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Preface to ”Integration of Electric Vehicles and Battery
Storage Systems”

The Special Issue “Integration of Electric Vehicles and Battery Storage Systems”

(https://www.mdpi.com/journal/energies/special issues/EV battery storage) is a collection

of innovative papers on both stationary battery storage and battery storage in electric vehicles.

The first article is a review paper on operating and investment models for energy storage systems,

aimed at introducing readers to the topic and the existing body of knowledge. The remaining

papers are organized in two categories: stationary storage and mobile storage, i.e., electric vehicles.

The papers on stationary storage are focused on its participation in electricity markets and provision

of ancillary services. All battery storage sizes are covered ranging from transmission-level to

microgrid-scale batteries. This section also contains two rather specific papers, one involving the

design of mobile battery storage to reduce curtailment of renewable energy and the other which

studies bidirectional power converters for battery energy storage. The papers on electric vehicles are

even more diverse. While more general topics include plug-in duration forecasting using machine

learning or the impact of electric vehicles on distribution networks, some more specific papers deal

with the design of specific devices within electric vehicles or the optimal distribution of charging

power. The MDPI Editorial Team and I believe the interested readers will find the presented topic

interesting and relevant to the existing body of knowledge on this topic and we hope you enjoy

your reading.

Hrvoje Pandžić

Editor
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Abstract: In the context of climate changes and the rapid growth of energy consumption, intermittent
renewable energy sources (RES) are being predominantly installed in power systems. It has been
largely elucidated that challenges that RES present to the system can be mitigated with energy storage
systems (ESS). However, besides providing flexibility to intermittent RES, ESS have other sources of
revenue, such as price arbitrage in the markets, balancing services, and reducing the cost of electricity
procurement to end consumers. In order to operate the ESS in the most profitable way, it is often
necessary to make optimal siting and sizing decisions, and to determine optimal ways for the ESS to
participate in a variety of energy and ancillary service markets. As a result, many publications on ESS
models with various goals and operating environments are available. This paper aims at presenting
the results of these papers in a structured way. A standard ESS model is first outlined, and that is
followed by a literature review on operational and investment ESS models at the transmission and
distribution levels. Both the price taking and price making models are elaborated on and presented
in detail. Based on the examined body of work, the paper is concluded with recommendations for
future research paths in the analysis of ESS.

Keywords: mathematical modelling; energy storage systems; electricity markets; power system
planning; power system operation

1. Introduction

Liberalisation of the power sector caused electricity to become commodified and traded in the
markets. However, unlike other commodities, electrical energy cannot be stored in its original form and
the power systems are operated with the goal of maintaining the balance between the consumption
and the production of electricity at all times. As our society recognised human influences on the
environment and started to require more renewable energy sources (RES), maintaining power balance
became a much harder task and consideration of the uncertainties caused by the intermittent energy
sources became imperative. Several solutions for addressing RES intermittency exist: installing new,
fast ramping generators such as gas power plants, building new transmission lines to secure power
supply in the events of renewable energy shortage, designing demand response programs in which
the demand is managed to meet the production and using energy storage systems (ESS) to store the
surplus and supply the shortage of electricity. While the term ESS can generally represent a larger
set of energy storing technologies, in this paper we use it to describe a set of technologies that enable
storing of electricity in some other form: potential energy in pumped-hydro plants, kinetic in flywheels,
electrochemical in batteries, etc.

ESS as a market participant changes its role from the generating unit to the consumer depending
on the market conditions. This puts the ESS in a unique position and gives it an opportunity to

Energies 2020, 13, 4600; doi:10.3390/en13184600 www.mdpi.com/journal/energies1
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strategically choose its market position in order to maximise profit more efficiently than producers
and consumers, who can only sell or buy in the markets. Figure 1 presents a concise overview of
the models representing the ESS either as a non-strategic player (price-taker) or a strategic player
(price-maker). A price-taker has no influence on market prices and bids competitively. On the other
hand, a price-maker is a strategic player that exercises market power by bidding over its marginal price
or by withholding capacity. The two terms are not completely accurate because even a non-strategic
ESS can influence market prices, as was shown in [1]. For this reason, we adopt terms “strategic”
and “non-strategic” instead of “price-maker” and “price-taker.” In the investments phase, a strategic
ESS, as opposed to a non-strategic one, tends to install larger ESS facilities. In the operational phase,
strategic ESS, compared to the non-strategic one, is generally signified by higher profits earned through
market participation.

Non-strategic

- Lower level in bi-level models

- Modelled as a system asset

Strategic

- Upper level in bi-level models

- Price-quota curves

- Strategic price-setting

ESS
size

Figure 1. Modelling approaches to strategic and non-strategic ESSpresented in this paper.

Based on the system connection and size of storage, technical literature divides the ESS in two
groups: transmission-level and distribution-level. Transmission-level ESS are large-scale installations
connected to the transmission network such as pumped-hydropower stations, compressed air energy
storage plants and large-scale battery storage plants. Sizes of these facilities range from a couple
of megawatts to a couple of gigawatts. Distribution-level ESS are smaller systems connected to the
distribution network which can be placed at the consumers’ premises (behind the meter) or be a
part of a microgrid, virtual power plant or distribution grid operator’s (DSO’s) assets. The size
of such facilities depends on the distribution system operator’s grid rules and is usually less than
one megawatt. We adopt this approach as well, analysing transmission- and distribution-level ESS
separately. The analysed body of literature consists of 57 articles on investments and 77 on the
operating of ESS in transmission and distribution systems. Various markets in both investment and
operating phases were considered for ESS participation in these papers, which is outlined in Figure 2.

Figure 3 shows a large gap between the number of papers dealing with transmission- and
distribution-level ESS in operational phase. The gap is understandable if we take into account the fact
that large numbers of papers on ESS operating in real-time markets employ optimal control algorithms,
which are out of scope of this review.

Technological background for ESS can be found in [2–4]. Luo et al. [2] presented an overview of
ESS technologies and listed possible applications for ESS in electrical power systems. A more recent
paper by Koohi-Fayegh and Rosen [3] also focused on technologies and listed a smaller number of
potential applications, concluding with a list of technological issues that researchers are facing, such as
the need to increase the cycling ability for electrochemical storage and to discover new materials
for all types of energy storage. The paper singled out hydrogen storage as the most promising
technology for the future. A comparison of conclusions from [2,3], indicates that the majority of the

2



Energies 2020, 13, 4600

earlier issues have been solved, but some still remain open, such as seasonal storage, especially at
the distribution level. Khan et al. [4] presented not only an overview of ESS technologies but also the
potential for storing primary energy sources, i.e., natural gas and coal. This is interesting in the context
of multi-energy systems where ESS could be displaced by primary energy source storage.

Investment

- Planning models

- Capacity market

years

Operation

- Self-scheduling

- Energy markets

- Ancillary service
markets

day-ahead

- Self-scheduling

- Long-term energy
trading

- Long-term ancillary
service trading

months/seasons

- Energy markets

- Ancillary service
markets

real-time

Figure 2. Investment and operational phases represented in the ESS models.

0 20 40 60 80 100

Operation

Planning

Percentages %

Transmission Distribution

Figure 3. Shares of the papers for transmission- and distribution-level ESS in operational and
investment phases.

ESS planning is a widely reviewed area. Awadallah and Venkatesh [5] presented a modelling
framework and reviewed literature dealing with ESS planning and operation in distribution networks
but did not address uncertainties in models. As a conclusion, they expressed the need for more general
studies in the distribution systems—the reason being that the body of literature contains results that
are hard to generalise. They also concluded that more research on market participation of the ESS
in distribution network is needed and that development of techniques for long-term large-capacity
ESS operation are necessary to enable seasonal price arbitrage. Lorente et al. [6] performed a short
review of research papers on ESS planning published between 2016 and 2018 and concluded that
the ESS impact on prices is commonly ignored in the planning models. They also stated that more
research on ESS siting is needed. After a thorough literature review wherein they categorised ESS
expansion planning models via different modelling approaches and listed objective functions and
constraints, Sheibani et al. [7] recognised open issues in ESS expansion planning. These included the
necessity of risk assessments for investors, determination of the optimal financial support for ESS
expansion and consideration of different services to system operators. The authors stated, based on
conclusions from several case studies, that it is not profitable for the ESS to participate in only one
market and the investors must consider more revenue streams. This is in accordance with conclusion
drawn by Zidar et al. [8], who reviewed solving methods for ESS siting and sizing in distribution
grids, categorising them into: mathematical programming, exhaustive search, analytical methods and
heuristic methods.

Optimal financial support for ESS was addressed by Miller and Carriveau [9], who gave a review
of financing opportunities for ESS investors. They presented the state-of-the art of the financing
schemes categorised as: governmental incentives, partnering with the renewable technologies and
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innovative finance models. Koohi-Fayegh and Rosen [3] confirmed that governmental policy support
will play a large role in development of ESS technologies. However, the latest EU energy legislation,
except for some special circumstances, forbids the transmission system operators (TSOs) and DSOs
from owning ESS [10]. It remains to be seen whether this will slow down ESS integration in the
European power system or will just shift the focus to the privately owned ESS.

Mejia and Kajikawa [11] performed data analysis of a large number of papers and patents.
Their findings show an overlap in topics covered by the research community and industry that
contains optimisation techniques for ESS operation and planning and various topics in the area of
materials science.

Traditionally, ESS have been used for peak-shaving and energy arbitrage, but nowadays they
are considered for balancing, congestion management and other purposes as well. As many ESS
technologies are reaching maturity and their investment costs are decreasing, the following questions
have arisen: how can they operate profitably in today’s markets; what capacity and which storage
technology should be installed; and where should they be placed? To answer these questions,
the scientific community uses mathematical models for simulation and optimisation. In this paper,
we present the work aimed at answering these questions. We concentrate on the research of market
participation of the ESS during the operational and investment planning phases. Our contribution
to the body of literature is a detailed survey of mathematical models for the analysis of ESS used for
said purposes. Based on the survey, we provide recommendations for future research in the area of
market-participating ESS.

The paper is outlined as follows. The standard mathematical model of ESS is given in Section 2.
Section 3 presents a detailed literature survey on ESS market participation, and Section 4 presents
a literature survey on expansion planning. Section 5 describes the ways of dealing with the
computational complexity of ESS models. We conclude the paper in Section 6.

2. Energy Storage System Models

This section presents a standard model that represents any type of ESS mathematically,
without assuming any technological details. As a generic mathematical model, the measuring units
associated with the variables and parameters are there for illustration purposes and can be scaled up
or down. Depending on the modelling objective, some of the constraints from the following set can be
left out or modified:

0 ≤ pch
t ≤ Pch · xt, ∀t ∈ T (1)

0 ≤ pdis
t ≤ Pdis · (1 − xt), ∀t ∈ T (2)

et ≤ E, ∀t ∈ T (3)

et ≥ E, ∀t ∈ T (4)

eT ≥ E0, (5)

et = et−1 + ΔTpch
t ηch − ΔTpdis

t /ηdis − ΔTploss
t , ∀t ∈ T (6)

Equation (1) constrains the ESS charging power below its charging power rating Pch and

Equation (2) does the same for the discharging power rating at Pdis. In the ESS siting and sizing
models, the right-hand-side (RHS) coefficients can be variables instead of parameters. Binary variable
xt ensures that the ESS is never charged and discharged at the same time. Generally, binary variables
turn a model into a mixed-integer program, which complicates the solution procedure, which is the
main reason for neglecting them in the models. Binary variables can be omitted without consequences if
the considered market conditions are such that it would not be profitable for the ESS to be both charged
and discharged at the same time. However, simultaneous charging and discharging is profitable,
assuming imperfect efficiency of the charging/discharging cycle, during negative market prices.

4



Energies 2020, 13, 4600

In addition to constraints (1)–(6), Tejada-Arango et al. [12] constrained the ESS power by a
ramping constraint for transition between charging and discharging mode as follows:

(
edis

t − edis
t−1

)
−

(
ech

t − ech
t−1

)
+ r+t ≤ τRU ∀t ∈ T (7)(

ech
t − ech

t−1

)
−

(
edis

t − edis
t−1

)
+ r−t ≤ τRD ∀t ∈ T (8)

In Equations (7) and (8) edis
t and ech

t are discharged and charged energy during one time period,
r+t and r−t are up and down ramping capacity reserves of the ESS and RU and RD are ramping limits.
Ramping constraints of the ESS are often ignored because of the assumed instantaneous change in the
power input or output levels. It was shown by Poncelet et al. [13] that generators’ flexibility constraints
play an important role in the ESS investment models. The same should be true for the ESS flexibility
constraints, especially those ESS offering flexibility services to the system. Therefore, it is expected that
more models with ESS ramping constraints will appear in the future papers.

Equation (3) limits the state of energy from above to its energy rating E, and Equation (4) from
below to E. It is important to impose this lower limit to state of energy to decrease the rate of
degradation for batteries or to preserve the minimum water levels in pumped-hydro storage units.
Equation (5) ensures that the final state of energy is not lower than the initial one (E0). This way it
is certain that the ESS does not make profit by merely selling the leftover energy from the previous
optimisation period and the model is simpler to incorporate in the long-term optimisation problems.

The last Equation (6) represents the state of energy calculation for all time periods of the considered
time horizon. While Equations (1) and (2) constrain ESS power and Equations (3)–(5) constrain its
energy levels, Equation (6) connects the two. Instead of state of energy (SOE), an absolute value
that has a physical meaning in the field of power system economics, some authors calculate state of
charge (SOC), which represents percentage of SOE relative to its energy rating. The first term in this
equation represents the state of energy at the previous time step. This term is usually replaced with
E0 for the initial time period. Hemmati et al. [14], who included in their model initial state of energy
as a decision variable, showed that the initial state of energy has an impact on planning decisions
and should be selected with care. The second term is the amount of energy charged into the ESS
during period ΔT, and the third is the amount of energy discharged from it during the same period,
with the assumption that the said powers are constant over the time period. The parameters ηch and
ηdis are charging and discharging efficiencies of the ESS. The efficiencies used in this equation are not
known for electrochemical ESS so one round-trip efficiency is commonly used instead of the separate
charging/discharging efficiencies [15]. The last term represents the lost energy. This term can also be
represented as a percentage of the previous state of energy and written as a coefficient of et−1. Losses
materialise because of the self-discharge of the ESS over time. When modelling the ESS short-term
operation, such as participation in the day-ahead or intraday markets, this term is often ignored [16,17],
but it is taken into account in the long-term models [18].

Simple as it is, the presented generic model is not the best representation for every ESS technology.
It works well for the energy storage technologies where the state of energy depends linearly on the
charging power. However, batteries are usually charged with the the constant-current–constant-voltage
(CC–CV) characteristic. In the CV charging phase, with the constant voltage and decreasing charging
current, this model is not accurate. Several different battery models have been developed to address this
issue. It was shown that more accurate models perform more realistically in the market environment.
The first such model comes from [19], and reads:

pch
t ≤ Pch · xt, ∀t ∈ T (9)

pch
t ≤ Pch · xt ·

E − et

E − Ecc−cv
, ∀t ∈ T (10)

5
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In these equations Ecc−cv is the state state of battery’s energy at the CC–CV breakpoint.
The authors here accounted for the decreasing charging current in the CV phase by assuming
that the current is linearly decreasing and the maximum charging power is limited accordingly.
Both Equations (9) and (10) limit the charging power, but if the state of energy is above the CC–CV
breakpoint, only the (10) is the binding constraint.

The second approach, which uses the Δe − e characteristic to represent how much energy is left to
be charged to the ESS depending on the current state of energy, was presented in [15]. This approach
uses a piece-wise linearisation of the Δe − e function to limit the charging power at all time periods
as follows:

et =
I−1

∑
i=1

eti, ∀t ∈ T (11)

eti ≤ Ri+1 − Ri, ∀t ∈ T, i ∈ I (12)

pch
t =

F1

ηΔT
+

I−1

∑
i=1

Fi+1 − Fi
Ri+1 − Ri

· Δet

ηΔT
, ∀t ∈ T (13)

In Equations (11)–(13) Fi are breakpoints on the Δe axis, and Ri are breakpoints on the e axis.
Gonzalez-Castellanos et al. [20] defined non-linear charging and discharging characteristics and

approximated them by a convex combination of the sampling points. This way, the structure of
Equations (1) and (2) does not change and the non-linearity is addressed through the RHS coefficients
alone, specifically maximum charging and discharging power and state of charge. The authors in [20]
also recognised the non-linear connection of the battery efficiency to the state of charge and the
charging/discharging power. They used the input and output power as a third dimension for the
convex approximation of the charging/discharging characteristic and defined them as follows:

Pin = Pch · ηch (14)

Pout = Pdis/ηdis (15)

Discharging power is sampled by [Pdis, SOC, Pout] and charging power by [Pch, E, Pin].
In the short-term models, battery cycling is not considered, but for the mid- to long-term

optimisation, the cycle life constraints should be included in the model as well. There are several
ways to include the cycle life in models. Duggal and Venkatesh [21], Kazemi and Zareipour [22],
He et al. [23], Xu et al. [24] and Padmanabhan et al. [25] included battery life duration in the short-term
and long-term scheduling objective functions. Duggal and Venkatesh [21] and He et al. [23] defined
battery lifetime as exponential function of its depth-of-discharge (DOD) and showed that the battery
lifetime decreases as the number of daily cycles increases. Padmanabhan et al. [25] linearised this
function and showed that the linear expression is a good enough approximation of the original.
The lifetime variable was used to analytically calculate the annual operating and maintenance cost
that is, in turn, used to calculate daily operating cost, which is included in the objective function.
Similarly, Kazemi and Zareipour [22] maximised the ESS profit function, calculated as a difference
between the short-term revenues and the annual investment cost. Lifetime used to calculate the annual
investment cost was approximated by the rainflow counting algorithm. This algorithm is commonly
used to determine stress caused by cycling in any system. For batteries, the stress is proportional
to the number of cycles and DOD [26]. Vejdan and Grijalva [27] included cycle life in the objective
function as a coefficient calculated by dividing the capital cost per unit of capacity by double the
number of life cycles. Qiu et al. [28] included battery lifetime in their model as a capacity coefficient
in the state of energy calculation. This coefficient is calculated for each year as a combination of
calendar and cycling ageing and decreases as years go by, reaching zero when the ESS is at the end
of its life. Hajia et al. [29] included a nonlinear lifetime characteristic for battery ESS depending on
the number of cycles and DOD in an expansion planning model. A different approach was presented

6
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by Gantz et al. [30] who limited the number of cycles in a month through a constraint. The limit in
this constraint is calculated from data found in [31] by dividing the expected number of cycles by
design life (in months). Mohsenian-Rad [32] used a constraint to limit the number of daily cycles as
well and showed that choosing the number of daily cycles is important for finding a trade-off between
the yearly profit and the battery lifetime.

Notice that all constraints mentioned until now refer to the real power modelling. However,
papers that also consider reactive power injections by ESS have started to appear. These are mostly
models focused on distribution grid applications of ESS, where AC power flow is more common
than in the transmission-level studies. Some papers incorporate AC network constraints without
considering possibility of ESS to offer reactive and real power [33]. However, there are also those that
implement AC constraints for ESS [34–38]. Models with AC power flow are more rare because the
non-linearity of the constraints renders them harder to solve. While DC power flow models are good
enough for economic analysis, AC power flow is necessary for investigation of technical aspects of
ancillary services such as voltage regulation. In addition to Equations (1)–(6), such models contain the
following constraints on reactive power flows [39,40]:

pt = pdis
t − pch

t (16)

p2
t + q2

t ≤ s2
t (17)

where pt is net real power flow, qt is reactive power flow and st is maximum apparent power flow of
the inverter.

3. Market Participation of the ESS

In this section, an overview of the current state of the research on market-participating ESS
is given. Figure 4 shows markets in which the ESS participation was investigated in the reviewed
literature. It is evident from Figure 4 that most of the literature considers ESS participation in energy
markets and fewer number of papers consider ancillary service markets. A big gap between these
numbers is understandable because most papers in which ancillary service markets are considered
also include energy market participation. The reasoning behind this is that it is cheaper for the ESS to
buy electricity in the energy markets to prepare for offering ancillary services to the system than to
participate only in an ancillary service market. Figure 4 also shows that there is much less literature
that covers the market participation of distribution-level ESS. This is not a surprise, as the wholesale
markets often have rules that limit the participation of smaller distributed resources. The number of
papers addressing market-participating ESS at the distribution system level is expected to grow with
the development of flexibility markets at this level.

3.1. Different Applications of ESS in Power Systems

The reviewed literature can be divided into three large groups based on the application of ESS:
market arbitrage, supporting RES integration and long-term self scheduling. In recent years, both the
scientific community and the industry are considering the ESS for other applications, such as voltage
regulation and black starts. This section gives an overview of the key findings on these applications.
A detailed overview of different ESS applications can be found in [41].
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Figure 4. Share of the reviewed literature that considered ESS operation in different markets.
Abbreviations: CAP, capacity; EN, energy market; RM, reserve market; BM, balancing services market.

3.1.1. Market Arbitrage

The most common market operation of an ESS is price arbitrage, i.e., buying energy when the
prices are low and selling it when the prices are high. In electricity markets, this generally coincides
with the low and high power consumption so the price arbitrage is also the energy arbitrage. However,
the term energy arbitrage usually denotes operation outside of wholesale markets, e.g., balancing
energy fluctuations from RES or variable loads in microgrids. Arbitrage was explicitly considered
by many researchers. Thatte et al. [42] used robust optimisation to determine the optimal bidding
strategy for ESS performing arbitrage in the day-ahead market. Xia et al. [43] showed by simultaneous
perturbation method that an ESS in unit commitment can be used for energy and emissions arbitrage.
Mohsenian-Rad [44] considered using distributed ESS for price arbitrage in a coordinated way so
some ESS can be buying while others are selling electricity. The presented case study indicates
that congestions are beneficial for this behaviour of ESS. Shafiee et al. [45] had an ESS performing
arbitrage while taking into account uncertainty of price forecasting. Wang and Zhang [46] modelled
ESS performing arbitrage in a real-time market as an arbitrage maximisation problem. Ciftci et al. [47]
placed an ESS within a microgrid to be used for energy arbitrage and load following. They concluded
that the possibility to offer multiple services to the microgrid might encourage investments in ESS.

A special type of arbitrage is the inter-temporal arbitrage between two time-scales,
e.g., the day-ahead and the real-time markets, which was investigated in [48–50]. Braun [48]
modelled a pumped-hydro storage and showed that inter-temporal arbitrage allows storage
operators to exploit price differences between the two markets to optimise their short-term positions.
Krishnamurthy et al. [50] showed that ESS performing inter-temporal arbitrage between day-ahead
and intraday markets result in higher profits than those performing arbitrage only within the two
markets. Zakeri and Syri [49] modelled a battery storage performing arbitrage between day-ahead
and intraday markets in Nordic countries and concluded that a high share of hydropower plants in
these markets reduces profitability potential for batteries.

3.1.2. RES Balancing

Another business case for an ESS is balancing the production from intermittent resources.
Many papers investigated the possibility of applying an ESS for balancing variable wind
production through coordinated optimisation or market mechanisms such as unit commitment.
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Castronuovo et al. [51] recognised three major ways in which an ESS and an RES can be coordinated:
(1) as one facility in which the ESS cannot purchase power from the market so it is only used for wind
power balancing, (2) ESS is independent of the wind power plant but can provide reserve to balance
its production and (3) both systems are a part of the same virtual power plant. This categorisation is
on a trace of the general categorisation of ESS used for RES balancing. They can either be a part of the
same or separate facilities. Usaola [52] analysed the profit potential of a thermal solar plant with liquid
salt storage participating in the day-ahead market. Rahimiyan and Baringo [53] modelled combined
ESS-wind power plant facility performing arbitrage between the day-ahead and intraday markets.
Shu and Jirutitijaroen [54] concluded that for very small wind power plants (a few kilowatts) it would
not be profitable to install an ESS for balancing. Yuan et al. [55] showed that capacity of an ESS in such
combined facility influences profit and should be a decision factor along with the bidding strategy.
Garcia-Gonzalez et al. [56] compared performances of the uncoordinated and coordinated operation of
an ESS and a wind power plant and concluded that the coordination of the two increases profits for
both facilities. The same conclusion was reached by Khodayar and Shahidehpour [57] and Daneshi
and Srivastava [33], who compared the profits of a wind power plant and an ESS owned by the same
company with and without coordination. Coordinated operation of an ESS and a wind power plant
was also analysed by Sánchez de la Nieta et al. [58] who developed bidding strategies and tested them
on Iberian market data. The same analysis was performed by Thatte et al. [59] on West Denmark
market data. Jiang et al. [60] considered using ESS to mitigate risks related to wind forecast errors
and to minimise system operation cost in centralised unit commitment. Li et al. [61] showed that ESS
in unit commitment models with wind power plants decreases wind curtailment, load and reserve
shortfalls and total system operation cost.

3.1.3. Self-Scheduling

Generalisation of the models that include coordination with intermittent resources are the
self-scheduling models. The need for self-scheduling comes from the balancing responsibility and
the goal of profit maximisation of market participants in decentralised markets. Varkani et al. [62]
proposed a self-scheduling strategy for coordination of a pumped hydro plant and a wind power
plant participating in the day-ahead market, while the pumped hydropower plant participates in the
regulation reserve market as well. Parvania et al. [63] compared results of self-scheduling models for
decentralised and centralised ESS, and the results indicate that the centralised ESS is more beneficial
for the system. Self-scheduling models are often used for modelling the long-term operation of
ESS. Such models are less common in the literature, which confirms that the long-term operation
of ESS is still an open issue [2,3]. While Kazempour et al. [64] modelled a pumped-hydropower
plant as part of a cascade to maximise profit of the whole system, Kazempour et al. [16] considered
a self-scheduling pumped-hydropower plant aiming to optimise amount of energy to be store for
one week ahead. Baslis and Bakirtzis [65] presented a pumped-hydropower plant in a long-term self
scheduling model aware of its influence on prices and showed that such facility utilises strategy led by
long-term objectives, independent of the short-term water inflows. Specifically, long-term contracts
for large volumes can motivate ESS to behave counter-intuitively in the day-ahead market, dropping
the price during the discharging hours because the energy is actually sold at the forward-contracted
price. Thatte et al. [42] optimised the bidding strategy of an ESS performing arbitrage for one day
and for period of 90 days. Kazemi and Zareipour [22] focused on the long-term scheduling of a
battery considering the impact of the short-term operation on the battery lifetime in the long run.
Pandžić et al. [66] analysed the influence of the optimisation period on profits of an ESS operator and
concluded that it is best for a virtual storage plant to optimise operation over the scheduling horizon
of at least two days. Alvarez et al. [18] used the future cost function to model the influence of ESS’
long-term strategy on its short-term operation. They showed that fixing the ESS’ state of energy to the
previously scheduled long-term amounts increases operational costs and therefore decreases profit of
the virtual power plant (VPP).

9



Energies 2020, 13, 4600

3.1.4. Ancillary Services

Besides energy arbitrage and RES balancing, an ESS can offer various other ancillary services
to the network operators. Unlike the ESS performing arbitrage, those ESS that offer predominantly
ancillary services make smaller numbers of cycles and therefore last longer. This was confirmed by
Fleer et al. [67] who assessed profitability of ESS offering primary frequency reserve in German markets
considering the uncertainties of reserve prices and investment costs. Thien et al. [68] considered ESS
participation in German reserve markets but here the emphasis was placed on the market rules,
showing that the decrease of duration of the traded products from 30 to 15 min is beneficial for the ESS.
German balancing markets also allow ESS participation, the profitability of which was investigated
by Olk et al. [69]. ESS considered for frequency reserve was already incorporated in many market
environments, as is evident from Tables 1–3.

Table 1. Literature survey on the competitive ESS operating at the transmission level. (Abbreviations:
CAP, capacity; EN, energy only; VR, voltage regulation; RM, reserve market; BM, balancing market).

Modelling Technique Network Unconstrained Network Constrained Trading

Deterministic

[70] CAP
[48,49,52,64,71–75] [20,25,33,43,63,76–78] EN
[71] VR
[49,64,71,75] [25] RM
[64,71] BM

Stochastic
[1,23,50,54,56,58,62,79,80] [32,57,61,81] EN
[23,62] RM
[1,23,62] BM

Interval [82] EN

Robust
[16,22,60,83] EN
[16,22,83] RM
[16,83] BM

Chance-constrained [58] [51] EN

Risk-contrained [16] EN RM BM

Other ancillary services are usually not procured through centralised markets, so the literature is
less thorough in the areas of the market-based profitability of black start, voltage regulation and other
services. There are, however, many examples of researchers investigating the possibilities of using
ESS for such purposes. Black start is an interesting option for the ESS but even more so for hybrid
facilities comprised of an ESS and a generator. Li et al. [84] presented a method of configuring an
ESS combined with a wind power plant for the purpose of establishing the voltage and frequency for
starting-up thermal power plants. Large shares of RES installed in distribution grids can cause nodal
voltages to increase or flicker. The idea of using ESS to regulate voltages has been gaining popularity
in recent years.

Most of the research in this area deals with voltage control in distribution networks, where ESS
can impact voltages by changing its charging/discharging level. Sugihara et al. [85] proposed a subsidy
programme offered by the DSO to the ESS owners in order to control their ESS when there is a need
for voltage control and proved that it is possible to use customer-owned ESS for voltage regulation.
Opathella et al. [71] showed that an ESS of any size can collect revenue by selling various ancillary
services. Their results indicate that the largest sources of revenue for ESS are voltage and frequency
regulation, while energy arbitrage, reserve and black start bring much smaller shares of the profits.
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3.2. Market Opportunities for ESS at the Transmission and Distribution System Level

Based on the voltage level a facility is connected to, ESS are categorised as transmission- or
distribution-level ESS. ESS connected to the high-voltage transmission networks are large-scale facilities
that can participate in wholesale markets or offer various services to the power system and its users.
For most of transmission-level ESS applications, DC load flow is an acceptable approximation and
reactive power flows are not modelled. However, this does not stand for the distribution-level ESS
that are connected to the medium and low voltage levels. They are generally smaller in size and thus
unable to participate in wholesale markets directly. However, there are various solutions that allow
their indirect participation, e.g., via aggregators. Directly, facilities from this category can offer energy
and ancillary services in retail or local energy markets.

Retail markets were traditionally set up only for electricity consumers to procure necessary energy,
and the adoption of the prosumer paradigm has started only lately. Markets at the distribution system
level, both energy and ancillary services, are still not as developed like those at the transmission level;
thus there are far fewer profit opportunities for the ESS there. Furthermore, while the transmission-level
markets can have price-setting mechanisms based on network constraints, current distribution-level
market design is much more complicated and specific to the location. In other words, the influence
of the location on ESS profits is easy to calculate at the transmission system level, as opposed to the
distribution system level where each DSO can have its own congestion-management mechanism and
incentive scheme set in place.

In this work ESS are categorised as transmission or distribution-level based on the distinction in
size and possible applications as the asset.

3.2.1. Transmission System-Level ESS

As shown by many researchers who modelled ESS operation at the transmission level, placement
of an ESS within the grid influences its profitability. Li and Hedman [79] showed that transmission
contingencies can limit the amount of power that an ESS can deliver or store, increasing the
wind spillage. Wang et al. [76] showed that congestion is beneficial to the ESS profit in the
markets where locational marginal pricing (LMP) is used. The same conclusion is supported by
Mohsenian-Rad [44]. The LMPs are used in all papers covered by this study but one, where zonal
markets are considered. Weibelzahl and Märtz [77] investigated how ESS influence optimal zonal
decomposition of a transmission system. They compared optimal zone allocation for cases with
and without ESS and concluded that storage facilities change absolute value and direction of
transmission flows and zonal prices and can therefore greatly influence the optimal number of zones
and their boundaries. Mohsenian-Rad [32] investigated the impact of many other parameters, such as
seasonality, storage efficiency, charging and discharging rates and battery life on the ESS profit.
Nasrolahpour et al. [86] considered the impact of ramping constraints of conventional generators on
ESS operation and concluded that profit of an ESS is higher in systems with less flexible resources.
Similar conclusions were reached by Poncelet et al. [13], who analysed relevance of flexibility
constraints in unit commitment for planning models.

Most of the papers on the transmission-level ESS consider participation in energy-only markets
(see Figure 4), both on the day-ahead and the real-time scale. However, the body of literature that
considered ancillary services and capacity markets is expanding due to a general conclusion that an
ESS can hardly be profitable by trading only energy and the investors should consider participation in
different markets to maximise their profits [8,16]. Table 1 contains information on markets that are
considered for ESS participation in the papers reviewed for this study.

ESS participation in capacity markets is generally constrained by its energy rating. Therefore,
most of the existing capacity markets which allow for ESS participation have mechanisms to prevent
ESS bidding more capacity than they can deploy. Opathella et al. [70] defined the capacity market for
the ESS participation by assigning a capacity factor between zero and one to each market participant.
The factor is zero for the ESS if at the considered moment the expected energy supply is greater than
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the demand, and if the demand is greater than the supply, the factor is calculated by dividing the
necessary capacity by the available capacity of the ESS, capped off at 1.

3.2.2. Distribution System-Level ESS

Although electricity markets that allow participation of distribution-level resources are
uncommon, an ESS at this level has many opportunities to ensure profit, both at retail and wholesale
levels. Moreira et al. [35] analysed services ESS can provide to the distribution grid and the
possible conflicts between them. Babacan et al. [87] modelled distribution-level ESS participating
in the time-of-use pricing retail market, and Jiang et al. [88] investigated the possibility of load
shaping through dynamic pricing. Gantz et al. [30] and Tushar et al. [89] considered a shared
ESS, also called cloud energy storage, and optimal ways to divide its capacity among the users.
Atzeni et al. [90] considered using behind-the-meter ESS and distributed generators to facilitate
demand side management, objective being cost minimisation for each individual consumer. The result
of this consumer behaviour is a flatter load curve, which shows that even selfish actors can be beneficial
to the system if the goal is congestion relief or peak shaving. Gil-González et al. [91] showed that using
an ESS in a distribution grid with high penetration of RES reduces its operating costs. Nazir et al. [40]
explored the possibility of using ESS for loss minimisation in unbalanced distribution grids with high
penetration of PV.

An ESS placed within the distribution grid can participate in the wholesale markets for energy
and ancillary services through aggregators. Parvania et al. [63] investigated how decentralised
ESSs scheduled by an aggregator influence the transmission grid and concluded that this way of
scheduling might be prone to rescheduling after the power flows through the network are realised.
Contreras-Ocaña et al. [78] modelled interactions between an aggregator and ESS units under its control
and between an aggregator and a wholesale market. The interaction between the aggregator and the
ESS was modelled as a Nash bargaining game. Their results showed that rational aggregator is always
beneficial to the system but the same is not true for a strategic aggregator. Therefore, they developed
pricing schemes to prevent the aggregator from exercising market power. Mortaz [92] demonstrated the
impact of geographical diversity on an ESS aggregator’s profit through a risk-measure: more diverse
portfolios are almost always more efficient in handling the RES production. Wang and Kirschen [93]
presented a two-stage model of an aggregator enabling trade between commercial consumer-owned
ESS and day-ahead and real-time markets.

An ESS in the distribution system can participate in markets as a part of a microgrid or a virtual
power plant. In such models, the aim is to optimise the operation of the system by utilising the ESS
potential for energy arbitrage. Pandžić et al. [94] considered an ESS as a part of a virtual power plant
offering in the day-ahead and balancing markets. Giuntoli and Poli [95] modelled a virtual power
plant consisting of distributed generators, ESS and loads. They took into account grid locations of said
resources but used a DC network model, an approximation which works well for transmission-level
models, but is not very accurate for distribution-level ones. Ju et al. [96] investigated how participation
of a virtual power plant containing ESS, distributed generators and loads in different types of demand
response programmes, can benefit the grid. Their results showed that, while the incentive-based
demand response has greater influence on the demand curve, it is most beneficial for the grid to
introduce both the price and incentive-based programmes simultaneously. Ciftci et al. [47] modelled
ESS used for load following and energy arbitrage within a microgrid with the objective of energy
cost minimisation. Alvarez et al. [18] compared behaviour of a virtual power plant with and without
and ESS and showed that ESS does increase the VPP’s profit.Liu et al. [97] optimised a cloud ESS
in a microgrid and define service pricing mechanisms for it. The microgrid in this paper contains
households with rooftop PVs and a cloud energy storage that trades with them.

Table 2 presents the literature review of the distribution-level ESS. It shows that distribution-level
ESS mostly participate in energy-only markets.
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Table 2. Literature survey on the ESS operating at the distribution level. (Abbreviations: EN, energy
only; VR, voltage regulation; RM, reserve market; BM, balancing market).

Modelling Technique Network Unconstrained Network Constrained Trading

Deterministic

[87,88] retail
[30,78,89,90,95] [35,71] EN

[71,85] VR
[71] RM
[35,71] BM

Stochastic [18,94] EN

Robust [53,96] EN

Chance-constrained [47] EN

3.3. Strategic Market Participation

Two most known types of market competition are Cournot’s and Bertrand’s models. Cournot
competition is signified by quantity bids and horizontal shifts of supply functions. On the contrary,
Bertrand competition is signified by price bids and vertical shifts of supply functions. While Bertrand
competition guarantees social welfare maximisation because no-one is motivated to bid more than
their marginal cost, Cournot competition can lead to an equilibrium in which social welfare is not at
the optimum. However, it was proven that for markets with a large number of competing players
Cournot and Bertrand optima are equal [98].

Supply functions are the middle ground between the two extreme cases of competition. Supply
function bids are the most common way the electricity markets are organised. Depending on the
steepness of the supply function, the behaviour of the market participants can be said to follow the
Cournot model (steep) or the Bertrand model (flat). Most electricity market participants follow a
mixed strategy, biding their marginal cost to achieve Bertrand optimum and withholding capacity
to exercise market power in Cournot context. This was confirmed by Lundin and Tangerås [99],
who categorised the behaviour of suppliers in the Nordic power market as Cournot competition
because of the horizontal shifts of supply functions between time-periods. Similar behaviour can
be observed in the Alberta market by Shafiee et al. [100]. However, conclusions in [99] were based
on the the changes in participants’ behaviour between the day-ahead and intraday markets, thereby
concluding that the increase in prices between the markets is a result of capacity withholding when it
can easily be a consequence of capacity shortage.

ESS can arbitrarily behave as producers or consumers. Therefore, they are not simple market
participants and can change market conditions in unexpected ways. Nasrolahpour et al. [72] and
Sioshansi [73] compared the behaviour of an ESS as a strategic and non-strategic agent. They showed
that adding a new ESS to an imperfectly competitive market can decrease social welfare, which is
the opposite of what is expected in Cournot’s model of competition, where an increase of the social
welfare is expected when new participant joins the market.

As ESS do not have fuel costs which mostly comprise marginal costs of generators, the optimal
Bertrand strategy for an ESS is to bid zero price for charging and market cap for discharging [66].
Nonetheless, it was shown that an ESS which strategically chooses prices and quantities can influence
market price and increase its profit. Nasrolahpour et al. [86] proposed a bi-level model of an ESS
that strategically sets prices and volumes in the upper level. They showed that the ESS utilising this
strategy increased the market price while discharging and decreased it while charging, thereby maximising
its own profit. A similar model was used by Wang et al. [76] to show that strategic ESS influence LMPs
and therefore increase profit. A supply competition curve was modelled by Krishnamurthy et al. [50]
as a price–quantity strategy for an ESS performing inter-temporal arbitrage. They showed that
profits of an ESS utilising this strategy are higher on average than of an ESS bidding only quantities.
Fang et al. [101] showed that an ESS strategically choosing when to charge or discharge chooses
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quantities in a way that does not alter LMPs. Shafiee et al. [100] noted the importance of assessing
the impacts of ESS on prices during an economic analysis to avoid behaviour which causes ESS
to be less profitable when behaving as a price-maker than as a price-taker. Zou et al. [102] found
Nash–Cournot strategy for an ESS supporting large-scale RES. With the assumption that RES tend to
increase the difference between peak and valley prices and strategic ESS tend to exploit this difference,
they concluded that strategically behaving ESS can provide flexibility for the RES if they are driven by
selfish objectives.

All these findings are true if only one strategic participant is assumed to exist in the market.
In most of the literature only one strategic player is modelled and the other market participants
are assumed to be behaving competitively. Pandžić et al. [66] modelled competition between three
independent merchant-owned storage facilities via the diagonalisation algorithm. They showed that
profitability of a strategic player significantly decreases when strategic behaviour of other market
participants is neglected.

Table 3 presents a concise overview of the strategic ESS models. While strategic operation is
mostly investigated for energy-only markets, there are several examples of ESS behaving strategically
in ancillary service markets as well.

Table 3. Literature survey on the strategic ESS operating at the transmission level. (Abbreviations: EN,
energy only; RM, reserve market; BM, balancing market).

Modelling Technique Network Unconstrained Network Constrained Trading

Deterministic
[72,73,100,102–105] [17,66,76] EN
[102] RM
[102,105] BM

Stochastic [27,55,65,106] [18,44,86,101] EN
[106] RM BM

Robust [42,59,107] [44] EN

Chance-constrained [55] [92] EN

Risk-contrained [45] EN

3.3.1. Bi-Level Models

The most common way of modelling strategic market participation is through a bi-level structure
shown in Figure 5. This is a practical way of modelling a Stackelberg game. Stackelberg game is a
strategic game with a leader and followers where the leader takes the first move to which the followers
respond by optimising their position within the given circumstances. Therefore, multiple lower-level
problems can appear, as in [86], where there is a lower-level problem for the day-ahead market and
an additional one for each stochastic scenario in the real-time market. There can also be more than
two levels in a model, as in [92] where the three levels optimise the positions of: (1) an aggregator,
(2) an ESS owner and (3) a day-ahead electricity market operator.

A strategic ESS is represented by the upper-level profit maximisation model, while the lower
level represents the market clearing process. The lower-level problem is included in the upper level
as a set of constraints. Decisions from the upper level can be included in the lower-level problem as
parameters. The following is a general mathematical representation of a bi-level problem, where the
upper level minimises function F(x, y) of the upper-level (x) and lower-level (y) decision variables,
subject to the set of constraints represented by function G(x, y); and the lower level minimises function
H(y) of lower-level decision variables, subject to set of constraints represented by the function I(y):
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min
x,y

F(x, y) (18)

subject to: G(x, y) ≥ 0{
min

y
H(y)

subject to: I(y) ≥ 0
}

To be able to solve this problem by a linear programming method, e.g., the simplex algorithm,
the bi-level problem is transformed into a mathematical problem with equilibrium constraints (MPEC)
using the primal-dual transformation and the strong duality constraint or Karush-Kuhn-Tucker (KKT)
conditions. The resulting non-linear program is linearised using the KKT conditions and other
linearisation techniques, such as Fortuny–Amat substitution [108]. The final program is solved
by linear programming or mixed integer programming solvers, depending on the structure of the
upper-level problem. The prices in these models are the dual variables of the lower-level power balance
equations. To be able to apply KKT conditions, the lower-level problem must be convex. Having an
ESS modelled using binary variables in the lower level is an issue because these types of models are
non-convex. This issue is avoided either by modelling the ESS without binary variables [74] or by
using some decomposition technique to solve the problem.

Upper level: Strategic player

Lower level: Market operator

Price bids

Quantity bids

Market prices

Cleared volumes

Figure 5. General structure of a bi-level model. The arrows represent the exchanges of decisions
between the upper and the lower level.

One way to model a price-maker ESS is to place the full ESS model defined in Equations (1)–(5)
in the upper level. Some papers in which this approach is used are [17,27,72,73,76,86,101,104,106].
A different approach is to include in the upper level only the objective function and an auxiliary
variable that represents a strategic decision on bidding. This is the approach taken by Ye et al. [104],
who concluded that while the strategic bidding increases the ESS profit, it decreases the social welfare.
Another conclusion drawn in this paper is that the higher power rating of an ESS causes more strategic
behaviour, and the higher energy rating causes more competitive behaviour. Ye et al. [74] used the
same formulation to model a strategic generator in a bi-level setting and to investigate the impact of a
price-taker ESS on the generator’s market power. The conclusion was drawn that the ESS reduce the
market power during peak and increase it during off-peak hours.

3.3.2. Price Quota Curves

A second approach to the strategic market participation modelling is the definition of the price
quota curves (PQC), used by Shafiee et al. [100] and Shafiee et al. [107]. For the generators, the PQC is
a step-wise decreasing function that shows dependence of the market price on the generated power,
and for the demand it is a step-wise increasing function of the market price dependence on the power
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consumption. A PQC shows how the market price increases with the growing demand and decreases
with the growing generation. In these models, the prices are variables, functions of the charging and
discharging quantities. Baslis and Bakirtzis [65] used PQCs to model a strategic pumped-hydro plant
that withholds capacity in peak hours to induce price spikes and discharges in off-peak hours, thereby
increasing its profit.

3.3.3. Strategic Price-Setting

A third approach to modelling the strategic market participation is to predict prices from the
historical data and place bids in a way that would maximise the profit. This results in an unusual
strategy for electricity markets, bidding maximum available capacity at all times and choosing prices
strategically. This is the approach taken by Thatte et al. [59], Sousa et al. [103] and Thatte et al. [42].
The major deficiency of this way of modelling the ESS behaviour in the markets is the limited accuracy
of predictions.

4. ESS Investment Modelling

Capacity expansion planning is used to ensure that the system has enough resources to supply
the demand at all times. While in the past, capacity planning mostly considered investments in
transmission lines and generators, recent research in this area has taken ESS, demand response
programmes, and other new technologies into account as well.

When planning investments in ESS, capital costs are generally separated into costs for energy and
costs for power rating. Intuitively, this can be explained by pumped hydropower station investments
where dam construction is considered energy cost while costs incurred by turbine and generator
installation are power rating costs. On the other hand, when it comes to stationary battery storage,
the costs of batteries themselves are energy costs, while the cost of a bidirectional AC/DC converter is
reflected in power costs.

The objective of the model depends on the intended usage of the ESS. If the goal of the investor is
performing price arbitrage between different time-scales or markets, the objective is profit maximisation
and there are no budget constraints [72]. If, on the other hand, it is supposed to be used as a system
asset, e.g., for congestion relief or load shifting, the objective is usually cost minimisation and one of the
constraints is the total budget [109]. Dvorkin et al. [110] used a slightly different approach, constraining
profit from below. They showed that, to ensure profitability of the ESS, this lower boundary should be
set to the value of the investment cost.

There are two basic types of energy storage investment decisions: siting and sizing. Siting refers
to the decisions on the optimal ESS placement within a grid, while sizing refers to the decisions on its
power and energy ratings. These decisions are modelled as continuous variables for the continuous
decisions or as binary variables for the yes/no decisions. Examples of continuous storage investment
decisions include [14,111–115]. Storage investment decisions modelled as binary variables can be
found in [109,116,117].

Siting decisions were made flexible by Kim and Dvorkin [36], where the influence of the mobile
energy storage on a distribution grid was investigated. Models of mobile ESS include models of the
transport systems used to move the storage around, such as the railway in Sun et al. [118].

Sizing-only decisions were considered by Nasrolahpour et al. [112] and Qiu et al. [28]. This is in
accordance with the conclusion made by Lorente et al. [6], stating that siting is more critical than sizing
due to complexity of the siting models. On the other hand, Zhao et al. [119], Chakraborty et al. [120]
and Pandžić [121] considered only sizing decisions at a premise of a consumer as the placement of the
ESS in these models is behind the meter.

4.1. Strategic ESS Investments

Until now, only a few papers have considered strategic ESS investment decisions.
As in operational models, these decisions are modelled as bi-level mathematical programs.
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Nasrolahpour et al. [112] compared results of strategic and perfectly competitive ESS sizing decisions
to show how said decisions depend on the chosen strategy. They came to conclusions similar to those
of Ye et al. [104] about energy and power ratings of installed ESS. A strategic investor will choose a
facility with higher power, and a competitive one will choose one with a higher energy rating.

Dvorkin et al. [113] investigated the impact of transmission line investments on profitability of a
strategic ESS investor, noting that investments in transmission lines reduce a number of opportunities
for the ESS. Pandžić et al. [122] similarly investigated coordinated investments in transmission lines
and energy storage but they gave the system operator a choice between investments in lines or storage.
The system operator was placed in the upper level, where it can anticipate decisions of the strategic
ESS investor who was placed in the middle level of the model. The lower level presented market
clearing process. Their results showed that the system operator favours transmission line over ESS
investments even for low ESS investment costs. A strategic investor invests more in storage than the
system operator because it can ensure profits more securely by actively participating in the markets,
which is forbidden for the system operator-owned ESS. Huang et al. [123] analysed the same situation
if the system operator and ESS investor switch places so that the ESS investor is in the upper level
and the system operator is in the middle level. The strategic investor takes an even bigger share of
the market in this configuration. They showed that system operator-owned ESS has no profit for any
investment cost scenario, which is in accordance with the assumption that the system operator uses its
storage in the same way as transmission lines, for social welfare maximisation, and not turning profit.

The impact of optimal allocation of both strategically and non-strategically behaving ESS on price
volatility in energy-only markets was investigated by Masoumzadeh et al. [124]. They showed that,
although an ESS is able to decrease price volatility, it does not remove it completely, and the positive
impact stops when the ESS reaches the profitability limit. Next, they showed that a non-strategic ESS
has larger influence on the price volatility than a strategic one, which is explained by the former’s
social welfare maximisation objective, opposed to the latter’s profit maximisation.

4.2. Transmission System-Level ESS

Investments in ESS can be planned independently or in coordination with other technologies.
The technologies used for coordinated approaches depend largely on the applications of the ESS. At the
transmission system level, besides the stand-alone approach, ESS planning has been investigated
in coordination with transmission networks, generators and renewable energy sources. Table 4
presents various modelling approaches for ESS at the transmission system level. There are not many
models without network constraints, which can be explained by the fact that the ESS exploits network
congestions and LMPs to achieve profit. However, it must be noted that not all of these models include
siting decisions.

Table 4. Literature survey on the ESS investment planning models at the transmission level.

Modelling Technique Network Unconstrained Network Constrained Stages

Deterministic
[125] multiple
[12,126–128] two[129]
[110,111,113,115,122,123,130–133] single

Stochastic
[28] multiple

[112] [14,114,134,135] two
[124,136,137] single

Robust [116] multiple
[117,134,138] two

Chance-constrained [139] two
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4.2.1. Investments in Standalone ESS

Pandžić et al. [125] considered ESS for minimisation of operating costs within a unit commitment
model to determine the necessity for ESS at each bus. The model in this paper is divided into three
stages: first the siting decisions are made; then sizing; and last is the operation stage. Dvorkin et al. [110]
also considered ESS for congestion management and other transmission services, but they modelled the
investments as a bi-level problem, just like Pandžić et al. [111]. Here, a bi-level formulation was used
to model the relations of the siting and sizing decisions and LMPs from the perspective of a merchant
trading off between energy and reserve markets. Hemmati et al. [14] modelled three time-scales of ESS
operation: daily, weekly and seasonal, as three levels within the planning model.

Several private investors in distributed ESS were considered by Saber et al. [139]. The investors
were differentiated by their treatment of risk and their zone within the transmission grid. The model
structured this way can also represent one investor that treats risk differently in different bidding areas
of a zonally structured market.

Zheng et al. [128] studied optimal ESS allocation within transmission system. Unlike most studies
on the transmission system that consider only DC power flows, in this paper AC power flows were
adopted. The model was of a bi-level structure where the upper level represented siting and sizing
decisions and the lower level operational phase.

4.2.2. Coordinated Investments in ESS and Transmission System Assets

While the transmission lines have longer lifetimes, they are more costly and take longer to build
than most ESS technologies. For this reason, an ESS is often considered as a substitute or support for the
transmission lines. Hu et al. [131] showed that deploying ESS can reduce transmission grid investment
costs and MacRae et al. [133] demonstrated that an ESS can be used to postpone investments in
transmission system. Aguado et al. [137] showed that the net social welfare increases when ESS are
included in transmission expansion planning. The relationship between the transmission lines and ESS
expansion was further investigated by Bustos et al. [127], who concluded that the complementarity of
the two depends on many system parameters, such as nodal demand, generation capacity, congestion
and prices. A three-level model was proposed by Zhang and Conejo [116] for coordinated investments
in transmission lines and ESS. The first level determined the investment decisions, while the second
and the third modelled long-term and short-term operations. Nikoobakht and Aghaei [134] proposed
a continuous-time model for coordinated planning of ESS and transmission network in order to
better capture intermittent RES variability, and concluded that the proposed model utilises ESS in
the operational phase better. The lowermost level constraints of the three-level problem used by
García-Cerezo et al. [117] to model coordinated transmission and ESS expansion planning contained
binary variables. Such a problem cannot be solved by standard methods, i.e., KKT optimality
conditions, so the authors proposed a nested column-and-constraint generation algorithm. They solved
the model with and without binary variables and showed that simultaneous charging and discharging
occurs if binary variables are not used.

4.2.3. Coordinated Investments in ESS and Generators

Joint optimisation of generators, transmission lines and ESS was considered by
Carrión et al. [135] where the ESS provision of frequency response is included in the planning stage.
Wu et al. [129] considered investment planning for generators and pumped-hydro storage constrained
by the low-carbon requirements of the system. Opathella et al. [126] analysed the influence of
generator contingencies in a long-term planning model. Tejada-Arango et al. [12] proposed a change
of approach for unit commitment used in planning models from energy-based to power-based.
This new approach takes into account more granular data inputs in form of power demanded at each
moment instead of hourly energy demand. The results show that this approach results in lower total
investment and operating costs.
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4.2.4. Coordinated Investments in ESS and RES

Energy storage was considered useful for incorporating intermittent wind production in the
power system by Xiong and Singh [114] because it reduces daily operating costs by reducing wind
spillage for high wind production scenarios and prevents load curtailment for low wind production
scenarios. Fernández-Blanco et al. [136] also considered using ESS to reduce renewable energy
spillage and tested the sensitivity of siting and sizing decisions on various model parameters, such as
penalties for renewable spillage, marginal costs of conventional generators and maximum energy
rating. They showed that ESS does not always reduce renewable spillage if this reduction is not a part
of the objective function.

4.3. Distribution Level ESS

We consider distribution-level ESS all those connected to the low or medium voltage network.
Just like with transmission-level ESS investments, the approach to investment planning depends on
the intended usage of the ESS. Even when specific ESS purposes are considered, general decisions
can be drawn. Hajia et al. [29] considered joint expansion planning of distributed generators and
ESS. The nonlinear model was solved by various heuristic algorithms. They showed that the energy
arbitrage opportunity is the most important factor in ESS sizing. Table 5 presents different modelling
approaches to distribution-level ESS investment planning.

Table 5. Literature survey on the ESS investment planning models at the distribution level.

Modelling Technique Network Unconstrained Network Constrained Stages

Deterministic
[140] [141] multiple
[119,120] two
[121,142–144] [145–147] single

Stochastic

[109,148–152] multiple
[153] [36] two
[121,154] [34,37] single

Robust [121] single

Chance-constrained [155] multiple
[156,157] single

4.3.1. Coordinated Investments in ESS and Distribution System Assets

Xing et al. [151] researched expansion planning of a distribution grid already containing
distributed ESS, but did not consider ESS investments. Similarly, Saboori et al. [141] used a multi-stage
planning model to investigate the impact of ESS on distribution grid expansion. Installation of
ESS is shown to decrease the number of new lines. It was also shown that ESS have positive
impact on grid voltages and reduce congestions. These benefits are increased with the size of ESS.
Quevedo et al. [109] considered the impact of electric vehicles on distribution grid expansion planning,
showing that additional demand from electric vehicles can incur high costs for system operators by
causing need for network expansion, which can be avoided by installing stationary ESS. Besides ESS,
the authors in this paper considered installation of distributed generators, substations, transformers
and electric vehicle charging stations. Hassan and Dvorkin [146] investigated how ESS capital costs,
distribution grid line ratings, penetration of photovoltaics within the distribution grid and placement
of wind power plants within the transmission grid influence ESS siting and sizing decisions in a
distribution grid operated in coordination with transmission grid. The coordination was represented
as a bi-level model wherein the transmission system operation was in the upper level and distribution
system operation in the lower level. They showed that, if only one-way power flow is allowed between
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the transmission and distribution systems, placement of RES within the transmission grid does not
influence investments in distributed ESS.

Joint expansion planning of energy storage and the distribution grid was modelled by
Shen et al. [150], Akhavan-Hejazi and Mohsenian-Rad [156] and Iria et al. [38]. Shen et al. [150] showed
that a distribution grid relies on ESS for peak shaving and reliability enhancement. Akhavan-Hejazi
and Mohsenian-Rad [156] took the research a step further by modelling both real and reactive power
flows and considering ESS for voltage compensation within an active distribution network. Voltage
regulation was also considered by Das et al. [147] who took into account both real and reactive power
injection by ESS. Iria et al. [38] considered investments in ESS and on-load tap changer transformers
in a distribution network with high penetration of renewable generation. The installation of the new
network assets was performed for the purposes of congestion and voltage problem mitigation.

Recently, idea of active distribution networks has gotten very popular. These networks include
controllable distributed resources such as generators and ESS. Compared to traditional distribution
networks, active ones require changes in the planning approach. Nick et al. [34] investigated optimal
allocation of distributed ESS in active distribution networks for various purposes: voltage control,
congestion management, network loss and load curtailment minimisation. This work was taken a
step further by Nick et al. [39] by incorporating grid reconfiguration possibility in the model. Active
distribution network planning was further investigated by Kim and Dvorkin [36] and Abdeltawab
and Mohamed [37], who researched the possibility of using mobile ESS for enhancing distribution
grid stability, especially through voltage control. Li et al. [152] used a three-level structure to model
coordinated investments in active distribution grid, RES and ESS. The upper level presented network
structure planning, the middle level was the allocation of RES and ESS and the lower level was
system operation model. Sekhavatmanesh and Cherkaoui [158] developed a method for using the
ESS to ensure fast grid restoration of active distribution networks, a service similar to black start in
transmission networks.

4.3.2. Investments in ESS for RES Integration

In order to accommodate large shares of RES, investment models for coordinated or stand-alone
RES and ESS are considered. Santos et al. [148] and Santos et al. [149] is a two-part paper dealing with
different RES-enabling technologies placed at the distribution grid level. Zhang et al. [157] investigated
optimal ESS allocation in distribution grids with high wind power penetration. Their model contained
wind curtailment cost in the objective function and minimum wind utilisation constraint. Their results
showed that if more wind utilisation is required, a larger ESS needs to be installed. Xiao et al. [145] built
a siting and sizing model for distributed energy storage systems in distribution grid to accommodate
distributed RES. The grid was represented by an AC model which requires a solving approach able to
handle non-linear models. The genetic algorithm was used in this case.

4.3.3. ESS in Aggregators’ Investment Models

In most planning models that consider ESS interactions with an aggregator, ESS siting and sizing
is not considered. Exceptions are the shared storage models. Zhao et al. [119] modelled an aggregator
operating a shared storage aiming to maximise its profit. This model improves the utilisation of energy
storage which means that the aggregator can invest in a smaller facility and still serve same number of
customers. Shared storage optimisation was the objective in Chakraborty et al. [120] as well, where the
cost sharing was modelled as a coalition game.

4.3.4. Investments in ESS in Microgrids and Vpps

Considering organisation, microgrids and VPPs are similar structures. Both structures are
optimally run by a central operator with the aim of minimising operating costs or maximising profits.
The difference between the two is structural—while a microgrid is a small portion of a distribution grid
connected to the main grid through one point of common coupling, a VPP is spatially distributed set of
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resources. Yang and Nehorai [140] considered investments in a hybrid generator-storage facility within an
islanded micro-grid at different geographical locations. Their results showed that the type of climate at the
location influences selection of installed technologies. The planning problem in Khodaei et al. [159] focused
on microgrids with distributed resources and energy storage and assessed the possibility of islanded
operation. It was shown that, for shorter expected durations of the islanded operation, installation of
an ESS is not justified. Cao et al. [155] presented a model for multi-stage microgrid expansion planning
for stand-alone microgrids. Jacob et al. [144] proposed a sizing method for ESS within a microgrid
with photovoltaic (PV) production based on design space approach. The method considered time-scale
classification of the ESS and variability of PV output. Different time-scale storage requirements were
met with different technologies: fuel cells and flow batteries for long-term, lithium and lead acid
batteries for mid-term and flywheels and supercapacitors for short-term storage.

4.3.5. Behind-The-Meter ESS Investments

In behind-the-meter applications of ESS, the objective is usually minimisation of electricity cost.
These costs can be a result of wholesale market participation, incentives paid by the system operators
or participation in demand response programmes. These models can include RES and controllable
loads as well. Sharma et al. [143] modelled a nearly zero-energy residential home with a PV system.
Necessary power and energy ratings of the ESS were calculated for each time interval by subtracting
the load from the produced power. Optimal ESS capacity was then determined by minimising overall
costs heuristically by using the genetic algorithm and two other minimisation functions provided in
MATLAB. Although this approach might lead to a local optimum, all three techniques converged to
the same solution, so the authors concluded that they reached the global optimum. They showed that
after the installation of ESS, energy exchanged with the grid decreased significantly. Zhu et al. [142]
presented a method for sizing ESS within distribution grid with high PV penetration and tested the
method on three types of ESS: behind-the-meter, utility owned and merchant owned. They showed
that it is more economical for the DSO to procure services from the latter two types of ESS. They also
showed that existence of demand side management reduces the size of installed ESS. Pandžić [121]
optimised investments in ESS for a hotel participating in a two-tariff retail market. Bayram et al. [154]
developed an analytical method for sizing a shared ESS used by consumers to achieve various benefits,
such as improved power quality and cost reduction, by participating in demand response programs
and avoiding peak power charges. Wang and He [153] presented a model for making optimal decisions
on behind-the-meter ESS installation and demand response programme participation. The model was
suitable for commercial consumers and the paper presented two case studies for a smaller and a larger
consumer. Depending on the distributed generator’s capacity, the model makes different decisions on
ESS size and participation in a demand response scheme. They showed that for low electricity prices
no ESS is installed.

5. Computational Complexity of ESS Models

The computational complexity of a model depends on its various properties, such as the
number and types of variables, the number of time periods and whether or not uncertainties are
considered. Table 6 shows three main types of models encountered during this literature review.
Linear programming (LP) is the simplest type of models, as it contains only continuous variables
and therefore can usually be solved by algorithms like Simplex. In using these types of models for
ESS modelling there is a risk of simultaneous charging and discharging in certain cases, as discussed
in Section 4.3.1. Mixed-integer linear programming (MILP) models contain integer variables. In the
case of ESS modelling, these are usually binary variables used to prohibit simultaneous charging
and discharging of the ESS or investment indicators. In the next level of complexity, second order
cone programs (SOCP), are used for modelling AC power flows. They are being used more and
more for modelling ESS operation within distribution grids. These three types of models are not
the only ones used in the literature. For example, Shafiee et al. [45] used a mixed-integer non-linear
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model, Huang et al. [123] used a mixed-integer quadratic programming model and Abdeltawab and
Mohamed [37] used a mixed-integer convex programming model.

Table 6. Types of mathematical models used in the considered literature. (Abbreviations: LP, linear
programming; MILP, mixed-integer linear programming; SOCP, second order cone programming).

Operation Planning Solving Technique

[20,22,23,30,43,46,49–51,53,54,57,59,
73,74,78,88–90,105]

[119,125,130,156] LP

[1,16–18,20,25,32,33,35,44,47,50,52,
56–58,60,61,63,65,66,70–72,76,79–83,
86,92,94–96,100–102,104,106,107]

[14,28,109–115,117,121,122,126,127,
131,133–137,139,148,149,155,156,
159]

MILP

[40,91] [34,36,38,39,116,146,151,158] SOCP

The main ways to deal with intractability issues in ESS models involve choosing the right
modelling and solving techniques. The intractability of models is caused by large numbers of input
parameters. Although many clustering techniques were developed to deal with large numbers of input
parameters in power system modelling, they are not appropriate for ESS modelling. Intertemporal
constraints, especially for long-term energy storage, cause large errors in models where clustering
techniques are applied. For this reason there are not as many papers dealing with long-term storage
operation as there are with short-term operation in the intraday and day-ahead markets (Figure 6).
However, ESS-friendly clustering techniques are being developed. To reduce computational burden of
planning models, Pineda and Morales [130] proposed a chronological time-period clustering different
from the standard hours-days-weeks clustering. The proposed technique separates longer time periods
into clusters in which smallest time-period is one hour and only consecutive and similar clusters can be
merged. Tejada-Arango et al. [132] also presented clustering techniques for decreasing computational
burden of the planning models. They proposed improved system states and representative periods
clustering techniques and showed that they do indeed shorten the computation time.

0 20 40 60 80

Long-term

Day-ahead

Intraday

Percentages %

Figure 6. Share of the reviewed literature that considered ESS operational models at three timescales:
intraday, day-ahead and long-term.

5.1. Modelling Techniques

Power system planning solves investment problems by taking into account technical and economic
constraints, and it has always been concerned with uncertainties. For a long time, the main sources
of uncertainty in the planning models were load growth and production of hydro-power plants.
Nowadays, the largest source of uncertainties is the production of intermittent resources, i.e., wind and
solar power plants. This is evident from Figure 7, which shows that, while load is the dominant source
of uncertainties in planning models, price is considered to be uncertain more often in operational than
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planning models. RES as a source of uncertainty is commonly considered in both the operational and
the planning models. Label “none” in Figure 7 signifies the share of deterministic models where no
uncertainties were considered.

0 10 20 30 40 50

None
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RES

Load

Percentages %

Operation
Planning

Figure 7. Sources of uncertainties in the reviewed operational and planning models (the sample
contains 70 operational and 55 planning models).

There are several ways to include uncertainties in a mathematical model. The three main
types of mathematical programming methods for dealing with uncertainties are robust, stochastic
and chance-constrained optimisation. Comparisons of the methods were performed with general
conclusions that stochastic optimisation yields larger problems and takes longer to solve than the other
methods. It was also concluded that robust optimisation gives good results for border-line cases, but for
most cases it is better to use stochastic optimisation. It was shown by Khodayar and Shahidehpour [57],
who compared the results from deterministic and stochastic problems, that neglecting uncertainties
generally results in higher expected profits. The uncertainties in the models stem from the stochastic
nature of RES output, load levels and market prices.

Besides mathematical programming methods, the approach of machine learning for dealing with
uncertainties in computationally tractable way is gaining momentum in recent years. Until now,
it was applied only to a few ESS modelling problems. Machine learning techniques are mostly used
to forecast values of the uncertain parameters such as wind power by Varkani et al. [62]. Another
useful application of machine learning algorithms is as a heuristic used to solve complex stochastic
programming models. For example, Yuan et al. [55] used a neural network with genetic algorithm to
solve a large stochastic problem of coordinating wind power plant and ESS.

However, reinforcement learning can be used to model market-participating ESS. This approach
takes on the uncertainties by "teaching" the model to respond to them, instead of modelling them
mathematically. The technique that has gotten the most attention from the power systems modelling
community is Q-learning. Q-learning is a model-less reinforcement learning algorithm that describes
the behaviour of a model by a Markov decision process with actions to which rewards are assigned
and the goal is to maximise cumulative reward. This algorithm was used by Wang and Zhang [46] to
model market participation of a strategic ESS. Although machine learning algorithms are widely used
for data fitting and forecasting, Wang and Zhang [46] were the first ones to use this approach to model
the ESS market participation. Q-learning was also used by Ye et al. [160] to model the strategic market
participation of a generator.
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The biggest flaw of this approach is that the model trained on specific data set learns to behave
only in the circumstances described by the data. This can be problematic in a changing environment,
e.g., a market in which new players are appearing.

5.2. Solving Techniques

Based on the reviewed literature, the general conclusion is that solving mathematical models
with uncertainties is quite complex. This is especially the case with multi-stage models, which can be
intractable even for small number of stages. The complexity of the models with ESS is even greater
because of the intertemporal constraints and the necessity for the inclusion of binary variables. Many
different solving techniques were developed with an aim of simplifying this process. Some of them are:

• Heuristic algorithms [55,128,143,147];
• Decomposition techniques [43,105,122], especially Benders decomposition [22,57,60,106,112,134]

and column-and-constraint generation [92,113];
• Dynamic programming [16,18,27,54,161].

Some of these techniques are based on duality theory, and are therefore unsuitable for solving
models with binary variables, common in ESS modelling. For a detailed analysis of solving techniques
used for complex planning problems with ESS, an interested reader should refer to Lorente et al. [6]
and Zidar et al. [8].

6. Conclusions

The scope of the literature dealing with ESS is vast, which indicates that a significant number of
issues have already been solved in both the operation and the investment planning models including
ESS. However, the potential for improvements in model development exists in both areas. New use
cases for ESS need to be created, especially for distribution-level ESS to ensure reliable grid operation
in the context of active network design, distributed generation and demand response programs.
Allowing distributed resources to participate in the wholesale energy and ancillary service markets,
and the deployment of innovative local energy markets, should open even more possibilities for ESS.
At the transmission level, different ownership structures of ESS (privately or TSO-owned) necessitate
different operating strategies so there is room for inventiveness as well.

As a conclusion, some of the specific areas where study of ESS can be expanded are:

• ESS operating in zonal market structure, especially considering uncertainties. While many
electricity markets are structured zonally (Europe, Australia), not so many studies on ESS
participating in zonal markets were conducted.

• Studies on strategic ESS will have us believe that it is very simple to ensure large profits for
investors by employing an aggressive strategy during operational phase. More studies on
competition between more than one strategic ESS are therefore necessary to reconcile the results
of ESS with general economic theory.

• Strategic investment models, on the other hand, do not deal with bidding decisions and only
siting and sizing decisions are strategic in these models. Nonetheless, competition between more
than one strategic investor was not yet investigated.

• Market participation of the distribution-level ESS was not widely investigated in the past.
The design of distribution-level markets will have a large role in enabling profitability
of distributed ESS. Aggregation, local energy markets and peer-to-peer trading between
distribution-level ESS must be tested thoroughly before they are implemented in real-world
situations.

• Although load, RES and prices have been considered as the main sources of uncertainties so
far, other sources are appearing in the models, such as contingencies and EV loads. Although
ESS has proven to be of most use in situations where flexibility of the system is jeopardised,
their application in mitigating various uncertainty risks should be analysed.
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• Tractability of models is a challenge even without ESS. However, long-term operation of ESS does
not play well into most clustering techniques used to simplify models with time-spans of a year
or longer. Therefore, it is necessary to develop ESS-oriented clustering techniques which would
enable including long-term operation in operational and investment models with ESS.
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Abbreviations

The following abbreviations are used in this manuscript:

ESS Energy storage system
RHS Right-hand side
SOC State of charge (percentage)
SOE State of energy (absolute value)
DA Day-ahead
CAP Capacity market
EN Energy market
BM Balancing services market
RM Reserve market
VPP Virtual power plant
RES Renewable energy source
LP Linear programming
MILP Mixed-integer linear programming
SOCP Second order cone programming

Nomenclature

Sets

T set of time points indexed by t from 1 to NT
Parameters

ΔT duration of a time-step t, h
η round trip energy efficiency
ηch charging efficiency
ηdis discharging efficiency
E maximum state of energy, Wh

Pch maximum charging power, W

Pdis maximum discharging power, W
E minimum state of energy, Wh
Ecc−cv state of energy at the boundary between CC and CV charging phases, Wh
E0 initial state of energy, Wh
RU ramping-up reserve, W
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Variables

et state of energy at time t, Wh
ech

t charged energy during period t, Wh
edis

t discharged energy during period t, Wh
ploss

t lost power at time t, W
pch

t charging power at time t, W
pdis

t discharging power at time t, W
r+t ramp up at time t, W
r−t ramp down at time t, W
xt binary variable: 1 when the ESS is charging, 0 when discharging
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17. Pandžić, H.; Kuzle, I. Energy storage operation in the day-ahead electricity market. In Proceedings of the
2015 12th International Conference on the European Energy Market (EEM), Lisbon, Portugal, 19–22 May
2015; pp. 1–6.

18. Alvarez, M.; Rönnberg, S.K.; Bermúdez, J.; Zhong, J.; Bollen, M.H.J. A Generic Storage Model Based on a
Future Cost Piecewise-Linear Approximation. IEEE Trans. Smart Grid 2019, 10, 878–888. [CrossRef]

19. Vagropoulos, S.I.; Bakirtzis, A.G. Optimal Bidding Strategy for Electric Vehicle Aggregators in Electricity
Markets. IEEE Trans. Power Syst. 2013, 28, 4031–4041. [CrossRef]

20. Gonzalez-Castellanos, A.J.; Pozo, D.; Bischi, A. Non-ideal Linear Operation Model for Li-ion Batteries.
IEEE Trans. Power Syst. 2019. [CrossRef]

21. Duggal, I.; Venkatesh, B. Short-Term Scheduling of Thermal Generators and Battery Storage With Depth of
Discharge-Based Cost Model. IEEE Trans. Power Syst. 2015, 30, 2110–2118. [CrossRef]

22. Kazemi, M.; Zareipour, H. Long-Term Scheduling of Battery Storage Systems in Energy and Regulation
Markets Considering Battery’s Lifespan. IEEE Trans. Smart Grid 2018, 9, 6840–6849. [CrossRef]

23. He, G.; Chen, Q.; Kang, C.; Pinson, P.; Xia, Q. Optimal Bidding Strategy of Battery Storage in Power
Markets Considering Performance-Based Regulation and Battery Cycle Life. IEEE Trans. Smart Grid 2016, 7,
2359–2367. [CrossRef]

24. Xu, B.; Zhao, J.; Zheng, T.; Litvinov, E.; Kirschen, D.S. Factoring the Cycle Aging Cost of Batteries
Participating in Electricity Markets. IEEE Trans. Power Syst. 2018, 33, 2248–2259. [CrossRef]

25. Padmanabhan, N.; Ahmed, M.; Bhattacharya, K. Battery Energy Storage Systems in Energy and Reserve
Markets. IEEE Trans. Power Syst. 2020, 35, 215–226. [CrossRef]

26. Alam, M.J.E.; Saha, T.K. Cycle-life degradation assessment of Battery Energy Storage Systems caused by
solar PV variability. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM),
Boston, MA, USA, 17–21 July 2016; pp. 1–5.

27. Vejdan, S.; Grijalva, S. Maximizing the Revenue of Energy Storage Participants in Day-Ahead and Real-Time
Markets. In Proceedings of the 2018 Clemson University Power Systems Conference (PSC), Charleston, SC,
USA, 4–7 September 2018; pp. 1–6.

28. Qiu, T.; Xu, B.; Wang, Y.; Dvorkin, Y.; Kirschen, D.S. Stochastic Multistage Coplanning of Transmission
Expansion and Energy Storage. IEEE Trans. Power Syst. 2017, 32, 643–651. [CrossRef]

29. Hajia, N.; Venkatesh, B.; Awadallah, M.A. Optimal Asset Expansion in Distribution Networks Considering
Battery Nonlinear Characteristics Expansion optimale des actifs dans les réseaux de distribution en tenant
compte des caractéristiques non linéaires des batteries. Can. J. Electr. Comput. Eng. 2018, 41, 191–199.
[CrossRef]

30. Gantz, J.M.; Amin, S.M.; Giacomoni, A.M. Optimal Capacity Partitioning of Multi-Use Customer-Premise
Energy Storage Systems. IEEE Trans. Smart Grid 2014, 5, 1292–1299. [CrossRef]

31. EPRI. Electric Energy Storage Technology Options: A White Paper Primer on Applications, Costs, and Benefits;
Technical Report; Palo Alto: Santa Clara, CA, USA, 2010.

32. Mohsenian-Rad, H. Optimal Bidding, Scheduling, and Deployment of Battery Systems in California
Day-Ahead Energy Market. IEEE Trans. Power Syst. 2016, 31, 442–453. [CrossRef]

33. Daneshi, H.; Srivastava, A.K. Security-constrained unit commitment with wind generation and compressed
air energy storage. IET Gener. Transm. Distrib. 2012, 6, 167–175. [CrossRef]

34. Nick, M.; Cherkaoui, R.; Paolone, M. Optimal Allocation of Dispersed Energy Storage Systems in Active
Distribution Networks for Energy Balance and Grid Support. IEEE Trans. Power Syst. 2014, 29, 2300–2310.
[CrossRef]

35. Moreira, R.; Moreno, R.; Strbac, G. Synergies and conflicts among energy storage services. In Proceedings of
the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 1–6.
[CrossRef]

36. Kim, J.; Dvorkin, Y. Enhancing Distribution System Resilience With Mobile Energy Storage and Microgrids.
IEEE Trans. Smart Grid 2019, 10, 4996–5006. [CrossRef]

37. Abdeltawab, H.; Mohamed, Y.A.I. Mobile Energy Storage Sizing and Allocation for Multi-Services in Power
Distribution Systems. IEEE Access 2019. [CrossRef]

38. Iria, J.; Heleno, M.; Cardoso, G. Optimal sizing and placement of energy storage systems and on-load tap
changer transformers in distribution networks. Appl. Energy 2019, 250, 1147–1157. [CrossRef]

27



Energies 2020, 13, 4600

39. Nick, M.; Cherkaoui, R.; Paolone, M. Optimal Planning of Distributed Energy Storage Systems in Active
Distribution Networks Embedding Grid Reconfiguration. IEEE Trans. Power Syst. 2018, 33, 1577–1590.
[CrossRef]

40. Nazir, N.; Racherla, P.; Almassalkhi, M. Optimal Multi-Period Dispatch of Distributed Energy Resources in
Unbalanced Distribution Feeders. IEEE Trans. Power Syst. 2020, 35, 2683–2692. [CrossRef]
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82. Bruninx, K.; Dvorkin, Y.; Delarue, E.; Pandžić, H.; D’haeseleer, W.; Kirschen, D.S. Coupling Pumped Hydro
Energy Storage With Unit Commitment. IEEE Trans. Sustain. Energy 2016, 7, 786–796. [CrossRef]

83. Kazemi, M.; Zareipour, H.; Amjady, N.; Rosehart, W.D.; Ehsan, M. Operation Scheduling of Battery Storage
Systems in Joint Energy and Ancillary Services Markets. IEEE Trans. Sustain. Energy 2017, 8, 1726–1735.
[CrossRef]

84. Li, C.; Zhang, S.; Zhang, J.; Qi, J.; Li, J.; Guo, Q.; You, H. Method for the Energy Storage Configuration of
Wind Power Plants with Energy Storage Systems used for Black-Start. Energies 2018, 11, 3394. [CrossRef]

85. Sugihara, H.; Yokoyama, K.; Saeki, O.; Tsuji, K.; Funaki, T. Economic and Efficient Voltage Management
Using Customer-Owned Energy Storage Systems in a Distribution Network With High Penetration of
Photovoltaic Systems. IEEE Trans. Power Syst. 2013, 28, 102–111. [CrossRef]

86. Nasrolahpour, E.; Kazempour, J.; Zareipour, H.; Rosehart, W.D. Impacts of Ramping Inflexibility of
Conventional Generators on Strategic Operation of Energy Storage Facilities. IEEE Trans. Smart Grid 2018, 9,
1334–1344. [CrossRef]

87. Babacan, O.; Ratnam, E.L.; Disfani, V.R.; Kleissl, J. Distributed energy storage system scheduling considering
tariff structure, energy arbitrage and solar PV penetration. Appl. Energy 2017, 205, 1384–1393. [CrossRef]

88. Jiang, T.; Cao, Y.; Yu, L.; Wang, Z. Load Shaping Strategy Based on Energy Storage and Dynamic Pricing in
Smart Grid. IEEE Trans. Smart Grid 2014, 5, 2868–2876. [CrossRef]

89. Tushar, W.; Chai, B.; Yuen, C.; Huang, S.; Smith, D.B.; Poor, H.V.; Yang, Z. Energy Storage Sharing in Smart
Grid: A Modified Auction-Based Approach. IEEE Trans. Smart Grid 2016, 7, 1462–1475. [CrossRef]

90. Atzeni, I.; Ordóñez, L.G.; Scutari, G.; Palomar, D.P.; Fonollosa, J.R. Demand-Side Management via Distributed
Energy Generation and Storage Optimization. IEEE Trans. Smart Grid 2013, 4, 866–876. [CrossRef]

91. Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch
of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies
2020, 13, 1703. [CrossRef]

92. Mortaz, E. Portfolio Diversification for an Intermediary Energy Storage Merchant. IEEE Trans.
Sustain. Energy 2019. [CrossRef]

93. Wang, Z.; Kirschen, D.S. Two-stage optimal scheduling for aggregators of batteries owned by commercial
consumers. Transm. Distrib. IET Gener. 2019, 13, 4880–4887. [CrossRef]
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C.A. Co-Planning of Investments in Transmission and Merchant Energy Storage. IEEE Trans. Power Syst.
2018, 33, 245–256. [CrossRef]

114. Xiong, P.; Singh, C. Optimal Planning of Storage in Power Systems Integrated With Wind Power Generation.
IEEE Trans. Sustain. Energy 2016, 7, 232–240. [CrossRef]

115. Xu, B.; Wang, Y.; Dvorkin, Y.; Fernández-Blanco, R.; Silva-Monroy, C.A.; Watson, J.; Kirschen, D.S. Scalable
Planning for Energy Storage in Energy and Reserve Markets. IEEE Trans. Power Syst. 2017, 32, 4515–4527.
[CrossRef]

116. Zhang, X.; Conejo, A.J. Coordinated Investment in Transmission and Storage Systems Representing Long-
and Short-Term Uncertainty. IEEE Trans. Power Syst. 2018, 33, 7143–7151. [CrossRef]

117. García-Cerezo, A.; Baringo, L.; García-Bertrand, R. Robust Transmission Network Expansion Planning
Problem Considering Storage Units. arXiv 2019, arXiv:1907.04775.

118. Sun, Y.; Li, Z.; Shahidehpour, M.; Ai, B. Battery-Based Energy Storage Transportation for Enhancing Power
System Economics and Security. IEEE Trans. Smart Grid 2015, 6, 2395–2402. [CrossRef]

119. Zhao, D.; Wang, H.; Huang, J.; Lin, X. Virtual Energy Storage Sharing and Capacity Allocation. IEEE Trans.
Smart Grid 2019. [CrossRef]

120. Chakraborty, P.; Baeyens, E.; Poolla, K.; Khargonekar, P.P.; Varaiya, P. Sharing Storage in a Smart Grid:
A Coalitional Game Approach. IEEE Trans. Smart Grid 2019, 10, 4379–4390. [CrossRef]
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Abstract: Auxiliary services are vital for the operation of a substation. If a contingency affects the
distribution feeder that provides energy for the auxiliary services, it could lead to the unavailability
of the substation’s service. Therefore, backup systems such as diesel generators are used. Another
alternative is the adoption of a microgrid with batteries and photovoltaic generation to supply
substation auxiliary services during a contingency. Nevertheless, high battery costs and the
intermittence of photovoltaic generation requires a careful analysis so the microgrid capacity is
defined in a compromise between the investment and the unavailability reduction of auxiliary services.
This paper proposes a method for the capacity sizing of a microgrid with batteries, photovoltaic
generation, and bidirectional inverters to supply auxiliary services in substations under a contingency.
A set of alternatives is assessed through exhaustive search and Monte Carlo simulations to cater for
uncertainties of contingencies and variation of solar irradiation. An unavailability index is proposed
to measure the contribution of the integrated hybrid microgrid to reduce the time that the substation
is not in operation. Simulations carried out showed that the proposed method identifies the microgrid
capacity with the lowest investment that satisfies a goal for the unavailability of the substation service.

Keywords: auxiliary services; battery; microgrids; photovoltaic generation; substations

1. Introduction

Substations are one of the main components of electrical power systems. They serve to modify the
voltage level and allow basic maneuvering of power flow within the system. To fulfill their functions,
substations require auxiliary services such as monitoring, communications, and maneuvering systems.
Other essential loads that must be served in the substation are lighting, heating-cooling, some
communication elements, switch operating mechanisms, anti-condensation heaters, and motors.
Auxiliary services supply essential trip coils for circuit breakers and associated relays, supervisory
control and data acquisition (SCADA), and communication equipment. They are vital for the proper
functioning of the substations as allow monitoring, measurement, protection of transformers and
buses, supervision of protections and automatic reclosing, remote controls, fault protection of the
circuit breaker, monitoring of transformer’s overload, voltage control, selective load shedding; they are
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also involved in alarms and interface systems in the substations’ control centers [1,2]. Given their
critical importance, the power supply for the auxiliary services at substations must be designed with
an appropriate level of redundancy and backup.

Auxiliary services in substations (ASS) can be provided by a low-voltage busbar supplied by
a distribution feeder or by a group of diesel generators; the latter has been used as a backup to
maintain the energy supply under any condition, especially in the presence of a permanent contingency.
Moreover, those services must be economical both in terms of investment and operational costs [3].
However, in the event of a contingency, additional costs are overlooked, as the consequences of not
providing auxiliary services, in general, have a high monetary impact. Thus, the objective of alternative
backup systems must first ensure their ability to respond in the event of contingencies even if this
results in higher operating costs [4].

Some disadvantages of the aforementioned alternatives to provide auxiliary services are the high
price of energy when supplied by the medium or low-voltage distribution system, as well as the
environmental pollution associated with the operation of diesel generators (which are the vast majority
of independent backup solutions) and their high failure probability and maintenance costs. Therefore,
the use of alternative sources to supply auxiliary services is justified. Specifically, a suitable alternative
is an integration of renewable energy systems (e.g., batteries and photovoltaic systems), which can
independently operate the main grid, have a low environmental impact, and present a trending cost
reduction in recent years. However, such systems based on renewable energies bring considerable
implementation challenges given their non-dispatchable source nature, which should be solved to
supply critical loads as are the ASS.

Recently, the microgrid concept has been addressed in the specialized literature to deal with the
disadvantages of renewable energy sources (e.g., intermittence and dependence on climatic conditions)
so they can be able to participate within multiple applications of power systems [5]. Microgrids are
based on hybrid distributed management systems capable of operating in the absence of power supply
from the main network and feeding a limited set of loads [6]. This last characteristic has increased
the interest in their implementation, allowing for the improvement of the power supply availability,
especially for critical loads in the case of permanent contingencies. In addition to their usefulness as
back-up systems, a microgrid can be used in a grid-connected mode to take advantage of the generated
energy to lower costs required to satisfy the connected loads. Thus, microgrids offer some advantages,
e.g., greater penetration of renewable energy resources, reduced energy cost, and reduced greenhouse
gas emissions. These advantages satisfy some sustainable development criteria, including economic,
environmental, and social aspects [7].

To guarantee that a microgrid provides a reliable operation when the main network is
under contingency (islanded operation mode), it is essential that the adoption of storage systems
(e.g., a battery) so that critical loads can continue to operate. After recognizing that advantage,
a microgrid is an appropriate alternative to provide ASS, either as a primary source or as a backup
system after a failure of the distribution feeder. Still, the generation system (e.g., photovoltaic
generation), storage (e.g., batteries), and the electronic interface (e.g., inverters) should be properly
sized. If the micro-grid is used as the main supplier or as a back-up service of the auxiliary service
loads, it should satisfy a certain robustness level to face the occurrence of permanent fault of the
distribution feeder [8–10].

Storage systems sized aiming the provision of power to the ASS must ensure that the microgrid
works in island mode for as long as necessary during the absence of the main supply source due
to shortages. Among storage systems, electrochemical means represent an attractive alternative to
other types of storage; the flywheel, which is an electromechanical way of storing energy, has a
high installation cost (estimated to be between 1000 and 3900 USD/kWh in 2030) and can have a
self-discharge rate of 20% per hour [11]. There is also pumped hydro storage, which has the highest
installed power in the world with at least 150 GW in 2016, but needs a favorable geographical location
to build the reservoirs and requires a considerable construction area [11].
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Electrochemical technologies store energy chemically through various components, and because
they are marketed in modules, the desired voltage and current can be configured by making series
and parallel connections of several modules until the desired values are reached. The four main
types of batteries are lithium-ion, flow, lead-acid, and high-temperature, and each of them can consist
of different components; among those types, the vanadium redox (VRFB) and zinc-bromine (ZBFB)
flow battery technologies have a depth of discharge (DoD) of 100%, but they have the lowest energy
density and power, e.g., 25–70 Wh/L for VRFB. Lead-acid batteries, built in lead-acid flooded (FLA) and
valve-regulated lead-acid (VRLA) technologies, have the lowest cost of installation of all and have a
better power density than flow batteries, but they have a DoD of 50%, which is a much lower value than
the other types. High-temperature batteries, which are built with sodium-sulfur (NaS) and sodium
nickel chloride (NaNiCl) technologies are batteries that have a DoD of 100%; NaS has one of the lowest
self-discharge rates of 0.05% per day but requires a heating system so that the battery fluid lies in the
liquid state. Finally, lithium-ion type batteries have the best specifications because they have the highest
energy and power densities and can reach 735 Wh/L for lithium-nickel-manganese-cobalt (NMC) and
lithium-manganese-oxide (LMO) technologies. They also have a DoD of 90% of the total energy and
a small self-discharge, being less than 0.2% per day. Lithium-ion batteries also feature lithium iron
phosphate (LFP), lithium titanate (LTO), and lithium cobalt aluminum (NCA) technologies [11].

An idea behind microgrids is to maximize the integration of distributed energy resources, especially
those of renewable nature such as solar energy. Although this requires additional controllability such
as the one provided by making use of storage systems, the integration of a renewable energy source
in a hybrid system not only improves reliability and efficiency but also reduces the dependence on
external supply [12]. Reference [13] performs a comparison of analytical and metaheuristic methods
for the sizing of a hybrid system that must operate in stand-alone mode; it is shown that a hybrid
system is able to provide energy in a reliable way. In fact, hybrid systems are more reliable than just
stand-alone renewable energy systems [7].

In contrast to the usual practice in which the energy for the ASS can be provided by a distribution
feeder, from a local microgrid, or even from a dedicated diesel generator, a hybrid microgrid can be
adopted aiming the self-assurance of the supply when instabilities or even a complete lack of energy are
faced. Hybrid microgrids are combinations of alternative energy sources and energy storage systems
to provide energy for a particular purpose. Both resources can be directly connected to the DC bus of
the substation, but DC-AC inverters are necessary to power the AC bus; bidirectional inverters are also
capable of convert AC to DC, which is convenient in cases where the energy storage system requires to
be charged by the AC supply instead of the photovoltaic generation. Another function of the inverter
is to keep the DC bus stabilized by controlling the waveform of the injected current. However, for a
larger demand than the generation or during intermittency periods, a voltage drop occurs, then the
inverter can solve that issue by managing compensation using the external power [14,15].

Different methods have been proposed in the specialized literature for the optimal sizing of
microgrids pursuing different types of objectives and constraints. References [16–18] present systematic
summaries of the proposed methods. Different metrics to optimize the size of the microgrid have
been adopted, most of them related to economic and environmental objectives with restrictions related
to dynamic considerations of frequency and voltage stability, and the search to balance the energy
management between the generation, load, and storage [17,18]. Many of those proposals consider
the stochastic behavior of the generation and the loads within the microgrid using mathematical
programming, metaheuristics. and analytical methods, being common the use of the well-established
Monte Carlo simulation [16].

There are few works in the state of the art considering objectives based on reliability for the
optimal sizing of the microgrids [19,20]. Reference [19] presents a multi-objective metaheuristic
based on evolutionary algorithms for the sizing of a hybrid system aiming the minimization of the
annualized costs of the system, the loss of power supply probability (LPSP), and the cost of fuel
pollution; the algorithm determines the non-dominated solutions sizing photovoltaic panels, wind
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turbines, batteries, and diesel generators for a DC load profile. Recently, reference [21] proposed a
method for the design of a hybrid system composed of photovoltaic panels and biomass generators;
a comparative analysis is carried out for different battery technologies based on technical and economic
criteria, considering the net present value for a specified LPSP for a set of residential loads. Finally, [20]
proposed the minimization of the net present value in the sizing of a microgrid based on photovoltaic
panels, wind turbines, and fuel cells considering restrictions of deficit power-hourly interruption
probability for residential customers. In conclusion, recent works on the sizing of microgrids consider
a specific type of loads, most of them residential, in which the microgrid operates autonomously and is
the main source of supply; the issues of continuous power supply are considered through indicators
as LPSP.

Based on a mixed linear optimization model, [22] proposes a fault-tolerant supervisory controller
for an isolated hybrid ac/dc microgrid seeking robust, efficient, and fault-resilient operation to
meet demand with the highest possible utilization of renewable energy even under fault conditions.
The reliability of the substation, considering an alternative source of power has been addressed in a
few studies. For instance, an analysis of the continuity of the energy supply was done through Markov
Chains in a 110/35 kV substation with distributed generation; from the analyzed cases, the more
robust was the one in which distributed generation was connected to the low-voltage bus. The use
of a compensation device, along with a voltage control system, has been proposed to improve the
substation’s operation, not only to deal with auxiliary services but also for the energy supplied by the
substation [23]; more recently, voltage control was proposed to improve demand response in a smart
substation [24].

Few studies have addressed the energy supply of ASS, although alternative means to meet the
energy demands of those systems have been discussed and simulated. Specifically, a two-part work
makes first a critical analysis of the different types of fuel-cells for energy supply that can be a backup
or main source [1]; they can be combined with other technologies such as a photovoltaic generation to
support an electrolysis system and also produce hot water for other uses; the second part discusses
a case study of the use of fuel-cells in a real substation in Romania, bringing economic information
of three possible uses for the fuel-cells [25]. The case with the best economic interest was selected to
design a system for the ASS.

This paper proposes a method for the capacity sizing of a microgrid with batteries, photovoltaic
generation, and bi-directional inverters to supply the power demanded by ASS under a contingency.
A set of alternatives is assessed through exhaustive search and Monte Carlo simulations to cater for
uncertainties of contingencies and variation of solar irradiation. The main contribution of the paper
is the capacity sizing method along with an unavailability index to measure the contribution of the
hybrid microgrid to reduce the time that the substation is not in operation. The highlights of the
proposed approach are described as follows:

1. A microgrid based on a hybrid system of photovoltaic energy and batteries is adopted as a
backup system for the operation of auxiliary loads in a substation. Generally, substation backup
systems use diesel generators without mentioning the possibility of taking advantage of renewable
energy sources.

2. The influence of contingency rates and durations to determine the optimal size of the main
components of the microgrid is assessed. Unlike other methods, it is unknown a priori the
number of hours that the hybrid microgrid should be available to supply the substation loads.

3. An exhaustive search is adopted to identify the optimal size of the main components of the
microgrid, such as the photovoltaic panels, the batteries, and the inverter. The election of the
technique is justified by the few components that compose the microgrid, which allows focusing
on the sensitivity analysis of uncertain parameters of renewable generation and fault duration.

This paper is organized as follows. Section 2 presents the proposed method for the capacity
sizing of the microgrid, justifying, and explaining the particularities of each of the elements that are
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part of the proposed exhaustive search. Section 3 discusses the economic and operation assessment,
summarizing, and linking the elements of the proposed sizing method. Section 4 illustrates the
application of the method in a case study for auxiliary loads of a substation requiring 12 kW and
assuming that the expected fault rates and fault durations of the main substation’s feeder are 1 fault/year
and 5 h, respectively. Additionally, a sensitivity analysis of these parameters and the costs of the main
components is carried out. Conclusions are drawn in Section 5.

2. Capacity Sizing of the Microgrid

Microgrids are configurations that include a set of energy sources and storage, used especially
in applications of autonomous generation systems. Their main advantage is the relative simplicity
of allocation and autonomy from a single generation resource, which gives them the ability to work
independently of weather conditions and time of day. Nevertheless, the effectiveness in the application
of hybrid systems depends on the correct sizing of the microgrid resources.

Microgrids are generally designed to increase the integration of renewable sources such as
solar and wind energy. Although those sources are cleaner than conventional generators, their
unpredictability and climate dependence limit their applications when loads require uninterrupted
power. Consequently, and to increase reliable energy delivery, storage systems are used in the
configuration of hybrid systems. This paper focuses on the design of a hybrid system consisting of
a clean source of solar energy and a storage system based on batteries to be the backup service that
provides energy to the ASS loads.

Figure 1 shows the impact of the microgrid in the increasing of the availability time of the auxiliary
services when the main supply system is under a contingency state. In Figure 1a, there is a set of
auxiliary services supplied only by the distribution network; when the substation’s feeder is in a
contingency state, the ASS are interrupted. The time gap between the “main grid operation” and
“repair” represents the fault detection time. Figure 1b shows the positive influence of the microgrid in a
contingency state scenario; in the outage period, the microgrid supplies the loads, therefore increasing
the time of availability of the ASS.

Traditionally, the components of hybrid systems are sized based on the assumption that the
estimated value of the load and the predefined time to operate in autonomous mode are known [16].
However, a microgrid used as a backup service for ASS has characteristics that make unsuitable the
a priori sizing of the microgrid capacity: It is sought that microgrids, as a support service for ASS,
have the capacity to autonomously operate for a longer period than any contingency in the main
supply system. However, considering that the main supply comes from the distribution system,
the contingency durations have a random behavior depending on the feeder of the distribution network.
Therefore, the energy that should supply the microgrid is not known in advance.

Although it is desirable that the microgrid is sized to meet any duration of contingency, in the
practice investment limitations, physical limitations for installation, and the random behavior of
the contingency’s duration determine the selection of an appropriate investment. In consequence,
the hybrid system must be sized to be able to provide the ASS loads for a desired proportion of the
power distribution system contingency scenarios.

In the case of a hybrid system with few components, an exhaustive search is proposed here
to assess the cost-effectiveness for each possible combination of photovoltaic systems and batteries.
For this purpose, each possible configuration of the microgrid will be evaluated through economic
and unavailability indicators. Simulations using the well-known Monte Carlo method are carried out
to determine the performance in contingency state for each possible microgrid configuration, taking
into account the uncertainties of the occurrence and duration of contingencies, as well as the random
behavior of the solar irradiation.
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Figure 1. Impact of the microgrid in the increasing of the available time. (a) Provision of auxiliary
services in the substation without a microgrid. (b) Provision of auxiliary services in the substation with
a microgrid.

As mentioned above, the possible combinations of microgrids are defined by two main aspects:
the number of photovoltaic panels and the size of the battery bank; other components of the hybrid
system (e.g., the inverter) take a secondary role in determining the sizing of the backup microgrid.
Figure 2 shows how each configuration is created to be assessed by the exhaustive search method: each
investment possibility for the photovoltaic panels, identified by letters within blue circles, is combined
with each of the investment possibilities for the batteries, identified by numbers within green circles.
As a result of all combinations, each microgrid configuration to be evaluated is defined by the letter and
number of their main components, within yellow circles. To choose the best microgrid configuration
from a set of possible configurations (yellow circles), two indexes are proposed in this work. They allow
the compromise analysis between the economic value of the investment and the unavailable time of
the ASS due to any contingency of the main system.

2.1. Economic Assessment

The total net cost will be used as an investment index for each possible microgrid configuration
represented by the index s. This cost includes the cost of the batteries, the cost of the photovoltaic panel
system, and the cost of the inverter. The latter is added, given its large proportion within the overall
costs in hybrid systems.

For each case, the investment is calculated according to the number of components of the microgrid.

For batteries, the cost is calculated based on their nominal storage capacity (E
bat
s ), measured in kWh.

The photovoltaic panels cost is calculated according to the units used on each microgrid s (Npv
s ),

whilst the bidirectional inverter cost is calculated according to its power in kW
(
PIn

s

)
. Thus, the total

investment value Is for a microgrid configuration s is given by Equation (1). The equipment costs are
cbat, cpv, and cIn for batteries, photovoltaic panels, and inverter, respectively.

Is = E
bat
s ·cbat + Npv

s ·cpv + Pin
s ·cin (1)
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In addition to the investment costs in the microgrid, maintenance costs are also considered through
the years of the equipment’s lifespan (τ). For this purpose, the costs are brought to a present value at
an interest rate δ. The annual maintenance cost for each equipment corresponds to a fraction of its
investment, i.e., mcbat, mcpv, and mcin for batteries, photovoltaic panels, and inverter. The maintenance
cost is described in Equation (2).

MCs =
τ∑

i=1

Ebat·cbat·mcbat + Npv
s ·cpv·mcpv + Pin

s ·cin·mcin

(1 + δ)i (2)

Since the photovoltaic panels produce energy when solar irradiation is available (under fault and
also in normal operation), a profit related to the selling of that energy (Pro f itPV) could contribute to
reducing the total cost. That profit is calculated by Equation (3) in terms of the mean annual energy
generated by a photovoltaic panel (EPV) and the energy price (π).

Pro f itPV =
τ∑

i=1

Npv
s ·EPV·π
(1 + δ)i (3)

Figure 2. Exhaustive search method for the optimal capacity sizing of the microgrid.

Finally, the economic index is the total cost of the system (TCs), which corresponds to the sum of
the investment and the maintenance costs, as shown in Equation (4).

TCs = Is + MCs − Pro f itPV (4)
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2.2. Assessment of ASS Unavailability

Generally, the main system for supplying ASS is the distribution system. It is characterized by
having a radial topology, where each consumer has a single supply path. This principle is equally
scalable when it is the distribution system that supplies the ASS. However, the distribution networks
are the main source of interruptions in the power system [26], accounting for around 80% of the
interruptions [27]. Moreover, in general, there has been an increase in the monthly half of outages in
the United States from 2.5 to 14.5 in the period 2000–2013 [28]. The expectation is that the frequency
and severity of the absences will continue to increase [13].

Thus, this paper proposed a method to size the microgrid aiming for the reduction of the impact
of distribution system contingencies in the operation of ASS. For this purpose, the contingencies of the
main supply system are characterized by their frequencies and durations [27]. These values can be
obtained from statistical studies of the distribution system operator or, in the absence of data, can be
considered expected values following a normal distribution function.

The unavailability index represents the expected proportion of hours that the substation’s auxiliary
services will be out of operation for a specific microgrid configuration. For the calculation of this index,
it is assumed that (a) the main service feeder of the substation load has a known annual contingency
rate λ; and (b) each contingency is characterized by a random duration, which follows a known
probability function.

Given the random behavior of the contingency duration and the energy supplied by the
photovoltaic panels, it is not possible to guarantee that the available energy of the microgrid in
the contingency state is always enough to supply the ASS. Figure 3 shows the most probable cases
when the microgrid acts as an autonomous backup for the ASS: (a) the available energy of the microgrid
is equal or larger than the ASS energy requirement for the contingency duration of the main supply
system, and (b) the microgrid does not have enough energy and therefore the ASS will be unavailable
for a time smaller than the duration of the contingency.

Figure 3. Relation between contingency time and available microgrid time.

The calculation of the unavailability time of ASS tInd
j , for a contingency j considering these two

possible cases, is detailed for a microgrid configuration s. The contingency j has a duration tout
j ;

the microgrid s has an availability time tms
j dependent on the weather conditions at the time of the

contingency, and the contingency starts at time t0
j . Thus, the microgrid has an amount of energy such

that:

a. The availability time of the microgrid is equal or longer than the contingency duration tms
j ≥ tout

j .

In this case, tInd
j is zero.
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b. The availability time of the microgrid is shorter than the duration of the contingency tms
j < tout

j .

In this case, tInd
j is equal to the difference between the duration of the contingency and the

availability time of the microgrid, i.e., tInd
j = tout

j − tms
j.

The calculation of the unavailability index Is
ind assesses the proportion of the unavailable time for

the ASS concerning a large number of operating hours of the microgrid. Thus, the numerator calculates
the total number of unavailable hours of a microgrid configuration s as the sum of the unavailable
time for each contingency tInd

j . The number of contingencies is defined as the product of the expected
feeder contingency rate of the distribution network λ and the number of years to be simulated Nyears.
The denominator of the index defines the number of hours of simulation as the product between a
large number of years of operation Nyears and the parameter α, which is the number of hours in a year.
Based on the above, the unavailability index can be expressed by Equation (5). An availability index
can be also formulated by Equation (6).

Iind
s =

∑Nyears·λ
j=1 tInd

j

Nyears · α ·100% (5)

Idisp
s = 100− Iind

s (6)

2.3. Energy Analysis for the Autonomous Service of Auxiliary Services

To determine the unavailability time in each interruption it is important to know both the energy
requested by the ASS loads and the total energy available from the microgrid, which depends on
the energy in the battery system and the energy generated by the photovoltaic panels during the
contingency. Both energy components are described in this subsection.

2.3.1. Energy Requested by Auxiliary Services of the Substation

The ASS loads can be divided into three subgroups: permanent loads that are related to the
equipment connected continuously as the protection, measurement, and communication devices;
temporary loads with high power requirements of short duration and necessary for the reestablishment
of service in the substation, e.g., drive motors; and instantaneous loads that are sources of high power
requirements in extremely short periods. A representation of these types of loads and their durations
is presented on the left of Figure 4 in which permanent loads are represented by green bars, temporary
loads by yellow bars, and instantaneous loads by red bars.

Although it is desired to divide the representation of the contingency duration into smaller
intervals, each with its own requested power level, it is not practical in terms of planning when
considering the uncertainty in the duration of the contingency. Because of that, an equivalent load
factor is used to approximate the ASS load requirements. This factor is obtained using the equivalence
between energy consumption in Figure 4 as follows:

1. Each demand level for period t, on the left-hand side of Figure 4 can be represented in terms of a load
factor fi related to the nominal power of ASS, i.e., Pt = ft ·Pnom. Thus, the total energy required by
ASS for the contingency illustrated in Figure 4 is equal to EASS = P1 · t1 +P2 · t2 +P3 · t3 +P4 · t4 =

Pnom( f1 · t1 + f2 · t2 + f3 · t3 + f4 · t4).
2. Equivalently, the power level related to the right-hand side of Figure 4 can be expressed in terms of

a global factor Fg related to the nominal power of ASS, i.e., Peq = Fg ·Pnom. Consequently, the total

energy required by ASS for the contingency of Figure 4 is equal to EASS = Peq ·
(
tms

j − t0
j

)
. =

Fg · Pnom ·
(
tms

j − t0
j

)
.

3. Since the energy required by ASS is the same for both representations in Figure 4 the load factor

for this example is Fg = ( f1 · t1 + f2 · t2 + f3 · t3 + f4 · t4)/
(
tms

j − t0
j

)
.
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Generalizing the calculation above, the general load factor can be written as shown in Equation (7):

Fg =

∑T
t=i ft · tt(

tms
j − t0

j

) (7)

Thus, in the proposed method, the nominal power of ASS Pnom and the global load factor Fg allow
determining the supplied energy by the microgrid in each contingency state using Equation (8).

EASS = Fg · Pnom ·
(
tms

j − t0
j

)
(8)

Figure 4. Load types and their contingency duration.

2.3.2. Energy Generated by the Photovoltaic System

The operation of the photovoltaic system determines the power generated by the panels based
on solar irradiation values and depending on the temperature of the solar cell. The relation between
the solar irradiance and the output power of a solar generating source can be described by the set of
Equations (9)–(13) [29].

Tc = Ta +
(NOT − 20

0.8

)
·Ggh (9)

Ic = Ggh · [Isc + Ki · (Tc − 25)] (10)

Vc = Voc + Kv · Tc (11)

FF =
VMPPT · IMPPT

Voc · Isc
(12)

Poper
pv = Npv

s · FF ·Vc · Ic (13)

Equation (9) calculates the temperature in the photovoltaic cell Tc in terms of the ambient
temperature Ta, the nominal operating temperature of the cell NOT, and the solar irradiation Ggh.
Equation (10) calculates the current provided by the photovoltaic cell as a function of its temperature
and the temperature coefficient for the current Ki. Similarly, the voltage of the photovoltaic cell is
calculated using Equation (11) as a function of Tc and the temperature coefficient for the voltage Kv.
The cell efficiency is determined by the fill factor, calculated in Equation (12), in which IMPPT is the
current at the maximum power point and VMPPT is the voltage at the maximum power point.

The previous equations allow the calculation of the output power of a set of solar cells Poper
pv ,

corresponding to the product of the output power of each cell and the number of panels of the
configuration NPV. Consequently, it is possible to calculate the energy generated by the panels for a
desired time interval, i.e., the island operation mode of the microgrid tms

j as given by Equation (14).
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Epv
j =

∫ tms
j

t0
j

Poper
pv · Δt · dt (14)

2.3.3. Energy Available from the Storage System

A disadvantage of photovoltaic panels is that their generated energy must be consumed instantly.
Moreover, given their dependence on weather conditions, it cannot be guaranteed that they are always
continuous, which makes photovoltaic panels irregular and unreliable. Due to the above considerations,
electrical energy storage systems are necessary to make better use of the power generated by the
photovoltaic system, improving the availability and quality of energy.

In this work, a set of batteries is used as a storage system to jointly act in the microgrid to support
the ASS. The use of batteries allows the microgrid to have a controlled power output, capable of
reliably providing power to the ASS whenever necessary. For this purpose, it is assumed that the
battery is always charged, and its capacity is available to support the ASS. Hence, the available energy
of the battery Ebat is expressed in Equation (15), in which ηout represents the round-trip efficiency of the
battery, Ebat is the nominal capacity of the battery, and DoD represents the depth of discharge.

Ebat = η
out·DoD·Ebat (15)

2.3.4. Bi-Directional Inverter

A bidirectional inverter with the ability to operate in grid-connected and island mode is required
to operate the microgrid. The inverter allows the operation of the microgrid in autonomous mode to
increase the time availability of ASS, the use of the energy of the main grid for charging the batteries,
as well as the injection of the power of the solar panels into the main grid. Figure 5 illustrates the
bidirectional flows that allow the inverter, either to feed the microgrid into the ASS loads or to subtract
or inject power into the main grid from the photovoltaic system.

Figure 5. Operation of the bidirectional invert.

Thus, the inverter controls the operation of the microgrid, determining the input and output flows
of each of the distributed sources to feed the ASS loads. To define the necessary inverter capacity in the
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proposed microgrid, two quantities are considered: the installed power of the photovoltaic panels

P
PV
s and the maximum power of the ASS loads. Equation (16) summarizes the criteria to choose the

inverter capacity.

PIn
s = max

{
P

PV
s , Peq

}
(16)

3. Capacity Sizing Method

The solution strategy proposed in this paper for the capacity sizing of the hybrid microgrid is
summarized in Figure 6. It calculates economic and unavailability indexes for each of the feasible
configurations of the main components of the microgrid. The calculation of the economic index
is direct and depends on the dimensions of the two main components of the microgrid: battery
banks and photovoltaic panels. On the other hand, the unavailability index is dependent on the
capacity of the microgrid in dealing with feeder contingencies, which have a random duration behavior.
Thus, the well-established Monte Carlo simulation method [30] is used here to calculate the total
unavailability time for each of the possible microgrid configurations under evaluation. The details of
the simulation procedure to calculate the unavailability index in Equation (5) are described below:

1. Identify the microgrid configuration to be evaluated from the set of configurations (solar
panel/battery banks).

2. Determine the expected value of the substation feeder failure rate λ.
3. Define the number of years to be simulated Nyears aiming at an appropriate convergence.
4. Calculate the total number of simulations to be performed, i.e., the product between the total

number of years to be simulated and the contingency rate (Nyears · λ).

5. Generate the duration of the contingency j
(
tout

j

)
, as well as the initial time of the contingency

(
t0

j

)
according to corresponding density probability functions.

6. Calculate the amount of energy requested by the ASS in contingency state j.
7. Calculate the amount of energy available by the batteries in the contingency state j.
8. Calculate the amount of available energy from photovoltaic panels in contingency state j.
9. Determine the difference between the energy required by the substation and the available energy

by the microgrid. If the difference is positive, i.e., the hybrid system is unable to supply the ASS
load during the entire contingency state j. The microgrid’s autonomy time tms

j is calculated by

equating the available energy with the energy consumed by the load from tout
j to tms

j, as follows:

a. Calculate tms
j as the solution of Equation (17).

ηout·DoD·Ebat +

∫ tms
j

t0
j

Poper
pv · Δt · dt = Fg · Pnom ·

(
tms

j − t0
j

)
·Δt (17)

b. Take tind
j as the difference between tout

j and tms
j if it is positive, i.e., tind

j = max
{
tout

j − tms
j, 0

}
.

10. Accumulate the total unavailable time tind
j using Equation (5).

11. Repeat steps 5–10 until all contingencies calculated in step 4 are evaluated.
12. Go back to step 1 and choose a new microgrid configuration to evaluate.
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Figure 6. Summary of proposed capacity sizing method.

The aforementioned steps are summarized in Figure 7.
The associated optimization problem can be classified as a stochastic non-convex multi-objective

problem, whereby the first objective in Equation (18) minimizes the economic index of a microgrid as
a backup system for ASS loads, while the second objective in Equation (19) minimizes the expected
value index of the ASS unavailability time due to faults in the main supply system. Both objectives
present a conflicting nature since small investments in the microgrid leads to longer unavailability
times and larger investments results in shorter unavailability times. Both objectives are subject to
the set constraints (7)–(17), summarized in Equation (20), which are related to the operation of the
power resources of the microgrid, ASS loads, and the autonomous operation of the microgrid for the
contingency states of the ASS main supply.

Minimize TCs (18)

Minimize Idisp
s (19)

subject to: Operation of the power resources of the microgrid
ASS load constraints

Autonomous operation of the microgrid for contingencies
(20)
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Figure 7. Flowchart for the calculation of the unavailability index.

4. Case Study

The proposed method was applied to define the best combination of batteries and photovoltaic
panels for a microgrid by assessing the economic and unavailability indexes presented in Section 2.
To consider the randomized behavior of the photovoltaic generation and the duration of the
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contingencies, Monte Carlo simulations were executed in a computer with an Intel i7-7700K processor
using MATLAB [31].

Results of the economic and unavailability indexes for four cases:

• Case I: Goal for the unavailable index.
• Case II: Investment budget for the microgrid configuration.
• Case III: Variation of the fault rate.
• Case IV: Variation of the fault duration.
• Case V: Sensitivity analysis for variations of the battery and photovoltaic panel prices.

The ASS loads are divided into three large groups, each one with nominal power, total power,
and load factor, as shown in Table 1. The topology of the sized microgrid is shown in Figure 8.

Table 1. ASS load characteristics.

Load Description Load Type Nominal Power (W) Total Power (W) Load Factor

Monitoring Permanent 70 74.90 0.005
Circuit breaker Temporary 5000 5850.00 0.362

Protections Permanent 250 235.00 0.015
Measurement Permanent 120 139.20 0.009

Communication Permanent 320 291.20 0.018
Illumination & climatization Permanent 10,000 10,300.00 0.637

Drive motors Temporary 400 396.00 0.025
Drive coils Instantaneous 6200 7440.00 0.460

Figure 8. Topology of the microgrid used in the case study.

Based on these data and assuming that the availability time of the microgrid can be divided into
four intervals, as illustrated in Figure 4, the global power factor is calculated as shown in Table 2. Load
factors for the permanent and temporary loads are in the corresponding interval. It is observed that
the temporary loads are in intervals 2 and 4, whereby the power of the circuit breaker is in interval
2 and the drive motors are in interval 4. It is noteworthy that for the global load factor calculation,
instantaneous loads are not considered, but are included in the sizing of the inverter. Accordingly,
the equivalent power load is equal to 11,918.70 W, which can be rounded to 12 kW.

Table 2. Global power factor bases calculations.

Period % of Time Load Factor Global Load Factor

1 60 0.689

0.738
2 15 0.998
3 15 0.689
4 10 0.713
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A state-of-the-art photovoltaic panel manufactured by Panasonic (VBHN330SJ47) was evaluated;
it has the highest ratio of power generated per area used [32]. Each panel has 0.33 kWp, a cost per unit
equal to $312/panel, and 1% of maintenance cost per year of the total installation cost as considering
for the Brazilian commercial sector in 2019 [33]. The relevant data for obtaining the output power for
the Panasonic panel model, expressed in (9)–(13), are shown in Table 3, based on the datasheet in [34].
These batteries have a modular capacity of 2 kWh, a cost per kWh equal to 420 $/kWh, a DoD equal
to 90%, and a 95% round-trip efficiency. NMC li-ion battery units are considered due to their higher
energy density (735 Wh/L) and their low self-discharge (0.1% per day) [11]. Other battery technologies
have worst characteristics, as the li-ion NCA, LTO, and LFP (energy density of 620 Wh/L for the LTO
option); more importantly, these technologies have a highest cost ($1050/kWh).

Table 3. Information of the photovoltaic panel.

Characteristic Data

Cost 312 ($/unit)
Kv −0.174 (V/◦C)
Ki 1.82 (mA/◦C)
Not 44 (◦C)
Voc 65.8 (V)
Isc 4.89 (A)

Vmppt 58.0 (V)
Imppt 5.7 (A)

Moreover, the inverter cost is 105 $/kW, as suggested in [11]. Also, the maintenance cost for the
batteries and inverters are assumed to be 1.5% per year of the total installation cost. A lifespan of
20 years is adopted; the maintenance costs of all equipment are calculated using an interest rate of 6%.
The energy price is 0.05 $/kWh.

The calculation of the unavailability index was done considering that the contingency durations
follow a normal distribution with a mean equal to 5 h and a standard deviation equal to 3 h [35,36].
To guarantee the Monte Carlo convergence, the simulations are carried out for 5000 years. A total
of 12,000 photovoltaic irradiation profiles, with a one-minute resolution, were generated using the
CREST tool [37], corresponding to 100 monthly profiles; hourly temperature data for one year (2019)
was obtained from the Renewables. Ninja online tool in [38]. Those profiles were generated using the
geographical information of São Paulo city in Brazil.

With that information, the combination of technologies is analyzed from zero up to 96 battery
modules (roughly 16 h of the ASS load) and from zero up to 110 photovoltaic panels (three times the
ASS load).

4.1. Case I: Unavailability Index Goal

The optimal size of the solar photovoltaic and batteries is obtained in this case considering a
goal of 0.003% for the unavailability index and adopting a fault rate equal to 1 for the feeder of
the distribution system. Figure 9 shows the summary results of the unavailability index for each
possible configuration of the microgrid. It is clear the inverse relationship between the number of
energy resources in the microgrid and the unavailability index, i.e., as more capacity is installed in
the microgrid, less time the ASS is unavailable in a contingency state. It is worth mentioning that
the number of photovoltaic panels does not generate much influence on the index, contrary to what
happens with batteries, whereby the addition of some units produces significant improvements in the
index. This fact is explained by the climate dependence on the generation of power of photovoltaic
panels and the availability of energy from batteries, which only depends on their state of charge.
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Figure 9. Heatmap for the unavailability index in Case I.

The red line in Figure 9 indicates the solutions that reach the requested unavailability goal.
Solutions on the left of that line do not satisfy the goal. From the set of feasible solutions, the one with
48 battery modules and 55 photovoltaic panels, represented by the black circle in Figure 9, has the best
economic index ($44.172), i.e., it satisfies the unavailability goal and has the lowest total cost.

The worst unavailability index is the case when no batteries neither photovoltaic panels are
present (0.0520%). On the other hand, 96 battery modules and 110 photovoltaic panels result in the
lowest unavailability index (0%) but with an economic index of $88,344.

These solutions could be compared to a conventional backup diesel generator, which for a
12 kW/15 kVA power has a cost of about $3000 and consumes approximately 3.2 L/h [39]. Adopting a
diesel price in Brazil of $0.55/L and considering that the expected number of fault hours per year is
5, the expected operation and maintenance cost of the diesel generator across the 20-year horizon is
just $270.93 [39,40]. Therefore, an equivalent economic index would be just $3270.93. Although that
value is just a fraction of the best economic index solution in Figure 9, it is worthy to highlight that
the integration of a diesel generator in the microgrid has some disadvantages such as the need for
safe storage and handling of 32 L of diesel to keep the service for faults up to ten hours. On the other
hand, environmental concerns could inhibit the adoption of a technology that produces green-house
emissions (although a small value). Moreover, operation policies could require two or more different
backup alternatives, meaning that just a diesel generator would be insufficient to complain that kind of
policy. For the particular Brazilian case, the regulation requires that at least two independent sources
supply the ASS [41].

4.2. Case II: Limited Budget

The optimal size of the photovoltaic panel system and the batteries, in this case, is obtained
considering that a limited budget of $40,000 for the economic index. The assumptions for calculating
the unavailability are the same as in Case I.

As highlighted in the previous case of study, an increase in the size of the equipment brings a
reduction in the index of unavailability. On the other hand, larger dimensions of the equipment require
a higher investment, as shown in Figure 10. Thus, on many practical occasions, decision-makers have
an investment limit to achieve the lowest values of the unavailability index. Since the budget limitation
should be enforced, the solution for this case is the combination that provides the best unavailability
index that does not have a total cost above the budget limit. That solution defines the use of the
43 battery modules and 55 photovoltaic panels, leading to an unavailability index of 0.0046%. Note
that this solution, shown by the black circle in Figure 10, is worse than the one found in Case I but has
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an economic index equal to $39,970. It is worthy to highlight that to satisfy the budget limit, fewer
battery modules but more photovoltaic panels should be installed.

Figure 10. Heatmap for the economic index in Case II.

4.3. Case III: Sensitivity Analysis for the Variation of Fault Rate

One of the most crucial parameters in the unavailability of ASS is the annual fault rate of the
distribution system feeder, which in normal operation state supplies the ASS loads. Therefore, different
values for the fault rate are analyzed here to find its influence on the microgrid sizing. The same
unavailability index goal for Case I is used to defining the best solution for each fault rate.

Table 4 presents the results obtained from the variation of the annual fault rate, in which is
possible to verify that to maintain the same level of unavailability, more battery modules are required.
It is observed that the economic index increases with the fault rate. It is worthy to highlight that the
number of battery modules increases to maintain the required unavailability index; on the other hand,
the number of photovoltaic panels varies without a clear trend, being reduced in some cases to save
costs without compromising the goal.

Table 4. Sensitivity of the solution with variation of the fault rate.

Fault Rate (Faults/Year) Battery Modules (Units) Photovoltaic Panels (Units) Economic Index ($)

1 * 48 51 44.172
2 55 53 49.915
3 59 52 53.206
4 62 49 55.518
5 64 48 57.129
6 66 41 58.322
7 67 46 59.511
8 68 44 60.212
9 69 43 60.982

10 69 51 61.540

* Annual fault rate for Case I.

4.4. Case IV: Sensitivity Analysis for the Variation of Fault Duration

The duration of interruptions affecting the feeder of the distribution system, which in normal
operating state supplies the ASS loads, has a direct relation with the size of the microgrid. Therefore,
different values for fault duration are analyzed here in order to find their influence on the microgrid
sizing. The same unavailability index objective for Case I is used to define the best solution.
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Table 5 presents the results obtained from the variation of the fault duration; the mean fault
duration is shown in the first column and the standard deviation is changed proportionally. It is
possible to verify that, to maintain the same level of unavailability, more battery modules are needed.
It is observed that the economic index also increases with the failure duration. The number of battery
modules increases to maintain the necessary unavailability rate; moreover, the number of photovoltaic
panels also increases. If the mean fault duration increases from 5 to 10 h, the economic index becomes
95% larger. On the other hand, an improvement in the fault duration from 5 h to 1 h leads to a cost
reduction of more than six times. This highlights that an enhancement of feeder reliability results in
lower microgrid costs.

Table 5. Sensitivity of the solution with variation of the fault duration.

Mean Fault Duration (h) Battery Modules (Units) Photovoltaic Panels (Units) Economic Index ($)

1 7 0 7.144
2 16 29 15.723
3 27 29 24.967
4 37 45 34.231

5 * 48 51 44.172
6 58 64 53.203
7 68 73 62.234
8 76 100 70.840
9 85 105 78.751

10 94 103 86.175

* Mean fault duration for Case I.

4.5. Case V: Sensitivity Analysis for the Variation of Battery and Photovoltaic Panel Prices

Given that the adoption of economies of scale foresees a decrease in the prices of photovoltaic
panels and batteries, it is important to analyze the influence of the prices of such equipment in the
sizing of the microgrid. For that purpose, price variations from 75% up to 125% of the base photovoltaic
panels cost are analyzed (see Table 6). Moreover, price variations from 50% up to 125% of the base
battery module cost are analyzed (see Table 7). The same assumptions for the unavailability index goal
in Case I are adopted here. All solutions shown have an unavailability index equal to 0.003%, i.e., all
satisfy the requested goal.

Table 6. Sensitivity of the solution with variation of photovoltaic panel price.

PV Price (Unit) Battery Modules (Units) Photovoltaic Panels (Units) Economic Index ($)

390.00 51 27 47.171
374.40 50 35 46.689
358.80 50 35 46.143
343.20 49 43 45.517
327.60 49 43 44.846

312.00 * 48 55 44.172
296.40 48 55 43.314
280.80 47 71 42.232
265.20 46 96 40.857
249.60 46 96 39.360
234.00 46 110 37.747

* Solution for Case I.

Higher costs for photovoltaic panels result in a relatively small increase in the economic index but
causing the selection of lower panels (27 for a 25% increase). On the other hand, a 25% price reduction
leads to using almost all panels studied (110) and has a reduction of almost 15% in the economic index.

Regarding battery modules, there is an influence of the price on the solution, but it is not so strong
as seen with the photovoltaic panels. The number of battery modules increases by only two units
when the price is reduced by 50%. However, it is remarkable the reduction in the economic index
(36%) since the corresponding solution requires less photovoltaic panels. This indicates that, with the
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ongoing reduction in energy storage prices, technology would be the most cost-effective alternative to
supply ASS in substations under a contingency.

Table 7. Sensitivity of the solution with variation of battery price.

Battery Price (kWh) Battery Modules (Units) Photovoltaic Panels (Units) Economic Index ($)

525 48 55 54.252
504 48 55 52.236
483 48 55 50.220
462 48 55 48.204
441 48 55 46.188

420 * 48 55 44.172
399 49 43 42.117
378 49 43 40.059
357 49 43 38.001
336 49 43 35.943
315 49 43 33.885
294 49 43 31.827
273 49 43 29.769
252 50 35 27.705
231 50 35 25.605
210 50 35 23.505

* Solution for Case I.

5. Conclusions

This paper addresses the optimal sizing of a microgrid for the reserve supply of the substation’s
auxiliary services intending to reduce the time of unavailability of these loads when the main supply is
under contingency. Unlike other backup systems, which usually use diesel generators, the backup
microgrid is formed by the integration of environmentally friendly technologies such as photovoltaic
panels together with battery systems as a unique distributed generation unit named microgrid,
which increases the backup system dispatchability.

To deal with the high cost of batteries and the intermittence of photovoltaic generation, a careful
analysis determines the capacity of the microgrid identifying the best compromise between the
investment and the reduction of the unavailability of auxiliary services. For this purpose, two indexes
are proposed to evaluate a set of multiple alternatives using an exhaustive search and Monte Carlo
simulations to address the uncertainties of contingencies and variations in solar irradiation.

One of the indexes determines the economic value of the main elements of the microgrid such
as the photovoltaic panels, the batteries, and the inverter. Furthermore, an index of unavailability is
proposed to measure the contribution of the integrated hybrid microgrid to reduce the time in which the
substation is unavailable. The results show the conflicting relationship between both indexes, where a
decrease in the unavailability index leads to an increase in the economic index. Hence, the optimal size
of the microgrid components is determined by the achievement of the target in the unavailability index
with the lowest cost. Besides, the results show the importance of batteries to increase the availability of
auxiliary services of the substation above the photovoltaic panels.

Future works may consider the possibility of using the microgrid as the main system for supplying
auxiliary services in the substation, considering other components of storage and generation, such as
fuel cells, hydrogen storage, and electric vehicles, among others.
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Nomenclature

Parameters

α Number of hours in a year.
δ Interest rate.
ηout Round-trip efficiency of the battery.
λ Annual contingency rate.
π Energy price.
τ Equipment’s lifespan.
cbat Equipment costs for batteries.
cpv Equipment costs for photovoltaic panels.
cIn Equipment costs for inverters.
DoD Depth of discharge.
fi Load factor.
Fg Global load factor.
Ggh Solar irradiation.
IMPPT Current at the maximum power point.
Ki Temperature coefficient for the current.
Kv Temperature coefficient for the voltage.
mcbat Annual maintenance cost for batteries.
mcpv Annual maintenance cost for photovoltaic panels.
mcin Annual maintenance cost for inverter.
NOT Nominal operating temperature of the cell.
Nyears Numbers of years in the Monte Carlo simulation.
Peq Equivalent power of the ASS loads.
Pnom Nominal power of ASS.
t Time period.
t0

j Contingency start time.

Ta Ambient temperature.
Tc Temperature in the photovoltaic cell.
tout

j Duration of contingency j.
VMPPT Voltage at the maximum power point.
Variables

Is Total investment value for a microgrid configuration.
EASS Total energy required by ASS for the contingency.
Ebat Nominal capacity of the battery.
Ebat Available energy of the battery.
EPV Annual energy generated by the photovoltaic panels.
Epv

j Energy generated by the photovoltaic panels for contingency j.

Is
ind Unavailability index.

MCs Maintenance costs.
Npv

s Number of photovoltaic panels units used on each microgrid.
PIn

s Inverter capacity in the proposed microgrid.

P
PV
s Installed power of the photovoltaic panels.

Poper
pv Operation power of the photovoltaic panels.

Pro f itPV Profit related to selling photovoltaic energy.
TCs Total cost of the system.
tInd

j Unavailability time of ASS for contingency j.
tms

j Microgrid availability time.

References

1. Borlea, I.; Kilyeni, S.; Barbulescu, C.; Cristian, D. Substation ancillary services fuel cell power supply. Part 1.
solution overview. In Proceedings of the ICCC-CONTI 2010—IEEE International Joint Conferences on
Computational Cybernetics and Technical Informatics, Timisora, Romania, 27–29 May 2010; pp. 585–588.

2. Barbulescu, C.; Kilyeni, S.; Jigoria-Oprea, D.; Chiosa, N. Electric substation ancillary services power
consumption analysis. Case study: Timisoara 400/220/110 kV substation. In Proceedings of the
ICHQP 2010—14th International Conference on Harmonics and Quality of Power, Bergamo, Italy,
26–29 September 2010; pp. 1–7.

55



Energies 2020, 13, 6037

3. Olatomiwa, L.; Mekhilef, S.; Huda, A.S.N.; Sanusi, K. Techno-economic analysis of hybrid PV–diesel–battery
and PV–wind–diesel–battery power systems for mobile BTS: The way forward for rural development.
Energy Sci. Eng. 2015, 3, 271–285. [CrossRef]

4. Prostean, O.; Kilyeni, S.; Barbulescu, C.; Vuc, G.; Borlea, I. Unconventional sources for electric substation
ancillary services power supply. In Proceedings of the 14th International Conference on Harmonics and
Quality of Power—ICHQP, Bergamo, Italy, 26–29 September 2010; pp. 1–6.

5. Bahramara, S.; Mazza, A.; Chicco, G.; Shafie-khah, M.; Catalão, J.P.S. Comprehensive review on the
decision-making frameworks referring to the distribution network operation problem in the presence of
distributed energy resources and microgrids. Int. J. Electr. Power Energy Syst. 2020, 115, 105466. [CrossRef]

6. Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the art in research on microgrids: A review.
IEEE Access 2015, 3, 890–925. [CrossRef]

7. Bahramara, S.; Moghaddam, M.P.; Haghifam, M.R. Optimal planning of hybrid renewable energy systems
using HOMER: A review. Renew. Sustain. Energy Rev. 2016, 62, 609–620. [CrossRef]

8. Tong, Y.; Zhang, H.; Jing, L.; Wu, X. Flexible substation and its control for AC and DC hybrid power
distribution. In Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA,
2018), Wuhan, China, 31 May–2 June 2018; pp. 423–427.

9. Ahmed, H.M.A.; Eltantawy, A.B.; Salama, M.M.A. A planning approach for the network configuration of
AC-DC hybrid distribution systems. IEEE Trans. Smart Grid 2018, 9, 2203–2213. [CrossRef]

10. Li, Y.; Chen, N.; Zhao, C.; Pu, T.; Wei, Z. Research on evaluation index system of low-carbon benefit in
AC/DC hybrid distribution network. In Proceedings of the China International Conference on Electricity
Distribution (CICED 2016), Xi’an, China, 10–13 August 2016; pp. 10–13.

11. Ralon, P.; Taylor, M.; Ilas, A.; Diaz-Bone, H.; Kairies, K.-P. Electricity Storage and Renewables: Costs and Markets
to 2030; International Renewable Energy Agency: Abu Dhabi, UAE, 2017.

12. Neves, D.; Silva, C.A.; Connors, S. Design and implementation of hybrid renewable energy systems on
micro-communities: A review on case studies. Renew. Sustain. Energy Rev. 2014, 31, 935–946. [CrossRef]

13. Cano, A.; Jurado, F.; Sánchez, H.; Fernández, L.M.; Castañeda, M. Optimal sizing of stand-alone hybrid
systems based on PV/WT/FC by using several methodologies. J. Energy Inst. 2014, 87, 330–340. [CrossRef]

14. Schneider, K.P.; Tuffner, F.K.; Elizondo, M.A.; Liu, C.C.; Xu, Y.; Ton, D. Evaluating the Feasibility to Use
Microgrids as a Resiliency Resource. IEEE Trans. Smart Grid 2017, 8, 687–696.

15. Wu, T.F.; Kuo, C.L.; Sun, K.H.; Chang, Y.C. DC-bus voltage regulation and power compensation with
bi-directional inverter in DC-microgrid applications. In Proceedings of the IEEE Energy Conversion Congress
and Exposition: Energy Conversion Innovation for a Clean Energy Future, ECCE 2011, The Cobo Center1
Washington BlvdDetroit, Detroit, MI, USA, 11–15 November 2011; pp. 4161–4168.

16. Fathima, A.H.; Palanisamy, K. Optimization in microgrids with hybrid energy systems—A review.
Renew. Sustain. Energy Rev. 2015, 45, 431–446. [CrossRef]

17. Alzahrani, A.M.; Zohdy, M.; Yan, B. An overview of optimization approaches for operation of hybrid
distributed energy systems with photovoltaic and diesel turbine generator. Electr. Power Syst. Res. 2021, 191,
106877. [CrossRef]

18. Anoune, K.; Bouya, M.; Astito, A.; Abdellah, A. Ben Sizing methods and optimization techniques for PV-wind
based hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2018, 93, 652–673. [CrossRef]

19. Shi, Z.; Wang, R.; Zhang, T. Multi-objective optimal design of hybrid renewable energy systems using
preference-inspired coevolutionary approach. Sol. Energy 2015, 118, 96–106. [CrossRef]

20. Moghaddam, S.; Bigdeli, M.; Moradlou, M.; Siano, P. Designing of stand-alone hybrid PV/wind/battery
system using improved crow search algorithm considering reliability index. Int. J. Energy Environ. Eng. 2019,
10, 429–449. [CrossRef]

21. Eteiba, M.B.; Barakat, S.; Samy, M.M.; Wahba, W.I. Optimization of an off-grid PV/Biomass hybrid system
with different battery technologies. Sustain. Cities Soc. 2018, 40, 713–727. [CrossRef]

22. Hosseinzadeh, M.; Salmasi, F.R. Fault-Tolerant Supervisory Controller for a Hybrid AC/DC Micro-Grid.
IEEE Trans. Smart Grid 2018, 9, 2809–2823. [CrossRef]

23. Paserba, J.J.; Leonard, D.J.; Miller, N.W.; Naumann, S.T.; Lauby, M.G.; Sener, F.P. Coordination of a distribution
level continuously controlled compensation device with existing substation equipment for long term VAr
management. IEEE Trans. Power Deliv. 1994, 9, 1034–1040. [CrossRef]

56



Energies 2020, 13, 6037

24. Kadurek, P.; Cobben, J.F.G.; Kling, W.L.; Ribeiro, P.F. Aiding power system support by means of voltage
control with intelligent distribution substation. IEEE Trans. Smart Grid 2014, 5, 84–91. [CrossRef]

25. Vuc, G.; Barbulescu, C.; Kilyeni, S.; Solomonesc, F. Substation ancillary services fuel cell power supply.
Part 2. case study. In Proceedings of the ICCC-CONTI 2010—IEEE International Joint Conferences on
Computational Cybernetics and Technical Informatics, Timisora, Romania, 27–29 May 2010; pp. 589–594.

26. Amanulla, B.; Chakrabarti, S.; Singh, S.N. Reconfiguration of Power Distribution Systems Considering
Reliability and Power Loss. IEEE Trans. Power Deliv. 2012, 27, 918–926. [CrossRef]

27. Billinton, R.; Allan, R.N. Reliability Evaluation of Power Systems; Plenum Press: New York, NY, USA, 1996.
28. Narimani, M.R.; Vahed, A.A.; Azizipanah-Abarghooee, R.; Javidsharifi, M. Enhanced gravitational search

algorithm for multi-objective distribution feeder reconfiguration considering reliability, loss and operational
cost. IET Gener. Transm. Distrib. 2014, 8, 55–69. [CrossRef]

29. Atwa, Y.M.; El-Saadany, E.F.; Salama, M.M.A.; Seethapathy, R. Optimal renewable resources mix for
distribution system energy loss minimization. IEEE Trans. Power Syst. 2010, 25, 360–370. [CrossRef]

30. Janssen, H. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliab.
Eng. Syst. Saf. 2013, 109, 123–132. [CrossRef]

31. The Mathworks. The Language of Technical Computing—MATLAB. Natick, MA, USA, 2019. Available
online: https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab (accessed on
14 October 2020).

32. Mesquita, D.D.B.; Silva, J.L.d.S.; Moreira, H.S.; Kitayama, M.; Villalva, M.G. A review and analysis
of technologies applied in PV modules. In Proceedings of the 2019 IEEE PES Innovative Smart Grid
Technologies Conference—Latin America (ISGT Latin America), Gramado City, Brazil, 15–18 September
2019; pp. 1–6.

33. Agency, I.R.E. Renewable Power Generation Costs in 2018; International Renewable Energy Agency:
Abu Dhabi, UAE, 2018; p. 160.

34. Panasonic, “Photovoltaic Module N330_325_320SJ47-Datasheet”. 2019. Available online: https://panasonic.
net/lifesolutions/solar/download/pdf/N330_325_320SJ47Datasheet_190226.pdf (accessed on 10 October 2020).

35. Darling, D.; Sara, H. Average Frequency and Duration of Electric Distribution Outages Vary by States; U.S. Energy
Information Administration: Washington, DC, USA, 2018.

36. Adderly, S. Reviewing Power Outage Trends, Electric Reliability Indices and Smart Grid Funding; University of
Vermont: Burlington, VT, USA, 2016.

37. Richardson, I.; Thomson, M. Integrated Domestic Electricity Demand and PV Micro-Generation Model; Institutional
Repository, Loughborough University: Loughborough, UK, 2011.

38. Pfenninger, S.; Staffell, I. Renewables Ninja. Available online: https://www.renewables.ninja/ (accessed on
14 October 2020).

39. Diesel Generator Fuel Consumption Chart in Litres. 2019. Available online: https://www.ablesales.com.au/
blog/diesel-generator-fuel-consumption-chart-in-litres.html (accessed on 9 November 2020).

40. Solano-Peralta, M.; Moner-Girona, M.; van Sark, W.G.J.H.M.; Vallvè, X. “Tropicalisation” of Feed-in Tariffs:
A custom-made support scheme for hybrid PV/diesel systems in isolated regions. Renew. Sustain. Energy Rev.
2009, 13, 2279–2294. [CrossRef]

41. Operador Nacional do Sistema Eléctrico Requisitos Mínimos Para Transformadores e Para Subestações e
Seus Equipamentos. Available online: http://www.ons.org.br/%2FProcedimentosDeRede%2FMódulo2%
2FSubmódulo2.3%2FSubmódulo2.3_Rev_2.0.pdf (accessed on 10 November 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

57





energies

Article

Network and Market-Aware Bidding to Maximize
Local RES Usage and Minimize Cost in Energy
Islands with Weak Grid Connections

Konstantinos Smpoukis 1, Konstantinos Steriotis 1, Nikolaos Efthymiopoulos 1,

Georgios Tsaousoglou 2, Prodromos Makris 1,* and Emmanouel (Manos) Varvarigos 1

1 Department of Electrical and Computer Engineering, Institute of Communication and Computer
Systems (ICCS), National Technical University of Athens (NTUA), 15780 Athens, Greece;
kostasbouk@mail.ntua.gr (K.S.); konsteriotis@mail.ntua.gr (K.S.); nikoseft@mail.ntua.gr (N.E.);
vmanos@mail.ntua.gr (E.V.)

2 Department of Electrical Engineering, Eindhoven University of Technology,
5612 AP Eindhoven, The Netherlands; g.tsaousoglou@tue.nl

* Correspondence: prodromosmakris@mail.ntua.gr

Received: 15 June 2020; Accepted: 27 July 2020; Published: 5 August 2020

Abstract: The increasing renewable energy sources RES penetration in today’s energy islands and
rural energy communities with weak grid connections is expected to incur severe distribution network
stability problems (i.e., congestion, voltage issues). Tackling these problems is even more challenging
since RES spillage minimization and energy cost minimization for the local energy community are set
as major pre-requisites. In this paper, we consider a Microgrid Operator (MGO) that: (i) gradually
decides the optimal mix of its RES and flexibility assets’ (FlexAsset) sizing, siting and operation,
(ii) respects the physical distribution network constraints in high RES penetration contexts, and (iii)
is able to bid strategically in the existing day-ahead energy market. We model this problem as
a Stackelberg game, expressed as a Mathematical Problem with Equilibrium Constraints (MPEC),
which is finally transformed into a tractable Mixed Integer Linear Program (MILP). The performance
evaluation results show that the MGO can lower its costs when bidding strategically, while the
coordinated planning and scheduling of its FlexAssets result in higher RES utilization, as well as
distribution network aware and cost-effective RES and FlexAsset operation.

Keywords: energy islands; local energy communities; flexibility; optimal bidding RES siting and
sizing; price maker

1. Introduction

Energy islands and remote energy communities with weak grid connections can be the
“front-runner” use case towards the energy transition [1], as they can benefit from: (i) low cost
of renewable energy sources RES compared to the high energy production costs of conventional
generators; (ii) local deployment of local RES and storage systems, which can both enhance cost
effectiveness and decarbonize the local energy system in the long term; (iii) the exploitation of the close
social bonds of the local community members that increase the end users’ engagement [2,3].

Recent regulations that incentivize local investments in integrated energy systems, such as [4],
highlight that the need for optimal RES investments triggers investments in flexibility assets,
or FlexAssets (e.g., electric vehicles, battery storage systems, demand side management, etc.).
Their efficient siting, sizing and scheduling become an apparent problem to solve towards the
effective utilization of local RES usage.

Moreover, the underlying network of a typical energy island is vulnerable to severe instability
issues, because: (i) its interconnection point with higher voltage networks (i.e., main grid at the
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transmission network level) is weak, and (ii) its existing lines at the distribution network level are
usually inadequate to accommodate the continuously increasing RES, especially at the edges of the
low-voltage distribution network [5]. Finally, when not operating in islanded mode, the Microgrid
Operator (MGO) purchases/sells energy from/to the main grid to cover/sell its excessive demand/supply.
Hence, network and market-aware bidding is required to minimize the energy cost and maximize the
end users’ welfare.

A more general term than MGOs is Energy Service Providers (ESPs). Without harm of generality,
ESPs are smart grid stakeholders that dispose RES and/or flexibility assets and participate in the
traditional energy markets and/or in local flexibility markets. In more detail, ESPs could be categorized
in four major categories which are: (i) RES producers/traders and/or RES aggregation service providers,
(ii) aggregators of loads from home electric appliances (e.g., HVAC, EVs, etc.) towards the provision of
Demand Side Management (DSM) services, (iii) owners and operators of Battery Storage System (BSS)
as well as providers of flexibility services through them, and (iv) retailers, who just purchase energy
from wholesale markets in order to serve the loads of their customers and thus may not possess any
RES, DSM and BSS assets. Recently, ESPs compose hybrid business models, which means that they
may fall into more than one of the aforementioned categories as extensively described in the use case
scenarios’ analysis of the ongoing European Commision (EC)-funded H2020 FLEXGRID project [6].

The business model that ESPs may adopt highly depends on the architecture of the smart grid and
the energy market. Our work in FLEXGRID [7] proposes innovative smart grid architectures, trying
to identify efficient interactions between the grids’ and energy markets’ operations. In more detail,
FLEXGRID proposes three major innovations. The first is the monitoring of the distribution network
towards stable and distributed RES and flexibility asset installations in it by the ESPs. The second is
that it follows an open data approach, which means that ESPs are able to exploit information that is
relevant with the network topology and the market of the underlying grid towards efficient investment
plans (i.e., sizing, siting) and optimal scheduling of their flexibility assets. The third is an innovative
interaction between the distribution and transmission network towards the efficient and coordinated
management of RES and flexibility assets.

In the context of this work, we focus on a specific business model through which an MGO
entity efficiently represents the interests of local energy communities through the co-design and
co-optimization of a set of services. In more detail, the services that MGO operates on behalf of the
local energy community are: (1) optimal sizing, siting and operation for RES, Battery Storage System
(BSS) and aggregated Demand Side Management (DSM) assets, (2) modeling and management of the
distribution network through the use of optimal power flow algorithms in order to deal with local
congestion and voltage control problems, and (3) advanced models for the optimal MGO’s participation
in the existing energy markets.

According to the aforementioned innovative business model, a major contribution of this paper is
the development of the algorithms that this business model needs. In more detail, this work develops
a holistic MGO operational framework, which can concurrently:

• Coordinate the short-term scheduling and long-term planning of various types of FlexAssets, thus
providing an optimal integrated operation and an investment tool that facilitates decision makers
by acting as an evaluator of possible investments.

• Exploit Optimal Power Flow (OPF) algorithms, which take into consideration local congestion and
voltage-related constraints and allow a network-aware RES and FlexAssets’ exploitation policy.

• Co-optimize the operation of RES and FlexAssets, as well as execute scenarios that facilitate the
co-design of investments with their optimal mix.

• Model the competition in the day-ahead energy market and thus allow MGO to exploit the
competition. In contrast to the related literature that mainly considers large price-maker entities
at the transmission system level, we showcase that MGO’s profits can also be significant,
despite the fact that its portfolio represents only a small portion of the market’s total energy
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production/consumption. In this way, we assist energy islands and remote energy communities in
order to mitigate their inherent RES-related and geographic-related negative externalities.

The rest of this paper is structured as follows. Section 2 analyzes the related work. Section 3
presents the proposed model. Section 4 formulates the problem, presents the mathematical models that
we use and the solution that we propose. Section 5 evaluates the proposed solution, while Section 6
concludes and presents hints for future work.

2. Related Work

According to [8], there are real and practical examples, which exploit RES in order to develop
energy autonomy in energy islands. Moreover, there are many recent studies (with real examples) on
the optimization of RES and the flexibility assets’ mix in energy islands and in local communities that
operate RES [9]. In more detail, [10] exploits fuzzy logic in order to derive an efficient sizing of RES
and BSS and analyzes the “robustness” level that it offers. In our previous work [11], we analyzed
an approach that further increases this robustness through the development of a modern community
aware and self-organized Demand Side Management architecture.

Although these works are promising studies towards sustainable energy islands, they do not
adequately model the underlying network and they do not accurately model the interaction between
energy islands and existing smart grid energy market architecture.

As far as it concerns the exploitation of flexibility assets (e.g., BSS) at the transmission network
level, there are already many works that explored this case in the international scientific literature.
In [12], a stochastic optimization problem is formulated that allows a price taker (i.e., non-strategic
bidder) ESP to exploit its BSSs (that it installs in various network locations) in existing energy markets
in order to maximize its profits. More progressively, [13] considers a price maker (i.e., strategic
bidder according to a sensitivity analysis of market prices) ESP that owns and operates a number
of geographically dispersed storage units at different network buses and participates in day-ahead
energy market. A bi-level stochastic optimization model is used to optimize the ESP’s offering/bidding
strategy, which is transformed into a Mathematical Program with Equilibrium Constraints (MPEC).
In the upper level, the ESP’s profits are maximized, while in the lower level a DC-OPF optimization
algorithm clears the market that manages the transmission network. Furthermore, [14] analyzes the
case in which multiple ESPs provide flexibility services through the use of BSS (again in a day-ahead
energy market regarding the transmission network level where the network data are available to
all participants). The bidding strategy of the ESP is modeled as a bi-level optimization problem.
In the upper-level the revenues of the ESP from the various energy markets are modeled and in the
lower-level problem the clearing of the day-ahead energy markets are modeled. The aforementioned
MPEC problem is extended to an Equilibrium Problem with Equilibrium Constraints (EPEC) in cases
where there are more than one ESPs. The solution of this problem exploits a diagonalization method.

The proposed solution builds on the logic of these works, especially in the strategical bidding of
ESPs towards their financial sustainability. It additionally extends them by: (i) modeling ESPs that
operate and exploit an optimal mix of RES and flexibility assets instead of BSS, and (ii) models the
topology of the underlying distribution network and its constraints. In this way, it facilitates and
co-optimizes distributed investments at the distribution network level.

Beyond their interaction with existing energy markets, ESPs are able to offer services to end
consumers such as energy arbitrage, minimization of dependence on the main grid and revenues
from P2P markets. In more detail, a pioneering work is analyzed in [15], which presents an operation
strategy of an ESP to facilitate DSM. In order to achieve this, it allows BSS to be operated from end
consumers and network operators in a cooperative fashion. Furthermore, [16] proposes an algorithm
towards the optimal interaction between: (i) energy consumers with DSM capabilities, and (ii) an ESP
which operates its DSM. Finally, in [17], there is a trade among the end users and the BSS owners
with the energy markets according to the prices of the latter. In this context, there is a harmonization
between production and demand, while at the same time, the end users trade energy with the BSS or
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the grid according to the announced prices. This process is modeled as a non-cooperative Stackelberg
game among the aforementioned participants.

The proposed work advances these works by allowing an ESP to co-optimize the RES and flexibility
assets with respect to the distribution network constraints and by modeling the existing energy markets.
In this way, it achieves higher financial sustainability for the FlexAsset operator (i.e., MGO) and thus
energy services with lower cost for the end users (i.e., members of the local energy community).

3. System Model

Without loss of generality, this work considers a transmission grid that is characterized by a set
of buses and a set of transmission lines. We also assume a Distribution Network (DN), which could
be seen as a tree whose root is located at a given bus of the transmission grid (cf. outlined area in
Figure 1). The DN is operated by a local DN operator or else MGO. The business model of the MGO
is analyzed earlier in the introductory section. According to it, MGO is responsible for controlling
the BSSs and the flexible loads in order to strategically participate in the day-ahead energy market.
In this way, it offers energy services with minimum cost to the local community and high financial
sustainability for local RES operators. Ideally, the objective of the MGO is to use all its available local
RES and thus avoid RES spillage. In addition, if the energy that the local RES produces is smaller
than local demand, MGO buys energy from the main grid at the lowest possible cost. At the same
time, the MGO has to ensure the reliable operation of its network, which is a quite difficult task
especially in high RES penetration scenarios, where local RES curtailment should be kept at a minimum.
Without loss of generality, in this paper, RES curtailment is not considered, and it is assumed that
the MGO is obliged to take any necessary measures in order to avoid RES spillage. In this way,
the occurring infeasibilities and the need for investments is emphasized. For example, as shown in
Figure 1, a congestion problem may occur due to the weak connection linking the energy island/remote
energy community with the main grid. Moreover, at the network edges, it is highly probable that
various local voltage and congestion problems may occur frequently due to the expected high RES
penetration and the rather weak connections within the local DN. The goal of this paper is to calculate
the MGO’s optimal bidding strategy in the day-ahead energy market and the optimal schedule of the
FlexAssets, while simultaneously taking into account the distribution network constraints.

The proposed system model is applicable to energy communities, cooperatives (i.e., RESCoops [18]),
islands and municipal/local electric utilities, which own/aggregate local RES, local FlexAssets and
operate the local DN at the same time. In these cases, the facilitation of local and bottom-up RES and
FlexAsset investments is essential, strengthening the energy autonomy and having lower costs in the
long term. This is due to the fact that investments in stronger interconnection points with the main
grid or local network reinforcements have higher financial cost and/or very high uncertainty due to
bureaucratic procedures. In order to adequately present the advantages of the proposed business
model of this work, we evaluate two main RES penetration scenarios. The first is the high RES
penetration scenario. Its objective is to eliminate local RES curtailment and achieve network feasibility
at the same time (i.e., satisfy the constraints of the distribution network). Thus, this case is dedicated
to network-aware bidding. On the second scenario, where RES penetration is low, we assume that
demand cannot be satisfied by local RES. Thus, this case is dedicated to market-aware bidding to
minimize energy costs. Both network-aware and market-aware bidding aspects of the proposed
framework are formulated below.
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Figure 1. System model.

4. Problem Formulation

The MGO’s decision process can be formulated as a bi-level problem [19], where the Upper-Level
(UL) problem represents the minimization of MGO’s energy costs and the Lower-Level (LL) represents
the market clearing process that derives the Locational Marginal Prices (LMPs) at the transmission
network level. The generated Mathematical Problem with Equilibrium Constraints (MPEC) constitute
the MGO, a price maker entity that is able to anticipate the electricity market’s reaction to its
decisions (quantity/price bids) and affect the system’s marginal price. In order to model this process,
a Stackelberg Game is formulated in which the MGO is the “Leader” and the day-ahead energy market
is the “Follower”. The problem is solved from the MGO’s point of view that acts strategically. Hence,
an Optimization Problem constrained by an Optimization Problem (OPcOP) is formulated, in which
the UL problem is constrained by the LL problem. The LL problem can be substituted by its KKT
conditions, since it is a standard LP. This set of constraints corresponding to the KKT conditions of the
LL problem, is equivalent to an equilibrium problem, since it contains the complementary slackness
constraints. Complementary slackness constraints constitute the complementarity conditions which
are the basic characteristics of an equilibrium problem. Thus, the final problem is formulated as an
MPEC, namely an optimization problem constrained by an equilibrium problem.

4.1. Upper Level (UL) Problem—MGO Minimizes Its Costs

In order for the MGO to schedule its FlexAssets in a network- and market-aware manner, its cost
function is defined as:

minXU

∑
t∈H

∑
i∈NG

λi,t · pM
i,t , (1)

This optimization problem is subject to various constraints related to the operation of the:
(i) shiftable loads (i.e., DSM units), (ii) BSS units, (iii) DN, and (iv) quantity bids. When a DN located
at bus i ∈ NG supplies power to the main grid at timeslot t, it sells this power in the pool market at
price λi,t, which is the nodal price (LMP) at bus i. In contrast, when a DN i draws power from the grid,
it buys that power from the pool market at price λi,t. The amount of power to be sold or purchased at a
specific bus and timeslot denoted as pM

i,t is a decision variable of MGO’s problem.
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4.1.1. Modeling of Battery Storage System (BSS) Units

MGO manages the BSS’ charging/discharging schedules. At each DN i ∈ NG and timeslot t ∈ H,
a BSS b ∈ Bi (physical or virtual through the aggregation of several distributed BSS) has to be charged
or discharged. Charging (or discharging) power rch

i,b,t( rdis
i,b,t) is limited by the BSS’ maximum charging

(or discharging) rate rch,max
i,b ( rdis,max

i,b ), respectively. Thus:

0 ≤ rch
i,b,t ≤

(
1− xi,b,t

)
rch,max

i,b ,∀i ∈ NG, b ∈ Si, t ∈ H (2a)

0 ≤ rdis
i,b,t ≤ xi,b,tr

dis,max
i,b , ∀i ∈ NG, b ∈ Si, t ∈ H (2b)

where xi,b,t is a binary variable indicating the operating status of each DN’s BSS at t (i.e., xi,b,t = 1 when
BSS s located in DN i is discharged at t, and xi,b,t = 0 when it is charged). We denote by H = {1, 2, . . . , T}
the scheduling horizon considered. Moreover, the State of Charge SOCi,t,b of BSS b in DN i at any time
interval t cannot exceed a lower bound SOCmin

i,b and an upper bound SOCmax
i,b :

SOCi,b,t = SOCi,b,0 −
t∑
τ=1

(
ηd

i,b·r
dis
i,b,τ − η

c
i,b·r

ch
i,b,τ

)
,∀i ∈ NG, b ∈ Si, t ∈ H (2c)

SOCmin
i,b ≤ SOCi,b,t ≤ SOCmax

i,b ,∀i ∈ NG, b ∈ Si, t ∈ H (2d)

The constants ηd
i,b > 1 and ηc

i,b < 1 denote the discharge and charge efficiency factors, respectively.

4.1.2. Modeling of Shiftable Loads (DSM Units)

Shiftable loads form the second type of FlexAssets that are managed by the MGO. A shiftable load
l ∈ Fi, i ∈ NG, must fulfill a specific task within a desired time schedule

[
αi,l, βi,l

]
⊆ H, meaning that a

certain amount of energy E f l
i,l must be consumed by load l within that interval. Outside its desired

time interval, the power consumption of the shiftable loads is zero, while inside, it has an upper limit
p f l,max

i,l on its consumption rate. Thus, the operating constraints of the shiftable load l ∈ Fi are:

⎧⎪⎪⎨⎪⎪⎩ 0 ≤ p f l
i,l,t ≤ p f l,max

i,l , if t ∈
[
αi,l, βi,l

]
p f l

i,l,t = 0, otherwise
(3a)

βi,l∑
t=αi,l

p f l
i,l,t = E f l

i,l ,∀i ∈ NG, l ∈ Fi (3b)

4.1.3. Modeling of the Distribution Network (DN)

All MGO’s scheduling decisions must satisfy the DN’s power flow constraints. In order to model
the DN, we use the linearized DistFlow equations introduced in [20] and widely used in the literature.
The DistFlow model may be less accurate than various AC-OPF models, but it is far more scalable in
terms of network size, while it maintains voltage-related constraints:∑

k∈Ωd
i (n)

pi,nk,t =
∑

j∈Ωp
i (n)

pi, jn,t − p f l
i,n,t − pin f l

i,n,t + prg
i,n,t + rdis

i,n,t − rch
i,n,t ,∀i ∈ NG, n ∈ Vi, t ∈ H (4a)

∑
k∈Ωd

i (n)

qi,nk,t =
∑

j∈Ωi
p(n)

qi, jn,t − δ
f l
i,np f l

i,n,t − δ
in f l
i,n pin f l

i,n,t + δ
rg
i,nprg

i,n,t,∀i ∈ NG, n ∈ Vi, t ∈ H (4b)

Ui,n,t = Ui, j,t − 2 ·
(
ri, jn · pi, jn,t + xi, jn · qi, jn,t

)
,∀i ∈ NG, (n, j) ∈ Bi, t ∈ H (4c)
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Umin
i,n ≤ Ui,n,t ≤ Umax

i,n ,∀i ∈ NG, n ∈ Vi, t ∈ H (4d)

pmin
i,nk ≤ pi,nk,t ≤ pmax

i,nk ,∀i ∈ NG, (n, k) ∈ Bi, t ∈ H (4e)

qmin
i,nk ≤ qi,nk,t ≤ qmax

i,nk ,∀i ∈ NG, (n, k) ∈ Bi, t ∈ H (4f)

Equation (4a–c) are the branch flow equations. Variables pi,nk,t and qi,nk,t denote the active
and reactive power, respectively, flowing on the branch nk connecting nodes n ∈ Vi and k ∈ Vi,
i ∈ NG. Furthermore, p f l

i,n,t, pin f l
i,n,t, and prg

i,n,t are the active powers of flexible loads, inflexible loads

and RES in node n ∈ Vi at timeslot t, respectively. In addition, δ f l
i,n, δin f l

i,n and δrg
i,n convert the active

power of the shiftable loads, inflexible loads and RES units at node n ∈ Vi into their reactive power(
δ = tan(cos−1(power f actor)

)
. Furthermore, Ui,n,t is the square of the voltage, while ri, jn and xi, jn are

the resistance and the reactance, respectively, of branch jn in DN i. Equation (4d) imposes the lower
(Umin

i,n ) and the upper (Umax
i,n ) limit on the voltage amplitude of node nin DN i. Finally, Equation (4e,f)

constraint up (pmax
i,nk , qmax

i,nk ) and down (pmin
i,nk , qmin

i,nk ) the active and reactive power flows of branch nk in

DN i, respectively. The sets Ωd
i (n) and Ωp

i (n) represent the decedent and precedent nodes, respectively,
connected to node n in radial DN i. The root of each radial DN (n = 0), connected to the transmission
grid, is the substation. In substations (where the power is sold/purchased to/from the market), the active
and reactive power balance equations must hold:∑

0k

pi,0k,t = pM
i,t ,∀i ∈ NG, (0, k) ∈ Bi, t ∈ H (4g)

∑
0k

qi,0k,t = Qi,t,∀i ∈ NG, (0, k) ∈ Bi, t ∈ H (4h)

In Equation (4g), pM
i,t denotes the power that DN i draws from the grid at timeslot t. A negative value

of pM
i,t indicates that DN i supplies power to the grid. In Equation (4h), Qi,tdenotes the reactive power

that i exchanges with the grid at timeslot t.

4.1.4. Modeling of the Quantity Offers/Bids

We assume a nodal wholesale electricity market, in which MGO has to optimally choose for each
DN i and timeslots t ∈ H its energy offers/bids (oi,t, bi,t). The latter are limited by each DN’s total power
net capacity (omax

i,t and bmax
i,t ):

0 ≤ oi,t ≤ hi,t · omax
i,t ,∀i ∈ NG, t ∈ H (5a)

0 ≤ bi,t ≤ (1− hi,t) · bmax
i,t ,∀i ∈ NG, t ∈ H (5b)

In Equation (5a,b), hi,t = 1 if DN i sells power in wholesale market at timeslot t and hi,t = 0, if it
purchases power. We have:

omax
i,t =

∑
n∈Ri

prg
i,n,t +

∑
n∈Si

rdis,max
i,n −

∑
n∈Li

pin f l
i,n,t,∀i ∈ NG, t ∈ H (5c)

bmax
i,t = −

∑
n∈Ri

prg
i,n,t +

∑
n∈Si

rch,max
i,n +

∑
n∈Fi

p f l,max
i,n +

∑
n∈Li

pin f l
i,n,t,∀i ∈ NG, t ∈ H (5d)

Equation (5c,d) express the maximum quantity offer (omax
i,t ) and bid (bmax

i,t ) that DN i can submit at
time t, respectively. Recall that Ri, Si, Li and Fi denote the sets of nodes in which RES, BSS, inflexible
load and flexible loads are located in DN i, respectively. Quantity offers/bids are also limited by the
active power capacity of the coupling point between the DN i and the transmission grid, that is:

oi,t, bi,t ≤
∑
0k

pmax
i,0k ,∀i ∈ NG, (0, k) ∈ Bi, t ∈ H (5e)
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Finally, the MGO decides on the price bid that DN i submits to the day-ahead market in timeslot t,
which is denoted by cM

i,t .
Conclusively, the set of decision variables of MGO’s problem (1) can be denoted as

XU =
{
rdis

i,b,t, rch
i,b,t, xi,b,t, SOCi,b,t, p f l

i,l,t, pi,nk,t, qi,nk,t, Ui,n,t, Qi,t, oi,t, bi,t, hi,t, cM
i,t

}
.

4.2. Lower Level (LL) Problem—Market Operator (MO) Minimizes Social Cost

The energy market is cleared by solving problem (1), to calculate the dispatches and the LMPs.
This minimizes the social cost, while accounting for: (i) the transmission grid constraints, (ii) the
participants’ quantity offers/bids and (iii) price bids. Thus, MO decides on the energy dispatch schedules
of the market participants (generators, demand aggregators and MGO) by solving a DC-OPF problem:

min
XL

∑
t∈H

⎛⎜⎜⎜⎜⎜⎜⎝
∑
i∈G

(
cg

i,t · gi,t
)
−

∑
i∈D

(
cd

i,t · di,t
)
+

∑
i∈VM

(
cM

i,t · p
M
i,t

)⎞⎟⎟⎟⎟⎟⎟⎠ (6)

s.t.− gi,t + di,t − pM
i,t +

∑
j�ι

yij ·
(
θi,t − θ j,t

)
= 0,∀i ∈ N, (i, j) ∈ L, t ∈ H, (λi,t) (6a)

gmin
i ≤ gi,t ≤ gmax

i ,∀i ∈ G, t ∈ H, ( ϕgmin
i,t ,ϕgmax

i,t ) (6b)

−RDi ≤ gi,t − gi,t−1 ≤ RUi,∀i ∈ G, t > 1, (ϕgrd
i,t ,ϕgru

i,t ) (6c)

−RDi ≤ gi,1 − gi,0 ≤ RUi,∀i ∈ G, (ϕgrd
i,1 ,ϕgru

i,1 ), (6d)

dmin
i,t ≤ di,t ≤ dmax

i,t ,∀i ∈ D, t ∈ H, (ϕdmin
i,t ,ϕdmax

i,t ) (6e)

− bi,t ≤ pM
i,t ≤ oi,t,∀i ∈ NG, t ∈ H, (ϕmmin

i,t ,ϕmmax
i,t ), (6f)

− Tmax
ij ≤ yij ·

(
θi,t − θ j,t

)
≤ Tmax

ij ,∀(i, j) ∈ L, i < j, t ∈ H, (ϕlmin
i j,t ,ϕlmax

i j,t ) (6g)

The decision variables of optimization problem (6) are: (i) the power supply gi,t of each
generator i ∈ G, (ii) the power consumption di,t of each demand aggregator i ∈ D, (iii) the power
supply/consumption pM

i,t of each DN and (iv) the voltage phase angles θi,t at all buses i ∈ NG at

timeslot t. The price bids of generators and demand aggregators at timeslot t are denoted by cg
i,t and cd

i,t,
respectively. Equation (6a) expresses the power balance at bus i of the grid. The dual variables of
these constraints provide the LMPs. In Equation (6a), yij is the admittance of transmission line i j ∈ L.
Equation (6b) refers to the generators’ minimum and maximum capacity, while Equation (6c) and
(6d) express the constraints on the ramp up and down limits, denoted by RUi and RDi respectively.
Equation (6e) refers to demand loads’ upper (dmax

i,t ) and lower bounds ( dmin
i,t ), while Equation (6g)

constraints the power flow to the transmission lines’ i j capacity limits (Tmax
ij ). Furthermore, constraint

Equation (6f) enforces MO’s decision concerning the power that is traded with the DNs to not be
higher than the submitted offers/bids. The dual variables pertaining to each constraint of DC-OPF are
specified in the parentheses following each constraint (Equation (6a–g)).

4.3. Solution Method

The formulated problem has a bi-level structure and has to be converted into a single optimization
problem in order to be solved using a commercial solver. Thus, we follow the same procedure as
in [12–14]. In our bi-level optimization problem, the constraining LL problem (6) is a Linear Program
and therefore, Slater’s condition holds [21]. Thus, DC-OPF problem’s Karush–Kuhn–Tucker conditions
are necessary and sufficient optimality conditions (satisfy convexity and constraint qualification).
Therefore, solving the DC-OPF is equivalent to solving its KKT conditions, which is a non-linear
system of equations. As a result, the LL problem is converted into a set of non-linear constraints
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of the UL problem, and our problem becomes a single Mixed Integer Nonlinear Problem (MINLP).
The non-linearities coming from the complementarity conditions (subset of KKT conditions) are tackled
using the Big-M linearization [22]. More specifically, the complementarity conditions are of the form:

x · y = 0x, y ≥ 0

or using the perpendicular symbol:
0 ≤ x⊥y ≥ 0

First, we introduce a binary variable u which indicates whether x or y is non-zero. Then, we replace
each complementarity condition with the following set of linear inequalities:

0 ≤ x ≤M · u

0 ≤ y ≤M · (1− u)

where M is a large constant.
The non-linearities in the objective function are linearized using the Strong Duality Theorem

applied to the LL problem as in [13,14,23]. Finally, the initial bi-level problem is transformed into an
equivalent single Mixed Integer Linear Problem (MILP), which can be easily solved using a commercial
MILP solver.

5. Performance Evaluation Results

5.1. Simulation Setup

In order to evaluate our proposed model and framework, we use a 6-bus test system with four
conventional generators and two load buses. A 15-node radial DN is connected to bus 5 (Figure 1).
The transmission grid lines, generators and load data can be found in [23]. Loads are located on
nodes 1, 2, 3, 4, 6, 7, 10, 11 and 12 of the DN. Load and line data for the DN are based on data in [24]
and can be found in our recent work in [25]. We discretize the time horizon into 24 hourly timeslots.
The interested reader can find extensive details about all the input data and performance evaluation
results of this paper in [26].

In the following, we consider two main scenarios. The first scenario called “high RES penetration”
considers a long-term future context, in which the MGO will be required to make optimal RES and
FlexAsset investments in order to maximize local RES usage (or else minimize local RES spillage) for
the sake of its local energy community members. On the contrary, the second scenario called “low
RES penetration” considers a shorter-term future context, in which the MGO is mostly interested
in minimizing the energy cost of its local energy community by optimally scheduling its RES and
FlexAssets through temporal arbitrage.

5.2. High RES Penetration Scenario

In this scenario, we evaluate the network-aware bidding property of our model to maximize local
RES usage. We assume that the MGO acts as a price taker in the wholesale energy market. This means
that MGO schedules its RES and FlexAssets in a market-price-sensitivity agnostic manner. We also
assume that local RES curtailment is not allowed so that a feasibility of network flows is achieved in a
zero local RES spillage context. It should be noted that the proposed model can support an acceptable
level of RES spillage (e.g., a maximum of 10% or 20% of nominal RES capacity to be curtailable) in a
straight-forward manner.

5.2.1. Impact of RES and FlexAssets’ Siting (Location) in the DN

In this subsection, we study the impact of RES siting in the MGO’s FlexAssets’ investment decision.
First, we consider two cases for the locations that the RES units will be installed within the distribution
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network (cf. Table 1). In the first case, we consider nodes 2, 8, 11 and 13 for RES installation (i.e.,
non-critical location case), while in the second case (Case 2), we select nodes 2, 5, 10, 11 and 13 (i.e.,
critical location case). By the term “critical location”, we mean that intermittent and variable RES
assets are sited at the edge nodes of the network (i.e., nodes 5 and 10) incurring greater problems in
terms of local congestion and voltage management. We consider both types of RES (i.e., PVs and wind
turbines). In both cases mentioned above, we have selected nodes 5, 8, 10 and 13 to install identical
BSSs and we assume that a part of the loads in nodes 2, 3, 4, 6 and 7 are flexible, resulting in a total
capacity of 1MW flexible load. This load is assumed to operate during the peak hour (i.e., 18:00);
however, it can be shifted from 16:00 to 20:00. In each one of the two aforementioned cases, we examine
two subcases. In the first case (Cases 1a, 2a), the nominal RES capacity is 1.5 times higher than the
nominal peak load, while in the latter case (Cases 1b, Case 2b), the nominal RES capacity is two times
higher than the nominal peak load. The two subcases are noted in Figure 2 as 150% and 200% RES
penetration, respectively.

Table 1. High RES penetration Scenario—Summary Table.

RES Penetration
(%)

RES Location
(nodes)

BSS Location
(nodes)

Flexible Loads
Location (nodes)

Flexible Loads
Size (MW)

Case 1a 150 2, 8, 11, 13 5, 8, 10, 13 2, 3, 4, 6, 7 1
Case 1b 200 2, 8, 11, 13 5, 8, 10, 13 2, 3, 4, 6, 7 1
Case 2a 150 2, 5, 10, 11, 13 5, 8, 10, 13 2, 3, 4, 6, 7 1
Case 2b 200 2, 5, 10, 11, 13 5, 8, 10, 13 2, 3, 4, 6, 7 1

Figure 2. Microgrid Operator (MGO)’s financial balance as a function of Battery Storage System
(BSS) size for critical and non-critical Distribution Network (DN) location cases under two RES
penetration subcases.

Figure 2 depicts the financial balance (profit/deficit) that MGO has as a function of BSS size. BSS is
needed in order to keep the distribution network within its operating limits and avoid, in this way,
a RES spillage phenomenon. Note that the size of BSS highly depends on the siting and the sizing of
the RES units (which is depicted and handled as an input parameter in the two subcases). In Figure 2,
zero financial balance implies an infeasible distribution network operation. In other words, the MGO
will have to pay the very high Value of Lost Load (VOLL) for all the time that the network is in an
unstable condition. Positive and negative financial balance implies that MGO has profits and deficit,
respectively. In the non-critical location case and for 150% RES penetration, MGO needs to install at
least 375 kW of total BSS power capacity in order to safely operate its network, while for 200% RES
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penetration, it needs to install at least 13,130 kW BSS. In the critical location case and in the subcases of
150% and 200% RES penetration, the MGO has to install at least 8375 and 21,880 KW of BSS power
capacity, respectively. We see that, in these specific setups and under both the non-critical and critical
location cases, 200% RES penetration requires the most BSS power capacity and leads to more market
profit for the MGO, but this comes at the expense of higher BSS investments. Given the very high
VOLL, the eligible distribution network nodes that are to put more RES units in in the future are the
ones in the “non-critical” case. This is quite important for the MGO’s business model in order to be
able to prioritize the installation of its future RES and respective FlexAssets in the correct nodes of the
distribution network.

5.2.2. Impact of RES and FlexAsset Sizing

As far as it concerns the impact of the RES sizing on the MGO’s financial balance and based on
siting results from Figure 2 above, we select the eligible RES sizes in order to have network feasibility
outcomes. Thus, we continue only with the “non-critical location” network case presented above, as it
would not be useful to consider infeasible network setups (which take place in critical location cases),
where the MGO’s investment costs on FlexAssets would be huge.

The next step is to examine the financial outcome for the MGO (either profit or deficit) under four
high RES penetration scenarios. In more detail, Figure 3 depicts the financial balance of the MGO as
a function of the installed BSS power capacity under 120%, 140%, 160% and 180% RES penetration
scenarios (note that zero values of financial balance imply network infeasibility). As expected, based on
the results of Figure 2, for RES penetration up to 140%, the distribution network can operate safely
even without (i.e., zero) BSS installations, but with 1MW flexible load capacity (see non-zero financial
balance values for all BSS size values). Of course, MGO’s financial balance increases linearly as the
BSS size increases, too. For 160% RES penetration, the minimum total BSS capacity that is needed to
ensure zero RES spillage is 2400 kW, while for 180% RES, the minimum BSS power requirement is
6500 kW. An MGO can reduce its daily operating cost by installing centralized BSSs or aggregating
distributed residential storage units. In order for a price taker MGO to make profits by selling energy
to the grid, a significant amount of investment has to take place. For example, for 160% RES, a 5400 kW
BSS power capacity is needed. This is very important for the MGO, who can easily measure the
CAPEX (i.e., Capital Expenditures) versus OPEX (i.e., Operational Expenditures) trade-off in order to
incorporate this type of calculations in its business model.

Figure 3. MGO’s financial balance as a function of BSS size for different RES sizes under the non-critical
locations case.
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5.2.3. Optimal FlexAssets’ Sizing and Scheduling

We now proceed to find the optimal FlexAsset size to maximize MGO’s profits for a few RES
penetration setups. As already seen, for the specific RES and FlexAsset siting, up to 140% RES
penetration is safe for the network to operate within its limits. Thus, we now examine three more
conservative subcases of RES production, namely 100%, 120% and 140% RES penetration.

Figure 4 depicts MGO’s financial balance as a function of BSS under the three aforementioned
subcases. From Figure 4, it is observed that, in all RES penetration cases, the MGO’s financial benefit
increases with the total power capacity of the BSS, up to a saturation point. This is the optimal
BSS sizing. Beyond this BSS size, the MGO does not gain any more profit, corresponding to an
over-investment context that should be avoided by the MGO. It is highlighted that in the higher
RES penetration subcase, the MGO’s profits stop increasing for less BSS capacity (29,000 kW) than
in the other two subcases (33,500 and 38,000 kW for 120 and 100% RES penetration, respectively).
This is because the less RES production capacity is installed in the distribution network, the more the
FlexAssets are dispatched in order to maximize MGO’s profits by employing temporal arbitrage.

Figure 4. MGO’s financial balance as a function of BSS size (optimal FlexAsset sizing to maximize
MGO’s profits).

5.3. Low RES Penetration Scenario

So far, we have only examined high RES penetration cases that will most probably appear in some
years from now. However, we ask, how could an MGO lower its energy costs today where it possesses
a relatively low amount of local RES and FlexAssets and it mostly draws power from the higher-level
transmission grid? Therefore, we now evaluate the market-aware bidding property of our model to
minimize the energy cost in a more realistic today’s low RES penetration scenario. In this scenario,
the MGO is a price-maker market entity (i.e., we model the affection in the prices of the wholesale
energy market that MGO’s bidding policy has). We compare the price-maker algorithm to the price
taker solution. In more detail, Figure 5 depicts the MGO’s cost under six network setups with low RES
penetration (in this scenario the financial balance is always negative, and we note it as “MG cost”).
In the first three network setups of Figure 5, we assume 80% RES penetration and in the last three,
60%. In setups 1 and 4, MGO decides to invest only in DSM (i.e., 35% of the nominal peak load can be
shifted) and not at all in BSSs. In setups 2 and 5, the MGO has 500 kW of BSS power installed and 30%
of the nominal peak load DSM capacity. Finally, in setups 3 and 6, the installed BSS power capacity
increases to 2000 kW, while the DSM capacity remains at 30% of the nominal peak load. As can be seen
in Figure 5, our algorithm outperforms the price taker solution in every setup by an average percentage
of 8% in terms of the MGO’s energy cost. This indicates that, even if its portfolio represents a small
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portion of the wholesale market, the MGO can achieve a significantly smaller energy cost by acting
strategically and implementing our proposed model, as opposed to adopting the price taker solution.

Figure 5. MGO’s costs (price taker vs. price maker bidding).

6. Concluding Remarks and Future Work

We proposed a network- and market-aware bidding strategy to co-optimize RES and flexibility
asset usage in energy islands (or else remoted local energy communities), which have a weak connection
with the upper-level transmission network as well as have weak connections within the distribution
network (and especially the network edges). In more detail, we proposed an MGO’s operational
framework, which can concurrently: (i) coordinate the scheduling and planning of various types of
RES and FlexAssets, (ii) take into consideration local congestion and voltage-related constraints and
allow a distribution network-aware RES and FlexAssets’ exploitation policy, (iii) Co-optimize the
operation of RES and FlexAssets and execute scenarios that facilitate the co-design of investments and
(iv) model the competition in the day-ahead electricity market and thus allow MGO to exploit the
competition and act as a price maker.

In this way, energy cost in an energy island setting is minimized, where weak grid connections
and unstable network operation in a high RES penetration environment are considered. According to
these, we assumed that the local energy communities may opt for RES and FlexAsset investments
instead of traditional network upgrade and reinforcement investments. Simulation results show ways
that optimal and coordinated planning and scheduling of RES and FlexAssets can boost green energy
investments. As future work, we aim at looking more closely into optimal planning strategies using
stochastic and robust optimization models. We also plan to elaborate on optimal FlexAsset scheduling
policies in order to maximize profits through participation in several energy markets simultaneously,
such as day-ahead, balancing, reserve and other emerging distribution network level flexibility markets.
In addition, more accurate and detailed models regarding storage degradation cost, shiftable load cost
and demand side management can be included in this framework. In that way, the formulation will
become more practical and realistic.
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Nomenclature

Indices and Sets
t Timeslot index
i Index of Distribution Networks (DNs)
b Index of Battery Storage Systems (BSSs)
l Index of shiftable loads
n, k, j Indices of DNs’ nodes
i, j Indices of transmission grid buses
H Scheduling horizon
NG Set of DNs
Si Set of BSSs in DN i
Ri Set of renewable generators in DN i
Fi Set of shiftable loads in DN i
Li Set of inflexible loads in DN i
Vi Set of nodes in DN i
Bi Set of branches in DN i
Ωd

i (n) Set of decedent nodes of node n in DN i
Ωp

i (n) Set of precedent nodes of node n in DN i
N Set of buses of transmission grid
L Set of transmission lines
G Set of generators participating in energy market
D Set of demand loads participating in energy market
XU Set of upper level optimization problem primal variables
XL Set of lower level optimization problem primal variables
Parameters
rch,max

m,b , rdis,max
m,b

Charging/Discharging power limits of BSS b located in DN i

SOCmax
i,b , SOCmin

i,b Maximum/Minimum limits in SoC of BSS b located in DN i
SOCi,b,0, SOCi,b,T Initial / Final SoC of BSS b located in DN i
ηd

i,b , ηc
i,b Discharging/Charging efficiencies of BSS b located in DN i

p f l,max
i,l

Maximum power that shiftable load l located in DN i can consume in a timeslot

E f l
i,l

Total energy amount that shiftable load l located in DN i must consume in a
time horizon

ai,l, bi,l Plug in/Plug out times of shiftable load l located in DN i
pin f l

i,n,t
Power consumption of inflexible load located in node n of DN i in t

prg
i,n,t Power production of renewable generator located in node n of DN i in t

δfl
i,n, δinfl

i,n , δrg
i,n

Equals tan
(
cos−1(Power Factor)

)
for shiftable loads, inflexible loads and

renewable generators, respectively
ri, jn, xi, jn Resistance/Reactance of line jn of DN i
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Umin
i,n , Umax

i,n Minimum/Maximum limits of nodal voltage magnitude of node n in DN i
pmin

i,nk , pmax
i,nk Minimum/Maximum active power capacities of line nk in DN i

qmin
i,nk , qmax

i,nk Minimum/Maximum reactive power capacities of line nk in DN i
omax

i,t , bmax
i,t Maximum quantity offer/bid that DN i can submit in t

cg
i,t, cd

i,t Price bids of generators/demand loads located in bus i of transmission grid in t

Bij
Element of Susceptance Matrix concerning line connecting buses i and j of
transmission grid

gmin
i , gmax

i
Minimum/Maximum production limits of generator located in bus i of
transmission grid

RDi, RUi Ramp down/up capacities of generator located in bus i of transmission grid
gi,0 Initial production state of generator located in bus i of transmission grid

dmin
i,t , dmax

i,t
Minimum/Maximum limits of demand load located in bus i of transmission grid
at t

Tmax
ij Line capacity of line connecting buses i and j of transmission grid

Variables
rch

i,b,t, rdis
i,b,t Charging/Discharging power of ESS b of DN i in t

xi,b,t
Binary decision variable indicating the operating status (charging/discharging) of
ESS b of DN i in t

SOCi,b,t Energy stored in t of ESS b of DN i
p f l

i,l,t
Consumption of shiftable load d of DN i in t

pi,nk,t, qi,nk,t Active/Reactive power that flows in line nk of DN i in t
Ui,n,t Nodal voltage magnitude at node n of DN i in t
pM

i,t Active power that is traded between DN i and main grid in t
Qi,t Reactive power that flows from/to the substation of DN i in t
oi,t, bi,t Quantity offer/bid of DN i in t
hi,t Binary decision variable indicating whether DN i sells or buys power in t
cM

i,t Price bid of DN i in t
gi,t Production level of generator located in bus of transmission grid in t
di,t Consumption level of demand load located in bus i of transmission grid in t
θi,t Voltage phase angle at bus i of transmission grid in t
λi,t Locational Marginal Price at bus i of transmission grid in t
ϕ Lagrange multipliers of DC-OPF problem
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Abstract: Battery energy storage is becoming an important asset in modern power systems.
Considering the market prices and battery storage characteristics, reserve provision is a tempting
play fields for such assets. This paper aims at filling the gap by developing a mathematically rigorous
model and applying it to the existing and future electricity market design in Europe. The paper
presents a bilevel model for optimal battery storage participation in day-ahead energy market as a
price taker, and reserve capacity and activation market as a price maker. It uses an accurate battery
charging model to reliably represent the behavior of real-life lithium-ion battery storage. The proposed
bilevel model is converted into a mixed-integer linear program by using the Karush–Kuhn–Tucker
optimality conditions. The case study uses real-life data on reserve capacity and activation costs and
quantities in German markets. The reserves activation quantities and activation prices are modeled
by a set of credible scenarios in the lower-level problem. Finally, a sensitivity analysis is conducted to
comprehend to what extent do battery storage bidding prices affect its overall profit.

Keywords: battery storage; day-ahead market; reserve market; optimal scheduling

1. Introduction

The European power sector is characterized by an ongoing liberalization and integration of
national markets into one common marketplace. After the successful introduction of national electricity
exchanges, followed by their coupling, the focus switched to the provision of ancillary services.
The frequency reserves, as fairly location-independent services, were first in line to be governed
by the market laws. Most of the European systems already have well-organized reserve markets,
but their harmonization, which is the foundation for the integrated European reserve markets, is yet
to be initiated. Reserve markets will use the same cross-border interconnection capacities as the
energy market, and therefore these two markets must be co-optimized. The most recent European
Union energy package incorporates detailed rules on how the reserve markets are to be organized,
co-optimized and coupled, forming a cornerstone for all future reserve market research [1].

The reserve markets, depending on the type of reserve and different countries’ regulations,
are organized as either single-stage capacity-only markets or two-stage capacity and activation markets.
The former type includes only capacity auction where the reserve providers’ bids consist of capacity
volume (in MW) and price (e /MW). Using a merit order list (MOL), the the transmission system
operator (TSO) accepts the cheapest bids until the required capacity is reached. A reserve provider
must take into account the potential activated energy cost within its capacity bid as it is usually not
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separately remunerated (it could also be remunerated based on a regulated price). Such capacity is
activated based on uniform price or some other rule. Usually, the frequency containment reserve
(FCR) and sometimes automatic frequency restoration reserve (aFRR) are modeled this way. The latter
type, along with the capacity procurement, includes the activated energy auction as well. A reserve
provider’s bid consist of energy volume (in MWh) and price (in e /MW). Using the MOL, energy offers
are activated when needed. Such pricing activates the cheapest units first and therefore yields lower
overall cost. Usually, manual restoration and replacement reserves and often automatic restoration
reserves are modeled this way.

Both stages can be modeled in either a pay-as-bid or marginal pricing manner. In the current
German secondary reserve market, both the capacity and the activated energy are priced as
pay-as-bid [2,3]. However, the PICASSO project published a report with a conclusion that the pricing
of aFRR activated energy in a future European-wide aFRR activation platform will be guided by the
marginal pricing rule [4], which is adopted in this paper as well.

The capacity of the installed battery storage worldwide was around 10 GWh in 2017 [5].
In Germany alone, as one of the leaders in battery installations, in 2018 the capacity of home storage
systems was around 930 MWh and large storage systems around 550 MWh [5]. The capacity of
industrial storage systems is hard to estimate due to a lack of information. It is estimated that by the
end of 2030 the battery capacity would rise to 181–421 GWh worldwide [5]. Most of the large storage
systems operate in FCR markets. The FCR markets, in developed countries such as Germany and UK,
are coming close to saturation, but new revenue streams are unlocking such as grid deferral and aFRR
markets [6].

Coupling of national reserve markets and their co-optimization with energy markets creates new
possibilities for battery storage as they could sell their services cross-border and position themselves in
multiple markets. The battery storage as a fully flexible resource must be able to simultaneously bid in
both the energy and reserve markets and must maintain its state-of-energy (SOE) within the allowed,
i.e., feasible, range. Energy markets include a large number of different units, both capacity- and
technology-wise, and its size is considerably larger then one battery storage. For example, the French
power system had the minimum demand of 30.4 GW in 2018 during the summer and the peak demand
of 96.6 GW during the winter [7]. Battery storage impact on such large market is negligible and
therefore it can be seen as a price taker. However, reserve markets are smaller in size. For example,
the German aFRR market has total demand of above 2 GW, while German FCR market is somewhat
higher than 0.5 GW [8]. The battery storage trading on those markets should be modeled as price
maker as its behavior could affect the prices.

In this paper, a novel battery storage scheduling algorithm for joint participation on energy and
reserve market is designed and validated on a realistic test case. The battery storage acts as a price
taker in the day-ahead energy market and as a price maker in the reserves market. Such algorithms are
deemed to be the backbone for future battery scheduling in the large coupled and co-optimized energy
and reserve markets in Europe. The focus of the paper is on aFRR markets as they are becoming a new
source of revenue for the battery storage systems. However, the developed algorithm can easily be
adjusted for other types of reserves.

2. Literature Review and Contributions

Depending on its capacity with respect to the total system load, energy storage can be considered
too small to affect market prices, i.e., price taker, or to have a sufficient capacity to alter the market
outcomes, thus becoming a price maker. Some early studies model the energy storage as a price taker,
which means the prices in the models are known upfront [9,10].

Arbitrage alone might not be sufficient to justify the investment cost of energy storage. The authors
in [11] prove that large-scale energy storage will dampen the price difference between on- and off-peak
hours when performing arbitrage. It hereby reduces the profit it can make in the energy market,
suggesting that energy storage should be used for ancillary services as well.
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In [12], the authors model a profit-seeking price-taker energy storage that participates in energy
and reserve day-ahead market and energy hour-ahead market. Stochastic unit commitment is
used to derive scenarios for the cost of power and reserve in the hour-ahead market, as well
as the actual reserve activation quantities. The uncertain parameters arise from the wind power
plant output uncertainty. An optimal energy storage bidding model considering day-ahead energy,
spinning reserve and regulation markets is presented in [13]. The price-taker energy storage considers
uncertainties of predicted market prices and energy deployment in spinning reserve and regulation
markets. The optimal bidding schedule is secured against realization of uncertainties using robust
optimization framework.

Optimal bidding strategies are studied for battery energy storage systems in the reserve market
with battery aging constraints in [14,15]. On the other hand, [16] combines power from unpredictable
wind and photovoltaic sources with energy storage in the day-ahead electricity market using a
stochastic two-stage programming environment, where the first stage is the day-ahead market,
while the second stage simulates the balancing market using multiple scenario sets with historical data.
An interested reader may find a comprehensive overview of operating models of energy storage is
available in [17].

The Alberta Electric System Operator (AESO) compared sequential clearing of the energy and
reserve market with their co-optimization and concluded that co-optimization was more cost-efficient
then sequential clearing [18]. Authors in [19] propose a model that co-optimizes energy and reserve
market for a combined cycle plant using a mixed-integer linear program (MILP). Paper [20] proposes a
nonlinear model for co-optimization of energy and reserves in competitive electricity markets including
nonlinear constraints such as power flow losses, unreliability and generation repair time. The authors
in [21] clarify two approaches used in the literature to formulate the reserve requirements. The first one
is by pre-defining the necessary reserve requirements using ad-hoc rules, such as the 3 + 5% rule [22],
and setting the reserve requirements as parameters in the optimization problem. The second approach
incorporates the power balance and transmission constraints both at the day-ahead and the balancing
stage. These approaches are studied and evaluated in the MISO (Midwestern Independent System
Operator) system in [23]. Another model that proposes an optimal dispatch of the energy and reserve
capacity, but considering uncertain demand, is presented in [24]. The effects of co-optimized and
individual clearing of the energy and reserve markets are investigated.

Despite a large body of literature focused on either theoretical or US-market based participation of
energy storage, there are very few papers that replicate the operation of European markets and integrate
them in a rigorous and scientific framework. One of the pivotal papers in modeling battery storage
providing primary frequency response in the European setting is [25]. The presented optimization
problem and the case study is focused and based on data for the German market. German energy and
reserves market was also targeted in [26], where the pay-as-bid feature as well as longer time steps for
providing reserve (4–12 h) was adopted. German aFRR market was the main topic in papers [27,28].
The former paper tackles the aFRR activation duration and price forecasting while the latter one deals
with the bidding process in the German energy and aFRR reserve markets. The model in the paper [28]
creates bids for storage to participate in the aFRR market based on price and activation forecasts
meaning that it does not observe energy storage as a price forming factor but as a price taker.

With respect to the examined literature, this paper aims at filling the gap by combining a
mathematically rigorous mathematical model with application to the existing and future electricity
markets currently designed in Europe. Contribution of the paper is threefold. First, we develop a
bilevel model for optimal battery storage participation in day-ahead energy market as a price taker,
and reserve capacity and activation market as a price maker. Conceptually, this paper is an alternative
to the approach of price maker algorithms for the German aFRR presented in [27,28]. As opposed
to the majority of the literature that uses a generic energy storage model, we use an accurate battery
charging model to reliably represent the behavior of actual battery storage. The proposed bilevel model
is converted into a mixed-integer linear program by using the Karush–Kuhn–Tucker (KKT) optimality

77



Energies 2020, 13, 6629

conditions. Second, we use real-life data on reserve capacity and activation costs and quantities to
bring relevant conclusions. The reserves activation quantities and, consequently, the activation price is
modeled by a set of credible scenarios. Thirdly, we provide a sensitivity analysis to comprehend to
what extent do battery storage bidding prices affect its overall profit.

In the following chapter we first define the indices, parameters and variables used in the model
and then present the model itself. The KKT optimality conditions and linearization technique are
also presented. In Section 4 we present a case study based on the German market. This section also
includes a sensitivity analysis for different sets of battery storage bidding prices. Finally, the relevant
conclusions are drawn in the final section.

3. Mathematical Formulation

3.1. Nomenclature

Sets:

I Set of generation units, indexed by i.
J Set of battery charging curve linear parts, indexed by j.
S Set of reserve activation scenarios, indexed by s.
T Set of time periods, indexed by t.

Parameters:

Ca↓
i Generator i down reserve activation price (e /MWh).

Ca↑
i Generator i up reserve activation price (e /MWh).

Cb,a↓ Battery storage down reserve activation price (e /MWh).
Cb,a↑ Battery storage up reserve activation price (e /MWh).

Cb,cap↓ Battery storage down reserve capacity price (e /MW).
Cb,cap↑ Battery storage up reserve capacity price (e /MW).

Ccap↓
i Generator i down reserve capacity price (e /MW).

Ccap↑
i Generator i up reserve capacity price (e /MW).
G↓

t,i Generator i maximum down reserve capacity (MW).
G↑

t,i Generator i maximum up reserve capacity (MW).
Fj Maximum amount of energy that can be charged at specific state-of-energy breakpoint Rj

as a portion of SOE.
P Battery storage maximum charging and discharging power (MW).

Rj Capacity of each state-of-energy segment j as a portion of the maximum state-of-energy SOE.
Rcap↓

t Required down reserve capacity (MW).
Rcap↑

t Required up reserve capacity (MW).
Ra↓

t,s Activated down reserve energy (MWh).
Ra↑

t,s Activated up reserve energy (MWh).
ηch Battery storage charging efficiency.
ηdis Battery storage discharging efficiency.
λda

t Day-ahead market price (e /MW).

Variables:

ga↑
t,i,s Generator i activated down energy (MWh).

ga↓
t,i,s Generator i activated up energy (MWh).

gcap↓
t,i Generator i down capacity reserved quantity (MW).

gcap↑
t,i Generator i up capacity reserved quantity (MW).

q↓t Battery storage down reserve capacity bid (MW).
q↑t Battery storage up reserve capacity bid (MW).

qa↓
t,s Battery storage activated down reserve quantity in scenario s (MWh).

78



Energies 2020, 13, 6629

qa↑
t,s Battery storage activated up reserve quantity in scenario s (MWh).

qcap↓
t Battery storage down reserved capacity (MW).

qcap↑
t Battery storage up reserved capacity (MW).
qch

t Battery storage charging quantity (MW).
qdis

t Battery storage discharging quantity (MW).
soet,s Battery storage state-of-energy (MWh).

λa↓
t,s Down reserve activation clearing price in scenario s (e /MWh).

λa↑
t,s Up reserve activation clearing price in scenario s (e /MWh).

λ
cap↓
t Down reserve capacity clearing price (e /MW).

λ
cap↑
t Up reserve capacity clearing price (e /MW).

3.2. Initial Problem Formulation

The proposed battery storage optimal bidding problem is formulated as follows:

Maximize
ΞUL

∑
t∈T

[
λda

t (qdis
t − qch

t ) +
(

λ
cap↑
t · qcap↑

t + λ
cap↓
t · qcap↓

t

)
+

(
λa↑

t,s · qa↑
t,s + λa↓

t,s · qa↓
t,s

)]
(1)

subject to:

0 ≤ qch
t ≤ Δsoet

Δt · ηch , ∀t (2)

0 ≤ qdis
t ≤ P · ηdis, ∀t (3)

qch
t − qdis

t + q↓t ≤ Δsoet,s

Δt · ηch , ∀t, s (4)

− qch
t + qdis

t + q↑t ≤ P · ηdis, ∀t (5)

soet,s = soet−1,s + Δt · qch
t · ηch + qa↓

t,s · ηch − Δt · qdis
t /ηdis − qa↑

t,s/ηdis, ∀t, s (6)

0 ≤ soet,s − Δt · q↑t , ∀t, s (7)

soet,s + Δt · q↓t ≤ SOE, ∀t, s (8)

soet,s =
J−1

∑
j=1

soet,j,s, ∀t (9)

0 ≤ soet,j,s ≤ (Rj+1 − Rj) · SOE, ∀t, j, s (10)

Δsoet,s = F1 · SOE +
J−1

∑
j=1

Fj+1 − Fj

Rj+1 − Rj
· soet−1,j,s, ∀t, s (11)

where ΞUL = {qch
t , qdis

t , qcap↑
t , qcap↓

t , qa↓
t,s , qa↑

t,s , soet,s, soet,j,s, Δsoet,s}.
Battery storage in objective function (1) draws benefits from three streams. The first part is the

day-ahead market, where it performs energy arbitrage as a price taker. The battery storage can be either
discharged, qdis

t , or charged, qch
t , at the day-ahead market price λda

t . The second part is the capacity
reservation market. Since this market is much smaller than the day-ahead market, battery storage is
modeled as a price maker, i.e., the up and down capacity reservation prices λ

cap↑
t and λ

cap↓
t are dual

variables whose values are decided in the lower-level problem considering the battery’s bids. The final
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part of the objective function (1) displays the benefits of both the up and down reserve activation qa↑
t,s

and qa↓
t,s at prices λa↑

t,s and λa↓
t,s , respectively.

Constraints (2) and (3) limit the day-ahead charging and discharging power. The fact that
the battery charging ability reduces with high state-of-energy values is considered by limiting the
battery charging power in (2) by the maximum amount of energy the battery can charge in a single
time-step, Δsoet,s, divided by the length of the time-step to convert energy to power. On the other
hand, the discharging battery ability in (3) is constant regardless of the state-of-energy. Constraints (4)
and (5) impose charging and discharging limits to down and up reserve bids so the charging and
discharging battery capacity is not exceeded. Down reserve in (4) can be provided by increasing the
charging power from the day-ahead stage (in this case qch

t is positive and qdis
t is zero) or by reducing

or fully stopping the discharging power from the day-ahead stage and possibly starting to charge
instead (in this case qch

t is zero and qdis
t is positive). Similarly, up reserve in (5) can be provided

by reducing the day-ahead charging power and/or increasing the day-ahead discharging power.
Equation (6) calculates the state-of-energy per each reserve activation scenario. Since qch

t and qdis
t are

power quantities, they are multiplied by an appropriate time step duration Δt. Since the day-ahead
market is on an hourly basis, qch

t and qdis
t are multiplied by 1. The reserve activation quantities qa↓

t,s

and qa↑
t,s are energy quantities, the same as the state-of-energy soet,s. Constraints (7) and (8) provide

the lower and upper bounds on the battery state-of-energy considering the reserve activations per
scenario and the bid reserve quantities. This ensures that regardless of the reserve activation scenarios
the state-of-energy will remain within the given bounds. Constraints (9)–(11) calculate the amount
of energy the battery can charge in a time-step, Δsoet,s. To describe the nonlinear battery charging
curve, a piecewise approximation given in Figure 1 is used. This curve shows the amount of energy a
lithium-ion battery can withdraw from the grid depending on its current state-of-energy. The given
picewise linear approximation divides the state-of-energy in multiple segments, soet,j,s, constituting
the actual battery state-of-energy soet,s. These segments are used in (11) to calculate the amount of
energy the battery can charge in time period t. Further details on this procedure are available in [29].

Figure 1. Piecewise linear approximation of an soe–Δsoe function.

The battery scheduling problem (1) is subject to the following lower-level problem (corresponding
dual variables related to each constraint are listed after a colon):

Minimize
ΞLL

∑
t∈T

[
∑
i∈I

Ccap↑
i · gcap↑

t,i + Cb,cap↑ · qcap↑
t + ∑

i∈I
Ccap↓

i · gcap↓
t,i + Cb,cap↓ · qcap↓

t

]
+

∑
t∈T

∑
s∈S

πs ·
[

∑
i∈I

Ca↑
i · ga↑

t,i,s + Cb,a↑ · qa↑
t,s + ∑

i∈I
Ca↓

i · ga↓
t,i,s + Cb,a↓ · qa↓

t,s

]
(12)

subject to:

∑
i∈I

gcap↑
t,i + qcap↑

t ≥ Rcap↑
t , ∀t : λ

cap↑
t (13)
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∑
i∈I

gcap↓
t,i + qcap↓

t ≥ Rcap↓
t , ∀t : λ

cap↓
t (14)

− ∑
i∈I

ga↑
t,i,s − qa↑

t,s + Ra↑
t,s = 0, ∀t, s : λa↑

t,s (15)

− ∑
i∈I

ga↓
t,i,s − qa↓

t,s + Ra↓
t,s = 0, ∀t, s : λa↓

t,s (16)

gcap↑
t,i ≤ G↑

t,i, ∀t, i : ψ↑
t,i (17)

gcap↓
t,i ≤ G↓

t,i, ∀t, i : ψ↓
t,i (18)

ga↑
t,i,s ≤ gcap↑

t,i · Δt, ∀t, i, s : κ↑t,i,s (19)

ga↓
t,i,s ≤ gcap↓

t,i · Δt, ∀t, i, s : κ↓t,i,s (20)

qcap↑
t ≤ q↑t , ∀t : ζ↑t (21)

qcap↓
t ≤ q↓t , ∀t : ζ↓t (22)

qa↑
t,s ≤ qcap↑

t · Δt, ∀t, s : ν↑t,s (23)

qa↓
t,s ≤ qcap↓

t · Δt, ∀t, s : ν↓t,s (24)

ga↑
t,i,s, ga↓

t,i,s ≥ 0, ∀t, i, s : α↑t,i,s, α↓t,i,s (25)

qa↑
t,s , qa↓

t,s ≥ 0, ∀t, s : β↑
t,s, β↓

t,s (26)

gcap↑
t,i , gcap↓

t,i ≥ 0, ∀t, i : γ↑
t,i, γ↓

t,i (27)

qcap↑
t , qcap↓

t ≥ 0, ∀t : δ↑t , δ↓t (28)

where ΞLL = {gcap↑
t,i , gcap↓

t,i , ga↑
t,i,s, ga↓

t,i,s, qcap↑
t , qcap↓

t , qa↑
t,s , qa↓

t,s}.
The lower-level problem objective function (12) is the maximization of the social welfare,

which includes minimizing the cost of both generators’ and the battery’s up and down capacity
reservation as well as its activation per scenario. Constraints (13) and (14) impose the up and down
required reserve capacity volumes, while Equations (15) and (16) decide on the contribution of each
asset (generators and the battery storage) to up and down reserve activation per scenario. Up and
down generators’ cleared reserve capacities are restricted by their offered capacities in (17) and (18),
while the generators’ activated quantities are limited by their reserved capacities in (19) and (20).
The same is achieved for the battery with constraints (21)–(24). Finally, nonnegativity of the lower-level
variables is imposed in (25)–(28). The dual variables listed after a colon in constraints (13)–(28) indicate
if those constraints are binding or not. Dual variables of constraints (13)–(16) take values of marginal
cost for up capacity reservation, down capacity reservation, up capacity activation and down capacity
activation, respectively, and are used in the upper-level problem to determine the profitability of the
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battery storage operation. The remaining dual variables defined for constraints (17)–(28) indicate how
much this constraint worsen the objective function. If the value of a dual variable is zero, this constraint
does not affect the objective function value, i.e., it is not binding.

Problem (1)–(2) is a bilevel problem and cannot be solved directly. Thus, the lower-level problem
needs to be replaced by its equivalent constraints. We use Karush–Kuhn–Tucker optimality conditions
to convert the initial bilevel problem into a mixed-integer linear program (MILP). An interested reader
may find details on this mathematical technique in [30].

3.3. KKT Conditions of the Lower-Level Problem

The dual objective function:

Maximize − ∑
t∈T

q↑t · ζ↑t − ∑
t∈T

q↓t · ζ↓t + ∑
t∈T

Rcap↑
t · λ

cap↑
t + ∑

t∈T
Rcap↓

t · λ
cap↓
t

+ ∑
t∈T

∑
s∈S

Ra↑
t,s · λa↑

t,s + ∑
t∈T

∑
s∈S

Ra↓
t,s · λa↓

t,s − ∑
t∈T

∑
i∈I

G↑
t,i · ψ↑

t,i − ∑
t∈T

∑
i∈I

G↓
t,i · ψ↓

t,i (29)

Dual constraints and stationarity conditions:

− ∑
s∈S

κ↑t,i,s + Ccap↑
i − λ

cap↑
t − γ↑

t,i + ψ↑
t,i = 0, ∀t, i (30)

− ∑
s∈S

κ↓t,i,s + Ccap↓
i − λ

cap↓
t − γ↓

t,i + ψ↓
t,i = 0, ∀t, i (31)

πs · Ca↑
i − λa↑

t,s − α↑t,i,s + κ↑t,i,s = 0, ∀t, i, s (32)

πs · Ca↓
i − λa↓

t,s − α↓t,i,s + κ↓t,i,s = 0, ∀t, i, s (33)

− ∑
s∈S

ν↑t,s − δ↑t + ζ↑t − λ
cap↑
t + Cb,cap↑ = 0, ∀t (34)

− ∑
s∈S

ν↓t,s − δ↓t + ζ↓t − λ
cap↓
t + Cb,cap↓ = 0, ∀t (35)

− β↑
t,s − λa↑

t,s + ν↑t,s + πs · Cb,a↑ = 0, ∀t, s (36)

− β↓
t,s − λa↓

t,s + ν↓t,s + πs · Cb,a↓ = 0, ∀t, s (37)

Complementarity slackness:

(− ∑
i∈I

gcap↑
t,i − qcap↑

t + Rcap↑
t ) ⊥ λ

cap↑
t , ∀t (38)

(− ∑
i∈I

gcap↓
t,i − qcap↓

t + Rcap↓
t ) ⊥ λ

cap↓
t , ∀t (39)

(gcap↑
t,i − G↑

t,i) ⊥ ψ↑
t,i, ∀t, i (40)

(gcap↓
t,i − G↓

t,i) ⊥ ψ↓
t,i, ∀t, i (41)

(−gcap↑
t,i · Δt + ga↑

t,i,s) ⊥ κ↑t,i,s, ∀t, i, s (42)
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(−gcap↓
t,i · Δt + ga↓

t,i,s) ⊥ κ↓t,i,s, ∀t, i, s (43)

(qcap↑
t − q↑t ) ⊥ ζ↑t , ∀t (44)

(qcap↓
t − q↓t ) ⊥ ζ↓t , ∀t (45)

(−qcap↑
t · Δt + qa↑

t,s) ⊥ ν↑t,s, ∀t, s (46)

(−qcap↓
t · Δt + qa↓

t,s) ⊥ ν↓t,s, ∀t, s (47)

− ga↑
t,i,s ⊥ α↑t,i,s, ∀t, i, s (48)

− ga↓
t,i,s ⊥ α↓t,i,s, ∀t, i, s (49)

− qa↑
t,s ⊥ β↑

t,s, ∀t, s (50)

− qa↓
t,s ⊥ β↓

t,s, ∀t, s (51)

− gcap↑
t,i ⊥ γ↑

t,i, ∀t, i (52)

− gcap↓
t,i ⊥ γ↓

t,i, ∀t, i (53)

− qcap↑
t ⊥ δ↑t , ∀t (54)

− qcap↓
t ⊥ δ↓t , ∀t (55)

where all dual variables are nonnegative, but λa↑
t,s and λa↓

t,s , which are unrestricted.
The equivalent mixed-integer nonlinear program is (1), (30)–(55). The nonlinearity comes from

multiplications of the upper-level variables (cleared battery-related quantities) and lower-level dual
variables representing up and down reserve capacity reservation and activation. These are linearized
using some of the KKT conditions and the strong duality equation as follows. First, the term λ

cap↑
t · qcap↑

t
is rewritten using KKT condition (34):

λ
cap↑
t · qcap↑

t = − ∑
s∈S

ν↑t,s · qcap↑
t − δ↑t · qcap↑

t + ζ↑t · qcap↑
t + Cb,cap↑ · qcap↑

t (56)

Considering (46) and (54), Equation (56) is equal to:

λ
cap↑
t · qcap↑

t = − ∑
s∈S

ν↑t,s · qa↑
t,s + ζ↑t · qcap↑

t + Cb,cap↑ · qcap↑
t (57)

In a similar way, using (35), (47) and (55), we obtain the following equivalence:

λ
cap↓
t · qcap↓

t = − ∑
s∈S

ν↓t,s · qa↓
t,s + ζ↓t · qcap↓

t + Cb,cap↓ · qcap↓
t (58)

The term related to up reserve activation can be rewritten using (36):
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λa↑
t,s · qa↑

t,s = −β↑
t,s · qa↑

t,s + ν↑t,s · qa↑
t,s + πs · Cb,a↑ · qa↑

t,s (59)

where β↑
t,s · qa↑

t,s = 0 follows directly from (50). In a similar fashion, using (37) and (51) we obtain:

λa↓
t,s · qa↓

t,s = ν↓t,s · qa↓
t,s + πs · Cb,a↓ · qa↓

t,s (60)

Finally, combining the obtained equalities (57)–(60) with the strong duality equality (The strong
duality theorem states that, under certain conditions which are satisfied for linear optimization
problems such as the one at hand, optimal solutions to the primal and the associated dual problem
yield the same objective value [30].) (12) = (29), we obtain the following linear objective function of the
upper-level problem:

Maximize
ΞUL

∑t∈T
[
λda

t (qdis
t − qch

t )+(
Cb,cap↑ · qcap↑

t + Cb,cap↓ · qcap↓
t

)
+ ∑s∈S

(
πs · Cb,a↑ · qa↑

t,s + πs · Cb,a↓ · qa↓
t,s

)
−(

∑i∈I Ccap↑
i · gcap↑

t,i + Cb,cap↑ · qcap↑
t + ∑i∈I Ccap↓

i · gcap↓
t,i + Cb,cap↓ · qcap↓

t

)
−

∑s∈S πs ·
(

∑i∈I Ca↑
i · ga↑

t,i,s + Cb,a↑ · qa↑
t,s + ∑i∈I Ca↓

i · ga↓
t,i,s + Cb,a↓ · qa↓

t,s

)
+(

Rcap↑
t · λ

cap↑
t + Rcap↓

t · λ
cap↓
t +

∑s∈S Ra↑
t,s · λa↑

t,s + ∑s∈S Ra↓
t,s · λa↓

t,s − ∑i∈I G↑
t,i · ψ↑

t,i − ∑i∈I G↓
t,i · ψ↓

t,i

)]

(61)

The final MILP formulation is (61) subject to constraints (2)–(11), (13)–(28), (30)–(55), where the
orthogonal constraints (38)–(55) are easily linearized using the big M method.

4. Case Study

4.1. Input Data

The proposed model is tested on real data streaming from 1 May 2020. The day-ahead
market prices, shown in Table 1 were taken from the German electricity exchange—EPEX, while the
capacity and energy bids were gathered from an online German platform for balancing reserves
auctions—Regelleistung.net. The former dataset is a series of 24 day-ahead prices, while the latter
dataset for automatic frequency restoration reserve (for up and down reserve separately) consists
of six 4-h periods, each of them including the following: total aFRR up/down volume and series of
volume–price pairs (capacity price–capacity volume–energy price). The first stage in the auction is
arranging the capacity price–capacity volume pairs in an ascending order by price, where all bids up to
the total required volume (shown in Table 2) are accepted. Energy prices are used in the second stage
in real-time when the TSO activates the accepted reserve providers. It arranges energy price–capacity
volume pairs in an ascending order by price and all the bids up to total required energy are activated.
For each 4-h period there are up to several hundred bids and many of them are identical both in
terms of capacity and energy prices. To ease the computational efforts, we clustered similar ones
and obtained between 30 and 90 total bids per timestep. Figure 2 shows the up reserve bids of the
generators in the system. All the generators bid up a capacity reservation at zero e /MW (flat blue
line), while the up reservation activation bids range from 36 to 2550 e /MWh (orange curve shows the
activation bids sorted in ascending order). Figure 3 shows the down reserve bids of the generators
in the system. As opposed to the up reserve, the down reserve capacity price is zero only for app.
500 e /MW, while the price of reservation of the remaining down reserve volume increases up to
8.6 e /MW (monotonically increasing blue curve). The corresponding activation prices are indicated
with the orange curve. To minimize the operating cost (12), the system operator will activate the
cheapest down reserve, i.e., the lowest values of the orange curve.
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The data used to test and validate our model is taken from the German auction (www.regelleistung.net)
and power system websites (www.smard.de) to accurately define one arbitrary chosen day. For the
bids, real data for this specific day accounted for, on average, 283 and 333 bids over all bidding periods
for the up and down reserve, respectively. In total in one day, there were 3697 bids for both up and
down reserve during all bidding periods. A large number of those bids had the same values for both
capacity and energy price or had the same number for one of those features and very similar for the
other. To relieve the computational burden, but preserve the same level of accuracy, we aggregated
those similar bids (in both features) and obtained on average 64 and 72 bids over all biding periods
for the up and down reserve, respectively. This is in total 818 bids in one day for both up and down
reserve during all bidding periods. This is still a very high number of bids even though the number of
modeled bids was decreased by 88%. However, the accuracy of the case study remained untouched.
When it comes to scenarios of activated aFRR, we used 10 scenarios as it is a sufficient number to
validate the stochastic nature of the activation. Further increase in the number of scenarios would
reduce computational efficiency for very low gains in the captured uncertainty.

Table 1. Day-ahead market prices (λda
t ) on 1 May 2020.

Hour
Price

Hour
Price

Hour
Price

Hour
Price

(e /MWh) (e /MWh) (e /MWh) (e /MWh)

1 5.5 7 2.54 13 0.35 19 18.99
2 5.35 8 1.50 14 −2.04 20 23.50
3 3.82 9 −1.57 15 −2.06 21 28.43
4 2.63 10 −2.43 16 −0.04 22 26.88
5 1.56 11 −2.89 17 1.95 23 20.91
6 2.46 12 −2.47 18 7.88 24 16.00

Table 2. Required up (Rcap↑
t ) and down (Rcap↓

t ) reserve per 4-hour periods on 1 May 2020.

Hours 1–4 Hours 5–8 Hours 9–12 Hours 13–16 Hours 17–20 Hours 21–24

Up reserve (MW) 2359 2334 2355 2344 2357 2360
Down reserve (MW) 2247 2295 2338 2354 2316 2303
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Figure 2. Up capacity reservation (λcap↑
t ) and activation (λa↑

t,s) bids.
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Figure 3. Down capacity reservation (λcap↓
t ) and activation (λa↓

t,s) bids.

Energy prices are used in the second stage in real-time when the TSO activates the accepted
reserve providers. It arranges energy price–capacity volume pairs in an ascending order by price and
all the bids up to total required energy are activated.

A strategic battery storage (energy capacity 50 MWh; power capacity 50 MW; charging efficiency 1;
discharging efficiency 0.82) is then added to the mentioned merit order lists. The system operator in the
second stage of the reserve allocation process takes the energy bids, arranges them by price (ascending for
up reserve, and descending for down reserve) and activates them one by one until satisfying the balancing
energy request at a specific moment. The request for the total activated energy is modeled as an uncertain
parameter through scenarios. In the case study, we used the quarter-hour activated aFRR balancing energies
taken from the German electricity data transparency platform www.smard.de. The quarter-hours were
summarized to an hourly resolution to match the hourly resolution of our model. Note that the same data
was also used in papers [27,28]. The data for ten days streaming form May 1 to 10 May 2020 were taken
as ten scenarios in our case study. The up and down reserve activation data are shown in Figures 4 and 5.
To elaborate, each historical day (with all its hourly values) is shown as one scenario with a probability of
10%. The figures indicate a quite low activated volume, rarely surpassing 400 MWh, as compared to the
reserved quantities from Table 2. Those scenarios affect our model results twofold: through the amount of
activated reserve and through the price cleared for the activated reserve. In the case of batteries, the amount
of activated reserve is relevant for securing a feasible state-of-energy evolution through time. It means that
the state-of-energy boundaries will be satisfied regardless of which scenarios are actually realized. The price
of activated reserves affects the profitability of reserve provision. The price maker models can be created in
a way that their forecasted price is dependent on the activation scenarios as well, but they can not take into
account the effect of the battery on the aFRR activated energy price formation.
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Figure 4. Up reserve activation per scenario (Ra↑
t,s).
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Figure 5. Down reserve activation per scenario (Ra↓
t,s).

In the results of the case study, presented in the following subsection, we first analyze the results
of the battery storage placing all four of its bids, i.e., up reserve capacity, down reserve capacity,
up reserve activation and down reserve activation, at zero price. Note that, due to the marginal pricing,
the battery storage will receive the marginal price that can only be better or equal to the one it bid price.
After this analysis, we provide a sensitivity analysis with different values that the battery storage bids
for the up reserve capacity, down reserve capacity, up reserve activation and down reserve activation.

4.2. Results

The maximum profit battery storage can achieve using the given input data is e 22,171.61.
While the revenue from providing down reserve capacity is quite high, e 6724.47, the revenue from
providing up reserve capacity is much lower, e 21.03. On the other hand, the activation revenues are
similar, e 8506.66 for up reserve and e 7291.02 for down reserve. The revenue in the day-ahead market
is negative e 371.57, as the battery storage primarily uses it to charge the energy later used for reserve
activation. Figure 6 shows the battery storage day-ahead schedule along with the cleared up and down
reserve capacities. Positive values represent the battery charging process, while negative ones the
battery discharging process. In the day-ahead market, the battery storage generally charges during
the night hours. It occasionally discharges (during hours 6, 8, 9, 12–15 and 19), but never over 18 MW.
Provision of up reserve capacity (when activated, the battery discharges), never breaks 18 MW neither.
It is significantly lower in volume than the down reserve capacity provision, which reaches 28 MW in
hour 15. In some hours, e.g., 15, the system operator reserved both up and down reserve capacity from
the battery. The activated amounts will differ based on the reserve activation scenario. For a more
detailed explanation of the energy storage reserve activation please consult section 2.2 in [31].
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Figure 6. Battery charging day-ahead schedule (qch
t − qdis

t ) and up/down cleared reserve capacity qdis
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t .
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Figure 7 shows the propagation of the battery storage state-of-energy throughout the day for each
scenario. Although the day-ahead schedule is the same, the activation direction (up or down) and
the amount of activated reserve differs. For instance, in the 15-th hour, the battery storage reserves
both up (3 MW) and down (28 MW) capacity. In scenario 3 we have 28 MW activated in the down
direction and 1 MW in the up direction, while scenario 7 does not activate any up reserve, but activates
28 MW of down reserve. Since the modeled reserve is aFRR (15-minutes duration), a scenario can
have activated both up and down reserve in the same hour (detailed visualization is available in
Figures 8 and 9). In all scenarios, the battery storage is quite depleted in hour 15 and charges at
20.6 MW in the day-ahead market in hour 16. In the same hour, five out of ten scenarios provide
5.5 MW of down reserve (compare to Figure 6), enabling the battery storage to further charge in those
scenarios (this is seen in Figure 7 as the ensemble of five scenarios with higher values of state-of-energy
in hour 16). On the other hand, in the remaining five scenarios the battery activates 13.3 MW of up
reserve, which reduces the charging effect from the day-ahead market, and consequently the battery
receives less overall charge in those scenarios (this is seen in Figure 7 as the ensemble of five scenarios
with lower values of state-of-energy in hour 16). Figure 7 is also useful to illustrate that the ending
state-of-energy is highly dependent on the reserve activation scenario and ranges from 6 MWh for
scenario 3 to 41.3 MWh for scenario 8.
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Figure 7. Propagation of the battery storage state-of-energy (soet,s) per scenario.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
s1 0.4 16 10 17 1 0 2 0 1 0 7 0 0.9 4 3 13 9.2 2 6 4.4 1 0 6.7 6
s2 0 10 10 0 2 0 2 0 1 8.1 1 0 0.9 4 3 13 9.2 2 6 4.4 1 3 1 6
s3 0.4 16 10 17 5 0 2 0 1 1 7 0 0.9 0 1 2 9.2 2 6 4.4 1 3 6.7 6
s4 0.4 16 10 7 0 0 2 0 1 8.1 7 0 0.9 4 3 13 9.2 2 6 3 1 3 6.7 6
s5 0.4 8 10 17 5 0 2 0 1 8.1 7 0 0.9 4 3 1 2 2 6 4.4 1 3 2 6
s6 0.4 16 10 17 5 0 2 0 1 8.1 7 0 0.9 4 3 7 2 2 6 4.4 1 3 6.7 6
s7 0.4 13 10 12 5 0 2 0 1 8.1 7 0 0.9 4 0 3 4 2 6 4.4 1 3 6.7 6
s8 0.4 16 10 17 5 0 2 0 1 1 7 0 0.9 4 3 5 9.2 2 6 2 1 3 6.7 6
s9 0.4 16 10 17 5 0 0 0 0 2 0 0 0.9 4 3 13 3 2 6 4.4 1 3 6.7 6
s10 0.4 16 10 2 4 0 2 0 1 8.1 7 0 0 0 3 13 9.2 2 6 2 1 3 6.7 6
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Figure 8. Activation of the battery storage up reserve (qa↑
t,s) per scenario.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
s1 1 0 0 0 0 18 0 0 16 11 2 0 9.9 9 0 0 0 0 11 1 0 6.5 9.8 0
s2 1 0 0 0 0 5 0 0 0 11 2 5.7 9.9 11 0 0 0 0 11 0 0 0 9.8 1.8
s3 1 0 0 0 0 13 0 0 0 11 0 0 9.9 11 28 5.5 0 0 0 0 0 0 0 0
s4 1 0 0 0 0 18 0 2.4 0 11 0 0 4 11 16 0 0 0 11 7 0 6.5 1 1.8
s5 1 0 0 0 0 18 0 2.4 0.1 0 0 0 9.9 11 28 5.5 0 0 11 0 0 0 9.8 1.8
s6 1 0 0 0 0 5 0 2.4 16 11 2 5.7 9.9 11 28 5.5 0 0 11 7 0 0 9.8 1.8
s7 1 0 0 0 0 0 0 2.4 16 0 2 5.7 2 11 28 5.5 0 0 11 7 0 0 3 1.8
s8 1 0 0 0 0 18 0 2.4 16 11 2 5.7 9.9 11 4 5.5 0 0 11 7 0 6.5 9.8 1.8
s9 1 0 0 0 0 18 0 2.4 16 11 2 5.7 2 1 0 3 0 0 11 7 0 0 9.8 1.8
s10 1 0 0 0 0 18 0 0 0 10 2 5.7 9.9 11 9 1 0 0 0 7 0 6.5 0 1.8
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Figure 9. Activation of the battery storage down reserve (qa↓
t,s) per scenario.

Activation of the energy storage up and down reserves per scenario are visualized and listed in
Figures 8 and 9. The numbers in the tables beneath these figures should be read column-by-column.
In the first hour, the up reserve is fully activated (0.4 MW) in 9 out of 10 scenarios (Figure 8) and only
in scenario s2 the battery up reserve remains inactive. The most noticeable property of the battery
storage up reserve provision is having the activated capacity equal to the reserved capacity in the
majority of scenarios. The lowest number of scenarios with fully activated up reserve occurs in hour 16,
when only five scenarios experience full activation. Similar properties are observed for down reserve
activation shown in Figure 9, where the lowest number of scenarios with fully activated reserve takes
place in hour 15 with four full activations.

Generally, such uniform behavior of the battery storage reserve activation increases its utilization,
i.e., the revenue of reserve activation, and harmonizes the state-of-energy across all scenarios. Since the
last term in objective function (1) considers the weighed activation revenue, if the actual up reserve
activation price in a certain hour of a scenario with 10% probability is e 50/MWh, the value of the dual
variable λa↑

t,s would be e 5/MWh. This is a direct consequence of scenario probability πs multiplying
the activation costs in lower-level objective function (12).

To provide a better insight into the role of the battery storage in the overall reserve activation
process, Tables 3 and 4 provide ratios of the reserve activation provided by the battery storage and the
overall activated reserve for up and down direction. In the first hour, scenarios significantly vary in
terms of the activated up reserve (Table 3). For scenario 1 the battery storage provides only 0.1% out of
the activated 400 MWh. The same volume of battery’s up activation in scenario 5 consists of 20% of
the overall up reserve (0.4/2 MWh). In the second hour, the battery provides up to 16 MWh of the
up reserve. In scenarios 2, 5, 6 and 7 this is sufficient to cover the entire required up reserve volume.
When it comes to down reserve, the battery does not provide any portion in hours 2–5 (Table 4).
In hour 9, it does not provide any reserve in scenarios that require low volumes, but it becomes active
once the volumes increase (scenarios 1 and 6–9). This is because the down reserve activation prices
of certain generators are negative (see the orange curve in Figure 3) and those are prioritized in the
activation phase over the battery storage whose activation price is zero.
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Table 3. Volume of up reserve activation provided by the battery per scenario as a portion of the overall
activated reserve (rounded to an integer unless close to zero), in MWh.

Hour s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 0.4/400 0/0 0.4/327 0.4/8 0.4/2 0.4/17 0.4/38 0.4/116 0.4/79 0.4/10
2 16/377 10/10 16/341 16/21 8/8 16/16 13/13 16/70 16/69 16/177
3 10/170 10/10 10/156 10/32 10/23 10/38 10/34 10/28 10/129 10/107
4 17/67 0/0 17/32 7/7 17/68 17/53 12/12 17/74 17/62 2/2
5 1/1 2/2 5/7 0/0 5/11 5/17 5/223 5/5 5/15 4/4
6 0/0 0/3 0/34 0/39 0/4 0/5 0/72 0/0 0/2 0/9
7 2/5 2/13 2/80 2/28 2/52 2/48 2/182 2/2 0/0 2/5
8 0/4 0/47 0/44 0/17 0/48 0/33 0/35 0/0 0/0 0/213
9 1/2 1/17 1/6 1/279 1/138 1/33 1/9 1/1 0/0 1/489
10 0/0 8/20 1/1 8/50 8/54 8/16 8/118 1/1 2/2 8/102
11 7/7 1/1 7/31 7/57 7/263 7/7 7/25 7/13 0/0 7/8
12 0/554 0/2 0/841 0/63 0/108 0/7 0/10 0/0 0/4 0/1
13 1/123 1/23 1/74 1/57 1/58 1/5 1/89 1/17 1/104 1/0
14 4/336 4/192 0/0 4/110 4/22 4/4 4/17 4/125 4/124 0/0
15 3/349 3/484 1/1 3/69 3/148 3/3 0/0 3/15 3/116 3/753
16 13/260 13/86 2/2 13/219 1/1 7/7 3/3 5/5 13/76 13/1119
17 9/477 9/375 9/157 9/50 2/2 2/2 4/4 9/27 3/3 9/37
18 2/97 2/115 2/263 2/27 2/14 2/2 2/89 2/42 2/10 2/165
19 6/20 6/67 6/163 6/6 6/52 6/6 6/139 6/27 6/13 6/74
20 4/98 4/69 4/125 3/3 4/226 4/129 4/103 2/2 4/5 2/2
21 1/157 1/30 1/84 1/20 1/23 1/70 1/93 1/1 1/142 1/5
22 0/0 3/76 3/131 3/15 3/62 3/205 3/508 3/17 3/128 3/3
23 7/12 1/1 7/27 7/43 2/2 7/30 7/68 7/10 7/40 7/158
24 6/74 6/16 6/190 6/8 6/10 6/6 6/23 6/29 6/17 6/148

Table 4. Volume of down reserve activation provided by the battery per scenario as a portion of the
overall activated reserve (rounded to an integer unless close to zero), in MWh.

Hour s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 1/8 1/209 1/6 1/250 1/430 1/37 1/88 1/57 1/10 1/57
2 0/5 0/132 0/4 0/118 0/72 0/43 0/23 0/15 0/10 0/8
3 0/4 0/28 0/5 0/32 0/65 0/20 0/31 0/12 0/6 0/8
4 0/15 0/166 0/5 0/68 0/20 0/27 0/16 0/6 0/12 0/77
5 0/201 0/48 0/9 0/200 0/18 0/49 0/6 0/56 0/81 0/12
6 18/72 5/40 13/48 18/55 18/69 5/40 0/15 18/407 18/247 18/64
7 0/7 0/100 0/4 0/84 0/21 0/66 0/26 0/373 0/214 0/24
8 0/8 0/4 0/14 2/63 2/65 2/112 2/105 2/516 2/477 0/5
9 16/380 0/29 0/27 0/20 0/32 16/173 16/183 16/403 16/181 0/4
10 11/163 11/57 11/71 11/42 0/15 11/444 0/14 11/648 11/237 10/41
11 2/38 2/148 0/12 0/27 0/4 2/455 2/33 2/369 2/333 2/384
12 0/5 6/84 0/4 0/24 0/5 6/108 6/58 6/827 6/65 6/504
13 10/30 10/119 10/28 4/9 10/89 10/54 2/7 10/169 2/7 10/651
14 9/14 11/20 11/246 11/49 11/179 11/387 11/253 11/70 1/6 11/392
15 0/1 0/2 28/60 16/21 28/180 28/198 28/603 4/9 0/5 9/14
16 0/2 0/4 6/74 0/5 6/559 6/99 6/271 6/32 3/8 1/6
17 0/0 0/2 0/36 0/8 0/165 0/394 0/127 0/119 0/134 0/62
18 0/5 0/8 0/6 0/11 0/186 0/292 0/290 0/231 0/284 0/30
19 11/83 11/32 0/14 11/133 11/127 11/546 11/32 11/104 11/113 0/11
20 1/21 0/9 0/5 7/231 0/19 7/121 7/92 7/293 7/85 7/234
21 0/30 0/12 0/5 0/124 0/9 0/16 0/3 0/165 0/6 0/48
22 7/498 0/40 0/16 7/103 0/36 0/45 0/8 7/159 0/18 7/155
23 10/167 10/274 0/27 1/47 10/341 10/89 3/49 10/223 10/118 0/7
24 0/23 2/125 0/15 2/151 2/145 2/141 2/173 2/163 2/155 2/53
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To better understand battery storage actions, the prices in different markets are shown in Figure 10.
As shown in Table 1, the day-ahead prices are rather low throughout the day, taking the highest values
in hours 19–24. The up capacity prices are zero (or slightly positive) throughout the day, which reflects
the very low day-ahead market prices. The down capacity prices are much higher, reaching e 93/MW
in the afternoon hours. The up and down activation prices in Figure 10 are averaged over all scenarios.
They are much higher than the day-ahead prices. Despite extremely low up reserve capacity prices,
the activation prices are much higher. The peak price e 235/MWh is achieved for up reserve activation
in hour 16, which is the main reason for the battery storage reserving 13.3 MW of its up capacity and
activating it fully in five out of ten scenarios.
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Figure 10. Prices in the day-ahead market (λda
t ), up (λcap↑

t ) and down (λcap↓
t ) capacity reservation

prices and up (λa↑
t,s) and down (λa↓

t,s) activated capacity prices.

4.3. Sensitivity Analysis

This section analyzes the effects of the battery storage bidding prices on its overall profit using
the same data as the simulations in the previous section. The sensitivity includes variations in the four
bidding parameters related to the reserves market: (i) up capacity reservation price (e /MW), (ii) down
capacity reservation price (e /MW), (iii) up capacity activation price (e /MWh), iv) down capacity
activation price (e /MWh). The results presented in Table 5 indicate that, regardless of the bidding
prices, the battery storage utilizes the day-ahead market to charge (thus the day-ahead revenue is
always negative), while the profit is made in the capacity reservation and activation stage. The only
exception is the bidding strategy (10,10,50,−15), which has a high day-ahead positive revenue. This is
the result of very frequent down capacity activation (the revenue is e 12,416), which, besides that
revenue itself, benefits the battery storage by charging it. This energy is discharged in the evening
hours with the highest day-ahead prices to bring additional revenue in the day-ahead market.

Up reserve capacity revenue is generally very low, which is a direct consequence of the very low
(mostly zero) up capacity reservation prices (see orange curve in Figure 10). However, the up capacity
activation prices are high, especially during hour 16, and in most cases this stream of revenue is the
highest. Down capacity reservation revenue is usually slightly higher than the activation revenue
thanks to the high down capacity reservation prices during the afternoon hours (see the gray curve in
Figure 10). The only exception are the last two cases.
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Table 5. Effect of the bidding parameters on the battery storage profit (in e ); the four numbers in
the top cells indicate (i) up capacity reservation price (e /MW), (ii) down capacity reservation price
(e /MW), (iii) up capacity activation price (e /MWh), (iv) down capacity activation price (e /MWh).

Day-Ahead Up Capacity Up Capacity Down Capacity Down Capacity Overall
Revenue Res. Revenue Act. Revenue Res. Revenue Act. Revenue Revenue

(0,0,0,0) −372 21 8507 6724 7291 22,172
(1,1,0,0) −368 22 8835 6511 7163 22,162
(1,1,25,0) −354 21 8684 6804 7274 22,429
(1,1,25,15) −366 21 8316 5568 5630 19,168
(5,5,0,0) −360 22 8588 6703 7205 22,158
(5,5,25,0) −327 21 8066 7162 7515 22,438
(5,5,25,15) −360 22 8096 5713 5698 19,169
(5,5,50,0) −7 5 5386 5605 6352 17,342

(10,10,50,−15) 1033 7 3585 9172 12,416 26,212

The highest daily profit is achieved for bidding at e 10/MW for both up and down capacity
reservation, e 50/MWh for up reserve activation and −e 15/MW for down reserve activation.
These bidding prices enable the battery storage to both affect the clearing prices (mostly by increasing
them in its favor) and to win the auction in the majority of hours and scenarios. On the other hand,
(5,5,50,0) bidding scheme results in the lowest overall profit, mostly because the high up reserve
activation price e 50/MWh reduced the up capacity activation revenue. However, the down activation
bid at e 0/MWh is insufficiently low for the battery storage to provide enough down reserve activation
revenue to cancel out the negative monetary effects of the high up activation bid. On the other hand,
the case with the highest profit (10,10,50,−15) provides sufficiently low down capacity activation bid
for the battery storage to be cleared for activation more frequently and results in the highest down
reserve activation revenue e 12,416. This bidding strategy also results in the highest down capacity
reservation revenue.

4.4. Comparison to a Baseline Model

To demonstrate the effectiveness and practical importance of the proposed model, we compare
it against a baseline model where the battery storage acts as a price taker in all the markets and
disregards its impact on the reserve capacity and activation prices. The baseline model includes only
the upper-level problem (1) with capacity reservation and activation prices (λcap↑

t , λ
cap↓
t , λa↑

t,s , λa↓
t,s)

treated as parameters. The obtained schedule is included in the market-clearing lower-level problem
to obtain the actual profitability of the baseline model. The baseline model assessment procedure is
described in the following steps:

1. First we solve only the lower-level problem (2) without battery storage bids, i.e., setting q↑t and q↓t
to zero. This is needed to obtain the capacity reservation and activation prices λ

cap↑
t , λ

cap↓
t , λa↑

t,s

and λa↓
t,s .

2. Then we solve the upper-level problem (1) using the capacity reservation and activation prices
λ

cap↑
t , λ

cap↓
t , λa↑

t,s and λa↓
t,s from the previous step. Note that the capacity reservation and activation

prices are treated as parameters as opposed to being treated as variables in the proposed
formulation. The outcome is the battery storage day-ahead and reserves bids.

3. Finally, we solve the lower-level problem (2) again, but this time with battery storage bids q↑t
and q↓t from the previous step. This calculation provides actual reserve capacity and activation
prices (note that these may differ from those obtained in step 1) as well as cleared battery storage
quantities and profit.

After running Step 2 using the reserve capacity and activation prices from Step 1, the obtained
battery storage profit is e 57,518, which is more than two and a half times higher thane 22,172 obtained
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using the proposed model. The obtained battery operation schedule for the baseline model is shown
in Figure 11. The battery storage very rarely charges in the day-ahead market, the majority in hour 16.
The battery charges primarily through the provision of down-regulation capacity.
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Figure 11. Battery charging day-ahead schedule (qch
t − qdis

t ) and up/down cleared reserve capacity qdis
t

and qch
t for the baseline case.

The obtained battery storage bidding schedule is then applied to the lower-level problem to
calculate the reserve capacity and activation quantities actually accepted in the market and to deliver
the true profit as the actual profit is expected to decrease if the battery storage’s bids had an effect
on the reserve capacity and activation prices. The obtained actual profit of the battery storage is only
e 8856, which is almost three times lower than e 22,172 obtained using the proposed model. Although
all battery storage bids were accepted in the market, the obtained baseline battery scheduling process
failed to capture the interaction between the battery storage bids and the market-clearing prices.
The result is a much lower profit than when using the proposed model, thus proving the effectiveness
of the formulation presented in this paper.

5. Conclusions

The paper presented a model for the optimal bidding strategy of battery storage acting in the
day-ahead market as a price taker and in the aFRR market as a price maker. The model accurately
captures the essence of the electricity market structure in Europe, which is in the process of shifting
toward an hourly marginal-price reserve structure. Although the battery storage from the case study
is relatively small in size as compared to the overall reserves market volume (50 MW as opposed
to over 2.3 GW), the battery storage can significantly affect aFRR reserve market since the activated
energy is usually quite low. The bidding prices of the battery storage may have an adverse effect on its
profit. Thus, the bidding prices and quantities need to be carefully chosen so the battery storage affects
the market prices in a desirable way, but still stays in the money, i.e., gets cleared to provide reserve
capacity and, when necessary, becomes activated.

1 May 2020, the day used in the case study, is characterized by a rather low reserve capacity
prices. Despite that, the battery storage profit is significant and bidding in the reserves market is much
more profitable than bidding only in the energy market. Since most of the days in the year 2020 have
higher reserve capacity prices, these results can be considered conservative, i.e., the lower bound on
the profits to be achieved in German markets.

The presented model and results should be useful to project developers and battery storage
market participants as the battery storage costs are still quite high and accurately seizing all potential
revenue streams is essential for the profitability of such investment.
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29. Pandžić, H.; Bobanac, V. An Accurate Charging Model of Battery Energy Storage. IEEE Trans. Power Syst.
2019, 4, 1416–1426.

30. Conejo, A.J.; Castillo, E.; Minguez, R.; Garcia-Bertrand, R. Decomposition Techniques in Mathematical
Programming; Springer: Berlin/Heidelberg, Germany, 2006.
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Abstract: A patented bidirectional power converter was studied as an interface to connect the DC-bus
of driving inverter, battery energy storage (BES), and ultracapacitor (UC) to solve the problem
that the driving motor damages the battery life during acceleration and deceleration in electric
vehicles (EVs). The proposed concept was to adopt a multiport switch to control the power flow
and achieve the different operating mode transitions for the better utilization of energy. In addition,
in order to improve the conversion efficiency, the proposed converter used a coupled inductor and
interleaved-pulse-width-modulation (IPWM) control to achieve a high voltage conversion ratio (i.e.,
bidirectional high step-up/down conversion characteristics). This study discussed the steady-state
operation and characteristic analysis of the proposed converter. Finally, a 500 W power converter
prototype with specifications of 72 V DC-bus, 24 V BES, and 48 V UC was built, and the feasibility was
verified by simulation and experiment results. The highest efficiency points of the realized prototype
were 97.4%, 95.5%, 97.2%, 97.1%, and 95.3% for the UC charge, battery charge, UC discharge, the
dual-energy in series discharge, and battery discharge modes, respectively.

Keywords: battery/ultracapacitor; dual-energy; bidirectional power converter; electric vehicles

1. Introduction

Electric vehicle (EV) technologies are currently being developed to lessen environmental impact
and overcome shortages of fossil fuel [1–10]. The typical power configuration of pure electric vehicle
(EV) contains four major parts: the battery energy storage (BES), the power converter, the driving
inverter of motor, and the energy management system (EMS) [6,8,10]. Among them, BES is the most
critical component, which can directly affect the life and endurance of the EV, driving efficiency, and
system performance. In general, the power will be drawn rapidly from the BES during the vehicle
acceleration, subsequently causing BES output current and temperature to rise quickly. Moreover,
the driving inverter is prone to generate less stable pulse currents for the BES during deceleration [9].
Such long-term use not only causes damage to the external body of the battery but also excessively
charges and discharges the BES, which eventually will shorten the lifespan of the BES, specifically in
high power applications. Although it is feasible to size up the BES for high power demands, the high
price of the overall system still remains an issue. Possible solutions may be to select an ultracapacitor
(UC), to assist BES, forming a “hybrid energy” system as shown in Figure 1 for EVs [11,12].
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Figure 1. Several schemes of interfacing battery energy storage (BES) and ultracapacitor (UC) to the
DC-bus in electric vehicle (EV) power train: (a) Directly parallel hybrid scheme; (b) UC/BES scheme;
(c) BES/UC scheme; (d) type-I of cascaded scheme; (e) type-II of cascaded scheme; (f) multiple converter
parallel scheme.
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UC has high-power density, long cycle life, quick dynamic response, but low-energy-density,
which are opposite toward BES. Hence, it should exploit the complementary properties of both the
UC and the BES [12]. Several conventional schemes integrating both the BES and UC are shown in
Figure 1. These schemes have all been designed to control power flows, supply specific voltages to
loads, and to reduce design cost, mass, and power consumptions [12–15].

Figure 1a shows the most basic parallel scheme of the BES and UC, with the latter serving as the
low-pass filter [16]. Although simple, the energy stored in the UC is not utilized effectively due to
the absence of power converters. The slightly more robust Figure 1b shows that a power converter
is added in between the BES and UC [17–20]. In this scheme, the BES is connected directly to the
DC-bus instead of the UC. The power output of the UC is controlled by the power converter, and
this enables the UC to operate over a wider voltage range than in Figure 1a. Due to this, the power
rating of the converter has to be sufficiently large to handle high surges of power demands from the
UC. The purpose of the power converter is also to maintain a constant voltage value on the DC-bus
during the operation of the motor. The drawback of this scheme is that the BES is exposed to large
fluctuations of high charging and discharging current, resulting in its reduced lifetime. Figure 1c is
similar to Figure 1b except that the positions of the BES and UC have been swapped [21]. Due to this,
the BES is no longer exposed to the large current fluctuations. The power output from the BES is now
controlled by the power converter. The main disadvantage of this scheme is that the DC-bus voltage
is exposed to large voltages as it is directly connected to the UC. As a result, the power converter is
exposed to a high risk of suffering adverse losses, especially in harsh driving conditions.

All the schemes in Figure 1a–c clearly demonstrate that it is insufficient to use only one or no
power converter. Hence, cascaded schemes using two power converters, as shown in Figure 1d,e, have
also been considered before [22,23]. In these two schemes, two converters decouple the BES and UC
from the DC-bus. The circuit, in Figure 1d, is also known as the “type-I scheme” where an extra power
converter is added in between the UC and the DC-bus. The converter that is located in between the
BES and UC is rated according to the power rating of the BES. This scheme creates more losses for the
higher rated converter that is located in between the UC and the DC-bus due to the fluctuations of the
UC output voltage. In order to overcome this problem, the positions of the BES and UC are swapped,
as shown in Figure 1e (type-II scheme). However, it is difficult to balance the BES cell due to it now
being located at the higher voltage terminal. Although both the type-I and type-II schemes are more
robust than all the previous designs that use only one or no power converter, the power losses and
design costs of the schemes are increased substantially owing to the multi-stage energy conversion
processes in the vehicular power train. Besides that, only one power converter is connected to the
DC-bus in both of these schemes. An outage in one of the power converters will lead to the loss of
the power-control function. An alternative is to employ the scheme in Figure 1f, where the power
converters are connected in parallel and directly to the DC-bus [13,24–28]. In this scheme, the power
converters have the same output voltage, and the power flow of both the energy sources (BES and UC)
are not affected by the output of the other converter. Consequently, this scheme can operate in various
modes [28]. But, the fully power-rated converters are needed, and the cost of this scheme is higher
than all the aforementioned schemes.

In order to reduce the overall system cost, a multi-input power converter scheme is studied, as
shown in Figure 2, into the EV system [29–33].

Multi-input power converters are potential solutions when multiple energy sources with different
voltage levels (battery voltage � UC voltage � DC-bus voltage) and/or power capabilities are to be
combined and yet maintain a regulated output load voltage across them.

Using multi-input power converters, it is possible to apply a different power control command
for each input source. In order to reduce the cost and weight and enhance the overall performance of
the hybrid energy storage system, the multi-input power converter scheme was chosen in this paper
and further investigated.
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Figure 2. Multi-input power converter interfacing BES and UC to the DC-bus in the EV power train.

In [29], a multi-input power converter topology has been proposed to combine various input
energy sources in parallel by using a single-pole triple-throw switch. The major limitations of
parallel-connected source topologies are: input source voltage should be asymmetric, and only one
input source can supply power to the load at a time to avoid the power coupling effect.

In [30], a single-inductor unidirectional multi-input power converter has been presented, which
can operate in buck, boost, or buck-boost modes. To realize the bidirectional power flow mode, all the
diodes must be replaced by unidirectional switches, which increase the number of switches.

In [31], a DC-bus interfacing three-port converter with a simple topology and no electrical isolation
has been proposed, but it cannot cope with a wide operating voltage ratio; energy storage devices
connected to different ports must have a similar operating voltage, and this constricts the application.

In [32], a modular multi-input power converter has been presented to integrate the basic buck-boost
circuit and a shared DC-bus. It is a very simple approach to integrate multiple converters into a single
unit. However, it has limited static voltage gains, resulting in a narrow voltage range and a low voltage
difference between the high- and low-side ports. Besides, since only a few circuit elements are shared
among multiple converters, the benefits of the integration are limited.

In [33], a two-phase multi-input converter with a high voltage conversion ratio has been proposed
as an interface between dual-energy storage sources. Due to the intrinsic automatic current balance
characteristic, the currents of two energy sources are theoretically identical; it indicates that the high power
capability of UC cannot be utilized, and the applications of the proposed converter would be limited.

By conducting a research literature review of [29–36], in this paper, a bidirectional power converter
integrated BES/UC dual-energy storage was proposed, which had the capability to perform forward
power transmission and reverse energy recovery.

First, the proposed converter used a multiport switch to change the different operating modes
and to improve the energy utilization of UC and increase battery life.

Second, it was also integrated with interleaved-pulse-width-modulation (IPWM) control to increase
power density and reduce bidirectional current ripples, which makes power delivery more reliable.

Third, the proposed converter also used a coupled inductor technique instead of a general
single-winding inductor to achieve high voltage conversion ratio and high power density for
bidirectional power conversion.

Finally, the steady-state operation and characteristic analysis of the proposed converter were
described, validated using simulation and experimentation of a 500 W power converter prototype
with specifications of 72 V DC-bus, 24 V BES, and 48 V UC.

The summarized main features of the proposed converter were its ability to:

(1) interface more than two energy sources of different voltage levels,
(2) control power flow between the DC-bus and the two low-voltage energy sources,
(3) control power flow from either the UC or BES or both,
(4) enhance static voltage gain and reduce switch voltage stress, and
(5) possess a reasonable duty cycle and produce a wide voltage difference between its high- and

low-side ports.
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2. Converter Operating Principles

Figure 3 shows the architecture of the proposed converter integrated with dual-energy storage.
The power devices (S1~S4) are the multiport switch used to control the power flow between the
battery/UC dual-energy and DC-bus. To achieve the high conversion efficiency, the design concept
for the converter are based on multi-phase operation and switch stress reduction as (1) the power
devices (Q1~Q4) are designed to use IPWM control to reduce current stress and ripple on the switch, (2)
two-phase coupled inductors T1 and T2 are integrated into the bidirectional power converter with high
turns ratio to reduce the undesirable duty ratio and conduction loss of metal-oxide-semiconductor
field-effect transistors (MOSFETs).

Figure 3. The proposed bidirectional power converter architecture.

2.1. Multiport Switch

Figure 4 shows the equivalent circuits of the multiport switch of the proposed converter under
different operating modes. For the converter operating in the UC charge or discharge mode, the
multiport switches S1, S4 are turned on, and S2, S3 are turned off. The equivalent circuit of this
condition is shown in Figure 4a. It is shown that the bidirectional energy delivery between the UC and
the DC-bus can be achieved. For the converter operating under the battery charge mode or discharge
mode, the multiport switches S2, S3 are turned on, and S1, S4 are turned off. Under this condition,
the corresponding equivalent circuit is shown in Figure 4b. The figure shows that the bidirectional
energy delivery between the battery and the DC-bus can be achieved. For the converter operating
under the dual-energy in series discharge mode, the multiport switches S1, S3 are turned on, and S2, S4

are turned off. The battery/UC dual-energy delivers the energy to DC-bus, and its equivalent circuit is
shown in Figure 4c.

   

(a) (b) (c) 

Figure 4. Equivalent circuits of the multiport switch under different operating modes. (a) UC charge
mode or discharge mode. (b) Battery charge mode or discharge mode. (c) Battery/UC dual-energy in
series discharge mode.
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2.2. Operating Principle of the Proposed Converter

Figure 5 shows the equivalent circuits of the different states for the proposed converter, where VH
represents the high-side voltage for the DC-bus, and VL represents low-side voltage for UC, battery, or
battery/UC dual-energy in series modes.
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Figure 5. Equivalent circuits of the proposed converter. (a) State 1: Q2, Q4 on, and Q1, Q3 off. (b) State
2: Q2, Q3 on, and Q1, Q4 off. (c) State 3: Q1, Q4 on, and Q2, Q3 off. (d) State 4: Q1, Q3 on, and Q2, Q4 off.
(The arrows in green indicate the charge mode, and the arrows in red indicate the discharge mode.).
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The assumptions are made in analyzing the proposed converter:

(1) the converter operates in continuous conduction mode (CCM);
(2) characteristic of the two-phase coupled inductors T1 and T2 are the same, i.e., Lm1 = Lm2, im1 =

im2 and n = N2/N1 = N4/N3;
(3) all voltages and currents in the circuits are periodic in steady-state condition; for simplicity, it is

assumed that all the components in Figure 3 are idealized.

State 1. The equivalent circuit of this state is shown in Figure 5a. The power switches Q2 and Q4 are
turned on, and Q1 and Q3 are turned off. During this state, the high-side voltage VH stores energy to
the magnetizing inductance Lm1 and Lm2, and then the magnetizing currents im1, im2 increase linearly.
The circuit equations are expressed as follows,

vN1 = Lm1
dim1

dt
= VH − vN2 −VL (1)

vN3 = Lm2
dim2

dt
= VH − vN4 −VL (2)

iH = iN2 + iN4 (3)

iT1 = iN2 (4)

iT2 = iN4 (5)

iT = iT1 + iT2 (6)

State 2. The equivalent circuit of this state is shown in Figure 5b. The power switches Q2 and Q3 are
turned on, and Q1 and Q4 are turned off. At this time, the high-side voltage VH continues to store
energy to the magnetizing inductance Lm1, and the magnetizing current im1 increases linearly. The
energy stored in the magnetizing inductor Lm2 is now released to the low-side energy device, and the
magnetizing current im2 decreases linearly. The circuit equations are expressed as follows,

vN1 = VH − vN2 −VL (7)

vN3 = −VL (8)

iH = iN2 (9)

iT1 = iN2 (10)

iT2 = im2 (11)

State 3. The equivalent circuit of this state is shown in Figure 5c. The power switches Q1 and Q4 are
turned on, and Q2 and Q3 are turned off. At this time, the energy stored in the magnetizing inductor
Lm1 is now released to the low-side energy storage, and the magnetizing current im1 decreases linearly.
The voltage across vN1 of the magnetizing inductor Lm1 is negative of the low-side voltage VL. The
magnetizing inductor Lm2 draws the energy from the high-side voltage VH, and the magnetizing
current im2 increases linearly. The circuit equations are expressed as follows,

vN1 = −VL (12)

vN3 = VH − vN4 −VL (13)

iH = iN4 (14)

iT1 = im1 (15)

iT2 = iN4. (16)
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State 4. The equivalent circuit of this state is shown in Figure 5d. The power switches Q1 and Q3 are
turned on, and Q2 and Q4 are turned off. At this time, the energy stored in the magnetizing inductor
Lm1 and Lm2 is now released to the low-side energy storage, and the magnetizing currents im1 and im2

decrease linearly. The voltage across vN1 and vN3 of the magnetizing inductor Lm1 and Lm2 is negative
of the low-side voltage VL. The circuit equations are expressed as follows,

vN1 = −VL (17)

vN3 = −VL (18)

iH = 0 (19)

iT1 = im1 (20)

iT2 = im2 (21)

Considering the different duty ratio conditions in the charge mode and discharge mode, the
operating state flow of each condition during a switching period is summarized as follows.

Charge Mode (Dc < 0.5)

State 2→ State 4→ State 3→ State 4
Charge Mode (Dc = 0.5)

State 2→ State 3
Charge Mode (Dc > 0.5)

State 2→ State 1→ State 3→ State 1
Discharge Mode (Dd < 0.5)

State 3→ State 1→ State 2→ State 1
Discharge Mode (Dd = 0.5)

State 3→ State 2
Discharge Mode (Dd > 0.5)

State 3→ State 4→ State 2→ State 4
As mentioned above, Dc is the duty ratio of switch Q2 and Q4 for the charge mode, and Dd is the

duty ratio of switch Q1 and Q3 for the discharge mode.
When the proposed converter operates with the duty ratio of 0.5 in the charge or discharge mode

(i.e., Dc = Dd = 0.5), the only two operating states of the proposed converter are produced.
When the proposed converter operates in the charge mode with duty ratio Dc > 0.5, the operation

state in a switching period is the same as the discharge mode with Dd < 0.5, and only the reverse
current direction is considered.

Similarly, when the proposed converter operates in the discharge mode with the duty ratio Dd
> 0.5, the operation state in the switching period is the same as the charge mode with Dc < 0.5, and
only the reverse current direction is considered. Figure 6 shows the key waveforms of the proposed
converter in the charge mode with Dc < 0.5, and in the discharge mode with Dd < 0.5, respectively.

The time intervals of Figure 6 are described as

Charge Mode (Dc < 0.5)
[t0 < t ≤ t1]: state 2; [t1 < t ≤ t2]: state 4; [t2 < t ≤ t3]: state 3; [t3 < t ≤ t4]: state 4.
Discharge Mode (Dd < 0.5)
[t0 < t ≤ t1]: state 3; [t1 < t ≤ t2]: state 1; [t2 < t ≤ t3]: state 2; [t3 < t ≤ t4]: state 1.
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Figure 6. Key waveforms: (a) charge mode and Dc < 0.5; (b) discharge mode and Dd < 0.5.

105



Energies 2020, 13, 1234

3. Converter Steady-State Analyses

3.1. Static Voltage Conversion Ratio Analysis

Charge Mode (UC Charge; Battery Charge)

During steady-state operation and according to the volt-second balance principle of the
magnetizing inductance operating in the charge mode, the static voltage conversion ratio Mc can be
derived as from (22)–(25).

The voltage relationship between primary and secondary sides of the coupled inductor is shown
as follows

vN2 = nvN1 (22)

substituting (22) into (1), it can be rewritten as follows

vN1 = (VH −VL)
1

1 + n
(23)

By combining (23) and (12), the average voltage of the primary side for the coupled inductor
during a switching period can be expressed as follows

〈vN1〉Ts =

DcTs∫
0

VH −VL

1 + n
dt +

Ts∫
DcTs

(−VL)dt = 0 (24)

The static voltage conversion ratio of the proposed converter in the charge mode can be derived
as follows

Mc =
VL

VH
=

Dc

1 + n(1−Dc)
(25)

Figure 7a shows the relationship between the coupled inductance with different turns ratio and
the static voltage conversion ratio Mc of the proposed converter in the charge mode.

(a) (b) 

Figure 7. Converter characteristics in charge mode: (a) relationship diagram of Mc, Dc, and n;
(b) relationship diagram of Mc and Dc (n = 1).

For simplicity, assuming that the turns ratio of the coupling inductance is n = 1, the relationship
between Mc and Dc is shown in Figure 7b.

It can be seen that the static voltage conversion ratio of the proposed converter in the charge mode
has a better performance, compared with the conventional buck converter.
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Discharge Mode (UC Discharge; Battery Discharge; Dual-Energy in Series Discharge)

The static voltage conversion ratio Md in the discharge mode can be derived from the average
voltage of the magnetizing inductance. According to (23) and (12), and considering the duty ratio Dd
of the switch Q1 and Q3, the average voltage of the primary side for the coupled inductor during a
switching period can be expressed as follows

〈−vN1〉Ts =

DdTs∫
0

(−VL)dt +

Ts∫
DdTs

VH −V
1 + n

dt = 0 (26)

The static voltage conversion ratio of the converter in the discharge mode can be derived as follows

Md =
VH

VL
=

1 + nDd
1−Dd

(27)

Figure 8a shows the relationship between the coupled inductance with different turns ratios and
the static voltage conversion ratio Md of the proposed converter in the discharge mode. For simplicity,
assuming that the turns ratio of the coupling inductance is n = 1, the relationship between Md and Dd
is shown in Figure 8b. It can be seen that the static voltage conversion ratio of the proposed converter
in the discharge mode has a better performance, compared with the conventional boost converter.

(a) (b) 

Figure 8. Converter characteristics in discharge mode: (a) relationship diagram of Md, Dd, and n; (b)
relationship diagram of Md and Dd (n = 1).

3.2. Boundary Condition Analysis

Charge Mode (UC Charge; Battery Charge)

According to the ampere-second balance principle for the filter capacitor CL on the low-voltage
side, it means that the average current of the filter capacitor should be zero in steady-state, and the
sum of the averaged currents IT1 and IT2 are equal to the low-side current IL,BCM (i.e., UC current or
battery current), as described below

IL,BCM =
VL

RL,BCM
= IT1 + IT2 (28)

IT1 =
imc1,pk

2(1 + n)
Dc +

imc1,pk

2
(1−Dc) (29)

IT1 = IT2 = imc1,pk(1−Dc) (30)
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In (28), RL,BCM represents the low-side equivalent resistance under boundary-conduction-mode
(BCM) condition.

Considering the low-side voltage VL is constant, the peak value of the magnetizing current imc1,pk
at BCM in the charge mode can be expressed as

imc1,pk =
VL

Lm
(1−Dc)Ts (31)

where Ts is the switching period.
Substituting (29), (30), and (31) into (28), the boundary magnetizing inductance Lmc,BCM in the

charge mode can be derived as follows

Lmc,BCM =
RL,BCM(1−Dd)

fs

[
1 + n(1−Dc)

1 + n

]
(32)

The boundary time constant τc,BCM of the proposed converter in the charge mode can be derived
as (33), and the corresponding relationship curve is depicted as shown in Figure 9.

τc,BCM =
Lmc,BCM fs

RL,BCM
= (1−Dc)

[
1 + n(1−Dc)

1 + n

]
(33)

Figure 9. The curve of the boundary time constant τc,BCM in the charge mode.

Discharge Mode (UC Discharge; Battery Discharge; Dual-Energy in Series Discharge)

According to the ampere-second balance principle of the filter capacitor CH on the high-voltage
side, it can be shown that the average current on the filter capacitor is zero in steady-state, and the sum
of the averaged currents IN2 and IN4 are equal to the high-side current IH,BCM (i.e., DC-bus current) as
described below

IH,BCM =
VH

RH,BCM
= IN2 + IN4 (34)

IN2 = IN4 =
imd1,pk

2(1 + n)
(1−Dd) (35)

where RH,BCM represents the high-side equivalent resistance under BCM.
Considering the high-side voltage VH is constant, the peak value of the magnetizing current imd1,pk

at BCM in the discharge mode can be expressed as follows

imd1,pk =
VHTs

Lm

(1−Dd)Dd

1 + nDd
(36)
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Substituting (35), (36) into (34) and simplifying it, the boundary magnetizing inductance in the
discharge mode can be derived as follows

Lmd,BCM =
RH,BCM

fs

⎡⎢⎢⎢⎢⎣ (1−Dd)
2Dd

(1 + n)(1 + nDd)

⎤⎥⎥⎥⎥⎦ (37)

The boundary time constant τd,BCM of the converter in the discharge mode can be derived as (38),
and the corresponding relationship curve is depicted as shown in Figure 10.

τd,BCM =
Lmd,BCM fs

RH,BCM
=

(1−Dd)
2Dd

(1 + n)(1 + nDd)
(38)

Figure 10. The curve of the boundary time constant τd,BCM in the discharge mode.

3.3. Voltage and Current Stresses Analyses of Power Devices

3.3.1. Voltage Stress Derivations

The power switching device is the main design considerations when implementing the power
converter. The voltage and current stresses of the power device for the converter circuit are analyzed,
and then the appropriate components are selected as below.

The multiport switches S1~S4 are used as the pre-stage for the discharge mode or post-stage for
the charge mode. The voltage stress of the multiport switches S1 and S2 is equal to the UC voltage VU,
and the voltage stress of S3 and S4 is equal to the battery voltage VB, as follows

VS1,max = VS2,max = VU (39)

VS3,max = VS4,max = VB (40)

The voltage stress of the power switches Q1 to Q4 for the converter can be expressed as follows

VQ1,max = VQ3,max = VH − vN2 =
VH + nVL

1 + n
(41)

VQ2,max = VQ4,max = VH − vN2 = VH + nVL (42)
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3.3.2. Current Stress Derivations

The root mean square (RMS) current of the magnetizing inductances Lm1 and Lm2 are derived
based on the operating state of the proposed converter, as follows

Im1,rms = Im2,rms =

√
Im1

2 +

(
Δim1

2
√

3

)2

(43)

where Im1 and Im2 are the DC value of the magnetizing current im1 and im2, respectively; Δim1 and Δim2

are the magnetizing ripple currents, as follows

Im1 = Im2 =
IL

2
· 1 + n

1 + n(1−Dc)
(44)

Δim1 = Δim2 =
VL

Lm
(1−Dc)Ts (45)

The RMS current of the power switches Q1~Q4 of the proposed converter in the charge mode can
be derived as follows

IQ1,rms = IQ3,rms = Im1,rms
√

1−Dc (46)

IQ2,rms = IQ4,rms =
Im1,rms

1 + n

√
Dc (47)

The RMS current of the filter capacitors CL and CH of the proposed converter in the charge mode
can be derived as follows

ICL,rms =
√

IT1,rms2 + IT2,rms2 − IL2 (48)

ICH,rms =
√

IQ2,rms2 + IQ4,rms2 − IH2 (49)

where

IT1,rms = IT2,rms = Im1,rms

√
Dc

(1 + n)2 + (1−Dc) (50)

4. Simulated and Experimented Results

The realized converter prototype is shown in Figure 11, and Table 1 shows the electrical
specifications and the circuit parameters of the realized power converter. For the convenience
of the experiments, in the charge mode, the power supply (ITECH IT6726G) was used as the DC-bus
on the high-voltage side, and the electronic load (ITECH IT8814B) was used as the UC or the battery
on the low-voltage side. Conversely, in the discharge mode, the power supply was used as the UC, the
battery, or the dual-energy storage in series.

 
Figure 11. Prototype circuit of the proposed converter.
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Table 1. Specifications and circuit parameters of the realized power converter.

Symbol Descriptions Specifications

VH (Vbus) high-side voltage (DC-bus voltage) 72 V
VL low-side voltage
VB battery voltage 20 V~26 V
VU UC voltage 0 V~48 V
Po rated output power 500 W
fs switching frequency 20 kHz

Symbol Descriptions Parameters

Lm1, Lm2 magnetizing inductances of the coupled inductors 250 μH
n turns ratio of the coupled inductors 1

CH high-side capacitor 2400 μF
CL low-side capacitor 800 μF

UC Charge Mode

Figures 12 and 13 show the waveforms of the gate signals of Q2 and Q4, the primary-side currents
of the coupled inductor (iT1, iT2), the secondary-side currents of the coupled inductor (iN2, iN4), and the
low-side voltage VU in the UC charge mode with full load condition, respectively. In this mode, the
UC voltage was about 48 V, the duty ratio of the switches Q2 and Q4 was set to 80% (i.e., Dc = 0.8), the
DC values of the primary currents (iT1, iT2) and secondary currents (iN2, iN4) of the coupled inductance
were about 5.2 A and 3.5 A, respectively.

 
(a) (b) 

Figure 12. Waveforms of the switching gate signals and the primary-side currents of the coupled
inductor in the UC recharging mode with Dc = 0.8: (a) simulated and (b) experimental.

 
(a) (b) 

Figure 13. The waveform of the secondary-side currents of the coupled inductor and UC voltage in the
UC charge mode with Dc = 0.8: (a) simulated and (b) experimental.
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Figure 14 shows the waveforms of the steady-state switching voltages across the power devices in
the UC charge mode. The results showed that the steady-state switching voltages across the lower-leg
MOSFETs Q1 and Q3 were about 60 V, and the steady-state switching voltages across the upper-leg
MOSFETs Q2 and Q4 were about 120 V. It could be seen that in Figure 14, the simulation and the
experimental results were consistent and corresponded to (41) and (42).

(a) (b) 

Figure 14. The waveform of switching voltage across the power devices in the UC charge mode with
Dc = 0.8: (a) simulated and (b) experimental.

Battery Charge Mode

Figures 15 and 16 show the waveforms of the gate signals of Q2 and Q4, the primary-side currents
of the coupled inductor (iT1, iT2), the secondary-side currents of the coupled inductor (iN2, iN4), and
the low-side voltage VU in the battery charge mode with full load condition, respectively.

 
(a) (b) 

Figure 15. Waveforms of the switching gate signals and the primary-side currents of the coupled
inductor in the battery charge mode with Dc = 0.5: (a) simulated and (b) experimental.

In this mode, the battery voltage was about 24 V, the duty ratio of the switches Q2 and Q4 was
set to 50% (i.e., Dc = 0.5), and the DC values of the primary currents (iT1, iT2) and secondary currents
(iN2, iN4) of the coupled inductance were about 10.4 A and 3.5 A, respectively. It could be seen that in
Figures 15 and 16, the simulation and the experimental results were consistent.

Figure 17 shows the waveforms of the steady-state switching voltages across the power devices
in the battery charge mode. The results showed that the steady-state switching voltages across the
lower-leg MOSFETs Q1 and Q3 were about 48 V, and the steady-state switching voltages across the
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upper-leg MOSFETs Q2 and Q4 were about 96 V. It could be seen that in Figure 17, the simulation and
the experimental results were consistent and corresponded to (41) and (42).

 
(a) (b) 

Figure 16. The waveform of the secondary-side currents of the coupled inductor and UC voltage in the
battery charge mode with Dc = 0.5: (a) simulated and (b) experimental.

(a) (b) 

Figure 17. The waveform of switching voltage across the power devices in the battery charge mode
with Dc = 0.5: (a) simulated and (b) experimental.

UC Discharge Mode

Figures 18 and 19 show the waveforms of the gate signals of Q2 and Q4, the primary-side currents
of the coupled inductor (iT1, iT2), the secondary-side currents of the coupled inductor (iN2, iN4), and
the high-side voltage VH in the UC discharge mode with full load condition, respectively.

In this mode, the DC-bus voltage was about 72 V, the duty ratio of the switches Q1 and Q3 was
set to 20% (i.e., Dd = 0.2), and the DC values of the primary currents (iT1, iT2) and secondary currents
(iN2, iN4) of the coupled inductance were about 5.2 A and 3.5 A, respectively. It could be seen that in
Figures 18 and 19, the simulation and the experimental results were consistent.

Figure 20 shows the waveforms of the steady-state switching voltages across the power devices
in the UC discharge mode. The results showed that the steady-state switching voltages across the
lower-leg MOSFETs Q1 and Q3 were about 60 V, and the steady-state switching voltages across the
upper-leg MOSFETs Q2 and Q4 were about 120 V. It could be seen that in Figure 20, the simulation and
the experimental results were consistent and corresponded to (41) and (42).
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(a) (b) 

Figure 18. Waveforms of the switching gate signals and the primary-side currents of the coupled
inductor in the UC discharging mode with Dd = 0.2: (a) simulated and (b) experimental.

 
(a) (b) 

Figure 19. The waveform of the secondary-side currents of the coupled inductor and DC-bus voltage
in the UC discharging mode with Dd = 0.2: (a) simulated and (b) experimental.

(a) (b) 

Figure 20. The waveform of switching voltage across the power devices in the UC discharging mode
with Dd = 0.2: (a) simulated and (b) experimental.

Dual-Energy in Series Discharge Mode

Figures 21 and 22 show the waveforms of the gate signals of Q2 and Q4, the primary-side currents
of the coupled inductor (iT1, iT2), the secondary-side currents of the coupled inductor (iN2, iN4), and
the high-side voltage VH in the dual-energy discharge mode with full load condition, respectively.

In this mode, the DC-bus voltage was about 72 V, the low-side voltage VL was 44 V, the duty
ratio of the switches Q1 and Q3 was set to 25% (i.e., Dd = 0.25), and the DC values of the primary
currents (iT1, iT2) and secondary currents (iN2, iN4) of the coupled inductance were about 5.8 A and 3.5
A, respectively. It could be seen that in Figures 21 and 22, the simulation and the experimental results
were consistent.
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(a) (b) 

Figure 21. Waveforms of the switching gate signals and the primary-side currents of the coupled
inductor in the dual-energy in series discharge mode with Dd = 0.25: (a) simulated and (b) experimental.

 
(a) (b) 

Figure 22. The waveform of the secondary-side currents of the coupled inductor and DC-bus voltage
in the dual-energy in series discharge mode with Dd = 0.25: (a) simulated and (b) experimental.

Figure 23 shows the waveforms of the steady-state switching voltages across the power devices in
the dual-energy in series discharge mode. The results showed that the steady-state switching voltages
across the lower-leg MOSFETs Q1 and Q3 were about 58 V, and the steady-state switching voltages
across the upper-leg MOSFETs Q2 and Q4 were about 116 V. It could be seen that in Figure 23, the
simulation and the experimental results were consistent and corresponded to (41) and (42).

(a) (b) 

Figure 23. The waveform of switching voltage across the power devices in the dual-energy in series
discharge mode with Dd = 0.25: (a) simulated and (b) experimental.
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Efficiency Measurement

The system used two power analyzers (YOKOGAWA WT310) connected to the input and output
of the realized converter prototype. As could be seen in Figure 24, in the UC charge mode, the highest
efficiency point was 97.4%; in the battery charge mode, the highest efficiency point was 95.5%; in the
UC discharge mode, the highest efficiency point was 97.2%; in the dual-energy in series discharge
mode, the highest efficiency point was 97.1%; in the battery discharge mode, the highest efficiency
point was 95.3%.

 
Figure 24. The measured efficiency of the proposed converter for the different operating modes.

5. Conclusions

This study proposed a patented bidirectional power converter that used dual-energy storage as
input sources and incorporated a coupled inductor to obtain a higher voltage conversion ratio. The
converter control used IPWM control to achieve low current ripple, dissipate low side current stress,
and reduce the conduction loss of the power MOSFET. Moreover, the proposed bidirectional power
converter in this study also discussed the steady-state operation in the charge mode and discharge
mode, respectively. The voltage conversion ratio, boundary conditions, and voltage and current stress
of each power component of the converter were analyzed. Finally, this study implemented a converter
prototype with a 500 W power rating for verification. The simulation results and the experimental
results were consistent; the highest efficiency points of the realized prototype were 97.4%, 95.5%,
97.2%, 97.1%, and 95.3% for the UC charge mode, battery charge mode, UC discharge mode, the
dual-energy in series discharge mode, and battery discharge mode, respectively. In summary, this
paper demonstrated that the proposed bidirectional power converter could be potentially applied to
produce hybrid power architecture (has been patented [37]).
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Nomenclature

T1, T2 Two-phase coupled inductors
Lm1, Lm2 Magnetizing inductors of the two-phase coupled inductors
Lmc,BCM Boundary magnetizing inductance in the charge mode
Lmd,BCM Boundary magnetizing inductance in the discharge mode
n Turns ratio of the two-phase coupled inductors (n = N2/N1 = N4/N3)
N1 Primary winding of T1
N2 Secondary winding of T1
N3 Primary winding of T2
N4 Secondary winding of T2
k Coupling coefficient
CU Input capacitor paralleled with UC
CB Input capacitor paralleled with BES
S1~S4 Power devices of the multiport switch
Q1~Q4 Power devices of the two-phase bidirectional power converter
VH High-side voltage for the DC-bus
VL Low-side voltage for UC, BES, or BES/UC dual-energy in series
VU UC voltage
VB BES voltage
iBus DC-bus current
iUc UC current
iBat BES current
iH High voltage side current
iL Low voltage side current
IL,BCM Low voltage side current under BCM condition
IH,BCM High voltage side current under BCM condition
Im1,rms, Im2,rms RMS value of the magnetizing currents of the coupled inductors
IT1,rms, IT2,rms RMS value of the primary-side currents of the coupled inductors
vN1 Voltage of the winding N1 of the T1
vN2 Voltage of the winding N2 of the T1
vN3 Voltage of the winding N3 of the T2
vN4 Voltage of the winding N4 of the T2
VS1,max~VS4,max Switch voltage stress of the multiport switch
VQ1,max~VQ4,max Switch voltage stress of the two-phase bidirectional power converter
iT1, iT2 The primary-side currents of the two-phase coupled inductors
iT The sum of the primary-side currents iT1 and iT2
iN2, iN4 The secondary-side currents of the two-phase coupled inductors
im1, im2 Magnetizing inductor currents of the coupled inductors T1 and T2
Im1, Im2 DC value of the magnetizing currents
imc,pk peak value of the magnetizing inductor current under BCM in the charge mode
imd,pk peak value of the magnetizing inductor current under BCM in the discharge mode
Δim1, Δim2 Magnetizing ripple currents
IQ1,rms~IQ4,rms RMS current of the power switches Q1~Q4
ICH,rms~ICL,rms RMS current of the filter capacitors CL and CH
Dc, Dd Duty ratio of charge mode and discharge mode
Ts Switching period
τc,BCM Boundary time constant in the charge mode
τd,BCM Boundary time constant in the discharge mode
RL,BCM Low-side equivalent resistance under BCM condition
RH,BCM High-side equivalent resistance under BCM condition
Mc Static voltage conversion ratio in the charge mode
Md Static voltage conversion ratio in the discharge mode
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Abstract: Currently, there are three major barriers toward a greener energy landscape in the future:
(a) Curtailed grid integration of energy from renewable sources like wind and solar; (b) The low
investment attractiveness of large-scale battery energy storage systems; and, (c) Constraints from
the existing electric infrastructure on the development of charging station networks to meet the
increasing electrical transportation demands. A new conceptual design of mobile battery energy
storage systems has been proposed in recent studies to reduce the curtailment of renewable energy
while limiting the public costs of battery energy storage systems. This work designs a logistics system
in which electric semi-trucks ship batteries between the battery energy storage system and electric
vehicle charging stations, enabling the planning and operation of power grid independent electric
vehicle charging station networks. This solution could be viable in many regions in the United States
(e.g., Texas) where there are plenty of renewable resources and little congestion pressure on the road
networks. With Corpus Christi, Texas and the neighboring Chapman Ranch wind farm as the test
case, this work implement such a design and analyze its performance based on the simulation of its
operational processes. Further, we formulate an optimization problem to find design parameters that
minimize the total costs. The main design parameters include the number of trucks and batteries.
The results in this work, although preliminary, will be instrumental for potential stakeholders to
make investment or policy decisions.

Keywords: battery energy storage systems; electric vehicle charging stations; logistics

1. Introduction

It is anticipated that Electric Vehicles (EV) penetration will meet an extensive growth in the
near future [1] due to their highly promising performance and negligible production of Greenhouse
Gas (GHG) emissions [2–4]. However, EV charging still faces issues arising from infrastructure and
technology, for instance, the inadequacy of appropriate charging facilities [5] and the long durations of
charging activities [6], in contrast to the fast refueling process of conventional Internal Combustion
Engine (ICE) vehicles. In addition to these issues, the constraint from the power grid to meet the
demands of the Electric Vehicle Charging Stations (EVCSs) has also been a main challenge to the EV
industry and it might be responsible for negatively impacting EVs’ social acceptance [7,8]. To address
this, we introduced and have been exploring the idea of developing grid independent EVCS networks
in previous works [7,9–12]. Essentially, mobile Battery Energy Storage Systems (BESSs) that absorb
extra (i.e., would be curtailed otherwise) energy from renewable sources (e.g., a wind farm) and are
shipped by Electric Semi-Trucks (ESTs) to the EVCSs power the EVCS networks. Designing and
managing a logistics system that minimizes the annualized cost for such network became a necessity,
which in return promotes the development of EVs industry and penetration. Handling the logistics
system of any operational supply and demand environment is in great importance in most fields.
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Hence, its significance in the case of EVCSs is not different, since its need stems from the dynamic
interaction between the supply side of energy (the energy producer represented by the wind farm in
this study) and the demand side (the energy consumer, EVs in this case). The logistics system in this
study involves employing ESTs that deliver BESSs between the two sides, as introduced in [7].

Related Works

The planning of diverse types of logistics systems has been extensively studied [13–15]. In an old
study that was performed by Powell [16], the author described a heuristic approach that manages a
real time dispatching problem for truckload motor carriers (loaded or empty) from one location to
the next, the author stated that the most difficult part is to forecast for the future demand because
of its uncertainty. From this point, we can sense that the uncertainty of the future demand makes it
hard to accurately plan for the operational process and guarantee its convergence, which easily leads
to introduce uncertain errors. Recently, numerous studies, including those conducted by Vasilakos
et al. [17] and Fanti et al. [18], focus on the Decision Support System (DSS) applications in shipping
systems to mitigate uncertain demand problem. The decision support systems are judged to be essential
backers of making crucial operational logistics decisions. Giusti et al. [19] introduced a new system for
freight logistics planning for the Synchromodal supply chain eco-network, SYNCHRO-NET, which
is an optimization toolset that offers tactical level decision support in terms of routes and schedules
for synchro-modal freight transportation. The SYNCHRO-NET is projected to achieve notable results
regarding the distances travelled, fuel emissions, and costs. In [20], it was reported that the very fast
urban growth forms a serious logistics challenge for decision makers, especially when dealing with
the social, economic, and environmental issues. It is necessary to plan for it in advance and, as stated
in [21], logistic decision-making can precisely define the distribution pattern of shipments within the
product’s supply chain.

Plant location and its associated services, transportation infrastructure, and demand profiles are
important factors shaping the evolution of logistics systems’ structure. For the sake of examining the
geography of logistics firms, the authors of [22] shed some light over the importance of the location
patterns of logistics corporations, and utilized what is called “geo-referenced firm level data” side by
side with an updated data system of transportation infrastructure. They concluded that the logistics
sector is extremely urbanized, and its firms, as compared to other sectors, are located near highways
and other transport infrastructure. The findings of [22] are in agreement with those in [23], where
Kumar et al. summarized that maintaining the transportation infrastructure leads to optimistic effects
on transportation and logistics clusters. The expansion of the current century’s development demands
necessitates similar expansions regarding the logistics schemes. Developing a modernized logistics
system that reflects the visions for a new future in which the development is sustainable and efficient
is an essential requirement.

When dealing with the shipping actions, most of the previous studies consider the scenario of
delivering supplies in one direction (i.e., going in one way from the source to the destination as a fully
loaded carriers and returning back to the source as an empty load) [24–26]. While other studies tried to
enhance the previously described case by finding other applications for the empty loads to gain more
profits by reducing the shipping costs, and obtain improved usage, such as the sequence of deliveries
scenario, for example [27–30]. In this paper, we deal with a different structure of logistics where we
anticipated that the ESTs are equipped to carry only one unit of the mobile BESS; this unit will be
fully charged when transferred from the BESS plant to the targeted EVCS while being swapped by the
empty one back to the plant. Furthermore, and for the authors knowledge, combining some of the
main components that form the conventional logistics structure configuration, as specified in [31], in
one component can be a beneficial way for costs reductions. Therefore, we combine the plant and the
storage at the same spot and exclude the retailer part, which is almost like the case of Direct to Store
Delivery (DSD) [32].
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In this study, a model of logistics system for a grid independent EVCSs network is developed.
The design can supply a population of ten thousand EVs with their energy charging demands.
The optimum design configured employing ten ESTs and 126 mobile BESS units. The principal
objective function of the design was to provide every EV with its charging demands at the 27 ECVSs
while aiming for minimizing the annual costs. Such design can be implemented by decision makers
and planners for future sustainable communities to accomplish greener transportation systems in
which the GHG emissions are the lowest levels.

The rest of the paper is organized as follows: In Section 2, we describe the methodology where the
optimization problem is introduced along with the objective functions and the constraints. Section 3
provides the main results of the optimization process and their evaluations; the section is further
supported by some findings and discussions. The conclusions of the paper and suggestions of further
work in this field could be found in Section 4.

2. Methodology

The objective of this study is to design a logistics system model for mobile BESSs powered EVCS
network, and then examine its performance when applied into a scenario of supply side, energy
produced by renewable energy source (wind energy in this case), and demand side, energy consumed
by EVs at the EVCSs. The scheme of EVCSs we study in this paper includes 27 charging stations spread
in the city of Corpus Christi, Texas, and their locations are known as obtained from our previous
study [9]. These EVCSs are projected to serve a population of about ten thousand EVs. Securing
the supply of energy at the EVCSs is maintained by deliveries of mobile BESS units shipped by
ESTs. The configuration of the best number of ESTs and mobile BESS units will be optimized while
minimizing the annualized costs. The design considers placing a BESS plant, that stores the fully
charged BESS, close to the supply side (wind farm). In this study, we assume the availability of
boundless energy produced by the wind farm, so, the charging of the mobile BESS units at the BESS
plant is conducted without any constraints at any time.

In the simulations, we consider a possible future scenario in which the interaction between the
main components (BESS plant, ESTs, mobile BESSs units, EVCSs, and the enormous number of EV
arrivals) is described as following. To begin with, this scenario maintains (NEV) as the total number
of EVs (10,000 EVs), (NEVCS) as the total number of EVCSs (27 EVCSs), (NBESS) as the number of
mobile BESS units (to be optimized) and (NEST) as the number of ESTs (to be optimized). At time
step t = 0, which represents the beginning of the simulation and by referring to each time step by
one hour, the capacity of each EV’s battery ranges from [60 kWh–120 kWh] and the initial State
of Charge (SoC) ranges randomly between [0%–100%]. Also, each charging station is considered
fully charged by having specific number of mobile BESS units (the capacity of each unit is 5 MWh).
For instance, if EVCSi configures 3 units of mobile BESS, then, it is fully charged at the capacity of 15
MWh initially. The EVCSs are divided into two categories, 15 commercial (COM) EVCSs serving the
offices and shopping centers areas, and 12 residential (RES) EVCSs serving the homes and suburban
areas. Therefore, each type of EVCSs receives a different trend of EV arrivals during the day [33–35].
As a result, the energy demand profile at each ECVS is changing over time and peaks multiple times
during the day. Each EV arrives to an EVCS will be likely to spend specific time while waiting for the
charging process, that time is dependent on the type of the EVCS. Figure 1 shows the probabilities for
EV arrivals to both commercial and residential EVCSs during the day, while Figure 2 represents the
probabilities for the hours spent at each type of the EVCSs at any time.
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Figure 1. The probability for a commercial or residential EVCS to be chosen by an EV that needs to be
charged during the day. The COM EVCS’s probability is divided randomly between the 15 stations
around their average, while the RES EVCS’s probability is divided randomly between the 12 stations
around their average.

Figure 2. The probability of the time that each EV will spend as the waiting/parking time to get charged
at each type of the EVCSs.

To simulate such network of EVCSs that provides service to a population of EVs in a region, the
initialization process is as follows: (i) set the number of fully charged mobile BESS units at each EVCS;
in this case, the state of charge of each station is at 100% and each EVCS has an initial label of (1)
that represents its fully charged status. Later and based on the energy consumption, the label will be
switched to (−1) which represents the EVCS’s need to be charged (at least one unit of BESS is empty),
and a signal to the BESS plant will be sent requesting the mobile BESS unit swapping; (ii) set a number
of mobile BESS that is equal to the overall number of BESS units at all EVCSs at the plant as fully
charged as well, and ready to secure the shipping process when requested. Each mobile BESS has its
own ID and label that represents its status (1; if fully charged, and -1; if needs to be charged). (iii) set
the whole fleet of ESTs stationed at the BESS plant and ready to be dispatched to the target EVCS when
a request is received. Each EST has a label that represents its availability; (1; if available at the plant,
and -1; if not available and on a trip).

After the initialization process is over, the simulation runs for one year (~8760 h or time steps).
During each time step, the algorithm updates the followings: (1) the SoC of each EV. (2) the SoC of each
EVCS. (3) the label that represents each EVCS’s need to be charged or not. (4) the label that represents
each mobile BESS status if full and ready to be shipped or needs charging. (5) the label that represents
the availability of each EST. Figure 3 shows the flowchart of the simulation process.
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Figure 3. The flowchart of the simulation process.

Loading the input data is the first step of the simulation process; the input data includes but not
limited to the 27 EVCSs along with the state of charge status of each station, the population of the EVs
along with the state of charge status of each vehicle, and the population of the ESTs along with the
availability status of each truck. At each time step of the total simulation time, the number of EVs
need to be charged is estimated by comparing each EV’s SoC to the minimum allowed SoC which
is (EV_SoCmin ≤ 20%) in this case. Then, the total number of EVs that need charging will be spread
between the available EVCSs, so each station will receive a portion of the EV arrivals (represented

125



Energies 2020, 13, 1157

by j in the flowchart in Figure 3). To obtain the number of EVs arrive at each station, the simulation
process scans each EVCS through a loop that first of all checks the need of that station to be charged
itself (has at least one empty BESS unit) or not, if yes, then a request will be sent to the BESS plant
asking to ship and swap that unit by a fully charged one. To find each EVCS’s portion of EV arrivals,
the whole population of EVs will be checked to get the corresponding j. Two counters (i and k) are
initialized at zero value and change while looping through the total number of EVs; i represents the
accumulative number of EVs satisfies the conditions demanding its charging process and will reset to
zero when it is equal to j, while k represents the number of scanned EVs and will reset to zero at the
head of each time step.

During the process of scanning all EVs at each time step, each EV that has a SoC less than or equal
to (EV_SoCmin) will be checked upon to validate its presence at an EVCS from the previous hour and
does not need to be placed at another station, or yet to be placed at a station and an occurrence of i
is recorded. In that case, the arrived EV will choose an EV charging facility at the EVCS based on
the empty capacity of its battery that can be charged which can be estimated by (Capi(1− SoCi)), and
the parking time duration (Tdur

i ). We consider three types of charging facilities at each EVCS: slow
charging facility with a power rating of (PSCF = 10 kW), medium charging facility with a power rating
of (PMCF = 30 kW), and fast charging facility with a power rating of (PFCF = 120 kW).

Equation (1) as formulated in [33] can be used to obtain the type of the charging facility chosen by
that EV at that hour.

PEVi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PSCF, i f Capi(1− SoCi) ≤ PSCFTdur

i
PMCF, i f PSCFTdur

i < Capi(1− SoCi) ≤ PMCFTdur
i

PMCF, i f PSCFTdur
i < Capi(1− SoCi) ≤ PMCFTdur

i

(1)

Since the economic feasibility of this design is considered as a very important factor, this study’s
concern is expanded to optimize for the optimum total number of mobile BESSs units and ESTs required
in this design (the control variables) while minimizing the annual total costs as described in Equation
(2) and set as the objective function. The optimization process follows those in [10].

min Cost = CI + CO&M (2)

where CI is the annualized investment cost, where its detailed factors are represented in (3), and CO&M

is the annualized operation and maintenance costs as represented in (5). The investment cost includes
the costs of the ESTs (CEST = μNEST) where μ is the price of each EST, and the mobile BESS units (CBESS

= δNBESS) where δ is the price of each mobile BESS unit.

CI = αCEST + βCBESS (3)

where α and β are two annuity factors associated with the costs of the ESTs and the mobile BESS units
respectively to annualize their capital investment costs. They can be obtained by (4) where d is the
economical discount rate and y is the corresponding economic lifetime of each element.

α, β =
d(1 + d)yEST, BESS

(1 + d)yEST, BESS − 1
(4)

CO&M = σDtot + ϕCEST + ωCBESS + ψNEST (5)

where σ represents the expense of energy consumed by each EST’s trip per mile (estimated to be around
$0.165/mile by [36–38]). ϕ and ω are constants represent the percentages of the investment costs to get
the annual maintenance costs for the ESTs and the mobile BESS units respectively (they are chosen to
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be 5%). ψ characterizes the annual income for each EST operator. The annually total distance (Dtot)
that ESTs drive while delivering the mobile BESS units is estimated by:

Dtot =

NEVCS∑
i =1

l(i)NTrips(i) (6)

where l(i) represents the distance between the BESS plant and the ith EVCS which is estimated in
Corpus Christi, Texas to be between [10–25 miles], and NTrips(i) is the number of shipments or trips
that the ith EVCS requires annually.

3. Results

In this section and by following the model explained above, we present the simulation results.
As stated before, each EVCS will receive a unique number EV arrivals during the day. The criteria
of choosing the type of the charging facility by each arrived EV is described in Equation (1). It is
important to notice that the number of charging facilities at each station is not a point of interest in this
study. Therefore, the charging facilities are considered to be available at all times for all EVCSs. In
Figure 4a. we present the EV arrivals at one of the RES EVCSs, EVCS #17, to demonstrate the diversity
of EV arrivals and their charging facility choices during the day at that station. While in Figure 4b. we
show the change over the state of charge of EVCS #17 during the day as the supplying the charging
demands of the EVs arrived is taking place. In this case, EVCS #17 maintains two mobile BESS units as
its asset. Whenever any of these two units is empty, then the station sends a request to the plant for
a BESS unit swap. It can be noticed that EVCS #17 has required to recharge its BESS units for seven
times during that day (characterized by the red bars).

Figure 4. The charging demands and the SoC of EVCS #17. (a) Illustrates the number of EV arrivals
at EVCS #17 in one day, where the total number is represented by arrivals at the three types of the
charging facilities. (b) Shows the SoC of EVCS #17 in the same day, where the availability of energy at
the station is represented by the green color and the station’s requirement to request a BESS unit swap
from the BESS plant is represented by the red color.

To oversee the status of ESTs that serve the logistics system which configures 136 mobile BESS
units at the operation mode, a case of employing nine ESTs as the transporters of the BESS units was
modeled. Figure 5 presents the availability of these nine ESTs for two days. It is apparent that the ESTs
are not available at most of the time because of the high demand at the EVCSs to swap and charge
their own batteries.
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Figure 5. The availability of 9 ESTs serving the logistics system where the red color represents the
unavailability of the corresponding EST at the plant (on the road or at an EVCS) and the green color
represents their availability.

To see the change over the annualized costs, the effect of both the economic discount rate and the
project’s lifetime is shown in Figure 6. This case considers deploying 10 ESTs and 140 mobile BESS
units. From the economy’s point of view, the more discount rate applied, the more annualized costs
are required. The opposite is applied to the project’s lifetime case, where the longer the lifetime of the
project, the less annualized costs.

Figure 6. The annualized cost of a logistics system that is composed of 10 ESTs and 140 mobile BESS
units. The first group (left) considers 25 years as the lifetime of the ESTs and BESS units, while the
second group (right) considers 15 years.

Obtaining the optimum number of ESTs and mobile BESS units at each station is an optimization
problem. The optimization problem is subjected to achieve a scenario of logistics system that supplies
the energy demands at all EVCSs, where each EVCS is not allowed to reject any EV by securing its
energy demands. Particle Swarm Optimization (PSO) algorithm is used to find the optimal set of the
control variables to minimize the fitness function, defined before as the annualized cost in Equations
(2)–(6). The simulation model and the optimization process are implemented in MATLAB. The lower
bound for the number of ESTs is one, and the upper bound is 27 which is equal to the number of EVCSs.
The bounds for the number of mobile BESS units at each station ranges between 1 and 10. We use a
typical PSO settings. Figure 7 shows a sample of convergence plot. Usually, the best fitness value is
reached within 130 iterations when the average change in the fitness value is almost zero.
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Figure 7. Particle Swarm Optimization (PSO) algorithm’s convergence plot.

Now, we present the optimization results of the control variables in three comparable scenarios
of different economic discount rates: 5%, 10% and 15% respectively. In each scenario, we obtain the
results under two cases of project’s lifetime, 15 and 25 years, while fixing the cost of each EST at $150 k
and the cost of each mobile BESS unit at $100 k. The optimum control variables are summarized in
Table 1 and illustrated in Figure 8.

Table 1. Summary table of the optimization results under varying discount rates and project’s lifetime.

Discount Rate
Lifetime of ESTs and

Mobile BESS Units (years)
Optimum Number of
Mobile BESS Units

Optimum
Number of EST

Minimum
Annualized Cost ($M)

5%
15 150 9 3.06907
25 126 10 2.45391

10%
15 142 9 3.49829
25 136 9 3.07089

15%
15 128 10 3.90900
25 126 10 3.63470

Figure 8. The results of the optimization process under three diverse scenarios of economic discount
rates and two cases for the project’s lifetime; the anticipated lifetime of both ESTs and mobile BESS
units. In this study, the cost of each EST is $150 k while the cost of each mobile BESS unit is $100 k.
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For further investigations over the effect of both control variables costs, we present the optimization
results in three other comparable scenarios for the cost of an individual EST: $100 k, $150 k and $200
k respectively. In each scenario, we obtain the results under two cases for the cost of an individual
mobile BESS unit, $100 k and $150 k years, while fixing the economic discount rate at 5% and the
project’s lifetime at 25 years. The optimum control variables are summarized in Table 2 and illustrated
in Figure 9.

Table 2. Summary table of the optimization results under varying costs of EST and mobile BESS unit.

Cost of One EST
($)

Cost of Mobile BESS
Unit ($/Each)

Optimum Number of
Mobile BESS Units

Optimum
Number of EST

Minimum
Annualized Cost ($M)

100 k
100 k 134 9 2.40547
150 k 124 12 3.28334

150 k
100 k 126 10 2.45391
150 k 132 9 3.23504

200 k
100 k 134 10 2.61062
150 k 124 10 3.23957

Figure 9. The results of the optimization process under three diverse scenarios for the costs of ESTs
and two cases for the cost of mobile BESS units. In this study, the economic discount rate is 5% while
the project’s lifetime is 25 years.

Finally, we deliberate the case of 5% for the economic discount rate, 25 years for the project’s
lifetime, $150 k for the cost of each EST and $100 k for the cost of each mobile BESS unit as the most
anticipated promising case for the future. By using these values, the optimization results lead to a
combination of 2.45391 million dollars annually as the minimum cost, 10 ESTs and 126 mobile BESS
units, as the optimum values of the control variables.

4. Conclusions

In summary, this study aims to maximize the utilization of the Renewable Energy Sources (RES)
while increasing the profitability of BESS by offering a new conceptual design of mobilizing the BESSs
which has emerged from previous studies. This design would be able to tackle three major barriers
toward a greener energy landscape in the future: (a) Curtailed grid integration of energy from RES
such as wind and solar; (b) Low investment attractiveness of large-scale BESSs; and (c) Constraints
from the existing electric infrastructure on the development of charging station networks to meet the
increasing electrical transportation demands.

This work develops a logistics system design for mobile BESS implemented within a grid
independent EVCSs network. The design achieved supplying a population of ten thousand EVs with
their energy charging demands. The optimum attained design configured employing ten ESTs and
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126 mobile BESS units while minimizing the annual costs at almost 2.5 million dollars. The principal
objective function of the design was to provide every electric vehicle with its charging demands at
the 27 ECVSs network. Such design can be implemented by decision makers and planners for future
sustainable communities to accomplish greener transportation systems in which the greenhouse gas
emissions are at the lowest levels.

The logistics system in which ESTs transport the batteries between the BESS and EVCSs was
designed, which facilitates the planning and operation of EVCS networks without constraints from the
grid. The design of the logistics system was tested under various scenarios anticipated for the future.
These scenarios include executing different values for the economic discount rates, project lifetime,
costs of ESTs and costs of mobile BESS units. In this design, a promising case of 5% for the economic
discount rate, 25 years for the project’s lifetime, $150 k for the cost of each EST and $100 k for the cost
of each mobile BESS unit was considered at the optimum setup.

In many regions in the United States (e.g., Texas) where there are plenty of renewable resources
and little congestion pressure on the road networks, this solution could be viable. The city of Corpus
Christi, Texas and the neighboring Chapman Ranch wind farm were used as the test case, this work
implement such a design and analyze its performance based on the simulation of its operational
processes. Further, we formulated an optimization problem to find design parameters that minimize
the total costs. The main design parameters include the number of trucks and batteries. The results in
this work, although preliminary, will be instrumental for potential stakeholders to make investment or
policy decisions. Improvements can be made in the future work to (i) consider actual demand profiles
of the mobile BESS units at the EVCSs. (ii) include real time travel times to the design model as well as
consider a predictable and time-dependent supply profile.

Author Contributions: Conceptualization, H.S.H. and X.Z.; methodology, X.Z.; software, H.S.H.; validation,
H.S.H. and X.Z.; manuscript preparation, H.S.H. and X.Z.; project administration, X.Z. All authors have read and
agreed to the published version of the manuscript.
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Nomenclature and Parameter Values

NEV The total number of EVs = 10,000 EVs
NEVCS The total number of EVCSs = 27 EVCSs
NBESS The total number of mobile BESS units
NEST The total number of ESTs
Capi The battery’s capacity of the ith EV
SoCi The battery’s SoC of the ith EV
EV_SoCmin The minimum SoC of an EV to require charging = 20%
j The number of EV arrivals at an EVCS
i A counter for EVs that satisfy the charging requirements and it resets to zero at each EVCS
k A counter for scanned EVs among NEV and it resets to zero at each hour
Tdur

i The parking time duration of the ith EV
PSCF The power rating of the slow charging facility
PMCF The power rating of the medium charging facility
PFCF The power rating of the fast charging facility
PEVi The power rating of the charging facility chosen by the ith EV
CI The annualized investment costs of the logistics system
CO&M The annualized operations and maintenance costs of the logistics system
CEST The total costs of the ESTs
μ The cost of each EST = $150 K
CBESS The total costs of the mobile BESS units
δ The cost of each mobile BESS unit = $100 K
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α, β Two economical annuity factors
d The economical discount rate or the cost of capital = 5%
yEST The economic life of ESTs = 25 years
yBESS The economic life of mobile BESS units = 25 years
σ The cost of energy per mile = $0.165/mile
Dtot The annual total distance driven by ESTs to deliver mobile BESS units
ϕ The annual maintenance cost of ESTs = 5% of CEST

ω The annual maintenance cost of mobile BESS units = 5% of CB

ψ The average annual salary of an EST operator = $70 K
l (i) The distance between the BESS plant and the ith EVCS
NTrips(i) The number of shipments or trips that the ith EVCS requires annually
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Abstract: The expected growth of the number of electric vehicles can be challenging for planning and
operating power systems. In this sense, distribution networks are considered the Achilles’ heel of the
process of adapting current power systems for a high presence of electric vehicles. This paper aims at
deciding the maximum number of three-phase high-power charging points that can be installed in a
low-voltage residential distribution grid. In order to increase the number of installed charging points,
a mixed-integer formulation is proposed to model the provision of decentralized voltage support
by electric vehicle chargers. This formulation is afterwards integrated into a modified AC optimal
power flow formulation to characterize the steady-state operation of the distribution network during
a given planning horizon. The performance of the proposed formulations have been tested in a case
study based on the distribution network of La Graciosa island in Spain.

Keywords: charging points; electric vehicles; operation; planning; reactive power provision;
voltage support

1. Introduction

A massive presence of electric vehicles may endanger the operation of distribution systems [1].
If a large number of electric vehicles is charged in a non-coordinated manner, undervoltage phenomena
can happen, jeopardizing the stability of the distribution networks, [2]. In order to avoid this situation,
different actions can be implemented. The easiest, but most aggressive manner to protect the
distribution network operation, is to curtail the active power demand consumed by electricity end
users when the normal operation of distribution networks is at danger. To prevent from this drastic
measure, a wide number of smart charging procedures able to reduce the simultaneous charge of
electric vehicles have been proposed during recent years [3,4]. Usually, these types of procedures
need the presence of a central operator in charge of deciding at which time each electric vehicle may
be charged or not. These procedures reduce the control of electric vehicle users over the initiation,
duration and completion of the charging processes of their vehicles.

An alternative procedure to avoid undervoltage episodes consists in applying reactive
power control mechanisms in the charging points of electric vehicles. Observe that the high
resistance–reactance ratio in low-voltage distribution networks makes the reactive power support an
effective tool for voltage management [5]. Traditionally, the voltage control is performed locally by
injecting reactive power in those buses with voltage deviations. In this sense, the power rectifiers used
in the charging points of electric vehicles are suitable to be upgraded to provide such a service [6,7].
Then, electric vehicle chargers may monitor locally the voltage at the charging point and provide the
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appropriate reactive power value based on a pre-established control law. Observe that this voltage
control mechanism is totally decentralized and it is not required to change the charging preferences of
electric vehicle users.

The active participation of electric vehicles in the operation of power systems has been extensively
studied during recent years. The authors of [8] propose a number of electric vehicle charging
algorithms considering explicitly the possible negative impacts on the transmission and distribution
grids. A coordinated dispatch strategy for electric vehicles and renewable units at distribution level is
provided in [9]. Reference [10] develops a probabilistic approach to assess the impact of electric vehicles
on distribution grids considering a detailed modeling of the batteries. In reference [11], the provision
of ancillary services by electric vehicles in a realistic case study is analyzed in detail. References [12,13]
study the contribution of electric vehicles to the primary frequency response. Reference [14] presents
a Markov decision problem that seeks to minimize the charging cost of a single electric vehicle that
participates in the secondary frequency regulation. References [15,16] propose different charging
procedures to minimize power losses.

The optimal planning of electric vehicle charging infrastructures has been a major concern of
researchers [17]. The maximization of the penetration of electric vehicles has been studied in [18,19].
Considering that the power demanded by the charging points of electrical vehicles is quite high
compared to typical consumption profiles of households, how to decide the placement of charging
stations in the distribution grids is a relevant problem to solve by distribution network operators.
Different approaches have been proposed to decide the optimal location of charging stations according
to the needs of electric vehicle users and the particular design of distribution networks. For instance,
reference [20] assumes the role of a distribution network planner aiming at expanding optimally
the distribution network considering the presence of charging stations. The objective function of
this problem seeks the minimization of investment and operation costs, and the maximization of
the utilization of charging stations and the reliability of the distribution network. Reference [21]
proposes a multi-year expansion procedure for distribution networks considering uncontrolled and
smart charging. The authors of [22] propose a three-layered decision approach for deciding the
location, capacity and operation policy of charging stations. Reference [23] takes the perspective of
a private investor of charging stations and proposes a bi-level optimization model to maximize the
expected profit obtained by the investor ensuring a certain degree of satisfaction of electric vehicle
users. The optimal location of charging stations is formulated as a mixed-integer linear programming
problem in [24]. In this work, the electricity demanded by electric vehicles is characterized using a
novel capacitated-flow refueling location model. Finally, reference [25] proposes a capacity planning
model of charging stations enforcing explicitly the reliable operation of the distribution network and
the satisfaction of electric vehicle users in terms of accessibility to the charging services.

The provision of voltage support in distribution networks by electric vehicles has been also
analyzed in the technical literature. Reference [26] studies different voltage support functions for
electric vehicles in distribution grids with high electric vehicle penetration. The authors of [27]
analyze the influence of reactive power support of electric vehicle chargers in low-voltage residential
distribution grids. Reference [28] proposes a combined control scheme to improve the voltage profile
in residential distribution networks considering battery storages and electric vehicles. A bidirectional
charging control strategy of electric vehicles to simultaneously regulate the voltage and frequency
has been developed in [29]. Reference [30] analyzes the reactive power support by electric vehicle
charging stations. The authors of [31] study the capability and cost of providing reactive power service
by electric vehicles. Different procedures are developed in [32] for managing the active and reactive
power dispatch of a set of electric vehicles. Finally, reference [33] carries out a literature review of
mathematical procedures for designing reactive power compensation in distribution networks.

This paper aims at deciding the maximum number of three-phase high-power charging points
that can be installed in a low-voltage residential distribution grid. As stated in the European Roadmap
on the Electrification of Road Transport [34], optimization tools are required to optimize the location of
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charging points and the development of the electricity network. It is assumed that the distribution
network operator has to decide the maximum number of charging points that can be installed from a list
of charging point requests ensuring a reliable operation of the network. We assume that charging points
are private and they are installed in residential buildings. In order to increase the number of installed
charging points, it is considered that charging points are able to provide reactive power support
to maintain appropriate voltage levels. Unlike other mentioned works focused on the operation of
distribution networks [26–32], the provision of reactive power support in this paper is considered
from a planning perspective. Therefore, the number of charging points in the distribution network
is not a known parameter, but a decision variable of the distribution network planner. Observe also
that the analyzed problem is different from those focused on non-residential, large-scale charging
stations [20–25]. As an example, in the case of domestic charging points, the location of charging
points and the number of electric vehicles associated with each candidate charging point are know in
advance. Finally, an optimal power flow problem including reactive power support constraints has
been formulated in order to analyze the steady state operation of the distribution network considering
the presence of new charging points.

2. Optimization Models

In this section, two optimization models are presented considering that electric vehicle
chargers can provide voltage support by means of a reactive power-voltage magnitude control law.
First, the mathematical formulation of this control law is provided in Section 2.1. The first optimization
problem is described in Section 2.2 and intends to maximize the penetration level of electric vehicles in
a given distribution network. The penetration level of electric vehicles can be defined as the maximum
number of electric vehicle chargers that can be installed ensuring a reliable and secure operation of the
distribution network. The second optimization model is provided in Section 2.3 and it is a modified
version of the optimal power flow problem [35] that aims at simulating the operation of the distribution
network considering a given number of electric vehicle chargers.

From a mathematical point of view, the formulation of the problem associated with the
determination of the maximum number of charging points that can be installed in a distribution
grid is challenging. The decision associated with the installation of a charging point is binary, to install
or not to install, whereas the expressions modeling the power flow in the distribution network
include the product of variables and trigonometric functions. As a result, the determination of the
maximum number of charging points in a distribution network is a mixed-integer non-linear problem.
Additionally, the modeling of voltage control by means of a reactive power-voltage droop curve is
mathematically non-convex and requires the usage of additional binary variables.

The initial hypothesis and limitations of the proposed approach are the following:

1. A low-voltage residential distribution network at usage is considered.
2. The solution of the problem described in this work does not intend to overcome previous operation

limitations of the analyzed distribution network.
3. The upgrade of distribution assets is not considered. Therefore, new investments in transformers,

cables, capacitors and storages are not modeled in this work.
4. Since the proposed approach is focused on high-power rate chargers, only three-phase chargers

are considered in this study.
5. Only domestic chargers are considered. The installation of large charging stations is not taken

into account in this work.
6. The power factor value of electric vehicle chargers is a constant value.
7. The proposed approach does not consider the coordinated charge of electric vehicles and

vehicle-to-grid capability.

Since an existing residential distribution network that operates properly under normal
conditions is analyzed, and three-phase chargers do not cause additional unbalances between phases,
a single-phase equivalent analysis has been adopted in this paper. Observe that single-phase
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equivalents are typically used in planning models. However, if desired, the proposed procedure
can be straightforwardly modified to incorporate a three-phase modeling of the distribution network.

Considering that the focus of this paper is to consider reactive power support by electric vehicle
chargers, investments in capacity banks or storages are not included in the proposed approach.
However, observe that the inclusion of capacity banks, lines upgrading, etc., can be easily integrated.

Finally, the notation used throughout the rest of this section is included in the Appendix A for
quick reference.

2.1. Reactive Power—Voltage Magnitude Control Law Formulation

Since distribution networks are traditionally associated with high resistance–reactance ratios,
the effect of resistance is no longer negligible, and the assumptions taken for high-voltage systems are
no longer valid. An effective procedure to mitigate voltage decrements is to reduce the active power
consumption in the grid. This is a very effective tool, but implies the modification of the consumption
patterns of electricity end-users [36]. For this reason, local reactive power injection mechanisms are
typically used, since they do not need the installation of additional devices and exploit the capability
of the inverters used in electric vehicle charging points.

Figure 1 represents graphically a typical reactive power-voltage magnitude control law for a given
electric vehicle charger k located in bus n on day d and period t, [37]. The reactive power demanded by
the charging point is denoted by qEV

kdt, whereas the voltage magnitude is vndt. If the nodal voltage is low,

Vmin
n ≤ vndt ≤ V(1)

n , the reactive power demanded by the charger point is a negative value, −QEV,max
k ,

corresponding with the maximum reactive power that can be injected by the charger into the grid.
As the voltage magnitude increases, V(1)

n ≤ vndt ≤ V(2)
n , the injection of reactive power decreases

linearly. Finally, if the voltage magnitude is greater than V(2)
n , V(2)

n ≤ vndt ≤ Vmax
n , the reactive power

injected by the charging point is equal to zero.

�

�

vndt (V)

qEV
kdt

(var)

−QEV,max
k �

�
�
�
�
�
�

Vmin
n V(1)

n V(2)
n Vmax

n

Figure 1. Reactive power-voltage magnitude droop curve.

Figure 1 can be mathematically expressed as follows:

qEV
kdt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−QEV,max
k , Vmin

n ≤ vndt ≤ V(1)
n

αEV
kn + βEV

kn vndt, V(1)
n ≤ vndt ≤ V(2)

n

0, V(2)
n ≤ vndt ≤ Vmax

n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, ∀k ∈ Kndt, ∀n, ∀d, ∀t (1)
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where:

PEV,max
k = SEV,max

k cos φk, ∀k (2)

QEV,max
k = SEV,max

k sin φk = PEV,max
k tan φk, ∀k (3)

αEV
kn = QEV,max

k

(
−V(2)

n

V(2)
n − V(1)

n

)
, ∀k, ∀n (4)

βEV
kn =

QEV,max
k

V(2)
n − V(1)

n

, ∀k, ∀n (5)

Symbols SEV,max
k and cos φk denote the apparent power and the power factor of charger k,

respectively. Equations (2) and (3) compute the maximum active and reactive powers associated with
a charger for a given power factor, cos φk. It is assumed that the active power consumed by the charger
is equal to the maximum value, but the reactive power is dependent on the nodal voltage magnitude,
as defined in (1). Parameters αEV

kn and βEV
kn in Equations (4) and (5) are used to compute the reactive

power injection qEV
kdt associated with the voltage magnitude level vndt when the voltage takes values

between V(1)
n and V(2)

n , as represented in Figure 1. Observe that the reactive power in this interval is a
linear expression of the voltage magnitude with intercept and slope equal to αEV

kn and βEV
kn , respectively.

Traditionally, electric vehicle chargers operate with power factor equal to 1. Therefore,
if cos φk = 1, then PEV,max

k = SEV,max
k and QEV,max

k = 0. However, hereinafter it is assumed a leading
power factor, {cos φk < 1, φk < 0}, and that electric vehicle chargers are able to inject reactive power
as shown in Figure 1.

Observe that expression (1) cannot be incorporated directly into the formulation of an optimization
problem. The reason of this is that the mathematical expression of qEV

kdt is a piecewise function of the
optimization variable representing nodal voltage magnitudes, vndt. The mathematical formulation of
piecewise functions using mixed-integer linear expressions has been typically used in different power
system problems, [38,39]. Therefore, constraints (6)–(14) are proposed to equivalently formulate (1).
In this formulation, binary variables y(1)ndt and y(2)ndt are used to identify the block associated with
the value of vndt in the piecewise function (1). In this manner, the voltage is in the first block if
{y(1)ndt, y(2)ndt} = {1, 0}; if {y(1)ndt, y(2)ndt} = {0, 1}, the voltage is in the second block; finally, the voltage

is in the third block if {y(1)ndt, y(2)ndt} = {0, 0}. For the sake of clarity, Table 1 provides the rationale of

variables {y(1)ndt, y(2)ndt}. In formulation (6)–(14), variable v(j)
ndt is equal to vndt if vndt is within block j,

being equal to 0 otherwise. This equality is enforced through constraints (6)–(9). In these constraints,
the values of binary variables {y(1)ndt, y(2)ndt} are assigned depending on the value of vndt. For instance,

if vndt is in the first block, it has to be satisfied that Vmin
n ≤ vndt ≤ V(1)

n . To obtain this result, the
only feasible solution is y(1)ndt = 1, y(2)ndt = 0, and vndt = v(1)ndt. A similar reasoning can be done for

blocks 2 and 3. The value of qEV
kdt is assigned through constraints (10). If y(1)ndt = 1 and y(2)ndt = 0,

then qEV
kdt = −QEV,max

kn , whereas qEV
kdt = 0 if y(1)ndt = 0 and y(2)ndt = 0. Note that the combination

{y(1)ndt, y(2)ndt} = {1, 1} is not allowed by constraints (11). Finally, if y(1)ndt = 0 and y(2)ndt = 1, vndt is in the

second block of the droop curve, vndt = v(2)ndt, and qEV
kdt should be expressed as αEV

kn y(2)ndt + βEV
kn v(2)ndty

(2)
ndt.

However, this expression contains the non-linear product of variables y(2)ndt and v(2)ndt. In order to
preserve the linearity of the formulation, the auxiliary variable vaux

ndt is used to equivalently represent

the product of v(2)ndt and y(2)ndt. The linearization of the product of a continuous and a binary variable

has been previously done, for instance, in [40]. The assignment vaux
ndt = v(2)ndty

(2)
ndt is linearly expressed

through constraints (12) and (13). In these constraints, M is a big enough parameter (M ≥ Vmax
n ).

If y(1)ndt = 0 and y(2)ndt = 1, then constraints (12) state that vaux
ndt = v(2)ndt and qEV

kdt = αEV
kn + βEV

kn v(2)ndt. On the

other hand, if y(2)ndt = 0, then vndt is either in the first or third block of the piecewise function (1) and
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vaux
ndt = 0 by constraints (13). The performance of constraints (12) and (13) is described in Table 2.

Finally, the binary nature of variables is stated in (14).

vndt =
3

∑
j=1

v(j)
ndt, ∀n, ∀d, ∀t (6)

Vmin
n y(1)ndt ≤ v(1)ndt ≤ V(1)

n y(1)ndt, ∀n, ∀d, ∀t (7)

V(1)
n y(2)ndt ≤ v(2)ndt ≤ V(2)

n y(2)ndt, ∀n, ∀d, ∀t (8)

V(2)
n (1 − y(1)ndt − y(2)ndt) ≤ v(3)ndt ≤ Vmax

n (1 − y(1)ndt − y(2)ndt), ∀n, ∀d, ∀t (9)

qEV
kdt = −QEV,max

k y(1)ndt + αEV
kn y(2)ndt + βEV

kn vaux
ndt , ∀k ∈ Kn, ∀n, ∀d, ∀t (10)

y(1)ndt + y(2)ndt ≤ 1, ∀n, ∀d, ∀t (11)

−M(1 − y(2)ndt) ≤ vaux
ndt − v(2)ndt ≤ M(1 − y(2)ndt), ∀n, ∀d, ∀t (12)

−My(2)ndt ≤ vaux
ndt ≤ My(2)ndt, ∀n, ∀d, ∀t (13)

y(1)ndt, y(2)ndt ∈ {0, 1}, ∀n, ∀d, ∀t (14)

Table 1. Rationale of variables {y(1)ndt, y(2)ndt}.

# Block y(1)
ndt y(2)

ndt vndt qEV
kdt

1 1 0 Vmin
n ≤ vndt ≤ V(1)

n −QEV,max
k

2 0 1 V(1)
n ≤ vndt ≤ V(2)

n αEV
kn + βEV

kn vndt

3 0 0 V(2)
n ≤ vndt ≤ Vmax

n 0

Table 2. Linearization of product y(2)ndtv
(2)
ndt .

Constraint (12) Constraint (13)
y(2)

ndt −M(1 − y(2)
ndt) ≤ vaux

ndt − v(2)
ndt ≤ M(1 − y(2)

ndt) −M(1 − y(2)
ndt) ≤ vaux

ndt − v(2)
ndt ≤ M(1 − y(2)

ndt) vaux
ndt

(
= y(2)

ndtv(2)
ndt

)
0 −M ≤ vaux

ndt − v(2)ndt ≤ M 0 ≤ vaux
ndt ≤ 0 0

1 0 ≤ vaux
ndt − v(2)ndt ≤ 0 −M ≤ vaux

ndt ≤ M v(2)ndt

2.2. Maximization of the Penetration Level of Electric Vehicles

The maximization of the penetration level of electric vehicles is formulated in this subsection.
In this problem, a low-voltage distribution network operating under normal conditions is considered.

It is also assumed that the distribution network planner has a request list of high-power
three-phase electric vehicles chargers that are desired to be installed in the distribution network.

Each charging point request is indexed by k and has information about the location of the charger
in the distribution network and the nominal charge rate, SEV,max

k . The objective of the distribution
network planner is to accept the maximum number of charger point requests ensuring the adequate
operation of the network. For doing that, the worst case is analyzed, which means that the distribution
network has to be capable of operating in normal conditions assuming a simultaneity factor equal to 1.
In other words, it is assumed that the distribution network has to be capable of operating under normal
operation limits when households consume the contracted peak power and all electric vehicles are
simultaneously charging. Note that this strong requirement can be relaxed if desired to obtain a larger
penetration level of electric vehicles. Finally, note that this problem is solved by a single time period,
i.e., D = {1}, T = {1}. The formulation of this problem is the following:
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MaximizeΘ1 ∑
k∈K

xk (15)

Subject to:

• Voltage magnitude limits

Vmin
n ≤ vndt ≤ Vmax

n , ∀n ∈ N, ∀d ∈ D, ∀t ∈ T (16)

• Distribution transformer capacity constraints

√
(pS

sdt)
2 + (qS

sdt)
2 ≤ SS,max, ∀s ∈ S, ∀d ∈ D, ∀t ∈ T (17)

• Active and reactive power flow constraints

pL
nmdt = v2

ndtGnm − vndtvmdt(Gnm cos(θndt − θmdt) + Bnm sin(θndt − θmdt)),

∀{n, m} ∈ L, ∀d ∈ D, ∀t ∈ T (18)

qL
nmdt = −v2

ndtBnm − vndtvmdt(Gnm sin(θndt − θmdt)− Bnm cos(θndt − θmdt)),

∀{n, m} ∈ L, ∀d ∈ D, ∀t ∈ T (19)√
(pL

nmdt)
2 + (qL

nmdt)
2 ≤ SL,max

nm , ∀{n, m} ∈ L, ∀d ∈ D, ∀t ∈ T (20)

• Active and reactive power balance constraints

∑
s∈Sn

pS
sdt + ∑

m∈Nn

pL
mndt = PD

ndt + ∑
k∈Kndt

PEV
kdt xk, ∀n ∈ N, ∀d ∈ D, ∀t ∈ T (21)

∑
s∈Sn

qS
sdt + ∑

m∈Nn

qL
mndt = QD

ndt + ∑
k∈Kndt

qEV,S
kdt , ∀n ∈ N, ∀d ∈ D, ∀t ∈ T (22)

• Reactive power—voltage magnitude control constraints

−(1 − xk)Q
EV,max
k ≤ qEV,S

kdt − qEV
kdt ≤ (1 − xk)Q

EV,max
k , ∀k ∈ K, ∀d ∈ D, ∀t ∈ T (23)

−xkQEV,max
k ≤ qEV,S

kdt ≤ xkQEV,max
k , ∀k ∈ K, ∀d ∈ D, ∀t ∈ T (24)

Constraints (6)–(14) (25)

where Θ1 is the set of optimization variables in problem (15)–(25).
The objective function (15) represents the maximization of the number of accepted requests of

electric vehicle chargers. The acceptance of a request is characterized by binary variable xk that is
equal to 1 if charger k is accepted, being equal to zero otherwise. Voltage magnitudes are bounded by
constraints (16). Constraints (17) limit the power output of each distribution transformer s. Despite the
fact that distribution networks are usually operated as radial systems, for the sake of generality, we have
considered in this formulation that several distribution substations may feed the analyzed residential
distribution system. The active and reactive power flows through distribution lines are expressed by
constraints (18) and (19), respectively. As usual, distribution lines are represented by using the series
impedance model. The capacity of the lines is bounded by constraints (20). Equations (21) and (22)
establish the active and reactive power balances in each bus for each time period. These equations
enforce the active and reactive power balances in each bus of the distribution network considering the
nodal consumption and distribution line flows. Finally, constraints (23)–(25) formulate the reactive
power-voltage magnitude control law for those selected chargers. Constraints (23) and (24) are used
to state that the reactive power contribution of charger k, qEV,S

kdt , must be equal to qEV
kdt if charger k is

accepted (xk = 1), being equal to zero if the charger is not selected (xk = 0). Note that the value of qEV
kdt

depends on the nodal voltage magnitude vndt, as formulated in (6)–(14).
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Problem (15)–(25), hereinafter defined as (P1), is a nonlinear mixed-integer programming model
that can be solved using commercial software.

2.3. Operation of the Distribution Network Considering Voltage Management of Electric Vehicles

This subsection solves an optimal power flow (OPF) problem to simulate the steady-state
operation of a distribution network considering that electric vehicles can provide voltage support.
This problem can be solved sequentially to simulate the operation during a planning horizon.
This problem is denoted as (P2) and is formulated as follows:

{
MinimizeΘ2,dt ∑

n∈N
(v+ndt + v−ndt) (26)

• Voltage limits

Vmin
n − v−ndt ≤ vndt ≤ Vmax

n + v+ndt, ∀n ∈ N (27)

v−ndt, v+ndt ≥ 0, ∀n ∈ N (28)

• Assignment of selected charging points

xk = x∗k , ∀k ∈ K (29)

Constraints (17)–(25),

}
, ∀d ∈ D, ∀t ∈ T (30)

where Θ2,dt comprises all optimization variables in problem (P2) for day d and period t.
The objective function of (P2) is formulated in (26) and consists in minimizing voltage deviations

over upper and lower limits, Vmax
n and Vmin

n . Since these voltage deviations are penalized in the
objective function (26), they will be greater than zero only in the case in which the demand cannot be
procured satisfying all the technical constraints of the distribution network. The voltage magnitude
limits, including positive and negative deviations, are formulated in (27) and (28). Finally, the charging
points considered in the formulation are specified through constraints (29), being x∗k the optimal values
of variables xk obtained from solving problem (P1).

2.4. Tool Usage

The usage of the optimization models presented in this section is described below:

• Distribution network operators may determine the maximum number of charging points for
electric vehicles by solving problem (P1). The most important input data needed to solve this
problem are: (i) the technical data of the distribution network, (ii) the peak power contracted
by each consumer, (iii) the technical characteristics of the candidate charging points, and (iv)
the parameters describing the reactive power droop curve. The outputs of this problem
are the set of candidate charging points that are accepted to be installed in the considered
distribution network.

• The steady-state behavior of the distribution network considering reactive power injections and
the set of installed charging points is characterized by solving problem (P2). This problem can
be solved for a specified number of days and time periods. The input data of this problem are:
(i) the technical data of the distribution network, (ii) the location and technical characteristics of
each accepted charging point, (iii) the actual energy consumption per bus and period (considering
electric vehicle demand), and (iv) the parameters describing the reactive power droop curve.
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The main outputs of this problem are (i) voltages per bus and period and (ii) active and reactive
power flows per line and period.

Figure 2 represents graphically the tool usage described above:

Figure 2. Tool usage.

3. Illustrative Example

In this section we solve an illustrative example to analyze the impact of considering the reactive
power-voltage magnitude droop curve in the selection process of charging points. We assumed a radial
distribution network where a distribution transformer feeds the demand of four buses. As stated
in Section 2, a single-phase analysis was performed in this study. Each demand bus consumed
9 kW and 1 kva per phase, and had associated a charging point request of SEV,max

k =5 kVA per
phase. The magnitudes of the impedance and resistance of each line branch were equal to 128.8 and
32.2 Ω, respectively. The nominal single phase voltage magnitude was 230 V. The minimum and
maximum values of voltage magnitudes were 0.95 and 1.05 times the nominal value, i.e., 218.5 and
241.5 V, respectively. Parameters V(1)

n and V(2)
n describing the reactive power-voltage magnitude

curve were equal to 224.25 and 230 V, respectively. The power factor of the charger points in the case
considering the reactive power-voltage magnitude droop curve was equal to 0.9 (leading). Therefore,
PEV,max

k = SEV,max
k 0.9 = 4.5 kW, whereas QEV,max

k = PEV,max
k

√
1

(0.9)2 − 1 = 2.18 kvar. The capacity of

the lines, SL,max
nm , was 100 kVA. Please note, that the values of the parameters selected for this case study

are not meant to be representative of a realistic network and they are only used for illustrative purposes.
The main results obtained are depicted in Figures 3 and 4, respectively. These figures provide

per phase values associated with voltage magnitudes, consumption of active and reactive power
and number of installed charging points per bus, as well as active and reactive power flows per line.
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For the sake of clarity, indices d and t have been omitted from the mathematical symbols included in
both figures. Figure 3 provides the results obtained from solving problem (P1) without considering
the reactive power droop curve. In other words, problem (15)–(22) was solved enforcing qEV,S

kdt = 0.
From Figure 3 we can conclude that the power transfer capability of the analyzed network was low
and no charging points could be installed without violating voltage limits (xk = 0, ∀k ∈ {1, · · · , 4}).
In this sense, we observed that the voltage magnitude in the transformer network bus was greater than
the nominal value, 240.7 > 230.0V, whereas the voltage magnitude at the final bus, 4, was equal to the
lower voltage limit, 218.5V.

Bus 0 Bus 1 Bus 2 Bus 3 Bus 4

v0=240.7V

pS
0=37.6kW

qS
0=9.77kvar

v1=231.2V

PD
1 =9kW

QD
1 =1kvar

x1=0

pEV
1 =0kW

qEV,S
1 =0kvar

v2=224.6V

PD
2 =9kW

QD
2 =1kvar

x2=0

pEV
2 =0kW

qEV,S
2 =0kvar

v3=220.5V

PD
3 =9kW

QD
3 =1kvar

x3=0

pEV
3 =0kW

qEV,S
3 =0kvar

v4=218.5V

PD
4 =9kW

QD
4 =1kvar

x4=0

pEV
4 =0kW

qEV,S
4 =0kvar

pL
01=37.7kW

qL
01=9.8kvar

pL
12=27.8kW

qL
12=5.6kvar

pL
23=18.3kW

qL
23=2.9kvar

pL
34=9.1kW

qL
34=1.1kvar

pL
10=-36.8kW

qL
10=-6.6kvar

pL
21=-27.3kW

qL
21=-3.9kvar

pL
32=-18.1kW

qL
32=-2.1kvar

pL
43=-9kW

qL
43=-1kvar

Figure 3. Illustrative example: Results of problem (P1) without reactive power droop curve.

Figure 4 provides the obtained results when the reactive power droop curve was considered.
In this case, three charging points were installed (buses 1, 2 and 3). Since the power factor of the
charger was 0.9, the active power demand of each charging point was reduced from 5kW (power
factor equal to 1) to 4.5 kW (power factor equal to 0.9). Besides, it is observed that reactive power was
injected from the charging points into the grid if voltage magnitudes are lower than V(2) = 230.0 V.
This was the case of buses 2 and 3, with voltage magnitudes equal to 224.2 and 220.5 V, respectively.

Bus 0 Bus 1 Bus 2 Bus 3 Bus 4

v0=241.4V

pS
0=52.4kW

qS
0=10.1kvar

v1=230.4V

PD
1 =9kW

QD
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x1=1

pEV
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qEV,S
1 =0kvar

v2=224.2V
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x2=1
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2 =4.5kW

qEV,S
2 =-2.2kvar

v3=220.5V

PD
3 =9kW

QD
3 =1kvar

x3=1

pEV
3 =4.5kW

qEV,S
3 =-2.2kvar

v4=218.5V

PD
4 =9kW

QD
4 =1kvar

x4=0

pEV
4 =0kW

qEV,S
4 =0kvar
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12=37.3kW

qL
12=3.1kvar
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23=22.9kW

qL
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qL
34=1.1kvar
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32=-22.6kW

qL
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pL
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qL
43=-1kvar

Figure 4. Illustrative example: Results of problem (P1) with reactive power droop curve.

Table 3 provides the values of the variables y(1)ndt and y(2)ndt for each bus of the network in which a

charging point was installed. Observe that only bus 1 had a voltage magnitude greater than V(2)
n , which

results in y(1)1dt = y(2)1dt = 0 and qEV,S
kdt = 0 by constraints (6)–(14). On the other hand, voltages in buses 2
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and 3 were lower than V(1)
n , which resulted in y(1)1dt = 1, y(2)1dt = 0 and qEV,S

kdt = −QEV,max
k = −2.18 kvar.

Observe that a negative value of qEV,S
kdt indicates a reactive power injection on the bus where charger k

was located (constraint (22)).

Table 3. Illustrative example: Variables {y(1)ndt, y(2)ndt} .

# Bus y(1)
ndt y(2)

ndt vndt (V) qEV,S
kdt (kvar)

1 0 0 230.4
(

v1dt > 230.00 = V(2)
1

)
0

2 1 0 224.2
(

v2dt < 224.25 = V(1)
2

)
−2.18

3 1 0 220.5
(

v3dt < 224.25 = V(1)
3

)
−2.18

4. Case Study

This section analyzes a case study based on the distribution system of La Graciosa, Canary Islands,
Spain. La Graciosa is a small island of 27 km2 with a population around 660 people [41]. This case
study is focused on a district that is fed by a single 400-kVA power transformer, [42]. This district
comprises 26 buildings that are connected by 26 lines.

4.1. Input Data

Figure 5 shows the location of the district and the buildings. The distribution network is
represented in Figure 6.

The demands associated with the considered buildings were obtained from the first 26 residential
demands provided in [43], which are downloadable in [44]. In this case study we assumed that there
were no charging points in the district. In order to analyze a case in which a high number of chargers
are demanded, it was assumed that 44 charging points were requested, that is the number of electric
vehicles associated with the first 26 households in [43]. The power factor of residential demands was
equal to 0.95 (lagging).

The main input data describing the considered distribution network are provided in Table 4.
All loads were assumed to have a three-phase grid connection and a nominal neutral-to-phase voltage
magnitude equal to 230 V. The minimum and maximum values that voltage magnitudes could take
were 0.95 and 1.05 times the nominal value, i.e., 218.5 and 241.5 V, respectively. Parameters V(1)

n

and V(2)
n describing the reactive power-voltage magnitude curve were equal to 224.25 and 230 V,

respectively. The power factor of the charging points in the case in which the reactive power-voltage
magnitude droop curve was considered was 0.95 (leading).

The performances of problems (P1) and (P2) were analyzed by considering two typical three-phase
chargers with rate powers equal to 11 and 22 kVA.

All mathematical cases were solved using GAMS and Dicopt 12.6.111 in a linux-based server
of four 3.0 GHz processors and 250 GB of RAM. Due to the complexity of mixed-integer non-linear
programs, it is convenient to solve problems (P1) and (P2) starting from a so-called warm start solution.
For doing that, problems (P1) and (P2) were solved neglecting the reactive power injections (6)–(14) and
binary variables y(1)ndt and y(2)ndt. Afterwards, initial values of variables y(1)ndt and y(2)ndt could be assigned
as a function of the resulting voltage magnitudes in the previous problem. Therefore, for the warm
start solution, if vndt ≤ V(1)

n , then {y(1)ndt = 1, y(2)ndt = 0}; if V(1)
n ≤ vndt ≤ V(2)

n , then {y(1)ndt = 0, y(2)ndt = 1};

and vndt ≥ V(2)
n , then {y(1)ndt = 0, y(2)ndt = 0}.
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Figure 5. Case study: Location of the distribution network.

Bus 0 Bus 19 Bus 22 Bus 24 Bus 14 Bus 18 Bus 25 Bus 20

Bus 23 Bus 21 Bus 12 Bus 13 Bus 15 Bus 8 Bus 17

Bus 9 Bus 5 Bus 1 Bus 6 Bus 2 Bus 7

Bus 16 Bus 11 Bus 4 Bus 3 Bus 10

Bus 26

Figure 6. Case study: Distribution network [42].

Table 4. Case study: input data.

Peak Annual Contracted Requested

Branch Length Bus Demand Demand Power Chargers

(m) (kW) (MWh) (kW) (#)

0-26 65 1 4.99 6.88 5.75 1

0-16 18 2 6.67 10.02 6.90 2
16-11 34 3 6.29 9.62 6.90 1
11-4 19 4 6.10 7.38 6.90 1
4-3 16 5 6.18 11.41 6.90 1

3-10 15 6 6.34 9.24 6.90 1

0-9 50 7 7.00 9.35 8.05 2
9-5 8 8 9.01 13.03 9.20 2
5-1 8 9 5.39 6.36 5.75 1
1-6 8 10 6.10 8.47 6.90 2
6-2 10 11 6.49 7.97 6.90 2
2-7 7 12 6.11 11.98 6.90 1

0-23 70 13 5.03 9.99 5.75 1
23-21 10 14 6.15 7.71 6.90 2

146



Energies 2020, 13, 4125

Table 4. Cont.

Peak Annual Contracted Requested

Branch Length Bus Demand Demand Power Chargers

(m) (kW) (MWh) (kW) (#)

21-12 10 15 6.79 9.51 6.90 2
12-13 10 16 6.20 7.80 6.90 1
13-15 10 17 4.81 8.36 5.75 1
15-8 10 18 6.72 10.03 6.90 3
8-17 10 19 4.49 5.94 5.75 1

0-19 95 20 6.17 7.86 6.90 1
19-22 10 21 6.89 7.78 6.90 2
22-24 10 22 5.91 8.39 6.90 1
24-14 10 23 6.07 9.74 6.90 3
14-18 10 24 7.20 10.45 8.05 2
18-25 10 25 7.46 11.50 8.05 2
25-20 10 26 6.18 7.40 6.90 1

4.2. Results: Maximization of Number of Charging Points

This section analyzes the performance of problem (P1) on the distribution network described
above. In order to analyze the advantages of considering the reactive power-voltage magnitude
droop curve, all cases have been also solved without considering the reactive power droop curve.
Besides, with the aim of analyzing the influence of the distribution line parameters, two different sets
of data were used to characterize the distribution lines, namely Z1 and Z2. In Z1, it was assumed
that the impedance of each line was equal to 0.551 + 0.089i Ω/m [27], whereas it was equal to 0.716 +
0.089i Ω/m for Z2. Observe that the relationship resistance/reactance of Z1 was equal to 6.1, whereas
it was equal to 8.6 for Z2. Observe that high resistance/reactance ratios were typical of low-voltage
distribution networks. Considering the values of the impedances in cases Z1 and Z2, the power transfer
capability of the network would be higher for Z1 than for Z2. In this manner, it was expected that the
voltage droop along the lines in case Z2 would be higher than that in case Z1.

Table 5 provides the results obtained from solving problem (P1) in terms of the number of charging
points and the voltage magnitude in each bus of the system for each case. In total, eight different
cases have been solved in this section. The average number of constraints, continuous and binary
variables was equal to 734, 191 and 93, respectively. Each case was solved in a time smaller than 0.2 s.
From the results provided in Table 5 we can observe that the number of charging points resulting from
the model considering the reactive power droop curve was always greater than those obtained in the
case without reactive power droop curve. If reactive power injections were considered, the number of
installed charging points were up to 8.3% and 10.7% higher for 11 and 22 kVA chargers, respectively.
As expected, the number of installed charging points strongly depended on the nominal power of the
charger (11/22 kVA) and on the parameters of the lines (Z1, Z2). Focusing on the model with reactive
power droop curve and Z1, we observed that the number of charging points decreased from 26, for a
11 kVA charger, to 21, for a 22 kVA charger. For Z2, the number of installed charging points was lower
and it was equal to 21 for a 11 kVA charger, and 15 for a 22 kVA charger. It was also observed that the
voltage magnitudes at some ending buses (7, 17 and 20) were close to the minimum allowed voltage
magnitude, 218.5 V. These voltage values indicated that the installation of additional charging points
in these lines was not feasible.
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Table 5. Case study: Selection of charging points and voltage magnitudes.

Without Reactive Power Droop Curve With Reactive Power Droop Curve

11kVA-Z1 11kva-Z2 22kVA-Z1 22kVA-Z2 11kVA-Z1 11kVA-Z2 22kVA-Z1 22kVA-Z2

Bus xk v (V) xk v (V) xk v (V) xk v (V) xk v (V) xk v (V) xk v (V) xk v (V)

0 0 241.5 0 241.5 0 241.5 0 241.5 0 241.5 0 241.5 0 241.5 0 241.5

26 1 241.3 1 241.2 1 241.2 1 241.1 1 241.3 1 241.2 1 241.2 1 241.1

16 1 236.5 1 234.9 1 234.0 1 233.0 1 236.7 1 235.2 1 233.4 1 233.4
11 2 234.3 2 232.0 2 230.6 2 229.4 2 234.5 2 232.4 2 229.7 2 230.0
4 1 231.5 1 228.4 1 226.9 1 225.7 1 231.9 1 229.0 1 225.2 1 226.5
3 1 229.1 1 225.2 1 223.8 1 223.3 1 229.6 1 226.0 1 221.4 1 224.2

10 2 227.5 2 223.1 1 222.2 0 222.8 2 228.0 2 224.1 2 218.7 0 223.7

9 1 240.1 1 239.9 1 239.8 1 239.7 1 240.0 1 240.0 1 239.8 1 239.7
5 1 233.1 1 232.3 1 231.7 1 232.2 1 232.1 1 232.5 1 231.9 1 231.7
1 1 227.9 1 227.0 1 226.4 0 228.3 1 225.9 1 227.3 1 226.9 0 227.3
6 1 224.4 0 224.0 0 224.1 0 225.3 1 221.5 0 224.2 0 224.5 0 224.3
2 0 223.1 0 222.3 0 222.8 0 223.6 1 219.3 0 222.6 0 223.2 0 222.6
7 0 222.1 0 221.0 0 221.8 0 222.4 0 218.5 0 221.3 0 222.2 0 221.3

23 3 240.0 3 239.8 3 239.4 3 239.5 3 240.0 3 239.8 3 239.5 3 239.2
21 2 233.0 2 231.7 2 230.5 1 232.7 2 232.8 2 232.0 2 230.9 2 230.3
12 1 228.2 1 226.7 1 225.8 0 228.8 1 227.8 1 227.0 1 226.2 0 226.4
13 1 224.9 0 223.6 0 223.3 0 225.7 1 224.3 0 223.9 0 223.8 0 223.3
15 0 223.0 0 221.1 0 221.4 0 223.3 0 222.0 0 221.4 0 221.9 0 220.8
8 0 221.7 0 219.4 0 220.1 0 221.6 0 220.7 0 219.7 0 220.6 0 219.1

17 0 221.2 0 218.8 0 219.6 0 221.0 0 220.2 0 219.1 0 220.1 0 218.5

19 1 240.6 1 240.6 1 240.5 1 240.5 1 240.6 1 240.5 1 240.4 1 240.4
22 1 233.4 1 233.6 1 233.4 1 233.6 1 232.7 1 232.5 1 231.6 1 232.4
24 2 227.7 1 228.5 1 228.6 0 229.6 2 226.3 2 226.3 2 225.1 0 227.3
14 1 224.4 0 225.4 0 226.2 0 226.6 2 222.2 0 223.2 0 222.7 0 224.3
18 0 222.5 0 223.1 0 224.4 0 224.3 0 220.4 0 220.9 0 220.8 0 221.9
25 0 221.2 0 221.4 0 223.1 0 222.6 0 219.1 0 219.3 0 219.5 0 220.2
20 0 220.6 0 220.7 0 222.5 0 221.8 0 218.5 0 218.5 0 218.9 0 219.4

∑k xk 24 20 19 14 26 21 21 15

4.3. 30-Days Simulation

In this subsection we solve problem (P2) to analyze the steady-state operation of the distribution
network during a planning horizon of 30 days divided into 10-min periods. For doing that, we simulate
the operation of the distribution network considering 11 and 22 kVA chargers using the distribution
line parameters denoted by Z1. The aggregated hourly demand is depicted in Figure 7.

The energy charged in each 10-min period by each electric vehicle was generated from the
charging profile L1 included in [43]. Based on these data, the daily energy charged and the starting
hour of the charging for each electric vehicle were characterized as random variables. Therefore, a
Kernel density distribution has been fitted for each random variable and for each electric vehicle,
as done in [45]. The resulting daily probability distributions for each of the 41 electric vehicles are
represented in Figure 8. Figure 8a indicates that the average daily energy charged per vehicle was less
than 10 kWh, whereas Figure 8b shows that the charge of the vehicles usually started in the middle
part of the day.
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Figure 7. Case study: aggregated residential demand.
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Figure 8. Case study: probability distributions of the daily energy charged and the starting hour of the
charging per vehicle.

Using the probability distributions represented in Figure 8, different charging profiles have been
randomly generated for each day considering 11 and 22 kVA chargers and 10-min time periods.
In order to analyze the influence of increasing the charging demand of electric vehicles, two additional
cases were generated considering that the energy demanded by the electric vehicles was 50% higher.
The cases generated from the energy values represented in Figure 8a are denoted by 11 kVA-E1 and
22 kVA-E1, whereas cases with higher energy demanded are denoted by 11 kVA-E2 and 22 kVA-E2,
respectively. As an example, the average energy charged per vehicle and day in case 11 kVA-E1 was
8.5 kWh resulting, for a typical electric vehicle consumption rate of 0.2 kWh/km, in a daily distance
driven equal to 42.5 km. The resulting charging profiles are provided in Figure 9.
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(a) Case 11kVA-E1 (26 chargers)
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(b) Case 11kVA-E2 (26 chargers)
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(c) Case 22kVA-E1 (21 chargers)
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(d) Case 22kVA-E2 (21 chargers)

Figure 9. Case study: aggregated charging profiles.

Because of the variation of the demand during the day, three different voltage levels were
considered in the distribution transformer bus in order to provide voltage support: 231 V from 0:00 to
6:00 h and from 23:00 to 23:50 h; 232 V from 17:00 to 21:00 h; and 231.5 V for the rest of hours.

Considering cases with and without reactive power provision, a total number of
30 × 144 × 2 × (2 + 2) = 34, 560 instances of problem (P2) have been solved in this section.
The average number of constraints, continuous and binary variables was equal to 734, 245 and
34, respectively. Each single instance was solved in a time smaller than 0.02 s.

Table 6 provides the minimum (v) and mean (v̂) voltage magnitudes and the sum of the reactive
power injected (∑ q) per bus and case during the 30-day simulation. It was verified that voltage
magnitudes were always greater than the lower limit, 218.5 V, and none voltage violations have been
observed in the analyzed cases. As expected, voltage magnitudes were lower in those buses that were
located furthest from the distribution transformer. In general, voltages decreased as the rate power
of the charger and the energy charged increased. However, it was noticed that effect of increasing
the power of the charger was more relevant than the growth of the energy demanded. For instance,
from case 11kVA-E1 to case 22kVA-E1, the average minimum voltage decreased 0.3 V, whereas this
difference was 0.2 V if cases 11 kVA-E1 and 11 kVA-E2 were compared.

Table 6 shows that the reactive power injected was higher in those chargers located far from
the distribution transformer. In this sense, the reactive power injected in the closest buses to the
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transformer (buses 9, 19, 23 and 26) is always 0. Additionally, the injection of reactive power grew
as the rate power of the charger and the energy charged increased. For instance, a total amount of
382.8 kvarh was injected into the grid in case 11 kVA-E1. This value corresponded to an average value
of 14.7 kvarh per charger. This value increased 25.2% and 56.1% in cases 22 kVA-E1 and 11kVA-E2,
respectively.

Table 6. Case study: voltage magnitudes per bus (V) and reactive power injections (kvarh).

11kVA-E1 11kVA-E2 22kVA-E1 22kVA-E2

Bus v v̂ ∑ q v v̂ ∑ q v v̂ ∑ q v v̂ ∑ q

0 231.0 231.4 0.0 231.0 231.4 0.0 231.0 231.4 0.0 231.0 231.4 0.0

26 230.9 231.4 0.0 230.9 231.4 0.0 230.7 231.4 0.0 230.7 231.4 0.0

16 229.8 231.1 0.0 229.8 231.1 0.0 229.0 231.1 0.5 228.8 231.1 0.7
11 229.0 231.0 1.1 229.0 230.9 3.3 228.0 231.0 10.3 227.5 230.9 16.9
4 227.9 230.8 5.1 227.9 230.7 9.2 226.6 230.8 18.8 226.0 230.7 30.3
3 227.2 230.6 9.6 227.2 230.5 15.7 225.4 230.6 27.3 225.1 230.5 43.2

10 226.6 230.5 30.1 226.4 230.4 46.6 225.0 230.5 71.5 224.0 230.4 111.6

9 230.6 231.3 0.0 230.6 231.3 0.0 230.6 231.3 0.0 230.6 231.3 0.0
5 228.3 230.6 7.1 228.3 230.5 11.1 227.9 230.7 21.3 227.7 230.6 33.6
1 225.9 230.1 17.2 225.5 230.0 26.5 224.6 230.2 36.1 224.6 230.2 54.9
6 223.2 229.7 49.4 222.8 229.6 75.3 223.4 229.9 0.0 223.4 229.9 0.0
2 222.0 229.5 55.2 221.5 229.4 78.5 222.6 229.7 0.0 222.6 229.7 0.0
7 221.7 229.4 0.0 221.1 229.2 0.0 221.9 229.6 0.0 221.9 229.5 0.0

23 230.7 231.3 0.0 230.7 231.3 0.0 230.7 231.3 0.0 230.6 231.3 0.0
21 228.3 230.5 8.9 228.1 230.5 14.5 226.6 230.5 27.3 226.6 230.5 45.9
12 225.5 229.9 43.8 225.5 229.8 66.5 224.4 229.9 83.4 224.0 229.8 126.5
13 223.7 229.4 28.2 223.7 229.3 42.4 223.9 229.5 0.0 223.0 229.4 0.0
15 222.8 229.1 0.0 222.8 229.0 0.0 223.5 229.2 0.0 222.2 229.1 0.0
8 222.5 228.9 0.0 222.5 228.8 0.0 223.3 228.9 0.0 221.8 228.9 0.0

17 222.4 228.8 0.0 222.4 228.7 0.0 223.1 228.8 0.0 221.6 228.8 0.0

19 230.8 231.4 0.0 230.8 231.4 0.0 230.8 231.4 0.0 230.7 231.4 0.0
22 228.2 230.7 4.2 227.2 230.7 8.1 226.9 230.8 15.4 226.9 230.7 24.9
24 225.4 230.2 39.9 224.4 230.1 67.0 224.5 230.3 75.5 224.3 230.2 114.3
14 223.0 229.8 82.9 222.5 229.6 131.7 223.8 229.9 0.0 223.4 229.9 0.0
18 222.4 229.5 0.0 222.2 229.4 0.0 223.1 229.7 0.0 222.7 229.6 0.0
25 221.9 229.3 0.0 221.9 229.2 0.0 222.5 229.5 0.0 222.0 229.4 0.0
20 221.9 229.2 0.0 221.9 229.1 0.0 222.1 229.4 0.0 221.9 229.3 0.0

As an example, Figure 10 represents the results obtained for bus 10 during the first day in case
11kVA-E1 in terms of voltage magnitudes, active power consumed by the household and the electric
vehicles, and the injected reactive power. As indicated in Table 5, two electric vehicles chargers were
installed in bus 10. As observed in Figure 10c, one vehicle started the charging at 8:10 am, and the
other at 11:40 am. The total energy consumed by the house, without considering electric vehicles,
was 8.9 kWh, whereas the sum of the energy charged by two electric vehicles was only 3.5 kWh.
However, the highest active power peaks corresponded to the periods in which the vehicles were
being charged. The high active power demanded by the electric vehicle chargers had a high impact
on voltage magnitudes. Figure 10a shows that voltage drops occurred when electric vehicles were
charging. Since voltages were under the nominal value, 230 V, reactive power was injected into the
grid, as observed in Figure 10d. Finally, Figure 10b shows that the voltage magnitudes in the case in
which the reactive power droop was considered are higher than those in the case in which the reactive
power droop was not accounted for.
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(b) Voltage magnitude difference with respect to the case
without reactive power droop
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(d) Reactive power injection of electric vehicles

Figure 10. Case study: Results bus 10 (11 kVA-E1).

Finally, Figure 11 represents the average values and difference between voltage magnitudes in
cases 11 kVA-E1 and 22 kVA-E1 using models with and without reactive power injection. For the
sake of conciseness, a set of selected buses corresponding with the last buses of each branch were
considered. The positive values of this difference indicated that voltages in cases with reactive power
injection were higher than those in cases without reactive power injection. It was observed that the
average voltage difference was larger in those periods with higher demand (between 12 and 22 h).
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(a) Case 11 kVA-E1: voltage magnitudes
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(b) Case 11kVA-E1: voltage differences
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(c) Case 22 kVA-E1: voltage magnitudes
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(d) Case 22 kVA-E1: voltage differences

Figure 11. Case study: comparison of voltage magnitudes .

5. Conclusions

This paper has presented a non-linear mixed-integer formulation for deciding the maximum
number of charging points of electric vehicles that can be installed in a low-voltage distribution
network. In order to increase the number of charging points, it has been considered that charging
points are able to provide voltage support by injecting reactive power if voltage magnitudes are lower
than a specified value. Therefore, the reactive power-voltage magnitude control is activated locally and
it does not require the presence of a central operator. Additionally, an optimal power flow formulation
has been provided to simulate the steady-state operation of a distribution network considering that
electric vehicles can provide voltage support.

The proposed model is tested on a case study based on La Graciosa distribution network. Based on
the numerical results presented in the case study, it has been observed that the number of installed
charging points is higher if reactive power injections are considered. These increases are up to 8.3%
and 10.7% for 11 and 22 kVA chargers, respectively. It has been also observed that the parameters of
the distribution lines have a high influence on the number of installed chargers. For instance, if the
resistance of the lines decreases 50%, the number of installed chargers increases 19.2% and 21.0% for 11
and 22 kVA chargers, respectively. It has been verified through 30-day simulations that the voltage
magnitudes resulting from the model including reactive power injections are greater than the specified
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lower voltage limit. It has been also observed that the effect of increasing the power of the charger is
more relevant than the growth of the energy demanded in terms of voltage decrease.

Research is currently underway to optimize the power factor assigned to each charger in order to
maximize the number of installed charging points.
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Appendix A. Notation

The notation used throughout the paper is included below for quick reference. Observe that
the definitions of symbols included in this appendix pretend to be general enough to be used in the
two optimization models formulated in this paper. Unless otherwise indicated, all symbols refer to
per-phase values.

Sets and Indices

D Set of days, indexed by d
K Set of electric vehicle chargers, indexed by k

Kndt Set of electric vehicles chargers at usage in bus n, day d and period t.
L Set of distribution lines

N Set of buses, indexed by n and m
Nn Set buses connected to bus n, indexed by n and m

S Set of distribution transformers, indexed by s
Sn Set of distribution transformers in bus n, indexed by s
T Set of time periods, indexed by t

Parameters

Bnm Susceptance of the line linking buses n and m
Gnm Conductance of the line linking buses n and m

M Large enough parameter
PD

ndt Active power demand in bus n, day d and period t
PEV,max

kdt Active power demanded by charger k on day d and period t
PEV,max

k Active power rate of charger k
QD

ndt Reactive power demand in bus n, day d and period t
QEV,max

k Maximum reactive power that can be consumed by charger k
QEV

kdt Reactive power consumed by charger k on day d and period t
SEV,max

k Rate charge power of charger k
SL,max

nm Capacity of the line linking buses n and m
SS,max

s Capacity of distribution transformer s
V(1)

n First breakpoint of the reactive power-voltage magnitude droop curve of bus n
V(2)

n Second breakpoint of the reactive power-voltage magnitude droop curve of bus n
Vmax

n Upper limit of the voltage magnitude of bus n
Vmin

n Lower limit of the voltage magnitude of bus n
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αEV
kn Auxiliary parameter used to formulate the reactive power-voltage magnitude droop curve

of charger k in bus n
βEV

kn Auxiliary parameter used to formulate the reactive power-voltage magnitude droop curve
of charger k in bus n

φk Power factor angle of charger k

Variables

pL
nmdt Active power flow through line linking buses n and m on day d and period t
pS

sdt Active power supplied by distribution transformer s on day d and period t
qEV

kdt Reactive power that must be consumed by charger k on day d and period t, if the charging
point is accepted

qEV,S
kdt Reactive power consumed by charger k on day d and period t

qL
nmdt Reactive power flow through line linking buses n and m on day d and period t
qS

sdt Reactive power supplied by distribution transformer s on day d and period t
vndt Voltage magnitude of bus n on day d and period t
v+ndt Positive voltage magnitude deviation in bus n on day d and period t
v−ndt Negative voltage magnitude deviation in bus n on day d and period t
vaux

ndt Auxiliary continuous variable used to linearize the bilinear product of variables vndt and

{y(1)ndt, y(2)ndt}
v(j)

ndt Auxiliary continuous variable associated with block-j of the voltage magnitude of bus n on
day d and period t

xk Binary variable that is equal to 1 if the request for charging point k is accepted
y(1)ndt Auxiliary binary variable used to formulate the reactive power-voltage magnitude droop curve

of bus n on day d and period t
y(2)ndt Auxiliary binary variable used to formulate the reactive power-voltage magnitude droop curve

of bus n on day d and period t
θndt Voltage angle of bus n on day d and period t
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Abstract: The aging of rechargeable batteries, with its associated replacement costs, is one of the
main issues limiting the diffusion of electric vehicles (EVs) as the future transportation infrastructure.
An effective way to mitigate battery aging is to act on its charge cycles, more controllable than
discharge ones, implementing so-called battery-aware charging protocols. Since one of the main
factors affecting battery aging is its average state of charge (SOC), these protocols try to minimize
the standby time, i.e., the time interval between the end of the actual charge and the moment when
the EV is unplugged from the charging station. Doing so while still ensuring that the EV is fully
charged when needed (in order to achieve a satisfying user experience) requires a “just-in-time”
charging protocol, which completes exactly at the plug-out time. This type of protocol can only be
achieved if an estimate of the expected plug-in duration is available. While many previous works have
stressed the importance of having this estimate, they have either used straightforward forecasting
methods, or assumed that the plug-in duration was directly indicated by the user, which could lead to
sub-optimal results. In this paper, we evaluate the effectiveness of a more advanced forecasting based
on machine learning (ML). With experiments on a public dataset containing data from domestic EV
charge points, we show that a simple tree-based ML model, trained on each charge station based on its
users’ behaviour, can reduce the forecasting error by up to 4× compared to the simple predictors used
in previous works. This, in turn, leads to an improvement of up to 50% in a combined aging-quality
of service metric.

Keywords: electric vehicles; light gradient boosting; battery charging; intelligent charging; optimal
charging behavior; battery aging

1. Introduction

Given the environmental impact of petroleum-based transportation and the recent developments
of renewable energy production technologies, electric vehicles (EVs) are gaining traction as the most
promising transportation infrastructure for the future [1]. EVs are considered environmental-friendly
because the electric power they consume can be generated from a wide variety of sources including
various renewable ones [2]. Using renewables for transportation has the potential to massively
reduce fuel consumption and gas emissions as well as increase the security level of energy usage,
via geographic diversification of the available sources. In addition to protecting the environment,
EVs also have advantages in terms of higher energy efficiency and lower noise than internal combustion
engines [3].
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Although EVs are currently ordinary in most sectors of public and private transportation,
with rapidly growing market demands, one critical issue that still limits their adoption is related to
batteries. There is an urgent demand for advanced battery optimization strategies that can satisfy
customers’ demands, such as increasing the driving range and reducing the charge time, while also
containing the costs associated with battery replacement [4]. In fact, the battery is the main contributor
to the total cost of an EV, accounting for more or less 75% of the total capital cost of the full vehicle [5].
Thus, prolonging the lifetime of the battery becomes a crucial issue in the development of EVs.

Since two decades, Lithium-ion has become the dominant battery chemistry adopted in EVs due to
its relatively high energy density and power delivery ability [6]. Among the weaknesses of Lithium-ion
technology, capacity loss is one of the essential aspects that influences EVs’ widespread adoption [7].
The aging of a Lithium-ion battery, intended as the loss of usable capacity over time, strongly affects the
battery replacement cost. The aging of the battery depends on several quantities such as temperature,
depth of discharge (DOD), average state of charge (SOC), and magnitude of the charge/discharge
currents [8–10]. The values of these quantities during the discharge phase (in particular the DOD and
the discharge current) cannot be controlled because they depend on the motor power demand, which
in turn is a function of the EV driving profile, and therefore is determined by user habits. In contrast,
the charge phase is more controllable and as such provides some space for battery aging optimization.

EV battery charging is usually constrained to use standardized schemes, based on pre-defined
current and voltage profiles. Because of the low cost and straightforward implementations, constant
current-constant voltage (CC-CV) charge protocol is the most common one for Lithium-ion batteries.
The CC-CV protocol effectively limits the risk of overcharging, which has to be carefully managed
in Lithium-ion batteries. Although constraining to CC-CV does limit the space for optimizations,
this protocol still offers some degrees of freedom (namely, the charge starting time and the charge
current) that can be leveraged to mitigate aging [10–17].

As a matter of fact, vehicles are often connected to a charge station for a time much longer than
what is needed to charge their battery, that is, the plug-in duration is often much longer than the actual
charge duration. The default charge scheme starts the CC phase as soon as the vehicle is plugged
in, using a large current to obtain a fast charge. While this solution yields a 100% charged battery
as fast as possible, it can significantly degrade the battery capacity. This fast capacity loss is due
to a twofold effect. The first direct cause is that battery aging worsens with large charge currents.
Moreover, according to the default charge protocol, charging is typically completed well before the
actual plug-out time. This early completion implies a higher average SOC stored in the battery, which
also negatively affects the aging [8]. Therefore, there exists a trade-off between (fast) charge time
and battery aging: the former requires larger charge currents and an immediate start of the charging
protocol at plug-in time, both of which degrade battery capacity.

Several works in the literature have proposed aging-aware charging protocols that try to overcome
the limitations of this default solution [10–17]. To do so, these protocols jointly optimize the final charge
state of the battery in each charge cycle and its aging. Both objectives have to be considered since,
paradoxically, the ideal policy for aging-only optimization would otherwise coincide with leaving
the battery fully discharged (0 charge current and SOC), which is clearly not meaningful. In contrast,
the charge state of the battery at plug-out time is fundamental for the EV driver’s user experience.
In practice, these approaches optimize the two free parameters of the CC-CV protocol (start time and
charge current) in such a way that the battery becomes fully charged exactly when it is plugged out of
the charge station.

To this end, an estimate of the plug-in duration is needed. The accuracy of such an estimate
is fundamental, as pointed out in [17]. Indeed, overestimating the plug-in duration would cause
the battery to have a low SOC at plug-out time, dramatically degrading user experience. On the
other hand, overestimating it would worsen the battery aging as charging would complete before the
actual plug-out time, increasing the average SOC. Despite the importance of accurate plug-in duration
estimation, previous works have only relied on elementary models. Several works [10,11,13] assume
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that the plug-in duration is set directly by the user when plugging the EV into the station. In those
approaches, the responsibility of providing an accurate estimate is entirely left to the user, who mostly
cares about the driving experience rather than battery aging. Other approaches, although not targeting
EV batteries specifically, attempt an automatic estimate [12,17], but only using basic models such as
fixed-time predictions or moving averages.

In this work, we assess the effectiveness of using a machine learning (ML) model in improving the
accuracy of plug-in duration estimation. Our approach is based on the observation that, especially for
domestic stations, plug-in and plug-out instants depend on the habits of a single user (or a small group).
Therefore, we envision a system in which each charge station autonomously learns its users’ plug-in
behaviour from history. With experiments on a public dataset containing records from domestic charge
stations in the UK [18], we show that a simple tree-based model (light gradient boosting or LightGBM)
can reduce the prediction error compared to all straightforward policies considered in previous work.
Using this model on top of an aging-aware charging protocol, in turn, yields an improvement of up to
54% on a combined quality-of-service/aging metric. Moreover, the accuracy of the ML predictor is
strongly related to the number of records present in the dataset for a given charge station, suggesting
that even better results could be achieved with more available data.

In summary, our main contributions are the following:

• We evaluate for the first time the effectiveness of a ML-based approach for predicting the plug-in
duration of EVs in domestic charge stations.

• We show that this method is superior in terms of prediction accuracy with respect to the
straightforward policies used by previous works.

• Finally, we show that this reduction of the prediction error actually translates into an improvement
in terms of quality-of-service and battery aging, when the prediction is used within an aging-aware
EV charging protocol.

The rest of the paper is organized as follows. Section 2 provides the required background on
battery charging and aging models, and discusses related works; Section 3 describes the different
plug-in duration estimates considered in our experiments. Section 4 reports the results, while Section 5
concludes the paper.

2. Background and Related Works

2.1. EV Battery Capacity Aging Degradation

The capacity loss of rechargeable Lithium-ion batteries depends on four main factors [8,13,19,20]:
(i) temperature, (ii) DOD at each cycle (also referred to as deviation of the SOC), (iii) average SOC,
and (iv) charge/discharge current. Aging worsens with an increase in any of these quantities.

Among these four main factors, given that temperature cannot be easily controlled and that DOD
and discharge currents depend on the power demand and duration of the discharge phase, only the
charging current and the average SOC can be managed during the charging process for optimization.

The average SOC for a generic time interval from t0 to t1, is given by:

SOCavg =

∫ t1

t0

SOC(t)dt / (t1 − t0) (1)

For instance, [19] reports that, for LiFePO4 batteries, SOC should be less than 60% on average for
maintaining battery life acceptable.

Aging is usually evaluated through the state of health (SOH) aggregate metric, defined as the ratio
of the capacity of an aged battery and its nominal capacity. In this work, since we focus on multiple
charge cycles, we need a model that expresses the aging for each cycle. To this purpose we use the
classical model of [19] augmented as in [13] to account for charge and discharge current. The following
expression determines battery capacity loss (L) in the i-th cycle:
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Li = L0,i·e(Kic,i·Ich,i+Kid,i·Idis,i) (2)

where L0,i is the battery aging factor provided by the Millner’s model [19], which accounts for
temperature, deviation of the SOC, and SOCavg in the i-th cycle; and Li is the battery aging computed
by the model provided by [13], which strengthen the Millner’s model by adding aging dependence
on discharge and charge current values in the i-th cycle, Ich,i and Idis,i. Kic,i and Kid,i are empirical
coefficients extracted from battery datasheet information [13] or from experimental measurements.
By summing Li over M cycles, we get the total loss of capacity LM. LM and SOH are both normalized,
so they are related as SOH = 1− LM. The SOH after M-th cycle is therefore indicated by:

SOHM = 1− LM = 1−
M∑

i=0

(Li) (3)

This model can be applied to any device powered with Lithium-ion type batteries, and supports
battery aging estimation after multiple cycles. Therefore, it can be used to identify charging protocols
that best fit a specific user behavior from the point of view of both battery aging and quality of
service (QoS).

In this work, we use the average SOC at plug-out time as a metric of QoS, since the available
residual capacity at the plug-out time determines the quality of user experience. Mathematically:

QoS =
1
n

n∑
i=1

SOCplug−out,i (4)

This metric is commonly used [10,17], since a higher SOC at the plug-out time guarantees a longer
driving range and a better driving experience (e.g., allowing the enabling of auto-auxiliary driving
system, on-board multi-media systems, etc.), and vice-versa.

2.2. EV Battery Charging with CC-CV

Charging a battery is an operation that may significantly impact its lifetime, even more than
discharging when comparing the effects of the same absolute current rate in both phases [9]. Selecting
the appropriate charge protocol is thus a critical step, not only for keeping as much as possible
unaltered the battery performance, but also for avoiding dangerous side effects, like overheating and
overcharging, which besides creating obvious hazards, can also worsen the battery SOH, defined in (3)
and accelerate the battery aging.

The selection of the proper charge scheme depends on the battery chemistry. For Lithium-ion
batteries (the majority of EVs are equipped with this kind of battery cells), the standard is to adopt the
CC-CV protocol [21]. Although various optimized charging methods were explored and reported in
the literature (e.g., [15,22]), CC-CV is still adopted in the great majority of Lithium-ion battery-based
systems, due to the simplicity of chargers implementations from an electrical point of view, and because
it guarantees battery safety against over-voltage and over-current.

The CC-CV protocol operates in three phases, as shown in Figure 1. In the first phase (CC),
the battery is charged at a constant current until its voltage reaches a pre-determined limit; in the
second phase (CV), the battery is charged at a constant voltage until the current drops to a pre-defined
value. This second phase effectively manages the risk of overcharging, which is quite dangerous
in Lithium-ion batteries. The time interval starting after the end of the second phase until to the
unplug time is called standby time. As shown in Figure 1, the SOC remains fixed at 100% in this third
phase, which is detrimental for the SOH of Lithium-ion batteries, since the length of standby period
significantly increases the average SOC of the battery. An analytical macro-model of CC-CV charge
time based on a subset of all relevant parameters, namely, average SOC, deviation of the SOC (here
considered as depth-of-discharge), discharge/charge current, and temperature is presented in [23].
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Figure 1. Typical CC-CV charging protocol scenario.

In this work, we evaluate the impact of an accurate plug-in duration estimation on aging-aware
charging protocols that stick to the CC-CV scheme, and only act on the free parameters made available
by it. As explained in [10,17] these free parameters are the starting time and the slope (which depends
on the current) of the first phase of Figure 1, i.e., the CC phase.

Solutions that remain compliant with CC-CV do so in order to maintain its electrical simplicity,
low cost and safety properties, while still adapting the standard to consider battery aging. In our work,
considering these solutions allows us to assess the impact of our plug-in duration forecasting on realistic
charge stations most commonly used nowadays. However, our method is actually orthogonal to
a specific charging profile, and could therefore be used also in conjunction with advanced aging-aware
schemes that do not follow the CC-CV standard [9,14–16].

2.3. Aging-Aware Charging Protocols

As anticipated, most of the previous works on aging-aware charging of Lithium-ion batteries
focus on altering two main CC-CV protocol variables, namely the average SOC (shortening length of
Phase 3 in Figure 1) and the constant charging current (decreasing the slope of the line in Phase 1 of
Figure 1). The two approaches are schematized in Figure 2.

Figure 2. Aging-aware charging protocols: (a) Delay the charge starting time to reduce the average
SOC; (b) Decrease the charging current in CC phase.

In terms of the SOC effect on aging, the charge phase should ideally reach 100% exactly at unplug
time (see Figure 2a); this would yield the smallest possible average SOC, minimizing the length of
the standby period, while still guaranteeing a fully charged battery, which corresponds to the best
QoS [12]. In contrast, when charging is started immediately at the plug-in time, batteries are often
left fully charged for a long time, as indicated by the tstandby in Figure 1, with a significant impact on
battery aging [8]. The work in [12] was one of the firsts to consider delayed start time for charging
batteries as late as possible, thus minimizing the average SOC.

Concerning the charge current, Ref. [11] mitigates battery aging by considering only this parameter,
and calculating a minimum current that ensures a fully charged battery at the end of a predicted plug-in
period, whenever it is higher than the charge time needed in standard CC-CV. In [16], the non-linear
relation between charge current and charging time is analyzed.

In [13], both charge current and average SOC are taken into account. The authors show that
the aging-optimal charge current is more related to battery usage rather than plug-in time, and that
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the capacity loss vs. charge current characteristic is not monotonic. However, their aging analysis is
limited to a single cycle, and the actual plug-in time is assumed to be known.

A CC-CV compliant charge protocol that takes into account all the relevant parameters is proposed
in [17]. Because of the opposing goals of obtaining a fully charged EV and optimizing battery aging,
Ref. [17] uses a QoS metric based on the deviation from 100% charge level at plug-out time. Results
are then reported in a 2-dimensional aging/QoS space to represent the trade-off between these two
quantities. With this multi-objective analysis, it is shown that the proposed protocol obtains a better
trade-off under various user charge/discharge pattern statistics compared to [13], which only considers
aging at the expense of low QoS. Although both [13,17] focus on the Lithium-ion batteries found in
mobile devices (such as smartphones), the proposed charging protocols are general and can be applied
to any battery-powered device, including EVs.

Finally, other works have proposed aging-aware charge protocols that however do not stick to the
CC-CV scheme [14–16].

Importantly, many recent works [10–13,17] analyze the need for predicting the plug-in duration
by extracting the data from battery usage history; however, no accurate prediction mechanisms are
proposed. For example, Ref. [17] calculates the optimal charge current based on a simple prediction of
the plug-in duration to achieve a “just-in-time” charge. Although this work gives a detailed analysis
of the effect of plug-in duration forecasting, it only uses a simple predictor based on an exponential
moving average (EMA) to estimate the current cycle’s plug-in duration. The few simple predictors
proposed in literature are used as baselines for comparison in our experiment, and are detailed in
Section 3.3.

The recent work of [24] proposed an intelligent charging solution to prolong the lifetime of
battery-powered devices. Also this work underlines the importance of plug-out time prediction
(Notice that, since the plug-in time is known at the beginning of each charging phase, estimating the
plug-in duration or the plug-out time is equivalent, and we use both terms interchangeably in the
paper) accuracy for alleviating the aging of battery during charging phase. It suggests using multiple
data sources and connecting multiple battery-powered intelligent devices to increase the accuracy
of predictions and to allocate charging power intelligently among different devices. Unfortunately,
this work only lists the need of accurate prediction as an open challenge for designing intelligent EV
chargers, and no specific forecasting model is proposed.

2.4. Machine Learning Applications in EVs

Machine learning is used in many other applications related to EVs and to battery-related
optimizations. Among the most relevant ones is driving range estimation [4,25,26], which has been
addressed, among others, using ML models based on linear regression [26] and self-organizing
maps [25]. ML based on deep neural networks has also been used to optimize the energy requested
by EVs in a demand-side management framework [27]. Finally, other applications of ML models to
EVs include engine faults diagnosis [28] and estimation of the battery State-of-Charge (SOC) [29] and
State-of-Health (SOH) [30]. Notice that the latter are different and orthogonal to the goal of this work.
In fact, our aim is estimating the plug-in time, which is then used to guide a battery-aware charging
protocol. In turn this determines the SOC and the SOH of the battery, which can be estimated either
with the analytical models described in Section 2.1 or with the ML methods of [31,32]. To the best of
our knowledge, ML-based approaches have never been used for plug-in duration estimation.

3. Methods

The objective of our work is to build a reliable predictor of the plug-in duration of an EV onto
a domestic charging station. Specifically, we want to assess whether a ML solution does yield superior
prediction accuracy compared to the basic prediction policies used by previous works, which we take as
comparison baselines. Then, we want to assess whether this superior accuracy corresponds to a sizeable
improvement in the QoS/aging space for the EV battery. To this end, we apply our ML-based prediction,
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as well as the baselines, on top of the As Soon As Possible (ASAP) and Aging-Optimal battery-aware
CC-CV protocols described in [13,17]. We briefly describe the two protocols in Section 4.1 and refer the
readers to the original papers for more details. As anticipated, our predictor is independent of the
underlying charge protocol; nonetheless, testing with these two state-of-the-art protocols allows us to
assess its real impact on battery aging and QoS.

In the rest of this section, we first describe the scenario in which we envision to deploy our
ML-based forecasting in Section 3.1. We then detail the selected ML algorithm in Section 3.2 and the
comparison baselines in Section 3.3.

3.1. Continuous Charge Behaviour Learning with Edge Computing

In the target scenario, plug-in time forecasting (i.e., ML inference) must be performed at the
beginning of each EV charging phase, in order to let the charge station implement an optimized
protocol which needs this information as input. Moreover, once the charge cycle ends, the real plug-in
duration becomes known. In case of a ML approach, this new information should be used to update
the prediction model, so that the system continuously learns from the users’ charging behaviours.
This strategy can allow significant improvements in prediction accuracy over time [33]. However,
it also implies that, at the end of each charge cycle, a re-training of the ML model should be executed.

Modern EV charge stations include either a central processing unit (CPU) or a micro-controller
unit (MCU) [34], normally used to monitor the charging, provide alerts and feedback to the user, etc.
One option could be to use this processing device just for collecting historical data of past charging
phases (e.g., a record containing plug-in time, plug-out time, day of the year, etc. for each charge
cycle), and then offload all the processing to a cloud server [35]. However, this solution requires the
availability of a cloud infrastructure, and that the charge station is constantly connected to the Internet.
Moreover, transmitting EV charging records over the Internet may also raise security concerns, as these
data might be intercepted by malicious third parties and used to infer private information about users’
behaviours (e.g., when they are at home or not) [36]. As an alternative to this approach, we propose
a solution based on edge computing, where the ML algorithm is directly executed in the charge station
processing hardware [35,36]. The two alternatives are schematized in Figure 3.

Figure 3. Alternative scenarios for the deployment of ML-based plug-in duration forecasting.

As shown in the Figure, the edge-based solution solves all aforementioned problems, but it
introduces new limitations to the characteristics of the selected ML algorithm. In fact, processors
present in EV charging stations (e.g., from the ARM Cortex family) are normally designed for embedded
applications. While these devices are sufficiently powerful to implement simple ML-based predictors,
their compute power (number of cores, clock frequency, available memory) is significantly more limited
than what is available on a cloud server [35,37]. This is especially critical since, as anticipated, both
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training and inference should be performed repeatedly. Therefore, computational complexity for the
training and inference phases of the model becomes a key design metric. For this reason, complex
models such as deep neural networks [38], although possibly very accurate, are not a viable option.
In contrast, we select light gradient boosting (LightGBM) [39] to implement our ML-based predictor.
LightGBM models are based on tree learning, and are explicitly designed to limit the computational
complexity for training (i.e., tree growing), as detailed in the following section.

3.2. Light Gradient Boosting

LightGBM is a type of ML model belonging to the gradient boosting family, and it is based on
ensembles of trees. It was first proposed by [39] in 2017.

In our work, we decided to focus on tree-based learning since it is inherently one of the most
efficient types of ML in terms of both inference and training complexity. In fact, performing inference
(i.e., classification or regression) on an input datum simply requires performing a set of comparisons
with thresholds, one for each visited tree node [40]. Therefore, the number of operations performed in
an inference is O(

∑M
m=1 dm), where di is the depth of the m-th tree and M the number of trees in the

ensemble. Similarly, the number of parameters (i.e., thresholds) of the model is O(
∑M

m=1 wm), where wm

is the total number of nodes in the m-th tree. Comparisons are very simple operations from a hardware
point of view, which makes this type of inference easy to implement even on micro-controllers [40].
In addition to maintaining this inference simplicity, LightGBM extends the standard gradient boosting
decision tree (GBDT) algorithm [41] with several optimizations that speed-up its training time up
to 20 times. Moreover, tree-based learning is also effective when training set sizes are not extremely
large [42], as in the case of the dataset described in Section 4. In such a “small-data” setting, other
models, such as deep learning ones, which are extremely accurate in general, would likely lead to
over-fitting and therefore to poor results [43].

Considering the training set of a supervised learning problem (X, Y) =
{
(xi, yi)

}n
i=1, both GBDT

and LightGBM build predictions in the form:

ŷ = F̂M(X) =
M∑

m=1

γm f̂m(X) (5)

where f̂m(X) is a decision tree, also called weak learner and γm is a weight. The goal of training is to
minimize the expected value of a loss function L(yi, F̂M(xi)), such as the squared error loss in the case
of regression problems [44]:

L(yi, F̂M(xi)) =
1
2
(yi − F̂M(xi))

2 (6)

As in standard GBDT, also in LightGBM weak learners are trained sequentially one after the
other, and each tree learns to predict the negative residual error (or gradient) from previous models.
In mathematical terms, negative residuals are computed as:

ri,m = −
δL(yi, F̂m−1(xi))

F̂m−1(xi)
= yi − F̂m−1(xi) (7)

where the second equality comes from the squared error loss in (6). The m-th tree is then grown using
the training set (X, Rm) =

{
(xi, ri,m)

}n

i=1
. Finally, the corresponding weight γm is computed as:

γm = argmin
γ

n∑
i=1

L(yi, F̂m−1(xi) + γ f̂m(xi)) (8)
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In terms of complexity, the most critical step of this training procedure is the growth of individual
trees. In LightGBM, trees are grown leaf-wise, as shown in Figure 4. As explained in [39], this requires
O(n·φ) operations for each expansion, where φ is the number of features in each input sample xi.

Figure 4. Leaf-wise tree growth in LightGBM.

LightGBM reduces this computational burden by sub-sampling training data and bundling
features. The first objective is achieved thanks to a technique called gradient-based one-side sampling
(GOSS): when growing the m-th tree, GOSS samples the training instances considered for split-point
selection based on the magnitude of their gradient ri,m, computed as in (7). Specifically, the a× 100%
training instances with largest gradient are always selected, whereas b× 100% of the remaining instances
are randomly sampled. The values of a and b are hyper-parameters of the algorithm. The authors of [39]
show that a, b < 0.1 are sufficient to obtain good accuracy, while significantly speeding up training
time. LightGBM combines GOSS with so-called exclusive feature bundling (EFB), an optimization
which further reduces the training time by “bundling” mutually-exclusive features (i.e., those that are
never simultaneously � 0). While EFB is very effective in general [39,44], it is less relevant than GOSS
for our work, since we train our LightGBM predictor using few and not mutually exclusive features
(see Section 4).

In our experiments, we retrain the LightGBM model after each EV charge cycle, using as training
data all past history until that moment. For simplicity, the model is currently retrained from scratch
every time. However, we plan to also experiment with incremental learning techniques for GBDT-like
models, such as those proposed in [45] in our future work, to further speed-up training time.

3.3. Baseline Algorithms

Previous works on aging-aware Li-ion battery charging schemes have almost always assumed the
plug-in duration as a known input. The few exceptions, such as [12,17] have used simple time-series
predictors such as the exponential moving average (EMA) and the historical average (HA). Therefore,
to the best of our knowledge, ours is the first work to utilize a proper ML algorithm for plug-in duration
forecasting. Accordingly, in our experiments, we have compared the proposed LightGBM predictor
with the following four simple baselines.

3.3.1. Fix Duration and Fix Time

It is not easy to compare the ML-based solution against a scenario in which the EV users
directly indicate the predicted unplug time when they leave the car at the charge station (as assumed
in [10,11,13]). In fact, the behaviour of each vehicle user is different. Nonetheless, we can use two
simple predictors called Fix Duration and Fix Time to mimic two common categories of behaviours.

The Fix Duration prediction always assumes a fixed plug-in duration y f d, regardless of any other
condition (plug-in time, day of the week, etc.). In our experiments, we have tried setting y f d to 6 h, 8 h
and 12 h. The best results have been obtained with 6.

The slightly more complex Fix Time predictor, instead, assumes that the unplug time of the
EV always occurs at one of two possible fixed times of the day t f t,1 and t f t,2. This is similar to
a user-specified “alarm-like” unplug prediction. Specifically, if the EV is plugged in at time t where
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t f t,1 ≤ t < t f t,2 this predictor assumes that the unplug time is t f t,2. Conversely, if t < t f t,1 ∨ t ≥ t f t,2 it
assumes that the EV will be unplugged at t f t,1, where this value refers to the next day if the second
condition is verified. The predicted plug-in duration ŷ f t is then computed as the difference between
the predicted unplug time and t. Mathematically:

ŷ f t=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t f t,1 − t if t < t f t,1
t f t,2 − t if t f t,1 ≤ t < t f t,2
t f t,1 + 24h− t if t ≥ t f t,2

(9)

This predictor takes as its only input the latest plug-in time t. Using two different fixed times
allows to account for EV charges happening both during the day and during the night, a common
pattern as pointed out in [10]. In our experiments, we tried different combinations of t f t,1 and t f t,2,
and achieved the best results using 7.00 a.m. and 7.00 p.m. respectively.

3.3.2. Exponential Moving Average

This baseline is taken from the works of [12,17] which, although targeting smartphone batteries
rather than EVs’, proposed to estimate the unplug time using an exponential moving average (EMA).
The estimated plug-in duration at cycle i is therefore computed as:

ŷema[i] = w ∗ y[i− 1] + (1−w) ∗ ŷema[i− 1] (10)

where y[i− 1] is the actual (measured) plug-in duration at the previous charge cycle, and w = 0.6 is
a smoothing weight. EMA-based forecasting assumes that consecutive charge cycles have a similar
duration; as such, most of the estimate depends on the latest measurement, while the previous history
is accounted for by the second addend. This prediction does not depend on the plug-in instant, like (9),
and only uses the previous plug-in duration as an input.

3.3.3. Historical Average

The historical average (HA) is different from the EMA in that it gives equal importance to the
entire past history of plug-in duration measurements.In this case, the predicted duration is simply
computed as the average of all past measurements, i.e.,:

ŷha[i] =
1

i− 1

i−1∑
j=1

y[ j] (11)

This predictor is used in previous work by [12]. Again, the only required input for this forecasting
strategy is the set of past plug-in duration.

4. Results

4.1. Experimental Setup

The methods described in Section 3, have been applied to the publicly available “Electric
Chargepoint Analysis: Domestics” dataset, collected by the United Kingdom’s office for low emission
vehicles (OLEV) [18]. This dataset contains records of charging events from approximately 25,000
domestic charge-points across the UK, collected during the year 2017, for a total of 3.2 million charging
events. Each charging record contains the dates and times of the start and end of the plug-in, as well
as the acquired energy in KW, the plug-in duration, the charge point identifier, and the charge event
identifier. Our experiments have been performed on 5 charging points with identifiers AN05770,
AN10157, AN23533, AN08563, and AN03003, selected based on the large number of available charging
events (see Table 1). We did not generalize our results to the entire dataset because the great majority of
the charging points contain a very limited number of charging event records, which are not sufficient
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to train the proposed LightGBM model. Before training the predictors, all charge events longer than
40 h have been filtered out as outliers (e.g., holidays), since we have found that they worsened the
training results.

Table 1. Number of charge events in each considered station.

Station ID Events (Cycles)

AN05770 326

AN10157 196

AN23533 186

AN08563 159

AN03003 141

Both the LightGBM predictor and the comparison baselines are trained and tested on individual
charge points, in order to simulate the scenario described in Section 3.1. The first 65% of the total events
in each charge station have been used as initial training set, and the predictors have been evaluated on
the remaining 35%.

As reported in Table 2, as inputs for the LightGBM model, we used the following features for each
charging event: the plug-in date and time, expressed as day of the year, hour and minute; the day of
the week of plug-in, encoded using a one-hot format, in order to account for different charging patterns
during the week and on the weekend; the plug-in duration of the previous charge cycle; the plug-out
date and time of the previous charge cycle. LightGB algorithm parameters have been tuned using grid
search on each charge station. We also tried feeding the LightGBM model with a longer past history,
but we empirically found out that this led to overfitting (i.e., a reduction of the forecasting error on the
training set but an increase on the test set) and therefore worsened the performance of the model when
used within an aging-aware battery charging protocol.

Table 2. Input features for the LightGBM model.

Feature Description

Plug-in Instant Day ∈ 0–366, Hour ∈ 0–23, Minute ∈ 0–59
Plug-in day of the week One-hot encoded {0, 1}7 vector
Prev. Plug-out Instant Day ∈ 0–366, Hour ∈ 0–23, Minute ∈ 0–59
Prev. Plug-in Duration In hours (possibly fractional)

Plug-in duration predictors have been written in Python, using the LightGBM package [46] for the
proposed model. Battery discharge and charge cycles simulations have been performed in MATLAB.
We selected the A123 Systems ANR26650M1A automotive Lithium-ion battery in our simulations.
All the necessary parameters of its aging model to compute the L0, i in (2) are provided in [19], whereas
the related discharge and charge current rate coefficients, Kic and Kid in (2) are extracted from [13].
The environment temperature in our simulations is set as 25 ◦C and the battery operating temperature
is assumed as a constant value equal to 35 ◦C. To simulate the charging phase, we adopted the model
of [36], which supports changing the current values and computing the length of CC and CV phases.
The maximum and minimum CC phase charging currents have been set to 0.1C rate and 2C rate in the
aging-aware charging protocols.

The EV discharge behaviour cannot be inferred from the dataset. So, it has been modeled using the
same method of [10]. For each charge station, the simulations relative to different forecasting methods
have been fed with the exact same sequence of discharge profiles, so that the comparison among
them is fair. For what concerns the charge phase, which is the main focus of this work, as anticipated
in Section 3, we inserted the different plug-in duration forecasting algorithms in two aging-aware
CC-CV-based charging protocols. The first one, which we refer to as Aging-Optimal, was proposed
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in [13] and works by delaying the charging start time and simultaneously reducing the charging
current. Moreover, we also consider the as soon as possible (ASAP) protocol of [17], which starts
charging immediately and only reduces the charging current. Both of them need an accurate prediction
of the plug-out time to determine the optimal charging current in the CC phase or its starting time.
We remark that designing an aging and/or QoS optimal charging protocol is not the target in this
work. We test on these two aging-aware charging protocols just to illustrate the importance of plug-in
duration prediction accuracy.

4.2. Forecasting Error

As a first experiments, the proposed model and the baselines have been compared in terms of pure
prediction error. For this, the mean square error (MSE) has been used as a target metric, defined as:

MSE =
1
n

n∑
i=1

(yi − ŷi)
2 (12)

where y is the actual plug-in duration, ŷ is the forecast one and n is the number of plug-in events at
a given charge point.

The results of this experiment are presented in Figure 5, which reports the MSE obtained by all
forecasting methods for each of the five considered charge points. As shown, the LightGBM forecasting
obtains the lowest error on all five stations.

Figure 5. Mean Square Error of the models.

Interestingly, the HA predictor is a close second for some stations, showing that the average
plug-in duration is approximately constant over long periods. However, on average, LightGBM reduces
the prediction error by 34% compared to HA. Moreover, the difference between the two methods
is the largest for the charge point labeled AN05770, which is also the one with the most numerous
charge cycles in the dataset (see Table 1). For that station, the error reduction of LightGBM with
respect to HA is >4×. This suggests that having more data for training allows the ML-based method
to learn the subtleties of user EV charging behaviours, and consequently improve the forecasting
accuracy compared to a simple predictor like HA. Figure 6a shows the actual plug-in duration in hours
and the corresponding LightGBM prediction for the plug-in events of station AN05770; Figure 6b
indicates the absolute error between our prediction and the real plug-in duration for each charge event;
Figure 6c displays the histogram of the LightGBM prediction error. This example visually shows that
the proposed ML-based predictor is able to provide an accurate estimate in most cases, with the largest
errors happening in correspondence of outliers.
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Figure 6. Comparison between LightGBM prediction and actual plug-in duration (in hours) for
charging point AN05770.

Aging and QoS Results

After verifying the performance of LightGBM forecasting, we inserted our proposed plug-in
duration estimator into the two aging-aware charging protocols described in Section 4.1. According
to previous works [17], we measured the performance of the charge protocols enhanced with the
estimators on a 2-dimensional space. The impact of forecasting on battery aging has been measured
using the SOH metric expressed in (3), whereas (4) was used to measure the QoS. Both SOH and QoS
metrics are normalized between 0 and 1, with 1 corresponding to the ideal value.

Figures 7 and 8 show the results of these simulations on the 2D metrics space. Optimality
corresponds to the top-right corner of each chart, where both metrics have value 1. Table 3 reports
the numerical results of these experiments. As shown, the proposed LightGBM always achieves the
best QoS among all forecasting methods, for all stations and for both charging protocols. In terms
of SOH, the ML-based prediction achieves slightly worse results than those obtained with the other
methods, although still significantly better than those obtained by a standard (i.e., not aging-aware)
CC-CV solution with no forecast. However, this demonstrates that pure aging-optimization without
considering the QoS is meaningless. Indeed, looking only at the SOH axis, the Fix Duration prediction
would be the best. However, this approach yields extremely low QoS values, ranging from 30% to
less than 10%, which means that, using this solution, drivers would find their EV still almost fully
discharged when they take it from the station.
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Figure 7. Battery aging (SOH) versus QoS using different plug-in duration predictors and the Aging
Optimal charge protocol from [13].

Figure 8. Battery aging (SOH) versus QoS using different plug-in duration predictors and the ASAP
charge protocol from [17].
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Table 3. MSE, QoS and SOH results using different plug-in duration predictors and the ASAP and
Optimal charging protocols.

Station Model MSE

SOH QoS SOH * QoS

Aging
Optimal

ASAP
Aging

Optimal
ASAP

Aging
Optimal

ASAP

AN05770

Ideal 0 0.89 0.88 1 1 0.89 0.88
LightGBM 1.75 0.91 0.89 0.79 0.91 0.72 0.81

HA 8.62 0.93 0.92 0.50 0.72 0.46 0.67
EMA 12.99 0.93 0.92 0.49 0.70 0.46 0.65

Fix Time 15.43 0.96 0.95 0.34 0.58 0.33 0.55
Fix

duration 25.02 0.98 0.96 0.23 0.50 0.23 0.48

AN10157

Ideal 0 0.94 0.93 1 1 0.94 0.93
LightGBM 2.18 0.95 0.94 0.71 0.87 0.68 0.82

HA 4.15 0.95 0.95 0.63 0.81 0.60 0.77
EMA 5.40 0.95 0.95 0.59 0.80 0.57 0.77

Fix Time 9.07 0.96 0.95 0.32 0.61 0.31 0.59
Fix

duration 27.21 0.99 0.98 0.14 0.60 0.14 0.59

AN23533

Ideal 0 0.93 0.93 1 1 0.93 0.93
LightGBM 2.00 0.95 0.95 0.67 0.84 0.64 0.80

HA 2.14 0.96 0.95 0.59 0.80 0.57 0.77
EMA 3.32 0.95 0.95 0.60 0.80 0.58 0.77

Fix Time 13.50 0.99 0.98 0.16 0.51 0.16 0.50
Fix

duration 25.99 0.99 0.99 0.02 0.43 0.02 0.43

AN08563

Ideal 0 0.94 0.94 1 1 0.94 0.94
LightGBM 2.35 0.96 0.95 0.64 0.83 0.62 0.80

HA 2.55 0.96 0.96 0.58 0.82 0.56 0.78
EMA 3.93 0.96 0.96 0.58 0.79 0.58 0.79

Fix Time 11.54 0.97 0.97 0.32 0.58 0.31 0.56
Fix

duration 26.26 0.99 0.99 0.09 0.50 0.08 0.49

AN03003

Ideal 0 0.94 0.94 1 1 0.94 0.94
LightGBM 0.75 0.96 0.96 0.74 0.84 0.72 0.81

HA 8.62 0.96 0.96 0.59 0.78 0.57 0.75
EMA 1.58 0.96 0.96 0.67 0.80 0.65 0.77

Fix Time 17.52 0.98 0.98 0.24 0.59 0.24 0.58
Fix

duration 16.06 0.99 0.99 0.01 0.33 0.01 0.33

To better show this aspect, in Figures 7 and 8 we have also plotted the result achieved by an Ideal
predictor, i.e., an oracle algorithm that always knows the actual plug-in duration. As shown in the
figures, this perfect predictor would also yield a slightly worse battery aging, in exchange for a perfect
QoS (always 100% SOC at unplug time). The proposed LightGBM is therefore closer to an ideal
forecast in all experiments. Interestingly, the HA method is significantly worse than LightGBM in
terms of average QoS for some stations (e.g., AN05770 in Figure 7). This is probably due to the fact
that, contrarily to LightGBM, once many training data become available, HA tends towards a constant
prediction, and cannot adapt to changes in the user behaviour.

A quantitative way to compare the actual effectiveness of the different predictors using a single
number is to measure how close they are to the optimal point (1, 1) in Figures 7 and 8 or, equivalently,
compute the product of the QoS and SOH metrics. This result is shown in Figures 9 and 10, and in the
rightmost columns of Table 3.
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Figure 9. QoS-SOH product using different plug-in duration predictors and the Aging Optimal charge
protocol from [13].

Figure 10. QoS-SOH product using different plug-in duration predictors and the ASAP charge protocol
from [17].

The graphs and table clearly show that the ML-based solution is superior to all baselines.
On average, LightGBM improves the QoS-SOH product by 20% and 8% using the Aging Optimal and
ASAP protocols respectively. Due to the lower prediction MSE, which in turn is a consequence of the
larger amount of training data available, AN05770 is always the station for which the improvement is
maximum, i.e., 54% and 21% respectively.

5. Conclusions

We have proposed a novel ML-based forecasting method to estimate the plug-in duration of
EVs, and consequently improve the effectiveness of aging-aware charging protocols that need this
information to implement a “just-in-time” charge. With experiments on a dataset containing real EV
plug-in measurements from domestic charge stations, we have shown that this forecasting is superior to
the basic approaches used in previous work, reducing the prediction error by 34% on average and up to
4×. Using our proposed predictor on top of two state-of-the-art aging-aware charging protocols, causes
an improvement of their effectiveness, measured with a combined aging and user-experience metric,
of 20% and 8% on average, and up to 54% and 21% respectively. Moreover, the fact that the largest
improvements are always achieved for the charge station with the most records in the dataset suggests
that even better results could be obtained with more data available. However, the availability of large
public datasets to experiment on remains one of the biggest open challenges for this research. ML-based
prediction of EVs plug-in duration may lead to a more cost-efficient use of batteries, and therefore help
speed up the mass adoption of electric transportation. Moreover, these predictions could also be used
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to optimize load distribution and vehicle-to-grid solutions, to further improve the efficiency of smart
grids. This analysis will be part of our future work.
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Abbreviations

The following abbreviations are used in this manuscript:

EVs Electric Vehicles
SOC State Of Charge
ML Machine Learning
DOD Depth Of Discharge
CC-CV Constant Current-Constant Voltage
LightGBM Light Gradient Boosting
SOH State Of Health
QoS Quality of Service
EMA Exponential Moving Average
HA Historical Average
CPU Central Processing Unit
MCU Micro-controller Unit
GBDT Gradient Boosting Decision Tree
GOSS Gradient-based One-Side Sampling
EFB Exclusive Feature Bundling
MSE Mean Square Error
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Abstract: Tracking performance and stability play a major role in observer design for speed estimation
purpose in motor drives used in vehicles. It is all the more prevalent at lower speed ranges. There was
a need to have a tradeoff between these parameters ensuring the speed bandwidth remains as wide
as possible. This work demonstrates an improved static and dynamic performance of a sliding
mode state observer used for speed sensorless 3 phase induction motor drive employed in electric
vehicles (EVs). The estimated torque is treated as a model disturbance and integrated into the state
observer while the error is constrained in the sliding hyperplane. Two state observers with different
disturbance handling mechanisms have been designed. Depending on, how they reject disturbances,
based on their structure, their performance is studied and analyzed with respect to speed bandwidth,
tracking and disturbance handling capability. The proposed observer with superior disturbance
handling capabilities is able to provide a wider speed range, which is a main issue in EV. Here, a new
dimension of model based design strategy is employed namely the Processor-in-Loop. The concept
is validated in a real-time model based design test bench powered by RT-lab. The plant and the
controller are built in a Simulink environment and made compatible with real-time blocksets and the
system is executed in real-time targets OP4500/OP5600 (Opal-RT). Additionally, the Processor-in-Loop
hardware verification is performed by using two adapters, which are used to loop-back analog and
digital input and outputs. It is done to include a real-world signal routing between the plant and
the controller thereby, ensuring a real-time interaction between the plant and the controller. Results
validated portray better disturbance handling, steady state and a dynamic tracking profile, higher
speed bandwidth and lesser torque pulsations compared to the conventional observer.

Keywords: machine model; adaptive control; model reference; disturbance; stability; real-time;
processor-in-loop (PIL); electric vehicles
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1. Introduction

Electric vehicles (EVs) have come to occupy considerable space in the transportation sector owing
to less harmful emissions, better energy profile, lesser noise and cheaper maintenance and operating
costs. However, disadvantages exist in the form of range anxiety, charging infrastructure and battery
safety and disposal. An induction motor continues to dominate owing to its robustness, ruggedness,
smaller size and plays a major role in the electric transportation domain [1,2]. Additionally, the speed
range or bandwidth of the motor plays a major role in an EV. One major aspect, which has often
been overlooked, is the space constraints inside the EV. Although the induction motor is compact and
eliminates the use of commutator brush assembly (as seen in DC motors), the presence of the speed
sensor mounted on the motor shaft adds to the space and additional electronics (sensitive to vehicle
vibrations and dynamics) in the EV system. Therefore, it is felt that a sensorless speed estimation
system is suitable and also economically and technologically feasible in an EV. Additionally, the use
of the speed sensor also adds to the non-linearity of the system by means of the sensor noise, which
may affect the gain and dynamic performance of the motor used in the EV [3]. The domain of speed
sensorless estimation and control of induction motors has gained popularity for the past decade
due to the elimination of the speed sensor owing to cost, reliability and sensitivity constraints [4].
Adaptive speed and parameter observation schemes became more popular owing to their pace of
adaptation, ease of use and less computational space [5,6]. The decoupled control strategy also
emerged as the most popular one [7,8]. Recently numerous controllers are proposed using wavelet
transform and fuzzy tuning (WTFT) [9,10]. Computational intelligence based state estimation also
added to the ongoing research on parameter estimation and online adaptation [11,12]. Most of the
adaptive schemes follow the concept of model reference adaptive systems (MRASs) [13] as shown in
Figure 1. Investigation particularly towards the different configuration schemes based on the state
observers is also presented [14]. The extended Kalman filters are widely applied for state estimation,
and demanded extensive computational space and a high sampling frequency [15]. Besides, the system
dynamics can be linearized for the accuracy. Most of them focused on joint state estimation and
adaptation at speeds ranging from low speeds to flux weakening regions [16,17]. Extended Luenberger
observer (ELO) had an additional correction term [18] incorporated into the state dynamic equation,
which involved the stator current error dynamics and provided more efficient dynamic and robust
performance [19,20]. The variable structure concept [21] was also integrated into the ELO to constrain
the system state and to reject the effect of the error dynamics, giving rise to sliding mode Luenberger
observers (SMLOs) [22,23]. The very essence of observation schemes for the purpose of parameter
estimation is brought about in [24]. Some investigations did focus on the estimation of disturbance as
a parameter to test the robustness of the observer in offline simulation platforms [25,26]. The amount
of non-linearities involved in a closed loop control system was brought about in [27]. Therefore, there
was a need to decouple a non-linear system and control it in a linear domain. The emergence of power
switching devices and the effect it had on variable frequency control was portrayed in [28]. This also
had a negative effect in increasing the number of non-linearities in a drive system.

Figure 1. Machine model based adaptive parameter estimation schemes.

Presently, real-time validation platforms have taken over from offline simulation platforms.
Several computer languages like Simulink and LabVIEW permit the creation of computer models,
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which can be connected to real-time embedded systems or electronic control units through digital
and analog I/O (input/output) cards. There are many available in the market like xPC and Opal-RT’s
RT-Lab along with real-time targets [29] that are primarily used for mechatronics, power electronics,
electric vehicle drives and power grid protection tests. As part of the model based design strategy for
testing computer models, there are several testing levels namely the software in loop (SIL), model in
loop (MIL) and hardware in loop (HIL). While SIL is employed for verification of the code with respect
to Matlab functions, MIL environment is used for testing the model without any physical hardware
components. The PIL strategy is similar to MIL, however, there is a difference in signal routing that is
real-time in PIL. Although several observers have been designed by making use of the concepts of
sliding modes, artificial intelligence and model reference.

• Very few cater to the handling of measurement and model disturbances and their effects on the
steady state and dynamic performance of the drive.

• Existing disturbance observers have short comings in terms of speed bandwidth, parameter
estimation, torque profile and stability issues.

• Although many have been validated in an offline simulation platform, some in an experimental
test bench, none of them have been tested in a real-time PIL test bench (which is an intermediate
between offline simulation and full hardware verification).

The purpose of this work is to design, test and analyze a SMLO estimating the speed and
disturbance torque for a three phase speed sensorless induction motor.

• By effective placement of the estimated disturbance torque in the proposed observer state dynamic
equation, greater handling of the disturbance is seen as compared to the other disturbance observer
whose tracking performance is affected. The speed bandwidth is increased and the torque holding
capacity is also good. It is comparatively more stable and the dame has been analyzed through
the pole placement technique.

• Furthermore, in a new real-time PIL platform, the plant and the controller are made to interact
through digital and analog I/O cards by providing a real-time link. This testing is based on a
model based design paradigm and has not been performed in the existing literature.

The paper is organized as follows: Section 1 relates to the motivation, literature survey and the
limitations of the existing work and the key contributions of the paper. Section 2 discusses the basic
principle of the adaptive system and the structure of the observer using sliding modes, the proposed
disturbance rejection mechanisms inside the observers and the stability analysis of the conventional
and proposed disturbance observers. Section 3 outlines the mathematical structure of the existing
indirect vector control strategy. Section 4 focuses on an elaborate introduction and representation of
the real-time test bench based on Opal-RT for the system validation. Section 5 presents the detailed
results and analysis of the dynamic and static performance of the observers when subjected to different
test cases followed by the pole placement study and performance comparison. Finally, the conclusion
section emphasizes the importance of the findings to the existing literature and its significance with
respect to vehicle performance and dynamics.

2. Basic Principle of MRAS and Structure of the SMLO

The SMLO with the estimated disturbance torque incorporated into the sliding hyperplane is
shown in Figure 2a. It is a multiple input multiple output system (MIMO) where the inputs are the
terminal quantities of the motor and the outputs are the estimated speed and the disturbance torque.
The state space model of the motor and the observer are used, as it is suited for estimation and control
functions. The primary reason of adaptive control is for parameter estimation. It is to match the
desired performance (observer model) with that of the process (motor model). This principle can
be explained as an optimization problem. Therefore, the essence is to minimize the error for state
convergence. The complete system is shown in Figure 2b. Here, ‘A’ represents the system matrix,
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‘ˆ’ denotes estimated parameters, ‘X’ represents the state variables comprising of the d and q axes
stator and currents rotor fluxes, ‘ksw’ is the switching gain, it can either be a fixed value or a reduced
order matrix. ‘J’, ‘p’ and ‘BV’ represent the moment of inertia, differential operator and viscous friction
coefficient respectively. ‘T∗e’ and ‘T̂dis’ are electromagnetic and estimated disturbance torque, ‘k’ is a
positive gain.

(a)

(b)

Figure 2. (a). Speed sensor-less drive system: sliding mode speed and disturbance observer.
(b). Schematic of the voltage source inverter fed drive system employing the improved observer.

The selection and the stability conditions of the sliding hyperplane play a major role in observer
dynamics. It should be selected such that it satisfies the Lyapunov stability criterion [30]. The sliding
hyperplane ‘S’ and the LFC (Lyapunov function candidate) “V” is a scalar function of S [31].

.
V(S) = S(x)

.
S(x) (1)

The control law is expressed as:

u(t) = ueq(t) + usw(t) (2)
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The switching vector usw(t) satisfying stability conditions:

usw(t) = ηsign(S(x, t)) (3)

where, sign(S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 for S < 0
0 for S = 0
+1 for S > 0

, where, η denotes the switching control gain so as to make (1)

negative definite. This implies:
S(x)

.
S(x) < 0 (4)

This constrains the disturbance. Chattering is produced due to this non-linear high frequency
switching. To remove it, a saturation function with boundary layer of width (Φ) replacing sign (S) with
sat (S/Φ):

sat(S/Φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sign

(
S
Φ

)
if

∣∣∣∣( S
Φ

)∣∣∣∣1(
S
Φ

)
if

∣∣∣∣( S
Φ

)∣∣∣∣ < 1
(5)

2.1. Motor Model (Reference)

dx
dt

= [A]x + [B]u (6)

y = [C]x (7)

where,

x =
[
isds, isqs,ψs

dr,ψ
s
qr

]T
, A =

[
A11 A12

A21 A22

]

B =
[ 1
σLs

I 0
]T

, C = [I, 0], u =
[
vs

ds vs
qs

]T

I =
[

1 0
0 1

]
, J =

[
0 −1
1 0

]

A11 = −
[ Rs

σLs
+

1− σ
σTr

]
I = ar11I

A12 =
Lm

σLsLr

[ 1
Tr

I−ωrJ
]
= ar12I + ai12J

A21 =
Lm

Tr
I = ar21I

A22 =
−1
Tr

I +ωrJ = ar22I + ai22J

2.2. Disturbance Torque Estimation

It is expressed as:

T̂dis = T∗e − J
dω̂
dt
− BVω̂ (8)

2.3. SMLO1

The way the disturbances are handled play a major role in state convergence of an observer system.
The disturbance handling method in SMLO1 is similar to many disturbance observers where the
estimated disturbance is integrated into the state dynamic equation. In this case, the main difference
from the proposed method (SMLO2) is the way it handles the disturbance. Here, it is not constrained
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in the sliding hyperplane. Therefore, the estimated disturbance is not part of the state convergence of
the sliding hyperplane. This is elaborated in the following model:

dx̂
dt

=
[
Â

]
x̂ + [B]u + kswsat

(
îs − is

)
+ d̂ (9)

Sliding surface or hyperplane is s = îs − is and d̂ = k T̂dis

ŷ = [C]x̂ (10)

where îs, is= estimated and actual stator currents.

Â =

[
A11 Â12

A21 Â22

]

Â12 =
Lm

σLsLr

[ 1
Tr

I− ω̂rJ
]
= ar12I + âi12J

Â22 =
−1
Tr

I + ω̂rJ = ar22I + âi22J

Using the reduced order matrix:

ksw =

[
k1 k2

−k2 k1

]T

(11)

The purpose of the switching gain is to make (2) stable through pole placement. The eigenvalues
of the observer must be more negative with respect to the motor for faster convergence of the observer
and motor states. Consequently,

k1 = (m− 1)ar11 (12)

k2 = kp, kp ≥ −1 (13)

Therefore, ‘m’ and ‘k2’ are chosen to reflect the placement of the eigenvalues of the observer and
the motor. Additionally, the dynamics and damping of the observer are affected by the same thing.
‘k1’ is dependent on ‘m’ and motor parameters.

2.4. SMLO2

Here, the observer state dynamic equation is modified as shown:

dx̂
dt

=
[
Â

]
x̂ + [B]u + kswsat

(
îs − is − d̂

)
(14)

where, the sliding surface or hyperplane is s = îs − is − d̂ and d̂ = kT̂dis

ŷ = [C]x̂ (15)

2.5. Adaptive Mechanism with LFC

It is denoted by M:

M = eTe +
(ω̂r −ωr)

2

λ
(16)

‘λ’, being, a positive constant.

184



Energies 2020, 13, 4212

The derivative of the function candidate with respect to t:

dM
dt

= eT
[
(A + kswC)T + (A + kswC)

]
e−

2Δωr
(
eidsϕ̂

s
qr − eiqsϕ̂

s
dr

)
c

+
2Δωr

λ

dω̂r

dt
(17)

where, eids = isds − î
s
ds and eiqs = isqs − î

s
qs

From (16), the estimated speed expression is obtained.

dω̂r

dt
=

λ

c

(
eidsϕ̂

s
qr − eiqsϕ̂

s
dr

)
(18)

‘c’ is arbitrary positive.

2.6. Stability Analysis by the Pole Placement Technique—SMLO1 and SMLO2

For the SMLO1 with conventional disturbance rejection mechanism, we have:

(
A11 + ksw + d̂

)
=

[
ar11 + k1 + d̂ −k2 + d̂

k2 + d̂ ar11 + k1 + d̂

]
(19)

Now, the characteristic equation can be obtained by:

SI−
(
A11 + ksw + d̂

)
= 0 (20)

On solving, we get the characteristic equation of SMLO1:

S2 − 2S
(
ar11 + k1 + d̂

)
+

(
ar11 + k1 + d̂

)2
+

(
k2

2 − d̂
2
)
= 0 (21)

From the characteristic equation, the observer poles are obtained:

S1 =
(
ar11 + k1 + d̂

)
+ j

(
k2 − d̂

)
(22)

S2 =
(
ar11 + k1 + d̂

)
− j

(
k2 − d̂

)
(23)

For the SMLO2 with improved disturbance rejection mechanism, we have:

(
A11 + ksw − kswd̂

)
=

[
ar11 + k1 − kswd̂ −k2 − kswd̂

k2 − kswd̂ ar11 + k1 − kswd̂

]
(24)

The characteristic equation is obtained by:

SI−
(
A11 + ksw − kswd̂

)
= 0 (25)

Therefore, on solving, the characteristic equation of SMLO2:

S2 − 2S
(

ar11 + k1 − kswd̂
)
+

(
ar11 + k1 − kswd̂

)2
+

(
k2

2 − k2
swd̂

2
)
= 0 (26)

The observer poles are obtained as follows:

S1 =
(
ar11 + k1 − kswd̂

)
+ j

(
k2 − kswd̂

)
(27)

S1 =
(
ar11 + k1 − kswd̂

)
− j

(
k2 − kswd̂

)
(28)
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3. Indirect Vector Control Strategy—Mathematical Structure

The pulse width modulation (PWM) technique employed here is hysteresis band current control
as it has short circuit current protection feature, load independent and good torque response. A discrete
PI controller processes and generates the reference torque.

ec = ω̂r −ω∗ (29)

T∗e = ec
[
kp + (ki/s) ∗ Ts

]
(30)

where, ec, kp, ki and Ts denote speed error, proportional and integral gains and sampling time for
control algorithm execution.

ids
∗ =

(
ψr

Lm

)[
1 +

dTr

dTs

]
(31)

iqs
∗ =

(2
3

)( 2
P

)( Lr

Lm

)(Tref

ψr

)
(32)

Stator current components are inversely transformed from synchronously rotating to three phases
stationary reference frame making use of the field angle. Therefore, it is obtained from the slip speed,
as shown:

θf = θsl + θr (33)

i∗as = idssin θ+ iqscos θ (34)

i∗bs =
(1

2

){
−idscos θ+ √3 idssin θ

}
+

(1
2

){
iqssin θ+

√3iqscos θ
}

(35)

i∗cs = −
(
i∗as + i∗bs

)
(36)

The generated currents and the actual sensed three phase currents are compared and the current
errors are fed to the hysteresis band regulator to generate the switching pulses for the inverter.
The hysteresis band value is chosen taking into account the torque and the current pulsations.

4. RT-Lab Based PIL Test Bench

Time critical test and simulation platforms have gained more prominence over offline platforms
owing to faster execution, reduced design and development time. They use a fixed step discrete
time solver compared to the variable step solvers used in offline. The computer model executed by
them is in actual clock time provided the non-linearities and system dynamics are mathematically
modeled. It has several features such as hardware-in-Loop testing (HIL), virtual and real control
prototyping, data logging, etc. The sensorless drive system built using Simulink blocksets is integrated
with RT-Lab blocksets [32,33]. However, the interaction between the plant and the controller is through
analog and digital output and input channels and not by Simulink wires. Instead, a real-time link in
the form of two loopback adapters along with a 40 pin flat ribbon cable is provided to ensure a real
signal interaction. In this real-time link, only signal routing takes place, the signal is not processed.
Therefore the estimated speed and actual 3 phase currents are fed via the analog output channels to the
controller where it is captured by analog input channels. The switching pulses from the controller
is sent via the digital output channels and captured by the digital input channels at the plant side.
The output and the input pins and the number of channels are configured accordingly. This is also
known as PIL testing [34,35]. The analog loopback is standalone hardware equipment, which does not
need a power supply. A +5 V or +12 V source is required for Vsource and Vref for digital feedback.
The operation of both of them are shown in the following schematic in Figure 3a,b. Two carriers are
used as real-time targets. The OP4500 target has a single processor core activated. The OP5600 target
has more processor cores, which makes it possible to have both the plant and controller in two different
RT-Lab subsystems. The system model in the PC is connected to the OP4500/OP5600 targets through
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TCP/IP. The entire real-time test bench used for PIL testing is shown in Figure 3c,d for OP4500 and in
Figure 4 for OP5600 target.

(a) (b)

(c) (d)

Figure 3. Representation of real-time PIL test bench using OP4500: (a) analog loopback; (b) digital
loopback; (c) OP4500 target and power supply for digital loopback and (d) rear view of OP4500 with
analog and digital loopback.

Figure 4. Representation of the real-time processor-in-loop test bench for a multi core target OP5600.

5. Results (Real-Time Simulation and PIL Based Validation): Analysis and Discussion

The time step used for the discretized model was 50 μs. Both the plant disturbance and the
measurement disturbance were introduced in the system. The model was built in Simulink, interfaced
with RT-Lab blocksets and the code generated was loaded and executed by the real-time target OP4500.
Data logging was done by having OpWritefile blocksets of RT-lab to ensure the real-time data gets
populated in mat files from where the real-time results can be extracted. Additionally, the estimated
speed (analog output) and the switching pulses (digital output) were extracted from an oscilloscope to
emphasize and validate (Hardware verification) the signal routing taking place between the plant and the
controller via the Loopback adapter and cables. For, the study, a three-phase, 415 V, 50 Hz, star connected,
4 pole induction motor with the following model parameters considered are given below in Table 1.
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Table 1. Model parameters.

Parameters Ratings

Rated Power 50 HP

Rated Load Torque 237.4 Nm

Rs 0.087 Ω

Rr 0.228 Ω

Lls 0.8 mH

Llr 0.8 mH

Lm 34.7 mH

Inertia, J 1.662 kg m2

Friction factor 0.1

Both observers were analyzed in terms of their dynamic performance, like tracking ability,
disturbance rejection, speed bandwidth, time domain responses like overshoot, etc. Load perturbations
and speed command variations could also be considered as model disturbances. The dynamic
performance was obtained for the following test cases.

5.1. A Constant Speed Reference of 100 rad/s with a Constant Load Perturbation of 100 Nm

Both the observers are validated and analysed accordingly in the below subsections. For a constant
speed command and load, both observers SMLO1 and SMLO2 exhibited similar tracking. The estimated
speed, disturbance torque and rotor flux of both the observers were similar at medium speeds.
The oscillations in speed tracking and the overshoot were tolerable.

5.1.1. SMLO1

The tracking performance of SMLO1 and the dynamic performance of the same in terms of torque
holding capability and flux levels is shown in Figure 5.

(a) (b)

(c)

Figure 5. SMLO1: (a) estimated speed; (b) estimated torque and (c) estimated rotor flux.
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5.1.2. SMLO2

The tracking performance of SMLO2 and the dynamic performance of the same in terms of torque
holding capability and flux levels is shown in Figure 6.

(a) (b)

(c)

Figure 6. SMLO2: (a) estimated speed; (b) estimated torque and (c) estimated rotor flux.

5.2. A Constant Speed Reference of 100 rad/s with a Step Load Perturbation (Initially at 5 Nm, after a Fixed
Time Interval of 15 s, Stepped up to 200 Nm)

Even when the drive was subjected to sudden load step perturbation from light load to rated load,
the performance at medium speeds for both the observers were similar. However, there was a slight
variation in the estimated flux performance of SMLO2 over SMLO1. The estimated flux of the former
stabilized after the load switched to the rated load. This could be attributed to better torque holding
capability of the improved disturbance rejection mechanism.

5.2.1. SMLO1

The tracking performance of SMLO1 and the dynamic performance of the same in terms of torque
holding capability and flux levels is shown in Figure 7.

(a) (b)

Figure 7. Cont.
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(c)

Figure 7. SMLO1: (a) estimated speed; (b) estimated torque and (c) estimated rotor flux.

5.2.2. SMLO2

The tracking performance of SMLO2 and the dynamic performance of the same in terms of torque
holding capability and flux levels is shown in Figure 8.

(a) (b)

(c)

Figure 8. SMLO2: (a) estimated speed; (b) estimated torque and (c) estimated rotor flux.

5.3. A Step Speed Reference with a Constant Load Perturbation of 100 Nm

The difference is observed here when a step speed command is given. Additionally, there were
some oscillations present initially when SMLO1 was tracking at 40 rad/s. As compared, the SMLO2
tracked well at speeds as low as 20 rad/s with considerably very few oscillations. The inability to track
lower speeds may be due to the state convergence going out of bounds due to magnification of the
speed and the stator current errors and also mismatch in critical parameters such as stator resistance,
rotor time constant, etc. The flux pulsations were slightly more in SMLO1 as compared to SMLO2 and
their profiles were different at low and medium speeds. However, the estimated disturbance torque of
both were almost similar due to similar torque error between the motor and the observer errors in
SMLO1 and SMLO2, however, the speed bandwidth varied.
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5.3.1. SMLO1

The tracking performance of SMLO1 and the dynamic performance of the same in terms of torque
holding capability and flux levels is shown in Figure 9.

(a) (b)

(c)

Figure 9. SMLO1: (a) estimated speed; (b) estimated torque and (c) estimated rotor flux.

5.3.2. SMLO2

The tracking performance of SMLO2 and the dynamic performance of the same in terms of torque
holding capability and flux levels is shown in Figure 10.

(a) (b)

Figure 10. Cont.
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(c)

Figure 10. SMLO2: (a) estimated speed; (b) estimated torque and (c) estimated rotor flux.

5.4. Low Speed Command of 30 rad/s with a Constant Load Perturbation of 100 Nm

To verify, the low speed state convergence of both the observers, they were subjected to a low
speed command of 30 rad/s at constant load.

5.4.1. SMLO1

It can be clearly seen for SMLO1 in Figure 11 that around a time interval of 1.5 s, all the parameters
went out of bounds and became unstable. This only reflected the mismatch in parameter and error
dynamics at low speeds.

(a) (b)

(c)

Figure 11. SMLO1: (a) estimated speed, (b) estimated torque and (c) estimated rotor flux.
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5.4.2. SMLO2

Analysis Case 1: Real Time Simulation with Processor-in-Loop Validation

Here, for the purpose of adding more weight to the findings, the low speed performance analysis
was split into two cases. In case 1, the low speed performance was validated in the real time
processor-in-loop platform as was done for all the previous test cases. It can be observed that in
analysis case 1, for SMLO2, in spite of the initial high overshoot and undershoot present for a short
interval of time in the estimated speed, after 3 s, it settled down and provided a smooth tracking,
which is also reflected in the disturbance torque and the estimated flux waveforms shown in Figure 12.

(a) (b)

(c)

Figure 12. SMLO2: (a) estimated speed, (b) estimated torque and (c) estimated rotor flux.

In analysis case 2, only the low speed performance of the SMLO2 was considered, and an
additional fragment for a time period of 4.5–5.5 s was zoomed for the purpose of clarity. Here, the same
was tested in just the real time simulation environment (without the processor-in-loop mode). Here,
the loop back cables, adapter and the power supply for the same was removed. Although the model
was executed in real-time, however, there was no real world signal interaction between the plant and
the controller here.

Analysis Case 2: Real Time Simulation without Processor-in-Loop Validation

It can be seen in Figure 13 that the number of overshoots and undershoots were considerably
reduced as compared to analysis case 1 and in the additional zoomed fragment of the speed waveform,
the tracking performance was very good with a bandwidth ranging from 29.95 to 30.05 rad/s, which only
proved the effectiveness of the same in the low speed region.
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Figure 13. SMLO2: (a) estimated speed and (b) zoomed version of (a).

5.4.3. SMLO1 and SMLO2 Stator Current Error Convergence

The high torque pulsations (estimated disturbance torque) were due to high pulsations in the stator
current. The large stator current pulsations and the subsequent stator current error was converged
well by the SMLO2 as compared to SMLO1, as shown in Figures 14 and 15.

Figure 14. SMLO1 stator current error.

Figure 15. SMLO2 stator current error.
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5.5. Estimated Speed Waveforms for a Constant Load Perturbation of 100 Nm as Recorded in Digital
Storage Oscilloscope

The estimated speed for different speed commands from the oscilloscope is shown in Figure 16a–d.

(a)

(b)

(c)

(d)

Figure 16. Estimated speed: (a) for a constant speed reference of 100 rad/s for SMLO1, (b) for a step
speed reference of 40–140 rad/s for SMLO1, (c) for a constant speed reference of 100 rad/s for SMLO2
and (d) for a step speed reference of 20–140 rad/s for SMLO2.
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The poles of SMLO2 were shifted to the left of SMLO1 as shown in Figure 17 indicating improved
stability performance. The effect of this was more predominant in the low speed regions where the
SMLO2 was able to track speeds around 20 rad/s as compared to SMLO1, which is unable to track
speeds of the same range. The poles being shifted more to the left of SMLO1 had led to increased speed
bandwidth of SMLO2. Owing to high rating of the motor, the dynamics of the stator current impacted
the performance of the observer and as a result, the pulsations in the disturbance torque could be
attributed to the same. For hysteresis regulation, it is difficult to predict the exact switching frequency
since it is not related to the hysteresis band. The OP45OO target provides a maximum switching
frequency of (1/(2 × time step)), i.e., 10 kHz. Owing to successful execution of the model, it is to be
understood that the switching frequency was within the 10 kHz range. Driving an EV is an endless
series of dynamically changing operating states corresponding to the actual driving trajectory and
speed of the vehicle, however, the analysis confines itself to low and medium speeds in the motoring
mode and for constant load torque of 100 Nm (for all cases except Section 5.2, where there is a step
load perturbation). Table 2 highlights the improved dynamic performance of the proposed observer
for the different parameters.

Figure 17. Pole placement of SMLO1 and SMLO2.

Table 2. Performance comparison.

Parameters SMLO1 SMLO2 (Proposed)

Medium speeds and near
synchronous speed (70–150 rps)

Exhibits good tracking
performance Exhibits good tracking performance

Low speeds (<70 rps)
Convergence is affected and does

not track well.
Tracks up to 20 rps and considerably

better disturbance rejection.

Speed oscillations
Has more oscillations even in the

steady state region Comparatively less oscillations

Observer stability
Less stable than the proposed

observer, due to which the speed
bandwidth is reduced.

Proposed observer poles are shifted to
the left of the SMLO1, which explains

the extended speed bandwidth.

6. Conclusions

The two sliding mode observers with different disturbance rejection mechanisms (SMLO1 and
SMLO2) for speed sensor-less induction motor drives were designed, tested and analyzed in a new
real-time Processor-in-Loop test bench based on a distributed real-time package RT-Lab for application
in the EV.

• The purpose of validating the same in a Processor-in-Loop platform is to introduce a real-world
signal routing and interaction where the system is placed virtually in the front end.
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• The dynamic performance can be treated almost on par with an actual physical system with
precise timing requirements.

• SMLO2 displays better performance at low speed regions (less than 70 rps), particularly in terms
of tracking, better disturbance handling and stability.

• It also has increased speed bandwidth (20–150 rps) and reduced speed oscillations at lower speeds
(20–30 rps).

• The proposed method (SMLO2) would be more ideal for the EV to address the issue of range anxiety.
It also delivers considerably better dynamic performance and able to handle disturbances better.

However, it can be further modified considering the real-time trajectory of the EV. This method of
hardware verification can also be further extended to having the real world controller interact with
the virtual plant or vice versa, where the real plant can interact with the virtual controller placed in
the target.
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Nomenclature

ids
s, iqs

s, idr
r, iqr

r d- and q-axis stator and rotor currents in the stationary and rotating reference
vds

s, vqs
s d- and q-axis stator voltages in stationary reference

Tr, Rs, Rr Rotor time constant, stator and rotor resistance
σ, Lr, Lm, Ls Leakage reactance, rotor, magnetizing and stator self inductance
Lls, Llr Stator and rotor leakage inductances
ωr, ω̂r,ω∗,ωbsync Actual, estimated, reference and base synchronous speed
ψds

s, ψqs
s, ψdr

s, ψqr
s d and q axes stator and rotor flux linkages in stationary reference

ϕ̂d, ϕ̂q d and q axes estimated rotor flux linkages
θf, θsl, θr Field angle, slip angle and rotor angle
ids
∗, i∗qs d and q axes stator currents in synchronously rotating reference

i∗as, i∗bs, i∗cs Three phase reference currents
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Abstract: Electric vehicles (EVs) parking lots are representing significant charging loads for relatively
a long period of time. Therefore, the aggregated charging load of EVs may coincide with the peak
demand of the distribution power system and can greatly stress the power grid. The stress on the
power grid can be characterized by the additional electricity demand and the introduction of a new
peak load that may overwhelm both the substations and transmission systems. In order to avoid the
stress on the power grid, the parking lot operators are required to limit the penetration level of EVs
and optimally distribute the available power among them. This affects the EV owner’s quality of
experience (QoE) and thereby reducing the quality of performance (QoP) for the parking lot operators.
The QoE is represents the satisfaction level of EV owners; whereas, the QoP is a measurement
representing the ratio of EVs with QoE to the total number of EVs. This study proposes a fuzzy
logic weight-based charging scheme (FLWCS) to optimally distribute the charging power among the
most appropriate EVs in such a way that maximizes the QoP for the parking lot operators under the
operational constraints of the power grid. The developed fuzzy inference mechanism resolves the
uncertainties and correlates the independent inputs such as state-of-charge, the remaining parking
duration and the available power into weighted values for the EVs in each time slot. Once the weight
values for all EVs are known, their charging operations are controlled such that the operational
constraints of the power grid are respected in each time slot. The proposed FLWCS is applied to a
parking lot with different capacities. The simulation results reveal an improved QoP comparing to
the conventional first-come-first-served (FCFS) based scheme.

Keywords: charging scheduling; electric vehicles; fuzzy logic weight; optimal distribution of power;
parking lot

1. Introduction

The growing concerns of carbon dioxide emissions, the effect of global warming and the reliance
on fossil fuel motivated the use of electric vehicles (EVs) in the transportation sector. As a result,
the transportation sector is rapidly moving towards the use of EVs including both the plug-in hybrid
electric vehicles (PHEVs) and battery electric vehicles (BEVs). A PHEV has the option to use energy
either from the electric battery or from the on-board engine–generator and has the flexibility to be
recharged from the external power socket as well as from an on-board engine–generator [1]. A BEV uses
an electric battery to run, which can be recharged only from external electrical sources [2]. The charging
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of both PHEVs and BEVs is solely dependent on the power grid; therefore, a considerable energy
demand of vehicles will shift from the fossil fuel to the electric power grid [3].

The advancement in the Internet of things (IoT) technology is playing an important role in the
intelligent transport systems (ITS) including smart mobility, vehicle-to-vehicle (V2V) communication,
vehicle-to-infrastructure (V2I) communication and autonomous vehicles. Smart mobility is a modern,
efficient and sustainable system that offers a revolution in all modes of transportation with respect to
vehicles, infrastructures and people. The V2V communication enables nearby vehicles to exchange
information together in order to improve driver safety and avoid accidents. The V2I communication
enables moving vehicles to exchange valuable information with roadside units (RSU) in order to
improve road efficiency and optimize travel time. In autonomous vehicles, the automated driving
system relies completely on the vehicle’s onboard computer, hardware and software in order to monitor
both the environment condition as well as the road status without any human intervention [4–6]. As a
result, the EVs including autonomous and connected EVs are rapidly growing in the transportation
market and could potentially influence the electricity distribution infrastructure [7–9]. This is because
EVs are moving across the city and are representing a spatial and temporal based varying charging load.
The future public parking lots will represent a huge load for relatively a long period of time that may
coincide with the residential peak load and will overload the power grid [10]. A relation between the
vehicles on the street and the residential load profile has been identified in [11], which demonstrated
an overlap between vehicles on the street and the residential peak load from 2:00 PM to 6:00 PM.
During such a time period, a high penetration level of charging EVs can stress the power grid [12]. The
stress on the power grid can be characterized as an additional electricity demand that may introduces a
new peak load and will overwhelms the substations in the low-voltage distribution network. To avoid
the stress on the power grid, the parking lot operators are required to limit the penetration of charging
EVs and distribute the power within a limited number of EVs. As a result, the requirements of the
power grid can be satisfied and several cost factors (i.e., the upgrade of the low-voltage distribution
transformer, the upgrade of the transmission infrastructure, generation of more power for mitigating
the new peak load) can be saved. However, on the other side, this can have a significant effect on the
desired quality of experience (QoE) level for the EV owners during their parking duration.

The QoE defines the EV owner’s satisfaction level and is a function of the battery capacity,
current and required state-of-charge (SoC) of an EV as illustrated in Figure 1. The figure demonstrates
the different status of an EV battery highlighted with different colors. The battery SoC is 30%
(green highlighted), the QoE is 40% (white highlighted) and the lower and upper limits are 20% and
80%, respectively (red highlighted) for maintaining the efficiency of the battery. The satisfaction of
QoE is a base to measure the quality-of-performance (QoP) for the parking lot operators. The QoP
can be defined as the ratio of EVs with satisfied QoE to the total number of requesting EVs during
the operational hours of the parking lot. Considering 12 h as the parking operational hours, a higher
value of QoP corresponds to better performance and vice versa. Therefore, at any time instant, the
selection of the most appropriate EVs for charging among all the EVs candidates such that maximizing
the QoP while respecting all the constraints from the power grid is a complex and challenging task
for the parking lot operators. The complexity of this problem is due to the dependency of QoE
satisfaction level on multiple and independent factors, including the battery capacity, the required
SoC, the remaining parking duration, the current parking occupancy, the charging power of charging
stations (CSs), the current baseload on the low-voltage substation, and the amount of available power
from the power grid. These are spatial and temporal based varying parameters with a high degree
of uncertainty which results in a more complex system. Considering the required SoC of an EV
battery as an example, the drivers usually determine the required SoC in terms of the battery level
such as low battery level (i.e., high the required SoC), medium battery level (i.e., medium the required
SoC) and high battery level (i.e., low the required SoC). The complexity and nonlinearity of temporal
and spatial-based varying real-time systems can be resolved into a simple weighted sum of linear
subsystems through the fuzzy logic inference mechanism [13,14].
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Figure 1. Illustration of the different statuses of an electric vehicle (EV) battery at the plug-in time.

This work aims to develop a charging strategy for EVs in a parking lot that maximizes the QoE
and the QoP under the bounded constraints of the power grid, using a fuzzy logic inference mechanism.
Moreover, the study aims to answer the research questions which include: what are the main entities
involved in the charging system? What are the requirements of these entities? How to control the
charging EVs such that it minimizes the PL load under the permissible limit of the power grid while
maximizing the EV owner’s satisfaction? The contributions of this research work are as follows.

• The requirements of EV owners and the power grid are identified, and a charging scheme based
on a fuzzy inference mechanism for EVs in the parking lot is developed with the aim to maximize
the QoP under the bounded constraints of the power grid;

• The problem is formulated with an objective function and solved through the fuzzy logic
inference mechanism. Among the different parameters, three of the most relevant parameters
(i.e., the required SoC, remaining parking duration and available power) that influence the QoP
are selected to model the fuzzy logic inference mechanism;

• The developed fuzzy inference mechanism correlates the required SoC, remaining parking duration
and available power in real time and compute weight values for each of the EVs requesting for
the charging operations. Once the weight values for each of the competing EVs are known, their
charging operations are controlled, and the available power is distributed among the optimal
number of charging EVs;

• An algorithm for FLWCS is developed and applied to a parking lot with different parking capacities.
The performance of the algorithm is validated against the FCFS-based scheme and the results are
verified in terms of QoP.

2. Literature Review

With the growing penetration of EVs in the transportation market, it is indispensable for the fleet
operators to effectively manage the charging load of EVs considering the requirements of both the
power grid and the EV owners. In literature, the problem of managing the charging load of EVs in
parking lots has been studied from different perspectives and objectives.

The authors in [15] studied the problem of charging cost minimization by considering three
different types of public EV fleets attached with a photovoltaic (PV) system. The three parking lots
included: (1) commercial customer’s fleet, where the charging operation is mainly performed at
night time, (2) commuter customer’s fleet, where the charging is performed during day time and
(3) opportunity customer’s fleet, for commuters with short parking duration. Three different options for

203



Energies 2020, 13, 3119

forecasting electricity generation from the PV system along with controlled and uncontrolled charging
strategies were considered. In each fleet, the charging cost is optimized by utilizing electricity from the
PV system. By considering the day-ahead energy market, coordination and payment mechanism for a
group of sub-aggregators were introduced in [16]. The proposed strategy motivated the participation
of sub-aggregators through incentives, where sub-aggregators reports their charging requirements
to the main aggregator. The main aggregator employed a bidding algorithm on behalf of requesting
aggregators and the purchase of energy and the corresponding payment were then distributed among
them. The results showed a substantial cost reduction proportional to the fleet size and the participation
of the sub-aggregators. However, these studies focused on the objective of minimizing the charging
cost; whereas, the EV owner’s satisfaction in terms of their required energies is yet to be explored.

In ref. [17], load shifting potential of plug-in electric vehicles (PEVs) was studied for domestic,
work and public charging infrastructures. The study concluded that the coordinated charging through
demand response can help to utilize the renewable energy sources and support to shift a significant
amount of EVs charging load. The authors in [18] studied a rectangle placement algorithm for
scheduling the charging load of EVs at a parking lot with the aim to reduce variation in load. In this
algorithm, the energy requirement for a PEV was computed as a rectangle whose length is time and
height is the power. The results verified that the rectangle placement algorithm combined with the
charging level selection reduced the average load variation, improved the load factor and flatten the
total load profile comparing to the traditional first-come-first-served based charging. An optimal
charging scheduling strategy was studied in [19], which considered multiple factors, such as transport
system information (road length), vehicle characteristics (velocity and wait time) and power grid
information (load deviation and node voltage) for managing the EVs. The proposed optimal strategy
showed reduced losses, small voltage drop in nodes and optimized the load curve. A peak load
minimization strategy based on binary linear programming coupled with a bisection algorithm for
parking lot was proposed in [20]. The proposed strategy was simulated with a fast CS and improved
results were obtained compared to the uncontrolled charging strategy. All these studies mainly
proposed solutions for optimizing the load of the power grid but lacking to address the requirements
of the EV owners and the parking lot operators.

The authors in [21] presented a multi-objective optimization control strategy to minimize the
charging cost of PEV owners and load variance in the low-voltage network. Several strategies such
as uncontrolled charging, smart charging, smart charging with voltage unbalanced reduction (VUR)
and smart charging with VUR and vehicle-to-grid (V2G) were simulated by considering a low-voltage
distribution network in Denmark. The results concluded that the proposed multi-objective strategy
can reduce both the energy losses, charging cost and can support a high penetration rate of PEVs.
The scope of this work was limited to residential customers where the EVs are staying overnight and
have enough time to be recharged using slow charging rate, but the proposed solution may not be
effective for public parking lots with EVs having shorter stay time. Two-phase optimization method
for optimizing the charging cost and smoothing the total load profile was presented in [22]. In the
first phase of the model, the electricity price was defined according to the status of the historical daily
power curve, for ensuring the maximum profit to both power grid and PEV owners. The second phase
then reduces the load fluctuation by optimizing the charging and discharging power of EVs according
to the power grid constraints. The results showed the effectiveness of their proposed strategy by
smoothing the total load profile than the uncontrolled charging strategy. Inspired from the gray wolf
optimizer (GWO), the authors in [23] proposed an improved binary gray wolf optimization (IBGWO)
algorithm for parking lot coupled with an energy storage system (ESS) and a PV system. The work
aimed to reduce the charging load and cost by utilizing the usages of PV and ESS in the parking
lot. The simulation results showed that their proposed IBGWO has a superior performance over the
other meta-heuristic algorithms. These studies were tested for a small number of EVs with limited
battery capacities and yet their feasibility need to be explored for sizeable parking lots with larger
battery capacities.
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The authors in [24] proposed a CS selection algorithm based on the fuzzy logic controller with
the aim to balance the charging load of EVs and reduce their waiting time. Taking into account the
service time (charging time), the speed of EVs and the distance between the EVs current position and
the CSs, the fuzzy logic controller was used to determine a weighted priority value for each pair of
EVs and CSs. The simulation results showed superior performance by reducing the average waiting
time than the random and maximum weight-based scheduling schemes. Re-routing of moving EVs
towards an appropriate CS based on multi-agents system for distributing the charging load of EVs
among multiple geographically dispersed CSs was proposed in [25]. In this scheme, the EV agent
was developed through fuzzy logic controller, which was requesting the other high-level agents to
provide reservation services for charging. A total of 21 EVs with a battery capacity of 100 kWh and 6
CSs dispersed within a defined virtual block were simulated. The results showed that the proposed
multi-agents based scheme supported a cognitive distribution of the charging load of EVs among
the CSs. However, these studies proposed solutions for minimizing the waiting time and balancing
the charging load among CSs but lacking to address the charging level satisfactions requirements of
EV owners.

It is worth mentioning that all the requirements, including the constraints of the power grid, the
EV owners QoE and the QoP of parking lots are of utmost importance while scheduling the charging
operations of EVs in parking lots. In order to achieve these requirements, multiple uncertain parameters
such as battery SoC, parking duration, required SoC, and available energy [26] needs to be considered.
Most of the work solved the charging optimization problem by using dynamic & stochastic programing
and heuristic algorithms with the assumption of perfect knowledge on SoC and required SoC which
may result in an imprecise decision. To the best of our knowledge, none of the above work focused on
an arbitrage consideration of the aforementioned requirements while scheduling the charging of EVs
in parking lots. The proposed FLWCS utilizes the services of the fuzzy logic inference mechanism and
correlates the information from EVs (i.e., required SoC and remaining parking duration) and from the
power grid (i.e., available power) into weighted values for the EVs competing each time slot. Based on
the weight values, the charging operations of EVs are controlled in such a way that help to maximize
the QoE for EV owners and thereby the QoP for the parking lot under the operational constraints of
the power grid.

The ongoing part of this research work is to elaborate on the behavioral aspects of electric vehicle
charging including driving (social behavior of owners travels) and charging behavior (suitable charging
locations, market-economics, the impact of charging load, waiting and charging time) from the
socioeconomic perspective.

3. Proposed Fuzzy Logic Weight Based Charging Scheme

The scheduling problem for a large scale of EVs in a parking lot involves various parameters
from multiple domains which results in a more complex and system [27]. The selection of the most
relevant parameters and their corresponding correlation can enhance the efficiency of the algorithm.
This section gives a comprehensive presentation of different domains and the correlation of their
parameters through the fuzzy inference mechanism for the proposed FLWCS. An overview of the
conventional system and its associated deficiencies are exemplified in the following.

Let us assume that there are five EVs in a parking lot and the operators are expected to schedule
their charging operations. For the sake of simplicity, all the EVs are considered to be of the same
battery capacities (i.e., 40 kWh each), however; they have different arrival times, departure times,
SoCs and parking durations. The arrival sequence of these EVs is such as EV1 arrived first, then EV2,
etc. The SoCs at the arrival time are 25%, 25%, 37%, 50% and 62% for EV1, EV2, EV3, EV4 and EV5,
respectively. Based on the battery capacities and SoCs the required QoEs are 75%, 75%, 63%, 50% and
38% for EV1, EV2, EV3, EV4 and EV5, respectively. The total operational time period of the parking lot
(in this example) is assumed to be 3 h, which is normalized into a total of 12 equal time slots with a
slot size of 15 min.
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Given the arrival and departure time sequence of each of the EVs, the parking durations are
computed as 10, 6, 7, 6 and 3 time slots for EV1, EV2, EV3, EV4 and EV5, respectively. Considering
that each of the parking spots is equipped with fast CS, which can support a charging rate of 20
kW/h, such that each of the CSs is providing charging power of 5 kW/time slot. It is further assumed
that at any time slot t, the power grid can support the charging of three EVs simultaneously. The
parking lot operators are required to satisfy the QoE requirements of all the five EVs while respecting
the power grid operational constraints. The charging scheduling of these EVs with respect to the
conventional FCFS scheme and the proposed FLWCS and their corresponding output in terms of
power consumption, their QoE and QoP, are visualized in Figure 2. In the case of FCFS-based scheme
(Figure 2a), the EVs start charging immediately upon their arrivals; whereas, the proposed FLWCS
scheduled them based on their weight values computed through multiple factors, including the
updated SoC, the remaining parking duration (RPD) and the power grid operational constraints, etc.
as depicted in Figure 2d. In this example, both schemes are able to follow the power grid constraints as
shown in Figure 2b,e. However, in contrast to the FCFS-based scheme, the proposed FLWCS is able
to fulfill the QoE requirements for all the EV owners and thereby improve the QoP for the parking
lot. Considering the QoE as charging until the full battery capacity, the proposed FLWCS is able to
improve the quality of performance by 40% comparing to the FCFS-based scheme, as can be observed
from Figure 2c,f.

Figure 2. Example that illustrates the charging operations of EVs with first-come-first-serve (FCFS)
and fuzzy logic weight based charging (FLWCS) (a) FCFS and (d) FLWCS; power consumption with
(b) FCFS and (e) FLWCS; QoE of EV owners and the QoP of parking lot (c) FCFS and (f).

3.1. System Model of the Proposed FLWCS

The system model of the proposed FLWCS is presented in this section, as illustrated in Figure 3.
It consists of several functional components including the power grid, the power distribution
infrastructure (substations & power line), the distribution system operators (DSO), the baseload
(BL) of electricity consumption for residential and commercial buildings, the EVs parking lot and the
communication network. The power grid controls the electricity production from different energy
sources such as fossil fuels, natural gas and nuclear. The generated electricity is transmitted to the
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DSO through a high voltage (HV) power network covering a long distance and needs to be converted
to medium voltage (MV) through the HV/MV substations. The functions of DSO include the collection
of demands from residential and commercial buildings and allocating power to the low-voltage
distribution network. The low-voltage distribution network is supporting two kinds of load: the BL
and an EV charging load (parking lot load). The BL is the electrical demand for daily needs such as
lighting, water/room heating, air condition, laundry machine, etc. This consumption of electricity is the
basic requirement of daily life and depends on the occupancies of peoples, lifestyles and conveniences.
Therefore, the BL is considered to be an average consumption of the residential and commercial
buildings; whereas, the parking lot load represents the charging load of EVs in parking lot, connected
to the low-voltage distribution network. Assuming the futuristic smart parking lot scenarios, this
work considers a parking lot with installed electrical infrastructures such that each of the parking
spots is equipped with a CS. Furthermore, each of the CSs has a J1772 connector that can be plugged
into the inlet of EV and is coupled with a power supply of 208–240 Volt alternate-current (AC) for
feeding about 19.2 kWh energy (i.e., level 2 charging option) [28]. The parking lot controller is a central
entity, responsible for running the proposed FLWCS and the overall management of the parking lot.
The proposed FLWCS is classified into three main components according to their functions.

Figure 3. System model of the proposed fuzzy logic weight based charging scheme.

• Data aggregation and CS allocation: The EV owners are expected to provide their information
such as arrival time, departure time and SoC to the parking lot controller upon their arrival.
The information is initially processed and any of the available CSs are allocated to the newly
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arrived EVs. The FLWCS manages and controls the charging operations of all the connected EVs
in each scheduling period and requires the status of the CSs and the BL information in real time.
It is envisioned that a bidirectional communication network is established between each of the
CSs and the parking lot controller, and smart meters installed at the CSs are used to detect the
status (charging/idle) and measure the amount of energy consumption for the connected EVs [29].
The power consumption of the residential and commercial buildings connected to the low-voltage
distribution system is measured through the advanced metering infrastructures (AMI) installed at
the customer’s premises and the BL is updated to the DSO and the parking lot controller through
a wide area network [30].

• Fuzzy logic controller: The charging scheduling problem in this work is for a sizeable public
parking lot which represents a significant charging load if all the EVs are charged simultaneously
in the current time slot. Based on the EV owner’s behaviors, EVs are classified into a routine and
non-routine EVs [31]. The routine represents the EVs commuting on a daily basis between the
home and workplaces and EVs are parking during the duty hours. The non-routine are the EVs
which can be parked for a long or short duration depending on the type of their owners activities
such as visiting a shopping mall, theaters, an appointment with a doctor or other social events [32].
Depending on the type of EVs in the parking lot, the operational data of EVs and the current
status of the power grid play an important role in the fuzzy logic controller. The operational data
of each of the EV in the set of EVs (NEV) (including required SoC and RPD and the amount of
available power (AP) computed through the BL obtained in real time (t) are the inputs to the
fuzzy logic controller. The developed fuzzy inference mechanism evaluates the required SoC,
the remaining parking duration and the available power and computes weight values normalized
in [0, 1] range for the EVs in each time slot.

• Charging control and power distribution: Considering the weight values obtained through the
fuzzy inference mechanism (according to the updated status of the power grid and the EVs
information), the number of charging operations is controlled, and the power is distributed among
the most appropriate EVs. The current status of the CSs and the updated SoC (power consumption)
of each the EVs are measured and reported for consideration in the next scheduling period. The
process is repeated during the parking operational hours and the optimized power consumption
and the QoE for each of the EVs are recorded in each of the scheduling periods.

3.2. Problem Formulation and Objective Function

The arrival and departure of an EV is a function of time and therefore, at any time slot t,
a new arrived EV has to be added while a served EV has to be removed from the set of EVs.
Let NEV(t) =

{
EV1(t), EV2(t), · · · , EVl−1(t)

}
represents the set of parked EVs at time slot t, the arrival

and departure of an EV can be handled by using union (∪) and subtraction (\) operations of set theory
as given in Equation (1), where EVl and EVi represents newly arrived and served EVs. The parking lot
operators record the current and future necessary information obtained from the EV owners for each of
the new EVs. The required SoC of the newly (last) arrived EVl is a function of the SoC and its battery
capacity, and for any ith EV it can be computed according to Equation (2). The total load of the parking
lot is the aggregated demand of all the existing EVs and the new arrived EV in the current time slot
t and can be computed according to Equation (3). The total power consumption of the low-voltage
distribution system at time slot t can be obtained through summing up the baseload of the residential
and commercial building and the total energy demand of the parking lot, as given by Equation (4).

NEV(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
NEV(t) ∪ EVl(t),

NEV(t)\ EVi(t),

if tarr
EVl
≤ t

if tdep
EVi

= t
(1)

SoCreq
EVl

(t) =
(
1− SoCEVl(t)

)
∗ BCEVl (2)
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EPL
total_demand(t) =

l−1∑
i=1

SoCreq
EVi

(t) + SoCreq
EVl

(t) (3)

TLdist_ grid(t) = BL(t) + EPL
total_demand(t) (4)

where t is the current time slot, tarr
EVl

is the arrival time of newly arrived EV, tdep
EVi

is the departure

time of any ith departing EV, BCEVl and SoCreq
EVl

are the battery capacity and the required SoC of the

newly arrived EV, EPL
total_demand is the total energy demand of parking lot and TLdist_ grid is the total load.

To avoid the overloading of the power grid, the total load must be within the nominal capacity of the
low-voltage distribution transformers. As mentioned earlier, the baseload represents the fundamental
requirements of the customers and is assumed to be an uncontrolled load, whereas considering the
flexibility of EV owner’s behavior, the parking lot load is assumed to be a controllable load. In order to
keep the total load within the normal operation, certain limits are required to be considered. The authors
in [33] defined an upper reference power limit (URPL) based on the transformer capacity. However,
for the sake of safe operation, we maintained some margin between the URPL and transformer capacity.
This work defines the URPL by considering the transformer capacity and the previous day baseload
profile (assuming that the current and the previous day have a similar pattern of power consumption)
as given by Equation (5).

URPL(t) = Transcap −
⎛⎜⎜⎜⎜⎜⎝ 1

T

T∑
t=1

BL(t) ×ω
⎞⎟⎟⎟⎟⎟⎠ (5)

where Transcap is the transformer capacity, T is the total number of time slots, BL is the baseload andω is
a percentage stability factor define by the low-voltage distribution operators for voltage and frequency
maintenance. The second part in first term in Equation (5) represents some margin between the Transcap

and URPL. The available power (AP) varies according to the varying BL profile and can be computed
based on the URPL and the current value of BL profile, as given by Equation (6). The relationship
between the total power demand

(
EPL

total_demand

)
of parking lot and the AP influences the overloading of

the distribution network. The EPL
total_demand (Equation (3)) and AP (Equation (6)) can be correlated in any

of the two possible cases [34]. In the first case, the AP is enough to support the charging load of all the
requesting EVs in the current time slot t; whereas, in the second case, the power demand is higher
than the AP, as expressed by Equations (7) and (8). Depending on the AP and charging power (PC) of a
CS, the latter case will allow charging a certain number

(
NCha

EV

)
of EVs as calculated by Equation (9).

AP(t) = URPL(t) − BL(t) (6)

EPL
total_demand(t) ≤ AP(t) (7)

EPL
total_demand(t) > AP(t) (8)

NCha
EV (t) =

∣∣∣∣∣∣AP(t)
PC

∣∣∣∣∣∣ (9)

At any time slot t, allowing to charge more than NCha
EV number of EVs will abruptly affect the

peak-load and may worsen the performance of the distribution network. In this case, the parking lot
operators have either to request more power allocation or to cut down their charging load. Depending
on the power generation and infrastructure capacities, the allocation of more power is costly and time
consuming; whereas, reducing the power demand is more a feasible solution, but the complexity
presents challenges on how to choose the most appropriate EVs for charging while restricting/holding
the others. This work defines the objective function of minimizing the parking lot power demand by
controlling the charging of EVs through their weight values, as given in Equation (10).
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min
EPL

total_demand

PT∑
t=1

C

⎡⎢⎢⎢⎢⎢⎣
NEV∑
i=1

{(
BCEVi × SoCEVi

)
+ DEVi nPC

}⎤⎥⎥⎥⎥⎥⎦(t) (10)

where PT is the total parking duration, C is a binary variable representing whether the parking lot
is empty or not, DEVi is the decision variable used to control the charging of the ith EV and n is the
charging efficiency. Depending on the weight value (W) of the ith EV, the accumulated load and the
URPL, the value of DEVi can be defined as given by Equation (11).

{
DEVi(t) = 1,
DEVi(t) = 0,

if WEVi(t) is highest & TLdist_ grid(t) ≤ URPL(t)
Otherwise

(11)

Each of the ith EV has a defined parking duration and a time period (T C
EVi

) for the charging
operation, such that the charging time is the subset of parking duration. The parking duration is
computed based on the arrival and the departure time sequence for each of the EVs. The charging time
period of the ith EV can be defined according to its battery capacity, required SoC and the charging
power per time slot, as expressed by Equation (12).

T C
EVi

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
BCEVi −

(
SoCreq

EVl
× BCEVi

)
Pc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12)

The optimization function defined in Equation (10) is subject to several technical and non-technical
constraints. The parking lot has a known operational hour, defined by a pair of starting and ending
time (tP

st, PT). The arrival and departure of the ith EV must be within the parking operational hours.
The charging time period must be within the arrival and departure time slots of EV. These constraints
are defined in Equations (13)–(15).

tP
st ≤ tarr

EVi
(13)

tdep
EVi
≤ PT (14)

tarr
EVi
<T C

EVi
≤ tdep

EVi
(15)

To maintain the battery efficiency, the SoC, charging cycles (Bcyc
EVi

) of the battery and the charging
power of the ith EV must be within the defined maximum SoCmax

EVi
, maximum number of battery

charging cycles
(

Bmax_cyc
EVi

)
and maximum charging power Pmax

C [35] as given in Equations (16)–(18).
The total load at any time slot t must be within the URPL, as given in Equation (19).

SoCEVi(t) ≤SoCmax
EVi

(16)

Bcyc
EVi
≤ Bmax_cyc

EVi
(17)

PEVi
C (t) ≤Pmax

C (18)

TL(t) ≤ URPL(t) (19)

The charging operation of EVs in each time slot influences the total load of the power grid.
The charging impact on total load is measured in percentage and can be computed with respect
to the highest peak load and the URPL, as given in Equation (20). The QoE for the ith EV is the
function of the SoCEVi , SoCreq

EVi
and BCEVi and can be computed according to Equation (21). Similarly,

the parking lot QoP is function of the number of satisfied EVs
(
NEVsatis f ied

)
, the number of unsatisfied

EVs
(
NEVUnsatis f ied

)
, the QoE and the total number of EVs (NEV) during the parking lot operational

hours and can be computed according to Equation (22).
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Load impact (%) =

⎧⎪⎪⎨⎪⎪⎩
(

peakload−URPL
peakload

)
× 100,

0,

If peakloadbus
> URPLbus

Otherwise
(20)

QoEEVi=

⎧⎪⎪⎨⎪⎪⎩ 1, if SoCreq
EVi
≥ 1

SoCreq
EVi
− SoCEVi , if SoCEVi < SoCreq

EVi
< 1

(21)

QoP=

⎛⎜⎜⎜⎜⎜⎝ |NEV | −
∑NEV

i=1 EVUnsatis f ied_QoE (i)

|NEV |

⎞⎟⎟⎟⎟⎟⎠ (22)

3.3. Fuzzy Logic Inference Mechanism

Definition 1. The crisp sets are based on the theory of complete knowledge, for instance, an element is either a
member of a set or not. Whereas in fuzzy sets the degree of membership function determines the belonging of an
element to the set. An element x in fuzzy set A ∈ X (universal set) can be represented through the degree of its
membership function as expressed in Equation (23) [36].

A =
{
(x, μA(x)) : x ∈ X

}
(23)

where μA(x) is the degree of membership function which represents the belonging of x to the fuzzy set
A in the range [0, 1]. The degree of membership function defines how closely the element x belongs to
the set A. A higher degree represents a strong whereas a lower degree represents a weak belonging of
x to the fuzzy set A. The concepts of membership functions used in this work are as follows:

• Triangular membership function: A triangular membership function reflects the shape of a triangle
and can be defined by three parameters a, b and m such that a<m< b, as given in Equation (24) [37].

μA(x)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if x ≤ a

x−a
m−a , if a < x ≤ m
b−x
b−m , if m < x ≤ b

0, if b ≤ x

(24)

• Left-Right open shoulder trapezoidal membership function: The left–right open membership functions
can be defined by two parameters a and b and graphically represented by & Γ symbols and the
functions can be written as Equations (25) and (26).

μA(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x ≤ a

b−x
b−a , if a < x ≤ b

0, if x > b
(25)

μA(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x ≤ a

x−a
b−a , if a < x ≤ b

1, if x > b
(26)

• Trapezoidal membership function: The trapezoidal membership function resembles a trapezoidal
shape and can be defined by four parameters a, b, c and d. The parameters a and d defines the
abscissa of two vertices at the bottom while the parameters b and c denotes the abscissa of the two
vertices at the top of the trapezoidal [37]. Mathematically, it can be expressed as Equation (27).
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μA(x)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if (x ≤ a) or (x > d)

x−a
b−a , if a < x ≤ b
1, if b < x ≤ c

d−x
d−c , if c < x ≤ d

(27)

3.3.1. Fuzzification of Crisp Inputs and Their Fuzzy Membership Functions

The charging operation of the ith EV is controlled through the decision variable DEVi (Equation (10)),
which is based on its weight value. There are multiple parameters such as arrival and departure
time, the SoCreq, the RPD, the BL and the AP from both the EVs and the power grid domains which
needs to be considered while computing the W value for the ith EV. The independent nature and
the temporal-based variation of these parameters are introducing a higher degree of uncertainty,
which presents complexity and challenges in the task of weight computation. It is believed that the
SoCreq, the RPD and the AP are the most relevant inputs that influence the weight value in each time
slot [38]. Therefore, to compute an adequate weight value for the ith EV, this work correlates the SoCreq,
the RPD and the AP through the fuzzy inference mechanism. These crisp inputs should be linearly
structured between the minimum and maximum boundaries with their corresponding units and
should be defined through the set of linguistic variables for representing them through the membership
functions. The RPD input is based on the operating hours (12 h) of the parking lot, which is normalized
into 48 time slots such that each time slot represents 15 min. Considering the dynamic behavior of EV
owners, the RPD is modeled with three membership functions and is represented with linguistic terms
short duration (SD), average duration (AD) and long duration (LD) [25,32]. The linguistic terms SD
and LD are implemented as left and right open shoulder membership functions, whereas the term
AD is implemented as trapezoidal membership functions using Equations (25)–(27). The fuzzy set SD
and AD contains the degree of membership functions for the set of EVs having RPD in the range of
0 ≤ μnEV (RPD) ≤ 8 time slots and 4 ≤ μnEV (RPD) ≤ 20 time slots, respectively. The nEV is the number of
EVs in the set. The fuzzy set LD holds the degree of membership functions for the set of EVs with
RPD in the range of 16 ≤ μnEV (RPD) ≤ 48 time slots. The implementation detail of RPD is given in
Table 1 and is virtualized in Figure 4a. The SoCreq is a function of SoC and the battery capacity and is
measured in the range of [0–1]. It is modeled with five membership functions which are represented
with linguistic terms very low (VL), low (L), medium (M), high (H) and very high (VH), respectively.
The fuzzy sets VL and VH contain the degree of membership functions for the set of EVs with SoCreq in
the ranges of 0 ≤ μnEV (SoCreq) ≤ 0.3 and 0.7 ≤ μnEV (SoCreq) ≤ 1, respectively. Similarly, the fuzzy sets
L, M and H contains the degree of membership functions for the EVs with SoCreq in the ranges of
0.1 ≤ μnEV (SoCreq) ≤ 0.5, 0.3 ≤ μnEV (SoCreq) ≤ 0.7 and 0.5 ≤ μnEV (SoCreq) ≤ 0.9, respectively. The details
of all parameters for the implementation of SoCreq is given in Table 2 and is shown in Figure 4b. The
third input is the AP which is measured in kW and is normalized from low available power to high
available power in the range [0–100]. The AP is modeled with five membership functions and is
represented with linguistic terms very low AP (VLAP), low AP (LAP), medium AP (MAP), high AP
(HAP) and very high AP (VHAP). These linguistic terms are implemented with two left–right open
shoulders and three triangular membership functions using Equations (25)–(27). Furthermore, the
VLAP and VHAP contain the degree of membership functions for the time slots with AP in the ranges
0 ≤ μt(AP) ≤ 30 and 70 ≤ μt(AP) ≤ 100, respectively. By this way, the fuzzy sets LAP, MAP and HAP
contain the degree of membership functions for the time slots in the ranges of 10 ≤ μt(AP) ≤ 50, 30 ≤
μt(AP) ≤ 70 and 50 ≤ μt(AP) ≤ 90, respectively. The implementation detail of AP is given in Table 3
and is shown in Figure 4c.
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Table 1. Implementation detail of membership functions for RPD.

Fuzzy Sets Type of MF Arguments (Time Slots)

SD Left open shoulder a = 4, b = 8
AD Trapezoidal a = 4, b = 8, c = 16, d = 20
LD Right open shoulder a = 16, b = 20

Figure 4. Membership functions of the fuzzified input and output variables. (a) Membership functions
of remaining parking duration (RPD); (b) membership functions of required state of charge (SoC);
(c) membership functions of available power (AP)and (d) membership functions of weight value
(W) variable.

Table 2. Implementation detail of membership functions for required SoC.

Fuzzy Sets Type of MF Arguments (%)

VL Left open shoulder a = 0.1, b = 0.3
L Triangular a = 0.1, m = 0.3, b = 0.5
M Triangular a = 0.3, m = 0.5, b = 0.7
H Triangular a = 0.5, m = 0.7, b = 0.9

VH Right open shoulder a = 0.7, b = 0.9

Table 3. Implementation detail of membership functions for AP.

Fuzzy Sets Type of MF Arguments (kW)

VLAP Left open shoulder a = 10, b = 30
LAP Triangular a = 10, m =30, b = 50
MAP Triangular a = 30, m = 50, b = 70
HAP Triangular a = 50, m = 70, b = 90

VHAP Right open shoulder a = 70, b = 90

3.3.2. Fuzzy Inference Mechanism for Obtaining the Fuzzified Weight Variable

The set of input memberships and the set of expert’s rules are evaluated through the fuzzy
inference system (FIS) to generate the fuzzified output. Therefore, it is of utmost importance to define
the output variable and the set of fuzzy expert’s rules. In this work, the FIS computes the WEVi
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for each of the ith requesting EVs. The value of WEV variable for each of the EVs is measured in
the range of [0–1] and is fuzzified with three membership functions using Equations (25)–(27). The
membership functions of the output variable are represented with linguistic terms low weight (LW),
medium weight (MW) and high weight (HW). The linguistic terms LW and HW contains the set
of EVs with the degree of memberships in the ranges of 0 < μnEV (W) ≤ 0.4 and 0.6 < μnEV (W) ≤ 1
and are modeled with left and right open shoulder membership functions. Whereas the linguistic
term MW holds the set of EVs having the degree of memberships in the range of 0.2 ≤ μnEV (W) ≤ 0.8.
The implementation detail of the output variable is given in Table 4 and shown in Figure 4d. The
fuzzy rules represents a set of process that correlates the degree of memberships of a set of inputs to
the degree of memberships of the output variable using IF–THEN logical statements [39]. The set
of rules is usually designed according to the expert’s knowledge of the problem domain [40]. The
sequence of IF–THEN statements forms an algorithm which captures the currently known information
and infers the output using fuzzy rules implication. In the logical IF–THEN statement, the IF part
represents the antecedents (conditions) which capture the observed information and the THEN part
shows the consequent (conclusion). The consequent is fuzzified knowledge and is represented in the
form of linguistic variable and degree of membership. The antecedents relate multiple inputs through
AND/OR logical operators, while the consequent infers the output by using the intersection, union and
composition operations of the fuzzy set theory.

Table 4. Implementation detail of membership functions for W.

Fuzzy Sets Type of MF Arguments (%)

LPF Left open shoulder a = 0.2, b = 0.4
APF Triangular a =0.2, b = 0.4, c = 0.6, d = 0.8
HPF Right open shoulder a = 0.6, b = 0.8

Definition 2. The relation of two fuzzy sets A and B is represented by R = A → B and can be defined as
the Cartesian product in X* Y space, where X and Y are the universal sets such that A ⊆ X and B ⊆ Y. The
mathematical representation of two fuzzy sets and multiple fuzzy sets is given in Equations (28) and (29) [37,41].

R(x, y) =
{
μR(x, y)
(x, y)

∣∣∣∣∣∣(x, y) ∈ X × Y
}

(28)

y1 · · · yn

R =

x1
...

xm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μR(x1, y1) · · · μR(x1, yn)

...
. . .

...
μR(xm, y1) · · · μR(xm, yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(29)

Definition 3. For two fuzzy relations R = A→ B and Q = B→ C, a new relation S can be computed using
the fuzzy composition operation, such that S relates the elements of C in Q and elements of A in R, as given by
Equation (30).

S = R ◦ Q (30)

The symbol “ ” is the composition operator which connects the elements of R and Q based on their
membership functions. The Mamdani min–max is a famous composition method which can be used to
infer the degree of input membership functions to the fuzzy set S, as given in Equations (31) and (32).
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μS(x, z)=
{
μS(x, z)
(x, z)

∣∣∣∣∣∣(x, z) ∈ X × Z
}

(31)

μS(x, z)= max
(
min

(
μR(x, y), μQ(x, z)

))
(32)

Definition 4. The set of fuzzy rules R = {R1, R2, · · · , Rn} along with their corresponding antecedents and
consequences using IF–THEN statement can be expressed as given in Equation (33) and can be generalized as
given in Equation (34).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R1 : if x1 is A1 THEN y1 is B1

R2 : if x2 is A2 THEN y2 is B2

...
Rn : if xn is An THEN ym is Bm

(33)

IF xS is AS THEN yS is BS (34)

The sets xS = {x1, x2, · · · , xn} and yS =
{
y1, y2, · · · , ym

}
are the n input fuzzy variables and the sets

AS =
{
A1, A2 · · ·An

}
and BS =

{
B1, B2 · · ·Bm

}
are the linguistic representation of the antecedents and

consequences in universes of discourses X and Y, respectively [42]. Considering the generalized form
of rules defined in Equation (35), the min and max operation on the degree of membership functions of
AS and BS for the xS and yS input variables are expressed in Equations (35) and (36), respectively.

μASBS(xS, yS )= min[μAn(xn),μBm(ym)] (35)

μASBS(xS, yS ) = max[μAn(xn),μBm(ym)] (36)

The approximate reasoning feature of FIS is used to infer the most appropriate knowledge when
multiple rules are applicable for the given inputs. The approximate reasoning is the process of matching
the degree of input data to each of the applicable rules. The higher the matching degree of input
data to the rules the closer is the inferred conclusion to those rules and vice versa. The approximate
reasoning can be done by considering all the applicable IF–THEN rules and using any aggregation
method such as Mamdani min–max operation. Considering all the combinations of three inputs and
their corresponding output variable, this work defines the set of fuzzy rules for computing the weight
values for the EVs, as given in Tables 5–7. In the case of multiple rules say r applicable rules such that
i = 1, 2, 3 . . . r, the aggregated inferred weight value for each of the ith EV can be obtained by min–max
operation on r applicable rules as given by Equation (37).

μEVi(W) = max

⎡⎢⎢⎢⎢⎢⎢⎣ min
{
μ(RPDt)

1,μ
(
SoCreq

t

)1
,μ(APt)

1
}
,

· · · , min
{
μ(RPDt)

r,μ
(
SoCreq

t

)r
,μ(APt)

r
}

⎤⎥⎥⎥⎥⎥⎥⎦ (37)

Table 5. Fuzzy mapping rules of the fuzzy inference system (FIS) when RPD is short duration (SD).

W
AP

VLAP LAP MAP HAP VHAP

SoCreq

VL LW LW LW LW MW
L LW LW MW MW MW
M LW MW MW MW HW
H MW AW HW HW HW

VH HW HW HW HW HW
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Table 6. Fuzzy mapping rules of FIS when RPD is average duration (SD).

W
AP

VLAP LAP MAP HAP VHAP

SoCreq

VL LW LW LW MW MW
L LW LW MW MW MW
M LW LW HW HW HW
H MW HW HW HW HW

VH MW HW HW HW HW

Table 7. Fuzzy mapping rules of FIS when RPD is long duration (SD).

W
AP

VLAP LAP MAP HAP VHAP

SoCreq

VL LW LW LW LW MW
L LW LW LW MW MW
M LW LW MW MW MW
H LW LW HW HW HW

VH MW HW HW HW HW

3.3.3. Defuzzification for Obtaining the Crisp Weight Variable

The fuzzy inference results in a fuzzified output, which must be converted into crisp weight
value through the defuzzification process. There are several defuzzification methods, including
center of gravity (COG), middle of maxima (MOM), first of maxima (FOM) and last of maxima
(LOM) and random choice of maxima (RCOM). The use of a specific defuzzification method depends
on the type of input membership functions such as overlapping or non-overlapping membership
functions. For the non-overlapping membership functions, the MOM is a suitable choice while for
overlapping membership functions, the COG is the most feasible solution. This is because in the case
of non-overlapping membership functions a slight change in the input data reflects an abrupt change
in the output, whereas in the case of overlapping membership functions any minor change does not
influence the output significantly. This work uses overlapping membership functions for input data
and consider the COG method to compute the crisp value for the weight variable. To compute the
crisp weight value for the ith EV, the standard equations of the COG method can be utilized as given in
Equations (38) and (39).

WEVi =

∑m
k=1 μWEVi

(xk) ∗ xk∑m
k=1 μWEVi

(xk)
,∀ k = 1, 2, · · ·m and x ∈WEV (38)

WEVi =

∫
x ∗ μWEVi

(x)dx∫
μWEVi

(x) dx
, f or x ∈ WEV (39)

The input data can either be discrete or continuous values. For the case of discrete inputs
Equation (38) can be used while for the case of continuous values Equation (39) can be used to compute
the crisp value of weight variable.

3.4. Flowchart of the Proposed Algorithm

The flowchart of the proposed FLWCS is shown in Figure 5. The detailed procedure of the
algorithm is explained in the following steps.
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Figure 5. Flowchart of the algorithm in the proposed FLWCS.

Step 1. Initialize all the input parameters of the system, such as the initial and maximum
simulation time, the number of CSs and their charging power and other control variables.

Step 2. Check for the new arrivals of EVs in the current time slot t. If there is new arrival of EVs
the algorithm check for any available parking spot and CS by iterating through each of the CSs. Note
that this work considered futuristic parking scenarios which assume that each of the parking spots is
equipped with a CS. If there is an available spot and CS, the algorithm registers each of the new EVs
into the system using Equations (1) and (2) and collects the inputs from the new EVs and assign them
to the CSs. The status of the CSs is updated from idle to busy.

Step 3. Compute the total energy demand of parking lot, the AP and the number of EVs that can
be supported by the AP according to Equations (3)–(9).

Step 4. Check whether the energy demand of parking lot is greater than the AP or not, as stated
by Equations (7) and (8). If the condition is true, i.e., the energy demand is higher than the AP go to
the next (Step 5) and call the fuzzy logic controller subroutine as shown in Figure 6. However, if the
AP is enough to support the parking lot energy demand, then go to Step 6.
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Figure 6. Flowchart of the fuzzy logic controller subroutine.

Step 5. Construct the list of weight values WEV by computing the WEVi for each of the ith EV
according to the input data using the developed fuzzy inference mechanism. Once the list of the weight
values is computed, sort the list of EVs (NEV) in descending order according to WEV list. Furthermore,
construct the list of decisions (DEV) by checking the SoC against the battery capacity of each the EVs
and the total number of allowed EVs for charging within the AP. Considering these conditions the
list DEV is updated with 0 and 1 values. Finally, the EVs and their corresponding decision lists are
returned to the main calling algorithm.

Step 6. Check the departure time tdep
EVi

of each of the ith EV against the current time slot t. If in the
current time slot, any of the ith EV is departing, then compute its QoE using Equation (21) and remove
the departing EV from the set of EVs using Equation (1). However, if the EV has still to stay in the
parking lot, the algorithm solves the optimization problem defined by Equation (10) for each of the
EVs, according to their corresponding decision DEVi values. Once the optimization problem is solved
for all of the EVs, their charging operations are performed in the current time slot. The algorithm
then couples the aggregated charging load to the current baseload and computes the total load. If the
current time slot is not reached to the maximum simulation time, increment the current time slot t and
repeat the process from Step 2 to Step 6. However, if the simulation time reached to its maximum time
limit, compute the load impact and the parking lot QoP using Equations (20) and (22).

4. Simulation Results and Discussion

This work assume a low-voltage distribution network, which feeds electricity to the residential
houses and a parking lot. The transformer capacity of the distribution network is based on the
lumped load of the node-820 in the IEEE 34 bus system [43]. The total baseload depends upon the
number of houses in the distribution network and their electricity consumption. The average electricity
consumption of a typical household is assumed to be about 2.78 kW and load factor of the houses
is about 70% of the lumped load of node-820 in the IEEE 34 bus system [44,45]. As a result, a total
of 34 houses was computed for the low-voltage distribution network and their aggregated baseload
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profile is visualized in Figure 7. The parking lot operational hours is considered to be from 7:00 AM to
7:00 PM [46]. These 12 h are normalized into 48 time slots with a 15 min resolution. The parking spots
are equipped with fast CSs of 20 kW/h supporting a charging power of 5 kW/time slot. Furthermore,
four different types of EVs with battery capacities of 40 kWh, 60 kWh, 80.5 kWh and 100 kWh are
considered for the simulation [47–50].

Figure 7. Aggregated baseload profile of household consumption in low-voltage distribution network.

The simulation is developed using java language, where the open source jFuzzyLogic libraries
are utilized for implementing the fuzzy logic inference system [51]. The simulation is performed for
four different parking capacities of 50 EVs (case-1), 100 EVs (case-2), 150 EVs (case-3) and 200 EVs
(case-4). The four different types of EVs are distributed with a random penetration level as given in
Table 8. The arrivals of EVs are randomly generated with μ = 42 slot number and σ = 6 time slots,
while their stay time are generated with μ = 20 time slot number and σ = 4 time slots, using Gaussian
distribution. Their corresponding departure times are then computed by summing up their arrivals
and stay time distribution. The arrival and departure time distribution of EVs for the four different
parking capacities is plotted in Figure 8.

Figure 8. Arrival time and departure time distribution of EVs in four cases. (a) Number of parking
spots is 50; (b) number of parking spots is 100; (c) number of parking spots is 150 and (d) number of
parking spots is 200.
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Table 8. Penetration levels of different type of EVs.

Cases
Nissan

LEAF-40 kWh [47]
Tesla S-60 kWh

[48]
Tesla Model-3
80.5 kWh [49]

Tesla Model X-
100 kWh [50]

1 14% 24% 32% 30%
2 27% 25% 21% 27%
3 30% 18% 25% 27%
4 27% 21% 22% 30%

Similarly, the arrival time SoCs of EVs are generated between 20% and 50% of the battery capacities
using a uniform distribution. The EVs arrival time SoCs distribution and their battery capacities are
plotted in Figure 9 for four the different cases. The random arrival, departure sequences of EVs and their
corresponding SoCs are resulting in a different number of EVs in each time slot. The temporal-based
varying occupancies for four different parking lots are shown in Figure 10. The transformer capacity
Transcap is assumed to be based on the lumped load of node number 820 of the IEEE 34 bus system.
The value of ω is assumed to be 10% and the charging efficiency η is considered to be about 0.90 [52].

Figure 9. Arrival time SoC distribution of EVs and their battery capacities in four cases. (a) Number
of parking spots is 50; (b) number of parking spots is 100; (c) number of parking spots is 150 and
(d) number of parking spots is 200.

Figure 10. Temporal varying occupancies of EVs parking duration in four cases.
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The simulations are performed in four different cases, where each case corresponds to different
parking capacity. The performance of the proposed FLWCS is evaluated against the conventional
FCFS-based scheme by considering the QoE and the QoP as the performance metrics. The FCFS-based
scheme performs the charging operation of EVs according to their arrival sequence; therefore, an EV
with the earliest arrival time has the highest priority to be charged. In contrast, the FLWCS computes
weight values for EVs in each of the time slots using fuzzy inference mechanism. The weight values
are dynamically computed in each time slot and are used to choose the most appropriate number
of charging EVs that help to maximize the QoE and QoP while maintaining the grid constraints.
The concept is almost the same as the authors in [53] dynamically controlled a threshold value between
a normal and guard channels based on the people’s mobility.

The results in Figure 11 show the number of EVs requesting for charging operations, the number
of EVs that can be supported by the AP under the normal operational limit of the power grid and
their scheduling with FCFS and the proposed FLWCS. In each case, it can be observed that with
the increasing parking occupancies the number of EVs with charging requests are also increasing.
However, the variation of the baseload profile and the operational constraints of the power grid limit
the number of EVs to be charged in each time slot. Following the operational constraints of the power
grid, the total charging demand and the different behaviors of EV owners, in each time slot the two
schemes perform their scheduling in a different manner. The FCFS-based scheme prioritizes the early
arriving EVs and thereby with the passage of time most of the later arriving EVs with shorter staying
duration are unable to get the opportunities for charging operations.

Figure 11. The AP, the charging request of EVs and their scheduling with FCFS and proposed FLWCS
in four different cases. (a) Number of parking spots is 50; (b) number of parking spots is 100; (c) number
of parking spots is 150 and (d) number of parking spots is 200.

Whereas, the proposed FLWCS maximize the charging operations by scheduling the most
appropriate EVs for charging according to their weight values. In each time slot, the charging load of
EVs with respect to the FCFS-based scheme and FLWCS is shown in Figure 12. It can be observed
that the proposed FLWCS can utilize the AP in a more efficient manner compared to the FCFS-based
scheme. The difference in AP utilization between the two charging schemes is more obvious from
case-1 to case-4 with the increasing parking size and occupancy. The parking occupancies, the number
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of EVs with charging request and their scheduling for the charging operations affect the total load on
the power grid. The aggregation of the baseload and the charging load of EVs results in the formation
of the total load profile of the power grid, as shown in Figure 13. The figure shows the baseload
and the total load with respect to FCFS and the proposed FLWCS schemes for four different parking
capacities. The URPL (which is computed according to Equation (5)) is the threshold point representing
the normal operational limit of the power grid. From figures, it can be seen that in all the four cases,
both of the charging schemes follow the normal operational limits of the power grid. However,
the efficient utilization of the AP and the total load profile with the proposed FLWCS is higher than
the FCFS-based charging scheme. The temporal varying baseload, the operational constraints of the
power grid, the different behaviors of EV owners, the battery capacities, and the required amount of
charging have an effect on the QoE of EVs and thereby on the QoP of the parking lot. Considering the
QoE until full battery capacity, the QoP in terms of satisfied QoE for the four different cases is shown
in Figure 14. In view of the EV owner’s requirements, the two schemes have different QoP in each
case. For example, with the proposed FLWCS a greater number of EVs are able to get the charging
opportunities and thereby improving the QoP performance than the FCFS-based scheme. In case-1,
the EVs with satisfied QoE are about 76% and 68% and the EVs with unsatisfied QoE are about 24%
and 32% with the proposed FLWCS and the FCFS-based charging scheme (Figure 14a).

Figure 12. Charging load of EVs with FCFS and proposed FLWCS scheme in four different cases.
(a) Number of parking spots is 50; (b) number of parking spots is 100; (c) number of parking spots is
150 and (d) number of parking spots is 200.

This implies that the proposed FLWCS has about 8% improved QoP than the FCFS-based scheme.
By increasing the parking lot size from 50 to 100 parking spots in case-2, a degrading QoP performance
was noted. The QoP is about 51% and 41% with respect to the proposed FLWCS and the FCFS-based
charging schemes (Figure 14b). The performance was further analyzed by simulating scenarios of
parking lots with 150 and 200 parking spots in case-3 and case-4 (Figure 14c,d). In case-3 and case-4,
the QoP is about 43% and 38%, with the proposed FLWCS. In these cases, the QoP is about 31% and 24%
with respect to the FCFS-based charging scheme. The results in these cases imply that the proposed
FLWCS has about 12% and 14% higher QoP comparing to the FCFS-based charging scheme.
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Figure 13. Total load with FCFS and proposed FLWCS scheme in four different cases. (a) Number
of parking spots is 50; (b) number of parking spots is 100; (c) number of parking spots is 150 and
(d) number of parking spots is 200.

Figure 14. The quality of performance (QoP) with FCFS and proposed FLWCS in four different cases.
(a) Number of parking spots is 50; (b) number of parking spots is 100; (c) number of parking spots is
150 and (d) number of parking spots is 200.

5. Conclusions

This study proposed a fuzzy logic weight-based charging scheme to distribute the charging
power among the optimal number of EVs in such a way that maximizes the quality-of-performance
under the operational constraints of the power grid. The developed fuzzy inference mechanism
correlates different parameters such as state-of-charge, remaining parking duration and the available
power into weighted values for each of the EVs. Once the weight values of all the EVs are known,
their charging operations are controlled in each time slot such that the operational constraints of
the power grid are respected. A java-based simulator was developed and tested for a parking lot
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with different parking capacities by considering four types of EVs with different penetration levels.
The performance of the proposed FLWCS was analyzed against the conventional FCFS-based scheme
in terms of QoP. The simulation result reveals that the proposed FLWCS has a significant performance
over the conventional FCFS-based charging scheme. In more detail, increasing the parking spots to a
certain number such as from 50 EVs to 200 EVs the QoP was improved by about 8% to 14%, with the
proposed FLWCS.

Research limitations:

There is a tradeoff between the power grid requirements and EV owner’s satisfaction and it is
believed that the variable charging rate could be used to optimally analyze these requirements. In the
future, the proposed scheme will be extended for more complex charging scenarios based on variable
charging.

Research Implications:

The emergence of electric vehicles in the transportation market and their charging system offers a
vast range of research possibilities in the field of electro-mobility research. Therefore, there is a need to
study the socioeconomic implications of EV fleets by developing models for sustainable development
such as social, environmental and market economics.
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