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What makes a system “complex”? Is it merely the number of components it integrates, a nonlinear
nature of the dependencies and feedbacks among its parts, or an unpredictable behavior it exhibits
over time? The term “complexity” was initially applied generically to express the lack of predictability,
reflecting on the self-organization of a synergistic macroscopic behavior out of interactions between
the constituent microscopic parts, and the emergence of global patterns. Without a doubt, by now the
concept has acquired a fairly definitive meaning, describing a distinct field of research and education
and a new approach to science and engineering. There are abundant examples showing that the
enterprise of Complex Systems, having achieved a substantial level of maturity, reaches back into
our everyday lives, revealing patterns of complexity that should be considered without employing a
reductionist logic [1].

Similarly, the idea of criticality was originally motivated by studies of various crises and disruptive
events, as well as sensitivities to initial conditions, but over time has developed into a precise field:
critical dynamics. Research into critical dynamics is typically focused on the behavior of dynamical
spatiotemporal systems during phase transitions where scale invariance prevails and symmetries break.
Crucially, such behavior can be understood in terms of the control and order parameters. For instance,
a second-order phase transition in a ferromagnetic system, separating two qualitatively different
behaviors, can be reached by controlling the temperature parameter: the “disordered” and isotropic
(symmetric) high-temperature phase is characterized by the absence of net magnetization, while the
“ordered” and anisotropic (less symmetric) low-temperature phase can be described by an order
parameter, the net magnetization vector defining a preferred direction in space. Critical phenomena
have become associated with the physics of critical points, such as fractal behavior, the divergence
of the correlation length, power-law divergences (e.g., the divergence of the magnetic susceptibility
in the ferromagnetic phase transition), universality of relevant critical exponents, and so on. Now,
these precise theoretical notions begin to reconnect with their motivating applied studies of crisis
modeling, forecasting, and response. There is a growing awareness that complexity is strongly related
to criticality, and many examples of self-organizing complex systems can be found in applications
managing complexity specifically at critical regimes.

A similar loop originating in practical studies, maturing to an exact science with precise but
narrow definitions, and then reaching back to applied scenarios, can be seen in the realm of distributed
computation. These days, complex systems can be viewed as distributed information-processing
systems, in the domains ranging from systems biology and artificial life to computational neuroscience,
digital circuitry, and transport networks [2]. Consciousness emerging from neuronal activity and
interactions, cell behavior resultant from gene regulatory networks, and flocking and swarming
behaviors are all examples of global system behavior emerging as a result of the local interactions of
the individuals (neurons, genes, animals). Can these interactions be seen as a generic computational
process? This question shapes the third component of our Special Issue, linking computation to
complexity and criticality.

Entropy 2017, 19, 403 1 www.mdpi.com/journal/entropy
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The issue begins with three papers which deal with the foundational aspects of information
processing in complex systems [3–5]. The study of Allen et al. [3] describes two quantitative indices
that summarize the structure of a complex system: (i) its complexity profile, based on the multivariate
mutual information at a given scale or higher, and (ii) the marginal utility of information, characterizing
the extent to which a system can be described using limited amounts of information. Information
is understood to have a scale equal to the multiplicity (or redundancy) at which it arises, and so the
analysis shows how these indices capture the multi-scale structure of complex systems. The work
of Chicharro and Panzeri [4] also deals with the redundant aspects of information: it extends the
framework of mutual information decomposition, based on the construction of information gain
lattices, separating the information into the unique, redundant, and synergy components. In doing so,
the work proposes a new construction of information gain and loss lattices. The framework developed
by Biehl et al. [5] presents a novel formal analysis of the specific and complete local integration of
entities within distributed dynamical systems (e.g., Bayesian networks), and puts it in the context
of measures of complexity and information integration, as well as multi-information. The analysis
presented in this paper goes to the core of complexity phenomenon, seen through the lens of synergistic
integrative organization, viewing entities as patterns occurring within a spatiotemporal trajectory.

A cross-disciplinary connection between information-theoretic and game-theoretic aspects of
complexity and computation is explored in the study of Harré [6], which focuses on the mutual information
between previous game states and an agent’s next action. This reveals a novel connection between the
computational principles of logic gates, the structure of games, and the agents’ decision strategies.

Nonlinear dynamics and inherent feedbacks typical in complex systems are considered in the next
investigation by Zhang et al. [7], which addresses the problem of achieving and maintaining consensus
in second-order multi-agent systems. This problem is pertinent to several scenarios, such as distributed
control in networks of mass-spring systems, synchronization of coupled harmonic oscillators, and
stability analysis of power systems. The study produces an adaptive consensus protocol for the
problem’s variant with an exogenous disturbance generated by an unknown exogenous system.

The next four papers [8–11] are placed in the complexity–criticality–computation overlap which is
central to our issue. The study of Erten et al. [8] continues the information-theoretic theme by applying
the information dynamics framework to studies of critical thresholds during epidemics. The approach
uses the transfer entropy as a measure of distributed communications during a network-wide contagion
seen as computation, as well as the active information storage as a measure of the corresponding
distributed memory. The results for finite-size systems identify a critical interval, rather than an exact
critical threshold. The methods described by Roli et al. [9] also detect criticality; that is, they distinguish
between different phases separated by a critical regime. The approach is centered on the relevance
index—an information-theoretic ratio relating the multi-information (or integration) measure to the
mutual information between a subsystem and the rest of the system. The reported results demonstrate
that the relevance index is consistently maximized at the critical regime. A phase transition-like
behavior is investigated in the paper by Kramer et al. [10] as well. Their work identifies qualitative
changes such as macroscopic spatiotemporal pattern formation in dynamics of Cellular Automata,
by varying the inertia—an inner resistance to changes within cells—as the control parameter. In an
ecological context, the inertia is related to an impairment and competition between species. The study
by Mayer [11] illustrates the effects of critical connectivity in echo state networks and identifies under
which conditions the recurrent connectivity is achieved. The results are contrasted with alternative
approaches considering the dynamics near the “edge of chaos”. The overall approach opens a way to
organize reservoirs of neuronal connections as recurrent filters with a memory compression feature.

The three final studies are also biologically motivated. Continuing with the topic of neuronal
connectivity, the paper by Kunert-Graf [12] attempts to identify the source of complexity in the
biological neuronal network of C. elegans, the only organism for which its “connectome” is known.
Using a suitably defined measure (once again based on information theory), the study argues that the
somatic nervous system of C. elegans is much more complex than a random graph with the same degree
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distribution. The complexity and efficiency of solutions evolved by nature is a source of inspiration
for another study, in which Kwiecień and Pasieka [13] use a computational swarm optimization
algorithm to solve a travel planning problem. The presented approach is found to outperform the
particle swarm optimization algorithm. The analysis presented by Farnsworth [14] brings the subject
of distributed information processing to “the far end of the complexity gradient”, centering the
discussion on the question of free-will in artificial agents. Not surprisingly, this thought-provoking
examination highlights the role of information in shaping the interactions and dynamics among
patterns, as well as the distribution of matter and energy in space and time. The work concludes
with the conjecture that free-will—which currently remains a property of living things—may still be
attained in synthetic robots.

The contributions to this special issue show that the overlap between complexity, criticality, and
computation provides fertile ground with both theoretical and practical dimensions. Considering
complex systems as dynamical systems performing distributed computation suggests a unifying
perspective, which reveals key thermodynamic and information-processing components, as well
as their behavior near critical regimes. These components (e.g., collective memory, long-range
communications, and synergistic modifications), together with the consequent physical fluxes [15],
can be quantified and optimized. In spirit of Guided Self-Organization [2], the resultant dynamics can
then be guided towards desired regions of the corresponding state-spaces, combining the power and
efficiency of the self-organization so abundant in nature with the accuracy and reliability of traditional
design approaches.

Acknowledgments: I express our thanks to the authors of the above contributions, and to the journal Entropy
and MDPI for their support during this work.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Complex systems display behavior at a range of scales. Large-scale behaviors can emerge
from the correlated or dependent behavior of individual small-scale components. To capture this
observation in a rigorous and general way, we introduce a formalism for multiscale information
theory. Dependent behavior among system components results in overlapping or shared information.
A system’s structure is revealed in the sharing of information across the system’s dependencies, each
of which has an associated scale. Counting information according to its scale yields the quantity
of scale-weighted information, which is conserved when a system is reorganized. In the interest
of flexibility we allow information to be quantified using any function that satisfies two basic
axioms. Shannon information and vector space dimension are examples. We discuss two quantitative
indices that summarize system structure: an existing index, the complexity profile, and a new index,
the marginal utility of information. Using simple examples, we show how these indices capture
the multiscale structure of complex systems in a quantitative way.

Keywords: complexity; complex systems; entropy; information; scale

1. Introduction

The field of complex systems seeks to identify, understand and predict common patterns of behavior
across the physical, biological and social sciences [1–7]. It succeeds by tracing these behavior patterns to
the structures of the systems in question. We use the term “structure” to mean the totality of quantifiable
relationships, or dependencies, among the components comprising a system. Systems from different
domains and contexts can share key structural properties, causing them to behave in similar ways. For
example, the central limit theorem tells us that the sum over many independent random variables yields
an aggregate value whose probability distribution is well-approximated as a Gaussian. This helps us
understand systems composed of statistically independent components, whether those components are
molecules, microbes or human beings. Likewise, different chemical elements and compounds display
essentially the same behavior near their respective critical points. The critical exponents which encapsulate
the thermodynamic properties of a substance are the same for all substances in the same universality
class, and membership in a universality class depends upon structural features such as dimensionality
and symmetry properties, rather than on details of chemical composition [8].

Outside of known universality classes, identifying the key structural features that dictate
the behavior of a system or class of systems often relies upon an ad hoc leap of intuition. This becomes
particularly challenging for complex systems, where the set of system components is not only large,
but also interwoven and resistant to decomposition. Information theory [9,10] holds promise as
a general tool for quantifying the dependencies that comprise a system’s structure [11]. We can
consider the amount of information that would be obtained from observations of any component or

Entropy 2017, 19, 273 5 www.mdpi.com/journal/entropy
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set of components. Dependencies mean that one observation can be fully or partially inferred from
another, thereby reducing the amount of joint information present in a set of components, compared
to the amount that would be present without those dependencies. Information theory allows one to
quantify not only fixed or rigid relationships among components, but also “soft” relationships that
are not fully determinate, e.g., statistical or probabilistic relationships.

However, traditional information theory is primarily concerned with amounts of independent bits
of information. Consequently, each bit of non-redundant information is regarded as equally significant,
and redundant information is typically considered irrelevant, except insofar as it provides error
correction [10,12]. These features of information theory are natural in applications to communication,
but present a limitation when characterizing the structure of a physical, biological, or social system.
In a system of celestial bodies, the same amount of information might describe the position of a moon,
a planet, or a star. Likewise, the same amount of information might describe the velocity of a solitary
grasshopper, or the mean velocity of a locust swarm. A purely information-theoretic treatment has
no mechanism to represent the fact that these observables, despite containing the same amount of
information, differ greatly in their significance.

Overcoming this limitation requires a multiscale approach to information theory [13–18]—one
that identifies not only the amount of information in a given observable but also its scale, defined
as the number or volume of components to which it applies. Information describing a star’s
position applies at a much larger scale than information describing a moon’s position. In shifting
from traditional information theory to a multiscale approach, redundant information becomes not
irrelevant but crucial: Redundancy among smaller-scale behaviors gives rise to larger-scale behaviors.
In a locust swarm, measurements of individual velocity are highly redundant, in that the velocity
of all individuals can be inferred with reasonable accuracy by measuring the velocity of just one
individual. The multiscale approach, rather than collapsing this redundant information into a raw
number of independent bits, identifies this information as large-scale and significant precisely because
it is redundant across many individuals.

The multiscale approach to information theory also sheds light on a classic difficulty in the field
of complex systems: to clarify what a “complex system” actually is. Naïvely, one might think to define
complex systems as those that display the highest complexity, as quantified using Shannon information or
other standard measures. However, the systems deemed the most “complex” by these measures are those
in which the components behave independently of each other, such as ideal gases. Such systems lack the
multiscale regularities and interdependencies that characterize the systems typically studied by complex
systems researchers. Some theorists have argued that true complexity is best viewed as occupying a
position between order and randomness [19–21]. Music is, so the argument goes, intermediate between
still air and white noise. But although complex systems contain both order and randomness, they do not
appear to be mere blends of the two. A more satisfying answer is that complex systems display behavior
across a wide range of scales. For example, stock markets can exhibit small-scale behavior, as when an
individual investor sells a small number of shares for reasons unrelated to overall market activity. They
can also exhibit large-scale behavior, e.g., a large institutional investor sells many shares [22], or many
individual investors sell shares simultaneously in a market panic [23].

Formalizing these ideas requires a synthesis of statistical physics and information theory. Statistical
physics [24–27]—in particular the renormalization group of phase transitions [28,29]—provides
a notion of scale in which individual components acting in concert can be considered equivalent
to larger-scale units. Information theory provides the tool of multivariate mutual information:
the information shared among an arbitrary number of variables (also called interaction information
or co-information) [13–17,30–39]. These threads were combined in the complexity profile [13–18],
a quantitative index of structure that characterizes the amount of information applying at a given scale
or higher. In the context of the complexity profile, the multivariate mutual information of a set of n
variables is considered to have scale n. In this way, information is understood to have scale equal to
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the multiplicity (or redundancy) at which it arises—an idea which is also implicit in other works on
multivariate mutual information [40,41].

Here we present a mathematical formalism for multiscale information theory, for use in quantifying
the structure of complex systems. Our starting point is the idea discussed in the previous paragraph,
that information has scale equal to the multiplicity at which it arises. We formalize this idea
mathematically and generalize it in two directions: First, we allow each system component to
have an arbitrary intrinsic scale, reflecting its inherent size, volume, or multiplicity. For example,
the mammalian muscular system includes both large and small muscles, corresponding to different
scales of environmental challenge (e.g., pursuing prey and escaping from predators versus chewing
food) [42]. Scales are additive in our formalism, in the sense that a set of components acting in perfect
coordination is formally equivalent to a single component with scale equal to the sum of the
scales of the individual components. This equivalence can greatly simplify the representation of
a system. Consider, for example, an avalanche consisting of differently-sized rocks. To represent
this avalanche within the framework of traditional (single-scale) information theory, one must either
neglect the differences in size (thereby diminishing the utility of the representation) or else model
each rock by a collection of myriad statistical variables, each corresponding to a equally-sized portion.
Our formalism, by incorporating scale as a fundamental quantity, allows each rock to be represented
in a direct and physically meaningful way.

Second, in the interest of generality, we use a new axiomatized definition of information,
which encompasses traditional measures such as Shannon information as well as other quantifications
of freedom or indeterminacy. In this way, our formalism is applicable to system representations for
which traditional information measures cannot be used.

Using these concepts of information and scale, we identify how a system’s joint information
is distributed across each of its irreducible dependencies—relationships among some components
conditional on all others. Each irreducible dependency has an associated scale, equal to the sum of
the scales of the components included in this dependency. This formalizes the idea that any information
pertaining to a system applies at a particular scale or combination of scales. Multiplying quantities
of information by the scales at which they apply yields the scale-weighted information, a quantity that
is conserved when a system is reorganized or restructured.

We use this multiscale formalism to develop quantitative indices that summarize important
aspects of a system’s structure. We generalize the complexity profile to allow for arbitrary intrinsic
scales and a variety of information measures. We also introduce a new index, the marginal utility of
information (MUI), which characterizes the extent to which a system can be described using limited
amounts of information. The complexity profile and the MUI both capture a tradeoff of complexity
versus scale that is present in all systems.

Our basic definitions of information, scale, and systems are presented in Sections 2–4, respectively.
Sections 5 formalizes the multiscale approach to information theory by defining the information
and scale of each of a system’s dependencies. Sections 6 and 7 discuss our two indices of structure.
Section 8 establishes a mathematical relationship between these two indices for a special class of
systems. Section 9 applies our indices of structure to the noisy voter model [43]. We conclude
in Sections 10 and 11 by discussing connections between our formalism and other work in information
theory and complex systems science.

2. Information

We begin by introducing a generalized, axiomatic notion of information. Conceptually,
information specifies a particular entity out of a set of possibilities and thus enables us to describe
or characterize that entity. Information measures such as Shannon information quantify the amount
of resources needed in this specification. Rather than adopting a specific information measure,
we consider that the amount of information may be quantified in different ways, each appropriate to
different contexts.

7
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Let A be the set of components in a system. An information function, H, assigns a nonnegative
real number to each subset U ⊂ A, representing the amount of information needed to describe
the components in U. (Throughout, the subset notation U ⊂ A includes the possibility that U = A.)
We require that an information function satisfy two axioms:

• Monotonicity: The information in a subset U that is contained in a subset V cannot have more
information than V, that is, U ⊂ V ⇒ H(U) ≤ H(V).

• Strong subadditivity: Given two subsets, the information contained in both cannot exceed
the information in each of them separately minus the information in their intersection:

H(U ∪ V) ≤ H(U) + H(V)− H(U ∩ V). (1)

Strong subadditvity expresses how information combines when parts of a system (U and V)
are regarded as a whole (U ∪ V). Information regarding U may overlap with information regarding V
for two reasons. First, U and V may share components; this is corrected for by subtracting H(U ∩ V).
Second, constraints in the behavior of non-shared components may reduce the information needed
to describe the whole. Thus, information describing the whole may be reduced due to overlaps or
redundancies in the information applying to different parts, but it cannot be increased.

In contrast to other axiomatizations of information, which uniquely specify the Shannon
information [9,44–46] or a particular family of measures [47–50], the two axioms above are compatible
with a variety of different measures that quantify information or complexity:

• Microcanonical or Hartley entropy: For a system with a finite number of joint states, H0(U) = log m
is an information function, where m is the number of joint states available to the subset U of
components. Here, information content measures the number of yes-or-no questions which must
be answered to identify one joint state out of m possibilities.

• Shannon entropy: For a system characterized by a probability distribution over all possible joint
states, H(U) = −∑m

i=1 pi log pi is an information function, where p1, . . . , pm are the probabilities
of the joint states available to the components in U [9]. Here, information content measures
the number of yes-or-no questions which must be answered to identify one joint state out of all
the joint states available to U, where more probable states can be identified more concisely.

• Tsallis entropy: The Tsallis entropy [51,52] is a generalization of the Shannon entropy with
applications to nonextensive statistical mechanics. For the same setting as in Shannon entropy,
Tsallis entropy is defined as Hq(U) = −∑m

i=1 pq
i (p1−q

i − 1)/(1 − q) for some parameter q ≥ 0.
Shannon entropy is recovered in the limit q → 1. Tsallis entropy is an information function for
q ≥ 1 (but not for q < 1); this follows from Proposition 2.1 and Theorem 3.4 of [53].

• Logarithm of period: For a deterministic dynamic system with periodic behavior, an information
function L(U) can be defined as the logarithm of the period of a set U of components
(i.e., the time it takes for the joint state of these components to return to an initial joint state) [54].
This information function measures the number of questions which one should expect to answer
in order to locate the position of those components in their cycle.

• Vector space dimension: Consider a system of n components, each of whose state is described by
a real number. Then the joint states of any subset U of m ≤ n components can be described
by points in some linear subspace of R

m. The minimal dimension d(U) of such a subspace
is an information function, equal to the number of coordinates one must specify in order to
identify the joint state of U.

• Matroid rank: A matroid consists of a set of elements called the ground set, together with a rank
function that takes values on subsets of the ground set. Rank functions are defined to include
the monotonicity and strong subadditivity properties [55], and generalize the notion of vector
subspace dimension. Consequently, the rank function of a matroid is an information function,
with the ground set identified as the set of system components.

8
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In principle, measurements of algorithmic complexity may also be regarded as information functions.
For example, when a subset U can be encoded as a binary string, the algorithmic complexity H(U) can be
quantified as the length of the shortest self-delimiting program producing this string, with respect to some
universal Turing machine [56]. Information content then measures the number of machine-language
instructions which must be given to reconstruct U. Algorithmic complexity—at least under certain
formulations—obeys versions of the monotonicity and strong subadditivity axioms [56,57]. However,
while conceptually clean, this definition is difficult to apply quantitatively. First, the algorithmic
complexity is only defined up to a constant which depends on the choice of universal Turing machine.
Second, as a consequence of the halting problem, algorithmic complexity can only be bounded, not
computed exactly.

3. Scale

A defining feature of complex systems is that they exhibit nontrivial behavior on multiple
scales [1,13,14]. While the term “scale” has different meanings in different scientific contexts, we use
the term scale here in the sense of the number of entities or units acting in concert, with each involved
entity potentially weighted according to a measure of importance.

For many systems, it is reasonable to regard all components as having a priori equal scale. In this
case we may choose the units of scale so that each component has scale equal to 1. This convention
was used in previous work on the complexity profile [13–17]. However, it is in many cases necessary
to represent the components of a system as having different intrinsic scales, reflecting their built-in
size, multiplicity or redundancy. For example, in a system of many physical bodies, it may be natural
to identify the scale of each body as a function of its mass, reflecting the fact that each body comprises
many molecules moving in concert. In a system of investment banks [58–60], it may be desirable to
assign weight to each bank according to its volume of assets. In these cases, we denote the a priori
scale of a system component a by a positive real number σ(a), defined in terms of some meaningful
scale unit.

Scales are additive, in the sense that a set of completely interdependent components can
be replaced by a single component whose scale is equal to the sum of the scales of the individual
components. We describe this property formally in Section 5.4 and in Appendix B.

4. Systems

We formally define a system A to comprise three elements:

• A finite set A of components,
• An information function HA, giving the information in each subset U ⊂ A,
• A scale function σA, giving the intrinsic scale of each compoent a ∈ A.

The choice of information and scale functions will reflect how the system is modeled
mathematically, and the kind of statements we can make about its structure. We omit the subscripts
from H and σ when only one system is under consideration.

In this work, we treat the three elements of a system as unchanging, even though the system itself
may be dynamic (existing in a sequence of states through time). A dynamic system can be represented as
a set of time histories, or—using the approach of ergodic theory—by defining a probability distribution
over states with probabilities corresponding to frequencies of occupancy over extended periods of
time. The methods outlined here could also be used to explore the dynamics or histories of a system’s
structure, using information and scale functions whose values vary as relationships change within a
system over time. However, our current work focuses only on the static or time-averaged properties of
a system.

In requiring that the set A of components be finite, we exclude, for example, systems represented
as continuum fields, in which each point in a continuous space might be regarded as a component.
While the concepts of multiscale information theory may still be useful in thinking about such systems,
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the mathematical representation of these concepts presents challenges that are beyond the scope of
this work.

We shall use four simple systems as running examples. Each consists of three binary random
variables, each having intrinsic scale one.

• Example A: Three independent components. Each component is equally likely to be in state 0 or state 1,
and the system as a whole is equally likely to be in any of its eight possible states.

• Example B: Three completely interdependent components. Each component is equally likely to
be in state 0 or state 1, but all three components are always in the same state.

• Example C: Independent blocks of dependent components. Each component is equally likely to take
the value 0 or 1; however, the first two components always take the same value, while the third
can take either value independently of the coupled pair.

• Example D: The 2 + 1 parity bit system. The components can exist in the states 110, 101, 011, or 000
with equal probability. In each state, each component is equal to the parity (0 if even; 1 if odd) of
the sum of the other two. Any two of the component are statistically independent of each other,
but the three as a whole are constrained to have an even sum.

We define a subsystem of A = (A, HA, σA) as a triple B = (B, HB , σB), where B is a subset of A,
HB is the restriction of HA to subsets of B, and σB is the restriction of σA to elements of B.

5. Multiscale Information Theory

Here we formalize the multiscale approach to information theory. We begin by introducing
notation for dependencies. We then identify how information is shared across irreducible dependencies,
generalizing the notion of multivariate mutual information [13–17,30–39] to an arbitrary information
function. We then define the scale of a dependency and introduce the quantity of scale-weighted
information. Finally, we formalize the key concepts of independence and complete interdependence.

5.1. Dependencies

A dependency among a collection of components a1, . . . , am is the relationship (if any) among these
components such that the behavior of some of the components is in part obtainable from the behavior
of others. We denote this dependency by the expression a1; . . . ; am. This expression represents
a relationship, rather than a number or quantity. We use a semicolon to keep our notation consistent
with information theory (in particular, with multivariate mutual information; see Section 5.2).

We can identify a more general concept of conditional dependencies. Consider two disjoint sets
of components a1, . . . , am and b1, . . . , bk. The conditional dependency a1; . . . ; am|b1, . . . , bk represents
the relationship (if any) between a1, . . . , am such that the behavior of some of these components can
yield improved inferences about the behavior of others, relative to what could be inferred from
the behavior of b1, . . . , bk. We call this the dependency of a1, . . . , am given b1, . . . , bk, and we say
a1, . . . , am are included in this dependency, while b1, . . . , bk are excluded.

We call a dependency irreducible if every system component is either included or excluded.
We denote the set of all irreducible dependencies of a system A by DA. A system’s dependencies can
be organized in a Venn diagram, which we call a dependency diagram (Figure 1).

The relationship between the components and dependencies of A can be captured by a mapping,
which we denote by δ, from A to subsets of DA. A component a ∈ A maps to the set of irreducible
dependencies that include a (or in visual terms, the region of the dependency diagram that corresponds
to component a). For example, in a system of three components a, b, c, we have

δ(a) = {a; b; c, a; b|c, a; c|b, a|b, c}. (2)

10
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We extend the domain of δ to subsets of components, by mapping each subset U ⊂ A onto to the set of
all irreducible dependencies that include at least one element of U; for example,

δ({a, b}) = {a; b; c, a; b|c, a; c|b, b; c|a, a|b, c, b|a, c}. (3)

Visually, δ({a, b}) is the union of the circles representing a and b in the dependency diagram. Finally,
we extend the domain of δ to dependencies, by mapping the dependency a1; . . . ; am|b1, . . . , bk onto the
set of all irreducible dependencies that include a1, . . . , am and exclude b1, . . . , bk; for example,

δ(a|c) = {a; b|c, a|b, c}. (4)

Visually, δ(a|c) consists of the regions corresponding to a but not to c.

b c

a

c a b| ,cab| ,

ca b| ,

c ab |;

ca b|; ca b|;

ca b; ;

Figure 1. The dependency diagram of a system with three components, a, b and c, represented by
the interiors of the three circles. The seven irreducible dependencies shown above correspond to
the seven interior regions of the Venn diagram encompassed by the boundaries of the three circles.
Irreducible dependencies are shaded according to their scale, assuming that each component has scale
one. Reducible dependencies such as a|b are not shown.

5.2. Information Quantity in Dependencies

Here we define the shared information, IA(x), of a dependency x in a system A. I generalizes
the multivariate mutual information [13–17,30–39] to an arbitrary information function H. We note that
H and I characterize the same quantity—information—but are applied to different kinds of arguments:
H is applied to subsets of components of A, while I is applied to dependencies.

The values of I on irreducible dependencies x of A are uniquely determined by the system
of equations

∑
x∈δ(U)

I(x) = H(U) for all subsets U ⊂ A (5)

As U runs over all subsets of A, the resulting system of equations determines the values I(x), x ∈ DA,
in terms of the values H(U), U ⊂ A. The solution is an instance of the inclusion-exclusion principle [61],
and can also be obtained by Gaussian elimination. An explicit formula obtained in the context of
Shannon information [32] applies as well to any information function. Figure 2 shows the information
in each irreducible dependecy for our four running examples.

We extend I to dependencies that are not irreducible by defining the shared information I(x)
to be equal to the sum of the values of I(y) for all irreducible dependencies y encompassed by
a dependency x:

I(x) = ∑
y∈δ(x)

I(y). (6)

Our notation corresponds to that of Shannon information theory. For example, in a system of two
components a and b, solving (5) yields

I(a; b) = H(a) + H(b)− H(a, b). (7)
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Above, H(a, b) is shorthand for H({a, b}); we use similar shorthand throughout. Equation (7)
coincides with the classical definition of mutual information [9,10], with H representing joint
Shannon information. Similarly, I(a1|b1, . . . , bk) is the conditional entropy of a1 given b1, . . . , bk, and
I(a1; a2|b1, . . . , bk) is the conditional mutual information of a1 and a2 given b1, . . . , bk. For a dependency
including more than two components, I(x) is the multivariate mutual information (also called
interaction information or co-information) of the dependency x [30–33,36–39].

For any information function H, we observe that the information of one component conditioned
on others, the conditional information I(a1|b1, . . . , bk) is nonnegative due to the monotonicity axiom.
Likewise, the mutual information of two components conditioned on others, I(a1; a2|b1, . . . , bk),
is nonnegative due to the strong subadditivity axiom. However, the information shared among
three or more components can be negative. This is illustrated in running Example D, for which
the tertiary shared information I(a; b; c) is negative (Figure 2D). Such negative values appear to
capture an important property of dependencies, but their interpretation is the subject of continuing
discussion [34,36,37,62,63].

Figure 2. Dependency diagrams for our running example systems: (A) three independent bits;
(B) three completely interdependent bits; (C) independent blocks of dependent bits; and (D) the 2 + 1
parity bit system. Regions of information zero in (A–C) are not shown.

5.3. Scale-Weighted Information

Multiscale information theory is based on the principle that any information about a system should
be understood as applying at a specific scale. Information shared among a set of components—arising
from dependent behavior among these components—has scale equal to the sum of the scales of these
components. This principle was first discussed in the context of the complexity profile [13–17], and is also
implicit in other works on multivariate information theory [40,41], as we discuss in Section 10.2.

To formalize this principle, we define the scale s(x) of an irreducible dependency x ∈ DA to
be equal to the total scale of all components included in x:

s(x) = ∑
a∈A

x includes a

σ(a). (8)

The information in an irreducible dependency x ∈ DA is understood to apply at scale s(x).
Large-scale information pertains to many components and/or to components of large intrinsic scale;
whereas small-scale information pertains to few components, and/or components of small intrinsic
scale. In running Example C (Figure 2C), the bit of information that applies to components a and c has
scale 2, while the bit applying to component b has scale 1.
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The overall significance of a dependency in a system depends on both its information and its
scale. It therefore natural to weight quantities of information by their scale. We define the scale-weighted
information S(x) of an irreducible dependency x to be the scale of x times its information quantity

S(x) = s(x)I(x). (9)

Extending this definition, we define the scale-weighted information of any subset U ⊂ DA of
the dependence space to be the sum of the scale-weighted information of each irreducible-dependency
in this subset:

S(U) = ∑
x∈U

S(x) = ∑
x∈U

s(x)I(x). (10)

The scale-weighted information of the entire dependency space DA—that is, the scale-weighted
information of the system A—is equal to the sum of the scale-weighted information of each component:

S(DA) = ∑
a∈A

σ(a)H(a). (11)

As we show in Appendix A, this property arises directly from the fact that scale-weighted information
counts redundant information according to its multiplicity or total scale.

According to Equation (11), the total scale-weighted information S(DA) does not change if
the system is reorganized or restructured, as long as the information H(a) and scale σ(a) of each
individual component a ∈ A is maintained. The value S(DA) can therefore be considered a conserved
quantity. The existence of this conserved quantity implies a tradeoff of information versus scale, which
can be illustrated using the example of a stock market. If investors act largely independently of each
other, information overlaps are minimal. The total amount of information is large, but most of this
information is small-scale—applying only to a single investor at a time. On the other hand, in a market
panic, there is much overlapping or redundant information in their actions—the behavior of one
can be largely inferred from the behavior of others [23]. Because of this redundancy, the amount of
information needed to describe their collective behavior is low. This redundancy also makes this
collective behavior large-scale and highly significant.

5.4. Independence and Complete Interdependence

Components a1, . . . , ak ∈ A are independent if their joint information is equal to the sum of
the information in each separately:

H(a1, . . . , ak) = H(a1) + . . . + H(ak). (12)

In running Example C, components a, b, and c are independent. This definition generalizes standard
notions of independence in information theory, linear algebra, and matroid theory.

We extend the notion of independence to subsystems: subsystems Bi = (Bi, HBi , σBi ) of A,
for i = 1, . . . , k, are defined to be independent of one another if

HA(B1 ∪ . . . ∪ Bk) = HB1(B1) + . . . + HBk (Bk). (13)

We recall from Section 4 that HBi is the restriction of HA to subsets of Bi. In running Example C, the
subsystem comprised of components a and c is independent of the subsystem comprised of component b.

Independence has the following hereditary property [64]: if subsystems B1, . . . ,Bk are independent,
then all components and subsystems of Bi are independent of all components and subsystems of Bj,
for all j 
= i. We prove the hereditary property of independence from our axioms in Appendix C.

At the opposite extreme, we define a set of components U ⊂ A to be completely interdependent if
H(a) = H(U) for any component a ∈ U. In words, any information applying to any component in U
applies to all components in U.
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A set U ⊂ A of completely interdependent components can be replaced by a single component
of scale ∑a∈U σ(a) to obtain an equivalent, reduced representation of the system. Thus, in running
Example C, the set {a, c} is completely interdependent, and can be replaced by a single component of
scale two. We show in Appendix B that replacements of this kind preserve all relevant quantities of
information and scale.

6. Complexity Profile

We now turn to quantitative indices that summarize a system’s structure. One such index
is the complexity profile [13–17], which concretizes the observation that a complex system exhibits
structure at multiple scales. We define the complexity profile of a system A to be a real-valued function
CA(y) of a positive real number y, equal to the total amount of information at scale y or higher in A:

CA(y) = I
({x ∈ DA : s(x) ≥ y}). (14)

Equation (14) generalizes previous definitions of the complexity profile [13–17], which use Shannon
information as the information function and consider all components to have scale one.

The complexity profile reveals the levels of interdependence in a system. For systems where
components are highly independent, C(0) is large and C(y) decreases sharply in y, since only small
amounts of information apply at large scales in such a system. Conversely, in rigid or strongly
interdependent systems, C(0) is small and the decrease in C(y) is shallower, reflecting the prevalence
of large-scale information, as shown in in Figure 3. We plot the complexity profiles of our four running
examples in Figure 4.

partially interdependent

strongly interdependent

C(x)

x

partially
interdependent

strongly
interdependent

M(y)

y
Complexity Profile Marginal Utility of Information

independent

independent

Figure 3. Schematic illustration of the (a) complexity profile (CP) and (b) marginal utility of information
(MUI) for systems with varying degrees of interdependence among components. If the components
are independent, all information applies at scale 1, so the complexity profile has C(1) equal to
the number of components and C(x) = 0 for x > 1. As the system becomes more interdependent,
information applies at successively larger scales, resulting in a shallower decrease of C(x). For the MUI,
if components are independent, the optimal description scheme describes only a single component at
a time, with marginal utility 1. As the system becomes more interdependent, information overlaps
allow for more efficient descriptions that achieve greater marginal utility. For both the CP and MUI,
the total area under the curve is equal to the total scale-weighted information S(D), which is preserved
under reorganizations of the system. The CP and MUI are not reflections of each other in general,
but they are for an important class of systems (see Section 8).

Previous works have developed and applied an explicit formula for the complexity
profile [13,14,16,17,35] for cases where all components have equal intrinsic scales, σ(a) = 1 for all
a ∈ A. To construct this formula, we first define the quantity Q(j) as the sum of the joint information
of all collections of j components:
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Q(j) = ∑
i1,...,ij

H(ai1 , . . . , aij). (15)

The complexity profile can then be expressed as

C(k) =
N−1

∑
j=N−k

(−1)j+k−N
(

j
j + k − N

)
Q(j + 1), (16)

where N = |A| is the number of components in A [13,14]. The coefficients in this formula can
be inferred from the inclusion-exclusion principle [61]; see [13] for a derivation.

Figure 4. (A–D) Complexity profile C(k) for Examples A through D. Note that the total (signed)
area bounded by each curve equals S(DA) = ∑a∈A H(a) = 3. For Example D (the parity bit),
the information at scale 3 is negative.

The complexity profile has the following properties:

1. Conservation law: The area under C(y) is equal to the total scale-weighted information of the system,
and is therefore independent of the way the components depend on each other [13]:

∫ ∞

0
C(y) dy = S(DA). (17)

This result follows from the conservation law for scale-weighted information, Equation (11),
as shown in Appendix A.

2. Total system information: At the lowest scale y = 0, C(y) corresponds to the overall joint information:
C(0) = H(A). For physical systems with the Shannon information function, this is the total
entropy of the system, in units of information rather than the usual thermodynamic units.

3. Additivity: If a system A is the union of two independent subsystems B and C, the complexity
profile of the full system is the sum of the profiles for the two subsystems, CA(y) = CB(y)+CC(y).
We prove this property Appendix D.

Due to the combinatorial number of dependencies for an arbitrary system, calculation of
the complexity profile may be computationally prohibitive; however, computationally tractable
approximations to the complexity profile have been developed [15].
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The complexity profile has connections to a number of other information-theoretic characterizations
of structure and dependencies among sets of random variables [38,40,41,65–67], as we discuss in
Section 10.2. What distinguishes the complexity profile from these other approaches is the explicit
inclusion of scale as an axis complementary to information.

7. Marginal Utility of Information

Here we introduce an new index characterizing multiscale structure: the marginal utility of
information (MUI), denoted M(y). The MUI quantifies how well a system can be characterized using
a limited amount of information.

To obtain this index, we first ask how much scale-weighted information (as defined in Section 5.3)
can be represented using y or fewer units of information. We call this quantity the maximal utility
of information, denoted U(y). For small values of y, an optimal characterization will convey only
large-scale features of the system. As y increases, smaller-scale features will be progressively included.
For a given system A, the maximal amount of scale-weighted information that can be represented,
U(y), is constrained not only by the information limit y, but also by the pattern of information overlaps
in A—that is, the structure of A. More strongly interdependent systems allow for larger amounts of
scale-weighted information to be described using the same amount of information y.

We define the marginal utility of information as the derivative of maximal utility: M(y) = U′(y).
M(y) quantifies how much scale-weighted information each additional unit of information can impart.
The value of M(y), being the derivative of scale-weighted information with respect to information,
has units of scale. M(y) declines steeply for rigid or strongly interdependent systems, and shallowly
for weakly interdependent systems.

We now develop the formal definition of U(y). We call any entity d that imparts information
about system A a descriptor of A. The utility of a descriptor will be defined as a quantity of the form

u = ∑
a∈A

σ(a)I(d; a). (18)

For this to be a meaningful expression, we consider each descriptor d to be an element of an augmented
system A† = (A†, HA†), whose components include d as well as the original components of A, which is
a subsystem of A†. The amount of information that d conveys about any subset V ⊂ A of components
is given by

I(d; V) = IA†(d; V)

= HA†(d) + HA†(V)− HA†
({d} ∪ V

)
.

(19)

For example, the amount that d conveys about a component a ∈ A can be written
I(d; a) = H(d) + H(a)− H(d, a). I(d; A) is the total information d imparts about the system. Because
the original system A is a subsystem of A†, the augmented information function HA† coincides
with HA on subsets of A.

The quantities I(d; V) are constrained by the structure of A and the axioms of information
functions. Applying these axioms, we arrive at the following constraints on I(d; V):

(i) 0 ≤ I(d; V) ≤ H(V) for all subsets V ⊂ A.
(ii) For any pair of nested subsets W ⊂ V ⊂ A, 0 ≤ I(d; V)− I(d; W) ≤ H(V)− H(W).
(iii) For any pair of subsets V, W ⊂ A,

I(d; V) + I(d; W)− I(d; V ∪ W)− I(d; V ∩ W) ≤ H(V) + H(W)− H(V ∪ W)− H(V ∩ W).

To obtain the maximum utility of information, we interpret the values I(d; V) as variables subject
to the above constraints. We define U(y) as the maximum value of the utility expression, Equation (18),
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as I(d; V) vary subject to constraints (i)–(iii) and that the total information d imparts about A is less
than or equal to y: I(d; A) ≤ y.

U(y) characterizes the maximal amount of scale-weighted information that could in principle
be conveyed about A using y or less units of information, taking into account the information-sharing
in A and the fundamental constraints on how information can be shared. U(y) is well-defined since
it is the maximal value of a linear function on a bounded set. Moreover, elementary results in linear
programming theory [68] imply that U(y) is piecewise linear, increasing and concave in y.

The above results imply that the marginal utility of information, M(y) = U′(y), is piecewise
constant, positive and nonincreasing. The MUI thus avoids the issue of counterintuitive negative
values. The value of M(y) can be understood as the additional scale units that can be described by
an additional bit of information, given that the first y bits have been optimally utilized. Code for
computing the MUI has been developed and is available online [69].

The marginal utility of information has the following additional properties:

1. Conservation law: The total area under the curve M(y) equals the total scale-weighted information
of the system: ∫ ∞

0
M(y) dy = S(DA). (20)

This property follows from the observation that, since M(y) is the derivative of U(y), the area
under this curve is equal to the maximal utility of any descriptor, which is equal to S(DA) since
utility is defined in terms of scale-weighted information.

2. Total system information: The marginal utility vanishes for information values larger than the total
system information, M(y) = 0 for y > H(A), since, for higher values, the system has already
been fully described.

3. Additivity: If A separates into independent subsystems B and C, then

UA(y) = max
y1+y2=y
y1,y2≥0

(UB(y1) + UC(y2)) . (21)

The proof follows from recognizing that, since information can apply either to B or to C but not
both, an optimal description allots some amount y1 of information to subsystem B, and the rest,
y2 = y − y1, to subsystem C. The optimum is achieved when the total maximal utility over these
two subsystems is maximized. Taking the derivative of both sides and invoking the concavity of
U yields a corresponding formula for the marginal utility M:

MA(y) = min
y1+y2=y
y1,y2≥0

max
{

MB(y1), MC(y2)
}

. (22)

Equations (21) and (22) are proven in Appendix E. This additivity property can also be expressed
as the reflection (generalized inverse) of M. For any piecewise-constant, nonincreasing function
f , we define the reflection f̃ as

f̃ (x) = max{y : f (y) ≤ x}. (23)

A generalized inverse [15] is needed since, for piecewise constant functions, there exist x-values
for which there is no y such that f (y) = x. For such values, f̃ (x) is the largest y such that f (y)
does not exceed x. This operation is a reflection about the line f (y) = y, and applying it twice
recovers the original function. If A comprises independent subsystems B and C, the additivity
property, Equation (22), can be written in terms of the reflection as

M̃A(x) = M̃B(x) + M̃C(x). (24)
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Equation (24) is proven in Appendix E.

Plots of the MUI for our four running examples are shown in Figure 5. The most interesting case
is the parity bit system, Example D, for which the marginal utility is

M(y) =

{
3
2 0 ≤ y ≤ 2

0 y > 2.
(25)

The optimal description scheme leading to this marginal utility is shown in Figure 6. The marginal
utility of information M(y) captures the intermediate level of interdependency among components in
Example D, in contrast to the maximal independence and maximal interdependence in Examples A and
B, respectively (Figure 5). For an N-component generalization of Example D, in which each component
acts as a parity bit for all others, we show in Appendix F that the MUI is given by

M(y) =

{
N

N−1 0 ≤ y ≤ N − 1

0 y > N − 1.
(26)

The MUI is similar in spirit to, and can be approximated by, principal components analysis,
Information Bottleneck methods [70–73], and other methods that characterize the best possible
description of a system using limited resources [66,74–79]. We discuss these connections in Section 10.3.

Figure 5. (A–D) Marginal Utility of Information for Examples A through D. The total area under
each curve is

∫ ∞
0 M(y) dy = S(D) = 3. For Example A, all components are independent, and there

is no more efficient description scheme than to describe one component at a time, with marginal
utility 1. In Example B, the system state can be communicated with a single bit, with marginal utility 3.
For Example C, the most efficient description scheme describes the fully correlated pair first (marginal
utility 2), followed by the third component (marginal utility 1). The MUI for Example C can also
be deduced from the additivity property, Equation (22). Examples A–C are all independent block
systems; it follows from the results of Section 8 that their MUI functions are reflections (generalized
inverses) of the corresponding complexity profiles shown in Figure 4. For Example D, the optimal
description scheme is illustrated in Figure 6, leading to a marginal utility of M(y) = 3/2 for 0 ≤ y ≤ 2
and M(y) = 0 for y > 2.
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Figure 6. Information overlaps in the parity bit system, Example D of Figure 2, augmented with
a descriptor d having information content y ≤ 2 and maximal utility. Symmetry considerations imply
that such a descriptor must convey an equal amount of information about each of the three components
a, b and c. Constraints (i)–(iv) then yield that the amount described about each component must equal
y/2 for 0 ≤ y ≤ 2, and 1 for y > 2. Thus the maximal utility is U(y) = 3y/2 for 0 ≤ y ≤ 2, and 3
for y > 2, leading to the marginal utility given in Equation (25) and shown in Figure 5D.

8. Reflection Principle for Systems of Independent Blocks

For systems with a particularly simple structure, the complexity profile and the MUI turn out to
be reflections (generalized inverses) of each other. The simplest case is a system consisting of a single
component a. In this case, according to Equation (14), the complexity profile C(x) has value H(a) for
0 ≤ x ≤ σ(a) and zero for x > σ(a):

C(x) = H(a)Θ
(
σ(a)− x

)
. (27)

Above, Θ(y) is a step function with value 1 for y ≥ 0 and 0 otherwise. To compute the marginal
utility of information for this system, we observe that a descriptor with maximal utility has I(d; a) =
min{y, H(a)} for each value of the informational constraint y, and it follows that

M(y) = σ(a)Θ
(

H(a)− y
)
. (28)

We observe that C(x) and M(x) are reflections of each other: C(x) = M̃(x), where M̃(x) is defined
in Equation (23).

We next consider a system whose components are all independent of each other. Additivity over
independent subsystems (Property 3 in Sections 6 and 7), together with Equations (27) and (28), implies

C(x) = M̃(x) = ∑
a∈A

H(a)Θ
(
σ(a)− x

)
. (29)

Thus the reflection principle holds for systems of independent components.
More generally, one can consider a system of “independent blocks”—that is, a system that can

be partitioned into independent subsystems, where the components of each subsystem are completely
interdependent (see Section 5.4 for definitions.) Running example C is such a system, in that it can
be partitioned into independent subsystems with component sets {a, c} and {b}, and each of these
sets is completely interdependent. We show in Appendix B that any set of completely interdependent
components can be replaced by a single component, with scale equal to the sum of the scales of
the replaced components, without altering the complexity profile or MUI. Thus, for systems of
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independent blocks, each block can be collapsed into a single component, whereupon Equation (29)
applies and the reflection principle holds.

We have thus established that for any system of independent blocks, the complexity profile and
the MUI are reflections of each other C(x) = M̃(x). However, this relationship does not hold for every
system. C(x) and M(y) are not reflections of each other in the case of Example D, and, more generally,
for a class of systems that exhibit negative information, as shown in Equation (26).

9. Application to Noisy Voter Model

As an application of our framework, we compute the marginal utility of information for the noisy
voter model [43] on a complete graph. This model is a stochastic process with N “voters”. Each voter,
i = 1, . . . , N, can exist in one of two states, which we label ηi ∈ {−1, 1}. Each voter updates its state at
Poisson rate 1. With probability u it chooses ±1 with equal probability; otherwise, with probability
1 − u, it copies a random other individual. Here u ∈ [0, 1] is noise (or mutation) parameter that
mediates the level of interdependence among voters. It follows that voter i flips its state (from +1 to
−1 or vice versa) at Poisson rate

λi =
u
2
+

1 − u
N − 1

N

∑
j=1

|ηj − ηi|
2

. (30)

For u � 1, voters are typically in consensus; for u = 1, all voters behave independently. The noisy
voter model is mathematically equivalent to the Moran model [80] of neutral drift with mutation,
and to a model of financial behavior on networks [23,81].

This model has a stationary distribution in which the number m of voters in the +1 state has
a beta-binomial distribution (Figure 7) [18,82]:

P(m) ∝
Γ(N + M − m)Γ(M + m)

Γ(N + 1 − m)Γ(1 + m)
, M =

(N − 1)u
2(1 − u)

. (31)

Figure 7. Stationary probability distribution for the noisy voter model [43] on a complete graph of
size 10. Plot shows the probability of finding a given number i of voters in the +1 state, for different
values of the noise (mutation) parameter u, according to Equation (31). For small values of u, voters
are typically in consensus (m = 0 or m = N); as u increases their behavior becomes more independent.

For small u, P is concentrated on the “consensus” states 0 and N, converging to the uniform
distribution on these states as u → 0. For large u, P exhibits a central tendency around m = N/2,
and converges to the binomial distribution with p = 1/2 as u → 1. These two modes are separated
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by the critical value of uc = 2/(N + 1), at which M = 1 and P becomes the uniform distribution on
{0, . . . , N}. This is the scenario in which mutation exactly balances the uniformizing effect of faithful
copying. As u → 0, P converges to the uniform distribution on the states 0 and N.

The noisy voter model on a complete graph possesses exchange symmetry, meaning its behavior
is preserved under permutation of its components. As a consequence, if subsets U and V have the same
cardinality, |U| = |V|, then they have the same information, H(U) = H(V). The information function
is therefore fully characterized by the quantities H1, . . . , HN , where Hn is the information in each
subset with n ≤ N components.

To calculate the MUI for systems with exchange symmetry, it suffices to consider descriptors
that also possess exchange symmetry, so that I(d; U) = I(d; V) whenever |U| = |V|. Denoting by
In the information that a descriptor imparts about a subset of size n, constraints (i)–(iii) of Section 7
reduce to

(i) 0 ≤ In ≤ Hn for all n ∈ {1, . . . , N},
(ii) 0 ≤ In − In−1 ≤ Hn − Hn−1 for all n ∈ {1, . . . , N},
(iii) In + Im − In+m−� − I� ≤ Hn + Hm − Hn+m−� − H� for all n, m, � ∈ {1, . . . , N}.

The maximum utility of information U(y) is the maximum value of NI1, subject to (i)–(iii) above
and IN ≤ y. Since the number of constraints is polynomial in N, the maximum utility—and therefore
the MUI—are readily computable.

The complexity profile and MUI for this model (Figure 8) both capture how the interdependence of
voters is mediated by the noise parameter u. For small u, conformity among voters leads to large-scale
information (positive C(x) for large x) and enables efficient partial descriptions of the system (large
M(y) for small y). For large u, weak dependence among voters means that most information applies at
small scale (C(x) decreases rapidly) and optimal descriptions cannot do much better than to describe
each component singly (M(y) = 1 for most values of y). Unlike the case of independent block
systems (Section 8), the complexity profile and MUI are not reflections of each other for this model,
but the reflection of each is qualitatively similar to the other.

(a) (b)

Figure 8. (a) Complexity profile and (b) marginal utility of information (MUI) for the noisy voter
model [43] on a complete graph of size 10. The MUI is approximated by computing the (exact) maximal
utility of information U(y) at a discrete set of points, and then approximating M(y) = U′(y) ≈ ΔM/Δy.
For small u, since voters are largely coordinated, much of their collective behavior can be described
using small amounts of large-scale information. This leads to positive values of C(x) for large x, and
large values of M(y) for small y. For large u, voters are largely independent, and therefore most
information applies to one voter at a time. In this case it follows that C(x) decreases rapidly to zero,
and M(y) = 1 for most values of y. For both indices, the area under each curve is 10, which is the sum
of the Shannon information of each voter (i.e., the total scale-weighted information), as guaranteed by
Equation (20). For all values of u, the MUI appears to take a subset of the values 10/n for n = 1, . . . , 10.
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10. Discussion

10.1. Potential Applications

Here we have presented a multiscale extension of information theory, along with two quantitative
indices, as tools the analysis of structure in complex systems. Our generalized, axiomatic definition
of information enables this framework to be applied to a variety of physical, biological, social,
and economic systems. In particular, we envision applications to spin systems [1,17,83,84], gene
regulatory systems [85–91], neural systems [92–94], biological swarming [95–97], spatial evolutionary
dynamics [82,98,99], and financial markets [22,59,81,100–105].

In each of these systems, multiscale information theory enables the analysis of such questions
as: Do components (genes, neurons, investors, etc.) behave largely independently, or are their
behaviors strongly interdependent? How significant are intermediate scales of organization such as
the genetic pathway, the cerebral lobe, or the financial sector? Can other “hidden” scales of organization
be identified? Do the scales of behavior vary across different instances of a particular kind of system
(e.g., gene regulation in stem versus differentiated cells; neural systems across taxa)? And how do
the scales of organization in these systems compare to the scales of challenges they face?

The realization of these applications faces a computational hurdle: a full characterization
of a system’s structure requires the computation of 2N informational quantities. Thus for large
real-world systems, efficient approximations must be developed. Fortunately, there already exist efficient
approximations to the complexity profile [15], and approximations to the MUI can be obtained using
restricted description schemes as we discuss in Section 10.3 below.

10.2. Multivariate and Multiscale Information

The idea of using entropy or information to quantify a system’s structure has deep roots.
One of the earliest and most influential attempts was Schrödinger’s concept of negative entropy or
negentropy [106,107], which he introduced to quantify the extent to which a living system deviates
from maximum entropy. Negentropy can be expressed in our formalism as J = ∑a∈A H(a)− H(A).
This same quantity is known in other contexts as multi-information [38,65,66], integration [40] or intrinsic
information [67], and is used to characterize the extent of statistical dependence among a set of random
variables. Supposing that each component of our system has scale one, we have the following
equivalent characterizations of this quantity:

J = S(DA)− I(DA) =
∞

∑
k=1

C(k)− C(1) =
∞

∑
k=2

C(k). (32)

Equation (32) makes clear that while J quantifies the deviation of a system from full independence,
it does not identify the scale at which this deviation arises: all information at scales 2 and higher
is subsumed into a single quantity.

Other proposed information-theoretic measures of structure also aggregate over scales in various
ways. For example, the excess entropy, as defined by Ay et al. [41], is equal to C(2), the amount
of information that applies at scales 2 and higher. Another example is the complexity measure of
Tononi et al. [40], which is defined for an N-component system as

T =
N

∑
k=1

⎛
⎜⎜⎝ 1

(N
k )

∑
U⊂A
|U|=k

H(U)− k
N

H(A)

⎞
⎟⎟⎠ . (33)

Using Equation (5), we can re-express T as a weighted sum of the information in each irreducible
dependency, where each dependency x is weighted by a particular combinatorial function of its
scale s(x):
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T = ∑
x∈DA

I(x)

(
N−s(x)

∑
k=1

(N−s(x)
k )

(N
k )

− N − 1
2

)
. (34)

In this equation it is assumed that each it is assumed that each component has scale 1, so that s(x)
equals the number of components included in dependency x.

These previous measures can be understood as attempts to capture the idea that complex systems
are not merely the sums of their parts—that is, they exhibit multiple scales of organization. We argue
that this idea is best captured by making the notion of scale explicit, as a complementary axis to
information. Doing so provides a formal basis for ideas that are implicit in earlier approaches.

The amount of information I that we assign to each of a system’s dependencies is known
in the context of Shannon information as the multivariate mutual information or interaction
information [30–33,37–39]. The use of multivariate mutual information is sometimes criticized [36,62],
in part because it yields negative values that may be difficult to interpret. Such negative values arise for
the complexity profile, but are avoided by the MUI. The value of M(y) is always nonnegative and has
a consistent interpretation as the additional scale units describable by an additional bit of information.
The notion of descriptors also avoids negative values, since the information that a descriptor d provides
about a subset U of components is always nonnegative: I(d; U) ≥ 0.

Finally, some recent work raises the important question of whether measures based on shared
information suffice to characterize the structure of a system. James and Crutchfield [63] exhibit
pairs of systems of random variables that have qualitatively different probabilistic relationships,
but the same joint Shannon information H(U) for each subset U of variables. As a consequence,
the shared information I, complexity profile C, and marginal utility of information M, are the same for
the two systems in such a pair. These examples demonstrate that probabilistic relationships among
variables need not be determined by their information-theoretic measures, raising the question as to
whether structure can be defined in terms of those measures. This conclusion, however, is dependent on
the definition of the variables that are used to identify system states. To illustrate, if we take a particular
system and combine variables into fewer ones with more states, the fewer information-theoretic
measures that are obtained in the usual way become progressively less distinguishing of system
probabilities. In the extreme case of a single variable having all of the possible states of the system, there
is only one information measure. In the reverse direction, we have found [108] that a given system
of random variables can be augmented with additional variables, the values of which are completely
determined by the original system, in such a way that the probabilistic structure of the original system
is uniquely determined by information overlaps in the augmented system. Thus, in this sense, moving to
a more detailed representation can reveal relationships that are obscured in higher-level representations,
and information theory may be sufficient to define structure in a general way.

10.3. Relation of the MUI to Other Measures

Our new index of structure, the MUI, is philosophically similar to data-reduction or dimensionality
reduction techniques like principal component analysis, multidimensional scaling and detrended
fluctuation analysis [74,76]; to the Information Bottleneck methods of Shannon information theory [70–73];
to Kolmogorov structure functions and algorithmic statistics in Turing-machine-based complexity
theory [77–79]; to Gell-Mann and Lloyd’s “effective complexity” [75]; and to Schneiderman et al.’s
“connected information” [66]. All of these methods are mathematical techniques for characterizing the
most important behaviors of the system under study. Each is an implementation of the idea of finding
the best possible partial description of a system, where the resources available for this description (bits,
coordinates, etc.) are constrained.

The essential difference from these previous measures is that the MUI is not tied to any particular
method for generating partial descriptions. Rather, the MUI is defined in terms of optimally effective
descriptors: for each possible amount of information invested in describing the system, the MUI
considers the descriptor that provides the best possible theoretical return (in terms of scale-weighted
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information) on that investment. These returns are limited only by the structure of the system being
described and the the fundamental constraints on information as encapsulated by our axioms.

In some applied contexts, it may be difficult or impossible to realize these theoretical maxima,
due to constraints beyond those imposed by the axioms of information functions. It is often useful
in these contexts to consider a particular “description scheme”, in which descriptors are restricted to
be of a particular form. Many of the data reduction and dimensionality reduction techniques described
above can be understood as finding an optimal description of limited information using a specified
description scheme. In these cases, the maximal utility found using the specified description scheme
is in general less than the theoretical optimum. Calculating the marginal utility under a particular
description scheme yields an approximation to the MUI.

10.4. Multiscale Requisite Variety

The discipline of cybernetics, an ancestor to modern control theory, used Shannon’s information
theory to quantify the difficulty of performing tasks, a topic of relevance both to organismal survival
in biology and to system regulation in engineering. Ashby [109] considered scenarios in which
a regulator device must protect some important entity from the outside environment and its disruptive
influences. Successful regulation implies that if one knows only the state of the protected component,
one cannot deduce the environmental influences; i.e., the job of the regulator is to minimize mutual
information between the protected component and the environment. This is an information-theoretic
statement of the idea of homeostasis. Ashby’s “Law of Requisite Variety” states that the regulator’s
effectiveness is limited by its own information content, or variety in cybernetic terminology.
An insufficiently flexible regulator will not be able to cope with the environmental variability.

Multiscale information theory enables us to overcome a key limitation of the requisite variety
concept. In the framework of traditional cybernetics [109], each action of the environment requires
a specific, unique reaction on the part of the regulator. This framework neglects the important difference
between large-scale and fine-scale impacts. Systems may be able to absorb fine-scale impacts without
any specific response, whereas responses to large-scale impacts are potentially critical to survival.
For example, a human being can afford to be indifferent to the impact of a single molecule, whereas
a falling rock (which may be regarded as the collective motion of many molecules) cannot be neglected.
Ashby’s Law does not make this distinction; indeed, there is no framework for this distinction
in traditional information theory, since the molecule and the rock can be specified using the same
amount of information.

This limitation can be overcome by a multiscale generalization of Ashby’s Law [14], in which
the responses of the system must occur at a scale appropriate to the environmental challenge. To protect
against infection, for example, organisms have physical barriers (e.g., skin), generic physiological
responses (e.g., clotting, inflammation) and highly specific adaptive immune responses, involving
interactions among many cell types, evolved to identify pathogens at the molecular level. The evolution
of immune systems is the evolution of separate large- and small-scale countermeasures to threats,
enabled by biological mechanisms for information transmission and preservation [110]. By allowing
for arbitrary intrinsic scales of components, and a range of different information functions, our work
provides an expanded mathematical foundation for the multiscale generalization of Ashby’s Law.

10.5. Mechanistic versus Informational Dependencies

Information-theoretic measures of a system’s structure are essentially descriptive in nature.
The tools we have proposed are aimed at identifying the scales of behavior of a system, but not
necessarily the causes of this behavior. Importantly, causal influences at one scale can produce
correlations at another. For example, the interactions in an Ising spin system are pairwise in character:
the energy of a state depends only on the relative spins of neighboring pairs. These pairwise couplings
can, however, give rise to long-range patterns [27]. Similarly, in models of coupled oscillators, dyadic
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physical interactions can lead to global synchronization [111]. Thus local interactions can create
large-scale collective behavior.

11. Conclusions

Information theory has made, and will continue to make, formidable contributions to all areas of
science. We argue that, in applying information theory to the study of complex systems, it is crucial
to identify the scales at which information applies, rather than collapsing redundant or overlapping
information into a raw number of independent bits. The multiscale approach to information theory
falls squarely within the tradition of statistical physics—itself born of a marriage between probability
theory and classical mechanics. By providing a general axiomatic framework for multiscale information
theory, along with quantitative indices, we hope to deepen, clarify, and expand the mathematical
foundations of complex systems theory.
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Appendix A. Total Scale-Weighted Information

Here we prove two results regarding the total scale-weighted information of a system, S(DA).
First we prove Equation (11), which shows that S(DA) depends only on the information and scale of
each individual component:

Theorem A1. For any system A,
S(DA) = ∑

a∈A
σ(a)H(a). (A1)

Proof. The proof amounts to a rearrangement of summations. We begin with the definition of
scale-weighted information,

S(DA) = ∑
x∈DA

s(x)I(x). (A2)

Substituting the definition of s(x), Equation (8), and rearranging yields

S(DA) = ∑
x∈DA

⎛
⎜⎝ ∑

a∈A
x includes a

σ(a)

⎞
⎟⎠ I(x)

= ∑
a∈A

σ(a) ∑
x∈DA

x includes a

I(x)

= ∑
a∈A

σ(a)I(δa)

= ∑
a∈A

σ(a)H(a).

Next we prove Equation (17) showing that the area under the complexity profile is equal to S(DA):

Theorem A2. For any system A, ∫ ∞

0
C(y) dy = S(DA). (A3)
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Proof. We begin by substituting the definition of C(y):

∫ ∞

0
C(y) dy =

∫ ∞

0
I
({x ∈ DA : σ(x) ≥ y}) dy

=
∫ ∞

0

⎛
⎜⎜⎝ ∑

x∈DA
y≤σ(x)

I(x)

⎞
⎟⎟⎠ dy.

We then interchange the sum and integral on the right-hand side and apply Theorem A1:

∫ ∞

0
C(y) dy = ∑

x∈DA

(
I(x)

∫ σ(x)

0
dy

)

= ∑
x∈DA

σ(x)I(x)

= S(DA).

Appendix B. Complete Interdependence and Reduced Representations

We mentioned in Section 5.4 that if a set of components is completely interdependent, they
can be replaced by a single component, with scale equal to the sum of the scales of the replaced
components. Here we define this replacement formally, and show that it preserves all quantities of
shared information and scale-weighted information.

Let A = (A, HA, σA) be a system. We begin by recalling that a set of components U ⊂ A
is completely interdependent if H(a) = H(U) for each a ∈ U. It follows from the monotonicity axiom
that H(V) = H(U) for any nonempty subset V ⊂ U. The following lemma shows that, in evaluating
the information function H, the entire set U can be replaced by any subset thereof:

Lemma A1. Let U ⊂ A be a set of completely interdependent components. For any nonempty V ⊂ U and
any W ⊂ A,

H(V ∪ W) = H(U ∪ W).

Proof. Applying the strong subadditivity axiom to the sets U and V ∪ (W \ U), and invoking the fact
that H(V) = H(U), we obtain

H(U ∪ W) ≤ H(U) + H
(
V ∪ (W \ U)

)− H(V) = H
(
V ∪ (W \ U)

)
. (A4)

But the monotonicity axiom implies the inequalities H
(
V ∪ (W \ U)

) ≤ H(V ∪ W) ≤ H(U ∪ W).
Combining with (A4) yields H

(
V ∪ (W \ U)

)
= H(V ∪ W) = H(U ∪ W).

Now, for a system A = (A, HA, σA) with a set U of completely interdependent components,
let us define a reduced system A∗ = (A∗, HA∗ , σA∗) in which the set U has been replaced by a single
component u. The reduced set of components is A∗ = (A \ U) ∪ {u}. The information HA∗(V), for
V ⊂ A∗, is defined by

HA∗(V) =

{
HA

(
U ∪ (V \ {u})) if u ∈ V

HA(V) if u /∈ V.
(A5)

Component u of A∗ has scale equal to the sum of the scales of components in U, while all other
components maintain their scale:

σA∗(a) =

{
∑b∈U σA(b) if a = u

σA(a) if a 
= u.
(A6)
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The following theorem shows that shared information and scale-weighted information are
preserved in moving from A to A∗:

Theorem A3. Let U = {u1, . . . , uk} ⊂ A be a set of completely interdependent components of A =

(A, HA, σA), with A \ U = {a1, . . . , am}. Let A∗ = (A∗, HA∗ , σA∗) be the reduced system described above.
Then the shared information IA and IA∗ of the original and reduced systems, respectively, are related by

IA(u1; . . . ; uk; a1; . . . ; a�|a�+1, . . . , am) = IA∗(u; a1; . . . , a�|a�+1, . . . , am)

IA(a1; . . . ; a�|u1, . . . , uk, a�+1, . . . , am) = IA∗(a1; . . . ; a�|u, a�+1, . . . , am)

IA(u1; . . . ; up; a1; . . . ; a�|up+1, . . . , uk, a�+1, . . . , am) = 0 for 1 ≤ p ≤ k − 1.

(A7)

The above equations also hold with the shared information IA and IA∗ replaced by the scale-weighted information
SA and SA∗ , respectively.

In other words, if the irreducible dependency x of A includes either all elements of U or no
elements of U, then, upon collapsing the elements of U to the single component u to obtain the
dependency x∗ of A∗, one has IA∗(x∗) = IA(x) and SA∗(x∗) = SA(x). If x includes some elements of
U and excludes others, then IA(x) = SA(x) = 0. Thus all nonzero quantities of shared information
and scale-weighted information are preserved upon collapsing the set U to the single component u.

Proof. Define the function J on the irreducible dependencies of A by

J(u1; . . . ; uk; a1; . . . ; a�|a�+1, . . . , am) = IA(u1; . . . ; uk; a1; . . . ; a�|a�+1, . . . , am)

− IA∗(u; a1; . . . , a�|a�+1, . . . , am)

J(a1; . . . ; a�|u1, . . . , uk, a�+1, . . . , am) = IA(a1; . . . ; a�|u1, . . . , uk, a�+1, . . . , am)

− IA∗(a1; . . . ; a�|u, a�+1, . . . , am)

J(u1; . . . ; up; a1; . . . ; a�|up+1, . . . , uk, a�+1, . . . , am) = IA(u1; . . . ; up; a1; . . . ; a�|up+1, . . . , uk, a�+1, . . . , am).

In light of Equation (5), the values of J are the unique solution to the system of equations

∑
x∈δ(V)

J(x) =

{
HA(V)− HA∗({u} ∪ V) if V ∩ U 
= ∅

HA(V)− HA∗(V) if V ∩ U = ∅,
(A8)

as V runs over subsets of A. But Lemma A1 and Equation (A5) imply that the right-hand side of
Equation (A8) is zero for each V ⊂ A. Therefore, J(x) = 0 for each x ∈ DA, and Equation (A7) follows.
The claim regarding scale-weighted information then follows from Equations (8), (9) and (A6).

Theorem A3 shows that all nonzero quantities of shared information and scale-weighted
information are preserved when collapsing a set of completely dependent components into a single
component. It follows that the complexity profile and MUI are also preserved under this collapsing
operation.

Appendix C. Properties of Independence

Here we prove fundamental properties of independent subsystems, which will be used
in Appendices D and E to demonstrate the additivity properties of the complexity profile and
MUI. Our first target is the hereditary property of independence (Theorem A4), which asserts that
subsystems of independent subsystems are independent [64]. We then establish in Theorem A5
a simple characterization of information in systems comprised of independent subsystems.

For i = 1, . . . , k, let Ai = (Ai, HAi , σAi ) be subsystems of A = (A, HA, σA), with the subsets
Ai ⊂ A disjoint from each other. We recall the definition of independent subsystems from Section 5.4.
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Definition A1. The subsystems Ai are independent if

H(A1 ∪ . . . ∪ Ak) = H(A1) + . . . + H(Ak).

We establish the hereditary property of independence first in the case of two subsystems
(Lemma A2), using repeated application of the strong subadditivity axiom. We then extend this
result in Theorem A4 to arbitrary numbers of subsystems.

Lemma A2. If A1 and A2 are independent subsystems of A, then for every pair of subsets U1 ⊂ A1, U2 ⊂ A2,
H(U1 ∪ U2) = H(U1) + H(U2).

Proof. The strong subadditivity axiom, applied to the sets A1 and U1 ∪ A2, yields

H(A1 ∪ A2) ≤ H(A1) + H(U1 ∪ A2)− H(U1).

Replacing the left-hand side by H(A1) + H(A2) and adding H(U1)− H(A1) to both sides yields

H(U1) + H(A2) ≤ H(U1 ∪ A2). (A9)

Now applying strong subadditivity to the sets U1 ∪ U2 and A2 yields

H(U1 ∪ A2) ≤ H(U1 ∪ U2) + H(A2)− H(U2).

Combining with (A9) via transitivity, we have

H(U1) + H(A2) ≤ H(U1 ∪ U2) + H(A2)− H(U2).

Adding H(U2)− H(A2) to both sides yields

H(U1) + H(U2) ≤ H(U1 ∪ U2). (A10)

But strong subadditivity applied to U1 and U2 yields

H(U1 ∪ U2) ≤ H(U1) + H(U2)− H(U1 ∩ U2) ≤ H(U1) + H(U2). (A11)

We conclude from inequalities (A10) and (A11) that

H(U1 ∪ U2) = H(U1) + H(U2).

We now use an induction argument to extend the hereditary property of independence to any
number of subsystems.

Theorem A4. If A1, . . . ,Ak are independent subsystems of A, and Ui ⊂ Ai for i = 1, . . . , k then

H(U1 ∪ . . . ∪ Uk) = H(U1) + . . . + H(Uk).

Proof. This follows by induction on k. The k = 1 case is trivial. Suppose inductively that the statement
is true for k = k̃, for some integer k̃ ≥ 1, and consider the case k = k̃ + 1. We have

H(U1) + . . . + H(Uk̃) + H(Uk̃+1) = H(U1 ∪ . . . ∪ Uk̃) + H(Uk̃+1)

by the inductive hypothesis, and

H(U1 ∪ . . . ∪ Uk̃) + H(Uk̃+1) = H(U1 ∪ . . . ∪ Uk̃ ∪ Uk̃+1)
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by Lemma A2 (since the subsystem of A with component set A1 ∪ . . . ∪ Ak̃ is clearly independent from
Ak̃+1). This completes the proof.

We now examine the information in dependencies for systems comprised of independent
subsystems. For convenience, we introduce a new notion: The power system of a system A is a system
2A = (2A, H2A), where 2A is the set of all subsets of A (which in set theory is called the power set of
A). In other words, the components of 2A are the subsets of A. The information function H2A on 2A

is defined by the relation
H2A(U1, . . . , Uk) = HA(U1 ∪ . . . ∪ Uk). (A12)

By identifying the singleton subsets of 2A with the elements of A (that is, identifying each {a} ∈ 2A

with a ∈ A), we can view A as a subsystem of 2A.
This new system allows us to use the following relation: For any integers k, � ≥ 0 and components

a1, a2, b1, . . . , ak, c1, . . . , c� ∈ A,

IA(a1; a2; b1; . . . ; bk|c1, . . . , c�) = IA(a1; b1; . . . ; bk|c1, . . . , c�)

+ IA(a2; b1; . . . ; bk|c1, . . . , c�)− I2A({a1, a2}; b1; . . . ; bk|c1, . . . , c�). (A13)

This relation generalizes the identity I(a1; a2) = H(a1) + H(a2)− H(a1, a2) to conditional mutual
information. It follows directly from the mathematical definition of I, Equation (5) of the main text.

We now show that if B and C are independent subsystems of A, any conditional mutual
information of components B and components of C is zero.

Lemma A3. Let B = (B, HB) and C = (C, HC) be independent subsystems of A. For any components
b1, . . . , bm, b′1, . . . , b′m′ ∈ B and c1, . . . , cn, c′1, . . . , c′n′ ∈ C, with m, n ≥ 1, m′, n′ ≥ 0,

I(b1; . . . ; bm; c1; . . . ; cn|b′1, . . . , b′m′ , c′1, . . . , c′n′) = 0. (A14)

Proof. We prove this by induction. As a base case, we take m = n = 1, m′ = n′ = 0. In this
case, the statement reduces to I(b; c) = 0 for every b ∈ B, c ∈ C. Since Lemma A2 guarantees that
H(b, c) = H(b) + H(c), this claim follows directly from the identity I(b; c) = H(b) + H(c)− H(b, c).

We now inductively assume that the claim is true for all independent subsystems B and C of
a system A, and all m ≤ m̃, n ≤ ñ, m′ ≤ m̃′, and n′ ≤ ñ′, for some integers m̃, ñ ≥ 1, m̃′, ñ′ ≥ 0.
We show that the truth of the claim is maintained when each of m̃, ñ, m̃′, and ñ′ is incremented by one.

We begin by incrementing m to m̃ + 1. Applying (A13) yields

IA
(
bm̃; bm̃+1; b1; . . . ; bm̃−1; c1; . . . ; cñ|b′1, . . . , b′m̃′ , c′1, . . . , c′ñ′

)
= IA

(
bm̃; b1; . . . ; bm̃−1; c1; . . . ; cñ|b′1, . . . , b′m̃′ , c′1, . . . , c′ñ′

)
+ IA

(
bm̃+1; b1; . . . ; bm̃−1; c1; . . . ; cñ|b′1, . . . , b′m̃′ , c′1, . . . , c′ñ′

)
− I2A

({bm̃; bm̃+1}; b1; . . . ; bm̃−1; c1; . . . ; cñ|b′1, . . . , b′m̃′ , c′1, . . . , c′ñ′
)
. (A15)

The first two terms of the right-hand side of (A15) are zero by the inductive hypothesis.
Furthermore, it is clear from the definition of a power system that 2B and 2C are independent
subsystems of 2A. Thus the final term on the right-hand size of (A15) is also zero by the inductive
hypothesis. In sum, the entire right-hand side of (A15) is zero, and the left-hand side must therefore
be zero as well. This proves the claim is true for m = m̃ + 1.

We now increment m′ to m̃′ + 1. From Equation (6) of the main text, we have the relation
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IA
(
b1; . . . ; bm̃; c1; . . . ; cñ|b′1, . . . , b′m̃′ , c′1, . . . , c′ñ′

)
= IA

(
b′m̃′+1; b1; . . . ; bm̃; c1; . . . ; cñ|b′1, . . . , b′m̃′ , c′1, . . . , c′ñ′

)
+ IA

(
b1; . . . ; bm̃; c1; . . . ; cñ|b′1, . . . , b′m̃′ , b′m̃′+1, c′1, . . . , c′ñ′

)
.

The left-hand side above is zero by the inductive hypothesis, and the first term on the right-hand
side is zero by the case m = m̃ + 1 proven above. Thus the second term on the right-hand side is also
zero, which proves the claim is true for m′ = m̃′ + 1.

Finally, the cases n = ñ+ 1 and n′ = ñ′+ 1 follow by interchanging the roles of B and C. The result
now follows by induction.

We next show that for B and C independent subsystems of A, the amounts of information
in dependencies of B are not affected by additionally conditioning on components of C.

Lemma A4. Let B = (B, HB , σB) and C = (C, HC , σC) be independent subsystems of A. For integers m ≥ 1
and m′, n′ ≥ 0, let b1, . . . , bm ∈ B, c1, . . . , cn, c′1, . . . , c′n′ ∈ C. Then

I(b1; . . . ; bm|b′1, . . . , b′m′ , c′1, . . . , c′n′) = I(b1; . . . ; bm|b′1, . . . , b′m′). (A16)

Proof. This follows by induction on n′. The claim is trivially true for n′ = 0. Suppose it is true
in the case n′ = ñ′, for some ñ′ ≥ 0. By Equation (6) we have

I(b1; . . . ; bm|b′1, . . . , b′m′ , c′1, . . . , c′ñ′)

= I(b1; . . . ; bm; c′ñ′+1|b′1, . . . , b′m′ , c′1, . . . , c′n′)

+ I(b1; . . . ; bm|b′1, . . . , b′m′ , c′1, . . . , c′ñ′ , c′ñ′+1). (A17)

The left-hand side is equal to I(b1; . . . ; bm|b′1, . . . , b′m′) by the inductive hypothesis, and the first
term on the right-hand side is zero by Lemma A3. This completes the proof.

Finally, it follows from Lemmas A3 and A4 that if A separates into independent subsystems,
an irreducible dependency of A has nonzero information only if it includes components from only
one of these subsystems. To state this precisely, we introduce a projection mapping from irreducible
dependencies of a system A to those of a subsystem B of A. This mapping, denoted ρAB : DA → DB ,
takes an irreducible dependency among the components in A, and “forgets” those components that are
not in B, leaving an irreducible dependency among only the components in B. For example, suppose
A = {a, b, c} and B = {b, c}. Then

ρAB (a; b|c) = b|c
ρAB (b; c|a) = b; c. (A18)

We can now state the following simple characterization of information in systems comprised of
independent subsystems:

Theorem A5. Let A1, . . . ,Ak be independent subsystems of A, with A = A1 ∪ . . . ∪ Ak. Then for any
irreducible dependency x ∈ DA,

IA(x) =

⎧⎪⎪⎨
⎪⎪⎩

IAi

(
ρAAi

(x)
)
,

if x includes only components of Ai
for some i ∈ {1, . . . , k},

0 otherwise.

(A19)
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Proof. In the case that x includes only components of Ai for some i, the statement follows from
Lemma A4. In all other cases, the claim follows from Lemma A3.

Appendix D. Additivity of the Complexity Profile

Here we prove Property 3 of the complexity profile claimed in Section 6: the complexity profile
is additive over independent systems.

Theorem A6. Let A1, . . . ,Ak be independent subsystems of A. Then

CA(y) = CA1(y) + . . . + CAk (y). (A20)

Proof. We start with the definition
CA(y) = ∑

x∈DA
σ(x)≥y

IA(x). (A21)

Applying Theorem A5 to each term on the right-hand side yields

CA(y) =
k

∑
i=1

∑
x∈DA

x includes only components of Ai
σ(x)≥y

IAi

(
ρAAi

(x)
)

=
k

∑
i=1

∑
x∈DAi
σ(x)≥y

IAi (x) =
k

∑
i=1

CAi (y).

Appendix E. Additivity of Marginal Utility of Information

Here we prove the additivity property of MUI stated in Section 7. We begin by recalling
the mathematical context for this result.

The maximal utility of information, U(y), is defined as the maximal value of the quantity

u = ∑
a∈A

σ(a)I(d; a), (A22)

as the variables in the set {I(d; V)}V⊂A vary subject to the following constraints:

(i) 0 ≤ I(d; V) ≤ H(V) for all V ⊂ A.
(ii) For any W ⊂ V ⊂ A,

0 ≤ I(d; V)− I(d; W) ≤ H(V)− H(W). (A23)

(iii) For any V, W ⊂ A,

I(d; V) + I(d; W)− I(d; V ∪ W)− I(d; V ∩ W) ≤ H(V) + H(W)− H(V ∪ W)− H(V ∩ W).

(iv) I(d; A) ≤ y.

The marginal utility of information, M(y) is defined as the derivative of U(y).
We emphasize for clarity that, while we intuitively regard I(d; V) as the information that

a descriptor d imparts about utility V, we formally treat the quantities {I(d; V)}V⊂A not as functions
of two inputs but as variables subject to the above constraints.

Throughout this appendix we consider a system A = (A, HA) comprising two independent
subsystems, B = (B, HB) and C = (C, HC). This means that A is the disjoint union of B and C, and
H(A) = H(B) + H(C). The additivity property of MUI can be stated as
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MA(y) = min
y1+y2=y
y1,y2≥0

max
{

MB(y1), MC(y2)
}

. (A24)

Alternatively, this property can be stated in terms of the reflection M̃A(x) of MA(y), with
the dependent and independent variables interchanged (see Section 7), as

M̃A(x) = M̃B(x) + M̃C(x). (A25)

The proof of this property is organized as follows. Our first major goal is Theorem A7, which
asserts that I(d; A) = I(d; B)+ I(d; C) when u is maximized. Lemmas A5 and A6 are technical relations
needed to achieve this result. We then apply the decomposition principle of linear programming to
prove an additivity property of UA (Theorem A8). Theorem A9 then deduces the additivity of MA
from the additivity of ÛA. Finally, in Corollary A1, we demonstrate the additivity of the reflected
function M̃A.

Lemma A5. Suppose the quantities {I(d; V)}V⊂A satisfy Constraints (i)–(iv). Then for any subset V ⊂ A,

I(d; V) ≥ I(d; V ∩ B) + I(d; V ∩ C). (A26)

Proof. Applying Constraint (iii) to the sets V ∩ B and V ∩ C we have

I(d; V ∩ B) + I(d; V ∩ C)− I(d; V) ≤ H(V ∩ B) + H(V ∩ C)− H(V). (A27)

But by Lemma A2, H(V) = H(V ∩ B) + H(V ∩ C). Thus the right-hand side above is zero,
which proves the claim.

Lemma A6. Suppose the quantities {I(d; V)}V⊂A satisfy Constraints (i)–(iv). Suppose further that
W ⊂ V ⊂ A and I(d; V) = I(d; V ∩ B) + I(d; V ∩ C). Then I(d; W) = I(d; W ∩ B) + I(d; W ∩ C).

Proof. Constraint (iii), applied to the sets V ∩ B and W ∪ (V ∩ C), yields

I(d; V ∩ B) + I
(
d; W ∪ (V ∩ C)

)− I(d; V)− I(d; W ∩ B)

≤ H(V ∩ B) + H
(
W ∪ (V ∩ C)

)− H(V)− H(W ∩ B). (A28)

By Lemma A2, we have

H
(
W ∪ (V ∩ C)

)
= H(W ∩ B) + H(V ∩ C) (A29)

H(V) = H(V ∩ B) + H(V ∩ C).

With these two relations, the right-hand side of (A28) simplifies to zero. Making this simplification
and substituting I(d; V) = I(d; V ∩ B) + I(d; V ∩ C) (as given), we obtain

I
(
d; W ∪ (V ∩ C)

)− I(d; W ∩ B)− I(d; V ∩ C) ≤ 0. (A30)

We next apply Constraint (iii) to V ∩ C and W, yielding

I(d; V ∩ C) + I(d; W)− I
(
d; W ∪ (V ∩ C)

)− I(d; W ∩ C)

≤ H(V ∩ C) + H(W)− H(W ∪ (V ∩ C)
)− H(W ∩ C). (A31)

Lemma A2 implies H(W) = H(W ∩ B) + H(W ∩ C). Combining this relation with (A29), the
right-hand side of (A31) simplifies to zero. We then rewrite (A31) as
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I(d; W)− I(d; W ∩ C) ≤ I
(
d; W ∪ (V ∩ C)

)− I(d; V ∩ C). (A32)

By (A30), the right-hand side above is less than or equal to I(d; W ∩ B). Making this substitution
and rearranging, we obtain

I(d; W) ≤ I(d; W ∩ B) + I(d; W ∩ C). (A33)

Combining now with Lemma A5, it follows that I(d; W) = I(d; W ∩ B) + I(d; W ∩C) as desired.

Theorem A7. Suppose the quantities {I(d̂; V)}V⊂A maximixe u = ∑a∈A σ(a)I(d; a) subject to Constraints
(i)–(iv) for some 0 ≤ y ≤ H(A). Then

I(d̂; A) = I(d̂; B) + I(d̂; C). (A34)

Proof. Let û = ∑a∈A σ(a)I(d̂; a) be the maximal value of u. By the duality principle of linear
programming, the quantities {I(d̂; V)}V⊂A minimize the value of I(d; A) as {I(d; V)}V⊂A varies
subject to Constraints (i)–(iii) along with the additional constraint u ≥ û. (Informally, the descriptor d̂
achieves utility û using minimal information.)

Assume for the sake of contradiction that I(d̂; A) > I(d̂; B) + I(d̂; C). We will obtain
a contradiction by showing that there is another set of quantities {I(d̃; V)}V⊂A, satisfying (i)–(iii)
and ũ = û, with I(d̃; A) < I(d̂; A). Here, ũ is the utility associated to {I(d̃; V)}V⊂A; that is,
ũ = ∑a∈A σ(a)I(d̃; a). (Informally, we construct a new descriptor d̃ that achieves the same utility
as d̂ using less information.)

To obtain such quantities {I(d̃; V)}V⊂A, we first define S ⊂ 2A as the set of all subsets V ⊂ A
that satisfy

I(d̂; V) > I(d̂; V ∩ B) + I(d̂; V ∩ C). (A35)

We observe that, by Lemma A5, if V /∈ S, then I(d̂; V) = I(d̂; V ∩ B) + I(d̂; V ∩ C). It then follows
from Lemma A6 that if W ⊂ V ⊂ A and W ∈ S, then V ∈ S as well.

Next we choose ε > 0 sufficiently small that, for each V ∈ S, the following two conditions
are satisfied:

(1) I(d̂; V) > I(d̂; V ∩ B) + I(d̂; V ∩ C) + ε,
(2) I(d̂; V) > I(d̂; W) + ε, for all W ⊂ V, W /∈ S.

There is no problem arranging for condition (2) to be satisfied for any particular V ∈ S, since it
follows readily from Constraint (ii) on d̂ that if W ⊂ V and W /∈ S, then I(d̂; V) > I(d̂; W). We also
note that since A is finite, there are only a finite number of conditions to be satisfied as V and W vary,
so it is possible to choose an ε > 0 satisfying all of them.

Having chosen such an ε, we define the quantities {I(d̃; V)}V⊂A by

I(d̃; V) =

{
I(d̂; V)− ε V ∈ S

I(d̂; V) otherwise.
(A36)

In words, we reduce the amount of information that is imparted about the sets in S by an amount
ε, while leaving fixed the amount that is imparted about sets not in S. Intuitively, one could say that
we are exploiting an inefficiency in the amount of information imparted by d̂ about sets in S, and
that the new descriptor d̃ is more efficient in terms of minimizing the information I(d; A) without
sacrificing utility.

We will now show that d̃ satisfies Constraints (i)–(iii) and ũ = û. First, since 0 ≤ I(d̃; V) ≤
I(d̂; V) ≤ H(V) for all V ⊂ A, Constraint (i) is clearly satisfied.

For Constraint (ii), consider any W ⊂ V ⊂ A. If V and W are either both in S or both not in S
then I(d̃; V)− I(d̃; W) = I(d̂; V)− I(d̂; W), and Constraint (ii) is satisfied for d̃ since it is satisfied for d̂.
It only remains to consider the case that V ∈ S and W /∈ S. In this case, we have
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I(d̃; V)− I(d̃; W) = I(d̂; V)− I(d̂; W)− ε > 0, (A37)

since V and ε satisfy condition (2) above. Furthermore,

I(d̃; V)− I(d̃; W) = I(d̂; V)− I(d̂; W)− ε

≤ H(V)− H(W)− ε

< H(V)− H(W).

Thus Constraint (ii) is satisfied.
To verify Constraint (iii), we must consider a number of cases, only one of which is nontrivial.

• If either

– none of V, W, V ∪ W and V ∩ W belong to S,
– all of V, W, V ∪ W and V ∩ W belong to S,
– V and V ∪ W belong to S while W and V ∩ W do not, or
– W and V ∪ W belong to S while V and V ∩ W do not,

then the difference on the left-hand side of Constraint (iii) has the same value for d = d̂ and
d = d̃—that is, the changes in each term cancel out in the difference. Thus Constraint (iii)
is satisfied for d̃ since it is satisfied for d̂.

• If V, W, and V ∪ W belong to S while V ∩ W does not, then

I(d̃; V) + I(d̃; W)− I(d̃; V ∪ W)− I(d̃; V ∩ W)

= I(d̂; V) + I(d̂; W)− I(d̂; V ∪ W)− I(d̂; V ∩ W)− ε.

The left-hand side of Constraint (iii) therefore decreases when moving from d = d̂ to d = d̃.
So Constraint (iii) is satisfied for d̃ since it is satisfied for d̂.

• The nontrivial case is that V ∪ W belongs to S while V, W and V ∩ W do not. Then

I(d̃; V) + I(d̃; W)− I(d̃; V ∪ W)− I(d̃; V ∩ W)

= I(d̂; V) + I(d̂; W)−
(

I(d̂; V ∪ W)− ε
)
− I(d̂; V ∩ W). (A38)

By the definition of S and condition (1) on ε, we have

I(d̂; V ∪ W)− ε > I
(

d̂; (V ∪ W) ∩ B
)
+ I

(
d̂; (V ∪ W) ∩ C

)
I(d̂; V) = I(d̂; V ∩ B) + I(d̂; V ∩ C)

I(d̂; W) = I(d̂; W ∩ B) + I(d̂; W ∩ C)

I(d̂; V ∩ W) = I
(

d̂; (V ∩ W) ∩ B
)
+ I

(
d̂; (V ∩ W) ∩ C

)
.

Substituting into (A38) we have

I(d̃; V) + I(d̃; W)− I(d̃; V ∪ W)− I(d̃; V ∩ W)

< I(d̂; V ∩ B) + I(d̂; W ∩ B)

− I
(
d̂; (V ∪ W) ∩ B

)− I
(
d̂; (V ∩ W) ∩ B

)
+ I(d̂; V ∩ C) + I(d̂; W ∩ C)

− I
(
d̂; (V ∪ W) ∩ C

)− I
(
d̂; (V ∩ W) ∩ C

)
.
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Applying Constraint (iii) on d̂ twice to the right-hand side above, we have

I(d̃; V) + I(d̃; W)− I(d̃; V ∪ W)− I(d̃; V ∩ W)

< H(V ∩ B) + H(W ∩ B)− H
(
(V ∪ W) ∩ B

)− H
(
(V ∩ W) ∩ B

)
+ H(V ∩ C) + H(W ∩ C)− H

(
(V ∪ W) ∩ C

)− H
(
(V ∩ W) ∩ C

)
.

But Lemma A2 implies that H(Z ∩ B) + H(Z ∩ C) = H(Z) for any subset Z ⊂ A. We apply this
to the sets V, W, V ∪ W and V ∩ W to simplify the right-hand side above, yielding

I(d̃; V) + I(d̃; W)− I(d̃; V ∪ W)− I(d̃; V ∩ W) < H(V) + H(W)− H(V ∪ W)− H(V ∩ W),

as required.

No other cases are possible, since, as discussed above, any superset of a set in S must also be in S.
Finally, it is clear that no singleton subsets of A are in S. Thus I(d̃; a) = I(d̂; a) for each a ∈ A,

and it follows that ∑a∈A σ(a)I(d̃; a) = û.
We have now verified that d̃ satisfies Constraints (i)–(iii) and U(d̃) = û. Furthermore, since A ∈ S

by assumption, we have I(d̃; A) < I(d̂; A). This contradicts the assertion that d̂ minimizes I(d; A)

subject to Constraints (i)–(iii) and U(d) ≥ û. Therefore our assumption that I(d̂; A) > I(d̂; B) + I(d̂; C)
was incorrect, and we must instead have I(d̂; A) = I(d̂; B) + I(d̂; C).

Theorem A8. The maximal utility function U(y) is additive over independent subsystems in the sense that

UA(y) = max
y1+y2=y
y1,y2≥0

(UB(y1) + UC(y2)) . (A39)

Proof. For a given y ≥ 0, let {I(d̂; V)}V⊂A maximixe u = ∑a∈A σ(a)I(d; a) subject to Constraints
(i)–(iv). Combining Theorem A7 with Lemma A6, it follows that I(d̂; V) = I(d̂; V ∩ B) + I(d̂; V ∩ C).
We may therefore augment our linear program with the additional constraint,

(v) I(d; V) = I(d; V ∩ B) + I(d; V ∩ C),

for each V ⊂ A, without altering the optimal solution.
Upon doing so, we can use this new constraint to eliminate the variables I(d; V) for V not a subset

of either B or C. We thereby reduce the set of variables from
{

I(d; V)
}

V⊂A to

{
I(d; V)

}
V⊂B ∪ {

I(d; W)
}

W⊂C. (A40)

We observe that this reduced linear program has the following structure: The variables in the set{
I(d; V)

}
V⊂B are restricted by Constraints (i)–(iii) as applied to these variables. Separately, variables

in the set
{

I(d; W)
}

W⊂C are also restricted by Constraints (i)–(iii), as they apply to the variables in this
second set. The only constraint that simultaneously involves variables in both sets is Constraint (iv).
This constraint can be rewritten as

uB + uC ≤ y, (A41)

with
uB = ∑

b∈B
σ(b)I(d; b), uC = ∑

c∈C
σ(c)I(d; c). (A42)

This structure enables us to apply the decomposition principle for linear programs [112] to
decompose the full program into two linear sub-programs, one on the variables

{
I(d; V)

}
V⊂B and one

on
{

I(d; W)
}

W⊂C, together with a coordinating program described by Constraint (iv). The desired
result then follows from standard theorems of linear program decomposition [112].
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Theorem A9. MA is additive over independent subsystems in the sense that

MA(y) = min
y1+y2=y
y1,y2≥0

max
{

MB(y1), MC(y2)
}

. (A43)

Proof. We define the function

F(y1; y) = UB(y1) + UC(y − y1). (A44)

The result of Theorem A8 can then be expressed as

U(y) = max
0≤y1≤y

F(y1; y). (A45)

We choose and fix an arbitrary y-value ỹ ≥ 0, and we will prove the desired result for y = ỹ.
We observe that F(y1; ỹ) is concave in y1 since UB(y1) and UC(ỹ − y1) are. It follows that any local

maximum of F(y1; ỹ) in y1 is also a global maximum. We assume that the maximum of F(y1; ỹ) in y1

is achieved at a single point ŷ1 with 0 < ŷ1 < ỹ. The remaining cases—that the maximum is achieved
at y1 = 0 or y1 = ỹ, or is achieved on a closed interval of y1-values—are trivial extensions of this case.

Assuming we are in the case described above (and again invoking the concavity of F in y1), ŷ1

must be the unique point at which the derivative ∂F
∂y1

(y1; ỹ) changes sign from positive to negative.
This derivative can be written

∂F
∂y1

(y1; ỹ) = MB(y1)− MC(ỹ − y1). (A46)

It follows that ŷ1 is the unique real number in [0, ỹ] satisfying

{
MB(y1) > MC(ỹ − y1) y1 < ŷ1

MB(y1) < MC(ỹ − y1) y1 > ŷ1.
(A47)

From inequalities (A47), and using the fact that MB(y1) and MC(y2) are nonincreasing,
piecewise-constant functions, we see that either MB(y1) decreases at y1 = ŷ1, or MC(y2) decreases at
y2 = ỹ − ŷ1, or both. We analyze these cases separately.

Case A1. MB(y1) decreases at y1 = ŷ1, while MC(y2) is constant in a neighborhood of y2 = ỹ − ŷ1.

Pick ε > 0 sufficiently small so that MC(y2) has constant value for y2 ∈ (ỹ − ŷ1 − ε, ỹ − ŷ1 + ε).
Then inequalities (A47) remain satisfied with ỹ replaced by any y ∈ (ỹ − ε, ỹ + ε) and ŷ1 fixed. Thus
for y in this range, we have

UA(y) = UB(ŷ1) + UC(y − ŷ1). (A48)

Taking the derivative of both sides in y at y = ỹ yields

MA(ỹ) = MC(ỹ − ŷ1). (A49)

We claim that
MC(ỹ − ŷ1) = min

0≤y1≤ỹ
max

{
MB(y1), MC(ỹ − y1)

}
. (A50)

To prove this claim, we first note that, by the inequalities (A47),

max
{

MB(y1), MC(ỹ − y1)
}
=

{
MB(y1) y1 < ŷ1

MC(ỹ − y1) y1 > ŷ1.
(A51)
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Since both MB and MC are piecewise-constant and nonincreasing, the minimax in Equation (A50)
is achieved for values y1 near ŷ1. We therefore can restrict to the range y1 ∈ (ŷ1 − ε, ŷ1 + ε). Combining
Equation (A51) with the conditions defining Case A1 and the definition of ε, we have

max
{

MB(y1), MC(ỹ − y1)
}
= MB(y1) > MC(ỹ − ŷ1) for y1 ∈ (ŷ1 − ε, ŷ1)

max
{

MB(y1), MC(ỹ − y1)
}
= MC(ỹ − y1) = MC(ỹ − ŷ1) for y1 ∈ (ŷ1, ŷ1 + ε).

(A52)

Thus the minimax in Equation (A50) is achieved at a value of MC(ỹ − ŷ1) when y1 ∈ (ŷ1, ŷ1 + ε),
verifying Equation (A50). Combining with Equation (A49), we have

MA(y) = min
y1+y2=y
y1,y2≥0

max
{

MB(y1), MC(y2)
}

, (A53)

proving the theorem in this case.

Case A2. MB(y1) is constant in a neighborhood of y1 = ŷ1, while MC(y2) decreases at y2 = ỹ − ŷ1.

In this case, we define ŷ2 = ỹ − ŷ1. The proof then follows exactly as in Case 1, with B and C
interchanged, and the subscripts 1 and 2 interchanged.

Case A3. MB(y1) decreases at y1 = ŷ1 and MC(y2) decreases at y2 = ỹ − ŷ1.

This case only occurs at the y-values for which UA(y) changes slope and MA(y) changes value.
At these nongeneric points, MA(y) (defined as the derivative of UA(y)) is undefined. We therefore
disregard this case.

We now define M̃A(x) as the reflection of MA(y) with the dependent and independent variables
interchanged. Since MA is positive and nonincreasing, M̃A is a well-defined function given by
the formula

M̃A(x) = max{y : MA(y) ≤ x}. (A54)

The following corollary gives a simpler expression of the additivity property of MUI.

Corollary A1. If A consists of independent subsystems B and C, then M̃A(x) = M̃B(x) + M̃C(x) for all x ≥ 0.

Proof. Combining the above formula for M̃A(x) with the result of Theorem A9, we write

M̃A(x) = max{y : MA(y) ≤ x}

= max

⎧⎪⎨
⎪⎩y :

⎛
⎜⎝ min

y1+y2=y
y1,y2≥0

max
{

MB(y1), MC(y2)
}⎞⎟⎠ ≤ x

⎫⎪⎬
⎪⎭

= max
{

y :
(
∃y1, y2 ≥ 0.

(
y1 + y2 = y ∧ max

{
MB(y1), MC(y2)

} ≤ x
) )}

= max
{
(y1 + y2) :

(
y1, y2 ≥ 0 ∧ MB(y1) ≤ x ∧ MC(y2) ≤ x

)}
= max{y1 : MB(y1) ≤ x}+ max{y2 : MB(y2) ≤ x}
= M̃B(x) + M̃C(x).

Appendix F. Marginal Utility of Information for Parity Bit Systems

Here we compute the MUI for a family of systems which exhibit exchange symmetry and have
a constraint at the largest scale. Systems in this class have N ≥ 3 components and information function
given by
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H(V) = H|V| =
{
|V| |V| ≤ N − 1

N − 1 |V| = N.
(A55)

This includes Example D as the case N = 3. More generally, this family includes systems of N − 1
independent random bits together with one parity bit.

Since these systems have exchange symmetry, we can apply the argument of Section 9 to obtain
the reduced set of constraints:

(i) 0 ≤ In ≤ Hn for all n ∈ {1, . . . , N},
(ii) 0 ≤ In − In−1 ≤ Hn − Hn−1 for all n ∈ {1, . . . , N},
(iii) In + Im − In+m−� − I� ≤ Hn + Hm − Hn+m−� − H� for all n, m, � ∈ {1, . . . , N},
(iv) IN ≤ y.

Above, In denotes information that a descriptor imparts about any set of n components, 0 ≤ n ≤ N.
Constraint (ii), in the case n = N, yields

0 ≤ IN − IN−1 ≤ HN − HN−1 = 0, (A56)

and therefore,
IN−1 = IN . (A57)

Constraint (iii), in the case m + n ≤ N − 1, yields

Im + In − Im+n ≤ Hm + Hn − Hm+n = 0, (A58)

and therefore
Im + In ≤ Im+n for all m, n ≥ 0 with m + n ≤ N − 1. (A59)

By iteratively applying Equation (A59) we arrive at the inequality

(N − 1)I1 ≤ IN−1. (A60)

Combining (A57), (A60) and Constraint (iv), we have

I1 ≤ IN−1

N − 1
=

IN
N − 1

≤ y
N − 1

. (A61)

By definition, the utility of a descriptor is

u = NI1. (A62)

Combining with (A61) yields the inequality

u ≤ Ny
N − 1

. (A63)

Inequality (A63) places a limit on the utility of any descriptor of this system. To complete
the argument, we exhibit a descriptor for which equality holds in (A63). This descriptor is defined by

Im =

{
m

N−1 min{y, N − 1} 0 ≤ m ≤ N − 1

min{y, N − 1} m = N.
(A64)

It is straightforward to verify that Constraints (i)–(iv) are satisfied by this descriptor. Combining
Equations (A62) and (A64), the utility of this descriptor is
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u = min
{

Ny
N − 1

, N
}

. (A65)

By inequality (A63), this descriptor achieves optimal utility. Taking the derivative with respect to
y, we obtain the marginal utility of information

M(y) =

{
N

N−1 0 ≤ y ≤ N − 1

0 y > N − 1.
(A66)

Setting N = 3, we recover the MUI for example D as stated in the main text, Equation (25).
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Abstract: Williams and Beer (2010) proposed a nonnegative mutual information decomposition, based
on the construction of information gain lattices, which allows separating the information that a set of
variables contains about another variable into components, interpretable as the unique information
of one variable, or redundant and synergy components. In this work, we extend this framework
focusing on the lattices that underpin the decomposition. We generalize the type of constructible
lattices and examine the relations between different lattices, for example, relating bivariate and
trivariate decompositions. We point out that, in information gain lattices, redundancy components are
invariant across decompositions, but unique and synergy components are decomposition-dependent.
Exploiting the connection between different lattices, we propose a procedure to construct, in the
general multivariate case, information gain decompositions from measures of synergy or unique
information. We then introduce an alternative type of lattices, information loss lattices, with the
role and invariance properties of redundancy and synergy components reversed with respect to
gain lattices, and which provide an alternative procedure to build multivariate decompositions.
We finally show how information gain and information loss dual lattices lead to a self-consistent
unique decomposition, which allows a deeper understanding of the origin and meaning of synergy
and redundancy.

Keywords: information theory; mutual information decomposition; synergy; redundancy

MSC: 94A15, 94A17

1. Introduction

The aim to determine the mechanisms producing dependencies in a multivariate system, and to
characterize these dependencies, has motivated several proposals to breakdown the contributions to
the mutual information between sets of variables [1]. This problem is interesting from a theoretical
perspective in information theory, but it is also crucial from an empirical point of view in many
fields of systems and computational biology, e.g., [2–6]. For example, in neuroscience breaking down
the contributions to mutual information between sets of variables is fundamental to make any kind
of progress in understanding neural population coding of sensory information. This breakdown
is, in fact, necessary to identify the unique contributions of individual classes of neurons, and of
interactions among them, to the sensory information carried by neural populations [7,8], is necessary
to understand how information in populations of neurons contributes to behavioural decisions [9,10],
and to understand how information is transmitted and further processed across areas [11].

Consider the mutual information I(S; R) between two possibly multivariate sets of variables S
and R, here thought, for the sake of example, as a set of sensory stimuli, S, and neural responses
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R, but generally any sets of variables. An aspect that has been widely studied is how dependencies
within each set contribute to the information. For example, the mutual information breakdown
of [12,13] quantifies the global contribution to the information of conditional dependencies between
the variables in R, and has been applied to study how interactions among neurons shape population
coding of sensory information. Subsequent decompositions, based on a maximum entropy approach,
have proposed to subdivide this global contribution, separating the influence of dependencies of
different orders [14,15]. However, these types of decompositions do not ensure that all terms in the
decomposition are nonnegative and hence should be better interpreted as a comparison of the mutual
information across different alternative system’s configurations [16,17]. Two concepts tightly related
to these types of decompositions are those of redundancy and synergy, e.g., [18]. Redundancy refers
to the existence of common information about S that could be retrieved from different variables
contained in R used separately. Conversely, synergy refers to the existence of information that can
only be retrieved when jointly using the variables in R. Traditionally, synergy and redundancy had
been quantified together, with the measure called interaction information [19] or co-information [20].
A positive value of this measure is considered as a signature of redundancy being present in the system,
while a negative value is associated with synergy, so that redundancy and synergy have traditionally
been considered as mutually exclusive.

The seminal work of [21] introduced a new approach to decompose the mutual information into a
set of nonnegative contributions. Let us consider first the bivariate case. Without loss of generality,
from now on we assume S to be a univariate variable, if not stated otherwise. It was shown in [21] that
the mutual information can be decomposed into four terms:

I(S; 12) = I(S; 1.2) + I(S; 1\2) + I(S; 2\1) + I(S; 12\1, 2). (1)

The term I(S; 1.2) refers to a redundancy component between variables 1 and 2. The terms
I(S; 1\2) and I(S; 2\1) quantify a component of the information that is unique of 1 and of 2, respectively,
that is, some information that can be obtained from one of the variables alone but that cannot be
obtained from the other alone. The term I(S; 12\1, 2) refers to the synergy between the two variables,
the information that is unique for the joint source 12 with respect to the variables alone. Note that in
this decomposition, a redundancy and a synergy component can exist simultaneously. In fact, [21]
showed that the measure of co-information is equivalent to the difference between the redundancy
and the synergy terms of Equation (1). Generally, [21] defined this type of decomposition for any
multivariate set of variables {R}. The key ingredients for this general formulation were the definition
of a general measure of redundancy and the association of each decomposition comprising n variables
to a lattice structure, constructed with different combinations of groups of variables ordered by defining
an ordering relation. We will review this general formulation linking decompositions and lattices in
great detail below.

Different parts of the framework introduced by [21] have generated different levels of consensus.
The conceptual framework of nonnegative decompositions of mutual information, with distinguishable
redundancy and synergy contributions and with lattices underpinning the decompositions, has been
adopted by many others, e.g., [22–24]. Conversely, it has been argued that the specific measure Imin
originally used to determine the terms of the decomposition does not properly quantify redundancy,
e.g., [22,23]. Accordingly, much of the subsequent efforts have focused in finding the right measures
to define the components of the decomposition. From these alternative proposals, some take as the
basic component to derive the terms in the decomposition another measure of redundancy [22,25], but
also a measure of synergy [23], or of unique information [24]. In contrast to Imin, these measures fulfill
the identity axiom [22], introduced to prevent that for S composed by two independent variables,
a redundancy component is obtained for R being a copy of S. Indeed, apart from proposing other
specific measures, subsequent studies have proposed a set of axioms which state desirable properties
of these measures [22,23,26–28]. However, there is no full consensus on which are the axioms that
should be imposed. Furthermore, it has been shown that some of these axioms are incompatible with
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each other [26]. In particular, [26] provided a counterexample illustrating that nonnegativity is not
ensured for the components of the decomposition in the multivariate case if assuming the identity
axiom. Some contributions have also studied the relation between the measures that contain different
number of variables [26,29]. For some specific type of variables, namely multivariate Gaussians with a
univariate S, the equivalence between some of the proposed measure has been proven [30].

To our knowledge, perhaps because of these difficulties in finding a proper measure to construct
the decompositions, less attention has been paid to study the properties of the lattices associated with
the decompositions. We here focus on examining these properties and the basic constituents that are
used to construct the decompositions from the lattices. We generalize the type of lattices introduced
by [21] and we examine the relation between the information-theoretic quantities associated with
different lattices (Section 3.1), discussing when a certain lattice is valid (Section 3.2). We show that the
connection between the components of different lattices can be used to extend to the multivariate case
decompositions for which, to our knowledge, there was currently no available method to determine
their components in the multivariate case, e.g., [23,24]. In particular, we introduce an iterative
hierarchical procedure that allows building decompositions when using as a basic component a
measure of synergy or unique information (Section 3.3). Motivated by this analysis, we introduce a new
type of lattices, namely information loss lattices in contrast to the information gain lattices described
in [21]. We show that these loss lattices are more naturally related to synergy measures, as opposed to
gain lattices more naturally related to redundancy measures (Section 4). The information loss lattices
provide an alternative and more direct procedure to construct the mutual information decompositions
from a synergy measure. This procedure is equivalent to the one used in the information gain lattices
with a redundancy measure [21], and does not require considering the connection between different
lattices, oppositely to the iterative hierarchical procedure. Given these alternative options to build
mutual information decompositions, we ask how consistent the decompositions obtained from each
procedure are. This lead us to identify the existence of dual information gain and loss lattices which,
independently of the procedure used, allow constructing a unique mutual information decomposition,
compatible with the existence of unique notions of redundancy, synergy, and unique information
(Section 5). Other open questions related to the selection of the measures and the axioms are out of the
scope of this work.

2. A Brief Review of Lattice-Based Mutual Information Decompositions

We first review some basic facts regarding the existing decompositions of [21] as a first step for
the extensions we propose in this work. In relation to the bivariate decomposition of Equation (1),
it was also shown in [21] that

I(S; 1) = I(S; 1.2) + I(S; 1\2), (2)

and a similar relation holds for I(S; 2). Accordingly, given the standard information-theoretic
equalities [31]

I(S; 12) = I(S; 1) + I(S; 2|1) (3a)

= I(S; 2) + I(S; 1|2), (3b)

also the conditional mutual information is decomposed as

I(S; 2|1) = I(S; 2\1) + I(S; 12\1, 2), (4)

and analogously for I(S; 1|2). That is, each variable can contain some information that is redundant to
the other and some part that is unique. Conditioning one variable on the other removes the redundant
component of the information but adds the synergistic component, resulting in the conditional
information being the sum of the unique and synergistic terms.
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We now review the construction of the lattices and their relation to the decompositions. A lattice
is composed by a set of collections. This set is defined as

A(R) = {α ∈ P(R)\{∅} : ∀ Ai, Aj ∈ α, Ai � Aj}, (5)

where P(R)\{∅} is the set of all nonempty subsets of the set of nonempty sources that can be formed
from {R}, where a source A is a subset of the variables {R}. That is, each collection α is itself a set
of sources, and each source A is a set of variables. The domain of the collections included in the
lattice is established by the constraint that a collection cannot contain sources that are a superset of
another source in the collection. This restriction is justified in detail in [21], based on the idea that
the redundancy between a source and any superset of it is equal to the information of that source.
Given the set of collections A(R), the lattice is constructed defining an ordering relation between the
collections. In particular:

∀ α, β ∈ A(R), (α � β ⇔ ∀B ∈ β, ∃A ∈ α, A ⊆ B), (6)

that is, for two collections α and β, α � β if for each source in β there is a source in α that is a subset of
that source. This ordering relation is reflexive, transitive, and antisymmetric. The lattices constructed
for the case of n = 2 and n = 3 using this ordering relation are shown in Figure 1A,B. The order
is partial because an order does not exist between all pairs of collections, for example between the
collections at the same level of the lattice. In this work, we use a different notation than in [21], which
allows us to shorten the expressions a bit. For example, instead of writing {1}{23} for the collection
composed by the source containing variable 1 and the source containing variables 2 and 3, we write
1.23, that is, we save the curly brackets that indicate for each source the set of variables and we use
instead a dot to separate the sources.
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C 

D 

B 

1.2.3 

2.3 1.3 1.2 

3 2 1 

123 

1 2 

1.2 

12 

123 

1 23 

1.23 

1.2.3 

1.2 1.3 2.3 

1.23 2.13 3.12 

12.13.23 3 2 1 

12.13 12.23 13.23 

12 13 23 

123 

Figure 1. Information gain decompositions of different orders and for different subsets of collections of
sources. (A,B) Lattices constructed from the complete domain of collections as defined by Equation (5)
for n = 2 and n = 3, respectively. Pale red edges in (B) identify the embedded lattice formed by
collections that do not contain univariate sources. (C) Alternative decomposition based only on
sources 1 and 23. (D) Alternative decomposition that does not contain bivariate sources.

Each collection in the lattice is associated with a measure of the redundancy between the sources
composing the collection. Reference [21] defined a measure of redundancy, called Imin, that is well
defined for any collection. In this work, we do not need to consider the specific definition of Imin. What
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is relevant for us is that, when ascending the lattice, Imin monotonically increases, being a cumulative
measure of information and reaching the total amount of information at the top of the lattice. Based on
this accumulation of information, we will from now on refer to the type of lattices introduced by [21] as
information gain lattices. Furthermore, we will generically refer to the terms quantifying the information
accumulated in each collection as cumulative terms and denote the cumulative term of a collection α

by I(S, α). The reason for this change of terminology will become evident when we introduce the
information loss lattices, since redundancy is not specific to the information gain lattices and it appears
also in the loss lattices but not associated with cumulative terms, and thus we need to disentangle it
nominally from the cumulative terms, even if in the formulation of [21] they are inherently associated.

Independently of which measure is used to define the cumulative terms I(S, α), two axioms
originally required by [21] ensure that these terms and their relations are compatible with the lattice.
First, the symmetry axiom requires that I(S, α) is invariant to the order of the sources in the collection,
in the same way that the domain A(R) of collections does not distinguish the order of the sources.
Second, the monotonicity axiom requires that I(S, α) ≤ I(S, β) if α � β. Another axiom from [21]
ensures that the cumulative terms are linked to the actual mutual information measures of the variables.
In particular, the self-redundancy axiom requires that, when the collection is formed by a single source
α = A, then I(S; α = A) = I(S; A), that is, the cumulative term is equal to the directly calculable
mutual information of the variables in A. The other axioms that have been proposed are not related
to the construction of the information gain lattice itself. Conversely, they are motivated by desirable
properties of a measure of redundancy or desirable properties of the terms in the decomposition, such
as the nonnegativity axiom. The fulfillment of a proper set of additional axioms is important to endow
this type of mutual information decompositions with a meaning, regarding how to interpret each
component of the decomposition. However, these additional axioms do not determine, nor are they
determined, by the properties of the lattice. We will not examine these other axioms in detail in this
work, but we refer to Appendix C for a discussion of the requirements to obtain nonnegative terms in
the decomposition.

The mutual information decomposition was constructed in [21] by implicitly defining partial
information measures associated with each node, such that the cumulative terms are obtained from
the sum of partial information measures:

I(S, α) = ∑
β∈↓α

ΔC(S; β). (7)

In particular, ↓ α refers to the set of collections lower than or equal to α, given the ordering
relation (see Appendix A for details). Again, here we will adopt a different terminology and we
will refer to ΔC(S; β) as the incremental term of the collection β in lattice C, instead of as the partial
information measure. This is because, as we will see, it is convenient to consider incremental terms as
increments that can equally be of information gain or information loss. Given the link between the
cumulative terms and the mutual information of the variables imposed by the self-redundancy axiom,
the decomposition of the total mutual information results from applying Equation (7) to the collection
α = {R}. As proved in (Theorem 3, [21]), Equation (7) can be inverted to:

ΔC(S; α) = I(S; α)−
|α−|
∑
k=1

(−1)k−1 ∑
B ⊆ α−

|B| = k

∑
β∈ ⋂

γ∈B
↓γ

ΔC(S; β) (8a)

= I(S, α)−
|α−|
∑
k=1

(−1)k−1 ∑
B ⊆ α−

|B| = k

I(S;
∧B), (8b)
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where α− is the cover set of α and
∧B is the infimum of the set B. The cover set of α is composed by

the collections that are immediate descendants from α in the lattice. The infimum of a set of collections
is the upper collection that can be reached descending from all collections of the set. We will also refer
to the set formed by all the collections for which cumulative terms determine the incremental term
ΔC(S; α) as the increment sublattice ♦α. This sublattice is formed by α and by all the collections that
appear as infimums in the summands of Equation (8b). See Appendix A for details on the definition of
these concepts and other properties of the lattices.

3. Extended Information Gain Decompositions from Redundancy, Uniqueness or Synergy Measures

In this section, we still focus on the information gain decompositions introduced by [21]. We first
extend their approach to comprise a more general set of lattices, built based on subsets of the domain
of collections determined in Equation (5). We study the relation between the terms from different
lattices, showing how the incremental terms of the full lattice are mapped to the incremental terms of
smaller lattices. We also indicate that the existence of deterministic relations between the variables
imposes constraints to the range of valid lattices. We then show that considering the connection
between different lattices is not only useful to better interpret the decompositions based on a subset of
collections, but also in practice provides a way to build multivariate decompositions. In particular, we
introduce an iterative hierarchical procedure to build multivariate decompositions from synergy or
unique information measures, something that was not possible from the full lattices alone.

3.1. Relations between Information Gain Decompositions with Different Subsets of Sources Collections

Reference [21] studied how to decompose the mutual information in decompositions composed
by all the collections of sources in A(R). Figure 1A,B show the corresponding lattices for n = 2 and
n = 3, respectively. However, the number of collections in these decompositions rapidly increases
when the number of variables increases (e.g., 7579 collections for n = 5 [21]), which may render the
decompositions difficult to handle in practice. Here, we generalize their approach in a straightforward
way, considering decompositions composed by any subset C ⊆ A(R) whose elements still form a
lattice (see Appendix C for a discussion of more general decompositions based on subsets that do not
form a lattice). Given that the ordering relation of Equation (6) is a pairwise relation that does not
depend on the set of collections considered, any lattice is built following the same rule as in the full
lattice: each collection is connected by an edge to the collections in its cover set (see Appendix A),
which depends on the subset of collections used to construct the lattice. For example, Figure 1C shows
the decomposition formed by the collections that combine the sources 1 and 23. In Figure 1B, the red
edges indicate the decomposition based on collections combining the sources 12, 13, 23, without
further decomposing the contribution of single variables separately. Oppositely, Figure 1D shows the
decomposition based on the sources 1, 2, and 3, which does not include bivariate sources resulting
from merging these univariate sources. A certain decomposition can be embedded within a bigger one,
as indicated in Figure 1B, but generally considering more collections alters the structure of the lattice,
by modifying the cover relations between the nodes. For example, the decomposition of Figure 1D is
not embedded in Figure 1B. Similarly, the cover relations in the bivariate decomposition of A({1, 2})
in Figure 1A change in the trivariate decomposition of A({1, 2, 3}) in Figure 1B since nodes 12.13 and
12.23 appear between 12 and 1 and 2, respectively. The same occurs between 1.2 and 1 and 2, with
nodes 1.23 and 2.13, respectively. Furthermore, the down set of 12, in comparison to the bivariate
lattice, comprises others nodes because of the presence of 12.13.23.

When studying multivariate systems, the nature and relation between the variables may provide
some a priori information in favor of a certain decomposition. For example, in the case of Figure 1C,
variables 2 and 3 can correspond to two signals recorded from the same subsystem, while 1 is a signal
from a different subsystem. This may render a bivariate decomposition more adequate, even if having
three variables. For example, this is a common scenario when recording brain signals from different
brain areas and the analysis of interactions can be carried out at different spatial scales [8]. Similarly,
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in the case of Figure 1D, one may prefer to simplify the analysis without explicitly considering all
synergistic contributions of bivariate sources. Another possibility is that, even if it is known that a
system is composed by a certain number of variables, only a subset is available for the analysis, and it
is thus important to understand how the influence of the missing variables is reflected in each term of
the decomposition. For example, if in a trivariate system only 1 and 2 are observed, we would like to
understand how the terms in the full decomposition for n = 3 are reflected in the full decomposition for
n = 2 restricted to 1 and 2. Again, this is a common scenario when studying neural population coding
of sensory stimuli, since usually only simultaneous recordings from a subset of the neural population,
or from one of the brain regions involved, is available. In any case, in order to better choose the most
useful decomposition given a certain set of concrete variables, and to understand how the different
decompositions are related, we need to consider how the terms from one decomposition are mapped to
another. Furthermore, as we will see in Section 3.3, the relationship between lattices has also practical
applications to build multivariate decompositions from synergy or unique information measures.

The connection between the terms in two different decompositions is qualitatively different for
the cumulative terms, I(S, α), and the incremental terms ΔC(S; α). A cumulative term I(S, α) quantifies
the information about S that is redundant within a certain collection of sources α. This information
is well defined without considering which is the set C of collections that has been selected, that is, it
depends only on S and α. Accordingly, the cumulative terms of information gain I(S, α) are invariant
across decompositions. Oppositely, as we here explicitly indicate in our notation, the incremental terms
ΔC(S; α) are, in general, decomposition-dependent. Although Equation (8) was derived in [21] only to
express the incremental terms as a function of cumulative terms in the full lattices, it is straightforward
to check that, by construction, the relation of Equation (7) also can be inverted to Equation (8) in lattices
formed by subsets of A(R) (See Appendix C). From Equation (8), it can be seen that the cumulative
terms used to calculate ΔC(S; α) depend on the specific structure of the lattice, in particular on which
is the increment sublattice ♦α. This is summarized indicating that:

I(S; α) = IC(S; α) = IC′(S; α), ∀C, C′, (9)

while for the incremental terms, only a sufficient condition for equality across decompositions can
be formulated:

♦Cα = ♦C′α ⇒ ΔC(S; α) = ΔC′(S; α), (10)

which is a direct consequence of Equation (9) given the dependence of the incremental terms on the
cumulative terms (Equation (8)).

The invariance of cumulative terms implies that each cumulative term that is present in two
decompositions provides an equation that relates the incremental terms in those decompositions, since
in each lattice cumulative terms result from the accumulation of increments according to Equation (7).
In particular, for two decompositions C and C′ with a common collection α

I(S; α) = ∑
β∈↓Cα

ΔC(S; β) = ∑
β∈↓C′α

ΔC′(S; β). (11)

In general, these type of relations impose some constraints that involve several incremental terms
from each decomposition. For example, when connecting the incremental terms of the decompositions
of Figure 1A,C, we get only the constraint ΔA(S; 1) + ΔA(S; 1.2) = ΔC(S; 1) + ΔC(S; 1.23), given the
only common node I(S; 1). An important type of comparison is between full lattices of different order.
In this case, the constraints allow breaking down each of the incremental terms of the lower order
lattice as a sum of incremental terms from the higher order lattice. Figure 2 shows the case for n = 2, 3
when the set A({1, 2}) of the full decomposition for n = 2 is a subset of A({1, 2, 3}), corresponding
to the full decomposition for n = 3. This determination of each incremental term of one lattice as a
function of the incremental terms of another lattice holds, in general, when the set of collections of
the smaller lattice is a subset of the collections used in the bigger lattice. This happens not only when
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comparing a full lattice with a full lattice of lower order (Figure 2), but also for n = 3 in Figure 1B,
when comparing a full lattice with any lattice composed by a subset of the collections (Figure 1A,C,D).
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Figure 2. Mapping between the incremental terms of the bivariate lattice for 1, 2 and the full trivariate
lattice for 1, 2, 3. (A) The bivariate lattice with each node marked with a different color (and also,
redundantly, with a different lower case letter, for no-color printing). (B) The trivariate lattice with the
nodes coloured consistently with the mapping to the bivariate lattice. In more detail, the incremental
term of each node of the bivariate lattice is obtained as the sum of the incremental terms of the nodes
of the trivariate lattice with the same color.

Figure 3A,B further shows how the incremental terms of the sublattice of Figure 1D can be
broken down as a sum of the incremental terms of the full lattice. However, in general, the fact that
each incremental term of the smaller lattice can be expressed as a combination of the incremental
terms of the bigger lattice, does not mean that each incremental term of the latter is related to a
single incremental term of the former. This is illustrated in Figure 3C,D. The set of collections
of the lattice in Figure 3C is a subset of the set of the lattice in Figure 3D. However, now each
incremental term of Figure 3D contributes to more than one incremental term of Figure 3C. For example,
ΔC(S; 1) = ΔD(S; 2) + ΔD(S; 1.2) + ΔD(S; 2.3), but also ΔC(S; 1) = ΔD(S; 1) + ΔD(S; 1.2) + ΔD(S; 1.3),
with ΔD(S; 1.2) contributing to both. Furthermore, since the incremental terms of the full lattice can
only contribute once to the decomposition of I(S; 123), the fact that an incremental term of Figure 3D
contributes twice positively, is balanced by a negative contribution to another incremental term of
Figure 3C. Combining the correspondences of Figure 3C,D and Figure 3A,B, we can see that the
incremental terms of the full lattice of Figure 3B contribute in an overlapping way to the incremental
terms of Figure 3C, that is, there is no function assigning a single term in Figure 3C to the terms of the
full lattice. To understand which lattices produce overlapping projections, let us examine in more detail
the constraint of Equation (11) for I(S; 1) and I(S; 2) in the lattices of Figure 3C,D. Each cumulative
term is obtained as the sum of all incremental terms from nodes reached descending from the node
of the cumulative term (Equation (7)). In Figure 3D, 1.2 is the infimum of 1 and 2, that is, the first
node common to the descending paths from 1 and 2. This means that the incremental terms from
this infimum and nodes reached descending from it contribute to both I(S; 1) and I(S; 2). If these
nodes are not present in Figure 3C, then some upper incremental term will have to account for them.
In this case, the node 1.2.3 is present in Figure 3C, but 1.2 is not and thus has to be accounted for
both in the incremental terms of 1 and 2. This type of loss of the infimum node does not occur when
the full lattice is reduced to the one of Figure 3A. For example, the infimum of 1 and 2 is 1.2 and
this node is preserved, even if the intermediate nodes 1.23 and 2.13 are not. Therefore, in general,
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preserving the structure of the infimums when taking a subset of A(R) to construct a lattice is what
determines if a non-overlapping projection exists or not. If for two collections in the subset their
infimum collection is not included, then Equation (7) can only be fulfilled for both cumulative terms
by a multiple contribution of the incremental term of the infimum in the full lattice to the incremental
terms of the smaller lattice.
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Figure 3. Mapping of the incremental terms of the full lattice to lattices formed by subsets of collections
(A) The lattice of Figure 1D with each node marked with a different color (and also a different lower
case letter, for no-color printing). (B) The trivariate lattice with the nodes coloured consistently with
the mapping to the lattice of (A). In more detail, the incremental term of each node of the smaller lattice
is obtained as the sum of the incremental terms of the nodes of the trivariate lattice with the same color.
(C) Another lattice obtained from a subset of the collections, with each node marked with a different
color (and lower case letter). (D) The lattice of (A) now with its nodes coloured consistently with the
mapping to the lattice of (C). In contrast to the mapping between (B) and (A), here each incremental
term of (D) can contribute to more than one incremental term of (C), with a positive (circle) or negative
(triangles) contribution.

3.2. Checking the Validity of Lattices in the Presence of Deterministic Relations between the Variables

As a last remark regarding the selection of different lattices we indicate that, when deterministic
relationships exist between the variables, the definition of the domain of collections (Equation (5))
and the ordering relation (Equation 6) can impose some limitations on the decompositions that are
possible. In particular, Equation (5) excludes any collection in which a source is a superset of any
other. Consider, for example, the case of three variables 1, 2, 3 such that 12 completely determine 3.
Accordingly, in the decomposition of Figure 1B, several collections are altered, since the source 12
could be replaced by 123. This leads to the presence of invalid collections in the set, such as 123.13
instead of 12.13, since 13 is a subset of 123. Similarly, given the deterministic relation, one could reduce
123 to 12, duplicating this last collection and affecting the ordering relation of the top element with
13 and 23. In general, this means that a certain lattice cannot be taken as valid a priori. Conversely,
it should be verified, for each specific set of variables, if the collections that compose it are valid once
the properties of the variables are taken into account.

The exclusion of certain lattices in the presence of deterministic relations can be seen as a limitation
of the decomposition framework, but on the other hand this verification turns out to be important
to avoid problematic cases. In particular, it allows avoiding the counterexample provided in [26] to
show that it is not always possible when n > 2, independently of how the terms of the decomposition
are defined, to obtain a nonnegative decomposition. This counterexample is based on three variables
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such that any pair deterministically determines the third. Without using any specific definition of the
measures associated with the nodes, the authors proved that at least a certain incremental term of
the lattice of Figure 1B is negative in this case. However, given the deterministic relations between
the variables, all the collections comprising a bivariate source need to be excluded from the set, since
these bivariate sources are equivalent to the source 123 and thus any other source in the collection
is a subset of this one. Similarly, 123 can be reduced to any collection containing a single source
composed by a pair of the variables, which duplicates these collections and affects the ordering
relations. In Appendix B, we reconsider in more detail the counterexample of [26]. We show that taking
into account the deterministic relations leads to the construction of a smaller lattice that complies
the constraints of Equations (5) and (6) and for which nonnegativity is preserved. Therefore, we can
reinterpret the violation of the nonnegativity axiom as a more specific non-compliance of the constraints
for a certain set of variables. However, note that the possibility to deal with cases such as the one raised
in [26] by adapting the lattice does not preclude from the potential existence of negative incremental
terms. As we reviewed above, the definition of the proper measure for the decompositions is an open
question, and finding a measure that ensures generally the nonnegativity of the incremental terms,
or identifying the properties of the variables or the decompositions that ensures this nonnegativity,
is out of the scope of this work. Only in Appendix C we review the requirements to obtain nonnegative
incremental terms. For this purpose, we reexamine from a more general perspective several of the
Theorems of [21], identifying the key ingredients of the proofs that are sustained by lattice properties,
by general properties captured in the axioms that have been proposed [22], or by properties specific of
their measure Imin.

3.3. An Iterative Hierarchical Procedure to Determine Information Gain Cumulative Terms from Synergy or
Unique Information Measures by Combining Information Gain Decompositions of Different Orders

Above, we have examined possible alternative decompositions of the mutual information and the
relations among them from a generic perspective, based only on the structure of the decompositions
and the general properties of the cumulative and incremental terms. Apart from the general advantage
of understanding these relations in order to select and interpret the decompositions, we now show
that these relations also have a more immediate practical implication and provide a way to determine
the components of multivariate decompositions when the cumulative terms are not predefined but
only a measure that can be associated with certain incremental terms is used as the basis to construct
the decomposition. If a measure of accumulated mutual information gain I(S, α) is defined, it is
straightforward to calculate all the terms in the decomposition. The cumulative terms are already
defined based on this measure and the incremental terms can be calculated using Equation (8). This was
the case in the seminal work of [21], where the cumulative terms were defined as the redundancy
measures Imin. However, the calculation of all terms is not straightforward if the measure defined
as the basis to construct the decomposition does not define the cumulative terms. In fact, in the
different proposals that exist so far, the basic component chosen to calculate the other terms has
alternatively been a redundancy measure [21,22,25,32], a synergy measure [23], or a unique information
measure [24]. When the measure of redundancy is sufficiently general to be taken as a general definition
of all cumulative terms, the multivariate decompositions can be built in a direct way. Conversely,
when a measure of synergy or unique information is taken as the basis, only bivariate decompositions
can be directly built and only bivariate decompositions have been studied [23,24]. To our knowledge,
there is currently no general procedure to construct the decomposition associated with an information
gain lattice in the multivariate case from the definition of a measure of synergy or unique information.
We here describe an iterative hierarchical procedure to do so, which relies on the relations between
lattices of different order.

We start by considering first the bivariate case, to understand why, in this case, the lattice can be
constructed from synergy or unique information measures in a simple way and why this procedure
does not apply directly for the multivariate case. In the bivariate case, Equations (1) and (2) provide
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m = 3 equations to relate the K = 4 terms of the bivariate decomposition with I(S; 1), I(S; 2), and
I(S; 12), so that defining one of the four terms is enough to identify the other three. However, this
direct procedure cannot similarly be applied for n > 2. This can be understood, already for n = 3,
considering the number of cumulative terms which are directly calculable as a mutual information
thanks to the self-redundancy axiom. These terms are the ones related to the collections formed
by a single source, 1, 2, 3, 12, 13, 23, and 123. This means that only m = 7 equations analogous to
Equations (1) and (2) are available to calculate the K = 18 cumulative terms. If the measure taken as
basis of the decomposition is defined generally for each node (as Imin in [21]) this is not a problem, and
these seven equations are directly fulfilled as special cases of Equation (7). However, if the measure
taken as the basis is a measure of synergy or uniqueness, then it does not define directly the cumulative
terms, but only certain incremental terms. This difference is clear already for n = 2. The redundancy
I(S; 1.2) is a cumulative term in the decomposition, in particular it corresponds to the bottom element
of the lattice. Conversely, the unique information terms I(S; 1\2) and I(S; 2\1), as well as the synergy
I(S; 12\1, 2) correspond to incremental terms. That is, the particularity of redundancy measures such
as Imin is that they provide a definition for all the cumulative terms of the mutual information gain
decomposition, while the measures of unique information or synergy, for n > 2, do not provide a
definition applicable to all the incremental terms of the lattice.

We will now describe a new iterative hierarchical procedure to build information gain multivariate
decompositions from measures of synergy or unique information. For simplicity, we will focus on
the case of n = 3, but the logic of the procedure can be extrapolated to the general multivariate
case. As we will show in Section 4 by introducing the alternative information loss lattices, this is not
the only way to build these multivariate decompositions. In fact, this procedure can lead to some
inconsistencies if it is applied to any lattice without a careful examination of the correspondence
between incremental terms and synergy or unique information measures. However, if the lattices
and measures are properly chosen, as we will discuss after introducing the dual decompositions of
information gain and information loss in Section 5, the different procedures to build multivariate
decompositions are consistent and the same cumulative terms and incremental terms are obtained
independently of how they are calculated.

The key ingredient for this procedure is the invariance of the cumulative terms across
decompositions, as indicated in Equation (9). Based on this invariance, we can resort to the bivariate
decompositions in order to calculate many of the cumulative terms of the trivariate decomposition of
Figure 1B. Indeed, from the 18 minus 7 terms that do not correspond directly to the mutual information
of a single source, all except the ones of the collections 12.13.23 and 1.2.3 appear also in a bivariate
decomposition. For example, 1.2 is part of the decomposition in Figure 1A, and 1.23 is part of the
one in Figure 1C. Analogous bivariate decompositions exist for 1.3, 2.3, 2.13, 3.12, 12.13, 12.23, and
13.23. For each of these bivariate decompositions, if a definition of bivariate synergy is defined,
it can be used to determine the corresponding bivariate redundancy, which, being a cumulative
term, is invariant and can be used equally in the trivariate decomposition. Accordingly, it is the
connection between different decompositions what allows us to calculate most of the terms. This same
procedure of using the bivariate decompositions could be used if instead of a definition of synergy,
we used a definition of unique information. Finally, to calculate 1.2.3 and 12.13.23, we can use the
smaller trivariate decompositions of Figure 1D and the one composed by the red edges of Figure 1B,
respectively. In these two smaller trivariate decompositions, after using the bivariate ones to calculate
the corresponding cumulative terms, the situation becomes the same as for the bivariate case: all
cumulative terms are already calculated except one, which means that it suffices to define a single
measure, either a synergy or unique information, in order to be able to retrieve the complete set of
cumulative and incremental terms.

This procedure provides a way to construct multivariate decompositions, simply by recurrently
using decompositions of a lower order to calculate the cumulative terms. Since the cumulative terms
are invariant, at each order, most of them are not specific of that order and appear also in lattices
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of lower orders. However, this approach leads to some inconsistencies if it is applied to any lattice
without carefully considering how a synergy or unique information measure can be associated with an
incremental term. In particular, consider that a measure of synergy is provided, which should allow
identifying the top incremental term of any of the decompositions used in the iterative procedure.
For example, a measure of synergy should determine the incremental term Δ(S; 123\12.13.23) of
Figure 1B and Δ(S; 123\1.2.3) of Figure 1D. However, the same measure of synergy cannot be taken
to determine the same top incremental term Δ(S; 123\1.2.3) of Figure 1D for other lattices, since the
incremental terms are decomposition-specific. For example, consider the alternative decompositions
presented in Figure 4A,B, and Figure 4C,D, respectively. In Figure 4A,B, if the same definition of
Δ(S; 123\1.2.3) is used based on the synergy measure, this results in a different form for I(S; 1.2.3) in
the two lattices, because the increment sublattices ♦A123 = ♦B123. This contradicts the invariance of
the cumulative terms across lattices. Figure 4C,D presents another contradiction resulting from directly
using the same synergy definition: since collections 123, 1, and 23 are common to both decompositions,
the same expression would be obtained for the redundancy I(S; 1.23) and I(S; 1.2.3) depending on
the lattice used. For both examples, the problem is that a definition of synergy is expected to depend
only on S and on the sources among which synergy is quantified, but cannot be context-dependent, in
opposition to the incremental terms, which are always context-dependent in the sense that they are
decomposition-specific.

A C 

D 

B 

1.2.3 

2.3 1.3 1.2 

3 2 1 

123 123 

1 23 

1.23 

123 

1 23 

1.2.3 

1.2.3 

1 2 3 

123 

Figure 4. Examples of information gain lattices that result in inconsistencies when trying to derive
redundancy terms from a synergy definition, as explained in Section 3.3.

In more detail, given the conceptual meaning of synergy, when a synergy measure is to be
associated with an incremental term, the precise synergy contribution to be quantified is only
determined by the collection α and the collections on its cover α−. For example, in Figure 4A,
Δ(S; 123\1.2.3) quantifies the overall synergistic increase in information that can arise from combining
any of the single variables. However, the incremental term is not only determined by α and α−,
conversely, it depends on the whole increment sublattice ♦α. We have seen in Figure 3C,D that
Δ(S; 123\1.2.3) is a different incremental term for these lattices, with a different expression as a
function of the incremental terms of the full lattice. Accordingly, it is not straightforward to interpret
the top incremental term as the one quantifying the synergistic component of the mutual information,
since different possible decompositions result in different terms. This issue does not arise for the
bivariate decomposition because a single decomposition involving a synergistic component is possible.
In general, for a given definition of synergy or unique information, or more generally for any measure
which is conceptually defined in order to capture a certain portion of the total mutual information
(e.g., the union-information in [23]), the incremental terms to which the measure can be associated
is not directly determined by the local structure of the lattice related to the variables involved in
the definition of the measure, but by the whole incremental sublattice. The meaning of the measure
assigned to an incremental term has to be consistent with its expression as a function of the incremental
terms of the full lattice. Only with this careful examination of the correspondence between measures
and incremental terms, the iterative procedure can be used to build multivariate decompositions.
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4. Decompositions of Mutual Information Loss

Although the iterative hierarchical procedure allows determining the information gain
decompositions from a synergy measure, the construction has to proceed in a reversed way,
determining the cumulative terms from the incremental terms using lower order lattices. This means
that the full lattice at a given order cannot be determined separately, but always by jointly constructing
a range of lower order lattices. We now examine if this asymmetry between redundancy measures,
corresponding to cumulative terms, and synergy measures, corresponding to incremental terms,
is intrinsic to the notions of redundancy and synergy, or if conversely this correspondence can be
inverted. Indeed, we introduce the type of information loss lattices in which synergy is associated
with cumulative terms and redundancy with incremental terms. Apart from the implications of the
possibility of this inversion in the understanding of the nature synergy and redundant contributions,
a practical application of information loss lattices is that, using them as the basis of the mutual
information decomposition, the decomposition can be directly determined from a synergy measure in
the same way that it can be directly determined from a redundancy measure when using gain lattices.
In Section 5, we will study in which cases information gain and loss lattices are dual, providing the
same decomposition of the mutual information.

As a first step to obtain a mutual information decomposition associated with an information loss
lattice, we define a new ordering relation between the collections. In the lattices associated with the
decompositions of mutual information gain, the ordering relation is defined such that upper nodes
correspond to collections which cumulative terms have more information about S than each of the
cumulative terms in their down set. Oppositely, in the lattice associated with a decomposition of
mutual information loss, an upper node corresponds to a higher loss of the total information contained
in the whole set of variables about S. The domain of the collections valid for the information loss
decomposition can be defined analogously to the case of information gain:

A∗(R) = {α ∈ P(R)\{R} : ∀ Ai, Aj ∈ α, Ai � Aj}. (12)

Note that this domain is equivalent to the one of the information gain decompositions
(Equation (5)), except that the collection corresponding to the source containing all variables {R} is
excluded instead of the empty collection. This is because, in the same way that no information gain can
be accumulated with no variables, no loss can be accumulated with all variables. Furthermore, A∗(R)

excludes collections that contain sources that are supersets of other sources of the same collection,
equally to A(R). An ordering relation is introduced analogously to Equation (6):

∀ α, β ∈ A∗(R), (α � β ⇔ ∀B ∈ β, ∃A ∈ α, B ⊆ A). (13)

This ordering relation differs from the one of lattices associated with information gain
decompositions in that now upper collections should contain subset sources and not the opposite.
Figure 5 shows several information loss decompositions analogous to the gain decompositions of
Figure 1. For the lattices of Figure 5A,C,D, the only difference with respect to Figure 1 is the top
node, where the collection containing all variables is replaced by the empty set. Indeed, the empty
set results in the highest information loss. For the full trivariate decomposition of Figure 5B, there
are many more changes in the structure of the lattice with respect to Figure 1B. In particular, now the
smaller embedded lattice indicated with the red edges corresponds to the one of Figure 5D, while
the lattice of Figure 1D is not embedded in Figure 1B. An intuitive way to interpret the mutual
information loss decomposition is in terms of the marginal probability distributions from which
information can be obtained for each collection of sources. Each source in a collection indicates a
certain probability distribution that is available. For example, the collection 12.13, composed by the
sources 12 and 13, is associated with the preservation of the information contained in the marginal
distributions p(S, 1, 2) and p(S, 1, 3). Note that all distributions are joint distributions of the sources
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and S. In this view, the extra information contained in p(S; R) that cannot be obtained from the
marginals preserved, corresponds to the accumulated information loss. Accordingly, the information
loss decompositions can be connected to hierarchical decompositions of the mutual information [33,34].
Furthermore, information loss associated with the preservation of only certain marginal distributions
can be formulated in terms of maximum entropy [24], which renders loss lattices suitable to extend
previous work studying neural population coding with the maximum entropy framework [15].
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Figure 5. Information loss decompositions of different orders and for different subsets of collections
of sources. (A–D) The lattices are analogous to the information gain lattices of Figure 1. Note that
the lattice embedded in (B), indicated with the pale red edges, corresponds to the one shown in (D),
differently than in Figure 1.

We will use the notation L(S; α) to refer to the cumulative terms of the information loss
decomposition, in comparison to the cumulative terms of information gain I(S; α). For the incremental
terms, since they also correspond to a difference of information (in this case lost information) we will
use the same notation. This will be further justified below when examining the dual relationship
between certain information gain and loss lattices. However, when we want to explicitly indicate
the type of lattice to which an incremental term belongs, we will explicitly distinguish ΔI and ΔL.
Importantly, the role of synergy measures and redundancy measures is exchanged in the information
loss lattice with respect to the information gain lattice. In particular, in the information loss lattices,
the bottom element of the lattice corresponds to the synergistic term that in the information gain lattices
is located at the top element. This represents a qualitative difference because now it is the synergy
measure which is associated with cumulative terms, and redundancy is quantified by an incremental
term. For example, in Figure 5B, L(S; 12.13.23) quantifies the information loss of considering only the
sources 12.13.23 instead of the joint source 123, which is a synergistic component. On the other hand,
the incremental term Δ(S; ∅\1, 2, 3) quantifies the information loss of either removing the source 1,
or removing 2, or removing 3. Since the information loss quantified is associated with removing any
of these sources, it means that the loss corresponds to information which was redundant to these
three sources. This reasoning applies also to identify the unique nature of other incremental terms
of the information loss lattice. For example, Δ(S; 12.13\23) can readily be interpreted as the unique
information contained in 23 that is lost when having only sources 12.13.

Analogously to the information gain lattices, we require that the measures used for the cumulative
terms fulfill the symmetry and monotonicity axioms, so that the cumulative terms inherit the structure
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of the lattice. We also require the fulfilment of the self-redundancy axiom, so that the cumulative terms
are linked to mutual information measures of the variables when the collections have a single source.
In particular, for α = A, the loss due to only using A corresponds to I(S; {R})− I(S; A), which is
the conditional mutual information I(S; {R}|A). That is, in the same way that the cumulative terms
I(S; α = A) should be directly calculable as the mutual information of the variables, the cumulative
terms L(S; α = A) should be directly calculable as conditional mutual information. Apart from these
axioms directly related to the construction of the information loss lattice, we do not assume any
further constraint to the measures used as cumulative terms L(S; α), and the selection of the concrete
measures will determine the interpretability of the decomposition. Since, like in the information gain
lattice, the top cumulative term is equal to the total information (L(S; ∅) = I(S; {R})), the lattice is a
decomposition of the mutual information for a certain set of variables {R}. In more detail, the relations
between cumulative and incremental terms are defined totally equivalent to the ones of the information
gain lattices

L(S, α) = ∑
β∈↓α

ΔCL(S; β), (14)

and

ΔCL(S; α) = L(S; α)−
|α−|
∑
k=1

(−1)k−1 ∑
B ⊆ α−

|B| = k

∑
β∈ ⋂

γ∈B
↓γ

ΔCL(S; β) (15a)

= L(S, α)−
|α−|
∑
k=1

(−1)k−1 ∑
B ⊆ α−

|B| = k

L(S;
∧B). (15b)

The definition of information loss lattices simplifies the construction of mutual information
decompositions from a synergy measure. If a synergy measure can generically be used to define
the cumulative terms of the loss lattice analogously to how a redundancy measure, for example,
Imin defines the cumulative terms of the gain lattice, then these equations relating cumulative and
incremental terms can be applied to identify all the remaining terms. Accordingly, the introduction
of information loss lattices solves the problem of the ambiguity of the synergy terms derived
from information gain lattices, which was caused by the identification of synergistic contributions
with incremental terms, which are decomposition-specific by construction. In the information loss
decomposition, the synergy contributions are identified with cumulative terms, and thus are not
decomposition-specific. That is, if a conceptually proper measure of synergy is proposed, it can be
used to construct the decomposition straightforwardly, without the need to examine to which terms
the measure can be assigned, as it happens with the correspondence with incremental terms in the
gain lattices. Note however, that there is still a difference between the degree of invariance of the
cumulative terms in the information gain decompositions and in the information loss decompositions.
The loss is per se relative to a maximum amount of information that can be achieved. This means that
the cumulative terms of the information loss decomposition are only invariant across decompositions
that have in common the set of variables from which the collections are constructed. Taking this into
account, the relations between different lattices with different subsets of collections are analogous to
the ones examined in Section 3.1 for the gain lattices. Similarly, an analogous iterative hierarchical
procedure can be used with the loss lattices to build multivariate decompositions by associating
redundancy or unique information measures to the incremental terms of the loss lattice.
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5. Dual Decompositions of Information Gain and Information Loss

The existence of alternative decompositions, associated with information gain and information
loss lattices, respectively, raises the question of to which degree these decompositions are consistent.
A different quantification of synergy and redundancy for each lattice type would not be compatible
with the decomposition being meaningful with regards to unique notions of synergy and redundancy.
Comparing the information gain lattices and the information loss lattices, we see that the former seem
adequate to quantify unambiguously redundancy and the latter to quantify unambiguously synergy,
in the sense that there is a reverse in which measures correspond to the decomposition-invariant
cumulative terms. However, we would like to understand in more detail, how the two types of lattices
are connected, i.e., which relations exist between the cumulative or incremental terms of each other,
and how to quantify synergy and redundancy together. We now study how information gain and
information loss components can be mapped between the information gain and information loss
lattices, and we define lattice duality as a set of conditions that impose a symmetry in the structure of
the lattices such that for dual lattices the set of incremental terms is the same, leading to a unique total
mutual information decomposition.

Considering how the total mutual information decomposition is obtained by applying
Equations (7) and (14) to I(S; {R}) and to L(S; ∅), respectively in the gain and loss lattices, it is clear
that both types of lattices can be used to track the accumulation of information gain or the accumulation
of information loss. Each node α partitions the total information in two parts: the accumulated gain
(loss) and the rest of the information, which is hence a loss (gain), respectively, for each type of lattice.
In particular:

I(S; α) = ∑
β∈↓α

ΔI(S; β) (16a)

I(S; {R})− I(S; α) = ∑
β∈(↓α)C

ΔI(S; β) (16b)

L(S; α′) = ∑
β∈↓α′

ΔL(S; β) (16c)

I(S; {R})− L(S; α′) = ∑
β∈(↓α′)C

ΔL(S; β), (16d)

where (↓ α)C = C\ ↓ α is the complementary set to the down set of α given the particular set of
collections C used to build a lattice. These equations indicate that in the information gain lattice
all nodes (collections) out of the down set of α correspond to the information not gained by α,
or equivalently, to the information loss by using α instead of the whole set of variables. Analogously,
in the information loss lattice, all nodes out of the down set of α′ contain the information not lost
by α′, i.e., the information gained by using α′. Accordingly, in both types of lattices, we can say
that each collection α partitions the lattice into an accumulation of gained and lost information.
This means that the terms I(S; {R})− I(S; α), when descending the gain lattice instead of ascending it,
follow a monotonic accumulation of loss, in the same way that the terms L(S; α′) follow a monotonic
accumulation of loss when ascending the loss lattice. Vice-versa, the terms I(S; {R})− L(S; α′), when
descending the loss lattice instead of ascending it, follow a monotonic accumulation of gain, in the same
way that the terms I(S; α) follow a monotonic accumulation of gain when ascending the gain lattice.
However, these equations do not establish any mapping between the gain and loss lattices. In particular,
they do not determine any correspondence between I(S; {R})− I(S; α) and any cumulative term of
the loss lattice and I(S; {R}) − L(S; α′) and any term of the gain lattice. They only describe how
information gain and loss are accumulated within each type of lattice separately. For the mutual
information decomposition to be unique, any accumulation of information loss or gain, ascending or
descending a lattice, has to rely on the same incremental terms.

58



Entropy 2017, 19, 71

To understand when this is possible, we study how cumulative terms of information loss or gain
are mapped from one type of lattice to the other. While in some cases it seems possible to establish a
connection between the components of a pair composed by an information gain and an information
loss lattice, in other cases the lack of a match is immediately evident. Consider the examples of Figure 6.
In Figure 6A,C we reconsider the information gain lattices of Figure 4C,D, which we examined in
Section 3.3 to illustrate that we arrive to an inconsistency when trying to extract the bottom cumulative
term from the directly calculable mutual informations of 1 and 23 and the same definition of synergy.
Figure 4B,D show information loss lattices candidates to be the dual lattice of these gain lattices,
respectively, based on the correspondence of the bottom and top collections. While the two information
gain lattices only differ from each other in the bottom collection, the information loss lattices are
substantially more different, with a different number of nodes. This occurs because, as we discussed
above, the concept of a redundancy 1.2.3 is associated with a loss that is common to removing any
of the three variables, considered as the only source of information, and thus, in any candidate dual
lattice, a separation of 2 and 3 from the source 23 is required to quantify this redundancy.
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Figure 6. The correspondence between information gain and information loss lattices. (A,C) Examples
of information gain lattices. (B,D) Information loss lattices candidates to be their dual lattices,
respectively. The shaded areas comprise the collections corresponding to incremental terms that
contribute to I(S; 1) in each lattice.

The fact that the information gain lattice of Figure 6C and the information loss lattice of Figure 6D
have a different number of nodes already indicates that a complete match between their components
is not possible. For example, consider the decomposition of I(S; 1) in the information gain lattice,
as indicated by the nodes comprised in the shaded area in Figure 6C. I(S; 1) is decomposed into two
incremental terms. To understand which nodes are associated with I(S; 1) in the information loss
lattice we argue, based on Equation (16)d, that since the node 1 is related to the accumulated loss
L(S; 1) = I(S; 123)− I(S; 1), and L(S; ∅) = I(S; 123), this means that the sum of all the incremental
terms which are not in the down set of 1 must correspond to I(S; 1). These nodes are indicated
by the shaded area in Figure 6D. Clearly, there is no match between the incremental terms of the
information gain lattice and of the information loss lattice, since in the former I(S; 1) is decomposed
into two incremental terms and in the latter is decomposed into four incremental terms. Conversely,
for the lattices of Figure 6A,B, the number of incremental terms is the same, which does not preclude
from a match.

As another example to gain some intuition about the degree to which gain and loss lattices
can be connected, we now reexamine the other two lattices of Figure 4. The blue shaded area
of Figure 7A indicates the down set of 1, containing all the incremental terms accumulated in
I(S; 1). The complementary set (↓ 1)C, indicated by the pink shaded area in Figure 7A, by construction
accumulates the remaining information (Equation (16b)), which in this case is I(S; 23|1). These two
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complementary sets of the information gain lattice are mapped to two dual sets in the information loss
lattice, as shown in Figure 7B. In Figure 7C, we analogously indicate the sets formed by partitioning
the gain lattice given the collection 1, and in Figure 7D the corresponding sets in the information loss
lattice. In comparison to the example of Figure 6C,D, for which we have already indicated that there
is no correspondence between the gain and loss lattices; here, in neither of the two examples, is this
correspondence precluded by the difference in the total number of nodes of the gain and loss lattices.
However, in Figure 7C,D, the number of nodes is not preserved in the mapping of the partition sets
corresponding to collection 1 from the gain to the loss lattice, which means that the incremental terms
cannot be mapped one-to-one from one lattice to the other.
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Figure 7. Correspondence between information gain and information loss lattices. (A,C) Examples of
information gain lattices. (B,D) Information loss lattices candidates to be their dual lattice, respectively.
The blue shaded areas comprise the collections corresponding to incremental terms that contribute to
I(S; 1) in each lattice. The pink shaded areas surrounded with a dotted line comprise the collections
corresponding to incremental terms that contribute to the complementary information I(S; 23|1) in
each lattice. In (A,B), the dashed red lines encircle the incremental terms contributing to I(S; 1.2).

So far, we have examined the correspondence of how collection 1 partitions the total mutual
information in different lattices (Figures 6 and 7). This collection is representative of collections α

containing a single source, and hence associated with a directly calculable mutual information, e.g.,
I(S; 1). Their corresponding loss in the partition is associated as well with a directly calculable
conditional mutual information, e.g., I(S; 23|1). Accordingly, we can extend Equation (16b,d) to:

L(S; A) = I(S; {R})− I(S; A) = ∑
β∈(↓A)C

ΔI(S; β) (17a)

I(S; A′) = I(S; {R})− L(S; A′) = ∑
β∈(↓A′)C

ΔL(S; β). (17b)

While in Equation (16b), I(S; {R})− I(S; α) is a quantification of information loss only within the
information gain lattice, the equality in Equation (17a) maps this information loss to the correspondent
cumulative term in the information loss lattice. Analogously, Equation (17b) allows mapping a
quantification of gain only within the information loss lattice to the cumulative term in the information
gain lattice. That is, while Equation (16a,b) only regard the representation of information gain and
loss in the gain lattice, and Equation (16c,d) the representation of information gain and loss in the
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loss lattice, Equation (17) indicates the mapping of the gain and loss representations across lattices,
for the single source collections. This mapping was possible for all the pairs of lattices examined,
including the ones of Figures 6C,D and 7C,D, which we have shown cannot be dual. This is because
Equation (17) only relies on the self-redundancy axiom and the definition of how cumulative and
incremental terms are related (Equations (7) and (14)), and hence this mapping can be done between
any arbitrary pair of lattices. However, this direct mapping between the two types of lattices does
not hold for collections composed by more than one source. For example, consider the mapping
of the cumulative term I(S; 1.2), composed by the incremental terms indicated by the dashed red
ellipse in Figure 7A. Now in the information loss lattice we cannot take the collection 1.2 to find the
corresponding partition, because the role of the collection 1.2 in the gain and in the loss lattice is
different. The collection 1.2 indicates the redundant information gain with sources 1, 2, and the loss of
ignoring other sources apart from 1, 2, respectively.

For dual lattices, since the set of incremental terms has to be the same—so that the mutual
information decomposition is unique—this mapping cannot be limited to collections composed by
single sources. This means that any collection α of the gain lattice should determine a partition of the
incremental terms in the loss lattice that allows retrieving I(S; α), and analogously in the gain lattice to
retrieve L(S; α). For example, for the cumulative term I(S; 1.2), to identify the appropriate partition
in the information loss lattice, we argue that the redundant information between 1 and 2 cannot be
contained in the accumulated loss of preserving only 1 or only 2. Accordingly, I(S; 1.2) corresponds
to the sum of the incremental terms outside the union of the down sets of 1 and 2 in the loss lattice.
Following this reasoning, in general:

I(S; α) = ∑
β∈( ⋃

B∈α
↓B)C

ΔL(S; β), (18a)

L(S; α′) = ∑
β∈( ⋃

B∈α′
↓B)C

ΔI(S; β), (18b)

where the same argument led to relate L(S; α′) to gain incremental terms. These equations reduce to
Equation (17) for collections with a single source. In Figure 7B, we indicate with the dashed red ellipse
the mapping determined by Equation (18a) for I(S; 1.2). We can now compare how the cumulative
terms I(S; α) are obtained as a sum of incremental terms in the gain and loss lattice, respectively. In the
gain lattice, incremental terms are accumulated in ↓ α, descending from α (Equation (7)). In the loss
lattice, they are accumulated in a set defined by complementarity to the union of descending sets,
which means that these terms can be reached ascending the loss lattice (Equation (18a)). However,
this does not imply that all incremental terms decomposing I(S; α) can be obtained ascending from
a single node. This can be seen comparing the set of collections related to I(S; 1) (blue shaded area)
in the information loss lattices of Figure 7B,D. In Figure 7B, this set corresponds to ↑ 2.3, while in
Figure 7D there is no β such that the set corresponds to ↑ β, and the incremental terms can only be
reached ascending from 2 and 3 separately. However, in order for the decomposition to be unique,
the set of incremental terms has to be equal in both dual lattices, and thus Equations (7) and (18a)
should be equivalent. The same holds for the cumulative terms L(S; α) and Equation (14) and (18b).
Furthermore, plugging Equation (18a,b) in Equations (8b) and (15b), respectively, we obtain equations
relating the incremental terms of the two lattices:
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ΔI(S; α) = ∑
β∈( ⋃

B∈α
↓B)C

ΔL(S; β)−
|α−|
∑
k=1

(−1)k−1 ∑
B ⊆ α−

|B| = k

∑
β∈( ⋃

B∈∧B
↓B)C

ΔL(S; β) (19a)

ΔL(S; α′) = ∑
β∈( ⋃

B∈α′
↓B)C

ΔI(S; β)−
|α′−|
∑
k=1

(−1)k−1 ∑
B ⊆ α′−

|B| = k

∑
β∈( ⋃

B∈∧B
↓B)C

ΔI(S; β). (19b)

If the lattices paired are dual, the right hand side of Equation (19a) has to simplify to a single
incremental term ΔL(S; β), and similarly the right hand side of Equation (19b) has to simplify to a
single incremental term ΔI(S; β). Taking these constraints into account, we define duality between
information gain and loss lattices imposing this one-to-one mapping of the incremental terms:

Lattice duality: An information gain lattice associated with a set C and an information loss lattice
associated with a set C′, built according to the ordering relations of Equations (6) and (13), and fulfilling
the constraints of Equations (7), (8), (14) and (15), are dual if and only if

∀α ∈ C ∃β ∈ C′ : ΔI(S; α) = ΔL(S; β), (20a)

∀α ∈ C ∃β ∈ C′ : I(S; α) = ∑
γ∈↓α

ΔI(S; γ) = ∑
γ∈↑β

ΔL(S; γ), (20b)

∀α′ ∈ C′ ∃β′ ∈ C : ΔL(S; α′) = ΔI(S; β′), (20c)

∀α′ ∈ C′ ∃β′ ∈ C : L(S; α′) = ∑
γ∈↓α′

ΔL(S; γ) = ∑
γ∈↑β′

ΔI(S; γ). (20d)

Equation (20a,c) ensure that the set of incremental terms is the same for both lattices, so that the
mutual information decomposition is unique. Equation (20b,d) ensure that the mapping between
lattices of Equation (18) is consistent with the intrinsic relation of cumulative and incremental terms
within each lattice, introducing a symmetry between the descending and ascending paths of the
lattices. This definition does not provide a procedure to construct the dual information loss lattice
from an information gain lattice, or vice-versa. However, we have found and we here conjecture
that a necessary condition for two lattices to be dual is that they contain the same collections except
{R} at the top of the gain lattice being replaced by ∅ at the loss lattice. This is not a sufficient
condition, as can be seen from the counterexample of Figure 7C,D. Importantly, the lattices constructed
from the full domain of collections, A{R} for the gain and A∗{R} for the loss, are dual. This is
because the gain and loss full lattices both contain all possible incremental terms differentiating the
different contributions for a certain number of variables n. For lattices constructed from a subset of
the collections, the way their incremental terms can be expressed as a sum of different incremental
terms of the full lattice (Section 3.1) gives us an intuition of why not all the lattices have their dual
pair. In particular, the combination of incremental terms of the full lattice in the incremental terms of
a smaller lattice can be specific for each type of lattice, and this causes that, in general, the resulting
incremental terms of the smaller lattice can no longer fulfill the constraint connecting incremental
and cumulative terms in the other type of lattice. However, duality is not restricted to full lattices.
In Figure 8, we show an example of dual lattices, the pair already discussed in Figure 7A,B. We detail all
the cumulative and incremental terms in these lattices. While the cumulative terms are specific to each
lattice, the incremental terms, in agreement with Equation (20a,c), are common to both. In more detail,
the incremental terms are mapped from one lattice to the other by an up/down and right/left reversal
of the lattice. From these two reversals, the right/left is purely circumstantial, a consequence of our
choice to locate the collections common to both lattices in the same location (for example, to have the

62



Entropy 2017, 19, 71

collections ordered 1, 2, 3 in both lattices instead of 3, 2, 1 for one of them). Oppositely, the up/down
reversal is inherent to the duality between the lattices and reflects the relation between the summation
in down sets or up sets in the summands of Equation (20b,d).
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Figure 8. Dual trivariate decompositions for the sets of collections that do not contain bivariate sources.
(A) Information gain lattice. (B) Information loss lattice. In each node together with the collection,
the corresponding cumulative and incremental terms are indicated. Note that the incremental terms
are common to both lattices and can be mapped by reversing the lattice up/down and right/left. In the
information loss lattice, the cumulative terms of collections containing single sources, L(S; i), i = 1, 2, 3,
are directly expressed as the corresponding conditional information.

To provide a concrete example of information gain and information loss dual decompositions,
we here adopted and extended to the multivariate case the bivariate synergy measure defined in [24].
Table 1 lists all the resulting expressions when the extension of this measure is used to determine all the
terms in both decompositions. This measure is extended in a straightforward way to the multivariate
case, and in particular for the trivariate case defines L(S; i.j) and L(S; i.j.k). The bivariate redundancy
measure also already used in [24] corresponds to I(S; i.j). The rest of incremental terms can be obtained
from the information loss lattice using Equation (15). Note that we could have proceeded in a similar
way starting from a definition of the cumulative terms in the gain lattice, such as Imin, and then
determining the terms of the loss lattice. Here, we use this concrete decomposition only as an example
and it is out of the scope of this work to characterize the properties of the resulting terms. Alternatively,
we focus on discussing the properties related with the duality of the decompositions.

Most importantly, the dual lattices provide a self-consistent quantification of synergy and
redundancy. Equation (20a,c), together with the fact that the bottom incremental terms of lattices are
also cumulative terms, ensure that, combining different dual lattices of different order n and composed
by different subsets, as studied in Section 3.1, all incremental terms correspond to a bottom cumulative
term of a certain lattice. For example, for the lattices of Figure 8, the bottom cumulative term in the
information gain lattice, the redundancy I(S; i.j.k), is equal to the top incremental term of the loss
lattice, Δ(S; i.j.k). Similarly, in the bottom cumulative term of the loss lattice, the synergy L(S; i.j.k), is
equal to the top incremental term of the gain lattice Δ(S; ijk\i, j, k).
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Table 1. Components of the mutual information dual decompositions of Figure 8 based on the synergy
measure defined in [24]. Note that we here build this decomposition for exemplary purpose and we do
not study the degree to which these measures fulfill other axioms proposed for a proper decomposition.

Term Measure

Δ(S; i.j.k) = I(S; i.j.k) min
i.j.k

I(S; ijk)− min
i.j

I(S; j|i)− min
i.k

I(S; i|k)− min
j.k

I(S; k|j)
Δ(S; i.j\k) min

i.k
I(S; ijk) + min

j.k
I(S; ijk)− min

i.j.k
I(S; ijk)− I(S; k)

Δ(S; i\j, k) min
i.j.k

I(S; ijk)− min
j.k

I(S; ijk)

Δ(S; ijk\i, j, k) = L(S; i.j.k) I(S; ijk)− min
i.j.k

I(S; ijk)

I(S; i.j) I(S; j)− min
i.j

I(S; j|i)
L(S; i.j) I(S; ijk)− min

i.j
I(S; ijk)

L(S; i) I(S; jk|i)

For dual lattices, the iterative procedure of Section 3.3 can be applied to recover the components of
the information gain lattice from a definition of synergy and the components calculated in this way are
equal to the ones obtained from the mapping of incremental terms from one lattice to the other. In more
detail, let us refer to the bottom and top terms by ⊥ and �, respectively, and distinguish between
generic terms such as I(S; α) and a specific measure assigned to it, Ī(S; α). One can define the synergistic
top incremental term of the gain lattice using the measure assigned to the bottom cumulative term of
the loss lattice, imposing ΔI(S;�) ≡ L̄(S;⊥) and self-consistency ensures that the measures obtained
with the iterative procedure fulfill Ī(S;⊥) = ΔL̄(S;�). Similarly, self-consistency ensures that, if one
takes as a definition of redundancy for the cumulative terms of the gain lattice the measure assigned
to the incremental terms of the loss lattice based on a definition of synergy, consistent incremental
terms are obtained in the gain lattice. That is, I(S;⊥) ≡ ΔL̄(S;�) results in Δ Ī(S;�) = L̄(S;⊥).
It can be checked that these self-consistency properties do not hold in general, for example for the
lattices of Figure 7C,D. The properties of dual lattices guarantee that, within the class of dual lattices
connected by the decomposition-invariance of cumulative terms, inconsistencies of the type discussed
in Section 3.3 do not occur because all lattices share the same correspondence between incremental
terms and measures, and all the terms in the decompositions are not decomposition-dependent.

As a last point, the existence of dual information gain and loss lattices, with redundancy measures
and synergy measures playing an interchanged role, also indicates, by contrast, that unique information
has a qualitatively different role in this type of mutual information decompositions. The measures of
unique information always correspond to incremental terms and cannot be taken as the cumulative
terms to build the decomposition because they are intrinsically asymmetric in the way different
sources determine the measure, which contradicts the symmetry axiom required to connect collections
in the lattice to cumulative terms. Despite this difference, the iterative hierarchical procedure of
Section 3.3 provides a way to build the mutual information decomposition from a unique information
measure, and duality ensures that the decomposition is self-consistent with alternatively having built
the decomposition using the resulting redundancy or synergy measures as the cumulative terms of the
gain and loss lattice, respectively.

6. Discussion

In this work, we extended the framework of [21] focusing on the lattices that underpin the mutual
information decompositions. We started generalizing the type of information gain lattices introduced
by [21]. By considering more generally which information gain lattices can be constructed (Section 3.1),
we reexamined the constraints that [21] identified for the lattices’ components (Equation (5)) and
ordering relation (Equation (6)). These constraints were motivated by the link of each node in the lattice
with a measure of accumulated information. We argued that it is necessary to check the validity of each
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specific lattice given each specific set of variables and that this checking can overcome the problems
found by [26] with the original lattices described in [21] for the multivariate case. In particular,
we showed that the existence of nonnegative components in the presence of deterministic relations
between the variables is directly a consequence of the non-compliance of the validity constraints.
This indicates that valid multivariate lattices are not a priori incompatible with a mutual information
nonnegative decomposition.

For our generalized set of information gain lattices, we examined the relations between the
terms in different lattices (Section 3.1). We pointed out that the two types of information-theoretic
quantities associated with the lattices have different invariance properties: The cumulative terms of
the information gain lattices are invariant across decompositions, while the incremental terms are
decomposition-dependent and are only connected across lattices through the relations resulting from
the invariance of the cumulative terms. This produces a qualitative difference in the properties of
the redundancy components of the decompositions, which are associated with cumulative terms
in the information gain lattices, and the unique or synergy components, which correspond to
incremental terms. This difference has practical consequences when trying to construct a mutual
information decomposition from a measure of redundancy or a measure of synergy or unique
information, respectively. In the former case, as described in [21], the terms of the decomposition
can be derived straightforwardly given that the redundancy measure identifies the cumulative terms.
In the latter, for the multivariate case, it is not straightforward to construct the decomposition because
the synergy or uniqueness measures only allow identifying specific incremental terms. Exploiting
the connection between different lattices that results from the invariance of the cumulative terms,
we proposed an iterative hierarchical procedure to generally construct information gain multivariate
decompositions from a measure of synergy or unique information (Section 3.3). To our knowledge,
there was currently no method to build multivariate decompositions from these types of measures
and thus this procedure allows application to the multivariate case measures of synergy [23] or
unique information [24] for which associated decompositions had only been constructed for the
bivariate case. However, the application of this procedure led us to recognize inconsistencies in the
determination of decompositions components across lattices. We argued that these inconsistencies are
a consequence of the intrinsic decomposition-dependence of incremental terms, to which synergy and
unique information components are associated in the information gain lattices. We explained these
inconsistencies based on how the components of the full lattice are mapped to components of smaller
lattices and indicated that this mapping should be considered to determine if the conceptual meaning
of a synergy or unique information measure is compatible with the assignment of the measure to a
certain incremental term. With a compatible assignment of measures to incremental terms, the iterative
hierarchical procedure provides a consistent way to build multivariate decompositions.

We then introduced an alternative decomposition of the mutual information based on information
loss lattices (Section 4). The role of redundancy and synergy components is exchanged in the loss
lattices with respect to the gain lattices, with the ones associated with the cumulative terms now being
the synergy components. We defined the information loss lattices analogously to the gain lattices,
determining validity constraints for the components and introducing an ordering relation to construct
the lattices. Cumulative and incremental terms are related in the same way as in the gain lattices,
establishing the connection between the lattice and the mutual information decomposition. This type of
lattices allows the ready determination of the information decomposition from a definition of synergy.
Furthermore, the information loss lattices can be useful in relation to other alternative information
decompositions [33–35].

The existence of different procedures to construct mutual information decompositions, using
a redundancy or synergy measure to directly define the cumulative terms of the information gain
or loss lattice, respectively, or using the iterative hierarchical procedure to indirectly determine
cumulative terms, raised the question of how consistent are the decompositions obtained from these
different methods. Therefore, we studied, in general, the correspondence between information gain
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and information loss lattices. The final contribution of this work was the definition of dual gain
and loss lattices (Section 5). Within a dual pair, the gain and loss lattices share the incremental
terms, which can be mapped one-to-one from the nodes of one lattice to the other. Duality ensures
self-consistency, so that the redundancy components obtained from a synergy definition are the same as
the synergy components obtained from the corresponding redundancy definition. Accordingly, for dual
lattices, any of the procedures can be equivalently used, leading to a unique mutual information
decomposition compatible with the existence of unique notions of redundancy, synergy, and unique
information. Nonetheless, each type of lattice expresses in a more transparent way different aspects
of the decomposition, and allows different components to be extracted more easily, and thus may be
preferable depending on the analysis.

As in the original work of [21] that we aimed to extend, we have here considered generic variables,
without making any assumption about their nature and relations. However, a case which deserves
special attention is that of variables associated with time-series, so that information decompositions
allow the study of the dynamic dependencies in the system [36,37]. Practical examples include the study
of multiple-site recordings of the time course of neural activity at different brain locations, with the aim
of understanding how information is processed across neural systems [38]. In such cases of time-series
variables, a widely-used type of mutual information decomposition aims to separate the contribution to
the information of different causal interactions between the subsystems, e.g., [39,40]. Consideration of
synergistic effects is also important when trying to characterize the causal relations [41]. In fact, when
causality is analyzed by quantifying statistical predictability using conditional mutual information,
a link between these other decompositions and the one of [21] can be readily established [42,43].

The proposal of [21] has proven to be a fruitful conceptual framework and connections to other
approaches to study information in multivariate systems have been explored [44–46]. However,
despite subsequent attempts, e.g., [22–25], it is still an open question how to decompose in multivariate
systems the mutual information into nonnegative contributions that can be interpreted as synergy,
redundancy, or unique components. This issue constitutes the main challenge that limits so far the
practical applicability of the framework. Another challenge for this type of decomposition is to be able
to further relate the terms in the decomposition with a functional description of the parts composing
the system [10]. In this direction, an attractive extension could be to adapt the decompositions to an
interventional approach [10,47], instead of one based on statistical predictability. This could allow
one to better understand how the different components of the mutual information decomposition
are determined by the mechanisms producing dependencies in the system. In practice, this would
help, for example, to dissect information transmission in neural circuits during behavior, which can
be done by combining the analysis of time-series recordings of neural activity using information
decompositions with space-time resolved interventional approaches based on brain perturbation
techniques such as optogenetics [10,48,49]. This interventional approach could be incorporated to
the framework by adopting interventional information-theoretic measures suited to quantify causal
effects [50–52].

Overall, this work provides a wider perspective to the ground constituents of the mutual
information decompositions introduced by [21], introduces new types of lattices, and helps to clarify the
relation between synergy and redundancy measures with the lattice’s components. The consolidation
of this theoretical framework is expected to foster future applications. An advance of this work of
practical importance is that it describes how to build mutual information multivariate decompositions
from redundancy, synergy, or unique information measures and shows that different procedures
are consistent, leading to a unique decomposition when dual information gain and information loss
lattices are used.
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Appendix A. Lattice Theory Definitions

We here review some concepts of lattice theory and of the construction of information decompositions
based on lattices. For further review and references to specialized textbooks see [21].

Definition A1. A pair 〈X,≤〉 is a partially ordered set or poset if ≤ is a binary relation on X that is reflexive,
transitive and antisymmetric.

Definition A2. Let 〈X,≤〉 be a poset, and let Y ⊆ X. An element x ∈ X is a lower bound for Y if
∀y ∈ Y, y ≥ x. An upper bound for Y is defined dually.

Definition A3. An element x ∈ X is the greatest lower bound or infimum for Y , denoted inf Y, if x is a lower
bound of Y and ∀y ∈ Y and ∀z ∈ X; y ≥ z implies x ≥ z. The least upper bound or supremum for Y, denoted
sup Y, is defined dually.

Definition A4. A poset 〈X,≤〉 is a lattice if, and only if, ∀x, y ∈ X both inf {x, y} and sup {x, y} exist in X.
For Y ⊆ X, we use

∧
Y and

∨
Y to denote the infimum and supremum of all elements in Y, respectively.

Definition A5. For a, b ∈ X, we say that a is covered by b if a < b and a ≤ c < b ⇒ a = c. The set of
elements that are covered by b is denoted by b−.

Definition A6. For any x ∈ X, the down-set of x is the set ↓ x = {y ∈ X : y ≤ x}. The up-set ↑ x of x is
defined analogously.

Apart from these definitions from lattice theory, we here introduce, as a concept more specific of
the information decompositions, the concept of increment sublattice:

Definition A7. For a lattice built with the collections set C, for any α ∈ C, the increment sublattice is
♦α = {∧B : B ⊆ α−, |B| = 1, ..., |α−|} .

Appendix B. Validity Checking to Overcome the Nonnegativity Counterexample of [26]

We here examine in more detail the nonnegativity counterexample studied in [26] that we
mentioned in Section 3.1. In this example, two variables Y1Y2 are independently uniformly distributed
binary variables, and a third is generated as Y3 = Y1 XOR Y2. Furthermore, S = (Y1, Y2, Y3).
The variables have deterministic relations, such that any pair {Yi, Yj}, i = j determines the third. We start by
reviewing their arguments. The identity axiom proposed by [22] imposes that I(YiYj; Yi.Yj) = I(Yi; Yj),
and in this case I(Yi; Yj) = 0 bit, i = j. Given the deterministic relation between the variables,
this implies that I(S; Yi.Yj) = 0 bit, i = j. By monotonicity ascending the lattice of Figure 1B,
also I(S; Y1.Y2.Y3) = 0 bit. Accordingly, also the incremental terms of the corresponding nodes
vanish. In the next level of the gain lattice, I(S; Yi.YjYk) = I(Y1Y2Y3; Yi.YjYk) and hence applying
again the identity axiom, I(S; Yi.YjYk) = I(Yi; YjYk) = 1 bit. This also leads to ΔI(S; Yi.YjYk\Yj, Yk) =

1 bit. Furthermore, by monotonicity, I(S; Y1Y2.Y1Y3.Y2Y3) ≤ I(S; Y1Y2Y3) = 2 bit. This leads to
ΔI(S; Y1Y2.Y1Y3.Y2Y3\Y1, Y2, Y3) ≤ 2 − 3 bit = −1 bit. Since this derivation is based on the axioms
and not on the specific properties of the measures used, this proves that, for the lattice of Figure 1B
and for this specific set of variables, there is no measure that can be used to define the terms in the
decomposition so that nonnegativity is respected.

67



Entropy 2017, 19, 71

We completely agree with the derivation of [26]. What we argue is that, in this case,
the non-compliance of nonnegativity is a direct consequence of how the deterministic relations between
the variables render some of the collections that form part of the lattice of Figure 1B invalid according
to the constraints that define the domain of collections (Equation (5)), and render some ordering
relations invalid according to the ordering rule of Equation (6). Therefore, adopting the generalized
framework that we have proposed, this counterexample can be reinterpreted by saying that the full
lattice is not valid for these variables, but that still other lattices are possible. In particular, for the lattice
of Figure 1B, one can use the deterministic relations between the variables to substitute each bivariate
source YiYj by Y1Y2Y3, and then check which collections are invalid. After removing these invalid
collections and rebuilding the edges between the remaining collections according to the ordering
relation, the lattice of Figure 1D is obtained.

However, it can be checked, following a derivation analogous to the one of [26], that also for the
lattice of Figure 1D, nonnegativity is not accomplished, in particular by I(S; Y1Y2Y3\Y1, Y2, Y3). This is
because, still by the deterministic relations, the top collection could be reduced to any collection YiYj.
In contrast to the lattice of Figure 1B, in Figure 1D this reduction would not lead to a duplication of a
collection, since no bivariate sources are present in other nodes, but it still invalidates the ordering
relations in the lattice. In particular, if Y1Y2Y3 is replaced by YiYj, the edge between YiYj and Yk has to
be removed. The remaining structure is not a lattice anymore, given the Definition 4 in Appendix A.
In Appendix C, we briefly discuss more general information decompositions for structures that are
not lattices, but here we still restrict ourselves to lattices. Within the set of lattices, it is now clear
that, in this case, the deterministic relations render invalid any lattice containing the three variables,
and thus only lattices analogous to the one of Figure 1A can be built. For these lattices with two
variables, I(S; Yi.Yj) = 0 bit, I(S; Yi) = 1 bit, and I(S; YiYj) = 2 bit lead to all incremental terms
being nonnegative. Instead of a counterexample of the nonnegativity of the incremental terms, we
can interpret this case as an example in which the relations between the variables invalidate certain
lattices. The possibility to generally construct multivariate nonnegative decompositions, even after
these validity checking, remains an open question.

Appendix C. The Requirements for the Nonnegativity of the Decomposition Incremental Terms

We here review the proofs of Theorems 3–5 of [21] from a general perspective, identifying their key
ingredients. The aim is to recognize which constraints exist to further generalize the type of structures
that can be used to build mutual information decompositions while preserving the same relation
between the structures and the information-theoretic terms. Furthermore, we want to identify the
properties required to ensure nonnegativity for the incremental terms, and assess the degree to which
these properties can be shared by other measures or are mainly specific of the form of the measure Imin
proposed in [21]. This is important because the proposal of [21] is the only one in which nonnegativity
of the decomposition components has been proven for the multivariate case. This appendix does not
aim to be fully autonomous and assumes the previous reading of the proofs in [21].

We start by discussing Theorem 3 of [21]. The theorem states the expression for the incremental
terms of the information gain lattices that we indicated in Equation (8). The expression of Equation (8a)
results directly from the implicit definition of the incremental terms in Equation (7) and does not
require that the structure formed by the collections given the ordering relation is a lattice. Conversely,
Equation (8b) requires that, at least for the elements in ♦α, the structure forms a lattice, namely
the increment sublattice. Although [21] formulated this theorem specifically for Imin, it does not
depend on the properties of the measure and relies only on the lattice properties and the connection
between the lattice and the information decomposition given by Equation (7). This is why we can use
the expressions of Equation (8) without any specification about the form of the mutual information
measures used to build the decomposition. Furthermore, the relations in Equation (20b,d) involving
the up-sets can be similarly inverted as an extension of Theorem 3.
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We now consider Theorem 4 of [21]. For the proof of this theorem, not only lattice properties
but also the properties of Imin were used. We are interested in separating which of these properties
correspond to the axioms generically required for any measure of redundancy, e.g., [28], and which are
specific of the form of Imin. First, the proof uses Theorem 3 and Lemma 2 of [21], which do not depend
on the specific properties of Imin, nor in any generic axiom for redundancy measures. Note however
that the proof uses Equation (8b) and not only Equation (8a) to express the incremental terms as a
function of cumulative terms, and thus, for a certain α, only holds if the structure is compatible with
a lattice for ♦α. Second, the proof relies on a very specific property of the form of Imin: For a given
collection, this measure is defined based on a minimum operation acting on a set of values, each value
associated with one of the sources contained in the collection. In more detail, each value corresponds
to the Specific Information for the corresponding source, and thus it is nonnegative and monotonicity
holds between sources with more variables. This means that, when considering each summand in
Imin for S = s, a cumulative term I(S = s; α) is a function of the cumulative terms associated with the
collections formed by each of the sources in α alone. This is relevant because it allows the relation of the
measures in each node of the lattice beyond the generic relations characteristic of the decomposition.
In more detail, in the proof, this allows the substitution of a minimum operation acting on the sources
contained in the infimum of a set of collections by two minimum operations, acting on the collections
in that set and on the sources in each of these collections, respectively. Furthermore, this substitution is
only valid for lattices keeping the infimums structure of the full lattices.

Finally, Theorem 5, which proves the nonnegativity of the incremental terms, relies on Theorem 4,
on the nonnegativity of cumulative terms I(S; α), and on the monotonicity of the Specific Information.
Overall, we see that the specific closed form expression of the incremental terms stated in Theorem 4 is
fundamental to prove the nonnegativity of the incremental terms. The key property of Imin to prove
Theorem 4 does not follow from the generic axioms proposed for redundancy measures, and is not
shared by other measures that have been proposed, e.g., [22–24]. This renders the proof of Theorem 4
and 5 specific to Imin, in contrast to the proof of Theorem 3. Accordingly, our reexamination of the
proofs of [21] helps to point out that any attempt to prove the nonnegativity of the mutual information
decomposition based on an alternative measure cannot, in general, follow the same procedure.

Appendix D. Another Example of Dual Decompositions

As a second example of a pair of dual decompositions, we show in Figure A1, also for the case of
three variables, the decompositions for the sets of collections that do not contain univariate sources.

12.13.23 

13.23 12.23 12.13 

23 13 12 

123 

12.13.23 

A B Ø 

23 13 12 

13.23 12.23 12.13 

I(S;23) I(S;13) I(S;12) 

I(S;123) 

Δ(S;23\12,13) Δ(S;13\12,23) Δ(S;12\13,23) 

Δ(S;123\12,13,23) 

Δ(S;13.23\12) Δ(S;12.23\13) Δ(S;12.13\23) 

I(S;13.23) I(S;12.23) I(S;12.13) 

I(S;12.13.23) 
Δ(S;12.13.23) 

L(S;13.23) L(S;12.23) L(S;12.13) 

Δ(S;12\13,23) Δ(S;13\12,23) Δ(S;23\12,13) 

L(S;12.13.23) 
Δ(S;123\12,13,23) 

I(S;123) 
Δ(S;12.13.23) 

I(S;1|23) I(S;2|13) I(S;3|12) 

Δ(S;12.13\23) Δ(S;12.23\13) Δ(S;13.23\12) 

Figure A1. Analogous to Figure 8 but for the trivariate decomposition based only on collections that
do not contain univariate sources.
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Abstract: We present a first formal analysis of specific and complete local integration. Complete
local integration was previously proposed as a criterion for detecting entities or wholes in distributed
dynamical systems. Such entities in turn were conceived to form the basis of a theory of emergence
of agents within dynamical systems. Here, we give a more thorough account of the underlying
formal measures. The main contribution is the disintegration theorem which reveals a special role of
completely locally integrated patterns (what we call ι-entities) within the trajectories they occur in.
Apart from proving this theorem we introduce the disintegration hierarchy and its refinement-free
version as a way to structure the patterns in a trajectory. Furthermore, we construct the least upper
bound and provide a candidate for the greatest lower bound of specific local integration. Finally,
we calculate the ι-entities in small example systems as a first sanity check and find that ι-entities
largely fulfil simple expectations.

Keywords: identity over time; Bayesian networks; multi-information; entity; persistence; integration;
emergence; naturalising agency

1. Introduction

This paper investigates a formal measure and a corresponding criterion we developed in order to
capture the notion of wholes or entities within Bayesian networks in general and multivariate Markov
chains in particular. The main focus of this paper is to establish some formal properties of this criterion.

The main intuition behind wholes or entities is that combinations of some events/phenomena
in space(-time) can be considered as more of a single or coherent “thing” than combinations of other
events in space(-time). For example, the two halves of a soap bubble (The authors thank Eric Smith for
pointing out the example of a soap bubble.) together seem to form more of a single thing than one half
of a floating soap bubble together with a piece of rock on the ground. Similarly, the soap bubble at
time t1 and the “same” soap bubble at t2 seem more like temporal parts of the same thing than the soap
bubble at t1 and the piece of rock at t2. We are trying to formally define and quantify what it is that
makes some spatially and temporally extended combinations of parts entities but not others.

We envisage spatiotemporal entities as a way to establish not only the problem of spatial identity
but also that of temporal identity (also called identity over time [1]). In other words, in addition to
determining which events in “space” (e.g., which values of different degrees of freedom) belong to the
same structure spatiotemporal entities should allow the identification of the structure at a time t2 that
is the future (or past if t2 < t1) of a structure at time t1. Given a notion of identity over time, it becomes
possible to capture which things persist and in what way they persist. Without a notion of identity over
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time, it seems persistence is not defined. The problem is how to decide whether something persisted
from t1 to t2 if we cannot tell what at t2 would count as the future of the original thing.

In everyday experience problems concerning identity over time are not of great concern.
Humans routinely and unconsciously connect perceived events to spatially and temporally extended
entities. Nonetheless, the problem has been known since ancient times, in particular with respect to
artefacts that exchange their parts over time. A famous example is the Ship of Theseus which has all of
its planks exchanged over time. This leads to the question whether it is still the same ship. From the point
of view of physics and chemistry living organisms also exchange their parts (e.g., the constituting atoms
or molecules) over time. In the long term we hope our theory can help to understand identity over time
for these cases. For the moment, we are particularly interested in identity over time in formal settings
like cellular automata, multivariate Markov chains, and more generally dynamical Bayesian networks.
In these cases a formal notion of spatiotemporal entities (i.e., one defining spatial and temporal identity)
would allow us to investigate persistence of entities/individuals formally. The persistence (and
disappearance) of individuals are in turn fundamental to Darwinian evolution [2,3]. This suggests
that spatiotemporal entities may be important for the understanding of the emergence of Darwinian
evolution in dynamical systems.

Another area in which a formal solution to the problem of identity over time, and thereby entities
(In the following, if not stated otherwise, we always mean spatiotemporal entities when we refer to
entities.), might become important is a theory of intelligent agents that are space-time embedded
as described by Orseau and Ring [4]. Agents are examples of entities fulfilling further properties
e.g., exhibition of actions, and goal-directedness (cf. e.g., [5]). Using the formalism of reinforcement
learning Legg and Hutter [6] proposes a definition of intelligence. Orseau and Ring [4] argue that this
definition is insufficient. They dismiss the usual assumption that the environment of the reinforcement
agent cannot overwrite the agent’s memory (which in this case is seen as the memory/tape of a
Turing machine). They conclude that in the most realistic case there only ever is one memory that the
agent’s (and the environment’s) data is embedded in. They note that the difference between agent
and environment then disappears. Furthermore, that the policy of the agent cannot be freely chosen
anymore, only the initial condition. In order to measure intelligence according to Legg and Hutter [6]
we must be able to define reward functions. This seems difficult without the capability to distinguish
the agent according to some criterion. Towards the end of their publication Orseau and Ring [4]
propose to define a “heart” pattern and use the duration of its existence as a reward. This seems a too
specific approach to us since it basically defines identity over time (of the heart pattern) as invariance.
In more general settings a pattern that maintains a more general criterion of identity over time would
be desirable. Ideally, this criterion would also not need a specifically designed heart pattern. Another
advantage would be that reward functions different from lifetime could be used if the agent were
identifiable. An entity criterion in the sense of this paper would be a step in this direction.

1.1. Illustration

In order to introduce the contributions of this paper we illustrate the setting of our work further.
This illustration should only be taken as a motivation for what follows and not be confused with a

result. The reason we don’t use a concrete example is simply that we lack the necessary computational
means (which are considerable as we will discuss in Section 5).

Let us assume we are given the entire time-evolution (what we will call a trajectory) of some known
multivariate dynamical system or stochastic process. For example, a trajectory of a one-dimensional
elementary cellular automaton showing a glider collision like Figure 1a (This is produced by the rule
62 elementary cellular automaton with time increasing from left to right. However, this does not matter
here. For more about this system see e.g., Boccara et al. [7]).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. Illustration of concepts from this paper on the time-evolution (trajectory) of a one-dimensional
elementary cellular automaton. Time-steps increase from left to right. None of the shown structures
are derived from principles. They are manually constructed for illustrative purposes. In (a) we show
the complete (finite) trajectory. Naively, two gliders can be seen to collide and give rise to a third glider;
In (b–d) we show (spatiotemporal) patterns fixing the variables (allegedly) pertaining to a first, second,
and a third glider; In (e) we show a pattern fixing the variables of what could be a glider that absorbs
the first glider from before and maintains its identity; In (f) we show a partition into the time-slices of
the pattern of the first glider; In (g) we show a partition of the trajectory with three parts coinciding
with the gliders and one part encompassing the rest; In (h) we show again a partition with three parts
coinciding with the gliders but now all other variables are considered as individual parts.

We take the point of view here argued for in previous work [8] that entities are phenomena that
occur within trajectories and that they can be represented by (spatiotemporal) patterns. Patterns in
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this sense fix a part of the variables in a trajectory to definite values and leave the rest undetermined.
In Figure 1b–d we show such patterns that occur in Figure 1a with the undetermined variables coloured
grey and the determined ones taking on those of the trajectory. Visually speaking, a pattern is a snippet
from a trajectory that it occurs in.

From Figure 1a we would probably expect that what we are seeing are two gliders colliding and
forming a third. However, it may also be that one of the gliders absorbs the other, maintains some
form of identity, and only changes its appearance (e.g., it “grows”). This highlights the problem of
identity over time. While the spatial identity of such patterns has been treated multiple times in the
literature their identity of over time is rarely dealt with.

Our approach evaluates the “integration” of spatiotemporally extended patterns at once. According
to our proposed entity-criterion a pattern is an ι-entity if, due to the dynamics of the system, every
part of this pattern (which is again a pattern) makes all other parts more probable. Identity over time
is then included since future parts have to make past parts more probable and vice versa. In principle
this would allow us to detect if one of the gliders absorbs another one without loosing its identity.
For example, this could result in an entity as in Figure 1e.

In order to detect entities the straightforward approach is to evaluate the entity-criterion for every
spatiotemporal pattern in a given trajectory. Evaluating our entity-criterion of positive complete local
integration (CLI) for a given pattern corresponds to splitting the pattern into parts in every possible way
and calculating whether all the resulting parts make each other more probable. This means evaluating
the specific local integration (SLI) with respect to all partitions of the set of variables occupied by
the pattern.

1.2. Contributions

This paper contains four contributions.
We first give a more formal definition of patterns. Since each pattern uniquely specifies a set of

trajectories (those trajectories that the pattern occurs in) one might be tempted to reduce the analysis
to that of sets of trajectories. We show that this is not possible since not all sets of trajectories have a
pattern that specifies them.

Second, we try to get a general intuition for the patterns whose parts make all other parts more
probable. For this we show how to construct patterns that, for given probability of the whole pattern,
achieve the least upper bound of specific local integration (SLI). These turn out to be patterns for which
each part only occurs if and only if the whole pattern occurs. We also construct a pattern that, again for
given probability of the whole pattern, has negative SLI. These pattern (which may achieve the greatest
lower bound of SLI) occur if either the whole pattern occurs or the pattern occurs up to exactly one
part of it, which does not occur.

Third, we prove the disintegration theorem. This is the main contribution. We saw that patterns
are snippets of trajectories. We can also look at the whole trajectory as a single pattern. Like all patterns
the trajectory can be split up into parts, i.e., partitioned, resulting in a set of patterns. Among the
partitions we find examples such as those in Figure 1g,h. These are very particular partitions picking
out the gliders among all possible parts. This suggests that finding such special partitions provides a
(possibly different) notion of entities.

One intuition we might have is that entities are the most “independent” parts of a trajectory.
In other words we could look for the partition whose parts make the other parts less probable.
The disintegration theorem then shows that this approach again leads to the ι-entities. This shows that
ι-entities do not only have an intuitive motivation but also play a particular role in the structure of
probabilities of entire trajectories.

It is not directly the parts of the partitions that minimise SLI for a trajectory which are ι-entities.
To get ι-entities we first classify all partitions of the trajectory according to their SLI value. Then within
each such class we choose the partitions for which no refining partition (A refining partition is one that
further partitions any of the parts of the original partition.) achieves an even lower level of SLI.
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So according to the disintegration theorem a ι-entity is not only a pattern that is integrated with
respect to every possible partition of the pattern but also a pattern that occurs in partitions that
minimise (in a certain sense) the integration of trajectories.

A side effect of the disintegration theorem is that we naturally get a kind of hierarchy of ι-entities
called the disintegration hierarchy. For each trajectory and its different levels of SLI we find different
decompositions of the trajectory into ι-entities.

Fourth, we calculate the ι-entities and disintegration hierarchy for two simple example systems.
Our example systems show that in general the partitions at a particular disintegration level are not
unique. This means that there are overlapping ι-entities at those levels. Furthermore, the same ι-entity
can occur on multiple levels of the disintegration.

We do not thoroughly discuss the disintegration hierarchies in this paper and postpone this to
future publications. Here we only note that many entities in the real world occur within hierarchies as
well. For example, animals are entities that are composed of cells which are themselves entities.

1.3. Related Work

We now give a quick overview of related work. More in depth discussions will be provided after
we formally introduce our definitions.

To our knowledge the measure of CLI has been proposed for the first time by us in [8]. However,
this publication contained none of the formal or numerical results in the present paper. From a
formal perspective the measures of SLI and CLI are a combination of existing concepts. SLI localises
multi-information [9,10] in the way proposed by Lizier [11] for other information theoretic measures.
In order to get the CLI we apply the weakest-link approach proposed by Tononi and Sporns [12],
Balduzzi and Tononi [13] to SLI.

Conceptually, our work is most closely related to Beer [14]. The notion of spatiotemporal patterns
used there to capture blocks, blinkers, and gliders is equivalent to the patterns we define more formally
here. This work also contains an informal entity-criterion that directly deals with identity over time
(not only space). It differs significantly from our proposal as it depends on the re-occurrence of certain
transitions at later times in a pattern whereas our criterion only depends on the probabilities of parts
of the patterns without the need for any re-occurrences.

The organisations of chemical organisation theory [15] may also be interpreted as entity-criteria.
In Fontana and Buss [15] these are defined in the following way:

The observer will conclude that the system is an organisation to the extent that there is a
compressed description of its objects and of their relations.

The direct intuition is different from ours and it is not clear to us in how far our entity-criterion is
equivalent to this. This will be further investigated in the future.

It is worth noting that viewing entities/objects/individuals as patterns occurring within a
trajectory is in contrast to an approach that models them as sets of random variables/stochastic
processes (e.g., a set of cells in a CA in contrast to a set of specific values of a set of cells). An example of
the latter approach are the information theoretic individuals of Krakauer et al. [16]. These individuals
are identified using an information theoretic notion of autonomy due to Bertschinger et al. [17].
The latter notion of autonomy is also somewhat related to the idea of integration here. Autonomy
contains a term that measures the degree to which a random variable representing an individual at
timestep t determines the random variable representing it at t + 1. Similarly, CLI requires that every
part of an entity pattern makes every other part more probable, in the extreme case this means that
every part determines that every other part of the pattern also occurs. However, formally autonomy
evaluates random variables and not patterns directly.

At the most basic level the intuition behind entities is that some spatiotemporal patterns are
more special than others. Defining (and usually finding) more important spatiotemporal patterns
or structures (also called coherent structures) has a long history in the theory of cellular automata
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and distributed dynamical systems. As Shalizi et al. [18] have argued most of the earlier definitions
and methods [19–22] require previous knowledge about the patterns being looked for. They are
therefore not suitable for a general definition of entities. More recent definitions based on information
theory [18,23,24] do not have this limitation anymore. The difference to our entity-criterion is that they
do not treat identity over time. They are well suited to identify gliders at each time-step for example,
but if two gliders collide and give rise to a third glider as in Figure 1a these methods (by design) say
nothing about the identity of the third glider. i.e., they cannot make a difference between a glider
absorbing another one and two gliders producing a new one. While we have not been able to show
that our approach actually makes such distinctions for gliders, it could do so in principle.

We note here that the approach of identifying individuals by Friston [25] using Markov blankets
has the same shortcoming as the spatiotemporal filters. For each individual time-step it returns a
partition of all degrees of freedom into internal, sensory, active, and external degrees. However, it does
not provide a way to resolve ambiguities in the case of multiple such partitions colliding.

Among research related to integrated information theory (IIT) there are approaches (a first one
by Balduzzi [26] and a more recently by Hoel et al. [27]) that can be used to determine specific
spatiotemporal patterns in a trajectory. They can therefore be interpreted to define a notion of
entities even if that is not their main goal. These approaches are aimed at establishing the optimal
spatiotemporal coarse-graining to describe the dynamics of a system. For a given trajectory we can
then identify the patterns that instantiate a macro-state/coarse-grain that is optimal according to
their criterion.

In contrast to our approach the spatiotemporal grains are determined by their interactions with
other grains. In our case the entities are determined first and foremost by their internal relations.

The consequence seems to be that a pattern can be an entity in one trajectory and not an entity in
another even if it occurs in both. In our conception a pattern is an entity in all trajectories it occurs in.

2. Notation and Background

In this section we briefly introduce our notation for sets of random variables (Since every set of
jointly distributed random variables can be seen as a Bayesian network and vice versa we use these
terms interchangeably.) and their partition lattices.

In general, we use the convention that upper-case letters X, Y, Z are random variables, lower-case
letters x, y, z are specific values/outcomes of random variables, and calligraphic letters X ,Y ,Z are
state spaces that random variables take values in. Furthermore:

Definition 1. Let {Xi}i∈V be a set of random variables with totally ordered finite index set V and state spaces
{Xi}i∈V respectively. Then for A, B ⊆ V define:

1. XA := (Xi)i∈A as the joint random variable composed of the random variables indexed by A, where A is
ordered according to the total order of V,

2. XA := ∏i∈A Xi as the state space of XA,
3. xA := (xi)i∈A ∈ XA as a value of XA,
4. pA : XA → [0, 1] as the probability distribution (or more precisely probability mass function) of XA which

is the joint probability distribution over the random variables indexed by A. If A = {i} i.e., a singleton set,
we drop the parentheses and just write pA = pi,

5. pA,B : XA ×XB → [0, 1] as the probability distribution over XA ×XB. Note that in general for arbitrary
A, B ⊆ V, xA ∈ XA, and yB ∈ XB this can be rewritten as a distribution over the intersection of A and B
and the respective complements. The variables in the intersection have to coincide:

pA,B(xA, yB) : = pA\B,A∩B,B\A,A∩B(xA\B, xA∩B, yB\A, yA∩B) (1)

= δxA∩B(yA∩B) pA\B,A∩B,B\A(xA\B, xA∩B, yB\A). (2)
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Here δ is the Kronecker delta (see Appendix A). If A ∩ B = ∅ and C = A ∪ B we also write pC(xA, yB)

to keep expressions shorter.
6. pB|A : XA ×XB → [0, 1] with (xA, xB) �→ pB|A(xB|xA) as the conditional probability distribution over

XB given XA:

pB|A(yB|xA) :=
pA,B(xA, yB)

pA(xA)
. (3)

We also just write pB(xB|xA) if it is clear from context what variables we are conditioning on.

If we are given pV we can obtain every pA through marginalisation. In the notation of Definition 1
this is formally written:

pA(xA) = ∑
x̄V\A∈XV\A

pA,V\A(xA, x̄V\A) (4)

= ∑
x̄V\A∈XV\A

pV(xA, x̄V\A). (5)

Next we define the partition lattice of a set of random variables. Partition lattices occur as a
structure of the set of possible ways to split an object/pattern into parts. Subsets of the partition lattices
play an important role in the disintegration theorem.

Definition 2 (Partition lattice of a set of random variables). Let {Xi}i∈V be a set of random variables.

1. Then its partition lattice L(V) is the set of partitions of V partially ordered by refinement (see also
Appendix B).

2. For two partitions π, ρ ∈ L(V) we write π � ρ if π refines ρ and π �: ρ if π covers ρ. The latter means
that π �= ρ, π � ρ, and there is no ξ ∈ L(V) with π �= ξ �= ρ such that π � ξ � ρ.

3. We write 0 for the zero element of a partially ordered set (including lattices) and 1 for the unit element.
4. Given a partition π ∈ L(V) and a subset A ⊆ V we define the restricted partition π|A of π to A via:

π|A := {b ∩ A : b ∈ π}. (6)

For some examples of partition lattices see Appendix B and for more background see e.g.,
Grätzer [28]. For our purpose it is important to note that the partitions of sets of random variables or
Bayesian networks we are investigating are partitions of the index set V of these and not partitions of
their state spaces XV .

3. Patterns, Entities, Specific, and Complete Local Integration

This section contains the formal part of this contribution.
First we introduce patterns. Patterns are the main structures of interest in this publication.

Entities are seen as special kinds of patterns. The measures of specific local integration and complete
local integration, which we use in our criterion for ι-entities, quantify notions of “oneness” of patterns.
We give a brief motivation and show that while each pattern defines a set of “trajectories” of a set of
random variables not every such set is defined by a pattern. This justifies studying patterns for their
own sake.

Then we motivate briefly the use of specific and complete local integration (SLI and CLI) for
an entity criterion on patterns. We then turn to more formal aspects of SLI and CLI. We first prove
an upper bound for SLI and construct a candidate for a lower bound. We then go on to define the
disintegration hierarchy and its refinement-free version. These structures are used to prove the main
result, the disintegration theorem. This relates the SLI of whole trajectories of a Bayesian network to the
CLI of parts of these trajectories and vice versa.
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3.1. Patterns

This section introduces the notion of patterns. These form the basic candidate structures for entities.
The structures we are trying to capture by entities should be analogous to spatially and temporally

extended objects we encounter in everyday life (e.g., soap bubbles, living organisms). These objects
seem to occur in the single history of the universe that also contains us. The purpose of patterns is
then to capture arbitrary structures that occur within single trajectories or histories of a multivariate
discrete dynamical system (see Figure 2 for an example of a Bayesian network of such a system, any
cellular automaton is also such a system).

X1,0 X1,1 X1,2 X1,3

X2,0 X2,1 X2,2 X2,3

X3,0 X3,1 X3,2 X3,3

X4,0 X4,1 X4,2 X4,3

X5,0 X5,1 X5,2 X5,3

degrees
offreedom

(D
O

Fs)→

time →
Figure 2. First time steps of a Bayesian network representing a multivariate dynamical system
(or multivariate Markov chain) {Xi}i∈V . Here we used V = J × T with J indicating spatial degrees of
freedom and T the temporal extension. Then each node is indexed by a tuple (j, t) as shown. The shown
edges are just an example, edges are allowed to point from any node to another one within the same or
in the subsequent column.

We emphasise the single trajectory since many structures of interest (e.g., gliders) occur in some
trajectories in some “places”, in other trajectories in other “places” (compare e.g., Figures 1a and 3a),
and in some trajectories not at all. We explicitly want to be able to capture such trajectory dependent
structures and therefore choose patterns. Examples of formal structures for which it makes no sense to
say that they occur within a trajectory are for example the random variables in a Bayesian network
and, as we will see, general sets of trajectories of the Bayesian network.

Unlike entities, which we conceive of as special patterns that fulfil further criteria, patterns are
formed by any combination of events at arbitrary times and positions. As an example, we might think
of cellular automaton again. The time evolutions over multiple steps of the cells attributed to a glider
see [14] for a principled way to attribute cells to theseas in Figure 1b,e should be patterns but also
arbitrary choices of events in a trajectory as in Figure 3b.

In the more general context of (finite) Bayesian networks there may be no interpretation of time
or space. Nonetheless, we can define that a trajectory in this case fixes every random variable to a
particular value. We then define patterns formally in the following way.
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(a) (b)

Figure 3. In (a) we show a trajectory of the same cellular automaton as in Figure 1 with a randomly
chosen initial condition. The set of gliders and their paths occurring in this trajectory is clearly different
from those in Figure 1a. In (b) we show an example of a random pattern that occurs in the trajectory of
(a) and is probably not an entity in any sense.

Definition 3 (Patterns and trajectories). Let {Xi}i∈V be set of random variables with index set V and state
spaces {Xi}i∈V respectively.

1. A pattern at A ⊆ V is an assignment

XA = xA (7)

where xA ∈ XA. If there is no danger of confusion we also just write xA for the pattern XA = xA at A.
2. The elements xV of the joint state space XV are isomorphic to the patterns XV = xV at V which fix the

complete set {Xi}i∈V of random variables. Since they will be used repeatedly we refer to them as the
trajectories of {Xi}i∈V.

3. A pattern xA is said to occur in trajectory x̄V ∈ XV if x̄A = xA.
4. Each pattern xA uniquely defines (or captures) a set of trajectories T (xA) via

T (xA) = {x̄V ∈ XV : x̄A = xA}, (8)

i.e., the set of trajectories that xA occurs in.
5. It is convenient to allow the empty pattern x∅ for which we define T (x∅) = XV.

Remarks:

• Note that for every xA ∈ XA we can form a pattern XA = xA so the set of all patterns is
⋃

A⊆V XA.
• Our notion of patterns is similar to “patterns” as defined in [29] and to “cylinders” as defined in [30].

More precisely, these other definitions concern (probabilistic) cellular automata where all random
variables have identical state spaces Xi = Xj for all i, j ∈ V. They also restrict the extent of the
patterns or cylinders to a single time-step. Under these conditions our patterns are isomorphic
to these other definitions. However, we drop both the identical state space assumption and the
restriction to single time-steps.

Our definition is inspired by the usage of the term “spatiotemporal pattern” in [14,31,32]. There is
no formal definition of this notion given in these publications but we believe that our definition is
a straightforward formalisation. Note that these publications only treat the Game of Life cellular
automaton. The assumption of identical state space is therefore implicitly made. At the same time
the restriction to single time-steps is explicitly dropped.

Since every pattern defines a subset of XV , one could think that every subset of XV is also a
pattern. In that case studying patterns in a set of random variables {Xi}i∈V would be the same as
studying subsets of its set of trajectories XV . However, the set of subsets of XV defined by patterns
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and the set of all subsets 2XV (i.e., the power set) of XV of a set of random variables {Xi}i∈V are not
identical. Formally: ⋃

B⊆V
{T (xB) ⊆ XV : xB ∈ XB} ⊆ 2XV . (9)

While patterns define subsets of XV , not every subset of XV is captured by a pattern. The difference
of the two sets is characterised in Theorem 1 below. We first present a simple example of a subset
D ∈ 2XV that cannot be captured by a pattern.

Let V = {1, 2} and {Xi}i∈V = {X1, X2} the set of random variables. Let X1 = X2 = {0, 1}.
Then XV = {(0, 0), (0, 1), (1, 0), (1, 1)}. Now let A = V = {1, 2}, choose pattern xA = (0, 0) and
pattern x̄A = (1, 1). Then let

D := {xA ∪ x̄A} = {(0, 0), (1, 1)}. (10)

In this case we can easily list the set of all patterns
⋃

C⊆V XC:

C ⊆ V xC T (xC)

∅ x∅ XV

{1}
(0) {(0, 0), (0, 1)}
(1) {(1, 0), (1, 1)}

{2}
(0) {(0, 0), (1, 0)}
(1) {(0, 1), (1, 1)}

{1,2}

(0, 0) {(0, 0)}
(0, 1) {(0, 1)}
(1, 0) {(1, 0)}
(1, 1) {(1, 1)}

(11)

and verify that D is not among them. Before we formally characterise the difference, we define some
extra terminology.

Definition 4. Let {Xi}i∈V be set of random variables with index set V and state spaces {Xi}i∈V respectively.
For a subset D ⊆ XV the set DA of all patterns at A that occur in one of the trajectories in D is defined as

DA := {xA ∈ XA : ∃x̄V ∈ D, x̄A = xA}. (12)

So in the previous example D{1} = {0, 1}, D{2} = {0, 1}, D{1,2} = {(0, 0), (1, 1)}. In then get the
following theorem which establishes the difference between the subsets of XV captured by patterns
and general subsets.

Theorem 1. Given a set of random variables {Xi}i∈V, a subset D ⊆ XV cannot be represented by a pattern
of {Xi}i∈V if and only if there exists A ⊆ V with DA ⊂ XA (proper subset) and |DA| > 1, i.e., if neither all
patterns at A are possible nor a unique pattern at A is specified by D.

Proof. See Appendix D.

We saw that in the previous example the subset D cannot be captured by a pattern. For A = {1}
we have D{1} = {0, 1} = X{1} and for A = {2} we have D{2} = {0, 1} = X{2} so these do not fulfil
the conditions of Theorem 1. However, for A = {1, 2} we have D{1,2} = {(0, 0), (1, 1)} ⊂ X{1,2}
and |D{1,2}| > 1 so the conditions of Theorem 1 are fulfilled and as expected D cannot be captured
by a pattern.
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The proof of the following corollary shows how to construct a subset that cannot be represented
by a pattern for all sets of random variables {Xi}i∈V with |XV | > 2.

Corollary 1. Given a set of random variables {Xi}i∈V, if |XV | > 2 then

⋃
B∈V

{T (xB) ⊆ XV : xB ∈ XB} ⊂ 2XV (13)

(proper subset).

Proof. Choose D = {xV , yV} ∈ 2XV with yV ∈ {x̄V ∈ XV : ∀i ∈ V, x̄i �= xi}. Then for all A ⊆ V we
have |DA| = 2 and DA ⊂ XA. So D cannot be represented by a pattern according to Theorem 1 and so
D /∈ ⋃

B∈V{T (xB) ⊆ XV : xB ∈ XB}.

This means that in every set of random variables that not only consists of a single binary random
variable there are subsets of XV that cannot be captured by a pattern. We can interpret this result in the
following way. Patterns were constructed to be structures that occur within trajectories. It then turned
out that each pattern also defines a subset of all trajectories of a system. So for sets of trajectories
captured by patterns it could make sense to say they “occur” within one trajectory. However, there are
sets of trajectories that are not captured by patterns. For these sets of trajectories it would then not
be well-defined to say that they occur within a trajectory. This is the reason we choose to investigate
patterns specifically and not sets of trajectories.

3.2. Motivation of Complete Local Integration as an Entity Criterion

We proposed to use patterns as the candidate structures for entities since patterns comprise
arbitrary structures that occur within single trajectories of multivariate systems. Here we heuristically
motivate our choice of using positive complete local integration as a criterion to select entities among
patterns. In general such a criterion would give us, for any Bayesian network {Xi}i∈V a subset
E({Xi}i∈V) ⊆ ⋃

A⊆V XA of the patterns.
So what is an entity? We can rephrase the problem of finding an entity criterion by saying an

entity is composed of parts that share the same identity. So if we can define when parts share the same
identity we also define entities by finding all parts that share identity with some given part. For the
moment, let us decompose (as is often done [33]) the problem of identity into two parts:

1. spatial identity and
2. temporal identity.

Our solution will make no distinction between these two aspects in the end. We note here that
conceiving of entities (or objects) as composite of spatial and temporal parts as we do in this paper
is referred to as four-dimensionalism or perdurantism in philosophical discussions (see e.g., [34]).
The opposing view holds that entities are spatial only and endure over time. This view is called
endurantism. Here we will not go into the details of this discussion.

The main intuition behind complete local integration is that every part of an entity should make
every other part more probable.

This seems to hold for example for the spatial identity of living organisms. Parts of living
organisms rarely exist without the rest of the living organisms also existing. For example, it is rare
that an arm exists without a corresponding rest of a human body existing compared to an arm and the
rest of a human body existing. The body (without arm) seems to make the existence of the arm more
probable and vice versa. Similar relations between parts seem to hold for all living organisms but also
for some non-living structures. The best example of a non-living structure we know of for which this
is obvious are soap bubbles. Half soap bubbles (or thirds, quarters,...) only ever exist for split seconds
whereas entire soap bubbles can persist for up to minutes. Any part of a soap bubble seems to make
the existence of the rest more probable. Similarly, parts of hurricanes or tornadoes are rare. So what
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about spatial parts of structures that are not so entity-like? Does the existence of an arm make things
more probable that are not parts of the corresponding body? For example, does the arm make the
existence of some piece of rock more probable? Maybe to a small degree as without the existence of
any rocks in the universe humans are probably impossible. However, this effect is much smaller than
the increase of probability of the existence of the rest of the body due to the arm.

These arguments concerned the spatial identity problem. However, for temporal identity similar
arguments hold. The existence of a living organism at one point in time makes it more probable that
there is a living organism (in the vicinity) at a subsequent (and preceding) point in time. If we look at
structures that are not entity-like with respect to the temporal dimension we find a different situation.
An arm at some instance of time does not make the existence of a rock at a subsequent instance much
more probable. It does make the existence of a human body at a subsequent instance much more
probable. So the human body at the second instance seems to be more like a future part of the arm
than the rock. Switching now to patterns in sets of random variables we can easily formalise such
intuitions. We required that for an entity every part of the structure, which is now a pattern xO, makes
every other part more probable. A part of a pattern is a pattern xb with b ⊂ O. If we require that every
part of a pattern makes every other part more probable then we can write that xO is an entity if:

min
b⊂O

pO\b(xO\b|xb)

pO\b(xO\b)
> 1. (14)

This is equivalent to

min
b⊂O

pO(xO)

pO\b(xO\b)pb(xb)
> 1. (15)

If we write L2(O) for the set of all bipartitions of O we can rewrite this further as

min
π∈L2(O)

pO(xO)

∏b∈π pb(xb)
> 1. (16)

We can interpret this form as requiring that for every possible partition π ∈ L2(O) into two parts
xb1 , xb2 the probability of the whole pattern xO = (xb1 , xb2) is bigger than its probability would be if
the two parts were independent. To see this, note that if the two parts xb1 , xb2 were independent we
would have

pO(xO) =: pb1,b2(xb1 , xb2) = pb1(xb1)pb2(xb2). (17)

Which would give us
pO(xO)

∏b∈π pb(xb)
= 1 (18)

for this partition.
From this point of view the choice of bipartitions only seems arbitrary. For example, the existence

a partition ξ into three parts such that

pO(xO) = ∏
c∈ξ

pc(xc) (19)

seems to suggest that the pattern xO is not an entity but instead composite of three parts. We can
therefore generalise Equation (16) to include all partitions L(O) (see Definition 2) of O except the unit
partition 1O. Then we would say that xO is an entity if

min
π∈L(O)\1O

pO(xO)

∏b∈π pb(xb)
> 1. (20)

This measure already results in the same entities as the measure we propose.
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However, in order to connect with information theory, log-likelihoods, and related literature we
formally introduce the logarithm into this equation. We then arrive at the following entity-criterion

min
π∈L(O)\1O

log
pO(xO)

∏b∈π pb(xb)
> 0. (21)

where the left hand side is the complete local integration (CLI), the function minimised is the specific
local integration (SLI), and the inequality provides the criterion for ι-entities. For reference, we define
these notions formally. We begin with SLI which quantifies for a given partition π of a pattern in how
far the probability of the whole pattern is bigger than its probability would be if the blocks of the
partition would be independent.

Definition 5 (Specific local integration (SLI)). Given a Bayesian network {X}i∈V and a pattern xO the
specific local integration miπ(xO) of xO with respect to a partition π of O ⊆ V is defined as

miπ(xO) := log
pO(xO)

∏b∈π pb(xb)
. (22)

In this paper we use the convention that log 0
0 := 0.

Definition 6 ((Complete) local integration). Given a Bayesian network {Xi}i∈V and a pattern xO of
this network the complete local integration ι(xO) of xO is the minimum SLI over the non-unit partitions
π ∈ L(O) \ 1O:

ι(xO) := min
π∈L(O)\1O

miπ(xO). (23)

We call a pattern xO completely locally integrated if ι(xO) > 0.

Remarks:

• The reason for excluding the unit partition 1O of L(O) (where 1O = {O} see Definition 2) is that
with respect to it every pattern has mi1O(xO) = 0.

• Looking for a partition that minimises a measure of integration is known as the weakest link
approach [35] to dealing with multiple partitions. We note here that this is not the only approach
that is being discussed. Another approach is to look at weighted averages of all integrations. For a
further discussion of this point in the case of the expected value of SLI see Ay [35] and references
therein. For our interpretation taking the average seems less well suited since requiring a positive
average will allow SLI to be negative with respect to some partitions.

Definition 7 (ι-entity). Given a multivariate Markov chain {Xi}i∈V a pattern xO is a ι-entity if

ι(xO) > 0. (24)

The entire set of ι-entities Eι({Xi}i∈V) is then defined as follows.

Definition 8 (ci-entity-set). Given a multivariate Markov chain {Xi}i∈V the ι-entity-set is the entity-set

Eι({Xi}i∈V) := {xO ∈ ⋃
A⊆V

XA : ι(xO) > 0}. (25)

Next, we look at some interpretations that the introduction of the logarithm allows.

• A first consequence of introducing the logarithm is that we can now formulate the condition of
Equation (24) analogously to an old phrase attributed to Aristotle that “the whole is more than
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the sum of its parts”. In our case this would need to be changed to “the log-probability of the
(spatiotemporal) whole is greater than the sum of the log-probabilities of its (spatiotemporal)
parts”. This can easily be seen by rewriting Equation (22) as:

miπ(xO) = log pO(xO)− ∑
b∈π

log pb(xb). (26)

• Another side effect of using the logarithm is that we can interpret Equation (24) in terms of
the surprise value (also called information content) − log pO(xO) [36] of the pattern xO and the
surprise value of its parts with respect to any partition π. Rewriting Equation (22) using properties
of the logarithm we get:

miπ(xO) = ∑
b∈π

(− log pb(xb))− (− log pO(xO)).

Interpreting Equation (24) from this perspective we can then say that a pattern is an entity if the
sum of the surprise values of its parts is larger than the surprise value of the whole.

• In coding theory, the Kraft-McMillan theorem [37] tells us that the optimal length (in a uniquely
decodable binary code) of a codeword for an event x is l(x) = − log p(x) if p(x) is the true
probability of x. If the encoding is not based on the true probability of x but instead on a
different probability q(x) then the difference between the optimal codeword length and the chosen
codeword length is

− log q(x)− (− log p(x)) = log
p(x)
q(x)

. (27)

Then we can interpret the specific local integration as a difference in codeword lengths. Say we
want to encode what occurs at the nodes/random variables indexed by O, i.e., we encode the
random variable XV . We can encode every event (now a pattern) xO based on pO(xO). Let’s call
this the joint code. Given a partition π ∈ L(O) we can also encode every event xO based on its
product probability ∏b∈πO

pb(xb). Let’s call this the product code with respect to π. For a particular
event xO the difference of the codeword lengths between the joint code and the product code with
respect to π is then just the specific local integration with respect to π.

Complete local integration then requires that the joint code codeword is shorter than all possible
product code codewords. This means there is no partition with respect to which the product code
for the pattern xO has a shorter codeword than the joint code. So ι-entities are patterns that are
shorter to encode with the joint code than a product code. Patterns that have a shorter codeword
in a product code associated to a partition π have negative SLI with respect to this π and are
therefore not ι-entities.

• We can relate our measure of identity to other measures in information theory. For this we
note that the expectation value of specific local integration with respect to a partition π is the
multi-information MIπ(XO) [9,10] with respect to π, i.e.,

MIπ(XO) : = ∑
xO∈XO

pO(xO) log
pO(xO)

∏b∈π pb(xb)
(28)

= ∑
xO∈XO

pO(xO)miπ(xO). (29)

The multi-information plays a role in measures of complexity and information integration [35].
The generalisation from bipartitions to arbitrary partitions is applied to expectation values similar
to the multi-information above in Tononi [38]. The relations of our localised measure (in the
sense of [11]) to multi-information and information integration measures also motivates the name
specific local integration. Relations to these measures will be studied further in the future. Here we
note that these are not suited for measuring identity of patterns since they are properties of the
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random variables XO and not of patterns xO. We also show in Corollary 2 that if xO is an ι-entity
that XO (the joint random variable) has a positive MIπ(XO) for all partitions π and is therefore a
set of “integrated” random variables.

3.3. Properties of Specific Local Integration

This section investigates the specific local integration (SLI) (see Definition 5). After giving its
expression for deterministic systems it proves upper bounds constructively and constructs an example
of negative SLI.

3.3.1. Deterministic Case

Theorem 2 (Deterministic specific local integration). Given a deterministic Bayesian network
(Definition A10), a uniform initial distribution over XV0 (V0 is the set of nodes without parents), and a
pattern xO with O ⊆ V the SLI of xO with respect to partition π can be expressed more specifically: Let N(xO)

refer to the number of trajectories in which xO occurs. Then

miπ(xO) = (|π| − 1) log |XV0 |+ log N(xO)− ∑
b∈π

log N(xb). (30)

Proof. See Appendix C.2.

The first term in Equation (30) is always positive if the partition and the set of random variables are
not trivial (i.e., have cardinality larger than one) and is a constant for partitions of a given cardinality.
The second term is also always non-negative for patterns xO that actually occur in the system and rises
with the number of trajectories that lead to it. The third term is always non-positive and becomes more
and more negative the higher the number of trajectories that lead to the parts of the pattern occurring.

This shows that to maximise SLI for fixed partition cardinality we need to find patterns that have
a high number of trajectories leading to them and a low number of occurrences for all their parts. Since
the number of occurrences of the parts cannot be lower than the number of occurrences of the whole,
we should get a maximum SLI for patterns whose parts occur only if the whole occurs. This turns out
to be true also for the non-deterministic systems as we prove in Theorem 4.

Conversely, if we can increase the number of occurrences of the parts of the pattern without
increasing the occurrences of the whole pattern occurring we minimise the SLI. This leads to the
intuition that as often as possible as many parts as possible (i.e., all but one) should co-occur
without the whole pattern occurring. This consistently leads to negative SLI as we will show for
the non-deterministic case in Theorem 5.

3.3.2. Upper Bounds

In this section we present the upper bounds of SLI. These are of general interest, but the
constructive proof also provides an intuition for what kind of patterns have large SLI.

We first show constructively that if we can choose the Bayesian network and the pattern then SLI
can be arbitrary large. This construction sets the probabilities of all blocks equal to the probability of
the pattern and implies that each of the parts of the pattern occurs only if the entire pattern occurs.
The simplest example is one binary random variable determining another to always be in the same
state, then the two patterns with both variables equal have this property. In the subsequent theorem
we show that this property in general gives the upper bound of SLI if the cardinality of the partition is
fixed. A simple extension of this example is used in the proof of the least upper bound. First we prove
that there are Bayesian networks that achieve a particular SLI value. This will be used in the proofs
that follow. For this we first define the anti-patterns which are patterns that differ to a given pattern at
every random variable that is specified.
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Definition 9 (Anti-pattern). Given a pattern xO define its set of anti-patterns ¬(xO) that have values different
from those of xO on all variables in O:

¬(xO) := {x̄O ∈ XO : ∀i ∈ O, x̄i �= xi}. (31)

Remark:

• It is important to note that for an element of ¬(xO) to occur it is not sufficient that xO does not
occur. Only if every random variable Xi with i ∈ O differs from the value xi specified by xO does
an element of ¬(xO) necessarily occur. This is why we call ¬(xO) the anti-pattern of xO.

Theorem 3 (Construction of a pattern with maximum SLI). Given a probability q ∈ (0, 1) and a positive
natural number n there is a Bayesian network {Xi}i∈V with |V| ≥ n and a pattern xO such that

miπ(xO) = −(n − 1) log q. (32)

Proof. We construct a Bayesian network which realises two conditions on the probability pO.
From these two conditions (which can also be realised by other Bayesian networks) we can then
derive the theorem.

Choose a Bayesian network {Xi}i∈V with binary random variables Xi = {0, 1} for all i ∈ V.
Choose all nodes in O dependent only on node j ∈ O, the dependence of the nodes in V \O is arbitrary:

• for all i ∈ O ⊂ V let pa(i) ∩ (V \O) = ∅, i.e., nodes in O have no parents in the complement of O,
• for a specific j ∈ O and all other i ∈ O \ {j} let pa(i) = {j}, i.e., all nodes in O apart from j have

j ∈ O as a parent,
• for all i ∈ O \ {j} let pi(x̄i|bx̄j) = δx̄j(x̄i), i.e., the state of all nodes in O is always the same as the

state of node j,
• also choose pj(xj) = q and ∑x̄j �=xj

pj(xj) = 1 − q.

Then it is straightforward to see that:

1. pO(xO) = q,
2. ∑x̄O∈¬(xO) pO(x̄O) = 1 − q.

Note that there are many Bayesian networks that realise the latter two conditions for some xO.
These latter two conditions are the only requirements for the following calculation.

Next note that the two conditions imply that pO(x̄O) = 0 if neither x̄O = xO nor x̄O ∈ ¬(xO).
Then for every partition π of O with |π| = n and n > 1 we have

miπ(xO) = log
pO(xO)

∏b∈π pb(xb)
(33)

= log
pO(xO)

∏b∈π ∑x̄O\b
pO(xb, x̄O\b)

(34)

= log
pO(xO)

∏b∈π

(
pO(xO) + ∑x̄O\b �=xO\b

pO(xb, x̄O\b)
) (35)

= log
pO(xO)

∏b∈π pO(xO)
(36)

= log
pO(xO)

pO(xO)n (37)

= −(n − 1) log q. (38)
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Theorem 4 (Upper bound of SLI). For any Bayesian network {X}i∈V and pattern xO with fixed pO(xO) = q

1. The tight upper bound of the SLI with respect to any partition π with |π| = n fixed is

max
{{Xi}i∈V :∃xO ,pO(xO)=q}

max
{π:|π|=n}

miπ(xO) ≤ −(n − 1) log q. (39)

2. The upper bound is achieved if and only if for all b ∈ π we have

pb(xb) = pO(xO) = q. (40)

3. The upper bound is achieved if and only if for all b ∈ π we have that xb occurs if and only if xO occurs.

Proof. ad 1 By Definition 5 we have

miπ(xO) = log
pO(xO)

∏b∈π pb(xb)
. (41)

Now note that for any xO and b ⊆ O

pb(xb) = ∑
x̄O\b

pO(xb, x̄O\b) (42)

= pO(xO) + ∑
x̄O\b �=xO\b

pO(xb, x̄O\b) (43)

≥ pO(xO). (44)

Plugging this into Equation (41) for every pb(xb) we get

miπ(xO) = log
pO(xO)

∏b∈π pb(xb)
(45)

≤ log
pO(xO)

pO(xO)|π| (46)

= −(|π| − 1) log pO(xO). (47)

This shows that −(|π| − 1) log pO(xO) is indeed an upper bound. To show that it is tight we
have to show that for a given pO(xO) and |π| there are Bayesian networks with patterns xO such
that this upper bound is achieved. The construction of such a Bayesian network and a pattern xO
was presented in Theorem 3.

ad 2 If for all b ∈ π we have pb(xb) = pO(xO) then clearly miπ(xO) = −(|π| − 1) log pO(xO) and the
least upper bound is achieved. If on the other hand miπ(xO) = −(|π| − 1) log pO(xO) then

log
pO(xO)

∏b∈π pb(xb)
= −(|π| − 1) log pO(xO) (48)

⇔ log
pO(xO)

∏b∈π pb(xb)
= log

pO(xO)

pO(xO)|π| (49)

⇔ ∏
b∈π

pb(xb) = pO(xO)
|π|, (50)

and because pb(xb) ≥ pO(xO) (Equation (44)) any deviation of any of the pb(xb) from pO(xO)

leads to ∏b∈π pb(xb) > pO(xO)
|π| such that for all b ∈ π we must have pb(xb) = pO(xO).
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ad 3 By definition for any b ∈ π we have b ⊆ O such that xb always occurs if xO occurs. Now assume
xb occurs and xO does not occur. In that case there is a positive probability for a pattern (xb, x̄O\b)

with x̄O\b �= xO\b i.e., pO(xb, x̄O\b) > 0. Recalling Equation (43) we then see that

pb(xb) = pO(xO) + ∑
x̄O\b �=xO\b

pO(xb, x̄O\b) (51)

> pO(xO). (52)

which contradicts the fact that pb(xb) = pO(xO) so xb cannot occur without xO occurring as well.

Remarks:

• Note that this is the least upper bound for Bayesian networks in general. For a specific Bayesian
network there might be no pattern that achieves this bound.

• The least upper bound of SLI increases with the improbability of the pattern and the number of
parts that it is split into. If pO(xO) → 0 then we can have miπ(xO) → ∞.

• Using this least upper bound it is easy to see the least upper bound for the SLI of a pattern xO
across all partitions |π|. We just have to note that |π| ≤ |O|.

• Since it is the minimum value of SLI with respect to arbitrary partitions the least upper bound of
SLI is also an upper bound for CLI. It may not be the least upper bound however.

3.3.3. Negative SLI

This section shows that SLI of a pattern xO with respect to partition π can be negative independently
of the probability of xO (as long as it is not 1) and the cardinality of the partition (as long as that
is not 1). The construction which achieves this also serves as an example of patterns with low SLI.
We conjecture that this construction might provide the greatest lower bound but have not been able
to prove this yet. An intuitive description of the construction is that patterns which either occur as a
whole or missing exactly one part always have negative SLI.

Theorem 5. For any given probability q < 1 and cardinality |π| = n > 1 of a partition π there exists a
Bayesian network {Xi}i∈V with a pattern xO such that q = pO(xO) and

miπ(xO) = log
q(

1 − 1−q
n

)n < 0. (53)

Proof. We construct the probability distribution pO : XO → [0, 1] and ignore the behaviour of the
Bayesian network {Xi}i∈V outside of O ⊆ V. In any case {Xi}i∈O is also by itself a Bayesian network.
We define (see remarks below for some intuitions behind these definitions and Definition 9 for ¬(xA)):

1. for all i ∈ O let |Xi| = n
2. for every block b ∈ π let |b| = |O|

|π| ,
3. for x̄O ∈ XO let:

pO(x̄O) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q if x̄O = xO,
1−q−d

∑b∈π |¬(xb)| if ∃c ∈ π s.t. x̄O\c = xO\c ∧ x̄c �= xc,
d

|¬(xO)| if x̄O ∈ ¬(xO),

0 else.

(54)

Here d parameterises the probability of any pattern in ¬(xO) occurring. We will carry it through
the calculation but then end up setting it to zero.

89



Entropy 2017, 19, 230

Next we calculate the SLI. First note that, according to 1. and 2., we have |Xb| = |Xc| for all
b, c ∈ π and therefore also |¬(xb)| = |¬(xc)| for all b, c ∈ π. So let m := |¬(xb)|. Then note that,
according to 3, for all b ∈ π

∑
x̄O\b �=xO\b

pO(xb, x̄O\b) = ∑
c∈π\b

∑
x̄c �=xc

pO(xb, xO\(b∪c), x̄c) (55)

= ∑
c∈π\b

∑
x̄c �=xc

1 − q − d
∑b∈π |¬(xb)| (56)

= ∑
c∈π\b

∑
x̄c �=xc

1 − q − d
m|π| (57)

= ∑
c∈π\b

1 − q − d
m|π| |¬(xc)| (58)

=
|π| − 1
|π| (1 − q − d) (59)

Plug this into the SLI definition:

miπ(xO) = log
pO(xO)

∏b∈π pb(xb)
(60)

= log
q

∏b∈π q + ∑x̄O\b �=xO\b
pO(xb, x̄O\b)

(61)

= log
q

∏b∈π q + |π|−1
|π| (1 − q − d)

(62)

= log
q(

q + |π|−1
|π| (1 − q − d)

)|π| (63)

If we now set d = 0 we get:

miπ(xO) = log
q(

1 − 1−q
|π|

)|π| . (64)

Then we can use Bernoulli’s inequality (The authors thank von Eitzen [39] for pointing this
out. An example reference for Bernoulli’s inequality is Bullen [40]). to prove that this is negative for
0 < q < 1 and |π| ≥ 2. Bernoulli’s inequality is

(1 + x)n ≥ 1 + nx (65)

for x ≥ −1 and n a natural number. Replacing x by −(1 − q)/|π| we see that

(
1 − 1 − q

|π|
)|π|

> q (66)

such that the argument of the logarithm is smaller than one which gives us negative SLI.

Remarks:

• The achieved value in Equation (53) is also our best candidate for a greatest lower bound of SLI
for given pO(xO) and |π|. However, we have not been able to prove this yet.

• The construction equidistributes the probability 1 − q (left to be distributed after the probability q
of the whole pattern occurring is chosen) to the patterns x̄O that are almost the same as the pattern
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xO. These are almost the same in a precise sense: They differ in exactly one of the blocks of π, i.e.,
they differ by as little as can possibly be resolved/revealed by the partition π.

• In order to achieve the negative SLI of Equation (64) the requirement is only that Equation (59) is
satisfied. Our construction shows one way how this can be achieved.

• For a pattern and partition such that |O|/|π| is not a natural number, the same bound might still
be achieved however a little extra effort has to go into the construction 3. of the proof such that
Equation (59) still holds. This is not necessary for our purpose here as we only want to show the
existence of patterns achieving the negative value.

• Since it is the minimum value of SLI with respect to arbitrary partitions the candidate for the
greatest lower bound of SLI is also a candidate for the greatest lower bound of CLI.

3.4. Disintegration

In this section we define the disintegration hierarchy and its refinement-free version. We then
prove the disintegration theorem which is the main formal result of this paper. It exposes a connection
between partitions minimising the SLI of a trajectory and the CLI of the blocks of such partitions.
More precisely for a given trajectory the blocks of the finest partitions among those leading to a
particular value of SLI consist only of completely locally integrated blocks. Conversely, each completely
locally integrated pattern is a block in such a finest partition leading to a particular value of SLI.
The theorem therefore reveals that ι-entities can not only be motivated heuristically as we tried to do
in Section 3.2 but in fact play a special role within the trajectories they occur in. Furthermore, this
theorem allows additional interpretations of the ι-entities which will be discussed in Section 3.5.

The main tool we use for the proof, the disintegration hierarchy and especially its refinement
free version are also interesting structure in their own right since they define a hierarchy among the
partitions of trajectories that we did not anticipate. In the case of the refinement free version the
disintegration theorem tells us that this hierarchy among partitions of trajectories turns out to be a
hierarchy of splits of the trajectory into ci-entities.

Definition 10 (Disintegration hierarchy). Given a Bayesian network {Xi}i∈V and a trajectory xV ∈ XV,
the disintegration hierarchy of xV is the set D(xV) = {D1,D2,D3, ...} of sets of partitions of xV with:

1.
D1(xV) := arg min

π∈L(V)

miπ(xV) (67)

2. and for i > 1:
Di(xV) := arg min

π∈L(V)\D≺i(xV )

miπ(xV). (68)

where D≺i(xV) :=
⋃

j<i Dj(xV). We call Di(xV) the i-th disintegration level.

Remark:

• Note that arg min returns all partitions that achieve the minimum SLI if there is more than one.
• Since the Bayesian networks we use are finite, the partition lattice L(V) is finite, the set of attained

SLI values is finite, and the number |D| of disintegration levels is finite.
• In most cases the Bayesian network contains some symmetries among their mechanisms which

cause multiple partitions to attain the same SLI value.
• For each trajectory xV the disintegration hierarchy D then partitions the elements of L(V) into

subsets Di(xV) of equal SLI. The levels of the hierarchy have increasing SLI.

Definition 11. Let L(V) be the lattice of partitions of set V and let E be a subset of L(V). Then for every
element π ∈ L(V) we can define the set

E�π := {ξ ∈ E : ξ � π}. (69)
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That is E�π is the set of partitions in E that are refinements of π.

Definition 12 (Refinement-free disintegration hierarchy). Given a Bayesian network {Xi}i∈V, a trajectory
xV ∈ XV, and its disintegration hierarchy D(xV) the refinement-free disintegration hierarchy of xV is the set
D�(xV) = {D�

1 ,D�
2 ,D�

3 , ...} of sets of partitions of xV with:

1.
D�

1 (xV) := {π ∈ D1(xV) : D1(xV)�π = ∅}, (70)

2. and for i > 1:
D�

i (xV) := {π ∈ Di(xV) : D≺i(xV)�π = ∅} (71)

Remark:

• Each level D�
i (xV) in the refinement-free disintegration hierarchy D�(xV) consists only of those

partitions that neither have refinements at their own nor at any of the preceding levels. So each
partition that occurs in the refinement-free disintegration hierarchy at the i-th level is a finest
partition that achieves such a low level of SLI or such a high level of disintegration.

• As we will see below, the blocks of the partitions in the refinement-free disintegration hierarchy
are the main reason for defining the refinement-free disintegration hierarchy.

Theorem 6 (Disintegration theorem). Let {Xi}i∈V be a Bayesian network, xV ∈ XV one of its trajectories,
and D�(xV) the associated refinement-free disintegration hierarchy.

1. Then for every D�
i (xV) ∈ D�(xV) we find for every b ∈ π with π ∈ D�

i (xV) that there are only the
following possibilities:

(a) b is a singleton, i.e., b = {i} for some i ∈ V, or
(b) xb is completely locally integrated, i.e., ι(xb) > 0.

2. Conversely, for any completely locally integrated pattern xA, there is a partition πA ∈ L(V) and a level
D�

iA(xV) ∈ D�(xV) such that A ∈ πA and πA ∈ D�
iA(xV).

Proof. ad 1 We prove the theorem by contradiction. For this assume that there is block b in a partition
π ∈ D�

i (xV) which is neither a singleton nor completely integrated. Let π ∈ D�
i (xV) and

b ∈ π. Assume b is not a singleton i.e., there exist i �= j ∈ V such that i ∈ b and j ∈ b. Also
assume that b is not completely integrated i.e., there exists a partition ξ of b with ξ �= 1b such
that miξ(xb) ≤ 0. Note that a singleton cannot be completely locally integrated as it does not
allow for a non-unit partition. So together the two assumptions imply pb(xb) ≤ ∏d∈ξ pd(xd)

with |ξ| > 1. However, then

miπ(xV) = log
pV(xV)

pb(xb)∏c∈π\b pc(xc)
(72)

≥ log
pV(xV)

∏d∈ξ pd(xd)∏c∈π\b pc(xc)
(73)

We treat the cases of “>” and “=” separately. First, let

miπ(xV) = log
pV(xV)

∏d∈ξ pd(xd)∏c∈π\b pc(xc)
. (74)

Then we can define ρ := (π \ b) ∪ ξ such that

1. miρ(xV) = miπ(xV) which implies that ρ ∈ Di(xV) because π ∈ Di(xV), and
2. ρ � π which contradicts π ∈ D�

i (xV).
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Second, let

miπ(xV) > log
pV(xV)

∏d∈ξ pd(xd)∏c∈π\b pc(xc)
. (75)

Then we can define ρ := (π \ b) ∪ ξ such that

miρ(xV) < miπ(xV), (76)

which contradicts π ∈ D�
i (xV).

ad 2 By assumption xA is completely locally integrated. Then let πA := {A} ∪ {{j}}j∈V\A. Since πA

is a partition of V it is an element of some disintegration level DiA . Then partition πA is also
an element of the refinement-free disintegration level D�

iA(xV) as we will see in the following.
This is because any refinements must (by construction of πA break up A into further blocks
which means that the local specific integration of all such partitions is higher. Then they must be
at lower disintegration level Dk(xV) with k ≥ iA. Therefore, πA has no refinement at its own
or a higher disintegration level. More formally, let ξ ∈ L(V), ξ �= πA and ξ � πA since πA

only contains singletons apart from A the partition ξ must split the block A into multiple blocks
c ∈ ξ|A. Since ι(xA) > 0 we know that

miξ|A(xA) = log
pA(xA)

∏c∈ξ|A pc(xc)
> 0 (77)

so that ∏c∈ξ|A pc(xc) < pA(xA) and

miξ(xV) = log
pV(xV)

∏c∈ξ|A pc(xc)∏i∈V\A pi(xi)
(78)

> log
pV(xV)

pA(xA)∏i∈V\A pi(xi)
(79)

= miπA(xV). (80)

Therefore ξ is on a disintegration level Dk(xV) with k > iA, but this is true for any refinement of
πA so D≺iA(xV)�πA = ∅ and πA ∈ D�

iA(xV).

We mentioned in Section 3.2 that the expectation value of SLI miπ(xA) is the (specific)
multi-information MIπ(XA). A positive SLI value of xA implies a positive expectation value MIπ(XA).
Therefore every ι-entity xA implies positive specific multi-informations MIπ(XA) with respect to any
partition π. We put this into the following corollary.

Corollary 2. Under the conditions of Theorem 6 and for every D�
i (xV) ∈ D�(xV) we find for every b ∈ π

with π ∈ D�
i (xV) that there are only the following possibilities:

1. b is a singleton, i.e., b = {i} for some i ∈ V, or
2. Xb is completely (not only locally) integrated, i.e., I(Xb) > 0.

here
I(XA) := min

π∈L(A)\0
MIπ(XA). (81)

Proof. Since MIπ(XA) is a Kullback–Leibler divergence we know from Gibbs’ inequality that
MIπ(XA) ≥ 0 and MIπ(XA) = 0 if and only if for all xA ∈ XA we have pA(xA) = ∏b∈π pb(xb).
To see that MIπ(XA) is a Kullback–Leibler divergence note:
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MIπ(XA) : = ∑
xA∈XA

pA(xA)miπ(xA) (82)

= ∑
xA∈XA

pA(xA) log
pA(xA)

∏b pb(xb)
(83)

= KL[pA|| ∏
b∈π

pb]. (84)

Now let a specific xA ∈ XA be a ι-entity. Then for all π ∈ L(A) \ 0 we have

log
pA(xA)

∏b pb(xb)
> 0, (85)

which implies that
pA(xA) �= ∏

b
pb(xb) (86)

and therefore
KL[pA|| ∏

b∈π

pb] > 0 (87)

which implies I(XA) > 0.

3.5. Disintegration Interpretation

In Section 3.2 we motivated our choice of positive complete local integration as a criterion for
entities. This motivation is purely heuristic and starts from the intuition that an entity is a structure
for which every part makes every other part more probable. While this heuristic argument seems
sufficiently intuitive to be of a certain value we would much rather have a formal reason why an
entity criterion is a “good” entity criterion. In other words we would ideally have a formal problem
that is best solved by the entities satisfying the criterion. An example of a measure that has such an
associated interpretation is the mutual information whose maximum over the input distributions
is the channel capacity. Without a formal problem associated to ι-entities there remains a risk that
they (and maybe the whole concept of entities and identity over time) are artefacts of an ill-conceived
conceptual approach.

Currently, we are not aware of an analogous formal problem that is solved by ι-entities. However,
the different viewpoint provided by the disintegration theorem may be a first step towards finding
such a problem. We will now discuss some alternative interpretations of SLI and see how CLI can be
seen from a different perspective due to the disintegration theorem. These interpretations also exhibit
why we chose to include the logarithm into the definition of SLI.

Using the disintegration theorem (Theorem 6) allows us to take another point of view on ι-entities.
The theorem states that for each trajectory xV ∈ XV of a multivariate Markov chain the refinement-free
disintegration hierarchy only contains partitions whose blocks are completely integrated patterns i.e.,
they only contain ι-entities. At the same time the blocks of all those partitions together are all ι-entities
that occur in that trajectory.

A partition in the refinement-free disintegration hierarchy is always a minimal/finest partition
reaching such a low specific local integration.

Each ι-entity is then a block xc with c ∈ π of a partition π ∈ D�(xV) for some trajectory xV ∈ XV
of the multivariate Markov chain.

Let us recruit the interpretation from coding theory above. If we want to find the optimal
encoding for the entire multivariate Markov chain {Xi}i∈V this means finding the optimal encoding
for the random variable XV whose values are the trajectories xV ∈ XV . The optimal code has the
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codeword lengths − log pV(xV) for each trajectory xV . The partitions in the lowest level D�
1 (xV) in

the refinement-free disintegration hierarchy for xV have minimal specific local integration i.e.,

miπ(xV) = log
pV(xV)

∏c∈π pc(xc)
(88)

is minimal among all partitions. At the same time these partitions are the finest partitions that achieve
this low specific local integration. This implies on the one hand that the codeword lengths of the
product codes associated to these partitions are the shortest possible for xV among all partitions.
On the other hand these partitions split up the trajectory in as many parts as possible while generating
these shortest codewords. In this combined sense the partitions in D�

1 (xV) generate the “best” product
codes for the particular trajectory xV .

Note that the expected codeword length of the product code:

∑
xV∈XV

pV(xV)(− log ∏
c∈π

pc(xc)) (89)

which is the more important measure for encoding in general, might not be short at all, i.e., it might
not be an efficient code for arbitrary trajectories. The product codes based on partitions in D�

1 (xV)

are specifically adapted to assign a short codeword to xV , i.e., to a single trajectory or story of
this system. As product codes they are constructed/forced to describe xV as a composition of
stochastically independent parts. More precisely they are constructed in the way that would be
optimal for stochastically independent parts.

Nonetheless, the product codes exist (they can be generated using Huffman coding or arithmetic
coding [37] based on the product probability) and are uniquely decodable. The parts/blocks of them are
the ι-entities. We mentioned before that we would like to find a problem that is solved by ι-entities. This
is then equivalent to finding a problem that is solved by the according product codes. Can we construct
such a problem? This question is still open. A possible direction for finding such a problem may be the
following line of reasoning. Say for some reason the trajectory xV is more important than any other
and that we want to “tell its story” as a story of as many as possible (stochastically) independent parts
(that are maybe not really stochastically independent) i.e., say we wanted to encode the trajectory as if
it were a combination of as many as possible stochastically independent parts/events. And because xV
is more important than all other trajectories we wanted the codeword for xV to be the shortest possible.
Then we would use the product codes of partitions in the refinement-free disintegration hierarchy
because those combine exactly these two conditions. The pseudo-stochastically-independent parts
would then be the blocks of these partitions which according to the disintegration theorem are exactly
the ι-entities occurring in xV .

Speculating about where the two conditions may arise in an actual problem, we mention that
the trajectory/history that we (real living humans) live in is more important to us than all other
possible trajectories of our universe (if there are any). What happens/happened in this trajectory
needs to be communicated more often than what happens/happened in counterfactual trajectories.
Furthermore, a good reason to think of a system as composite of as many parts as possible is that this
reduces the number of parameters that need to be learned which in turn improves the learning speed
(see e.g., [41]). So the entities that mankind has partitioned its history into might be related to the
ι-entities of the universe’s history. These would compose the shortest product codes for what actually
happened. The disintegration level might be chosen to optimise rates of model learning.

Recall that this kind of product code is not the optimal code in general (which would be the one
with shortest expected codeword length). It is possibly more of a naive code that does not require
deep understanding of the dynamical system but instead can be learned fast and works. The language
of physics for example might be more optimal in the sense of shortest expected codeword lengths
reflecting a desire to communicate efficiently about all counterfactual possibilities as well.

95



Entropy 2017, 19, 230

3.6. Related Approaches

We now discuss in some more detail than in Section 1.3 the approaches of Beer [14] and Balduzzi [26].
In Beer [14] the construction of the entities proceeds roughly as follows. First the maps

from the Moore neighbourhood to the next state of a cell are classified into five classes of local
processes. Then these are used to reveal the dynamical structure in the transitions from one time-slice
(or temporal part) of a pattern to the next. The used example patterns are the famous block, blinker,
and glider and they are considered including their temporal extension. Using both the processes and
the spatial patterns/values/components (the black and white values of cells are called components)
networks characterising the organisation of the spatiotemporally extended patterns are constructed.
These can then be investigated for their organisational closure. Organisational closure occurs if the same
process-component relations reoccur at a later time. Boundaries of the spatiotemporal patterns are
identified by determining the cells around the pattern that have to be fixed to get re-occurrence of
the organisation.

Beer [14] mentions that the current version of this method of identifying entities has its limitations.
If the closure is perturbed or delayed and then recovered the entity still looses its identity according to
this definition. Two possible alternatives are also suggested. The first is to define the potential for closure
as enough for the ascription of identity. This is questioned as well since a sequence of perturbations
can take the entity further and further away from its “defining” organisation and make it hard to still
speak of a defining organisation at all. The second alternative is to define that the persistence of any
organisational closure indicates identity. It is suggested that this would allow blinkers to transform
to gliders.

We note that using the entity criterion we propose does not need similar choices to be made
since it is not based on the re-occurrence of any organisation. Later time-slices of ι-entities need
no organisational (or any other) similarity to earlier ones. Another, possibly only small, advantage
is that our criterion is formalised and reasonably simply to state. Whether this is possible for the
organisational closure based entities remains to be seen.

This is related to the philosophical discussion about identity across possible worlds [33].
Some further parallels can be drawn between the present work and Balduzzi [26] especially if we

take into account the disintegration theorem. Given a trajectory (entire time-evolution) of the system
in both cases a partition is sought which fulfills a particular trajectory-wide optimality criterion. Also
in both cases, each block of the trajectory-wide partition fulfills a condition with respect to its own
partitions. For our conditions the disintegration theorem exposes the direct connection between the
trajectory-wide and the block-specific conditions. Such a connection is not known for other approaches.
The main reason for this might be the simpler formal expression of CLI and SLI compared to the
IIT approaches.

In how far our approach and the IIT approaches lead to coinciding or contradicting results is
beyond the scope of this paper and constitutes future work. One avenue to pursue here are differences
with respect to entities occurring in multiple trajectories as well as the possibility of overlapping
entities within single trajectories.

4. Examples

In this section we investigate the structure of integrated and completely locally integrated
spatiotemporal patterns as it is revealed by the disintegration hierarchy. First we take a quick look at
the trivial case of a set of independent random variables. Then we look at two very simple multivariate
Markov chains. We use the disintegration theorem (Theorem 6) to extract the completely locally
integrated spatiotemporal patterns.
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4.1. Set of Independent Random Variables

Let us first look at a set {Xi}i∈V of independently and identically distributed random variables.
For each trajectory xV ∈ XV we can then calculate SLI with respect to a partition π ∈ L(V). For every
A ⊆ V and every xA ∈ XA we have pA(xA) = ∏i∈A pi(xi). Then we find for every π ∈ L(V):

miπ(xV) = 0. (90)

This shows that the disintegration hierarchy for each xV ∈ XV contains only a single disintegration
level D(xV) = {D1} with D1 = L(V). The finest partition of L(V) is its zero element 0 which then
constitutes the only element of the refinement-free disintegration level D�

1 = {0}. Recall that the zero
element of a partition lattice only consists of singleton sets as blocks. The set of completely locally
integrated patterns i.e., the set of ι-entities in a given trajectory xV is then the set {xi : i ∈ V}.

Next we will look at more structured systems.

4.2. Two Constant and Independent Binary Random Variables: MC=

4.2.1. Definition

Define the time- and space-homogeneous multivariate Markov chain MC= with Bayesian network
{Xj,t}j∈{1,2},t∈{0,1,2} and

pa(j, t) =

{
∅ if t = 0,

{(j, t − 1)} else,
(91)

pj,t(xj,t|xj,t−1) = δxj,t−1(xj,t) =

{
1 if xj,t = xj,t−1,

0 else,
(92)

pj,0(xj,0) = 1/4. (93)

The Bayesian network can be seen in Figure 4.

X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

Figure 4. Bayesian network of MC=. There is no interaction between the two processes.

4.2.2. Trajectories

In order to get the disintegration hierarchy D(xV) we have to choose a trajectory xV and calculate
the SLI of each partition π ∈ L(V). There are only four different trajectories possible in MC= and
they are:

xV = (x1,0, x2,0, x1,1, x2,1, x1,2, x2,2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0, 0, 0, 0, 0) if x1,0 = 0, x2,0 = 0;

(0, 1, 0, 1, 0, 1) if x1,0 = 0, x2,0 = 1;

(1, 0, 1, 0, 1, 0) if x1,0 = 1, x2,0 = 0;

(1, 1, 1, 1, 1, 1) if x1,0 = 1, x2,0 = 1.

(94)

Each of these trajectories has probability pV(xV) = 1/4 and all other trajectories have pV(xV) = 0.
We call the four trajectories the possible trajectories. We visualise the possible trajectories as a grid with
each cell corresponding to one variable. The spatial indices are constant across rows and time-slices Vt
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correspond to the columns. A white cell indicates a 0 and a black cell indicates a 1. This results in the
grids of Figure 5.

(a) (0, 0, 0, 0, 0, 0) (b) (0, 1, 0, 1, 0, 1) (c) (1, 0, 1, 0, 1, 0) (d) (1, 1, 1, 1, 1, 1)

Figure 5. Visualisation of the four possible trajectories of MC=. In each trajectory the time index
increases from left to right. There are two rows corresponding to the two random variables at each
time step and three columns corresponding to the three time-steps we are considering here.

4.2.3. Partitions of Trajectories

The disintegration hierarchy is composed out of all partitions in the lattice of partitions L(V).
Recall that we are partitioning the entire spatially and temporally extended index set V of the
Bayesian network and not only the time-slices. Blocks in the partitions of L(V) are then, in general,
spatiotemporally and not only spatially extended patterns.

The number of partitions |L(V)| of a set of |V| = 6 elements is B6 = 203 (Bn is the Bell number
of n). These partitions π can be classified according to their cardinality |π| (number of blocks in the
partition). The number of partitions of a set of cardinality |V| into |π| blocks is the Stirling number
S(|V|, |π|). For |V| = 6 we find the Stirling numbers:

|π| 1 2 3 4 5 6

S(|V|, |π|) 1 31 90 65 15 1
(95)

It is important to note that the partition lattice L(V) is the same for all trajectories as it is composed
out of partitions of V. On the other hand the values of SLI miπ(xV) with respect to the partitions in
L(V) generally depend on the trajectory xV .

4.2.4. SLI Values of the Partitions

We can calculate the SLI miπ(xV) of every trajectory xV with respect to each partition π ∈ L(V)

according to Definition 5:

miπ(xV) := log
pV(xV)

∏b∈π pb(xb)
. (96)

In the case of MC= the SLI values with respect to each partition do not depend on the trajectories.
For an overview we plotted the values of SLI with respect to each partition π ∈ L(V) for any trajectory
of MC= in Figure 6.

We can see in Figure 6 that the cardinality does not determine the value of SLI. At the same time
there seems to be a trend to higher values of SLI with increasing cardinality of the partition. We can
also observe that only five different values of SLI are attained by partitions on this trajectory. We will
collect these classes of partitions with equal SLI values in the disintegration hierarchy next.
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0 50 100 150 200
0

1

2

3

4

Figure 6. Specific local integrations miπ(xV) of any of the four trajectories xV seen in Figure 5 with
respect to all π ∈ L(V). The partitions are ordered according to an enumeration with increasing
cardinality |π| ((see Pemmaraju and Skiena [42], Chapter 4.3.3) for the method). We indicate with
vertical lines at what partitions the cardinality |π| increases by one.

4.2.5. Disintegration Hierarchy

In order to get insight into the internal structure of the partitions of a trajectory xV we obtain
the disintegration hierarchy D(xV) (see Definition 10) and look at the Hasse diagrams of each of
the disintegration levels Di(xV) partially ordered by refinement. If we sort the partitions of any
trajectory of MC= according to increasing SLI value we obtain Figure 7. There we see groups of
partitions attaining the SLI values {0, 1, 2, 3, 4} (precisely) these groups are the disintegration levels
{D1(xV),D2(xV),D3(xV),D4(xV),D5(xV)}. The exact numbers of partitions in each of the levels are:

i 1 2 3 4 5

miπ 0 1 2 3 4
|Di| 2 18 71 78 34

(97)

Next we look at the Hasse diagram of each of those disintegration levels. Since the disintegration
levels are subsets of the partition lattice L(V), they are in general not lattices by themselves. The Hasse
diagrams (see Appendix B for the definition) visualise the set of partitions in each disintegration level
partially ordered by refinement � . The Hasse diagrams are shown in Figure 8. We see immediately
that within each disintegration level apart from the first and the last the Hasse diagrams contain
multiple connected components.

Furthermore, within a disintegration level the connected components often have the same Hasse
diagrams. For example, in D2 ( Figure 8b) we find six connected components with three partitions
each. The identical refinement structure of the connected components is related to the symmetries
of the probability distribution over the trajectories. As it requires further notational overhead and is
straightforward we do not describe these symmetry properties formally. In order to see the symmetries,
however, we visualise the partitions themselves in the Hasse diagrams in Figure 9. We also visualise
examples of the different connected components in each disintegration level in Figure 10.
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Figure 7. Same as Figure 6 but with the partitions sorted according to increasing SLI.

(a) D1

(b) D2

(c) D3

Figure 8. Cont.
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(d) D4

(e) D5

Figure 8. Hasse diagrams of the five disintegration levels of the trajectories of MC=. Every vertex
corresponds to a partition and edges indicate that the lower partition refines the higher one.

Figure 9. Hasse diagram of D2 of MC= trajectories. Here we visualise the partitions at each vertex.
The blocks of a partition are the cells of equal colour. Note that we can obtain all six disconnected
components from one by symmetry operations that are respected by the joint probability distribution
pV . For example, we can shift each row individually to the left or right since every value is constant in
each row. We can also switch top and bottom row since they have the same probability distributions
even if 1 and 0 are exchanged.

Figure 10. For each disintegration level of the trajectories of MC= we here show example connected
components of Hasse diagrams with the partitions at each vertex visualised. The disintegration level
increases clockwise from the top left. The blocks of a partition are the cells of equal colour.

Recall that due to the disintegration theorem (Theorem 6) we are interested especially in partitions
that do not have refinements at their own or any preceding (i.e., lower indexed) disintegration level.
These partitions consist of blocks that are completely integrated. i.e., all possible partitions of each of the

101



Entropy 2017, 19, 230

blocks results in a positive SLI value or is a single node of the Bayesian network. The refinement-free
disintegration hierarchy D�(xV) contains only these partitions and is shown in a Hasse diagram
in Figure 11.

Figure 11. Hasse diagrams of the refinement-free disintegration hierarchy D� of MC= trajectories.
Here we visualise the partitions at each vertex. The blocks of a partition are the cells of equal colour.
It turns out that partitions that are on the same horizontal level in this diagram correspond exactly to a
level in the refinement-free disintegration hierarchy D�. The i-th horizontal level starting from the top
corresponds to D�

i . Take for example the second horizontal level from the top. The partitions on this
level are just the minimal elements of the poset D2 which was visualised in Figure 9. To connect this to
Figure 8 note that for each disintegration level Di shown there as a Hasse diagram, the partitions on
the i-th horizontal level (counting from the top) in the present figure are the minimal elements of that
disintegration level.

4.2.6. Completely Integrated Patterns

Having looked at the disintegration hierarchy we now make use of it by extracting the completely
(When it is clear from context that we are talking about complete local integration we drop “local”
for the sake of readability.) integrated patterns (ι-entities) of the four trajectories of MC=. Recall that
due to the disintegration theorem (Theorem 6) we know that all blocks in partitions that occur in the
refinement-free disintegration hierarchy are either singletons or correspond to ι-entities. If we look at
the refinement-free disintegration hierarchy in Figure 11 we see that many blocks occur in multiple
partitions and across disintegration levels. We also see that there are multiple blocks that are singletons.
If we ignore singletons, which are trivially integrated as they cannot be partitioned, we end up with
eight different blocks. Since the disintegration hierarchy is the same for all four possible trajectories
these blocks are also the same for each of them (note that this is the case for MC= but not in general as
we will see in Section 4.3). However, the patterns that result are different due to the different values
within the blocks. We show the eight ι-entities and their complete local integration (Definition 6) on
the first trajectory in Figure 12 and on the second trajectory in Figure 13.
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Figure 12. All distinct completely integrated composite patterns (singletons are not shown) on the first
possible trajectory of MC=. The value of complete local integration is indicated above each pattern.
We display patterns by colouring the cells corresponding to random variables that are not fixed to any
value by the pattern in grey. Cells corresponding to random variables that are fixed by the pattern are
coloured according to the value i.e., white for 0 and black for 1.

Figure 13. All distinct completely integrated composite patterns on the second possible trajectory of
MC=. The value of complete local integration is indicated above each pattern.

Since the disintegration hierarchies are the same for the four possible trajectories of MC= we get
the same refinement-free partitions and therefore the same blocks containing the ι-entities. This is
apparent when comparing Figures 12 and 13 and noting that each pattern occurring on the first
trajectory has a corresponding pattern on the second trajectory that differs (if at all) only in the values
of the cells it fixes and not in what values it fixes. More visually speaking, for each pattern in Figure 12
there is a corresponding pattern in Figure 13 leaving the same cells grey.

If we are not interested in a particular trajectory, we can also look at all different ι-entities on any
trajectory. For MC= these are shown in Figure 14.
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Figure 14. All distinct completely integrated composite patterns on all four possible trajectories of
MC=. The value of complete local integration is indicated above each pattern.

We see that all ι-entities xO have the same value of complete local integration ι(xO) = 1. This can
be explained using the deterministic expression for the SLI of Equation (30) and noting that for MC= if
any of the values xj,t is fixed by a pattern then (xj,s)s∈T = xj,T are determined since they must be the
same value. This means that the number of trajectories N(xj,S) in which any pattern xj,S with S ⊆ T
occurs is either N(xj,S) = 0, if the pattern is impossible, or N(xj,S) = 2 since there are two trajectories
compatible with it. Note that all blocks xb in any of the ι-entities and all ι-entities xO themselves are of
the form xj,S with S ⊆ T. Let N(xj,S) =: N and plug this into Equation (30) for an arbitrary partition π:

miπ(xO) = (|π| − 1) log |XV0 | − log ∏b∈π N(xb)

N(xO)
(98)

= (|π| − 1) log |XV0 | − log
N|π|

N
(99)

= (|π| − 1) log
|XV0 |

N
. (100)

To get the complete local integration value we have to minimise this with respect to π where
|π| ≥ 2. So for |XV0 | = 4 and N = 2 we get ι(xO) = 1.

Another observation is that the ι-entities are all limited to one of the two rows. This shows on
a simple example that, as we would expect, ι-entities cannot extend from one independent process
to another.
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4.3. Two Random Variables with Small Interactions

In this section we look at a system almost identical to that of Section 4.2 but with a kind of noise
introduced. This allows all trajectories to occur and is designed to test whether the spatiotemporal
patterns maintain integration in the face of noise.

4.3.1. Definition

We define the time- and space-homogeneous multivariate Markov chain MCε via the Markov
matrix P with entries

Pf (x1,t+1,x2,t+1), f (x1,t ,x2,t)
= pJ,t+1(x1,t+1, x2,t+1|x1,t, x2,t) (101)

where we define the function f : {0, 1}2 → [1 : 4] via

f (0, 0) = 1, f (0, 1) = 2, f (1, 0) = 3, f (1, 1) = 4. (102)

With this convention P is

P =

⎛
⎜⎜⎜⎝

1 − 3ε ε ε ε

ε 1 − 3ε ε ε

ε ε 1 − 3ε ε

ε ε ε 1 − 3ε

⎞
⎟⎟⎟⎠ (103)

This means that the state of both random variables remains the same with probability 1 − 3ε and
transitions into each of the other possible combinations with probability ε. The noise then does not act
independently on both random variables but disturbs the joint state. This makes ι-entities possible that
extend across the two processes. In the following we set ε = 1/100. The initial distribution is again the
uniform distribution

pj,0(xj,0) = 1/4. (104)

Writing this multivariate Markov chain as a Bayesian network is possible but the conversion is
tedious. The Bayesian network one obtains can be seen in Figure 15.

X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

Figure 15. Bayesian network of MCε.

4.3.2. Trajectories

In this system all trajectories are possible trajectories. This means there are 26 = 64 possible
trajectories, since every one of the six random variables can be in any of its two states. There are
three classes of trajectories with equal probability of occurring. The first class with the highest
probability of occurring are the four possible trajectories of MC=. Then there are 24 trajectories
that make a single ε-transition (i.e., a transition where the next pair is not the same as the current
one (x1,t+1, x2,t+1) �= (x1,t, x2,t), these transitions occur with probability ε), and 36 trajectories with
two ε-transitions. We pick only one trajectory from each class. The representative trajectories
are shown in Figure 16 and will be denoted x1

V , x2
V , and x3

V respectively. The probabilities are
pV(x1

V) = 0.235225, pV(x2
V) = 0.0024250, pV(x3

V) = 0.000025.
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(a) x1
V = (0, 1, 0, 1, 0, 1) (b) x2

V = (0, 1, 0, 1, 0, 0) (c) x3
V = (0, 1, 0, 0, 0, 1)

Figure 16. Visualisation of three trajectories of MCε. In each trajectory the time index increases from
left to right. There are two rows corresponding to the two random variables at each time step and
three columns corresponding to the three time-steps we are considering here. We can see that the first
trajectory (in (a)) makes no ε-transitions, the second (in (b)) makes one from t = 2 to t = 3, and the
third (in (c)) makes two.

4.3.3. SLI Values of the Partitions

Again we calculate the SLI miπ(xV) of every trajectory xV with respect to each partition π ∈ L(V).
In contrast to MC= the SLI values with respect to each partition of MCε do depend on the trajectories.
We plot the values of SLI with respect to each partition π ∈ L(V) for the three representative trajectories
in Figure 17.

0 50 100 150 200

-10

-5

0

Figure 17. Specific local integrations miπ(xV) of one of the four trajectories of MC= (measured w.r.t.
the probability distribution of MC=), here denoted xMC=

V (this is the same data as in Figure 6), and the
three representative trajectories xk

V , x ∈ {1, 2, 3} of MCε (measured w.r.t. the probability distribution of
MCε) seen in Figure 16 with respect to all π ∈ L(V). The partitions are ordered as in Figure 6 with
increasing cardinality |π|. Vertical lines indicate partitions where the cardinality |π| increases by one.
Note that the values of xMC=

V are almost completely hidden from view by those of x1
V .

It turns out that the SLI values of x1
V are almost the same as those of MC= in Figure 6 with

small deviations due to the noise. This should be expected as x1
V is also a possible trajectory of MC=.

Also note that trajectories x2
V , x3

V exhibit negative SLI with respect to some partitions. In particular, x3
V

has non-positive SLI values with respect to any partition. This is due to the low probability of this
trajectory compared to its parts. The blocks of any partition have so much higher probability than the
entire trajectory that the product of their probabilities is still greater or equal to the trajectory probability.
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4.3.4. Completely Integrated Patterns

In this section we look at the ι-entities for each of the three representative trajectories xk
V , k ∈ {1, 2, 3}.

They are visualised together with their complete local integration values in Figures 18–20. In contrast
to the situation of MC= we now have ι-entities with varying values of complete local integration.

On the first trajectory x1
V we find all the eight patterns that are completely locally integrated in

MC= (see Figure 13). These are also more than an order of magnitude more integrated than the rest of
the ι-entities. This is also true for the other two trajectories.

Figure 18. All distinct completely integrated composite patterns on the first trajectory x1
V of

MCε. The value of complete local integration is indicated above each pattern. See Figure 12 for
colouring conventions.

Figure 19. All distinct completely integrated composite patterns on the second trajectory x2
V of MCε.

The value of complete local integration is indicated above each pattern.
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Figure 20. All distinct completely integrated composite patterns on the third trajectory x3
V of MCε.

The value of complete local integration is indicated above each pattern.

5. Discussion

In Section 3.1 we have argued for the use of patterns as candidates for entities. Patterns can
be composed of arbitrary spatially and temporally extended parts of trajectories. We have seen in
Theorem 1 that they are distinct from arbitrary subsets of trajectories. The important insight here is
that patterns are structures that occur within trajectories but this cannot be said of sets of trajectories.

One of the main target applications of patterns is in time-unrolled Bayesian networks of cellular
automata like those in Figure 1. Patterns in such Bayesian networks become spatiotemporal patterns
like those used to describe the glider, block, and blinker in the Game of Life cellular automaton by
Beer [14]. We would also like to investigate whether the latter spatiotemporal patterns are ι-entities.
However, at the present state of the computational models and, without approximations, this was out
of reach computationally. We will discuss this further below.

In Section 3.3 we defined SLI and in Section 3.3 gave its expression for deterministic Bayesian
networks (including cellular automata) as well. We also established the least upper bound of SLI
with respect to a partition π of cardinality n for a pattern xA with probability q. This upper bound is
achieved if each of the blocks xb in the partition π occur if and only if the whole pattern xO occurs.
This is compatible with our interpretation of entities since in this case clearly the occurrence of any
part of the pattern leads necessarily to the occurrence of the entire pattern (and not only vice versa).

We also presented a candidate for a greatest lower bound of SLI with respect to a partition of
cardinality n for a pattern with probability q. Whether this is the greatest lower bound or not it
shows a case for which SLI is always negative. This happens if either the whole pattern xA occurs
(with probability q) or one of the “almost equal” patterns occurs, each with identical probability.
A pattern yA is almost equal to xA with respect to π in this sense if it only differs at one of the blocks
b ∈ π i.e., if yA = (xA\b, zb) where zb �= xb. This construction makes as many parts as possible (i.e., all
but one) occur as many times as possible without the whole pattern occurring. This creates large
marginalised probabilities pb(xb) for each part/block which means that their product probability also
becomes large.

Beyond these quantitative interpretations an interpretation of the greatest lower bound candidate
seems difficult. A more intuitive candidate for the opposite of an integrated pattern seem to be patterns
with independent parts. i.e., zero SLI but quantitatively these are not on the opposite end of the SLI
spectrum. A more satisfying interpretation of the presented candidate is still to be found.

We also proved the disintegration theorem which relates states that the refinement-free partitions
of a trajectory among those partitions achieving a particular SLI value consist of ι-entities only, where
an ι-entity is a pattern with positive CLI. This theorem allows us to interpret the ι-entities in new ways
and may lead to a more formal or quantitative justification of ι-entities. It is already a first step in this
direction since it establishes a special role of the ι-entities within trajectories of Bayesian networks.
A further justification would tell us what in turn the refinement-free partitions can be used for. We have
discussed a possible direction for further investigation in detail in Section 3.5. This tried to connect the
ι-entities with a coding problem.
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In Section 4 we investigated SLI and CLI in three simple example sets of random variables.
We found that if the random variables are all independently distributed the according entities are just
all the possible xj ∈ Xj of each of the random variables Xj ∈ {Xi}i∈V . This is what we would expect
from an entity criterion. There are no entities with any further extent than a single random variable
and each value corresponds to a different entity.

For the simple Markov chain MC= composed out of two independent and constant processes
we presented the entire disintegration hierarchy and the Hasse diagrams of each disintegration level
ordered by refinement. The Hasse diagrams reflected the highly symmetric dynamics of the Markov
chain via multiple identical components. For the refinement-free disintegration hierarchy we then get
multiple partitions at the same disintegration level as well. Different partitions of the trajectory imply
overlapping blocks which in the case of the refinement-free partition are ι-entities. So in general the
ι-entities at a particular disintegration level are not necessarily unique and can overlap. We also saw in
Figure 11 that the same ι-entities can occur on multiple disintegration levels.

The ι-entities of MC= included the expected three timestep constant patterns within each of
the two independent processes. It also included the two timestep parts of these constant patterns.
This may be less expected. It shows that parts of ι-entities can be ι-entities themselves. We note that
these “sub-entities (those that are parts of larger entities) are always on a different disintegration level
than their” super-entities (the larger entities). We can speculate that the existence of such sub- and
super-entities on different disintegration levels may find an interpretation through multicellular
organisms or similar structures. However, the overly simplistic examples here only serve as
basic models for the potential phenomena, but are still far too simplistic to warrant any concrete
interpretation in this direction.

We also looked at a version of MC= perturbed by noise, denoted MCε. We found that the
entities of MC= remain the most strongly integrated entities in MCε. At the same time new entities
occur. So we observe that in MCε the entities vary from one trajectory to another (Figures 18–20).
We also observe spatially extended entities i.e., entities that extend across both (formerly independent)
processes. We also observe entities that switch from one process to the other (from top row to bottom
row or vice versa). The capacity of entities to exhibit this behaviour may be necessary to capture the
movement or metabolism of entities in more realistic scenarios. In Biehl et al. [8] we argued that these
properties are important and showed that they hold for a crude approximation of CLI (namely for SLI
with respect to π = 0) but not for the full CLI measure.

We established that the ι-entities:

• correspond to fixed single random variables for a set of independent random variables,
• can vary from one trajectory to another,
• and can change the degrees of freedom that they occupy over time,
• can be ambiguous at a fixed level of disintegration due to symmetries of the system,
• can overlap at the same level of disintegration due to this ambiguity,
• can overlap across multiple levels of disintegration i.e., parts of ι-entities can be ι-entities again.

In general the examples we investigated concretely are too small to sufficiently support the
concept of positive CLI as an entity criterion. Due to the extreme computational burden, this may remain
the case for a while. For a straightforward calculation of the minimum SLI of a trajectory of a Bayesian
network {Xi}i∈V with |V| = k nodes we have to calculate the SLI with respect to Bk partitions. According
to (Bruijn [43], p. 108) the Bell numbers Bn grow super-exponentially. Furthermore, to evaluate the
SLI we need the joint probability distribution of the Bayesian network {Xi}i∈V . Naively, this means
we need the probability (a real number between 0 and 1) of each trajectory. If we only have binary
random variables, the number of trajectories is 2|V| which make the straightforward computation of
disintegration hierarchies unrealistic even for quite small systems. If we take a seven by seven grid
of the game of life cellular automaton and want to look at three time-steps we have |V| = 147. If we
use 32 bit floating numbers this gives us around 1030 petabytes of storage needed for this probability
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distribution. We are sceptical that the exact evaluation of reasonably large systems can be achieved
even with non-naive methods. This suggests that formal proofs may be the more promising way to
investigate SLI and CLI further.
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Abbreviations

The following abbreviations are used in this manuscript:

SLI Specific local integration
CLI Complete local integration

Appendix A. Kronecker Delta

The Kronecker–delta is used in this paper to represent deterministic conditional distributions.

Definition A1 (Delta). Let X be a random variable with state space X then for x ∈ X and a subset
C ⊂ X define

δx(C) :=

{
1 if x ∈ C,

0 else.
(A1)

We will abuse this notation if C is a singleton set C = {x̄} by writing

δx(x̄) : =

{
1 if x ∈ {x̄},

0 else.
(A2)

=

{
1 if x = x̄,

0 else.
(A3)

The second line is a more common definition of the Kronecker–delta.

Remark:

• Let X, Y be two random variables with state spaces X ,Y and f : X → Y a function such that

p(y|x) = δ f (x)(y), (A4)

then

p(y) = ∑
x

pY(y|x)pX(x) (A5)

= ∑
x

δ f (x)(y)pX(x) (A6)

= ∑
x

δx( f−1(y))pX(x) (A7)

= ∑
x∈ f−1(y)

pX(x) (A8)

= pX( f−1(y)). (A9)
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Appendix B. Refinement and Partition Lattice Examples

This appendix recalls the definitions of set partitions, refinement and coarsening of set partitions,
and Hasse diagrams. It also shows the Hasse diagram of an example partition lattices. The definitions
are due to Grätzer [28].

Definition A2. A (set) partition π of a set X is a set of non-empty subsets (called blocks) of X satisfying

1. for all x1, x2 ∈ π, if x1 �= x2, then x1 ∩ x2 = ∅,
2.

⋃
x∈π = X .

We write L(X ) for the set of all partitions of X .

Remark:

• In words, a partition of a set is a set of disjoint non-empty subsets whose union is the whole set.

Definition A3. If two elements x1, x2 ∈ X belong to the same block of a partition π of X write x1 ≡π x2.
Also write x1/π for the block {x2 ∈ X : x2 ≡π x1}.

Definition A4 (Refinement and coarsening). We define the binary relation � between partitions
π, ρ ∈ L(X ) as:

π � ρ if x1 ≡π x2 implies x1 ≡ρ x2. (A10)

In this case π is called a refinement of ρ and ρ is called a coarsening of π.

Remarks:

• More intuitively, π is a refinement of ρ if all blocks of π can be obtained by further partitioning
the blocks of ρ. Conversely, ρ is a coarsening of π if all blocks in ρ are unions of blocks in π.

• Examples are contained in the Hasse diagrams (defined below) shown in Figure A1.

Definition A5 (Hasse diagram). A Hasse diagram is a visualisation of a poset (including lattices). Given a
poset A ordered by � the Hasse diagram represents the elements of A by dots. The dots representing the elements
are arranged in such a way that if a, b ∈ A, a �= b, and a � b then the dot representing a is drawn below the dot
representing b. An edge is drawn between two elements a, b ∈ A if a �: b, i.e., if b covers a. If edges cross in the
diagram this does not mean that there is an element of A where they cross and edges never pass through a dot
representing an element.

Remarks:

• No edge is drawn between two elements a, b ∈ A if a � b but not a �: b.
• Only drawing edges for the covering relation does not imply a loss of information about the poset

since the covering relation determines the partial order completely.
• For an example Hasse diagrams see Figure A1.
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Figure A1. Hasse diagrams of the partition lattice of the four element set.

Appendix C. Bayesian Networks

Intuitively a Bayesian network is a graph representation of the inter-dependencies of a set of
random variables. Recall that any joint probability distribution over a set {Xi}i∈I with I = {1, ..., n} of
random variables can always be written as a product of conditional probabilities:

pI(x1, ..., xn) =
n−1

∏
i=1

pi(xi|xi+1, ..., xn)p(xn). (A11)

This also holds for any reordering of the indices i �→ f (i) with f : {1, ...n} → {1, ...n} bijective.
In many cases however this factorisation can be simplified. Often some of the conditional

probabilities p(xi|xi+1, ..., xn) do not depend on all variables {xi+1, ..., xn} listed in the product of
Equation (A11). For example, X1 might only depend on X2 so we would have p(x1|x2, ..., xn) =

p(x1|x2). Note that the latter conditional probability is determined by fixing |X2|(|X1| − 1) probabilities
whereas the former needs ∏n

i=1 |Xi+1|(|X1| − 1) probabilities to be fixed. This means the number of
parameters (the probabilities) of the joint distribution p(x1, ..., xn) is often much smaller than suggested
by Equation (A11). One way to encode this simplification and make sure that we are dealing only with
joint probabilities that reflect the dependencies we allow are Bayesian networks. These can be defined
as follows. First we define graphs that are factorisation compatible with joint probability distributions
over a set of random variables and then define the Bayesian networks as pairs of joint probability
distributions and a factorisation compatible graph.

Definition A6. A directed acyclic graph G = (V, E) with nodes V and edges E is factorisation compatible
with the joint probabilities the probabilities of a probability distribution pV : XV → [0, 1] iff the latter can be
factorised in the way suggested by G which means:

pV(xV) = ∏
i∈V

p(xi|xpa(i)). (A12)

where pa(i) denotes the parents of node i according to G.

Remark:

• In general there are multiple directed acyclic graphs that are factorisation compatible with the
same probability distribution. For example, if we choose any total order for the nodes in V and
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define a graph by pa(i) = {j ∈ V : j < i} then Equation (A12) becomes Equation (A11) which
always holds.

Definition A7 (Bayesian network). A Bayesian network is a (here assumed finite) set of random variables
{Xi}i∈V and a directed acyclic graph G = (V, E) with nodes indexed by V such that the joint probability
distribution pV : XV → [0, 1] of {Xi}i∈V is factorisation compatible with G. We also refer to the graph set of
random variables {Xi}i∈V as a Bayesian network implying the graph G.

Remarks:

• On top of constituting the vertices of the graph G the set V is also assumed to be totally ordered in
an (arbitrarily) fixed way. Whenever we use a subset A ⊂ V to index a sequence of variables in
the Bayesian network (e.g., in pA(xA)) we order A according to this total order as well.

• Since {Xi}i∈V is finite and G is acyclic there is a set V0 of nodes without parents.

Definition A8 (Mechanism). Given a Bayesian network {Xi}i∈V with index set V for each node with parents
i.e., for each node i ∈ V \ V0 (with V0 the set of nodes without parents) the mechanism of node i or also
called the mechanism of random variable Xi is the conditional probability (also called a transition kernel)
pi : Xpa(i) × Xi → [0, 1] mapping (xpa(i), xi) �→ pi(xi|xpa(i)). For each xpa(i) the mechanism defines a
probability distribution pi(.|xpa(i)) : Xi → [0, 1] satisfying (like any other probability distribution)

∑
xi∈Xi

pi(xi|xpa(i)) = 1. (A13)

Remarks:

• We could define the set of all mechanisms to formally also include the mechanisms of the nodes
without parents V0. However, in practice it makes sense to separate the nodes without parents
as those that we choose an initial probability distribution over (similar to a boundary condition)
which is then turned into a probability distribution pV over the entire Bayesian network {Xi}i∈V
via Equation (A12). Note that in Equation (A12) the nodes in V0 are not explicit as they are just
factors pi(xi|xpa(i)) with pa(i) = ∅.

• To construct a Bayesian network, take graph G = (V, E) and equip each node i ∈ (V \ V0) with
a mechanism pi : Xpa(i) ×Xi → [0, 1] and for each node i ∈ V0 choose a probability distribution
pi : Xi → [0, 1]. The joint probability distribution is then calculated by the according version of
Equation (A12):

pV(xV) = ∏
i∈V\V0

pi(xi|xpa(i)) ∏
j∈V0

pj(xj). (A14)

Appendix C.1. Deterministic Bayesian Networks

Definition A9 (Deterministic mechanism). A mechanism pi : Xpa(i) ×Xi → [0, 1] is deterministic if there
is a function fi : Xpa(i) → Xi such that

pi(xi|xpa(i)) = δ fi(xpa(i))
(xi) =

{
1 if xi = fi(xpa(i)),

0 else.
(A15)

Definition A10 (Deterministic Bayesian network). A Bayesian network {Xi}i∈V is deterministic if all its
mechanisms are deterministic.

Theorem A1. Given a deterministic Bayesian network {Xi}i∈V there exists a function fV\V0
: XV0 → XV\V0

which given a value xV0 of the random variables without parents XV0 returns the value xV\V0
fixing the values

of all remaining random variables in the network.
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Proof. According to Equation (A12), the definition of conditional probabilities, and using the
deterministic mechanisms we have:

pV\V0
(xV\V0

|xV0) = ∏
i∈V\V0

pi(xi|xpa(i)) (A16)

= ∏
i∈V\V0

δ fi(xpa(i))
(xi). (A17)

For every xV0 the product on the right hand side is a probability distribution and therefore is
always greater or equal to zero and maximally one. Also for every xV0 the sum of the probabilities
over all xV\V0

∈ XV\V0
is equal to one. As a product of zeros and/or ones the right hand side on the

second line can only either be zero or one. This means for every xV0 there must be a unique xV\V0
such

that the right hand side is equal to one. Define this as the value of the function fV\V0
(xV0).

Theorem A2 (Pattern probability in a deterministic Bayesian network). Given a deterministic Bayesian
network (Definition A10) and uniform initial distribution pV0 : XV0 → [0, 1] the probability of the occurrence of
a pattern xA is:

pA(xA) =
N(xA)

|XV0 |
(A18)

where N(xA) is the number of trajectories x̄V in which xA occurs.

Proof. Recall that in a deterministic Bayesian network we have a function fV\V0
: XV0 → XV\V0

(see Theorem A1) which maps a given value of xV0 to the value of the rest of the network xV\V0
.

We calculate pA(xA) for an arbitrary subset A ⊂ V. To make this more readable let A ∩ V0 = A0,
A \ V0 = Ar, B := V \ A, B ∩ V0 = B0, and B \ V0 = Br. Then

pA(xA) = ∑̄
xB

pV(xA, x̄B) (A19)

= ∑
x̄B0 ,x̄Br

pV(xAr , x̄Br |xA0 , x̄B0)pV0(xA0 , x̄B0) (A20)

= ∑
x̄B0 ,x̄Br

δ fV\V0
(xA0 ,x̄B0 )

(xAr , x̄Br )pV0(xA0 , x̄B0) (A21)

= ∑̄
xBr

∑
{x̄B0 :(xA0 ,x̄B0 )∈ f−1

V\V0
(xAr ,x̄Br )}

pV0(xA0 , x̄B0) (A22)

=
1

|XV0 | ∑̄
xBr

|{x̄B0 ∈ XB0 : (xA0 , x̄B0) ∈ f−1
V\V0

(xAr , x̄Br )}| (A23)

=
1

|XV0 |
N(xA) (A24)

In the second to last line we used the uniformity of the initial distribution pV0 . The second sum
in the second to last line counts all initial conditions that are compatible with xA0 and lead to the
occurrence of xAr together with some x̄Br . The first one then sums over all such x̄Br to get all initial
conditions that are compatible with xA0 and lead to the occurrence of xAr . Together these are all initial
conditions compatible with xA. In a deterministic system the number of initial conditions that lead to
the occurrence of a pattern xA is equal to the number of trajectories N(xA) since every different initial
condition will produce a single, unique trajectory.

Remark:

• Due to the finiteness of the network, deterministic mechanisms, and chosen uniform initial
distribution the minimum possible non-zero probability for a pattern xA is 1/|XV0 |. This happens
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for any pattern that only occurs in a single trajectory. Furthermore, the probability of any pattern
is a multiple of 1/|XV0 |.

Appendix C.2. Proof of Theorem 2

Proof. Follows by replacing the probabilities pO(xO) and pb(xb) in Equation (22) with their
deterministic expressions from (Theorem A2), i.e., pA(xA) = N(XA)/|XV0 |. Then:

miπ(xO) : = log
pO(xO)

∏b∈π pb(xb)
(A25)

= log

N(xO)
|XV0 |

∏b∈π
N(xb)
|XV0 |

(A26)

= log

N(xO)
|XV0 |

|XV0 |−|π| ∏b∈π N(xb)
(A27)

= log
|XV0 ||π|−1N(xO)

∏b∈π N(xb)
(A28)

= (|π| − 1) log |XV0 | − log ∏b∈π N(xb)

N(xO)
. (A29)

Appendix D. Proof of Theorem 1

Proof. Given a set of random variables {Xi}i∈V , a subset D ⊆ XV cannot be represented by a pattern
of {Xi}i∈V if and only if there exists A ⊆ V with DA ⊂ XA (proper subset) and |DA| > 1, i.e., if neither
all patterns at A are possible nor a unique pattern at A is specified by D.

We first show that if there exists A ⊆ V with DA ⊂ XA and |DA| > 1 then there is no pattern
x̃B ∈ ⋃

C⊆V XC with D = T (x̃B). Then we show that if no such A exists then there is such a pattern x̃B.
Since DA > 1 we have xA, x̄A ∈ DA ⊂ XA with xA �= x̄A. Next note that we can write any

pattern x̃B as

x̃B = (x̃B\A, x̃B∩A). (A30)

If B ∩ A �= ∅ we can see since x̃B∩A must take a single value it cannot contain D since there are
trajectories in D taking value xB∩A on B ∩ A and trajectories in D taking values x̄B∩A. More formally,
we must have either x̃B∩A = xA or x̃B∩A �= xA. First, let x̃B∩A = xA but then T (x̄A) � T (x̃B) so
D � T (x̃B). Next choose x̃B∩A �= xA but then T (xA) � T (x̃B) so also D � T (x̃B). So we must have
B ∩ A = ∅.

Now we show that if B ∩ A = ∅ there are trajectories in x̃B that are not in D. We construct
one explicitly by fixing its value on A to the value in XA that is not in DA and its value on B to x̃B.
More formally: choose yA ∈ XA \ DA, then yA �= xA and yA �= x̄A. This is always possible since
DA ⊂ XA (proper subset). Then consider a trajectory x̂V = (x̃B, yA, x̌D) with arbitrary x̌D ∈ XD where
D = V \ (B ∪ A). Then x̂V ∈ T (x̃B) but x̂V /∈ D.

Conversely, we show how to construct x̃B if no such A exists. the idea is just to fix all random
variables where |DA| = 1 and leave them unspecified where DA = XA. More formally: if there exists
no A ⊆ V with DA ⊂ XA and |DA| > 1, then for each C ⊆ V either DC = XC or |DC| = 1. Then let
B =

⋃{C ⊆ V : |DC| = 1} then |DB| = 1 so that we can define x̃B as the unique element in DB. Then
if yV ∈ D we have yB = x̃B so D ⊆ T (x̃B). If zV ∈ T (x̃B) we have zB = x̃B ∈ DB and for A ⊆ V with
A ∩ B = ∅ by construction of B we have DA = XA such that DV\B = XV\B which means zV\B ∈ DV\B
and therefore zV ∈ D and T (x̃B) ⊆ D. So this gives T (x̃B) = D.
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Abstract: Iterated games, in which the same economic interaction is repeatedly played between the
same agents, are an important framework for understanding the effectiveness of strategic choices
over time. To date, very little work has applied information theory to the information sets used by
agents in order to decide what action to take next in such strategic situations. This article looks at the
mutual information between previous game states and an agent’s next action by introducing two new
classes of games: “invertible games” and “cyclical games”. By explicitly expanding out the mutual
information between past states and the next action we show under what circumstances the explicit
values of the utility are irrelevant for iterated games and this is then related to revealed preferences
theory of classical economics. These information measures are then applied to the Traveler’s Dilemma
game and the Prisoner’s Dilemma game, the Prisoner’s Dilemma being invertible, to illustrate their
use. In the Prisoner’s Dilemma, a novel connection is made between the computational principles
of logic gates and both the structure of games and the agents’ decision strategies. This approach is
applied to the cyclical game Matching Pennies to analyse the foundations of a behavioural ambiguity
between two well studied strategies: “Tit-for-Tat” and “Win-Stay, Lose-Switch”.

Keywords: information theory; transfer entropy; game theory; logic gates; multilayer perceptrons;
strategic behaviour; decision theory

1. Introduction

Game theory as it was originally framed by von Neumann and Morgenstern [1] and Nash [2]
is concerned with agents (decision-makers) selecting actions to take when they interact strategically
with other agents. Strategic interactions in the economic sense are situations in which the reward,
or utility, one agent receives is based upon the action they choose to take as well as the actions taken
by other agents. In much of non-cooperative game theory [3], it is assumed that agents are maximising
their personal utility in one-off encounters between agents that know nothing of past behaviours,
and that they choose their actions independently of one another, i.e., they do not discuss their strategies
or collaborate with one another before choosing their actions. Relaxing these assumptions has been
very fruitful in understanding the fundamental principles of strategic interactions: repeated games
with learning can lead to chaotic dynamics [4] and spatially structured games can lead to cooperation
where cooperation would not usually occur [5] or to a lack of cooperation where cooperation would
usually occur [6].

An important approach to broadening the interaction model between agents has been to include
interactions over time, as opposed to a single one-off game, and this has a significant impact on
the possible outcomes. Each game can be thought to have occurred at a discrete point in time,
i.e., agents’ moves and utilities are said to occur at time t, and then consider what choices the agents
then make at time t + 1 based on the moves and utilities at time t, t − 1, etc. These are called iterated
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games and they have been extensively studied by Axelrod [7], Nowak [8] and many others. In order
to explore this approach, Axelrod ran a tournament in which contestants submitted algorithms that
would compete against each other in playing a game, the Prisoner’s Dilemma (see below for details),
in which the algorithm that accumulated the highest utility would be the winner. The winning
algorithm, submitted by Anatol Rapport [9], played a very simple strategy called Tit-for-Tat in which
the algorithm initially cooperates with its opponent and thereafter chooses the strategy its opponent
had used in the prior round. These and subsequent results led to a series of fundamental insights into
the complexity of strategic interactions in dynamic games [10–13].

The real-valued utilities in game theory play an important role in many artificial intelligent
systems such as those that use reinforcement learning, but in economic theory, it is the agent’s
behaviour that reveals an agent’s subjective preferences. In the introduction to Rational Decisions
([14], p. 8), Ken Binmore discusses “revealed preference theory”, the current economic orthodoxy
on subjective utility. The theory states that if a decision-maker consistently acts to select one option
over another, then their subjective preferences are revealed by their behaviour and their acts can
be interpreted as if they are maximising a real valued utility function (see Savage’s The Foundations
of Statistics [15] for subjective preferences). The alternative point of view, that decision-makers act
consistently because they have an internal real-valued utility function that allows them to order their
choices, is called the causal utility fallacy (see pp. 19–22 of Rational Decisions [14]). For a review of
earlier work and an historical discussion of the central role it has played in the foundations of economic
theory see Chapter 1 in [16].

Revealed preferences freed economists from needing to consider the psychological or procedural
aspects of choice to instead focus on agent behaviour. As a consequence, it should be possible to infer
an agent’s preferences from their behaviours alone, independently of the values of the utilities. In the
non-cooperative game theory introduced in Section 2, we introduce the utility bi-matrices and prove
their redundancy for iterated games in Section 3 using elementary results based on information theory.
Corollary 1 specifically shows that the utility can be replaced by the previous acts of both agents in
determining the next choice for any strategy in a two person iterated game. This appears to be the
first time that this fundamental principle has been derived using information theory. The Traveller’s
Dilemma and the Prisoner’s Dilemma illustrate this point in Section 4.

Regardless of the revealed preferences theory, significant work has focused on the
neuro-computational processes that result in particular strategic behaviours [16–18] and so the relationship
between observed behaviour and the computations that underlie that behaviour is of practical interest.
However, it has been noted [19] that there are certain games for which an agent’s choices are consistent
with multiple different cognitive processes, and we show in Section 4 that these can be of distinctly
different levels of complexity. This does not refute revealed preference theory; it only shows that
the theory is limited insofar as it cannot distinguish between different internal processes, see [20],
particularly footnote 8 and Conclusions, for a neuro-economic view of the internal cognitive states that
are considered irrelevant to revealed preferences. In order to analyse the coupled interaction between
games and strategies, they both need to be expressed in the same formal language, and this is done by
describing games and strategies in terms of logic gates via truth tables and the computational processes
that result in this ambiguity are described. In Section 4, we apply two well studied strategies (Tit-for-Tat
and Win-Stay, Lose-Shift) to the Matching Pennies game and show that identical behaviours would
require qualitatively different artificial neural networks to minimally implement. These two strategies,
applied to iterated games as we do in this article, have been pivotal to the modern understanding of
strategic evolution in game theory (see [11] and Chapters 4–5 of [8]). This illustrates a key limitation in
revealed preferences theory: under certain conditions, it is not possible to know a market’s composition
of “herders” and “fundamentalists” by observing behaviour alone, an important factor in financial
market collapse [21,22]. These points are discussed at the end of Section 5.
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2. Non-Cooperative Game Theory

A normal form, non-cooperative game is composed of i = 1, . . . , N agents who are each able to
select an act (often called a “pure strategy” in game theory) ai ∈ Ai (A = A1 × . . .× AN) where the joint
acts of all agents collectively determines the utility for each agent i, ui : A → IR. An act ai∗ is said to be
preferable to an act ai via the utility function if we have: ui(a1, . . . , ai∗, . . . , aN) > ui(a1, . . . , ai, . . . , aN).
We use ui to denote agent i’s utility function, taking joint action a = a1 × . . . × aN as an argument, and
un as the utility value (a real number) for agent i in the n-th round of an iterated game (see below),
if there is any uncertainty as to which agent’s utility value we are referring to, we use ui

n. We will
represent the actions available to the agents and their subsequent utility values using the conventional
bi-matrix notation—for example, the Prisoner’s Dilemma [23] is given by the following payoff bi-matrix
in Table 1 (by convention, i indexes the agent being considered, −i indexes the other agent):

Table 1. The Prisoner’s Dilemma payoff table.

Agent −i

Co-op Defect

agent i Co-op (1 year, 1 year) (5 years, 0 year)
Defect (0 year, 5 years) (3 years, 3 years)

In this game, there are two agents (prisoners held in two different jail cells) who have been
arrested for a crime and they are being questioned (independently) by the police regarding the crime.
Each agent chooses from the same set of possible acts: cooperate with their fellow detainee and remain
silent about the crime or defect and tell the police about the crime and implicate their fellow detainee.
If they both cooperate with each other, they each get one year in jail, if they both defect, they each get
three years in jail, if one defects and one cooperates the defector gets no jail time (zero years) while the
cooperator gets five years in jail. We also define a game’s state space Si for agent i, a specific set of
acts and utilities (variables) for agent i—for example, Si = {co-op, defect, five years} is a specific state
space of variables when i cooperates and −i defects. The variables in Si are deterministically related
to one another via the bi-matrix of the game being played. The following definitions form the two
sub-classes of games that we will use in the following section:

Definition 1. Invertible Games: An invertible game for agent i is a game for which each of i’s real-valued
utilities uniquely defines the joint actions of all agents. A game is invertible if it is invertible for all agents.

For example, the Prisoner’s Dilemma and Stag Hunt games are invertible but the Matching
Pennies and Rock–Paper–Scissors games are not. Matching Pennies and Prisoner’s Dilemma are
discussed in detail below, and see, for example, [24] for Rock, Paper, Scissors and [25] for Stag Hunt.

Definition 2. Cyclical Games: Given the cardinality of variables in agent i’s state space φ = |Si|, a cyclical
game for agent i is a game for which knowing any combination of φ − 1 variables of Si is both necessary and
sufficient to derive the remaining variable. A game is cyclical if it is cyclical for all agents.

The Prisoner’s Dilemma is not cyclical, Matching Pennies and Rock-Paper-Scissors are cyclical
but the Traveler’s Dilemma (see Section 4: Example Games) is neither invertible nor cyclical.

3. Information Theory

Information theory measures the degree of stochastic variability and dependency in a system
based on the probability distributions that describe the relationships between the elements of the
system. For a discrete stochastic variable x ∈ {x1, . . . , xj} = X, the (Shannon) Entropy is:
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H(x) = − ∑
xi∈X

p(x = xi) log2 p(x = xi),

measured in bits as log2 assumed throughout, and this is maximised if x is uniformly distributed over
all xi ∈ X and zero if p(x = xi) = 1 for any i. We will write p(xi) or p(x) if there is no confusion.
There are many possible extensions to the notion of Entropy, in this work, we will make use of the
Mutual Information and the conditional Mutual Information, respectively defined as [26]:

I(x : y) = ∑
x,y

p(x, y) log
( p(x, y)

p(x)p(y)

)

= ∑
x,y

p(x, y) log
( p(x|y)

p(x)

)
, (1)

I(x : y|z) = ∑
x,y,z

p(x, y, z) log
( p(x, y|z)

p(x|z)p(y|z)
)

= ∑
x,y,z

p(x, y, z) log
( p(x|y, z)

p(x|z)
)

. (2)

If, in Equation (1), there is a (deterministic, linear or nonlinear) mapping y → x, then p(x|y) ∈
{0, 1}, ∀{x, y} and I(x : y) = H(x). Similarly, for Equation (2), if there is a (deterministic, linear or
nonlinear) mapping y → x such that p(x|y, z) = p(x|z) ∈ {0, 1}, then the summation reduces to
a weighted sum over log( 1

1 ) = 0 and log( 0
0 ) = 0 and so I(x : y|z) = 0 bits.

A useful special case of the conditional mutual information is the Transfer Entropy (TE) [27].
For a system with two stochastic variables X and Y that have discrete realisations xn and yn at time
points n ∈ {1, 2, . . .}, then the TE of the joint time series: {{xn, yn}, {xn+1, yn+1}, . . .} is the mutual
information between one variable’s current state and the second variable’s next state conditional on
the second variable’s current state:

TY→X = I(yn : xn+1|xn)

= ∑
xn ,yn ,xn+1

p(xn, yn, xn+1) log
( p(xn+1|yn, xn)

p(xn+1|xn)

)
. (3)

This is interpreted as the degree to which the previous state of Y is informative about the next
state of X excluding the past information X carries about its next state. This is one of many different
specifications of TE, generalisations based on history length appears in Schreiber’s original article [27],
and further considerations of delays [28] as well as averaging the TE over whole systems of stochastic
variables [29] have also been developed (for a recent review, see [30]).

In iterated games, we wish to know how much information passes from each variable in agent
i’s state space Si

n at time n to their next act ai
n+1 and what simplifications can be made. It is assumed

that each agent i has a strategy Zi(. . .) that maps previous system states to actions at time n + 1, and,
in general, this may depend on system states of an arbitrary length of time l + 1 into the past:

Zi(Si
n, Si

n−1, . . . , Si
n−l) = ai

n+1, (4)

where {Si
n, Si

n−1, . . . , Si
n−l} is assumed to be the totality of an agent’s information set used to make

a decision. For example, one of the simplest 1-step strategies is the Tit-for-Tat (TfT) strategy, whereby
agent i simply copies the previous act of the other agent [8,9]:

ai
n+1 = Zi

0(a−i
n ) = a−i

n . (5)
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It is possible for Zi to take no arguments in which case the agent chooses from a distribution over
their next act that is independent of any information set. This is the case for the Matching Pennies game
considered below: two agents simultaneously toss one coin each and the outcome, either matched
coins or mismatched coins, decides the payoff to either agent and so for this “0-step strategy” each
action ai

n is independent of all past states of the game for both agents. Given a maximum history length
of l, we will say that a strategy Zi is an l-step Markovian strategy and an l-step Markovian game is
a sequence of the same game played repeatedly for which each agent has an l-step Markovian strategy.

Information Chain Rule and Iterated Games

We are interested in constructing probability distributions over the variables in Si
n for iterated

games. As n indexes time, for large n, a probability of an event is the frequency of occurrence of the
event (an element in Si

n) divided by n. Other probabilities, such as conditional or joint probabilities,
are natural extensions of this approach. For the moment, we make no assumptions about the
relationship between elements of Si

n and ai
n+1, except that they are not statistically independent

of each other. Given a 2-agent, 1-step Markovian game with states Si
n = {ai

n, a−i
n , un}, from the chain

rule for information ([26], Theorem 2.5.2), we have the following six identities for the total information
between the previous game state and agent i’s subsequent act ai

n+1:

I(Si
n : ai

n+1) = I(ai
n, a−i

n , un : ai
n+1)

= I(ai
n : ai

n+1|un, a−i
n ) + I(un : ai

n+1|a−i
n ) + I(a−i

n : ai
n+1) (6a)

= I(a−i
n : ai

n+1|un, ai
n) + I(un : ai

n+1|ai
n) + I(ai

n : ai
n+1) (6b)

= I(a−i
n : ai

n+1|un, ai
n) + I(ai

n : ai
n+1|un) + I(un : ai

n+1) (6c)

= I(ai
n : ai

n+1|un, a−i
n ) + I(a−i

n : ai
n+1|un) + I(un : ai

n+1) (6d)

= I(un : ai
n+1|a−i

n , ai
n) + I(a−i

n : ai
n+1|ai

n) + I(ai
n : ai

n+1) (6e)

= I(un : ai
n+1|a−i

n , ai
n) + I(ai

n : ai
n+1|a−i

n ) + I(a−i
n : ai

n+1). (6f)

We will say that I(Si
n : ai

n+1) measures the amount of information Si
n shares with ai

n+1.
These expressions for the shared information between game states and next actions can be simplified
in useful ways as follows:

Theorem 1. For any normal form, non-cooperative 1-step Markovian game (not necessarily cyclical or
invertible): I(ui

n : ai
n+1|an) = 0 for the joint act an = a1

n × . . . × aN
n .

Proof. From the definition of a non-cooperative game, the utility value ui(an) = un is determined

by the joint strategies so the log term in Equation (2) can be written: log
(

p(un |ai
n+1,an)

p(un |an)

)
. In this case,

both conditional probabilities in the log term will be either 0 or 1 and note the discussion following
Equation (2).

Remark 1. From Theorem 1, the first terms in Equations (6e) and (6f) are zero. While the joint actions of the
agents unambiguously identifies a utility value, in general the utility value does not unambiguously identify
a joint action. See the Traveler’s Dilemma example below.

Corollary 1. For a 2-agent, 1-step Markovian game, the total information from agent i’s previous state space to
i’s next act is encoded in the sum of agent i’s Transfer Entropy from agent −i’s previous act to agent i’s current
act and agent i’s “active memory” [31] of their own past acts: I(Si

n : ai
n+1) = Ta−i→ai + I(ai

n : ai
n+1).

Proof. By Theorem 1 and Equation (6e).

Theorem 2. For a 2-agent, invertible 1-step Markovian game I(ai
n : a−i

n+1|un, . . .) = I(ai
n : a−i

n+1|an) = 0.
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Proof. This follows the same approach as Theorem 1 where knowing the joint act an implies knowing
any single agent’s act ai

n and from the definition of an invertible game for which [ui]
−1 is the necessary

deterministic map.

Remark 2. From Theorem 2, the first terms in Equations (6a)–(6f) are zero for invertible 1-step Markovian games.

Corollary 2. For an invertible 1-step Markovian game, the total information from agent i’s previous state space
to agent i’s next act is encoded in agent i’s active memory between the previous utility and their subsequent act:
I(Si

n : ai
n+1) = I(un : ai

n+1).

Proof. By Theorem 2 for Equation (6c): I(a−i
n : ai

n+1|un, ai
n) = I(ai

n : ai
n+1|un) = 0 and so:

I(Si
n : ai

n+1) = I(un : ai
n+1).

Theorem 3. For a cyclical 1-step Markovian game, I(x : a−i
n+1|Si

n \ x) = 0, ∀ x ∈ Si
n.

Proof. This follows the same approach as Theorem 1 and note that, for a three element Si
n in a cyclical

game, there is a c ∈ Si
n and distinct {a, b} = Si

n \ c, for which there is a deterministic relationship
between any pairing of a or b with c and, consequently, the conditional mutual information in
Theorem 3 is zero.

Remark 3. From Theorem 3, the first term in Equations (6a)– (6f) are zero for cyclical 1-step Markovian games.

Corollary 3. For a cyclical or an invertible 2-agent, 1-step Markovian game:

I(un : ai
n+1|a−i

n ) = I(ai
n : ai

n+1|a−i
n ), (7)

I(un : ai
n+1|ai

n) = I(a−i
n : ai

n+1|ai
n), (8)

I(ai
n : ai

n+1|un) = I(a−i
n : ai

n+1|un). (9)

Proof. This comes from Theorems 2 and 3 and comparing Equation (6a) with (6f), Equation (6b)
with (6e) and Equation (6c) with (6d).

Remark 4. Equality (8) is notable, and it states that the transfer entropy from the utility of agent i to their next
act is the same as the transfer entropy from agent −i’s act to agent i’s next act.

4. Example Games

In this section, we consider in some detail three games belonging to three distinct classes. The first
example, the Traveler’s Dilemma, belongs to the class of games that are neither invertible nor cyclical.
The second example, the Prisoner’s Dilemma, is an invertible game and the final example, the Matching
Pennies game, is a cyclical game. The Traveler’s Dilemma and the Prisoner’s Dilemma illustrate the
information theoretical aspects of iterated games and the Matching Pennies game illustrates the
computational properties of cyclical games.

4.1. The Traveler’s Dilemma

The story describing the Traveler’s Dilemma (TD) game is often told in the following form [32]:

“Lucy and Pete, returning from a remote Pacific island, find that the airline has damaged
the identical antiques that each had purchased. An airline manager says that he is happy
to compensate them but is handicapped by being clueless about the value of these strange
objects. Simply asking the travelers for the price is hopeless, he figures, for they will inflate it.

Instead, he devises a more complicated scheme. He asks each of them to write down the
price of the antique as any dollar integer between $2 and $100 without conferring together.
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If both write the same number, he will take that to be the true price, and he will pay each of
them that amount. However, if they write different numbers, he will assume that the lower
one is the actual price and that the person writing the higher number is cheating. In that
case, he will pay both of them the lower number along with a bonus and a penalty–the
person who wrote the lower number will get $2 more as a reward for honesty and the one
who wrote the higher number will get $2 less as a punishment. For instance, if Lucy writes
$46 and Pete writes $100, Lucy will get $48 and Pete will get $44.”

The utility function for the TD game can be defined using the Heaviside step function Θ(z):

Θ(z) = 0, ∀ z < 0,

Θ(z) = 1/2, if z = 0,

Θ(z) = 1, ∀ z > 0,

and agent i’s action ai is the cost i claims for the vase and agent −i’s action a−i is the cost −i claims for
the vase, the utility for agent i is [33]:

ui(ai, a−i) = (ai + 2)Θ(a−i − ai) + (a−i − 2)Θ(ai − a−i). (10)

This game is not invertible because, in the case where the two agents disagree with each other,
the agent i who offers the lowest value ai has a utility of ui = ai + 2, whereas the other agent has
a utility of u−i = ai − 2, i.e., agent −i’s utility is independent of the precise value offered; therefore,
the agent utility is invertible for agent i but not for agent −i, so the game is not invertible. For iterated
TD games, the simplest calculation of the information shared between the previous state and the next
action is: I(Sn : ai

n+1) = Ta−i→ai + I(ai
n : ai

n+1).

4.2. Prisoner’s Dilemma

The Prisoner’s Dilemma is one of the most well studied economic games. It was originally
an experimental test in a repeated game format by researchers at the RAND Corporation (Santa Monica,
CA, USA) who were skeptical of Nash’s notion of equilibrium on the basis that no real players would
play in the fashion Nash had proposed [23]. Here, we use it to illustrate that utility can be used
exclusively to learn strategies just as behaviour can be used to exclusively learn better strategies. In the
second part of this example, we use Nowak’s approach [8] to understand the relationship between
information sets, game structure and strategies. The logic gate approach allows us to express games
and strategies in the same language, allowing a direct comparison of game structure and strategies.
The Prisoner’s Dilemma (PD) was introduced earlier, see the payoff matrix in Table 1.

Because it is invertible for both agents (from the uniqueness of each of the four utilities for each
agent), the total information from the previous time step to the next act for either agent is encoded
in the Mutual Information between the previous utility and the next act: I(Si

n : ai
n+1) = I(un : ai

n+1).
For a 1-step Markovian strategy, no other past information is needed to select the next act. In this sense,
the utility acts as a reward that an agent can use to distinguish between the actions of other players,
and the entire joint action space of the game’s previous state can be reconstructed by agent i using
only the utility value.

To explore this further, we follow Nowak ([8], pp. 78–89) in defining two deterministic strategies
in the iterated version of the PD game in terms of previous game states and subsequent acts. In the
iterated PD, there are four possible joint acts at time n: Cc, Cd, Dc and Dd. The action of the agent we
are referring to, usually indexed as i, has their act in capital letters i.e., C and D for cooperate and defect,
whereas the other agent −i has lower case acts c or d. A vector of these joint acts is mapped to a vector
of acts at time n + 1 in the following way: [Cc, Cd, Dc, Dd] → [x1, x2, x3, x4], where xi ∈ {C, D}.
In the Tit-for-Tat strategy (TfT): [Cc, Cd, Dc, Dd] → [C, D, C, D], in which agent i copies the other
agent’s previous act, and in the Win-Stay, Lose-Switch strategy (WSLS): [Cc, Cd, Dc, Dd] → [C, D, D, C],
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in which agent i repeats their act if they receive a high payoff (a ‘win’ of either 1 or 0 years) but changes
their act if they receive a low payoff (a ‘loss’ of three or five years). This interpretation of the WSLS
strategy is not an accurate representation of the strategy though: WSLS monitors the success (measured
by utility) of the previous act and adjusts the next act accordingly i.e., WSLS uses the information set
{ai

n, un} to select ai
n+1, not {ai

n, a−i
n } as is implied by the representation [Cc, Cd, Dc, Dd] → [C, D, D, C].

This distinction is not important for Nowak’s analysis of PD [8] (p. 88), but it is important in the
analysis below.

It can be seen that these two strategies have the same amount of shared information between their
previous game states and their next acts: TfT � WSLS. Note that we consider agent −i’s actions to
be uniformly distributed across their possible acts, whereas agent i follows one of the deterministic
strategies described next. We use � and ≡ to distinguish between having the same quantity of
information (�) and having the same observed behaviour (≡). For TfT, the shared information between
Si

n and ai
n+1 is: I(Si

n : ai
n+1) = I(a−i

n : ai
n+1)T f T = 1 bit. The two expansions of I(Si

n, ai
n+1) that contain

this mutual information term are Equations (6a) and (6f), so the first two terms in these two equations
must be zero for PD. The first term is zero by Theorem 2, and we observe that in TfT a−i

n explicitly
determines ai

n+1, so the second conditional entropy terms in which a−i
n conditions ai

n+1 must also be
zero. For WSLS, we measure I(Si

n : ai
n+1) in terms of {ai

n, un} and then show that this is equivalent to
the TfT result. By Theorem 2 for invertible games, the first term in any expansion of I(Si

n : ai
n+1) is

zero, and the equations that then only have {ai
n, un} in their expression are Equations (6b) and (6c).

These equations measure the shared information between the information set of WSLS and the agent’s
next act, i.e., I(ai

n, un : ai
n+1). Equation (6c) is then: I(ai

n, un : ai
n) = I(ai

n : ai
n+1|un) + I(un : ai

n+1) and
by Corollary 2 I(ai

n, un : ai
n+1) = I(un : ai

n+1)WSLS—by definition, Equation (6c) � Equation (6a) and,
therefore, I(un : ai

n+1)WSLS � I(a−i
n : ai

n+1)T f T . However, TfT is not behaviourally equivalent to WSLS
for the PD: WSLS �≡ TfT as can be seen by direct comparison of the strategies described above.

We now consider the relationship between WSLS and TfT for the PD game by making the
following substitutions: C, c → 0, D, d → 1, a “win” → 1, and a “loss” → 0. Replacing the utilities with
a win–loss binary variable is justified as WSLS (the only strategy that uses the utilities) only considers
wins and losses, not the numerical values of the utilities. It can then be seen that this modified version
of the Prisoner’s Dilemma is equivalent to a NOT logic gate for agent i that inverts the action of agent
−i (see Table 2):

Table 2. Prisoner’s Dilemma as a NOT logic gate for agent i.

Si
n ai

n+1

ai
n a−i

n i’s Win-Loss WSLS TfT

0 (C) 0 (c) 1 (win) 0 0
0 (C) 1 (d) 0 (loss) 1 1
1 (D) 0 (c) 1 (win) 1 0
1 (D) 1 (d) 0 (loss) 0 1

The first three columns in Table 2 are the actions of the two agents in round n of an iterated game
and the outcome of the game based on these actions, i.e., each row is an instance of the 3-element set Si

n.
The next two columns of Table 2 are the actions of agent i in round n+ 1 for WSLS and TfT. The diagram
shows the relationship between the elements in Si

n when the game is interpreted as a logic gate relating
inputs (agent actions) and outputs (wins and losses). In this case, the 4 × 3 matrix made up of the four
rows of possible combinations of Si

n is the “truth table” of the PD game. Note that, while both agents
always have an incentive to defect irrespective of what the other agent does (defection is said to strictly
dominate cooperation, see ([34], p. 10)), it is only agent −i’s action that decides whether or not agent i
will win or lose. Whether this is a large or a small win or loss is controlled by agent i though, and this
aspect was lost when the utility was made into a binary win–loss outcome in modifying the PD game
in the table. Figure 1 represents these relationships for TfT being played in an iterated PD game.
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Sin-1

ain-1

a-in-1

Sin

ain

a-in

Figure 1. The modified Prisoner’s Dilemma game for agent i based on wins and losses using the
Tit-for-Tat (TfT) strategy. Si

n−1 and Si
n are the game states at time n − 1 and n, the NOT gate is the

logical operator that connects the variable a−i
n to the win–loss status of the game, in this sense the NOT

operator is the logic of the modified PD game. The only connection between successive game states for
the TfT strategy is a direct connection between a−i

n−1 and ai
n, and neither agent i’s act nor the win–loss

status of the game is in the information set of the TfT strategy. The ai
n variable influences the win–loss

outcome in a similar diagram for agent −i just as a−i
n influences the win–loss outcome for agent i in

this diagram.

Next, we show that WSLS is a nonlinear function of its two inputs while TfT is a linear function
of its inputs. To see this, note that TfT � WSLS and TfT is linearly (anti-)correlated with win–loss;
however, there is zero pairwise linear correlation between WSLS actions ai

n+1 and either ai
n or un.

Consequently, because mutual information measures both linear and nonlinear relationships between
variables, all of the shared information between Si

n and ai
n+1 is either linear for TfT or nonlinear

for WSLS.
A truth table can also be constructed from the information set of WSLS (columns 1 and 3 in Table 2)

and the WSLS action in the next round (column 4 in Table 2) and the truth table is that of an XNOR
(exclusive-nor) logic gate in which matching inputs (00 or 11) are mapped to 0 and mismatched inputs
(10 or 01) are mapped to 1. Encoding the utilities of the PD as win–loss and representing it as a NOT
gate makes clear that learning the relationships between the variables of Si for the PD game (as encoded
in the first three columns of the table above) is a linearly separable task; if agent i wants to learn the
PD, it only needs to divide the state space of agent −i’s actions up into wins and losses for agent i,
a problem that can be solved by single layer perceptrons [35]. However, learning the WSLS strategy,
equivalent to learning an XNOR operation, is not a linearly separable task and requires a multi-layer
perceptron [36]. Figure 2 represents these relationships for WSLS being played in an iterated PD game.

Sin-1

ain-1

a-in-1 win-loss i

Sin

ain

a-in win-loss i

GWSLS GWSLS 

Figure 2. The modified Prisoner’s Dilemma game for agent i based on wins and losses and using the
Win-Stay, Lose-Switch (WSLS) strategy. The WSLS strategy is equivalent to an XNOR (exclusive-nor)
gate that has as its information set (inputs) {ai

n−1, win–loss} and outputs ai
n.

In the modified PD, the utility values were converted to binary variables, and this works because
TfT does not have the utility value in its information set and WSLS has the utility value in its
information set but only considers the outcome as a binary win–loss variable. In the next example,
these substitutions are unnecessary. We take a similar approach to establish that the Matching Pennies
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game is not a linearly separable problem and that WSLS is both informationally and behaviourally
identical to TfT for one agent but not the other.

4.3. Matching Pennies

The Matching Pennies (MP) game is an important example used in laboratory studies [19] of
economic choice, learning and strategy. In the MP game, two agents have one coin each and each
coin has two states, either Heads (H) or Tails (T). When the agents compare coins one agent wins if
the two coins match and the other agent wins if they do not match. In the usual description of the
game, the two agents toss their coins before comparing them; this randomising of the coin states can
be interpreted as one step of an iterated game using a 0-step Markovian strategy. In what follows,
though, we use the name “Matching Pennies” to describe the iterated game where the WSLS and TfT
are deterministic strategies that use the action-utility bi-matrix given by (see Table 3):

Table 3. Payoff table for the Matching Pennies game.

Agent −i

Heads Tails

agent i Heads (1, 0) (0, 1)
Tails (0, 1) (1, 0)

In the same fashion as for the PD game above, we can map agents’ acts to numerical values:
H, h → 1, T, t → 0, and a win = 1, a loss = 0 (unlike the PD game, we do not need to simplify the utility
values and so the game is not modified as the PD was). Then, the MP game can be interpreted as
XNOR (exclusive-nor) and XOR (exclusive-or) gates in the following two tables (see Tables 4 and 5) for
the two agents:

Table 4. XNOR logic gate for agent i.

Si
n ai

n+1

ai
n a−i

n ui
n WSLS TfT

1 (H) 1 (h) 1 (win) 1 1
1 (H) 0 (t) 0 (loss) 0 0
0 (T) 1 (h) 0 (loss) 1 1
0 (T) 0 (t) 1 (win) 0 0

Table 5. XOR logic gate for agent −i.

S−i
n a−i

n+1

ai
n a−i

n u−i
n WSLS TfT

1 (H) 1 (h) 0 (loss) 0 1
1 (H) 0 (t) 1 (win) 1 0
0 (T) 1 (h) 1 (win) 0 1
0 (T) 0 (t) 0 (loss) 1 0

As for the PD game, the first three columns of each row in Tables 4 and 5 represent an instance
of Si

n (Table 4) and S−i
n (Table 5), and the four possible permutations of the variables of Si

n and S−i
n

forms a 4 × 3 table that can be interpreted as the truth table of a logic gate. However, unlike in
the PD game, both agents now have an input into each other’s logic gate (see Figures 3 and 4 for
schematic representations for agent i). Just as in the PD, for MP, the WSLS strategy is not linearly
correlated with any element of its information set and TfT is linearly correlated with its information
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set; recall the WSLS information set for agent i’s act ai
n+1 is {ai

n, un} and the TfT information set is
{a−i}. However, unlike the PD, now WSLS is perfectly (linearly) correlated with TfT for agent i and
perfectly anti-correlated for agent −i.

Sin-1

ain-1

a-in-1

win-loss i

Sin

ain

a-in

win-loss igMP gMP 

Figure 3. Two steps in the Matching Pennies (MP) iterated game, for agent i the elements of Si
n are

related to one another via an XNOR logic gate gMP representation of the MP game. TfT is the copy
operation (identity logic gate) from a−i

n−1 to ai
n

Sin-1

ain-1

a-in-1

win-loss i

Sin

ain

a-in
win-loss iGMP 

GWSLS GWSLS 

GMP 

Figure 4. Two steps in the MP iterated game. As for Figure 3, the elements of Si
n are related to one

another via an XNOR logic gate GMP representation of the MP game. The WSLS strategy is represented
as an XNOR logic gate GWSLS between inputs {ai

n−1, win–loss} and output ai
n. For agent −i, the GMP

gate would be an XOR gate.

It can also be seen that knowing any two variables in Si
n = {ai

n, a−i
n , ui

n} is sufficient to derive
the third variable. This is a property of the XOR (⊕) and XNOR (⊕) logic operations; given the
three variables ai

n, a−i
n , ui

n,∈ {0, 1} related by the XNOR operator, then: ai
n ⊕ a−i

n = ui
n, a−i

n ⊕ ui
n = ai

n,
and ui

n ⊕ ai
n = a−i

n , and we will refer to this as the cyclical property of cyclical games. We can now
prove the following relationship:

Theorem 4. TfT ≡ WSLS for agent i: for the Matching Pennies iterated game, the Tit-for-Tat strategy is
behaviourally indistinguishable from the Win-Stay-Lose-Shift strategy for agent i.

Proof. By the cyclical property for Matching Pennies, if: GMP : ai
n−1 ⊕ a−i

n−1 = ui
n−1, then GMP :

ai
n−1 ⊕ ui

n−1 = a−i
n−1. The WSLS strategy GWSLS takes these same inputs {ai

n−1, ui
n−1} but outputs ai

n:
GWSLS : ai

n−1 ⊕ ui
n−1 = ai

n. Because GMP and GWSLS are equivalent to XNOR logic gates, for the same
input, they produce the same output: GMP ≡ GWSLS and therefore a−i

n−1 ≡ ai
n. By definition, the TfT

strategy is a−i
n−1 ≡ ai

n and so TfT ≡ WSLS.

Remark 5. TfT is a prototypical herd-like strategy: it simply follows the behaviour of another agent. In contrast,
WSLS is a prototypical fundamental strategy: it uses past actions and their payoffs to decide whether to stay
with the current strategy or change. The fact that they are indistinguishable from each other is not guaranteed;
for the Prisoner’s Dilemma, TfT is behaviourally distinguishable from WSLS, and the indistinguishability in the
Matching Pennies game comes from identifying the MP game and the WSLS strategy with the same (XNOR)
logic gate and the cyclical property of GMP.
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Before the next result, we introduce a variation on the WSLS strategy, called
“Win-Switch-Lose-Stay”: WSLS−1 in which an agent changes strategy if they win but will
stay with a losing strategy.

Corollary 4. TfT ≡ WSLS−1 for agent −i.

Proof. The XOR logic gate for agent −i shows the WSLS strategy is anti-correlated with the TfT
strategy; this is the opposite behaviour of the XNOR logic gate for agent i, so flipping the behaviours
of WSLS: 0 → 1 and 1 → 0 results in the strategy WSLS−1 that is behaviourally the same as
TfT. In Nowak’s notation in the Matching Pennies game for agent −i (who wins if pennies are
mismatched), this results in an inverted WSLS: [Hh, Ht, Th, Tt] → [H, T, H, T], which is equivalent to
[11, 10, 01, 00] → [1, 0, 1, 0].

The TfT strategy for the MP game is a linearly separable learning task, given Si
n−1, a single

layer perceptron is sufficient to map a−i
n−1 to the correct ai

n output [35]. The WSLS strategy for the
MP game is not a linearly separable task because it is equivalent to an XNOR gate [36]: given Si

n−1,
a multi-layer perceptron is necessary to map ai

n−1 and ui
n−1 to ai

n. This difference in the complexity of
the computational task and the indistinguishable character of the subsequent behaviour of the agents
suggests that understanding cognitive decision-making processes is not easily untangled by observing
behaviour.

5. Discussion

This article uses Transfer Entropy in the analysis of iterated games while also contributing
theoretical concepts to the analysis of the computational foundations of games and strategies (work on
Matching Pennies can be found in [37] using a different measure of ‘information flow’). In some
respects, the analysis of games discussed here is very similar to the Elementary Cellular Automata
(ECAs) work of Lizier and colleagues [38,39]. In ECAs, the number of agents is much larger than
the two agent games considered here, and they form a potentially infinite spatial array of locally
connected agents that switch states based on their own states and the states of their neighbours. ECAs
are simpler than the agents considered in this article as they do not have a utility function associated
with their collective behaviour, an added complexity that has been shown here to be either informative
or redundant depending on the game and the strategy being played. The possibility that utility values
are redundant is important in reward based learning and it is a poorly studied area. This can be seen
in economic theory in which “revealed preference theory” plays a significant role in understanding
the connection between behaviour and reward. The analogy between iterated games and elementary
cellular automata has been studied earlier by in [40,41]. An important property of these ECAs is that
they are massively parallel computational systems and some, such as Wolfram’s rule 110, are capable
of universal computation [42]. This is very different to conventional approaches to understanding
economic foundations. The focus in economics is often on finding equilibrium solutions [43], whereas,
in ECAs, the emphasis is on the dynamical properties of the system. From this perspective, ECAs have
been studied as dynamical systems made up of parallel logic gates (see [44], p. 81) while logic gates
have recently played an important role in information theory [45] and the computational biology of
neural networks [46].

The classification of games and strategies as logic gates also has analogies in ECAs where Rule
90 [47] (using Wolfram’s numbering system for ECAs) is based on the XOR operation, and it is the
simplest non-trivial ECA [48]. If we label an agent in a Rule 90 ECA as i and its two nearest neighbours
as i − 1 and i + 1, and the state of i at time t as si

t, then Rule 90 updates agent i’s state at t + 1 to:
s1−i

t ⊕ s1+i
t = si

t+1. This can be seen as an elementary version of the more complex interactions depicted
in the figures illustrated above and emphasises the point that both game theory and strategies in
iterated games can be seen as computational processes, and potentially universal Turing processes,
just as ECAs are [49]. From this point of view, if an idealised economy is seen as a collection of
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agents strategically interacting in a game-theoretical fashion, this can be interpreted as a large network
of parallel and sequential computational operations that continuously “computes” the output of
an economy.

These results are also important for understanding strategic behaviour at two different levels.
At an individual’s cognitive level, the neural processing of information can be represented as
a combination of logic operations implemented by a (biological) neural network [50]. Similarly,
earlier neuro-economic work experimentally connected the level of individual neural recordings with
adaptive learning and behaviour in the iterated matching pennies game [18,19]. In [51], Lee and
collaborators identified the ambiguity between Win-Stay, Lose-Switch and copying the other agent’s
previous move (Tit-for-Tat) but did not consider the issue any further. Previously, Nowak [8] had
examined the strategic effectiveness of Win-Stay, Lose-Switch relative to Tit-for-Tat for the Prisoner’s
Dilemma but did not note the possibility of an ambiguity in Matching Pennies. The results here show
why ambiguities occur and an approach for understanding how different computational processes
(decision strategies), in combination with the particular game being played, results in a fundamental
indeterminacy in differentiating “internal” strategies by observing “external” behaviour.

At the larger scale of collective behaviour, we would like to understand, and distinguish between,
the strategies of those who are following the behaviour of others and those who are processing
information in a more complex fashion based on their own past experience. It seems likely that realistic
strategies would include a combination of both social influences and fundamental computations
because both aspects play a part in the pay-off an agent receives, but splitting these processes out
provides an insight into the foundations of collective behaviour. Herding behaviour and financial
contagion have been suggested as a possible mechanism that drives financial market collapses [52,53],
and so it is important both theoretically and empirically to understand the limits of our ability to
detect these two different behaviours. Previously, information theory has been used to measure abrupt
transitions in general [29,54] and in financial market collapses specifically [55,56], but little progress
has been made in relating information sets and strategic computation in economic theory, particularly
as it relates to fundamentalists versus herders [21].
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Abstract: This paper is concerned with consensus problem of a class of second-order multi-agent
systems subjecting to external disturbance generated from some unknown exosystems. In comparison
with the case where the disturbance is generated from some known exosystems, we need to combine
adaptive control and internal model design to deal with the external disturbance generated from
the unknown exosystems. With the help of the internal model, an adaptive protocol is proposed for
the consensus problem of the multi-agent systems. Finally, one numerical example is provided to
demonstrate the effectiveness of the control design.

Keywords: consensus; multi-agent systems; internal model; disturbance; unknown exosystems

1. Introduction

The consensus problem of multi-agent systems has received increasing attention in recent years
due to its broad applications in such areas as cooperative control of unmanned aircrafts and underwater
vehicles, flocking of mobile vehicles, communication among wireless sensor networks, rendezvous,
formation control, and so on, see [1–15]. In the past years, many researches have been firstly concerned
with consensus problems of first order multi-agent systems [16–20]. In [16], the authors proposed
a systematic framework to study the consensus problem of first-order multi-agent systems and showed
that the consensus can be achieved if the diagraph is strongly connected. In [17], the authors extended
the results obtained in [16] and further presented some improved conditions for state agreement under
dynamically changing directed topology. In [18], the authors discussed average consensus problem
by using a linear matrix inequality method in undirected networks of dynamic agents with fixed and
switching topologies as well as multiple time-varying communication delays.

Recently, the consensus problem of second order multi-agent systems has received increasing
attention due to the fact that second order dynamics can be used to model more complicated processes
in reality [21–26]. In reality, many practical individual systems, especially mechanical systems, can be
presented as second-order multi-agent systems; for instance, networks of mass-spring systems[27],
coupled pendulum systems[28], harmonic oscillators [29] and frequency control of power systems [30].
In [21], the authors pointed out that the existence of a directed spanning tree is a necessary rather
than a sufficient condition to reach the second order consensus. In [22], the authors discussed the
consensus problems for undirected networks of point mass dynamic agents with fixed or switching
topology. In [23], the authors proposed a Lyapunov-based approach to consider multi-agent systems
with switching jointly connected interconnection. In [24], the authors presented some necessary and
sufficient conditions for second order consensus in multi-agent dynamical systems. In [25], the authors
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studied the exponential second order consensus problem of a network of inertial agents using passive
decomposition approach with time-varying coupling delays and variable balanced topologies.

However, there are few results that have considered the second order consensus problem for
multi-agent systems with exogenous disturbance [31,32]. In [31], by using linear matrix inequality
method, the authors studied the consensus problem of second order multi-agent systems with exogenous
disturbances generated from linear exogenous system under the assumption that the coefficient matrix
of the exogenous system can be used for designing a disturbance observer, and a disturbance observer
based protocol was proposed to achieve consensus for the second order multi-agent systems. In [32],
by using the input-to-state stability and dynamic gain technique, Zhang et al. further investigated the
consensus problem of second order multi-agent systems with exogenous disturbances generated from
linear exogenous system and nonlinear exogenous system, respectively.

Nevertheless, the case when consensus problem of multi-agent systems with exogenous
disturbance generated from linear unknown exogenous system seems more realistic and has greater
practical significance [33–35]. In this paper, we will consider the consensus problem of second order
multi-agent systems with exogenous disturbance generated from linear unknown exogenous system.
It is worth noting that, unlike [31,32], since the disturbances are generated from some linear unknown
exogenous systems and the information of the coefficient matrix of the exogenous system can not be
used for designing of disturbance observer and feedback control, we cannot apply the approaches
developed in [31,32] to solve the present problem. Meanwhile, the method that used in [34] to solve
the problem of asymptotic rejection of unknown sinusoidal disturbances can not be used directly to
tackle the consensus problem of multi-agent system, because the multi-agent system is multi-input
and multi-output. Therefore, to overcome this difficulty, we need to develop a different technique.

The remainder of this paper is organized as follows. In Section 2, some preliminaries are briefly
reviewed and the problem formulation is presented. Some internal models, which are used to deal
with the disturbances generated from some linear unknown exosystems, are designed in Section 3.
Based on the internal models proposed in Section 3, an adaptive consensus protocol is presented for
the second order multi-agent systems in Section 4. In Section 5, an example will be given to illustrate
our design. Finally, the conclusions are drawn in Section 6.

2. Preliminaries and Problem Formulation

Assuming that each agent can be viewed as a node, and the interaction topology of information
exchange between n nodes can be described by a graph G = (V , E , A ), where V = {1, · · · , n}
be an index set of n nodes with i representing the ith node, E ⊆ V × V is the set of edges of
paired nodes and A = [aij] ∈ R

N×N with non-negative adjacency elements aij is the weighted
adjacency matrix of the graph G . An edge of G is denoted by (i, j), representing that node i can
get information from node j. The adjacency elements associated with the edges are positive, i.e.,
(i, j) ∈ E if and only if aij > 0. Moreover, it is assumed that aii = 0 for all i ∈ V . A graph is called
an undirected graph if the graph has the property that aij = aji for any i, j ∈ V . The neighborhood
of node i is denoted by Ni = {j ∈ V : (j, i) ∈ E }. A path on G from node i1 to node in is a
sequence of ordered edges of the form (ik, ik+1) ∈ E , k = 1, · · · , n − 1, and ik’s are distinct. A graph
G is said to be connected if there exists a path from node i to node j for any two nodes i, j ∈ E .
A diagonal matrix D = diag{d1, · · · , dn} is a degree matrix of graph G , whose diagonal matrix
elements di = ∑j∈Ni

aij, i ∈ V . Then, the Laplacian matrix of a weighted graph can be defined as
L = D −A , which is a symmetric positive semi-definite matrix.

Considering a group of agents, the dynamics of the ith agent is given by

ẋi = vi,
v̇i = −∑j∈Ni

aij[(xi − xj) + γ(vi − vj)] + ui + gidi, i ∈ V ,
(1)
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where xi ∈ R
m and vi ∈ R

m are the position and velocity of agent i, respectively. aij is the (i, j)th entry
of the adjacency matrix, and γ > 0 denotes a scaling factor. ui ∈ R

m and gi ∈ R
m denote the control

input and a coefficient matrix, respectively. di ∈ R is the external disturbance, which is generated from
the following unknown exosystem

ξ̇i = Aiξi,

di = Ciξi,
(2)

where ξi ∈ R
mi , Ai ∈ Rmi×mi and Ci ∈ R1×mi are the coefficient matrices.

As in [31] and [32], we assume that the desired state is described by

˙̄x = v̄, (3)

where x̄ ∈ R
m and v̄ ∈ R

m are the position and velocity of the leader agent, respectively.

Definition 1. The consensus problem of the multi-agent systems (1) is formulated as follows: For the
multi-agent systems (1), design an adaptive consensus protocol such that the states of the close-loop system exist
and are bounded, and the states of agents satisfy

lim
t→∞

‖xi − x̄‖ = 0, lim
t→∞

‖vi − v̄‖ = 0, (4)

for any initial values xi(0) and vi(0), i ∈ V .

Remark 1. Note that, unlike the cases in [31,32], we allow that the disturbance di, i ∈ V is generated from
different unknown exosystems, which makes our problem more challenging and realistic.

3. Designing of Internal Models

In this section, in order to deal with the external disturbances, we will design some internal
models. To this end, let

si(t) = [xT
i (t), vT

i (t)]
T ,

s(t) = [xT
1 (t), · · · , xT

n (t), vT
1 (t), · · · , vT

n (t)]
T .

Then, it follows from system (1) that

ṡi = Lis(t) + Hiui + Gidi (5)

where Hi = [0m×m, Im]T ∈ R
2m×m, Gi = [0T

m×1, gT
i ]

T ∈ R
2m×1, Li is a matrix with its rows are chosen

from rows (i − 1)m + 1 to im and from rows mn + (i − 1)m + 1 to mn + im of the following matrix

[
0mn×mn In ⊗ Im

−L ⊗ Im −γL ⊗ Im

]
.

Before proceeding further, some standard assumptions are introduced as follows:

Assumption 1. The matrix pair (Ai, Ci), i ∈ V is observable, and the eigenvalues of Ai, i ∈ V are with zero
real parts and are distinct.

Assumption 2. There exists a function hi(si) : R2m → R
mi , i ∈ V , such that ∂hi(si)

∂si
Gi = Ni, i ∈ V , where

Ni, i ∈ V is a nonzero constant vector in R
mi .
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Under the Assumptions 1 and 2, for any nonzero vector Ni, i ∈ V , there exists a Hurwitz matrix
Mi, i ∈ V such that (Mi, Ni), i ∈ V is controllable.

Now, we can define a dynamic system of the following form

żi = Mizi + Mihi(si)− ∂hi(si)

∂si
(Lis + Hiui), i ∈ V , (6)

which is called an internal model and can be used to handle the disturbance di generated from (2).
Furthermore, there exists a nonsingular matrix Ti, i ∈ V satisfying the following Sylvester equation

Ti Ai − MiTi = NiCi, i ∈ V , (7)

because the pair (Mi, Ni), i ∈ V , is controllable with Mi being Hurwitz, and the pair (Mi, Ni), i ∈ V ,
is observable.

With the internal model (6) and Sylvester Equation (7) ready, the biased error can be defined by

ei = Tiξi − zi − hi(si), i ∈ V . (8)

Then, it can be verified that the internal model (6) and the biased error (8) have a nice property as
described in the following lemma.

Lemma 1. There exist some positive constants dei and λei such that the biased error defined by (8) satisfies the
following inequality

‖ei‖ ≤ dei e
−λei t, i ∈ V , (9)

which implies that ei is exponentially stable.

Proof. Firstly, by Equations (2), (5) and (6), a straightforward computation shows that

ėi = Ti ξ̇i − żi − ∂hi(si)

∂si
ṡi

= Ti Aiξi − [Mizi + Mihi(si)− ∂hi(si)

∂si
(Lis + Hiui)]

− ∂hi(si)

∂si
[Lis(t) + Hiui + Gidi].

Then, under the Assumption 2, by the Sylvester Equation (7), one has

ėi = (MiTi + NiCi)ξi − [Mizi + Mihi(si)− ∂hi(si)
∂si

(Lis + Hiui)]

− ∂hi(si)
∂si

[Lis(t) + Hiui + Gidi]

= (MiTi + NiCi)ξi − [Mizi + Mihi(si)]− Nidi
= Miei.

(10)

Next, using the Lyapunov stability theory of [36], it is easy to verify that the solution of ei
system (10) can be given as

ei(t) = ei(0)eMit.

Furthermore, owing to Mi is a Hurwitz matrix, it follows that there exist some positive constants
di0 and λi0 such that

‖eMit‖ ≤ di0e−λi0t,

which implies that
‖ei(t)‖ ≤ deie−λei t,
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where dei = di0‖ei(0)‖ and λei = λi0.

Remark 2. Based on Lemma 1, it can be shown that, for the following first-order system

˙̄ei = −λei ēi, ēi(0) = dei, i ∈ V , (11)

where dei and λei are the same positive constants given in Lemma 1, the following nice property

‖ei(t)‖ ≤ ēi(t), i ∈ V , (12)

is hold, which is very useful for managing the disturbances caused by the unknown exosystems (2).

4. Main Result

In this section, we will present an adaptive protocol for solving the consensus problem of the
multi-agent systems (1). To do this, we further make one more standard assumption and recall one
lemma which can be found in [31,32,37].

Assumption 3. The graph G describing the interaction topology is connected.

Lemma 2. Under Assumption 3, suppose that γ > 0 is a positive real number, then the following matrix
[

0 In

−(L +B) −γ(L +B)

]

is Hurwitz, where B = diag{b1, · · · , bn} with bi is the control gain of control law (16), and bi > 0 if agent is
pinned, otherwise, bi = 0.

In order to make the problem more tractable, let

ηi = Tiξi, (13)

where Ti is the nonsingular matrix satisfying the Sylvester Equation (7). Then, we have

η̇i = Ti Aiξi. (14)

By (7) and (13), one can obtain that

η̇i = Miηi + Niψiηi,

di = ψiηi, i ∈ V ,
(15)

where ψi = CiT−1
i is unknown vector since Ci and Ti are unknown matrices.

Remark 3. It is worth pointing out that, after the linear transformation (13), the external disturbance di, i ∈ V ,
can be generated from the system (13), in which Mi is a known Hurwitz matrix and only the
matrix ψi, i ∈ V , is unknown. Thus, one can estimate the disturbance di through estimating the unknown
constant vector ψi, i ∈ V .

Now, we are ready to state our main result.

Theorem 1. Under Assumptions 1–3, with the help of the internal model presented in (6), the adaptive
protocol given by
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ui = −bi[(xi − x̄) + γ(vi − v̄)]− giψ̂i(zi + hi(si)),
˙̂ψi = �iω

T Pn+igi(zi + hi(si))
T , i ∈ V ,

(16)

where the control gain bi > 0 if agent is pinned, otherwise, bi = 0, ψ̂i is the estimation of the unknown vector
ψi, �i is a positive constant which is used to modify the update rate, ω and Pn+i are defined by (18) and (22),
respectively, solves the consensus problem of second order multi-agent systems (1) with external disturbance
generated from linear unknown exosystem (2).

Proof. let

x̃i(t) = xi(t)− x̄,

ṽi(t) = vi(t)− v̄, i ∈ V ,
(17)

and

x̃(t) = [x̃T
1 (t), · · · , x̃T

n (t)]
T ,

ṽ(t) = [ṽT
1 (t), · · · , ṽT

n (t)]
T ,

w = [x̃T , ṽT ]T ,

η = [ηT
1 , · · · , ηT

n ]
T ,

z = [zT
1 , · · · , zT

n ]
T ,

h = [hT
1 , · · · , hT

n ]
T ,

ψ = diag(ψ1, · · · , ψn),

ψ̂ = diag(ψ̂1, · · · , ψ̂n).

(18)

Then, by combining Equations (1), (2), (15) and (16), the following system can be derived

ω̇ = L̄ ω + Ψ[ψη − ψ̂(z + h)], (19)

where

L̄ =

[
0 In ⊗ Im

−(L +B)⊗ Im −γ(L +B)⊗ Im

]
,

Ψ =

[
In ⊗ 0m×1

g

]
,

g = blockdiag(g1, · · · , gn).

Furthermore, as noted in [32], according to the Lemma 2 and Theorem 4.2.12 of [38], it follows
that the matrix L̄ is Hurwitz.

Next, consider the following Lyapunov function candidate

V = ωT Pω +
2
�i

n

∑
i=1

ψ̃iψ̃
T
i +

1
2

n

∑
i=1

ci ē2
i , (20)

where ψ̃i = ψi − ψ̂i, ci, i ∈ V , is a positive real constant number which will be specified later, ēi is the
state defined by (11), and P is a positive definite matrix satisfying the following Lyapunov equation

PL̄ + L̄ T P = −I.
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The existence of the matrix P is due to the Hurwitzness of L̄ .
Then, taking the derivative of V along the system composed of (11), (16) and (19) gives

V̇ = ω̇T Pω + ωT Pω̇ + 2
�i

∑n
i=1 ψ̃i

˙̃ψT
i + ∑n

i=1 ci ēi ˙̄ei

= −‖ω‖2 + 2ωT PΨ[ψη − ψ̂(z + h)]

− 2
�i

∑n
i=1 ψ̃i

˙̂ψT
i − ∑n

i=1 ciλei ē
2
i .

(21)

Now, in order to overcome the difficulties caused by the unknown vectors ψi, i ∈ V , let us split
the matrix P as

P = [P1, · · · , Pn, Pn+1, · · · , P2n], (22)

where Pi, i = 1, 2, · · · , 2n, are 2mn × m blocks.
Then, in light of (8) and (22), it follows from (21) that

V̇ = −‖ω‖2 + 2 ∑n
i=1 ωT Pn+igiψ̃i(zi + hi)

+ 2 ∑n
i=1 ωT Pn+igiψiei − 2

�i
∑n

i=1 ψ̃i
˙̂ψT
i − ∑n

i=1 ciλei ē
2
i .

(23)

Furthermore, substituting the adaptive law ˙̂ψi proposed by (16) into (23) yields that

V̇ = −‖ω‖2 + 2 ∑n
i=1 ωT Pn+igiψiei − ∑n

i=1 ciλei ē
2
i

≤ −‖ω‖2 + ∑n
i=1[εi‖ω‖2 + 1

εi
‖Pn+igiψi‖2‖ei‖2]− ∑n

i=1 ciλei ē
2
i ,

(24)

where εi, i = 1, 2, · · · , n, are any positive real constants.
From the inequality (12), we obtain that

V̇ ≤ −(1 − ε)‖ω‖2 +
n

∑
i=1

(
1
εi
‖Pn+igiψi‖2 − ciλei )ē

2
i , (25)

where ε = ∑n
i=1 εi.

Next, choosing ε ≤ 1
2 , and ci =

2
λei εi

‖Pn+igiψi‖2, which will lead to

V̇ ≤ −1
2
‖w‖2. (26)

Hence, we can conclude that all the variables are bounded. Finally, by invoking the Barbalat’s
Lemma, one can obtain that

lim
t→∞

x̃(t) = 0,

lim
t→∞

ṽ(t) = 0,

which complete this proof.

Remark 4. It is worth pointing out that, distributed proportional-integral control law was also studied in [30]
for second-order multi-agent systems with constant disturbances. Unlike the results in [30], the disturbances in
this paper are assumed to be generated from some unknown exosystems, which include the constant disturbance
as special case. In addition, the results in this paper are proved by combining Lyapunov-based method and
adaptive control technique, which are totally different proof techniques from that used in [30].
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5. Illustrative Example

In this section, an example will be provided to illustrate our design. The model parameters are
taken from [31,32] with some adjustments. We assume that there are ten agents with an undirected
communication graph G shown in Figure 1. The gain γ is set to 1 and the coefficient matrix of system (1)
is gi = 1, respectively. The desired consensus state is described by ˙̄x = 0.08. However, unlike [31,32],
we assume the disturbance di is generated from

ξ̇i =

[
0 σi

−σi 0

]
ξi,

di =
[
1 0

]
ξ, i ∈ V .

Then, we have

Ai =

[
0 σi

−σi 0

]
, Ci =

[
1 0

]
, Gi =

[
0
1

]
. (27)

Let hi(si) = si, one has
∂hi(si)

si
Gi =

[
0
1

]
.

Therefore, Assumptions 1–3 are satisfied.
Furthermore, select

Mi =

[
0 1
−9 −8

]
, i ∈ V ,

such that (Mi, Ni) is controllable with Mi being Hurwitz.

Figure 1. Communication graph G .

Then, based on the proposed approach, the internal model (6) and adaptive protocol (16) can be
designed. Numerical simulations are conducted to show the performance of the presented control
law. Some of the results are depicted in Figures 2 and 3 with initial conditions of states and initial
velocities of agents are chosen randomly from [0, 4] and [0, 5], respectively. The unknown parameters
of the exosystems are set as σ1 = 0.1, σ2 = 0.2, σ3 = 0.3, σ4 = 0.4, σ5 = 0.5, σ6 = 0.6, σ7 = 0.7, σ8 = 0.8,
σ9 = 0.9, σ10 = 1, and the initial conditions of the exosystem are all set as ξi(0) = [0.5 sin 1, 0.5 cos 1]T .
The pining control gains are selected as b2 = b4 = 1. All the other initial conditions in the controller
are set to zero. From Figures 2 and 3, it can be seen that the consensus protocol proposed in this paper
allows the agents to reach consensus, in the presence of external disturbance generated from some
unknown exosystems.
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Figure 2. States of the agents.

Figure 3. Velocities of the agents.

6. Conclusions

This paper address a consensus problem of second order multi-agent systems with exogenous
disturbance generated by unknown exosystems. A class of internal model was proposed for deal
with the disturbance caused by the unknown exosystems. Based on the internal model, an adaptive
consensus protocol was presented for the second order multi-agent systems. Finally, the effectiveness
of our results is validated by numerical simulations.
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Abstract: Understanding epidemic dynamics has always been a challenge. As witnessed from
the ongoing Zika or the seasonal Influenza epidemics, we still need to improve our analytical
methods to better understand and control epidemics. While the emergence of complex sciences in
the turn of the millennium have resulted in their implementation in modelling epidemics, there
is still a need for improving our understanding of critical dynamics in epidemics. In this study,
using agent-based modelling, we simulate a Susceptible-Infected-Susceptible (SIS) epidemic on
a homogeneous network. We use transfer entropy and active information storage from information
dynamics framework to characterise the critical transition in epidemiological models. Our study
shows that both (bias-corrected) transfer entropy and active information storage maximise after
the critical threshold (R0 = 1). This is the first step toward an information dynamics approach to
epidemics. Understanding the dynamics around the criticality in epidemiological models can provide
us insights about emergent diseases and disease control.

Keywords: epidemiology; criticality; information dynamics; phase transitions; agent-based simulation

1. Introduction

The mathematical modelling of epidemics dates back to mid-18th century [1], while it was
Kermack and McKendrick [2] who studied Susceptible-Infected-Recovered (SIR) model, being the
first to use the formal models of epidemics, known generally as compartmental mean-field models [3].
In these models, the population is categorised into distinct groups, depending on their infection status:
susceptible individuals are the ones who has never had the infection and can have it upon contact
with infected individuals, infected individuals have the infection and can transmit it to the susceptible
individuals, and recovered individuals are those have recovered from the infection and are immune
since then. This baseline model is captured mathematically by the following set of ordinary differential
equations (ODEs):

dS
dt

= −βSI (1)

dI
dt

= βSI − γI (2)

dR
dt

= γI (3)
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where β is the transmission rate, γ is the recovery rate, and S, I and R are the proportion of susceptible,
infected and recovered individuals respectively. These equations can be further modified to account
for various other factors (e.g., pathogen-induced mortality) by the inclusion of more parameters in the
ODEs, or they can be adapted to reflect different infectious dynamics (e.g., waning immunity).

Compartmental mean-field models are simplistic: for instance, they do not account for the contact
structure in the population, which can influence epidemic dynamics (e.g., [4,5]). However, they were
crucial in understanding the epidemic threshold: an epidemic with the dynamics as described in
Equations (1)–(3) can invade a population only if the initial fraction of the susceptible population
is higher than γ/β [2,3,6]. The inverse of this value is called ‘basic reproductive ratio’ (R0) which
is defined as “the expected number of secondary cases produced by a typical infected individual
during its entire infectious period, in a population consisting of susceptibles only” [7]. An infection
will cause an epidemic only if R0 > 1 (endemic equilibrium in models with population dynamics) and
will die out if R0 < 1 (disease-free equilibrium or extinction) [8]. This is rather intuitive: if each individual
transmits the disease to less than one other individual on average, the infected individuals will be
removed from the population (for instance, due to recovery) faster than they transmit the disease to
the susceptible individuals [9]. However, recurring contacts between a typical infective individual and
other previously infected individuals may cause R0 to overestimate the mean number of secondary
infections, so more exact measures may sometimes be required [10].

The epidemic threshold is a well-known result in epidemiology, and can be related to the concepts
of phase transitions and critical thresholds in statistical physics [11]. A phase transition is “a sharp
change in the properties (state) of a substance (system)” that happens when “there is a singularity in
the free energy or one of its derivatives” and occurs through changing a control parameter λ [11,12].
It is observed in various systems, such as fluid or magnetic phase transitions [12]. The phases are
distinguished by the order parameter ρ, which is typically zero in one phase and attains a non-zero
value in the other [11]. When the control parameter takes the value λc, known as critical point,
the phase transition occurs such that when λ ≤ λc, ρ = 0 while λ > λc, ρ > 0 [11]. For instance,
in the case of liquid-gas transition, the difference between the densities of liquid and gas becomes
zero as the temperature increases above the critical temperature [12]. Relating back to the analogy
in epidemiology, we see that an epidemic occurs only if R0 > 1, as shown in Figure 1. The control
parameter, in this case, is R0, while λc = 1 and the order parameter is the final size of the epidemic
(which can alternatively be the density of the infected individuals or prevalence [11]).
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Figure 1. Epidemic phase transition. Final size of an epidemic as a function of its basic reproductive
ratio R0, for a susceptible-infected-recovered (SIR) model with a homogeneous network structure,
with a number of connections (k) of 4 for each individual. Transmission rate β varies between 0 and
3 with recovery rate γ = 1, resulting in R0 ranging between 0 and 3. The line depicts the analytical
results whereas the red dots show the results from stochastic simulations with a population size of 104.
The epidemic does not occur for R0 < 1, whereas the final size increases as a function of R0 for values
higher than 1. The analytical results and the simulations are in good agreement.
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The basic reproductive ratio is widely used for modelling, predictions and control of epidemics
(see [9] for examples). Furthermore, understanding the dynamics when a pathogen is near the epidemic
threshold is crucial. A maladapted pathogen with R0 < 1 can cause an epidemic if its R0 exceeds 1
(due to, for instance, mutations or changes in the host population), which is how new pathogens can
emerge by crossing the species barrier [13]. From a phase transition point-of-view, Reference [14] have
studied the change in epidemiological quantities while approaching the critical point, in order to see if
they can be used for anticipating the emergence of criticality and potential elimination of such dynamics.
Their results suggest that theoretically, we can predict critical thresholds in epidemics [14], which could
be of a substantial value in health care. In practice, one of the challenges lies in pinpointing such
critical thresholds in finite-size systems, where a precise identification of phase transitions requires
an estimation of the rate of change of the order parameter, often from finite and/or distributed
data [15,16].

Information dynamics [17–21] is a recently-developed framework based on information theory [22],
which shows promise in characterising phase transitions in dynamical systems. For instance, in studies
of the order-chaos phase transitions in random Boolean networks (driven by changes in activity [23]
and/or network structure [24]), information storage has been shown to peak just on the ordered side,
whereas information transfer was found to maximise on the other (chaotic) side of the critical threshold.
Information transfer, from a collection of sources, has also been measured to peak prior to the
phase transition in the Ising model, when the critical point is approached from the disordered
(high-temperature) side [25]. And similarly, both information storage and transfer were measured to
be maximised near the critical state in echo-state networks (a type of recurrent neural network) [26],
where such networks are argued to be best placed for general-purpose computation.

Furthermore, one of the features of complex computation is a coherent information structure
defined as a pattern appearing in a state-space formed by information-theoretic quantities, such as
transfer entropy and active information storage [27]. The “information dynamics” state-space diagrams
are known to provide insights which are not immediately visible when the measures are considered
in isolation [28]. For example, critical spatiotemporal dynamics of Cellular Automata (CA) were
characterised via state-space diagrams formed by transfer entropy and active information storage.
These state-space diagrams highlighted how the complex distributed computation carried out by CA
interlinks the communication and memory operations [27].

Local information dynamics were also shown to have maxima that relate to the spread of cascading
failures in energy networks [29]. We, therefore, expect that this framework will prove to be applicable
not only to explaining epidemic dynamics around the critical threshold, but also in developing new
predictive methods during emergence of diseases, evolution of pathogens and spillage from zoonotic
reservoirs, as well as applications of stochastic epidemiological models to computer virus spreading
and other similar scenarios [30].

Here we study the phase transition in a SIS model of epidemics using the information dynamics
framework. We model a homogeneous network where a pathogen can spread through contact between
the neighbours. Changing the transmissibility of the pathogen between different realisations of the
same network while keeping the recovery rate fixed, we use basic reproductive ratio as the control
parameter. We track the prevalence of the infection as our order parameter and use the infection status
of individuals to calculate the transfer entropy and active information storage.

2. Materials and Methods

2.1. Model Description

We focus on Susceptible-Infected-Susceptible (SIS) dynamics [31] which were originally defined
using the following ODE mean-field model:

dS
dt

= −βSI + γI (4)
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dI
dt

= βSI − γI (5)

where β is the transmission rate, γ is the recovery rate.
As described in Section 1 however, such ODE models do not account for contact structure in

the population, and so we use the following network model. We simulate a population of N = 104

individuals, where each is connected to four neighbours (randomly selected from the network),
and assume the network is undirected. Susceptible (S) individuals can become infected through
contact with their infected (I) neighbours with transmission rate β and infected individuals can recover
with recovery rate γ. Each individual has the same rate of transmission and recovery. We scale
the transmission rate by c to calculate per contact transmission rate in the event-based simulations.
It is a closed population, therefore for the total population S(t) + I(t) = N. Also, we assume there
is no mortality due to infection and N remains constant through the simulations (i.e., we neglect
births and deaths in the population). At the beginning of the simulation one random individual gets
infected and the epidemiological process is simulated using the Gillespie’s Direct Algorithm [32].
For each parameter set (summarised in Table 1), we ran either 500 replicates or 10 complete runs
(i.e., simulations that ran for 103 time steps), depending on whichever is attained first. We binned
the continuous time to discrete time steps for our information dynamic analysis and recorded the
infectious status of each individual and their four neighbours once in every time step.

Table 1. Simulation parameters.

Parameter Value

Time steps (t) 103

Population size (N) 104

Number of contacts 4
Transmission rate (μ) 0.7–2.0 (with step size 0.1)
Coefficient for per contact transmission rate (c) 0.33
Recovery rate (μ) 1.0

2.2. Information Dynamics

Disease spreading could be considered as a computational process by which a population “computes”
how far a disease will spread, and what the final states (susceptible or recovered) of the various individuals
will be once the disease has run its course. The framework of local information dynamics [17–21] studies
how information is intrinsically processed within a system while it is “computing” its new state.
Specifically, the information dynamics framework measures how information is stored, transferred and
modified within a system during such a computational process. It is a recently-developed framework,
based on information theory [22], and involving a well-established quantity for measuring the
uncertainty of a random variable X, known as Shannon entropy, which is written as:

H(X) = −
N

∑
i=1

pi log pi (6)

where pi is the probability that X takes the state i. This quantity has been used to derive other measures
such as joint entropy, which quantifies uncertainty of joint distribution of random variable X and Y,
or mutual information, which is the expression of the amount of information that can be acquired
concerning one random variable by observing another [33].

Once we begin to consider how to predict disease spread, we naturally turn to measuring
uncertainties and uncertainty reduction using information theory. Information theory has previously
been used to study the uncertainty (and conversely, the predictability) of disease spreading dynamics
using the permutation entropy of the total number of infections in the population [34]. Another related
study analysed the dynamics of an infectious disease spread by formulating the maximum entropy
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solutions of the SIS and SIR stochastic models, exploiting the advantage offered by the Principle
of Maximum Entropy in introducing the minimum additional information beyond the information
implied by the constraints on the conserved quantities [35].

Our investigation will focus on measuring information dynamics of an epidemic process within
the population, seeking to relate the spread of the disease to information-processing (computational)
primitives such as information storage and transfer. Moreover, while these quantities are defined for
studying averages over all observations, the corresponding local measures—specific to each sample
of a state i of X—can provide us with more suitable tools to study phase transitions in finite-size
systems (e.g., [36]).

The information dynamics framework quantifies information transfer, storage and modification,
and focusses on their local dynamics at each sample. Information storage is defined as “the amount
of information in [an agent’s] past that is relevant to predicting its future” while the local active
information storage [19] is the local mutual information between an agent’s next state (xn+1) and its
semi-infinite past x(k)n expressed as:

ax(n + 1) = lim
k→∞

log
p(x(k)n , xn+1)

p(x(k)n )p(xn+1)
. (7)

The average active information storage is the expectation value over the ensemble:

AX = 〈ax(n + 1)〉 . (8)

On the other hand, information transfer is defined via the transfer entropy [37] as the information
provided by the source about the destination’s next state in the context of the past of the destination [23],
whereas local information transfer from a source Y to a destination X is “the local mutual information
between the previous state of the source and the next state of the destination conditioned on the
semi-infinite past of the destination”, expressed as:

ty→x(n + 1) = lim
k→∞

log
p(xn+1|x(k)n , yn)

p(xn+1|x(k)n )
(9)

following [17]. The (average) transfer entropy is the expectation value of the local term over the ensemble:

TY→X =
〈
ty→x(n + 1)

〉
. (10)

Transfer entropy was recently analysed on SIS dynamics (generated on brain network structures)
in order to investigate information flows on different temporal scales [38].

In order to determine which embedding length k is most suitable for our analysis, we seek to
set k so as to maximise the average active information storage, as per the criteria presented in [39].
Importantly though, for this criteria to work we need to maximise the bias-corrected active information
storage rather than its raw value. Bias-correction pertains to removing the bias in our estimation
of AX, i.e., the systematic over- or under-estimation of that quantity as compared to the true value.
Typically, as a mutual information quantity, AX will be overestimated from a finite amount of data,
particularly when our embedding length k starts to increase the dimensionality of our state space
beyond a point that we have adequately sampled. We can estimate this bias by computing the mutual
information between surrogate variables with the same distribution as those we originally consider,
but without their original temporal relationship to each other [40]. For AX , one surrogate measurement
As

X is made with a shuffled version of the xn+1 samples (but keeping the x(k)n samples fixed), and then
repeating to produce a population of surrogate measurements. We label the mean of these surrogate
measurements As

X , and our effective or bias-corrected active information storage as:

A′
X = AX − As

X . (11)
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Subtracting out bias using surrogates was proposed earlier for the transfer entropy as the
“effective transfer entropy” [41], simply referred to as “bias-corrected transfer entropy” here. Computing
the bias-corrected transfer entropy T′

Y→X is performed in a similar fashion to A′
X: first, surrogates

Ts
Y→X are computed using a shuffled version of the source samples yn while holding the destination

time series fixed (to retain the destination past–next relationship via p(xn+1|x(k)n )), then the mean of the
surrogate measurements Ts

Y→X is computed, before computing the effective or bias-corrected transfer
entropy as:

T′
Y→X = TY→X − Ts

Y→X . (12)

To perform the information dynamics calculations in this study we used the Java Information
Dynamics Toolkit (JIDT) [40].

2.3. Measuring Information Dynamics in the SIS Model

We analysed three simulation runs of the SIS model for each parameter combination and required
these runs to be at least 14 time steps of length for R0 ≤ 1.0 (as these runs did not have sustained
transmission of infection for 103 time steps, 14 being the number of time steps in the third longest run
for R0 = 0.7).

We used the past and current status of individuals (1 if infected, 0 if susceptible) and that of
their neighbours at a given time to determine xn+1, yn, and the x(k)n vectors for calculations of active
information storage and transfer entropy. For instance, if the focal individual is infected and its
neighbours are all susceptible at a given time, then xn was equal to one and yn was equal to zero
for all the neighbours. We then calculated the individual’s local transfer entropy by averaging the
pairwise transfer entropy (with a given k) between itself and each of its neighbours. We then averaged
the local transfer entropy across the population to determine the average transfer entropy. For active
information storage, we calculated the local values for each individual (with a given embedding
length k) and averaged these across all the individuals in the population.

To determine the value of k to use, we calculated the bias-corrected active information storage as
per Equation (11) for each run, and then averaged the values across runs for each R0. Subsequently,
we calculated the mean for each embedding length k across all R0 values. The bias-corrected active
information storage maximises for k = 7 (Figure 2) and decreases sharply after k = 8. As such,
applying the criteria discussed above, we select k = 7 for the embedding length to be used.

Figure 2. Bias-corrected active information storage A′
X in our simulations as a function of embedding

length k. A′
X was calculated and then averaged for all three replicates for each R0. The mean value

(shown in y-axis) was then determined for each k (shown in x-axis) across the R0 values. The difference
increases as the k increases, maximising at k = 7, and decreasing subsequently.
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3. Results and Discussion

In our simulations, the epidemic dies out without any sustained transmission when R0 < 1.0,
whereas the number of infected individuals reaches an equilibrium when R0 > 1.0, and the epidemic
becomes endemic in the population. We use the mean number of infected individuals throughout the
simulation runs to calculate the prevalence for each R0 value, shown in Figure 3.

The average transfer entropy is highest after the critical transition (in the supercritical regime),
as shown in Figure 3, reaching its peak at R0 = 1.8 for k = 7. This result aligns well with the peak in
(collective) transfer entropy slightly in the super-critical regime in the Ising model [25]. In alignment
with results in the Ising model, here once the disease dynamics reach criticality, we observe strong
effects of one individual on a connected neighbour (measured by the transfer entropy). However, as the
dynamics become supercritical, the target neighbour becomes more strongly bound to all of its
neighbours collectively, and it becomes more difficult to predict its dynamics based on a single source
neighbour alone; as such, the transfer entropy begins to decrease. We also note that the peak in average
transfer entropy shifts toward lower R0 values when the embedding time is shorter (not shown).

We see that (raw or non-bias-corrected) average active information storage AX increases after the
critical transition, reaching to its peak at R0 = 1.3 (Figure 3).
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Figure 3. Raw average transfer entropy and average active information storage versus R0.
Transfer entropy (left) calculated by averaging local transfer entropy for each individual across the
network and active information storage (right) calculated by averaging local active information storage
for each individual across the network. For both measures, the embedding time is k = 7. The average
transfer entropy (TY→X) is shown in blue, the average active information storage (AX) is shown in gray,
and prevalence is shown in red (note the different y-axes). R0 is shown on the x-axis. After the critical
transition both TY→X and AX increase and reach to a peak (at R0 = 1.8 and R0 = 1.3, respectively),
and subsequently lower down.

To check whether what we observe for TY→X and AX was a real effect or due to increased
bias as the time-series activity increased (with R0), we examined the bias-corrected average transfer
entropy T′

Y→X and average active information storage A′
X . This is shown in Figure 4 for embedding

length k = 7. The bias-corrected average active information storage shows a similar pattern to AX,
however with a sharper peak closer to the phase transition (R0 = 1.2). This shows that most of what
was measured as AX at larger R0 values was indeed due to increased bias. This is even more striking
for the bias-corrected transfer entropy, as we observe a sharp peak at R0 = 1.2, similar to A′

X and much
earlier than TY→X (R0 = 1.8). Therefore, these results suggest that once the disease dynamics reach
criticality, the state of each individual first exhibits a large amount of self-predictability from its past
(information storage). However, as the dynamics become supercritical, the increasingly chaotic nature
of the interactions are reflected in the subsequent decrease in self-predictability.
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Figure 4. Raw and bias-corrected average transfer entropy and average active information storage
versus R0. Raw average transfer entropy TY→X and average active information storage AX are shown
in dark blue and black, respectively (left panel); bias-corrected average transfer entropy T′

Y→X and
average active information storage A′

X are shown in light blue and gray, respectively (right panel).
Note the different y-axes for both graphs. R0 is shown on the x-axis. Both AX and A′

X increase and
reach a peak right after the critical transition, and subsequently decrease. T′

Y→X also increases at the
same R0 value (R0 = 1.2) as A′

X and plummets thereafter, whereas TY→X reaches its highest value later,
at R0 = 1.8

We argue that the transfer entropy captures the extent of the distributed communications of the
network-wide computation underlying the epidemic spread, while the active information storage
corresponds to its distributed memory. Crucially, the peak of both these information-processing
operations (measured with the bias correction) occurs at R0 = 1.2, rather than the canonical R0 = 1.0.
As mentioned earlier, previous studies of distributed computation and its information-processing
operations [23–25,27], concluded that the active information storage peaks just on the ordered side,
while transfer entropy maximises on the disordered side of the critical threshold. Therefore, in our
case, it may be argued that the concurrence of both bias-corrected peaks, as detected by the maximal
information-processing “capacity” of the underlying computation, at R0 = 1.2, indicates an upper
bound for the critical threshold in the studied finite-size system.

In the proper thermodynamic limit, as the size of the system goes to infinity, the canonical
threshold may well be re-established, but in finite-size systems an additional care may be needed
to forecast epidemic spread for intermediate values of the basic reproductive ratio, for instance,
1.0 ≤ R0 ≤ 1.2 as in the presented study. In other words, in finite-size systems one may consider
a critical interval rather than an exact critical threshold.

Furthermore, in addition to identifying the peak of information-processing capacity of the
underlying computation, which pinpointed an upper bound on the critical basic reproductive
ratio R0 = 1.2, we studied patterns of coherent information structure, via state-space diagrams
formed by transfer entropy and active information storage shown in Figure 5. It is evident that
both information-processing operations (communications and memory) are tightly interlinked in the
underlying computation, suggesting that the studied epidemic process is strongly coherent.

151



Entropy 2017, 19, 194

Figure 5. Bias-corrected average transfer entropy T′
Y→X versus bias-corrected average active information

storage A′
X . Bias-corrected transfer entropy T′

Y→X (shown in the y-axis) and average active information
storage A′

X (shown in the x-axis) are calculated separately for three replicates.

4. Conclusions

In this paper, we studied the criticality in an SIS epidemic within an information dynamics
framework. We argued that the transfer entropy captures the extent of the distributed communications
of the network-wide computation and showed that it peaks in the super-critical regime. Similarly, we
considered the active information storage as a measure of the distributed memory, observing that its
maximum is also attained after the canonical critical transition (R0 > 1.0). To our knowledge, this is
the first study to use information dynamics concepts to characterise critical behaviour in epidemics.
Crucially, the concurrence of both peaks, which reflect the maximal information-processing capacity of
the underlying coherent computation, at R0 = 1.2, indicates an upper bound for the critical threshold
in the studied finite-size system. This supports a conjecture that in finite-size systems a critical interval
(rather than an exact critical threshold) may be a relevant notion.

At the time of our study, continuous-time measures of information dynamics were not available.
Recently, transfer entropy in continuous-time was formalised with a novel approach [42]. One future
avenue for improving our analysis would be using continuous-time measures of information dynamics.
Our continuous-time simulation results were binned into discrete time steps in order to conduct
an information-dynamic analysis. Therefore, using continuous time measure could reveal novel
insights that we missed by the discretisation.

We used a very simplistic network topology in this study, where each individual had the same
number of undirected connections that were assigned randomly. However, in real-life, a disease can
spread in interaction networks that are heterogeneous in terms of the number of contacts (e.g., [43]) or
structured differently (e.g., [5,44]). The heterogeneity and the type of the network can influence not
only epidemic dynamics but also disease emergence [4]. Therefore, in future, it would be interesting to
expand our analysis to different network topologies and relate the insights from information-dynamic
analysis to epidemic dynamics and disease emergence probabilities in these networks.

Finally, we note the wider interest in critical dynamics on complex networks in general. This is
particularly the case in complex systems and network approaches to computational neuroscience,
where it is conjectured that the brain is in or near a critical state so as to advantageously use maximised
computational properties here [26,45–48]. (Indeed, as noted earlier, SIS dynamics have been used
to model dynamics on brain networks [38]). Our results in this paper regarding SIS dynamics
continue to add to the quantitative evidence regarding the maximisation of information storage
and transfer as intrinsic computational properties at or near critical states, as previously found in
a diverse range of dynamics and network structures including the Ising model [25], recurrent neural
networks [26], gene regulatory network (GRN) models [23], and regular–small-world–random
transitions in structure [24]. In this way, we have provided another important link for epidemic
spreading models to complex networks, criticality and information dynamics.
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Abstract: The identification of critical states is a major task in complex systems, and the availability
of measures to detect such conditions is of utmost importance. In general, criticality refers to the
existence of two qualitatively different behaviors that the same system can exhibit, depending on
the values of some parameters. In this paper, we show that the relevance index may be effectively
used to identify critical states in complex systems. The relevance index was originally developed to
identify relevant sets of variables in dynamical systems, but in this paper, we show that it is also able
to capture features of criticality. The index is applied to two prominent examples showing slightly
different meanings of criticality, namely the Ising model and random Boolean networks. Results
show that this index is maximized at critical states and is robust with respect to system size and
sampling effort. It can therefore be used to detect criticality.

Keywords: critical states; relevance index; Ising model; random Boolean networks; complex systems

1. Introduction

In this paper, the relevance index (RI) is applied to the task of identifying critical states in complex
systems (more precisely, we identify regions near critical points; however, in order not to overload
the writing, in the following, we use the expression “critical states”). This index had been originally
introduced for a different purpose, i.e., as a way to identify key features of the organization of complex
dynamical systems, and it has proven able to provide useful results in various kinds of models,
including, e.g., those of gene regulatory networks and protein-protein interactions.

Moreover, the method can be applied directly to data, without any need to resort to models,
possibly helping to uncover some non-obvious or hidden features of the underlying dynamical
organization. As an example, let us mention the discovery of coordinated behaviors of different
social and economic agents from the analysis of time series alone, without any a priori knowledge of
their interactions.

Essentially, the RI is based on Shannon entropies and can be used to identify groups of variables
that change in a coordinated fashion, while they are less integrated with the rest of the system. These
groups of integrated variables may form the basis for an aggregate description of the system, at levels
higher than that of the single variables. Since the RI allows a variable to belong to more than one
group, it can be applied also to “tangled” organizations, which are widespread in complex biological
and social systems and which do not have the clean tree-like topology of pure hierarchies.

The RI will be reviewed in detail in Section 2.

Entropy 2017, 19, 73 155 www.mdpi.com/journal/entropy
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The availability of quantitative variables that allow one to identify critical states in complex
systems is of utmost importance, and we have found that the RI can also be used to locate critical states
with good results, as will be shown below. Moreover, since the RI is affected by the distance of the
present state from critical states, it can also be used to identify situations that approach criticality, thus
providing early warning signals that can be extremely useful for controlling the behavior of a system.

The use of information-theoretical measures for studying criticality has already been documented
in previous studies, such as [1,2], in which Fisher information is used to identify the critical state in
both the Ising model and Boolean networks, and [3,4]. However, we remark that the aim of the paper
is to show that the RI can be effectively used to identify critical states, rather than to compare different
measures of criticality (we also deliberately avoid discussing the tight and intricate relation between
criticality and complexity, as it is out of the scope of the paper).

The RI has been applied in two different kinds of systems, where the word “criticality” takes
somewhat different meanings. In general, criticality refers to the existence of two qualitatively different
behaviors that the same system can show, depending on the values of some parameters. Criticality is
then associated with parameter values that separate the qualitatively different behaviors. However,
slightly different meanings of the word can be found in the literature, two major cases being (i) the one
related to phase transitions and (ii) dynamical criticality, sometimes called the “edge of chaos”. In the
former case, the two different behaviors refer to equilibrium states that can be observed by varying
the value of, e.g., temperature, or of other macroscopic external parameters. In the latter case, the two
different behaviors are characterized by their dynamical properties: the attractors that describe the
asymptotic behavior of the system can be ordered states, like, e.g., fixed points or limit cycles, or chaotic
states. These two meanings are related, but not identical (see [5] for a more detailed discussion).

It is therefore important to understand which kind of critical states can be identified by the RI. That
is why we have examined two important models that exhibit the two different meanings of criticality:
the Ising model for phase transitions and the random Boolean network model for dynamical criticality.
Both are well known, and it will suffice to recall their main properties and notations (in Section 3).

It is also important to stress that the two cases above do not differ only for the different kinds
of criticality they show, but also for other important physical and mathematical properties: the Ising
model is an ergodic system close to equilibrium, while the random Boolean networks (RBNs) are
dissipative, non-ergodic systems. Moreover, the Ising model is inherently stochastic, while the RBN
model is deterministic. It is remarkable that the RI is able to satisfactorily locate the critical points in
both cases, notwithstanding their differences, as shown in Sections 4 and 5.

Finally, the main results will be summarized in the final section, alongside with indications for
further work.

2. The Relevance Index

The roots of the RI can be traced back to the work on biological neural networks by Edelman
and Tononi [6], who introduced several system-level measures, based on recordings of neural activity,
among them the cluster index. The RI is an extension of this latter measure, which can be applied to
dynamical systems, while the cluster index had been conceived of for fluctuations around a steady state.

The reasons why the RI has originally been introduced were related to the difficulty in
understanding the actual organization of dynamical systems, which requires (i) a proper identification
of meaningful organizational “levels” that emerge from the interactions of lower level entities (and
possibly also of higher-level entities, such as groups of interacting chemical species inprotocells [7,8])
and (ii) a mapping of the interactions between these meso-levels. In some cases, they can be properly
described by a quite familiar tree-like hierarchical structure, as happens in several physical systems
where the levels can be identified with the space-time scales of the phenomena (microscopic and
macroscopic or micro-meso-macro), in inclusion hierarchies (e.g., a cell that comprises a nucleus
that comprises chromosomes that comprise. . .), in social organizations and others. However, one
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sometimes finds cases where the interactions among the high levels are of the network type, and their
organization cannot be satisfactorily described by a hierarchical structure.

The first step towards understanding these complex organizations is the identification of the
meso-level structures, a process that can be far from trivial whenever the interactions are unknown or
only partly known. Think for example of a gene regulatory network, where some genes may be known
to regulate the expression of a particular gene, but several other interactions are unknown; or of a
social or economic organization, where some activities can be observed, but the complete pattern of
reciprocal influences cannot (some may be even deliberately hidden, due, e.g., to economic interests).

The purpose of the RI is that of identifying sets of variables that behave in a somehow coordinated
way in a dynamical system; the variables that belong to the set are integrated with the other variables
of the set, much more than with the others. Since these subsets are possible candidates as higher-level
entities, to be used to describe the system organization, they will be called relevant subsets (omitting
the specification that they are candidates). A quantitative measure, well suited for identifying them, is
defined as follows (the presentation below follows the one given in [9]).

Let us consider a system U whose elements are discrete variables that change in time, and let us
suppose that the time series of their values are known. According to information theory, the Shannon
entropy of an element xi is defined as:

H(xi) = − ∑
v∈Vi

p(v) log p(v) (1)

where Vi is the set of the possible values of xi and p(v) the probability of occurrence of symbol v.
In this work, dealing with observational data, probabilities will be estimated by relative frequencies.

The entropy of a pair of elements xi and xj is defined by means of their joint probabilities:

H(xi, xj) = − ∑
v∈Vi

∑
w∈Vj

p(v, w) log p(v, w) (2)

Equation (2) can obviously be extended to sets composed of more than two elements.
Let us now consider a subset S of U composed of k elements. Its integration I(S) is defined as

(the integration is also known as intrinsic information or multi-information):

I(S) = ∑
x∈S

H(x)− H(S) (3)

I(S) represents the deviation from statistical independence of the k elements in S. The integration
alone could be used to try to identify the relevant subsets, but it turns out that a more accurate
identification requires considering the ratio between I(S) and the mutual information between S and
the rest of the universe. The mutual information M(S; U \ S) between S and the rest of the system
U \ S is defined as usual as:

M(S; U \ S) ≡ H(S) + H(S|U \ S) = H(S) + H(U \ S)− H(S, U \ S) (4)

where H(A|B) is the conditional entropy and H(A, B) the joint entropy.
Finally, the relevance index r(S) is defined as:

r(S) =
I(S)

M(S; U \ S)
(5)

This is the measure that will be used below to identify critical states. Note that it is undefined
in all of those cases where M(S; U \ S) vanishes. In these cases, however, the subset S is statistically
independent from the rest of the system, and it should therefore be analyzed separately (these cases
should be screened out in advance).

157



Entropy 2017, 19, 73

In our first papers on this subject, following the terminology of Tononi [6], we called the quantity
r(S) the dynamical cluster index. However, when applied to time series, this term may be misleading:
think for example of two variables that take constant and equal values at all times; one usually tends
to think that they (can) belong to the same cluster, but their r(·) value vanishes, since it is based
on Shannon entropy, that is zero for states whose probability is one (remember that we estimate
probabilities with relative frequencies). Therefore, the measure defined in Equation (5) misses some
quite obvious clusters, and in order to avoid ambiguities, we prefer to avoid using that word and refer
to it as the relevance index (since it can be used to identify relevant subsets of variables).

When the RI is applied to identify relevant subsets, it is necessary to compare sets of different
sizes. However, entropies scale with system size, so this requires considerable ingenuity. Following
the original work of Tononi, an “RI method” has been developed for this purpose, where the variable
is first normalized with respect to a reference case, and a statistical index is computed that allows
meaningful comparisons of sets of different sizes [6,9,10]. However, quite often, these sets overlap,
so the actual organization of the system remains opaque; for example, a variable may belong to a
set of three variables and also to one of its four-element supersets, both endowed with fairly high
values of the statistical index. The RI has been developed to decide which set to consider as a basis for
deciphering the system structure, as described in [8,11].

However, in order to identify critical states, it turns out that the comparisons among subsystems
of different sizes are not required, and one can directly use the RI as defined in Equation (5), as will be
done in Sections 4 and 5.

3. Models

As has been discussed in Section 1, one can find in the literature slightly different meanings of
the word criticality; critical states are always located in-between different regimes, but the nature of
these regimes might differ. Here, we will consider two among the most important cases, namely phase
transitions and dynamical criticality. To this end, we will apply the RI to the Ising model (for phase
transitions) and the random Boolean network (RBN) model of gene regulation for dynamical criticality.

3.1. Ising Model

The Ising model (according to Brush [12], the model was first proposed by Lenz in 1920, as also
pointed out by Ising in 1925 in its seminal paper) was originally presented with the aim of reproducing
simplified ferromagnetic phenomena in materials, but was then recognized as a notable example of a
system that can undergo a phase transition as a function of a control parameter. In this section, we
briefly recall its main properties; detailed descriptions of the model may be found in the survey paper
by Brush [12] and statistical physics books, such as [13,14].

Let us consider a d-dimensional lattice of N atoms characterized by a spin, which can be either up
(+1) or down (−1). The atoms exert short-range forces on each other, and each atom tends to align its
spin according to the values of its first neighbors. An external field may also be considered, which
biases the orientation of the atoms. The energy of the system is defined as follows:

E = −1
2 ∑

〈i,j〉
J si sj + B ∑

i
si (6)

where si is the spin of atom i, J > 0 is a parameter accounting for the coupling between atoms, 〈i, j〉
denotes the set of all neighboring pairs and B is a parameter playing the role of an external field.

The system can be studied by means of usual statistical mechanics methods, and it can be assessed
whether it undergoes a phase transition. Ising proved that the d = 1 case does not have phase
transitions, while the d = 2 model can undergo a phase transition, as proven by Onsager [15] under
the hypothesis that B = 0.

In this work, we consider the two-dimensional model, with B = 0. We performed Monte Carlo
simulations at constant temperature T; in this case, the system tends to minimize the value of the free
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energy A = E − TS (where S is the entropy), and there is competition between the energy term, which
tends to align the spins, and the entropy term that accounts for thermal disorder. The Monte Carlo
algorithm used is a classical Metropolis algorithm with a Boltzmann distribution:

Algorithm 1 Monte Carlo simulation of a 2D Ising model. Adapted from [16].

while maximum number of iterations not reached do

Choose a random atom si
Compute the energy change ΔE associated to the flip si ← −si
Generate a random number r in [0,1] with uniform distribution

if r < e−
ΔE

kBT then

si ← −si
end if

end while

The temperature is the control parameter, while the order parameter is the so-called magnetization:

μ =
1
N ∑

i
si (7)

For low values of T, the steady state of the system will be composed of atoms mostly frozen at the
same spin, and the time average of the magnetization 〈μ(T)〉 will be close either to one or −1; for high
values of T, the spins will randomly flip, and it will be 〈μ(T)〉 ≈ 0. For values close to the critical
temperature Tc, a phase transition occurs: the system magnetization undergoes a change in its possible
steady state values, as depicted in Figure 1.

0 1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

T

M
ag

ne
tis

at
io

n

Figure 1. Bifurcation diagram for the 2D Ising model obtained by a Monte Carlo simulation. Each dot
represents the magnetization of a specific run at temperature T; initial conditions are sampled with
spin bias in the range [0.2, 0.8] for a total amount of 3000 simulations. The dashed vertical line is located
at T = Tc.

3.2. Random Boolean Networks

Let us now describe RBNs in a very synthetic way, referring the reader to [17–20] for a more
detailed account. Several variants of the model have been presented and discussed, but we will restrict
our attention here to the “classical” model. A classical RBN is a dynamical system composed of N
genes, or nodes, which can take either the value zero (inactive) or one (active). Let xi(t) ∈ {0, 1} be
the activation value of node i at time t, and let X(t) = [x1(t), x2(t) . . . xN(t)] be the vector of activation
values of all of the genes.

The activation of a gene may affect that of other genes; these relationships are represented by
directed links and Boolean functions, which model the response of each node to the values of its input
nodes. In a classical RBN, each node has the same number of incoming connections K, and its K input
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nodes are chosen at random with uniform probability among the remaining N − 1 nodes. The Boolean
functions can be chosen in different ways: in this paper, we will only consider the case where they are
chosen by assigning, to each combination of K input values, an output value one or zero according to a
Bernoulli distribution with parameter p. The various outputs are chosen independently from each
other, and the probability that the output is one (i.e., the bias p) is the same for all of the inputs and for
all of the nodes.

In the so-called quenched model, neither the topology nor the Boolean function associated with
each node change in time. The network dynamics is discrete and synchronous, so fixed points and cycles
are the only possible asymptotic states in finite networks (a single RBN can have, and usually has, more
than one attractor). The model shows two main dynamical regimes, ordered and disordered, depending
on the degree of connectivity and on the Boolean functions: typically, the average cycle length grows
as a power law with the number of nodes N in the ordered region and increases exponentially in the
disordered region [17]. The dynamically-disordered region also shows sensitive dependence on the
initial conditions (that is why disordered states are often called “chaotic”, although the asymptotic
states are cycles of finite length in the case of finite networks) not observed in the ordered one.

A well-known method to determine the dynamical regime of an RBN directly measures the
spreading of perturbations through the network, by comparing two parallel runs of the same system,
whose initial states differ for only a small fraction of the units. This difference is measured by the
Hamming distance h(t), defined as the number of units that have different activations on the two
runs at the same time step (the measure is performed on many different initial condition realizations,
so one actually considers the average value 〈h(t)〉, but we will omit below the somewhat pedantic
brackets). If the two runs converge to the same state, i.e., h(t) ≈ 0, then the dynamics of the system are
robust with respect to small perturbations (a signature of the ordered regime), while if h(t) grows in
time (at least initially), then the system is in a disordered state. The critical states are those where h(t)
remains initially constant. If a single node is perturbed, the average number of different nodes that
differ in the two cases at the following time step is sometimes called the Derrida parameter λ, so λ > 1
characterizes disordered states, λ < 1 ordered states, and λ = 1 identifies critical states.

In a p–K diagram, ordered regimes are separated from those where the dynamics is chaotic by a
critical line, whose equation can be shown [19] by:

Kc =
1

2p(1 − p)
(8)

where Kc is the critical value of the connectivity corresponding to a given value of the bias p
(see Figure 2).

The knowledge of the value of Kc is extremely important (Equation (8) can be rigorously derived
in the so-called annealed approximation, that is able to provide analytical estimates of the behavior of
some variables in RBNs), as it allows us to precisely locate the critical states and to verify how close
the RI comes to that value.

Figure 2. The critical line in RBNs. The bold line separates the ordered region (shaded) from the
chaotic one.
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4. Results on the Ising Model

We run Monte Carlo simulations of Ising models with toroidal boundary connections. The neighbors
of an atom are its horizontal and vertical first neighbors, i.e., the four adjacent cells in the lattice. We set
J = 1 and kB = 2, for which Tc ≈ 2.269 J

kB
≈ 1.13 (the first analytical result on the phase transition in

the 2D Ising model has been presented by Onsager [15]). The values of T span the range [1, 2] at steps
of 0.05. For each value of T, 10 runs are performed starting from random initial conditions chosen with
−1 spin probability equal to 0.25, so as to start with an intermediate condition between μ = −1 and
μ = 0 (we also ran experiments with different biases in the initial condition and did not observe any
difference in the results). We run experiments for lattices of size L × L, with L ∈ {10, 20}. For each run,
tmax steps were executed, with tmax = 104 × L2; we skipped the first steps so as to reach a steady state,
so only the last tmax − 200 × L2 steps were considered and recorded every L2 steps.

In finite-sized Ising models, the critical value of temperature is expected to deviate from the
theoretical value. Therefore, the actual critical temperature value was estimated by computing the
susceptibility [21], defined as:

χ =
1

TN
(〈μ2〉 − 〈μ〉2) (9)

where T is the temperature, N the number of atoms, μ the magnetization of the system at a given
time step and angular brackets denote the time average. The peak of χ may be used to identify the
actual critical temperature value for finite instances. In Figure 3, the median values of susceptibility
of ten replicas are plotted against the temperature value. As we can observe, the critical values are
around T = 1.25 for both lattice sizes considered, which is slightly higher than the theoretical one.
This discrepancy is due to the finite size of the systems. This specific value will be taken as the critical
one in the Ising models of our experiments.

(a) (b)

Figure 3. Plots of susceptibility values for (a) 10 × 10 and (b) 20 × 20 lattices. The median of
10 independent replicas for each temperature value is plotted.

Relevance Index in the 2D-Ising Model

For each simulation of the Ising model, we computed the RI for 1000 random subsets of the
atoms of size ks ∈ {2, 3, . . . , 10}. Subsets of larger cardinality would require an impractical number of
samples to avoid undersampling in the evaluation of the entropies. However, this is not a limitation of
the method, as we will show in the following.
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In Figure 4, the median values of RI (averaged over the 1000 samples for each replica) are plotted,
against temperature values. For the sake of space, we plotted all of the curves corresponding to all
group sizes in the same plot. As ks increases, the curves shift towards the upper part of the plot, because
the (non-normalized) RI values increase with group size. We can observe that the maximum value of
RI is attained at a temperature value that corresponds with high precision to the empirically-derived
critical value. The effect of undersampling starts to be visible for group sizes approximately greater
than 10; indeed, as the cardinality of the groups evaluated increases, the RI peak tends to flatten.
However, small group sizes are enough to locate the critical point.

(a) (b)

Figure 4. Plots of the relevance index (RI) for (a) 10 × 10 and (b) 20 × 20 lattices. The median of the
average integration values for groups of size two to 10 is plotted against T. The curves shift up with
group size. Note that in the 20 × 20 case, for small group sizes, the index peaks slightly before the
dashed line: this discrepancy is ascribed to the small plateau around the maximal value of susceptibility,
as can be observed in Figure 3.

A question may arise as to what extent the individual contribution of the integration might impact
the overall results. To assess this, we also considered the statistics of the integration only, which are
summarized in the plots in Figure 5.

(a) (b)

Figure 5. Plots of integration for (a) 10 × 10 and (b) 20 × 20 lattices. The median of the average
integration values for groups of size two to 10 is plotted against T. The curves shift up with group size.
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From the plots, we can observe that the integration profiles across temperature values show a peak
in correspondence with the critical temperature. Nevertheless, the larger the group considered, the less
sharp the peak, especially in the 20 × 20 instances. Therefore, even if integration alone could provide
useful indications to locate the critical temperature, its combination with the mutual information
into the RI makes it possible to detect the phase transition with higher precision. The reason for
this phenomenon is that the mutual information still moderately grows after Tc (see Figure 6), thus
reducing the RI value after the critical point.

(a) (b)

Figure 6. Plots of mutual information for (a) 10 × 10 and (b) 20 × 20 lattices. The median of the average
mutual information values for groups of size two to 10 is plotted against T. The curves shift up with
group size.

5. Results on RBNs

In this section, we show the results of the application of the RI to the task of identifying critical
states in RBNs, which have been described in Section 3. There, it was shown that the dynamical
behavior of RBNs depends mainly on the values of two parameters, which are (i) their connectivity
K and (ii) the bias p of the Boolean functions that rule the responses of their nodes. Since individual
network realizations can show different behaviors, the study of the RBN dynamics is based on averages
computed on ensembles of networks sharing the same values of connectivity and bias.

The computation of the RI requires a collection of the states of each variable; these have been
obtained by collecting in a single series all of the states encountered by a specific RBN starting from
Nic random initial conditions. Each time point corresponds to an N-dimensional Boolean vector of
simultaneous values of the N nodes, and each run continues until an attractor is found or up to a
maximum of 1000 steps. The raw data series contain all of the time points, while the attractors series
contains only those states that belong to an attractor, and the transients series contains only the states
that do not belong to the attractor. In order to avoid excessive computing times, for each series,
the analysis is limited to a subset of 1000 randomly-chosen states. The possibility to link together the
various time series is directly related to the fact that the RI is based only on relative frequencies of
equal-time values and does not depend on states at different times. Note that the choice of random
initial conditions implies that the various attractors contribute in a way that is proportional to their
basin of attraction. In order to characterize the behavior of families of networks sharing the same
parameter values, different random realizations are analyzed; details can be found in Table 1, which
summarizes the parameters of the series that have been considered. Since we are interested in their
typical dynamical behaviors at different scales, we compute the average of RI for different group sizes;
then, the median is taken among all of the systems with the same connectivity and bias.
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Table 1. In the table, the different combinations of parameters for every experiment are shown. In every
experiment, the trajectories are computed until an attractor is found or to a maximum of 1000 steps
(obtaining in such a way series of different sizes). In order to avoid excessively long computations in
calculating the RI, each index value is computed on 1000 states randomly extracted from the analyzed
series. This value is enough to give a suitable approximation of the RI indexes, as discussed in more
detail in [22]. For each network and for each group size, 500 random samples are taken starting from
200 initial conditions. RBN, random Boolean network.

Series Name Number of Nodes Number of RBNs

RBN_20 20 500
RBN_40 40 100
RBN_60 60 100
RBN_100 100 500
RBN_500 500 100

5.1. A Bird’s Eye View of the Dynamical Behavior of Families of RBNs

Let us first of all consider the behavior of the RI on a wide set of values of network parameters.
As described in Section 3, in a p–K diagram, the critical curve is U-shaped (Figure 2); this curve will
be called here the Kauffman–Aldana curve [17,19]. Interestingly, the same U-shaped behavior can be
observed in Figure 7, where the value of the RI is shown for different p–K points. It is also remarkable
that the same behavior is observed for different group sizes.

(a) (b) (c)

Figure 7. Heat maps of the p–K diagram of RI indexes computed for groups having different sizes:
respectively, groups of (a) size 2, (b) size 5 and (c) size 9. The superimposed red line denotes the
position of the edge of chaos curve. This wide region has been sampled in 90 points by combining nine
different biases and ten different connectivities; for each point, we tested 100 different RBNs, each RBN
being represented by the RI obtained by sampling the states of 200 different trajectories (RBN_40 series,
raw data). Each pixel represents the median of the RI of 100 different RBNs sharing the same values of
bias and connectivity.

The heat maps indeed show a cloud that surrounds the Kauffman–Aldana curve, indicated by the
U-shaped red line superimposed on the plots. Moreover, the position and dispersion of the clouds are
similar in all of the group sizes (for clarity, in this section, we present only the results regarding groups
of sizes 2, 5 and 9; similar results have been obtained for all groups having sizes from 3 to 10), the only
exception being that of the size of two group: actually, as will be shown in the following section, this
visual impression is an effect of the low granularity of the wide-range data rather than the signature of
a truly different behavior.

Indeed, due to computational limitations and to the attempt to cover a wide range of parameter
values, the resolution of the plots in Figure 7 is quite low. However, if we perform a higher resolution
search for the peaks of the RI, we find that they actually approach the correct theoretical values
(see Equation (8)). An example of such a high-resolution analysis is described in the following section.
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Note also that the extremal values of the RI are not the same for all of the critical states, as shown
in Figure 8. While this might seem surprising, it should be recalled that critical states share some
properties, but there may be differences. Indeed, it has already been shown elsewhere [23] that RBNs
can show heterogeneous behaviors in different positions along the critical line (even maintaining
critical dynamics).

Figure 8. The peaks of the RI values shown in Figure 7b (the interpolating curve has been obtained by
fitting a quadratic function to the measured points, and it is only a visual aid).

Besides studying the RI, it is interesting to observe the separate contributions of integration (I)
and mutual information (M): as shown in Figure 9, RI and I are both close to the edge of chaos region,
but the RI cloud provides a better estimation of the critical curve, especially in the zone of large biases.
Moreover, the integration tends to worsen in identifying the chaotic region as the size of the groups
increase; it seems indeed that the RI, i.e., the ratio between integration and mutual information, allows
a better identification of the chaotic region.

RI I M

(a) (b) (c)

(d) (e) (f)

Figure 9. Heat maps of the connectivity-bias diagrams of RI (left) and for integration I (center) and
mutual information M (right) for (a–c) size five groups and (d–f) size nine groups (second row). It is
possible to note that RI is closer to the critical region (identified by the superimposed red line) than the
integration alone, especially in the regions of high biases.
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5.2. A High-Resolution Analysis

As anticipated, in this section, we show small sections of the whole bias-connectivity diagrams,
with a finer sampling of the values of the independent variables and with larger RBNs.

Figure 10 shows the RI results obtained from a section of the p–K diagram at k = 3, in nets having
100 and 500 nodes: it is possible to note that the RI maximum value is attained for values that are
very close to those predicted by the Kauffman–Aldana curve, for all of the investigated group sizes.
This observation supports the idea that a similar distribution of organizations is present at many scales
(represented here by different group sizes). Moreover, series involving larger RBNs identify more
precisely the critical point (a fact already observed in the literature, as for example in [24]) and have
narrower RI distributions. Similar observations can be made for other p–K diagram sections (data
not shown).

(a) (b)

Figure 10. The median values of the RI index in RBN having K = 3 and respectively (a) 100 and
(b) 500 nodes, for group sizes in the range [2,10]. Bias varies from 0.5 to 1.0, with steps of 0.01.
The vertical red line identifies the experimentally-determined edge of chaos position.

The high-resolution analysis confirms that the RI locates the critical region more precisely than
integration alone, as shown in Figure 11. Moreover, in the same figure, a measure λ’, closely related
to the Derrida parameter and described in the legend, is also shown. It is interesting to observe that
λ’ has a maximum close to the theoretical critical value of Equation 8, but that its distribution is not
sharply peaked. On the other hand, the plot of the RI has also a very close maximum, but the width of
its distribution is narrower, so that it can better help to localize the critical value.

Figure 11. The plot shows the median values of the RI and I indexes in K = 3 RBNs having 500 nodes.
Bias varies from 0.5 to 1.0, with steps of 0.01. Moreover, the median values of the index λ’ are also
shown, defined as λ′ = 1 − |1 − λ|. This variable is used instead of λ itself, which would grow in the
chaotic region; in this way, a better visual recognition of the critical point is possible. In order to have
similar vertical scales, the RI and I values are respectively multiplied by the constants 12.0 and 7.8.
The vertical red line identifies the theoretical edge of chaos position.
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Transients and Attractors

Differently from ergodic systems (like those represented by the Ising model), RBNs are highly
dissipative systems; their asymptotic states are a very small subset of the ensemble of all of the possible
states. Therefore, an interesting question regards the dynamical organization of these systems when
they reach their attractors: is it significantly different from the organization expressed when the
systems are traveling along their transients?

In order to address this question, we split the low-resolution data of 20-node networks and the
high-resolution data of 100-node networks into series containing respectively only the states belonging
to transients and those that belong to attractors, and we compute the RI separately (while the results of
the previous sections refer to complete raw data series). Interestingly, the results are quite different,
as shown in Figure 12: the transients of critical systems show RI values close to their maxima, as was
the case in the raw data series, although with a relatively wider dispersion, but the attractors’ series
show peaks of the RI distributions significantly far from the theoretical expectations. In spite of these
quantitative difference, the general U-shape of the cloud on the p–K diagram is still observed (as shown
in Figure 13).

(a) (b)

Figure 12. The median values of the RI index in RBN having K = 3 and 100 nodes obtained (a) by using
only the states belonging to the transients or (b) by using only the states belonging to the attractors.
Bias varies from 0.65 to 1.0, with steps of 0.01; the group sizes are in the range [2,10]. The vertical red
line identifies the theoretical edge of chaos position.

(a) (b) (c)

Figure 13. The median values of the RI index in an RBN having 20 nodes for groups of size five, obtained
(a) by using the states belonging to the whole trajectories; (b) by using only the states belonging to
the attractors and (c) by using only the states belonging to the transients. The superimposed red line
identifies the theoretical edge of chaos position (computed by assuming the ergodicity of the systems).
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One might guess that the difference may be due to the fact that many feedbacks strongly constrain
the attractor states, while transients should be able to explore a broader set of conditions. Indeed,
the theoretical curve of Equation (8) had been rigorously obtained in the so-called annealed model,
where at every time step, connections and Boolean functions are redrawn at random. Physical systems
like gene regulatory networks are however much better described by the quenched model, where
the links and the Boolean functions are constant in time, and it is this model that has been used in
the simulations described here. While the annealed model may provide useful estimates of some
properties of the quenched one, it is likely to fail when the analysis considers only dynamical attractors
that do not exist in the annealed case; and this seems to happen here, looking at the plots in Figure 12.

It has also been observed elsewhere that the Derrida plots computed by perturbing a subset of all
of the possible initial states (for example, those belonging to some attractor) can be very different from
the theoretical ones [23]. The phenomena related to the peculiarities of restricting the set of states of an
RBN require further studies, as the differences shown here confirm.

6. Conclusions and Future Work

The results discussed in the previous sections support the statement that the RI can be effectively
used to identify critical states in different kinds of complex systems, both in terms of phase transition
and dynamical criticality. Our experimental analysis concerned two prominent classes of complex
systems, which stands in favor of the hypothesis that the results may hold in general. The results
show also that the RI behaves robustly against sampling effort and system size. Results on both
the Ising model and RBN ensembles show that the RI identifies the criticality profile with high
precision. In addition, a detailed analysis shows also that, while still detecting critical states, the RI
varies across RBN critical ensembles, providing further evidence to the observation that critical RBNs
exhibit a spectrum of different behaviors. Moreover, our analysis also supports the statement that the
information provided by the dynamics of an RBN along its transients might considerably differ from
that of its attractors. Preliminary results in this direction were obtained in [23,25].

It is worth emphasizing that, whilst the index was originally proposed with a different aim, it has
been proven able to detect features of criticality. One can imagine possible reasons for this interesting
phenomenon, but further investigation is required.

Finally, we plan to study the possibility of applying this method to detect early warning signals
of change in complex systems, with the aim of identifying in advance dynamical changes toward or
away from criticality.
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Abstract: We propose a Cellular Automata (CA) model in which three ubiquitous and relevant
processes in nature are present, namely, spatial competition, distinction between dynamically stronger
and weaker agents and the existence of an inner resistance to changes in the actual state Sn (=−1,0,+1)
of each CA lattice cell n (which we call inertia). Considering ensembles of initial lattices, we study
the average properties of the CA final stationary configuration structures resulting from the system
time evolution. Assuming the inertia a (proper) control parameter, we identify qualitative changes
in the CA spatial patterns resembling usual phase transitions. Interestingly, some of the observed
features may be associated with continuous transitions (critical phenomena). However, certain
quantities seem to present jumps, typical of discontinuous transitions. We argue that these apparent
contradictory findings can be attributed to the inertia parameter’s discrete character. Along the work,
we also briefly discuss a few potential applications for the present CA formulation.

Keywords: cellular automata; spatial-temporal patterns; complexity; phase transitions; emergent
behavior; phase segregation; ecotones

1. Introduction

Spatial-temporal pattern structures are ubiquitous [1,2], especially in biological and human
phenomena [3–6]. They commonly originate from (nonlinear) driving forces acting locally on the
elements of a spatially-extended system. Often, this type of global emergent behavior cannot be
“guessed” simply from a direct qualitative inspection of the interactions between the individual
constituents (i.e., at the microscopic level). The full dynamics, the macroscopic description [6], can
be understood only as a collective effect. Such a scenario frames what is frequently termed in the
literature complex systems.

Likewise, phase transitions do constitute an extremely relevant class of processes. In particular,
the so-called critical phenomena lead to a very rich range of distinct comportment [7,8]. Briefly, not
too close to a critical point λc, the system microscopic organization varies continuously with a given
control parameter λ (for instance, temperature, chemical potential, etc.), maintaining a certain main
characteristic, e.g., a non-null magnetization or some degree of ordered aggregation, quantified by a
macroscopic order parameter Γ. However, by crossing λc (with Γ(λc) usually vanishing), the system
qualitatively changes, going through a phase transition, e.g., becoming non-magnetic or complete
disordered. Moreover, around the critical point [7], there is the development of infinite correlation
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lengths and the rise of universal features (like detail-independent critical exponents). A non-trivial
association between complexity and criticality is generally believed to exist [9].

The wide purpose of Cellular Automata (CA) (the acronym CA will mean either Cellular
Automaton or its plural form Cellular Automata; which one is actually being used should be clear
from each sentence’s specific context) models [10,11] couples very well with the idea of emergent
complexity. From a pure computational (algorithmic) point of view, CA is an extremely versatile
framework: in principle CA would be able to realize an universal Turing machine [12–14], hence to
perform complete general information processing. Thus, putting aside the controversial discussion
if CA could (or not) describe any natural process [15], the fact is that CA are extremely useful in
simulating distinct complex systems [16]. For example, the quite hard task of mimicking life and/or
live organisms (individually or collectively) was the initial motivation for John von Neumann, with
the help of Stanislaw Ulam, to propose CA in the 1940s, an approach reborn in the 1970s, in part due
to the general interest in the John H. Conway’s “Game of Life” CA. Nowadays, CA have become a
frequently employed theoretical tool in biological and ecological studies (refer, e.g., to [17–19]).

The key aspects underlying CA can be summarized as the following. Suppose we cross-grade the
system pertinent configurational (spatial, phase, etc.) space, portraying it in terms of cells (or elements).
Then, to each cell n = 1, . . . , N, we can ascribe a state variable Sn(t) (function of a discrete time
t = 0, 1, 2, . . .), whose numerical (usually also discrete) values indicate, say, particles’ density, pigment
color, action states (active/inactive, life/death, infected/non-infected), energy content, etc. As the
system dynamically evolves [20], the set {Sn(t)} may give rise to intricate tile-like arrangements.
This can be so even though at the elements’ level, the local responses to the interactions are simple.
In this way, the full CA behavior reflects global complexity [21].

Due to the CA inherent discrete formulation, contrary to the already mentioned close connection
between CA and complex systems, it may be much more difficult to establish an appropriate link
between deterministic CA and phase transitions. This is particularly true with respect to continuous
transitions, i.e., critical phenomena (for probabilistic CA, phase transitions are more easily observed;
see, for instance, [22,23]). Actually, in most CA constructions, there are no “good” λ’s, which could play
the role of control parameters (eventually, they might exist, but then demanding certain restrictions to
act as such, like requiring the number of possible states S to be very high [24]).

Recently, a deterministic CA with a new ingredient, inertia, has been proposed [25]. The original
goal in [25] was to find a minimal, not dedicated model capable of describing the basic aspects of
ecotones [26–28]: zones between geographic regions of distinct biomes. In such transition areas, there
is the coexistence of groups of species coming from different ecosystems. In many concrete situations,
it is still not completely understood how less fitted (e.g., to the nearby biomes conditions) exogenous
animals and plants can survive [29,30]. They eventually would perish in a more homogeneous
environment if competing with the same stronger (better adapted) local endogenic species [31,32].
To address the problem, some of us have introduced an intrinsic (in opposition to certain probabilistic
proposals in the literature; see, e.g., [33–35]) resistance, the inertia I, to the system’s natural rules of
evolution [25]. As a consequence, depending on In (which assumes discrete values), it becomes more
difficult for the interactions to change the state Sn of each cell n. By playing with the initial conditions
and the In distribution, it is possible to generate spatial patterns of meta-communities qualitatively
similar to those in ecotones [21,26–28].

In the present contribution, we shall explore CA with inertia in very general terms, showing
that I can act as a proper control parameter. Considering analysis procedures typical from statistical
physics, we study the evolution of ensembles of CA with different random initial configurations.
We thus are able to characterize average properties for the CA final spatial patterns’ structures, clearly
identifying behavior similar to phase transitions. Although, because of their discrete nature, CA
cannot lead to “true” critical phenomena, certain features of usual continuous phase transitions can
be observed as we change {In}. In fact, by assuming different distribution of inertia values among
the CA cells, we observe distinct and intricate heterogeneities in the emergence of spatial patterns.
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Intriguingly, for certain quantities, we even can see indications of discontinuous phase transitions.
These apparent contradictory results eventually can be explained in terms of the finite character of the
CA model and the discreteness of the inertia parameter I. Along the work, potential applications for
our model are also briefly mentioned. Finally, in the last discussion and conclusion section, we make
final considerations about the rise of phase transitions in CA and the important role, in this regard,
represented by inertia-like quantities (using ecotones as an illustration).

2. The Model: CA with Inertia

2.1. Basic Definitions

In our CA construction, the space is represented by a square lattice of N × N elements (or cells).
At the discrete time t (= 0, 1, 2, . . .), the state of cell (i, j) (hereafter labeled n (= 1, 2, . . . , N × N)) is
given by Sn(t), whose possible numerical values are −1, 0 and +1. We assume that only cells in the
(active) states +1 and −1 have the eventual power of altering the S’s of their neighbors. Therefore,
the state 0 is neutral in terms of any competition dynamics. We consider a further internal parameter
associated with each cell n, In, which is an integer between zero and eight. We call such a quantity
“inertia” since it characterizes the cells’ intrinsic resistance to changes in their actual state values. In the
more general case, In could be a function of time, but for our purposes, here, we restrict the analysis
only to time-independent I’s.

At time t, let us define Vn(t) = V(+)
n (t) − V(−)

n (t), with V(S)
n (t) the population of the state

S (=–1, 0,+1) in the neighborhood of n. The cell n has Nn = 8, 5, 3 contiguous neighbors if it is,
respectively, in the bulk, border or corner of the square lattice (we are supposing hard wall boundary
conditions (HWBD)). This is known as Moore’s neighborhood of radius one. We assume HWBD
because many systems that potentially can be described by our model (like the already mentioned
ecotones landscape, as well as fragmentation patterns in ecosystems [36]) require limited boundaries
as their spatial arena. The time evolution of each Sn(t) follows from two deterministic rules:

(i) The inertial rule: If In < |Vn(t)| the dynamical rule below is applied, otherwise Sn(t + 1) = Sn(t),
i.e., the state of n remains unchanged.

(ii) The dynamical rule: Sn(t + 1) = sign[Vn(t)], with sign[x] the signal of x.

Two aspects of (i)–(ii) should be highlighted. First, any neighbor of n in the state 0 does not
contribute to make Vn(t) �= 0, a necessary condition to change Sn (if Vn(t) = 0, the dynamical rule (ii)
is not applied). Therefore, cells in state 0 cannot modify their neighborhoods. Second, cells in the active
state S (either −1 or +1) belonging to the neighborhood of n can alter Sn �= S only if V(S)

n − V(−S)
n is

greater than the cell n resistance to switch (given by the inertia parameter In).
From now on, by ‘one step’ of evolution (t → t + 1), we will mean that we have considered

Rules (i)–(ii) for all of the N × N elements in the CA lattice, obtaining the full set {Sn(t + 1)} from {Sn(t)}.
To characterize certain system features, we define two groups of quantities calculated at each

time t. The first relates to the population of a state S, given by pS(t). For our N × N lattice, the total
population is p = N × N = p−(t) + p0(t) + p+(t). The second represents the degree of clusterization
of the CA lattice spatial pattern, either of the whole system, c, or only of the cells in state S, cS.
The clusterization measures the amount of “agglomeration” of the CA elements, i.e., the number
and size of clusters formed by cells in the same state. For their definition, suppose Smajor the state

corresponding to Max{V(−1)
n (t); V(0)

n (t); V(+1)
n (t)} (obviously, making sense only if there is a unique

most populated state). If there is a Smajor, we set N (Smajor)
n (t) = V

(Smajor)
n (t), otherwise N (Smajor)

n (t) = 0.
Then, c(t) and cS(t) read:

c(t) =
1
p ∑

n
[c]n(t), cS(t) =

1
pS(t)

∑
n
[cS]n(t), (1)
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with:

[c]n(t) = N (Smajor)
n (t) /Nn,

[cS]n(t) = [c]n(t) if S = Sn(t) = Smajor and 0 otherwise. (2)

In Equation (2), [c]n is the local clusterization around the site n regardless of the state of n. On the
other hand, [cS]n estimates the accumulation of the state S around a cell n if such a cell is also in the state
S. These functions have been proven very useful in typifying certain spatial patterns in biology [25].
However, as we have explicitly verified, the use of other methods (like Hoshen–Kopelman [37]) to
gauge the CA degree of clusterization yields the same qualitative results obtained in the present work.

Finally, we specify a third parameter, τ, representing the the minimal number of full iterations
(i.e., the number of time steps; see above) for a specific initial lattice to reach a stationary configuration.
In other words, for t > τ, the CA remains unchanged for any further application of the evolution rules.
As we are going to discuss, only in relatively few cases we will not have a finite τ for the CA initial
lattices considered.

2.2. A Statistical Physics-Like Analysis: Averaging over Ensembles of Initial Configurations

Since we shall identify typical properties of the proposed CA, we assume a statistical physics
point of view and consider ensembles of initial configurations for the CA lattice. Then, we calculate
the quantities described in Section 2.1 by performing averages over a large number of time evolved
lattices (from such ensembles), obtaining “mean characteristics” of the system.

To standardize the analysis, we always take lattices having initially p+(0) ≥ p−(0) and the
same fixed number of elements in the 0 state, with p0(0) being equal to the integer closest to N2/3.
Unless otherwise explicitly mentioned, we set N = 22 (a value already large enough to illustrate
the CA main aspects and also allowing relatively fast simulations). We commonly generate about
NL ∼ 7 × 104 lattices (in the numerically harder cases NL ∼ 3.5 × 104), resulting in very good means
for any situation studied. For N = 22 (total population p = 484 and p0(0) = 161), we discuss
two distinct ensembles of lattices: (a) one where p+(0) is homogeneously distributed in the range
162 ≤ p+(0) ≤ 182; and (b) another in which the clusterization c+(0) is homogeneously distributed in
the interval 0.12 ≤ c+(0) ≤ 0.22. (we observe that such an interval, appropriate for our purposes here,
is consistent with p+(0) > p−(0) (but hard to meet for p+(0) � p−(0)), also allowing one to generate
a large number of replicas for each c+(0) value).

Observing these restrictions, the spatial distribution of initial states in the cells is random.
We mention that comparatively few initial CA lattices either are not able to converge to a final

stationary structure or may take a too long time to do so. Thus, from all of the initial lattices created,
we have used only those with τ ≤ 200 (typically corresponding to 97%–99% of NL). In the Appendix
A, we give simple examples of end patterns that are not stationary because they oscillate between very
similar (but not the same) configurations.

Our procedure is therefore: (a) to dynamically evolve each replica in the ensembles according to
Rules (i)–(ii) until achieving a steady condition, and then; (b) to perform the pertinent averages over
the resulting CA configurations.

3. Results

In Section 3, we use the following notational convention. Since any q(t) will be a constant for
t ≥ τ, the final stationary value of q(t ≥ τ) will be denoted simply as q. Furthermore, any quantity q
should be understood as the resulting average over the corresponding ensemble.
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3.1. CA with Zero Inertia

We start by briefly presenting conventional results for a CA without inertia (In = I = 0, ∀ n),
the most usual context in the literature. This case will serve as a reference to discuss the behavior of
CA with I �= 0.

First, we note that as expected (so, we do not show any plot for such situation here), the final
population and clusterization of elements in the +1 state increase fairly linearly with the initial value
of the +1 population, p+(0). This linearity comes from the fact that the average distribution of a state
S in the neighborhood of a cell n is f S ∼ pS/p. If pS increases, f S increases accordingly. Since the
dynamical “pressure” to change the state of n to an active S goes with f S, it follows that the final
number of elements in state S is basically proportional to pS(0).

An interesting behavior emerges when we calculate p+ and c+ as a function of c+(0). Examples
are shown in Figures 1 and 2. Observe that both p+ and c+ decrease with increasing c+(0), so c+(0)
plays an inverse role to that of p+(0). This is apparently counter-intuitive: one could expect higher
initial agglomerations of an active S (acting as compact “source” regions at t = 0) to enhance the
spread of S throughout the lattice, leading to a dominance of S over the other states.

To comprehend the above, it is important to recall that the parameter cS(0), examined
alone, in principle gives just the average degree of agglomeration of a particular S, but not any
detailed information about the spatial distribution of the S cells across the whole lattice. However,
the construction of ensembles with the c+(0)’s in the range of values used here results only in mild
variations of Δ = p+(0)− p−(0). Hence, in this case, a higher c+(0) necessarily implies that the +1
cells are more localized in specific regions of the CA lattice. On the opposite, lower c+(0)’s yield more
uniformly distributed +1 along it. Thus, around the initially localized +1 clusters (whose sizes increase
and number decreases with an increasing in c+(0)), certainly there is a tendency for the growth of
+1. However, in the remainder of the lattice, −1 is mostly competing with the neutral state 0, so very
quickly, −1 will dominate. As a consequence, the more concentrated is +1 originally, the higher the
final overall preeminence of −1, explaining the trends in Figures 1 and 2.

0.12 0.14 0.16 0.18 0.2 0.22
c

+
(0)

292

296

300

304

308

p +

Figure 1. Final (i.e., after reaching the stationary configuration) mean population p+ as a function
of the initial clusterization c+(0) for the CA model without inertia. For each c+(0), p+ is obtained
as an average over an ensemble of NL initial lattices (all having the same c+(0) value, but different
p+(0)’s; see the main text). Even then, the curve p+ × c+(0) fluctuates around a decreasing linear
trend represented by the dashed line (the best linear fit). By further generating for each c+(0) a number
NS ∼ 300 of ensembles (of NL replicas in each), one obtains a good straight line p+ × c+(0) with a
well-defined slope θ (see Sections 3.2 and 3.3.3).

174



Entropy 2017, 19, 102

0.12 0.14 0.16 0.18 0.2 0.22
c

+
(0)

0.884

0.888

0.892

0.896

c +

Figure 2. The same as in Figure 1, but for c+ × c+(0).

We finish this brief analysis of the I = 0 case considering how τ changes with p+(0) and c+(0).
From simulations, one finds that τ increases with p+(0) and decreases with c+(0) (recall that we
are assuming an interval for p+(0), such that Δ is not too large). Regarding p+(0), if originally
Δ = 0 with both ±1 states equally dispersed, rapidly, there will be a situation of equilibrium between
them, leading to shorter τ’s. If Δ > 0, typically at the stationary condition (t ≥ τ), p+ − p− > Δ.
Nonetheless, this relative gain of p+ will require slightly longer times to be achieved as p+(0)
moderately increases. On the other hand, high c+(0) means that the +1 cells are agglomerated
in certain regions of the lattice (see the previous discussion). Therefore, quickly, these regions
will be populated by +1 and the others by the −1, resulting in an expeditious convergence to the
stationary configuration.

3.2. CA with Homogeneous Inertia

The simplest (homogeneous) case of a CA with inertia is that in which In = I constant ∀ n
(1 ≤ I ≤ 8). Note that the extreme value I = 8 leads to no dynamics (i.e., τ = 0) once the evolution
rules (with I = 8) cannot modify the system, because any cell has at most eight first neighbors.

First, consider p+ and c+ in terms of p+(0). Similar to I = 0 in Section 3.1, on average, a rather
linear dependence of p+ on p+(0) is observed. Furthermore, as expected, when I > 0, both the
magnitude of p+, as well as the slopes of the resulting straight lines p+ × p+(0) decrease steadily with
increasing I. This reflects the natural fact that the cells tend to remain in their initial state for higher I’s,
producing a final pattern, which does not substantially differ from the initial one. Likewise, on average,
c+ displays a linear variation with p+(0). However, differently from p+, the angular coefficient of
the c+ × p+(0) straight line does not display a simple monotonic behavior with I. This is clear in
Figure 3a, where we plot the slope (i.e., the angle θ (in degrees)) of the straight line c+ × p+(0) as a
function of I. There is a clear peak for θ: for I ≤ 4 the (positive) correlation between p+(0), and c+
increases with I, whereas when I > 4, such a correlation decreases with I. To understand such a result,
which indicates some sort of dynamical transition, we recall that when I �= 0, only a neighborhood
of n with I + 1 or more cells in the same active S �= Sn would be able to eventually alter Sn. Then, as
I grows, the system evolution becomes more sensitive to the initial population because high values
of p+(0) (and, consequently, larger +1 state concentrations) are fundamental to trigger state changes.
Nevertheless, when I > 4 and if p+(0) is not overwhelming, c+ starts to decouple from p+(0) since
the dynamics passes to be strongly controlled by the cells’ internal resistance, and only huge initial
clusterization of +1 (not the case for p+(0) not very large) could significantly modify the CA lattice
original configuration.
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Figure 3. The slope, angle θ in degrees (circles), of the straight lines corresponding to (a) c+ × p+(0)
and (b) p+ × c+(0) (for the calculation details, see the caption of Figure 1) as a function of the inertia I.
The dotted line is just a guide for the eye.

Second, we observe that even stronger evidence of transition is given by the behavior of p+ versus
c+(0). The slopes (again, the corresponding straight lines’ angles θ) are shown in Figure 3b. Similarly
to the I = 0 case in Section 3.1, for I ≤ 3, one finds that p+ decreases with increasing c+(0) (negative θ).
Therefore, the mechanism relating c+(0) with p+ discussed in Section 3.1 is still dominant if the inertia
is low. However, when I ≥ 4, the final p+ increases with c+(0). Indeed, then, only very aggregated
+1’s around a cell n (of high inertia) will have the ability to modify Sn. Further, in such a context of
greater I’s, the more randomly-distributed population of −1’s across the lattice barely will increase
(contrasting with the dynamics of the equivalent situation, but with I = 0 in Section 3.1).

Third, regarding c+ × c+(0), for the 0 ≤ I < 3, interval, c+ displays only a weak dependence on
c+(0), with the magnitude of c+ slightly decreasing as I increases (see the explanation in Section 3.1).
For I ≥ 3, the cells’ enhanced resistance induces a stronger correlation between c+ and c+(0), so that
higher final will demand higher initial clusterizations. This is so because for large inertia, changes in a
given Sn �= S are possible only if n is in the vicinity of a large cluster of the active S. As a consequence,
an active state S will spread out only if “supported” by already existing clusters of S.

Lastly, the cells tend to remain in their original states as the inertia grows. Therefore, the number
of accessible intermediary configurations until stationarity usually reduces with I, shortening τ. As an
illustration, in Figure 4, we show a typical CA evolution. We consider the same initial lattice, for
which c+(0) = 0.169864 and p+(0) = 172 and different I’s. The black, white and grey colors represent,
respectively, states +1, 0 and −1. In this particular example, when I = 0, τ = 9 iteration steps are
necessary to achieve the steady condition. For the other I’s, we have: τ = 7 for I = 1, 2; τ = 6 for
I = 3; and τ = 2 for I = 4, 5. In the first six cases, the final CA patterns are all distinct from each other.
For I ≥ 6, the initial configuration cannot be changed from the evolution rules.

Some other discussed features of the present CA system can also be identified in Figure 4.
For instance, we see that the final clusterization becomes strongly correlated to the initial clusterization
for high I’s. However, perhaps the most interesting property observed in Figure 4 is that the number
of cells in the neutral (or dynamically passive) S = 0 state in the final configuration increases with I.
In this particular example, when I = 0, all the initial 0 elements are transformed into the active ±1
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states. However, as I increases, a fraction of the initial 0 cells are able to survive up to the stationary
configuration, with p0 growing with I (obviously p0 = p0(0) for I = 8).

Figure 4. Evolution until stationarity of the same initial lattice (of p+(0) = 172 and c+(0) = 0.169864)
for increasing inertia I values. Each t corresponds to a full iterated time step (t = 0 is the initial lattice).
The black, white and gray colors represent, respectively, the +1, 0 and −1 states. For this particular
case, the initial configuration cannot be changed by the CA rules (i)–(ii) when I ≥ 6.

Thus, it is clear that the presence of an internal resistance variable, inertia, is essential for the
endurance of states that are dynamically neutral (or somehow “fragile”) during the time evolution.
This property has been used to model ecotones (i.e., biome transition regions) in a previous work [25].
Nonetheless, here, we shall briefly mention a further potential application for our CA formulation.
As nicely put in [38], the phenomenon of frustration is a very common behavior in complex systems,
arising when a local minimum of energy cannot be achieved due to opposite force mechanisms.
For example, three 1/2-spins located at the vertices of a triangle cannot simultaneously be at the lowest
energy level if their mutual interaction is antiferromagnetic. Frustration-induced phase transitions
have already been described by CA [39], but through stochastic implementations (briefly, we define
two deterministic set of rules, R1 and R2, and at each time t, choose probabilistically one of them to be
applied to the CA elements). In magnetic lattices displaying frustration, if the coupling extends over
larger neighborhoods and the interactions are anisotropic, the system may develop regions of regular
ordering, separated by irregular lines of frustrated magnets [40]. With a proper extension of the rules
in Section 2.1, the evolution of our deterministic CA with inertia can simulate the formation of such
regions, where the state 0 could then represent the frustrated magnets (this is presently an ongoing
study) (cf., in Figure 4, see the configurations for I = 2 at t = 7 and I = 3 at t = 6).

3.3. CA with Inertia Following Spatial Patterns

So far, we have discussed the case of the same inertia value for the whole CA lattice. However,
one can imagine complete arbitrary distributions of inertia among the CA cells, conceivably leading to
very diverse and rich dynamics. Therefore, just to give a flavor of more general possibilities, we next
consider three relatively simple illustrative examples, which we call Patterns I, II and III for the inertia
spatial distribution.
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3.3.1. Pattern I: Regional Block Distribution of Inertia

The inertia Pattern I is depicted in Figure 5. There are in total nine regional blocks of inertia, each
having a fixed value of I = 0, 1, . . . , 8. Successive adjacent horizontal blocks (from the top-left to the
bottom-right) have I incremented by one unit.

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8
6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8
6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8
6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8
6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8
6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8
6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

Figure 5. The Pattern I spatial distribution of inertia.

Qualitatively, the dependence of p+ and c+ on p+(0) is similar to that for homogeneous constant
I’s. There is a linear positive correlation of these quantities with the initial +1 population, so that p+
and c+ grow linearly with p+(0). Furthermore, p+ decreases with increasing c+(0), which is the trend
in Section 3.2 for I small. On the other hand, Figure 6 shows that (up to fluctuations, cf. Figures 1 and 2)
c+ tends to increase with c+(0). This is the case in Section 3.2, but only for greater I’s. Such results
point to an interesting propensity for gradual block-like inertia distributions. The behavior of p+ is
always more strongly determined by the lower I’s, whereas c+ as a function of c+(0) (p+(0)) is more
influenced by the higher (lower) I’s. Regarding τ, in the ranges considered for the initial conditions,
the inertia Pattern I is akin to I = 0, with larger p+(0)’s (c+(0)’s) giving rise to longer (shorter) τ’s.
Nevertheless, there is an important difference: the average number of iterations is usually lower for
Pattern I than for I = 0. This is so because regions with high I quickly converge to a local stationary
configuration, thus slightly decreasing τ compared to CA without inertia (Section 3.1).
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Figure 6. Similar to Figure 2, but for the spatial distribution of inertia given by Pattern I.

178



Entropy 2017, 19, 102

Figure 7 shows a typical time evolution of a CA with the inertia Pattern I (in this example, τ = 6).
Observe that the cells belonging to blocks with low inertia are able to form clusters of active ±1 states
(only very few cells in the 0 state survive). In contrast, elements in the blocks with higher inertia are
more evenly distributed among the three possible S values. In such blocks, there is no prevalence of a
major state, and the final p0 increases as I (regionally) increases.

Figure 7. Evolution until stationarity (here, τ = 6) of the same initial lattice (of p+(0) = 172 and
c+(0) = 0.16531) with the inertia Pattern I. The color convention is the same as in Figure 4.

CA are very useful to model phase separation processes [41], e.g., as occurring in binary
mixtures [42]. In this regard, we observe that the blocks in Figure 7, where S = ±1 have become very
clusterized (for t ≥ 6), could be interpreted as the regions of the final segregated phases. On the other
hand, certain lattice areas do not allow a strong domination by a single type of state (say, representing
a specific molecule). Therefore, a cluster distribution of inertia acts like a heterogeneous medium for
the distinct states (or particles) diffusion, thus engendering complex morphological partition [43].

3.3.2. Pattern II: A Unique Central Region with a Non-Null Constant Inertia

The inertia spatial Pattern II is represented in Figure 8. Just the elements of a central square block
B have non-null inertia (In = i �= 0 for any n in B and In = 0 otherwise). Note that the number of
I = 0 neighbors to the B border (corners) cells is three (five). Thus, usually, i ≥ 5 would lead to no
dynamics for the B elements in the case of a random distribution of states for the initial CA lattice.
Therefore, here, we only assume i = 1, 2, 3, 4.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8. The Pattern II spatial distribution of inertia.

This kind of inertia pattern is interesting to test how an initial compact group with a certain
opposition to changes (but with a random distribution of S’s) can influence the full system evolution.
For applications of CA to problems where there are resistant agents or refractory periods, during
which there is no response to external signals from certain elements, see, e.g., models of resistance to
market innovations [33] and rippling arrangements in biological cells [44].
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A first distinct feature of Pattern II (with respect to the case of I = 0 everywhere, i.e., i = 0) is
that the number of replicas in the ensembles (Section 2.2), which does not converge to stationarity,
slightly decreases (increases) when i = 1 (i > 1). It can be understood as the following. For null
inertia, there are some lattices that oscillate between few final, similar, but not equal, configurations
(Appendix A). For Pattern II with i ≥ 1, a certain number Ne(i) of these oscillations are eliminated (see
Appendix A), and the corresponding lattices stabilize. For i = 1 (still a low inertia value), unless for
these eliminations, other aspects of the CA dynamics are not drastically altered. However, for greater
i’s, the border cells of B start to act as a contour of fixed S’s, generating a geometric constraint in the
evolution of the remaining lattice cells (especially those in the immediate vicinity of B). Hence, a given
number Nc(i) of initial lattices will not converge to a steady condition due to the appearance of border
oscillating structures (see the discussion in the Appendix A) around B. For higher i’s, Nc(i)/Ne(i) > 1,
if B is big enough, the situation here. As a consequence, compared to Section 3.1, the average τ for
Pattern II very mildly increases (decreases) if i = 1 (i ≥ 2). In fact, for i = 1, the extra lattices (Ne(1)),
which are now included in the calculations, often have their individual τ’s longer than the average τ

in Section 3.1. For i ≥ 2, the block B generally converges more rapidly to a steady configuration, thus
lowering the lattices overall τ.

Qualitatively, the time evolutions of the cells with zero inertia in both Pattern II and I = 0
everywhere are akin. Therefore, Pattern II leads to p+ and c+ with a fair linear growth with p+(0).
Furthermore, p+ and c+ decrease with increasing i, following the same trend of a fixed I for the whole
lattice (Section 3.2). As for p+ and c+ as a function of c+(0), they have the same behavior shown in
Figures 1 and 2, with the values of p+ and c+ decreasing as i increases.

Figure 9 illustrates the dynamics of a specific CA with the inertia Pattern II. Here, τ is 9, 11,
9, 10, 9, respectively, for i equal to 0, 1, 2, 3, 4. From the plots, we observe that basically the
cells in and around B are the most affected by the values of i. The remaining lattice elements
evolve following almost the same sequence of configurations seen in the case without inertia
(Figure 9 first row, in which i = 0). These results contrast with previously-mentioned models in the
literature [33,44], whose resistive elements tend to change the final configuration of the entire system.
The main difference is that the initial states of the B cells (of I = i �= 0) are randomly distributed.
Hence, they do not share a common S (say, a strong opinion about some specific subject), which in the
long term could influence the global distribution of states, representing voting intention, language,
cultural preferences, etc., and eventually giving rise to phase transition-like phenomena [45]. Actually,
the CA with inertia Pattern II is an appropriate construction to describe systems presenting regions of
homogeneous phases coexisting with regions of very heterogeneous structures (cf., Figure 9).

Figure 9. Evolution until stationarity of the same initial lattice (of p+(0) = 172 and c+(0) = 0.167878)
with the inertia Pattern II. The inertia values are those for i in the central block B (i = 0 corresponds to
I = 0 everywhere; Section 3.1). The color convention is the same as in Figure 4.
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3.3.3. Pattern III: Non-Null Inertia Initially Only for the Neutral S = 0 State

The S = 0 state is passive under the evolutionary rules described in Section 2.1. Hence, it is
often completely annihilated by the active states when I = 0 everywhere. This is no longer the case if
all of the cells have a same non-null inertia (Section 3.2). However, then one could ask which other
inertia distributions can preserve S = 0. The intuitive answer is to assume that only the elements
starting in the neutral state can withstand changes. To investigate such situation, we finally consider
the inertia Pattern III, where we suppose that initially the cells n at S = 0 (S = ±1) have an inertia
value In = i �= 0 (In = 0).

Here, again, p+ and c+ depend linearly on p+(0). The p+ and c+ magnitudes strongly decrease
with I, the same trend seen in Section 3.2. Further, the always positive slopes (the angles θ) of the
straight lines p+ × p+(0) and c+ × p+(0) monotonically diminish with I, however with a very mild
variation (especially for c+ × p+(0)) when I < 4. Hence, contrary to Figure 3a, the slope θ of the
c+ × p+(0) curve versus I does not present a peak, which would characterize a qualitative dynamical
change (at least regarding the final +1 clusterization in terms of p+(0)). This distinct behavior from that
in Section 3.2 occurs because initially, only the S = 0 cells (so with I �= 0) can act like “buffer” elements
to prevent the growth of +1 agglomerations. But dynamically S = 0 is a passive state. Therefore, for I
small, the formation of +1 clusters at the end of the evolution is not so critically dependent on p+(0),
as would be the case if the −1 active state at the beginning had also a non-null inertia.

On the other hand, an important transition is observed when we analyze p+ versus c+(0). For
I ≤ 4 (I ≥ 5), the final p+ decreases (increases) with c+(0). This is illustrated in Figure 10, where one
sees that the slope of p+ × c+(0) versus I has the same behavior of Figure 3b (but notice a different
onset). Such similarity indicates that the strongest influence on the final value of p+ in terms of c+(0)
is played by the susceptibility of neutral elements to become active S = ±1 states (a mechanism that
depends on I) and not due to the competition between +1 and −1 to transform each other.
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Figure 10. The same as in Figure 3b, the slope (angle θ) of the straight line p+ × c+(0) versus I, but for
the inertia Pattern III.

For Pattern III, the average τ drops quickly with increasing I. Indeed, as I grows, the S = 0 cells
tend to become “immune” and then excluded from evolution. With a reduced number of elements
participating in the dynamics, naturally, the convergence to a stationary configuration is quicker.

A typical evolution is illustrated in Figure 11. As I increases, S = 0 can survive until the stationary
configuration is reached, especially if they are located in the borders that divide clusters of the +1 and
−1 states (this is just the mechanism allowing the ecotones’ formation [25]). For larger I’s, the elements
in the zero state are able to distribute equally in all regions of the lattice. As already discussed, once
the S = 0 cells with I �= 0 play the role of “buffers”, the spatial aggregation of ±1 becomes more
difficult as I gets larger. Nevertheless, the final clusterization degree of ±1 is still considerably higher
when confronted with the case of the same I for all cells (compare, e.g., Figures 4 and 11). This can be
understood from the fact that during the very first time steps, in small regions R where there exists a
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prevalence of S = ±1, it will become easier for S to rapidly dominate R over −S (whose I = 0). Such
“nucleation” guarantees a certain minimum level of clusterization at the end of the evolution process.

Figure 11. Evolution until stationarity of the same initial lattice (of p+(0) = 172 and c+ = 0.169574)
with the inertia Pattern III and distinct values of I. Since initially only the neutral S = 0 has non-null
inertia, even for I = 8, the system needs a finite number of steps to reach a steady configuration.
The color convention is the same as in Figure 4.

4. Discussion and Conclusions

The understanding of the processes involved in spatio-temporal patterns’ formation (especially in
biological systems) is a relatively old [3], but still very fascinating, subject in science. The corresponding
underlying mechanisms are closely related to the idea of emergent behavior in complex systems [46],
as well as to some concepts of critical phenomena [47]. In particular, resistance of some elements to
a specific driving force might be one of the key factors to explain different rich structures observed
in nature [38,42,48,49]. Nevertheless, the investigation of this latter dynamics using CA (especially
deterministic ones) is still not very well explored in the literature.

Here, we have examined a simple CA of straightforward evolution rules. The idea was to
propose a minimalist model displaying phase transition-like behavior rather than to describe a
concrete particular problem (but see below). However, in the CA formulation, we have considered
three very common ingredients in real systems (deterministically implemented): distinction between
dynamically-active (in a way “stronger”) and passive (in a way “weaker”) agents, spatial competition
and inertia, i.e., intrinsic opposition to modifications in the actual CA cells’ states. By assuming distinct
distributions and values for the In’s, we have been able to identify qualitative modifications in the
final stationary configurations of the CA lattice. This clearly demonstrates that such an innate quantity,
inertia, can adjust the emergent spatial patterns resulting from the CA evolution. In fact, the observed
pattern changes with the inertia distribution display a striking resemblance with phase transitions,
indicating a more fundamental reorganization of the CA final steady configurations as a function of a
control parameter, in the present case I.

The first evidence of a macroscopic change in the system, due to the increase of inertia, can be
grasped from a detailed inspection of Figure 4, characterized by well-defined islands (domains) of cells
in the states +1 and −1 when I ≤ 3 (for I = 3, this is not so prominent, but S = ±1 islands still can be
spotted). On the contrary, for I ≥ 4, the domains are practically absent. These qualitative distinctions
points to a phase transition controlled by the inertia. Moreover, the structures in Figure 4 have a
close parallel with ferromagnetic-paramagnetic critical transitions, in which the existence of domains
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with well-defined magnetization is continuously suppressed as the temperature progressively rises.
Figure 3a,b reinforces that the global changes induced by the inertia are related to a phase transition
occurring around 3 ≤ I ≤ 4. Figure 3a shows that the slope of c+ × p+(0) has a peak just in this I
interval, whereas a jump of the slope p+ × c+(0) (Figure 3b) is observed in the same I range. It is
worth mentioning that the curve in Figure 3a could be related to a kind of “susceptibility”, which
usually presents accentuated peaks at the onset of a phase transition [50].

We emphasize that the quantities we have chosen to characterize the transitions, as they should
be, are very sensitive to the actual distribution of the In’s. Indeed, since the inertia is attached to cells,
not to cell states, the CA dynamics is completely determined by the initial lattice and the specific
{In}. In this work, we have made particular options for such distributions. Besides the same I for
all cells (Section 3.2), the inertia Patterns I, II and III were motivated by phenomena associated with,
respectively, segregation of binary mixtures, opinion formation and the existence of buffer-like states
(e.g., important in some condensed matter problems). As an example, for the inertia Pattern III of
Section 3.3.3, for which initially only the cells n with S = 0 have In �= 0, the slope of c+ × p+(0) as a
function of I no longer displays a peak (although the slope of p+ × c+(0) versus I still presents a jump
(Figure 10), following the same behavior of Figure 3b). Such a distinction, as discussed in Section 3.3.3,
reflects the fact that the final stationary patterns in this latter case tend to have the states ±1 more
clusterized than those in Section 3.2, even for larger I’s.

Surely, a very pertinent question relates to the exact type of transition (either discontinuous or
continuous) we are observing in the present model. We first remark that even for more conventional
statistical physics systems, in different situations, a proper identification is not a trivial or a direct task.
For instance, in some cases, “weak” discontinuous transitions exhibit just small jumps for the order
parameters, becoming hard to distinguish between phase coexistence and critical phenomena [50].
As an illustration, the so-called explosive percolation, in which the transport through a network
occurs discontinuously, is a very peculiar process [51–53]. Although some examples of explosive
percolation initially pointed to discontinuous phase transitions [54]; afterwards, they were revealed to
be continuous [55]. The difficulty of discriminating critical from first-order transitions also appears
in the context of absorbing states (AS), in which three adjacent species are required for producing an
offspring (recall that our CA has also three states, moreover with the possibility of extinction, usually
of S = 0). Distinct works have claimed a discontinuous phase transition for AS systems [56,57], but
it is strongly believed they belong to the same (continuous transition) universality class of the 1D
directed percolation [58,59].

For CA, the situation is not different [60]. Actually, it can be even more tricky. The great distinction
is that in traditional problems, for λ �= λc, the thermodynamics quantities are usually continuous
and differentiable functions of the control parameter λ. Therefore, in principle, one can study their
analytical properties around λc, so to determine the phase transition character. The big challenge with
CA is that often, one cannot perform such a kind of analysis.

In our case, I is not continuous, but we can change it through a set of distinct values. Taking into
account the discrete (and finite) nature of the lattices, by inspecting the CA patterns for different I’s,
Figures 4 and 11 seem to indicate a continuous phase transition (like a magnetic process). On the other
hand, the leap for the slope of p+ × c+(0) might imply discontinuous phase transitions. However,
observe that this jump can be related to the discreteness of the inertia parameter, masking an eventual
sharp, but still continuous variation of θ. Certainly, further investigations would be desirable.
As a possibility, we recall that we have discussed only the case of time-independent inertia distributions.
The case of In = In(t) could be related, e.g., to seasonal effects in biological environments [4–6]. Then,
by calculating an average I during pertinent time intervals, one can define an effective Ie f f , which
does not need to be an integer, assuming a broader range of values. In this way, the analysis could
be performed with such Ie f f , allowing a better characterization of the phase transition in terms of the
inertia order parameter.
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Along Section 3, we have mentioned different potential applications for this kind of CA
construction, especially concerning biological structures and phase segregation. However, our main
goal has not been to describe a particular situation. Instead, our aim has been to discuss general aspects
of how a CA, a paradigmatic tool in modeling complex systems, can generate distinct spatial-temporal
patterns by fine tuning an inner variable, inertia, directly associated with resistance to changes in the
system microstates (i.e., at the cells’ level [6]). Nevertheless, a few comments about a specific situation
should help to put our results in a more concrete perspective.

In [25], some of us have used a very similar framework to generate typical patterns in ecotones
(see the Introduction section), although not addressing phase transitions. It is important to mention
that actual ecotones have been associated with phase transitions [61,62], in fact to second-order ones,
i.e., to critical phenomena [63]. Thus, in spite of the great simplicity of our CA model, it readily
reproduces two of the most important aspects of ecotones:

(i) The coexistence of alien species (AS) living in the interface region, represented by S = 0, between
two distinct spatial areas corresponding to biomes B1, S = +1 and B2, S = −1 (cf., Figures 4 and 11)
(note that usually, these AS are not able to survive within either B1 or B2).

(ii) Ecotones’ boundary extensions and shapes usually are driven by climate conditions and species
competition [26–28,63]. Such boundaries may or may not arise depending on the strength and
interplay of these factors (say, quantified by a parameter λ). The variation of λ will simply
modify or eventually destroy ecotones. The corresponding transition, as λ varies, appears to be
akin to continuous phase transitions [63]. Again, qualitatively, this is what we observe from the
CA lattices’ time evolution considering distinct values of I (see Figures 4 and 11).

The last point is how to interpret inertia in the present context. The AS would be defeated if
“clashing” against the species just from B1 or just from B2. However, in the intermediate region, both
latter sets of species are not so well adapted as in their original ecosystems. Furthermore, they are
competing with each other. This gives a certain contextual advantage to the AS, allowing them to
survive, but only when there is tension between the active species. The inertia (at least for the AS)
somehow quantifies this emergent (and relative) fitness due to the impairment and competition
between the B1 and B2 species.

Finally, we remark on an interesting observation made by one of the anonymous referees.
A possible distinct version of our CA is to associate inertia with cell states rather than with cells.
In this case, the pattern of inertia would evolve with (and partly determine) the pattern of cell states.
More generally, both approaches could be used in a single system. For example, in a CA describing
the rich dynamics of land use [64], some inertia values could be attached to cells, so as to represent
inherent cell qualities (i.e., heterogeneity in the cell space), while others could be attached to cell states
S, representing the cost of changing S. Such a necessity of a hybrid treatment in certain classes of
problems is discussed, for instance, in [64].

We hope the presented work can motivate future studies relating the concept of inertia to complex
systems and phase transitions.
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Appendix A. Examples of Periodic Oscillating Structures (Not Converging to Steady Configurations)

In the following, we give two examples of end situations (i.e., after enough time steps), which
are not stationary because some small blocks in the CA lattice oscillate between a few different local
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configurations, whereas the rest of the cells remains unchanged. For simplicity, we just illustrate the
case of I = 0 for all of the elements. Furthermore, for a better visualization, we consider N = 30, but
the behavior here is qualitatively the same for other values of N (including N = 22 of Section 3).

In Figure A1a, we show the final oscillating pattern to which a certain typical initial CA lattice
(in the sense of the construction described in Section 2.2) has evolved after a certain number of steps.
We schematically represent in Figure A1b the blocks B (of 25 cells each) indicated in Figure A1a. Note
that if somehow the surrounding of B is fixed, so the B border cells cannot change, then a direct
analysis shows that for I = 0, the evolution Rules (i)–(ii) necessarily make B alternate between the
two displayed structures in Figure A1b. This is the case for any lattice, unless for a localized region
(in the form of B) that has evolved to a stationary condition. On the other hand, setting I = 1 for the
configurations in Figure A1a suffices to “freeze” the B oscillations into the left shape of Figure A1b,
leading thus to a final steady state.

x x

x

x

x x

x

x

(b)

(a)

Figure A1. (a) The two oscillating configurations to which an initial 30 × 30 CA lattice (of all elements
with I = 0) has evolved under the (i)–(ii) evolution rules. Here, black, gray and white represent,
respectively, the states +1, −1, and 0. Interestingly, in this case only one cell with S = 0 has remained,
belonging to the indicated blocks B; (b) Schematics of the blocks B (of 25 cells each) responsible for
the oscillatory behavior when I = 0. The four cells marked by x will switch (as illustrated) each time
rule (ii) is applied. I = 1 is large enough to stop the oscillations, driving B to the left structure.

The basic local blocks B resulting in the oscillatory behavior for final CA lattice patterns can have
different shapes. For instance, for the example shown in Figure A2, an initial lattice has evolved to
structures with two of such blocks, which moreover are composed only by S = ±1 states. This contrasts
with B of Figure A1, having a single S = 0 cell in the center. We observe that if for the lattices in
Figure A2 we switch the inertia to I = 1, the blocks in the lattices’ right side will stop oscillating
(stabilizing in their present configurations). However, the blocks in the left side will continue oscillating
into two different structures, but of slightly different forms than the ones in Figure A2.

185



Entropy 2017, 19, 102

Figure A2. Another example of a final non-steady pattern for the CA. Differently from Figure A1,
as indicated now there are two blocks where the oscillations take place. Furthermore, for this case only
the S = ±1 states have survived. The B in the right side of the lattice is an emblematic configuration of
borders oscillating structures.

Lastly, we comment that oscillating structures also exist for I = 1 (as mentioned for the example
of Figure A2). However, from exploratory numerical simulations (with many N’s), we have never seen
similar behavior when I ≥ 2. Therefore, it is an interesting theoretical question if one can have finite
fundamental blocks B in the case of larger than one inertia values.
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Abstract: Recurrent networks with transfer functions that fulfil the Lipschitz continuity with K = 1
may be echo state networks if certain limitations on the recurrent connectivity are applied. It has
been shown that it is sufficient if the largest singular value of the recurrent connectivity is smaller
than 1. The main achievement of this paper is a proof under which conditions the network is an echo
state network even if the largest singular value is one. It turns out that in this critical case the exact
shape of the transfer function plays a decisive role in determining whether the network still fulfills
the echo state condition. In addition, several examples with one-neuron networks are outlined to
illustrate effects of critical connectivity. Moreover, within the manuscript a mathematical definition
for a critical echo state network is suggested.

Keywords: reservoir computing; uniformly state contracting networks; power law

1. Introduction

Classic approaches of recurrent neural networks (RNNs), such as back-propagation through
time [1], have been considered difficult to handle. In particular learning in the recurrent layer is
slow and problematic due to potential instabilities. About 15 years ago, reservoir computing [2] was
suggested as an alternative approach for RNNs. Here, it is not necessary to train connectivity in the
recurrent layer. Instead, constant, usually random, connectivity weights are used in the recurrent
layer. The supervised learning can be done by training the output layer using linear regression.
Two types of reservoir computing are well established in the literature. The first is called liquid state
machines (LSMs, [3]), which are usually based on a network of spiking neurons. The second type is
called an echo state nework (ESN, [4]), which uses real valued neurons that initially use a sigmoid as
a transfer function. Although a random recurrent connectivity pattern can be used, heuristically it has
been found that typically the performance of the network depends strongly on the statistical features
of this random connectivity (cf. for example [5] for ESNs).

Thus, what is a good reservoir with regard to particular stationary input statistics? This has
been a fundamental question for research in this field since the invention of reservoir computing.
One fundamental idea is that a reservoir can only infer training output from this window of the input
history of which traces still can be found inside the reservoir dynamics. However, if the necessary
inference from time series in order to learn the training output is far in the past, it may happen that
no traces of this input remain inside the reservoir. So, the answer seems to be that a good reservoir is
a reservoir from whose states it is possible to reconstruct an input history with a time span that is as
long as possible. More precisely, they should be reconstructed in a way that is sufficiently accurate in
order to predict the training output. In other words, a good reservoir is a reservoir that has a good
memory of the input history.
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There have been efforts to quantify the quality of the memory of the reservoir. Most common is
the “memory capacity” (MC) according to Jaeger’s definition [4]. However, MC has several drawbacks.
For example, it is not directly compatible to a Shannon information based measure. Still, it illustrates
that ESNs are relatively tightly restricted in the way that the upper limit of the MC is equal to
the number of hidden layer neurons. So the capabilities of the network increase with the number
of neurons.

One more important limiting factor with regard to the reservoir memory is the strength of the
recurrent connectivity. According to the echo state condition, the nature of the reservoir requires
that the maximum |λ|max of its eigenvalues in modulus is smaller than 1, which is called the echo
state property (ESP). This seems always to result in a exponential forgetting of previous states. Thus,
forgetting is independent from the input statistics but instead has to be pre-determined and is due to
the design of the reservoir dynamics.

In order to proceed, there are several important aspects. First, it is necessary to get rid of the
intrinsic time scale of forgetting that is induced by |λ|max < 1. More precisely, the remaining activity
of inputs to the reservoir that date back earlier than Δt is a fraction smaller than |λ|Δt

max. Networks
where the largest eigenvalue is larger than 1 cannot be used as reservoirs anymore, a point which is
detailed below. One can try |λ|max = 1 and see if this improves the network performance and how
this impacts the memory of the reservoir on earlier events. Steps toward this direction have been
made by going near the “edge of chaos” [5] or even further where the network may not be an echo
state network for all possible input sequences but instead just around some permissible inputs [6].
Presumably, these approaches still all forget exponentially fast.

Strictly, networks with |λ|max = 1 are not covered by the initial proof of Jaeger for the echo state
condition. One important purpose of this paper is to close this gap and to complete Jaeger’s proof in
this sense. The other purpose is to motivate the principles of [7] in as simple as possible examples and
thus to increase the resulting insight.

The intentions of the following sections of the paper are to motivate the concept of critical neural
networks and explain how they are related to memory compression. These intentions comprise
a relatively large part of the paper because it seems important to argue for the principle value of critical
ESNs. Section 2 introduces the concept of reservoir computing and also defines important variables
for the following sections. An important feature is that Lyapunov coefficients are reviewed in order to
suggest a clear definition for critical reservoirs that can be used analytically on candidate reservoirs.
Section 3 describes how critical one-neuron reservoirs can be designed and also introduces the concept
of extending to large networks. Section 4 explains why the critical ESNs are not covered by Jaeger’s
proof. The actual proof for the echo state condition can be found in Section 5. Certain aspects of the
proof have been transferred to the appendix.

2. Motivation

The simplest way to train with data in a supervised learning paradigm is to interpolate data
(cf. for example [8]). Thus, for a time series of input data ut ∈ R

n that forms an input sequence ū∞

and a corresponding output data ot ∈ R
m one can choose a vector of non-linear, linearly independent

functions F(ut) : Rn → R
k and a transfer matrix wout : Rk → R

m. Then, one can define

xt = F(ut)

õt = woutxt.

wout can be calculated by linear regression, i.e.,

wout = (AA′)−1(AB), (1)
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where the rectangular matrices A = [x0, x1, . . . , xt] and B = [o0, o1, . . . , ot] are composed from the data
of the training set and A′ is the transpose of A. Further, one can use a single transcendental function
θ(.) such that

xt = F(ut) = θ(winut), (2)

where win : Rn → R
k is a matrix in which each line consists of a unique vector and θ(.) is defined in the

Matlab fashion; so the function is applied to each entry of the vector separately. Linear independence
of the components of F can then be guaranteed if the column vectors of win are linearly independent.
Practically, linear independence can be assumed if the entries of win are chosen randomly from
a continuous set and k ≥ n.

The disadvantage of the pure interpolation method with regard to time series is that the input
history, that is ut−1, ut−2, . . . u0, has no impact on training the current output õt. Thus, if a relation
between previous inputs and current outputs exists, that relation cannot be learned.

Different from Equation (1), a reservoir in the sense of reservoir computing [2,9,10] can be
defined as

xt = F(xt−1, ut). (3)

The recursive update function adds several new aspects to the interpolation that is outlined
in Equation (1):

1. The new function turns the interpolation into a dynamical system:

xt = F(xt−1, ut) = Fū∞(xt−1), (4)

where the notation Fū∞(xt−1) is intended to illustrate the character of the particular discrete time,
deterministic dynamical system and the fact that each possible time series ū∞ defines a specific
set of dynamics (For obvious reasons one may call F an input driven system.).

The superset F over all possible ū∞,
F =

⋃
ū∞

Fū∞ ,

may be called the reservoir dynamics. Thus, F covers all possible dynamics of a particular
reservoir with regard to any time series of input vectors in R

n. Note that this way of looking
into the dynamics of reservoirs is non-standard. Rather the standard approach is to interpret the
reservoir as a non-autonomous dynamical system and then to formalize the system accordingly [6].
For the present work, the turn towards standard dynamical systems has been chosen because here
the relevant methodology is well established and the above mentioned formalization appears
sufficient for all purposes of this work.

2. It is now possible to account for information from a time series’ past in order to calculate the
appropriate output.

One important question is if the regression step in the previous section, and thus the interpolation,
works at all for the recursive definition in Equation (3). Jaeger showed ([4], p. 43; [11]) that the
regression is applicable, i.e., the echo state property (ESP) is fulfilled, if and only if the network is
uniformly state contracting. Uniformly state contraction is defined in the following.

Assume an infinite stimulus sequence ū∞ = {un}∞
n=0 and two random initial internal states of

the system x0 and y0. To both initial states x0 and y0 the sequences x̄∞ = {xn}∞
n=0 and ȳ∞ = {yn}∞

n=0
can be respectively assigned.

xt = F(xt−1, ut) = Fū∞(xt−1)

yt = F(yt−1, ut) = Fū∞(yt−1)

qū∞ ,t = d(xt, yt), (5)
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where qū∞ is another series and d(., .) shall be a distance measure using the square norm.
Then the system F is uniformly state contracting if it is independent from ū∞ and if for any initial

state (x0,y0) and all real values ε > 0 there exists a finite τF (ε) < ∞ for which

max
F

qū∞ ,t ≤ ε (6)

for all t ≥ τF .
Another way to look at the echo state condition is that the network F behaves in a time invariant

manner, in the way that some finite subsequence in an input time series will roughly result always in
the same outcome. In other words

xΔt+t0 ≈ yΔt+t0

independent of t0, xt0 and yt0 and if Δt is sufficiently large.
Lyapunov analysis is a method to analyze predictability versus instability of a dynamical system

(see [12]). More precisely, it measures exponential stability.
In the context of non-autonomous systems, one may define the Lyapunov exponent as

Λū∞ = lim
|qū∞ ,t=0|→0

lim
t→∞

1
t

log
|qū∞ ,t|
|qū∞ ,0| , (7)

Thus, if
qū∞ ,t ∝ exp(bt),

then Λū∞ approximates b and thus measures the exponent of exponential decay. For power law decays,
the Lyapunov exponent is always zero (For example, one may try qū∞ , t =

1
t+1 ).

In order to define criticality, we use the following definition.

Definition 1. A reservoir that is uniformly state contracting shall be called critical if for at least one input
sequence ū∞ there is at least one Lyapunov exponent Λū∞ that is zero.

The echo state network (ESN) is an implementation of reservoir dynamics as outlined in
Equation (3). Like other reservoir computing approaches, the system is intended to resemble the
dynamics of a biologically inspired recurrent neural network. The dynamics can be described for
discrete time-steps t, with the following equations:

xlin,t = Wxt−1 + winut

xt = θ
(
xlin,t

)
õt = woutxt.

(8)

With regard to the transfer function θ(.), it shall be assumed that it is continuous, differentiable,
transcendental and monotonically increasing with the limit 1 ≥ θ′(.) ≥ 0, which is compatible with
the requirement that θ(.) fulfills the Lipschitz continuity with K = 1. Jaeger’s approach uses random
matrices for W and win, learning is restricted to the output layer wout. The learning (i.e., training ot)
can be performed by linear regression (cf. Equation (1)).

The ESN fulfills the echo state condition (i.e., it is uniformly state contracting) if certain restrictions
on the connectivity of the recurrent layer apply, for which one can name a necessary condition and
a sufficient condition:

• C1 A network has echo states only if

1 > |λ|max = max abs(λ(W)), (9)
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i.e., the absolute value of the biggest eigenvalue of W is below 1. The condition means that
a network is not and ESN if 1 < max abs(λ(W)).

• C2 Jaeger named here initially
1 > smax = max s(W), (10)

where s is the vector of singular values of the matrix W. However, a closer sufficient condition
has been found in [13]. Thus, it is already sufficient to find a full rank matrix D for which

1 > max s(DWD−1). (11)

The authors of [14] found another formulation of the same constraint: The network with internal
weight matrix W satisfies the echo state property for any input if W is diagonally Schur stable, i.e., there exists a
diagonal P > 0 such that WT PW − P is negative definite.

Apart from the requirement that a reservoir has to be uniformly state contracting, the learning
process itself is not of interest in the scope of this paper.

3. Critical Reservoirs with Regard to the Input Statistics ū∞

Various ideas on what types of reservoirs work better than others have been brought up. One can
try to keep the memories of the input history in the network as long as possible. The principle idea is
to tune the network’s recurrent connectivity to a level where the convergence for a subset of Fcrit ∈ F
with regard to Equation (6) is

qū∞
crit ,t

∝ ta (12)

rather than
qū∞ ,t ∝ bt, (13)

where a < 0 and 0 < b < 1 are system specific values, i.e., they depend on Fū∞ .
A network according to Equation (12) is still an ESN since it fullfils the ESP. Still, forgetting of initial

states is not bound to a certain time scale. Remnants of information can —under certain circumstances—
remain for virtually infinite long times within the network given that not too much unpredictable new
input enters the network. Lyapunov analysis of a time series according to Equation (12) would result
in zero, and Lyapunov analysis of Equation (13) yields a nonzero result.

In ESNs forgetting according to the power law of Equation (12) for an input time series qū∞
crit ,t

is
achievable if the following constraints are fulfilled:

• The recurrent connectivity W, the input connectivity win of the ESN and the transfer function θ(.)
have to be arranged in a way that if the ESN is fed with qū∞

crit ,t
one approximates

lim
t→∞

∣∣θ̇(xlin,t)
∣∣ = 1.

Thus, the aim of the training is ∣∣θ̇(xlin,t)
∣∣ = 1. (14)

Since the ESN has to fulfil the Lipschitz continuity with K = 1, the points where θ̇ = 1 have to be
inflection points of the transfer function. In the following these inflection points shall be called
epi-critical points (ECPs).

• The recurrent connectivity of the network is to be designed in a way that the largest absolute
eigenvalue and the largest singular value of W both are equal to one. This can be done by using
normal matrices for W (see Section 3.5).

193



Entropy 2017, 19, 3

3.1. Transfer Functions

The standard transfer function that is widely used in ESNs and other types of neural networks is
the sigmoid function, i.e.,

θ(x) = tanh(x). (15)

The sigmoid transfer function has one ECP Π0 = 0.
As a second possible transfer function, one may consider

θ(x) = 0.5x − 0.25 sin(2x). (16)

Here, one has a infinite set of ECPs at Πi = (n + 0.5)× π. It is important to have more than
one ECP in the transfer functions because for a network with discrete values it appears necessary that
each neuron has at least 2 possible states in order to have any inference from the past to the future.
In the case of tanh, the only solution of Equation (14) is

xlin,t = 0.

That type of trained network cannot infer information from the past to the present for the expected
input, which significantly restricts its capabilities. One can see that from

xt = tanh(xlin,t) = 0.

The next iteration yields
xt+1 = tanh(winut),

which again, after training would require

0 = winut.

Thus, the network can only anticipate the same input at all time steps.
In the case of Equation (16), the maximal derivative θ′(x) is 1 at x = π(n + 1/2), where n is

an integer number (confer Figure 1). Here the main advantage is that there exists an infinite set
of epi-critical points. However, all these points are positioned along the linear function y = x/2.
This setting still significantly restricts the training of Fcrit. Here one can consider the polynomial
with the lowest possible rank (cf. the green line in Figure 1, left side) that interpolates between the
epi-critical points (in the following called an epi-critical transfer function). In the case of Equation (16)
the epi-critical transfer function is the linear function

xt+1 = 0.5Wxt + 0.5winut.

Thus, the effective dynamics of the trained reservoir on the expected input time series is -if this is
possible- the dynamics of a linear network. This results in a very restricted set of trainable time series.

As an alternative, one could consider also a transcendental function for the interpolation between
the points, such as depicted in Figure 2. The true transfer function (blue line in Figure 2) can be
constructed in the following way. Around a set of defined epi-critical points Πi, define θ as either

θ(x) = tanh(x − Πi) + tanh(Πi)

or
θ(x) = tanh(x).

This is one conceptional suggestion for further investigations. The result is a transfer function
with the epi-critical points Πi and 0. The epi-critical transfer in this case is a tanh function.
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(a) (b)

Figure 1. Variant possible transfer functions with interesting features regarding criticality. On the left
side (a) tanh has only one epi-critical point. Equation (16) is graphed on the right side (b). Here, there
is an infinite set of epi-critical points nπ + π/2 that are all positioned along the line y = x/2. In both
graphs green dots indicate epi-critical points, green curves are smooth interpolations between those
points, and the blue line indicates the particular transfer function itself.

Figure 2. Tailored transfer function where the epi-critical points can be organized in an adaptive
way and follow a transcendental function (which has certain advantages to the examples depicted in
Figure 1, in blue). Green dots indicate epi-critical points, the green curve is a smooth interpolation
between those points, and the blue line indicates the particular transfer function itself. Note that the
green curve is a tanh and thus a transcendental function.

3.2. Examples Using a Single Neuron as a Reservoir

In this and the following sections, practical examples are brought up where a single neuron
represents a reservoir. Single neuron reservoirs have been studied in other researches [15,16]. Here the
intention is to illustrate the principle benefits and other features of critical ESNs.

First one can consider a neuron with tanh as a transfer function along with a single input unit

xt+1 = tanh(bxt + ut), (17)

where in order to achieve a critical network |b| has to be equal to 1. i.e., the network exactly fulfills the
boundary condition. From previous consideration one knows that Fcrit has the dynamics that results
from ut = 0 as an input. In this case the only fixed-point of the dynamics is xt = 0, which is also the
epi-critical point if |b| = 1.

Power law forgetting: Starting from the two initial values x0 = 0 and say y0 = 0.01, one can see
that the two networks converge in a power law manner to zero. On the other hand, for a linear network

xt+1 = bxt + ut
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with the same initial conditions the dynamics of the two networks never converge (independently of ut).
Instead, the difference between x0 = 0 and say y0 = 0.01 stays the same forever. Thus, the network
behavior in the the case of |b| = 1 depends on the nature of the transfer function. For all other values
of b, both transfer functions result qualitatively in the same behavior in dependence on b: either they
diverge or they converge exponentially. Since |b| = 1 is also the border between convergence and
divergence and thus the border between uniformly state contracting networks and not uniformly state
contracting networks, the case of |b| = 1 is a critical point of the dynamical system, in a similar manner
as a critical point at the transition from ordered dynamics to instability. In the following it is intended
to extend rules for different transfer functions, where different transfer functions result in the critical
point in uniformly state contracting networks and where this is not the case.

As a final preliminary remark, it has to be emphasized that a network being uniformly state
contracting means that the states are contracting for any kind of input ut. It does not mean that for any
kind of input the contraction follows a power law. In fact, for all input settings ut �= 0 the contraction
is exponential for the neuron of Equation (17), even in the critical case (|b| = 1).

3.3. Single Neuron Network Example with Alternating Input and Power Law Forgetting

As outlined above, for practical purposes the sigmoid function, i.e., θ = tanh(.), is not useful for
critical networks because the only critical state occurs when total activity of such a network is null.
In that case it is not possible to transfer information about the input history. The reason is illustrated in
the following example, where instead of a sigmoid function other types of transfer functions are used.

So, the one-neuron network

xt+1 = θ(−bxt + (2 − b)ut) (18)

with a constant b, the transfer function of Equation (16) and the expected alternating input
ut = (−1)tπ/4 has an attractor state when also xt is alternating with xt = (−1)tπ/4 independently
from b. Thus, ut = (−1)tπ/4 shall be interpreted as the expected input that directs the activity of the
network exactly to where θ′ = 1 and thus induces a critical dynamic Fū∞ = Fcrit.

It is now interesting to investigate the convergence behavior for different values of b considering
differing starting values for internal states xt and yt. Figure 3 depicts the resulting different Lyapunov
exponents for one-neuron networks with different values of b. One can see that—not surprisingly—the
Lyapunov exponent for b = 1 is zero. This is the critical point that marks the transition from order to
instability in the system and at the same time the transition from ESP to non-ESP.

Figure 3. Depicted is the Lyapunov exponent for the example system of Equation (18) for different
values of b. At b = 1 the Lyapunov exponent crosses zero. At this point all types of linear analysis fail.
The point marks the border between networks that fulfil the echo state property (ESP) and those that
do not. So, this point is the called critical point. Further analysis shows that the point itself belongs
to the area with ESP. All results from Figures 4 and 5 are drawn from the point where the Lyapunov
exponent is zero, that is b = 1.
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In the following the same network at b = 1 is investigated. Some unexpected input, i.e.,
ut �= (−1)tπ/4, lets the network jump out of the attractor. If the input afterwards continues as
expected, the network slowly returns to the attractor state in a power law fashion. Thus,

d(xt, yt) ∝ t−a,

where yt represents the undisturbed time series and a is a constant value. Note that xt contains all
information of the network history and that the network was simulated using IEEE 754-2008 double
precision variables, which have a memory size of 64 bits on Intel architecture computers. Although
floating point variables are organized in a complicated way of three parts, the sign, exponent and
mantissa, it is clear that the total reservoir capacity cannot exceed those 64 bits, which means in the
limit a reservoir of one-neuron cannot remember more than 64 binary i.i.d. random numbers.

Thus, about 64 iterations after an unexpected input the difference between xt and yt should
be annihilated. Thus, if both networks xt and yt receive the same unexpected input that is of the
same magnitude, the difference between the xt and yt should reach virtually 0 within 64 iterations.
The consideration can be tested by setting the input

ut = π/4 × rand,

where rand is an i.i.d. random list of +1s and -1s, that produces a representative of Fū∞ �= Fcrit.
Figures 4 and 5 depict results from simulations, where after one iteration when two networks receive
different inputs, both networks receive again the same input. Depicted is again the development of
the difference between both networks d(xt, yt) versus the number of iterations. The graphs appear
in a double logarithmic fashion, so power law decays appear as straight lines. One can see that the
networks that receive alternating, i.e., the expected input, pertains the difference for very long time
spans (that exceed 64 iterations). On the other hand, if the network input for both networks is identical
but i.i.d random and of the same order of magnitude as the expected input, the difference vanishes
within 64 iterations.

Figure 4. Results from two dynamics defined in Equation (18), with b = 1 and different types on
input ut. One copy of the two initially identical networks has received a variant input at iteration
one. Depicted here is the decay of the difference of the state in the recurrent layer if both networks
receive the same and expected (alternating) input (in dark blue). The pale curves are data from Figure 5
embedded for comparison. One can see that the difference function (blue) follows a power law and
pertains for longer than 64 iterations.
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(a) (b)

Figure 5. Complementary data for Figure 4: (a) Decay if both networks receive the same but irregular
(i.i.d random) input (different colors are used for different trials). The difference vanishes much faster
than in the left case. Finally the difference becomes and stays null, which is out of a logarithmic scale.
Thus, later iterations are not depicted anymore; (b) Depicted here is the same data as at the left, however
in a double-logarithmic plot. The data forms a straight line, which indicates an exponential decay.

The network distinguishes regular input from irregular input. Memories of irregular events
pertain for a long time in the network provided that the following input is regular again.
How a reservoir can be trained to anticipate certain input statistics has been discussed [7]. Additional
solutions to this problem are subject to further investigations.

3.4. Relation to “Near Edge of Chaos” Approaches

It is a common experience that—in spite of given theoretical limits for the ESPs—the recurrent
connectivity can be significantly higher than smax = 1 for many practical input statistics. Those over-tuned
ESNs in many cases show a much better performance than those that actually obey Jaeger’s initial limit
ESP. So, recently researchers came up with theoretical insights with regard to ESPs that are subject to a
network and a particular input statistic [6]. In the scope of this work, instead of defining the ESP for a
network the ESP is always defined as related to a network and an input statistic. Also, similar efforts
have been undertaken in the field of so-called liquid state machines [17,18].

One may assume that those approaches show similar properties as the one that has been presented
here. However, for a good reason those approaches all are called ‘near edge of chaos’ approaches. In order
to illustrate the problems that arise from those approaches, one may consider what happens if those
overtuned ESNs are set exactly to the critical point. Here, just for the general understanding one may
consider again a one-neuron network and a tanh as a transfer function, so

xt+1 = tanh(−bxt + ut). (19)

Note that the ESP limit outlined above requires that the recurrent connectivity should be b < 1.
An input time series than one can use is from the previous section

ut = (−1)tπ/4 (20)

Slightly tedious but basically simple calculus results in a critical value of b ≈ 2.344 for the input
time series, where xt ≈ (−1)t × 0.757. In this situation one can test for the convergence of two slightly
different initial conditions and obtain a power law decay of the difference. However, setting up the
amplitude of the input just a tiny bit higher is going to result in two diverging time series xt and yt.
If the conditions of the ESN are chosen to be exactly at the critical point, it is possible that a untrained
input sequence very close to the trained input sequence turns the ESN into a state where the ESP is not
fulfilled anymore (for a related and more detailed discussion with a numerical analysis, confer [19]).
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For this reason all the networks have to be chosen at a significant margin away from the edge
of instability. That is very different from the approach in the previous section where although the
expected input sequence for the network is exactly at the critical point, all other input sequences result
in a stable ESN in most cases with exponential forgetting.

3.5. How the One-Neuron Example Can Be Extended to Multi-Neuron Networks: Normal Matrices

A normal matrix W commutes with its own transpose, i.e.,

WWT = WTW.

For a normal matrix W, it can easily be shown that

max s(W) = max abs(λ(W)).

These matrices apply to the spectral theorem; the largest absolute eigenvalue is the same as the
largest singular value, which makes a clear theoretical separation between networks that are uniformly
state contracting and those that are not compatible to the echo state condition. Still, for normal matrices
all previously known ES conditions do not determine to which of those two groups the critical point
itself belongs.

Summarizing, all previous works result in theorems for an open set of conditions that are defined
by the strict inequalities Equations (9) and (11). In the closest case, the case of normal matrices, when
considering the singular condition

1=max s(W) = max abs(λ(W)) (21)

there is no statement of the above mentioned theorems if the network is uniformly state contracting.
Some simple, preliminary numerical tests reveal that in the case of networks that satisfy Equation (21)

the further development of the network strictly depends on the exact shape of transfer function.

4. Echo State Condition Limit with Weak Contraction

In the previous section, it has been shown how power law forgetting may occur in an ESN type
neural network. These networks are all tuned to the point where |λ|max = S = 1. For this tuning it is
still undetermined if the ESP is fulfilled or not even if normal matrices or one-neuron RNNs are used.
The current section is dedicated to determining under which conditions Jaeger’s ESP can be extended
to this boundary condition.

Jaeger’s sufficient echo state condition (see [4], App. C, p. 41) has strictly been proven only for
non-critical systems (largest singular value S < 1) and with tanh(.) as a transfer function. The original
proof is based on the fact that tanh in combination with S < 1 is a contraction. In that case Jaeger
shows an exponential convergence.

The core of all considerations of a sufficient condition is to give a close upper estimate of the
distance between the next iterations of two different states yt and xt. The estimate is of the form

max
ū∞

d(yt+1, xt+1) = max
F

d(F (yt),F (xt)) ≤ φ1 · d(yt, xt),

where the parameter φ1 basically is quantified by the nature of the transfer function and the strength of
the connectivity matrix. The estimate has to be good enough that the iterative application of φ1 should
result in a convergence to 0:

lim
t→∞

[ φ1 · ]td(y0, x0) = 0, (22)

This is equivalent to investigating a series qt with

d(yt, xt) < qt = [ φ1 · ]td(y0, x0)
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and
lim
t→∞

qt = 0, (23)

which can prove that the requirement of uniformly state contraction (cf. Equation (6)) is fulfilled.
For example, consider the case of a reservoir with one-neuron as described in Equation (17). Here the
challenge is to find an estimator for φ1 such that

max
ut∈R

d(θ(byt + ut), θ(bxt + ut)) ≤ φ1 · d(yt, xt),

where the chosen φ1 still holds the limit in Equation (22). For |b| < 1, convergence can be proven easily:

max
ut∈R

d(θ(byt + ut), θ(bxt + ut)) ≤
max
ut∈R

||byt + ut − bxt − ut||2 =

|b| · d(yt, xt).

Thus for |b| < 1, one can easily define φ1 = |b|. So qt can be defined as

qt = |b|t · d(y0, x0).

So Equation (23) is fulfilled. The convergence is exponential. The arguments so far are analogous
to the core of Jaeger’s proof for the sufficient echo state condition C2 that is restricted to one dimension.

For |b| = 1, this argument does not work anymore. Obviously, Jaeger’s proof is not valid under
these circumstances. However, the initial theorem can be extended. As a pre-requisite, one can replace
the constant φ1 with a function that depends on qt as an argument.

So one can try
φ1(qt) = 1 − ηqκ

t ,

where η > 0 and κ > 1 have to be defined appropriately. This works for small values of qt. However,
it is necessary to name a limit for large qt > γ. Define

φ1(z) :=

{
1 − ηzκ if z < γ

1 − ηγκ if z ≥ γ.
(24)

Three things have to be done to check this cover function:

• First of all, one needs to find out if indeed the cover function φ1 fulfills

max
ut∈R

d(θ(yt + ut), θ(xt + ut)) ≤ d(yt, xt)φ1(d(yt, xt)).

In order to keep the proof compatible with the proof for multiple neurons for this work, one has
to chose a slightly different application for φ1,

max
ut∈R

d2(θ(yt + ut), θ(xt + ut)) ≤ d2(yt, xt)φ1(d2(yt, xt)),

which serves the same purpose and is much more convenient for multiple neurons.

In Appendix C one can find a recipe for this check.
• Second, one has to look for the convergence of

qt+1 = qt φ1(qt) = qt (1 − ηqκ
t ),
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when qt ≤ γ. The analysis is done in Appendix A.
• Third, one needs to check

qt+1 = qt φ1(qt) = qt (1 − ηγκ),

as long as qt > γ. Since the factor (1 − ηγκ) is positive, smaller than one and constant,
the convergence process is exponential, obviously.

Note that the next section’s usage of the cover function differs slightly even through it has the
same form as Equation (24).

5. Sufficient Condition for a Critical ESN

The content of this section is a replacement of the condition C2 where the validity of the ESP is
inferred for S ≤ 1.

Theorem 1. If hyperbolic tangent or the function of Equation (16) are used as transfer functions, the echo state
condition (see Equation (6)) is fulfilled even if S = 1.

Summary of the Proof. As an important precondition, the proof requires that both transfer
functions fulfill

d(θ(yt), θ(xt)) ≤ d(yt, xt)φk(d2(yt, xt)), (25)

where φk(z) is defined for a network with k hidden neurons as

φk(z) :=

{
1 − ηzκ if z < γ

1 − ηγκ if z ≥ γ
. (26)

Here, 1 > γ > 0, 1 > η > 0, κ ≥ 1 are constant parameters that are determined by the transfer
function and the metric norm d(., .) = ||.||2

In Appendix C it is shown that indeed both transfer functions fulfil that requirement. It then
remains to prove that in the slowest case we have a convergence in a process with 2 stages. In the
first stage, if d2(yt, xt) > γ there is a convergence that is faster or equal to an exponential decay.
The second stage is a convergence process that is faster or equal to a power law decay.

Proof. Note with regard to the test function φk:

φk ≤ 1,

∀z, ∀Z : 0 ≤ z ≤ Z ↔ φk(z) ≥ φk(Z),

and ∀z, ∀Z : 0 ≤ z ≤ Z ↔ Z × φk(Z) ≥ z × φk(z)

In analogy to Jaeger, one can check now the contraction between the time step t and t + 1:

d2(yt+1, xt+1) = d2(θ(ylin,t+1), θ(xlin,t+1))

≤ d2(ylin,t+1, xlin,t+1)× φk(d2(ylin,t+1, xlin,t+1))
(27)

One can rewrite

d2(ylin,t+1, xlin,t+1) = ||Wyt + I − Wxt − I||22 = ||W(yt − xt)||22, (28)
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where I = winut. Next one can consider that one can decompose the recurrent matrix by using singular
value decomposition (SVD) and obtain W = U ·S ·VT . Note that both U and V are orthogonal matrices
and that S is diagonal with positive values si on the main diagonal. We consider

a = VT(yt − xt).

Because V is an orthogonal matrix, the left side of the equation above is a rotation of the right
side and the length ||a|| is the same as ||yt − xt||. One can write

d2(yt, xt) = ∑
i

a2
i ,

where the ai are entries of the vector a. Since

ylin,t+1 − xlin,t+1 = USa

and U is again a rotation matrix, one can write

d2(ylin,t+1, xlin,t+1) = ∑
i

s2
i a2

i ,

where si is the i-th component of the diagonal matrix S, i.e., the i-th singular value.
In the following we define smax = maxi si and calculate

d2(ylin,t+1, xlin,t+1)× φk(d2(ylin,t+1, xlin,t+1))

= (∑i s2
i a2

i )× φk(∑i s2
i a2

i )

≤ (s2
max ∑i a2

i )× φk(s2
max ∑i a2

i )

≤ (s2
maxd2(yt, xt))× φk(s2

maxd2(yt, xt))

(29)

Merging Equations (27) and (29) results in the inequality

d(yt+1, xt+1) ≤ smaxd(yt, xt)× (φk(s2
maxd2(yt, xt))

0.5.

First, assuming smax < 1 and since we know φk ≤ 1, we get an exponential decay

d(yn, xn) ≤ st
maxd(x0, y0).

This case is handled by Jaeger’s initial proof. With regard to an upper limit of the contraction
speed (cf. Equation (6)), one can find

τ(ε) =
log ε − log(d(y0, x0))

log smax
.

If the largest singular value smax > 1, then for some type of connectivities (i.e., normal matrices)
the largest absolute eigenvalue is also larger than 1 due to the spectral theorem. In this case, the echo
state condition is not always fulfilled, which has been shown also by Jaeger.

What remains is to check the critical case smax = 1. Here again one can discuss two different
situations (rather two separate phases of the convergence process) separately:

If d2(ylin,t, xlin,t) > γ, we can write the update inequality of Equation (30) as:

d2(yt+1, xt+1) ≤ (1 − ηγκ)d2(yt, xt).
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Thus, for all ε2 ≥ γ, the slowest decay process can be covered by

τ(ε) =
2 log ε − 2 log(d(y0, x0))

log(1 − ηγκ)
.

If ε2 < γ, then Equation (30) becomes:

d2(yt+1, xt+1) ≤ d2(yt, xt)(1 − ηd(yt, xt)
2κ).

One can replace
qt = d2(yt, xt) (30)

and again consider the sequence
qt+1 = qt(1 − ηqκ

t ),

which is discussed in Appendix A. The result there is that the sequence converges faster than

q∗(t) = [
η

κ
t + q−κ

0 ]−1/κ . (31)

Note that, although the Lyapunov exponent (cf. Equation (7)) of q∗(t) is zero, the sequence q∗(t)
converges in a power law fashion. Thus,

lim
t→∞

q(t) = d2(yt, xt) = 0 (32)

and thus ESP has been proven.

Moreover, one can calculate the upper time limit τ(ε):

τ(ε) =
κ

η
(ε−2κ − a−κ

0 ).

6. Summary, Discussion and Outlook

The background of this paper is to investigate the limit of recurrent connectivity in ESNs.
The preliminary hypothesis towards the main work can be summarized in Figure 6. Initially it
is hard to quantify the transition point between uniformly state contracting and non-state contracting
ESNs exactly. However, for normal matrices and one-neuron networks the gap between the sufficient
condition and the necessary condition collapses in a way that there are two neighboring open sets.
The first open set is known to have the ESP, and the other open set evidently does not have the ESP.
What remains is the boundary set. The boundary set is interesting to analyze because it can easily be
shown that here power law forgetting can occur.

The proof of Section 4 shows a network is an ESN even if the largest eigenvalue of the recurrent
connectivity matrix is equal to 1 and if the transfer function is either Equation (15) or (16). The proof
is also extensible to other transfer functions. On the other hand it is obvious that some transfer
functions result in networks that are not ESNs. For example a linear transfer function (θ(x) = x) is not
state contracting.

Even if the network is state contracting, it is not necessarily exponentially uniformly state
contracting. Its rate of convergence might follow a power law in the slowest case. Several examples for
power law forgetting have been shown in the present work. More examples of preliminary learning
have been outlined in [7]. One important target of the present research is to allow for a kind of memory
compression in the reservoir by letting only the unpredicted input enter the reservoir.
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Figure 6. The graph illustrates the relation between the different conditions with regard to echo state
property (ESP). C1 and C2 are the necessary and sufficient condition according to Jäger [4]. The large
arrows represent the connectivity strength of the recurrent synaptic weight matrix W. For a small
connectivity strength the ESP is fullfilled (cyan areas). For a strong connectivity, the ESP is not
fulfilled anymore (green). C2+ represents symbolically the improvement of the sufficient condition
according to [13,14]. For general matrices there can be a non-zero gap between C2+ and C1 which
is drawn diagonally shaded. The transition from ESP to non-ESP happens somewhere within this
gap. All three conditions C1, C2 and C2+ describe an open set. In the case of normal matrices and
for one-neuron networks the gap is closed except for the separation line itself. The proof of Section 4
shows that there it depends on the transfer function if the network is an ESN or not.

One ultimate target of the present work is to find a way to organize reservoirs as recurrent filters
with a memory compression feature. In order to bring concepts of data compression into the field
of reservoir computing and in order to project as much as possible of the input history to the limit
size reservoir, principles of memory compression have to be transferred into reservoir computing.
However, the reservoir computing techniques that are analogous to classic memory compression have
not been identified so far.

Another topic that needs further investigation is entropy in time series. Power law forgetting is
only possible if the time series that relates to the criticality is either of a finite entropy, i.e., from a certain
point in time all following entries of the time series can be predicted from the previous entries, or if the
network simply ignores certain aspects of the incoming time series.

There also potential analogies in biology. Several measurements of memory decay in humans exist
that reveal that there the forgetting follows a power law at least for a large fraction of the investigated
examples [20,21].
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Notations in Formulas

s(M) vector of singular values of matrix M
S diagonal matrix of singular values
smax largest singular value of a matrix
λ(M) vector of eigenvalues
|λ|max the maximum of the eigenvalues in modulus
θ(.) R → R transcendental transfer function
θ′, θ̇ its derivative
win

R
n×k input matrix

W R
k×k recurrent transfer matrix

wout
R

k×m output matrix
ut R

n input time series
ū∞ complete infinite input time series
xt R

k hidden layer states
yt R

k alternative hidden layer states to check convergence
ot training set
õt trained network output
d(., .) ||.||2 distance measure that is used to check convergence
F(.) vector of a set of linearly independent, non-linear functions
Fū∞ ∈ F dynamics of the network with regard to the input
Fcrit all dynamics that show power law forgetting
qū∞ ,t time series related to forgetting in ESNs
qt time series variable
φ1() cover function to estimate contraction in a 1 neuron net
φk() dto. for a k neuron network
η, κ, γ const parameters of both φ1 and φk
Λū∞ Lyapunov exponent of a neural network wrt. an input time series ū∞

Appendix A. Analyze qt+1 = qt(1 − ηqκ
t )

We can consider the sequence qt:

qt+1 = qt(1 − ηqκ
t ). (A1)

Convergence can be analyzed in the following way:

Δqt = qt+1 − qt = −ηqκ+1
t . (A2)

Thus, the series qt+1 can be written as

qt+1 = ∑
t′<t

Δqt′

Thus one comes up with the following discrete formula

Δqt′ = −ηqκ+1
t′ . (A3)

Since κ ≥ 1 and 1 > η > 0, convergence towards null is obvious here. In addition since the
right side of Equation (A3) is decreasing continuously it is obvious that it is converging fast than the
corresponding solution of the differential equation for a function q∗:

dq∗
dt

= −ηqκ+1∗ ,
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which is easily solvable to:

− 1
κη

q−κ∗ = t + C,

where C is the integration constant. From this solution, by setting q0 = q∗(0) one can derive

q∗(t) = [
η

κ
t + q−κ

0 ]−1/κ .

Note that
lim
t→∞

q∗ = 0.

Simple algebraic considerations show that q∗(t) covers the sequence qt. For a strict proof see
Appendix B.

Thus,
q∗,t ≥ qt

for all t > 0 if
q∗,0 = q0

So, the sequences q∗,t and qt converge to zero.

Appendix B. Sequence q∗,t Covers up Sequence qt

In the following, identical definitions to Section 4 are used. One can start from the statement

− η

κ
≥ −η. (B1)

Since η ≥ 0 and κ ≥ 1, it can easily be seen that the inequality is fulfilled for any combination of s,
η and κ. One can now extend the numerator and denominator of the right side by ( η

κ t + C) and add
also ( η

κ t + C) to both sides of the inequality. Here and in the following C is defined as

C = q−κ
0 ≥ 1. (B2)

One obtains
η
κ t + C − η

κ ≥ ( η
κ t + C)− ( η

κ t + C) η
η
κ t+C

. (B3)

A rearrangement of the right side results in

η
κ t + C − η

κ ≥ ( η
κ t + C)× (1 − η

η
κ t+C

). (B4)

One can add η
κ to both sides and obtain

η
κ t + C ≥ sη

κ + ( η
κ t + C)× (1 − η

sη
κ t+C

). (B5)

Now, one can use the fact that

1 ≥ 1 − η
η
κ t + C

≥
(

1 − η
η
κ t + C

)κ

and
η

κ
≥ η

κ
×

(
1 − η

η
κ t + C

)
≥ η

κ
×

(
1 − η

η
κ t + C

)κ
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and thus rewrite inequality Equation (B5) as

η

κ
t + C ≥ (

η

κ
t + C +

η

κ
)×

(
1 − η

η
κ t + C

)

and finally arrive at

(η

κ
t + C

)
≥

(η

κ
t + C +

η

κ

)
×

(
1 − η

η
κ t + C

)κ

.

One can multiply both sides by
( η

κ t + C + η
κ

)−1 × ( η
κ t + C

)−1. So,

(η

κ
t + C +

η

κ

)−1 ≥
(η

κ
t + C

)−1 ×
(

1 − η
η
κ t + C

)κ

.

Taking the kth root on both sides one gets

(η

κ
t + C +

η

κ

)−1/κ ≥
(η

κ
t + C

)−1/κ ×
(

1 − η
η
κ t + C

)
.

One can rearrange the inequality to:

( η
κ t + C + η

κ

)−1/κ ≥ ( η
κ t + C

)−1/κ ×
(

1 − η
( η

κ t + C
)−1

)
( η

κ (t + 1) + C
)−1/κ ≥ ( η

κ t + C
)−1/κ ×

(
1 − η

(( η
κ t + C

)−1/κ
)κ) (B6)

Using the definitions of q∗,t and q∗,t+1, i.e.,

q∗(t) = [
η

κ
t + q−κ

0 ]−1/κ ,

one has finally

q∗,t+1 ≥ q∗,t × (1 − η(q∗,t)
κ) . (B7)

proven as a true statement. Thus,
q∗,t ≥ qt ≥ d(yt, xt)

for all t > 0 if
q∗,0 = q0 = d(y0, x0).

Thus, the positive definite sequence q∗,t covers d(yt, xt).

Appendix C. Weak Contraction with the Present Transfer Function

In this appendix a test function of the form of Equation (26), is verified for the function of
Equation (16) and hyperbolic tangent. Within this section we test the following values

η =
1

48 × n2 , γ =
1
2

and κ = 2, (C1)

for both transfer functions and square norm (||.||2), and n-neurons. In order to derive these values,
one can start by considering linear responses ||ylin,t − xlin,t|| and the final value ||yt − xt|| within one
single neuron as
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yt = θ(ylin,t)

and xt = θ(xlin,t).
(C2)

We can define
ylin,t,i = Δi + ζi, xlin,t,i = ζi, and xt,i − yt,i = δi (C3)

where i is the index of the particular hidden layer neuron. Note that

||ylin,t − xlin,t||2 = ∑
i

Δ2
i , ||yt − xt||2 = ∑

i
δ2

i .

Appendix C.1. One-Neuron Transfer

In this section considerations are restricted to the case in which one has only one neuron in the
hidden layer. For the sake of simplicity, the subscript index i is left out in the following considerations.

Setting in the definitions of Equation (C3) into the square of Equation (25) and for a single neuron
and for any ζ we get

Δ2 φ1(Δ2) ≥ (θ(Δ + ζ)− θ(ζ))2 .

Thus, it suffices to consider
φ1(Δ2) ≥ max

ζ
ω(Δ, ζ), (C4)

where

ω(Δ, ζ) =

(
θ(Δ + ζ)− θ(ζ)

Δ

)2

The maxζ can be found by basic analysis. Extremal points can be found as solutions of

∂
∂ζ ω =

∂
∂ζ

[(
θ(Δ+ζ)−θ(ζ)

Δ

)2
]
=

2(θ(Δ+ζ)−θ(ζ))×(θ̇(Δ+ζ)−θ̇(ζ))
Δ2 = 0.

(C5)

This can only be fulfilled if
θ̇(Δ + ζ)− θ̇(ζ) = 0

Since θ′ is an even function for both suggested transfer functions, one gets ζ = −z/2 as
the extremal point. Fundamental analysis shows that this point in both cases is a maximum.
Thus, requiring

φ1(Δ2) ≥
[

2θ(Δ/2)
Δ

]2

(C6)

also would satisfy Equation (C4).
Numerically, one can find parameters for φ1 that are η = 1/48 and κ = 2 of as in Equation (C1).
For Δ2 > γ, it suffices to check if

4tanh2(Δ/2)
Δ2 ≤ 1 − ηγκ

First the inequality is fulfilled for Δ2 = γ. Since the left side of the equation above is strictly
decreasingfulfilled for all values Δ2 > γ.

Analogous considerations lead to the same parameters to cover up the transfer function from
Equation (16).
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Appendix C.2. Multi-Neuron Parameters

For several neurons one has to consider the variational problem of all possible combinations of
values of Δi. One can start from the proven relation from the previous section,

δ2
i ≤ Δ2

i φ1

(
Δ2

i

)
Thus,

∑
i

δ2
i ≤ ∑

i

(
Δ2

i φ1

(
Δ2

i

))
,

implying that

∑
i

(
Δ2

i φ1

(
Δ2

i

))
≤ ∑

i
Δ2

i − Δ2
max + Δ2

maxφ1(Δ2
max), (C7)

where Δ2
max = maxi Δ2

i . The smallest possible Δ2
max is

∑i Δ2
i

n
,

Substituting into Equation (C7), we get

∑
i

Δ2
i − Δ2

max + Δ2
maxφ1(Δ2

max) ≤

∑
i

Δ2
i −

∑i Δ2
i

n
+

∑i Δ2
i

n
φ1(

∑i Δ2
i

n
) =

(∑
i

Δ2
i )φ1(

∑i Δ2
i

n2 ).

Thus, the inequality (which is equivalent to Equation (25)),

∑
i

δ2
i ≤

(
∑

i
Δ2

i

)
φk

(
∑

i
Δ2

i

)
,

is fulfilled if φk is defined as

φk(x) = φ1

( x
n2

)
.

Thus, the parameters from Equation (C1) fulfil the inequality of Equation (25).
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Abstract: We apply a network complexity measure to the gap junction network of the somatic
nervous system of C. elegans and find that it possesses a much higher complexity than we might
expect from its degree distribution alone. This “excess” complexity is seen to be caused by a relatively
small set of connections involving command interneurons. We describe a method which progressively
deletes these “complexity-causing” connections, and find that when these are eliminated, the network
becomes significantly less complex than a random network. Furthermore, this result implicates
the previously-identified set of neurons from the synaptic network’s “rich club” as the structural
components encoding the network’s excess complexity. This study and our method thus support
a view of the gap junction Connectome as consisting of a rather low-complexity network component
whose symmetry is broken by the unique connectivities of singularly important rich club neurons,
sharply increasing the complexity of the network.

Keywords: complexity; computational neuroscience; C. elegans; neural connectome; rich club; vulnerability

1. Introduction

It is increasingly clear that the specific connectivities of biological networks are far from random.
In neuroscience, the overall behavior and dynamics of a neuronal network is dictated both by the
properties of individual neurons, and by the specific complex structure of the network through which
they are connected [1,2]. Understanding the behavior of such a neuronal network must therefore
involve inferring its underlying structural properties and design principles. However, it is unclear a
priori which structural features of a network are most important in doing so. Distinguishing these
important features is one of the goals in quantifying the complexity of a network, as a measure of
network complexity could allow us to determine which features of a network cause it to be complex,
and to infer then the purpose of these complex structures.

As of yet, there exists no broadly accepted definition of network complexity which would allow
for its unambiguous quantification, though many quantitative measures have been proposed and
applied [3,4]. A necessary property of any such measure, however, is that it must distinguish complex,
structured networks from networks which are either completely random or completely ordered.
One such measure was developed by Sakhanenko and Galas [5] who defined a general complexity
measure, based in the Kolmogorov complexity, which correctly vanishes in these limiting cases.
Indeed, even this simple approach appears capable of indicating certain complex structures existing
within the network [5,6].

If a network is determined via some measure to be highly complex, the question yet remains: what
is the source of that complexity? That is, what are the substructures or features of the network which
make it “complex”? Can these measures be applied in such a way so as to identify complexity-causing
structures within the network, and can we attribute biophysiological meaning to these structures?
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The nematode C. elegans is an ideal system in which to attempt to address such questions.
It remains the only organism for which the full connectivity of its neuronal network (its “Connectome”)
is known. The C. elegans Connectome consists of both directed synaptic connections and undirected
gap junction connections among its 302 neurons [7]. These neurons can be broadly classified as
sensory neurons (those receiving external sensory input), motorneurons (those synapsing onto muscle),
or, otherwise, as interneurons (if lacking explicit sensory input or motor output) [7]. Despite not
directly receiving external input or driving motor output, many interneurons play important
computational roles in the network. For example, the “command” interneurons are individually
crucial to the control of locomotion; for example, if the command interneuron pair AVAL/R is ablated,
the ability of the worm to crawl backwards is severely diminished, whereas ablating the command
interneuron pair AVBL/R diminishes the ability of the worm to crawl forwards [8].

Even with its relatively small nervous system, C. elegans is capable of a fairly broad range
of behaviors. In addition to responding to a range of mechanical and chemical stimuli [8–10],
the worm must navigate [11], mate [12,13], and lay eggs [14,15]. The network controls these various
behaviors through shared pathways of overlapping subcircuits, all while the structure appears to
approximately minimize the wiring cost between nodes [16]. Previous studies indicate that, as with
other neuronal networks [17–23], the network partially accomplishes this trade-off through its “rich club”
structure, having a highly-connected hub of “rich” neurons with high betweenness centrality [24].
The specifically-tuned complex structure of the network may ultimately encode behavioral responses
to inputs. For example, simulations of Connectome dynamics which treat all neurons as identical units
are capable, through their connectivity structure alone, of generating biophysiologically reasonable
dynamical responses to specific inputs (e.g., in [25]).

It was recently demonstrated by Kim et al. [26] that vulnerability analysis is capable of identifying
many important functional structures within the C. elegans connectome. The core idea of vulnerability
analysis is that important links or nodes within the network can be identified by considering the
amount by which different structural properties of the network change when said link/node is
removed. Kim et al. computationally analyzed the effects of removing any one given node/edge from
the Connectome on its clustering coefficient, global efficiency, and betweenness centrality, and found
that such an approach identified biophysiologically relevant subcircuits.

In this paper, we study the complexity of the C. elegans gap junction Connectome based on our
previously defined measure and find that it is vastly more complex than a random graph with the same
degree distribution. Its complexity score is 16.5 standard deviations above the randomly-expected
mean (see Methods Section 4.5 for specifics). We then extend the use of vulnerability analysis on the
C. elegans connectome by considering how the complexity of the graph is altered if any given edge is
deleted. A large fraction of the network’s complexity is seen to be caused by a relatively small set of
connections involving the known “command” interneurons. We then extend the idea of vulnerability
analysis by using a greedy algorithm to iteratively delete these “complexity-causing” connections.
When these links are eliminated, the network becomes significantly less complex than a random graph.
Furthermore, the deleted structure is seen to have a clear biophysical interpretation: our algorithm
implicates a set of edges involving neurons from the synaptic network’s “rich club” as being the source
of the network’s excess complexity. Thus, this study supports a view of the Connectome as consisting
of a low-complexity structure whose complexity is dramatically enhanced by the addition of unique
connectivities of the network’s rich club.

2. Results

2.1. Investigation of Small, Random Networks

We begin our exploration of complexity/vulnerability analysis by considering graphs small
enough to be easily visualized. We generated 10,000 random Erdős–Rényi networks, all of which
had exactly 12 nodes each of degree four. This node count and degree were chosen heuristically
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such that the network would be small, but still large enough to allow for a very large number of
possible connection schemes and complex structures. We investigate the complexity of these graphs by
calculating the measure Ψ(G), the aforementioned complexity measure developed in [5]. As detailed
further in the Methods section, this measure is calculated as:

Ψ(G) =
1

N(N − 1) ∑
i

∑
j �=i

max (Ki, Kj)mij(1 − mij), (1)

where the graph G consists of N nodes, Ki is a measure of the complexity of the individual node i,
and mij is the mutual information between the connection patterns of nodes i and j. By construction,
the summand vanishes when either mij = 0 (as in random graphs) or mij = 1 (when i and j are
completely redundant). Complex networks reside between these two limiting cases.

Calculating Ψ(G) for each of the small random graphs gives the distribution shown in Figure 1a.
The very lowest and very highest values found were Ψ(Gmin) = 0.120 and Ψ(Gmax) = 0.553,
respectively. The graphs corresponding to these extreme values are shown in Figure 1a.

...

Random Graph Complexity
400

300

200

100

N
um

be
r 

of
 G

ra
ph

s

0.1 0.2 0.3 0.4 0.5 0.6

(a) Network Complexity Measure

(b) Complexity Vulnerability Greedy Algorithm

Figure 1. (a) To illustrate our method, we generated 10,000 random Erdős-Rényi networks, all with
12 nodes of four degrees. The distribution of our complexity measure Ψ(G) is shown, along with the
networks having the lowest and highest Ψ(G) values; (b) ΔΨ of an edge is the amount by which Ψ(G)

is reduced if that edge is removed. We progressively delete the edges with the highest ΔΨ at each step.
In this example, most of the complexity in the graph is contained within the upper pentagram-shaped
connection structure; the elimination ordering reveals these “complexity-causing” structures.

In Figure 1b, we illustrate our greedy edge-elimination procedure, starting with the high-complexity
graph Gmax. At each step, we individually delete every edge and calculate what the complexity of the
graph would be without said edge. The edge causing the largest drop in Ψ (i.e., the highest magnitude
of ΔΨ) is then chosen for deletion, giving the partially-deleted graph G(1)

max. This procedure is then
iterated, recalculating each edge’s ΔΨ within the partially deleted graph (i.e., ΔΨ is re-calculated for
all edges at each step).

It is interesting that the greedy procedure eliminates almost all of the edges from the
pentagram-shaped structure before deleting any edges from the rest of the network. This suggests that
the iterative elimination procedure may best reduce the network complexity by initially “attacking”
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a distinct structure within the network, rather than multiple, or more widely distributed structures.
This suggests that we can usefully search for the property that unites the edges chosen for early
elimination, as it may carry some structural significance. Specifically, we should consider any
biophysiological significance associated with these edges; we suspect that the identified complex
structures may be biophysically relevant, as complex network structures are capable of encoding
biophysically important network dynamics [2,27].

2.2. Application to C. Elegans Data

Using the C. elegans connectome data from Varshney et al. [7], we then proceed to apply the same
edge-eliminating procedure to the C. elegans gap junction network. We focus here on the subnetwork
of 253 somatic neurons which have both synaptic and gap junction connections. For this analysis,
we ignore the weighting of each connection (i.e., number of gap junctions and gap junction connection
strengths), simply labeling each pair of neurons as connected or unconnected. Thus, we represent the
network as a binary, undirected graph with 253 nodes, connected by individual 514 edges.

Calculating Ψ for this network reveals that, by this measure, the C. elegans gap junction network is
extraordinarily complex. We compare the actual gap junction network’s complexity to the complexity of
10,000 randomly-rewired networks, all of which have the exact same degree distribution (see Methods
Section 4.5 for more information). Given its degree distribution, a random graph would have
a complexity within an approximately normal distribution with a mean and standard deviation of
Ψ(Grand) = 0.001173 ± 0.000015. The neuron graph, however, has a complexity of Ψ(Ggap) = 0.00143,
about 16.5 standard deviations above the random graph average. This distribution is plotted in
comparison with the actual value in Figure 2.
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Figure 2. The C. elegans gap junction connectome has a complexity score of Ψ(Ggap) = 0.00143.
For comparison, we generated 10,000 random networks with the same degree distribution and
calculated Ψ(G) for each. The distribution of Ψ(Grand) is approximately normal, with an average score
of Ψ(Grand) = 0.001173 ± 0.000015. Thus, the actual C. elegans gap junction network has a complexity
16.5 standard deviations above the mean value for its degree distribution.

Which edges are most responsible for this unusually high complexity? We use our edge deletion
approach to explore this question. We begin by calculating ΔΨ for every edge (i.e., the amount by
which the network complexity would change were that edge deleted). The distribution of ΔΨ values
is shown in Figure 3. A few outliers are immediately apparent: the link between the command
interneuron pair AVAL/AVAR, and the link between another command interneuron pair AVBL/AVBR.
This suggests that the important biophysiological role of these neurons may be reflected in the relative
complexity of their connection schemes. It is interesting that all edges to the left of the red dotted line
implicate at least one interneuron.
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Figure 3. Distribution of ΔΨ values for the intact C. elegans gap junction connectome. The link between
the command interneuron pair AVAL/AVAR is a clear outlier, causing by far the largest drop in network
complexity. It is notable that every edge below the red line at ΔΨ = −1.083 involves at least one
interneuron. Another notable feature is that some deletions will actually increase the complexity:
deleting the edge between the motor neurons VB03/VA07 causes Ψ(G) to increase slightly.

We repeat the iterative, greedy edge-elimination procedure illustrated in Figure 1b, this time
altering the C. elegans network. As it is intended to do, the procedure reduces the complexity
of the network monotonically, eventually reducing the complexity to zero by deleting all edges.
The complexity decay curve for the neuron graph is plotted in blue in Figure 4a. At each iteration,
we generated 256 random graphs with the same modified degree distribution and plotted this
distribution of random graph complexities in red.
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Figure 4. (a) We iteratively delete connections with the highest ΔΨ, causing the complexity to decay as
shown by the blue curve. At each point, we calculate Ψ(Grand) for 256 random graphs with the same
degree distribution. The red line shows the mean Ψ(Grand), with the red band showing the range ±2σ;
(b) the same data converted to z-score (i.e., the number of standard deviations by which the actual
network differs from random). The C. elegans gap junction network is initially much more complex
than randomly expected, but as we successively delete edges, it reveals an underlying network that is
much less complex than random.

This comparison is made clearer by converting the same data to z-scores (i.e., the number of
standard deviations by which the C. elegans curve is away from the mean). This z-score curve is
plotted in Figure 4b. As edges are progressively deleted, the complexity decays towards the randomly
expected value, lying near the middle of the random range after about 100 deletions (about 25% of the
edges). As edge deletion continues, however, the graph ultimately becomes much less complex than
what one expects for a random graph. This suggests that the the graph consists of a low complexity
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component, connected with a smaller component connected to it that is responsible for the resulting
excess complexity of the entire structure.

2.3. Complex Structure and the Rich Club

The discovery of a minority of edges that are particularly important to the complex structure of the
network is reminiscent of the graph’s “rich club” property. Rich clubs within a graph are sets of high-degree
nodes (the so-called “rich” nodes) which are highly interconnected. A rich node is more likely to connect
with other rich nodes than one would expect at random, forming a highly-interconnected hub within
the network that is important to the network’s function. This rich club structure appears in many
complex networks [28] and helps to achieve a topologically desirable network (e.g., with high efficiency
and centrality) for a relatively small wiring cost [16]. In neuroscience, a rich club architecture appears
to be present in systems ranging from C. elegans to humans [17–24].

The C. elegans synaptic network was shown by Towlson et al. [24] to possess a rich club structure.
We consider the set of neurons which they identified as the “rich club” due to their associated biological
significance, though it should be noted that the gap junction network does not itself have the same rich
club structure. Using the terminology of Towlson et al. [24], each edge in the graph can be classified
as a “club” edge (if it connects two rich nodes), a “feeder” edge (if it connects a rich, high degree
node to a poor node), or a “local” edge (if it connects two poor nodes). This is illustrated in Figure 5a.
In Figure 5b, we label each edge in our deletion order according to these classes. This shows that the
iterative procedure disproportionately targets club and feeder edges: out of the first 100 edge deletions,
19% are local, 74% are feeder, and 7% are club. By comparison, the intact network edges are about
69% local, 29% feeder, and 2% club. A χ2-test shows that the probability of randomly drawing as
many feeder and club edges out of the network is less than p < 10−25; thus, the edge selection process
heavily targets the rich club. This disproportionate targeting can be seen by looking at the percentage
of each class that has been deleted at each iteration, as shown in Figure 5c.
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Figure 5. (a) As in [24], the C. elegans synaptic Connectome can be understood to have a “rich club”
structure. Edges are classified as “Club” (if between two rich nodes), “Feeder” (if between a rich and
poor node), or “Local” (if between two poor nodes); (b) the same curve as Figure 4b, with each deleted
edge labeled by class. In the region where the graph is much more complex than average, the procedure
disproportionately targets Club and Feeder edges; (c) the fraction of each class which has been deleted
at each iteration.
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2.4. Complex Structure beyond Degree

The rich club is important to several complex topological properties of the network, but a node’s
membership in the rich club is ultimately determined by its degree. The “rich club” nodes we consider
are defined from their synaptic connectivity, and we are considering the gap junction network, but there
is a positive correlation between a node’s gap junction degree and synaptic degree. It is therefore
possible that this complexity-reduction procedure could yield a similar result (i.e., apparent targeting of
the rich club nodes) if it were simply reducing the degrees of the highest-degree nodes. Figure 6a plots
the initial degree distribution of the graph and shows that the first implicated edge (i0, j0) is indeed
between the first and second mostly highly-connected nodes. Could such a simple criterion explain
these results, or is the procedure indeed targeting a more sophisticated structure?

Referring to Figure 1b, we suspect that the edge elimination order is not so trivial. After all,
the procedure continued to target the pentagram-shaped structure even after those nodes had been
trimmed to a very low degree. Indeed, we see similar results in the C. elegans network: Figure 6b shows
how highly ranking the degree of the targeted nodes are at each step of the elimination procedure
(i.e., whether or not the edge includes the 1st most highly connected node, the 2nd most highly
connected node, and so on). Note that, at any given step, there are no more than 18 unique degrees
(as there are many nodes sharing the same number of connections). For example, the second edge to
be deleted is the edge between AVBR and AVBL, which have degrees 29 and 24, respectively. These
are the 3rd and 4th highest degrees in the network at this point of the procedure, and so a blue marker
is plotted at a node degree rank of 3. As can be seen in Figure 6b, many of the subsequent edge
deletions do not implicate the most highly connected nodes. The highest-complexity edges are not
simply determined by the degree of the implicated nodes.
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Figure 6. (a) the initial degree distribution of the graph. Each node has one of 16 unique degree values,
which we label by their relative rank from highest to lowest. The first implicated edge (i0, j0) connects
nodes with degree ranks 1 and 2, such that its “Maximum Degree Rank” is 1; (b) the maximum degree
rank of the subsequently targeted edges, plotted in blue. The green line indicates the number of unique
degrees, which changes as the degree distribution is altered. The procedure does tend to trim edges
to relatively highly connected nodes, but this relationship is not the driving criterion, and it does not
simply choose edges based upon connectivity level alone.
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2.5. Robustness to Specific Elimination Order

How robust are these results to the specific order in which edges are eliminated? To address this,
we conduct 50 trials in which we calculate the decay of Ψ(G) when we delete all club edges in a random
order, then delete all feeder edges in a random order, and then delete all local edges in a random order.
The resulting distribution of complexity curves is shown in Figure 7. The random Club/Feeder/Local
edge deletion orderings result in a smaller decrease in complexity than the algorithmically-determined
ordering, which is unsurprising given the “greedy” nature of our edge-elimination procedure.
However, the result is much more drastic when we conduct 50 trials in which we first delete the local
edges, then the feeder edges, and then the club edges. This suggests that it is indeed appropriate to think
of the network’s high complexity as being disproportionately caused by the club and feeder edges.
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Figure 7. In 50 trials, we deleted all club edges in a random order, then all feeder edges, and then
all local edges. The red/green/blue bands show the average resulting complexity curve within one
standard deviation. This was repeated for 50 trials in which we instead deleted local edges, then
feeder edges, and then club edges. The resulting distribution of complexity curves is indicated by the
blue/green/red bands. The edge deletion order prescribed by our algorithm (i.e., the blue curve in
Figure 4a) is shown by the black dotted line. A random Club/Feeder/Local deletion order results
in a significantly slower complexity decay than our algorithm prescribes, but leads to a much larger
decrease in complexity than the Local/Feeder/Club ordering. Thus, the results implicating the rich
club are robust to the specific edge deletion order.

2.6. Robustness to Initial Edge Choice

We may similarly investigate the effect of choosing a different edge at the first deletion step.
Consider again the example in Figure 1b, in which the iterative procedure initially targets nearly
all of the edges within the upper pentagram-shaped structure. We interpreted this to mean that
the pentagram-shaped structure was primarily responsible for the high complexity of the network.
However, one could posit that the lower portion of the graph was similarly complex and that initially
deleting an edge in the upper portion simply biased the iterative procedure towards targeting that
portion of the graph. Does the initial edge deletion bias the procedure in this manner?

We directly investigated this possibility by repeating the analysis of Figure 5, but with an arbitrary
edge chosen at the first deletion step (followed by the greedy iterative deletion procedure). This was
repeated for all possible choices of initial edge deletions (i.e., for all 514 edges). When AVAL/AVAR is
chosen initially (as in the full greedy procedure), the results are, of course, identical to the previous
results. For all of the other 513 initializations, however, the greedy procedure chooses AVAL/AVAR as
the very next edge to be deleted. Furthermore, the procedure continues to target club/feeder edges
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in largely the same manner. Figure 8 shows the order in which edges of each class are deleted for all
possible initial edge choices. Despite minor variations in edge ordering, the order in which edges
are targeted by the greedy procedure appears to be largely robust to the initial edge choice, and the
disproportionate targeting of club/feeder edges does not depend upon this initialization.
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Figure 8. The greedy edge-elimination procedure was repeated for all possible choices of initial edge
deletions (i.e., the edge chosen for deletion at the first step). Each row corresponds to a different choice
of initial edge, with each column showing the class of the edges subsequently deleted by the iterative
procedure. Club and Feeder edges are targeted disproportionately regardless of the initial edge choice.

3. Discussion

This study shows that the C. elegans neuron gap–junction network is vastly more complex than
one would expect at random given its degree distribution. Expanding the concept of vulnerability
analysis, we analyzed the complexity vulnerability of the graph and used an iterative procedure
to successively eliminate edges based upon how much each deletion reduced graph complexity.
After many edge deletions, we were left with a graph much less complex than an equivalent random
graph. This suggests that the majority of the graph consists of a low complexity component that can
be described fairly simply, and a subset of edges, which is responsible for the excess complexity of the
network. This complexity-causing set of edges belongs disproportionately to the neurons which are
members of the associated synaptic network’s previously-identified rich club.

The fact that the procedure reduces the graph to one with a remarkably low complexity raises
interesting questions concerning the topology of graphs. Many graphs, particularly in biology and
neuroscience and including the C. elegans neuronal network, are rather well-described by a collection
of over-represented motifs [7,29–31]. A common view of neuronal networks, as consisting of a highly
structured graph of repeated motifs with the repetitive structure violated by important hub neurons,
is interesting to compare with the results in Figure 4. Is the iterative procedure simply stripping away
these hub structures to leave a simple, highly-repetitive core? Given that this complexity measure
disappears when the mutual information between nodes approaches 1, it is plausible that particularly
motif-heavy graphs, consisting of sets of nodes having similar connectivity patterns/high mutual
information, may be classified as having a particularly low complexity by this measure. The exact
relationship between motif structures, symmetry and symmetry-breaking and their effects upon
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network complexity measures deserves a deeper theoretical investigation, which will be the subject of
future work.

These results also suggest that future work should investigate the broader range of structural
properties to which this complexity measure is sensitive. It is important to note that this procedure
does not simply identify rich-club structure; recall that we consider the “rich club” set of neurons due
to its previously-identified importance, but this set is defined from the synaptic network, not the gap
junction network, which lacks such structure. What functionally relevant structures does this approach
reveal, and what are the associated topological properties? For example, one could consider the
change in average betweenness centrality as nodes are iteratively deleted. Initially, the network has an
average betweenness which is a factor of about 1.29 higher than that of a random graph (with the same
degree distribution). After 40 deletions, this factor is reduced to 1.22. This small reduction does not
appear to explain the large reduction in relative complexity over the same range (as seen in Figure 4).
Other preliminary work has been similarly inconclusive, suggesting that the relationship between
complexity and other topological measures is nontrivial. The more general relationship between
network complexity and various other global topological properties of the network is beyond the
scope of this paper, but the subject of future work.

How would the identified structures differ if one uses a different quantification of network
complexity? There is no universally recognized quantification of network complexity, and many such
measures exist [3,4,32,33]. Furthermore, the Ψ measure is inherently dependent only on pairwise
measures of connectivity in the sense that it is a sum over pairs of mutual information between nodes
based on their connectivity. Measures that include higher numbers of nodes and their informational
interdependence might reveal other features [23,32,33]. It should be possible to perform a similar
deconstruction procedure using other measures, which may distinguish different features and could
prove useful both as a tool for the exploration of the structure of networks and for illuminating the
differences between the measures themselves.

Further development of network complexity quantification and exploration of different measures
could incorporate information which we have ignored thus far in our analysis. Since we used an
undirected network complexity measure, we focused upon the undirected gap junction network. However,
the directed synaptic network is also vitally important, and the method can be modified to incorporate
directed connections. Similarly, we consider the unweighted binary graph, ignoring edge-weighting
data such as the number of gap junctions between each node. Future analysis could make use of such
information, perhaps by using previously-developed extensions of this complexity measure to include
multiple edge types [6].

In spite of these current limitations, this study strongly suggests that quantifying a network’s
global complexity, performing vulnerability analysis using this complexity measure, and then
iteratively eliminating edges based upon their vulnerability at each step is a useful direction for
identifying physiologically important structures within complex graphs. Such methods are increasingly
important as increasingly large and difficult-to-comprehend neuronal networks are measured by the
burgeoning field of connectomics [34–36]. In a real network, the interaction between the structural
features, the behavior and flexibility of the network function, the vulnerability to damage and
the costs of wiring the networks are fundamental. The trade-offs can only be fully understood by
careful quantitative analysis of the kind begun here. Given the potentially scale-invariant nature of
neuroscience networks [24], the architectural principles we infer from these complex networks may
yield broader design insights into the function and structure of nervous system networks.

4. Materials and Methods

4.1. Network Complexity Ψ(G)

The graph complexity measure Ψ(G) is an information theoretic measure with a basis in the
Kolmogorov complexity and was introduced and explored for undirected binary graphs by Sakhanenko
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and Galas [5]. Consider an undirected binary graph with N nodes, characterized by a symmetric
adjacency matrix A = {aij}, where aij = 1 if nodes i and j are connected, and aij = 0 if they are
not. The measure is based on a Shannon-like description of information, such that the fundamental
properties of a node are its connection probabilities. We denote the connection probability of node i by:

pi(1) =
1

N − 1 ∑
j �=i

aij. (2)

Similarly, the disconnection probability is given by:

pi(0) =
1

N − 1 ∑
j �=i

(1 − aij). (3)

The complexity of an individual node is then given by:

Ki =
1

∑
a=0

pi(a) log2(pi(a)). (4)

We can then calculate the mutual information between two nodes i an j:

mij =
1

∑
a=0

1

∑
b=0

pij(a, b) log2

(
pij(a, b)

pi(a)pj(b)

)
. (5)

The graph complexity Ψ can then be calculated from the mutual informations and individual
node complexities:

Ψ =
1

N(N − 1) ∑
i

∑
j �=i

max(Ki, Kj)mij(1 − mij). (6)

Note that the summands will disappear when either mij = 0 or mij = 1. The former case is when
the connectivity patterns of the two nodes contain no information about the other, as is the case of
infinite random graphs. The latter case occurs when two nodes carry perfect information about the
other, as is the case with completely connected or completely disconnected graphs. Thus, the graph
complexity will disappear in both of these limiting cases.

4.2. ΔΨ(G) and Iterative Edge Removal

Our greedy algorithm for complexity vulnerability analysis consists of iteratively deleting the graph
edges whose deletions cause the largest reduction in graph complexity. That is, for an initial adjacency
matrix A(0), we consider all one-edge deletions and recalculate the resulting Ψ, finding the edge (i1, j1)
which causes the largest reduction in Ψ when deleted. We refer to the new adjacency matrix, with the
single edge deletion, as A(1). We then repeat this process with A(1) to identify (i2, j2). This is repeated
until all N edges are deleted, yielding an edge deletion order e = {(i1, j1), (i2, j2), (i3, j3), ..., (iN , jN)}.

For notational purposes, we define a matrix Δ(i, j) which is equal to one at entry (i, j) and is zero
for all other entries. That is,

Δ(i′, j′)ij =

{
1, if (i, j) = (i′, j′),
0, otherwise.

(7)

This allows us to write the adjacency matrix with a single edge deletion at (i′, j′) as A − Δ(i′, j′).
We select the first edge to delete by calculating:

(i0, j0) = argmin
i,j

[Ψ(A(0) − Δ(i, j))]. (8)
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That is, we choose the indices of the edge deletion resulting in the graph with the least complexity.
We can write the resulting adjacency matrix as:

A(1) = A(0) − Δ(i0, j0). (9)

We write the corresponding change in complexity as:

ΔΨ(1) = Ψ(A(1))− Ψ(A(0)). (10)

This process is repeated iteratively until all edges are deleted. At the nth edge deletion we
may write:

(in, jn) = argmin
i,j

[Ψ(A(n) − Δ(i, j))], (11)

A(n+1) = A(n) − Δ(in, jn). (12)

4.3. Illustrative Example: 12 Nodes of Four Degrees

Using the Python package graph-tool [37], we generated 10,000 random Erdős–Rényi graphs,
all consisting of 12 nodes which all have degree four. We calculated Ψ for all of these 10,000 graphs,
giving the distribution seen in Figure 1a. We then applied the iterative edge-removal procedure from
Section 4.2 to the random graph which had the highest value of Ψ. This gave the edge removal ordering
as partially visualized in Figure 1b.

4.4. The C. Elegans Connectome

The C. elegans neuronal network consists of 302 neurons connected via both a directed synaptic
network (with 6393 synapses) and undirected gap junction network (with 890 gap junctions) [7].
The bulk of these neurons, 282 out of 302, belong to the somatic nervous system. We use the connectivity
data for the giant component of the somatic nervous system, consisting of 279 neurons, as provided by
Varshney et al. [7], who consolidated and updated earlier connectome measurements [38–40].

Since this work focuses on the structure of undirected graphs, our analysis is of the gap junction
network. All of the 279 neurons within the network are connected synaptically, but many lack gap
junctions entirely. We eliminate the neurons that have no gap junction connections, leaving the
253 somatic neurons with both synaptic and gap junction connections. Many nodes share multiple
connections, but we simplify our analysis by considering the unweighted network: aij = 1 if nodes
i and j have one or more gap junction connections, or aij = 0 if they have no gap junction connections.
Thus, our adjacency matrix A(0) consists of 253 nodes connected by 514 binary edges.

4.5. Comparison of C. elegans to Random Connectivity

To compare the complexity of the actual Connectome against what we might expect at random,
we use the random_rewire function included within the Python package graph-tool [37], selecting the
“uncorrelated” rewiring model. This procedure is described in the graph-tool documentation and can
be summarized as follows: for each edge (i, j), the algorithm randomly selects a second edge (i′, j′).
It then attempts to swap the target of each edge, such that the edges would then become (i, j′) and
(i′, j). This swap is rejected if it would result in parallel edges or self-loops. This swapping procedure
is repeated for all edges (i, j) within the graph. This rewires a graph to randomize connections while
preserving the exact degree sequence.

For the distribution of Figure 2, we generated 10,000 randomly-rewired graphs with the same
degree distribution as the C. elegans gap junction network, yielding the displayed distribution with
a mean and standard deviation of Ψ(Grand) = 0.001173 ± 0.000015. As we iteratively eliminated edges,
we wished to continue comparing the reduced complexity against what we would expect at random.
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At each step n, we therefore randomly rewired the partially deleted graph A(n) to generate 256 graphs
with the same (partially deleted) degree distribution.

4.6. C. elegans Rich Club

The “rich club” is defined by the rich club coefficient Φ(k), which is defined by the connection
probability between nodes of degree greater than k. For some degree k, define N>k as the number of
nodes with degree greater than k, and M>k as the number of connections between said nodes. The rich
club coefficient is then just the ratio between the actual number of connections M>k and the number of
possible connections[24,28,41]:

Φ(k) =
2M>k

N>k(N>k − 1).
(13)

Towlson et al. [24] found that the C. elegans Connectome has a significant rich club coefficient for
degrees 35 ≤ k ≤ 73, which implicates the following 11 nodes as belonging to the rich club: AVAL/R,
AVBL/R, AVDL/R, AVEL/R, PVCL/R, and DVA. It is important to note that this is the set of neurons
which we use as the “rich club” of the network, and we do not do any re-calculation of the rich club
based on our particular graph; Towlson calculates the rich club set from a binary form of the synaptic
network, whereas we consider a binary form of the gap junction network. We refer to this set of
neurons due to its known biological significance.
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Abstract: In transport planning, one should allow passengers to travel through the complicated
transportation scheme with efficient use of different modes of transport. In this paper, we propose the
use of a cockroach swarm optimization algorithm for determining paths with the shortest travel time.
In our approach, this algorithm has been modified to work with the time-expanded model. Therefore,
we present how the algorithm has to be adapted to this model, including correctly creating solutions
and defining steps and movement in the search space. By introducing the proposed modifications,
we are able to solve journey planning. The results have shown that the performance of our approach,
in terms of converging to the best solutions, is satisfactory. Moreover, we have compared our results
with Dijkstra’s algorithm and a particle swarm optimization algorithm.

Keywords: cockroach swarm optimization; swarm intelligence; journey planning; public transport;
optimization of travel time

1. Introduction

Intensive studies on journey planning problems produced several models and many algorithms
over the last few decades. The popularity of automated planning systems have motivated researchers
to search for methods that are sufficient for practical applications and meet travellers’ expectations.
There was considerable progress in the performance methods for journey planning in public transit
networks in recent years. Upon consideration of public transport timetable models in respect of how
they provide the best possible routes, we can divide them into graph-based models, representing the
timetable as a graph, and array-based models, using an array for the given timetable. Among the
models belonging to the first type, well-known examples include the time-expanded model [1–3] and
the time-dependent model [3,4]. In this paper, we focus on the time-expanded model, which is based
on the concept of the shortest path problem and is still used in many practical applications.

It should be mentioned that the performance of the methods for solving the journey planning
problems is receiving attention in various papers and depends on the complexity of the problems.
Various nature-inspired metaheuristics based on the existing mechanisms of a biological phenomenon
have been widely used to solve many optimization problems with success. The behavior of social
insects and animals, including foraging, nest building, hunting, and cooperative transport has become
a fascinating topic in the various problem-solving tasks in the last few years. Some of the mechanisms
underlying the collective activities show that complex group behavior may emerge from many
relatively simple interacting individuals. The growing interest of many researchers in the emergent
collective intelligence of insects, birds, and mammals led to the design of a special group of algorithms,
known as swarm intelligence, belonging to computational intelligence. Although the algorithms do
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not ensure obtaining optimum solutions, they achieve good results in a reasonable computation time.
For a survey on numerous examples of these algorithms and their applications, one can refer to [5,6].

The cockroach swarm optimization (CSO) algorithm is one of the new methods belonging to
the aforementioned algorithms. The algorithm is modeled after the habits of cockroaches looking
for food [7–9]. It can be used to solve various problems, for example the flow shop scheduling [10]
or the traveling salesman problem [9,11,12]. That algorithm is fairly simple to adapt, although it
requires adjustment to the problems being solved by introduction of certain movement modifications.
According to our knowledge, the CSO algorithm has never been used in solving travel planning,
involving several modes of transport. However, other applications of that algorithm to generally
known combinatorial problems, for example solving scheduling problems, indicate the algorithm’s
potential for solving real problems.

The purpose of this paper is not to provide a new model, but rather to demonstrate that the
swarm-based approach for solving a journey planning problem is possible through the design of case
studies, the characteristic properties of solutions and the type of movement mechanisms implemented.
Therefore, we assumed that the CSO algorithm can be applied to the travel planning problem after
its modification, concerning generation of an initial population, movement performance in particular
procedures, and proper definition of specific parameters. For that reason, the algorithm had to be
implemented and tested in several generated test instances. We should emphasize that we concentrated
on the practical application of the CSO algorithm in the travel planning problem, with the use of the
time-expanded model. We show that appropriate modifications are needed to ensure the admissibility
of solutions and the convergence of the CSO algorithm. In addition, we implemented the particle
swarm optimization (PSO) and Dijkstra’s algorithms to be able to compare our results and evaluate
the quality of our CSO approach.

The rest of the paper is organized as follows: Section 2 gives more insight into journey planning
in a public transit network and briefly describes the time-expanded model. In order to cope with
the application of the CSO algorithm to solve such journey planning, we present some adaptations
of the algorithm in Section 3. These include: (a) an appropriate definition of the cockroach position
which carries a solution, (b) the involvement of rules for movement through the time-expanded graph,
because any replacement of vertices in solutions carried by cockroaches can lead to obtaining incorrect
solutions, and (c) the assumption that, in the case of chase-swarming procedure, the nodes shared
between two cockroaches are found, and then a part of the nodes of one cockroach is conveyed to
the second individual. In Section 4, we provide a description of test instances, results of conducted
experiments and comparison of the CSO, the PSO, and Dijkstra’s algorithms with respect to their
performance on selected instances. We also present the influence of the selected parameters of the
CSO approach on the quality of the obtained solutions, using the variance analysis (ANOVA). Finally,
Section 5 presents a discussion of the results and summarizes the conclusions.

2. The Journey Planning Problem

2.1. Related Work

Many papers focus on road networks and public transportation networks. These important
and challenging problems are extensively investigated by a lot of researchers and solved by different
methods. The problem of journey planning was considered by many researchers. As reported in [13,14],
several techniques and algorithms have been proposed for solving that problem. We can characterize
this problem by using graph theory as a shortest path problem. Mohemmed et al. [15] used the particle
swarm optimization algorithm with a modified priority-based encoding for path finding problems.
Zhang et al. [16] integrated the artificial immune system and chaos operator in structure of the
particle swarm optimization for a realistic freeway network. Effati and Jafarzadeh [17] included neural
networks for solving the shortest path problem. In [18] the improved matrix multiplication method
for solving the all pairs shortest path problem was presented. Moreover, the pulse-coupled neural
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networks have been applied to realize parallel computation. Rajabi-Bahaabadi et al. [19] proposed a
new model to find optimum paths in road networks, with time-varying stochastic travel times, and
solved it by genetic algorithms. Wang et al. [20] studied a biogeography-based optimization method
for solving multi-objective path finding. Many researchers dealt with genetic algorithms to solve route
planning problems. In [21], the proposed approach uses a priority-based encoding method to represent
all paths. In [22], the genetic-algorithm-based strategy was used to find the shortest path in a dynamic
network. Lozano and Storchi [23] solved the shortest viable path problem in a multi-modal network
using label correcting methods. In turn, in [24], an A∗ label-setting algorithm was presented to solve
a constrained shortest path problem. Zhang et al. [25] investigated the multi-modal shortest path
problem, in which travel time and travel costs were uncertain variables.

A number of papers discussed various ways of finding the shortest path in a multi-modal network,
but most articles often refer to the use of the label-setting algorithm [26], label-correcting algorithm [27],
and genetic algorithms [28]. It should be noted that, in the basic effective solutions for journey planning
in public transit networks, the timetable is formulated as a graph, hence, travel corresponds to a path
in the graph. Therefore, we can solve the problem for example by Dijkstra’s algorithm [1,29]. For a
comprehensive study on heuristic approaches in transportation applications, see [30].

As mentioned in the previous section, among the most studied approaches that model timetable
information as the shortest path problem, one can find the time-expanded [1,2] and time-dependent [4]
models that construct the digraphs. Pyrga et al. [3] discussed and examined both models in respect of
their theoretical considerations and practical use. They proposed those models along with some speed-up
techniques. Concerning CPU time, the time-dependent model was faster, but it was experimentally
proved that the time-expanded approach was more robust than the second one in the case of realistic
problems. It is worth mentioning that various studies focusing on design and optimization of public
transportation networks incorporate approaches based on the time-expanded model, which is much more
flexible and easily extendable, as concluded in [14]. For example Dib et al. [31] formulated route planning
in multimodal transportation networks as the time-expanded model and proposed a combination of
genetic algorithms (AG) and variable neighborhood search (VNS) to compute multimodal shortest paths.
Another way to tackle journey planning, instead of using one of the graph-based models mentioned
above, consists in developing approaches that directly operate on the timetable. These methods involve
CSA that assembles connections into one single array (connection scan algorithm) [32], RAPTOR
(round-based public transit routing) that operates on the timetable using a dynamic programming
approach [33], MCR (multimodal multicriteria RAPTOR) [34], and FBS (frequency-based search) [35].

2.2. Time-Expanded Model

Due to the great importance of the time-expanded model and its common use in journey planning,
we will briefly describe this approach.

As we know, the basic transport networks consist of nodes that represent stops and edges that
represent links connecting nodes. Itinerary of transit line is formulated as the sequence of traversed
nodes. It should be noted that in the time-expanded model, every time event (e.g., departure or arrival)
at a stop (or a station) is presented as a node and connections between the two events or waiting within
a stop are represented by weighted edges. In other words, in this approach, we have three types of
nodes belonging to a station: arrival and departure nodes that are used to represent connections in
the timetable, and transfer nodes representing modeling transfers. In the simplified version of the
time-expanded model, transfer time between vehicles at a station is negligible. The weight of each
edge represents the time difference between the departure (td) and arrival (ta) times, where td and ta

represent times in minutes after midnight [3]. For each elementary connection from station X to the
next one Y, there is an edge connecting a departure node belonging to the first station with associated
time td, to an arrival node of station Y with associated time ta. In turn, for the realistic version of this
model, one should ensure a minimum transfer time at a station [36]. Therefore, for every arrival node,
two additional edges are assumed: one edge to ensure the possibility of departure by the same vehicle,
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and a second edge for the first transfer node to allow transfers. For a detailed description, see [3].
Unfortunately, such an approach yields a high number of edges. Taking into account the earliest arrival
problem, in the case of removing some nodes (nodes having an outgoing degree of one), the original
size of the graph in the time-expanded model can be reduced [3,33].

3. Cockroach Swarm Optimization Algorithm for Transport Planning

Transport planning, which has been defined in the previous section, can be solved with various
algorithms. One way of solving the described problem would be to use the cockroach swarm
optimization algorithm with some of the proposed modifications described here. The issues presented
in the subsequent parts of this paper concern designing of the cockroach swarm optimization algorithm
to solve a specific travel planning problem, taking into account the proper representation of the solution,
the determination of the neighborhood, the distance of individuals, procedures of the movement in
the space of solutions, and the selection of the parameters that control the algorithm operation.
We assumed the TE model [36] and restricted ourselves to travel time (arrival at the target) as a single
optimization criterion.

Formally, we considered a set of stations Ω, a set of stop events ΨS per station S ∈ Ω, and a set of
elementary connections Δ, whose elements were tuples of the form δ = {Zd, Za, Sd, Sa, td, ta}, where [37]:

• Zd—stop event of the departing vehicle,
• Za—stop event of the arriving vehicle,
• Sd—station from which the vehicle departs,
• Sa—station at which the vehicle arrives, and
• td, ta—the departure and arrival times, respectively.

Given the start station (A) and the end station (B), the task was to find the sequence P ∈ Δ,
P = (δ1, δ2, . . . , δk) so that Sd(δ1) = A and Sa(δk) = B and minimize the travel time, taking into account
the limitation of maintaining a minimum time buffer (b) for safe transfer between public transportation
vehicles. The departure station of δi+1 is the arrival station of δi [3,14].

In this paper, the objective function we want to minimize is defined as a sum of times taken
between departing from the previous node and arriving to the next node (including the transfer time)
until the final station (B) is reached. Therefore, the objective function f is defined as follows:

f = ∑k
i=1(ta(δi)− td(δi)) + ∑k−1

i=1 (td(δi+1)− ta(δi)), (1)

with the constraint of:
td(δi+1)− ta(δi) ≥ b. (2)

3.1. Cockroach Swarm Optimization Algorithm—Basic Approach

The cockroach swarm optimization (CSO) algorithm is inspired by the behavior of cockroaches
looking for food, such as moving in swarms, scattering or escaping from light [7–9]. Hence, a set of
rules that models the collective cockroach behavior is employed in the CSO algorithm. In its initial
step, the algorithm focused on creating a set of possible solutions. In general, the initial solutions are
randomly generated in the search space. Furthermore, at each iteration, the CSO algorithm involves
three procedures for solving different optimization problems such as chase-swarming, dispersing, and
ruthless behavior.

In the chase-swarming procedure, in the new cycle, the strongest cockroaches carry the local
best solutions (Pi), form small swarms, and move forward to the global optimum (Pg). Within this
procedure, each individual (Xi) moves to its local optimum in the range of its visibility. There can
occur a situation when a cockroach moving in a small group becomes the strongest by finding a better
solution, because individuals follow in other ways that their local optimums. A lonely cockroach,
within its own scope of visibility, is its local optimum and it moves forward to the best global solution.
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Another procedure concerns the dispersion of individuals. It is performed from time to time to
preserve the diversity of cockroaches. The procedure involves each cockroach performing a random
step in the search space. We can also deal with ruthless behavior when a random individual is replaced
by the currently best individual. That process corresponds to the phenomenon of eating weaker
cockroaches in the case of inadequate food availability.

The main steps of the basic CSO algorithm can be described as below:

• STEP 1: generate a population of n individuals and initialize algorithm’s parameters (step,
visual—visual scope, D—space dimension, stopping criteria).

• STEP 2: Search Pi (within the visual scope of the ith individual) and Pg.
• STEP 3: Implement behavior of chase-swarming and update Pg at the end; if a cockroach Xi

is local optimum, then it goes to Pg according to Xi = Xi + step·rand·(Pg − Xi), where rand is a
random number within [0,1]; otherwise, the cockroach Xi goes to Pi (within its visibility) through
formula Xi = Xi + step rand·(Pi − Xi).

• STEP 4: Implement dispersing procedure and update Pg.
• STEP 5: Implement ruthless procedure (Xk = Pg or Xk = 0, where k = 1, . . . , n).
• STEP 6: Repeat steps 2–5 until a termination criterion is satisfied and output the final results.

The stopping criterion can include the maximum number of iterations, number of iterations
without improvement, computation time, obtaining an acceptable error of a solution, and so on.

3.2. Proposed Adaptation of Cockroach Swarm Optimization Algorithm to Time-Expanded Model

An adaptation of the cockroach swarm algorithm to work with the time-expanded model requires
additional operations. Therefore, our approach is an extension of the basic CSO algorithm with
some modifications.

As we know, each cockroach generates one solution at the beginning of the CSO algorithm.
Possible solutions encoded in the form of real variables, concerning at least the position of individuals
in the cockroach swarm optimization algorithm, do not reflect the nature of the problem. Therefore,
the solution represented by the cockroach is a set of successive vertices in the graph leading from the
start to the final destination. It must be correct and consist only of the permitted moves. In order to
generate the initial population of solutions, we used specific rules for movement through the graph
shown in the activity diagram (Figure 1), because a random choice of the next node did not result in
achievement of the destination node. When generating the initial solution, beginning with the start
node, subsequent nodes are searched in the neighborhood (belonging to the same line), until the final
node is reached. If another node is not found in the neighborhood of the current node within the same
line, either the solution generation is interrupted (after the limit of steps has been reached), or random
selection of a new line is effected from among those available in the current node, followed by the
search of a new node in the neighborhood, within a new line. If a new node is not found or another
line is not selected, the procedure is ended, without returning a correct solution.

Upon selection of initial solutions, the solution quality (determined by the travel time in our
case) is estimated. The purpose of the subsequent steps of the CSO algorithm is to improve solutions
and select the best one, with the fastest time of travel to the destination stop. In the chase-swarming
procedure, a weaker cockroach tends toward the better solution representing a shorter destination
time. It should be mentioned that appropriate interpretation of cockroach movement is necessary to
effectively solve various optimization problems. Therefore, in order to increase the efficiency of the
CSO algorithm, we assume that a step in the search space consists in taking over several nodes from
a better one and the number of said nodes is determined by the step size. In addition, the visibility
parameter (visual) denotes the minimum number of common nodes that two cockroaches should have
in order to be visible to each other. Thus, visual = 2 means that the intersection of routes carried by
both cockroaches at two points would be sufficient.
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Figure 1. Rules to create the initial population.

If two cockroaches have no common nodes, they cannot move with respect to each other. In detail,
the process of creating a new solution in this procedure starts with a random selection of one of the
common edges (en) for a weaker and a stronger cockroaches. Next, the edges are copied to the new
solution, from the first edge to the en from the weaker cockroach and the r (r is a randomly chosen
number) of the edges following the en from the stronger cockroach. If, as a result of this operation, the
end node has not been reached, the missing edges are created in the same way as in the process of
initial solution generation.

Taking into account the described modifications, the steps of implementing our chase swarming
procedure is outlined as follows:
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procedure chase-swarming

initialize:
parameter graph from TE model;
parameter list of k cockroaches;
parameters visual, maxAttempt—maximum attempts to improve chase-swarming;
n–target node

for each cockroach k do:
oldSolution, newSolution := k.currentSolution
visibleRoaches := empty list
for each cockroach c do:

if k == c continue;
if c contains at least visual common edges with k and c solution is better than k solution:

add c to visibleRoaches
end if

end for
if visibleRoaches is empty break loop
v := select the best cockroach from visibleRoaches
en := select random common edge for v and k
newSolution := remove all edges after en from newSolution
newSolution := append random number of edges r from v after en (en+1, . . . , en+r) // (following the better

cockroach v)
for i = 0 to maxAttempt:

newSolution := randomly generate remaining path for newSolution
if newSolution reached n break loop

end for
if newSolution is better than oldSolution:

k.currentSolution := newSolution
else

k.currentSolution := oldSolution
end if

end for

In the case of a dispersion procedure, we decided to select a random number of the nth node from
the end of the path, and then generate a new route from this node to the destination. The pseudo-code
of this procedure can be stated as follows:

procedure dispersing

initialize:
parameter graph from TE model;
parameter list of k cockroaches;
parameters maxStep—maximum dispersion step, maxAttempt—maximum attempts to improve dispersing;
n–target node

for each cockroach k do:
oldSolution, newSolution := k.currentSolution
step := random number from range <1; maxStep>
newSolution := remove last step nodes from newSolution
for i = 0 to maxAttempt:

newSolution := randomly generate remaining path for newSolution
if newSolution reached n break loop

end for
if newSolution is better than oldSolution:

k.currentSolution := newSolution
else

k.currentSolution := oldSolution
end if

end for
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The searching procedure ceases if the stopping criterion, defined as the maximum number of
iterations or the number of unimproved iterations, is met.

4. Experiments and Results

We developed many experiments to assess the performance of the presented CSO algorithm.
Many runs of the proposed approach were executed and the solution quality was taken into account.
We have prepared seven benchmarks for the construction of problems of varying complexity (see Table 1).
The time-expanded model was simulated. We assumed that all lines had regular departures (12 or
48 daily) at equal intervals, regardless of the time of day. In order to test the effectiveness of the
CSO algorithm, experiments were performed 10 times for each test instance, with the same setting of
parameters. In all experiments we assumed fixed parameters of the CSO algorithm during all iterations.
The performance of our CSO adaptation was evaluated in comparison with Dijkstra’s [1,29] and
the particle swarm optimization [15,38,39] algorithms. All algorithms were implemented in the Java
programming language, using a Linux operating system. We ran all experiments using an Intel Core
i5-5200U 2.20 GHz processor with 16 GB RAM.

Table 1. Characteristics of the time-expanded model.

Number
of Lines

Number
of Stops

Daily Number
of Departures

Number of
Arrival Nodes

Number of
Departure Nodes

Number of
Transfer Nodes

Total Number
of Nodes

1 21 12 217 229 228 674
1 21 48 865 913 912 2690
2 33 12 361 385 384 1130
2 33 48 1441 1537 1536 4514
6 52 12 673 745 744 2162
6 52 48 2689 2977 2976 8642
7 52 12 674 747 746 2167

4.1. Description of the Considered Test Instances

In order to verify the correctness and the quality of the implemented algorithm, we designed
several test instances with simple timetables. Below, we present a short description of those.

In the first case, we constructed only one transportation line, containing 21 stops with 12 departures
per day. It is worth noting that, for this line, a graph with 674 vertices will be chosen. Consequently,
the increase of the number of departures to 48 per day required a more complex graph to be adopted,
as shown in Table 1. On this basis, the implemented solutions and processes of graph construction
were validated.

In the second experiment, we decided to investigate the correct detection of transfers between the
transportation lines, also for the two versions of timetables (12 and 48 departures). For this purpose,
the second transportation line intersecting with the first one at a single stop was added. It should be
emphasized that the only possible route between the desired points required transfer operations.

In another experiment, the area of travel was slightly expanded. Therefore, we increased the
number of public transportation lines to six. In addition, we assumed that at least two transfers were
required to reach the target point.

In the last experiment, we set the number of transportation lines at seven. In that case, one night
line was also taken into account, which was necessary to ensure diversity among instances.

All of the test instances conducted in the context of the time-expanded model are summarized in
Table 1. Therefore, we have a summary describing the dependence of the number of created nodes
in the graph on the complexity of the transportation plan. Note that the number of transfer nodes is
always one less than the number of departure nodes.
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4.2. CSO Performance

By implementing the CSO algorithm described in the previous section, its performance was
obtained and then compared with Dijkstra’s and PSO algorithms. In addition, the variance analysis
(ANOVA) was applied in the statistical evaluation of the CSO results. We checked how the variable
containing the travel time obtained was influenced by the population size and the visual coefficient.
We tested the settings of the parameter: visual = 1, 2, 3, 4 and the population size: 5, 15, and
50 individuals. Depending on the test instance, our analysis indicated either an essential influence or
no essential influence of the visual parameter on the travel time obtained. For each test instance, there
existed, however, an essential dependence of that variable that contained the travel time obtained on
the population size. However, no interactions between the visual and population size factors occurred.
Selected results of the significance levels p for two analyses (instances with six lines, marked as 6/12
and 6/48) and the measures of the effect magnitude are presented in Table 2.

Table 2. Results of the ANOVA test for instances 6/12 and 6/48.

Instance Effect p η2

6/12
visual 0.79 0.01
population size 0 0.43
visual × population size 0.17 0.07

6/48
visual 0.01 0.1
population size 0 0.44
visual × population size 0.74 0.03

As we can see, the population size presents a strong effect (the travel time variable is explained by
the population size variable in the proportion of more than 40%) in both cases; however, the visual
either fails to indicate any influence (test instance 6/12) or shows a medium-size effect (test instance
6/48). The influence of the visual and population size parameters on the travel time obtained (vertical
bars refer to 0.95 confidence intervals) are presented for both test instances in Figures 2 and 3.

Figure 2. The influence of the selected parameters (test instance 6/12).

To investigate which of the parameters being tested, visual or population size, are different from
each other, post hoc tests (Tukey tests) were conducted. Selected test results for test instance 6/48 are
presented in Table 3. For the visual parameter, Tukey test showed essential differences of the average
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values between 1 and 2 and 4. In turn, for the population size parameter, tests showed essential
differences between all the groups. For test instance 6/12, essential differences also occurred in all of
the values of the population size parameter. Therefore, in our following tests, we assumed various
sizes of population (5, 15, and 50) and visual = 3.

Figure 3. The influence of the selected parameters (test instance 6/48).

Table 3. Results of Tukey test (test instance 6/48).

Visual {1} {2} {3} {4}

1 0.032497 0.196031 0.010639
2 0.032497 0.853130 0.979342
3 0.196031 0.853130 0.628842
4 0.010639 0.979342 0.628842

Each run of the CSO approach was terminated after 1000 iterations or if there was no improvement
of the best solution through 25 iterations. In all tests: maxStep = 15, maxAttempt = 100. Table 4 shows
the selected results of the CSO algorithm for the test instance with only one line, relating, however, to
various sizes of population. For one line with 12 departures per day (marked as 1/12), the population
consisting of 5 individuals is sufficient to find the best solution of travel time. Through 10 independent
runs of the CSO approach, that solution was found in four cases. It turned out, however, that such
a small number of solutions was not enough to solve the problem with 48 departures. The shortest
travel time amounted to 1 h and 9 min. That value was obtained in three runs of the CSO algorithm.
In the same test instance, the longest travel time amounted to 5 h and 21 min. Upon the increase of the
population of individuals up to 15, we obtained the shortest travel time of 41 min in three runs. It is
worth noting that the CSO algorithm, with the population of 50 solutions, generated the shortest travel
time (41 min) in eight runs. What is interesting is that the worst solution for said population size was
the same as the best solution for the population equal to 5.
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Table 4. Results for one line.

Population Daily Number of Departures Travel Time [h:min] Computational Time [ms]

5 12 00:45, 00:45, 02:45, 00:45, 02:45,
02:45, 02:45, 02:45, 06:45, 00:45 38, 23, 9, 10, 6, 10, 5, 4, 8, 3

15 12 00:45, 00:45, 00:45, 00:45, 02:45,
00:45, 00:45, 02:45, 00:45, 00:45 108, 56, 13, 31, 16, 9, 18, 8, 7, 9

50 12 00:45, 00:45, 00:45, 00:45, 00:45,
00:45, 00:45, 00:45, 00:45, 00:45, 110, 82, 52, 56, 31, 50, 43, 64, 50, 35

5 48 03:29, 02:05, 05:21, 03:01, 05:21,
01:09, 03:01, 03:57, 01:09, 01:09 17, 11, 6, 4, 2, 4, 2, 3, 3, 2

15 48 00:41, 00:41, 01:37, 03:01, 01:37,
00:41, 04:25, 01:09, 01:09, 01:37 58, 15, 10, 12, 12, 11, 14, 11, 6, 12

50 48 00:41, 00:41, 00:41, 00:41, 00:41,
01:09, 00:41, 00:41, 01:09, 00:41 28, 29, 33, 94, 29, 30, 46, 43, 26, 47

The number of correct solutions obtained during 10 runs, depending on the population size, is
shown in Figure 4. As expected, the increased population improved the chance of finding the best
solution. Note that in the test instance 6/48 (six lines and 48 departures per day), the best result could
not be attained anyway.

Figure 4. Number of the best solutions depending on the population size.

For simpler TE models, relating to 12 departures a day, we obtained the best solution, although
only in several runs.

However, with the population composed of five solutions, it was not possible to obtain the best
known solution for any of the test instances in which 48 departures a day were taken into account
(marked as 1/48, 2/48, and 6/48, respectively).

In addition, we implemented the particle swarm optimization algorithm. We assume that
following the neighboring particles consist of attempts at “taking over” part of the graph edge from the
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solution of a better particle; that is, the particle that “follows” another one is trying to add to its route a
node from the particle being followed. The number of nodes that is tried to be added is determined by
the particle’s velocity. Moreover, we assumed that the difference of one hour in reaching the target
node caused the increase of one node in the particle’s velocity.

Table 5 shows the experimental results of the CSO algorithm performance in comparison with the
results obtained by Dijkstra’s and PSO algorithms for each test instance. Among the results obtained
from the swarm algorithms, the best and the worst values of travel time were gathered. The first
column shows the population size, the second one presents specific test instances, described by the
numbers of lines and departures. The columns “Best travel” and “Worst travel” represent the best and
worst travel times found by the CSO and the PSO algorithms, respectively. The fifth and the eighth
columns give the average computational times of 10 independent runs of swarm algorithms. The last
column shows reference solutions obtained by Dijkstra’s algorithm.

Table 5. Selected results of seven test instances.

Population Instance

CSO PSO
Dijkstra
[h:min]Best Travel

[h:min]
Worst Travel

[h:min]
Mean

Time [ms]
Best Travel

[h:min]
Worst Travel

[h:min]
Mean

Time [ms]

5 1/12 00:45 06:45 11.6 00:45 08:45 11:5
00:4515 1/12 00:45 02:45 27.5 00:45 02:45 30.8

50 1/12 00:45 00:45 57.3 00:45 00:45 172.8

5 1/48 01:09 05:21 5.4 00:41 11:53 2.7
00:4115 1/48 00:41 04:25 16.1 00:41 05:21 16.3

50 1/48 00:41 01:09 40.5 00:41 01:37 90.0

5 2/12 02:38 08:38 4.2 02:38 16:38 5.6
02:3815 2/12 02:38 04:38 33.8 02:38 12:38 25.2

50 2/12 02:38 04:38 84.1 02:38 04:38 215.3

5 2/48 02:31 09:43 16.3 02:31 13:43 3.5
01:0715 2/48 01:07 03:55 28.3 01:07 11:23 16.5

50 2/48 01:07 02:03 131.6 01:07 08:35 187

5 6/12 04:07 18:07 14.8 14:07 22:07 9.3
04:0715 6/12 04:07 12:07 31.7 08:07 14:07 74.5

50 6/12 04:07 06:07 122.3 06:07 10:07 272.3

5 6/48 03:22 11:46 11.6 11:18 17:22 3.8
01:0215 6/48 01:58 08:30 42.1 05:42 13.38 36

50 6/48 01:30 05:42 187.5 02:54 13:38 301.1

5 7/12 04:07 12:07 15.1 08:07 16:07 12
04:0715 7/12 04:07 8:07 38.5 04:07 16:07 56.3

50 7/12 04:07 6:07 153.1 04:07 08:07 284

Depending on particular tests, and upon comparison with Dijkstra’s algorithm, the best results
obtained with the CSO algorithm were similar to those of the second algorithm. In all of the test
instances the results show that application of a larger population (50 individuals) reduced travel time,
and produced the same solutions as Dijkstra’s algorithm in most cases. It needs to be pointed out that
such an improvement was reached at the expense of computational time. Note that it does not imply
that the optimum result was achieved. In the cases presented here, the result was not satisfying in one
test instance with six lines and 48 departures per day.

When analyzing the results obtained with the use of the PSO algorithm, one can conclude that the
CSO algorithm performs better than the PSO does. We should notice that the best travel times obtained
with the PSO algorithm for two instances (6/12 and 6/48) are worse than those obtained with the use
of the CSO algorithm. We should further consider the worst solutions, in all of the analyzed cases,
there was a distinct domination of the CSO algorithm over the PSO one. Additionally, the average
time of calculation performance, with the population increased to 50 individuals, indicates that the
CSO algorithm provides a better solution when such specific parameters have been selected.
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5. Conclusions

As we mentioned at the beginning of this work, we are merely presenting our research about
the cockroach swarm optimization algorithm used to solve travel planning. Hence, we have shown
that it is possible to use the CSO algorithm with the time-expanded model to solve travel planning,
with some additional assumptions. To apply the CSO approach, we had to define movement in the
search space. Therefore, we introduced a set of rules for determining paths in the time-expanded
graph and some modifications of the searching capability during the whole algorithm. The proposed
CSO approach was tested on seven instances of varying complexity. Solving travel planning was a
complex process, but the results obtained were satisfactory. We compared the performance of the
CSO, the PSO, and Dijkstra’s algorithms applied to the time-expanded model. Many experiments
were conducted for different test problems and various sizes of population (5, 15, and 50). We also
conducted some tests relating to the influence of visual and population size parameter settings on the
results obtained, using the variance analysis (ANOVA). Our research proved that, in the majority of
cases, the value of visual parameter did not have any significant influence on the travel time obtained.
We observed that, for all the test instances, the increase of the population to up to 50 individuals
improved the performance of the CSO algorithm, in respect of the travel time. However, it took more
computational time, and it could be too slow to be used when solving larger problems. It should be
mentioned, that for the test instance with six lines and 48 departures per day, the obtained solutions
were not as good as those obtained with Dijkstra’s algorithm, but the improvement of travel time for
the population of 50 individuals was clearly visible. However, our experiments indicated that the CSO
method outperforms the PSO in terms of the best travel time.

Analyzing results, we observe that by introducing some modifications into the framework of
the CSO approach, the approach can produce good solutions, but it requires the use of speed-up
techniques or parallel computing. Therefore, one possibility for future research could examine the
performance of a GPU implementation of our approach. Furthermore, the use of other models, instead
of the time-expanded model, could lead to better results.
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Abstract: Using insights from cybernetics and an information-based understanding of biological systems,
a precise, scientifically inspired, definition of free-will is offered and the essential requirements for an
agent to possess it in principle are set out. These are: (a) there must be a self to self-determine; (b) there
must be a non-zero probability of more than one option being enacted; (c) there must be an internal
means of choosing among options (which is not merely random, since randomness is not a choice).
For (a) to be fulfilled, the agent of self-determination must be organisationally closed (a “Kantian
whole”). For (c) to be fulfilled: (d) options must be generated from an internal model of the self which
can calculate future states contingent on possible responses; (e) choosing among these options requires
their evaluation using an internally generated goal defined on an objective function representing
the overall “master function” of the agent and (f) for “deep free-will”, at least two nested levels of
choice and goal (d–e) must be enacted by the agent. The agent must also be able to enact its choice
in physical reality. The only systems known to meet all these criteria are living organisms, not just
humans, but a wide range of organisms. The main impediment to free-will in present-day artificial
robots, is their lack of being a Kantian whole. Consciousness does not seem to be a requirement
and the minimum complexity for a free-will system may be quite low and include relatively simple
life-forms that are at least able to learn.

Keywords: self-organization; downward causation; autocatalytic set; goal-oriented behaviour;
autopoiesis; biological computing

1. Introduction

Why do things do what they do? We have a hierarchy of explanations that roughly reflects a
gradient in complexity, matched by the epistemic hierarchy which starts with the physics of Hamiltonian
mechanics (and Shrödinger’s equation), extends through statistical mechanics and complex systems
theory, but then declines in power as we try to account for the behaviour of living systems and finally of
the human condition, for which we have no satisfactory scientific explanation. One of the most persistent
open questions, at the far end of the complexity gradient, is whether we as humans have free will. Here, I
attempt to address this question with respect to a broader category of active agent (sensu Sharov [1]):
anything that can make decisions and act in the physical world. The premise of this paper is that
an understanding of the interaction and dynamics among patterns, of the distribution of matter and
energy in space and time, may bring such high-level phenomena into resolution. That means a focus
on information and its interactions using cybernetics and computation theory, but it also requires a
broad concept of information addressing the relationship among patterns (as data) in general, rather
than just the statistics of data transmission. If the emergence of material reality (as we experience it) is
the assembly of stable configurations (of matter), undergoing transformations and combining as stable
composites (e.g., molecules forming materials, forming structures [2]), then a deep understanding
of it requires a mathematically precise account of the physics of patterns that are simultaneously the
product of material structure and the cause of it [3]. For this investigation, we must focus on the kind
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of “information” that is embodied by, and processed by natural systems. This concept of intrinsic
structural “information” (surely it ought to have a word of its own), is not necessarily ontological
(as in the theories of Weizsäcker [4] and Stonier [5]), but refers to at least observable patterns having
observable effects [6], is objectively quantifiable [7] and useful in understanding biological processes
in terms of cybernetic systems [1], and functions [8,9]. To avoid ambiguity (and conflict) I will refer to
this kind of “information” as pattern and the “information” which reduces “uncertainty” in a receiver
as Shannon information.

My aim is to discover whether free will can be understood in terms that make no reference to
specifically human qualities and whether free will could be attributed to a broader class of active agent
(sensu Sharov [1]). I aim to do this by identifying the criteria that must be met for free will, and from
that, to identify the kinds of active agent which might meet those criteria.

I will start by defining what I mean by “free-will” and then give a very brief overview of the
philosophical debate about free-will, identifying some of the problems. Then I will introduce ways of
thinking about these problems based on cybernetic/computation theory and use these to identify the
necessary and sufficient conditions for free-will according to my definition. The class of systems for
which these conditions are fulfilled will then be identified and with this, the minimum complexity
compatible with autonomous action will be implied. The term “robot” is specifically used here to
mean any cybernetic system coupled to a physical system that allows it to independently act in the
physical world; this includes living systems (see e.g., the requirements specified for a molecular robot
in Hagiya et al. [10]) and artificial systems, including the subject of cognitive robotics which concerns
embodied artificial intelligence [11].

1.1. A Definition of Free-Will

There is no generally agreed definition for free will. To find the conditions allowing active agents
(sensu Sharov [1]) to have free-will, a working definition is first provided. It is defined here as the
condition in which all of the following are jointly true:

• FW1: there exists a definite entity to which free-will may (or may not) be attributed;
• FW2: there are viable alternative actions for the entity to select from;
• FW3: it is not constrained in the exercising of two or more of the alternatives;
• FW4: its “will” is generated by non-random process internal to it;
• FW5: in similar circumstances, it may act otherwise according to a different internally generated “will’.

In this definition the term “will” means an intentional plan which is jointly determined by a “goal”
and information about the state (including its history) of the entity (internal) and (usually, but not
necessarily) its environment. The term “goal” here means a definite objective that is set and maintained
internally. The terms used here will be explained and justified in what follows.

This list of criteria is chosen to address the main features that most philosophers have thought
important (though they do not necessarily agree with one another about what is important and some
philosophers would leave out some items of the list). FW2 and FW5 are intended to examine the
effect of determinism and FW4 represents the “source arguments” for and against free will, whist
FW3 ensures freedom in the most obvious (superficial) sense. Only one of the list (FW1) is not usually
included in any philosophical discussion of free will, perhaps because it is usually considered to be
self evident, but it will play an important role here.

1.2. The Philosophical Background

In philosophy, freedom “to act as one wills” is often referred to as “superficial freedom” (or first
order volition, [12]) and the freedom “to determine what one wills” as “deep freedom” (or second
order volition, [12]). Kane [13], McKenna [14] and Coeckelbergh [15] provide a broad introduction to
the subject, Westen [16] gives a deeper criticism of it. As an example, one may be free to drink a bottle
of whisky in one sitting and as an alcoholic, or in an irresponsible mood, or emotional turmoil one
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may will it, but knowing the consequences, one may master the desire and will otherwise: rejecting
the opportunity of this poisonous pleasure. If the alcoholism had taken over, or one was under duress,
the “freedom to choose otherwise” might be denied and deep freedom would be lost with it, although
the superficial freedom to drink would remain. The classical philosophical argument on free-will
consists of a) whether it is compatible or not with determinism and b) whether at least some agents
(usually people) are at least in part the ultimate cause of their actions.

Determinism is the idea that there is, at any instant, exactly one physically possible future [16,17],
summarised in the slogan “same past: same future” (see List [18] for a more rigorous analysis).
Cybernetics captures determinism in the definition of a Determinate Machine (DM) as a series of closed,
single valued transformations (for example describing a Finite State Automaton (FSA)). Superficial
freedom is often seen as the absence of constraint, leading to the (relatively trivial) conclusion that it is
compatible with determinism. However, deep freedom needs more than an absence of constraints, it
requires alternative paths into the future to provide the “freedom to do otherwise” [17]. The cybernetic
model of a system with this capacity is of course the non-determinate machine (NDM). However,
the NDM is usually conceived as a probabilistic process in which a set of possible states S : {s1, ...., sn}
of the system, given the present conditions C (in general including the previous history), may occur
at random, with probability set P : {p1, ..., pn} where ∑ pi = 1 and each pi is the probability of each
possible state si. Most philosophers agree that randomness is not compatible with self-determination,
indeed it seems to be the opposite, so they reject random spontaneity as a means of achieving deep
freedom (and so do I). They reason that if an agent’s action were ultimately caused by e.g., a quantum
fluctuation or thermal noise, then we could not reasonably hold the agent responsible for it. This
indicates that philosophers supporting the existence of deep free-will are searching for a non-random
ultimate cause of actions within the agent of those actions.

Unfortunately for them, a paradox arises: since any agent is the product of its composition and of
its previous experiences (which may play a role in its formation) and these are beyond its control. If it
did not make itself and select its own experiences, then its behaviour must be determined by things
other than itself. An agent is not free in the deep sense unless it has control over all the events that led
to it’s choice of action. Recognising that all events in the universe belong to a chain of cause and effect
that extends back before the existence of the agent, some philosophers conclude that either (a) this
deep freedom cannot exist and is considered an illusion (e.g., Van Inwagen [17], reiterated in [19]);
or (b) the agent is indeterminate so that we get “same past: different futures”. If they also rule out
randomness, then (b) suggests that an agent which could act in more than one possible way from
exactly the same state and history (i.e., it is indeterminate) must act without cause. They conclude that
this is self-contradictory, hence deep freedom cannot exist. This line of thinking is closely related to
Strawson’s [20] “Basic Argument” against free-will, which starts from the premise that for an agent to
have free-will it must be the cause of itself and shows, via infinite regress, that this is not possible. It is
an axiom of these positions that the motivation for an agent’s action can only be either (a) random;
(b) exogenous or (c) self-generated, with only (c) being compatible with free-will.

2. Systems with Identity: The Closure Condition

The first criterion (FW1) implies that we need to determine what parts of a system must be
included in identifying an agent (i.e., the extent of its identity) before being able to determine if it has
free-will or not. Free-will requires a definite boundary between the internal and external, not necessarily
a physical boundary (as supplied by e.g., a casing or skin), but more profoundly one of organisation and
control. For example a computer controlled robot must have all the necessary provisions for physical
independence (as in the extraterrestrial exploration robots), but this still leaves it organisationally
linked to humanity because its existence is entirely dependent on our gathering and processing the
materials for its “body” and assembling these, implicitly embodying it with functional information [1]
and programming its control computer (including with the goal for operation). For these reasons, such
robots remain extensions of ourselves: tools just as sophisticated hammers would be. In general, for
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free-will, the control information of an agent must be independent of anything beyond a cybernetically
meaningful boundary. Put the other way round, for the identification of free-will, we must first identify
the boundary of the agent, which is defined by independence of control. The existence of such a
cybernetic boundary enclosing the agent is here termed the “closure condition”. Given this, the Mars
Rover coupled with its human design team seems to meet the closure condition, but the Mars Rover
alone does not.

This idea of a boundary surrounding a system, such that whatever is within the boundary
has the property of organisational independence from what lies without, was encapsulated by the
concept of the “Kantian whole” by Kauffman [21] and can be formally described in cybernetic terms
as organisational closure. This idea is used in a particular definition of autonomy which I shall next
argue to be a pre-requisite for free will.

2.1. Systems with Causal Autonomy

Froese et al. [22] distinguishes behavioural (based on external behaviour) from constitutive (based
on internal organisation) autonomy. They state that for the former, the identity of the system may
be imposed by an external observer (it could even be no more than an thermostatic system) and that
it is sufficient for the system to demonstrate a capacity for stable and/or flexible interaction with
its environment, “without human intervention, supervision, or instruction”. This, they argued, left
behavioural autonomy so “ambiguous and inclusive . . . it threatens to make the concept of autonomy
meaningless”. Behavioural definitions of autonomy are inadequate in relation to questions of free
will because they do not address the source of will (more precisely, the origin of the goal/s) which
motivate the observed actions. To attribute free will to an agent, we need to identify the source of
will as a part of the agent (under FW4) and this requires us to consider the composition of the agent.
To exclude external (generalised from “human”) “intervention, supervision, or instruction", we must
have an agent that is separated from external causation of its actions. According to most authors
seeking to explain the apparent independence of action found among living systems, this requirement
leads directly to constitutive autonomy, e.g., “every autonomous system is organizationally
closed” (Varela [23], p. 58). This idea has a relatively long history in a multi-disciplinary literature
(Froese et al. [22], Zeleny [24], Rosen [25], Vernon et al. [26], Bich [27] and references therein), but it
is not clear if it is restricted to living systems, or may be broader. Therefore, rather than taking this
literature as sufficient justification for a constitutive autonomy requirement, let us examine the options
for matching with the following tasks:

• to answer Strawson’s [20] “Basic Argument” of ultimate responsibility;
• to separate internal from external (i.e., to give formal meaning to internal and external);
• to unambiguously break the physical causal link between the agent and its environment, allowing

“leeway” from determinism.

This will start with task (2) because from its conclusion, task (3) may follow, given a specification
that relations are strictly causal and if the answer to task (2) does specify constitutive autonomy, then
task (1) may be implied from that, though it leaves unproven that a causally autonomous system must
be self-made. This gap may not be serious, as later shown.

Therefore, we seek a structure for which “internal” is causally distinct from “external”, giving a
clear definition to both. For this we need to define an object A, properly composed of parts (e.g., x, y),
none of which is a part of any other object B. More formally: ∃ A composed of parts ai ∈ a : {a1...aN}
in which no part of A is also a part of any object B unless B contains or is A: (B ⊇ A). Assume
the mereology in which the reflexivity and transitivity principles are true and also the antisymmetry
postulate is true. That is: two distinct things cannot be part of each other. This is expressed by the
axioms [28]:

• xPx
• (xPy ∧ yPz) → xPz
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• (xPy ∧ yPx) → x = y,

in which P is the “part of” relation. For these, the auxiliary relations are defined:

• Overlap: x ◦ y := ∃z(zPx ∧ zPy),
• Exterior: x ⊥ y := x¬ ◦ y.

Therefore, we can define an isolated object y : no part of y can overlap with anything other
than y. Hence, Isolation: ∀z z¬ ◦ y, hence ∀z z ⊥ y (this definition is not a part of standard
mereology). The mereological sum (noting that alternative definitions exist) is defined as: an object y
is a mereological sum of all elements of a set X iff every element of X is a part of y and every part of y
overlaps some element x ∈ X. (Effingham [29], p. 153) puts it this way: “the xs compose y by definition
if (i) each x is a part of y; (ii) no two of the xs overlap; (iii) every part of y overlaps at least one of the
xs”. This definition of sum allows overlap with objects that are not parts of the mereological sum, so y
is not necessarily isolated, therefore also let |y(X)| denote that y is an object that is both isolated and
composed of a set X (of xs).

So far, partness (the xPy relation) has not been defined. The definition of partness depends on
what condition must be met for objects to be associated as parts. This is the Van Inwagen [30] special
composition question: “what constitutes being a part; what connection or relationship qualifies as
‘partness’?” Specifically, we need a criterion for “restricted composition” that is relevant to the question
of separating internal from external in terms of causation. For this, define causation as a binary relation:
xCy, specifying that the state of object y is strictly determined by the state of object x. With this, we can
define a transitive closure for causation (transitive closure is the minimal transitive binary relation R
on a set X).

First, note that any relation R on a set X is transitive iff ∀a, b, c ∈ X, whenever aRb and bRc then
aRc. The conditions for a transitive closure can then be written as follows [31] (using the notation R+

to represent a transitive relation): (i) if {a, b} ∈ R → {a, b} ∈ R+ (ii) if {a, b} ∈ R+ ∧ {b, c} ∈ R →
{a, c} ∈ R+ (iii) nothing is in R+ unless by (i) and (ii).

Next, if R is specified as the C relation (from above), then (iii) specifies all the causal relations
among members of a set C+, so that no relation {x, a} /∈ C+ can be causal. This has the effect of
causally isolating the elements of C+ as well as ensuring that they are causally related to one another.

Finally, let Y be the set of elements that are included in a transitive causal closure C+, where
xCy is the condition for association as parts: x is a part of y. Under these restrictions, mereologically,
the elements of Y are the sum of an object y and |y(Y)|. This means that the transitive closure for
causation meets the requirement for formally separating internal from external (task 2). Since the
relations in the closure are defined to be causal, this achieves task 3 as well. An object (agent) with
the property of transitive causal closure among its parts is a causally autonomous system. All that is
missing is a way to ensure that the agent is a cause of itself from the beginning of its existence, which
requires it to be self-constructing. That will next be addressed with a more concrete example.

2.2. The Kantian Whole as a Material System

A system composed of parts, each of whose existence depends on that of the whole system
is here termed a “Kantian whole”, the archetypal example being a bacterial cell [32]. The origin of
this terminology lies in Immanuel Kant’s definition of an organised whole [33]. To make the closure
condition concrete and include an answer to Strawson’s [20] “Basic Argument” it will now be
narrowed to a requirement for self-construction, since this implies the embodiment of self with the
pattern-information that will then produce the agents behaviour (i.e., we require strictly constitutive
autonomy as defined by Froese et al. [22]). In other words, we are to consider a cybernetic system
that, by constructing itself materially, determines its transition rules, by and for itself (material
self-construction may not be essential to ensuring self-determination, but assuming that the cybernetic
relations embodied in it are essential, we may proceed without loss of generality). An autocatalytic
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chemical reaction network with organisational closure (and this is also what Kauffman [21] considered
a Kantian whole) is an anabolic system able to construct itself [34].

Hordijk and Steel [34] and Hordijk et al. [35] define their chemical reaction system by a tuple
Q = {X,R, C}, (their symbols) in which X is a set of molecular types, R a set of reactions and C a set
of catalytic relations specifying which molecular types catalyse each member of R. The system is also
provided with a set of resource molecules F ⊆ X, freely available in the environment, to serve as raw
materials for anabolism (noting that whilst we are defining an organisational closure, we may (and
indeed must) permit the system to be materially and thermodynamically open). The autocatalytic set
is that subset of reactions R′ ⊆ R, strictly involving the subset X′ ⊆ X, which is:

• reflexively autocatalytic: every reaction r ∈ R′ is catalysed by at least one of molecular type
x′ ∈ X′ and

• composed of F by R′: all members of X′ are created by the actions of R′ on F ∪ X′.

This definition of an autocatalytic set is an application of the broader mathematical concept of
closure and more specifically of transitive closure of a set, since when the autocatalytic set is represented
as a network (of reactions), this network has the properties of transitive closure. The concept of
autocatalytic set has been implemented in experiments for exploring aspects of the origin of life (e.g., the
GARD system simulating “lipid world” [36]). Clearly with the two conditions for an autocatalytic
set met, everything in the system is made by the system, but there is a more important consequence.
The system is made from the parts (only) and can only exist if they do. Organisational closure of
this kind has been identified as a general property of individual organisms [37], many biochemical
sub-systems of life [21] and embryonic development [38].

As it is defined above, living systems fulfil the closure condition, but can we conceive of a
non-living system also reaching this milestone? Von Neumann’s [39] self-replicating automata show
that some purely informational (algorithm) systems have the capacity to reproduce within their
non-material domain, but they cannot yet assemble the material parts necessary, nor can they build
themselves from basic algorithmic components (they rely on a human programmer to make the
first copy). What is needed for the physical implementation of a Kantian whole is the ability to
“boot-strap” from the assembly of simple physical components to reach the point of autonomous
replication (i.e., the system must be autopoietic [37,40]. This is necessary to answer Strawson’s [20] “Basic
Argument”: that for deep free-will an entity must be responsible for shaping its own form and it provides
a motivation for rejecting dualism (the idea that the “mind” is not created from the material universe).

2.3. Emergence and Downward Causation

Considering the forgoing, we might ask what is responsible for making an autopoietic system
(e.g., an organism); is it the components themselves, or is it the organisational system. We might further
ask: in either case, what really is the “system”. Cybernetics provides an answer to the second question,
in that the system is the organisational pattern-information embodied in a particular configuration of
interactions among the component parts. Because it is abstract of its material embodiment, it is “multiply
realisable”, i.e., composed of members of functionally equivalent parts (see Auletta et al. [41]; and Jaeger
and Calkins [42] for biological examples). It is not the identity of the components that matters, rather it
is the functions they perform (e.g., a digital computer may be embodied by semiconductor junctions, or
water pipes and mechanical valves, without changing its identity). Crucially, “function” is defined by
a relationship between a component and the system of which it is a part. According to Cummins [43],
“function” is an objective account of the contribution made by a system’s component to the “capacity”
of the whole system. At least one process performed by the component/s is necessary for a process
performed by the whole system. This implies that the function of a component is predicated on the
function of the whole. This definition was recently modified to more precisely specify the meaning of
“capacity” and of whole system, thus: “A function is a process enacted by a system A at organisational
level L which influences one or more processes of a system B at level L + 1, of which A is a component
part” [44].
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In this context, organisational level means a structure of organisation that is categorically different
from those above and below in the hierarchy because it embodies novel functional information
(levels may be ontological or merely epistemic in meaning: that is an open debate in philosophy).
The self-organisation of modular hierarchy has been described as a form of symmetry-breaking
phase transition [45], so the categories either side are quantitatively and qualitatively different.
Organisational levels were defined precisely in terms of meshing between macro and micro dynamics
(from partitioning the state-space of a dynamic system) by Butterfield [46] and also using category
theory to specify supervenience relations and multiple-realisability among levels by List [47]. Neither
definition, though, deals specifically with the phenomenon of new pattern-information “emerging”
from the organisation of level L components at level L + 1, which is responsible for the emergence of
new phenomena.

Ellis [48] shows that a multiply realisable network of functions, self-organised into a functional
whole, emerges to (apparently) exercise “downward causation” upon its component parts [48,49].
The organisational structure is selecting components from which to construct itself, even though it is
materially composed of only the selected components. Since it is purely cybernetic (informational) in
nature, the downward control is by pattern-information [42,48] which transcends the components from
which it is composed. The pattern-information arises from, and is embodied by, the interactions among
the components, and for these reasons it was termed a “transcendent complex” by Farnsworth et al. [50].
Examples are to be found in embryonic development, where a growing cluster of cells self-organises
using environmental signals created by the cells taking part [51] and the collective decision making of
self-organising swarms (e.g., honey bees in which the hive acts as a unity [52]).

There is something significant here for those who conflate determinism with causation. All causal
paths traced back would be expected to lead to the early universe. Despite the appearance of near
maximum entropy from the uniformity of background microwave radiation, there is broad agreement
that the entropy of the early universe was low and its embodied pattern-information (complexity)
could not account for the present complexity, including living systems [53]. Novel pattern-information
has been introduced by selection processes, especially in living systems, for which Adami et al. [54]
draw the analogy with Maxwell’s demon. Selection is equivalent to pattern matching, i.e., correlation,
and is accompanied by an increase of information. Since its beginning, the entropy of the universe
has been increasing [53] and some of this has been used as a raw material for transformation into
pattern-information. This is achieved by creating the “order” of spatial correlation through physical
self-assembly (atoms into molecules into molecular networks into living systems). This self-assembly
embodies new information in the pattern of a higher level structure through the mutual provision of
context among the component parts [3]. The process of self-assembly is autonomous and follows a
boot-strap dynamic, so it provides a basis for answering Strawson’s [20] “Basic Argument” in which
the putative agent of free-will is an informational (pattern) structure of self-assembly.

2.4. Purpose and Will

Much of the literature on downward causation uses the idea of “purpose”, though many are
uncomfortable with its teleological implication. The aim of this section is to form a non-teleological
account of purpose and its connection with will in non-human agents.

Cause creates correlation (usually, but not necessarily, in a time-series): the pattern of any action
having a cause is correlated with its cause. An action without cause is uncorrelated with anything in
the universe and accordingly considered random. If an action is fully constrained, then its cause is the
constraint. Thus, freedom from at least one constraint allows the cause to be one of either: random,
or exogenous control or agent control (in which “control” means non-random cause). By definition the
cause is only taken to be the agent’s will if it originated in agent control. Correlation alone, between
some outcome variable x and some attribute a of the agent, is not sufficient to establish will: (a) because
correlation has no direction (but metrics such as “integrated information” [55] can resolve direction) and
(b) because a may itself be random in origin and thereby not of the agent’s making. Marshall et al. [56]
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showed that cause can be established at the “macro” level of agent (as opposed to the “micro” level of
its components) using an elaboration of integrated information, so the pattern in x can be attributed
to agent-cause. Because the agent-based cause could be random ((b) above), we must form and test
a hypothesis about the effect of x on the agent before we can attribute the cause to the alternative of
agent-will. The hypothesis is that the effect of a on x is to increase the overall functioning F of the
agent. If this were true, then to act wilfully is to reduce the entropy of x, by increasing the probability
of an outcome x′ where x′ ⇒ F′ > F̄ (and F̄ is the average F). That means that the mutual information
between a wilful action a(t) at time t and the resulting function F(t + τ), τ ≥ 0 is greater than zero.
This mutual information between action and future functioning is taken to imply a “purpose” for the
action, so purpose is identified by the observations that:

H(a) + H(F) > H(a|F) and F|a > F|r, (1)

where r is a random (comparator) variable. This is clearly an observational definition and is in some
way analogous to the Turing test, but it is a test for purpose rather than “intelligence”. It represents
our intuition that if a behaviour repeatedly produces an objectively beneficial outcome for its actor,
then it is probably deliberate (repeatedly harmful behaviour is also possibly deliberate, but all such
actions are regarded as pathological and thereby a subject beyond the present scope).

To recap, for attributing the action to the agent’s will, we must at least identify a purpose so that
Equation (1) is true. The purpose is a pattern embodied in the agent, which acts as a template for
actions of the agent that cause a change in future states (of the agent, its environment, or both). We may
call this pattern a “plan” to attain an objective that has been previously set, where the objective is some
future state to which the plan directs action. Specifically, let the objective be a state X (of the system or
the world, etc.), which can be arrived at through a process P from the current state Y, then the purpose
is a “plan” to transform Y → X by the effect of at least one P and at least one function F is necessary
for the process P to complete.

The homoeostatic response to a perturbation, for example, has maintenance at the set-point
as its purpose. Y is the perturbed state, F is some function of the internal system having the effect
of causing a process P, i.e., some transition Y → X. In general there is more than one P and more
than one F for achieving each. This results in a choice of which to use: it is a choice for the agent
described by the system. To make a choice requires a criterion for choosing (else the outcome is
random and therefore not a choice). The criterion for choosing is a “goal” G, consisting of one or
more rules, which identify a location in a function describing the outcome (which we may call the
objective function). In general, this location could be any and it is essential for freedom of will that it
be determined by the agent of action alone. However, in practice it is most likely to be an optimisation
point (in living systems, this is implied by Darwinian evolution and in designed systems, it is the
basis of rational design). Therefore, narrowing the scope, but with justification, let us take the criterion
for choosing to be a goal G, consisting of one or more optimisation rules. For example, of all the
possible systems performing homoeostasis, the purposeful one is defined as enacting P′ such that
Y → X, with P′ ∈ P|max(G), where G is an objective function for which the optimisation goal G(G)
is satisfied, contingent upon the options (e.g., P proceeds as quickly as possible, or with minimum
energy expenditure, etc.). Accordingly, “will” is defined by a purpose which is a plan to enact a process
causing a transition in state, “as well as possible” (according to G(G)), notwithstanding the earlier
comment about pathological purposes. A free-will agent has a choice of transition and a goal which
identifies the most desirable transition and the best way to enact it, from those available. These two
choices can be united (by intersection), without loss of generality, to one choice of best transition.

One of the reasons for objecting to teleological terms such as “purpose”, “plan” and “goal” in
relation to natural systems has been the belief that a plan implies a “designer”, the concept at the
centre of the most famous battles between science and religion. This implication is not necessary and
is rejected here (following the argument of Mayr [57]). A plan is merely a pre-set program of steps
taking the system from Y to X; it is the concept for which computation theory was developed. It may
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be designed (the work of an engineer), but also may have evolved by natural selection (which also
supplies the goal, in which case it is a teleonomic system (sensu Mayr [57]).

A plan, as an ordered sequence of transformations, is an abstraction of information from the
physical system, which for free-will must be embodied within the system. A more subtle implication
of “plan” is that as a path leading from Y to X, it is one among several possible paths: different plans
may be possible, perhaps leading to different outcomes. There is a fundamental difference between
this and the inevitability of a dynamic system which follows the only path it may, other than by the
introduction of randomness. The reason is that for a dynamical system all the information defining
its trajectory is pre-determined in the initial (including boundary) conditions and the laws of physics.
The initial conditions constitute its one and only “plan”. If a system embodies pattern-information
(by its structure) which constitutes a developed plan, then this pattern-information may direct the
dynamics of the system along a path other than that set by the exogenous initial conditions (though
we may consider the structure of the system to be a kind of initial condition). The point is that the
embodied plan gives freedom to the system, since it “might be otherwise’; there could be a different
plan and a different outcome. We see this in the variety of life-forms: each follows its own algorithm of
development, life-history and behaviour at the level of the individual organism. The existence of a
plan as abstract pattern-information is a pre-requisite for options and therefore freedom of action.

2.5. Goal, Master Function and Will Nestedness

Now let us complete the connections between will, goal and function. The previous argument
reveals an important difference between downward and any other kind of causation (considered
important by Walker [58]): the former must always be directed by a purpose, for which we need to
identify a goal (upward and same level causation are satisfactorily explained by initial conditions [48]).
Viewing entities and actions both as the consequence of information constraining (filtering) entropic
systems, then the role that is taken by initial conditions in upward causation, is taken by system-level
pattern-information (the transcendent complex [50]) in downward causation. Since the goal G is a
fixed point in an objective function G, it constitutes information (e.g., a homoeostatic set-point) that
must be embodied in the agent’s internal organisation. Since the objective function G represents the
overall functioning of the system (at its highest level), it matches the definition given by Cummins [43]
and Farnsworth et al. [44]. The highest level function from which we identify the purpose of a system
was termed the “master function” by Jaeger and Calkins [42], so the will of an agent is instantiated in
the master function. This then identifies G with “master function” and “will” with G(G).

Ellis [48] identifies five types of downward causation, the second being “non-adaptive information
control”, where he says “higher level entities influence lower level entities so as to attain specific fixed
goals through the existence of feedback control loops...” in which “the outcome is not determined by
the boundary or initial conditions; rather it is determined by the goals”. Butterfield [46] gives a more
mathematically precise account of this, but without elaborating on the meaning or origin of “goals”.
Indeed, as both Ellis [48] and Butterfield [46] proceed with the third type: downward causation “via
adaptive selection” they refer to fitness criteria as “meta-goals” and it is clear that these originate before
and beyond the existence of the agent in question. Ellis [48] describes meta-goal as “the higher level
“purpose” that guides the dynamics” and explains that “the goals are established through the process
of natural selection and genetically embodied, in the case of biological systems, or are embodied via
the engineering design and subsequent user choice, in the case of manufactured systems”.

This suggests a nested hierarchy of goal-driven systems and for each, the goal is the source of
causal power and as such may be identified as the “will” (free or otherwise). We may interpret the
definition of “deep freedom” [13] as meaning that an agent has at least two nested levels of causal
power, the higher of which, at least, is embodied within the agent (as causal pattern-information). This
concept may be formalised after introducing the discrete variable “will-nestedness” N which counts
the number of levels of causal power exercised over a system, from within the agent as a whole (i.e., at
the level of master function), the N -th level being the highest-level internal cause of its actions.
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Among organisms in general, the master function specifies the criteria by which the organism
is to assess its possible future reactions to the environment. It is so much an integral part of the
organism that without it, the organism would not exist. However, it was not chosen by the organism
(in the sense of deep free-will) because it was created by evolutionary filtering and inherited from its
parent(s); as all known life has been created by the previous generation copying itself. For single celled
organisms the biological master function is to maximise their cell count by survival and reproduction,
but in multicellular organisms, this master function exists, by definition, at the level of the whole
organism (the unconstrained drive to proliferate a single cell line leads to cancer). Organisms with
a central nervous system, regulated by neuro-hormone systems, with their corresponding emotions,
can implement more complex (information rich) and adaptable (internally branched) algorithms for
the master function, which may include will-nestedness N > 1. In humans, this is taken to such
an extent that the biological master function may seem to have been superseded (but the weight of
socio-biological evidence may suggest otherwise [59,60]).

2.6. The Possibility of Choice and Alternative Futures

So far I have identified organisational-closure and the internal generation of a goal-based plan
as prerequisites for free-will, but have not yet addressed the “alternative futures” problem relating
to an agent constructed from elemental components that necessarily obey physical determinism.
List [18] provides a philosophical argument for meeting this requirement, constructed from supervenience
and multiple realisation of an agent in relation to its underlying (micro) physical level: “an agent-state is
consistent with every sequence of events that is supported by at least one of its physical realizations” [18].
He shows that this may apply not only to multiple micro-histories up to t, but in principle includes
subsequent (t + τ) sequences at the micro-level, which may map to different agent states and therefore
permit different courses of action at the (macro) agent-level. To explain: for any given time t,
the macro-state Qi(t) is consistent with a set of micro-states s, at least one of which si ∈ s may lead
(deterministically) to a new state sj ∈ s at t+ 1, with which a different macro-state Qj is consistent, thus
giving the agent a choice of which micro-state history to “ride” into t + 1 (this idea is developed with
rigour by List [18], and illustrated with “real-world” examples; it is the basis on which he concludes
that agents may be “free to do otherwise”, despite supervening on deterministic physical processes).

Alternative futures may be produced at multiple levels of system organisation within a hierarchical
structure, by re-applying the principles identified by List [18] for each level of macro-micro relations.
For any system level L to have the potential for alternative futures, it must have the attributes of an
“agent-level”: supervenience and multiple realisation such that pattern-information with causal power
emerges at level L from L − 1: i.e., a transcendent complex exists at level L. However, this does not
necessarily give free will to a system of that level, since for that, it must be organisationally closed.
If it were not so, we would not be able to identify the system at level L as an entity to which free-will
could be ascribed. Thus will-nestedness cannot be attributed to levels of organisation below that of the
Kantian whole. Since the Kantian whole is, by definition, the highest level of organisation to which
free-will may be ascribed (any causal power beyond it rules out its free will), then will-nestedness can
only apply at the level of the Kantian whole. Given this, the will-nestedness must be constructed from
purely organisational, i.e., pattern-informational and therefore be purely computational in nature. This
is an important deduction: free-will can only be an attribute of a Kantian whole and it can only result
from the cybernetic structure at the level of the Kantian whole.

3. Choosing Possible Futures: The Computational Condition

We see that for free-will, an agent must have an independent and internally generated purpose
for action and that this requires it to be organisationally closed. Free-will further requires the agent to
use this purpose to choose among options. To do so, it needs an internal representation of possible
futures from which to choose and an internally generated means of choosing. We now turn to the
conditions which enable these essentially computational facilities.
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3.1. Information Abstraction

The organisational boundary is where internal is distinguished from external. If the agent in question
had no links of any kind between internal and external, then it would be unable to respond to, or use, its
environment and in that case it could not be behaviourally autonomous as Froese et al. [22] defined it.
Therefore to be both behaviourally and constitutively autonomous an agent must be disconnected from
effective cause (also termed efficient cause), but able to perceive at least some aspect of its environment
and act upon what it perceives (this being the foundation of cognition). The way this is achieved is
via one or more transducer on the boundary, which acts as an intermediary between external and
internal, allowing causal power without permitting effective cause to pass through the boundary.
The transducer is a system which transforms information from one medium of embodiment to another
(in analogy with an engine which transforms energy from one form to another). As information crosses
the interface between one medium and another, it looses its effective causality. The reason is that
information causality is mediated by physical forces. What is meant here by information causality, is
that changes in an effective force (within a medium) constitute a pattern in force which as a pattern,
constitutes information in the sense defined in Section 1. Forces are effective only within the medium
to which they belong. The transducer has two sides, each belonging to a different medium, so each is
causally linked to a different medium. Therefore fluctuations in force on one side exert no effective
cause on the other side (because it is a different medium). However, the transducer allows a correlation
between the fluctuation on one side and the other. What happens between the sides is a transformation of
the information from one medium to the other and during that transformation the information looses its
physical causal effect, but the transducer passes through its causal power via correlation, which itself may
be modulated by the transducer. The disconnection of information from its medium is termed information
abstraction because information without a medium of embodiment cannot really exist, it is an abstraction.

Information abstraction at the organisational boundary is crucial to achieving autonomy because
it strips off the physical effect of the external environment to take only the abstract information which
is then used as a signal in cognition. Causes are transformed into signals, their effects being rendered
responses (which thereby may become optional). It is this separation of information (as signals) from the
physical force of cause and effect that releases the agent from attachment to the cause-effect determinism
of its environment. The material apparatus for performing this task is a transducer: the tegumental
membranes of bacteria and other cells contain a wide variety of transducers (receptors) and we expect
an artificial robot to be well equipped with them too. This is not a merely technical point. The closure
condition gives the system a degree of causal independence and the boundary transducers give it a
sensitivity to its environment whilst preserving this independence. The boundary is the place where the
inevitability of cause and effect of the environment meets that of the internal processes of the system and
the transducers are the interface between these causal chains. According to one interpretation, internally
to the system, the environment is “reduced” to abstract, representational, information by the transducers
[61]. Now the question is, what must the agent do with this information in order to exercise free-will?

Of course the answer is to compute: more specifically, to perform transformations on the data
as a result of a sequence of physical changes in the physical structure of the agent. Such changes are
described by automata theory, for which the most basic automaton has two states and can potentially
change state on receiving a signal to which it responds: it is a switch (e.g., a protein molecule with two
conformations is an “acceptor” of all strings from the alphabet {0, 1}, where these symbols may represent
the presence/absence of e.g., another molecule or a level above a threshold (e.g., temperature)). Obviously,
the switch is the elemental component for generating discrete options. A less obvious, but crucial property
of the switch for the physical embodiment of computation is “thermodynamic indifference”. Walker and
Davies [62] focus on computation in explaining the origin of life, referring to genetics-first theories as
“digital-first”, emphasising the need for “programmability” and its provision by informational polymers
(the genetic oligomers RNA, DNA etc.). By programmability they meant that components of a system are
configured so that the system state can change reversibly, approximately independent of energy flow:
i.e., changes of state are not accompanied by substantial changes in potential (stored) energy. If they were,
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then switching would always be biased by the difference in energetic cost between e.g., switching on and
off. Energetically unbiased switching is the physical underlying mechanism of “information abstraction”
referred to by Walker and Davies [62]. In reality, switching (and state-changes in general) always have
energetic consequences (more deeply, there is always an exchange of entropy between the system and
an external energy source), which is one of the reasons an autonomous agent must complete work
cycles as Kauffman [63] specifies. What makes the informational polymers (e.g., DNA) of life special
is the fact that they are reversible in a way that is thermodynamically indifferent (or very nearly so;
see Ptashne [64]). Any ordered set of n switch positions (e.g., 1,1,0,0) has very nearly the same potential
energy as any other ordered set of n (e.g., 0,1,0,1).

For free-will, both the self-assembly of autocatalytic systems and the computational requirements
(switches and memory) are jointly necessary. Walker and Davies [62] and Walker [58] proposed that
the autonomy of living systems arises from the combination of “analogue” chemical networks and
“digital information processing”. Accordingly, a hybrid automaton is a good model for the construction
of a free-will agent. Figure 1 (from Hagiya et al. [10]) shows an example of a hybrid automaton which
combines discrete-state with continuous dynamical systems, such that the discrete states (as modes of
functioning) determine the system’s responses to dynamic variables and these responses potentially
influence the trajectory of the dynamics. In this pedagogical example from Hagiya et al. [10], there are
two state variables α and τ which determine the set points for autonomous chemotaxis behaviour in the
bacterium represented. This system can freely maximise its (experienced) environmental concentration
of x (e.g., glucose), so its goal G(G) is defined, but it cannot choose how (hence N = 1), so it cannot
express free-will in the deep sense. However, if it had independent control over α and τ, with the
ability to adjust these values according to a plan of its own making, then it would fulfil the condition
of having willed its own behaviour (N = 2), at least in the sense defined in the previous section.
As part of a living bacterium, the system depicted would be a component of a Kantian whole (the
free-living organism), so all that is missing for free-will is a plan for determining α and τ according to
an internally generated goal (a master function) and some means of computing this. The computational
requirements for free-will are identified as follows.

x+ α > r
ċ = 1

c < τ

x+ α ≤ r

c := 0

c ≥ τ

r := x

Directed
 motion

Tumbling

Figure 1. A bacterial chemotaxis controller described as a hybrid automaton, realised in practice by
e.g., Escherichia coli species, but also as an engineering design for a molecular robot, using DNA-based
components by Hagiya et al. [10], from which the figure, slightly modified, is taken. Note that α and
τ are internal set-points, which constitute pattern-information embodied in the molecular robot’s
structure and are ultimately determined by Darwinian evolution (natural robots) or intentional design
(human artefacts). The bacterium responds to the environmental concentration (e.g., of glucose); its
objective function x, which is detected by a membrane transducer which generates the internal variable
r. It is searching for a higher concentration when x is below a set threshold (directed motion) and
tumbles randomly for a time set internally by τ using an internal “clock” signal c, whenever the
concentration is at least equal to the threshold. The swimming and tumbling are modes of action of its
flagella. The objective function of this system is the experienced concentration x and the goal is max(x).
The chemotaxis controller exhibits will-nestedness of one.
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3.2. The Representation of Self

Firstly, a free-will agent must maintain an internal representation of itself, and also the effect of its
environment on its internal state, to enable it to assess each of its options for action.

At the root of automata theory lies an attempt to fully describe (and therefore predict) the
behaviour of a system without a detailed mechanistic account of its internal workings (the black box
approach). The system is captured in the mapping between environmental stimuli and responses:

R(t + 1) = W(S(t), S(t)) (2)

where R(t) and S(t) are the response and stimulus, and S(t) is the history of stimuli experienced by
the system, from the beginning of its formation up to t and W(·) is the mapping function. This presents
an immediate problem, since in general S(t) is arbitrary and infinite in range (it is instructive to think
of Strawson’s [20] “Basic Argument” in terms of Equation (2): the response of a system, in general,
depends on its environment from before the system came into existence). The solution to this indefinite
S(t) problem (provided by Moore [65]) is to assume that the infinite set of S(t) may be partitioned
into a finite number of disjoint equivalence sets, each containing the histories that are equivalent in
their effect on R(t + τ), ∀τ, where τ is in the interval [0, ∞]. These equivalence sets are represented as
states Q(t) of the system, so that:

R(t + 1) = W(Q(t), S(t)) and Q(t + 1) = U(Q(t), S(t)), (3)

where U(Q(t), S(t)) is the transformation function dictating the transition of system state given its
present state and that of the stimulus (see Minsky [66], pp. 16–17). Thus Q(t) represents how the
system is now, given its previous history of experiences. Q(t) corresponds to the agent-state of List [18],
which is multiply-realisable and which is, at least in principle, free to take more than one value at
some point in the future t + τ, despite supervening on a a wholly determined set of micro-histories.
List [18] showed the possibility of choice at the agent-level, but this does not necessarily mean that
Q(t) is indeterminate. Specifically, for free-choice (of Q(t + 1) and implied R(t + 1)), the direction
taken at the branching point t must be determined by a process internal to the agent that represents its
“purpose” (as defined earlier). For the choice to be purposeful, it must be based on an assessment of
the outcomes that would arise from choosing each of the options. This entails a prediction of possible
futures, for which a free-will system must have a model of itself in its environmental context.

The question now is, how can a system create such a representation by and for itself, not
“programmed” by some exogenous source of information? The answer seems to be as it is with
material self-assembly: a boot-strap, step by step, gathering of pattern-information embodied in form,
such that as the form grows, it increases in complexity. In the particular case of building a model of self
and environment, this process is one of learning, for which the field of “machine learning” provides
our understanding. Well known advances in this field have already led to sophisticated learning
among pre-existing (i.e., not self-assembled) computation systems such as deep neural networks etc.
The difference here is that the learning is not merely a statistical problem, but one of simultaneous
self-construction, which must begin with simple systems, so in the remainder of this section, only basic
and simple systems capable of unsupervised learning are discussed.

3.2.1. Learning in a Constant Environment

The most basic form of learning is operant conditioning (reinforcement learning), described
mathematically by Zhang [67] (cited in Krakauer [68]) as follows from the description provided by [68].
Let Ri be one of a set of N possible responses (Ri ∈ R, i ∈ [1, N]) in a constant environment, occurring
with probability ri. For each response there is a “reward” ρ (which coincides with the objective function
G that defines the goal of the system: ρ → f (G)), so that the incremental change in probability of the
i-th response is:
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Δri = aρk(κk,i − ri), (4)

where κk,i is the Kronecker delta function (equal to 1 if i = k, else equal to zero) and a is a learning
rate constant. Since the average change in response over the ensemble of possible responses is
the frequency-weighted sum: Δr̂ = ∑N

k rkΔrk, the result is that the frequency of the i-th response
incrementally increases in proportion to the difference between its reward and the average over
all rewards:

Δri = ari(ρi − ρ̂) , where ρ̂ =
N

∑
k

rkρk. (5)

The dynamic quantified in Equation (5) describes learning by maximising the reward experienced.
Such learning is equivalent to making an increasingly accurate model of the (static) relationship
between the agent’s internal state and the environment, via (Bayesian) “trial and error” sampling
of responses. Given a constant environment, the solution to Equation (5) yields a single, reward
maximising response: R∗ = Ri such that ρi = ρ̂ and ri = κk,i.

To achieve this in practice the system must at least keep a record of the reward for the last
response made and the average reward, for which an automaton with an external memory is
required (e.g., a push-down automaton, though this is still essentially a determinate finite state
automaton DFA). Quantifying the complexity of such a system is probably best achieved through a
programme (algorithmic) complexity measure since the information instantiated by such an automaton
is almost all in its transition mapping and there are robust methods for reducing this to the minimum
description, leading directly to the Kolmogorov complexity. The process of learning can be interpreted
in information terms: if the starting probability distribution of R is r̃, then the initial Shannon entropy
of the system is H = −∑N

i r̃i log(r̃i) and the final entropy is zero: having completed its learning,
the system has no uncertainty about the best way to respond to this environment. In this state,
the automaton is a complete representation of its interaction with its environment (i.e., the distribution
of rewards over its repertoire of responses) and it embodies exactly H units of information: a quantity
which should match the algorithmic complexity measure (though not tested here).

3.2.2. Extension to a Variable Environment

Generalising to a variable environment, for which a set of finite states S is an adequate
representation, there would exist a reward maximising response for each state: R∗

i → (Si), such
that R∗

i solves Equation (5). The agent may choose to maximise its reward over all S, and to enable
this, it must learn the best response for every Si ∈ S. In information terms, first let H(s) be the entropy
of the environment having probability distribution s and Ht(rt) be that of the responses, given their
probability distribution rt at time t. The Shannon information the agent has about its environment
(in terms of its rewards) is:

It(s : rt) = H(s) + H(rt)− H(s, rt) (6)

= H(s) + H(rt)− H(s|rt),

meaning that the agent is learning both the distribution s and the reward associated with each Si ∈ S.
This mutual information is embodied in the structure of the agent and can be used as a measure of
its complexity. The structure of the agent may be too simple to embody as much as the maximum
mutual information, in which case its learning will be limited and it will not make optimal responses,
so Equation (6) is a measure of the minimum complexity required for optimal behaviour from the agent.
It would be possible for an agent to implement this learning system by “growing” multiple copies
of the DFA with memory (one for each Si ∈ S) that is used for a constant environment. The output
of each of these would then be the input to a further DFA which it uses to maximise the reward
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across all of them. This “growth” would be enacting meta-learning: the agent would increase its
complexity in response to rewards. The number of states in S is not known by the agent a-priori, so
the number of DFAs needing to be “grown” is indeterminate. Further, account should be taken of the
extended time needed to perform such laborious learning and the consequences of the agent being
wrong in so many trials. It seems that for practical reasons there comes a point when a more powerful
kind of computation becomes necessary. In computation terms, such a learning problem requires at
least a finite and non-volatile memory, effectively to store multiple instances of the single learning
problem encountered in a constant environment. For this reason a Turing Machine would be a more
realistic option.

3.3. The Free-Will Machine

These computational requirements for free-will to become possible are brought together in the
hypothetical “free-will machine” of Figure 2. This information processing must be implemented by the
agent to which free-will is ascribed and that agent must, further, be a Kantian whole for the requirements
of free-will to met. The current state of the environment (external) and of the agent (internal) are
derived by information abstraction from the physical world: the array of receptor molecules in the
cell membrane, the nervous senses of an animal, or the transducers of a human artefact all perform
this task. The first Turing machine implementation TM1 constitutes a representation of the agent in
the present (relevant aspects of its environment are included) and is informed (updated) by the state
information Qt and St. The function of this representation is to identify the set of possible responses
Rt that the agent can make, given Qt, St (underline notation now denotes a set).

TM2 uses these hypothetical responses to compute the set of possible futures at a time t + n
(n may take any positive value) Ft+n for which in a simple case TM2 : Rt → Ft+n is a map of responses
onto possible futures (simple, because there is not necessarily a 1 : 1 relation between Rt and Ft+n, but
we need not be concerned with that at present). There is no limit on the number of possible futures
that TM2 may compute, but it must be at least 2 for a choice to exist. These possible futures are each
represented by a set of states f , each member fn being equivalent to a prediction of a possible Qt+n.
The finite state automaton FSA chooses from among these, using a selection criterion based on the
objective function defined by a goal G, which is generated by the agent (not exogenously). This goal is
the maximisation of the master function, (e.g., for a living agent this is life-time reproductive success).
The goal enables the optimal possible future state to be recognised (it is the one which maximises
the master function) and this future state f ′ implies an optimal response r′ (in general there could be
more than one, in which case the agent will be indifferent among them). Having selected an optimal
response, the agent then must implement it in the physical realm. Since the computation of r′ has
been conducted in the realm of information, this step appears to involve the control of material by
information. In practice all the computation and indeed all the information is instantiated by material
and energy acting in the physical realm, so our cybernetic model is merely an abstract representation
of the organisation of the physical processes which lead to the implementation in the physical system
and this return to physical reality is represent by the action (IPS). Such implementation inevitably
results in a transformation of the agent into a new state Qt+1, together with St+1 and this restarts the
cycle. It may be noted that Von Neumann’s self-replicating automata are proven universal Turing
machines [39] and Turing machines are thought to be common among living systems, so this
computational arrangement is not beyond the bounds of possibility.
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St

Qt

Information
Abstraction

Qt

St Rt
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f ′
f ′ ⇒ r′

Information
control

Qt+1

Figure 2. A conceptual “free-will” machine, which generates predictions of its state in alternative
futures Ft+nusing an internal representation of itself interacting with its environment, selecting the
optimal from among these, using a goal-bases criterion G, in which the goal is internally determined
(further explanation in the text).

4. Discussion and Synthesis

To summarise, the essential requirements for free will are:

R1 There must be a self to self-determine.
R2 There must be a non-zero probability of more than one option being enacted.
R3 There must be an internal means of choosing among options (which is not merely random, since

randomness is not a choice).

For R3 to be fulfilled:

R4 Options must be generated from an internal model of the self which can calculate future states
contingent on possible responses.

R5 Choosing among these options requires their evaluation using an internally generated goal.
R6 For “deep free-will”, at least two nested levels of choice and goal (R4–R5) must be enacted by the

agent.

R1 and references to “internally generated” are fulfilled by organisational closure. For R2,
the possibility of options, which implies “multiple futures” has been established for the level of the
agent by List [18]. R3 and its predicates R4–R5 imply a minimum level of computational power, which
in principle can be met by a small set of Turing machines, which may in principle be implemented
by a von Neumann architecture computer, a network or cellular automaton-based or any other sort
of computer, including a biomolecular system such as found in higher animal life, but it seems to be
beyond the power of a single living cell (though that last point is not yet established). R4 in particular
seems to require a finite memory (the size depends on the complexity of the agent and its environment)
and R6, the qualifier for deep free-will, adds a little more to the computing power necessary, but it is
important to note that this extra is not a step-change: it is not qualitatively more demanding than the
automated decision making required by R3.

The question of free-will is not one of whether an agent’s actions are caused, since all actions
ultimately have a cause. The ultimate cause of any action can be understood as resulting from selection
over random actions by a pattern, which leaves a correlation with the pattern that caused the selection
(instantiating pattern-information). All living organisms, including people, were produced by
information-pattern filtering, proximally by molecular replication (creating inheritance) and ultimately
by Darwinian selection. All human artefacts were created by following a design pattern (though it
may not have been completed before artefact construction), so they correlate with their design. Even
inanimate objects, such as stars, lakes and sand grains, owe their form to the information-pattern of
underlying physical laws, Pauli’s exclusion principle and the distribution of matter and energy in space
following the big-bang. To this, we must add randomness which has been entering as “informational
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raw material” into the universe, disrupting the original patterns and opening opportunities for novelty
(evolutionary for life) and more widely directing the course of the universe in unexpected ways as its
history tracks a course in the highly ergodic space of possibilities.

Taking Strawson’s [20] Basic Argument seriously, this pattern-correlation and the injection of
randomness both deny free will. From them, we obtain a model in which the identity of all things,
including human beings, is an illusion: as if the universe was all one complex manifestation which only
appears to include separate agents. Closer inspection shows how the nested-hierarchical construction
of this complexity entails the creation of genuinely new pattern-information, caused by and embodied
in the interactions among component parts of putative agents. This novel pattern-information
transcends its component parts and can exert downward causation upon them. Some structures
(such as autocatalytic sets) created this way are organisationally closed (though materially and
thermodynamically remain open systems). Because of this, their internal dynamics are, at least partially,
separated from the external dynamics of their environment and this gives them an organisational
boundary, enabling internal to be defined against external. At this boundary, external and internal
chains of cause and effect interact through transducers which transform physical determinism into
stimulus-response relations. Systems with these properties are essentially cybernetic and although their
low-level processes are continuous with the rest of the universe, List [18] has shown that in principle
they may have options for their next state and response: they are freed from physical determinism.
To translate this freedom into free-will, requires that the (partially) independent agent chooses from
among its options and this entails an internal computation of possible futures and their evaluation
against a goal representing the fulfilment of the agent’s “master function” (i.e., its purpose). This
goal is a fixed point in an objective function which may be simple (as in a homoeostatic system), but
also arbitrarily complex and multi-layered, taking account of multiple time-scales and interactions
with other agents. If the objective function is at least two-layered (will-nestedness N ≥ 2), then it
effectively has a choice of what to choose and thereby could fulfil the established definition of (deep)
free-will [13,16]. This calls into question the idea that free-will is an all or nothing capacity, instead, it
suggests free-will to be a discrete quantity and even something we could in principle measure as a
trait of a system.

The reason is that deep free-will has so far been defined as the freedom to choose ones will,
but the analysis presented here shows that to be wilful, a choice must be purposeful, which means
optimising an objective function. Freedom is in the choice of objective function. Since therefore,
the core of will is the objective function, deep freedom is the freedom to choose this, but to be wilful,
this choice in turn must optimise a hierarchically superior objective function, which must have been
determined by something. We can conceive of a large but finite nested set of such objective functions,
but ultimately the highest of them all must be provided either arbitrarily (e.g., at random) or by
natural selection (or its unnatural equivalent), or by design: in all cases, not the free choice of the
agent. This applies even to human beings, who are still subject to “design” by inheritance, selected
by evolution. The depth of free-will is therefore a discrete, finite variable (will-nestedness N ) and
we may speak of one kind of agent being more deeply free than another, but no kind of agent can be
ultimately free-willed in the sense meant by deep free-will (presumably, humans attain the highest
will-nestedness of known agents).

Seeking an ultimate cause of will leads to an infinite regress because for (second order) will-setting
to be “rational” (meaning a reason underlies it), it must be based on the setting of a (higher order) will.
This introduces a third order rational basis of the will-setting and so on ad infinitum. Here the problem
is explained in the more concrete and formal terms of fixed points (goals) in objective functions.
The concept is made sufficiently specific to quantify (as nestedness) and used to conclude that no
agent can be ultimately free willed in the strong source-theory sense of being ultimately responsible.
Philosophers (such as Strawson) conclude that if the ultimate source is not of the agent, then the agent
cannot have free will. The more quantitatively oriented analysis presented here adds a nuance to this,
so we are not forced into an “all or nothing” conclusion about free will. It suggests that agents may be
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better characterised by the degree of free-will, expressed in terms of the will-nestedness, which can
in principle be derived for any kind of agent under scrutiny. Therefore, whilst Frankfurt [12] asserts
that only humans can have second order volition, but animals can have first order, I contend that any
autonomous agent (including synthetic) can be characterised by the hierarchical order of their goal
setting (be it zero, one, two or higher) and further that this order can be identified as the number of
hierarchically arranged objective functions in their decision making (computation) that are embodied
(as information) within their structure (what I call will nestedness).

If interpreting the philosopher’s definition of deep free-will as N ≥ 2 is correct, then it is not
hard to achieve in principle. The impediment to a non-life robot acquiring that sort of free-will is
not computational, it is the closure constraint with its requirement for bootstrapping self-assembly
(especially since this includes the “growth” of the sort of computational apparatus indicated in
Figure 2). That is a problem already solved by life. Quite likely N ≥ 2 in most or all organisms having
at least a limbic system, so free-will defined this way can be attributed to most or all vertebrates [69].
The computational requirements for exercising purposeful choices are not very challenging for
artificial computers. Among human artefacts, including what most people would define as robots,
the organisational closure condition is the major hurdle not yet leapt. This point has been recognised
in the artificial intelligence literature, especially concerning “cognitive robotics” which emphasises
embodiment [22,26]. For the time-being, it seems free-will, as defined here, is a unique property of
living things, but the possibility of extending it to synthetic robots remains.
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