red marks) among
the 19 chromosomes (grey vertical bars). Figure S2: ANOVA-portraits stratified according to geographical regions
and utilization of grapes. The log P-value is visualized on the SOM map. The most significant areas for all
phenotypes overlap with characteristic spots for MAGH cultivars.
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Abbreviations

Abbreviations of counties

NEWO New World
MAGH Maghreb
EMCA Eastern Mediterranean and Caucasus
MFEA Middle and Far East
BALK Balkans
RUUK Russia and Ukraine
ARM Armenia
IBER Iberian Peninsula
ITAP Italian Peninsula
WCEU Western and Central Europe
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Abstract: Single-cell RNA sequencing has become a standard technique to characterize tissue
development. Hereby, cross-sectional snapshots of the diversity of cell transcriptomes were
transformed into (pseudo-) longitudinal trajectories of cell differentiation using computational
methods, which are based on similarity measures distinguishing cell phenotypes. Cell development
is driven by alterations of transcriptional programs e.g., by differentiation from stem cells into various
tissues or by adapting to micro-environmental requirements. We here complement developmental
trajectories in cell-state space by trajectories in gene-state space to more clearly address this latter
aspect. Such trajectories can be generated using self-organizing maps machine learning. The method
transforms multidimensional gene expression patterns into two dimensional data landscapes,
which resemble the metaphoric Waddington epigenetic landscape. Trajectories in this landscape
visualize transcriptional programs passed by cells along their developmental paths from stem cells to
differentiated tissues. In addition, we generated developmental “vector fields” using RNA-velocities
to forecast changes of RNA abundance in the expression landscapes. We applied the method to tissue
development of planarian as an illustrative example. Gene-state space trajectories complement our
data portrayal approach by (pseudo-)temporal information about changing transcriptional programs
of the cells. Future applications can be seen in the fields of tissue and cell differentiation, ageing and
tumor progression and also, using other data types such as genome, methylome, and also clinical and
epidemiological phenotype data.

Keywords: pseudotime trajectories; transcriptomic landscapes; differentiation of tissues; planarian;
machine learning; self-organizing maps; single cell RNA sequencing

1. Introduction

Genome-wide single cell transcriptomics experiments provide snapshot data, which resolves
the molecular heterogeneity of cell cultures and tissues with single cell resolution under static
conditions [1,2]. These measurements are cross sectional and lack explicit time-dependent, longitudinal
information about the developmental dynamics of each individual cell. Given that each cell can
be measured only once, one needs models and computational methods to deduce developmental
trajectories on cellular level and changes in underlying molecular programs from these static snapshot
data. Such methods were developed in order to quantify transcriptional dynamics such as cell
differentiation or cancer progression by using the concept of pseudotime (pt) [3–6]. The pt model
assumes that single cell transcriptomes of different cells can be understood as a series of microscopic
states of cellular development that exist in parallel at the same (real) time in the cell culture or tissue
under study. Moreover, the model assumes that temporal development smoothly and continuously
changes transcriptional states in small and densely distributed steps so that similarity of transcriptional
characteristics can serve as a proxy of time. Here the pt represents the similarity measure used.
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It scales development using values between zero and unity for the start and end points, respectively.
Pt methods typically project the high-dimensional molecular data on to a space of reduced dimensions
by (non-)linear transformations. In reduced dimensional space the cells were then aligned along
a trajectory scaled in units of pt where a large variety of projection algorithms can be applied
(see, e.g., [7–9]). A recent benchmarking study identified more than 70 pt-trajectory interference
methods. About 45 of them were explicitly evaluated using criteria such as cellular ordering, topology,
scalability, and usability [10]. Each method has its own characteristics in terms of the underlying
algorithm, produced outputs, and regarding the topology of the pt trajectory. Methods make either
use of pre-defined, fixed path topologies such as linear [3,11], cyclic, or branched [4,12,13] or they infer
the topology from the data, e.g., as connected or disconnected graphs [12,14,15]. Most methods aim at
inferring continuous cell state manifolds. To achieve this they transform single-cell data to graphs
representing the individual cells as nodes, which are then connected by edges that reflect pairwise gene
expression similarities. Such graph-based analyses are useful because they convert a set of isolated
measurements of single-cell transcriptomes into a connected structure, which can then be analyzed
using a rich set of mathematical methods for construction and visualization of the state space manifold
and for (pseudo-)temporal analysis (see [16] and references cited therein). Method’s performance
depends on the trajectory type, dimensions of the data, and prior information where however often
little is known about the expected trajectory. Notably, also different kinds of network studies aimed
at inferring trajectories as directed graphs, e.g., in the context of metabolic flux analyses ([17] and
references cited therein).

Hence, pt trajectories refer to ordered series of cell states. Alterations of activities of selected genes
or gene sets along these trajectories then provide pt profiles of gene expression, which represent x-y
plots depicting the expression levels as a function of pt [18]. They characterize (pseudo-)temporal
changes of cellular programs upon development and can proceed, e.g., in a switch-like or in a more
continuous fashion, or they can upregulate in intermediate, transient states [19]. Accordingly, molecular
developmental characteristics can be split into two orthogonal views, namely focusing either onto
the cells as the functional unit or onto molecular programs as changes of function independent of
the associated cell state(s). Both aspects are closely related but not identical because development
into different cell types can be driven by the same or by different molecular processes and, vice versa,
different programs can associate with one or multiple cell types. For example, co-evolution of tumor
cells and their microenvironment involves different cell types and states, which are expected to show
co-regulation in gene-state space and potentially could support inference of the development of
molecular communication networks between different cell types (see [20,21] and references cited
therein). Trajectories in cell-state space are addressed by the numerous pt-approaches mentioned
above while elaborated methods and applications for visualization and analytics of developmental
paths in gene state do not exist to the best of our knowledge.

We previously developed the expression portrayal method that visualizes multidimensional,
whole genome expression landscapes in terms of two-dimensional images making use of self-organizing
map (SOM) machine learning [22,23]. Such landscapes are typically characterized by clusters of genes,
so-called spot modules, concertedly overexpressed under certain condition such as cell types or
developmental stages. The self-organization properties of the method arranges the spot-modules of
similar expression patterns closer to each other than more dissimilar ones [22]. Hence, SOM machine
learning arranges spot-clusters of co-regulated genes according to mutual similarities of their expression
profiles in an ordered fashion resembling paths in gene space. In other words, SOM accomplishes the
task of sorting features in gene-state space in analogy to the task of sorting cells according to mutual
similarities of their transcriptomes along pseudotime trajectories in cell-state space.
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We have previously shown that the arrangement of spots indeed reflects dynamics of different
processes. For example, melanoma progression from naevi to metastatic tumors has been analyzed
by combining SOM portrayal and pt-scaling of bulk melanoma transcriptomes [24] and single-cell
data of melanoma cell cultures [19,25]. Another study addressed organoid development of liver buds
using a similar approach [26]. The ability to deduce dynamic information in SOM gene-state space
from cross-sectional data was supported by (real) time-resolved SOM-analyses of the longitudinal
transcriptomic changes along the yeast cycle [27], of dynamic changes of urine proteomics during space
flight simulations of human individuals [28] and, earlier, equilibration of cellular states after external
perturbations into stable attractor states [29,30]. In these applications SOM provided trajectories in the
molecular landscapes. The studies so far associate with relatively simple linear, circular, bifurcation-like,
and converging processes. Furthermore, the trajectories in feature-space were deduced more on a
qualitative level without underpinning them with appropriate computational methods. Finally and
most importantly, single cell “omic” technologies strongly evolve and now became standard in many
applications beyond the flatworm example used here. Presently, many ten-thousands of cells are
sequenced in parallel, quality of transcriptomic data is improved, technology is refined, e.g., in direction
of spatially resolved transcriptomics, and extended by single-cell proteomics, genetics, and chromatin
accessibility methods.

In this publication, we aim at further developing the idea of constructing developmental trajectories
in SOM-feature state space from cross-sectional data in order to supplement pt trajectories in cell-state
space with such trajectories describing developing molecular programs. Our efforts should be
understood as a first step in this direction as a proof of principle approach. It extends previous work
by explicitly extracting “similarity paths” in the expression landscape provided by the SOM method.
In other words, we supplement our portrayal of static molecular landscapes by (pseudo-)dynamical
views in analogy to pt approaches in cell-state space.

Making use of topological features of the expression landscape we also process so-called
RNA-velocities as an independent approach. RNA-velocity analysis directly “forecasts” the transcriptional
state of a cell based on the relation between spliced and unspliced mRNA [31,32]. We here apply this
concept to gene-state space to derive local gradients of transcriptional activity pointing toward attractors
of gene activity along RNA-velocity paths. Hence, as the second novelty we project RNA-velocity
information into expression portraits.

We selected “flatworm” single cell RNAseq data as an illustrative example. Planarian transcriptomics
was well studied as a first application of scRNAomics to developmental dynamics in a whole complex
animal [29]. This data enabled to reconstruct multibranched lineage relationships of cell differentiation
from stem cells into different tissue types and to identify gene sets, which program the lineage tree.
The animal overall consists of several tissue types, so that multibranching of developmental trajectories
is sufficiently diverse.

Our publication is organized as follows (as shown in Figure 1): first, we introduce both cell-
and gene-state centric views on development of Planarian tissues. Second, we characterize the
SOM-expression landscape and extract differentiation paths into selected tissue types. For comparison
with cell-state space we made use of the URD-multibranched diffusion pt method. Finally, we mapped
RNA-velocities into SOM to derive vector fields of changes of RNA abundance. Overall, the SOM-based
gene expression analysis of developmental trajectories complements cell-trajectories by more clearly
disentangling involved molecular programs.

29



Genes 2020, 11, 1214

Figure 1. Analysis of developmental paths (schematic overview). (A) Single-cell transcriptome data are
provided as a matrix of cells (columns) versus transcripts (rows). Similarity sorting along genes and cells
is applied to obtain gene- and cell-state trajectories, respectively. (B) Multibranched cell-state trajectories
order cells along a similarity measure called pseudotime (pt). They are visualized either as hierarchical
tree or as three-dimensional manifold using, e.g., “URD”-plots [29]. They reflect transcriptional changes
upon development and differentiation of cells. (C) The gene-state trajectories were generated in
self-organizing map (SOM)-space making use of a network formed between clusters of co-regulated
genes marked with letters in the figure. Trajectories follow paths of maximum expression linking
source (stem cells) and sink (differentiated tissues) nodes along the edges of the net. (D) RNA velocity
analysis delivers vector fields in cell and gene phase space. Each vector points in direction of increasing
transcript abundance either between cell states or between gene states. In fact, RNA velocity forecasts
the “future” transcriptional state of each gene. The RNA-velocity vector of the cells is formed by the
RNA-velocities of all genes as components while the RNA-velocity vector in gene space is composed
by the RNA-velocities of all genes in the respective local gene cluster.

2. Materials and Methods

2.1. scRNA Seq Data of Planarian Development

Single-cell RNA Seq data of a whole planarian Schmidtea mediterranea were taken from the
publication of Plass et al. [29] as read-counts (in units of RPKM) of more than 28,000 transcripts per
cell. Originally these data were measured by highly parallel droplet-based single-cell transcriptomics,
Drop-seq [33], to study different cell types and progenitor stages present in adult planarians. In total
21,612 cells were captured in 11 independent experiments. The data set corresponds to five wild-type
samples (10,866 cells), two RNA interference (RNAi) samples (3314 cells), a high-DNA content
G2/M population corresponding to cycling planarian stem cells (typically defined as x-ray–sensitive
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“X1 cells”; 981 cells), and three wild-type regeneration samples (6451 cells) [34,35]. As in the original
publication [29], we analyzed all single-cell data sets together. Cell types were assigned to the previously
annotated 51 cell clusters. Cell type identities of neoblast, neural, epidermal, secretory, muscle, gut,
and protonephridia cells were further elucidated by examining known marker genes based on previous
knowledge [29]. We applied the same color scheme as in the figures shown in [29] throughout this
publication for direct comparison.

2.2. Single Cell SOM Portrayal

For transcript-related analysis we applied the “Single-Cell R Analysis Toolkit” available as
R-package “scrat” [22,23,27]. In brief, it works as follows: Transcript-level expression data were
log-transformed and centralized into log-fold changes with respect to the ensemble average of each
transcript, log FC (cell) = log expression (cell)—mean_log expression (all cells). Then, SOM neuronal
network machine learning translates the high-dimensional expression data of N = 28,065 gene
transcripts into K = 3600 metagene expression data per cell. Implementation of SOM and optimal
parameter settings were addressed previously [27]. Each metagene represents a “micro”-cluster of
co-expressed genes showing mutually similar expression profiles across the samples. Metagenes were
arranged in a 60 × 60 two-dimensional grid coordinate system and colored according to their expression
level in each sample thus generating an image of the transcriptome of each single cell. The resolution
of 60 × 60 metagenes was chosen to optimally resolve expression modules as shown previously.
Default coloring of metagenes (red to blue for maximum to minimum expression, respectively) scales
with log-expression values [22,36]. Mean portraits of the transcriptome of a cell type were calculated
by averaging metagene expression values over all single cell portraits of the respective type.

Metagenes of mutually correlated profiles cluster together forming “spot-like” red and blue areas
of over- and under-expression in the portraits because of the self-organizing properties of the SOM.
These “spot”-modules were detected using distance-metrics (D-map) clustering [37]. They extract
groups of co-expressed genes showing high expression in specific cell types. However, the spots
cover only part of the SOM and thus only part of the genes. For “space-filling” segmentation of
the SOM we applied k-means clustering to all metagenes. This k-means clustering stratified the
3600 metagenes into 32 clusters where 11 of them can be assigned to the spots, 21 collect virtually
low variant transcripts, and one cluster collects almost invariant genes (see below). The choice of
the number of metagenes, clustering criteria, and methods for segmenting SOM were extensively
studied and described previously [22,27]. In short, a number of several thousand metagenes are large
enough to resolve transcriptional landscapes in an unsupervised fashion in order to identify dozens
of different states with sufficient resolution. Larger numbers of metagenes have virtually no effect
on the results. The number of spots represents an intrinsic property of the data. It is obtained in an
unsupervised way by searching for modules of co-expressed genes by applying different algorithms
based on overexpression or D-map criteria. Typically their number is roughly comparable with the
number of transcriptomic states as has been shown in previous applications [25,36,38]. It is expected to
vary between ten and twenty in the flatworm example. For low-variant modules a number exceeding
the number of spot modules by a factor of two is appropriate to segment the map with sufficient
resolution. A number too small (e.g., five or less) will provide a too coarse resolution of the paths while
higher numbers (e.g., more than thirty) do not change the results and, moreover, typically produce
“empty” clusters without functional information.

The spot-patterns obtained represents a characteristic fingerprint of each particular sample.
This “logFC” scale is used as default color scale of the portraits (see also [22]). It enables to identify
well-separated areas of overexpression (red color) as described above. In addition, we applied a
so-called “loglogFC” scale for alternative coloring. It applies the signed logarithm of the absolute
value of logFC, loglogFC = sign log(abs(logFC)), where “sign” equals the sign of logFC. First of all,
the “loglogFC” scale identifies a “coast-line” which separates areas of overexpression (FC > 1) in
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red from areas of underexpression (FC < 1) in blue. LoglogFC portraits overall better resolve subtle
changes of the expression landscape in low expression areas.

2.3. Cell Clustering, Cell State Trajectories, and Pseudotime

For an overview, we visualized similarities between transcriptomes of planarian single cells using
t-distributed stochastic neighbor embedding (tSNE) algorithm [39]. Pseudotime (pt) analysis was
performed by means of simulated diffusion paths through the cells in similarity space as implemented
in URD [40]. It distributes the scRNAseq transcriptomes along a branched tree-structure reflecting
different trajectories of cell development. We assigned the root of differentiation to planarian stem cells.
Then URD calculates the trees by constructing a k-nearest-neighbor graph and assigns a pseudotime
(pt) by simulating a diffusion-like process from the root to the tip of the graph. The pt scales similarities
between the cell transcriptomes using a value between pt = 0 at the start to pt = 1 at the tip of largest
distance. Overall application of URD delivers a branched trajectory from one root to several tips.

2.4. Gene State Trajectories in SOM Space

Gene-state trajectories were calculated by applying the maximum flow algorithm [41] to
transcriptomic data in metagene space as provided by SOM. To generate these trajectories, we first
segmented metagene space into space-filling k-means clusters as described above. Then they were
transformed into a network with edges linking all neighboring clusters. The weights (called capacities)
of the edges were given by the cumulative mean loglog FC value of the two adjacent clusters linked
by the edge. Next, we defined a source cluster (starting point) and the sink cluster (end point) of
the differentiation process, e.g., between genes upregulated in undifferentiated stem cells and genes
upregulated in differentiated tissues. The maximum flow-algorithm connects source and sink along
the edges providing the maximum cumulative weights. This path then defines the gene-state trajectory
ensuring maximum cumulative expression between source and sink. Alternatively we made use of
different portraits between differentiated tissue and stem cells to generate gradient trajectories along
topographic least cost paths from source to sink spots using the R-program topoDistance [42].

2.5. RNA-Velocity Dynamics

The so-called RNA-velocity is the time derivative of gene expression. It is positive for increasing
and negative for decaying transcript abundance. It can be evaluated from the relative amounts of
unspliced and spliced mRNAs of each gene taken from RNAseq data, their ratio under steady state
conditions and assuming a constant splicing rate of all genes [31]. The mRNA-velocities of all genes
form a multidimensional vector pointing in direction of the overall increment of mRNA of the cell and
thus predicting its future expression state. In metagene space as provided by SOM the mRNA velocity
of a metagene is given by the multidimensional vector with the mRNA-velocities of all single genes
included in the metagene cluster as components. It points toward the future state of the metagene in the
expression landscape, or, in other words, it forecasts the expression change of the metagene. Overall,
the metagene-related mRNA-velocities thus provide vector fields pointing toward local attractors of
maximum transcription (see below). The vector field obtained is then transformed into trajectories
using RNA-velocity [31]. It summarizes the metagene-related RNA-vectors into “flow”-vectors toward
the sinks (or attractors) of transcription (see below).
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2.6. Function Analysis

We applied gene set analysis to the lists of genes located in each of the modules to discover
their functional context using the planMine database [43]. planMine takes the Gene Ontology (GO)
information for a transcript from the NCBI database for RefSeq proteins that show strong Blast
homology with Planarian transcripts [43]. Gene set maps complement this analysis by visualizing the
position of the genes of a set within the SOM grid. According to their degree of accumulation in or
near the spot modules, one can deduce their potential functional context [22].

2.7. Methods Availability

Trajectory generation and visualization is implemented as R-package oposSOM.PT (https://github.
com/mschmidt000/oposSOM.PT). It should be used together with the R-package oposSOM [19,20]
(https://github.com/hloefflerwirth/oposSOM) in order to generate trajectories upon running the program.

3. Results

3.1. Portrayal of Developing Single Cell Transcriptomes

For the comprehensive cartography of cell states upon tissue development of planarian,
we generated SOM transcriptomic portraits of all nearly 22,000 cells studied. Then, we summarized
them into mean portraits of each of the 51 cell types defined previously [29] by averaging all single
cell-portraits of each type. tSNE plots were used for an overview of transcriptional diversity of the
SOM portraits (Figure 2A). Cells were grouped into 51 clusters in accordance with the classification and
coloring scheme used previously [29] (see legend in Figure 2E). Our SOM-based results are in line with
that of Plass et al. [29] showing one large cluster of neoblast stem-cells (grey color) which is surrounded
by clusters of differentiated cells of different tissues (dark color tones) and clusters of progenitor cells
(brighter colors) in between (Figure 2A). The “differentiation” axis points roughly from the stem cells
in the right part toward differentiated cells in the left. The SOM expression portraits of the cell types
are characterized by red and blue spots at specific positions. They refer to clusters of concertedly over-
and under-expressed genes, respectively. For example, neoblasts show a red overexpression spot in the
upper right corner of the map, while differentiated muscle and goblet cells show overexpression spots
in the left and middle bottom area, respectively (Figure 2B). The respective progenitor cell express a
virtually bimodal spot patterns consisting of a mixture of the spots observed in the undifferentiated
and differentiated cells, respectively. One can understand differentiation as a series of activated cellular
programs, which become evident as path in the expression landscape linking the stem cell spot with
the spot observed in differentiated cells. Examples of such developmental trajectories of changing
gene states were shown in Figure 2D for muscle, gut, epidermal, and neuronal cells obtained by
means of the maximum flow algorithm (see Materials and Methods section). Changing cell states
upon differentiation were visualized using URD-clustering. This method sorts cells according to
mutual similarities along pseudotime trajectories, which are specific for different developmental
paths (Figure 2C).

In summary, we here introduced two complementary views on developmental trajectories, namely
as paths describing the sequence of cellular states passed between stem cells and differentiated tissue
cells on one hand and as the sequence of major gene regulatory programs activated upon differentiation
on the other hand. SOM-space visualizes the latter aspect. It enables studying functional aspects of
development in gene space.
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Figure 2. SOM portrayal of the developing planarian single cell transcriptome: (A) Single-cell resolved
tSNE plot (cell types are color-coded as shown in the legend in part E). SOM expression portraits of
selected cell types provide a glimpse on cell and gene transcriptional space. (B) Expression portraits of
stem cells and of differentiating progenitor and differentiated muscle body and a goblet cells show
overexpression spots at different positions as indicated by the dashed circles. The spot profile reveals
specific up regulation of the spots in the respective tissue specific cells. (C) The URD [40] plot resolves
multibranched single-cell developmental manifolds. Paths of selected tissue types are indicated by
arrows. (D) Gene activation trajectories of cell differentiation from stem cells into four different tissues
were calculated by means of maximum flow on SOM embedding. (E) Legend of colors used for cell-type
assignment (see also [29]). The color code is used throughout the paper.
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3.2. The Transcriptome Landscape of Planarian

Next, we further characterized the topology of SOM expression landscape and its functional context
in detail. In total, we segmented the 3600 metagenes used for the SOM training into 32 expression
modules by applying k-means clustering to the metagene’s expression profiles. The modules were
labeled by capital letters “A–F1” (Figure 3A). A summary of the top expressed marker genes in each of
the modules, enriched functional gene sets, and samples showing upregulation are provided in Table 1.
The modules are divided into 11 highly variant expression clusters (A, D, F, J, L, N, R, B1, D1, E1, F1)
and into 21 less variant clusters. The former ones form “spot-like” red areas along the periphery of the
SOM which specifically upregulate in the different tissues (Figure 3C). The low variance clusters were
found in the middle and right lower part of the map. About 65% of all genes are virtually invariant and
accumulate in cluster A1 evident as blue area in the summary and variance maps (Figure 3B). Hence,
the topology of the SOM splits into one developmental source spot-collecting genes overexpressed
in stem cells, into a series of developmental sink spots-collecting genes upregulated in differentiated
tissues and into an intermediate transition region in between. Further, SOM identified an area collecting
virtually invariant genes and spot R of unknown origin. Presumably, it can be attributed to methodical
effects systematically disturbing parts of the expression patterns.

The landscape is governed by the amplitudes and particular shapes of the gene expression profiles.
They are shown around the map for selected modules together with gene maps indicating the positions
of gene referring to specific Gene Ontology (GO) terms (Figure 3A). For example, genes of the GO-term
“Muscle structure development” accumulate in and near the “muscle” module L upregulated in muscle
tissue this way confirming its functional impact. The heatmap in Figure 3C visualizes the profiles of the
less variant clusters. Overall, these profiles split into three major strata either upregulated in stem cells
(marked with grey color), progenitor cells (light apricot), or differentiated cells (apricot), respectively
(Figure 3A–C). The progenitor cell clusters can be further divided into “earlier progenitors” activated
still in stem cells and into “later progenitor cells” not showing activation in stem cells. Marker genes
of differentiation between the different planarian cell types (Table S1 and [44]) map into or near the
modules upregulated in the respective cell types (Figure 3D). For example, the epidermal module J
includes the epidermal gene markers prog-1 or agat-1 while the stemness module N contains the stem
cell marker Smedwi-1 and tub-α1. Overexpression analysis of selected reference sets of co-regulated
genes also well agreed with our modules. They further specify functional interpretation, e.g., in terms
of activated cell cycle phases within the stem cell compartment (see Figure S1B–E).

Note that spots and underlying cellular programs are activated in different cell types
(see the profiles in Figure 3A). For example, cell-cycle-related transcription is virtually active in all cell
types however to a different extent (Figure S1D). These genes locate mostly in spots W and V near the
stemness module N. Other common programs are more selective: genes related to morphogenesis
accumulate in spot F upregulated in epidermal and muscle tissues. Such genes activated in several
differentiated tissues overall accumulate in a stripe-like area near the lower left corner of the map
including spots F, Y, and M (Figure 3A,D).

Gene set enrichment analysis using the database planMine for mining flatworm genomes and
transcriptomes [43] provided detailed functional information associated with each cell type (Table 1).
For example, the top enriched sets in the “muscle module” L are the GO-terms collagen fibril
organization, sarcomere organization, and muscle tissue development while the “stem cell module” N
enriches terms such as rRNA processing, ribosomal subunit biogenesis, and RNA processing, reflecting
the high biogenetic and metabolic activity of stem cells. In summary, the diversity of the scRNAseq
data decomposes into a set of one dozen clusters of co-regulated genes of defined functional context.
Along the differentiation axes the cells split into neoblasts, early, and late progenitors and differentiated
tissue cells according to their transcriptomic patterns.
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Figure 3. The single-cell transcriptomic landscape of the planarian Schmidtea mediterranea: (A) The
module overexpression map provides an overview about modules of co-expressed and highly variant
genes. They mainly arrange along the edges of the SOM and are labeled with bold capital letters A, D,
F, J, L, N, R, B1, D1, E1, F1. The grey arrows illustrate selected developmental paths by linking the
stemness spot N with the respective “tissue” spots. Expression profiles (gene set enrichment Z-score,
GSZ-scale) and gene maps of selected functional gene sets underpin the functional context of these
modules. They reveal specific up- and downregulation of the gene sets in different tissues (red arrows).
The gene maps indicate the location of the genes by dots. Accumulation of genes in and near module
areas are indicated by red arrows and dashed ellipses. (B) Population and variance maps visualize the
number of genes in each metagene (log-scale) and the variance of metagene expression, respectively.
About 65% of all genes studied show virtually invariant expression. They accumulate in the blue area
in the right lower corner as indicated. (C) Expression profiles of the modules of low variant expression
(labelled with non-bold letters in part A) are shown as heatmap. The arrows above the heatmap point
in the direction of differentiation from stem cells into different tissues. The spot modules group roughly
into three clusters as indicated in the right part of the heatmap and along the edges of the SOM in part
A. (D) Location of key reference genes are shown by dots (see also Figure S2 and Table S1). They are
mostly found in or near the spots which upregulate in the respective tissues.
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Table 1. Overview of module-wise enriched gene sets and marker genes of planarian sc RNASeq data.

Cluster Genes Name
Enriched BP Gene Sets

(log p Enrichment)
Marker Genes Tissue

A 235 Neurons 1

Neurotransmitter secretion (−6)
Synaptic vesicle localization (−5)
Neurotransmitter transport (−5)

Regulation of neurotransmitter levels (−5)
Synaptic vesicle transport (−4)

pc2, ChAT, gpas
cav-1+ neurons,
ChAT neurons 1,
ChAT neurons 2

B 1314

Phosphorus metabolic process (−4)
Phosphate-containing compound metabolic process (−4)

Homopholic cell adhesion via plasma membrane adhesion
molecules (−4)

Cell-cell adhesion via plasma-membrane adhesion molecules (−4)
Cell communication (−3)

GABRB3 (dd21541),
CAVII-like, th

C 206

D 265 Pharynx vim-1,VIT (dd1071),
NPEPL1 (dd181) Epidermis, Pharynx

E 383 1.G9.2, ifn

F 370 Neurons 2

Microtubule-based movement (−18)
Microtubule-based process (−15)

cilium morphogenesis/organization/assembly (≥−14)
movement of cell/subcellular component (−9)

pkd2l-2, rootletin
(dd6573), cav-1

cav-1+ neurons,
GABA neurons

G 218

H 330 Post-2c

I 228 nb.22.le

J 111 Epidermis actin filament capping (−2)
negative regulation of actin filament depolymerization (−2) prog-2, prog-1, agat-3 Epidermis, late epidermal

progenitors 1/2

K 100 pds

L 150 Muscle

muscle structure development (−9)
tissue development (−8)

actin filament-based process (−7)
anatomical structure development (−6)

muscle organ development (−6)

COL4A6A (dd2337),
collagen, COL21A1

(dd9565)
Muscle body

M 1032 cali, if-1, HSPG2 (dd8356)

N 121 Stem cells

translational elongation and termination (≥−79)
cotranslational protein targeting to membrane (≥−73)

protein targeting to ER (−72)
Peptide and amid biosynthetic process (≥−71)

smedwi-1, dd_6998 Stem cells

O 143

P 114 bruli

Q 44 vasa-1

R 119 Run specific Unknown origin, presumably due to batch effects Run specific cells

S 974 dd_5560, SAMD15
(dd19710), wntP-3

T 404 sp-5

U 235

V 265 TYMS, gH4

W 146

Gene expression (−8)
Nucleic acid metabolic process (−7)

Cellular nitrogen compound metabolic (−6)
Cellular macromolecule metabolic process (−5)

Nucleosome organization (−5)

X 398 dd_13666

Y 445 GLIPR1 (dd210), npp-18

Z 575 TMPRSS9 (dd7966),
CTSL2 (dd582), gata 4/5/6

A1 18239

G−protein coupled receptor signaling pathway (≥−47)
cell communication (−12)

Signaling (−11)
single organism signaling (−11)

glipr-1, PI16 (dd940),
ASCL4 (dd1854)

B1 181 Pigment

organonitrogen compound catabolic process (−6)
tyrosine catabolic process (−5)

small molecule metabolic process (−4)
response to transition metal nanoparticle (−4)

L-phenylalanine catabolic process (−4)
erythrose 4−

pgbd-1, PSAPL1 (dd1706),
KMO (dd7884) Pigment cells

C1 458

D1 262 Parenchym
regulation of intracellular signal transduction (−3)

negative regulation of antigen receptor-mediated signaling
pathway (−3)

ctsl2,
CTP,
PCN,

dd_Smed_v6_3_0, PSAP

aqp+ parenchymal cells,
pgrn+ parenchymal cells,
psap+ parenchymal cells

E1 226 Phagocytes mat Phagocytes

F1 725 Goblet, secretory cells Goblet and secretory cells
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3.3. Portrayal of Developmental Paths

In the next step, we aimed at characterizing gene-state expression dynamics during differentiation.
For a simple first view, we ordered the expression portraits of the cells of epidermal differentiation
along the linear, unbranched pseudotime path taken from Plass and colleagues [29] (Figure 4A).
Hereby the stemness module is highly expressed in the portraits of stem cells, of epidermal neoblast,
as well as in epidermal progenitors. Its amplitude however progressively decays in the portraits
of early and late epidermal progenitors but then markedly decays in the portraits of differentiated
epidermal cells. On the other hand, the expression of the epidermal module progressively increases
in an antagonistic fashion. Notably, this switching affects about 1000 genes included in these two
modules. We replot the default “logFC”-scaled portrait into double-logarithmic “loglogFC” scale
in order to better visualize subtle expression changes upon differentiation. The red overexpression
region “flows” along the upper border of the map in direction from the stemness “source” spot
at the right toward the epidermis “sink” module at the left. A gene-state trajectory of epidermal
differentiation was computed using the maximum flow algorithm [10] as described in the methods
section. Briefly, the trajectory is obtained as directed graph linking the source and sink module via the
path of maximum cumulative expression between the adjacent modules along the path (Figure 4B).
As expected, the trajectory follows the right-to-left shift of the red overexpression region seen in the
portraits upon differentiation. The expression of stemness genes decays along the trajectory and
it increases for genes involved in epidermis differentiation (Figure 4C). Gene-state trajectories of
differentiation, pt profiles, and associated expression portraits of parenchymal, neuronal, muscular,
and gut tissues are shown in Figure 4D. Hereby, differentiation is described by trajectories starting in
the common stemness mode and ending in the respective tissue-specific expression modules.

As an alternative method we applied a lowest cost path algorithm to the difference map between
stemness and differentiated tissues (Figure 4E) [42]. The trajectories obtained closely resemble those
obtained by means of the maximum flow algorithm. Interestingly, the gene states move “downhill”
along the differentiation trajectories in the difference SOM, a picture, which resembles the epigenetic
“Waddington” landscape [18,45]. This landscape was introduced as a conceptual model to illustrate
differentiation of tissues from stem cells. Note that the SOM-landscape is a “real” expression data
landscape, which this way supports the abstract Waddington concept of developing cells in gene-state
space. In summary, our approach identifies cascades of gene modules changing expression upon
differentiation in a tissue-specific (pseudo-)temporal order. In SOM metagene space it appears as “lava
lamp”-like flows of upregulated genes, which can be summarized into gene expression trajectories
directed from stemness toward differentiated tissue expression programs.
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Figure 4. Gene expression trajectories of planarian tissue development. (A) Expression portraits
(in log FC and loglog FC scales) of the epidermal lineage illustrate the change of module-patterns during
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differentiation. The “loglogFC” scale better resolves subtle changes between over- and under-expression
in red and blue, respectively. Alterations of expression patterns become evident as “lava lamp”-like
flow of the red spot from the right to the left. The expression of stemness and epidermal spots N and J
change in an antagonistic fashion along the pseudotime. (B) The gene-state trajectory of epidermal
development links the stemness spot with the “epidermal” spots in the expression landscape shown as
cumulative loglogFC SOM). The expression profile along the trajectory assigns genes and functions
along the path. (C) Selected expression profiles of spots along the developmental path of epidermal
cells switch from negative to positive slopes between spots P and K. (D) Developmental characteristics
of four different planarian tissues. The row above shows SOM-trajectories and pt-profiles. Below,
the heatmaps of expression modules characterize expression changes of the respective tissues upon
development as a function of pt. The respective expression portraits are shown below. (E) Gene state
developmental trajectories obtained from the difference of SOM between stemness and differentiated
tissue states using “topoDistance” analysis show differentiation paths as in part A–D. Largest expression
changes were observed in the “final” slope describing differentiation of tissues from progenitor states.

3.4. Development along Branched Trees

The unbranched pt approach applied in the previous subsection sorts the cells along one dimension
independent of the cell type. A more realistic computational approach is provided by URD [40]. It splits
the pt path of planarian tissue development into a tree-like, multibranched one. The algorithm applies
diffusion-like random walks to search for graphs through cellular states. The obtained trajectory
starts with a common trunk of neoblast cells for early pseudotime values at pt < 0.6 (blue color in
Figure 5A,B). Subsequently it divides into tissue-specific branches at pt > 0.6 (yellow to red). Notably,
the multibranched tree obtained by means of the URD algorithm reproduces the differentiated cell
types identified by independent methods in the original publication [29]. Different visualizations
of URD branching in terms of a 3D cell cloud (Figure 5A), of a path-tree or t-SNE plots (Figure 5B)
enable inspection of paths under different perspectives. The tree describes differentiation into more
than thirty final tissue types via 13 progenitor populations (Figure 5C). Initial stemness states stratify
into a variety of neoblast and progenitor cells such as gut and early epidermal progenitors at pt = 0.
Subsequently, the main branch splits the trajectory into sub-branches describing differentiation into
tissues such as parenchymal, neuronal, proto-nephridial, and diverse epidermal and gut cells. Further
branching separates late epidermal progenitors, pigment and epidermis cells, muscle body and muscle
pharynx cells, and npp-18 and otf+ cell neurons.

The profiling of spot gene expression along the different sub-branches using URD-pseudotime (pt)
as argument shows the decline of expression of the stem cell module “N” and the gain of the expression
of the spot-modules referring to differentiated tissues as expected (Figure 5D). Differentiation proceeds
rather step-wise which concerns variance of the data than continuously at different pt-values ranging
from about pt = 0.1 (epidermal tissue) and 0.2 (muscle) to 0.5 (neurons) which suggests switching of
the cellular machinery from stemness programs into programs of differentiated cells almost without
intermediate expression states. Some tissues show indications of intermediate states (e.g., muscle,
epidermis) in terms of more smooth transitions between undifferentiated source and differentiated
sink states.

Next, we made use of previous stratification of planarian genes into 48 clusters of co-expressed
genes, which were assigned to different tissues and tissue-combinations [29]. The tree in Figure 5E
illustrates the obtained hierarchy and maps marker genes taken from [29] into the SOM. In general,
one observes that genes upregulated in several tissues (upper part of the tree) locate more in the
middle part of the SOM and of the intended trajectories while marker genes for single tissues are
found in and near the respective tissue-related spots detected in our analysis. Overall, the spread of
genes is relatively large, presumably because the number of 48 clusters used in [29] is insufficient to
resolve the expression patterns underlying tissue differentiation. On the other hand, the location of
part of the tissue markers slightly away from the sink nodes presumably reflects also the fact that
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they are activated in transition states as progenitors of more than one tissue type as visualized in the
tree (Figure 5E). Tissue markers of our spot-analysis are listed in Figure 5E and Table 1. In summary,
multi-branched pseudotime approaches such as URD provide an overview of tissue differentiation by
sorting the cells into differentiation paths based on their mutual similarity relations.

 

Figure 5. Branched pseudotime analysis of planarian tissue development. (A) URD plot [40] of
branched differentiation in 3D is shown in two projections. The pseudotime is calculated as the average
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number of diffusion steps required to reach each cell from the root cell (neoblast 1) [40]. (B) Pseudotime
coloring of t-SNE plot and URD-branching tree. In pt-units epidermal tissues are most distant from
the root. (C) Branching tree of cell differentiation. (D) Expression profiles of selected lineages along
the branches of the URD differentiation tree. Samples are sorted along pseudotime (gray arrow).
The black LOESS (locally weighted scatterplot regression)-curves serve as guide for the eye. Step-wise
transitions between stemness and tissue transcriptional programs are shown by vertical dashed lines.
(E) A tree of tissue-related gene clusters together with marker genes were taken from [29]. Accordingly,
48 co-regulated gene sets assign to Planarian tissues and combinations of them. Most of these genes
locate not in the spots referring to fully differentiated tissues. The top five genes in these clusters
according to our analysis are listed in the figure (see boxes and also Table 1).

3.5. RNA Velocity Trajectories

RNA-velocity analysis offers an independent approach of studying developmental dynamics.
It calculates the change of mRNA abundance of each gene per unit of time in every single cell making
use of the relation between spliced and unspliced mRNA and assumptions about the reaction kinetics
of splicing [31]. RNA velocity is positive if the amount of mRNA increases. It refers to the situation
when the amount of unspliced mRNA exceeds the amount of spliced mRNA compared with the
steady state situation meaning that transcription and mRNA degradation are in equilibrium. Overall,
one obtains a multidimensional RNA-velocity vector for each cell where each dimension refers to the
rate change of transcription of one gene. The combination of velocities across genes then predicts
the future expression state of the cell. In its original implication, the mRNA velocity vector points to
direction of increasing mRNA abundance in sample space. For planarian single cell transcriptomics
such plots show the expression state to which the cell is apparently moving in time [31].

Here we apply this concept also to expression space, where RNA velocity refers to the rate change
of mRNA expression in each metagene-pixel of the SOM-space. It results in a vector whose components
are given by rate changes of all individual genes contained in the metagene-cluster. The resulting
RNA-velocity vector points in the direction of local mRNA rate changes in SOM space. Overall mRNA
velocity analysis thus generates a metagene-based vector-field pointing toward increasing transcript
abundance. It consequently points in the direction of “high” expression spot areas containing either
genes upregulated in differentiated tissues such as epidermal (spot “J”), neuronal (“A”, “Y” and “F”),
and muscular (“L”) tissues or genes upregulated in stem cells (module “N”). Hence, overexpression
spots represent attractors of RNA-velocity (compare with Figure 3C). In turn, areas of invariant
expression lack measurable RNA rate changes. Hence, RNA velocity analysis provides information
about local slopes of mRNA abundance in gene expression space. Interestingly, RNA-velocity
“vanishes” in the kernel-area of maximum expression of the spots meaning, that expression indeed
reached its asymptotic maximum value.

In the next step, these vector field properties were transformed into “vector”-trajectories using
the R program velocito [31]. It summarizes vectors along the main directions pointing toward the
major attractor-modules separated by “watersheds” (Figure 6B). The trajectories obtained resemble
the gene-state trajectories connecting source and sink modules. However, RNA-velocity trajectories
are more diverse, particularly, showing branched paths which point toward the local attractors of
overexpression. Taken together, both SOM-based dynamic and RNA velocity analysis provide similar
trajectories indicating that differentiation points toward overexpression modules of differentiated tissue.
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Figure 6. RNA velocity portrayal: (A) RNA velocity vector-field with metagene resolution identifies
overexpression spot modules as attractors of overexpression except the “kernel” metagenes in the center
of each spot (see text). (B) Velocity-trajectories using SOM area-segmentation indicate “watersheds” of
differentiation between the attractors. The expression profiles illustrate expression changes along the
selected trajectories.

4. Discussion

Single-cell RNA-omics opens novel opportunities for molecular profiling of thousands of individual
cells in parallel. The analysis of cellular heterogeneity and of patterns across such molecular landscapes
still faces challenges. Current computational approaches mostly share the following workflow
components: (1) dimensionality reduction to extract most relevant axes of variability, (2) cluster and
diversity analysis to extract most relevant groups of cells and similarity relations between them,
and (3) feature selection to extract most relevant genes as markers characterizing the different cell types.
Assumptions about temporal development enabled to perform diversity analysis of cross sectional data
in such a way that one can deduce information about the (temporal) dynamics of cellular development
and adaptation to changing environmental conditions. State-of-the-art methods accomplish this task
in cell-state space, i.e., in the multidimensional manifold spanned by all possible states that cells can
adopt upon development and changing environmental conditions. Hereby, i.e., by using scRNAseq
data, the particular “state of the cell” is given by its transcriptional phenotype, i.e., the entirety of
transcripts produced by a cell in a certain developmental and environmental situation and measured
by the scRNAseq technology applied. We here “transpose” this view from the state space of the cells
into the space of transcriptional patterns, which are derived from the scRNAseq data without linking
gene expression directly to cell states.

From a methodical perspective, we complemented our SOM portrayal providing static
transcriptomic landscapes by this dynamic aspect in order to deduce (pseudo-)temporal information
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from snapshot data obtained in cross sectional studies. Using SOM-portrayal we identified
tissue-specific clusters of activated genes and linear trajectories linking the stemness-source and
tissue-related sink clusters expressing transcriptional programs, which reflect the specific functional
requirements of the respective tissue types. In addition, part of the sink spot-patterns reveal
common activation of cellular functions in different tissues in support of our initial statement that
cell- and gene-states are closely related but do not match in an one-to-one fashion. For example,
morphogenesis-related genes (spot F) were activated in neuronal and muscle tissues as well, meaning
that one and the same transcriptional program can contribute to different cell states. Our approach
explicitly supports identification of such common gene states. Overall, the gene-state landscape
decomposes into a directed graph describing development via linear and partly via branched paths.
RNA velocity constitutes an independent approach to forecast future expression states. In the SOM
landscape RNA velocity vectors point in the direction of the local slope of gene expression. This result
seems reasonable and confirms this approach as an independent calculus for transcriptomic trajectories
where the generated vector field provides the detailed shape of the local attractor fields pointing
toward the overexpression spots.

We have chosen the Planarian example because it provides a multibranched lineage tree of
tissue differentiation and also because for the first time it demonstrated the impact of single cell
transcriptomics for establishing such lineage trees in a multicell organism [29]. Meanwhile a series of
whole-organism and organ systems datasets have been generated, e.g., for Nematodes, Sea Anemones,
Hydra, and Annelids, as well as the human hematopoietic system, lung, kidney, heart, gut endoderm,
mesoderm, nervous system, and neural crest mostly including embryonic and adult tissue stadiums
(see [16] and references cited therein). These transcriptomes contain information about multiple
aspects of cell identity as provided by activated transcriptional programs (for example, cell cycle
phases, metabolic states, cell-specific and tissue-specific molecular signatures). Hence, gene-state
space-based “functional” views using SOM trajectories are expected to complement developmental
paths in cell-state space in all these applications.

Novel developments further extend single cell technologies toward capturing other molecular
features such as chromatin accessibility [46], DNA-methylomes, proteomes [47], and metabolomes [48],
as well as multimodal measurements of them from the same single cells (e.g., mRNA and DNA [49])
and also in situ approaches complementing cell-intrinsic states with information on cell’s local
environment [50]. Hence, from an integrative perspective these diverse features reinforce an extended
view of cell states as multidimensional vectors with diverse pheno- and genotypic features as
components, which will enable holistic and comprehensive analysis of developmental trajectories
in feature state space. Conceptually such a multidimensional continuous “landscape” was inspired
by Waddington’s epigenetic landscape [45]. Our gene-state space landscape can be interpreted as
a gene-centric version of the Waddington-landscapes, which illustrates the development of cellular
programs instead of cell types. Especially our difference construct between source and sink states
generates SOM maps, which resemble the “down-hill along valleys” shape of the metaphoric epigenetic
landscape in cell-state space.

We expect tumor progression as an important potential application of developmental trajectories
where in addition to cell types (e.g., malignant cells, T cells, cancer associated fibroblasts) further
diversity is expected to reflect distinct tumor stages and/or clonal lineages [51–53]. States in gene
expression space are more dynamic (e.g., phases of cell cycle or adaptation of cells to different
environment) than cell types. Tumor biology is typically driven by such subpopulations of cells.
Their transcriptomic states activate along developmental lineages related to drug resistance, metastasis,
immune evasion, and immunotherapy [54]. The role of genes along the respective state-space
trajectories can be split into environmental stimuli accomplishing either core or transient functions
according to [55]. RNA velocity vector fields possibly can be interpreted in terms of such transient
effects modulating the local shape of the trajectories.
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5. Conclusions

We here developed a method to “transpose” the concept of developmental trajectories in phase
space of the cells into their phenotype space spanned by phenotype variables such as the expression
of ten thousands of genes. After our proof-of-principle study using RNAseq data describing tissue
development in the flatworm as example we see applications in different fields of biology and medicine,
to other than transcriptomics data and also further needs for refinements of the method, e.g., to better
disentangle the topology of the feature landscape and to link both, cell- and gene-state space trajectories.
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Abstract: Cerebral ischaemia is the most common cause of impaired brain function. Biologically active
peptides represent potential drugs for reducing the damage that occurs after ischaemia. The synthetic
melanocortin derivative, ACTH(4-7)PGP (Semax), has been used successfully in the treatment of
patients with severe impairment of cerebral blood circulation. However, its molecular mechanisms
of action within the brain are not yet fully understood. Previously, we used the transient middle
cerebral artery occlusion (tMCAO) model to study the damaging effects of ischaemia–reperfusion
on the brain transcriptome in rats. Here, using RNA-Seq analysis, we investigated the protective
properties of the Semax peptide at the transcriptome level under tMCAO conditions. We have
identified 394 differentially expressed genes (DEGs) (>1.5-fold change) in the brains of rats at 24 h after
tMCAO treated with Semax relative to saline. Following tMCAO, we found that Semax suppressed
the expression of genes related to inflammatory processes and activated the expression of genes
related to neurotransmission. In contrast, ischaemia–reperfusion alone activated the expression
of inflammation-related genes and suppressed the expression of neurotransmission-related genes.
Therefore, the neuroprotective action of Semax may be associated with a compensation of mRNA
expression patterns that are disrupted during ischaemia–reperfusion conditions.

Keywords: tMCAO; mRNA expression; RNA-Seq; synthetic melanocortin derivative ACTH(4-7)PGP
(Semax); peptide regulation

1. Introduction

Focal cerebral ischaemia or stroke is one of the leading causes of mortality and disability in
developed countries. The development of effective strategies to treat ischaemic stroke is an important
issue in modern medicine and pharmacology. A drug currently found to be efficient in cerebral
stroke therapy is a synthetic neuroprotective peptide called Semax (Met-Glu-His-Phe-Pro-Gly-Pro).
It bears a fragment of adrenocorticotropic hormone 4-7 (Met-Glu-His-Phe) and the C-terminal
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tripeptide Pro-Gly-Pro (PGP), last one was included to ensure the resistance of Semax to peptidases.
The neuroprotective and neurotrophic effects of Semax are reliably established [1–8]. It has been
shown that Semax improves cognitive function in both rodents and humans. The peptide facilitates
acquisition of food-motivated and passive-avoidance tasks in healthy animals and has a protective
effect in a model of stress-induced memory impairment in rats [9–11]. In experimental models of
cerebral ischaemia Semax administration led to the recovery of the animals’ ability to learn in a Morris
water maze and passive-avoidance task [12,13]. A clinical study has shown the efficacy of Semax
in the treatment of patients with ischaemic stroke. The peptide improves functional recovery and
motor performance [14,15]. Nevertheless, the molecular mechanisms of its neuroprotective effects
remain unclear.

Transcriptome analysis is one of the approaches used to study the functioning of the brain in
ischaemia and under the action of drugs. To study the effect of drugs on the genes functioning under
cerebral ischaemia conditions, models of cerebral ischaemia in laboratory animals have been widely
used [16–22]. Previously, using models of global incomplete cerebral ischaemia we have shown the
effect of Semax on the expression of the limited number of genes that encode neurotrophic factors
and their receptors [23–25]. Using microchips RatRef-12 BeadChips, it was shown that peptide Semax
affects the expression of genes related to the immune and vascular systems in rat fronto-parietal cortex
after permanent middle cerebral artery occlusion (pMCAO) [26,27]. At present, to study the molecular
mechanisms of the effects of Semax, we used another model of transient middle cerebral artery
occlusion (tMCAO). This model reflects events that occur in ischaemic stroke in humans after treatment
with thrombolytic agents [28,29]. The results of clinical studies indicate that, currently, thrombolysis
is one of the most effective and affordable methods of treatment of ischaemic stroke [30,31]. In the
tMCAO model conditions, which were based on endovascular artery occlusion (90 min) and subsequent
reperfusion, we identified hundreds of differentially expressed genes (DEGs) [32]. In particular, we
revealed the activation of a large number of genes involved in inflammation, the immune response,
apoptosis and the stress response. Simultaneously, a massive downregulation of genes that ensure
the functioning of neurotransmitter systems was observed in tMCAO conditions [32]. We studied
genome-wide gene transcription of the subcortex tissue using the tMCAO model in an attempt to
research the mechanisms of the neuroprotective effects of Semax. This study allowed us to observe
alterations to the transcriptome profile and to reveal previously unknown compensation effects of
Semax on the biological processes and signal pathways, which apparently provides the neuroprotective
effects of the peptide in ischaemia–reperfusion (IR) conditions.

2. Materials and Methods

2.1. Animals

White 2-month-old male rats of the Wistar line (weight, 200–250 g) were obtained from the
Experimental Radiology sector in A. Tsyb Medical Radiological Research Center, Obninsk, Russian
Federation. The animals were maintained on a 12 h light/dark cycle at a temperature of 22–24 ◦C,
with free access to food and water. The animals were divided into the “ischaemia–reperfusion” (IR)
and “ischaemia–reperfusion after Semax administration” (IS) groups.

2.2. Transient Cerebral Ischaemia Rat Model

2.2.1. Operation

The transient cerebral ischaemia rat model was induced by endovascular occlusion of the right
middle cerebral artery using a monofilament (Doccol Corporation, Sharon, MA, USA) for 90 min [33].
The rats were decapitated at 4.5 or 24 h after tMCAO (group IR—“IR4.5” or “IR24”, respectively and
group IS—“IS4.5” or “IS24”, respectively). Prior to the surgical procedure, rats were anaesthetized
using 3% isoflurane; the anaesthesia was maintained using 1.5–2% isoflurane and the EZ–7000 small
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animal anaesthesia system (E-Z Anaesthesia, Braintree, MA, USA). The sham-operated rats (SH)
were subjected to a similar surgical procedure under anaesthesia (neck incision and separation of the
bifurcation), but without tMCAO.

2.2.2. Semax Administration

To rats of the IS group, the neuropeptide Semax was administered intraperitoneally at a dose of
10 μg/100 g rat weight as previously described [11,26,27,34] at 90 min, as well as at 2.5 and 6.5 h after
tMCAO. To rats of the IR groups, saline was administered intraperitoneally at 90 min, as well as at 2.5
and 6.5 h after the surgical procedure.

2.3. Magnetic Resonance Imaging

The magnetic resonance imaging (MRI) study of the characteristics and size of the ischaemic injury
of rat brains was carried out using a small animal 7T system from ClinScan tomograph (Bruker BioSpin,
Billerica, MA, USA). The standard protocol included the following modes: diffusion-weighted imaging
(DWI) with mapping of the apparent diffusion coefficient (ADC) for assessing acute ischaemic damage
(TR/TE = 9000/33 ms; b factors = 0 and 1000 s/mm2; diffusion directions = 6; averages = 3; spectral fat
saturation; FOV = 30 × 19.5 mm; slice thickness = 1.0 mm; matrix size = 86 × 56), and T2–weighted
imaging (T2 WI) in the transverse plane (Turbo Spin Echo with restore magnetization pulse; turbo
factor = 10; TR/TE = 5230/46 ms; averages = 2; spectral fat saturation; FOV = 30 × 21.1 mm; slice
thickness = 0.7 mm; matrix size = 256 × 162). Three-dimensional time-of-flight magnetic resonance
angiography (3D-TOF MRA) was used for visualization of the main arteries and control of the
recanalization (3D Gradient Echo with RF spoiling and flow compensation; TR/TE = 30/4.55 ms;
slabs = 4; flip angle = 70; averages = 1; FOV = 35 × 19.3 mm; slice thickness = 0.2 mm; matrix
size = 320 × 176). A quantitative assessment of the volume of the infarction focus was performed
using the ImageJ software package (Wayne Rasband, National Institute of Mental Health, Bethesda,
MD, USA). MRI was performed immediately before decapitation in rats from the IR4.5 and IS4.5
groups. In rats from the IR24 and IS24 groups, MRI was performed twice: at 4.5 h after tMCAO and
immediately before decapitation.

2.4. Histological Examination of Rat Brains

Tissue samples of rat brains at 24 h after occlusion (n = 4) and after sham operation (n = 4) were
immersed in Bouin’s fluid for 24 h and washed with 70% ethanol. The tissue samples were dehydrated
and embedded in Histomix®(BioVitrum, St. Petersburg, Russia). Tissue sectioning was performed
with the orientation of two tissue blocks for subsequent excision into coronary sections at the level from
−4.0 to −0.5 and from −0.5 to +5 mm from the bregma. Sections with a thickness of 5–6 μm obtained
through 0.5–1 mm on a microtome (Leica RM2235, Wetzlar, Germany) were stained with haematoxylin
and eosin (H&E staining) and toluidine blue in Nissl modifications (BioVitrum, St. Petersburg, Russia)
after dewaxing. Histological specimens were examined under a microscope (Leica DM 1000, Wetzlar,
Germany) with a micrograph to digital camera (Leica ICC50 HD, Wetzlar, Germany). Morphological
analysis was performed with allowance for normal and pathological central nervous system cells
variants [35–37]. Stereotactic mapping of the damaged zones and accurate determination of the level
of sections were performed according to an atlas of the rat brain [38].

2.5. RNA Isolation

Tissues were placed in RNAlater solution for 24 h at 0 ◦C and then stored at −70 ◦C. Total RNA
from the subcortex, was isolated using TRIzol reagent (Invitrogen, Thermo Fisher Scientific, Waltham,
MA, USA) and acid guanidinium thiocyanate-phenol-chloroform extraction [39]. The isolated
RNA was treated with deoxyribonuclease I (DNase I) (Thermo Fisher Scientific) in the presence
of RiboLock ribonuclease (RNase) inhibitor (Thermo Fisher Scientific), according to the manufacturer’s
recommended protocol. Deproteinization was performed using a 1:1 phenol:chloroform mixture.
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The isolated RNA was precipitated with sodium acetate (3.0 M, pH 5.2) and ethanol. RNA integrity
was checked using capillary electrophoresis (Experion, BioRad, Hercules, CA, USA). RNA integrity
number (RIN) was at least 9.0.

2.6. RNA-Seq

Total RNA isolated from the subcortical structures of the brain, including the lesion focus, was
used in this experiment. The RNA-Seq experiment was conducted with the participation of ZAO
Genoanalytika, Russia. For RNA-Seq, the polyA fraction of the total RNA was obtained using the oligoT
magnetic beads of the Dynabeads®mRNA Purification Kit (Ambion, Thermo Fisher Scientific, Waltham,
MA, USA). cDNA (DNA complementary to RNA) libraries were prepared using the NEBNext®mRNA
Library Prep Reagent Set (NEB, Ipswich, MA, USA). The concentration of cDNA libraries was measured
using Qbit 2.0 and the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).
The length distribution of library fragments was determined using the Agilent High Sensitivity
DNA Kit (Agilent, Lexington, MA, USA). Sequencing was carried out using an Illumina HiSeq 1500
instrument. At least 10 million reads (1/50 nt) were generated.

2.7. RNA-Seq Data Analysis

Three pairwise comparisons of RNA-Seq results (IS4.5 versus IR4.5, IS24 versus IR24, and IS24
versus IS4.5) were used to analyse the action of the peptide Semax on the transcriptome. Each of
the comparison groups (IS4.5, IS24, IR4.5 and IR24) included three animals (n = 3). According to
the MRI data (DWI, T2 WI), the ischaemic foci in the brain of these animals had a subcortical
localization. 3D-TOF MRA was used for visualization of the main arteries and also for the control of
the recanalization. All genes were annotated on the NCBI Reference Sequence database. The levels
of mRNA expression were measured as fragments per kilobase per million reads using the Cuffdiff
program. Only genes that exhibited changes in expression >1.5-fold and had a p-values (t-test) adjusted
using the Benjamini–Hochberg procedure lower 0.05 (Pagj < 0.05) were considered.

2.8. cDNA Synthesis

cDNA synthesis was conducted in 20 μL of reaction mixture containing 2 mg of RNA using the
reagents of a RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA)
in accordance with the manufacturer’s instructions. Oligo (dT)18 primers were used to analyse mRNA.

2.9. Real-Time Reverse Transcription Polymerase Chain Reaction (RT–PCR)

The 25 μL polymerase chain reaction (PCR) mixture contained 2 μL of 0.2× reverse transcriptase
reaction sample, forward and reverse primers (5 pmol each), 5 μL of 5× reaction mixture (Evrogen Joint
Stock Company, Moscow, Russia) including PCR buffer, Taq DNA polymerase, deoxyribonucleoside
triphosphates (dNTP) and the intercalating dye SYBR Green I. Primers specific to the genes studied
were selected using OLIGO Primer Analysis Software version 6.31 (Molecular Biology Insights, Inc.,
Cascade, CO, USA) and were synthesized by the Evrogen Joint Stock Company, Moscow, Russia
(Supplementary Table S1). The amplification of cDNAs was performed using a StepOnePlus Real-Time
PCR System (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts, USA) in the
following mode: stage 1 (denaturation), 95 ◦C, 10 min; stage 2 (amplification with fluorescence
measured), 95 ◦C, 1 min; 65 ◦C, 1 min; 72 ◦C, 1 min (40 cycles).

2.10. Data Analysis of Real-Time RT–PCR and Statistics

Two reference genes Gapdh and Rpl3 were used to normalize the cDNA samples [40]. Calculations
were performed using BestKeeper, version 1 (gene-quantification, Freising-Weihenstephan, Bavaria,
Germany) [41] and Relative Expression Software Tool (REST) 2005 software (gene-quantification,
Freising-Weihenstephan, Bavaria, Germany) [42]. The manual at the site ‘REST.-gene-quantification.info’
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was used to evaluate expression target genes relative to the expression levels of the reference genes.
The values were calculated as EfCt(ref)/EfCt(tar), where Ef is the PCR efficiency, Ct(tar) is the average
threshold cycle (Ct) of the target gene, Ct(ref) is the average Ct of the reference gene, and EfCt(ref) is the
geometric average EfCt of the reference genes. PCR efficiencies were assessed using the amplification
of a series of standard dilutions of cDNAs and computed using REST software [42]. The efficiency
values for all PCR reactions were in the range 1.83 to 2.08 (Supplementary Table S1). At least five
animals were included in each comparison group (n ≥ 5). When comparing data groups, statistically
significant differences were considered with the probability P < 0.05. Additional calculations were
performed using Microsoft Excel (Microsoft Office 2010, Microsoft, Redmond, WA, USA).

2.11. Functional Analysis

Database for Annotation, Visualization and Integrated Discovery (DAVID v6.8, Laboratory of
Human Retrovirology and Immunoinformatics, Frederick, MD, USA) [43], Gene Set Enrichment
Analysis (GSEA) [44], gProfileR [45] and The PANTHER database (Protein ANalysis THrough
Evolutionary Relationships) [46] were used to annotate the functions of the differentially expressed
genes. Only functional annotations that had a p-values adjusted using the Benjamini–Hochberg
procedure lower 0.05 (Pagj < 0.05) were considered. Hierarchical cluster analysis of DEGs was
performed using Heatmapper (Wishart Research Group, University of Alberta, Ottawa, Canada) [47].
Volcano plot were constructed by Microsoft Excel (Microsoft Office 2010, Microsoft, Redmond,
WA, USA).

2.12. Availability of Data and Material

RNA-sequencing data have been deposited in the Sequence Read Archive database
under accession code SRP148632 (SAMN09235828-SAMN09235839) [48], and PRJNA491404
(SAMN10077190-SAMN10077195) [49].

2.13. Ethics Approval and Consent to Participate

All manipulations with experimental animals were approved by the Animal Care Committee of
the Pirogov Russian National Research Medical University (Approved ID: 15-2015, 2 November 2015)
and were carried out in accordance with the Directive 2010/63/EU of the European Parliament and
the Council of European Union on the protection of animals used for scientific purposes issued on
22 September 2010.

3. Results

3.1. Characterization of tMCAO Model Conditions Using MRI

The location of ischaemic foci was detected in animals under tMCAO conditions using the
T2-weighted imaging (T2 WI) and diffusion-weighted imaging (DWI) of magnetic resonance imaging
(MRI). According to MRI, animals after tMCAO under the influence of saline and Semax had the
ischaemic zone that was localized in the subcortical structures of the brain from the side of occlusion
or spread to the cortex (Supplementary Table S2). Figure S1 shows the MRI of ischaemic foci with a
subcortical localization at 4.5 and 24 h after tMCAO under the influence of saline or Semax and MRI of
rat brain after sham operation (Supplementary Figure S1).

3.2. Histopathological Characterization of Rat Brain

Twenty-four hours after tMCAO, no pathomorphological changes were observed in the cortex of
the cerebral hemispheres or the medial region of the subcortical nuclei (Figure 1a,b). After Nissl staining
there were no changes in the cytoarchitectonics of the layers of neurons on the cortex of the cerebral
hemispheres (Figure 1e). Groups of morphologically unchanged neurons with a basophilic substance
in their cytoplasm were located in the medial caudoputamen zone (Figure 1f). However, in the lateral
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areas of the subcortical region of the right hemisphere, the extensive ischaemic damage to brain tissue
was noted as oedema and reticular foci of pale stained foci (Figure 1a,e). In the histological specimens
stained with haematoxylin and eosin (H&E), in the caudorostral range from −2.0 to −0.3 mm from the
bregma, the ischaemic stroke formation zone captured most of the striatum to the outer capsule with a
clear visualization of the nucleus infarction and had an elongated shape in the dorsoventral direction.

 

Figure 1. Photomicrographs of haematoxylin and eosin-stained (a–d) and Nissl-stained (e–h) sections
of the rat brain in tMCAO model conditions. (a,e) Serial coronal rat brain sections at the level
of −2.0 mm from the bregma. Rectangles indicate the normal tissue in the medial region of the
caudoputamen. The oval indicates the damaged area involving the lateral region of the caudoputamen
nucleus of the right hemisphere. Asterisks indicate necrotic tissue in the central core of an infarct.
(b,f) High-magnification images of the normal tissue in the areas of panels (a,e) marked with a rectangle.
(c,g) Areas of panels (a,e) marked with a rhomb. Hypoxic damage to neurons, with pyknotic nuclei and
pericellular oedema indicated in the ischaemic zone (thick black arrows); decrease of nuclear basophilia
and Nissl substance in the neurons (thin black arrows); intact neurons (white arrows). (d,h) Areas
of panels (a,e) marked with asterisks. Ischaemic necrosis of the brain tissue in the central core of an
infarct; destruction of the neuropil (white asterisks); dead “pyknotic” neurons (thick black arrows),
Nissl substance disappearing.
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On microscopic examination of the penumbra, we found narrowing of the capillary lumen,
pronounced perivascular oedema, sparsity and weak staining of the neuropil due to sponginess and
vacuolization, and the appearance of numerous hyperchromic neurons with with pyknotic nuclei and
pericellular oedema (Figure 1c). A significant part of the neurons was in a state of hypoxic damage
or death. In addition, in the ischaemic zones there was a decrease in the content of Nissl-positive
neurons, both with partial and total chromatolysis (Figure 1g). Only a few neurons did not have
obvious pathological changes.

The nucleus of the infarction was represented by a complete loss of nervous tissue with destruction
of pyknotic neurons and all elements of the neuropil (Figure 1d), with Nissl substance disappearing in
their perikaryon (Figure 1h).

In the contralateral hemisphere of ischaemic rats (Figure 1), and in both hemisphere of
sham-operated rats (Supplementary Figure S2), the histological pattern of the capillary network
and the morphology of neurons in the brain cortex, subcortical nuclei and the intermediate brain
corresponded to the norm.

3.3. RNA-Seq Analysis of the Effect of Semax on the Transcriptome after tMCAO

Using RNA-seq we assessed the effect of Semax on the mRNA level of genes functioning
in the subcortical structures of the rat brain at 4.5 and 24 h after tMCAO. Animals subjected
to ischaemia–reperfusion (IR) that received saline were used as controls for animals after Semax
administration in a tMCAO model at 4.5 h (IS4.5 versus IR4.5) and 24 h after operation (IS24 versus
IR24), respectively. From more than 17,000 genes, no significant DEGs (>1.5-fold) were seen after
Semax administration versus saline in IR conditions at 4.5 h after tMCAO, but we identified 394 (191 up-
and 203 downregulated) DEGs under the influence of Semax at 24 h after tMCAO (IS24 versus IR24)
(Figure 2a). The volcano plot shows the up- and downregulated DEGs in IS24 versus IR24 groups
(Figure 2b).

We used the real-time RT–PCR analysis of the expression of 4 up- (Cplx2, Gabra5, Neurod6, Ptk2b),
4 down- (Hspb1, Hspa1(a,b), Fos, Lrg1) and 2 non-significantly (Ttr, Vegfa) regulated genes to verify the
RNA-Seq results (Supplementary Figure S3). The real-time RT–PCR results confirmed the RNA-Seq
data adequately. The differences in the methodology and statistical processing of data used in each
case obviously could contribute to some differences in the level of mRNA expression identified by
these methods.

Figure 2. RNA-Seq analysis of the effect of Semax on the transcriptome at 24 h after tMCAO. (a) RNA-Seq
results presented are for in IS24 versus IR24. The numbers in the diagram sectors indicate the number
of DEGs. (b) Volcano plots show the distributions of genes between the IS24 and IR24 groups. Up-
and downregulated DEGs are represented as red and green dots, respectively (fold change > 1.50.
Padj < 0.05). Not differential expressed genes are represented as dark purple dots (fold change ≤ 1.50.
Padj ≥ 0.05).
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3.4. Functional Annotation of Semax-Induced DEGs Identified in the Rat Brain Subcortex at 24 h after tMCAO

Using the PANTHER tool (version 15.0, Free Software Foundation, Inc., Boston, MA, USA)
we classified Semax-induced DEGs according to the molecular functions of their encoded proteins.
In IS24 versus IR24, upregulated DEGs were predominantly associated with receptor activity, signal
transducer activity and transporter activity, whereas downregulated DEGs were associated with
structural molecule activity, and binding and catalytic activity (Supplementary Table S3).

Using the DAVID program, the functional categories of the proteins encoded by the DEGs
were identified (Supplementary Table S4). The total number of them associated with the effects of
Semax at 24 h after tMCAO (IS24 versus IR24) was 34. The top 5 functional categories with the
smallest Padj were Disulfide bond, Glycoprotein, Signal, Secreted and Calcium. Functional categories
of neurotransmission systems of cells (Synapse, Postsynaptic cell membrane, Calmodulin-binding,
and Cell junction) were associated predominantly with upregulated DEGs in IS24 versus IR24
(Supplementary Table S4). Simultaneously, functional categories of immunity and inflammatory
responses (Immunity, Intermediate filament, and Innate immunity) were associated predominantly
with downregulated DEGs in IS24 versus IR24 (Supplementary Table S4).

3.5. Differences in Rat Brain Transcriptomes Following Ischaemia and after Semax Administration

Previously, using RNA-Seq, we identified 1939 DEGs (1109 up- and 839 downregulated) under
IR conditions after tMCAO at 24 h versus sham operation at 24 h after surgical procedure (IR24
versus SH24) [32]. In this study, we identified 313 DEGs that overlapped for IS24 versus IR24 and
IR24 versus SH24 (Figure 3a, Supplementary Table S5). Venn diagrams with only up-regulated DEGs
and only down-regulated DEGs in both conditions are shown in Figure 3b,c. We found only the
Mx1 gene, which encodes an interferon-induced GTP-binding protein was upregulated in both IS24
versus IR24 and IR24 versus SH24, simultaneously (Figure 3b), and did not found DEGs which
were downregulated in both conditions (Figure 3c). It should be noted that Semax initiated mRNA
expression that counteracted the effects of IR injury. Hierarchical cluster analysis shows the Semax
increases the expression levels of genes that reduce expression by the action of ischaemia and vice
versa, that is, it compensates for the effect of ischaemia (Figure 3d). In particular, we found 155 up- and
157 downregulated DEGs in IS24 versus IR24 that counteracted IR in IR24 versus SH24 (Supplementary
Table S5). The top 10 genes with the greatest fold change in IS24 versus IR24 are presented in
Figure 3e. The figure shows that the expression levels of genes Gpr6, Neu2, Hes5, Gpr88, and Drd2 was
increased by up to 2.5-fold in IS24 versus IR24 and was decreased by up to 4-fold in IR24 versus SH24.
Simultaneously, the expression of genes Glycam1, S100a9, Ccl6, Gh1, and Hspa1(a,b) was decreased by
3-fold in IS24 versus IR24 and was increased by up to 5-fold in IR24 versus SH24.

Moreover, 81 genes (35 up- and 46 downregulated) altered their expression in IS24 versus IR24 but
did not alter it in IR24 versus SH24 (Figure 3a, Supplementary Table S6). These DEGs predominantly
have catalytic and binding activity, but additionally have receptor and signal transducer (Gabrb1,
Grin2b, Folr1, Bdnf ), as well as transporter (Kcnj13, Slc1a2, Slco1a5) activity (Supplementary Table S7).
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Figure 3. Comparison of the results obtained in two pairwise comparisons of IS24 versus IR24 and
IR24 versus SH24. (a–c) Venn diagrams of DEGs in two pairwise comparisons of IS24 versus IR24 and
IR24 versus SH24. Comparison for all (a), up- (b) and downregulated (c) DEGs. (d) Hierarchical cluster
analysis of all DEGs in IS24 versus IR24 and IR24 versus SH24. Each column represents a comparison
group, and each row represents a DEG. Yellow strips represent high relative expressions and blue strips
represent low relative expressions, n = 3 per group. (e) The top ten genes that exhibited the greatest
fold change in expression in IS24 versus IR24. The data are presented as the mean ± standard error of
the mean. The cut-off of gene-expression changes was 1.50. Only those genes, whose Padj < 0.05 were
selected for analysis.

3.6. Signalling Pathways Associated with Semax-Induced DEGs under tMCAO Model Conditions

Semax-induced DEGs identified in the rat brain subcortex under tMCAO model conditions were
annotated according to a Kyoto Encyclopedia of Genes and Genomes (KEGG) using DAVID v6.8.
We found 25 signalling pathways associated with DEGs in IS24 versus IR24. Previously, we found
82 signalling pathways associated with DEGs detected in the brains of rats in the IR24 versus SH24
groups [32]. Among them, 17 signalling pathways overlapped between IS24 versus IR24 and IR24 versus
SH24 (Figure 4a). These signalling pathways are involved in neurotransmission, drug metabolism
and inflammation. There were 8 signalling pathways (Porphyrin and chlorophyll metabolism,
Drug metabolism—other enzymes, Phagosome, PI3K-Akt and MAPK and other signalling pathways)
predominantly associated with the upregulated DEGs in IR24 versus SH24 and downregulated
DEGs in IS24 versus IR24 (Figure 4b). Conversely, there were 8 signalling pathways (Amphetamine
addiction, Retrograde endocannabinoid signalling, Glutamatergic and Dopaminergic synapses and
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other signalling pathways) predominantly associated with the downregulated DEGs in IR24 versus
SH24 and upregulated DEGs in IS24 versus IR24. Additionally, similar results were obtained
using GSEA (KEGG, Reactome, BioCarta, PID) and gProfileR (KEGG, Reactome, WikiPathways).
So, based on GSEA data, upregulated DEGs in IS24 versus IR24 were associated with Neuronal
System, Signaling by G-protein-coupled receptors (GPCR), Transmission across Chemical Synapses, etc;
whereas downregulated DEGs were associated with Innate Immune System, Neutrophil degranulation,
Cytokine Signalling in Immune system, etc (Supplementary Table S8). Also, based on gProfileR data,
upregulated DEGs in IS24 versus IR24 were associated with, Calcium signaling pathway, Dopaminergic,
Cholinergic and Glutamatergic synapse, etc; whereas downregulated DEGs were associated with
Phagosome, IL-17, TNF, p53 signaling pathway, etc (Supplementary Table S9). Thus, Semax initiated
neurotransmitter and inflammatory response that counteracted IR at 24 h after tMCAO.

Figure 4. Analysis of the signalling pathways associated with DEGs at 24 h after tMCAO. (a) The
numbers of signalling pathways overlapped in two pairwise comparisons: IS24 versus IR24 and IR24
versus SH24. (b) KEGG database analyses of DEGs in two pairwise comparisons IS24 versus IR24 and
IR24 versus SH24 was carried out according to the DAVID database. The number of upregulated and
downregulated DEGs, as well as the p-values adjusted using the Benjamini–Hochberg procedure (Padj),
are shown. Only those genes and signalling pathways whose Padj < 0.05 were selected for analysis.
Padj ≥ 0.05 are enclosed in the gray background.

4. Discussion

Drugs, based on native regulatory peptides, are used to treat various pathological conditions,
including peptide drugs that help restore brain function after acute cerebrovascular accidents. In studies
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to investigate the molecular mechanisms of action of such neuroprotective peptides, experimental
models of ischaemia in animals are of great importance. For example, the neuroprotective effects of
orexin (OxA) [50] and poly-arginine R18 and NA-1 peptides [51], as well as the anti-inflammatory and
anti-oxidant effects of cordymin peptide [52] were identified in studies employing middle cerebral
artery occlusion-induced focal cerebral ischaemia in rats. Semax, a nootropic neuropeptide, has been
used in neurological practice for many years in the treatment of acute and chronic disorders, including
ischaemic stroke and its consequences [14,15,53]. However, its molecular mechanisms of action are
not yet fully understood. There are many examples of the use of transcriptome analysis to study the
mechanisms of action of a number of peptides including PACAP38 [54], Sal-like 4 peptide [55] and
OxA [50]. The first genome-wide analysis of Semax action on the rat brain transcriptome was conducted
using a permanent MCAO model that was induced by direct permanent electrical coagulation of
the distal segment of the left middle cerebral artery [26,27]. The genome-wide biochip data analysis
detected DEGs associated with several biological processes and signalling pathways. In the first hours
after pMCAO, a significant increase in the expression of transcription factor genes was observed in
the presence of Semax. These genes encode proteins that trigger signalling to correct the destructive
processes associated with ischaemic conditions. Semax also stimulated the expression of genes that
encode growth factors involved in trophic and protective processes, as well as the vascularization of
damaged tissues. Additionally, Semax administration had a significant effect on the expression of
genes associated with the immune response [26,27].

In the current study of the protective mechanisms of action of the Semax peptide, we aimed to
identify the DEGs, as well as the biological processes and signalling pathways involved in the response
of rat brain cells to Semax action under ischaemia–reperfusion (IR) conditions. Therefore, we used the
tMCAO model, which involves occlusion of the MCA and subsequent restoration of blood flow [22,56].
Importantly, the tMCAO model in rats replicates circumstances that arise in the human brain after
ischaemic stroke treated with thrombolytic medications [28,29]. MRI (Supplementary Table S2 and
Figure S1) and histopathological analysis (Figure 1) detected the ischaemic focus and the penumbra
region in the subcortical structures of the brain after tMCAO. A study of the molecular mechanisms of
cell death under pMCAO and tMCAO conditions, conducted by Ford et al. [57] revealed molecular
functions and biological processes unique to each model. Genes uniquely altered by tMCAO included
a number of genes related to inflammatory and oxidative stress, whereas pMCAO led to the induction
of genes that were more associated with metabolic activity and cellular signalling [57]. In addition,
reperfusion after ischaemia leads to additional injury, including disturbance of the blood-brain barrier
via destruction of the endothelial microvascular brain cells, and damage of brain cells through the
accumulation of excess oxygen radicals and apoptosis [22,58–61].

Using RNA-Seq to determine the mRNA expression profile in the subcortical structures of rat
brain in response to Semax administration, a significant effect of Semax was identified at 24 h after
tMCAO. We identified 394 DEGs (>1.5-fold change) following Semax administration at 24 h after
tMCAO, but there were no DEGs identified following Semax administration at 4.5 h after tMCAO.
An analysis of the expression of 10 genes by real-time RT-PCR confirmed the RNA-Seq results. A large
number of genes, altered by Semax in the tMCAO model, encode transcripts and proteins involved
in cellular processes, metabolic processes, biological regulation, responses to external stimuli and
multicellular organism-associated processes.

In a previous study, we revealed the large transcriptome response of cells in the subcortical
structures of rat brain at 24 h after tMCAO and identified the biological processes and signalling
pathways involved in the response to IR damage [32]. These conditions produced activation of a
large number of genes involved in inflammation, the immune response, apoptosis, stress responses,
ribosome function, DNA replication and other processes (e.g., Hspa1(a,b), Hspb1, Lrg1, Jun, Socs3, Cish,
Cd14, Cd63, Cd74, Ccl6, Ccl9, Nfkb2, Fos and others). In contrast, the expression of many genes related to
neurotransmitter system function was inhibited (e.g., Chrm1, Chrm4, Cplx2, Drd1, Drd2, Gabra5, Gria3,
Grm3, Grm5, Gpr6, Gpr88, Htr6, Neurod6 and others) [32].
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In the current study, we first compared the transcriptome response of brain cells to IR (IR24
versus SH24) and the effect of Semax treatment under IR conditions (IS24 versus IR24). These analyses
revealed that the effect of the peptide on several hundred genes was opposite to that of IR damage.
Under IR conditions, Semax administration upregulated the expression of Gpr6, Neu2, Hes5, Gpr88,
Drd2 and others, the genes predominantly involved in the neuronal receptor actions and neurogenesis,
and downregulated the expression of chemokine genes (Ccl6, Ccl9), early response genes (Hspa1(a,b),
Fos, Jun) and others (Figure 3e). These data suggest that Semax can normalize the expression of many
genes disrupted during IR.

The functional annotation of Semax-induced DEGs under tMCAO model conditions also
demonstrated the compensatory effect of the peptide on the functioning of a number of signalling and
metabolic systems after IR. Semax suppressed the inflammatory, and activated the neurotransmitter
signalling pathways, at 24 h after tMCAO (Figure 4), whereas we previously revealed that IR
activated inflammatory, but suppressed neurotransmitter signalling pathways at 24 h after tMCAO [32].
Therefore, Semax initiated genetic responses that counteracted those produced by IR injury.

Our data on the activation of neurotransmitter signalling pathways by Semax are in good
agreement with previous research, which reported a positive modulatory effect of Semax on the
striatal serotonergic system and the ability of Semax to enhance the striatal release of dopamine [62].
Semax has also been shown to modulate GABA- and glycine-activated ionic currents in isolated cerebral
neurons [63]. Earlier it was shown that Semax (1 μM) did not affect cyclic adenosine monophosphate
(cAMP) levels in HEK293 cells expressing the human melanocortin 4 receptor (MCR4), but antagonized
the cAMP-inducing effect of the melanocortin derivative α-melanocyte-stimulating hormone (α-MSH)
in this cells [64]. Additionally, in models of brain ischaemia and inflammation, α-MSH exhibits strong
anti-inflammatory, neurogenic and neuroprotective effects [65–67]. Therefore, Semax may recapitulate
some important neuroprotective actions of the melanocortins.

The major limitation of our study is the lack of data confirming the change in the protein
level of mRNA expression of detected DEGs, and any functional evidence supporting the change
in the mRNA expression of these genes. In the future, further studies on the functioning of a
limited number of key genes of the detected signaling pathways at the RNA and protein levels
are necessary to be done. However, the main achievement is the full transcriptome study with the
identification of specific signaling pathways involved in the molecular mechanisms of the peptide
action. Bulk RNA-seq, in combination with bioinformatic approaches, remain dominant and valuable
tools for the simultaneous analysis of changes in mRNA expression of a huge number of genes and the
search for signaling pathways that are involved in the response to specific exposure. It was precisely
the analysis of RNA-seq that allowed us to establish that the Semax peptide suppresses the expression
of genes associated with inflammatory processes and activates the expression of genes related to
neurotransmission. Significantly, these transcriptome changes driven by Semax are the opposite of
those caused by IR.

In summary, our data indicate that an important feature of the neuroprotective action of Semax is
the normalization of mRNA expression patterns that are disrupted during IR conditions, particularly
those associated with anti-inflammatory processes and activation of neurotransmitter systems.

5. Conclusions

In conclusion, the study of the transcriptome profile of cells in the subcortical structures of
the brain with administration of the neuropeptide drug Semax under tMCAO conditions led to the
identification of DEGs that encode proteins that participate in various functional categories, biological
processes and signalling pathways, via which brain cells form a response to ischaemia–reperfusion
(IR). Under tMCAO conditions, we found that Semax initiated mRNA expression that counteracted
IR. In particular, Semax suppressed inflammatory and activated neurotransmitter genes, whereas
the genetic response initiated by IR activates inflammatory and suppresses neurotransmitter genes.
We revealed significant compensation effects of Semax peptide on inflammatory and neurotransmitter
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genetic responses after tMCAO, which may account for the neuroprotective action of Semax under IR
conditions. Thus, an important feature of Semax is the normalization of mRNA expression patterns
that are disturbed during ischaemia.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/6/681/s1,
Figure S1: Characterization of tMCAO model conditions using MRI, Figure S2: Morphology of brain tissues after
sham operation, Figure S3: Real-time reverse transcription polymerase chain reaction (RT-PCR) verification of
the RNA-Seq results, Table S1: The characterization of the primers for real-time RT-PCR, Table S2. Quantitative
assessment of the volume of the ischemic brain injury at 24 hours after tMCAO using magnetic resonance imaging,
Table S3: Analysis of the molecular function associated with Semax-induced DEGs (IS24 versus IR24) using
the PANTHER tool, Table S4: Analysis of the functional categories of the proteins encoded by DEGs in IS24
versus IR24, Table S5: Analysis of DEGs that overlapped between IS24 versus IR24 and IR24 versus SH24,
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versus SH24, Table S7: Analysis of the molecular functions associated with the DEGs using the PANTHER tool,
Table S8: Analysis of the functional annotations of DEGs in IS24 versus IR24 using GSEA, Table S9: Analysis of the
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Abstract: Background: the CYP2D6 gene is clinically important and is known to have a number of
variants. This gene has four distinct metabolization profiles that are determined by the different
allelic forms present in the individual. The relative frequency of these profiles varies considerably
among human populations around the world. Populations from more isolated regions, such as Native
Americans, are still relatively poorly studied, however. Even so, recent advances in genotyping
techniques and increasing interest in the study of these populations has led to a progressive increase
in publication rates. Given this, the review presented here compiled the principal papers published
on the CYP2D6 gene in Amerindian populations to determine the metabolic profile of this group.
Methods: a systematic literature review was conducted in three scientific publication platforms
(Google Scholar, Science Direct, and Pubmed). The search was run using the keywords “CYP2D6
Amerindians” and “CYP2D6 native Americans”. Results: a total of 13 original papers met the
inclusion criteria established for this study. All the papers presented frequencies of the different
CYP2D6 alleles in Amerindian populations. Seven of the papers focused specifically on Amerindian
populations from Mexico, while the others included populations from Argentina, Chile, Costa Rica,
Mexico, Paraguay, Peru, and the United States. The results of the papers reviewed here showed that
the extensive metabolization profile was the most prevalent in all Amerindian populations studied to
date, followed by the intermediate, slow, and ultra-rapid, in that order. Conclusion: the metabolization
profiles of the Amerindian populations reviewed in the present study do not diverge in any major
way from those of other populations from around the world. Given the paucity of the data available
on Amerindian populations, further research is required to better characterize the metabolization
profile of these populations to ensure the development of adequate therapeutic strategies.

Keywords: Amerindians; CYP2D6; phenotype; genetic polymorphisms; metabolization profile;
Native Americans

1. Introduction

1.1. Rationale

The cytochrome P450 2D6 (CYP2D6) is a member of the cytochrome P450 gene family, a group of
enzymes that is responsible for phase I metabolism and the elimination of a variety of endogenous
substrates and a diverse array of drugs [1]. The CYP2D6 gene is the most frequently studied member
of the P450 gene family in clinical research [2]. While this enzyme represents only a small proportion
(1.3–4.3%) of all hepatic Cytochrome P450 enzymes (CYPs), it is known to metabolize more than 20%
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of all the drugs processed in the human liver, including at least 160 therapeutic targets, including
antidepressants, antipsychotics, antiarrhythmics, opioid analgesics, anticancer agents, and other drug
classes [3].

The CYP2D6 gene is in the Chr22q13.1 region, close to two non-functional pseudogenes (CYP2D7
and CYP2D8), and has a vast number of polymorphisms [4]. Up to now, over 125 allelic variants of
the CYP2D6 gene have been documented (PHARMVAR-https://www.pharmvar.org/gene/CYP2D6).
These variants modify enzyme activity in various ways, that can be classified in four phenotypic groups:
poor metabolizers (PM), intermediate metabolizers (IM), extensive metabolizers (EM), and ultrarapid
metabolizers (UM) [5]. These differences in enzyme activity may result in both inter-individual and
interethnic variation, with the relationship between the CYP2D6 genotypes and phenotypes being of
considerable importance for the determination of therapeutic strategies in clinical practice [6].

The ethnic profile of a population may play an important role in the differentiation of the drug
metabolism capacity among its individuals. Around the world, different populations carry alleles that
characterize distinct CYP2D6 phenotypes that vary among ethnic groups and, in turn, geographic
regions. Llerena et al. (2014) reviewed the allelic variability of CYP2D6 in major geographic regions and
discovered that CYP2D6*4 (an allele with inactive enzyme activity, which is present in PM phenotypes)
is most frequent in Europe [7]. Alleles associated with decreased enzyme activity are frequent in
Asia and East Asia (CYP2D6*10), Africa and Afrodescedant populations (CYP2D6*17 and *29), with
CYP2D6*41 and amplifications being found in Middle Eastern populations [7]. Zhou et al. (2017)
analyzed the data available on the 1000 genomes platform, and offered considerable variability in
several members of the CYP450 family, in particular CYP2D6, which varied greatly among the different
populations for which data were available on the platform [8].

Although CYP450 family genotypes and metabolic phenotypes have been studied extensively in
different parts of the world [9,10], few data are available for some populations, such as those of the
Native Americans (or Amerindians). The 2010 United States (US) Census [11] recorded a population of
approximately 6.6 million Native Americans in this country. Worldwide, hispanics (including those
from Latin America, the Caribbean, and the US) comprise a total population of more than 600 million
individuals (http://data.worldbank.org/region/LAC), the equivalent of 8.4% of the world’s population.
In addition, approximately 45 million Amerindians live in Latin America, representing 8.3% of the total
population of this region (https://www.cepal.org/en/infografias/los-pueblos-indigenas-en-america-
latina).

Present-day Latin American populations are the end result of a process that began with migrations
from northeastern Asia around 15,000–18,000 years ago, and was finalized over the past five centuries,
following the arrival of Europeans and Africans, which led to extensive admixture [12,13]. Most New
World populations reflect some degree of this process of admixture. The Mexican-American population
is a multiple admixture of different ethnic groups, combining the genetic background of a number of
Native American peoples, derived mainly from a single migration of Asians through Beringia, with
white Europeans from Spain. There are approximately 70 groups of Amerindians in Mexico, with more
than 85 languages and dialects, located mainly in the center and southeastern portions of the country,
with an estimated total population of 10,113,411 [14]. Native Chileans, an important Amerindian
population in South America, make up around 9% of the total population of Chile, that is 1,585,680
individuals who self-identified as Amerindian, according to Casen (2015) [15]. The Mapuche live in
southern South America, in both Chile and Argentina, an area divided by the Andes, and account for
approximately 84% of native Chileans [15,16].

In 2011, the population of Costa Rica was 4,301,712. This population is the result of admixture
initiated during colonial times, which has blended Mesoamerican and European (primarily Spanish)
genes with those from sub-Saharan African [17]. Approximately 2% of this population self-identified
as Amerindian, distributed in different provinces all around the country, with distinct dialects and
customs, including some individuals that do not belong to a tribe, but live in rural or urban areas [18].
In 2013, Paraguay had 19 indigenous tribes belonging to five linguistic families, with a total population
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of 112,848 individuals. In this country, indigenous peoples have been defined and grouped according to
their relationship with the five language families, and are found throughout the country [19]. Like the
other Latin American countries, Venezuela has undergone an intense process of admixture, and in the
2011 census, 724,592 individuals self-declared as native Americans. This population is distributed
among eight indigenous communities, the Amazonas, Anzoátegui, Apure, Bolívar, Delta Amacuro,
Monagas, Sucre, and Zulia [20].

In the 2007 census of Peru, a total of 1786 indigenous communities were identified and mapped in
11 of the country’s departments, with data being obtained on the populations and housing, with a
total indigenous population of more than 4 million individuals [21]. In the United States, the Flathead
Indian Reservation is home to three tribes, the Bitterroot Salish, the Upper Pend d’Oreille, and the
Kootenai. The territories of these three tribes once covered all of western Montana and extended into
parts of Idaho, British Columbia, and Wyoming [22]. Additional information on the ethnic groups and
the countries in which they were studied is available in the Table S1. And Table 1 shows the published
studies of the CYP2D6 gene in Amerindian populations.

Table 1. The published studies of the CYP2D6 gene in Amerindian populations compiled in the
present study.

Variants Population, Tribe, or Affiliation Country Reference

*1 *3 *4 *6, *7, *8
Tarahumaras, Purépechas, Tojolabales,

Tzotziles, and Tzeltales Mexico [23]

*1, *2, *4, *5, *6, *10, *3,
*17, *29, *35, *41

Mexicaneros, Seris, Guarijíos,
Tepehuanos, Mayos, Huicholes,

Tarahumaras, and Coras
Mexico [24]

*2, *3, *4, *6, *10, *17,
*29, *35, *41

Tarahumara, Tepehuana, Mexicanera,
Huichol, Cora, Seri, Mayo,

and Guarijía
Mexico [25]

*3, *4, *6, *10 Tepehuano Mexico [26]

*2, *3, *4, *5, *6, *10, *17,
*35, *41

Lacandones Mexico [27]

*5, *2A, *35, *41 Tapehuanos Mexico [28]

*2, *3, *4, *6, *10, *17,
*35, *41

Tzotzil and Tzeltal Mexico [29]

*2, *3, *4, *5, *6, *10, *17,
*29, *35, *41

Bri bri, Cabecar, Chorotega, Guatuso,
Guaymi and Huetar; Chol, Huichol,
Lacandon, Mayo, Mexicanero, Seri,
Tarahumara, Tepehuano, Tzeltal,

Tzoltil, Yaqui and Zoque; Ashaninka,
Aymara, and Shima

Costa Rica, Mexico
and Peru [30]

*1, *2, *3, *4, *5, *6, *10,
*17, *29, *35, *41

Bribri, Guaymi, Cabecar, Guatuso,
Chorotega, and Huetar Costa Rica [31]

*1, *2, *3, *4, *5, *9, *10,
*28, *33, *35, *41

Salish and Kootenai United States of America [32]

*2, *3, *4, *5, *6, *10
Bari, Panare, Pemon, Warao, and

Wayuu Venezuela [33]

*1, *2, *3, *4, *5, *6, *8,
*10, *12, *14, *15

Jujuy province, Wichi, Chorote, Toba,
Mapuche, Tehuelche, Ayoreo,

and Lengua
Argentina and Paraguay [34]

*1, *2, *3, *4, *5, *9, *10 Mapuches Chile [35]

Many studies of American populations have demonstrated a degree of genetic heterogeneity
in comparison with other ancestral populations, such as the Europeans and Africans, which also
contributed to the formation of present-day New World populations [12,36,37]. The findings of these
studies may contribute to the understanding of the interethnic variability of genetic polymorphisms
in other populations, and their varying responses to drugs of clinical and therapeutic importance.
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In recent years, there has been considerable interest in research on the diversity of drug-metabolizing
enzyme genotypes and phenotypes, in particular CYP2D6, in different populations, especially those of
European origin [38,39]. Other population groups have also been the target of this research, albeit on a
much smaller scale. In particular, relatively few studies have focused on Amerindian populations,
to investigate the role of gene variants in the absorption, distribution, metabolism, and excretion
of drugs.

1.2. Objective

The present review aimed to compile the CYP2D6 gene metabolization profiles of Amerindian
populations through an extensive search of the available literature on molecular epidemiology, and to
compare these data with those on other ethnic groups around the world.

2. Methods

2.1. Study Design

A literature search was used to identify studies on three research platforms (Google Scholar,
Science Direct, and Pubmed), considering the 20-year period between 1998 and 2018. The search
was based on two key terms, “CYP2D6 Amerindians” and “CYP2D6 native Americans”, in all fields.
The eligibility criteria were original papers in English, focusing on Amerindian populations, published
between 1998 and 2018 (Figure 1).

Figure 1. Flow diagram showing the number of records identified, included, and excluded from the
present review.

2.2. Search Strategy

The following data were extracted from the selected papers: (i) the study population, (ii) the
number of individuals analyzed, (iii) the polymorphisms of the CYP2D6 gene evaluated, and (iv) the
allele and genotype frequencies. In all the papers selected here, the Amerindian populations were
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identified by self-declaration. The 1000 genomes platform was used as the reference database for
the comparison of the allele frequencies of the most important gene mutations with those of other
populations around the world.

3. Results

A total of 13 studies were evaluated and included in the present review. All the papers addressed
the frequencies of the different CYP2D6 alleles in Amerindian populations. Seven of the papers focused
specifically on Amerindian populations from Mexico, while the others included populations from
Argentina, Chile, Costa Rica, Mexico, Paraguay, Peru, and the United States (Table 1). The Native
American populations, their country of origin, and the CYP2D6 alleles recorded in each study are
identified in Table 1. The populations were grouped by country to facilitate the discussion of the
observed patterns.

Some of the papers identified in the literature search did not present data on the genotyping of the
metabolization profiles, but only their classification in the Active Score (AS) system. In the AS approach,
each allele is assigned a value of 0 (non-functioning), 0.5 (decreased), or 1 (normal). For alleles with two
or more gene copies, the value of the allele is multiplied by the number of copies (e.g., the duplication
CYP2D6*1 × 2 is assigned an AS value of 2). The sum of the values assigned to the two alleles gives the
AS score of the genotype. In this classification, an AS score of 0 was considered to represent a poor
metabolizer (PM), while AS scores of 0.5–1 were classified as intermediate metabolizers (IM), scores of
1.5–2 as extensive metabolizers (EM), and scores of over 2 as ultrarapid metabolizers (UM) [40].

3.1. Synopsis of the Findings on the CYP2D6 Metabolization Profiles

3.1.1. Poor Metabolizers

Given the large number of polymorphisms found in the CYP2D6 gene, the genotypes were
characterized as the result of the interaction between haplotypes, with four principal metabolization
phenotypes (Table 2). As the different variants have alternative functional consequences, individuals
carrying these variants will have different levels of enzymatic activity. The metabolization profiles are
classified according to the combination of alleles. The poor metabolizer (PM) profile is the result of the
combination of two alleles that have a complete loss of function (no enzymatic activity), that is, null
alleles due to mutations or the deletion of the gene [8,41]. The highest frequency of PM (30%) was
recorded in Costa Rica [30,31], followed by Argentina/Paraguay, with 13% [34], and Venezuela [33]
and the US [32], each with 6% (Figure 2).

Table 2. The different CYP2D6 alleles recorded in the present review, and their respective variants and
types of variation.

Allele (Arranged by
Functional Consequence)

Normal Activity
Variants Variation Type

*1 None -
*2 rs16947, rs1135840 Missense (R296C, S486T)

*33 rs28371717 Missense (A237S)

Increased Activity

*1xN Amplification of *1 -
*2xN Amplification of *2 -
*53 rs1135822, rs1135823 Missense (F120I, A122S)
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Table 2. Cont.

Allele (Arranged by
Functional Consequence)

Normal Activity
Variants Variation Type

Decreased Activity

*9 rs5030656 In-frame Deletion (K281del)
*10 rs1065852, rs1135840 Missense (P34S, S486T)
*17 rs16947, rs28371706 Missense (R296C, T107I)

*29
rs16947, rs1135840, rs61736512 and

rs59421388
Missense (R296C, S486T, V136I

and V338M)
*41 rs28371725 Splicing Defect

Inactivated

*3 rs35742686 Frameshift
*4 rs3892097 Splicing Defect
*5 CYP2D6 deletion -
*6 rs5030655 Frameshift
*7 rs5030867 Missense (H324P)
*8 rs5030865 Stop gain (G169X)
*11 rs201377835 Splicing defect
*12 rs5030862 Missense (G42R)
*14 rs5030865 Missense (G169R)
*42 rs72549346 Frameshift
*62 rs730882171 Missense (R441C)

Figure 2. CYP2D6 gene metabolization profile in Amerindian populations grouped by countries of
America. IM: intermediate metabolizer; UM: ultrarapid metabolizer; EM: extensive metabolizer; PM:
poor metabolizer.
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The PM profile typically results in low levels of active metabolites of some medications, such as
opioid analgesics, resulting in the reduced effectiveness of pain relief [42,43]. This indicates that
individuals with the PM profile may require a modified therapeutic regimen or a follow-up for the
diagnosis of the symptoms of insufficient pain relief [44].

3.1.2. Intermediate Metabolizers

Individuals with the IM phenotype have a combination of two alleles with decreased enzyme
function or the presence of one non-functional allele together with a second allele with decreased
function [8,41]. The IM profile is the second most frequent (19%) in the Amerindian populations
included in the present review. The highest frequency of the IM profile was recorded in Mexico
(22%) [23–30], followed by Costa Rica (18%) [30,31], Chile (15%) [35], Venezuela (14%) [33], Peru
(13%) [30], the US (3%) [32], and Argentina/Paraguay (1%) [34] (see Figure 2).

The therapeutic implications of this profile vary among different drugs. In the case of opioid
analgesics, such as codeine, individuals with the IM profile form reduced quantities of morphine from
the medication, requiring a follow-up during treatment, although no change in drugs is required [31].
Despite the effects of the alleles with reduced enzymatic function, few data are available on the clinical
impacts on drug treatment, response to therapy, or side effects.

3.1.3. Extensive Metabolizers

The EM profile does entail any significant alteration in enzymatic activity. This profile may be
determined, for example, by two alleles with normal enzyme function or the combination of one
normal allele and one with decreased function [8,41].

The EM profile was the most common in all countries (Figure 2), and the Amerindian populations
from different countries present relatively homogeneous frequencies of this profile. The highest
frequency (90%) was recorded in the populations from the US [32], followed by Peru (87%) [30],
Argentina/Paraguay (86%) [34], Chile (85%) [35], and Venezuela (80%) [33]. However, much lower
frequencies were recorded in Mexico (69%) and Costa Rica (45%) [24–31].

It is important to note here that, while the EM phenotype typically has normal enzymatic activity,
tests are still required for the more accurate prediction of the catalytic activity of this metabolization
profile [45,46].

3.1.4. Ultrarapid Metabolizers

Individuals with the UM profile carry at least one allele with increased enzyme function, in addition
to an allele with normal function [41,47,48].

This profile was recorded in the Amerindian populations from three countries, Mexico, with a
frequency of 9%, Costa Rica (7%), and the US, with 1% [24–31]. The highest frequency of this type of
metabolizer has been recorded in an Ethiopian study (28.7%) [49]. Frequencies similar to those found
in the Amerindian populations of Mexico have been recorded in Middle Eastern populations, i.e.,
10.5% [7].

Despite the relatively low frequency of this profile in the study populations, its effects vary
considerably, and may even be fatal. There have been a number of case reports of potentially fatal
effects of standard doses of codeine in patients with the UM phenotype [50,51], which reinforces the
need for the revision and alteration of the drugs used to treat these patients [52].

3.1.5. Allele Frequencies

The frequencies of the principal alleles that alter the functionality of the CYP2D6 enzyme in the
Amerindian populations analyzed in the studies reviewed here were compared with those of the
same alleles in other human populations from different regions of the world (data obtained from
the 1000genomes database). As the frequencies of the amplifications and deletions are not provided
in the 1000genomes database, they are now reviewed here. These plots are divided according to
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the functional implications of the alleles (normal, reduced, or loss of function) for comparison with
populations from Europe, Africa, East and South Asia, and the Americas (Figure 3).

Figure 3. Allelic frequency of major variants of CYP2D6 in world populations and in the Amerindian
populations (data from review). (A) Variants with normal functional consequence; (B) variants
with decreased functional consequence; (C) variants with inactivated functional consequence. EUR:
European populations; AFR: African populations; EAS: East Asian populations; SAS: South Asian
populations; AMR: American mixed populations; REVIEW: Amerindian populations from the review.

74



Genes 2020, 11, 262

The frequencies of the alleles with normal function are shown in Figure 3A. In general,
the Amerindian populations have a high frequency of normal alleles, in particular *1 and *2,
in comparison with the other populations. Admixed populations with a major Native American
ancestry component have frequencies similar to those of the Amerindian populations presented here.
Worldwide, 77–92% of individuals have at least one copy of a normal allele (*1 or *2) or two partially
functional alleles [45].

The Amerindian populations presented frequencies close to 0% for all variants of the alleles
with reduced function (Figure 3B). The CYP2D6*10 allele occurs at high frequencies in South Asian
populations, while CYP2D6*41, which is caused by a splicing defect, has a frequency of less than 10%.
The CYP2D6*17 allele, which results from two missense mutations, has a frequency of 20% in the
African populations, while CYP2D6*29, which has four missense mutations, has a frequency of 10% in
these populations.

The CYP2D6*4 variant, which is caused by a splicing defect, which inactivates the product of the
CYP2D6 gene, has frequencies ranging from 11.6% to 15.7% in most populations, except in East Asians
and in the Amerindian populations reviewed here, in which the allele frequency was less than 1%.
The frequencies of the other variants that cause the inactivation of the gene product were generally
low, and did not vary greatly among populations (Figure 3C). However, CYP2D6*3 had a frequency of
4% in the European populations, while CYP2D6*14 had a frequency of 2%. The East Asian populations
also presented frequencies of over 1% for the CYP2D6*6 variant.

4. Discussion

The CYP2D6 gene has many polymorphisms, resulting in a high level of inter-individual
variability [8]. The molecular CYP2D6 profile may alter the therapeutic efficacy of different drugs,
which has led a number of international drug regulatory agencies to recommend the use of CYP2D6
polymorphisms as biomarkers for the design of therapies based on antidepressants, antipsychotics,
antiarrhythmics, opioid analgesics, anticancer agents, and other classes of drug [45,53]. A large
number of the variants of the CYP2D6 gene have important implications for the application of clinical
therapy, and depending on their genomic profile, a patient may have a high risk of adverse reactions
or even a failure of the therapy. The molecular profile of the CYP2D6 gene varies considerably among
populations [7].

The principal ancestral human populations—Europeans, Asians, Amerindians, and
Africans—present considerable genetic diversity, which implies major fluctuations in the frequencies
of important pharmacogenetic polymorphisms [54]. The traditional populations of the Americas have
a long history of geographical isolation, and a differentiated genetic makeup in comparison with
populations from other regions of the world [24]. The common origin of Native Americans and their
autochthonous biological and cultural evolution combine to make the New World an excellent model
for studies of the co-evolution between genes and cultures [54]. The papers selected for the present
review permitted the compilation of the CYP2D6 gene metabolization profiles of the Amerindian
populations of a number of different countries in the Americas. The four metabolizing profiles (PM,
IM, EM, and UM) had varying frequencies in the different countries (Figure 2).

The EM and IM metabolization profiles were the most frequent in all countries surveyed in the
present review. Some drug regulatory agencies recommend the follow-up for patients using drugs
metabolized by CYP2D6 that have an IM profile. In the specific case of codeine, for example, there is
evidence that some adverse effects do not vary significantly between poor and extensive metabolizers,
which re-emphasizes the need for testing to determine the catalytic activity of individuals with these
profiles to guarantee the best possible therapeutic strategy [42,45]. One important question here is that
the extensive and intermediate metabolization profiles can be “converted” into a slow metabolization
profile when exposed to other xenobiotics, such as alkaloid drugs or herbal medicines, which are
known to be potent CYP2D6 inhibitors, and are commonly used by Amerindian populations [48].
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This is important given the high frequencies of the EM and IM profiles in these traditional populations
and their extensive use of xenobiotics.

The ultrarapid metabolization (UM) profile has a relatively low frequency in the general
Amerindian population (7%), although it is slightly higher in Mexican populations (9%) than in
the other countries [24–30], probably due to the isolation of Mexican mestizos [24,30]. The UM profile
was also substantial (7%) in Costa Rica [30,31]. These frequencies are similar to those described in other
populations, such as that of Spain (6.1%) [50]. Individuals with this phenotype metabolize drugs faster
than normal, which means that drugs taken at the standard dose may not have the intended therapeutic
effects. Worse still, these individuals may also develop adverse reactions due to the formation of
relatively large quantities of metabolites, between 10 and 30 times larger than normal [55,56].

The PM profile was relatively infrequent in the general Amerindian population (4%), a frequency
similar to that recorded in Europe (6.52%) by Llerena et al. (2014) [7]. Low frequencies of slow
metabolizers were recorded in a number of Native Mexican populations [23,24,26,27]. Sosa-Macías et al.
(2010) found that Mexican Amerindian populations, in particular those of the Taphuanos community,
had a more homogeneous slow metabolism profile distribution in comparison with Mexican
mestizos [28]. This may be accounted for by the Tapehuano group and its low levels of miscegenation
with Mexican mestizos. Individuals with the slow metabolizing phenotype have a potential risk
of accumulating toxic metabolites when undergoing treatment with opioid analgesics, such as
morphine and tramadol, and during long term therapy with antipsychotics and antihypertensive
agents. In addition, they are prone to a lack of effective pharmaceutical action in the case of pro-drugs
metabolized by the CYP2D6 enzyme, such as codeine and tamoxifen [29]. Given this, individuals
of the Mexican Amerindian ethnic group have a lower risk of developing adverse drug reactions or
therapeutic failure when treated with the aforementioned drugs.

The mean frequency of the alleles associated with the PM profile in Costa Rica, Argentina, Paraguay,
the US, and Venezuela was 13.75%, with some variation being found among the Amerindian populations
of these countries [30–34]. Naranjo et al. (2018) found that 10.2% of the indigenous Costa Rican
population were slow metabolizers [30], a similar percentage to that recorded by Céspedes-Garro et al.
(2014) for the same ethnic group [31]. In a survey of Venezuelan Amerindian populations, Grimam
et al. (2012) found slow metabolizers in only one of the five populations analyzed [33]. Based on
data from Argentinian and Paraguayan populations, Bailliet et al. (2007) concluded that some of the
mutations that make up the PM genotype are founder variants brought to America by the early Asian
settlers [34]. The different alleles of the slow metabolism profiles are described as important therapy
predictors by Fohner et al. (2013), who evaluated native populations from the US, and suggested
that CYP2D6 activity may be decreased (with high frequencies of the non-functional CYP2D6*4 and
CYP2D6*41 variants) in 9.09% of the patients from the Salish and Kootenai tribes [32].

The results of the present review indicate that the frequencies of some of the alleles present in the
Amerindian populations are similar to those of populations from other regions of the world (Figure 3).
The majority of the CYP2D6 alleles are shared by most of the world’s populations. Even so, a number
of different evolutionary factors may have contributed to the establishment of geographical gradients
in the distribution of some alleles, which occur at high frequencies in certain, specific regions of the
world [57]. During a period of population expansion, in particular the initial wave, some rare alleles or
haplotypes may become relatively common through founder effects [58].

A number of factors may be associated with the variation in allele frequencies of
drug-metabolizing enzymes, such as CYP2D6, and the resulting metabolization profiles of Amerindian
populations. Nebert (1997) identifies two possible selective pressures that may have determined
this variation—differences in diet, which evolved over thousands of years, and the evolution of
balanced polymorphisms, including alleles that confer resistance to bacterial or viral infections [59].
Considerable research efforts have been invested in the identification of predictive markers of therapeutic
conduct for the development of personalized treatment protocols. In general, Amerindian populations
have a different genetic profile than those of other populations around the world, which reinforces the
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need for specific studies of these ethnic groups for the identification of novel biomarkers relevant to the
standardization of therapeutic strategies. The present review compiled the major publications available
on the CYP2D6 gene in Native American populations. As there is a clear under-representation of this
ethnic group in pharmacogenomic studies, it will be essential to determine the CYP2D6 profiles of a
much larger number of Native American populations to support the development of systematic public
health strategies.

It is important to note that substrate specificity and drug dosage are only two of a range of
factors that contribute to the response of an individual to a given drug. Research groups, such
as the Ibero-American Network of Pharmacogenetics and Pharmacogenomics (RIBEF) consortium,
were established for the study of pharmacologically important genes in Latin American populations.
The present review represents a pioneering compilation of the results of the available papers on
the variation in the CYP2D6 gene in Amerindian populations, and highlights the importance of this
research for the development of guidelines for the management of therapeutic strategies in these
populations. The major deficiency of the available papers is the lack of data from some countries,
most notably, Brazil, Canada, and Colombia. These considerations reinforce the need for further, more
extensive studies on the pharmacogenetics of Amerindian populations.

Supplementary Materials: The owing are available online at http://www.mdpi.com/2073-4425/11/3/262/s1,
Table S1: Population number and geographic location of the ethnic groups described in the review.
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Abstract: Gene expression regulation is achieved through an intricate network of molecular
interactions, in which trans-acting transcription factors (TFs) and small noncoding RNAs (sncRNAs),
including microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), play a key role. Recent
observations allowed postulating an interplay between TFs and sncRNAs, in that they may possibly
share DNA-binding sites. The aim of this study was to analyze the complete subset of miRNA and
piRNA sequences stored in the main databases in order to identify the occurrence of conserved
motifs and subsequently predict a possible innovative interplay with TFs at a transcriptional level.
To this aim, we adopted an original in silico workflow to search motifs and predict interactions within
genome-scale regulatory networks. Our results allowed categorizing miRNA and piRNA motifs, with
corresponding TFs sharing complementary DNA-binding motifs. The biological interpretation of the
gene ontologies of the TFs permitted observing a selective enrichment in developmental pathways,
allowing the distribution of miRNA motifs along a topological and chronological frame. In addition,
piRNA motifs were categorized for the first time and revealed specific functional implications in
somatic tissues. These data might pose experimental hypotheses to be tested in biological models,
towards clarifying novel in gene regulatory routes.

Keywords: gene expression regulation; miRNA; piRNA; transcriptional modulation; binding motifs;
regulatory pathways; epigenetics; in silico

1. Introduction

Roughly 90% of the genome is transcribed. Protein-coding (structural) genes account for as little
as ~2% of the genome, with a much larger portion of the transcribed content being represented by
noncoding RNAs (ncRNAs) [1,2]. Since the original characterization of the first ncRNA, a transfer
RNA (tRNA) purified from yeast in 1965 [3], the conceptualization of the “RNA world” [4] and the
discovery of different types of ncRNAs (including ribosomal RNAs, long and small noncoding RNAs,
and circular RNAs) has improved significantly. The understanding of the roles and mechanisms of
action of noncoding RNAs (ncRNAs) has been progressively increasing throughout this postgenomic
era, completely revolutionizing the idea of “junk DNA” [1,2]. In particular, most small noncoding
RNAs (sncRNAs) discovered so far (i.e., microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs),
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tRNA-derived stress-induced small RNAs (tiRNAs), small-interfering RNAs (siRNAs)) are responsible
for a variety of regulatory mechanisms affecting gene expression at multiple levels.

Gene expression is regulated in a tissue-specific fashion with time-related rhythms and
stimuli-responsive mechanisms. This is achieved through the fine-tuning orchestrated by a number
of molecular interactors and epigenetic regulators that act at different levels. These include known
DNA trans-acting elements, such as transcription factors (TFs), mostly binding to promoter elements
upstream of genes, and transcriptional activators and repressors, which interact with enhancer and
silencer regions, respectively. In addition, different classes of sncRNAs, including miRNAs and
piRNAs, perform a dynamic epigenetic regulation and surveillance of genomic integrity and functions,
acting on the genome scale and determining a dense and complex regulatory network [5].

miRNAs are short, single-stranded noncoding RNAs (20–22 nucleotides in length) that are typically
transcribed by the RNA polymerase II. miRNAs are encoded by the major regulatory gene family in
eukaryotic cells and operate in multiple signaling pathways [6,7]. In particular, the control of mRNA
stability and translation is the best known and characterized miRNA function. According to the
consolidated model, mature miRNAs are found and act in the cytoplasm, where they recognize and bind
complementary cis-regulatory elements usually located in the 3′UTR of the target mRNAs, through a
specific short (6–7 nucleotides) sequence known as ’seed sequence’ in their 5’ end. This interaction
determines the degradation of the mRNA or the repression of its translation [5]. miRNAs are commonly
categorized in family groups based on their sequence conservation, with specific regard to the seed
sequence. Therefore, the miRNA family members considered to date tend to share similar targets and
are usually involved in interconnected pathways [8].

Increasing evidence points towards the idea that mature miRNAs are also enriched in the
nucleus, suggesting noncanonical roles, i.e., in transcriptional silencing or activation and alternative
splicing [9–11]. The conditions through which miRNAs elicit their nuclear function have not been fully
clarified, and the mechanisms that regulate miRNAs’ translocation into the nucleus are also extensively
debated [11]. It has been reported that miRNAs can induce gene expression by directly binding to the
promoter region, as TFs, through sequence complementarity [9,12].

piRNAs are 24–32-nucleotide-long noncoding RNAs, named after their association with the
argonaute subfamily PIWI proteins, originally identified in mutants affected by asymmetric division of
stem cells in the Drosophila germline [13]. piRNAs are the largest subgroups of sncRNAs recognized
in animal cells, accounting for over 30,000 members [14]; this number is increasing rapidly along with
the discovery of different piRNA isoforms [15]. They are known to act specifically in germline cells
to preserve the genome integrity from the deleterious effects of transposable elements, through both
transcriptional and post-transcriptional repression mechanisms (i.e., suppressing transposon activity,
protecting the telomere, and regulating RNA silencing and epigenetic control by establishment of a
repressive chromatin state) [16]. piRNAs have more recently been found also in somatic cells [17],
where their expression is regulated in a tissue-specific manner, although the impact of this discovery is
not yet completely understood [18].

The defective or aberrant expression of sncRNAs has been associated with several human diseases,
and the interest in their biological roles has increased concurrently [18,19].

Advances in methods that analyze RNA populations have allowed a rapid quantitative and
qualitative characterization of small RNAs at the cellular and/or tissue level. As a result, a huge
quantity of “omics” data are currently available, stored in specialized databases and representing
a valuable source of information which could potentially provide surprising and useful details on
genome architecture and regulatory frameworks [20]. Precious hints indeed derive from the analysis of
sncRNA sequences that could reveal the presence of conserved domains plausibly enabling additional
RNA–RNA or RNA–DNA interactions, gathering them in the context of specific cellular functions on a
genome-wide scale.

In this scenario, the aim of this study was to analyze the complete subset the whole sequences of
miRNAs and piRNAs stored in the main databases in order to identify the occurrence of conserved
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motifs and subsequently predict possible specific interplay with TFs within genome-scale regulatory
networks. We propose a direct interaction between the sncRNAs (either miRNAs or piRNAs) with
conserved common motifs (transcription factor binding site (TFBS)) on DNA sequences. This original
analytical workflow allowed identifying the occurrence of conserved motifs in both miRNAs and
piRNAs and categorizing these sncRNAs based on TFBS domains. The data produced by this in
silico pipeline point towards the hypothesis that miRNAs and piRNAs share DNA-binding motifs
with TFs. We then propose that these sncRNAs may be categorized based on TFBS. Interestingly,
the functional annotation of putative target genes allowed evidencing that these binding motifs are
specifically enriched in biological networks involved in embryonic development. Indeed, the analysis
allowed pointing out that different miRNA and piRNA classes, sorted by TFBS, have differential
implication in biological pathways, as they are able to regulate multiple target genes sharing the same
conserved TFBS. Our in silico analysis provides original predictive computational data, paving the
way to further biological studies that may test novel nuclear roles of miRNAs and piRNAs in gene
expression regulation.

2. Materials and Methods

The analysis pipeline was performed using different bioinformatics tools available online
in the MEME-suite collection of motif-bases sequence analysis tools (http://meme-suite.org/).
The experimental pipeline consisted of three main steps, as schematized in Figure 1.

Figure 1. Experimental workflow. A schematic representation of the pipeline integrating the different
analytical software is provided. The details of the analytical steps are described in the text (Section 2).

The entire subgroup of Homo sapiens mature miRNAs (1881 mature miRNA sequences from
http://www.mirbase.org/ftp.shtml; only unique sequences were considered) and piRNAs (32,826 piRNA
sequences from http://regulatoryrna.org/database/piRNA/download.html) were analyzed separately.
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In the first step, all reliable conserved motifs were categorized by searching in miRNA and
piRNA sequences using the Discriminative Regular Expression Motif Elicitation (DREME) tool from
MEME-suite (http://meme-suite.org/tools/dreme) [21]. The DREME tool allows finding relatively short
motifs (up to eight positions) using sets of sequences (in our case, miRNAs and piRNAs, as reported
in * fast sequences) as input. The program does not need a control set since it shuffles the primary
set to provide it. Moreover, it exploits Fisher’s exact test to determine significance of each motif
found in the positive set using a significance threshold. The motifs identified by this approach were
stopped when the next motif’s E-value threshold exceeded 0.05 (default threshold) [21]. The identified
motifs were mapped within the miRNA sequences in order to observe their localization and possible
relation with the seed sequences, according to the MicroRNA Target Prediction Database (miRDB;
http://www.mirdb.org).

In the second step, all the obtained motifs were used as query for Tomtom, a motif comparison tool
within the MEME-suite (http://meme-suite.org/tools/tomtom), which compares the newly identified
motifs against a database of known motifs (i.e., JASPAR). JASPAR CORE is a database that contains a
curated and nonredundant set of open access data collections of experimentally discovered and proven
TF binding sites [22,23]. Tomtom ranked the motifs in the database and produced an alignment for
each significant match, searching one or more query motifs against one or more databases of target
motifs (and their reverse complements when applicable). The report for each query was a list of target
motifs, ranked by p-value in the order that the queries appear in the input file. The E-value and the
q-value for each match were also reported. The q-value is the minimal false discovery rate at which the
observed similarity would be considered significant. Tomtom estimated q-values from all the match
p-values using the Benjamini and Hochberg method. By default, significance was measured by q-value
of the match [22].

For all motif queries, a list of transcription factors that contained the common conserved domain
was obtained (all the motifs with corresponding TF lists are reported in Tables 1 and 2).

Table 1. MicroRNA (miRNA) conserved motifs.

Motif
Sequence

miRNA-
Contained
Sequence

Motif

miRNA-
Contained

Complement
Sequence

Motif

Transcription Factors

RAAAGWAA 100 8

AR, BCL6, ETS2, FOXA1, FOXA3, FOXJ3, FOXK1, FOXM1,
FOXP1, FOXQ1, GATA3, IRF1, IRF2, IRF3, IRF7, IRF8, IRF9, LEF1,

LHX3, MEF2B, NFATC1, NR2E3, NR4A2, PRDM1, PRDM6,
RORG, SMARCA1, SOX2, SOX3, SOX4, SRY, STAT2, ZFP28, ZIM3,

ZNF274, ZNF354A, ZNF394, ZNF85

UACUUWUG 59 2 CDX1, FOXA1, FOXA2, FOXA3, FOXC1, FOXM1, LEF1, LHX3,
MEF2A, MEF2B, MEF2C, MEF2D, NR2E3, POU5F1, ZNF708

ACCAACC 33 1 ARI5B, FOXI1, GLI3, NFYA, RUNX2, SALL4, Z324A, ZIC1, ZN449

CYUUCUG 106 33
ATOH1, BCL6, EHF, ERG, ETS1, ETV4, NDF1, NDF2, NR1D1,

OLIG2, OSR2, PRGR, SMAD4, STAT2, THA11, ZIC3, ZIM3,
ZN143, ZN436, ZN528, ZN547, ZN768, ZNF76, ZSC31

ASGGAAG 60 10
E2F6, ELF1, ELF2, ELK1, ELK4, ETS2, ETV1, FEV, GABPA, IRF3,

NFKB1, OLIG2, PAX6, T, ZNF257, ZNF341, ZNF436,
ZNF528, ZSCAN31

GCUUCCHU 41 4
ELF3, ERG, ETS2, FEV, FEZF1, FLI1, FOXK1, NHLH1, NFKB1,

NFKB2, OLIG2, SMARCA1, SMARCA5, SOX10, ZNF341, ZNF394,
ZNF436, ZNF502, ZNF528, ZNF582, ZNF85
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Table 1. Cont.

Motif
Sequence

miRNA-
Contained
Sequence

Motif

miRNA-
Contained

Complement
Sequence

Motif

Transcription Factors

CAAAAACY 35 2 HOXA10, NFATC3, RUNX2, ZIM3, ZNF384

UUACBGU 40 4 ELK1, ETS1, ETV4, OVOL1, RFX3, ZIM3

YGGUUUUU 37 3 AIRE, FOXO4, FOXQ1, HXA10, HXA13, MEF2C, NR2E3, RUNX1,
RUNX2, RUNX3, TWST1, ZN384

UGUGAY 179 90 ERR1, RXRB, GFI1, GFI1B, MITF, TFEB, JUNB, TFE3, ESR1,
RARG, FOXI1, USF1, ZIC3

KAGGUUG 74 21 DUX4, HIC1, ZIM3, ZN136, ZN768

GGKUGGGG 48 9

E2F4, E2F6, EGR1, EGR2, ESR2, GLI3, KLF1, KLF12, KLF15, KLF3,
KLF4, KLF5, KLF6, KLF9, MAZ, MXI1, PATZ1, PRDM14, RXRA,
SALL4, SP1, SP2, SP3, SP4, SREBF1, SREBF2, TAL1, TBX3, VEZF1,

WT1, ZBTB17, ZIC1, ZNF281, ZNF449, ZNF467

GGAMAG 153 78

BCL6, E2F1, E2F4, E2F6, E2F7, ERG, ETS1, ETV4, GATA1, IRF3,
MEIS2, MYOD1, MYOG, NFATC1, NFATC2, NFATC3, NFATC4,

NFKB1, NFKB2, NR1D1, NR1I3, PBX1, PRDM1, RELB, REST,
STAT1, RELA, TFDP1, TGIF1, ZNF257, ZNF274, ZNF335

AUUACUUU 25 1
ALX1, CDX2, DUX4, EVX2, FOXA1, FOXA2, FOXA3, FOXC1,
FOXK1, FOXM1, HNF6, IRF1, IRF2, IRF7, IRF8, LHX2, LHX3,

NR2E3, PBX2, PRDM1, ZFP28, ZN394, ZNF85

Table 2. PIWI-interacting RNA (piRNA) conserved motifs.

Motif
Sequence

piRNA-
Contained
Sequence

Motif

piRNA-
Contained

Complement
Sequence

Motif

Transcription Factors

HTTCY 11887 9673

BCL6, E2F1, E2F3, EHF, ELF1, ELF2, ELF3, ELF5, ELK1, ELK4,
ERG, ETS1, ETS2, ETV1, ETV2, ETV4, ETV5, FEV, FLI1, GABPA,
HSF1, NFATC2, NFATC3, NFKB1, OSR2, PRDM6, SMARCA1,
SP4, STAT5A, STAT5B, STAT1, STAT3, STAT4, STAT6, TFDP1,

ZFP28, ZNF317, ZNF394, ZNF418, ZNF528, ZNF680

CAYCW 11906 10059 PDX1, CREB1, SNAI1, TBX3, CEBPG, ATF4, SNAI2, REST, ZEB1,
NDF1, NDF2

ACTCGYG 345 55 CLOCK

CGTWCCCA 187 9 NFKB1, NFKB2, RFX1, RFX2, RFX3, RBPJ

CACGK 1749 1151 ARNT, ATF3, ATF6A, BHLHE40, BMAL1, CLOCK, EPAS1, HIF1A,
MAX, MITF, MTF1, MXI1, MYC, MYCN, TFE3, TFEB, USF1, USF2

GACKCCTC 204 47 BACH2, CRX, FOSB, FOSL1, FOSL2, JUN, JUND, ZNF317

ACCWY 4967 4083
NR2F1, NR2F2, ERR2, ESRRG, GLI3, NR2C1, NR4A1, NR4A2,

PPARG, REST, RUNX1, RUNX2, RUNX3, RXRA, RXRG, TBX21,
TBX3, ZIC1, ZNF250, ZNF8

AGGTTKGA 162 26 TBX3, PRDM14, ZNF324, ZNF449, TBX21, TEAD1

AAAVTGC 412 215 MAFF, NKX3-1, MAF, IRF1, IRF2, ZNF85, IRF7, PRDM1, BATF3,
HNF4A, STAT2, HNF4G, FEZF1, MYB, HIF1A, RORG, ZFP42

GGTTCCGA 56 2 NR2C2

GCAGAYAC 143 43 CLOCK, SMAD2, ZNF708, MAFB, FOXM1, MXI1, ZFP42, ZNF547
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Table 2. Cont.

Motif
Sequence

piRNA-
Contained
Sequence

Motif

piRNA-
Contained

Complement
Sequence

Motif

Transcription Factors

AGCTSCTG 250 111

BHLHA15, MYOG, TCF3, MYOD1, MYF6, HTF4, ITF2, ATOH1,
ZBTB18, ASCL1, OSR2, PTF1A, NFE2L2, NHLH1, MAF, RFX5,

ZNF563, CEBPG, ATF4, LYL1, ZIC3, NEUROD2, MAFG,
OLIG2, TFAP4

CACTTAGS 116 30 NKX3-1, ISL1, NKX3-2, DLX3, FOXA2, PRRX2, BACH2, NFE2,
NOBOX, BACH1, MYC, FOXA1, NFE2L2, MYCN, ARNT

HATCCTA 290 147 ZNF586, CRX, ZNF324, ZNF274

AGGYAG 1145 843 ZNF335, ZNF490, MYB, RFX5, ZNF770, ETS1, ERG, FLI1, SMAD3,
ZNF257, ZNF549, PTF1A, ZNF563, ETV2

CCAAAK 911 649 HNF4A, HNF4G, FOXA1, ISL1

ATGAACTC 70 13 NR1I3, NR1I2, NR2C1, VDR, ATF2, ZNF18, RARA, ZNF549,
RXRB, NR6A1, ZNF354A, NR1H4

CKGCTAAA 67 12 T, ZNF322

BCATTTC 217 105

BCL11A, EHF, ELF1, ELF2, ELF3, ELF5, ELK1, ELK4, ERG, ETS1,
ETV1, ETV2, ETV4, ETV5, FEZF1, GABPA, MAFF, NFKB1,

POU2F1, POU2F2, POU3F1, POU3F2, REL, SPI1, SPIB, STAT5B,
STAT1, STAT2, STAT3, RELA, THRA, ZNF354A, ZFP42, ZFP82,

ZNF140, ZNF528

TAAGGGTA 48 5 ZNF264, NKX3-2, CRX, ZNF667, DUX4

GTACGWCA 45 4 EPAS1, ARNT, CREB1, ATF1, RORG, HIF1A, CREM, BHE40, ATF3

CGRTGCCC 44 4 HIC1, NFIA, CUX1

GAACGGGY 41 3 HIF1A, ZBT14, ZNF18

CVTGGA 1343 1057 ZNF436, TEAD4, BCL6, RARG, REST, TEAD1, STAT1, STAT5A,
STAT3, ZBTB6, STAT4, SNAI1, POU3F2, TP63, ESRRG

GTAGCTAS 55 9 RFX5, BHLHA15

ATCGCTGA 47 6 NFE2L2, MAFK, MAFG, OZF, ZFP42, ZNF335, ZNF528

ABGTTTA 124 50
FOXC1, FOXJ3, FOXA3, FOXK1, FOXO4, FOXQ1, FOXA1,

FOXA2, MEF2D, HNF1B, FOXJ2, FOXP2, HNF1A, FOXO3, SRY,
MEF2C, MEF2A, FOXP1, MEF2B, FOXO1, FOXM1

CCAMTAAC 60 14 CREM, ETS1, FOXI1, HOXA13, HOXB13, HOXB4, ISL1,
RUNX2, VDR

KGGCTTA 219 120 ZNF528, ZNF41, OTX2, ZNF449, ZNF214

GTGTYTA 202 108 CLOCK, FOXA1, FOXA2, FOXJ2, FOXJ3, FOXK1, FOXO3, FOXO4,
FOXP1, FOXP2, FOXQ1, MEF2B, NKX3-1, PRDM14

ATTGCACG 23 // CEBPA, CEBPD, CEBPB, ATF4, CEBPG

CCTARAG 186 99 BCL6, ZNF436, STAT5A

AKGAGGAC 108 46 ZNF816, ZNF586, THRB, ELF5, ZKSCAN1, CRX, ATF2, ZNF263,
ETV5, ZIC3, SPI1, RXRB

AAGGSCAC 80 29
ZNF667, ZNF264, NR4A2, ERR1, NR4A1, STF1, RXRG, NR5A2,

TFAP2C, ERR2, ZNF214, ESRRG, HNF4G, SOX9, TFAP2A,
NR1H3, RXRB, HNF4A

RATGGAA 87 34

ZNF502, SMARCA5, ZFP82, ZNF582, ZNF394, POU2F1, NFATC1,
ZNF264, ZNF354A, FOXK1, ZFP28, HOXA1, BATF3, POU3F1,

ISL1, ZNF8, ZNF85, TWIST1, STAT2, NFKB1, IRF3, SOX2,
NFATC3, ATF4, NFATC2, PRDM6, CEBPG, ETS2

ACTGWTCG 34 5 ZNF691, CUX1

GAACWCA 338 226 NR3C1, VDR, RXRB, PGR, SOX4, ZKSCAN1, FOXP1

CCGTAGCY 29 3 MYOG, RFX1, RFX2, MYCN

ACCDACTG 104 45 ZKSCAN1, MYB, NEUROD1, SNAI1, KLF8, NEUROD2, ATOH1,
TFAP4, HTF4, BHLHA15, NR1D1
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Finally, in the third step, all lists of putative miRNAs and piRNAs that contained motif-related
TFs were individually loaded in GeneMANIA (https://genemania.org/). This is a flexible, user-friendly
web interface for generating hypotheses about function, through analyzing gene lists and prioritizing
them based on literature-proved biological functions. GeneMANIA allowed clustering functionally
related TFs, using available genomic and proteomic data (protein–protein, protein–DNA interactions,
signaling pathways, protein domains, and phenotypic screening profiles) introducing weights that
indicate the predictive value of each selected dataset for the query [24].

The lists of annotated functions were then used for the biological interpretation to achieve a
functional hypothesis. In particular, using a Benjamini–Hochberg false discovery ratio (FDR) multiple
testing correction (also known as the ‘q-value’) associated with each ‘function’, we selected for the
analysis only GO terms with FDR ≤ 0.05, in order to reduce redundancies.

3. Results

3.1. Conserved Motif Annotation in miRNAs and piRNAs

The DREAM tool (step 1 of our workflow, see Figure 1) allowed identifying conserved motifs in
both miRNAs and piRNAs. These motifs were predicted to bind specific DNA sequences on the basis of
common domains with TFs, suggesting a putative involvement of sncRNAs in nuclear gene regulation.

In particular, we identified conserved motifs in 66.7% of mature miRNAs and in about 94% of the
piRNAs analyzed. Particularly, 14 and 39 conserved motifs were identified in miRNAs and in piRNAs,
respectively (Tables 1 and 2). The analysis was performed considering complementary sequences as
well, in order to identify motifs able to bind on both directions and on either DNA strand.

When mapping the precise location of the motifs within the miRNA sequences, we found that
these do not necessarily correspond to the seed sequence positions. In some cases, the sequence motif
is localized at the 5’ end of the tested miRNA, where it only partially overlaps with the seed sequence.
In all other cases, the motifs were mapped in variable regions of the mature miRNA sequences.

Of the 14 conserved motifs identified in miRNAs, four motifs (RAAAGWAA, CYUUCUG,
UGUGAY, and GGAMAG) were present in more than 100 miRNAs when also considering
complementary sequences. The least represented motif is AUUACUUU, which can be recognized in as
few as 26 miRNAs (entire range: from 26 to 269 miRNAs; see Table 1).

The number of piRNAs containing one or more of the 39 putative DNA-binding motif ranges
from 23 for the ATTGCACG motif to 21,965 for the CAYCW domain (Table 2). It is noteworthy that,
in some piRNA sequences, more than one conserved motif has been identified, hence the extent of
DNA-binding partners and corresponding target genes would be even greater.

The Tomtom tool (step 2 of our workflow, see Figure 1) allowed the annotation of the target
TFs containing the DNA-binding motifs found in the tested miRNAs (Table 1) and piRNAs (Table 2).
Our data showed that while the number of putative transcription factors sharing either of the conserved
DNA-binding motifs identified in miRNAs is relevant (Table 1), some of the conserved motifs (namely
ACTCGYG and GGTTCCGA) identified in piRNAs could be associated to just one gene (Table 2).

3.2. Computational Pathway Analysis of TFs

Through the GeneMANIA tool (step 3 of our workflow, see Figure 1) we were able to predict the
functional implication of the putative TFs sharing the motifs identified in miRNAs and piRNAs (listed
in Tables 1 and 2). This allowed speculating on their functional implication and networking in biological
processes. The entire lists of TF-related ‘functions’ computed through the GeneMANIA software
are provided in Supplemental File S1 (miRNA and piRNA motif-associated functions). In order to
rationalize the wide range of GO terms associated as ‘functions’ to each TF list, we performed a further
additional clustering of similar functional categories by grouping biologically related functions shared
by TF lists related to both miRNA and piRNA motifs. Overall, we categorized 644 functions with
corresponding GO terms into 21 functional clusters, listed in the Supplemental File S1. Specifically,
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12 of 14 miRNA motifs were linked by GeneMANIA to annotated functions, and only seven of these
domains could be positively associated within 16 functional clusters, as schematized in Figure 2 (see
also Supplemental File S1). Also, 35 of 39 piRNA motifs were associated with biological functions; of
these, 29 domains could be arranged in 21 clusters, with five new clusters in addition to those identified
for miRNA domains (namely ‘Apoptosis and cellular response to stress stimuli’, ‘Endocrine signaling’,
‘Metabolic processes’, ‘Regulation of circadian rhythm’, and ‘RNA-mediated gene silencing’) (Figure 3,
Supplemental File S1).

As expected, nonspecific “DNA-binding” activities, inherently associated to all TFs, accounted
for 88 out of the 644 (14%) annotated functions (grouped in the ‘DNA interaction/gene expression
regulation’ functional cluster, Supplemental File S1). In particular, these were annotated in all but one
(namely GCUUCCHU) of the miRNA motifs and in all but four of the piRNA motifs (namely HATCCTA,
TAAGGGTA, GAACGGGY, KGGCTTAA). Furthermore, 118 out of the 644 (18%) GO annotations
found for most miRNA and piRNA motifs represented general biological processes and pleiotropic
signal transduction pathways that cannot be clearly categorized into univocal biological functions
(grouped in the ‘General cellular processes/pleiotropic signal transduction pathways’ functional cluster,
Supplemental File S1). Due to the nonspecificity of these annotations, the above specified clusters were
not considered further in the biological interpretation.

Interestingly, after excluding nonspecific functions, as many as 293 functions out of the 644 (45%)
GO annotations were associated with specific developmental stages, from early embryo formation
to detailed organogenetic paths (Supplemental File S1). We have further described these functional
categories and the related sncRNA motifs, in the attempt to provide an experimental hypothesis to be
tested in wet lab functional studies (Figures 2 and 3).

In particular, the analysis of the motifs contained in miRNAs (Supplemental File S1) allowed
hypothesizing a possible implication of selected motifs in the regulation of specific developmental
stages, according to a specific timeframe (Figure 2). In particular, for example, the miRNA sequence
motifs RAAAGWAA, UACUUWUG, YGGUUUUU, and AUUACUUU apparently represent putative
DNA-binding domains shared not only by TFs involved in the regulation of early developmental
stages and morphogenetic events (‘Embryonic development, early stages up to gastrulation’ functional
cluster), but also with those involved later events, such as neural, urogenital and skeletal system
development or miscellaneous developmental processes (Figure 2). On the contrary, the late stages
of embryonic development (‘Embryonic development, late stages, tissue patterning’) seemed to be
specifically regulated by the RAAAGWAA motif (Figure 2). Hemopoiesis and endocrine and respiratory
system development functions also appeared enriched among the GO terms for the RAAAGWAA
motif, while UACUUWUG, ACCAACC, and AUUACUUU domains were found to be involved in
the regulation of digestive system development and RAAAGWAA, UACUUWUG, and YGGUUUUU
motifs were related to cardiovascular system and muscle development functions (Figure 2). In addition,
our in silico analysis showed that RAAAGWAA, GCUUCCHU, GGAMAG, and AUUACUUU binding
motifs could affect the expression of genes associated with immune system development and function
(Figure 2).

The functional cluster ‘Stem cell homeostasis and differentiation’ (Supplemental File S1) was not
considered further in the biological interpretation of miRNA motifs, since this function cannot be
associated with a specific timeframe but rather is part of all stages of prenatal and postnatal tissue
development and homeostasis.

Moreover, our analytical workflow also provided evidence of a spatial and temporal distribution
for TFs sharing DNA-binding motifs with piRNAs, revealing an intricate network of multiple
connections with redundant functions (Figure 3). As already mentioned, the computational analysis
of piRNA motifs displayed the enrichment of additional functional clusters, beyond that associated
with embryo development, and the regulation of these functions could be thus specifically connected
with this class of sncRNAs. Moreover, the gene regulation connected to specific biological processes
seemed to be very specific for some types of sequence domains compared with those identified in

88



Genes 2020, 11, 482

miRNAs. In further detail, each functional cluster displayed in Figure 3 seemed to be regulated by a
characteristic set of DNA-binding domains: if on the one hand it was possible to identify functional
clusters regulated by over six motifs (namely ‘Apoptosis and cellular response to stress stimuli’,
‘Immune system development and function’, and ‘Metabolic processes’ functional clusters), other
groups appeared to be peculiarly associated with only a single motif (AAAVTGC with hemopoiesis,
ABGTTTA with respiratory system development, GCAGAYAC with RNA-mediated gene silencing)
(Figure 3). Interestingly, the implication of this piRNA motif in functions related to RNA-interfering
mechanisms could directly support the interplay with the annotated TFs and sncRNAs in gene
regulation. In addition, for example, some domains were found to be involved in the regulation of
circadian rhythm (ACTCGYG, CACGK, ACCWY, ATGAACTC, and GTACGWCA), while others were
involved in the regulation of in stem cell homeostasis and differentiation (GCAGAYAC, CCAAAK,
CKGCTAAA, and ABGTTTA) (Figure 3).

 

Figure 2. Schematic representation of spatial and temporal distribution of putative DNA-binding
motifs identified in microRNAs (miRNAs). The functional clusters identified with the computational
pathway analysis of transcription factors (TFs) sharing the motifs identified in miRNAs are depicted as
colored boxes distributed along the timeline (arrow on the left side) of human embryo development.
The colored boxes (right side; same color ID scale) group the motifs identified in miRNAs for which
developmental functions were enriched, according to GeneMANIA functional interpretation (see text
for details).
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Figure 3. Schematic representation of the enriched functions for PIWI-interacting RNA (piRNA) motifs.
The scheme provides an overview of the motifs associated with each functional cluster derived from
the computational pathway analysis (based on GeneMANIA tool) of transcription factors (TFs) sharing
the same domains with piRNAs (see text for details). A specific colored box is assigned to each
piRNA motif.

4. Discussion and Conclusions

The complete understanding of the complex miRNA-mediated regulatory network in cells and
organisms has not been achieved yet. The selection of molecular interacting targets by miRNA has been
long considered to be primarily dictated by sequences at their 5′ end (nucleotides 2 to 7, known as “seed”
sequence). Nonetheless, distinct studies have suggested that miRNAs contain additional sequence
elements that control their posttranscriptional behavior, including their subcellular localization.

Indeed, it is currently confirmed that mature miRNAs reside in the nucleus, where they participate
at several levels of gene expression regulation [9–11]. Different pieces of evidence pointed out that
RNA-induced silencing complex (RISC) protein complexes also exist in the nucleus, where they actively
contribute to the nuclear import of miRNAs (Figure 4) [25–27].

The expression enrichment of different miRNA sets in the nucleus seems to vary based on cell type,
function, and activity status, or in response to environmental stimuli [12,28]. Numerous efforts have
been devoted to the identification of sequence regions within miRNAs able to affect and direct their
nuclear import. Hwang and co-workers reported that a hexanucleotide element (AGUGUU) at the 3’
end may affect the subcellular localization of mature miRNAs. This sequence motif apparently acts as
a nuclear localization signal enabling the nuclear import of mature miRNA from the cytoplasm [29].
Interestingly this motif resembles the reverse sequence of the UGUGAY motif identified in this study.
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Also, another study found that two additional sequence motifs were found in nuclear-localized miRNAs
expressed by endothelial and muscle cells upon hypoxic conditions [28]. Moreover, another study
showed that most of the nucleus-enriched miRNAs share a common sequence motif with homology to
the consensus MYC-associated zinc finger protein (MAZ) transcription factor binding element [30].

The noncanonical nuclear role of miRNAs in the regulation of gene expression at the transcriptional
level is yet to be fully clarified. Alternative mechanisms have been proposed to date that are not
necessarily mutually exclusive but rather suggest that miRNAs may intervene at several levels in
the gene expression regulatory network occurring in the nucleus. Most of the described mechanisms
members of the nuclear subfamily of argonaute (Ago) proteins, key components of RISC complexes,
as key mediators. Such nuclear miRISC complexes may bind long noncoding RNAs (lncRNAs) by
sequence complementarity and modulate their function [11,12]. The lncRNA class of ncRNA includes
epigenetic mediators acting in the nucleus (including ‘promoter-associated’ and ‘enhancer-associated’
RNAs and ‘gene body-associated’ RNAs). These are in turn able to influence chromatin organization,
acting as structural scaffolds of nuclear domains, and to mediate transcriptional/cotranscriptional
regulation [31]. Other experimental studies suggested miRNAs to be involved with the ribogenesis
process occurring in the nucleolus, while others described their participation in the regulation of
alternative splicing (see [11] for a review).

Converging evidence also showed that miRNAs may modify (either activate or suppress) gene
transcription by interacting with chromatin, besides acting at the post-transcriptional level in the
cytoplasm [9,32]. Mature miRNAs in the nucleus may indeed directly bind double-stranded DNA
within specific target sequences [12,33]. Specifically, it has been reported that miRNAs can form
triple-helical structures with specific regions of DNA through either Hoogsteen or reverse Hoogsteen
pairings [33]. Nonetheless, the likelihood of their effective occurrence of such pairing modalities
in physiological conditions is still widely debated [34,35]. It is instead more likely that miRNAs
regulate gene transcription by binding to promoter sequences in an Ago-dependent manner, as
demonstrated in a number of studies [32,36–38]. Ago proteins are known to act in the nucleus,
despite their structure not including a known DNA-binding domain; therefore, their interactions with
chromatin and chromosomes might be mediated by miRNAs. In particular, the nuclear Ago1 protein
directly interacts with RNA polymerase II (RNAPII) and is preferentially enriched in promoters of
transcriptionally active genes [39]. The Ago1–RNAPII interaction decreases if miRNAs are depleted,
hence suggesting that Ago1–chromosomal interaction is mediated by miRNAs [39].

Alternatively, miRNAs may recognize complementary sequences on nascent RNAs, in a
cotranscriptional mechanism, forming double-stranded RNAs that determine the recruitment of
protein complexes able to modify chromatin accessibility and thus RNAs levels [11,12].

Finally, a third model has been also proposed, according to which miRNA–Ago complexes directly
target one of the DNA strands when the target promoter region is in an open configuration during the
transcription initiation process [12].

Although numerous studies have indicated that the seed sequence can also mediate the recognition
of miRNAs’ nuclear targets, a recent study supports a model in which a miRNA can form a hybrid
with promoter region to modulate transcription through its nonseed region [40]. In this scenario,
the interplay between miRNAs and TFs has been emerging as a key mechanism within the complex
network of transcriptional regulatory networks occurring in the nucleus. Such interactions are believed
to rely on the presence of conserved regulatory motifs and are needed to finely tune developmental
programs in multicellular organisms [41]. Hence, with the aim of making our results as extensive
as possible, we decided to include in our in silico analysis all the sequence motifs independently by
the overlapping with the seed sequence. Since the mechanisms of miRNA-mediated gene regulation
have not been completely clarified and new models continue to be identified in different experimental
conditions, our approach aims to avoid losing some important data.

A similar interplay with TFs has not been explored in piRNAs to date, even though increasing
roles for this class of sncRNAs, further preserving genome integrity in germline cells, have been
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recently recognized. The mechanisms at the base of piRNA biogenesis and function have become
increasingly clear (Figure 5), and growing evidence suggests that specific piRNA expression patterns
can be recognized in pathological conditions, including cancers [42,43].

Understanding the crosstalk between sncRNAs and TFs at a cotranscriptional level could provide
new clues towards the involvement of miRNAs and piRNAs in the control of specific events of gene
expression regulation in the nucleus during development in humans.

The computational workflow exploited in this study allowed posing an experimental hypothesis
according to which conserved and recurrent sequence motifs found in miRNAs and piRNAs,
complementary to transcription factor binding sites (TFBS), could influence the bond and activity of
TFs on the same target genes. Our results enabled categorizing different classes of motifs, associated
to TFs that have known biological roles, hence predicting the possible biological consequence of the
putative miRNA nuclear localization and function.

The biological interpretation of the enriched functional terms in TFs indeed allowed categorizing
miRNA motifs according to their involvement in key steps of the human developmental path, suggesting
that different miRNA profiles exist in different developmental stages and vary in their nuclear expression
across different tissue types. The direct competition/collaboration with TFs that our data suggest might
provide a finer regulatory control and could explain the prompt canalization of genetic programs to
maintain and stabilize the phenotypic reproducibility of embryogenesis. This type of interaction could
increase the speed and efficiency of response of embryonic cells exposed to continuous differentiation
stimuli. Indeed, the established mechanisms of miRNA-mediated expression regulation, based on their
biding on the 3’-UTR of target mRNAs in the cytoplasm, inevitably occurs at the post-transcriptional
level, while the 5’ end DNA-binding event proposed in this model occurs during or right before
transcription [10–12]. This can therefore cooperate with several mechanisms to accomplish the finely
tuned regulatory network especially needed during early developmental stages.

The results obtained in the in silico analysis of piRNA motifs yielded original data providing a
model for additional roles for piRNAs in somatic cells, to be further explored in the wet lab. Indeed,
piRNA motifs were also found to be associated to TFs with reproducible functions exerted in somatic
tissues, including tissue-specific metabolic pathways. It has been shown that the PIWI–piRNA
complex binds its genomic target in euchromatin through a nascent transcript and, in heterochromatin,
predominantly through a direct piRNA–DNA interaction [44]. Although the information on piRNA
roles in somatic tissues is still limited, these data may contribute to postulating new functional roles,
regulatory functions, and towards their translation into the identification of new markers of biological
processes and/or diseases.

These data may also suggest a feasible way to categorize functional piRNA subclasses distributed
in different tissues, on the basis of the presence of conserved motifs, that could reflect their roles in
shared regulatory networks and/or developmental timeframes. Each of these families could intervene
in crucial parts of the epigenetic control, maintaining genomic integrity, repressing the mobilization of
transposable elements, and regulating the expression of downstream target genes via transcriptional
or post-transcriptional mechanisms as already reported by two independent research teams in studies
of model organisms [45,46]. These groups independently observed that parental responses to the
environment are passed to offspring by small RNAs, suggesting that even environment-related
behavioral traits can be passed down through generations by transgenerational epigenetic inheritance
(TEI), even though the underlying mechanisms are unclear [45,46].

Our observations, though still preliminary, could propose novel testing hypotheses to be
investigated in a biological system, towards the clarification of novel aspects of sncRNA-based
epigenetic regulation of cellular functions at the organism level.

Further in vitro analyses will be necessary to support at the functional level the evidence derived
from this in silico approach. In particular, in-depth in vitro studies at the genome-wide level will be
needed to delve into the subcellular location of each class of motif-grouped sncRNAs and to clarify
their involvement in the predicted biological pathways.
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The extended knowledge of these novel sncRNA mechanisms of action has a deep translational
relevance, considering their extensive application in “theranostics”: a differential expression analysis
of these sncRNA sequence motifs could enable identifying tissue- or organ-specific biomarkers of
pathway function/dysfunction. On the other hand, targeting RNA metabolism is being exploited as a
strategy to recover RNA alterations in a variety of diseases, paving the way to RNA-based therapeutic
strategies [19].

 
Figure 4. Several steps of microRNA (miRNA) biogenesis and nucleus–cytoplasm transport.
Mature miRNAs derive from longer double-stranded primary transcripts (pri-miRNA), which are
recognized and processed in the nucleus by the Drosha protein/DGCR8 microprocessor complex
subunit (DGCR8) complex into shorter precursors folded in a hairpin loop structure (pre-miRNA).
Pre-miRNAs are then exported to the cytoplasm (through Exportin 5) where they are first cleaved by
Dicer and later processed by RNA-induced silencing complex (RISC) to form the mature miRNAs.
Transactivation response element RNA-binding protein (TRBP) intervenes in the stabilization of Dicer.
RISC, which includes Protein argonaute-2 (Ago2), also participates in the identification of miRNAs’
targets. The integrative miRNA network highlights, in the yellow circle, the import of Ago2 with
mature miRNA into the nucleus via Importin 8 and trinucleotide repeat-containing gene 6A protein
(TNRC6), another component of RISC complex, via Importin β. Nuclear RISC is again assembled to
elicit pleiotropic effects by regulating multiple pathways with a direct interaction on DNA transcription
factor binding sites (TFBSs) and possible formation of triple-helix structures.

93



Genes 2020, 11, 482

 
Figure 5. Different stages of PIWI-interacting RNA (piRNA) biogenesis and function. Mature piRNAs
are derived from precursor RNAs following a post-transcriptional processing through two alternative
mechanisms. The primary maturation pathway involves cleavage of long, single-stranded piRNA
clusters and the binding with PIWI proteins in the cytoplasm. The second mechanism is a self-amplifying
loop (termed “ping-pong” cycle), in which an antisense piRNA binds PIWI proteins and triggers
production of a sense piRNA that binds to Protein argonaute-3 (Ago 3). Nuclear PIWI/piRNA
complexes regulate gene and transposon expression by epigenetic modifications. Once the piRNAs
are loaded onto PIWI, the activity and/or expression of DNA methyltransferases (Hen 1) is increased,
promoting methylation of promoter regions, preventing transcription factor binding, and interacting
with histone methyltransferase. Cytoplasmic mature piRNA promotes mRNA decay by interacting
with deadenylation complex, inhibits translation by directly binding with translation factors, and
modulates cellular signaling by directly regulating the post-translational modifications.
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Abstract: Cell repair machinery is responsible for protecting the genome from endogenous and
exogenous effects that induce DNA damage. Mutations that occur in somatic cells lead to dysfunction
in certain tissues or organs, while a violation of genomic integrity during the embryonic period often
leads to death. A mammalian embryo’s ability to respond to damaged DNA and repair it, as well as
its sensitivity to specific lesions, is still not well understood. In this review, we combine disparate
data on repair processes in the early stages of preimplantation development in mammalian embryos.

Keywords: DNA repair; BER (base excision repair); NER (nucleotide excision repair); MMR (mismatch
repair); DSBR (double strand break repair); HR (homologous recombination); NHEJ (nonhomologous
end joining); MHEJ (microhomologies end joining); oocyte; zygote; blastocyst

1. Introduction

DNA repair during the early stages of embryonic development has one of the most significant
effects on embryonic fate [1]. In the early embryonic stages of development, cells differ in their threshold
of sensitivity to endogenous and exogenous factors [2]. However, to preserve and maintain the integrity
of the genome, cells activate complex DNA repair mechanisms. It is believed that all major DNA repair
pathways function in embryos. Repair proteins interact with cell cycle control proteins to stop the cell
cycle if DNA is damaged, allowing the repair complexes time to fix the damaged DNA. If the damage
is too substantial, and it is impossible to repair the DNA, a proapoptotic pathway is activated, resulting
in cell death [3]. The mechanisms of regulation and functioning of repair systems are well studied
in somatic cells. However, less is known about their activities during early embryonic development.
Several reports have shown that early embryos and embryonic stem (ES) cells lack functional cell cycle
control checkpoints, and DNA synthesis and cell division continue in the presence of damaged DNA.
Ineffective activation of cell cycle checkpoints and suppression of apoptotic pathways in early embryos
is associated with a shortened cell cycle, helping to ensure that the first embryonic cell division occurs,
even under adverse conditions [4]. Thus, this review aims to analyze the literature and compare the
role of repair systems at different stages of early mammalian embryonic development from the oocyte
to the preimplantation blastocyst.

2. Oocyte Repair

Oocytes are one of the longest-living cells in the body, remaining at rest for many months (mouse)
or decades (humans) [5]. During this time, they are exposed to exogenous and endogenous factors
that cause damage to the DNA structure. DNA double strand breaks (DSBs) accumulate with age in
primary follicle oocytes due to cellular metabolism and oxidative stress [6]. Factors such as γ-radiation,
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chemotherapy, and adverse environmental influences lead to the formation of DSBs in oocytes during
the primary follicular stage [7–9]. In each of these cases, DSBs induce oocyte death if the damaged DNA
is not repaired. This leads to depletion of the oocyte pool in the follicles, premature ovarian failure,
infertility, and early menopause. Primary follicular oocytes at the germinal vesicle (GV) stage are
more susceptible to DNA-damaging agents and are more prone to apoptosis compared to somatic cells
and more mature MII stage oocytes [10]. This might be associated with the development of a highly
sensitive apoptotic response since it is crucial to eliminate oocytes with damaged DNA to protect the
germline [11]. Therefore, DNA damage control checkpoints are activated when the cell cycle stops
during meiosis I, facilitating removal of oocytes with DNA that has not been restored after meiotic
recombination. Members of the p53 family have been identified as critical regulators of apoptosis
activity in oocytes during the GV stage [12]. According to published data, the TAp63 gene is highly
expressed in primary follicle oocytes and is an essential mediator of induced DNA damage response
in oocytes due to transcriptional activation of proapoptotic members of the Bcl-2 family, PUMA and
NOXA [13]. Interestingly, TAp63 expression is suppressed when oocytes exit the follicle, which may
partially explain why mature MII oocytes are more resistant to apoptosis due to DNA damage than
oocytes in the GV stage (Figure 1) [14].

Figure 1. The process of differentiation in female germ cells. Created with BioRender.com.

Furthermore, mature MII oocytes have a broader expression profile of mRNA encoding repair
proteins compared to GV oocytes. Nevertheless, starting from the oocyte at the GV stage, expression
of genes encoding proteins for all repair systems has been observed [15]. Extensive expression of
repair genes corresponds to the oocyte’s ability to recognize and repair DNA damage from the earliest
stages of development [16]. In 2009, Jaroudi et al. demonstrated that in humans, mRNA levels of most
repair genes in oocytes are higher than in blastocysts, which is explained by the accumulation of a
sufficient amount of mRNA to ensure preservation of the genome before and after fertilization until the
zygotic genome is activated [17]. DNA repair transcripts that accumulate in human oocytes play an
essential role in chromatin remodeling and maintenance of chromatin integrity during fertilization [18].
Transcripts of all DNA repair pathways, including base excision repair (BER), mismatch repair (MMR),
nucleotide excision repair (NER), double strand break (DSBs) repair are presented in oocytes at the
GV and MII stages in mouse, monkey, and human [17,19,20]. DNA glycosylase is involved in base
excision repair in oocytes and zygotes and exhibits significantly higher levels in MII oocytes than
in oocytes at earlier stages [21]. Similarly, expression levels of the XPC gene involved in nucleotide
excision repair in MII oocytes is significantly higher than in GV oocytes [22]. Expression of the
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mismatch repair gene MSH2 was also higher in oocytes of stage MII compared with oocytes in
stages GV and MI [21]. ATM and ATR DNA repair markers are actively expressed during oocyte
maturation, ATR expression is primarily manifested in immature oocytes during meiosis I. In addition,
the DNA repair marker BARD1 is highly expressed during oocyte maturation [23]. The BARD1-BRCA1
heterodimer is considered as an E3 ubiquitin ligase. Studies by Gasca et al. found that the E3 ubiquitin
ligase multiprotein complex containing BARD1, BRCA1, and BRCA2 is involved in the maturation of
human oocytes [24]. These proteins play a crucial role in regulating cell cycle development, DNA repair,
and gene transcription [25]. Mutations in BRCA genes lead to an impaired ability to repair DNA DSBs
and cause premature oocyte aging, apoptosis, and disturbances in meiotic divisions [26]. BRCA1 and
BRCA2 homozygous deletion in mice results in embryonic lethality. Heterozygous deletion of BRCA1
in mice results in impaired reproductive capacity, characterized by low follicle counts and an increase
in the accumulation of DNA DSBs in surviving follicles relative to wild-type mice [10]. In experiments
on rhesus monkeys, the RAD51 protein, which is involved in homologous DSB recombination, is
expressed in oocytes. However, its expression decreases during oocyte maturation and then increases
again at the eight-cell stage [21]. RAD51 homozygous deletion in mice results in defective separation
of sister chromatids, aneuploidy, and broken chromosomes at metaphase II [10].

According to Jaroudi et al., RAD51 and MSH2 are expressed at high levels in both oocytes and
human blastocysts. The Ku70 is the DNA-binding component of the non-homologous end joining
(NHEJ) repair machinery, it exhibits high expression levels in both oocytes and blastocysts [17]. Studying
human oocytes using the single-cell sequencing method, the DPYD gene was discovered, which encodes
the dihydropyrimidine dehydrogenase. Importantly, high NADP+ levels activated DPYD to enhance
the repair of DNA double-strand breaks to maintain euploidy. In vivo high expression level of DPYD
was observed in primary and secondary follicle oocytes, but this gene was not expressed in oocytes and
preimplantation embryos. Expression of DPYD increased in primary and secondary follicles incubated
in vitro and was dramatically upregulated in in vitro matured (IVM) oocytes. Furthermore, embryos
from human IVM oocytes had more tiny chromosomal defects than those from human in vivo matured
(IVO) oocytes. It has been shown that increasing the expression of DPYD may facilitate the repair
process and overcome the risk of aneuploidy [27]. The compounds of in vitro culture medium may
have an impact on embryo’s viability by dysregulation of some genes associated with DNA repair
machinery [28]. Although all repair pathways function in oocytes, each pathway’s activation may vary
depending on the stage of oocyte development [10]. Additionally, some reactions to DNA damage and
DNA repair genes are overrepresented in the oocyte compared to the preimplantation embryo (from
one-cell to blastocyst stages) [28]. This might reflect the particular importance of ensuring the integrity
of the genome, especially after prolonged arrest during the first meiotic prophase. The repair pathways
are redundant, and it is unknown whether all pathways are used simultaneously during oocyte
development. Some mRNAs are translated in the oocyte, while others remain in a polyadenylated
form until fertilization, maintaining a pool of repair proteins until the embryo genome is activated [29].

3. Repair at the Zygote Stage

The transformation of a fertilized oocyte into a zygote is an amazing process that occurs
in the absence of transcription and depends on the mRNA accumulated in the oocyte during
oogenesis. Sperm penetration causes activation of the egg, accompanied by the release of mRNA
from complexes that block translation initiation [30]. In mouse oocytes, mRNAs contain elements
of cytoplasmic polyadenylation (CPE) in their 3′-untranslated region [31]. Polyadenylated mRNA
tails are linked to a repression translation complex containing CPE-binding protein (CPEB) and
Maskin protein. Maskin binds eukaryotic translation initiation factor 4E (eIF4E), an interaction that
excludes eIF4G and prevents formation of the eIF4F initiation complex [32]. During oocyte maturation,
CPEB phosphorylation stimulates polyadenylation and recruitment of the poly (A)-binding protein
bound to eIF4G, which helps to displace Maskin from eIF4E, thereby initiating translation [32].
The activation process contributes to the continuation of meiosis, the formation of pronuclei, and the
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translation of proteins necessary for the zygote [30]. Thus, the fusion of a terminally differentiated
oocyte in metaphase II and the sperm cause complex changes, including chromatin remodeling
and epigenetic reprogramming in the zygote. The most significant changes occur in the paternal
genome, where compacted sperm chromatin is reorganized, protamines are replaced by histones,
and various histones and DNA are demethylated in phases G1 and S [33]. At this stage in the
chromosomes separately in the male and female pronuclei, active demethylation of the paternal DNA
and passive demethylation of the maternal DNA occur [34]. Active demethylation of the paternal
genome’s DNA includes mechanisms based on excision and DNA repair [35]. It should be noticed
that cytosines in sperm DNA are highly methylated. Moreover, the majority of 5mC is demethylated,
regardless of DNA replication, before the first cycle of zygotic cell division [36]. The mechanisms of
active DNA demethylation in zygotes are not well understood. It has been suggested that different
DNA-repair-based mechanisms are important for demethylation, e.g., processes initiated by DNA
glycosylases, DNA methyl-transferases and DNA deaminases [37]. During zygotic reprogramming,
5mC is modified to 5-hydroxymethylcytosine (5hmC) using Tet3 hydroxylase. This oxidized cytosine
is either removed or replaced with unmodified cytosine using BER or is passively removed during the
next DNA replication cycle [38]. This leads to the breaking of DNA chains. Double- and single-stranded
DNA breaks lead to the appearance of phosphorylated histone H2AX (γH2AX) and activation of other
DNA repair systems [39]. Mature sperm cells are considered incapable of repairing DNA damage
due to DNA compaction and decreased transcriptional activity. It has been suggested that the oocyte
has the capacity to repair sperm DNA damage when the level of sperm DNA damage is less than
8%. Higher levels of sperm DNA damage are associated with a failure to reach the blastocysts phase
and embryonic loss between the embryonic genome activation (EGA) and the blastocyst stages. [40].
There is evidence that human sperm has a basic BER pathway containing only OGG1 protein [41].
Being the first enzyme in the pathway, its presence is sufficient for sperm to detect and remove
oxidized bases and residues of 8-OHdG, a standard oxidative stress product. Because the rest of
the pathway is truncated, DNA obtained after removal of 8-OHdG must subsequently be restored
by oocyte repair proteins after fertilization before the first cell division. However, it is interesting to
note that expression of the OGG1 gene in the oocyte at this stage is low [42]. Some authors consider
the random complementarity of sperm cells and oocytes to be an elaborate mechanism for checking
the compatibility of oocytes and fertilizing sperm since both must be involved in the restoration of
oxidative damage to DNA [40]. It is believed that BER is the primary pathway for the restoration of
oxidative damage in the zygotic genome. However, other repair systems can also contribute to the
restoration of embryonic DNA at this stage of development [6]. DSB restoration in the zygote occurs
using NHEJ and homologous recombination (HR) repair pathways. These pathways are not equally
important during the cell cycle. The choice of DSB repair pathway depends on the developmental stage
of the embryo and the cell cycle. NHEJ works throughout the cell cycle, while HR functions during the
S/G2 stage. DSBs obtained by stopping replication are preferably restored using HR [43]. It is believed
that at the zygotic stage, NHEJ plays an essential role in the restoration of sperm DSBs [44].

During fertilization male and female genomes fuse to form a zygote nucleus. Dynamic chromatin
and protein rearrangements require post-translational modification, such as poly(ADP-ribosyl)ation,
for the post-fertilization development. In addition, poly(ADP-ribosyl)ation of nuclear proteins is
necessary for the detection of DNA strand breaks and the recruitment of repair factors to damaged sites.
Poly(ADP-ribosyl)ation is catalyzed by enzymes of the poly(ADP-ribose) polymerase-1 (PARP) family.
Cellular stress stimulates the activity of poly(ADP-ribose) polymerase-1 (PARP-1) on binding to DNA
strand breaks, playing a key role in their repair. Inhibition of PARP-1 in oocytes impacts negatively
on embryo survival [45]. Mice with homozygous mutations in the PARP-1 gene are viable, although
cells lacking PARP-1 are hypersensitive to many DNA-damaging agents, and double homozygous
knockout of PARP-1 and PARP-2 leads to embryonic mortality [45]. PARP-1 is one of the first proteins
involved in the repair of DSBs based on micro-homologous end joining (MHEJ). PARP-1 has an affinity

100



Genes 2020, 11, 1138

for the 3′-ends of DNA and competes with Ku proteins for binding to DNA upon damage, switching
DSB repair pathways from NHEJ to MHEJ [46,47].

Normally, the paternal and maternal pronuclei in the mouse zygotes initiate DNA replication
nearly synchronously between five and six hours after fertilization. But in response to DNA damage
in the male pronucleus the zygote reacts by slowing down the replication of paternal DNA for up
to 12 h, ultimately leading to a halt in embryonic development. Moreover, the replication delay
in the female pronucleus does not occur. Pronuclei act independently, stopping DNA synthesis in
response to DNA damage in only one pronucleus. The lack of synchronization in DNA replication
between the two pronuclei in response to damage in the paternal DNA leads to two pronuclei at
different stages of DNA replication being in the same cell [48]. Low expression of CDKN1A (p21)
gene at the early embryo stage may result in inability of the embryo to respond to DNA damage by
stopping the cell cycle. p21 is a target of p53 and mediates p53-dependent cell cycle arrest or apoptosis.
The p53-dependent S-phase checkpoint functions at the zygotic stage to inhibit replication of damaged
DNA [16]. p21-mediated cell cycle arrest occurs later, preventing delayed chromosome damage. Thus,
during early development, embryos are protected by mechanisms regulated by p53 and p21 [49].
The first signs of apoptosis, such as cytoplasmic fragmentation, in the case of excessive unrepaired DNA
damage, appear only at the two-cell stage in mice and four-cell stage in humans. However, other signs
of apoptosis, including condensation of chromatin and cytoplasm with subsequent DNA degradation
and nuclear fragmentation, are not observed until the morula and blastocyst stages (Figure 1) [48].

4. Repair at the Cleavage and Blastocyst Stages

Human embryos at cleavage state show a high level of postzygotic chromosomal mosaicism,
including aneuploidy and polyploidy. Mosaicism for the paternal alleles most probably resulted from
mutations in genes that are involved in DNA mismatch repair (MMR), e.g., PMS2 and MSH2 [50,51].
The gene expression profiles of oocytes and one-cell embryos are highly similar, at the two-cell stage the
gene expression dramatically changes. The second change in gene expression of embryonic genomes
occurs at the four to eight cell stage, preceding cell compaction at the morula stage, which explains the
separation between the two-cell and eight-cell stages. Eight-cell embryos and blastocysts slightly differ
in gene expression (Figure 2) [28].

Figure 2. The source and dynamics of mRNA expression during early embryonic development.
EGA—embryonic genome activation. Created with BioRender.com.

Blastocyst formation is the first stage during which the differentiation of cells into two types occurs,
characterized by differences in gene expression between inner cell mass (ICM) and trophectoderm
cells (TE) cells [28]. Subsequently, TE forms tissues of the placenta, while ICM cells give rise to
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embryonic tissues. Since ICM cells give rise to cells forming a new organism, maintaining the integrity
of the genome in these cells is crucial [1]. Due to the high replication rate and the beginning of cell
differentiation in the blastocyst, the expression profile of DNA repair genes differs from oocytes. It is
believed that all DNA repair pathways are present in both the human oocyte and in the blastocyst.
However, some DNA repair genes are expressed in the blastocyst at lower levels compared to the oocyte,
such as MBD4, NEIL1, OGG1 (BER); RAD50, RAD54B, RBBP8 (HR); MSH3 (MMR); ERCC5, GTF2H2,
LIG1, RPA1 (NER) [17]. This may be explained by the fact that the oocyte contains maternal mRNA
transcripts to maintain genome integrity before EGA [17]. During development, embryos acquire the
ability to respond to factors that cause DNA damage by activating and regulating DNA repair and
apoptosis genes, similar to what occurs in somatic cells [16]. Mutations in some DNA repair genes
lead to defects in early and later stages, including fetal mortality, infertility, or cancer susceptibility in
postembryonic development. However, the fact that not all mutations in repair genes delay embryonic
development in the early stages of development indicates that some mechanisms of DNA repair are
either redundant or play less active roles during early embryogenesis and rather, may be involved
during later developmental stages. Detailed information about the primary patterns of expression of
DNA repair genes during different stages of development is needed to understand the extent to which
preimplantation embryos can react to and repair DNA damage and to what extent preimplantation
embryos are selectively sensitive to certain forms of DNA damage [16]. This information is difficult
to obtain because the concentration of mRNA expressed in early embryos is quite low. However,
many protocols have recently been developed, for instance, single-cell sequencing, that allow detection
of small amounts of mRNA in each individual cell. Recently, many articles using this method have
appeared [52–54]. Another way to investigate repair pathways in the early stages of development is to
investigate blastocyst-derived embryonic stem (ES) cells.

5. Embryonic Stem Cells

ES cells are pluripotent cells isolated from the inner cell mass of a blastocyst. ES cells are sensitive
to DNA damage and easily undergo apoptosis, removing damaged cells from the pluripotent pool [55].
Additional evidence suggests that DNA damage can cause premature differentiation in these cells.
ES cells have a robust set of DNA repair mechanisms [20]. In particular, ES cells maintain significantly
higher expression levels of proteins associated with HR than their expression levels in differentiated
cells. Additionally, it is believed that levels of HR proteins decrease as ES cells differentiate [56]. ES cells
have very short G1 phase and long period of S phase time can promote the use of HR rather than NHEJ
since many of the proteins involved in HR also participate in DNA replication [57]. Due to the short G1
phase, sister chromatids are available for efficient recombination-mediated repair in ES cells [55]. ES cells
derived from mouse blastocysts (mES) synthesize constantly high level of HR proteins throughout the
cell cycle [56]. It can be suggested that the active HR repair pathway is required for a rapid response
to DNA breaks in ES cells [56]. HR proteins are thought to be highly expressed but remain inactive
until posttranslational modifications are triggered in response to damage. In experiments conducting
treatment of mES cells with DNA break-inducing agents, Rad51, Rad54, Exo1, and γH2AX proteins
were redistributed and concentrated in the nucleus as discrete foci. Therefore, in response to DNA
damage, Rad51, Rad54, and Exo1 proteins are immediately localized at the sites of DNA strand break
regions. It is believed that Rad51, Rad54, and Exo1 are constantly present in mES cells, providing fast
and efficient HR-mediated DNA repair when needed [56]. The MMR also seems to play an essential
role in ES cells, determining the fate of the cell with respect to whether the cell follows the DNA
repair pathway or undergoes apoptosis. High endogenous levels of MSH2 protein in ES cells promote
apoptosis, while low levels promote DNA repair, as occurs in differentiated cells [55]. Even low
levels of MSH2 protein can reduce the number of spontaneous mutations in ES cells compared to
MSH2 knockout ES cells, suggesting that MMR plays a fundamental role in regulating the level of
mutagenesis in preimplantation embryonic cells [55]. NER machinery of ES cells cannot repair damage
after high UV doses resulting in a rapid induction of apoptosis [58]. It is also known that the G1/S
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DNA damage checkpoint in ES cells can be activated upon DNA damage and prevent the cell from
passing into the S phase [56]. However, there are conflicting data on this subject. Other studies indicate
that rapidly dividing embryos and mouse ES cells have a nonfunctional G1/S checkpoint. Therefore,
they cannot stop at G1 in the presence of DNA damage [59]. It is believed that high levels of the
protein phosphatase CDC25A and the downstream CHK1 effector modulate the efficacy of the G1/S
checkpoint in murine ES cells [60]. The ubiquitin hydrolase DUB3/USP17L2 supports high levels of
CDC25A in these cells by removing polyubiquitin chains. The DUB3 gene itself is a target for two
pluripotency factors, ESRRβ and SOX2, and its expression is regulated during development, followed
by rapid suppression after cell differentiation [61]. Therefore, the nonfunctioning control point G1/S is
characteristic of mouse ES cells that are inappropriately associated with the state of pluripotency [62].
However, in human ES cells, the G1/S checkpoint is active, while the S-phase checkpoint is inactive.
This difference may be due to differences in mouse and human embryo cell cycle and differences in
pluripotency maintenance. It may also be the reason for differences in the activation of the embryonic
genome. In mouse, EGA occurs at the two-cell stage, while in human EGA occurs at the eight-cell
stage. Following this hypothesis, it was recently reported that primates have less reliable mechanisms
for genome surveillance than rodents [59].

6. Conclusions

In this review, we briefly survey the repair processes from the oocyte stage to the preimplantation
stage of the blastocyst. In each of these stages, we see changes in gene expression patterns and the
involved repair systems. Oocytes in the GV stage are more susceptible to DNA damage and more
prone to apoptosis, while more mature stage II oocytes do not activate apoptosis and are more resistant
to DNA damage [10]. At MII stage, oocytes actively accumulate transcripts of repair proteins to protect
the genome from DNA damage during fertilization and the first division. After fertilization in zygotes,
maternal mRNAs that accumulated in the oocyte are actively used to repair the sperm genome and to
maintain DNA integrity in subsequent development. Antiapoptotic proteins that protect the early
embryo from death are also active at this stage because apoptosis at this stage would be fatal. However,
in cases of critical levels of damage, developmental arrest occurs, accompanied by cell cycle arrest [48].
As the number of embryonic cells increases, the embryonic genome is activated, and maternal mRNAs
are destroyed [18]. During this period, the embryo becomes more sensitive to external influences.
However, when passing from the stage of a two-cell embryo to the blastocyst stage, its own repair
proteins accumulate, and apoptotic systems that remove blastomeres with damage are activated [63].

As cells differentiate and lose their pluripotency, they acquire repair properties similar to somatic
cells. An active change in the patterns of expression of repair genes during embryonic development
indicates that repair processes are essential for normal functions at all stages of development. Repair
processes in embryonic development are especially important. Currently, there are many gaps regarding
the precise roles and timing of expression of some DNA repair genes in the early stages of embryonic
development. The observed stage-specific variations in transcripts and expressed proteins of DNA
repair genes indicate the difficulty in regulating these pathways during development.
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Abstract: The importance of genome organization at the supranucleosomal scale in the control of
gene expression is increasingly recognized today. In mammals, Topologically Associating Domains
(TADs) and the active/inactive chromosomal compartments are two of the main nuclear structures that
contribute to this organization level. However, recent works reviewed here indicate that, at specific
loci, chromatin interactions with nuclear bodies could also be crucial to regulate genome functions,
in particular transcription. They moreover suggest that these nuclear bodies are membrane-less
organelles dynamically self-assembled and disassembled through mechanisms of phase separation.
We have recently developed a novel genome-wide experimental method, High-salt Recovered
Sequences sequencing (HRS-seq), which allows the identification of chromatin regions associated
with large ribonucleoprotein (RNP) complexes and nuclear bodies. We argue that the physical
nature of such RNP complexes and nuclear bodies appears to be central in their ability to promote
efficient interactions between distant genomic regions. The development of novel experimental
approaches, including our HRS-seq method, is opening new avenues to understand how self-assembly
of phase-separated nuclear bodies possibly contributes to mammalian genome organization and
gene expression.

Keywords: phase separation; nuclear bodies; self-assembly; genome organization; gene expression

1. Introduction

Several physical properties of nuclear organization are critical for regulating mammalian gene
expression. In interphase, the genome is highly compacted to fit into the limited space of the cell
nucleus while, at the same time, it remains fully accessible to multiple interactions involving cis- and
trans-acting genomic elements and RNA/protein factors. Such a paradoxical achievement of a compact
but dynamic genome is solved not only by packaging the genome into the chromatin nucleofilament,
but also through a complex compartmentalization of the nucleus that contributes to the functional
genome organization at the supranucleosomal scale (i.e., encompassing few tenths of kb to few Mb of
DNA). The functional role of 3D genome organization has thus become an important component in the
study of mammalian gene expression [1].

Another paradigm has been recently re-examined and developed: biomolecular condensates,
grounded in the classical physical notion of phase separation [2]. While the use of this concept in a
biological context dates back the old notion of coacervate, its relevance has been recently renewed by
technological advances allowing in vivo observations and mechanistic investigations [3].
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Phase separation describes the spontaneous formation of a two-phase system. From a physical
point of view, it covers not only the demixing of oil and water, but also the spatial segregation that can
arise in aqueous solutions, when the attraction between the solute molecules is energetically favored
compared to the interaction between these molecules and the aqueous solvent. The balance between
interaction energies and thermal motion or the ensuing diffusion, described by the free energy of
the system, can lead in appropriate conditions to the spatial segregation of two phases of different
concentrations [4]. This phenomenon is known as liquid–liquid phase separation (LLPS). Indeed,
self-separated droplets display several features of a liquid phase: they are dense (as opposed to gases),
display no rigid order (as opposed to crystals or liquid crystals), and their molecules remain mobile
(as opposed to solids and gels), with permanent exchange between the two phases. These droplets
display fluid-like behaviour, in particular the fusion of adjacent droplets into larger ones and a shape
determined by surface tension. However, their composition, particularly under biological constraints,
make them far more complicated than a mere liquid. Experimental strategies are thus developed to
assess the presence and specificity of phase separation inside the cell [5]. Noticeably, “condensate” is
the term used for molecular assemblies that form through phase separation while the more general
term “hub”covers molecules that cluster together through yet unknown mechanisms.

Phase separation has been first recognized in the cytoplasm, as a mechanism of formation of
stress granules and P-bodies [4]. It has been more recently invoked in the nucleus, for instance
for the formation of membrane-less organelles also known as nuclear bodies. Much work is now
devoted to identifying the hallmarks of in vivo phase separation and devising suitable protocols
to study it [6]. In this review, we will first examine the proposal that nuclear compartments are
phase-separated and could influence transcriptional regulation through their association with specific
genomic sequences [7,8]. We will then present a novel experimental approach, HRS-seq, to test this
working hypothesis.

2. Compartmentalization of Chromatin Interactions

In the past decade, the advent of sophisticated imaging techniques and molecular biology
approaches based on proximity ligation assays (3C/Hi-C) has revealed that beyond the compaction
achieved by packaging the DNA molecule at the nucleosomal level, chromatin is also organized
within the three-dimensional (3D) space of the nucleus [9,10]. This 3D chromatin folding displays
nested features, the most acknowledged being chromatin loops and topologically associating domains
(TADs) where preferential cis-long-range contacts are observed [11]. A higher-order organization level
also exists that partly covers the classic distinction between euchromatin and heterochromatin: the
active (A) and inactive (B) chromosomal compartments [12]. While cohesin and CTCF proteins are
required for TAD organization, these factors are dispensable for the maintenance of chromosomal
compartments, which rely on different organization principle [13–15]. Furthermore, while TADs are
essential for cell-specific genome organization and function [1], they appear to be quite stable between
cell types, and even between organisms along evolution [16,17]. In striking contrast, chromatin loops
and chromosomal compartments appear to vary during cell differentiation [18] and therefore they
presumably play a central role for establishing specific gene expression profiles that determine cell
identities. Several recent works started to decipher some crucial aspects of compartment regulation
during mammalian spermatogenesis [19–22], in oocyte or early embryonic development [23–25],
during cell differentiation [18,26] or reprograming [27] (for a recent review see [28]). However, to
fully understand how 3D genome organization controls mammalian gene expression, it is critical
to focus not only on long-range cis-interactions occurring at specific loci within TADs but also on
trans-associations occurring between TADs within chromosomal compartments.

3. Nuclear Body Assembly by Phase Separation

Nuclear bodies are large membrane-less ribonucleoprotein (RNP) complexes known to be involved
in several nuclear functions. For example, the synthesis of ribosomal RNAs (rRNAs) takes place
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in the nucleolus, the maturation of small nuclear RNAs (snRNAs) occurs in the Cajal bodies, and
the histone messenger RNAs (mRNAs) are transcribed and matured in the histone-locus bodies
(HLBs) (Table 1). One important aspect of functional nuclear compartmentalization is thus related
to nuclear bodies. Some of them, like the HLBs, are known to gather loci that are dispersed in
TADs located on distinct chromosomes, thus favouring coordinated gene transcription and efficient
pre-mRNA maturation [29]. Similarly, the Cajal bodies have also been shown to contain inter-TAD
interactions [30]. Transcription factories and active chromatin hubs are also large RNP complexes
that have been proposed to coordinate gene expression by maintaining specific genes into a restricted
3D space of the nucleus [31]. Large RNP complexes, including some nuclear bodies, thus appear
important for supranucleosomal genome organization in mammals. Indeed, their involvement in
regulating transcription of specific genes suggests that they might be critical for the establishment and
the maintenance of the active chromosomal compartment. However, the demonstration of such a role
has so far been impeded by the lack of a genome-wide method that would allow unbiased profiling
of genomic sequences associated with nuclear bodies. In our view, this is due to a continued lack of
understanding of the physical nature of nuclear bodies in vivo.

Table 1. Classic nuclear bodies: main characteristics and components.

Compartment
Name

Count/Nucleus
Diameter

(μm)
Main

Component
Main Associated

Function
Ref.

Transcription factory 100 - RNA Pol. II mRNA transcription [31]
Nucleolus 1–4 2–5 RNA Pol. I/Nucleolin rRNA transcription [32]
Cajal Body 10 0.5–1 Coilin, SMN 1 Splicing [33]

Gem 10 0.5–1 SMN1 SMN sequestration [34]
Histone Locus Body 2–4 0.5–1 Coilin, NPAT 2 Histone gene expression [29]

Polycomb body 10–20 0.2–1.5 PRC1/PRC2 3 Histone PTMs 4 [35]
PML body 5 10–20 0.1–1 PML Apoptosis, viral defense [36]

Nuclear speckle 20–50 2–3 SC35 6, RNA Pol. II Splicing [37,38]
Paraspeckle 10–20 0.5–1 NEAT1 7 lncRNA Transcription [39,40]

1 Survival of Motoneuron; 2 Nuclear protein, coactivator of histone transcription; 3 Polycomb repressive complexe; 4

PTM = Post-Translational Modifications; 5 Promyelocytic leukaemia nuclear body; 6 Serine/arginine-rich splicing
factor; 7 Nuclear Paraspeckle Assembly Transcript 1.

It has been thought for a long time [41] that nuclear bodies are self-organized around nucleation sites,
e.g., the Nucleolar Organizing Regions -NORs- for the nucleolus or the histone H3-H4 promoter region
for Drosophila HLBs [42–44]. As a precedent, several cytoplasmic components, like the Caenorhabditis
elegans P-granules [45] and centrosomes [46], have been discovered to behave in vivo like self-organized
liquid-like droplets. More recently, based on in vitro experiments, other cytoplasmic structures, like
the glycolytic bodies [47] or the RNA granules [48], have been proposed to form by phase separation
processes. However, experimental evidence supporting self-organization or self-assembly remained
very scarce for nuclear bodies (for reviews see [4,49]). A step forward has been the proposal, based on
in vitro reconstitution experiments, that the phase separation of liquid-like RNP phases could control
nucleolus size and assembly [50,51], as well as account for their sub-compartmentalized organization [52].
The demonstration that the Intrinsically Disordered Region (IDR) of Ddx4 protein (a critical component
of the mammalian analogue to P-granules) can form phase-separated organelles, both in live cells
and in vitro [53], led to the more precise hypothesis that phase separation of IDR-containing proteins
could be a general mechanism for forming and regulating membrane-less organelles. These pioneering
findings paved the way to a number of studies aimed at deciphering whether phase separation is
involved in the organization of other nuclear compartments or bodies.

One can distinguish two phase separation processes: liquid–liquid phase separation (LLPS)
and polymer–polymer phase separation (PPPS). While LLPS occurs through demixing of two
liquid/liquid-like phases, PPPS involves bridging factors binding onto a polymer, e.g., the chromatin
fiber, leading to a polymer collapse (i.e., a change in the polymer shape accompanied with an increase
of its local density) [54]. Beyond the intrinsic nature of the interacting molecules responsible for phase
separation (bridging factors for PPPS vs. weak multivalent binders for LLPS), the main differences
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between these two phase-separation processes lie in the role of the underlying polymer, if any. In PPPS,
the polymer is required not only to nucleate phase separation but also to maintain it [55]. On the
contrary, while an underlying polymer could help nucleation of LLPS, it is dispensable to maintain
phase separation once a given saturating concentration of self-associating multivalent binder molecules
has been reached [54].

Noticeably, phase separation was proposed to be involved in constitutive heterochromatin
domain formation, based on the observation that a major component of the heterochromatin, the
heterochromatin 1 α (HP1α) protein, can form liquid droplets both in vitro and in vivo [56,57].
HP1 self-oligomerization driven by phosphorylation is sufficient to induce HP1 phase separation
in vitro [56]. However, since HP1α compartments can incorporate chromatin [56], the formation of
heterochromatin domains in vivo, could actually be more complex [58] and rely not only on LLPS and
weak multivalent chromatin binders [56,57], but also on PPPS, where a bridging factors, like the HP1
proteins themselves [59], could also induces a partial collapse of the chromatin [54,58].

4. Phase-Separation Models for Transcription Control

Following these discoveries, Phillip Sharp and colleagues proposed a phase-separation model
for transcription control, in which a transcriptional multi-molecular assembly (i.e., a transcriptional
condensate) would form by phase separation at a given locus following the formation of large RNP
complexes induced by the binding of transcription factors at both enhancers and gene promoters [60].
This model was recently reinforced by studies showing that: (i) transcriptional coactivators, like BRD4
and the Mediator complex at active super-enhancers, together with the RNA polymerase II at promoters,
can form transcriptional condensates in vitro [61,62], and (ii) domains driving gene activation in vivo
are also required for phase separation in vitro [63]. Such transcriptional hubs, however, are relatively
small compared to nuclear bodies. Therefore, it is not yet clear if their formation in vivo truly relies on
phase separation and, if so, whether it is based on the demixing of two liquid-like phases similar to
the LLPS observed for larger nuclear compartments like the nucleolus, or whether it reflects a hybrid
situation also involving a polymer collapse process and PPPS as suspected in the case of heterochromatin
domains. In all instances, we should remain careful before considering any transcriptional hub as a
condensate formed by phase separation. Indeed, on the one hand RNA polymerase II was shown to
form clusters or hubs at active genes through electrostatic interactions between its carboxy-terminal
domain (CTD), a prominent IDR, and transcriptional coactivators, suggesting that compartmentalization
may occur here through a LLPS process [7]. On the other hand, the transient unspecific binding of
RNA polymerase II to the largely nucleosome free genome of the Herpes Simplex Virus type 1 (HSV1)
leads to a DNA-mediated nuclear compartmentalization through a mechanism that is clearly distinct
from LLPS [55]. Moreover, given the relatively small size of these transcriptional hubs, the physical
properties that usually characterize the liquid state of the matter (like surface tension) may well make
no real physical and biological sense [58,64]. That is precisely why the terms “hub” and “liquid-like
phase separation” are often preferred to “condensate” and LLPS respectively [64]. The difference
between a liquid and other states of the matter (like crystal, amorphous solid, liquid crystal or gel)
lies in the mobility of the molecules, their ordered or disordered arrangement and the response to a
stress (elastic vs. viscous). A whole range of intermediary behaviours are possible (e.g., the viscoelastic
response of a gel). At the molecular scale, the liquid state is best characterized by the mobility of the
molecules which is essentially depending on diffusion. Experimentally, FRAP (fluorescence recovery
after photobleaching) experiments are used to quantitatively assess this mobility [50,57,63]. However,
several caveats have been raised [5,6], the main one being that there are many physical models that
can be fitted to the same fluorescence recovery curves [64]. Indeed, the rate of fluorescence recovery is
not always due to freely diffusing molecules in solution, but could also depend on the local binding to
others molecules. One critical point is thus to find experimental controls that could demonstrate that,
independently of the models, the recovery rate is truly dominated by diffusion rather than binding.
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It has been proposed that this could be achieved, for example, by showing a dependence of the recovery
rate on the size of the bleach spot [65].

In parallel, another work indicated that various IDR-containing proteins form molecular hubs
that could selectively associate in vivo with some chromatin regions by physically retaining targeted
genomic loci while excluding non-targeted regions [66]. This chromatin filter model suggests that such
molecular hubs could bring distal genomic loci together. However, these experiments use a novel
CRISPR-Cas9-based technology (CasDrop) to artificially target chimeric IDR-containing proteins to
chosen genomic sequences. It remains to be seen whether endogenous IDR-containing proteins act
in a similar way on their natural targets. Additional work has shown the potential involvement of
RNA-binding proteins [67].

In Figure 1, we provide an integrated model presenting the current working hypothesis, where we
combine the concepts proposed in [60,63,66] for phase-separated transcriptional condensates involving
long-range cis-interactions and extend these concepts to the probable involvement of nuclear bodies favoring
inter-TADs trans-associations of co-regulated genes, like those observed for HLBs and Cajal bodies [30].

 

Figure 1. An integrated phase-separation model for self-assembly of transcriptional condensates
controlling mammalian gene expression. (a) Transcription factors containing motifs prone to phase
separation (e.g., IDR, Intrinsically Disordered Region) form liquid-like droplets (shaded in blue) by phase
separation. (b) Their DNA binding motifs target specific genomic loci that are specifically incorporated
into the droplets thus forming transcriptional condensates. Alternatively, phase separation could occur
after binding of transcription factors (PPPS) on their target genomic sites in which case the corresponding
DNA sequences act as nucleation sites. (c) Supplemented with the action of RNA processing factors
containing motifs prone to multivalent interactions [67], they bring enhancers, promoters and/or nascent
RNA transcripts in close vicinity, thus stabilizing long-range cis-interactions and promoting transcription.
(d) In some instances, transcriptional condensates containing similar/compatible phase separation-prone
motifs could finally merge into larger nuclear sub-organelles, leading to the formation of nuclear bodies
like the Histone Locus Bodies (HLBs). The latter process brings together loci with similar transcriptional
regulation but located on distinct (Topologically Associating Domains) TADs/chromosomes (orange/red
lines and arrowheads), thus favouring the coordinated expression of the corresponding genes.

Our present working hypothesis, as synthesized in the integrated model (Figure 1), has two
logical consequences: First, studying the physical principles and factors underlying the assembly of
phase-separated nuclear bodies should differentiate at least two main classes of genes, those that are
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contacting phase-separated transcriptional condensates and those that are not, with as many sub-classes
as types of condensates that interact with chromatin. Second, there should be at least two classes of
membrane-less nuclear compartments, those that are depending (in vivo) on polymer–polymer phase
separation (PPPS) and those that are depending on liquid–liquid or liquid-like phase separation (LLPS).

5. HRS-seq: A Novel Method to Explore Nuclear Bodies-Associated Sequences

Further exploration of the role of nuclear bodies in genome organization requires, as previously
mentioned, an unbiased genome-wide sequencing of nuclear bodies-associated sequences. So far, these
sequences have been difficult to analyse because no efficient and reliable method was available to
purify nuclear bodies, presumably due to their membrane-less phase-separated nature.

It is known that performing high-salt treatments of transcriptionally active nuclei makes large
RNP complexes, including nuclear bodies, insoluble [68]. More recently, we have shown that a 2M
NaCl treatment traps the genomic DNA associated with these RNP complexes into the insoluble
material which is easily purified on a filtration unit [69]. The trapped DNA fragments, that we named
the “High-salt Recovered Sequences” (HRS), can then be separated from the rest of the genome by
performing a simple restriction digestion and washing out the soluble material (Figure 2). The HRS
thus remain on the filter unlike the rest of the genomic DNA. High-throughput sequencing of the
HRS (HRS-seq) is then performed to obtain a global profiling of sequences associated with high-salt
insoluble large RNP complexes, including nuclear bodies [70].

 

Figure 2. Principle of the HRS-seq method allowing the high-throughput identification of genomic
sequences significantly associated with large RNP (ribonucleoprotein) complexes and nuclear bodies
(adapted from [69]).

Most existing methods such as FAIRE-seq [71], ATAC-seq [72] or MNase-seq [73–75] aim at
investigating accessibility of the chromatin nucleofilament at the nucleosomal scale. So far, only few
approaches, like the HRS-seq, have been developed to investigate higher-order chromatin architecture
at the supranucleosomal scale. Those include DamID mapping [76], 3C-derived methods like the
Hi-C [12], MAR-seq [77] and TSA-seq [78]. Unlike all of these methods, the HRS-seq is avoiding
delicate chemical crosslinking procedures or the use of specific antibodies that may restrict retention of
some genomic sequences. Furthermore, it generally displays a better genomic resolution (few kb vs.
few hundred kb) and is much straightforward and cheaper than existing approaches. However, in
its present form, the HRS-seq method has several important limitations, the first of which is the fact
that many large RNP complexes are extracted jointly in the insoluble material. A second limitation is
that, contrary to 3C-derived approaches, it does not provide any indication on the physical proximity
of the recovered sequences in vivo. Therefore, there is a clear need for improvements that would
allow to identify sequences present simultaneously within specific subnuclear compartments. While
assessing physical proximity will require to adapt a proximity-ligation assay to the HRS approach, the
first limitation can already be addressed indirectly without modifying the existing HRS-seq protocol.
Indeed, the inactivation of specific nuclear bodies by CRISPR/Cas9 technologies targeting critical
components in relevant cellular models, combined with the present HRS-seq approach comparing
wild-type and mutated cells, should soon allow extensive genomic profiling of sequences associated
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with specific nuclear bodies. This should lead to a much deeper understanding of how nuclear
body-associated sequences and linked gene expression are dynamically affected during embryonic
development and cellular differentiation, as well as in pathological situations where nuclear body
formation is altered. For instance, in Spinal Muscular Atrophy (SMA), mutations of the survival of motor
neuron 1 (SMN1) gene affect Cajal bodies formation and lead to motor neuron death [79]. HRS-seq
experiments on heathy or SMA-patient motor neurons should thus provide new insights on altered
genomic organization and gene expression in the context of defective Cajal bodies.

The two logical consequences presented in the previous section could thus be tested in vivo using
the HRS-seq method or quantitative PCR analyses of HRS assays (HRS-qPCR) in appropriate cellular
models. Indeed, our recent work in mouse embryonic stem cells showed that HRS include sequences
associated with nuclear bodies (like the Cajal bodies, the HLBs, the speckles and paraspeckles).
Moreover, transcriptional hubs formed around super-enhancers are also retained in our assay [69]. In
full agreement with the first consequence mentioned above, we found that two classes of genes can be
defined according to the criterion of their association (or lack thereof) with large high-salt insoluble
RNP complexes [69]. Our work showed that HRS-located genes are highly expressed and associated
with the active chromosomal compartment and active super-enhancers in a cell-type specific manner,
while genes that do not lie in HRS are moderately or weakly expressed.

Testing the second consequence will require experimental differentiation of PPPS from LLPS.
As explained above, these two modalities of phase separation differ by the nature of the interacting
molecules and the role played by the DNA/chromatin nucleofilament. Therefore, LLPS and liquid-like
phase separation should be sensitive to compounds that disturb weak hydrophobic interactions, like
moderate 1,6 hexanediol treatments [80], unlike PPPS that relies on stronger interactions. So far,
sensitivity to 1,6 hexanediol has provided the best experimental evidence in favor of the involvement of
liquid-like phase-separation processes in the assembly of transcriptional condensates in vivo [61,62], as
well as for other classical nuclear bodies like the paraspeckles [81]. Therefore, combining 1,6 hexanediol
treatments with HRS-seq could identify the genomic content of phase-separated condensates formed
by LLPS driven by hydrophobic interactions. In contrast, molecular condensates formed by PPPS or
those that would rely on a phase separation purely driven by electrostatic interactions (i.e., interactions
between charged molecules, that are not disrupted by 1,6 hexanediol) are expected to be unaffected by
1,6 hexanediol treatment.

6. Discussion

The assembly of membrane-less compartments by phase separation appears to be a powerful
mechanism for nuclear compartmentalization that could drive inter-TADs interactions between
distant specific genomic loci. Such a compartmentalization could be essential to coordinate complex
genomic functions, in particular transcription. At the molecular scale, thermal motion involved in
phase-separation processes implies a continuous exchange of molecules between the dense and the
dilute phases. Phase separation depends on the local concentration within the nucleus (or a region
of the nucleus) of critical components, like IDR-containing proteins, and can thus be controlled by
regulating their availability. This could be achieved by simple post-translational modifications
that affect the protein’s ability to establish multivalent interactions, like phosphorylation [82].
Supporting this, PRKACB (catalytic subunit of PKA cAMP-dependent protein kinase) and HIP
(Homeodomain-interacting protein) kinases are required for the in vivo assembly of the Cajal and PML
bodies, respectively [83]. However, little is known about nuclear body homeostasis, which certainly
constitutes a promising topic for future investigations.

Liquid–liquid phase separation is not a feature involving an isolated molecular species but is
depending on the properties of both this species and the solvent. In the case of nuclear bodies, the
solvent corresponds to the complex nuclear environment in which the molecular species of interest is
considered. A modification of the contents of this environment would thus affect phase separation.
Obviously, a structural or chemical modification of the phase separation-prone molecular species would
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also affect spatial structuration. Various means of tuning the physical process of phase separation are
thus possible within a living cell. While in vitro experiments usually monitor physical parameters
controlling phase separation (like temperature or pH), in vivo a specific adaptation of the relative
strength of the molecular interactions, through some post-translational modification of the phase
separation-prone protein, would offer a more precise control of the process.

The current thermodynamic description of phase separation processes is only valid on a large
scale (i.e., involving large enough number of molecules). The direct effects of the intrinsic stochasticity
prevailing at molecular scales are random binding/unbinding of interacting molecules, diffusion and
ensuing concentration fluctuations. They are included only in an average way in the large-scale
thermodynamic description. In case of small systems with a finite number of molecules, (e.g., a
region of the nucleus), discrepancies may arise, among which a modification of the stability regions
in the parameter space, loss of correlations in cooperative assembly, or various diffusion-limited
behaviours. Thus, the robustness with respect to molecular noise of a thermodynamically predicted
phase separation needs to be investigated. In the spirit of studies quantifying the stochasticity of
transcription [84], the analysis of imaging data or measurements obtained from a large number of
single cells observed in the same conditions would assess the variability of the phase separation
phenomenon. On the theoretical side, the thermodynamic approach could be supplemented with
stochastic dynamical equations including a noise term [85] and the simulation of their solutions [60,86].

Finally, to date, investigations have relied on the description of phase separation in the framework
of thermodynamic equilibrium. Nevertheless, active processes are possibly at work in vivo. An
example is the observation of droplet fission [87] that is not accounted for in the current thermodynamic
models of phase separation. Investigating active features of intracellular dynamic organization thus
opens a fascinating research field not only for biologists but also for theoretical physicists. Phase
separation is actually a special instance of the more general concept of self-organization, in which
a long-range spatial structuring emerges from short-range interactions and breaks the symmetry of
the homogenous state. The mechanisms underlying self-organization range from self-assembly of
equilibrium complexes to out-of-equilibrium formation of dissipative structures [88,89]. It is thus
plausible that a variety of different mechanisms could be involved inside the cell.

7. Conclusions

The physical notion of phase separation opens novel research avenues in the field of transcriptional
gene regulation by suggesting a possible interplay between assembly of nuclear bodies and recruitment
of specific genomic sequences. However, it remains to be determined to what extent such interplay is
dependent on phase separation, or on more complex active and/or specific processes. Here, HRS-seq,
combined with other approaches, can be instrumental for dissecting the relationship between 3D
chromatin organization and nuclear bodies, and its implication for both cis- and trans- co-regulation of
gene expression. Understanding the relevance of phase separation in a biological context will require
theoretical studies devising microscopic descriptions accounting for the intrinsic fluctuations present
at the intracellular scale, as well as experimental studies investigating the possible involvement of
active mechanisms.
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Abbreviations
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HLB histone locus body
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IDR intrinsically disordered region
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RNP ribonucleoprotein
TAD topologically associating domain
TF transcription factor
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