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Abstract: The advances in Unmanned Aerial Vehicle (UAV) platforms and on-board sensors in the past
few years have greatly increased our ability to monitor and map crops. The ability to register images at
ultra-high spatial resolution at any moment has made remote sensing techniques increasingly useful in
crop management. These technologies have revolutionized the way in which remote sensing is applied
in precision agriculture, allowing for decision-making in a matter of days instead of weeks. However,
it is still necessary to continue research to improve and maximize the potential of UAV remote sensing in
agriculture. This Special Issue of Remote Sensing includes different applications of UAV remote sensing
for crop management, covering RGB, multispectral, hyperspectral and LIght Detection and Ranging
(LiDAR) sensor applications on-board (UAVs). The papers reveal innovative techniques involving image
analysis and cloud points. It should, however, be emphasized that this Special Issue is a small sample of
UAV applications in agriculture and that there is much more to investigate.

Keywords: RGB; multispectral; hyperspectral; LiDAR; agriculture

1. Introduction

In order to satisfy the needs of the global population while considering the reduction of agricultural
areas, investments in agri-food sectors have grown with the goal of increasing productivity by at
least 70% by 2050 [1]. Emerging technologies such as Internet of the Things as well as new methods
for analyzing data to reveal patterns and trends improve the potential of Precision Agriculture (PA)
and enable the improvement of productivity. Among these technologies, Remote Sensing (RS) is
considered to be one of the most important for this purpose. In the last four decades, RS has been used
to monitor crops [2], using, initially, images from sensors on-board satellite platforms. The spatial,
temporal and spectral resolutions required for many PA applications are limited when using these
platforms, mainly in woody crops. RS sensors on-board UAVs have provided an interesting alternative
to fill this gap, meeting the ultra-high requirements of these resolutions.

The purpose of this Special Issue is to promote the new developments in Unmanned Aerial
System–Remote Sensing (UAS-RS) methods in PA for the mapping, monitoring and modeling of crops.

2. Overview of Contributions

This Special Issue includes advances based on RGB [3–5] multispectral [6], hyperspectral [7],
LiDAR [8] and hyperspectral-LiDAR [9] sensors on-board UAVs, focusing on applications related to
PA. These approaches applied various methodologies based on both images and cloud points.

Jurado et al. [3] present a method to detect and locate individual grapevine trunks using 3D cloud
points from UAV-based RGB images. Their major contribution is a fully automatic approach, which does
not require any prior knowledge of the number of plants per row. In addition, the computational
complexity does not demand high-performance computing. Moreover, they conclude that their
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approach can be extended to estimate other biophysical parameters of grapevines, with the final goal
being to provide efficient vineyard management.

Ronchetti et al. [4] use RGB and multispectral images from UAV flights for crop row detection.
They tested and compared different methodologies based on Bayesian segmentation, thresholding algorithms
and classification algorithms, which were applied on vineyards, pear orchards and tomato fields.
Although Digital Surface Model (DSM), RGB and multispectral ortomosaics offered adequate results,
for crops characterized by high heights, like vineyards and pear crops, DSM as input offered better results.
Therefore, RGB sensors on-board UAVs can be an alternative to a more expensive sensor, like multispectral.

Feng et al. [5] propose an Attention-based Recurrent Convolutional Neural Network (ARCNN)
for mapping crops from multi-temporal RGB-UAV images to obtain useful phenological information.
Overall accuracy and Kappa coefficient in classification processing were high despite the low
spectral resolution of the sensor used. This model could be understood as a general framework
for multi-temporal RS image processing.

Using multispectral sensors on-board a UAV, Jełowicki et al. [6] estimate losses in rapeseed
crops. Three vegetation indexes were evaluated, the Normalized Difference Vegetation Index (NDVI),
Soil-Adjusted Vegetation Index (SAVI) and Optimized Soil-Adjusted Vegetation Index (OSAVI),
calculated using red and near infrared spectral regions, and red edge and near infrared. They conclude
that a ground sample distance equal to 10 cm is enough to detect damaged areas, which means
higher flight altitude and therefore increased area covered. Regarding vegetation indexes, the OSAVI
calculated using red edge and near infrared offered better results to monitor crop condition.

While multispectral sensors are very useful for crop monitoring, there are occasions in which it is
necessary to use narrow spectral bandwidth, using hyperspectral sensors with high spectral resolution.
Santos et al. [7] evaluate different wavelength selection methods based on the partial least squares (PLS)
method. The objective was to select the best wavelength to classify two irrigation systems used in olive
orchards. The variation in the evaluated methods showed the need to select the appropriate method
in a case by case scenario. In their study, the Genetic Algorithm PLS, Regression Coefficient PLS,
Forward Interval PLS, Lasso, Boruta and All-together methods showed the most promising results,
offering an overall accuracy of 75% or higher in the classification.

In addition to passive sensors, active LiDAR sensors allow the generation of dense 3D point
clouds. Today, with the miniaturization of the sensors and the reduction in weight, it is possible to
apply these systems to UAV platforms. The correct three-dimensional modelling of a crop requires a
dense and accurate point cloud. Chen et al. [8] present a methodology for an integrated navigation
and positioning optimization method based on the grasshopper optimization algorithm and a point
cloud density enhancement method.

Finally, although the use of singular sensors on-board UAVs offers very interesting data to be used
in PA, it is even more interesting if data from different sensors are combined. Masjedi et al. [9] explore
the potential for reliable prediction of sorghum biomass using multi-temporal hyperspectral and LiDAR
data acquired by sensors mounted on UAV platforms. Among all the derived variables, nitrogen- and
photosynthesis-related features extracted from hyperspectral data and geometric based features derived
from the LiDAR data were the most interesting. In addition, they evaluated the most appropriate date for
data collection after the sowing in order to improve the results of the predictive models.

Applications for UAS in agriculture have progressed significantly in recent years as the technology
has improved in tandem with decreasing costs. Motivating a dual interest from farmers and businesses
in UAS, the interest for these technologies has grown in applied agriculture, with new applications being
developed in the agri-food sector. Most applications rely on the ability to generate and deliver precise
and accurate information to support agricultural activities or to inform complementary activities like
crop analysis and monitoring. Consequently, data quality is important and is the core priority of drone
use decisions. Given the relative infancy of agricultural UAS technology, there is still much progress
and research to be made. Despite this, it is really only a matter of time until this UAS technology is
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mature enough to act as a replacement for existing methods as the industry is rapidly integrating
newer sensors and processing technologies, constantly improving the quality of the data captured.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Vegetable mapping from remote sensing imagery is important for precision agricultural
activities such as automated pesticide spraying. Multi-temporal unmanned aerial vehicle (UAV)
data has the merits of both very high spatial resolution and useful phenological information,
which shows great potential for accurate vegetable classification, especially under complex and
fragmented agricultural landscapes. In this study, an attention-based recurrent convolutional neural
network (ARCNN) has been proposed for accurate vegetable mapping from multi-temporal UAV
red-green-blue (RGB) imagery. The proposed model firstly utilizes a multi-scale deformable CNN
to learn and extract rich spatial features from UAV data. Afterwards, the extracted features are fed
into an attention-based recurrent neural network (RNN), from which the sequential dependency
between multi-temporal features could be established. Finally, the aggregated spatial-temporal
features are used to predict the vegetable category. Experimental results show that the proposed
ARCNN yields a high performance with an overall accuracy of 92.80%. When compared with
mono-temporal classification, the incorporation of multi-temporal UAV imagery could significantly
boost the accuracy by 24.49% on average, which justifies the hypothesis that the low spectral
resolution of RGB imagery could be compensated by the inclusion of multi-temporal observations.
In addition, the attention-based RNN in this study outperforms other feature fusion methods such as
feature-stacking. The deformable convolution operation also yields higher classification accuracy
than that of a standard convolution unit. Results demonstrate that the ARCNN could provide an
effective way for extracting and aggregating discriminative spatial-temporal features for vegetable
mapping from multi-temporal UAV RGB imagery.

Keywords: vegetable mapping; multi-temporal UAV; recurrent convolutional neural network;
attention mechanism

1. Introduction

Accurate vegetable mapping is of great significance for modern precision agriculture. The spatial
distribution map for different kinds of vegetables is the basis for automated agricultural activities
such as unmanned aerial vehicle (UAV)-based fertilizer and pesticide spraying. Traditional vegetable

Remote Sens. 2020, 12, 1668; doi:10.3390/rs12101668 www.mdpi.com/journal/remotesensing5
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mapping is usually based on field survey or visual interpretation of remote sensing imagery, which is
time-consuming and inconvenient. Hence, it is of great importance to study the automatic methods for
precise vegetable classification. However, previous studies mainly focused on the staple crop (e.g., corn,
paddy rice) classification [1], in this regard, we are highly motivated to propose an effective method for
vegetable classification based on UAV observations, which could provide a useful reference for future
studies on vegetable mapping.

In previous studies, optical satellite imagery was firstly utilized for vegetable and crop mapping.
Wikantika et al. applied linear spectral mixture analysis to map vegetable parcels from mountainous
regions based on Landsat Enhanced Thematic Mapper (ETM) data [2]. Belgiu et al. utilized multi-temporal
Sentinel-2 imagery for crop mapping based on a time-weighted dynamic time warping method and
achieved comparable accuracy with random forest (RF) [3]. Rupasinghe et al. adopted Pleiades data
and a support vector machine (SVM) to classify the coastal vegetation cover and also yielded a good
classification performance [4]. Wan et al. also used SVM and single-date WorldView-2 for crop type
classification and justified the role of texture features in improving the classification accuracy [5].
Meanwhile, as the new generation sensor of Landsat satellite, data acquired by the Operational Land
Imager (OLI) from Landsat-8 has also been used for vegetable and crop type classification. For instance,
Asgarian et al. used multi-date OLI imagery for vegetable and crop mapping in central Iran based on
decision tree and SVM and achieved good results [6].

However, when compared with staple crops, the land parcel of vegetables is small in size, resulting
in a large amount of mixed pixels in space-borne images. Different from space-borne observations,
a UAV could obtain images with very high or ultra-high spatial resolution where the mixed pixel is
no longer a problem. Meanwhile, a UAV could be deployed whenever necessary, which makes it
an efficient tool for rapid monitoring of land resources [7–11]. Due to payload capacity limitations,
off-the-shelf digital cameras have been equipped in small-sized UAVs [7,8,11]. Under this circumstance,
the images acquired only have three bands (i.e., red, green, blue, RGB), resulting in a low spectral
resolution which limits the performance of differentiating various vegetable categories. To reduce this
impact, we introduce multi-temporal UAV data to obtain useful phenological information to enhance
the inter-class separability. Afterwards, a robust classification model, the attention-based recurrent
convolutional neural network (ARCNN), is constructed to further improve the classification accuracy.

Compared with mono-temporal or single-date observation, multi-temporal datasets could provide
useful phenological information, which aids for plant and vegetation classification during growing
season [10–15]. Pádua et al. adopted multi-temporal UAV-based RGB imagery to differentiate grapevine
vegetation from other plants in a vineyard [11], and indicates that although RGB images have a low
spectral resolution, the inclusion of multi-temporal observations makes it possible for accurate plant
classification. Van Iersel conducted river floodplain vegetation classification using multi-temporal
UAV data and a hybrid method, which is based on the combination of random forest and object-based
image analysis (OBIA) [14]. In our previous research, we also incorporated multi-temporal Landsat
imagery and a series of classifiers (i.e., decision trees, SVM and RF) for cropland mapping of the Yellow
River delta [15], which justified the effectiveness of multi-temporal observations in enhancing the
classification performance.

The above mentioned studies are mainly based on low-level, manually designed features
(i.e., spectral indices, textures) and machine-learning classifiers, which might show poor performance
in obtaining the high-level and representative features for accurate vegetable mapping. Besides,
lots of domain expertise together with engineering skills are always involved in these manually
designed features [16,17]. Meanwhile, deep learning offers a novel way for discovering informative
features through a hierarchical learning framework [18], which shows promising performance in
several computer vision (CV) applications such as sematic segmentation [19,20], object detection [21]
and image classification [22–24]. Recently, deep learning models have been widely studied in the
field of remote sensing [25–29], including cloud detection [30], building extraction [31–33], land object
detection [34,35], scene classification [36,37] and land cover mapping [38–43]. Specifically, Kussul et al.
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utilized both one- and two-dimensional CNN to classify crop and land cover types from both synthetic
aperture radar (SAR) and optical satellite imagery [41]. Rezaee et al. [42] also adopted an AlexNet [22]
pre-trained on ImageNet for wetland classification based on mono-temporal RapidEye optical data.
It should be noted that the vegetable land parcels in China are always mixed with other crops and the
landscape is rather fragmented, leading to a large variability in the shape and scale of land parcels [44].
However, previous studies usually mirror deep learning models from computer vision field while
neglecting the complex nature of agricultural landscapes. Therefore, how to build an effective deep
learning model to account for the fragmented landscape is a key issue in vegetable mapping.

Meanwhile, the introduction of multi-temporal UAV data calls for effective methods of temporal feature
extraction and spatial-temporal fusion to further boost the classification accuracy. Early studies [11,12,14]
usually stacked or concatenated multi-temporal data without considering the hidden temporal
dependencies. With the development of recurrent neural network (RNN), models such as long-short
term memory (LSTM) [45] have been adopted to establish the relationship between sequential remote
sensing data [46–50]. Ndikumana et al. utilized multi-temporal SAR Sentinel-1 imagery and a RNN
for crop type classification, and indicated that the RNN showed a higher accuracy than several popular
machine learning models (i.e., RF and SVM) [46]. Mou et al. cascaded a CNN and RNN to aggregate
spectral, spatial and temporal features for change detection [47]. In addition, when it comes to vegetable
or crop mapping, it should be noted that the importance or contribution of each mono-temporal
dataset to classification may vary during the growing season. Therefore, how to model the sequential
relationship between multi-temporal UAV data hence to further boost the classification accuracy is of
great significance.

To tackle the above issues, this study proposes an attention-based recurrent convolutional neural
network (ARCNN) for accurate vegetable mapping from multi-temporal UAV data. The proposed
model integrates a multi-scale deformable CNN and an attention-based RNN into a trainable end-to-end
network. The former is to learn and extract the representative spatial features from UAV data to
account for the scale and shape variations under fragmented agricultural landscape, while the latter is
to model the dependency across multi-temporal images to obtain useful phenological information.
The proposed network yields an effective solution for spatial-temporal feature fusion, based on which
the vegetable mapping accuracy could be boosted.

2. Materials and Methods

2.1. Study Area

Both the study area and multi-temporal UAV imagery used in this research are illustrated in
Figure 1.

The study area includes a vegetable field which is located in Xijingmeng Village of Shenzhou
City, Hebei province, China. There are various kinds of vegetables, such as Chinese cabbage, carrot,
leaf mustard, etcetera. Meanwhile, the study area also locates in the North China Plain, which belongs
to a continental monsoon climate, where summer is humid and hot, while winter is dry and cold.
The annual temperature is about 13.4 ◦C and the annual precipitation is about 486 mm. Vegetables are
usually planted in late August and harvested in early November.
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(a) (b) 

 
(c) 

Figure 1. Study area. (a) China; (b) Hebei Province; and (c) Xijingmeng Village and multi-temporal
UAV images.

A field survey was conducted along with the UAV flight. Vegetable and crop types, locations
measured by global positioning system (GPS) and photographs were recorded for every land parcel.
According to the results of the field survey, there were a total of fourteen land cover categories,
including eight vegetable types (i.e., carrot, Chinese cabbage, leaf mustard, turnip, spinach, kohlrabi,
potherb and scallion), four crop types (i.e., millet, sweet potato, corn and soybean), weed and bare soil
(Table 1).
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Training and testing datasets were obtained from UAV imagery by visual inspection based on
the sampling sites’ GPS coordinates and the corresponding land cover categories. Numbers of both
training and testing datasets are shown in Table 1. Besides, Table 1 also shows the ground image taken
during the field work to depict the detailed appearance of various vegetables and crops.

Meanwhile, Figure 2 illustrates the spatial distribution of both training and testing samples.
It indicates that all the samples are randomly distributed and no overlap exists between training and
testing regions. Besides, because we adopted patch-based per-pixel classification, all the training and
testing samples are pixels from the region of interest (ROI). In this study, the number of training and
testing samples are both 2250, respectively, which accounts for a small area (0.03%) of the total study
region (7,105,350 pixels).

 
(a) 

 
(b) 

(c) 

Figure 2. Spatial distribution of (a) training samples; (b) testing samples; (c) legend.

2.2. Dataset Used

We utilized a small-sized UAV, DJI-Inspire 2 [51], for the image data acquisition. The camera
onboard is an off-the-shelf, light-weight digital camera with only three RGB bands. Therefore, the low
spectral resolution would make it difficult to separate various vegetable categories if only considering
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single-date UAV data. To tackle this issue, we introduce multi-temporal UAV observations, which could
obtain the phenological information during the growing season to increase the inter-class separability.

We conducted three flights in the autumn of 2019 (Table 2). During each flight, the flying height
was set to be 80 m, achieving a very high spatial resolution of 2.5 cm/pixel. Besides, the width and
height of the study area is 3535 and 2010 pixels (88.4 m and 50.3 m), respectively. Actually, the extent
of the study area is at the limit of UAV data coverage. Although the study area may still seem small,
it is limited by the operation range of the mini-UAV used. In future study, we would try high altitude
long endurance (HALE) UAV to acquire images of a larger study region.

Table 2. Multi-temporal UAV images utilized in this study.

Season Date Data Source

T1 Autumn 18 September 2019 UAV RGB data
T2 Autumn 14 October 2019 UAV RGB data
T3 Autumn 3 November 2019 UAV RGB data

The raw images acquired during each flight were orthorectified firstly and then mosaicked to an
entire image by Pix4D [52]. Specifically, several key parameters in Pix4D are set as follows. “Aerial Grid
or Corridor” is chosen for matching image pairs, “Automatic” is selected for targeted number of key
points, matching window size is 7 × 7 and 1 GSD is used for resolution. The rest of the parameters are
set to default values. Afterwards, image registration was performed among the multi-temporal UAV
data by ENVI (the Environment for Visualizing Images) [53].

2.3. Overview of the ARCNN

Figure 3 illustrates the architecture of the proposed attention-based recurrent convolutional neural
network (ARCNN) for vegetable mapping from multi-temporal UAV data. It mainly contains two
parts, (1) a spatial feature extraction module based on a multi-scale deformable convolutional network
(MDCN), and (2) a spatial-temporal feature fusion module based on a bi-directional RNN and attention
mechanism. The former is to learn representative spatial features while the latter is to aggregate spatial
and temporal features for the final vegetable classification.

 
Figure 3. The overview of the proposed attention-based recurrent convolutional neural network
(ARCNN) for vegetable mapping based on multi-temporal UAV data.
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2.4. Spatial Feature Extraction Based on MDCN

Accurate vegetable classification requires discriminative features. In this section, a multi-scale
deformable convolutional network (MDCN) is proposed to learn and extract rich spatial features from
UAV imagery, which is to account for the scale and shape variations of land parcels. Specifically,
MDCN is an improved version of our previous study [44], and the network structure is depicted as
Figure 4.

 
(a) (b) 

 
(c) (d) 

Figure 4. (a) Network structure of the proposed multi-scale deformable convolutional network (MDCN);
(b) deformable convolutional block; (c) standard convolution; and (d) deformable convolution.

Same as our previous work, the input of MDCN is an image patch which is located at the center
of the labeled pixel. The dimension of the patch is k × k × c [44], where k stands for the patch size while
c refers to the channel number. Specifically, MDCN includes four regular convolutional layers and four
deformable convolutional blocks. Table 3 shows the detailed configuration of the MDCN.
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Table 3. Detailed configuration of the MDCN.

Layer Name Input Size Output Size Kernel Size Filter Number Stride

Input 11 × 11 × 3 – – – –
Conv1 11 × 11 × 3 11 × 11 × 64 3 × 3 64 1
Conv2 11 × 11 × 64 11 × 11 × 128 3 × 3 128 1
Conv3 11 × 11 × 128 6 × 6 × 128 3 × 3 128 2

Deform Block 1 6 × 6 × 128 6 × 6 × 128 – – –
Deform Block 2 6 × 6 × 128 6 × 6 × 128 – – –

Conv4 6 × 6 × 128 3 × 3 × 128 3 × 3 256 2
Deform Block 3 3 × 3 × 256 3 × 3 × 256 – – –
Deform Block 4 3 × 3 × 256 3 × 3 × 256 – – –

The deformable block contains multiple streams of deformable convolution [54], which could
learn hierarchical and multi-scale features. The role of deformable convolution is to model the
shape variations under complex agricultural landscapes. Considering that the standard convolution
only samples the given feature map at fixed locations [54,55], it could not handle the geometric
transformations. Compared with standard convolution, deformable convolution introduces additional
offsets along with the standard sampling grid [54,55], which could account for various transformations
for scale, aspect ratio and rotation, making it an ideal tool to extract robust features under complex
landscapes. During the training process, both the kernel and offsets of a deformable convolution unit
can be learned without additional supervision. In this situation, the output y at the location p0 could
be calculated according to Equation (1):

y(p0) =
∑

w(pi) ∗ x(p0 + pi + Δpi) (1)

where w stands for the learned weights, pi means the i th location, x represents the input feature map
and Δpi refers to the offset to be learned [54]. In addition, as for the determination of the patch size k,
we referred to our previous research [44] and the highest classification performance was reached when
k equaled 11.

2.5. Spatial-Temporal Feature Fusion

After the extraction of spatial features from every mono-temporal UAV image, it is essential to
establish the relationship between these sequential features to yield a complete feature representation
for boosting the vegetable classification performance. In this section, we exploit an attention based
bi-directional LSTM (Bi-LSTM-Attention) for the fusion of spatial and temporal features (Figure 5).
The network structure of Bi-LSTM-Attention is illustrated as follows.

 
Figure 5. Architecture of the attention-based bi-directional LSTM.
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Specifically, LSTM is a variant of RNN, which contains one input layer, one or several hidden
layers and one output layer [45]. It should be noted that LSTM is more specialized in capturing
long-range dependencies between sequential signals than other RNN models. LSTM utilizes a vector
(i.e., memory cell) to store the long-term memory and adopts a series of gates to control the information
flow [45] (Figure 6). The hidden layer is updated as follows:

it = σ(Wixxt + Wihht−1 + bi) (2)

ft = σ(W f xxt + W f hht−1 + b f ) (3)

ct = ftct−1 + ittanh(Wcxxt + Wchht−1 + bc) (4)

ot = σ(Woxxt + Wohht−1 + bo) (5)

ht = ottanh(ct) (6)

where i refers to the input gate, f stands for the forget gate, o refers to the output gate, c is the memory
cell and σ stands for the logistic sigmoid function [45].

Figure 6. Structure of the LSTM.

LSTM has long been utilized in natural language processes (NLP) [56,57]. Recently, it has been
introduced in the remote sensing field for change detection and land cover mapping. In this section,
we exploit a bi-directional LSTM [57] to learn the relationship between multi-temporal spatial features
extracted from the UAV image. As shown in Figure 5, two LSTMs are stacked together while the
hidden state of first LSTM is fed into the second one, and the second LSTM follows a reverse order
of the former to fully understand the dependencies of the sequential signals in a bi-directional way.
In addition, to further improve the performance, we append an attention layer to the output of the
second LSTM. Actually, attention mechanism is widely studied in the field of CV and NLP [58–60],
which could automatically adjust the weight of input feature vectors according to their importance to
the current task. Therefore, we also incorporate an attention layer to re-weight the sequential features
to boost the classification performance.

Let H be a matrix containing a series of vectors [h1, h2, . . . , hT] that are produced by the
bi-directional LSTM, where T denotes the length of the input features. The output of the attention
layer is formed by a weighted sum of vectors described as follows:

M = tanh(H) (7)

α = so f tmax(wTM) (8)

Ratt = HαT (9)

where α is the attention vector and while Ratt denotes the fused and attention-weighted spatial-temporal
features. Additionally, the features outputted from the Bi-LSTM-Attention are re-weighted or
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re-calibrated adaptively, which could enhance the informative feature vectors and suppress the
noisy and useless ones.

Finally, all the reweighted features were firstly sent to a fully-connected layer and then to a softmax
classifier to predict the final vegetable category.

2.6. Details of Network Training

When training started, all the weights of the neural network were initialized through He
normalization [61], and biases were all set to be zero. We adopt cross-entropy loss (Equation (10)) [62]
as the loss function to train the proposed ARCNN:

CE = −
∑

i

yp
i log(yi) (10)

where CE is short for cross-entropy loss, yp is the predicted result and y is one-hot representation of the
ground-truth label. Adam [63] was utilized as the optimization method with a learning rate of 1 × 10−4.
In the training procedure, the model with the lowest validation loss was saved.

We have conducted data augmentation to reduce the impact of limited labeled data in this
study. Specifically, all training image patches were flipped and rotated by a random angle from
90◦, 180◦ and 270◦. Afterwards, we split 90% of the training datasets for the optimization of
parameters. The remaining 10% of the training datasets were utilized as validation sets for performance
evaluation during training. After the training process, a testing dataset was adopted to obtain the final
classification accuracy.

Furthermore, we used TensorFlow [64] for the construction of our proposed model. The training
process was performed on a computer running the Ubuntu 16.04 operation system. The central
processing unit (CPU) involved as an Intel core i7-7800 @ 3.5 GHz while the graphics processing unit
(GPU) was an NVIDIA GTX TitanX.

2.7. Accuracy Assessment

In this study, we utilized both qualitative and quantitative methods to verify the effectiveness of
the proposed ARCNN for vegetable mapping. Specifically, as for the former, we used visual inspection
to check for classification errors. While for the latter, a confusion matrix (CM) was obtained from the
testing dataset. A series of metrics were calculated from the CM, including overall accuracy (OA),
producer’s accuracy (PA), user’s accuracy (UA) and the Kappa coefficient.

As for the numbers of points chosen for each class, they were actually determined by the area
ratio. For instance, the class of Chinese cabbage had the largest area ratio, therefore, the number
of training/testing sample points was set to 400, which was the biggest among all the categories.
Furthermore, other land cover types, such as spinach and kohlrabi, which only accounted for a small
area on the entire study region, had a small number of sample points (only 50).

To further justify the effectiveness of the proposed method, we adopted both ablation analysis and
comparison experiments with classic machine learning methods. Specifically, as for the ablation study,
we justified the role of both attention-based RNN on vegetable mapping using the following setups.
(1) Feature-stacking: concatenating or stacking the spatial features derived from each single-date data
for classification; (2) Bi-LSTM: using a bi-directional LSTM for classification; (3) Bi-LSTM-Attention:
using the attention-based bi-directional LSTM for classification and (4) standard convolution: using
common, non-deformable convolution operations for classification. Besides, ablation study has
also been done to justify the impact of deformable convolution when compared with the standard
convolution operations.

Meanwhile, classic machine learning methods such as MLC, RF and SVM were also included
for comparison experiments. In specific, MLC has long been studied in remote sensing image
classification, where the predicted labels are generated based on the maximum likelihood when
compared with the training samples. The basic assumption of MLC is that the training samples
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should follow the normal distribution, which is hard to satisfy in reality, resulting in a limited
classification performance. RF belongs to an ensemble of decision trees and the predicted results are
determined by the average output of each decision tree [65]. RF has no restrictions on training data
distribution and has outperformed MLC in many remote sensing studies. As for SVM, it is based on
the Vapnik–Chervonenkis (VC) dimension theory which aims at the minimization of structure risk,
resulting in good performance, especially under the situation of limited data [66]. Parameters involved
in SVM usually contain kernel type, penalty coefficient, etcetera.

3. Results

3.1. Results of Vegetable Mapping Based on Multi-Temporal Data

Figure 7 shows the vegetable mapping result generated from the proposed ARCNN. It manifests
that the distribution of each vegetable category is close to field surveyed when compared with the
ground truth (GT) map of Figure 8. The classification errors mainly lie between Chinese cabbage and
leaf mustard, potherb, turnip and spinach.

Figure 7. Vegetable map generated from the proposed ARCNN and multi-temporal UAV RGB datasets.

In order to further visually justify the classification results, Figure 8 shows the ground truth
map which is manually vectorized from the UAV data. Actually, when compared with the GT map,
the classification map of Figure 7 shows a salt and pepper effect. On one side, the classification model
in this research belongs to a per-pixel method, which does not consider the boundary information of
each land parcel, resulting in a more scattered classification result. On the other hand, the GT map
is an ideal description of the spatial extent of every land cover category, neglecting the variations
within each land parcel. For instance, several weed regions are missing in the GT map due to small
areas. Additionally the bare soil regions in some land parcels have also been neglected. However,
in practice, based on the classification map of Figure 7, we could easily generate a land cover map
which is more accurate and concise just like Figure 8, which would justify the value of the proposed
method in vegetable mapping. To make the boundaries of each land parcel more accurate, in future
study we will research semantic segmentation models such as fully convolutional neural networks [19]
to improve the visual effect.
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Figure 8. Ground truth map vectorized from the UAV data.

Meanwhile, to quantitatively assess the classification performance, the confusion matrix, Kappa
coefficient, OA, PA and UA were derived from the testing dataset. Table 4 indicates that the proposed
classification model shows a high performance with both a high OA (92.80%) and a high Kappa
coefficient (0.9206).

Table 4. Confusion matrix.

Class
Ground Truth

1 2 3 4 5 6 7 8 9 10 11 12 13 14 UA

1 200 9 0 0 0 0 0 0 0 0 0 0 0 0 95.7
2 0 353 21 3 0 0 0 0 0 0 0 0 0 0 93.6
3 0 36 149 12 0 0 0 0 0 0 0 0 0 0 75.6
4 0 0 7 182 0 0 0 16 0 0 0 0 4 0 87.1
5 0 0 0 0 50 0 0 0 0 0 0 0 0 0 100
6 0 0 0 0 0 50 0 0 0 0 0 0 0 0 100
7 0 0 16 0 0 0 100 0 0 0 0 0 0 0 86.2
8 0 0 2 0 0 0 0 184 0 0 0 8 0 0 94.8
9 0 0 0 0 0 0 0 0 100 0 0 0 0 0 100

10 0 0 0 0 0 0 0 0 0 200 0 2 0 9 94.8
11 0 0 0 0 0 0 0 0 0 0 200 0 0 0 200
12 0 0 0 1 0 0 0 0 0 0 0 33 0 0 97.1
13 0 2 5 2 0 0 0 0 0 0 0 7 196 0 92.5
14 0 0 0 0 0 0 0 0 0 0 0 0 0 91 100
PA 100 88.3 74.5 91.0 100 100 100 92.0 100 100 100 66.0 98.0 91.0

OA 92.80 Kappa 0.9206

1: carrot; 2: Chinese cabbage; 3: leaf mustard; 4: turnip; 5: spinach; 6: kohlrabi; 7: potherb; 8: millet; 9: weed;
10: bare soil; 11: sweet potato; 12: corn; 13: soybean; 14: scallion; PA: producer’s accuracy; UA: user’s accuracy and
OA: overall accuracy.

Table 4 indicates that the omissions and commissions mainly exist among leaf mustard and
Chinese cabbage, potherb and turnip. For instance, several leaf mustard pixels were misclassified
as Chinese cabbage and vice versa. This was understandable, since both color and shape of these
leafy green vegetables (Chinese cabbage, leaf mustard, potherb, etc.) are very similar, especially at
the early growth stage. Meanwhile, the RGB image has the drawback of a low spectral resolution,
making it hard to differentiate these vegetable categories when using only color and shape information.

17



Remote Sens. 2020, 12, 1668

In addition, only a few mistakes occurred among the other categories, which verifies the effectiveness
of the proposed vegetation mapping method.

3.2. Results of Vegetable Mapping Based on Mono-Temporal UAV Data

Figure 9 shows the vegetable map generated from both mono- and multi-temporal classification.

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 9. Vegetable map generated from (a) T1/2019-09; (b) T2/2019-10; (c) T3/2019-11 and (d) multi-temporal
datasets using the proposed method. (e) Legend.

As mentioned above, one hypothesis of this study is that the inclusion of multi-temporal UAV data
could provide additional phenological information, which would enhance the inter-class separability to
cover the shortage of low spectral resolution caused by off-the-shelf digital cameras. Therefore, in this
section, a contrast experiment was conducted to compare the performance between multi-temporal and
mono-temporal classification. It should be noted that when using single-date UAV data for classification,
the spatial-temporal feature fusion module (i.e., Bi-LSTM-Attention) would be non-functional during
the training and testing procedure.

Figure 9 indicates that the incorporation of multi-temporal UAV images could significantly
improve the classification performance when compared with mono-temporal data, which shows fewer
obvious errors from visual inspection. This is in accordance with quantitative assessment (Table 5).
It indicates that the overall classification accuracy improved by 19.76%–28.13%, with an average
increase of 24.49%, after the inclusion of multi-temporal data.
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Table 5. Class-level accuracy for mono- and multi-temporal classification.

No. Class Name T1 (%) T2 (%) T3 (%) Proposed (%)

1 Carrot 89.00 93.00 84.00 100
2 Chinese cabbage 46.50 68.50 77.25 88.25
3 Leaf mustard 29.00 39.00 50.00 74.50
4 Turnip 59.00 43.50 75.00 91.00
5 Spinach – 38.00 18.00 100
6 Kohlrabi 22.00 34.00 – 100
7 Potherb – 25.00 57.00 100
8 Millet 73.50 76.50 – 92.00
9 Weed 75.00 95.00 85.00 100
10 Bare soil 92.50 94.50 79.00 100
11 Sweet potato 55.50 84.00 – 100
12 Corn 78.00 76.00 – 66.00
13 Soybean 75.00 49.00 – 98.00
14 Scallion 95.00 – – 91.00

OA (%) 64.67 67.22 73.04 92.80
Kappa 0.6067 0.6314 0.6744 0.9206

Meanwhile, Figure 9 also shows that it is difficult to obtain a high-precision vegetable map
if only utilizing single-date UAV RGB images. There would be a large amount of classification
errors among different vegetable categories, especially between Chinese cabbage, leaf mustard and
turnip. Specifically, during the early growth stage (T1), large amounts of Chinese cabbage and leaf
mustard pixels are misclassified as turnip (Figure 9a). This is mainly because these leafy green
vegetables share very similar appearances (e.g., color, shape and texture patterns), which leads to a low
inter-class separability hence a poor classification accuracy (64.67%). In the middle growth stage (T2),
the classification accuracy of Chinese cabbage has been greatly improved due to its shape change due
to the growth process. However, it still remains difficult to separate leaf mustard from Chinese cabbage
(Figure 9b). When it comes to the ripe stage (T3), the leaf mustard could finally be differentiated from
Chinese cabbage (Figure 9c). This is mainly because the Chinese cabbage shows a round head in the
ripe stage (Table 1), which is greatly different to leaf mustard.

Table 5 shows the class-level accuracy for each vegetable category and other land cover types.
It indicates that there is a significant accuracy gap between mono- and multi-temporal classification
when using UAV RGB imagery. This is understandable because if using single-date UAV data alone,
the similarity of color and texture patterns between various vegetables would yield a low inter-class
separability. This is even more so at the early growth stage (T1), when vegetable seedlings share very similar
appearances, resulting in the lowest classification accuracy with an OA of 64.67%. However, with the
inclusion of multi-temporal UAV images, the additional phenological information would increase the
separability among various vegetables, which could boost the final classification performance.

3.3. Results of Ablation Analysis

To justify the effectiveness of the proposed ARCNN model, a series of ablation experiments are
conducted and the results are shown as follows.

3.3.1. Results of Different Fusion Methods

In this section, we consider the following methods for the fusion of spatial-temporal features:
(1) feature-stacking; (2) Bi-LSTM and (3) Bi-LSTM-Attention. The description of these methods is in
Section 2.7. The experimental results are shown in Table 6.
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Table 6. Comparison between different spatial-temporal feature fusion methods.

Method OA (%) Kappa

Feature-stacking 89.56 0.8849
Bi-LSTM 90.93 0.8999

Bi-LSTM-Attention 92.80 0.9206

Table 6 indicates that the Bi-LSTM-Attention module used in this study outperforms both
feature-stacking and Bi-LSTM, which increases the OA by 3.24% and 1.87%, respectively. The role of
Bi-LSTM-Attention will be discussed in Section 4.1.

3.3.2. Results of Standard Convolution

In this section, we replaced all the deformable convolution operations by standard convolution
units in the proposed network to justify the role of deformable convolution in vegetable mapping.
Table 7 shows the comparison results.

Table 7. Comparison of standard and deformable convolution.

Method OA (%) Kappa

Standard convolution 91.96 0.9111
Deformable convolution 92.80 0.9206

Table 7 implies that the inclusion of deformable convolution could improve the vegetable mapping
accuracy. The detailed discussion will be presented in Section 4.2.

3.4. Results of Comparison with Other Methods

To further justify the effectiveness of the proposed classification model, we compared it with
several machine learning classifiers and other deep learning models. As for the former, we conducted
comparison experiments using MLC, RF and SVM based on the same training and testing datasets.
We used grid search for the parameterization of both RF and SVM. It turns out that an RF with
300 decision trees and a max depth of 15, and a SVM with radial basis kernel, a gamma [66] of 0.001
and a penalty coefficient (C) [66] of 100 has the best performance, respectively.

Table 8 shows the comparison results between the proposed model and other classical machine
learning methods. It indicates that the deep learning based model has an advantage over the classical
methods. A detailed discussion of this will follow in Section 4.4.

Table 8. Comparison with classical machine learning classifiers.

Method OA (%) Kappa

MLC 46.04 0.4095
RF 63.96 0.6023

SVM 84.76 0.8317
Proposed 92.80 0.9206

In addition, we have conducted comparison experiments with several previous studies, mainly
including Ndikumana et al. (stacked LSTMs) [46], Mou et al. (CNN-RNN) [47] and Ji et al. (3D-CNN) [43].
Because the dimension of input and output of these models are different from ours, we have made
necessary changes accordingly when reproducing these DL models. The experimental results are
shown as follows.

Table 9 indicates that the proposed ARCNN in the research has a better performance when
compared with several previous deep learning models. The OA is boosted by an increase of 2.53%
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to 8.36% while the Kappa has risen by 2.78% to 9.23%. The detailed discussion will be presented in
Section 4.4.

Table 9. Comparison with other deep learning methods.

Method OA (%) Kappa

Ndikumana et al. 84.44 0.8283
Mou et al. 90.27 0.8928

Ji et al. 90.18 0.8915
Proposed 92.80 0.9206

4. Discussion

4.1. Impact of Attention-Based RNN on Vegetable Mapping

In this section, we will discuss the impact of attention mechanisms in the RNN for vegetable
mapping. Specifically, according to the ablation study results of Section 3.3.1, the comparisons
were made between different methods for spatial-temporal feature fusion, including feature-stacking,
Bi-LSTM and Bi-LSTM-Attention. Results show that the feature-stacking yields the lowest accuracy
with an OA of 89.56% and a Kappa of 0.8849. The reason is that feature-stacking just concatenates all
the multi-temporal features without considering the relationship and temporal dependencies across
the sequential UAV data. Meanwhile, since Bi-LSTM could understand the dependencies of the
sequential features in a bi-directional way, therefore, it shows a better performance than the simple
feature-stacking method with an OA improvement of 1.37%. In this study, we added an attention
layer on the top of Bi-LSTM to further improve its performance. The attention based Bi-LSTM could
enhance the important features while suppressing the less informative ones, outperforming both
feature-stacking and Bi-LSTM with an OA increase of 3.24% and 1.87%, respectively, which verifies its
effectiveness in spatial-temporal feature fusion.

4.2. Impact of Deformable Convolution on Vegetable Mapping

Another hypothesis of this study is that the scale and shape variations could be accounted for
using the deformable convolution. According to Table 7, it indicates that the inclusion of deformable
convolution could boost the classification performance. The OA has been improved from 91.96% to
92.80% with a rise of about 1%, justifying the role of deformable convolution. The reason for the lower
accuracy of standard convolution is that it has a fixed kernel shape, which lacks the capability to model
the geometric transformations of complex landscapes. On the other hand, deformable convolution
has a flexible receptive field, which could be adaptive to the variability of shape and scale of remotely
sensed imagery [44]. Therefore, the deformable convolution shows a better performance, especially
under the complex and fragmented agricultural landscape in this study.

4.3. Impact of Multi-Temporal UAV Data on Vegetable Mapping

In addition, we will further discuss the role of multi-temporal UAV data on vegetable mapping. In fact,
one of the main objectives of this study is to explore whether the incorporation of multi-temporal UAV
RGB images could improve the vegetable classification accuracy. The initial motivation lies in the fact
that RGB images acquired by UAV have a low spectral resolution, which would make it hard for the
fine-grained classification of various vegetable categories. Therefore, in this study we have selected
images from three important periods, i.e., the sowing period, the growing period and the harvesting
period, to capture the phenological characteristics of different vegetables. Although the number of
three dates may seem limited, all of them fall into the distinct periods of the vegetable and crop growth
stage, which could still provide additional and useful time-series features for classification.

Meanwhile, in previous studies, images from only three dates have been studied for remote
sensing image classification and they outperform the single-date dataset. For instance, Palchowdhuri
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et al. used three images from both multi-temporal Sentinel-2 and WordView-3 imagery for crop
classification in Coalville in the United Kingdom and achieved an accuracy of 91% [67]. Similar
findings were also reported in Yang et al., where three images from summer, autumn and winter were
integrated for coastal land cover mapping [68]. In our previous study [15], we also utilized only three
images during the whole crop growing season for the cropland classification in the Yellow River Delta
of China, which yielded an average accuracy of 89%, justifying the role of three dates for classification.
In future research, images from a longer temporal range could be included to further improve the
classification performance.

4.4. Comparison with Other Methods

In this section, we focused on the detailed discussion between the proposed ARCNN and other
classical machine learning methods and several previous deep learning methods. Specifically, Table 8
indicates that our proposed method outperforms machine learning methods such as MLC, RF and SVM
with an OA increase of 27.29%, 21.58% and 8.64%, respectively. The results are in accordance with [46]
and our previous studies [39,44]. The reason could be that classical machine learning methods lack
the ability to capture the high-level representative features when compared to deep learning models,
leading to a performance gap in vegetable mapping.

In addition, there is a need to compare the proposed ARCNN with other methods for multi-temporal
UAV image classification. Recent researches such as van Iersel et al. [14] and Michez et al. [12], they both
utilized object-oriented image analysis (OBIA) and random forest for plant classification from multi-date
UAV data. Manually designed features such as band ratio and vegetation indices were used for
classification. Compared with their studies, we replace the manually designed features with high-level
and discriminative features that are automatically learned from deep neural networks, (i.e., CNN and
RNN), which could enhance the feature’s representativeness. To the best of our knowledge, this study
is the first case to introduce deep learning methods in multi-temporal UAV image classification.
Therefore, the proposed method in this research might provide useful reference for future studies.

Meanwhile, it is also necessary to compare the proposed ARCNN with other deep learning
models for remote sensing image classification. Early studies mainly utilized LSTM for multi-temporal
classification. One representative research is Ndikumana et al., where five LSTMs were stacked for the
classification using multi-temporal SAR Sentinel-1 data [46]. The input data in Ndikumana’s study are
a single pixel with a time curve, which neglects the rich, contextual relationship hidden in the spatial
features, showing a relatively lower accuracy (84.44%). Different from Ndikumana et al. [46], we have
added a CNN in front of LSTM to enrich the representative spatial feature extraction.

Mou et al. also cascaded a CNN and RNN for change detection from two optical remote
sensing images [47]. Compared with Mou et al. [47], our model makes two significant improvements.
Firstly, from the perspective of CNN, we incorporate the multi-scale deformable convolutions,
which could aggregate multi-level contextual features. Secondly, we used the attention mechanism
with a bi-directional LSTM to further enhance the modeling of sequential signals in multi-temporal
remote sensing data. All the above modifications have improved the classification from 90.18% by
Mou et al. to 92.80%.

Besides, Ji et al. adopted a 3D-CNN to extract spatial-temporal features for crop type mapping
from multi-temporal satellite imagery [43]. Compared with Ji et al. [43], our method has also gained
a more accurate result. The reason lies in that 3D CNN cannot explicitly establish the relationship
between the sequential signals, which has flaws in the generation of spatial-temporal feature fusion
and integration. Furthermore, our Bi-LSTM-Attention module is more straightforward in mining the
relationship across multi-temporal data than a 3D-CNN.

5. Conclusions

This study proposed an attention-based recurrent convolutional neural network (ARCNN)
for accurate vegetable mapping based on multi-temporal unmanned aerial vehicle (UAV) red-green-blue
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(RGB) data. The proposed ARCNN first leverages a multi-scale deformable CNN to learn and extract
the rich spatial features from each mono-temporal UAV image, which aims to account for the shape and
scale variations under complex and fragmented agricultural landscapes. Afterwards, an attention-based
bi-directional long-short term memory (LSTM) is introduced to model the relationship between the
sequential features, from which spatial and temporal features are fused and aggregated. Finally,
the fused features are fed to a fully connected layer and a softmax classifier to determine the
vegetable category.

Experimental results showed that the proposed ARCNN yields a high classification performance
with an overall accuracy (OA) of 92.08% and a Kappa coefficient of 0.9206. When compared with
mono-temporal classification, the incorporation of multi-temporal UAV data could boost the OA
significantly by an average increase of 24.49%, which verifies the hypothesis that multi-temporal UAV
observations could enhance the inter-class separability and thus reduce the drawback of low spectral
resolution of off-the-shelf digital cameras. The Bi-LSTM-Attention module outperforms other fusion
methods such as feature-staking and bi-directional LSTM with an OA increase of 3.24% and 1.87%,
respectively, justifying its effectiveness in modeling the dependency across the sequential features.
Meanwhile, the introduction of deformable convolution could also improve the OA by about 1%
when compared with standard convolution. In addition, the proposed ARCNN also shows a higher
performance than other classical machine learning classifiers such as maximum likelihood classifier,
random forest and support vector machine, and several previous deep learning methods for remote
sensing classification.

This study demonstrates that the proposed ARCNN could yield an accurate vegetable mapping
result from multi-temporal UAV RGB data. The drawback of low spectral resolution of RGB images
could be compensated by introducing additional phenological information and robust deep learning
models. Although images from only three dates were included, a good classification result could
still be achieved providing all three dates fall into the distinct growing periods of vegetables. Finally,
the proposed model could be viewed as a general framework for multi-temporal remote sensing image
classification. As for future work, more study cases should be considered to justify the effectiveness of
the proposed method. Additionally, semantic segmentation models should be incorporated to get a
more accurate vegetable map.
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Abstract: Climate change and competition among water users are increasingly leading to a reduction
of water availability for irrigation; at the same time, traditionally non-irrigated crops require irrigation
to achieve high quality standards. In the context of precision agriculture, particular attention is given
to the optimization of on-farm irrigation management, based on the knowledge of within-field
variability of crop and soil properties, to increase crop yield quality and ensure an efficient water
use. Unmanned Aerial Vehicle (UAV) imagery is used in precision agriculture to monitor crop
variability, but in the case of row-crops, image post-processing is required to separate crop rows
from soil background and weeds. This study focuses on the crop row detection and extraction from
images acquired through a UAV during the cropping season of 2018. Thresholding algorithms,
classification algorithms, and Bayesian segmentation are tested and compared on three different crop
types, namely grapevine, pear, and tomato, for analyzing the suitability of these methods with respect
to the characteristics of each crop. The obtained results are promising, with overall accuracy greater
than 90% and producer’s accuracy over 85% for the class “crop canopy”. The methods’ performances
vary according to the crop types, input data, and parameters used. Some important outcomes can be
pointed out from our study: NIR information does not give any particular added value, and RGB
sensors should be preferred to identify crop rows; the presence of shadows in the inter-row distances
may affect crop detection on vineyards. Finally, the best methodologies to be adopted for practical
applications are discussed.

Keywords: UAV; crop row; precision agriculture; DEM; RGB; vegetation indices

1. Introduction

According to the most recent projections presented by the Intergovernmental Panel on Climate
Change (IPCC), the variation in precipitation is altering hydrological systems in many agricultural
areas of the planet, affecting water resources in terms of both quantity and quality [1]. In particular,
climate change is leading to more frequent extreme events (droughts and heat waves, occurring more
often and lasting longer), to the alteration of spatial and temporal precipitation (less precipitation
concentrated in a few heavy rainfall events), as well as to an increase in air temperatures and crop
water needs in many geographical areas.

In Mediterranean countries, freshwater resources are currently highly exploited due to the rapid
population growth and intensive water use in agriculture, industry, and tourism activities. In many
areas of Europe, including Italy, the effects of climate change are already detectable and have led to the
need to irrigate crops and areas traditionally not irrigated [2].

In the context of Precision Agriculture (PAg), particular attention is given to the optimization of
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on-farm irrigation management, since water resources for agricultural use have become scarcer due to
the combined effect of climate change and the increased competition among different water uses [1,3].
Moreover, due to the intensification of extreme weather events, irrigation is becoming an important
tool to guarantee adequate quality standards to agricultural products [4]. The optimization of on-farm
irrigation management through variable rate irrigation systems is based on the detection of the spatial
variability of soil and crop properties. Variable rate irrigation is aimed at managing water inputs to
match the spatial variability of the water requirements found in the field, by providing irrigation in
different amounts depending on real crop requirements. This approach represents a valid solution
to increase water use efficiency and water savings, and for certain crops, variable water application
might lead also to an increase of yield and product quality [5–7].

Currently, the detection of within-field spatial variability of crops can be easily carried out
through many different technologies, including proximal and remote sensing techniques, sensors
mounted on agricultural machinery, georeferencing systems, and geographical information systems [8].
Among them, the noteworthy development of Unmanned Aerial Vehicles (UAVs) registered in the last
few years has allowed filling the gap between remote sensing and terrestrial techniques in agricultural
applications [9]. Using UAVs is a good compromise between the large coverage obtainable with remote
platforms (mainly satellite and aircraft) and the accuracy of the terrestrial data, with advantages in
terms of time consumption and the costs of the surveys.

By allowing collecting information closely from above the crop canopy, UAVs have introduced
a new point of view for agricultural surveys, giving rise to several applications. As early as 2008,
Nebiker et al. [10] proposed the prototype of a multispectral sensor suitable to be mounted on a
UAV and conducted experiments with it to assess vegetation health with promising results. Starting
from this experience, a variety of studies can be found in the literature about the effectiveness of UAV
surveys conducted for PAg purposes. The main applications involve in-field weed mapping, vegetation
growth monitoring, crop water stress analysis, and optimization of irrigation management [9,11].

The major strength of UAV surveys is to provide information in a rapid, non-destructive way
with a high spatial resolution that can detect within-field variation in detail. Nevertheless, when UAV
imagery is used to monitor crop variability in row-crops, a post-processing procedure must be set
up to identify and extract crop rows from soil background and weeds, thus generating a crop mask.
This issue is crucial to manage precision irrigation properly, by adjusting water supplies according to
crop water requirements, considering the actual crop water status and vigor and their spatial variability.
Moreover, the crop row detection is crucial to reliably assess the effectiveness of variable rate irrigation
in optimizing the crop growth by reducing crop variability. In both of these cases, a non-accurate
recognition of crop rows could induce misleading assessment of crop status, then erroneous evaluation
of water amounts to be applied through irrigation, as well as erroneous validation of irrigation
management. The same highlights are also valid for fertilization practices based on prescription
maps, obtained from NDVI maps acquired through UAV surveys. Fertilization is more effective
the more accurate the crop row detection is. As a matter of fact, what has been reported is valid in
fruit-viticulture and horticulture, where nutrients are applied by fertigation through drip irrigation
systems. On the other hand, crop row detection can be useful even for herbaceous crops sown in rows,
such as maize. In the case of maize, procedures to generate crop masks are fundamental to manage
precision fertilization or to control weeds in the early growth stages, before the canopy closure when
the crop rows are still recognizable [12,13].

Different studies can be found in the literature, proposing (semi)automatic methods,
using image-processing techniques on single-band images, maps of Vegetation Indices (VIs), or Digital
Elevation Models (DEMs), to detect crop canopy [14]. Poblete-Echeverría et al. [15] compared the
performance of four classification methods, including standard and well known methods (i.e., K-means
and VIs’ thresholding) and machine learning methods (i.e., artificial neural networks and random
forest), to detect vine canopy using ultra-high-resolution RGB imagery acquired with a conventional
camera mounted on a low-cost UAV. Marques et al. [16] presented a UAV-based automatic method to
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detect chestnut trees, by using RGB and CIR (Color Infrared) orthomosaics combined with the canopy
height model. In [17], potato plant objects were extracted from bare soil using the excess green index
and Otsu thresholding methods.

This study focuses on the crop row detection and extraction by analyzing and post-processing
images acquired through a UAV. Different methodologies are tested and compared, as well as several
segmentation methods, such as supervised classifications, Bayesian segmentation, and thresholding
algorithms, developed ad hoc for this purpose. Extraction algorithms are applied both on geometric
products (i.e., digital elevation model) and vegetation indices’ maps. As already presented by
other studies [15,16,18], the proposed methods exploit existing indicators, including NDVI and RGB
derived indices. In this way, this study aims at demonstrating the importance and effectiveness
of UAV systems in precision agriculture and providing to less experienced users the opportunity
to use them. As an added value, using simple tools and proving their usefulness would allow
the diffusion of these methodologies to a wide audience, even outside the academic environment.
All the described methods are semi-automatic and require little human intervention for parameter
choosing and fine-tuning. The assessment of the methods was performed on three different crop
types, grapevine, pear, and tomato, to analyze the suitability of the proposed methods with respect to
the characteristics of each crop. Considering the application of the proposed algorithms to different
agro-ecosystems, each with its own peculiarities, represents the real novelty of this study with respect
to the existing literature.

2. Materials

2.1. Study Sites

This study is part of the two year project NUTRIPRECISO (RDP-EU, Measure 1.2.01, Lombardy
Region), which involved the Department of Agricultural and Environmental Sciences (DiSAA),
University of Milan, the Department of Civil and Environmental Engineering (DICA), Politecnico di
Milano, and CREA (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria). The project
was aimed at developing and disseminating practices of PAg in fruit viticulture and horticulture.
Consequently, in this study, simple and reliable methodologies, moreover using commonly available
data, are presented to be proposed to the farmers and potential users.

Three different types of crops were investigated in the NUTRIPRECISO project: grapevine, pear,
and tomato; therefore, three different areas in the Lombardy Region were chosen as study sites, to be
representative of each crop. The location of the vineyard is shown in Figure 1a, while the pear orchard
and tomato sites are reported in Figure 1b. In the following, the main characteristics of the three study
sites are described.

2.1.1. Vineyard

The vineyard, with an extent of 1 ha, is located in Olfino di Monzambano, in the province of
Mantova, the heart of the Morainic Hills region (Northern Italy).
The vineyard is nearly flat and located at an altitude of about 88 m a.s.l. A soil survey with an
Electro-Magnetic Induction (EMI) sensor followed by a traditional pedological survey showed that the
field, despite its small dimension, was characterized by four different soil types with coarse soils in the
northwestern part and fine heavy soils in the eastern part [19].

According to the ARPA (Regional Environmental Protection Agency) agro-meteorological station
located at Ponti sul Mincio (about 6.5 km from the vineyard), the climatic conditions are warm and
mild with average maximum and minimum temperatures during summer of about 30 and 20 ◦C,
respectively, and rainfall concentrated in spring and autumn, with a mean annual value of 765 mm
(values calculated as the average over the period 1993–2017), which provide favorable conditions for
the grapevine to grow.
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The vineyard variety was Chardonnay, cultivated in rows oriented along the east-west axis, with a
distance of plants on the row of 0.8 m and a distance between the rows of 2.4 m, while the row height
was about 1.3 m. The plant cover fraction in the phase of maximum development of the canopy was
estimated to be about 25% (equivalent to a row width of 0.6 m). The soil, both under the rows and
between the rows, was grass-covered with periodic mowing to regulate the excessive development of
vegetation [19].

(a) (b)

Figure 1. The experimental sites: (a) the vineyard; (b) in yellow the pear orchard and in
red the tomato field. Coordinate Reference System (CRS): WGS84/UTM Zone 32N. Map data:
©OpenStreetMap contributors.

2.1.2. Pear Orchard

The pear orchard was situated in the “Dotti” farm, a research facility of the University of Milan,
located in Arcagna locality, Montanaso Lombardo (province of Lodi (LO)).

The orchard covers an area of about 1 ha and is flat, positioned at about 80 m a.s.l. According to
the data recorded in the period 1993–2017 at the nearest ARPA agro-meteorological station (located at
about 12 km southeast from the experimental site in Cavenago d’Adda), the climate is characterized
by two rainy periods, respectively in April and September, while the highest temperatures occur in
July, when rain is minimum.

The soil is loam with more clay in deeper horizons. In the orchard, four different pear varieties
were cultivated, namely Williams, Abate, Kaiser, and Conference varieties, distributed in 17 rows with
an inter-row distance of about 4 m, while the distance between plants on the row was about 1.5 m,
depending on the variety; the soil, under the rows and between the rows, was grass-covered with
periodic cutting.

2.1.3. Tomato Field

The third site included in the project is an area of about one hectare cultivated with industrial
tomato “Pietra Rossa F1”, inside the CREA research center in Montanaso Lombardo (LO). The site
is characterized by loamy soils with an increase of clay with the depth, while climatic conditions are
the same as the ones above described for the pear orchard site. Tomatoes were 0.3 m high at images’
acquisition and cultivated in parallel rows of 0.5 m width with a distance between rows of about 1.5 m.

2.2. UAV Surveys and Photogrammetric Processing

Two UAV surveys were conducted on each study site, during the agricultural season of 2018.
For each site, in the first survey, the Parrot Bebop 2 (Parrot S.A., Paris, France) was used to acquire
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RGB images, and the Parrot Sequoia camera (Parrot S.A., Paris, France) was mounted on the
Parrot Disco (Parrot S.A., Paris, France) to collect multispectral imagery during the second survey.
The photogrammetric processing of all the surveys was performed with Pix4Dmapper Pro software
(Pix4D S.A., Prilly, Switzerland), Version 4.1.1. The details of the surveys and their processing are
described in the following sections.

2.2.1. Vineyard

The RGB survey of the vineyard took place on 28 June 2018, while the multispectral survey,
six days later on 4 July. The flight height of the Parrot Bebop 2 used in the RGB survey was set to
40 m Above Ground Level (AGL), while the Parrot Disco flew at 60 m (AGL) during the multispectral
survey. The same overlaps among images were fixed for the two surveys: longitudinal overlapping
equal to 80% and transversal equal to 70%. An amount of 130 and 560 images were collected during
the RGB and multispectral survey, respectively. According to the sensors’ characteristics (i.e., Parrot
Bebop 2 fisheye camera and Sequoia camera), the final Ground Sample Distance (GSD) of the acquired
images was about 0.1 m for both cases. As suggested in [20], the coordinates of nine Ground Control
Points (GCPs) were measured with the Global Navigation Satellite System (GNSS) receiver Leica Viva
GS14 (Leica Geosystems, Heerbrugg, Switzerland) in Network Real-Time Kinematic (NRTK) mode,
to ensure the georeferencing of the photogrammetric products with high accuracy. According to the
results of [20], eight GCPs were distributed all around the perimeter of the vineyard, while the ninth
target was placed in the middle of the field (Figure 2). In all the study sites, some of the GCPs were
adopted as Check Points (CPs) during the photogrammetric processing, to assess process accuracy.

Figure 2. Ground Control Points’ (GCPs) distribution for the surveys on the vineyard. Map data:
©Google Satellite.

At the end of two independent photogrammetric processing, performed with Pix4Dmapper
Pro software, a Digital Surface Model (DSM), an RGB orthophoto, and a four band multispectral
orthophoto were produced, with GSD of around 0.1 m, to exploit for the crop row detection. The DSM
generated from the multispectral survey had lower quality than the RGB one; therefore, it was not
considered in further analysis. Table 1 summarizes the residuals on GCPs after photogrammetric
processing, while in Figure 3, DSM and orthophotos of the vineyard are shown.
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(a) (b)

(c)

Figure 3. Vineyard site: DSM (a) and orthophoto (b) produced through photogrammetric processing
of the RGB dataset; false color orthophoto (c), generated from the multispectral dataset.

Table 1. Vineyard site: residuals on the GCPs after bundle block adjustment.

Label Easting (m) Northing (m) Height (m)

v1 −0.029 −0.008 0.088
v2 −0.007 −0.012 −0.012
v3 −0.025 −0.030 −0.063
v4 0.008 0.025 0.062
v5 0.015 0.005 0.000
v6 0.022 −0.013 0.024
v7 0.030 −0.013 0.027
v8 0.020 −0.015 −0.086
v9 0.012 0.008 0.012

RMSE 0.021 0.016 0.052

2.2.2. Pear Orchard

In the pear orchard site, the RGB and multispectral surveys were conducted on 26 June and 2 July,
respectively. The characteristics of the flights were the same as the surveys performed on the vineyard
site: longitudinal overlap among images equal to 80%, transversal overlap equal to 70%, flight height
set at 40 m and 60 m for the multirotor UAV and the fixed-wings UAV, respectively, thus ensuring a
GSD of the images of about 0.1 m. 140 images were acquired during the RGB survey, while 540 during
the multispectral one. During the UAV flights, seven targets were placed on the terrain to be used as
GCPs, well distributed all around the orchard, as shown in Figure 4.
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Figure 4. Ground Control Points’ (GCPs) distribution for the surveys on the pear orchard. Map data:
©Google Satellite.

As the case of the vineyard, the DSM and the orthophotos were produced in Pix4Dmapper
Pro with a spatial resolution of 0.1 m (Figure 5). The residuals on the GCPs computed after the
photogrammetric workflow are reported in Table 2.

(a) (b)

(c)

Figure 5. Pear orchard site: DSM (a) and orthophoto (b) produced through photogrammetric processing
of the RGB dataset; false color orthophoto (c), generated from the multispectral dataset.
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Table 2. Pear orchard site: residuals on the GCPs after bundle block adjustment.

Label Easting (m) Northing (m) Height (m)

p1 −0.050 −0.017 0.007
p2 −0.032 −0.004 −0.017
p3 0.018 −0.060 0.021
p4 0.028 −0.089 0.113
p5 0.003 0.023 −0.290
p6 0.100 0.053 0.018
p7 −0.085 0.003 0.054

RMSE 0.056 0.047 0.119

2.2.3. Tomato Field

Given the proximity of the two sites, the tomato field was surveyed on the same days as
the pear orchard, with the same equipment and flight characteristics. During the RGB survey,
96 images were acquired, as well as 388 images came from the multispectral flight. From these
datasets, one DSM and two orthophotos, having a GSD equal to 0.1 m, were generated after bundle
block adjustment in Pix4Dmapper Pro. The various photogrammetric products were georeferenced
by means of six GCPs, whose center coordinates were measured with GNSS-NRTK on the dates
of the surveys. The distribution of the GCPs on the tomato site and their computed residuals
are shown in Figure 6 and Table 3, respectively. The photogrammetric products are reported in Figure 7.

Figure 6. Ground Control Points’ (GCPs) distribution for the surveys on the tomato site. Map data:
©Google Satellite.

Table 3. Tomato site: residuals on the GCPs after bundle block adjustment.

Label Easting (m) Northing (m) Height (m)

t1 −0.098 0.071 −0.101
t2 0.095 0.068 0.046
t3 0.028 0.71 0.077
t4 −0.026 −0.127 −0.054
t5 −0.019 −0.154 0.149
t6 −0.053 −0.038 0.114

RMSE 0.062 0.096 0.097
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(a) (b)

(c)

Figure 7. Tomato site: DSM (a) and orthophoto (b) produced through photogrammetric processing of
RGB dataset; false color orthophoto (c), generated from the multispectral dataset.

3. Crop Row Detection Methods

Differentiating between crop canopy and background can be very challenging. Moreover,
the different crop types considered in this study led to the need for many methods to extract crop
rows, each one more suitable for a specific crop type. In the following sections, five different detection
methods were proposed; some of them were taken from the existing literature (i.e., classification
algorithms and Bayesian segmentation), while two methods, labeled as thresholding algorithms,
were developed ad hoc for the purposes of the project.

In order to achieve the best possible crop mask to be used to identify crop rows on orthophotos,
Vegetation Indices (VIs) were chosen as the inputs of the detection methods, as already proposed by
many authors [15,16,21]. Considering vegetation, most of those indices take into account Red (R)
and NIR reflectance bands (ρλ): the greater is the difference between ρR and ρNIR, the greater is the
amount of green and healthy vegetation in that particular pixel. Among all the possible VIs, only
those composed of spectral bands that sensors involved in the surveys could provide were used in this
study (Table 4).
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Table 4. Vegetation Indices (VIs) used in this study.

Index Name Formula References

NDVI
Normalized Difference

Vegetation Index
NIR−Red
NIR+Red [22]

SR
Simple
Ratio

NIR
Red [23]

SAVI
Soil-Adjusted

Vegetation Index
NIR−Red

NIR+Red+L (1 + L) [24]

ARVI
Atmospherically Resistant

Vegetation Index

NIR−RB
NIR+RB where:

RB = Red − γ(Blue − Red)
[25]

ExG
Excess
Green 2(Green)− (Red + Blue) [26]

G%
Normalized Green
Channel Brightness

Green
Red+Green+Blue [27]

To exploit the proposed methods fully, also the DSM and RGB orthophoto were individually used
as inputs. This ensured that the methods were still operational, even in the cases where only imagery
resulting from UAVs supporting only RGB sensors was available, as for the Parrot Bebop 2.

The assessment of the final results was performed by computing error matrices and classification
accuracies (Overall Accuracy (OA), User’s Accuracy (UA), and Producer’s Accuracy (PA)), on some
validation samples manually identified on orthophotos, through visual inspection. In particular,
the quality of the crop detection was defined according to the value of PA of the class crop canopy:
the greater is the PA, the lower is the probability to omit crop pixels; therefore, to underestimate the
detected crop rows.

3.1. Thresholding Algorithms

Two algorithms (specifically local maxima extraction and threshold selection) were developed
ad hoc for the purpose of the project, by starting from [28], who proposed a method for crop rows’
extraction by using as input the 3D point cloud. Both methods were generated in MATLAB R2017b [29]
and are based on the concept that high pixel values generally correspond to crop rows. They are
illustrated in the following sections.

3.1.1. Local Maxima Extraction

This method aims at generating a binary raster, where non-null values refer to the presence of the
crop canopy. First, the input raster (e.g., VI map or DSM) is divided into square cells (macro-cells),
then inside each macro-cell, the crop pixels are identified as those corresponding to a percentage of
pixels with the highest values. It is a semi-automatic algorithm, where the user has to define the
dimensions of the cell and the percentage value.

This method is sensitive to the user’s choices: in particular, the macro-cell dimension should be
selected in order to include both crop and ground pixels, thus being close to the distance between
rows or slightly larger. Macro-cell size should be neither too small nor too big with respect to the
distance between rows. If it is too small, a wrong selection of pixels is performed whatever the
chosen percentage is. When the cell includes only crop pixels, whatever percentage not equal to
100% causes an underestimation of crop pixels; on the other side, when the cell overlaps only ground
pixels, they would be selected as crop pixels, thus producing an over-estimation in the crop mask.
The overestimation arises also when the dimension of the macro-cell is too big, because the probability
of selecting pixels belonging to the ground increased with the chosen cell size.
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3.1.2. Threshold Selection

This method produces a binary crop mask, by selecting as crop pixels all pixels with values higher
than a reference value. The challenging part of this algorithm is the definition of this reference value.
When both DSM and Digital Terrain Model (DTM) of the area are available, the Canopy Height Model
(CHM) could be derived as difference between DSM and DTM, and zero could be considered as the
reference value, while in other cases (i.e., VIs as input, no availability of an accurate DTM), it should
be determined as described below.

Starting from the input raster, create a smoothed raster with a moving window average filter.
Subtract the smoothed raster to the input raster, and define on the differences a threshold to be
considered as the reference value, by visual checking of the results with an empirical trial and error
approach. Pixels with values greater than the threshold are retained as crop. Even in this algorithm,
the user intervention is twofold, choosing the dimensions of the moving window and the value of the
threshold, and could cause problems of under-/over-estimation of crop canopy pixels.

3.2. Classification Algorithms

Two well-known classification algorithms were exploited in this study, K-means clustering and
the Minimum Distance to the Mean (MDM) classifier, to be representative of both unsupervised
and supervised classification algorithms. Both methods were applied in QGIS (Version 3.4) [30],
to allow users not familiar with programming languages to run the algorithms thanks to a dedicated
user-friendly GUI.

3.2.1. K-Means Clustering

This is a well-known algorithm for hard unsupervised thematic classification [31]. The clustering
made by K-means is based on the minimization of the objective function f (Ω), defined as the Euclidean
distance of samples of a cluster from the respective centroid.

The number of classes (K) are known a priori. Once K is defined, the method consists of three
iterative steps. In the first step, for each class Ki, a centroid is automatically chosen. The rest of the data
are assigned to K clusters based on the minimum distance criterion. The Euclidean distances of each
sample from the centroids are computed, and in the second step, the sample is assigned to the cluster
for which the computed distance is minimum. In the last step, centroids are re-calculated, and all the
samples are re-assigned. This step is iterated until the clustering converges to a stable solution, namely
when centroids of clusters do not change meaningfully.

The final configuration is stable and does not depend on the initial position of centroids arbitrarily
selected. The initial configuration only influences the number of iterations necessary to reach
the convergence.

3.2.2. Minimum Distance to Mean Classifier

This method finds the mean values of all the training sets and classifies all the image pixels
according to the class mean they are closest. The process is performed for all image pixels, one at a
time. Bounds are determined using statistics derived from the training sets, and the distance used is
the Euclidean one.

As for all supervised algorithms, a crucial phase of the MDM classifier is the selection of the
training samples. They are used to compute class spectral signatures, therefore must be representative
of all the classes. In this study, training samples were defined by visual inspections of the UAV
images and grouped in two macro-classes: crop canopy and background, which included weeds, soil,
and shadow pixels.
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3.3. Bayesian Segmentation

This method relies on the Bayesian approach, where any uncertainty can be considered random
variables that are fully described by probability distributions [32]. Given the vector of data y and the
vector of parameter x, the conditional distribution of parameters is described by the Bayes theorem [33]:

P(x|y) = P(x, y)
P(y)

=
P(y|x)P(x)

P(y)
(1)

where:
P(x|y) is called the posterior probability and describes the new level of knowledge of the unknown
parameters x given the observed data y.
P(y) is a normalization constant used to impose that the sum of P(y|x) for all possible x is equal to one.
P(x), instead, represents the prior probability distribution. It describes the knowledge of the unknown
parameters x without the contribution of the observed data.
P(y|x) is defined as the likelihood and is a function of x. It describes the way in which the a priori
knowledge is modified by data and depends on the noise distribution.

The terms in Equation (1) can be adapted to match the purpose of this study, the detection of
crop rows: the posterior probability is the probability of a pixel to be part of the class crop canopy
or background, and the prior probability is defined starting from the mean and standard deviation
values, a priori assigned to each class, while the likelihood is described by a Gaussian distribution,
in which the parameters are the mean and standard deviation of the two classes:

P(yi|xi) =
1

σxi

√
2π

exp

(
− (yi − μxi )

2

2σ2
xi

)
(2)

The final goal of Bayesian approach can be identified in finding the optimal parameters x that
maximize the posterior probability distribution P(x|y). This is called the Maximum A Posteriori (MAP)
estimate [34], and it is defined as:

xMAP = arg max
x

P(x|y) (3)

In crop row detection, it consists of assigning a unique class to each pixel of the image, depending on
the posterior probabilities estimated for each pixel. In order to obtain outputs less affected by pixel
noise, smoothing filters or image adjustment can be applied on the input raster.

4. Results

Considering all the detection methods, their parameters, and all the possible input rasters,
the number of crop masks potentially available is very high. For the vineyard site, 191 outputs were
tested and 166 and 104 for the pear orchard and tomato site, respectively. For the sake of brevity,
only the best masks, representing each detection method, are reported and compared. An exhaustive
analysis of all the tests performed was described in [35].

4.1. Vineyard

For the vineyard site, the parameters of each detection method that resulted in the best results are
reported in Table 5.
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Table 5. Vineyard site: parameters for the best results of each detection method. MDM, Minimum
Distance to the Mean.

Method Input User’s Choices

Local Maxima
Extraction G%

cell size: 5 m
percentage: 30%

Threshold
Selection DSM

cell size: 3 m
threshold: 0.3

K-means
Clustering

RGB
orthophoto classes: 6

MDM
Classifier

RGB
orthophoto classes: 2

Bayesian
Segmentation

ExG,
Gaussian filter (σ = 3)

Background: μ = 0.2, σ = 0.2
Crop canopy: μ = 0.7, σ = 0.25

For the computation of the error matrices, 104 polygons (N pixels = 42,732) were defined for
the class crop canopy and 97 polygons (N pixels = 64,309) for the class background. In Table 6,
the accuracies of the five selected best results are summarized, and the detail of each crop mask is
shown in Figure 8.

(a) (b) (c)

(d) (e)

(f)

Figure 8. Vineyard site: crop row detection results for (a) local maxima extraction, (b) threshold
selection, K-means clustering (c), MDM classifier (d), and the Bayesian segmentation (e). Figures refer
to the area included in the red box in (f).
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Table 6. Vineyard site: assessment of the best results of each detection method.

Method OA
PA

Crop Canopy
UA

Crop Canopy

Local Maxima
Extraction 0.94 0.95 0.91

Threshold
Selection 0.76 0.41 0.99

K-means
Clustering 0.82 0.73 0.80

MDM
Classifier 0.87 0.84 0.83

Bayesian
Segmentation 0.96 0.97 0.94

4.2. Pear Orchard

The parameters for the best results of each detection method for the pear orchard are summarized
in Table 7.

Table 7. Pear orchard site: parameters for the best results of each detection method.

Method Input User’s Choices

Local Maxima
Extraction DSM

cell size: 4 m
percentage: 40%

Threshold
Selection DSM

cell size: 4 m
threshold: 0

K-means
Clustering

RGB
orthophoto classes: 5

MDM
Classifier

RGB
orthophoto classes: 2

Bayesian
Segmentation

NDVI,
Gaussian filter (σ = 3)

Background: μ=0.8, σ=0.04
Crop canopy: μ=0.93, σ=0.04

The error matrices were computed starting from a validation set composed by 37 polygons
(N pixels = 44,889) for the class crop canopy and 34 polygons (N pixels = 62,378) for the class background.
The five selected best results and their respective accuracies are presented in Figure 9 and in Table 8.

Table 8. Pear orchard site: assessment of the best results of each detection method.

Method OA
PA

Crop Canopy
UA

Crop Canopy

Local Maxima
Extraction 0.92 0.88 0.93

Threshold
Selection 0.95 0.97 0.92

K-means
Clustering 0.95 0.90 0.99

MDM
Classifier 0.87 0.68 0.99

Bayesian
Segmentation 0.94 0.91 0.95
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(a) (b) (c)

(d) (e)

(f)

Figure 9. Pear orchard site: crop row detection results for (a) local maxima extraction, (b) threshold
selection, K-means clustering (c), MDM classifier (d), and Bayesian segmentation (e). Figures refer to
the area included in the red box in (f).

4.3. Tomato Field

Table 9 reports the parameters chosen for each detection method, which gave the best crop
mask outputs.

Table 9. Tomato field site: parameters for the best results of each detection method.

Method Input User’s Choices

Local Maxima
Extraction G%

cell size: 3 m
percentage: 30%

Threshold
Selection DSM

cell size: 4 m
threshold: 0

K-means
Clustering

SAVI +
NDVI classes: 5

MDM
Classifier

SAVI +
NDVI classes: 2

Bayesian
Segmentation

ExG,
Histogram adjustment

Background: μ = 0.05, σ = 0.15
Crop canopy: μ = 0.65, σ = 0.35
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The assessment of the results for the tomato site was performed on 52 polygons (N pixels = 81,290)
for the class crop canopy and 42 polygons (N pixels = 155,296) for the class background. The accuracy
values are presented in Table 10, while Figure 10 shows the crop detection for the five selected methods.

(a) (b) (c)

(d) (e)

(f)

Figure 10. Tomato field site: crop row detection results for (a) local maxima extraction, (b) threshold
selection, K-means clustering (c), MDM classifier (d), and Bayesian segmentation (e). Figures refer to
the area included in the red box in (f).

Table 10. Tomato field site: assessment of the best results of each detection method.

Method OA
PA

Crop Canopy
UA

Crop Canopy

Local Maxima
Extraction 0.98 0.94 0.98

Threshold
Selection 0.97 0.87 0.99

K-means
Clustering 0.93 0.93 0.79

MDM
Classifier 0.90 0.60 0.92

Bayesian
Segmentation 0.98 0.91 0.98
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5. Discussion

As general findings, it can be stated that all the methods tested in this study performed well for
crop row detection, with OA close or even greater than 0.9. The vineyard site seemed to be the most
challenging (OA values lower than 0.9 for some methods), due to the concurrent presence of weed,
bare soil, and shadow in the inter-row distance, while the high contrast between bare soil and crop
canopy facilitated the crop detection in the tomato site (OA values always higher than 0.9).

Despite the high accuracy values achieved, the proposed algorithms did not require any particular
computational resources, and the calculation time is reasonable with mass-market hardware, even
if it varied according to the method. Local Maxima Extraction (LME) and Bayesian Segmentation
(BS) overall returned the best outputs in terms of accuracies values, but with different performances
in terms of time cost and parameter setting. The first method was faster, and choosing a cell size
comparable with the rows’ distance, or slightly larger, and a percentage of maxima between 30%
and 40% could produce high quality results in all cases. The latter required a high level of a priori
knowledge, and parameters had to be ad hoc fine-tuned with a time-consuming trial and error
approach. The Threshold Selection (TS) algorithm needs to be run with an accurate DSM, and the
definition of the reference value is crucial and sometimes can fail, as demonstrated by the low accuracy
values registered in the vineyard site (OA = 0.76), especially on fields characterized by a relevant
slope. On hilly fields and non-flat areas, the use of a real CHM is necessary and cannot be bypassed
by the creation of a smoothed raster, on which the reference value of terrain height is identified.
Classification algorithms are easy to run, especially in the QGIS implementation, and widely used
in remote sensing, but cannot reach, in all cases, the same level of accuracy as the other methods.
In addition, these algorithms require considerable human intervention, either in the labeling phase,
as the case of K-means clustering, or in the delineation of the training samples, as for starting the
MDM Classifier.

Regarding input rasters, DSM, RGB orthophotos, and VIs obtained as a combination of RGB
bands are the most adopted in the selected methods. Only the cases of Bayesian segmentation on the
pear orchard site and classification algorithms for tomato site require NDVI and NDVI jointly with
SAVI to obtain the best results. Therefore, NIR information does not give any particular additional
value in crop row detection, and RGB sensors can perform accurate canopy extraction, as already
demonstrated by other authors [15,28], saving the time and cost of the UAV surveys and processing.

According to crop characteristics, specific considerations can be stressed for each single crop.
In the case of a vineyard, it is important to maintain the continuity of the crop row, when detecting
the crop canopy. This characteristics was enhanced in the Bayesian segmentation, as shown in
Figure 8e, also thanks to the Gaussian filter applied to the input raster before launching the algorithm.
The continuity of the vine rows was also guaranteed by using the local maxima extraction algorithm
as the detection method (Figure 8a), apart from some rare and sparse pixels. Indeed, the two
aforementioned methods registered the highest accuracy values, in particular PA values: 0.97 and 0.95
for BS and LME, respectively, considerably greater than the PA values of the other detection methods.
The major issue of detecting vine rows is the presence of shadows, weeds, and bare soil in the inter-row
distance. Our results demonstrated that the shadows made the classification methods practically
unusable on the vineyard. In Figure 8c,d, it is clearly visible how the pixels at the edges of the shadow
areas were detected as crop pixels. Classification algorithms are unable to separate the vine canopy
from its shadow on the terrain, resulting in an overestimation of the crop rows (UA values around 0.8).

In the orchard, pear trees are planted quite distant from one another (in our study site, around
1.5 m); therefore, a good detection has to identify single plants rather than rows. In these terms,
classification algorithms return the best results, as visible in Figure 9c,d and confirmed by the highest
values of UA practically equal to one (Table 8). On the other hand, these detection methods also
returned the most noisy outputs and underestimated the presence of pear trees in the orchard,
in particular the MDM classifier with a PA equal to 0.68. The height of the trees favored their
extraction from the background, also in presence of weeds in the inter-row distance. To exploit

43



Remote Sens. 2020, 12, 1967

these characteristics fully, it is advisable to use the DSM as the input of whatever detection method;
in particular, the threshold selection algorithm gave the best outcomes in the pear orchard site, with PA
value for the class crop canopy of 0.97.

As already mentioned, the tomato field site had the highest accuracy values for the crop detection,
thanks to the regular alternation of bare soil and vegetation canopy. The OA values for all the tested
methods were higher than 0.9; the LME algorithm, BS, and K-means also returned PA values above 0.9,
while the PA of the TS method was slightly lower than 0.9 due to the use of the DSM as the input for
starting the algorithm. At the time of the survey, the plants had a height of 0.3 m, equivalent to a few
image GSDs; therefore, the errors in the photogrammetric processing (column height in Table 3) in this
specific case affected the results of the canopy detection.

Precision viticulture is already widespread in the world, and recent articles have demonstrated
the added value that remote sensing from UAV platforms can give to this sector [36]. Hence, numerous
studies can be found in the literature dealing with vine canopy extraction [15,28,37,38]. The results
presented in this work had accuracy values similar to those available in the literature. To the best of
authors’ knowledge, very few studies have already been published related to the detection of pear
trees in orchards or tomato canopy, thus hampering the availability of reference values to compare the
outputs. The assessment of the reliability of the illustrated results was based on similar case studies
present in the literature. The detection of pear plants was performed with accuracy values slightly
lower than the results obtained by [39], in two orchards in China, but close to the outcomes of the
chestnut tree extraction described in [16]. The high values found for the tomato site were in agreement
with the results presented in [17], about the estimation of crop emergence in potatoes.

The potential utility of this study in precision agriculture is high. The methods herein described
allowed deriving from UAV imagery vegetation properties specifically related to the characteristics
of the crop under investigation. In particular, in the irrigation management context, it must be taken
into account that usually, irrigation for row-crops is provided through localized pressurized systems,
wetting only the areas near the crop. The soil between rows is usually grass-covered, so analyzing crop
maps (for example NDVI or thermal maps) of the field without masking the soil between rows could
lead to errors when evaluating the water status or vigor of the crop under study. In Figures 11–13,
NDVI maps for the three analyzed study sites are shown: on the left, the original maps, while on
the right, the canopy maps generated after the extraction of crop rows. This information could be
used in precision agriculture applications for mapping vegetation stress status or to optimize on-farm
irrigation management. As an example, in [40], the use of a crop row detection method to delineate
Site-Specific Management Zones (SSMZs) maps on a vineyard was described.

Moreover, it is crucial to stress that in the case of row-crops, the importance of using UAV imagery
with respect to satellite imagery becomes fundamental. In satellite images, in fact, pixels have larger
dimensions, and the operation of extracting crop rows is not possible. This leads to the presence of
mixed pixels, for which Vegetation Indices’ maps give information about both row and inter-row
vegetation, therefore not very usable for agronomic inputs’ management [41,42].
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(a) (b)

Figure 11. Vineyard site: NDVI map before (a) and after (b) the crop rows’ extraction.

(a) (b)

Figure 12. Pear orchard site: NDVI map before (a) and after (b) the crop rows’ extraction.

(a) (b)

Figure 13. Tomato field site: NDVI map before (a) and after (b) the crop rows’ extraction.
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6. Conclusions

This study demonstrates the feasibility to perform crop row detection from high-resolution
UAV imagery, for different crop types, including vineyards, orchards, and horticultural crops. DSM,
RGB, or multispectral orthophotos can be used as input for the detection methods; in particular,
the DSM performs better with crop characterized by high heights (i.e., grapevine and pear), even in
the presence of inter-row weed, but it should be avoided to detect horticultural crops (i.e., tomato).
Commercial RGB sensors give high accuracy values for crop row detection; therefore, for this purpose,
it is not necessary to perform surveys mounting more expensive multispectral cameras, if no additional
infrared information is required. Furthermore, in the presence of shadows produced by the crop
canopy on the terrain, indices based on the NIR band and classification algorithms could lead to an
overestimation of the crop rows.

Although all applied methods need some level of human intervention, among all, the local maxima
extraction algorithm, developed ad hoc within this study, allows reaching the best compromise in
terms of time-cost, automation, and quality of results. Bayesian segmentation applied on VIs performs
better than the other methods in the presence of bare soils, but it depends on a priori information.
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and Krzysztof Bakuła 3
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Abstract: This research is related to the exploitation of multispectral imagery from an unmanned
aerial vehicle (UAV) in the assessment of damage to rapeseed after winter. Such damage is one
of a few cases for which reimbursement may be claimed in agricultural insurance. Since direct
measurements are difficult in such a case, mainly because of large, unreachable areas, it is therefore
important to be able to use remote sensing in the assessment of the plant surface affected by frost
damage. In this experiment, UAV images were taken using a Sequoia multispectral camera that
collected data in four spectral bands: green, red, red-edge, and near-infrared. Data were acquired
from three altitudes above the ground, which resulted in different ground sampling distances. Within
several tests, various vegetation indices, calculated based on four spectral bands, were used in
the experiment (normalized difference vegetation index (NDVI), normalized difference vegetation
index—red edge (NDVI_RE), optimized soil adjusted vegetation index (OSAVI), optimized soil
adjusted vegetation index—red edge (OSAVI_RE), soil adjusted vegetation index (SAVI), soil adjusted
vegetation index—red edge (SAVI_RE)). As a result, selected vegetation indices were provided to
classify the areas which qualified for reimbursement due to frost damage. The negative influence
of visible technical roads was proved and eliminated using OBIA (object-based image analysis) to
select and remove roads from classified images selected for classification. Detection of damaged areas
was performed using three different approaches, one object-based and two pixel-based. Different
ground sampling distances and different vegetation indices were tested within the experiment, which
demonstrated the possibility of using the modern low-altitude photogrammetry of a UAV platform
with a multispectral sensor in applications related to agriculture. Within the tests performed, it was
shown that detection using UAV-based multispectral data can be a successful alternative for direct
measurements in a field to estimate the area of winterkill damage. The best results were achieved in
the study of damage detection using OSAVI and NDVI and images with ground sampling distance
(GSD) = 10 cm, with an overall classification accuracy of 95% and a F1-score value of 0.87. Other
results of approaches with different flight settings and vegetation indices were also promising.

Keywords: damage detection; winter crop; UAV; multispectral imagery; vegetation indices;
agricultural insurance; technical roads

1. Introduction

The European Union is the global leader in rapeseed production, and Poland is one of the largest
rapeseed producers and processors in Europe. In 2019, it was second only to France [1]. In 2010–2019,
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the area of rapeseed sown in Poland ranged from 720,000 to 950,000 hectares, representing about 8–10%
of the total crops, and about 95–96% of the oilseed acreage [2].

Due to the climate changes observed in recent years (i.e., snow-free winters), yield losses caused
by poor wintering of plants are becoming more frequent. Low temperatures are the most dangerous
for crops, combined with no snow or a thin layer of snow cover. Rapid warming causing thaws,
followed by frosts, are also not conducive to wintering plants. The result of such winter weather is
freezing winter crops, i.e., damage to the crops. If there is no snow cover, winter rapeseed may freeze at
−10 ◦C [3]. Annual losses in rapeseed yields in 2015–2019 were estimated to range from 10% to 20% [2].
To assess damages for agricultural insurance, an assessment of its occurrence in the field is performed.
These are imprecise measurements made based on a sample selected in the field whereby an expert
determines the number of plants per square meter and takes this as a representation of one hectare of
the affected field. The results of these measurements depend on the expert’s experience. In the case of
rapeseed crops, compensation is awarded when there are less than 15 healthy plants per square meter
and the damage covers at least 10% of the field area. The damage threshold values (min. 10% and
max. 50% of the parcel area) are particularly important because, according to the scope of insurance,
they affect the final decision on the qualification of loss in crops (partial or total compensation). Since
the methods of assessing damages used by insurance companies are not very accurate and are time
consuming, it appears that the use of remote sensing techniques may be an excellent alternative.

Currently, research conducted in the area of remote sensing applications with the use of unmanned
aerial vehicles (UAV) is often related to aspects of vegetation monitoring, particularly relating to forest
and agricultural areas. UAV-based remote sensing in agriculture is particularly related to pest and
disease detection, development of crops during their growth cycle, assessment of biomass, and water
stress in plants [4]. To date, these phenomena have been assessed through satellite and airborne
photogrammetry [5–8]. The breakthrough solutions in terms of image acquisition techniques are
those using UAVs [9–11]. There is a need to receive continuous spatial information with a high level
of accuracy and actuality, while retaining low operating costs. Drones can provide an alternative,
providing high resolution images with a short revisit time, even every couple of hours, contrary to
optical satellite systems or aerial images which have a much lower time resolution.

To date, analyses connected with object geometry, such as an assessment of parcel areas,
landslide monitoring, and cropland and forest inventory, have been widely applied in many
countries [12–14]). However, applications of sensors with more than three spectral bands (e.g.,
multispectral or hyperspectral cameras) mounted on unmanned aerial vehicles are not as commonly
used. Research on implementation of these cameras and integration of various remote sensing
techniques is a key area of interest for many groups of scientists [15–18].

Remote sensing techniques for vegetation mapping play an important role in precise
agriculture [9,19] and phenotyping research of crops [20–22]. Remote monitoring of arable lands
using spectral libraries (obtained from field measurements, satellite imagery, or aerial and close-range
images) could be helpful in the analysis of plant growth [19,22], assessment of the size of harvest [23]
and crop fertilizing needs [24,25], pest control [24], and the extraction of dead plants. For many years,
the Remote Sensing Centre at the Institute of Geodesy and Cartography in Poland has carried out
monitoring of farmland with the use of satellite imagery to forecast harvests [26]. The accuracy of
the prepared models for the prediction of crop volumes using NOAA AVHRR data is estimated at
90–95%. A high correlation between a harvest’s size and its spectral characteristics based on field
measurements [27] is a clear indicator of the potential of remote sensing data for such research. This
translates into numerous areas of scientific research, involving spectral vegetation indices in the
assessment of the physical condition of flora [5,19,27,28].

The use of spectral indices aims to extract essential information about vegetation condition, and
the indices should indicate a proper correlation between their values and biophysical parameters of
plant cover, such as biomass or leaf area index (LAI) [5,19,27,29]. The most popular spectral indices in
this area are those that use big reflectance differences between the near infrared region and the red
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band. This kind of index includes the normalized difference vegetation index (NDVI) and simple
ratio (SR). Based on the research carried out to date, it is observed that there is a link between the
above-mentioned parameters and the size of the biomass and LAI [5]. The outcome of scientific studies
has confirmed that a high accuracy of the performed estimations (85%) [18,19] was found, and that
there are strong and statistically significant relationships between NDVI (obtained from UAV) and crop
biophysical variables (for LAI, R2 was 0.95; for ground truth percent canopy cover, R2 was 0.93). The
obtained strong relationships suggest that UAV multispectral data can be used for estimation of LAI
and percent canopy cover. Wei et al. (2017) [30] concluded in their research that derivative spectral
indices formulated using optimized narrow wavebands were most effective in quantifying the changes
in pigment and water content of leaves subjected to freezing injury.

Frost is one of the environmental stresses of plants. The plant response to frost can be a decrease
in chlorophyll, inhibition of photosynthesis, altered leaf angle, and plant freezing [31]. The influence
of frost on biochemical and biophysical changes, as well as spectral properties of various plant
species, have been investigated [30,32–36]. It was found that freezing causes changes in the spatial
differentiation of chlorophyll content on the lamina surface [32] and the structural changes of mesophyll
cells [30]. In turn, these changes affect the spectral reflection of various plant parts, especially in
blue-green, green, red, and near infrared radiation [30,33–36]. However, as the analyzed studies show,
these changes depend on the species studied and the degree of freezing.

In order to analyze the effects of crop freezing in winter, it is essential that the influence of the
spectral reflectance of soil should be included. For practical implementation, it is common to use the
soil-adjusted vegetation index (SAVI). Because of the difficulty in choosing the optimal value of the
coefficient describing soil brightness and the low sensitivity to a small amount of chlorophyll, the
modified chlorophyll absorption ratio index (MCARI) was introduced. This parameter highlights an
amount of chlorophyll absorption in the range of about 670 nm in relation to spectral characteristics
centered at 550 and 700 nm [6]. With the use of band normalization in the spectral range of red edge
and red (R700, R670), it is possible to minimize the influence of soil and extract information about
vegetation without green pigments. Another method of implementation is to use the transformed
chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI).
The use of normalization enables the detection of biomass variability even at low LAI values [6].
Furthermore, Hunt’s research (2008) [28] confirms the effectiveness of the green normalized difference
vegetation index (GNDVI, [37]), which differentiates biomass content within the area of winter wheat
crops. Moreover, studies carried out by many scientists provides evidence that GNDVI correlates
significantly with the nutrient ingredients (mainly nitrogen compounds) [28,38]. Among the methods
used, it is worth mentioning the fusion of chosen spectral indices. As an example, the use of NDVI,
the modified soil-adjusted vegetation index (MSAVI)/the transformed soil-adjusted vegetation index
(TSAVI) (in the case where spectral bands in the shortwave infrared (SWIR) range are available) and
GNDVI enables the assessment of the spatial variability of cropland, including its impact on agricultural
yields. The opportunities from using remote sensing data outlined above appear to be a reasonable
solution to crop insurance, including estimating the winterkill losses. Multispectral sensors have been
significantly miniaturized in recent years, and their current price allows for the commercialization of
the presented method without significant financial outlay. In contrast to satellite data, the quality of
which is determined by cloud cover range, the use of UAVs in time-series analysis is not as strongly
related to weather conditions. This fact is essential for regions of moderate climate zones because
winter crop inventories are conducted in the late autumn which is usually very foggy. Furthermore,
an application of the appropriate methodology for data processing and analysis enables farmers and
insurance providers to accurately estimate winterkill losses and the amounts of compensation paid by
insurers. One of the most important steps in this process is damage detection at the beginning of the
vegetation period.

The purpose of this study was to: (1) evaluate the possibility of using UAVs for estimating losses
in rapeseed crops caused by poor wintering, (2) determine the impact of data acquisition parameters
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(mainly the altitude influencing the ground sampling distance (GSD)), and (3) present the methodology
of data processing (proper vegetation index) to obtain the best results compared to the traditional
method of field inventory.

2. Materials and Methods

The experiment was carried out to analyze the possibility of using UAV-based multispectral
imagery in the detection of damaged rapeseed after winter and the estimation of the damage area. The
experiment was carried out in cooperation with an insurance company. Figure 1 shows the scheme of
the experiment performed. Data were registered during three test flights on different flight heights
in order to evaluate the influence of image spatial resolution. Each time, remote sensing data were
acquired in four spectral bands, namely green, red, red edge, and near infrared, which were used to
calculate tested vegetation indices. RGB images were acquired and combined with high-resolution
spectral data, which were later used for manual preparation of reference data. Training samples were
obtained during the field campaign.

 

Figure 1. The scheme of the experiment performed.
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In the methodology, there were a few crucial elements which are described in this section. Firstly,
selected indices were tested to evaluate their usefulness in further analysis. The important part of
the experiment was to delineate technical roads and replace those areas with a mean value from
neighborhoods to exclude the effect of machinery influence (technical roads) on estimating damage.
Another issue in the experiment was to define the influence of spatial resolution of the multispectral
data on the obtained results.

2.1. Test Area and Data Used

For the planned tests, a 34 ha parcel with a rapeseed field was selected. It is situated in Olecko
County in Northern Poland (Figure 2). This region is well known for its low temperatures and harsh
climate throughout the year, hence, it was chosen for this experiment on the detection of winter crop
damage. The winter of 2016/2017 in this region was characterized by high variability of weather
conditions, with alternate periods of frost and thaw. During the period of severe frosts (from −12 to
−27 ◦C) there was a thin layer of snow of several centimeters. This caused winter damage, which was
confirmed during a field inspection.

 

Figure 2. Test area, rapeseed field in Olecko, Poland.

The testing data were acquired with the use of an eBee UAV equipped with a Sequoia multispectral
camera. This allowed for the acquisition of data in four different spectral bands: green (530–570 nm),
red (640–680 nm), red edge (730–740 nm), and near infrared (770–810 nm). Three flights were performed
on 20 April 2017, at three different altitudes of 50, 100, and 200 m above the ground. This resulted in
images with three different spatial resolutions—ground sampling distances (GSD) of 5, 10, and 20 cm,
respectively. This allowed us to assess the impact of spatial resolution on the imagery in the detection
of a crop’s health when undamaged by frost. The overlapping of successive images along a flight strip
(endlap) was 80%, and the overlap between flight strips (sidelap) was 70%. Flights were carried out in
midday hours (12:00 p.m.–2:00 p.m.), with a cloudless or slightly cloudy sky. Wind speed was 1–2 m/s,
air temperature was 5–6 ◦C, and humidity was 32–37%. The visibility was 35.5–43.8 km.
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The orientation of images was performed in Pix4DMapper Pro software (Pix4D SA, Switzerland).
This software allows the user to select the appropriate calculation template. For multispectral data
calculation, the AG (agriculture) multispectral template is preferred. The program automatically
recognizes the camera, retrieves its parameters from the database, groups the images into the appropriate
spectral bands, and enables them to be calibrated. A useful feature of the Sequoia camera is that it
can measure the amount of irradiance coming from the sun for each image and for each band with
the sunshine sensor. This enables the user to take irradiance into account and normalize the value of
the images amongst themselves. In the orientation process, self-calibration with 15 ground control
points (control and check points) measured with a GNSS receiver was also performed to give a final
root mean square error (RMS) of aerial triangulation of 10 cm. The result of the images processed in
Pix4DMapper Pro were reflectance orthomosaics.

Based on the orthomosaics generated from the collected images in four spectral bands, different
vegetation indices were calculated, based on which further experiments were conducted. To perform
the correct classification of healthy and damaged crops, 23 training fields were created using data
from field inspection and verified on RGB images. The training fields contained information about
the number of healthy plants over a surface of 1 square meter (Figure 3). This helped to describe the
relationship between the vegetation indices values and the number of plants in a surface unit, which
resulted in thresholds for image classification.

 

Figure 3. Examples of the training fields (1 m × 1 m).

2.2. Selection of Vegetation Indices

The most important process in determining post-winter damage is the correct detection of
areas where the crop has not grown properly, or where the plants have died. Remote sensing as a
multidisciplinary technique is a tool with many indices, which can help test the health of plants and
solve the problem of the value of compensation for farmers for damaged crops. The Sequoia camera
was the equipment used on the UAV in this study and allowed recording in four spectral bands: green,
red, red edge, and near infrared. As a result of a literature review, a set of vegetation indicators was
identified for further analysis. Consequently, after preliminary tests, the final selection was based
on three basic spectral indices of vegetation: NDVI, SAVI, and OSAVI. In addition, an interesting
solution in the calculation of these indices was to replace the red channel with the red edge, which was
supported by the multispectral camera used in the experiment. Such modification was carried out and
three further indices were examined: NDVI_RE, SAVI_RE, OSAVI_RE.

The NDVI (normalized difference vegetation index) is one of the most basic and commonly used
indices [39]. It is a measure of photosynthetic activity and determines the condition of the plant and its
development stage. Plants absorb most of the red light that hits it while reflecting much of the near
infrared light. When vegetation is dead or stressed it reflects more red light and less near infrared light.
Based on these properties, NDVI is calculated as the normalized difference between the red and near
infrared bands from an image. The basic formula for calculating the index value is as follows:

NDVI =
NIR − RED
NIR + RED

(1)

where NIR is the near infrared band value and RED is the red band value.
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The SAVI (soil adjusted vegetation index) is a modification of the NDVI index [40]. Due to changes
in the numerator and denominator of the typical NDVI equation (soil brightness correction factor), the
SAVI index further improves the final result for the influence of the soil brightness. For this reason, it is
used in situations where a large part of the crop is not covered with lush vegetation. Therefore, the
beginning of the growing season appears to be an excellent time for examining the condition of plants
using this index. The formula for calculating SAVI is as follows:

SAVI =
(1 + L) ∗ (NIR − RED)

NIR + RED + L
(2)

where L denotes the coverage of the vegetation area. In most cases, and particularly for the case of
intermediate vegetation canopy levels, optimal results are achieved using L = 0.5. For this experiment,
a value 0.5 was used during the tests.

The OSAVI (optimized soil adjusted vegetation index) was developed by Rondeaux et al. (1996) [41]
and was first presented in the work entitled “Optimized Soil Adjusted Vegetation Index”. This index is
a modification of the SAVI that has been optimized for agricultural monitoring. It is more sensitive to
changes in plant condition than the original SAVI and does not need a priori knowledge of the soil
type. A value of 0.16 as the soil adjustment coefficient was selected as the optimal value to minimize
variation with soil background. The formula for calculating OSAVI is as follows:

OSAVI =
NIR − RED

NIR + RED + 0.16
(3)

In addition to the above three spectral indices, their modifications were tested in which the red
channel was replaced by red edge. By analyzing spectral reflectance properties for plants in red edge
wavelength, we can observe quick changes in reflection and can thus expect to see more discreet
differences between healthy and damaged plants. To test this premise, NDVI_RE, SAVI_RE, and
OSAVI_RE indices were calculated. The application of such indices with a modified channel has been
discussed previously [42,43].

The correctness of damage recognition by the vegetation index was examined using training
fields measured during a field inventory with the participation of insurance specialists. Twenty-tree
sites were surveyed with an area of approximately 1 square meter and the condition of the plants
was determined in their range. These fields were then characterized by experts as to whether they
would qualify for compensation or if the plants in the field area were healthy. A training field was
also specified that could be treated as two classes on the border: damaged and healthy crops. The
training fields were ranked according to the condition of the plants. After calculating the mean values
of the tested indices for each training field, the values obtained were compared with the reference
from the field inventory. The threshold value was established based on the training fields which,
according to experts, were found not to meet the conditions for granting compensation. Based on the
healthy training field, threshold values for each index were used to classify (or not) training fields
for compensation. All training fields were verified with an expert in the field. Their correctness was
ensured so the outlier fields were eliminated in defining the thresholds. The threshold value was
calculated as the mean value from the lowest mean value of the index for an accepted healthy crop
training field and the highest mean value of the index for an accepted damaged crop training field. A
comparison of results for training fields with defined thresholds is shown in Figure 4. As can be seen,
the training fields were characterized by differentiation of the values of the vegetation indices. The
highest standard deviation was noted in the fields with healthy plants, and the lowest in damaged
areas. The greatest variability of the index values was related to the occurrence of plants of different
sizes and condition. Training field no. 9 recorded higher NDVI and SAVI values due to the presence of
weeds; furthermore, in training field no. 11, there were 10 healthy, well-developed plants, which also
resulted in higher NDVI values.
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Figure 4. Interpretation of training fields with selected thresholds according to indices: Normalized
Difference Vegetation Index (NDVI) (a), Optimized Soil Adjusted Vegetation Index (OSAVI) (b), Soil
Adjusted Vegetation Index (SAVI) (c), Normalized Difference Vegetation Index—Red Edge (NDVI_RE)
(d), Optimized Soil Adjusted Vegetation Index—Red Edge (OSAVI_RE) (e), and Soil Adjusted Vegetation
Index—Red Edge (SAVI_RE) (f). The training fields are ranked according to the condition of plants.
The chart shows the average value of index for each of the training fields with the standard deviation.

Based on the selected thresholds, referring to each index, Figure 5 illustrates the errors in training
fields, verified by inspection of the field. The red areas represent the test fields that, according to
specialists, should be classified as damaged areas. The green areas represent fields without visible
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frozen influence. The threshold shown by a horizontal line in Figure 4 determined the correctness
of interpretation for each training field: red areas should be below the threshold and green above.
If the situation is reversed, it means that tested index does not work properly. After summarizing
the errors, the top 3 results were finally selected, i.e., NDVI, OSAVI, and OSAVI_RE, to carry out
further experiments.

 

Figure 5. Errors of the classification for training fields intended for compensation process.

In addition, considering the training fields, it is clear that the worst results were obtained for field
no. 21. This was a unique area with healthy but very small plants (significant influence of the soil
background). This suggests that the accepted threshold method may be sensitive to the stage in which
the plants are grown, and results in slight over detection of damaged areas.

2.3. Elimination of Road Influence

Regardless of the selected vegetation index, the influence of technical roads is clearly visible on
the classification results. The classification of technical roads, which are visible as traces of tires on a
part of the field in poor condition, could have a big impact on the final results of detection, because
this area should not be included in the calculation of the area of rapeseed damaged by frost.

The main insurer’s condition applied to an area for reimbursement is that the area of a detected
polygon must cover some minimum area (i.e., larger than 100 m2). Therefore, many smaller objects are
removed from the analysis. However, small isolated damaged areas are sometimes related to technical
roads, which can result in detection of one bigger area, and are thus mistakenly detected as an area
eligible for reimbursement. To prevent such situations, it was decided to work on rasters without the
influence of roads on the reimbursement area.

For this purpose, road detection was conducted, based on compositions consisting of NDVI and
green, red, and red edge channels. Object-based classification was performed in eCognition software for
each dataset (data with spatial resolution equal to 5, 10, and 20 cm). In such a classification, information
about spectral values, object shape, and extent were used. This resulted in three different road images,
one for each spatial resolution of 5, 10, and 20 cm. Detected road images differed significantly from
one another. The most precise and complete images came from images of 5 cm, and the worst from the
lowest resolution (see Figure 6).
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Figure 6. Detected roads on orthomosaics with ground sampling distance (GSD) of 5 cm (a), 10 cm (b),
and 20 cm (c).

The biggest problems with areas of roads are presented in Figure 7, where there is no visible border
between road and bare soil, which is why some tires traces were not detected. However, these places
do not need to be detected because they do not cause the described problem of connecting polygons.
Subsequently, a road mask was subtracted from the index rasters and the resulting holes were replaced
with a mean value from corresponding cells (see Figure 7). Thus, the negative influence of technical
roads on the final results of classification and detection of regions for reimbursement was reduced.

2.4. Approaches for Classification

The detection of damaged areas was performed using three different vegetation indices (NDVI,
OSAVI, OSAVI_RE) in three different classification approaches, which were used to avoid the influence
of technical roads on the result of winter damage crop estimation. The first method was a simple
object-based classification to delineate the areas eligible for reimbursement. The main assumption
behind this method was that it should appropriately suit borders of reference polygons which represent
real situations and were vectorized without the generalization of polygons.

The second and third approach exploited pixel-based classification with thresholds. Index images
were intersected with grids of cell sizes of 1 × 1 m and 5 × 5 m. For cells, a mean value of the index
was assigned, and each cell was classified and merged with corresponding cells with the same class,
creating homogenous regions. Thus, the resulting polygon geometry was simplified. By using those
two approaches, we could also simulate a decrease in the resolution of input data.

In every approach, objects larger than 100 m2 were finally recognized as detected damages.
However, smaller regions lying within 5 m of other suspected damaged objects were also used, if the
sum of their area was bigger than 100 m2.

The possibility of proper detection of crops damaged by frost was examined using many variants.
The influence of road elimination was examined, in addition to using a vegetation index for detection
and spatial resolution of collected data. This resulted in 42 variants.
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Figure 7. Presentation of impact of tires traces shown on NDVI images and the results of classification
of winter damage for crops: (a) NDVI image, (b) NDVI image after elimination of influence of roads,
(c,d) the results of classification of winter damages for crop based on the NDVI image, before and after
elimination of influence of roads.

2.5. Accuracy Assessment

To estimate the accuracy of the final indications of which areas in each variant were eligible for
reimbursement, a reference image was created by vectorization of damaged crops on an orthomosaic
(see Figure 8).

The results were compared with reference areas by creating an error matrix which allowed
for calculating such parameters as producer’s accuracy (PA, completeness), user’s accuracy (UA,
correctness), F1-score, and overall accuracy (OA) [44,45]. The F1-score is the harmonic mean of
precision and sensitivity and is usually used as an accuracy measure of a dichotomous model [45], so it
is suitable for one-class delineation. In compensation assessment, the accurate area size of detected
damage is much more important for the insurance company than its position, so another parameter
was also used. This was the basic ratio of detected damaged areas to the reference area, and for the
purpose of this study we named it “area index” (AI).

59



Remote Sens. 2020, 12, 2618

Figure 8. Reference data: crop field map manually vectorized.

3. Results

The results of all variants for damaged rapeseed detection are presented in Table A1 in Appendix A.
Figure 9 illustrates the comparison of the overall accuracy, the F1-score, and AI for all variants of the
experiment. The visual effect of the classification for selected variants is presented in Figure 10.

Most variants of classification allow detection of winterkill with OA above 90% (Figure 9a). UA
and PA ranged between 70–80% and 90–100%, respectively (Table A1 in Appendix A). This means
that the algorithm detects almost every polygon from our reference set but also mistakenly indicates
other areas (overestimation). The poorer result in UA may indicate some mistakes in the reference set,
which was difficult to vectorize objectively in a field, and because the algorithm may overestimate
the detection of crop losses, which is confirmed by the area of damage often exceeding 110% to 130%
(Figure 9c). However, it should be noted that the overestimation relates to transition areas, which are
inherently difficult to clearly separate (see Figure 11). Generally, the best results were achieved using
OSAVI and NDVI indices (the highest UA, OA, and F1-score values). The highest accuracy (measured
by F1-score and OA) with the smallest overestimation of the area of losses in crops (AI) was obtained
for a spatial resolution of 10 cm. The worst results (low OA and F1, and high AI) were obtained for
OSAVI_RE, using images with GSD = 5 cm. The area for compensation was overestimated by 29–31%,
which may be caused, for example, by inaccuracies in the georeference of an image with a spatial
resolution of 5 cm.
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Figure 9. The comparison of the overall accuracy (OA) (a), the F1-score (b), and area index (AI) (c) of
all variants of classifications.

 

 

Figure 10. Small fragment of true color orthomosaic with reference mask and detected areas of damaged
rapeseed without the influence of roads: (a) in three different approaches, (b) with three different
indices, (c) with three different resolutions (d) true color orthomosaic.
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Figure 11. Area index (AI) in three approaches with 10 cm resolution of input data.

In the next section, a deeper analysis of the influence of road removal, the spatial resolution of
collected images, and the vegetation indices used in this experiment is provided.

4. Discussion

4.1. Influence of Road Removal and Approaches in Damage Detection

As expected, road removal was a crucial step for obtaining better results. It allowed us to avoid
many errors in the classification of smaller objects connected with roads (see Figure 7). It also prevented
the incorrect enlargement of detected losses by incorporating road areas in detected polygons.

The negative influence of roads is highlighted in all three approaches on 10 cm input rasters.
In both the second (grid 1 × 1 m) and the third (grid 5 × 5 m) approaches, each index increases UA
by 3–5 percentage points, with a slight decrease of PA (around three percentage points) with only
one exception of a higher outlier (10 percentage points for OSAVI in grid 5 × 5 m) (see Table A1 in
Appendix A). The direction of changes in the first approach (object-based) are similar. The decrease
of PA is on the same level as in other approaches, however, the increase in UA equals 17 percentage
points on OSAVI and NDVI indices, and only two percentage points for OSAVI _RE, which is due to a
much bigger UA value for this index before road removal (73–63% and 64% for NDVI and OSAVI,
respectively). Although the differences in the range of increase of UA are high, the discrepancies in the
final results between approaches 1 and 2 do not exceed three percentage points. This is also reflected
by the area index (see Figure 11). The area index’s values decrease in all three approaches after using
the road removal technique. For OSAVI and NDVI indices, the difference is over two times higher in
the object-based approach, but for OSAVI_RE, the decrease is on the same level as in the pixel-based
approaches, which may be due to the fact that in the OSAVI_RE variant, technical roads are slightly
less visible and are harder to distinguish in the images. This results in a lower number of roads that
qualified as winter damage polygons.

The conducted analysis indicates that without removing road influence, object-based classification
is a significantly worse method for proper winter damage detection. The generalization that is
performed during the process of averaging the cell value in approaches 2 and 3 (resolution of
grids 1 and 5 m, respectively), causes the rejection of some fraction of roads, which is not the
case in the object-based approach because it provides a more precise classification. Because of this
characteristic, a higher resistance to road influence in the OSAVI_RE index is most observable in the
object-based scenario.

4.2. Influence of Spatial Resolution

The comparison of PA and UA for a 1 × 1 m grid with respect to vegetation indices is shown
in Figure 12. Comparing NDVI results in this approach, we can assume that the smaller the GSD
(ground sampling distance of obtained images), the better the results (an increase in the F1-score is
observed). However, UA and PA values are almost equal for resolutions of 5 and 10 cm. The visible
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difference comes only at the 20 cm raster (a decrease of three percentage points in UA and 0.02 in
F1-score value). In the case of the OSAVI index, we can confirm that results are slightly better on the
10 cm raster than 5 cm, but 20 cm still results in the worst outcome. The OSAVI_RE index trend is
contrary to NDVI, with most of the indicator’s values rising with decreasing pixel size. In the second
approach, a 20 cm input OSAVI_RE raster results in a F1-score value of 0.84 and an OA equal to 93%
(Table A1 in Appendix A), which is only slightly worse than the results obtained from other indices.
The detected damage area is also more similar to the reference data than in comparable variants. This
information allows us to suppose that, with an increasing size of GSD, OSAVI_RE could be the best
index to use in the whole process. Generally, it can be assumed that any tested spatial resolution of
UAV-based imagery is enough for winter damage assessment for insurance purposes and there are few
differences in terms of accuracy in the tested approaches in the detection of these areas without plants.

Figure 12. Producer’s (PA) and user’s (UA) accuracy of the detected damaged crops, without the
influence of roads, with three different resolution of input data in the second approach (1 × 1 m).

For the results obtained in the described experiments with NDVI, decreasing the size of GSD
provided better results, while the research of Candiago et al. (2015) [9] showed that the use of such
a high resolution can be a problem when applying algorithms originally developed for aerial and
satellite data. In this paper, three approaches were tested with OBIA, or resampling to grid sizes of 1 ×
1 m and 5 × 5 m, which limited this problem.

The highest overall accuracy of detection wais achieved using the NDVI index on two different
input data sets with 5 and 20 cm GSD (see Table A1 in Appendix A). For rasters with 10 cm resolution,
the better choice was the OSAVI index, which was clearly confirmed in the majority of variants.
However, the difference between the overall accuracy of damage detection using NDVI and OSAVI
is not significant (1–2%). The usefulness of the NDVI vegetation index to determine the vegetation
fraction (the percentage of green vegetation per unit of ground surface) and the number of plants
per unit of ground surface is confirmed by the results of other authors (among others [19,22]). In our
experiment, the results related to OSAVI_RE index are slightly better.

4.3. Influence of Vegetation Index Used

Figure 13 presents the results of damage detection for different vegetation indices in the case of
the three approaches. Analysis of this figure allows us to draw a few crucial conclusions. Firstly, we
can state that the producer’s accuracy is stable in all three approaches regardless of chosen vegetation
index as input data for classification. Its values vary from 0 to 3 percentage points in the same approach.
However, approach 3 (grid 5 × 5 m) provides smaller absolute PA (around 85%) and UA (77%) values
than the other approaches (mean values of 91% and 80%, respectively). This is mostly the result
of much stronger generalization in this approach. Secondly, it is observed that there are significant
differences in the user’s accuracy between the chosen indices in all three approaches.
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Figure 13. Producer’s (PA) and user’s (UA) accuracy of results without the influence of roads, with
three different approaches performed on 10 cm input data.

In each variant, OSAVI_RE has the lowest value. OSAVI provides slightly better UA than NDVI
(difference of 1–2 percentage points), but NDVI compensates this disparity with slightly higher PA
values. Analysis of the overall accuracy (see Table A1 in Appendix A) indicates that those two indices
are the same, however, the area of damage in all three approaches is 5 percentage points better for
OSAVI than NDVI. The difference in the F1-score is only 0.01. Nonetheless, for data with a resolution
of 5 cm (for both approaches) and 20 cm (for the third approach), the results indicate that NDVI is
slightly better than OSAVI (see Table A1 in Appendix A).

5. Conclusions

The experiments performed demonstrate that low-altitude remote sensing can be used for the
assessment of damaged areas in the case of insurance compensation. The case study used multispectral
UAV images for the damage detection of rapeseed caused during winter. Data were acquired in
April, when plant vegetation starts. This is the most important period in estimating damage since it
directly exposes the effect of the winter period on vegetation. The presented methodology includes
selecting possible vegetation indices, ground sampling resolutions, and approaches for technical road
influence elimination, which can be used as an effective alternative for direct measurements in a field
that currently are often used during the refurbishment process.

The analysis of GSD images (in the range of 5–20 cm) demonstrates a relatively small (a few
percentage points) influence on the obtained results of winterkill detection. The best approximation of
the area of the winter damage to crops was obtained using images with GSD of 10 cm. Results for
most variants indicate that there is no need to acquire data with a higher resolution than 10 cm. This
is a crucial conclusion for UAV application when the size of the area and the GSD of the images are
considered within mission planning

The conclusion of the presented experiment is of great practical importance because cameras with
four spectral channels (R, G, B, NIR) are becoming increasingly popular and relatively inexpensive.
This provides the possibility to choose various vegetation indices appropriately for the analyzed crop
and the purpose of the study related to the monitoring of the crop condition. The best results were
obtained using NDVI and OSAVI vegetation indices; however, results from other indices were not
significantly worse.

Referring to the utilization of the red edge spectral band, an optimized Soil-Adjusted Vegetation
Index with the use of the red edge channel instead of the red channel is the most resilient index to the
negative influence of technical roads, which is crucial when road detection cannot be conducted. The
optimized soil-adjusted vegetation index with red edge channel (OSAVI_RE) may be the best for crop
condition monitoring using lower spatial resolution data.

During tests, it was also necessary to develop and implement elimination of technical roads in
calculations of rapeseed area damaged with frost. Including the detected area in the classification helps
in the reliable calculation of the area for compensation. Without removing road influence, object-based
classification is a significantly worse method, but elimination of road influence can be processed using
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both object- and pixel-based approaches. In tests with NDVI and OSAVI, overestimation of 10–30%
was noticed for calculations without the elimination of the impact of roads, and all of the remote
sensing-based approaches in all experiments were characterized by overestimation of at least a few
percent considering the Area Index.

The implementation of the presented solutions for delimiting areas for refurbishment in the
comprehensive damage estimation method, which also includes periodic monitoring and time analysis,
can significantly improve the compensation process, and provide it with scientific certainty for
obtained results.
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26. Bochenek, Z.; Dąbrowska-Zielińska, K.; Ciołkosz, A.; Drupka, S.; Boken, V.K. Monitoring Agricultural Drought
in Poland. Monitoring and Predicting Agricultural Drought; Oxford University Press: Oxford, UK, 2005;
pp. 171–180.
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Abstract: The optimisation of vineyards management requires efficient and automated methods able
to identify individual plants. In the last few years, Unmanned Aerial Vehicles (UAVs) have become
one of the main sources of remote sensing information for Precision Viticulture (PV) applications.
In fact, high resolution UAV-based imagery offers a unique capability for modelling plant’s structure
making possible the recognition of significant geometrical features in photogrammetric point clouds.
Despite the proliferation of innovative technologies in viticulture, the identification of individual
grapevines relies on image-based segmentation techniques. In that way, grapevine and non-grapevine
features are separated and individual plants are estimated usually considering a fixed distance
between them. In this study, an automatic method for grapevine trunk detection, using 3D point
cloud data, is presented. The proposed method focuses on the recognition of key geometrical
parameters to ensure the existence of every plant in the 3D model. The method was tested in different
commercial vineyards and to push it to its limit a vineyard characterised by several missing plants
along the vine rows, irregular distances between plants and occluded trunks by dense vegetation
in some areas, was also used. The proposed method represents a disruption in relation to the state of
the art, and is able to identify individual trunks, posts and missing plants based on the interpretation
and analysis of a 3D point cloud. Moreover, a validation process was carried out allowing concluding
that the method has a high performance, especially when it is applied to 3D point clouds generated
in phases in which the leaves are not yet very dense (January to May). However, if correct flight
parametrizations are set, the method remains effective throughout the entire vegetative cycle.

Keywords: grapevine detection; precision viticulture; 3D vineyard structure; photogrammetry

1. Introduction

The monitoring and management of agricultural crops, particularly with regard to nutrient
level, water stress, diseases and pests, and phenological status, are vital for successful agricultural
operations [1]. Traditionally, these activities are carried out through visual examinations of the crops,
or by analysing plants and soil, which are time-consuming and invasive approaches [2]. Considering
the fact that it is necessary to maximise yield and resources, while reducing environmental impacts,
mainly by optimising the use of water and significantly reducing fertilisers and pesticides [3].
This can only be achieved by obtaining data that allow the intelligent and sustainable management of
agricultural parcels [4]. It will then be possible, in a rational and economical way, to resort differentiated
and localised actions with regard to the use of water and nutrients, and to control the soil and vegetation
cover, as well as the plant’s phytosanitary status.

Remote Sens. 2020, 12, 3043; doi:10.3390/rs12183043 www.mdpi.com/journal/remotesensing71
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The technological advances in recent years, have enabled the miniaturisation of electronic
components and a significantly reduction in prices, taking Precision Agriculture (PA) to another
level. For example, the advent of Unmanned Aerial Vehicles (UAVs) capable of capturing aerial high
resolution data using different kind of sensors (RGB, multi and hyperspectral, thermal and LiDAR),
together with new photogrammetric processing methods, allow the computation of diverse outcomes
such as orthophoto mosaics, vegetation indices and 3D point clouds [5]. UAVs are a popular tool in PA
and the obtained aerial imagery is turned into information which can be used to optimise crop inputs
through variable rate applications [6–8].

In a short period of time PA approaches and practices have become very popular and were
introduced in all agricultural sectors [9]. The vine and wine sector is among those that have most
benefited of precision farming techniques, applied to optimise vineyard performance [10]. Thus,
the Precision Viticulture (PV) concept was introduced and can be defined as a particular field of PA,
whose purpose is maximising grape yield and quality while minimising environmental impacts and
risks [11]. Therefore, it is possible to avoid unnecessary treatments, which can be harmful and polluting,
and reduce costs [12]. The ability of UAVs to obtain high spatiotemporal resolution and geocoded
images from different sensors, make them a powerful tool for a better understanding of the spatial and
multi-temporal heterogeneity of vineyard plots, allowing the estimation of parameters that directly
affect its state. Thus, individual grapevine identification and location is of great importance to precisely
assess the vineyard status estimating different parameters per individual plant [13]. However, there are
many features in vineyards that make these scenarios very complex to develop automatic methods
for trunk individual detection and location [14]. Therefore, segmentation methods that consist of
processes of dividing input data into several disjoint areas that maintain the unique and homogeneous
features from surrounding have to be employed.

Regarding vineyard vegetation detection, several methods were already proposed based on
different approaches using the photogrammetric outcomes from UAV-based imagery by applying
image processing techniques, machine learning methods and by filtering dense 3D point clouds and
Digital Elevation Models (DEMs) [14–18]. Those methods are capable of distinguishing grapevine
from non-grapevine vegetation and to extract different vineyard macro properties such as the number
of vine rows, row spacing, width and height, potential missing plants and vineyard vigour maps.

The outcomes resulting from photogrammetric processing applied to UAV-based imagery
can be used to estimate individual geometrical and biophysical grapevine parameters,
providing a plant-specific application for PV [19]. In this scope some studies can be found in the
literature. De Castro et al. [20] developed an Object-Based Image Analysis (OBIA) method applied to
high-resolution vineyard Digital Surface Models (DSMs) to estimate grapevine vegetation. Then,
the individual position of grapevines were marked, assuming a constant space between plants.
This way, missing plants were also estimated and some geometrical parameters were estimated.
In a different study, proposed by Matese and Di Genaro [21], missing plants detection was assessed
in a semi-automatic procedure by filtering the DSM and by manually placing small polygons,
representing individual plants and, then, analysing the number of pixels intercepted by each polygon
by using a five-classes approach based on quantiles to verify the probability of a missing plant
presence. A binary multivariate-logistic regression model was used by Primicerio et al. [22] for
the individual detection of grapevines, including missing grapevines, in orthophoto mosaics. In the
referred studies it is highlighted that the integration of other sensors data could allow the extraction of
single plant vigour, health and water status. In this regard, Pádua et al. [13] performed an individual
grapevine estimation for site-specific management in a multi-temporal context, helping winegrowers
to fully explore the potential of the high-resolution data provided by UAVs and to combine data
resultant from the different imagery sensors for a more precise decision support and a quick vineyard
inspection. More recently, several studies have explored 3D point clouds resulting from UAV-based
imagery photogrammetry processing to identify vineyards. Point cloud models consist of large
datasets of points representing the surface of visible objects and can be derived from UAV-based
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imagery by photogrammetry and computer vision algorithms such as, for example, Structure from
Motion (SfM). Alternatively, 3D point clouds can be directly provided by Light Detection and Ranging
Systems (LiDAR). Comba et al. [23] proposed an unsupervised algorithm for vineyard detection and
vine-rows features evaluation, based on 3D point-cloud maps processing. However, as final result,
only the vineyards and local evaluation of vine rows orientation were retrieved. Comba et al. [24]
applied a multivariate linear regression model to crop canopy descriptors derived from the 3D point
cloud, to estimate vineyard’s Leaf Area Index (LAI). Marie Weiss and Frédéric Baret [17], applied a SfM
algorithm to extract 3D dense point cloud over the vineyard and used the terrain altitude, extracted
from the dense point cloud, to get the 2D distribution of height of the vineyard. Then, a threshold
on the height was applied to separate the rows. Mesas-Carrascosa et al. [25] used 3D point clouds
generated using photogrammetric techniques to RGB images acquired by UAV to derive vineyard
canopy information. Additionally, to the geometry, each 3D point also stored the colour which was
used to discriminate between vegetation and bare soil. Aboutalebi et al. [26] used UAV-based 3D
information to monitor and assess vineyard plant’s condition. Different aspects of 3D point cloud
were used to estimate height, volume, surface area, and projected surface area of plant’s canopy. Then
biomass information was used to assess its relationship with in situ LAI. Other studies, such as that by
Moreno et al. [27], used terrestrial LiDAR sensors to reconstructed vineyard crops. Although accurate,
these methods are time-consuming and very expensive.

As it can be concluded, through the studies previously presented, there are many groups of
researchers who are dedicated to the development of methods to extract useful information from
vineyards. Although it is considered by everyone of fundamental importance the detection and location
of individual plants, there are no methods capable of making it fully automatic. Indeed, the various
methods found in the literature, are able to estimate the position of trunks, but using prior knowledge
related to the number of plants per row and the distance between plants. Therefore, a fully automatic
method able to detect and locate grapevine trunks is desirable and would have the potential to create
base maps for most PV studies.

In this article, we present an innovative and fully automatic method able to detect and locate
individual grapevine trunks, by exploring 3D point clouds derived from photogrammetric processing
of UAV-based RGB imagery. The proposed method proved to be effective even when applied to
complex vineyards plots. It is able to distinguish posts from trunks and to mark missing plants.

2. Materials and Methods

2.1. Study Area

To develop the method proposed in this manuscript, several commercial vineyards (Figure 1a),
in the northern region of Portugal, were selected to its application. Commercial vineyards usually
present the great advantage of a proper management, where the best practices are applied to improve
yield and quality. Therefore, these vineyards present well treated rows with a regular vegetative
wall, facilitating the individual grapevine detection. Then, in the scope of this study, a complex and
challenging vineyard plot was analysed (Figure 1b, 41◦17′08.1′′ N, 7◦44′09.9′′ W, 472 m altitude).
The main purpose of using this vineyard, located in the campus of the University of Trás-os-Montes e
Alto Douro (UTAD), Vila Real, Portugal, in the Douro demarcated region, was to push the method’s
application to its limit. The plot has an area of 3200 m2 and is composed of 55 rows, and a double
guyot trained system is used. The selection of this vineyard is based on the different levels of vigour
and missing plants along the vine rows, providing a diverse variety of cases that are hard to be found
in commercial vineyards.
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Figure 1. General overview of the study areas: (a) some examples of commercial vineyards; and
(b) vineyard plot used for validation and to assess the limits of the proposed methodology. Coordinates
in WGS84 (EPSG:4326).

2.2. UAV-Based Data Acquisition

Aerial RGB imagery acquisition was performed using the multi-rotor UAV DJI Phantom 4
(DJI, Shenzhen, China). Its native camera was used for RGB imagery acquisition, FCC 3 model,
a CMOS sensor with 12.4 MP resolution mounted in a 3-axis electronic gimbal.

Different flights were conducted over distinct areas using a single-grid configuration and a flight
height varying between 30 m (June and July flight campaigns) and 50 m (flights from January to
May), from the UAV take-off position and with an imagery frontal overlap of 90% and 80% side
overlap. The missions were planned and executed using DroneDeploy (California, CA, USA) in an
Android smartphone. Regarding the most complex test site (Figure 1b), the flight was performed on
30 July 2019 and a total of 228 images were acquired. The whole flight campaign was carried in 13 min,
five minutes for UAV assembly/disassembly operations and mission uploading, while the duration of
the flight was eight minutes. The camera can be facing down, i.e., in the nadir direction, in all the flights
conducted during the season preparation period. In the remaining flights, conducted in the growing
and/or harvesting preparation period, the camera was used with an inclination angle of 65◦, relative
to the nadir direction. This choice was done due to the absence or presence of leaves, capable of
obstructing trunk detection (respectively, Phase 1 and Phases 2 and 3, of Figure 2).
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Figure 2. The three moments of the vegetative cycle that influence camera parameterization and
flight height. Phase 1 (beginning of the wine campaign), where the influence of leaves is negligible—
camera can be used facing down and the flight altitude can be higher; Phase 2 (critical phase of
phenological development); and Phase 3 (preparation of the vintage and estimating production)—
In these phases the camera should be used with an angle and the flight height must be low (20–30 m).

2.3. Proposed Method

The main steps of the automatic grapevine trunk detection method based on a geometric
segmentation on point cloud data are presented in Figure 3.

Figure 3. The flowchart diagram of the proposed methodology.
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Firstly, the RGB aerial imagery are used to generate a 3D dense point cloud which was
geometrically corrected using ground control points (GCPs). Then, a noise reduction is applied
to remove many points which usually are close to the plant body. This step is important to achieve
a more accurate trunk detection on areas with dense vegetation. Secondly, the location of vine rows is
obtained in the form of lines using the method proposed in Pádua et al. [14]. In this way, the search
area is confined to the vine rows only, optimising the whole process. Consequently, 3D points close to
these lines were selected from the rest of the point cloud. Thirdly, a geometric segmentation is carried
out in order to remove 3D points representing the ground and leaves. Thus, points belonging to trunks
are isolated and spatial clustering can be performed. Finally, the 3D position for each grapevine is
determined and, therefore, the number of existing and missing plants is calculated. The method was
developed and implemented in C++ using the Point Cloud Library (PCL) [28].

2.3.1. SFM Reconstruction and Noise Removal

SfM techniques [29] are widely used for 3D reconstruction of multiple scenarios of the
real-world [30]. These image-based methods are able to identify and match key points between
overlapping images. In contrast to LiDAR-based solutions [27], the application of SfM enables collecting
the fit-for-purpose data to model the geometry from some viewpoints. In general, plant modelling
poses some challenges due to irregular surfaces, occlusion and varying illumination. In this regard,
some considerations should be taken into account to process data correctly. For this study, 3D dense
point clouds were generated over vineyard plots, by considering the following processing options:
(1) a high overlapping rate (≥80%), (2) a valid key point must be visible in at least three images and (3)
the image scale is set to 1/2 in order to increase recognisable key points per image. The photogrammetric
processing of the acquired RGB imagery was performed using Pix4Dmapper Pro (Pix4D SA, Lausanne,
Switzerland). A 3D dense point cloud was generated using the multi-scale half-image size, a high
point density and a minimum of three matches per image. It was exported in polygon file format
(PLY). Moreover, raster products were also computed after 3D point cloud interpolation using Inverse
Distance Weighting (IDW).

Noisy points that inevitably surround the vegetation areas have to be removed in order to
make an accurate geometric segmentation on the 3D model. The point cloud is filtered applying
a noise filter which is provided by PCL, this method is based on the computation of distance between
neighbours [31]. For each 3D point, the mean distance from it to all its neighbours is computed. Thus,
all points whose mean distances are outside an interval defined by the global distances mean and
standard deviation are considered to be outliers. The neighbour search was developed by considering
a specific radius which is related to the point cloud density. The several tests performed allowed to
conclude that 0.05 m should be used to increase method’s and results’ quality. By applying this noise
filter to the 3D point cloud, most of erroneous 3D points in the lower parts of the grapevines were
removed, allowing a better recognition of the trunks.

2.3.2. Vine Rows Extraction

In order to reduce the research area, the method proposed by Pádua et al. [14] is first applied.
In this way, the vector lines representing individual axis of vine rows are identified. In short,
the identification of the lines is based on the use of a crop surface model—computed from
the subtraction of the DEM to the Digital Surface Model (DSM)—in combination with the green
percentage index (G%) [32], computed using the red, green and blue bands of the orthophoto
mosaic. Then, grapevine vegetation is estimated from the threshold and concatenation of both raster
products— the Canopy Surface Model (CSM), according to a height range and the G%, by using
the Otsu’s method [33]. After this procedure, a binary image is generated with a set of clusters of
pixels mostly representing the grapevine vegetation. In this way, the vine rows and its central lines are
estimated, considering the orientation of the most representative clusters.
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Thus, the estimated vine rows axis (central lines) are used as a virtual guide to create a buffer
allowing identifying points which compose the plant geometry and the surrounding soil (see Figure 4a).
Since the vegetative wall width of grapevine plants usually varies between 30 and 50 cm, it was decided
to create a 60 cm buffer to selected 3D points to be analysed. As it is shown in Figure 4b, the green
points represent the selected points considering 30 cm width to each side the vine row.

Figure 4. Example of a segmentation of vine rows: (a) visualisation of the 3D vine rows generated as
presented in Pádua et al. [14]; and (b) 3D points selection in the point cloud, using a 60 cm buffer.

2.3.3. Ground and Leaves Segmentation

The vine rows extraction method enables removing 3D points, which were outside of 3D buffers.
However, in addition to points, which potentially may define the trunk’s geometry, there are other
3D points in the vine row space to be discarded. In order to isolate trunk points, it is necessary to
remove those 3D points representing leaves, which usually appear in the upper section of the point
cloud and ground points, which are located in the lower part of the 3D model. For this purpose,
only geometric and spatial features as well as the point colour were considered, and the following three
steps strategy was applied: (1) spatial subdivision of the vine row buffers, based on height thresholds,
(2) ground removal (3) leaves removal. This process is fully automatic and no human intervention is
required. In effect, the method has the ability to be applied even in vineyard plots with irregular slope,
distinct density of plant foliage and voids (missing plants) along the vine row.

However, and before the application of the this procedure, 3D buffers need to be divided
in different segments (Figure 5). This subdivision is determined based on the buffer’s length and
the terrain’s slope. In this task, it is crucial to apply height thresholds, mainly important if the terrain
slope varies. In flat terrains this step could be avoided, still to keep the method as general as possible,
it was decided to include this step. If the terrain’s slope is irregular, a higher number of segments
will be required to allow a better fit. By default, the segment length is set to 1 m since it proved to fit
most scenarios.

Figure 5. Subdivision of the vine row into n segments.

The leaves and ground removal operation is carried out by considering the vine row buffers
segmentation. In fact, the following geometric operations were developed for each segment. Firstly,
3D points with the highest and lowest heights are detected. Then, the terrain’s slope is fitted by
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changing the orientation of a cutting plane for n iterations. Thus, ground points which are under this
plane were automatically discarded. Figure 6 shows the main iterations of this step.

Figure 6. Cutting plane adjustment for the ground removal in segment n1.

Initially, this 3D plane is fixed by the point with the minimum height and the up vector (v = 0,0,1),
whose direction is perpendicular to the horizontal plane. Then, for each iteration, the plane is rotated
5◦ around the x-axis. This geometric transformation was performed by applying the rotation matrix
showed in Equation (1). The stopping criterion was determined by several 3D points, selected in each
iteration, i.e., those which were under the cutting plane influence. The plan inclination angle is set
to the value allowing a proper fit of 3D plane to the terrain slope. Finally, to determine the location
of points relative to the cutting plane, the point-normal equation for the cutting plane was applied.
If the result is lower than zero, the point is under the plane (Equation (2)), so it is classified as ground
and automatically removed in the point cloud.

Rx =

⎛
⎜⎝1 0 0

0 cos(α) − sin(α)
0 sin(α) cos(α)

⎞
⎟⎠ (1)

A(x − x1) + B(y − y1) + C(z − z1) < 0 (2)

where A, B and C represent the coefficients of the normal vector, (x, y, z) represent the coordinates of
the point on the plane and (x1, y1, z1) represent the coordinates of 3D points.

Regarding the leaves removal, the same inclination angle used for the ground cutting plane was
applied. To fix the position of this upper plane, an offset value was calculated considering points with
the maximum and minimum height for each segment. This procedure is illustrated in Figure 7.

After ground and leaves points removal, the next step consists in the identification of individual
trunks. This is done based on the application of a spatial segmentation especially developed for that
purpose. In this regard, the trunk is considered to be a 3D geometric shape, and a clustering method
sharing the following features was developed: (1) the Euclidean distance between the 3D points must
be lower than 50 cm (this value is estimated considering the typical distance between grapevines,
which is never of this order); and (2) the minimum number of points for clustering is set to five.
According to these constraints, a correct limitation of the growing region was determined for each
cluster. Therefore, n groups of points were segmented for each vine row.

The value h represents the vertical height of plants in the segment, while the value f represents
the offset obtained by applying Equation (3). According to this setting, the top plane was adapted by
the geometric features for each segment. In this case, upper points to the cutting planes, which were
considered vegetation, were removed in the point cloud. However, some outlying points could not be
correctly filtered by the cutting plane. For this reason, another filter was applied based on the point
colour. A threshold for the green channel was fixed in order to remove vegetation points characterised
by the green channel higher than 120 as well as red and blue channel lower than 80. This combination
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was considered adequate and derived from the many tests performed. Lower values would cause
the removal of points belonging to the trunks.

f = |ZMax − ZMin|x0.6 (3)

Figure 7. Cutting plane adjustment for the leaves removal.

2.3.4. Trunk Detection

After ground and leaves points removal, the next step consists in the identification of individual
trunks. This is done based on the application of a spatial segmentation developed for that purpose.
In this regard, the trunk is considered to be a 3D geometric shape, and a clustering method sharing
the following features was developed: (1) the Euclidean distance between the 3D points must be lower
than 50 cm (this value is estimated considering the typical distance between grapevines, which is
never of this order); and (2) the minimum number of points for clustering is set to five. According to
these constraints, a correct limitation of the growing region was determined for each cluster. Therefore,
k groups of points were segmented for each vine row.

Regarding the results of spatial clustering, two optimisations are considered to improve the final
results. The first optimisation focuses on solving errors related to the spatial segmentation. In areas
characterised by dense vegetation, where the trunk was partially occluded by leaves, the trunk’s 3D
reconstruction is, in general, generated with a lower detail. In these cases, the trunk is potentially
composed by a few real points and many noisy points. Consequently, an inaccurate segmentation is
achieved, which causes false positives in those regions. This issue is overtaken by testing the angle
(α) between two vectors: (1) the direction vector of the vine row axis; (2) the direction formed by two
consecutive centroids of clusters. A maximum deviation of 20◦ is allowed. This value proved to be
adequate to remove clusters which are not correctly segmented. As illustrated in Figure 8, green points
are valid centroids and red points are those centroids which are discarded. The blue arrows depict
the correct patch formed by all plants of the row. This test is performed along the vine row in the same
direction on the x-axis.

Figure 8. Optimisation of the clustering segmentation procedure.

The second optimisation consists on the automatic recognition of posts, which are considered to
be trunks, since geometrically both are very similar. For this purpose, key geometric features were
considered to detect posts for each vine row. In Figure 9a, trunks and posts are marked by a green
and yellow rectangle, respectively. The main difference is the number of vegetation points around
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them. As shown in Figure 9b, a neighbour search is developed for each centroid, limited by a radius
(r = 80 cm). This value is the most adequate considering the mean size of grapevines in the dataset.
To check points which were into this spherical-searching region, Equation (4) is applied. Then, the point
colour is also considered in order to detect vegetation points. Vegetation points are characterised by
a threshold for the R, G and B channels so, if some of them are located inside the search area, the cluster
is considered to be trunk. Likewise, if no vegetation points are found, the cluster is classified as a post.

x2 + y2 + z2 − r2 < 0 (4)

where for each cluster, x, y and z represent the coordinates of a 3D point and r the radius of
the search region.

Figure 9. Recognition of posts: (a) post location in the point cloud; and (b) the search of vegetation
points around the trunk.

2.3.5. Estimation of Missing Plants and Occluded Trunks

Depending on the epoch of the year in which data are acquired, vegetation may occlude trunks
(Figure 2). The proposed method is also prepared to deal with such scenarios, being able to estimate
the position of no visible trunks and missing plants. In general, and mostly in recent commercial
vineyards, each vine row is formed by plants which are equidistant from each other. However,
the presented method estimates the space between plants automatically, which makes its use universal
and fully automatic. For testing this feature, the method was applied on a complex vineyard plot
presented in Figure 1. Therefore, the method can be used in any vineyard even in those which present
challenging features such as the irregular distance between plants, replanted grapevines with different
trunk diameter and some plants not visible from aerial images due to a dense foliage (Figure 10).

Figure 10. Cases where the trunks are occluded or cannot properly modelled.
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The estimation of missing plants and occluded trunks is useful in order to optimise the results of
plant recognition as well as to know the number of voids along the vine rows, which could be occupied
by new plants. For this purpose, the resulting data from the individual grapevine detection were
used in order to identify areas where no plants were found. Firstly, the distances between consecutive
grapevines are calculated and sorted from the lowest to the highest, considering all plants detected
in a given vine row.

Then, all distances less than 50 cm are discarded and the top 10% values of the sorted list are used
to calculate the average distance (d). This value was calculated for each vine row and is also used to
highlight areas that can potentially contain missing plants or occluded grapevines. If the distance
between two consecutive plants (D) is higher than d, and the rate d/D is higher than one, the integer
part of the quotient represents the number of plants that should be detected in the area. Then, missing
plants and/or occluded trunks are marked using the average distance (d) as reference. Figure 11
illustrates the representation of two detected grapevines and the area between them where there are
missing plants and occluded trunks. The last step consists in determining if the marked point represents
a missing plant or an occluded trunk. To this end, a point inclusion test in a three-dimensional cylinder
(height of 1 m and a radius of 20 cm) is implemented, considering the same constrains which were
used for the trunk detection.

Figure 11. Recognition of missing or occluded plants.

2.4. Validation Process

To analyse the robustness and effectiveness of the proposed method in all its features, five vine
rows of the complex study area (polygon highlighted in Figure 1) were used. A field campaign was
performed in order to map the real state of vine rows and to determine the location of missing plants.
This way, for each vine row, the results provided by the application of the proposed method were
compared with ground-truth data allowing computing the overall accuracy of the whole validation
area and of each estimation.

Grapevine estimation evaluation was conducted based on the number of correct
(true positive—TP) and incorrect (false positive—FP) grapevine estimations and also considering
the correct/incorrect estimation of missing plants along the vine rows as, respectively, true negatives
(TN) and false negatives (FN). From theses data precision, recall, F1score and the overall accuracy
were computed for each vine row and for the whole validation area.

3. Results

3.1. Point Cloud Reconstruction and Processing

The proposed method works perfectly when it is applied to well-maintained commercial
vineyards plots, using aerial data acquired as described in Section 2.2. In those cases, the method
is able to detect all existing trunks. However, the method was pushed to its limit, being applied to
a complex area, arising from the existence of distinct vegetation density/vigour areas, several voids
caused by missing plants, and new plants that were replaced defective or dead plants.

As results, a 3D point cloud formed by 26,656,371 points was generated and the time for point
cloud densification was 01 h:29 m:23 s. Figure 12 shows the generated point cloud and the virtual
lines that represent the vine rows axis. Most of plants could be fully modelled, but there are some
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grapevines whose trunks were partially occluded by leaves. Moreover, noisy points were produced
around the trunks, between the leaves of plants and the ground. These 3D points negatively affect
the recognition of trunk’s shape. To address this problem, a noise filter was applied and most of
noising points could be removed. This process was applied using a kernel size of 0.05 m. In summary,
10.448.046 points were discarded in the generated dense point cloud.

Figure 12. 3D model generated of the complex vineyard plot: (a) the reconstruction of study area using
all the 3D points; and (b) final model, after application of noise filter.

3.2. Individual Grapevine Detection

Once the point cloud is generated and the noisy points filtered out, the 3D model is segmented
in order to discard ground and leaves points. Figure 13 shows the results of this step, when the method
is applied to the vine rows of the validation area. Consequently, red points (classified as ground and
leaves, Figure 13b) are discarded and just trunk points, which will be used as input data for the spatial
clustering, remain.

Figure 13. Main steps for individual trunk detection: (a) ground points identification and removal,
(b) vegetation/leaf points identification and removal; and (c) trunk detection.

The method was applied to the whole plot and the location of detected and missing plants was
analysed in the QGIS software. This output is presented in Figure 14, with the orthophoto mosaic
in the background. A total of 1916 grapevines were estimated and 402 plants were classified as
being missing.

Regarding the efficiency of the method, the time required for the automatic recognition of each
individual grapevine in the whole plantation was 38 s using a PC with CPU (Intel Xeon(R) W-2145) and
RAM (64 GB). The low time required for computing the methods makes possible the use of portable
devices for on-site processing.
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Figure 14. General overview of the results obtained from the application of the proposed method to
the whole complex plot. Coordinates in WGS84 (EPSG:4326).

3.3. Grapevine Estimation Accuracy

The results of the grapevine estimation from the application of the proposed method to the five
validation vine rows are presented in Table 1.

Table 1. Number of plants and overall accuracy (OA) of the proposed method compared to
the ground-truth data of five vine rows. Row total values—maximum possible number of plants
in a given vine row—are also provided.

Vine Row
Number of Grapevines Missing Grapevines Row Total

Obs. Est. OA (%) Obs. Est. OA (%) Obs. Est. OA (%)

1 46 43 93.5 12 15 75.0 58 58 100.0
2 39 37 94.9 18 21 83.3 57 58 98.2
3 42 45 92.9 15 12 80.0 57 57 100.0
4 40 46 85.0 17 9 52.9 57 55 96.5
5 49 50 98.0 7 7 100.0 56 57 98.2

Total 216 221 97.7 69 64 92.8 285 285 100.0

Regarding the total number of grapevines presented in the evaluated vine rows (ranging between
39 to 46), an overestimation of five plants is observed. Under detection of grapevines is verified
in two rows, differing in three and two grapevines, respectively. The opposite is observed in the other
three vine rows, with ten plants being overestimated (respectively, three, six and one). According to
the number of missing grapevines (69, in total, ranging between 7 to 18 per row, average of 14 missing
plants) the results obtained by the method show an overestimation of six missing grapevines in two
vine rows (three in each) and one vine row is in agreement with the ground-truth data. As for the other
vine rows the under estimation of missing plants diverges from three to eight plants (64 missing
plants in total, with an average of 13 missing plants per row, 93% overall accuracy). As for the total
number of possible grapevines in a given vine row (sum of the grapevines and missing grapevines),
a mean of 57 plants were estimated, the same number when observing the ground-truth data, being the
total also 285 plants, obtaining three rows with the same number of plants, two rows with one plant
less, and one row with two plants more. For this specific parameter, the overall accuracy ranges
between 97% (underestimation) and 100% considering all vine rows. According to the capability of
the proposed method in the automatic detection of grapevines, 157 grapevines (71%) were directly
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detected from the grapevine trunk, and by the analysis of the point cloud density 64 grapevines
were estimated. Moreover, several posts were also detected along the vine rows and therefore,
were automatically discarded.

To further validate the spatial accuracy of the methods outputs, each detection was analysed to
assess if the estimations were correctly located. By using the ground-truth data, false negatives and
false positives results—grapevines classified as being missing and the inverse, missing plants classified
as being grapevines—are evaluated. Table 2 presents these results. In total, from the 221 estimated
plants 197 plants were correctly detected and classified (89%), as for missing plants, 41 (64%) were
correctly classified, the overall accuracy considering all data is approximately 84%.

Table 2. Evaluation of the proposed method in the classification grapevines and missing grapevines
for the following parameters: precision, recall, F1score, and overall accuracy (OA). The ground-truth of
five vine rows was used. TP: true positive; FP: false positive; TN: true negative; FN: false negative.

Vine Row TP FP TN FN Precision Recall F1score O.A. (%)

1 39 4 8 7 0.91 0.85 0.88 81.0
2 32 5 16 5 0.86 0.86 0.86 82.8
3 40 5 7 5 0.89 0.89 0.89 82.5
4 42 4 6 3 0.91 0.93 0.92 87.3
5 45 5 4 3 0.90 0.94 0.92 86.0

Total 198 23 41 23 0.90 0.90 0.90 83.9

Figure 15 shows the 3D location of each plant on the test area. Green points represent the centroids
of plants that are directly detected in the 3D model. The centroids’ position were then checked against
its corresponding vine row in order to identify centroids wrongly classified as trunk (red points).
These wrong classifications are caused due to points of vegetation, which are around the trunk and
could not be totally removed by the noise filter. Then, posts were distinguished from the grapevine
trunks (blue points). Finally, missing plants (pink points) and occluded trunks (yellow points) were
estimated. In terms of quantitative data, in the validation area, the proposed method was able to detect
221 plants and 64 missing plants.

Figure 15. Individual grapevine delineation resulting from the application of the proposed method to
the validation area: (a) points to represent detected plants (visible and occluded trunks), missing plants,
wrong clusters and posts; and (b) 3D point cloud and points computed for the plant location.
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4. Discussion

4.1. Point Cloud Reconstruction and Processing

The generation of point clouds for remote sensing applications was enhanced by the proliferation
of innovative UAV-based technologies such as high-resolution cameras and LiDAR systems.
By applying photogrammetric techniques, point clouds can be obtained using multiple overlapping
images. Other option is the use of LiDAR scanners which provide dense point clouds of natural
environments but these are more expensive than digital cameras [34]. LiDAR data discriminate
better plant’s canopy since it penetrates vegetation [35,36], and, therefore, potentially making
the identification of the grapevine trunks easier. Moreover, photogrammetric techniques tend to
estimate erroneous points in the cases where some points from the ground are estimated along
a post. One of the advantages of the proposed method is that it remains operational even when using
point cloud data from other type of sensors, reinforcing that when LiDAR sensors for UAVs become
more affordable the method can still be employed. The proposed method is not dependent on any
technology, although to get proper results is required enough geometric quality of the 3D model
to ensure a partial reconstruction of the trunks at least. In this sense, to avoid noisy points around
the trunk and vegetation, the presented solution integrates a noise filter. Hence, the proposed method
can be applied using any point cloud data with accurate results.

4.2. Individual Grapevine Detection

There are several methods for the automatic detection and parameters extraction on 3D models
using crop height models [37], combining terrestrial laser scanner and UAV photogrammetric point
clouds [38], fusing RGB and multispectral point clouds to extract individual tree parameters [39],
computing 3D vegetation indices in olive groves [40], and obtaining forest structural attributes [41].
However, given the complexity and the unique characteristics of vineyard plots, such methods are not
suitable to be applied. Studies focusing on the use of photogrammetric point clouds, generated from
UAV-based imagery, were dealing with vineyard detection [23] or detect and describe some of its
general properties [17,25,42]. Studies for individual grapevine detection using UAV-based raster
outcomes often rely on the coarse position of each vine assuming a mean distance of separation
between grapevines along the vine row [13,20,21]. The proposed method addresses all these limitations,
using point cloud data and geometrical characteristics, to automatically identify points belonging to
grapevine’s trunk. Hence, individual plants can be detected and missing plants estimated.

The complex vineyard plot analysed in this study had been used in another study [13] with
data acquired in 2018. The whole plot contained 2266 plants and was evaluated by the method with
an accuracy of 98%. However, the aerial imagery was acquired in an early phase of the vegetative
state [43] with a lower vegetation density, which can help in the detection of missing plants.
Furthermore, a constant distance between individual plant was also used. The results presented
in Section 2.4 present an overestimation of 2% (Table 1) according to the number of grapevines and
an under-estimation of 8% considering the number of missing plants. This fact is related to the presence
of vegetation from adjacent grapevines in areas with missing plants that could cover the void.
The results are improved by selecting an early period (preferably belonging to phase 2—Figure 2)
to conduct grapevine detection, with grapevines with a lower leaf cover, preventing the existence
of vegetation in areas with no plants [21]. In Di Gennaro and Matese [44], 3D and 2.5D methods
were compared for vineyard biomass and plant detection, but individual grapevine detection was
not performed. In that study, as for missing plants, an overestimation was observed in the 3D-based
method, false negatives were related to the existence of new plants while some false positives were
due to different grapevine canopy thickness. Similar findings were detected in the miss-classifications
observed in this study (Table 2). Moreover, proximal sensing approaches for grapevine trunk
detection using ground vehicles were also tested by research groups, either using LiDAR [45,46]
or depth cameras [47]. However, in contrast to UAVs, such approaches are more expensive—due
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to the equipment used—and time-consuming, since the vehicles need to go through all vine rows,
where some obstacles can also be present in their way.

5. Conclusions

The innovative method presented in this study is proved to be effective for a rapid access
of the vineyard status using UAV-based 3D point clouds, with automation levels that allow its
applicability in different vineyards, not relying on predefined parameters as the distance among
plants. The proposed method is able to detect occluded trunks with reliable accuracy rates and
missing plants, where in the vineyard context represents the occurrence of voids along the vine rows.
The major contribution of this work is that the approach is fully automatic, not requiring any a prior
knowledge of the distance between plants or number of plants per row, as in existing approaches.
Moreover, the computational complexity of the proposed technique does not require high-performance
computing and is appropriate for use on mobile in-field computing devices.

The applicability of the proposed method can be extended to other types of purposes related
to the estimation of biophysical parameters of grapevines, providing a more efficient understanding
of data for vineyard management and the validation of the use of UAV-based point clouds. Indeed,
its impact is increased in a multi-temporal context. In this way, the estimated canopy of each detected
grapevine can be studied to measure its volume which can help in the decision-making process for
canopy management operations and, consequently, yield optimisation. To improve data quality and
to extend the method capabilities, an in-depth investigation of the flight parameters optimisation
(flight height, imagery overlap, camera angle) is required, which can also make possible an automatic
detection grape bunches. The results of this study might influence on further research related to
individual monitoring of every grapevine, multi-temporal studies and making accurate support
decision systems for an optimal vineyard management.
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Abstract: Because of low accuracy and density of crop point clouds obtained by the Unmanned Aerial
Vehicle (UAV)-borne Light Detection and Ranging (LiDAR) scanning system of UAV, an integrated
navigation and positioning optimization method based on the grasshopper optimization algorithm
(GOA) and a point cloud density enhancement method were proposed. Firstly, a global positioning
system (GPS)/inertial navigation system (INS) integrated navigation and positioning information
fusion method based on a Kalman filter was constructed. Then, the GOA was employed to find the
optimal solution by iterating the system noise variance matrix Q and measurement noise variance
matrix R of Kalman filter. By feeding the optimal solution into the Kalman filter, the error variances
of longitude were reduced to 0.00046 from 0.0091, and the error variances of latitude were reduced
to 0.00034 from 0.0047. Based on the integrated navigation, an UAV-borne LiDAR scanning system
was built for obtaining the crop point. During offline processing, the crop point cloud was filtered
and transformed into WGS-84, the density clustering algorithm improved by the particle swarm
optimization (PSO) algorithm was employed to the clustering segment. After the clustering segment,
the pre-trained Point Cloud Up-Sampling Network (PU-net) was used for density enhancement of
point cloud data and to carry out three-dimensional reconstruction. The features of the crop point
cloud were kept under the processing of reconstruction model; meanwhile, the density of the crop
point cloud was quadrupled.

Keywords: UAV-borne LiDAR scanning system; grasshopper optimization algorithm; GPS/INS
integrated navigation; point cloud up-sampling network (PU-net); clustering segmentation;
3-dimensional reconstruction

1. Introduction

Light Detection and Ranging (LiDAR) is an active sensing technology that can quickly acquire
spatial information of a target or environment [1,2]. Compared with traditional remote sensing
methods, LiDAR has shown great advantages in accuracy and stability [3]. In agriculture, the LiDAR
system is one of the most accurate methods to measure regional vegetation structural characteristics
and biophysical parameters [4]. The Unmanned Aerial Vehicle (UAV)-borne LiDAR scanning system
is one of the most common platforms for crop point cloud obtaining. The crop point clouds captured
by UAV-borne LiDAR scanning system are sparse and unordered [5]. The navigation and positioning
accuracy of the UAV-borne LiDAR scanning system influences the accuracy of the point cloud data
greatly. Density is also an important indicator to measure the quality of point cloud data. Higher point
cloud density represents richer information of the target or environment [6]. Ensuring the accuracy
and density characteristics of the UAV-borne LiDAR point cloud data while maintaining the cost is
crucial for the continuous and efficient execution of LiDAR detection tasks.
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For integrated navigation, the most widely used in the world is the global positioning system
(GPS)/inertial navigation system (INS) integrated navigation positioning system [7]. The Kalman
filter is the most common method of data fusion [8]. Gao et al. [9] developed an INS/GPS/LiDAR
integrated navigation system through an extended Kalman filter (EKF) using a hybrid scan matching
algorithm. Shabani et al. [10] explored the characteristics, advantages, and disadvantages of direct
Kalman filtering and indirect Kalman filtering commonly used in GPS/INS integrated navigation, and
a novel asynchronous direct Kalman filter was proposed. Zhang et al. [11] developed a low-cost global
navigation satellite system (GNSS) and INS integrated navigation method and an adaptive Kalman
filter for overcoming the measurement noise of GNSS, which was proposed based on a supervised
machine learning model. Yu et al. [12] used a single-frequency real-time kinematic carrier phase (RTK)
technology to deduce and obtain information including speed and orientation under GPS/BeiDou
Navigation Satellite System (BDS) for polishing the inaccurate INS information. Norouz et al. [13]
proposed an improved Kalman filter algorithm based on small probability distribution of the state
variable between the measurement updates of the multi-rate GPS/INS-coupled navigation filter, which
greatly reduced the amount of calculation, and the algorithm performed well by numerically simulating.
All of the above integrated navigation systems suffered from the low accuracy of integrated navigation,
except Yu et al. [12]. However, RTK-based high accuracy integrated navigation systems cannot be
widely popularized due to the price gap. During the experiments of data fusion using the Kalman filter,
the longitude and latitude errors were sharply affected by the parameter of the Kalman filter, especially
system noise sequence Q and measurement noise sequence R, and the same situation also occurred in
the realization of Ref. [10,11]. For promoting the accuracy of our integrated navigation-based scanning
system, the meta-heuristic method was employed for finding the optimum parameters of integrated
navigation in our UAV scanning system. For multi-solution problems, genetic algorithms (GA) [14],
particle swarm optimization (PSO) [15], and ant colony optimization (ACO) [16] were the most popular,
with swarm intelligence optimization proposed recently such as the bat algorithm (BA) [17] and
grasshopper optimization algorithm (GOA) [18]. All of the multi-solution meta-heuristic methods
have their own merits for different problems [19]. In order to reduce longitude and latitude errors of
integrated navigation, the meta-heuristic methods were employed to find the optimum system noise
sequence Q and measurement noise sequence R.

After obtaining the crop point cloud data by UAV scanning system, the raw point cloud data
consisted of crop points and other points, and manual classification was extremely inefficient for
different point cloud data. Therefore, the clustering segmentation method was employed to extract crop
data from raw point cloud data. The density-based clustering method, density-based spatial clustering
of applications with noise (DBSCAN), has attracted a lot of attention; besides the improvement
of the algorithm itself, finding out the key parameters of clustering was also a new direction of
optimization [20]. The same as integrated navigation, the meta-heuristic method was employed to
optimize the clustering segmentation method. According to the experimental results of the density
distribution characteristics of the plane point cloud under different conditions, Kedzierski et al. [21]
found that the point cloud density could be preliminarily estimated based on distance and angle, but
the actual point cloud density should take into account the influence of object shape and environment.
Rupink et al. [22] proposed the formula and calculation steps for calculating the point cloud density.
Huang et al. [23] proposed an edge-sensing point set resampling method, gradually approaching the
edges and corners. However, the quality of the results largely depends on the accuracy of the normal of
a given point and the fine-tuning of parameters. Based on Ref. [21,23], dense and accurate point clouds
are very useful for crop point cloud recognition and 3D reconstruction. The high-cost multi-line LiDAR
can be simulated by low-cost single-line LiDAR point clouds through the point cloud up-sampling
method without destroying the features.

In view of the current problems and inspired by existing methods, in order to improve the quality
of point cloud data, a combined navigation optimization algorithm based on GOA and a point cloud
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density enhancement algorithm based on Point Cloud Up-Sampling Network (PU-net) were proposed.
The novel contribution of this article was as follows:

(1) In order to obtain the optimal solution of the initial parameters of the Kalman filter quickly and
accurately, GOA took the sum of the longitude and latitude error variances as the fitness function
to find the optimal solution to iterate the system noise variance matrix Q and the measurement
noise variance matrix R. Based on the Q and R matrices from GOA, the positioning error of the
UAV-borne LiDAR scanning system was greatly reduced; meanwhile, the computing burden was
decreased, and the accuracy of point cloud data acquisition was improved;

(2) The density clustering algorithm was improved by the linear decreasing particle swarm
optimization (PSO) algorithm. In order to solve the problem of sparse density, in this paper,
a pre-trained PU-net was used for enhancing the point cloud density of the point cloud data
obtained by UAV-borne LiDAR. Experiments have verified that the enhanced point cloud data
retain the features of the raw point cloud data.

2. Framework of the Proposed Method

For UAV-borne LIDAR point cloud data enhancement, the integrated navigation algorithm based
on GOA and the point cloud density enhancement algorithm based on neural network were shown in
Figure 1. The specific implementation steps were as follows:

(1) Firstly, the GPS/INS integrated navigation information fusion framework was built by the Kalman
filter. Then, the GOA was used to optimize the initial parameters of the Kalman filter, and the
optimal solution was returned to the Kalman filter to estimate the output state of the GPS/INS
integrated navigation system;

(2) After data acquisition, the point cloud data was transformed into the WGS-84 coordinate system
from the LiDAR coordinate system. Then the point cloud data was filtered for removing
the irrelevant points. Finally, the two-dimensional point cloud data was transformed into a
three-dimensional point cloud according to the flight trajectory of UAV;

(3) The PSO algorithm was employed to optimize the density clustering algorithm for crop point
cloud segment. Then the crop point cloud data was fed into the trained network to obtain the
crop point cloud data after the point cloud density was enhanced. Finally, the point cloud data
was reconstructed in three dimensions.
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Figure 1. Framework of the proposed method. There are 3 steps: Integrated navigation algorithm
based on grasshopper optimization algorithm (GOA), Unmanned Aerial Vehicle (UAV)-borne Light
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Detection and Ranging (LiDAR) system construction and point cloud data processing, and point cloud
density enhancement based on the Point Cloud Up-Sampling Network of the whole work of this paper.

3. Integrated Navigation Enhancement Based on GOA

In GPS/INS integrated navigation, the Kalman filter was usually used for fusing information
of GPS and INS. The better the filter of integrated navigation was, the better it can integrate the
advantages of each sensor. Since the GOA is not affected by the nonlinearity or scale, compared
with other global optimization algorithms, it can find more effective optimal solutions with faster
convergence speed [24].

3.1. Framework of GPS/INS Integrated Navigation

GPS and INS have complementary advantages. By combining GPS and INS in an appropriate way,
their own drawbacks could be overcome, and the navigation accuracy would significantly improve. In
order to improve the robustness of the system and reduce the complexity of the system, this paper
adopted the loose combination mode to fuse the information of GPS and INS, as shown in Figure 2.

GPS receiver

INS

Position and 
speed

Data fusion

Error 
compensation

Navigation 
solution

Input

GPS output

INS output

Integrated 
navigation outout

Loose coupling

Figure 2. Framework of global positioning system (GPS)/ inertial navigation system (INS)
integrated navigation.

The state variables of the integrated navigation filter were composed of the random drift error,
velocity error, and position error of INS gyroscope, as well as errors caused by the attitude angle and
accelerometer. The equation of the state was as follows:

X̂ = FX + Gw (1)

The state variables of the INS integrated navigation system include longitude error, latitude
error, velocity error in east and north directions, attitude angle error in east, north, and sky directions,
random drift, and accelerometer bias error. The 13-dimensional equation of the state was as follows:

X̂I = FIXI + GIωI (2)

The clock error of the receiver equivalent distance δtu and equivalent range error of the receiver
clock frequency error δtru were the GPS state errors; the equation of the state can be described as
follows:

X̂G = FGXG + GGwG (3)
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The measurement equation of the position velocity combination was expressed as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
LINS

λINS

hINS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lt + δL
λt + δλ

ht + δh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where LINS, λINS, and hINS were the longitude, latitude, and altitude calculated by inertial navigation.
Lt, λt, and ht were the real longitude, latitude, and height of the carrier. δL, δλ, and δh were the
longitude and latitude error and altitude error calculated by INS.

The position measurement information of the GPS receiver was expressed by subtracting the
corresponding error from the real value:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
LGPS

λGPS

hGPS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lt − Nn
R

λt − Ne
RcosL

ht −Nu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where Nn, Ne, and Nu were the position error of the GNSS receiver along the east, north, and sky
directions. Then the external measurement position error can be defined as:

Zpos =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
λINS − λGPS

LINS − LGPS

hINS − hGPS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

The position measurement equation was as follows:

ZPOS = HPOS(t)X(t) + VPOS(t) (7)

The velocity measurement information equation of INS can be expressed as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
veINS

vnINS

vuINS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ve + δve

vn + δvn

vu + δvu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

where veINS, vnINS, and vuINS were the east speed, north speed, and sky speed calculated by the inertial
navigation system. ve, vn, and vu were the velocity of the object in the east, north, and sky directions.

The velocity information provided by GPS can be expressed by the difference between the real
value and the corresponding error in the geographical coordinate system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
veGPS

vnGPS

vuGPS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ve −Me

vn −Mn

vu −Mu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

The speed error of the external measurement can be defined as:

Zvel =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
veINS − veGPS

vnINS − vnGPS

vuINS − vuGPS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

The velocity measurement equation was as follows:

Zvel = Hvel(t)X(t) + Vvel(t) (11)
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The integrated measurement equation of the GPS/INS integrated navigation system was obtained
as follows:

Z(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λINS − λGPS

LINS − LINS

hINS − hINS

veINS − veGPS

vnINS − vnGPS

vuINS − vuINS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= H(t)X(t) + V(t) (12)

3.2. Grasshopper Optimization Algorithm (GOA)

GOA is a swarm intelligence optimization algorithm designed by Australian scholar Shahrzad [18]
in 2017, simulating the predatory migration behaviors of the grasshopper population in nature. The
main characteristics of larval stage grasshoppers were slow movement and small stride. In contrast,
long distances and sudden movements were essential features of adult grasshoppers. Searching for
food sources was another important feature of the grasshopper swarm. The mathematical model of
grasshopper swarm behavior was as follows:

Xi =
N∑

j = 1
j � i

s
(∣∣∣xj − xi

∣∣∣ )xj − xi

dij
− gêg + uêw (13)

where Xi represented the position of ith grasshopper. N represents the amount of the grasshopper
swarm. s was interaction force between grasshoppers. dij was the distance between the ith grasshopper
and jth grasshopper. The function of the interaction force (attraction and repulsion shown in Figure 3.)
s between grasshoppers was defined as follows:

s(d) = fe
−d
l − e−d (14)

where d was the distance between two grasshoppers. f represented the interaction force (attraction
and repulsion), l represented the unit of interaction force length. The modified form of Equation (10)
was as follows:

Xdim
i = c ∗ r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
j = 1
j � i

c
ubdim − lbdim

2
A

xj − xi

dij

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ T̂dim (15)

A = s
( ∣∣∣∣xd

j − xd
i

∣∣∣∣
)

(16)

where ubdim was the upper boundary of the dimth dimension, lbdim was the lower boundary, and T̂dim

was the target value of the dimth dimension. c represented a self-adaption ratio which is defined as
follows:

c = cmax − l
cmax − cmin

L
(17)

where cmax was the max value, while cmin was the minimum value; l represented the current iteration,
while L is the max iteration.
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Figure 3. Interaction among grasshoppers.

3.3. Kalman Filter Optimization Using GOA

GOA was employed to optimize the initial parameters Q and R of the Kalman filter. Q was the
variance matrix of the system noise sequence, which affected the filtering performance and parameter
estimation accuracy of the Kalman filter algorithm; R was the variance matrix of the measurement noise
sequence, which was related to the correction speed of filtering and the stability of the filtering process.
Through the optimization of the initial parameters, the optimal position of the grasshopper was as
close to the real value as possible, thus the accuracy of the Kalman filter algorithm was improved
greatly. The sum of the variances of longitude and latitude errors was selected as the fitness function.
The pipelines of the Kalman filter optimization was shown in Figure 4.

Start

Initialize Population

Given the value range of Q 
and R

Initialize                               and

T was selected according to the  
experiment

YES

NO

Update with  Formula (17)

Normalize the distance between each 
locust

Update every grasshopper with Formula (15)

End

 

Figure 4. The pipelines of Kalman filter optimization.
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4. UAV-Borne LiDAR System Construction and Point Cloud Data Processing

The UAV-borne LiDAR system was mainly composed of the LiDAR sensor, GPS/INS integrated
navigation module, and UAV carrier. After the point cloud data were collected by the UAV-borne
LiDAR scanning system, it was necessary to transform the point cloud data from the LiDAR coordinate
system to the WGS-84 coordinate system.

4.1. UAV-Borne LiDAR System

In view of the application of LiDAR in the agricultural field, this paper selected RPLiDAR-a2
of SLAMTEC®, which was a single-line two-dimensional LiDAR, which greatly reduced the cost
of equipment. The WitMotion® GPS/ Inertial Measurement Unit (IMU) was selected to collect the
navigation and positioning information of UAV. In order to supply electricity to the LiDAR and the
IMU, a small pad was used to combine the system. DJI® M100 UAV was selected as the carrier, which
was a lightweight UAV. Finally, the UAV-borne LiDAR scanning system was completed, as shown in
Figures 5 and 6.

LiDAR

GPS

Tablet computer

Figure 5. Top view of UAV-borne LiDAR scanning system.

IMU

Figure 6. Side view of UAV-borne LiDAR system.

Due to the single scanning line of RPLiDAR-a2, the collected point cloud data was a
two-dimensional point cloud, which only contained the data of Y and Z coordinates. In order
to generate three-dimensional point cloud data, according to the light trajectory and speed of UAV, the
data of the X-axis were inversely solved according to IMU.
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4.2. Coordinate Transformation of Point Cloud Data

It was assumed that the coordinate of the laser foot point in the instantaneous laser coordinate

system was
(
xSL, ySL, zSL

)T
: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xSL

ySL
zSL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

There was an angle θ between the instantaneous laser coordinate system and the laser scanning
reference coordinate system. The coordinates of the raw point cloud data in the laser scanning reference
coordinate system were (xL, yL, zL)

T:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xL

yL
zL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = RL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xSL

ySL
zSL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

where RL represented the rotation matrix of scan angle θ.
Generally, the error between the different coordinate axes was analyzed and unified to be the

placement error angle α, β, and γ. The deviation of the coordinate origin and reference center was
treated as error tL = (ΔxL

I , ΔyL
I , ΔzL

I )
T. The coordinates of the raw point cloud in the inertial platform

reference coordinate system were (xI, yI, zI)
T:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xI

yI
zI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = RM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xL

yL
zL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔxL
I

ΔyL
I

ΔzL
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

where RM = R(γ) ×R(β) ×R(α).
In the integrated navigation system, there were also positioning errors between GPS and INS.

During the installation process, there was a certain deviation between the center of GPS and the

reference center of inertial components. The deviation was defined as tG = (ΔxG
I , ΔyG

I , ΔzG
I )

T
; it can be

measured offline. INS measured the attitude information of the carrier in real time, including roll angle
(R), pitch angle (P), and heading angle (H), and got the velocity and position information of the carrier
through integration and feed back to the user in real time. At the same time, the coordinate rotation
matrix was obtained by calculating the attitude information feedback from IMU. The coordinates of
the raw point cloud data in the local reference coordinate system were (xLH, yLH, zLH)

T:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xLH

yLH
zLH

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = RN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xI

yI
zI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔxG
I

ΔyG
I

ΔzG
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

where RN = R(H) ×R(P) ×R(R).
Finally, point cloud data should be transformed to WGS-84 coordinate system. The rotation matrix

Rw was a function of the latitude and longitude of the region. The point cloud could be transformed
into the WGS-84 coordinate system by rotating the matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x84

y84
z84

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = RW

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xLH

yLH
zLH

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x84

y84
z84

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Antenna phase center

(22)
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Based on the above analysis, the coordinates of the raw point cloud in WGS-84 coordinate system
were as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x84

y84
z84

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = RWRN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣RMRL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔxL
I

ΔyL
I

ΔzL
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔxG
I

ΔyG
I

ΔzG
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x84

y84
z84

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Antenna phase center

(23)

In addition, in order to get the data containing the latitude and longitude information, it was
necessary to convert the three-dimensional rectangular coordinates (XYZ) into geodetic coordinates
(λLH). The conversion formula was as follows:

L = arctan(Y/X) (24)

λ = arctan
[
Z/
√

X2 + Y2 ∗
(
1− e2N(N + H)

)−1
]

(25)

H =

√
X2 + Y2/cosλ−N (26)

where X, Y, and Z were three-dimensional rectangular coordinate components, L, λ, and H were earth
longitude, latitude, and height. e represented the first eccentricity of the ellipsoid. N = a/

√
1− e2sin2λ

was the radius of curvature in the prime vertical, and the a was the semimajor axis of the ellipsoid.

5. Point Cloud Density Enhancement Based on PU-Net

Point cloud density enhancement aims to increase the number of point clouds without destroying
the characteristics of the original point cloud. By enhancing the density of point cloud, the richness and
accuracy of 3D reconstruction of point cloud data can be improved without increasing equipment cost.

5.1. Point Cloud Preprocessing

After the coordinate transformation, it was necessary to remove irrelevant noise points from
the original point cloud data. In this paper, the statistical filtering method was selected for filtering.
Statistical filtering calculated the distance between each point and its surrounding neighborhood
points: According to neighborhood points and the standard deviation threshold, the points which did
not meet the requirements were identified as outlier points.

5.2. Point Cloud Density Clustering Segmentation Method Based on PSO Algorithm

After filtering in the previous section, the point cloud data obtained included ground and
crop points. In order to separate the ground and crop, the density clustering algorithm was used
for separating, and the linear decreasing PSO algorithm was employed to improve the density
clustering algorithm.

DBSCAN was a density-based clustering algorithm proposed by ester et al. It was designed to
achieve clustering and segmentation of arbitrary data in spatial and non-spatial high-dimensional
databases. By calculating the distance between each point and its neighborhood, the points with
similar density were classified into the same class.

ε-Neighborhood of arbitrary point p is defined as follows:

Neps =
{
q ∈ D/dist(p, q) < Eps

}
(27)

where D represented the target’s database, point p was the core point if the ε-neighborhood contained
at least the minimum number of points. The core point was defined as follows:

Neps(P) >MinPts (28)
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where Eps and MinPts were the neighborhood radius and minimum number of points in the
ε-neighborhood of the core point. Through the calculation of all the points, the density of the
points meeting the set conditions was similar, and they were classified as the same kind of points. All
points were calculated until the termination condition was met. Because the selection of these two
initial parameters mainly depended on human experience and continuous experiments, in order to
improve the efficiency, this paper employed the linear decreasing PSO algorithm to iteratively optimize
the two initial parameters to determine the optimal solution of the initial parameters.

The PSO algorithm was a swarm intelligent bionic optimization algorithm: Every point in PSO
was stamped by a position Pi, the optimal value of swarm was Pg, every point’s velocity was Vi, and
each particle’s velocity and position update formula was shown as follows:

Vt+1
i = ωVt

i + c1r1(Pi −Xt
i) + c2r2(Pg −Xt

i) (29)

Xt+1
i = Xt

i + Vt+1
i (30)

where t represented the iterations, Vt+1
i was the velocity of the t + 1 iteration, ω represented the inertia

weight. c1, c2 ∈ [0, 1] were the generating functions of a random number, and Xt+1
i was the t + 1

iteration position.
In the initial stage of the algorithm, the inertia weight ω was given a larger value to enhance the

global exploration ability of the algorithm. With the continuous exploration process, the value of ω
could be linearly reduced to enhance the local search and optimization ability of the algorithm, so that
particles could gradually approach the optimal solution in the neighborhood of the optimal value. The
value of ω was expressed as follows:

ω = ωmin +
(ωmax −ωmin) × (maxiter − t)

maxiter
(31)

where ωmax represented the max inertia coefficient, while ωmin represented the minimum. maxiter

was the max iteration.
PSO optimization pipelines are shown in Figure 7:

Initialization of velocity and position

Fitness value of each particle caculation

The individual optimum of particle was obtained

Global optimum was obtained

Velocity and position updating

Is the global optimum 
met the requirement?

No

Yes

Start

Output
 

Figure 7. Flow chart of particle swarm optimization (PSO) algorithm.
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5.3. Point Cloud Density

The point cloud data acquired by UAV-borne LiDAR was 3-dimensional, which was usually
expressed by plane density. The point cloud density in national standards was defined as the normal
direction of elevation density [22]:

ρ =

N− k∑
i=0

Ni

A− k∑
i=0

Ai

(32)

where ρ represented the point cloud density, and N represented the total amount of points. Furthermore,
Ni was the ith field number of points, and k was the number of scanning area. A was the measure of
the scanning area.

The point cloud density calculated by the above formula was the average point cloud density in
the scanning area. In order to further quantify the point density distribution in the scanning area, the
reciprocal of the area affected by a single point was taken as the density of the point:

d′ = 1/A′ (33)

The main factors affecting the density of the point cloud were the LiDAR design parameters,
system characteristics, carrier, and scanning area.

The distance between points directly reflected the density of point clouds. For the pulse laser
ranging sensor, the distance from the heading point to the edge point determined the density distribution
of point cloud. The design of aerial photography parameters was referred from the distance between
heading point and edge point. The parameters of the sensor, such as scanning frequency, scanning
bandwidth, laser emission frequency, field of view angle, flight height and flight speed, and the distance
between point clouds, were considered to design the LiDAR system.

5.4. Density Enhancement Using Point Cloud Up-Sampling Network (PU-Net)

Point cloud up-sampling was essentially similar to the problem of image super-resolution [25].
Yu et al. [26] proposed a data-driven point cloud sampling neural network (PU-net), which was applied
to patch level. At the same time, a joint loss function was used for guiding the up-sampled points
to retain a uniformly distributed object surface. The main idea of PU-net was capturing the features
of each point in every level, then multi-convolution blocks were extended in feature hidden layers,
and finally, the hidden layers were divided into multi-level features and up-sampled into the point
cloud. The pre-trained PU-net was employed for enhancing the density of the crop point cloud in this
paper. There were 4 steps of PU-net for up-sampling of point cloud: Slice extraction, point feature
embedding, feature extending, and point coordinate reconstruction. It is noteworthy that a series of
sub-pixel convolution layers were employed to extend the features of neighborhood points in the
feature extending stage:

f′ = Reshape([conv2
1(conv1

1(f)), . . . , conv2
r (conv1

r (f))]) (34)

where conv1
i (
∗) and conv2

i (
∗) were the convolution layer with 1*1 kernel size for adjusting the channels

of patch feature f. The output, combined feature f′, was born with properties of spatial characteristic
which could retain the information of raw data. After coordinate reconstruction, the density elevation
in last section was employed to show the enhancement effect directly.

6. Results

In order to verify the stability of the UAV-borne LiDAR scanning system, the experiments
were carried out in integrated navigation testing, point cloud density clustering, and point cloud
density enhancement.
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6.1. GOA-Based Integrated Navigation

The integrated navigation experiment was carried out in MATLAB2017 (a). It was supposed that
the initial longitude of UAV L = 40o, the initial latitude λ = 116o, and the velocity of UAV was 1m/s.
The filtering period was T = 1s. The initial value of filtering covariance was as follows:

p(0) = diag[(0.00254o)2, (0.00446o)2, (0.1m/s)2,
(0.1m/s)2, (1o)2, (1o)2, (1o)2, (1o)2,
(1o)2, (1o)2, (10−5)g, (10−5)g, (10−5)g]

(35)

The initial value of integrated navigation was:

X(0) = [0m, 0m, 0.5m/s, 0.5m/s, 0.08o, 0.08o,
0.08o, 0.16o, 0.1o/h, 0.1o/h, 0.1o/h,
0.1o/h, (10−5)g, (10−5)g, (10−5)g]

(36)

The initial parameters Q and R obtained when the sum of longitude and latitude errors were used
as the fitness function feeding into the system. The GOA based integrated navigation error diagram
was shown in Figures 8 and 9, PSO based integrated navigation error diagram was shown in Figures 10
and 11.
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Figure 8. Longitude error of GOA-based integrated navigation.
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Figure 9. Latitude error of GOA-based integrated navigation.
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Figure 10. Longitude error of PSO-based integrated navigation.
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Figure 11. Latitude error of PSO-based integrated navigation.

As shown in Table 1, both the longitude L variance error and latitude λ variance error were reduced
greatly compared with raw integrated navigation. It is worth noting that the GOA-based integrated
navigation showed better performance than the PSO-based integrated navigation; it is suspected that
the ability to find the optimal of GOA was better than for PSO in the integrated navigation task. For
more precise optimal Q and R, the GOA-based integrated navigation was employed for the UAV-borne
LiDAR scanning system.

Table 1. Error of integrated navigation with different enhancement methods.

Longitude L Variance Error Latitude λ Variance Error

GOA-based integrated navigation 0.00046 0.00034
PSO-based integrated navigation 0.00087 0.00079

Raw integrated navigation 0.0091 0.0047

6.2. PSO-Based Point Cloud Clustering Segmentation

The meta-heuristic algorithm was employed to optimizing the clustering segmentation key
elements: Eps and MinPts. The Davies–Bouldin index (DBI) was employed as the fitness function for
the joint optimization of Eps and MinPts:

DBI =
1
k

k∑
i=1

max
j�i

⎛⎜⎜⎜⎜⎜⎜⎝
avg(Ci) + avg

(
Cj
)

dcen
(
μi,μj

)
⎞⎟⎟⎟⎟⎟⎟⎠ (37)
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where avg(∗) represented the average distance between samples in cluster, dcen
(
μi,μj

)
was the center

distance of cluster μi, and cluster μj. avg(∗) was defined as follows:

avg(C) =
2

|C|(|C| − 1)

∑
1≤i≤j≤|C| dist

(
xi, xj
)

(38)

where dist
(
xi, xj

)
was the distance of sample xi and sample xj.

Crop point cloud data collection environment was shown in Figure 12.

 

Figure 12. Crop point cloud raw data collection environment.

A series of crop point cloud raw data was collected from the UAV-borne LiDAR scanning system;
the meta-heuristic-based DBSCAN algorithms were initialized by crop raw data and iterated 200 times
to find the optimal Eps and MinPts. The fitness iteration curve is shown in Figure 13.
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Figure 13. Iteration curve of fitness of the meta-heuristic-based density-based spatial clustering of
applications with noise (DBSCAN) algorithms.

For fair comparing with different meta-heuristic algorithms, the BA-based DBSCAN algorithm [17],
GA-based DBSCAN algorithm [14], GOA-based DBSCAN algorithm [18], and PSO-based DBSCAN
algorithm [15] were initialized with 20 population-sizes, 2 dimensions, and 200 iterations. In particular,
the GA-based DBSCAN algorithm was initialized with a 0.7 crossover rate, 0.5 select rate, and 0.01
variation rate. During several times of testing, Figure 13 shows that the GOA and PSO found the
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best fitness 0.416032. It is suspected that global optimization was 0.416032 under further testing
with different fine tuning. Under the same fitness 0.416032, the Eps = 0.8147 and MinPts = 13.
In the clustering segmentation, the BA-based DBSCAN algorithm, GA-based DBSCAN algorithm,
GOA-based DBSCAN algorithm, PSO-based DBSCAN algorithm, and the K-means clustering were
employed for comparison; the K-means was the default tuning. The 200 iterations of time consumption
of the BA-based DBSCAN algorithm, GA-based DBSCAN algorithm, GOA-based DBSCAN algorithm,
and PSO-based DBSCAN algorithm were 9669 s, 910 s, 1610 s, and 749 s, respectively. The comparison
clustering results are shown in Figure 14a–e. Shown in Figure 14f, the crop point cloud is reconstructed
in 3-dimensions.

Crop cluster 1
Crop cluster 2

Ground 

 

Crop cluster
Ground 

(a) (b) 

Crop cluster
Ground 

Crop cluster
Ground 

(c) (d)  

Crop cluster
Ground 

 
 

(e) (f) 

Figure 14. Clustering segmentation result of crop and ground. (a) K-means clustering; (b) BA-based
DBSCAN (Eps = 0.2145, MinPts = 18); (c) GA-based DBSCAN (Eps = 0.1006, MinPts = 8); (d) PSO-based
DBSCAN (Eps = 0.8147, MinPts = 13); (e) GOA-based DBSCAN (Eps = 0.8147, MinPts = 13); (f) 3D
reconstruction of crop field point cloud.
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As shown in Figure 14a–c, 3 kinds of clustering results were given from the default tuning of
K-means, and the ground cluster could not be separated from the crop cluster using the BA-based
DBSCAN algorithm or GA-based DBSCAN algorithm. Under the same fitness 0.416032, the Eps =
0.8147 and MinPts = 13 were obtained using the GOA-based DBSCAN algorithm and PSO-based
DBSCAN algorithm. Considering that PSO converges faster and takes less time in iterations, the
PSO-based DBSCAN algorithm was employed for crop point cloud clustering segmentation.

6.3. Density Enhancement with PU-Net

After the clustering segmentation of crop point cloud, the crop point cloud was enhanced by a
pre-trained PU-net. The PU-net was trained with 60 sets of variation of point clouds from “Visionair”.
Datasets were divided into train sets and validation sets by 60% and 40%. In the fine-tune training
period, the Monte Carlo stochastic sampling method was employed for sampling 5000 points from
every object as the input. Each input represented the global information of each object; fine-tune
training aimed at enhancing the global information collection performance of the pretrained model.
The visualization of raw crop point cloud data was shown in Figure 15. The sparse part of the point
cloud was mainly concentrated on the X-axis, which was the direction of the UAV-borne LiDAR
scanning system to generate the 3D point cloud by moving forward.

Figure 15. Visualization of raw crop point cloud data.

The raw crop point cloud was fed into the fine-tune trained PU-net. The 3D reconstruction of the
crop point cloud with and without density enhancement is shown in Figure 16.

 
(a) (b) 

Figure 16. 3D reconstruction of crop point cloud with and without density enhancement. (a) The raw
crop point cloud; (b) The crop point cloud with density enhancement.

The total number of points of the raw crop point cloud were 10,000, the density of the raw crop
point cloud was 1250 points per square meter. After density enhancement, the total number of points
of the crop point cloud were 40,000, the density of the crop point cloud was 5000 points per square
meter, and the number and density of the point cloud had been significantly increased. Compared
with the raw crop point cloud, the enhanced crop point cloud contained more information, and also
retained the shape and contour characteristics of the raw data. In order to further verify the reliability
and effectiveness of the method, 50 sets of density enhancement tests were carried out and 5 sets of
results were sampled randomly for statistical tests. The results were shown in Table 2.
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Table 2. The statistical parameters of the enhanced point cloud and the raw data.

Mean Value Variance Standard Deviation

Raw crop point cloud 558.64 171.60 13.10
1st set of the enhanced crop point cloud 568.84 298.48 17.27
2nd set of the enhanced crop point cloud 578.68 289.34 17.01
3rd set of the enhanced crop point cloud 554.32 278.56 16.69
4th set of the enhanced crop point cloud 565.44 325.08 18.03
5th set of the enhanced crop point cloud 563.56 317.51 17.82

7. Discussion

For integrated navigation testing, because the GOA and PSO showed better performance in
fitness convergence velocity in the local field refer to Ref. [19]. Although this was an unfavorable
feature for global optimization, for time varying and unpredictable problems, such as the integrated
navigation system in this paper, better performance in the fitness convergence velocity in the local
field tended to find the suboptimal solution quickly, which would reduce the error sharply. Shown as
the GOA based integrated navigation error diagram (Figures 8 and 9) and the PSO based integrated
navigation error diagram (Figures 10 and 11), both the longitude L variance error and latitude λ

variance error were reduced greatly compared with raw integrated navigation. It is worth noting
that the GOA-based integrated navigation showed better performance than the PSO-based integrated
navigation; it is suspected that the ability to find the optimal of GOA was better than for PSO in the
integrated navigation task. For more precise optimal Q and R, the GOA-based integrated navigation
was employed for the UAV-borne LiDAR scanning system.

For point cloud density clustering segmentation, default-turning K-means clustering divided
crop into two clusters and separates ground points clearly, but parts of data points were ignored
for clustering. Different meta-heuristic-based DBSCAN algorithms shown different optimization
capabilities according to Figure 13. GA algorithm was the weakest in point cloud density clustering,
different variation rates and 800 iterations more were set in further fine-turning, the GA-based DBSCAN
algorithms still could not find the lower fitness value which was close to 0.416032. The BA-based
DBSCAN algorithm shown the better optimization capability but lower computing efficiency, 9669 s of
time consumption make it worse for practical application. Both GOA-based DBSCAN algorithm and
PSO-based DBSCAN algorithm found the same fitness 0.416032. It is suspected that global optimization
was 0.416032 under further testing with different fine tuning. Considering that PSO converges faster
and takes less time in iterations, the PSO-based DBSCAN algorithm was employed for crop point
cloud clustering segmentation.

For point cloud density enhancement, the pre-trained PU-net [26] was trained by “Visionair”
datasets, there were many objects point cloud dataset for learning features by Convolutional Neural
Network (CNN). After point cloud density enhancement, the density of point cloud was greatly
enhanced, and Table 2 shown that there was no gap in mean value between the raw crop point cloud
and 5 sets of the enhanced crop point cloud, which indicated that the enhanced point cloud kept the
height distribution of the raw data. A faint change of variance and standard deviation indicated that
the 5 sets of the enhanced point cloud also kept the shape and contour of the raw data.

8. Conclusions

This paper developed a UAV-borne LiDAR scanning system with enhanced integrated navigation
and dense point cloud optimization. The GOA was employed for optimizing the integrated navigation;
the longitude and latitude variances of optimized integrated navigation were 0.00046 and 0.00034,
respectively, and the longitude and latitude variances of raw integrated navigation were 0.0091 and
0.0047, respectively. The positioning accuracy of the UAV carrier was improved greatly. The PSO was
employed to find the optimal key elements of DBSCN clustering segmentation, and accurate point
cloud segmentation was obtained. At last, the fine-tuned PU-net was used for point cloud density
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enhancement. Compared with the raw point cloud, the density of the enhanced crop point cloud was 4
times more, and the statistical parameters showed that the enhanced crop point cloud retained the
shape and contour characteristics of the raw data. In this paper, each meta-heuristic optimization
algorithm had its own merits for the different problems, but we still have not found an optimization
algorithm that can meet all the processing requirements. In the future, owing to the flexibility of a
multi-rotor UAV in remote sensing operations in specific areas, a multi-rotor UAV equipped with
a small LiDAR or optical image remote sensing system will be more suitable for remote sensing
operations in the agricultural field [27,28].

Author Contributions: Conceptualization, J.C. and Z.Z.; methodology, J.C. and Z.Z.; software, Z.Z. and K.Z.;
validation, Z.Z., K.Z., and S.W.; formal analysis, S.W. and Y.H.; investigation, S.W. and Y.H.; data curation, K.Z.
and S.W.; writing—original draft preparation, J.C. and Z.Z.; writing—review and editing, K.Z., S.W., and Y.H.;
supervision, J.C. and Y.H.; project administration, J.C. and Y.H.; funding acquisition, J.C. and Y.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 51979275), by
the National Key R&D Program of China (Grant Nos. 2017YFD0701003 from 2017YFD0701000, 2018YFD0700603
from 2018YFD0700600, and 2016YFD0200702 from 2016YFD0200700), by the Jilin Province Key R&D Plan Project
(Grant Nos. 20180201036SF), by the Open Fund of Synergistic Innovation Center of Jiangsu Modern Agricultural
Equipment and Technology, Jiangsu University (Grant No. 4091600015), by the Open Research Fund of State Key
Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University (Grant
No. 19R06), by the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang
University (Grant No. ICT20021), and by the Chinese Universities Scientific Fund (Grant Nos. 2020TC033 and
10710301).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. McManamon, P.F. Review of LiDAR: A historic, yet emerging, sensor technology with rich phenomenology.
Opt. Eng. 2012, 51, 060901. [CrossRef]

2. Vázquez-Arellano, M.; Griepentrog, H.W.; Reiser, D.; Paraforos, D.S. 3-D Imaging Systems for Agricultural
Applications—A Review. Sensors 2016, 16, 618. [CrossRef] [PubMed]

3. Lovell, J.L.; Jupp, D.L.B.; Newnham, G.J. Measuring tree stem diameters using intensity profiles from
ground-based scanning LiDAR from a fixed viewpoint. ISPRS J. Photogramm. Remote Sens. 2011, 66, 46–55.
[CrossRef]

4. Strahler, A.H.; Jupp, D.L.B.; Woodcock, C.E. Retrieval of forest structural parameters using a ground-based
LiDAR instrument (Echidna). Can. J. Remote Sens. 2008, 34, 426–440. [CrossRef]

5. Zheng, G.; Moskal, L.M.; Kim, S.H. Retrieval of effective leaf area index in heterogeneous forests with
terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 777–786. [CrossRef]

6. Lai, X.D.; Liu, Y.S.; Li, Y.X. Application status and development of point cloud density characteristics of
airborne LiDAR. Geospat. Inf. 2018, 16, 1–5.

7. Quan, W.; Gong, X.; Fang, J.; Li, J. Prospects of INS/CNS/GNSS Integrated Navigation Technology. In
INS/CNS/GNSS Integrated Navigation Technology; Springer: Berlin/Heidelberg, Germany, 2015.

8. Fu, B.; Liu, J.; Wang, Q. Multi-sensor integrated navigation system for ships based on adaptive Kalman filter.
In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin,
China, 4–9 August 2019.

9. Gao, Y.; Liu, S.; Atia, M.M.; Noureldin, A. INS/GPS/LiDAR integrated navigation system for urban and
indoor environments using hybrid scan matching algorithm. Sensors 2015, 15, 23286–23302. [CrossRef]
[PubMed]

10. Shabani, M.; Gholami, A.; Davari, N. Asynchronous direct Kalman filtering approach for underwater
integrated navigation system. Nonlinear Dyn. 2015, 80, 71–85. [CrossRef]

11. Zhang, G.; Hsu, L.T. Intelligent GNSS/INS integrated navigation system for a commercial UAV flight control
system. Aerosp. Sci. Technol. 2018, 80, 368–380. [CrossRef]

12. Yu, H.; Han, H.; Wang, J.; Xiao, H.; Wang, C. Single-frequency GPS/BDS RTK and INS ambiguity resolution
and positioning performance enhanced with positional polynomial fitting constraint. Remote Sens. 2020, 12,
2374. [CrossRef]

107



Remote Sens. 2020, 12, 3208

13. Norouz, M.; Ebrahimi, M.; Arbabmir, M. Modified Unscented Kalman Filter for improving the integrated
navigation system. In Proceedings of the 25th Iranian Conference on Electrical Engineering, Tehran, Iran,
2–4 May 2017.

14. Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learing; Addison-Wesley: Boston, MA,
USA, 1989.

15. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the 6th International
Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

16. Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed optimization by ant colonies. In Proceedings of the 1st
European Conference on Artificial Life, Paris, France, 11–13 December 1991; pp. 134–142.

17. Yang, X. A new metaheuristic bat-inspired algorithm. In Proceedings of Nature Inspired Cooperative Strategies
for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.

18. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng.
Softw. 2017, 105, 30–47. [CrossRef]

19. Feng, H.; Ni, H.; Zhao, R.; Zhu, X. An enhanced grasshopper optimization algorithm to the Bin packing
problem. J. Control Sci. Eng. 2020, 2020, 3894987. [CrossRef]

20. Chen, Y.; Zhou, L.; Bouguila, N.; Wang, C.; Chen, Y.; Du, J. BLOCK-DBSCAN: Fast clustering for large scale
data. Pattern Recognit. 2020, 109, 107624. [CrossRef]

21. Kedzierski, M.; Fryskowska, A. Methods of laser scanning point clouds integration in precise 3D building
modelling. Measurement 2015, 74, 221–232. [CrossRef]

22. Rupink, B.; Mongus, D.; Zalik, B. Point density evaluation of airborne LiDAR datasets. J. Univers. Comput.
Sci. 2015, 21, 587–603.

23. Huang, H.; Shi, W.U.; Gong, M. Edge-aware point set resampling. ACM Trans. Graph. 2013, 32, 1–12.
[CrossRef]

24. Mafarja, I.A. Evolutionary population dynamics and grasshopper optimization approach for feature selection
problems. Knowl. Based Syst. 2018, 145, 25–45. [CrossRef]

25. Ledig, C.; Theis, L.; Huszar, F. Photo-realistic single image super-resolution using generative adversarial
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017.

26. Yu, L.; Li, X.; Fu, C.W. PU-net: Point cloud upsampling network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 19–21 June 2018.

27. Zhang, Z.; Han, Y.; Chen, J.; Wang, S.; Wang, G.; Du, N. Information extraction of ecological canal system
based on remote sensing data of unmanned aerial vehicle. J. Drain. Irrig. Mach. Eng. 2018, 36, 1006–1011.

28. Wang, S.; Han, Y.; Chen, J.; Pan, Y.; Cao, Y.; Meng, H. Weed classification of remote sensing ecological
irrigation area by UAV based on deep learning. J. Drain. Irrig. Mach. Eng. 2018, 11, 1137–1141.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

108



remote sensing 

Article

Wavelength Selection Method Based on Partial Least
Square from Hyperspectral Unmanned Aerial Vehicle
Orthomosaic of Irrigated Olive Orchards

Antonio Santos-Rufo 1,*, Francisco-Javier Mesas-Carrascosa 2, Alfonso García-Ferrer 2 and

Jose Emilio Meroño-Larriva 2

1 Department of Agronomy, University of Cordoba, Campus de Rabanales, 14071 Córdoba, Spain
2 Department of Graphic Engineering and Geomatics, University of Cordoba, Campus de Rabanales,

14071 Córdoba, Spain; fjmesas@uco.es (F.-J.M.-C.); agferrer@uco.es (A.G.-F.); ir1melaj@uco.es (J.E.M.-L.)
* Correspondence: g02sarua@uco.es

Received: 13 September 2020; Accepted: 16 October 2020; Published: 19 October 2020

Abstract: Identifying and mapping irrigated areas is essential for a variety of applications such
as agricultural planning and water resource management. Irrigated plots are mainly identified
using supervised classification of multispectral images from satellite or manned aerial platforms.
Recently, hyperspectral sensors on-board Unmanned Aerial Vehicles (UAV) have proven to be
useful analytical tools in agriculture due to their high spectral resolution. However, few efforts
have been made to identify which wavelengths could be applied to provide relevant information in
specific scenarios. In this study, hyperspectral reflectance data from UAV were used to compare the
performance of several wavelength selection methods based on Partial Least Square (PLS) regression
with the purpose of discriminating two systems of irrigation commonly used in olive orchards.
The tested PLS methods include filter methods (Loading Weights, Regression Coefficient and Variable
Importance in Projection); Wrapper methods (Genetic Algorithm-PLS, Uninformative Variable
Elimination-PLS, Backward Variable Elimination-PLS, Sub-window Permutation Analysis-PLS,
Iterative Predictive Weighting-PLS, Regularized Elimination Procedure-PLS, Backward Interval-PLS,
Forward Interval-PLS and Competitive Adaptive Reweighted Sampling-PLS); and an Embedded
method (Sparse-PLS). In addition, two non-PLS based methods, Lasso and Boruta, were also used.
Linear Discriminant Analysis and nonlinear K-Nearest Neighbors techniques were established for
identification and assessment. The results indicate that wavelength selection methods, commonly
used in other disciplines, provide utility in remote sensing for agronomical purposes, the identification
of irrigation techniques being one such example. In addition to the aforementioned, these PLS and
non-PLS based methods can play an important role in multivariate analysis, which can be used
for subsequent model analysis. Of all the methods evaluated, Genetic Algorithm-PLS and Boruta
eliminated nearly 90% of the original spectral wavelengths acquired from a hyperspectral sensor
onboard a UAV while increasing the identification accuracy of the classification.

Keywords: olive tree; UAV; hyperspectral; classification; irrigation technique; PLS; wavelength
selection

1. Introduction

The intensification of agricultural practices, including better seeds, extensive fertilizer use and
irrigation techniques, has altered the dynamics between humans and environmental systems across
the world [1]. Although these agricultural practices have allowed for increased food production, they
have also caused significant environmental impact on many regions. Consequently, accurate and
precise information is in high demand from Earth System Science and global change research [1].
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Today, irrigated agriculture is one of the most significant contributors of water consumption [2],
necessitating modeling water exchange between land surface and atmosphere [3], managing water
resources [4] and analyzing the variability of irrigation water requirements and supply [5]. As a result,
estimations of water demand do not consider the spatial variability in irrigation practices and do not
reflect the characteristics of irrigation techniques [6].

Irrigation is currently used in most new olive orchards, which suggests that the percentage of
irrigated olive trees is very high throughout the world and increasing [7]. Since water is the largest
agricultural input in many cultivation systems in Mediterranean areas, with water availability being
one of the main limiting factors for crop yield, the use of more efficient irrigation techniques in olive
orchards has become essential [8]. Water Use Efficiency (WUE) is a term that was coined more than
100 years ago [9] and it functions as an indicator of the balance between productivity and water
availability. WUE is an essential parameter nowadays due to the great pressure of increasingly intense
and frequent droughts associated with climate change effects on agricultural water availability and
crop yields worldwide [10]. As WUE is a measurement of yield or biomass produced per unit of
water [11], it is therefore particularly useful when trying to compare the efficiency of different irrigation
systems. In this context, many research projects demonstrate that productivity could be increased with
no change in the rate of water use resulting in greater WUE [12–14]. For the olive grove, Martínez and
Reca (2014) [8] compared Subsurface-Drip Irrigation (SDI) and surface Drip Irrigation (DI). Both yield
and WUE for SDI outperformed DI, with a water savings of up to 20% for the former. As such,
evaluating crop productivity and means of irrigation in relationship to WUE would allow a better
management of water resources [10].

Remote sensing has been demonstrated to be an effective tool for locating, mapping and monitoring
irrigation techniques by providing data in several regions of the electromagnetic spectrum and with a
variety of spatial and temporal resolutions to assess crop growth, maturity and yield [15–18]. Images
are obtained remotely via a broad range of sensors on-board three main types of platforms: satellite,
manned aerial and unmanned [19]. Each of these approaches have pros and cons that involve economic,
operational, and technological factors [19]. Satellite imagery covers extensive areas, and some Earth
observation programs provide free low spatial-resolution datasets, e.g., Moderate Resolution Imaging
Spectroradiometer (MODIS), or medium resolution datasets, e.g., Sentinel-1 and -2 from the Copernicus
program [20,21]. The effectiveness of satellite imagery applied to arable crops, forests and extensive
plantations has been demonstrated in many studies [1,21]. However, satellite imagery may suffer from
cloud cover and constrain image timing for specific phenological characteristics due to the limits of
temporal resolution [22]. Remote sensing becomes more challenging when considering crops with
discontinuous layouts, such as olive trees, vineyards or orchards [23]. The presence of inter-row paths
may deeply affect the overall computation of spectral indices, leading to an inadequate assessment
of crop status [23]. On the other hand, manned aircraft surveys offer more operational flexibility,
providing spatial resolutions in the range of centimeters, but comes with high operational and logistic
costs [24,25], making it difficult to perform frequent flights in phenological studies [26]. UAV platforms
offer greater flexibility still [27], allowing for the possibility to differentiate pure vegetation pixels
in images over woody crops. However, UAV platforms are limited both in regard to payload and
flight time [28]. Despite these limitations, UAV platforms have been shown to be very useful tools in
the mapping of irrigated areas when working in concordance with traditional platforms [29]. In the
context of this research, UAV platforms have been used in post-classification correction of traditional
platforms to identify anomalies in the mapped irrigated plots and improve classification accuracy [29].

The UAV payload included a variety of sensors, including RGB, multispectral, hyperspectral,
thermal and LiDAR. Multi- and hyper-spectral sensors have been successfully used in many applications
which require accurate spectral information [30,31]. The main difference between both type of sensors
is based on the number of spectral bands. While multispectral images generally range from 4 to
12 spectral bands that are represented in each pixel, hyperspectral images consist of hundreds of spectral
bands arranged in a very narrow bandwidth [32]. The high spectral resolution in hyperspectral images
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allow the detection of spectral details that can be imperceptible in multispectral images due to their
discrete spectral nature [32]. UAV-based hyperspectral imaging in agriculture has been successfully
used in chlorophyll [33], biomass [34], nitrogen [35] or water [36] content estimation; the detection of
diseases [37]; weed classification [38]; the evaluation and classification of crop water status [39]; etc.
Therefore, hyperspectral remote sensing technologies have improved our capability for understanding
the processes of biophysical and biochemical properties of vegetation [40].

As a result of the high number of spectral bands, many of them are highly correlated and
therefore a dimension reduction or wavelength selection method is essential to apply in pre-processing
of the hyperspectral image to improve its usability [41]. These selection methods can be grouped
in three categories: (i) wave band features [42,43]; (ii) spectral position features [44,45]; and (iii)
vegetation indices [45,46]. These methods are performed through a variety of techniques such as
Principal Components Analysis (PCA) [47,48], Minimum Noise Fraction [49,50], Singular Value
Decomposition [51] or Partial Least Square (PLS) [52,53] among others. As a result, these techniques
reduce the data size by selecting those wavelengths sensitive to the object of interest [54]. Specifically,
PLS regression is a nonparametric and supervised technique particularly useful to achieve the “large p
-small n” problem in high-dimensional datasets [55]. This technique combines features from PCA and
multiple regression to predict dependent variables from a set of orthogonal factors (latent variables)
extracted from predictors with the best predictive power [56]. To achieve this, a simultaneous
decomposition of predictors and dependent variables are performed with the constraint that these
components explain the covariance as much as possible. Afterwards, a regression step is performed
where the decomposition of predictors is used to predict dependent variables [56].

Previous studies have identified wavelengths that are sensitive to crop properties such as chlorophyll
content, nitrogen status and water content or estimation of biomass [57–60]. PLS methods have proven
to be very versatile for multivariate data analysis in applications related to bioinformatics [61,62]
or chemometrics [63,64], as well as remote sensing [65,66]. Initially, in these studies, PLS was not
implemented to select variables, since the objective was to find a relevant linear subspace of the
explanatory variables, but, eventually, several PLS selection methods for variable selection were
finally proposed [67]. These methods can be categorized in three types: filter, wrapper and embedded
methods. Filter techniques evaluate the relevance of the characteristics by only looking at the intrinsic
properties of the data. In most cases, a feature relevance score is calculated, and low scoring features
are removed. Subsequently, this subset of characteristics is presented as input to the classification
algorithm [67]. These methods require some type of filter measure (loading weights, regression
coefficients or importance of the variable in projection) that represents the response relationship with
the respective variable, and, for this, a threshold is required to classify the variables as selected or not [55].
For Loading Weights Method (LW-PLS), the peaks or valleys with the maximum absolute load weights
from the first major factor to the optimal principal factor are selected as sensible wavelengths [68].
For the Regression Coefficient Method (RC-PLS), the sensitive wavelengths are generally selected
according to the regression coefficient of the optimal PLS model [67]. In general, the peaks or bands are
selected as the sensible wavelength or waveband when the absolute value of the regression coefficient
is greater than the threshold [69]. On the other hand, the basis of the Variable Importance in Projection
Method (VIP-PLS) is to accumulate the importance of each variable, this being reflected by the load
weights from each component [70]. While filter techniques address the problem of finding a good
subset of features regardless of the model selection step, wrapper methods incorporate the model
hypothesis search into the feature subset search [67]. The methods are mainly distinguished by the
choice of the underlying filter method and how the wrapper is implemented, and they are primarily
based on procedures that iterate between model fitting and variable selection [55]. These procedures,
for example, a Genetic Algorithm integrated with the PLS regression Method (GA-PLS), combine the
advantage of GA and PLS and return a vector of variable numbers that corresponds to the model that
has the lowest prediction error [71]. For Uninformative Variable Elimination PLS (UVE-PLS), artificial
noise variables are added to the predictor set before the PLS model is fitted and all original variables
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that are less important than the artificial noise variables are removed before the procedure is repeated
until a stop criterion is reached [72]. In the general procedure for Backward Variable Elimination PLS
(BVE-PLS), variables are ordered first with respect to some measure of importance, and one of the
filter measures described above is generally used [73]. Secondly, a threshold is used to eliminate a
subset of the least informative variables, and then a model is fitted again to the remaining variables
and performance is measured. The procedure is repeated until the maximum performance of the
model is achieved. Other wrapper methods are Subwindow Permutation Analysis coupled with
PLS (SwPA-PLS), which provides the influence of each variable without considering the influence
of the rest of the variables [74]; Iterative Predictive Weighting PLS (IPW-PLS), which is an iterative
elimination procedure where a measure of predictor importance is computed after fitting a PLS
model [75]; Regularized Elimination Procedure in PLS (REP-PLS), where a stability-based variable
selection procedure is adopted [67]; Backward [76] and Forward [77] Interval PLS (BiPLS and FiPLS,
respectively), where the dataset is divided into a given number of intervals, and the PLS models are then
calculated with each interval left in a sequence, giving the first omitted interval the worst performance
model with respect to the mean squared error of cross-validation (MSECV); and Competitive Adaptive
Reweighted Sampling (CARS-PLS), which is a function variable selection method that combines Monte
Carlo sampling with the PLS regression coefficient [78]. For embedded methods, the search for an
optimal subset of features is built into the classifier construction and can be seen as a search in the
combined space of feature subsets and hypotheses [79]. Similar to wrapper approaches, embedded
approaches are thus specific to a given learning algorithm. One of these methods is Sparse-PLS (S-PLS),
which is a version of PLS that aims to combine selection and modeling in a one-step procedure [80].

On the other hand, machine learning algorithms, including Linear Discriminant Analysis (LDA)
and K-Nearest Neighbors (KNN), are powerful tools for analyzing hyperspectral information since
they can process a large number of variables efficiently [81,82]. LDA is a subspace technique that
seeks to find the maximum Fisher’s ratio [83] while KNN is a non-parametric learning algorithm
since there is no assumption for the underlying data distribution. KNN also utilizes lazy learning,
meaning that it does not need any training data point for the generation of the model [84]. Specifically,
these machine learning algorithms have been widely used in the remote sensing field for agricultural
applications [37,85]. For instance, Suarez et al. [85] estimated phenoxy herbicide dosage in cotton crops
through the analysis of hyperspectral data with LDA. In addition, Bohnenkamp et al. [37] utilized KNN
to detect yellow rust in wheat with the application of hyperspectral imaging technology. In general,
these models have shown to be effectives for investigating agricultural features using hyperspectral
imagery [86].

Many authors have compared selection PLS methods to analyze which offers better performance [69,87].
Likely, there is no best variable selection method due to the interaction between method and properties
of the analyzed data [55]. As per the above discussion, this article focuses on the use of wavelength
selection methods in UAV hyperspectral images to compare two irrigation systems commonly used in
olive orchards, SDI and DI. For this purpose, 16 methods (13 based on PLS) were evaluated, and the
quality of the results were assessed by two linear and nonlinear classification techniques. This paper is
organized as follows. Section 2 describe the materials and methods used. Section 3 shows the results.
Section 4 includes the final concluding remarks.

2. Materials and Methods

The workflow for classifying olive tree crowns according to the irrigation technique used is
summarized in Figure 1. Two UAV flights were performed using RGB and hyperspectral sensors,
respectively. The RGB UAV flight was used to geometrically define each of the olive trees while
the hyperspectral UAV flight was used to characterize them radiometrically. Then, different PLS-
and non-PLS-based methods were used to select the most significant wavelengths to classify the
two irrigation techniques methods of the study area. Finally, with the selected wavelengths, two
classifications were performed using LDA and KNN, evaluating the quality and efficiency of the results.
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Figure 1. Flowchart used for the classification of irrigation techniques.

2.1. Study Area and UAV Flights

The study site was located in Marchena (Seville province, Spain) (37◦24′52.7′′ N, 5◦27′44.9′′ W,
WGS84) (Figure 2a) in a 7-ha commercial orchard planted in 2015 with the olive cultivar Arbequina
at a spacing of 3 m × 1.5 m (Figure 2b). The hedgerow orchard was adapted in equal parts to DI or
SDI with carry self-compensating dripper pipes at 2.2 L/h spaced 0.5 m apart along the irrigation line
and placed 0.5 m from the trunks and, in the case of SDI, buried 0.45 m deep. The trees were irrigated
weekly with the seasonal water amount equivalent to 100% of ETc. Soil properties and agricultural
practices were similar in both areas where the irrigation systems were implemented. The climate is
Mediterranean with an average annual temperature and precipitation (concentrated mostly in late
fall and winter) of 18.8 ◦C and 544 mm, respectively. A representative area including 413 olive trees
(200 olives trees irrigated with DI and 213 with SDI) was used for data analyses.

2.2. UAV Flights and Processing

Two UAV flights, RGB and hyperspectral, were performed on 22 May 2020 at solar noon to take
advantage of the position of the sun and minimize shadows in the images acquired. The RGB UAV
flight was used to precisely delineate each of the olive trees in the study area while the hyperspectral
UAV flight characterized each of them spectrally. A DJI Mavic Pro 2 (SZ DJI Technology Co., Shenzhen,
China) was used to perform the RGB flight. As the payload, a Hasselblad L1D-20c (Hasselblad Group,
Göteborg, Sweden) was used, which provides an image of 13.2 mm × 8.8 mm, a focal length of 10.3 mm
and an image size of 5472 × 3648 pixels. This UAV was flown at an altitude of 65 m above ground level
(AGL) and forward and side-lap were 80% and 70%, respectively. Ground Sample Distance (GSD) was
1.6 cm taking into account the characteristics of the sensor. For the hyperspectral flight, a DJI Matrice
600 Pro (SZ DJI Technology Co., Shenzhen, China) was used. This UAV platform was also equipped
with a Nano Hyperspec sensor (Headwall Photonics Inc., Boston, MA, USA) with 270 spectral bands
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(6-nm FWHM) both in the VNIR spectral range (400–1000 nm) with a sampling of 2.2 nm. Being a
push-broom sensor, imagery is collected, line by line, at 12-bit radiometric resolution along the flight
path where each line of pixels comprises 640 spatial pixels. The hyperspectral sensor was mounted on a
Ronin-MX gimbal system (SZ DJI Technology Co., Shenzhen, China) to minimize external disturbances
such as roll, pitch and yaw oscillations. This UAV platform was flown at an altitude of 100 m AGL,
GSD being equal to 6 cm taking into account the characteristic of the sensor.

Figure 2. Study area: (a) Location; and (b) olive tree plantation details.

Prior to the UAV flights, five artificial targets were placed in the study area as Ground Control
Points (GCPs), one in each corner and the other in the center. Each GCP was measured with the
stop-and-go technique through relative positioning by means of the NTRIP protocol (The Radio
Technical Commission for Maritime Services, RTCM, for Networked Transfer via Internet Protocol)
using two GNSS (Global Navigation Satellite System) receivers. One of the receivers was a reference
station for the GNSS Red Andaluza de Posicionamiento (RAP) network from the Institute of Statistics
and Cartography of Andalusia, Spain, and the other, a Leica GS15 GNSS (Leica Geosystems AG,
Heerbrugg, Switzerland), functioned as the rover receiver. In addition, a known reflectance value
calibration tarp was placed in the center of the plot to subsequently correct the spectral cubes
radiometrically. Before the hyperspectral UAV flight, the sensor capture mode was configured to
set up the number of frames per second in accordance with the flight speed and AGL flight height.
Likewise, the exposure level was established through the determination of the reflectance curve of a
90% target in order to avoid saturating the sensor in the recording of the spectral cubes. In addition,
black body spectral information was taken by closing the aperture to later convert the digital levels to
radiance values.

To produce an RGB orthomosaic from the RGB UAV flight, photogrammetric processing was
divided into four stages: aerial triangulation, Digital Surface Model (DSM) generation, rectification
of individual images and orthomosaicking. Aerial triangulation determined the individual external
orientation of each image of the photogrammetric block. Afterwards, a dense point cloud was generated
using Structure from Motion (SfM) techniques [88] to create a DSM. Finally, individual images were
rectified and mosaicked to generate an RGB UAV orthomosaic of the study area. This methodology has
been validated in previous research projects [19,89,90] and was performed using Pix4Dmapper (Pix4D
S.A., Prilly, Switzerland). The hyperspectral data processing was divided into three stages [91]. Firstly,
each hyperspectral cube was converted from digital number to radiance values, using dark reference
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captured prior to the UAV flight. Secondly, radiance values were converted to reflectance values using
the values from the calibration tarp. Finally, all the reflectance hyperspectral cubes were orthorectified
using data from the GNSS receivers, the Inertial Measurement Unit (IMU) and the Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model [92]. The accuracy and spatial resolution of the
SRTM model was adequate due to the smooth relief of the study area. This processing was performed
using SpectralView software (Headwall Photonics Inc., Boston, MA, USA).

Due to the difficulty in segmenting individual trees, an RGB orthomosaic was used to manually
digitize polygons of all the olive trees, using the QGIS desktop Geographic Information System. As an
example, a partial view of the hedgerow in the RGB and hyperspectral orthomosaic is shown in
Figure 3. Then, for each olive tree, the mean spectral reflectance value for each of the 270 spectral
bands was calculated, generating a spectral curve at the canopy level. This step was automated using
a script developed in the Python programming language [93].

Figure 3. Partial view of (a) RGB and (b) hyperspectral orthomosaic of the study area.

2.3. Wavelength Selection Methods Used and Evaluation

Although there are other methods, this project focused on applying those methods that use the
output of a PLS algorithm to identify a subset of important variables. As such, the variables analyzed
in this project were the wavelengths registered by the hyperspectral sensor. The PLS selection methods
used in this study are grouped by category (Table 1). More information on the PLS methods used in
this study can be found in the work by Mehmood et al. [67].

Other wavelength selection methods, such as the Least Absolute Shrinkage and Selection Operator
(Lasso) and Boruta algorithms, were also included in this study [94,95]. Lasso can handle ill-posed
problems (i.e., a large number of correlated variables compared to sample size) and works by penalizing
the magnitude of the characteristic coefficients along with minimizing the error between the predicted
and actual observations [96]. On the other hand, the Boruta algorithm was developed to identify
all relevant variables within a classification framework [97]. This method searches for relevant
characteristics by comparing the importance of the original attributes with the importance that can be
obtained at random, estimated using their permuted copies, and progressively eliminating irrelevant
characteristics to stabilize the test. First, the dataset is duplicated, and the values are shuffled in each
column; these are called shadow characteristics. Then, a classifier is trained on the dataset to extract
the importance of each characteristic. Random Forest is one of the most widely used classifiers for this
purpose [97]. As a final step, a combined analysis was performed considering the individual results
from all the PLS, Lasso and Boruta methods used, which has been termed the All-together method.
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Table 1. Evaluated wavelength selection PLS methods.

Category PLS Method Reference

Filter Loading Weights (LW-PLS) [68]
Regression Coefficient (RC-PLS) [69]

Variable Importance in Projection (VIP-PLS) [70]
Wrapper Genetic Algorithm (GA-PLS) [71]

Uninformative Variable Elimination (UVE-PLS) [72]
Backward Variable Elimination (BVE-PLS) [73]

Subwindow Permutation Analysis (SwPA-PLS) [74]
Iterative Predictive Weighting (IPW-PLS) [75]

Regularized Elimination Procedure (REP-PLS) [67]
Backward Interval (BiPLS) [76]
Forward Interval (FiPLS) [77]

Competitive Adaptive Reweighted Sampling (CARS-PLS) [78]
Embedded Sparse (S-PLS) [80]

2.4. Evaluation of Wavelength Selection Methods

LDA and KNN were applied to classify irrigation techniques used in each olive tree. Of the
total number of olive trees, 75% were used in the calibration phase (explained below) and 25% for
prediction (Table 2). Before applying LDA or KNN classification, the dataset was divided into two
smaller datasets that were used for calibration and prediction purposes. The calibration subset of data
was used to estimate the parameters of the classifier model and the prediction subset of data was used
to check the results of the model. Calibration and prediction were performed following an iterative
process where subsets of data changed per iteration.

Table 2. Number of samples per irrigation technique for calibration and prediction set.

Sub-Surface Irrigation Surface Irrigation

Calibration set 160 150
Prediction set 53 50

Total 213 200

Overall accuracy (OA) of LDA and KNN results were calculated by summing the number of
correctly classified olive trees and dividing by the total number of trees. Moreover, the accuracy of each
irrigation technique was evaluated [98]. In addition, efficiency of methods applied were calculated in
the prediction stage. According to Xia et al. [87], the efficiency of a wavelength selection method is
based on the prediction rate and the number of variables, being calculated as follows:

E =

(
Ds −D f

)
×
(
N f −Ns

)
N f

× 100 (1)

where E is the efficiency of the wavelength selection method evaluated, Ds is the OA obtained by a
PLS method, Df is the OA obtained using all wavelengths registered by the UAV hyperspectral sensor,
Nf is the total number of wavelengths and Ns is the number of wavelengths selected by the method
used. If E is higher than or equal to 0.5, the selection method is highly efficient. On the other hand, if E
ranges from −0.5 to 0.5 the method is shown to be efficient, except if E is equal to 0 and

(
N f −Ns

)
/N f

is greater than or equal to 0.8, indicating the method to be highly efficient. Finally, if E is less than or
equal to −0.5 the method is of low efficiency.

2.5. Software

LW-PLS, RC-PLS, VIP-PLS, AG-PLS, UVE-PLS, BVE-PLS, SwPA-PLS, IPW-PLS, REP-PLS, BiPLS,
FiPLS, CARS-PLS, S-PLS, Lasso and Boruta were conducted within the R software environment [99]
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using RStudio [100], with the packages shown in Table 3. For the evaluation of the identification, linear
and nonlinear techniques were established through LDA and KNN, respectively. The implementation
of these algorithms was performed in Python [93] using the Scikit-learn library [84].

Table 3. R packages used for wavelength selection methods.

PLS Method R Packages Reference

Loading Weights (LW-PLS) plsVarSel, pls [67,101]
Regression Coefficient (RC-PLS) plsVarSel, pls, threshr [67,101,102]

Variable Importance in Projection (VIP-PLS) plsVarSel, pls [67,101]
Genetic Algorithm (GA-PLS) plsVarSel [67]

Uninformative Variable Elimination (UVE-PLS) plsVarSel [67]
Backward Variable Elimination (BVE-PLS) plsVarSel [67]

Subwindow Permutation Analysis (SwPA-PLS) plsVarSel [67]
Iterative Predictive Weighting (IPW-PLS) plsVarSel [67]

Regularized Elimination Procedure (REP-PLS) plsVarSel [67]
Backward Interval (BiPLS) mdatools [103]
Forward Interval (FiPLS) mdatools [103]

Competitive Adaptive Reweighted Sampling (CARS-PLS) libPLSn [104]
Sparse (S-PLS) spls [105]

Lasso glmnet [106]
Boruta Boruta [97]

3. Results and Discussion

3.1. Spectral Reflectance Data

The mean spectral reflectance curves of olive trees, being irrigated with SDI or DI systems, were
similar to the results obtained in related studies [107] (Figure 4). No differences were observed in the
400–550 and 880–947 nm ranges. However, different magnitudes of spectral reflectance were found in
the 550–880 nm range. Therefore, within that range, there are 165 possible wavelengths to differentiate
between both irrigation techniques. Given this high number, different wavelength selection methods,
detailed above, were applied to identify those that best classify both types of irrigation.

Figure 4. Average raw spectra reflectance curves of olive canopies irrigated with SDI or DI.

3.2. Wavelength Selection Results

The results of the application of the methods used, including the number of the selected
wavelengths as well as their wavelengths, are shown in Table 4. Depending on the method employed,
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the number of wavelengths varied considerably. The method that selected the least number of
wavelengths was CARS, followed by LW-PLS, neither exceeding five wavelengths, less than 1% of
the original wavelengths registered. A set of methods (RC-PLS, VIP-PLS and IPW-PLS) selected a
range of 10 wavelengths, equal to 3.6% of the original wavelength number, and others selected 17–77
(6.2–28.1%) wavelengths (GA-PLS, BVE-PLS, SwPA-PLS, REP_PLS, FiPLS, Lasso and Boruta). Finally,
the S-PLS and BiPLS methods were the ones that selected the largest number of wavelengths, 192 (70%)
and 265 (96.7%), respectively. As such, the reduction in the number of wavelengths of interest will be
higher or lower depending on the method used.

Table 4. Wavelengths selected by different methods.

Method Number of Wavelengths Wavelengths [nm]

LW-PLS 5 882, 884, 890, 934, 942

RC-PLS 12 726, 728, 888, 904–908, 914, 920, 924, 928, 930–942

VIP-PLS 10 726, 888, 904, 906, 914, 924, 928, 936, 938, 942

GA-PLS 31
424, 428, 436, 442, 444, 458, 460, 522, 588, 612, 630, 640, 662,
698, 714, 716, 744, 758, 770, 780, 826, 846, 854, 860, 870, 878,

888, 912, 918, 920, 938

UVE-PLS 10 428, 696, 698, 700–704, 734, 792, 812, 856

BVE-PLS 69 686–734, 746, 776, 790, 840, 846, 848, 858, 860, 864–870,
880–890, 894–946

SwPA-PLS 77

410, 414, 418, 424, 436, 450, 466, 476, 490, 494, 496, 500, 506,
508, 518, 530–538, 542, 558, 562, 568, 576–580, 584, 588, 596,
612, 622–630, 640, 646, 648, 660, 668, 690, 702–706, 728, 738,
746, 752, 756, 768, 774, 782, 786, 804, 812, 822, 828, 836, 838,
848, 850, 856, 858, 860, 862, 874, 878, 882, 888, 896, 900, 904,

910, 914, 926, 936, 940

IPW-PLS 12 710, 790, 832, 846, 888, 914, 920–924, 936–940

REP-PLS 31 726, 728, 882, 884, 888, 890, 894, 898, 902–946

BiPLS 265 400–604, 624–946

FiPLS 54 660–676, 696–730, 768–784, 858–874, 912–928

CARS 2 436, 790

S-PLS 192 560–714, 720–946

Lasso 17 404, 662, 698, 704, 788, 844, 846, 858, 886, 904, 912, 918–922,
934–938

Boruta 29 430, 456, 464, 474, 636, 638, 644, 646, 650–660, 698, 774, 776,
780, 792, 794, 810, 816, 818, 838, 866, 868, 914, 930, 936

All-together 18 790, 814, 846, 860, 866, 868, 870, 882, 888, 892, 898, 902, 904,
920, 928, 934, 936, 940

The total number of times a wavelength was selected by the total number of methods
simultaneously employed is shown in Figure 5. Although there was a difference in the spectrum of SDI
and DI in the wavelengths of around 600–650 nm (Figure 4), the frequency of selection by the selection
methods employed in this range was low (Figure 5). Of all the methods applied, 18 wavelengths were
selected by almost half the methods (All-together method; Table 4). All within the infrared region
and for a total of nine times, the wavelength 920 nm was selected the most to predict the irrigation
method used in this study. The utility of the All-together method was demonstrated for investigating
agricultural features using hyperspectral imagery.
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Figure 5. Number of times a wavelength has been selected when performing the All-together method.

3.3. Quality and Efficiency of Classification with Each Selection Method

The accuracy and efficiency results of the irrigation technique rating using LDA and KNN methods
and their efficiency are shown in Table 5, while Figure 6 shows their efficiency. In general terms,
LDA classifications showed better overall accuracy than KNN, in both calibration and prediction.
Considering LDA, overall accuracy prediction (OAP) using all wavelengths was equal to 65%. Using
only those selected wavelengths from a selection method, OAP improved, except in LW-PLS, the mean
OPA being equal to 75%. The highest percentage of improvement was offered by GA-PLS, at 20%,
while the lowest was offered by CARS, at 1%. In addition, ten of the methods evaluated improved the
predictive quality of the irrigation technique by more than 10% (RC-PLS, GA-PLS, BVE-PLS, SwPA-PLS,
IPW-PLS, BiPLS, S-PLS, Lasso, Boruta and All-together). On the other hand, the OAP applying KNN
using all wavelengths was equal to 68.1% while just using the wavelengths selected by a PLS method
generally resulted in a slightly lower OAP, with a mean value equal to 66.4%. Boruta was the method
that showed the highest percentage of improvement, with an OAP of 74%. In total, seven of the
methods offered an improvement in irrigation system prediction (GA-PLS, IPW-PLS, BiPLS, S-PLS,
Lasso, Boruta and All-together). In addition, while LDA showed similar accuracy classifying both
irrigation techniques, KNN offered worse results with the SDI technique.

Table 5. Overall accuracy (OA), Accuracy of Sub-Surface drip irrigation (A SDI), Accuracy of Surface
drip irrigation (A DI) and Efficiency (E) results of Linear Discriminant Analysis (LDA) and K-Nearest
Neighbors (KNN) using different selection methods.

LDA KNN

Method OA (%) A SDI (%) A DI (%) E OA (%) A SDI (%) A DI (%) E

All bands 65.0 62.5 68.7 - 68.1 64.6 73.6 -
LW-PLS 62.5 57.5 70.7 −2.9 54.8 51.7 61.1 −13.1
RC-PLS 81.3 80.7 81.1 15.3 68.3 64.4 73.3 0.2
VIP-PLS 72.2 69.5 73.3 6.7 60.6 55.1 71.9 −7.2
GA-PLS 85.2 83.6 87.6 17.7 69.2 65.4 73.0 1.0

UVE-PLS 66.5 61.9 72.8 1.0 63.5 59.9 70.1 −4.4
BVE-PLS 79.0 78.5 79.5 10.5 65.4 61.7 71.1 −2.0

SwPA-PLS 76.3 76.2 76.4 7.9 68.3 66.6 70.0 0.1
IPW-PLS 75.5 71.5 79.5 9.6 71.2 67.4 75.4 3.0
REP-PLS 69.3 67.9 71.3 3.5 59.6 54.5 71.1 −7.5

BiPLS 70.2 68.3 72.1 0.2 69.2 64.2 75.2 0.0
FiPLS 80.1 81.6 79.0 12.0 66.3 63.5 70.1 −1.4
CARS 66.0 60.1 76.1 1.0 63.5 60.1 67.9 −4.6
S-PLS 75.3 75.3 75.3 3.0 69.2 66.2 72.2 0.5
Lasso 84.0 86.4 82.3 17.8 71.2 72.3 72.2 2.9
Boruta 78.0 76.4 80.2 11.6 74.0 73.5 75.6 5.3

All-together 82.5 78.6 85.3 15.9 69.2 65.3 74.9 1.0
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Figure 6. Efficiency of PLS method using (a) Linear Discriminant Analysis and (b) K-Nearest Neighbor.

While LDA offered better results than KNN, all the methods used were highly efficient except
for LW-PLS (Figure 6). GA-PLS and Lasso scored the highest with an efficiency equal to 17.7 and
17.8, respectively (Figure 6a). In contrast, only six of the sixteen methods were highly efficient using
KNN, Boruta being the most efficient with a value equal to 5.3 (Figure 6b). In addition, the irrigation
classification maps of some of the selection methods assessed are shown in Figure 7. From a visual
analysis, no spatial correlation was detected in the errors obtained as well as the presence of a higher
concentration of errors in the perimeter of each type of irrigation.

Although combining bands when using hyperspectral data for olive trees is common [108],
this study shows that the use of individual wavelengths could be an interesting and more accessible
way to manage hyperspectral data. The results obtained from each selection method were different,
showing methods that improved overall accuracy and efficiency in the classification of irrigation
systems and methods that did not. This variation in the results obtained by selection methods were
similar to those obtained by other authors [87]. In this study, according to the LDA and KNN results,
GA-PLS, IPW-PLS, Lasso, Boruta and All-together methods were those which improved OAP while
being highly efficient at the same time. In addition, RC-PLS and FiPLS methods showed a high overall
accuracy using LDA. The GA-PLS method was also one of the most efficient, as seen by Xia et al.
(2017) [87]. These authors found spectral differences between different samples of Ophiopogon japonicus
from differing origins, using, in their case, an imaging spectrograph. In addition, although the Boruta
method has not been widely used for the selection of variables in remote sensing or other disciplines,
results obtained in this study show that it could be considered as a promising method for the selection
of hyperspectral wavelengths. On the other hand, LW-PLS showed low efficiency and lower OAP.
This can be explained because this method greatly reduces wavelengths and therefore eliminated
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useful information as indicated in other works [87]. The efficiency of RC-PLS, VIP-PLS, UVE-PLS,
BVE-PLS, SwPA-PLS, REP-PLS, BiPLS, FiPLS, CARS-PLS and S-PLS varied depending on whether
LDA or KNN was used. In general, LDA showed better classification results than KNN, which can be
explained due to the fact that KNN needs to have large training data in order to achieve acceptable
classification results, as indicated by Starzacher and Rinner (2008) [109].

Figure 7. Classification results per classifier ((I) Linear Discriminant Analysis; and (II) K-Nearest
Neighbors) and PLS method: (a) Lasso; (b) Genetic Algorithm; (c) Loading Weights; and (d) Competitive
Adaptative Reweighted Sampling.

In general, these preliminary results show the need to analyze the relationships between
wavelengths registered by a hyperspectral sensor and the object of study to optimize the number of
wavelengths utilized. As a future line of research, the analysis of which combinations of wavelengths
may be of interest to characterize irrigated areas in more detail is proposed. In addition, other features
such as soil properties or olive cultivars along with other classifiers should be considered for improving
the characterization of irrigation areas.

4. Conclusions

This study explored the use of UAV hyperspectral reflectance measurements of olive trees as a
means for differentiating irrigation systems. Because of the high dimension and multicollinearity of
the data, selection methods were found appropriate due to their capacity to extract useful wavelengths
for analyzing categorial data, even when using individualized wavelengths. The results showed how
the spectral response of olive trees is sensitive to the irrigation technique used, allowing improved
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information for the mapping of irrigated areas. Overall accuracy in the classification of irrigation
systems in olives trees using LDA and KNN ranged from 54.8% and 85.2%. These variations showed
the need to select the appropriate wavelength selection method. In addition, LDA offered more
accurate results than KNN. In our study, GA-PLS, RC-PLS, Lasso, FiPLS, Boruta and All-together
showed an overall accuracy of 75% or higher. They were all highly efficient methods and resulted in
an improved classification.

The study has shown how the use of hyperspectral UAV data allows the irrigated areas of
olive groves to be characterized in greater detail. This will generate information of interest for
decision-making processes in the context of water use policies, enabling better understanding of
irrigated olive groves and improving the management of water resources.
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Abstract: High-throughput phenotyping using high spatial, spectral, and temporal resolution remote
sensing (RS) data has become a critical part of the plant breeding chain focused on reducing the time
and cost of the selection process for the “best” genotypes with respect to the trait(s) of interest. In this
paper, the potential of accurate and reliable sorghum biomass prediction using visible and near infrared
(VNIR) and short-wave infrared (SWIR) hyperspectral data as well as light detection and ranging
(LiDAR) data acquired by sensors mounted on UAV platforms is investigated. Predictive models
are developed using classical regression-based machine learning methods for nine experiments
conducted during the 2017 and 2018 growing seasons at the Agronomy Center for Research and
Education (ACRE) at Purdue University, Indiana, USA. The impact of the regression method, data
source, timing of RS and field-based biomass reference data acquisition, and the number of samples
on the prediction results are investigated. R2 values for end-of-season biomass ranged from 0.64 to
0.89 for different experiments when features from all the data sources were included. Geometry-based
features derived from the LiDAR point cloud to characterize plant structure and chemistry-based
features extracted from hyperspectral data provided the most accurate predictions. Evaluation of the
impact of the time of data acquisition during the growing season on the prediction results indicated
that although the most accurate and reliable predictions of final biomass were achieved using remotely
sensed data from mid-season to end-of-season, predictions in mid-season provided adequate results
to differentiate between promising varieties for selection. The analysis of variance (ANOVA) of the
accuracies of the predictive models showed that both the data source and regression method are
important factors for a reliable prediction; however, the data source was more important with 69%
significance, versus 28% significance for the regression method.

Keywords: high-throughput phenotyping; hyperspectral data; LiDAR; biomass prediction

1. Introduction

Biomass yield is an important trait of biofuel crops such as sorghum, as it is a key factor in
determining the amount of biofuel that can be produced. With recent advances in science and
technology surrounding genotyping, it has become possible to create numerous genotypes of a plant [1]
and then select the genotypes with the maximum biomass production. However, traditional methods
of biomass measurement involving labor-intensive and time-consuming destructive sampling do
not meet the requirements for timely evaluation of the genotypes in large-scale breeding programs.
Recently, remote sensing (RS) data have been explored for estimation of many phenotypic traits,
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including leaf area index (LAI) [2,3], canopy height [4,5], nitrogen content [6], and biomass [7–11],
to replace traditional in-field phenotyping.

Sensors on satellites and manned aircraft can provide data with high spectral resolution, but the
spatial and temporal resolutions are inadequate for agricultural breeding programs that are based on
small plots. Remote sensing via unmanned aerial vehicles (UAV) is currently being investigated as a
means to close the gap because of its capability to acquire the high temporal and spatial resolution
data required for high throughput phenotyping over relatively limited areas. UAVs can collect huge
quantities of data “on demand”, providing opportunities for estimation and prediction of a wide range
of agronomic traits [12–24].

In this study, remotely sensed biomass prediction of varieties of sorghum is investigated using the
data acquired by RGB, hyperspectral and LiDAR sensors mounted on UAV platforms. Sorghum has
attracted attention in recent years, both for its broad-based potential usage and its drought and heat
tolerance. The grain of some varieties is now used for human consumption and animal feed in
developed, as well as developing countries. Recently, some varieties of sorghum have been developed
as an energy crop that can produce reasonable quantities of ethanol [25]. Sorghum has an annual
growth cycle, high calorific value, and low management cost [25], making it an efficient biofuel crop.
Many studies focus on developing enhanced genotypes that can produce more energy-rich plant
material (biomass) [26]. It is important for these breeding studies to predict the end-of-season yield
biomass of the planted varieties as soon as possible in the growing season to screen varieties, and thus
reduce investment of expensive resources in monitoring for the whole season.

Biomass prediction based on data analytics models and RS data is challenging for multiple reasons,
including (1) the complex relationship between biomass and RS data [27], (2) limited number of ground
reference samples for developing and validating models for an experiment [28], and (3) high variability
between the samples in an experiment [29]. Moreover, the relationships between the RS-based features
and traits vary across the growing season [27]. Extraction of robust, explanatory features as predictors
of the trait of interest is critical to development of machine learning models. A small number of
field reference samples relative to the number of features (and thereby potentially the number of
parameters to estimate) is a difficult issue for remote sensing-based phenotyping. Unfortunately,
reference sampling data is time-consuming and expensive to collect in agricultural fields.

In this study, the objective is to develop baseline predictive models for sorghum biomass yield
based on classical machine learning methods using multi-date remote sensing and ground reference
data. The impact of timing of the data acquisition relative to days since sowing and the importance of
the features extracted from the data are also investigated.

The remainder of this paper is organized as follows. Section 2 surveys the literature on the
predictive models based on remote sensing data. In Section 3, the study area, reference data, and
remote sensing data are described. Additionally, the methodologies including feature extraction,
regression models, as well as statistical analysis are explained. Experimental results are presented in
Section 4 and discussed in Section 5, and finally, conclusions are drawn in Section 6.

2. Related Work

Many studies have explored the potential for prediction or estimation of phenotypic traits utilizing
spectral data. Potgieter et al. [2] found that indices obtained from a UAV-based multispectral sensor
over a sorghum field with two different genotypes were correlated with the LAI measured in the field.
Using spectrometer measurements acquired in wheat fields in different locations at multiple times
during three growing seasons, Feng et al. [30] demonstrated that the nitrogen content of the leaves are
highly correlated with the parameters derived from the first derivative of reflectance. The authors
investigated correlation between phenotypic traits and remote sensing-based features. Estimation of
the values of quantitative traits such as biomass at a given date, or prediction at a future date based on
earlier data are more difficult.
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Researchers have developed predictive models based on various remote sensing inputs and
modeling approaches. Foster et al. [31] compared the performance of partial least squares regression
(PLSR) and linear regression models in estimating biomass of a high-biomass sorghum variety.
They concluded that PLSR can provide more accurate predictions using the normalized difference
vegetation index (NDVI) calculated from field spectrometer measurements collected in July (three
months after sowing). Yue et al. [32] also demonstrated that the PLSR provided the best results
among the eight regression techniques investigated for wheat biomass estimation. Fassnacht et al. [33]
investigated the importance of the prediction method, as well as sample size and sensor type for
biomass predictions in forest environments, with the best results being obtained with a random forest
(RF) model. Using airborne LiDAR and spaceborne hyperspectral data, the authors concluded that for
their experiments, the sensor type was the most important factor in the prediction accuracy.

Multiple studies have also investigated biomass prediction using LiDAR data [8,34–43].
Harkel et al. [35] evaluated the accuracy of biomass prediction using LiDAR data for various crops.
In [41], the use of LiDAR combined with spectral vegetation indices (VI) derived from multispectral
data provided more accurate biomass estimates than LiDAR and multispectral data individually.
Luo et al. [42] extracted various features, including variables from discrete-return LiDAR, LiDAR
pseudo-waveform, and VIs from hyperspectral imagery and used them to predict biomass in a
RF model. They showed that the combined data have potential for improving predictions of crop
parameters. Other studies have shown that fusion of airborne-based hyperspectral and LiDAR data
provided better results than those achieved using data from either individual sensor type [44].

Most studies have developed predictive models for a limited number of experiments, each
including only a few genotypes of a crop, although in breeding programs, hundreds or thousands
of genotypes with high variability in biomass, as well as spectral and structural characteristics, are
included in each experiment. One contribution of this study is that extensive data are acquired
consistently over large breeding trials. Predictive models are developed for nine distinct experimental
trials conducted over two years and include thousands of genotypes of sorghum. In this study,
the objective is to provide a robust framework for predicting sorghum biomass which is suitable
for plant breeding research and industrial applications. To accomplish this, we: (1) evaluate the
importance of the features extracted from multiple data sources; (2) evaluate multiple prediction
models; (3) investigate the impact of various sorghum genotypes on prediction accuracy; (4) investigate
the model performance for early, mid, and late season biomass prediction; (5) investigate the impact of
the timing of the RS data acquisition on prediction relative to days since sowing; and (6) evaluate the
impact of the number of training samples on the prediction accuracy.

3. Materials and Methods

3.1. Experimental Site

The field experiments were conducted over two years in approximately 2.8 ha sorghum breeding
trials in different fields at the Purdue University Agronomy Center for Research and Education (ACRE)
farm (see Figure 1). There were four distinct trials in 2017: the hybrid calibration (HyCal-17), the inbred
calibration (InCal-17), the sorghum biodiversity (SbDiv-17), and the sorghum bioenergy (SbBAP-17)
panels. In 2018, the field experiments consisted of five distinct trials: the hybrid calibration (HyCal-18),
the inbred calibration (InCal-18), the inbred calibration test cross (InCalTc-18), the sorghum biodiversity
test cross (SbDivTc-18), and the sorghum nitrogen test (SNitTs-18). The experiments were conducted
using randomized complete block designs and planted at 220,000 plants per ha. The commercial hybrid
varieties planted in the HyCal-17 and HyCal-18 experiments are listed in Table A1 in Appendix A.
The RGB images of the field trials are shown in Figures A1 and A2 in Appendix B.
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Figure 1. Experimental site: the field trials at Agronomy Center for Research and Education (ACRE)
are highlighted by blue (the 2017 fields) and yellow (the 2018 fields).

3.2. Ground Reference Data

Details of the experiment trials including sowing date, which differed by approximately one
week, and harvest dates are provided in Table 1. For the HyCal-17 and HyCal-18 panels, biomass data
were destructively collected multiple times during each growing season. For all other experiments,
the biomass data were collected only once at the end of each growing season using a two-row combine
harvester. The weight of the shredded plant material of each plot was considered as the fresh biomass
value for that plot. After harvesting, around 500 g of the shredded plant material was used to determine
the moisture content of each plot by measuring the fresh weight and dry weight (after drying the plant
materials).

Table 1. Experiment designs for the 2017 and 2018 growing seasons.

Trial Year Genotype
# of

Plots
# of

Genotypes
Sowing

Date
Harvest

Date
Available Biomass

Data

HyCal-17 2017 Hybrid 72 18 16/05 27/09 27/06, 17/07, 31/07,
08/08, 27/09

InCal-17 2017 Inbred 120 60 16/05 27/09 27/09
SbBAP-17 2017 Inbred 760 350 16/05 28/09 28/09
SbDiv-17 2017 Inbred 1800 840 17/05 09/11 09/11

HyCal-18 2018 Hybrid 72 18 08/05 09/08 27/06, 12/07, 09/08
InCal-18 2018 Inbred 108 54 08/05 09/08 09/08

InCalTc-18 2018 Hybrid 108 54 08/05 06/08 06/08
SbDivTc-18 2018 Hybrid 1260 630 08/05 02/08 02/08 and 14/08
SNitTs-18 2018 Inbred 112 4 04/06 02/10 02/10

Figure 2 shows the distribution of the fresh biomass values for the experimental trials in the 2017
and 2018 growing seasons. Figure 2a,b shows the fresh biomass distribution of the HyCal-17 and
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HyCal-18 panels, respectively, during the growing seasons. In 2017, the biomass data on 27 June,
17 July, and 7 August were collected by hand harvesting one meter sections of three rows from each
plot. Harvesting for all other dates was performed with a two-row combine harvester. These figures
indicate that the genotypes have similar biomass early in the season but differ at the end of the season.
Figure 2c shows the distribution of the end of the season biomass of the nine trials over both years:
(1) the InCal-17 and SbDiv-17 are similar, (2) the HyCal-17 and HyCal-18 have similar shapes but
different ranges of values, and (3) SbDivTc-18 and HyCal-17 are similar in both shape and range
of values.

 
(a) HyCal panel in 2017 

 
(b) HyCal panel in 2018 

 

 
(c) The nine trials in 2017 and 2018 

Figure 2. Distribution of the fresh biomass data in the nine trials in the 2017 and 2018 growing seasons.

3.3. Remote Sensing Data

This study includes RGB, hyperspectral, and LiDAR remote sensing data collected by custom
designed UAV platforms. All remote sensing data acquisition platforms were flown with global
navigation satellite system/inertial navigation system (GNSS/INS) units for direct georeferencing.
The description of the sensors used in this study is provided in Table 2. RGB data for this study
were collected using a Sony Alpha ILCE-7R RGB camera delivering high-resolution UAV-based aerial
imagery. LiDAR data were collected with a Velodyne VLP-16 3D LiDAR sensor operating in the
strongest return mode providing an average point cloud density of 750 points per m2. Both the RGB
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camera and the VLP-16 sensor are mounted on a DJI Matrice 600 Pro (M600P) platform. Spatial and
temporal system calibration for the datasets used in this study were conducted using the approaches
described in [45] and [46], respectively. Additionally, the georeferenced orthomosaics were generated
using the structure from motion strategies introduced in [47,48].

Table 2. Sensor Descriptions.

Sensor Description

RGB
Sony Alpha ILCE-7R

Sony 35mm Lens
Full-frame 36.4MP

LiDAR
Velodyne VLP-16

600 rotations per minute (RPM), 360-degree horizontal FOV
Maximum range of 100 m

VNIR
Headwall Photonics Nano-Hyperspec imaging sensor

272 spectral bands at 2.2 nm/band from 400 nm to 1000 nm
640 spatial channels at 7.4 μm/pixel, 12 mm lens (in 2017) and 8 mm lens (in 2018)

SWIR
Headwall Photonics Micro-Hyperspec pushbroom

166 spectral bands at 10 nm/band from 900 nm to 2500 nm
384 spatial channels at 24 μm/pixel, 25 mm lens

Visible near infrared (VNIR) and short wave infrared (SWIR) hyperspectral data were collected
with two Headwall Photonics push-broom scanners. In 2017, the VNIR sensor was flown at an altitude
of 60 m with a 12 mm Schneider lens, resulting in a ground sampling distance (GSD) of ~4 cm. An 8 mm
lens was used in 2018, and the flying height was 40 m to maintain the GSD at ~4 cm and accommodate
the field of view of other sensors on the platform. In both years, the SWIR sensor was flown with a
25 mm lens at 40 m, resulting in approximately a 4 cm GSD. In 2018, the VNIR and SWIR sensors were
integrated and flown together on a single UAV platform. A rigorous boresight calibration process
described by Habib et al. [49] was applied, yielding simultaneously collected co-aligned VNIR and
SWIR data. Similar to [50], all the hyperspectral data were converted to reflectance using the empirical
line method to relate the spectra collected from the UAV to data acquired by an SVC 1024i field
spectrometer over the calibration targets placed in the field for each acquisition. The data acquired by
the sensors in both 2017 and 2018 are listed in Table A2 in Appendix A.

3.4. Feature Extraction

As discussed earlier, it is important to extract features that are related to the specific trait of interest
and are preferably not redundant. In this study, both traditional and new candidate features focused
on the relevance to biomass prediction were extracted from rows 2 and 3 of the 4- or 12-row plots to
minimize the border effect. For each acquired data set (listed in Table A2 in Appendix A), we extracted
the features described in the following sections.

3.4.1. Hyperspectral-Based Features

• Spectral Reflectance

From the Hyperspectral Imaging (HSI) data, the average reflectance values of the plots were
calculated from rows 2 and 3 of each plot after masking the shadow and soil pixels.

• Vegetation Indices

Vegetation Indices (VIs) obtained from HSI data have been widely used in different applications, as
they are computationally simple and representative of the relevant chemically interpretable absorption
and reflectance features in the spectrum. In this study, 13 vegetation indices, listed in Table A3 in
Appendix A were extracted and used in the predictive models.
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• Integration Features

NIR bands are particularly important for representing plant physiology but are subject to the time
during the growing season and environmental conditions. The area under the spectral curve for a

given range from λa to λb is defined as Intg(λa,λb) =
∫ λb
λa

S(λ)dλ, where S(λ) is the reflectance at λ
nm. Using different ranges of spectral values, six features were extracted from each HSI spectrum as
listed in Table A4 in Appendix A.

• Derivative Features

The spectral derivatives, which quantify slope, curvature, and higher-order aspects of reflectance
spectra, can be useful by revealing spectral features that may not be apparent in reflectance data
alone [51]. For example, the “red-edge” position (between 680 nm and 750 nm) in crop reflectance
data can be easily identified in the derivative spectra, and has been related to crop biomass [52].
Feng et al. analyzed 20 spectral derivative features near the red edge area to estimate wheat leaf
nitrogen concentration [53]. In this study, the polished spectra were calculated using a Savitzky–Golay
filter [54], then the first derivative (FDR) and second derivative (SDR) of the spectra were extracted.
From FDR and SDR, 11 features were extracted and used in the additional analysis as described in
Table A5 in Appendix A. These features were selected at wavelengths where spectra of the varieties
differed and were also uncorrelated.

3.4.2. LiDAR-Based Features

The 3D structural characteristics of the plants in a plot can be described using various features
extracted from LiDAR data. The digital terrain model (DTM) was derived from LiDAR data acquired
before the emergence of the plants in each field by interpolating the LiDAR point cloud into a regular
grid (8 × 8 cm in this study) using the nearest neighbour interpolation method. The DTM represents
the bare earth height information and is assumed to be constant throughout the growing season.
For each point cloud data acquired throughout the season, the height of points in the was estimated
by subtracting the DTM from the “z” coordinate of each point. Then, the following features were
extracted from the point cloud of each plot:

• Height Percentile

To capture the vertical distribution of the LiDAR points in each plot, the 30th, 50th, 75th, 90th,
and 95th percentile height values from the point cloud of each plot were calculated.

• Canopy Volume

To estimate volume related characteristics of the canopy in each plot, a grid with cells of size
8 × 8 cm was assigned to each plot, and then the associated height was calculated from the points
located in each cell, multiplied by the size of the cell to estimate the volume of the canopy within each
cell. The aggregate “volume” in each plot is referred to as the volume of the vegetation within a plot.
The height of each cell in this study was calculated as the average of the height of the lowest point and
the height of the highest point in each cell.

• Canopy Cover

Canopy cover can be estimated from LiDAR data as the ratio of above-ground points (or, canopy
points) to the total number of LiDAR points in a given area. The following approach was used in
this study for canopy cover estimation for each plot. First, the field is divided into grid cells of a
user-defined dimensions (8 × 8 cm in this study, consistent with the canopy volume calculation).
Then, for each grid cell, the LiDAR points are split into two groups, canopy points and bare earth
based on their height using a user-defined threshold. The points above the threshold are considered as
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canopy points. The canopy cover is estimated as the ratio of the number of canopy points to the total
number of LiDAR points in each cell. The average of the canopy cover estimated for the cells located
in each plot is assigned as the canopy cover for that plot. In this study, candidate threshold values
were 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75 multiplied by the 95th percentile height of each plot, resulting in six
height-dependent canopy cover related features.

• Height Statistics

The spatial distribution of the height of the LiDAR points in each plot can also be represented
using statistical moments of the distribution. These statistics can also be included as candidate input
features for predictive models.

3.5. Regression-Based Modeling Approaches

Common regression-based approaches such as partial least squares regression (PLSR), support
vector regression (SVR), and random forests (RF) are widely utilized to build predictive models with
remote sensing based inputs. PLSR reduces a potentially large number of measured collinear input
variables to a few uncorrelated latent variables while seeking to explain the maximum multi-dimensional
variance of the dependent variable via a linear model. PLSR has been investigated for developing
predictive models to estimate leaf biochemical and biophysical properties [55], chlorophyll content [56],
carotenoid content [57], relative water content [58], protein, lignin, and cellulose [59], leaf nitrogen
content [60], LAI [61], and biomass [34].

SVR is a supervised non-parametric regression technique, and therefore, no assumptions regarding
the underlying data model are required. The original feature space is transformed into a higher
dimensional space [62], with the goal of finding a hyperplane to predict the training data set. The optimal
values of the kernel function parameters were obtained in this study by a general k-fold cross-validation
in a grid search.

Random Forest (RF) modeling is an ensemble learning technique which uses a large set of
classification and regression trees (CART) to predict the variable of interest [63]. In random forest
regression, each tree is built by randomly choosing a set of variables and a subset of training samples
with replacement. The selected samples are used for training, and the remaining observations are used
in an internal cross-validation process to determine the performance of the RF model. The outputs
of all trees are aggregated to produce a final prediction. A review of RF modeling in remote sensing
applications is available in [64]. Similar to SVR, the parameter optimization was accomplished by a
general k-fold cross-validation in a grid search method. A grid search method was used to select the
best hyperparameters for each model. Table A6 lists the candidate parameters that were tested for
each method in the grid search process. The Anaconda Distribution of Python version 3.7 with the
Scikit-learn library [65] was used for conducting grid search and developing regression models.

3.6. Statistical Analysis

The one-way analysis of variance (ANOVA) is used to determine whether there is a significant
difference among the groups of data. If there is a significant difference, then an honest significant
difference (HSD) Tukey test (with α = 0.05) can be conducted to determine which groups are
significantly different from each other. We also use two-way ANOVA, to evaluate combinations of
several variables or factors to identify those that have a significant effect on the estimates [66]. Prior to
these statistical tests, the normality and homoscedasticity were confirmed by visually inspecting the
variables. The statsmodels library [67] was used for data preparation and statistical analysis.
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4. Results

4.1. Data Screening

4.1.1. Time Series of Biomass Data

In the 2017 and 2018 growing seasons, the destructive biomass data were collected multiple times
(approximately every month) from the hybrid calibration panels. Figure 3 shows the fresh weight
and moisture content of the 18 sorghum varieties planted in the HyCal-17 and HyCal-18 experiments.
The moisture content increases at the beginning of the season until it reaches its maximum at 50 to
60 days after sowing. The fresh weight of the plants also increases rapidly at the beginning of the
season, while at the end of the season, it decreases as the plants senesce. Among the varieties shown in
Figure 3, those that are photoperiod sensitive (“Sordan Headless” and “Trudan Headless”) did not
flower in the environment in which these experiments were conducted, and continued to add plant
material until the end of the season.

 

 

Figure 3. Ground reference data collected during the 2017 and 2018 growing seasons in the HyCal
panels. For each variety, the data samples are sorted based on the day after sowing (DAS).

Each variety has four replicates in the hybrid Calibration panels, providing adequate sample data
to compare the relationship across the varieties and associated changes during the growing season.
For each date that the biomass data were collected, an ANOVA test was conducted on the fresh biomass,
and if it indicated variability among the varieties was highly significant, a Tukey’s multi-comparison
test was performed. Figure 4 shows the results of Tukey’s pairwise multi-comparison test (α = 0.05) for
the fresh biomass data collected in the 2017 and 2018 growing seasons. In general, at the beginning of
each season, only a few varieties were significantly different, while the variability among the varieties
at the end of each growing season was greater. From Figure 4 it is also clear that the two photoperiod
sensitive varieties (varieties 16 and 18) were significantly different from the other varieties at the end of
both 2017 and 2018 growing seasons.
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2017/06/27 
(DAS: 42) 

2017/07/17 
(DAS: 62) 

2017/07/31 
(DAS: 76) 

2017/09/27 
(DAS: 134) 

 

 

2018/06/07 
(DAS: 30) 

2018/06/27 
(DAS: 50) 

2018/07/12 
(DAS: 65) 

2018/08/09 
(DAS: 93) 

 

Figure 4. Tukey’s pairwise multi-comparison test for the fresh biomass data collected in the 2017 and
2018 growing seasons for the 18 genotypes planted in HyCal-17 and HyCal-18 experiments. Blue
indicates that the two varieties are significantly different (α = 0.05).

4.1.2. Time Series of Remote Sensing Data

RS spectral signatures varied both across phenotypes and during the growing season. Figure 5
shows the average spectra of the 18 varieties of sorghum in the HyCal-18 panel on 18 July 2018 (day after
sowing (DAS) = 71) (see Figure A4 in Appendix B for the variance plot). On that day, the signatures of
the 18 varieties were very similar in the visible range of the spectrum, but there was more variability
in the NIR portion of spectrum that may reflect variation in biochemical features, including lignin
type and composition associated with the brown-midrib (bmr) traits. Figure 6 shows the reflectance
of one of the varieties from June to September which shows there is very little change in the visible
range of the spectrum, and especially in the blue and green bands, while the reflectance in NIR bands
changes from about 35% to 60% on average (see Figure A5 in Appendix B for the variance plot). The
maximum reflectance values were observed in the range of 750–850 nm on 3 July (DAS = 56). One of
the reasons for changes in the reflectance for sorghum is the appearance of the panicles, which emerge
a few days before the flowering date (the date on which 50% of panicles in a plot are flowered). Field
notes indicate that the flowering date for “Trudan 8” was 10 July 2018.

Figure 7 shows the Digital Surface Model (DSM) generated from the LiDAR point cloud for the
SbDivTc-18 panel from multiple dates in the 2018 growing season. From Figure 7, the plots are more
similar at the beginning of the season, with greater differences later in the season. Figure 8 shows the
point cloud data for two plots (rows 2 and 3) of the HyCal-18 experiment for multiple dates in the 2018
growing season. “341 × 10” is a dwarf grain sorghum variety (Figure 3), while “Trudan Headless” is a
photoperiod sensitive forage sorghum with high biomass accumulation.
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Figure 5. Spectra of the 18 Sorghum Varieties in HyCal-18 panel on 18 July 2018. The varieties are very
similar in the visible range of the spectrum, but substantial variability is observed in the near infrared
(NIR) portion of spectrum.

 

Figure 6. Example of reflectance of one of the varieties in HyCal-18 experiment (“Trudan 8”) during
the 2018 growing season.

    
2018/06/11 
(DAS: 34) 

2018/06/20 
(DAS: 43) 

2018/07/02 
(DAS: 55) 

2018/08/01 
(DAS: 85) 

Figure 7. The 8 cm resolution DSM for multiple dates in the 2018 growing season for the
SbDivTc experiment.
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“341 × 10” “Trudan Headless” 

Figure 8. Point cloud data for rows two and three of two plots of the HyCal-18 experiment for multiple
dates in the 2018 growing season. “341 × 10” and “Trudan Headless” achieve maximum height of 1.4
m and 3.2 m, respectively.

Figure 9 shows the mean and standard deviation of the height of all the plots for all the experiments
in the 2017 and 2018 growing seasons extracted from the LiDAR point clouds, providing structural
characteristics of the varieties planted in each experiment. For both HyCal-17 and HyCal-18, the
height increases as the headless varieties continue to grow until the end of the season. The SbBAP-17
experiment also has the maximum average height at the end of the season, as it includes many plots of
photoperiod sensitive genotypes that do not flower. The InCal-17, InCal-18, and SbDiv-17 include
similar inbred varieties; thus, they have a very similar average height (also the lowest height values
among the experiments). As was noted earlier, a histogram of the height of the points from the
LiDAR point cloud provides information about the distribution of different height values in a plot.
This genotype dependent information may be discriminating in predictive models. Figure A3 in
Appendix B shows the histograms for the dwarf grain sorghum 341 × 10 and the photoperiod sensitive
Trudan Headless varieties in the HyCal-17 experiment.

 

  
Average height Standard deviation of height 

Figure 9. Average and standard deviation of the height of all the plots in each experimental trial in the
2017 and 2018 growing seasons.

The multi-temporal and cross-correlations during the growing season can be useful for screening
for redundant features. Figure 10 shows the correlation matrices for the OSAVI and LiDAR-based
canopy cover calculated using the combined data acquired over the HyCal-17 experiment in the 2017
growing season. It illustrates the rapid changes at the beginning of the season, especially prior to the
flowering time (second week of July for this experiment) which is associated with the rapid growth
of the plants. From Figure 10, OSAVI changed more than the canopy cover during the early season,
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and end of season OSAVI values have lower inter-temporal correlation compared to the correlation
between the canopy cover values on corresponding dates.

  
OSAVI Canopy Cover 

Figure 10. Correlation matrix calculated using all the remotely sensed hyperspectral data over the
HyCal-17 experiment on different dates in the 2017 growing season. Note that as the light detection and
ranging (LiDAR) and hyperspectral sensors were flown on separate platforms, the number of available
data sets differs, and the data were not always collected on the same day.

Similar to the last section, Figures 11 and 12 show the results of the multiple-comparison Tukey’s
test for the OSAVI and volume features for the HyCal-17 and HyCal-18 experiments on multiple dates
during the 2017 and 2018 growing seasons. These results are consistent with the results of Tukey’s test
conducted on biomass data in the previous section, which greater variability among the varieties at the
end of each growing season.

DAS: 49 DAS: 63 DAS: 84 DAS: 122 

Figure 11. Multiple-comparison Tukey’s test for the OSAVI index for the 18 genotypes planted in
HyCal-17 experiment collected throughout the 2017 growing season. Green shows the two varieties are
significantly different from each other (α = 0.05).

. 

DAS: 34 DAS: 50 DAS: 71 DAS: 90 

Figure 12. Multiple-comparison Tukey’s test for the LiDAR-based volume for the 18 genotypes planted
in HyCal-18 experiment collected throughout the 2018 growing season. Green shows the two varieties
are significantly different from each other (α = 0.05).
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4.1.3. Relationship between Features and Biomass

In this section, the relationship between the biomass data and RS features, as well as the change in
their relationship during the growing season, is discussed. Figure 13 shows one feature from LiDAR
(90th percentile height of the plants), one feature from hyperspectral data (Intg_NIR1), and the biomass
data for the dwarf grain sorghum 341 × 10 and the photoperiod sensitive Trudan Headless varieties,
both from the HyCal-17 and HyCal-18 experiments (one with low and one with high biomass values).
To compare the data from the two years at the same stage of growth, the data are plotted versus
growing degree day (GDD), a heat index calculated from temperature data for each day [68]. At GDD
of 2100, the biomass in 2018 for both varieties was slightly higher than in 2017 (as noted in Table 1,
the HyCal-18 was planted two weeks earlier than HyCal-17). The height data, Intg_NIR1, and biomass
data follow the same pattern of change over time for each variety in both growing seasons. The height
for the photoperiod sensitive variety (“Sordan Headless”) always increases, while other varieties stop
growing around flowering time (GDD of 1500); the Intg_NIR1 increases rapidly earlier in the season,
and then gradually decreases at around GDD of 1500 until the end of the season; the biomass continues
to increase, and especially for the photoperiod sensitive variety. Inter-annual differences also inherently
include the impact of the timing and quantity of rainfall.

   

(a) Height (b) Intg_NIR1 (c) Biomass 

Figure 13. Comparison of the 90th percentile height (a), Intg_NIR1 (b), and the biomass data (c) for the
dwarf grain sorghum 341 × 10 and the photoperiod sensitive Trudan Headless varieties in the 2017 and
2018 growing seasons.

For each feature extracted from the RS data, the simple prediction potential (R2) and associated
changes during a season were investigated using linear regression-based models for the end of season
biomass prediction. Robust features should be applicable across the varieties, at least for common
experiments. Figures 14 and 15 show the R2 values of the models for each feature extracted from
LiDAR and hyperspectral VNIR data, at four stages of growth and for all nine experiments conducted
in the 2017 and 2018 growing seasons. From Figure 14, the 30th percentile height and volume features
provided the highest R2 values for predicting the end of season biomass among the LiDAR-based
features for both HyCal-17 and HyCal-18 experiments, as the varieties in those experiments were
more diverse in their structural characteristics, providing strong potential for biomass prediction using
geometric-related features. The R2 values for different LiDAR-based features in the InCal-17, InCal-18,
and SbDiv-17 experiments are very similar, which is consistent with Figure 9; they all have the lowest
average height and lowest variability in height compared to the other experiments, resulting in lower
R2 values for these experiments compared to the experiments with hybrid cultivars. For both InCal-17
and InCal-18 experiments, the highest R2 values were obtained from feature #5 (coefficient of variation
of height), which is representative of the distribution of the points in the canopy point cloud. The R2

values of the models developed for the SbDivTc-18 and InCalTc-18 are lower than the HyCal-17 and
HyCal-18 experiments, but the same features (features #1, #2, and #5) provided the maximum R2 for all

142



Remote Sens. 2020, 12, 3587

of these experiments, which include hybrid cultivars. The SbBAP-17 also includes hybrid cultivars;
however, the R2 values for all the features are lower compared to all other experiments, mainly because
the last LiDAR data were collected on August 30th, and included many photoperiod sensitive cultivars
which grew until the final biomass data were collected at the harvest (28 September). Other varieties
did not grow during this time, which impacted the biomass–height relationships. Generally, for the
experiments with the hybrid cultivars (refer to Table 1), the late season data sets provided the highest
R2, while for the experiments that included inbred cultivars, the data sets of GDDs yielded the lowest
R2 values.

 

   

(a) HyCal-17 (b) InCal-17 (c) SbDiv-17 

   

(d) SbBAP-17 (e) HyCal-18 (f) InCal-18 

   

(g) InCalTc-18 (h) SbDivTc-18 (i) SNitTs-18 

Figure 14. R2 values of the linear regression-based models developed for the end of season fresh
biomass using LiDAR-based features at four stages of growth. Features 1 to 8 represent: #1: 30th
percentile height, #2: 50th percentile height, #3: 95th percentile height, #4: coefficient of variation of
height, #5: volume, #6: canopy cover (threshold = 0.1), #7: canopy cover (threshold = 0.3), #8: canopy
cover (threshold = 0.5).

For the hyperspectral features shown in Figure 15, the highest R2 values are associated with
InCal-17 and InCal-18, collected on ~80 DAS, while for other experiments, the dataset of ~95 DAS
yielded the highest R2 values. Moreover, the same pattern for R2 values for the features of the InCal-17,
InCal-18, and SbDiv-17 was observed. For these panels, the R2 is generally higher than the panels that
include hybrid cultivars.

Given similar trends of the regression models shown in Figures 14 and 15, the models were
developed across all the experiments for each of the features, and all the available dates to investigate
the potential for using a common set of features for all experiments and times for the multiple input
predictive models. The average R2 for each feature, from all the dates and all the experiments is provided
in Figure 16, which shows volume, 30th percentile height, OSAVI, FDR-min, and NDWI features had
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the highest average R2 from LiDAR, VNIR, and SWIR data sets, respectively. Linear regression models
were also developed for the individual band values from both hyperspectral VNIR and SWIR data.
The average and maximum R2 for each band from all the dates and all the experiments are shown in
Figure 17, which shows that the area of spectrum between 750 and 1100 nm provided the highest R2 for
the linear regression models. While the R2 values for some experiments and some dates for the bands
in 2000–2300 nm are relatively high (30–60%), the average R2 values are much lower in comparison to
the 750–1100 nm range.

 

   

(a) HyCal-17 (b) InCal-17 (c) SbDiv-17 

   

(d) SbBAP-17 (e) HyCal-18 (f) InCal-18 

   

(g) InCalTc-18 (h) SbDivTc-18 (i) SNitTs-18 

Figure 15. R2 values of the linear regression-based models developed for the end of season fresh
biomass using visible and near infrared (VNIR) features at four stages of growth. Feature 1 to 8
represent: #1: FDR_min, #2: Intg_NIR1, #3: SDR_slope, #4: Intg_NIR1, #5: NDVI, #6: SR800,680, #7:
OSAVI, and #8: MCARI.

Figure 16. The average R2 values of the linear models developed for all the dates and all the experiments
for each feature type from hyperspectral and LiDAR data.
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Figure 17. Average and maximum R2 values of the linear models developed for all the dates and all
the experiments for each band from hyperspectral VNIR and short-wave infrared (SWIR) data.

4.2. Biomass Predictive Models

In this section, the results related to the impact of different regression methods, the time of biomass
sampling and remote sensing data acquisition, and the number of samples on the prediction results
are provided.

4.2.1. Impact of the Data Source and Regression Method on the Prediction Results

To evaluate the performance of different regression-based modeling approaches, PLSR, SVR, and
RF were implemented for end of season biomass prediction using the LiDAR and hyperspectral data
collected in each growing season. Figure 18 shows the R2 values of the predictions relative to the
reference data for all the experiments, using six data sources (LiDAR, VNIR, SWIR, and combinations),
and the three methods. For each prediction with a data source, all available data sets over the whole
season were used for training and validation of the models, where two thirds of the sample data (or a
maximum of 200 samples) were randomly selected 100 times for the training of the algorithm, and the
remaining samples were used for cross validation via the hold-out method. For all the experiments
except the SNitTs-18, all the replicates of a variety were assigned to either the training or test sets
to avoid any impact from the number of replicates on the prediction results. SNitTs-18, however,
included only four varieties, and a different number of replicates for each variety; thus, the training
and test sets were assigned randomly from the plots regardless of their varieties for this experiment.
Potential reasons for differences in predictions include:

(i) Diversity in the samples: the regression models are better able to learn the pattern in the data
when the samples are more diverse.

(ii) Number of data samples: the larger the number of data points in an experiment, the higher
accuracies are typically achieved for the prediction.

(iii) Similarity between the training and test data sets; if the training and test data sets are very
different, then overfitting can occur for the training data set, resulting in decreased accuracy of
the predictions. Note that this can happen when the number of data samples is limited, which
causes unlike training and test sets, even when the samples are selected randomly. Additionally,
if there is a significant range of biomass values in one experiment, there is more chance to have
dissimilar training and test sets.
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(a) HyCal-17 (b) InCal-17 (c) SbDiv-17 

(d) SbBAP-17 (e) HyCal-18 (f) InCal-18 

(g) InCalTc-18 (h) SbDivTc-18 (i) SNitTs-18 

Figure 18. R2 values of the end of season fresh biomass predictions, using six data sources, and the
three partial least squares regression (PLSR), support vector regression (SVR), and Random Forest (RF)
methods for all the experiments conducted in the 2017 and 2018 growing seasons.

Figure 18 shows that the highest accuracy of end of season biomass prediction using all
combinations of data sources was achieved for the SNitTs-18 experiment. There were two nitrogen
treatments in this experiment; half of the plots in this experiment were fertilized with 250 kg/ha
nitrogen while the other half were not fertilized, causing high and low biomass values for the plots,
high diversity in the reflectance data from the hyperspectral images, as well as high diversity in
geometric-based features extracted from LiDAR point cloud (reason i). As was noted, samples were
assigned to the training and test sets for this experiment differently from the other experiments, causing
multiple samples of each variety to be assigned to both the training and test sets, resulting in increased
similarity in the two sets (reason iii).

The highest accuracy of prediction using LiDAR features as the sole input was obtained for the
HyCal-17 and HyCal-18 experiments, which include hybrid cultivars that are more diverse in structural
characteristics compared to the inbred cultivars; thus, the regression model can distinguish and relate
the LiDAR-based features to the biomass data (reason i), which is consistent with the results in Figure 14.
In general, the predictions are more accurate for the experiments that include hybrid cultivars. As was
shown in Figure 9, the InCal-17, InCal-18, and SbDiv-17 have the smallest standard deviation in the
LiDAR-based height, indicating that the associated varieties have similar structural characteristics.
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The predictions for the SbDiv-17 are more accurate than the predictions for the InCal-17 as more
samples were available for the training set, 200 for SbDiv-17, and 80 for InCal-17 (reason ii). For the
SbBAP-17, the prediction accuracies are lower than most of the other experiments. This experiment
included varieties that were highly diverse in terms of structural characteristics (Figure 9), also had
a much larger range compared to the other experiments. This resulted in dissimilar samples in the
training and test sets (reason iii). Figure 19 shows a box plot for the fresh biomass data for all the
experiments, and the SbBAP-17 experiment had the greatest range of biomass values among the
experiments, the lowest accuracies for the predictions, while SNitTs-18 experiment has the smallest
range and the highest R2 values for the predictions.

 

Figure 19. The box plot for the fresh biomass data for all the experiments conducted in the 2017 and
2018 growing seasons.

For HyCal-17 and HyCal-18 experiments, PLSR, SVR, and RF models were developed using all
three data sources and leave-one-out cross validation strategy, where in each fold, one variety was
assigned as test and the other 17 varieties were included in the training set. The results are shown in
Figure 20. For both experiments, the SVR method provided the highest R2 values for the predictions.
For HyCal-17, all three regression methods underestimated the value of the biomass for one of the
photoperiod varieties (which also had the maximum biomass, as noted previously); however, the RF
model had the lowest accuracy. RF for both years resulted the lowest R2 as a result of overfitting as was
discussed earlier. All three methods resulted in predictions with lower accuracies for the experiment
in 2018 compared to 2017, which could be because the end of season biomass data were measured at
an earlier date in 2018, when all the plants had not reached full maturity.

 

   
(a) HyCal-17 (PLSR) (b) HyCal-17 (SVR) (c) HyCal-17 (RF) 

Figure 20. Cont.

147



Remote Sens. 2020, 12, 3587

   

(d) HyCal-18 (PLSR) (e) HyCal-18 (SVR) (f) HyCal-18 (RF) 

Figure 20. Prediction results of PLSR, SVR, and RF models developed for the HyCal-17 and HyCal-18
experiments, using all the data sources and leaving-one-out cross validation strategy.

4.2.2. Predictions in Time

To evaluate the capability of remotely sensed data for predicting biomass through the growing
season, SVR models were developed for six dates in the 2017 and 2018 growing season for the HyCal-17
and HyCal-18 experiments. The R2 values of the predictions relative to the reference data are shown in
Figure 21. For each prediction, all the VNIR hyperspectral and LiDAR data collected prior to the date of
biomass measurement were used in the SVR models. The R2 values of the predictions at the beginning
of the season were lower compared to the end of the season, especially when using only VNIR features.
Early season growth is focused on the production of biomass from stalks and leaves, while mid-season
development is related to flowering and early development of panicles. Plant structural characteristics
do not change significantly after flowering in the mid-season, while spectral characteristics change
significantly especially during flowering with the emergence of the panicles.

Figure 21. The R2 of predicted biomass during the 2017 and 2018 growing seasons using the SVR
models developed based on VNIR hyperspectral and LiDAR data for the hybrid calibration panels.

4.2.3. Multi-Temporal Predictions of End-of-Season Biomass

It is highly desirable to predict the end-of-season biomass as early as possible during the
growing season to avoid unnecessary investment of phenotyping resources in non-productive varieties.
The SbBAP-17, SbDiv-17, and SbDiv-18 were chosen to conduct the evaluations in this section as they
had an adequate number of samples as well as RS data points and included both hybrid and inbred
cultivars. Figure 22 shows the accuracy of end-of-season biomass predictions for these experiments
using hyperspectral VNIR, SWIR, and LiDAR data from each date individually, and in combination
with the earlier dates. For both SbBAP-17 and SbDiv-17 experiments, the earliest data set yielded
very low prediction accuracies. For SbBAP-17, the best results when using features from individual
sensors for VNIR and SWIR data sets were achieved from 10 September with R2 = 0.60 and R2 = 0.54,
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respectively. Based on LiDAR data, 23 August resulted in the highest values, with R2 = 0.46. For the
SbDiv-17 experiment, the combined VNIR and LiDAR data sets of 25 July and 2 August provided the
highest accuracy of using individual data sets. For SbDivTc-18, the data inputs from 11 July resulted
an R2 of 0.75, which indicates the July data sets have good potential for biomass predictions. For all
three experiments, the best results were obtained when features from all the hyperspectral and LiDAR
data sets from the whole season were used, resulting in R2 of 0.63, 0.75, and 0.78 for the SbBAP-17,
SbDiv-17, and SbDiv-18 experiments, respectively. Although the best results were obtained using the
whole season RS data, the models developed using middle season data (DAS of ~60 to 80) were also
able to provide comparable accuracies.

 

 

(a) SbDiv-17 

 

(b) SbBAP-17 

 

(c) SbDivTc-18 

Figure 22. R2 for end of season predictions using hyperspectral and LiDAR data collected on different
dates for the SbBAP-17, SbDiv-17, and SbDivTc-18 experiment.
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4.2.4. Impact of the Number of Features and Samples on Biomass Prediction

As noted earlier, measuring biomass in the field is time-consuming and expensive; however,
it is still required for training the regression models. Generally, the greater the number of samples
for training, the more accurate the predictions. To evaluate the impact of the number of samples in
training set, the SVR and PLSR models are developed for end-of-season biomass prediction using all
the data sources and various numbers of samples in the training set. Each model was trained with a
specific number of samples, and the process was repeated 100 times, each time with a different, but
same sized set of randomly selected samples. The rest of the available samples were assigned to the
testing set. Figure 23 shows the median and standard deviation of the R2 values of developed models
for some of the experimental trials. The R2 of predictions for both SVR and PLSR models increase
as the number of training samples increases. However, the accuracy of PLSR models is higher than
SVR models when a smaller number of training samples is used. The rate of increase of R2 with the
respective increases in the number of training samples is higher for SVR compared to PLSR; thus,
when the maximum of available samples is used in training for experiments (e.g., for SbDivTc-18), the
SVR models had higher R2 values. For all the experiments, the standard deviation of the R2 values
decreases as the number of training samples increases, showing more reliable (repeatable) prediction
models are developed when more samples are available for training, as expected. However, for some
experiments such as HyCal-17, the standard deviation of R2 decreases initially, reaches a minimum,
then increases. This is attributed to the small total number of samples: using more samples in the
training set implies a smaller number of samples is available in the test set.

 

    
(a) HyCal-17 (PLSR) (b) InCal-17 (PLSR) (c) SbDivTc-18 (PLSR) (d) SNitTs-18 (PLSR) 

    
(e) HyCal-17 (PLSR) (f) InCal-17 (PLSR) (g) SbDivTc-18 (PLSR) (h) SNitTs-18 (PLSR) 

Figure 23. Impact of the number of samples on R2 of the predictive models using SVR and PLSR models.

5. Discussion

The predictions results with respect to the diversity, number of samples, and similarity between
test and training sets for all the experiments are summarized in Table 3.

150



Remote Sens. 2020, 12, 3587

Table 3. Summary of the prediction results of the experimental trials.

HyCal-17
and 18

InCal-17
and 18

SbBAP-17 SbDiv-17 InCalTc-18 SbDivTc-18 SNitTs

Diversity Very High Low Very High Low High High High
Number of samples Low Low High High Low High Low

Test-training set
dissimilarity (range

of biomass)
High Low Very High Low High High Low

Prediction accuracy
(maximum R2)

High
(0.80)

Medium
(0.71)

Medium
(0.67)

Medium
(0.74)

Medium
(0.69)

High
(0.77)

Very high
(0.88)

In general, for the experiments with hybrid cultivars, RF models had lowest prediction accuracies
among the three methods, which is related to the fact that there was more dissimilarity between the
training and test sets in both RS and biomass data among the hybrid cultivars compared to those that
were inbred, and RF models can be overfitted to the training data set; thus, they may not provide as
accurate predictions as SVR and PLSR. For the InCal-18, however, RF yielded the highest accuracies
for most of the data sources. For the experiments with a sample size of 200 (SbDiv-17, SbBAP-17,
and SbDivTc-18), the SVR models provided the most accurate results, while for the experiments with a
lower number of data samples, PLSR provided the highest prediction accuracies.

A summary of the prediction results for various data sources and regression methods is provided
in Figure 24, where the R2 values of the nine experiments are shown in a box plot (RMSE values
are shown in Figure A6 in Appendix B). For the LiDAR data, the RF method provided slightly
higher median accuracies than PLSR and SVR, with lower variability in R2 values (more reliability).
When VNIR data was the only input, PLSR yielded more accurate results, which is similar to the results
obtained in [10] yield prediction of potatoes using VNIR hyperspectral data. For all other data sources,
SVR yielded a higher median R2. For SWIR and VNIR combined with SWIR sources, SVR provided
more reliable results, while for VNIR, VNIR combined with LiDAR, as well as a combination of all
data sources, PLSR provided more reliable results. Also, the SVR models provided the maximum R2

for all the data sources.

 

Figure 24. Box plot of the prediction results for various data sources and regression methods.

Similar to the study by Almeida et al. [69], an ANOVA test was performed on the prediction results
to determine the impact of the method and data source (e.g., sensor-based features) on the prediction
results. The ANOVA results provided in Table 4 show that the data source is the cause of 69% of the
variation in the prediction results, 28% for the regression method, and 3% for the interaction their
interaction. These results are consistent with those of [33,69]. This indicates that the data source should
also be considered to determine the regression method in the design of similar experiments. A similar
ANOVA test was performed on the R2 values for six experiments, including HyCal-17, HyCal-18,
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InCal-17, InCal-18, SbDiv-17, and SbDiv-18, of which three include hybrid cultivars, and three include
inbred cultivars. On this test, the cultivar type (hybrid or inbred) was considered as the third factor.
Recall that the sorghum hybrid cultivars are more variable in their characteristics than inbreds in terms
of biomass and structural characteristics. The results of this test in Table 5 indicate that the data source
also has the highest contribution to the variation in the predictions (44%). The regression method is the
cause of 26% of the variation in the prediction results, and less than 1% is attributed to the cultivar type.
However, the interaction between the regression method and cultivar is responsible for 24% of the
variation, suggesting that the cultivar type is another important factor to consider when determining
the regression method for developing predictive models.

Table 4. Analysis of variance of the R2 respective to the data source, regression method, and
their interaction.

Factor
Sum of
Squares

Degree of
Freedom

F Value p-Value 2 (%)

Data source 103.70 5 564.09 <2 × 10−14 68.59
Method 17.15 2 233.23 <2 × 10−14 28.36

Data source:method 9.24 10 25.14 <2 × 10−14 3.06
Residuals 594.95 16,182

Table 5. Analysis of variance of the R2 respective to the data source, regression method, cultivar type,
and their interactions.

Factor
Sum of
Squares

Degree of
Freedom

F Value p-Value 2 (%)

Data source 80.95 5 412.58 <2 × 10−6 44.18
Method 19.29 2 245.79 <2 × 10−6 26.32

Cultivar type 0.35 1 8.86 0.003 0.95
Data source:method 6.84 10 17.44 <2 × 10−6 1.87

Data source:cultivar type 4.03 5 20.53 <2 × 10−6 2.20
Method:cultivar type 17.59 2 224.12 <2 × 10−6 24.00

Data source:method:cultivar type 1.82 10 4.63 0.093 0.50
Residuals 422.37 10,764

Recommendations for Biomass Prediction

In this section, we summarize the findings of the tests conducted in this paper in the format of
recommendations to achieve reliable biomass prediction. The recommendations are based on the data,
the genotypes, and the location where the study was conducted; thus, they might not be generalizable.

• Regression Model

Both PLSR and SVR models provided more accurate predictions than RF. SVR generally provided
more accurate predictions, however, PLSR is preferable when the number of sample data points is very
limited (less than 50 samples) as well as when high variability in the biomass data is expected.

• Data Source

ANOVA analysis on the prediction results showed that the data source is the most important factor
on determining the accuracy of the predictions. Considering individual sensors, the features extracted
from VNIR provided the most accurate predictions. However, adding the geometric based features
extracted from the LiDAR data to the models improved the accuracy of the predictions significantly,
which is consistent with previous studies for biomass prediction in forest environments [44,69].
We recommend acquiring data from both VNIR and LiDAR sensors, if possible, for the most reliable
biomass prediction.
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• Flight Time and Frequency

The analysis on correlation between the data sets captured throughout the season showed
that changes occur more rapidly earlier in the season (a result of fast-growing plants), while the
multi-temporal data captured later in season are more similar. This implies that frequent data collection
at the end of season is not required. Moreover, the most accurate end of season biomass prediction
was achieved using the data captured around 60–80 DAS, which can be considered as an important
time for collecting RS data. Zhou et al. [70] obtained similar results, but for rice yield prediction using
UAV-based multispectral and digital imagery.

• Required Reference Data

Based on the results provided in Figure 24, we recommend collecting least 50 samples. If it is
expected to have high variability in the biomass data associated with the varieties in the experiments,
more samples would be required.

6. Conclusions

In this paper, we explored the potential for reliable prediction of sorghum biomass using
multi-temporal hyperspectral and LiDAR data acquired by sensors mounted on UAV platforms.
We developed prediction models using three nonlinear regression models for nine experiments
conducted in the 2017 and 2018 growing seasons at the Agronomy Center for Research and Education
(ACRE) at Purdue University. Experiments included multiple sorghum varieties with different sample
sizes, providing an opportunity for multiple statistical tests and models. Based on the experiments
conducted in this study, nitrogen and photosynthesis related features extracted from hyperspectral data
and geometric based features derived from the LiDAR data provided reliable and accurate prediction
of biomass. The 750–1100 nm range of the spectrum provided the most relevant information for
biomass prediction.

Both data source and regression method are important factors for a reliable prediction; however,
the ANOVA results show that the data source was more important with 69% significance, versus 28%
significance for the regression method. The number of samples in training set for the prediction is an
important factor for determining the accuracy of the predictions. Generally, the PLSR method provided
more accurate prediction models when the number of samples in training was limited. With increasing
samples, the rate of increase in the accuracy of the SVR models was higher than PLSR.

We also evaluated the prediction models with respect to the time of the RS data acquisition and
the time of harvest. The end-of-season biomass predictions were more reliable and accurate than the
mid-season predictions, as more varieties in the field were at the same stage of growth. With respect
to the remote sensing data, the best results were obtained using the RS data from the whole season;
however, the models developed using mid-season data (DAS of ~60 to 80) were also able to provide
comparably accurate results, which were useful for early screening of varieties.
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Appendix A

Table A1. Commercial varieties planted in the hybrid calibration panel.

Variety Variety Name Sorghum Type Company

1 849F Forage Pioneer
2 877F Forage Pioneer
3 327 × 36 BMR Forage Richardson
4 341 × 10 Forage Richardson
5 366 × 58 Food grain Richardson
6 374 × 66 Food grain Richardson
7 392 × 105 BMR Forage Richardson
8 400 × 38 BMR Sudangrass Richardson
9 400 × 82 BMR Sudangrass Richardson

10 HIKANE II Forage Sorghum Partners
11 NK300 Forage Sorghum Partners
12 NK5418 Grain Sorghum Partners
13 NK8416 Grain Sorghum Partners
14 SS405 Forage Sorghum Partners
15 Sordan 79 Forage Sorghum Partners
16 Sordan Headless Forage (photoperiod sensitive) Sorghum Partners
17 Trudan 8 Forage Sorghum Partners
18 Trudan Headless Forage (photoperiod sensitive) Sorghum Partners

Table A2. Remote Sensing Data Sets.

Year Data Type Field Dates

2017

RGB and LiDAR InCal, HyCal, SbDiv, and
SbBAP

16/06, 21/06, 27/06, 05/07, 11/07, 14/07, 17/07, 25/07,
02/08, 08/08, 23/08, 3008

VNIR
HyCal and InCal 21/06, 28/06, 04/07, 12/07, 18/07, 25/07, 08/08, 23/08,

30/08, 10/09, 15/09

SbDiv 21/06, 27/06, 04/07, 18/07, 25/07, 30/07, 08/08, 14/08,
23/08, 10/09, 24/09, 30/09

SbBAP 21/06, 27/06, 04/07, 18/07, 25/07, 30/07, 08/08, 14/08,
23/08, 10/09, 24/09

SWIR
InCal and HyCal 23/08, 30/08, 10/09, 15/09

SbDiv 02/08, 08/08, 14/08, 23/08, 30/08, 10/09, 30/09
SbBAP 02/08, 08/08, 14/08, 23/08, 30/08, 10/09

2018

RGB and LiDAR
HyCal, InCal, InCalTc,

and SbDivTc
22/05, 29/05, 04/05, 11/06, 20/06, 27/06, 02/07, 11/07,

18/07, 23/07, 01/08, 06/08

SNitTs 28/06, 03/07, 11/07, 17/17, 23/07, 01/08, 06/08, 16/08,
25/08, 05/09, 19/09

VNIR and SWIR
HyCal, InCal, InCalTc 04/06, 08/06, 14/06, 29/06, 03/07, 06/07, 11/07, 18/07,

25/07, 02/08, 09/08

SbDivTc 04/06, 08/06, 14/06, 29/06, 03/07, 06/07, 10/07, 11/07,
25/07, 02/08

SNitTs 28/06, 03/07, 11/07, 18/07, 25/07, 02/08, 13/08, 28/08,
04/09, 12/09, 18/09
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Table A3. Vegetation indices extracted from each HSI spectrum.

Data Type Index Name Formulation References

VNIR

NDVI (R750 − R705)/(R750 + R705) [70]
NDCI (R762 − R527)/(R762 + R527) [71]
Carte1 R695/R420 [72]

SR800,680 R800/R680 [73]
SR675,700 R675/R700 [74]
SR700,670 R700/R670 [75]
OSAVI (1 + 0.16) (R800 − R670)/(R800 + R670 + 0.16) [76]
MCARI [(R700 − R670) − 0.2(R700-R550)](R700/R670) [77]

REP 700 + 40[(R670 + R780)/2 − R700)]/(R740 − R700)) [78]
PRI (R531 − R570)/(R531 + R570) [79]

SWIR

NDWI (R860 − R1240)/(R860 + R1240) [80]

NDLI [log(1/R1754) − log(1/R1680)]/[log(1/R1754) +
log(1/R1680)] [81]

NDNI [log(1/R1510) − log(1/R1680)]/[log(1/R1510) +
log(1/R1680)] [81]

Table A4. Integration features extracted from each HSI spectrum.

Data Type Feature Name λa λb

VNIR
Intg_rededge 685 745

Intg_NIR1 770 910
Intg_NIR2 910 1000

SWIR
Intg_SWIR_r1 920 1353
Intg_SWIR_r2 1430 1800
Intg_SWIR_r3 1952 2385

Table A5. Derivative features were extracted from each first derivative (FDR) and second derivative
(SDR) spectrum.

Data Type Feature Name Description

VNIR

FDR_slope slope of the line that passes through the minimum of FDR and the
maximum of FDR in 660–690 nm range

FDR_min minimum of FDR
FDR_intg_ NIR1 integration of FDR in bands between 670 and 780 nm
FDR_intg_ NIR2 integration of FDR in bands between 910 and 1000 nm

SDR_slope_rededge slope of the line passing through the maximum and the minimum of SDR
SDR_intg integration of SDR in all bands

SWIR

FDR_slope_r1 slope of the line that passes through the maximum of FDR in 1000–1050 nm
range and the minimum of FDR in 1100–1200 nm range

FDR_slope_r2 slope of the line that passes through the maximum of FDR in 1475–1525 nm
range and the minimum of FDR in 1675–1725 nm range

FDR_slope_r3 slope of the line that passes through the maximum of FDR in 2000–2050 nm
range and the minimum of FDR in 2200–2300 nm range

FDR_intg-r1 integration of FDR in bands between 920 and 1353 nm

SDR_ slope_r1 slope of the line that passes through the maximum of SDR in 1100–1200 nm
range and the minimum of SDR in 1000–1100 nm range
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Table A6. Grid search parameters for regression methods.

Algorithm Hyperparameter Values Tested

PLSR Number of components 2, 3, 5, 10, 15, 20

SVR (RBF) C 10, 100, 1000, number of features
gamma 1/n, 0.0001, 0.001, 0.01, 0.1

Random Forest (RF)
Max tree depth 5, 10, 100

Min sample split 2, 10
Number of trees 50, 100, 500

Appendix B

(a) InCal-17 (left) and HyCal-17 
(right) 

(b) SbBAP-17 

(c) SbDiv-17 

Figure A1. RGB images of the field trials in 2017.

156



Remote Sens. 2020, 12, 3587

(b) HyCal-18 (left), IyCal-18 (middle), and  
TcCal-18 (right), 

 

 

(a) SbDTc-18 (c) SNitT-18 

Figure A2. RGB images of the field trials in 2018.

 

 

Figure A3. Height histogram for “341 × 10” and “Trudan Headless” in the HyCal panel across the 2017
growing season.
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Figure A4. Variance of the spectra of the 18 Sorghum Varieties in HyCal-18 panel on 18 July 2018.
The varieties are very similar in the visible range of the spectrum, but substantial variability is observed
in the NIR portion of spectrum.

 

Figure A5. Example of reflectance variance of one of the varieties in HyCal-18 experiment (“Trudan 8”)
during the 2018 growing season.

 

Figure A6. Box plot of the prediction results for various data sources and regression methods.
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