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Abstract: Renewable energy sources will represent the only alternative to limit fossil fuel usage
and pollution. For this reason, photovoltaic (PV) power plants represent one of the main systems
adopted to produce clean energy. Monitoring the state of health of a system is fundamental. However,
these techniques are time demanding, cause stops to the energy generation, and often require
laboratory instrumentation, thus being not cost-effective for frequent inspections. Moreover, PV
plants are often located in inaccessible places, making any intervention dangerous. In this paper, we
propose solAIr, an artificial intelligence system based on deep learning for anomaly cells detection in
photovoltaic images obtained from unmanned aerial vehicles equipped with a thermal infrared sensor.
The proposed anomaly cells detection system is based on the mask region-based convolutional neural
network (Mask R-CNN) architecture, adopted because it simultaneously performs object detection
and instance segmentation, making it useful for the automated inspection task. The proposed
system is trained and evaluated on the photovoltaic thermal images dataset, a publicly available
dataset collected for this work. Furthermore, the performances of three state-of-art deep neural
networks, (DNNs) including UNet, FPNet and LinkNet, are compared and evaluated. Results show
the effectiveness and the suitability of the proposed approach in terms of intersection over union
(IoU) and the Dice coefficient.

Keywords: unmanned aerial vehicles; photovoltaic cells inspection; deep learning

1. Introduction

With the growing demand for a low-consumption economy and thanks to technological advances,
photovoltaic (PV) energy generation has become paramount in the production of renewable energy.
Renewable energy sources will represent the only alternative to limit fossil fuel usage and pollution.
For this reason, PV power plants are one of the main systems adopted to produce clean energy.
Huge investments have been allocated by European countries to stimulate the use of so-called clean
energy. Indeed, monitoring the state of health of a system is crucial; detecting the degradation of solar
panels is the only way to ensure good performance over time. Besides avoiding a waste of energy,
the reason for maintaining a correct functional status of a plant is also economic: the degradation
of long-term performance and overall reliability of PV plants can drastically reduce expected
revenues [1,2].

PV plants are more and more extensive, composed by thousands of modules, potentially affected
by the following fault types: optical degradation or faults, electrical mismatches, and non-classified
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faults [3]. In the last decades, several methods have been developed, spanning electrical diagnostics,
statistical inference from monitored control units, shading detection and so on. Commercial monitoring
approaches ensure power loss detection in a portion of the PV field, while the accurate localization of
faulty modules requires strings’ disassembling, visual inspection, and/or electrical characterization.
The long-term performance and the overall reliability of the PV modules strictly depend on
faults arising during the operational conditions, or that occurred during the transportation and
installation [4,5].

An accurate and prompt detection of defects in the PV modules has the task of guaranteeing
an adequate duration time and an efficient power generation of the PV modules and therefore a
reliable functioning of the PV plants [6]. Operation and Maintenance (O&M) actions are performed
to detect faults. O&M techniques are time-demanding, cause stops to the energy generation,
and often require laboratory instrumentation, thus being not cost-effective for frequent inspections [7].
Moreover, it should be noted that PV plants are often located in inaccessible places, making any
intervention dangerous.

In this regard, a strong contribution was given by the recent diffusion of unmanned aerial vehicles
(UAV), equipped with a thermal infrared sensor, making this technique widely accessible and a
de-facto standard for PV fields’ diagnosis [8]. The inspection of a PV system using a thermal imaging
camera allows to identify any malfunctions of the modules as zones with different colors represent
different operating temperatures. Infrared thermography (IRT) is very important for the analysis of
PV plants since it allows the acquisition of the operating temperature of each module, an important
parameter for the performance evaluations. In addition, even with powerful equipment, accelerating
the process of detection of these anomalies it is still challenging; in fact, fault detection is actually
very time-consuming and error-prone, since it is generally performed with a visual interpretation
of the operator. Moreover, the current practice adopted by the majority of PV plant owners is to
perform inspections sporadically, with random criteria and without controlling the overall health of
the installation. These represent the main motivations behind the proposed approach [9].

Given the above reasons, in this work, solAIr, a fast and accurate anomaly cells detection system, is
developed, leveraging recent advances in deep learning. When dealing with the analysis of large image
collections, deep learning-based approaches have been demonstrated to be useful compared to the
widely used machine learning approaches (e.g., support vector machines, k-nearest neighbor, decision
tree, random forest and more) [10]. The use of a deep neural networks (DNNs) allows a complete
understanding of the image, guaranteeing greater accuracy and efficiency and discovering multiple
levels of data representation. DNNs can extract the characteristics of the image and automatically
classify them from a large amount of image data [11,12]. Hence, the proposed anomaly cells detection
system is based on the mask region-based CNN (Mask R-CNN) architecture [13]. This work extends
a previous one proposed for the classification of anomaly PV images [14]. In the previous work,
a classification task was addressed. For each image, the system deduces that at least one anomaly is
present in that image. Instead, in this work the detection task is addressed. For each image, the system
returns the exact location of the anomalies contained in the same image. The Mask R-CNN approach
solves three tasks at the same time: location, segmentation and classification of objects in an image,
generating a bounding box, segmentation mask and class. Additionally, the most important aspect
is that the R-CNN Mask solves the segmentation task at the instance level, i.e., it generates a result
for each object found. SolAIr was trained and evaluated on the photovoltaic thermal images dataset,
a public dataset collected for this work. The dataset is an extension of the one published in the
previous work [14]. Initially, the dataset included only images of a portion of Tombourke’s system.
Now, the dataset has been expanded with images of the entire system. In addition, for each image,
a mask containing the segmentation of the faulty cells has been added. The thermal dataset is available
(http://vrai.dii.univpm.it/content/photovoltaic-thermal-images-dataset) after compiling a request
form in which the applicants specify their research purposes. Furthermore, the performances of three
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state-of-art DNNs, including UNet [15], FPNet [16] and LinkNet [17], are compared and evaluated in
this paper.

The main contributions of this paper can be summarized as follows: (i) a system based on deep
learning for the anomaly detection and localization of damaged cells in PV thermal images, (ii) a
newly annotated dataset that is publicly available for further experiments by the research community
and (iii) a comparison of different deep learning methods that can serve as a benchmark for future
experiments in the field.

The paper is organized as follows: Section 2 presents an overview of the related works for PV
image processing; Section 3 introduces our approach that consists of a UAV-based inspection system
(Section 3.1), gives details on the photovoltaic thermal images dataset (Section 3.2) and introduces a
DNN-based solution for anomaly cells detection of PV thermal Images (Section 3.3). Section 4 presents
the results, and Section 5 discusses the conclusions and future works.

2. Related Works

The latest technological improvements of digital cameras, in combination with affordable
costs, made the PV inspection based on optical methods more and more popular. Specifically,
electroluminescence (EL) and IRT imaging represent reliable methods for the qualitative
characterization of PV modules. In recent years, several companies have developed systems based
on EL techniques. Mondragon Assembly developed an EL inspection system equipped with three
high-definition cameras, enabling easy identification of different defects, such as micro cracks, dark
areas, finger problems, and short-circuits (https://www.mondragon-assembly.com/solar-automation-
solutions/solar-manufacturing-equipment/pv-module-testing/el-inspection/). MBJ implemented
high-resolution fully automated electroluminescence test systems for integration into production lines
of PV panels, cells, modules or strings. Their system uses deep learning methods to ensure reliable
automatic error detection (https://www.mbj-solutions.com/en/products/el-inspection-systems).
In addition, AEPVI (Aerial PV Inspection) performs PV power plant inspections by using aerial EL
testing systems. The evaluation of the images is automated and uses machine learning techniques to
categorize module faults (http://www.aepvi.com/). Quantified Energy Labs performs quantitative
electroluminescence analysis (QELA) for enabling the use of EL for outdoor applications. On top
of QELA algorithms, they develop machine learning and artificial intelligence models to detect and
analyze every module in PV plants and identify potential defects that might reduce the performance of
the asset (https://qe-labs.com/). However, as stated in [3], EL-based methods present limitations with
respect to IRT imaging which, by contrast, appears likely to be more suitable to provide quantitative
information. IRT imaging can provide information about the thermal signature and the exact physical
location of an occurring fault, indicating the defective cell, group of cells or module (qualitative
diagnosis). In turn, such a thermal signature can be used for quantitative diagnosis, by identifying the
electrical power output losses of the impacted module, in the form of dissipated heat. Besides this,
thermal images can be obtained in a faster way, with cost-effective tools and avoiding the interruption
of energy [3].

For all these reasons, a fault detection method based solely on thermal data will be shown in
this paper. However, for the sake of completeness, this section provides the readers with the latest
achievements in this field.

Rogotis et al. [18] proposed an early defect diagnosis in PV modules exploiting spatio-temporal
information derived form thermal images. The approach uses a global thermal image threshold
determined combining two threshold techniques. Their approach is efficient and robust to noise and
reflections due to the sun or clouds, but it is not able to detect junction boxes when another area of the
panel is super-heated.

In [19], the authors propose the use of standard thermal imaging and the Canny edge detection
operator to detect PV module failures that cause the hot spot problem. Several field IRT measurements
of thermal images were used for the inspection of defective PV modules. Overall, the whole approach
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was efficient in detecting hot-spot formations diagnosed in particular defective cells in each module
that was analyzed. For this method some limitation occurs as an undesirable sensitivity in case
of meaningless background objects. Kim et al. [20] also adopted Canny edge operator and image
segmentation techniques to process IRT images acquired with a UAV platform. They used an approach
to compare the intensity characteristics of the individual polygons in the panel area.

Efficient and improved edge detection techniques are presented in the work of [21], where
significant advancements are presented for automated localization of defects.

In [5] the output IRT images derived from an aerial inspection were processed by the method of
aero-triangulation that uses photogrammetry and the global positioning system. Even if all occurring
failures are correctly detected, this data treatment method is highly time- and resource-consuming.
To solve this problem, some optimizations are currently investigated.

An innovative thermal sensor that experimentally localizes heat sources and estimates the
peak temperature using machine learning algorithms (ThermoNet) has been introduced by [22].
The combination of the thermal sensor called ThermoMesh and ThermoNet allows the detection of a
high-speed high-resolution heat source through the transfer of conductive heat.

In [23], the authors evaluated and implement an automated detection method to inspect a PV
plant using a UAV equipped with IRT, whereas in [24] the effectiveness of PV plant detection based on
the profiles of temperature was studied. They also used a UAV equipped with an infrared camera that
inspects the quality of photovoltaic systems in real operating conditions. The temperature distribution
of PV modules allows to detect the defective modules. A useful approach to identify the presence of
hot spots in real time was presented in [23]. But this approach was efficient only for the identification
of the aforementioned type of defect, and not for other forms of failure.

Algorithms based on artificial neural networks (ANN) have been proposed to detect anomalies
in PV modules. In fact, some recent studies have demonstrated that the use of deep learning can
improve the defect detection performance in the aerial images of PV modules, thanks to their ability
of self-learning, fault tolerance and adaptability [1]. The work of [25] detects three typologies of PV
faults (disconnected substrings, hot spots, and disconnected strings) on infrared images acquired by a
thermographic camera mounted on a UAV. The images are processed with digital image-processing
methods and then are used as samples for training a CNN. They demonstrated that the algorithm was
able to detect faults that were not detectable with the image-processing techniques. Telemetry and IRT
images were used to detect hot spots in the work of [26]. Their approach is based on a region-based
recurrent convolutional neural network, that once trained, is used as a hot spot detector. The work
of [27] compared the performance of hotspot detection in the IRT image of PV modules using two
approaches. The first is based on the classical technology that uses Hough line transformation and the
Canny operator to detect hotspots. The second uses the deep learning model based on Faster-RCNN
and transfer learning. With the second they obtained the best results. Close to the approach proposed
in this article is the work of Dunderdale et al. [28]. To identify faulty modules, they combined a scale
invariant feature transform (SIFT) descriptor with a random forest classifier. Moreover, to evaluate the
performance of deep learning models, VGG-16 and MobileNet were implemented. Conversely, our
study advances the state of the art, as it performs a segmentation task, with the advantage of identifying
the correct location of each fault. Moreover, our approach exploits the thermal raw data. Finally,
the results of the tested methods are compared using state-of-the-art metrics. At a glance, the previous
solution [14] for the classification of PV damaged images has been improved by applying recent
object detection architectures to the casting anomaly cells detection task, namely: Mask R-CNN [13],
UNet [15], FPNet [16] and LinkNet [17]. The details of the proposed methods are presented in the
following sections.

3. Materials and Methods

The approach presented in [14], i.e., the classification of PV anomaly images, has been extended
for the development of the proposed solAIr system. To the best of our knowledge, this is the first
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available dataset with thermal information specifically annotated for the management of PV plants.
Indeed, the available SoA datasets include RBG [29] or electtroluminescence [30] images, but thermal
information is neglected. The framework for the anomaly cells detection system, as well as the
novel PV thermal image dataset used for evaluation, were comprised of three main components:
the UAV-based inspection system, the mask region-based CNN (Mask R-CNN) architecture and the
DNN-based solution (see Figure 1). The design of the defect detection system is based on the Mask
R-CNN architecture, which was adopted to simultaneously perform object detection and instance
segmentation, making it useful for the automated inspection task. Further details on the UAV-based
inspection system and the DNN-based solution are given in the following sections with the evaluation
metrics adopted for solving this task. Details on the data collection and ground truth labelling are
discussed in Section 3.2.

Photovoltaic
thermal images

Dataset

UNet

FPN

LinkNet

IoU
Dice

Segmentation

EfficientNet

Backbone

Mask-RCNN

Pretrained on
ImageNet

Trained on
skratch

Masks Union

Instance
Segmentation

Evaluation
Metrics

UAV Acquisition

Labeling,
Normalization

Figure 1. Workflow of the solAIr system—a Unmanned Aerial Veichle (UAV) based intelligent
inspection system for monitoring and anomaly cells detection of Photovoltaic Plants (PV). In the
first step, a UAV is used to scan the PV system. The acquired frames are annotated and stored
in the photovoltaic thermal images dataset. In the next step, the selected neural network (Region
Based Convolutional Neural Network -RCNN) is trained on a portion of the dataset. In the last step,
the trained models are tested on the remaining portion of the dataset. For the final experimental
evaluation, state-of-the-art metrics (like Dice and Intersection over Union (IoU)) are used for the
comparison between the segmentation of the networks and the relative ground truth.

3.1. UAV-Based Inspection System

The UAV-based inspection system is based on a Skyrobotic SR-SF6 drone equipped with a
radiometric Flir Tau 2 640, a thermal camera with a resolution of 640 × 512 pixels and a focal length
of 13 mm. The detailed UAV specifications and parameters adopted in this work are presented in
Table 1. The analysis was carried out with a constant flight altitude of 50 m with respect to the surface
of the panels.

The thermalCapture (Tau core) hardware of the thermo-camera can work in different modes;
in our case thermal detections are available in two different temperature ranges: “high gain” and
“low gain”. For “high gain” the range of temperature is between −25 and +135 ◦C. For “low gain”
the range of temperature is between −40 ◦C and +550 ◦C, but a lower resolution than the first.
All thermo-camera specifications can be found in [14]. Once the raw thermal data are acquired, they
can be pre-processed by a thermografic software, in our case ThermoViewer version 3.0.7 (https:
//thermalcapture.com/thermoviewer/). It is important that the settings in ThermoViewer match
those of the Tau Core to provide a valid output of temperature.
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Table 1. UAV platform specification and parameters.

Overview Value

Width (open) 110.0 ± 5 cm
Length (open) 110.0 ± 5 cm
Height 36.0 ± 5 cm
Empty Weight 2250 ± 50 g
Maximum Payload Weight 2000 g
MTOW (Maximum Take Off Weight) 5500 g
Max Endurance 39 min
Storage Temperature Range −15–70 ◦C
Operating Temperature Range −15–50 ◦C

3.2. Photovoltaic Thermal Images Dataset

In this work, we provide a novel PV thermal image dataset (http://vrai.dii.univpm.it/content/
photovoltaic-thermal-images-dataset). For its collection, a thermographic inspection of a ground-based
PV system was carried out on a PV plant with a power of approximately 66 MW in Tombourke,
South Africa. The thermographic acquisitions were made over seven working days, from 21 to
27 January 2019 with the sky predominantly clear and with maximum irradiation. This situation is
optimal to enhance any abnormal behavior of the entire panels or portion thereof.

3.2.1. Dataset Annotation

The images were captured during the inspection of the PV plants. The operator has selected
the images with the presence of one or more anomaly cells. Then, the associated binary mask was
generated. This mask contains white pixels indicating the anomaly cell. The detection of the anomalous
cell is made only through the use of thermal data: the operator immediately identifies where the
anomaly is placed because the cell has a temperature value that is totally different from all the
surrounding cells. This difference has been evaluated by a software called ThermoViewer (Figure 2).

(a) (b)
Figure 2. Examples of raw thermal images showed by ThermoViewer. The anomalous cell is visibly
located by the operator, as it has a different temperature range from the surrounding cells. (a) A single
defected cell; (b) a contiguous sequence of faulty cells (string).

The thermal images, obtained with the raw radiometric data, associate a thermal value to each
pixel, using the Celsius graduated scale. The images may present one or more anomalies, as depicted
in Figure 3, and the operator creates a single mask that segments each anomalous cell. In case of a
portion of contiguous anomalous cells, the operator segments the whole portion in a single block.
The pre-processing and annotation phase produced a dataset of 1009 thermal images, including
each respective mask. The thermal images and the binary masks have the same dimensions of
512 × 640 pixels.
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The input classes were chosen according the following three types of annotation:

• Images with one anomalous cell (Figure 3a,b);
• Images with more than one anomalous cell (Figure 3c,d);
• Images with a contiguous series of anomalous cells (Figure 3e,f).

(a) (b)

(c) (d)

(e) (f)
Figure 3. Examples of images from the dataset. Figures (a,c,e) are normalized thermal images.
Figures (a,c,e) depict examples of masks, where the black color is the background that contains
all the cells without anomalies and the white is the cells with anomalies. Figure (b) is an example
of mask with a single anomaly cell; Figure (d) is a mask with two separated cells with anomalies;
Figure (f) is a mask with continuous cells that present an anomaly.

The number of images per class are reported in Table 2.
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Table 2. Anomalies statistics.

Class Images

One Anomaly 841
Not Contiguous Cells with Anomalies 116
Contiguous Cells with Anomalies 52

Total Dataset 1009

3.2.2. Data Normalization

As already stated, the thermal data have several advantages compared to RGB data. However,
a normalization and a transformation into a black and white image are required, for obtaining a
single information channel. Table 3 shows the great variability of values within the thermal dataset:
temperature values range between a minimum of 2.249 ◦C and a maximum of 103.335 ◦C, with a
median equal to 44.21 ◦C. Figure 4 represents the histogram of temperatures of the whole dataset.
Therefore, due to the great variability of values in the dataset, the thermal dataset was normalized
in a range between 0 and 1, then transformed into grayscale images, i.e., with pixels having a value
between 0 and 255. Examples of normalized thermal images are shown in Figure 3a,c,e.

Table 3. Thermal statistics of photovoltaic thermal image dataset.

Measure Value (◦C)

Minimum Temperature 2.249
Maximum Temperature 103.335
Average Temperature 43.860
Median 44.212
Standard Deviation 7.841

Figure 4. Histogram of the temperatures of the photovoltaic thermal image dataset. The X-axis shows
the temperature values. The Y-axis reports the number of pixels of the dataset frames belonging to a
temperature range. There are 100 intervals, each with a range of 1 degree, from the minimum to the
maximum temperature values recorded in the dataset.

3.3. DNN-Based Solution for Anomaly Cells Detection

In this Subsection, we introduce the proposed deep learning-based solution for PV anomaly cells
detection. In particular, the presence and the right position of an anomalous cell in a PV image is
addressed as a segmentation task.

Image segmentation techniques take as input an image and output a mask with the predicted
anomalous cells. Since it is a binary segmentation, the mask has pixels with values equal to 0 for the
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background and 1 for the anomalous cell. The DNNs specifically designed for image segmentation
use convolutional neural networks for image classification as backbones for feature extraction, and on
these backbones different kinds of feature combinations are constructed to achieve the segmentation
result. CNNs are the most successful, well-known and widely used architectures in the deep learning
domain, especially for computer vision tasks. They are a particular neural network that is able to
extract discriminant features from data with convolution operations, so they can also be used as feature
extraction networks. Usually a CNN is composed by three type of layers: convolutional layers, where a
kernel of weights is convolved on inputs to extract discriminant features; non-linear layers, to learn the
modeling of non-linear functions by the network; and finally, pooling layers, which reduce dimensions
of a feature map by using statistical operations (mean, max). The units of every layer are locally
connected, i.e., units receive weighted inputs from a small neighborhood (receptive field) of units of
the previous layer. A CNN architecture is usually composed by stacking layers to form multi-resolution
pyramids: the higher-level layers learn features from increasingly wider receptive fields. State-of-art
CNN architectures are AlexNet, VGG , ResNet, MobileNet, and more recently, EfficientNet [31]. In this
work, the backbone of the three segmentation networks is based on EfficientNet [31]. This network
uses a mobile inverted bottleneck for the image classification task. Based on the backbone extracted
features, the three segmentation methods that are compared for the development of our system are:
UNet [15], LinkNet [17] and feature pyramid network (FPN) [32].

UNet is composed of a series of convolutional layers where the outputs of those layers are passed
to a corresponding deconvolutional layer. In particular, a contracting path and expansive path are
applied to generate a segmentation mask.

LinkNet was chosen because it is lightning-fast and is composed of a series of encoder and
decoder blocks used to break down the image and build it back up before passing it through a few
final convolutional layers. The structure of the network has been designed to minimize the number of
parameters so that segmentation could be done in real time. Instead of a simple contracting path and
expanding path, it is used a “link”, which is inserted between the contracting paths and connects the
result of the single step of contraction to the specular step of the expanding path.

Feature pyramid network (FPN) [32] is designed as creates a pyramid representation of the input
image and on it apply the extraction network. It replaces the feature extractor of detectors like Faster
R-CNN and generates multiple feature map layers (multi-scale feature maps) with better-quality
information than the regular feature pyramid for object detection.

All these techniques give as output a single overall mask containing all the anomalous cells
predicted in the same input image.

3.4. Mask Region-Based CNN for Anomaly Cells Detection

Instance segmentation has been chosen for this work. The main reason behind this solution is that
the advantage for the operator is that it obtains the correct position of the anomalous cell. If compared to
a common segmentation task, instance segmentation requires a mask to be created for each anomalous
cell and within the same image. Conversely, image segmentation needs a further step to split all
the defective cells calculated within the overall mask mentioned above. Following this assumption,
Mask R-CNN was proven to be an effective and accurate network for solving these problems [13]. It is
based on Faster R-CNN [33] and has an additional branch for predicting segmentation masks on each
Region of Interest (RoI) in a pixel-to-pixel manner. This network generates three outputs: one for each
candidate object, one for a class (considering both the label and a bounding-box offset) and one for the
object mask. Additionally, it is comprises two parts: a region proposal network (RPN), which proposes
a candidate object with a bounding box, and a binary mask classifier, which generates a mask for every
class. Considering the specific case of anomaly cells detection, this network is not trained directly with
image masks, but it needs the anomalous cell bounding boxes within the image: not a single mask,
but a set of top-left and bottom-right coordinates of each bounding box. Furthermore, in order to be
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compared with image segmentation techniques, it also needs a post-processing step: all the anomalous
predicted cells have to be merged into one overall mask.

3.5. Evaluation Metrics and Loss Function

The metrics taken into consideration vary according to the type of task to be solved and therefore
the type of available output. For the image segmentation task the output is a total mask containing
all the defective cells segmented for the same input image. In this case, pixel-based metrics used in
state-of-the-art techniques are accuracy, precision, recall, and F1-score. However, these metrics can be
misleading as the dataset is unbalanced, so the pixels belonging to damaged areas are far fewer than
those concerning the non-damaged areas. To solve this problem we used other more suitable metrics:
the Jaccard index (Equation (1)) and the Dice coefficient (Equation (2)).

The Jaccard index is a similarity measure on sets [34], and in the segmentation task the sets are
the masks: the first one is that generated by the network and the second one is the ground truth mask.

J(A, B) =
|A ∩ B|
|A ∪ B| (1)

In Equation (1), A is the generated mask and B is the ground truth mask.
The Dice coefficient is a measure of the overlapping of two images, in this application the images

are masks; the generated mask is A and the ground truth is B.

Dice =
2|A ∩ B|
|A ∪ B| (2)

These metrics are useful when, given an input image, the output is a single mask. This is not
true for the Mask-RCNN, where a mask for each damaged identified cell is obtained. In this case,
a post-processing phase is used to combine the masks into an overall mask and then calculate the
metrics. The use of the Jaccard index and Dice coefficient, together with the publication of the thermal
dataset, allows the scientific community to compare their approaches with the results of this work.
For the training of the networks, starting from the metrics used to evaluate the performance, it is
possible to use two cumulative loss functions, that is, a combination of the basic loss functions.
The basic loss functions for the training of a network for image segmentation are: the Jaccard loss
function (Equation (3)) and the Dice loss function (Equation (4)), described as follows:

JL(A, B) = 1 − J(A, B) (3)

DL = 1 − Dice (4)

In addition to these metrics, we used the Focal loss [35], suitable for segmentation tasks with
unbalanced datasets where the background has a greater number of pixels than relative to the
foreground. The Focal loss definition, in Equation (5), uses a posteriori probability pt, which is
the estimated probability for the class y = 1, where y = ±1. Focal loss uses an hyperparameter γ to
tune the weight of different samples; the optimum value of γ, from [35], is 2.

FL(pt) = −(1 − pt)
γ log(pt) (5)

These basic losses are combined to obtain the two different loss functions used to train the
networks. The first one is used to maximize the Dice and Jaccard coefficients and is detailed in
Equation (6):

Loss1 = α ∗ DL + (1 − α) ∗ JL (6)

The second one is used to maximize the Dice coefficient and the focal loss over the different
classes, and it is defined in Equation (7):
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Loss2 = DL + FL (7)

4. Results and Discussion

In this Section, the results of the experiments conducted on the photovoltaic thermal images
dataset are reported. In particular, two experiments were performed: the first one is based on the
performance comparison of the three image segmentation networks (U-Net, LinkNet and FPN) and
the second one involves the Mask R-CNN for the instance segmentation task. Finally, a comparative
analysis of the networks is carried out. The photovoltaic thermal images dataset was split into
three subset: 70% for training, 20% for validation and 10% for the final test. For both image and
instance segmentation, the evaluation metrics used were the Dice and Jaccard indexes, as described in
Section 3.5.

In the first experiment, the performances of three image segmentation networks were compared.
These networks were implemented using TensorFlow and Keras and the training was carried out
for 100 epochs, using Loss1 (Equation (6)). The results achieved by these networks are summarized
in Table 4 in terms of the Jaccard and Dice indexes. Results show that all networks showed good
performance and are very similar: LinkNet slightly outperformed the others in terms of Jaccard index
while U-Net was better than the others in terms of the Dice index.

Table 4. Evaluation of image segmentation on photovoltaic thermal images test set by using U-Net,
LinkNet and FPN networks.

Jaccard Dice

U-Net 0.741 0.841

LinkNet 0.748 0.825

FPN 0.734 0.825

For the second experiment, we trained and tested the Mask R-CNN network. This network was
also implemented in Keras and Tensorflow. In contrast to other DNNs, this is a network has been
specifically developed for instance segmentation. For this reason, it is important to make a few remarks
about these comparisons. First of all, the input of the network is the ground truth of the anomalous cells
in form of bounding boxes, instead of the masks. Thus, starting from the masks it is necessary to have
a preprocessing phase that allows to calculate the coordinates of these bounding boxes. The polygons
obtained and their position in the reference image were finally saved in a json file. During the training,
the batch size was fixed at 2 and the dataset was split as stated before. As described in Section 3.4,
Mask R-CNN comprises several networks, and hence its loss function is defined as the sum of the
losses of the different network components:

Losstotal = Losscls + Lossbox + Lossmask (8)

where Losscls represents the loss of the classifier, Lossbox is the loss of the regressor, and Lossmask is the
loss of the segmentation branch.

The training was performed in three steps:

• Network trained from scratch;
• Network pretrained on the Microsoft Common Objects in the Context dataset (MS-COCO) [36],

then retraining all layers;
• Network pretrained on the MS-COCO dataset, then retraining only the layers of the head section

(the classifier section).

The technique of retraining a pre-trained network on another dataset is a transfer learning
technique called fine tuning, and it is widely adopted in cases of small datasets. This technique
generally allows to train a network faster than training from scratch. This approach proved to help in
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achieving excellent results in [37,38], using a Mask-RCNN pretrained on the MS-COCO dataset for
their tasks. Another difference compared to other networks is that it obtaines as output a mask for
each anomalous predicted cell. For obtaining Jaccard and Dice metrics, a post-processing phase is
needed to combine all the masks of the instances into a single overall mask. Table 5 reports the Instance
segmentation results on the photovoltaic thermal images test set by using a Mask-RCNN network.
The results of the three training approaches are reported, in terms of Jaccard and Dice metrics.

Table 5. Instance segmentation results on the photovoltaic thermal images test set by using a
Mask-RCNN network.

Jaccard Dice

Mask-RCNN (all) 0.382 0.493
Mask-RCNN (pretrain-all) 0.106 0.175
Mask-RCNN (pretrain-head) 0.499 0.605

The results show that using a pre-trained network and re-training only the head part allows
obtaining a good instance segmentation network: it achieved 0.499 on the Jaccard index and 0.605
on the Dice index. These performances are higher than the network trained from scratch. The tests
also show that totally re-training a pre-trained network could lead to worse results than training it
from scratch.

Finally, Table 6 presents a comparative analysis of the performance of the best networks for both
segmentation approaches. The trainable parameters and the training time are also reported. For this
comparison, the network chosen is UNet, for its Jaccard and Dice index metrics, and Mask RCNN
pre-trained on the MS-COCO dataset and re-trained only on the the head part. The results reveal that
the U-Net outperformed the other approaches. However, Mask-RCNN has the key advantage that it
directly outputs the position of each single predicted cell. Conversely, UNet outputs a single overall
mask, but through a post-processing step based on image processing techniques, it can be easily split
into the individual predicted cells.

Table 6. Comparative analysis of the performance of the best networks for both segmentation approaches.

Jaccard Dice Trainable Params Total Params Training Time Test Time

U-Net] 0.741 0.841 74.7 Million 75 Million 192 s/epoch 15 ms
Mask-RCNN 0.499 0.605 21 Million 44.6 Million 212 s/epoch 24 ms

Figure 5 depicts the training trend of the UNet network, concerning the loss function, the Jaccard
index and the Dice index. It can be noticed that after only 30 epochs the network tends to
the convergence.

Figure 6 allows a visual analysis of the results obtained by the UNet network on the test set.
It represents some examples of test images, their ground truth and the relative predicted mask. It is
possible to deduce that for a human operator it is easy to understand its exact position within the
plan (Figure 6a,b). This leads to many advantages in terms of time and efforts. Figure 6c shows that
the network may have false positives in the predicted mask, i.e., some areas are miss-classified as
anomalous cells. These false positives usually have a very small area.
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(a)

(b)

(c)
Figure 5. Training of the U-Net. The figure shows the trend of the training concerning the loss function
(a), the Jaccard index (b) and the Dice index (c).

(a)
Figure 6. Cont.
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(b)

(c)
Figure 6. UNet performance on test set images, with ground truth and predicted mask. The masks of
(a,b) have been correctly predicted. (c) depicts some missclassified areas.

5. Conclusions and Future Works

In this study, solAIr, an artificial intelligence UAV-based inspection system was presented, which is
capable of detecting faults in large-scale PV plants. To achieve such results, a DNN deep-learning based
module was developed, and was designed to exert instance segmentation. The proposed solution was
properly evaluated against existing solutions through a comparative study. The experimental results
confirm its effectiveness and suitability to the diagnosing of thermal images of PV plants. In particular,
the networks chosen obtained high values on the Jaccard and Dice indices. The proposed approach
for defect analysis can be an essential aid to assist operators for O&M operations, reducing cost and
errors arising from manual operations. Considering that, nowadays, inspections are entrusted to
visual inspections, our approach will both reduce the overall costs of PV module maintenance and
increase the efficiency of PV plants. Considering that instance segmentation through deep learning
has never been applied in this field before, this study advances the body of knowledge and opens up
promising scenarios for the management of clear energies. The work also presents some drawbacks:
first of all, we only deal with binary segmentation: a pixel can be classified either as a damaged cell
or as a background. Notwithstanding, this issue can be easily overcome. In fact, this framework is
already prepared for a future multi-class segmentation: for example, detecting different types of cell
anomalies, as described in the Section 2. A further consideration that can be made concerning the used
dataset: probably creating a mask that combines several defective cells (Figure 3f) could add an error
in the training of the network, because the pixels of conjunction between the cells should not be part of
this mask. Hence the performance of the network will improve as soon as the masks of this type of
defect are improved. The output results of the proposed experiments can be easily integrated within a
dedicated geographical information system (GIS) specifically designed for operation and maintenance
(O&M) activities in PV Plants. Indeed, having the geolocation for each image, the management of
the detected faulty cells can be facilitated. Moreover, thermal data, which are processed with their
raw values, still require a processing phase in the office. Given the good computational performances
described in Table 6, an on-board integration in the UAV platform can be foreseen for on-site inspection
operation, with minimized implementation hurdles. Additionally, the robustness and the reliability
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of the proposed UAV-based inspection system, along with the deep-learning anomaly cells detection
solution, needs to be further validated and improved through extensive field assessments. A further
improvement can be made by exploiting the data analysis of the real-time electrical measurements of
operating PV modules, obtained from the underlying system monitoring infrastructure. Such data
can be used in conjunction with the proposed solution to improve the performances of the fault
detection system.
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Abstract: Parametric identification of the single diode model of a photovoltaic generator is a key
element in simulation and diagnosis. Parameters’ values are often determined by using experimental
data the modules manufacturers provide in the data sheets. In outdoor applications, the parametric
identification is instead performed by starting from the current vs. voltage curve acquired in
non-standard operating conditions. This paper refers to this latter case and introduces an approach
based on the use of interval arithmetic. Photovoltaic generators based on crystalline silicon cells are
considered: they are modeled by using the single diode model, and a divide-and-conquer algorithm
is used to contract the initial search space up to a small hyper-rectangle including the identified set of
parameters. The proposed approach is validated by using experimental data measured in outdoor
conditions. The information provided by the approach, in terms of parametric sensitivity and of
correlation between current variations and drifts of the parameters values, is discussed. The results
are analyzed in view of the on-site application of the proposed approach for diagnostic purposes.

Keywords: parametric identification; single-diode model; interval arithmetic; photovoltaic systems

1. Introduction

Photovoltaic (PV) array modeling is crucial in many fields, including the prediction of energy
production [1], the design, the control [2] and the diagnosis [3]. The increase of the PV cells would be
desirable, in a context where many types of technologies have been developing, although 90%–95%
of the market is still dominated by mono-crystalline and poly-crystalline silicon technologies [4].
The mono-crystalline PV commercial modules reach efficiencies between 15% and 22%; meanwhile,
poly-crystalline technology goes up to the efficiency range of 14%–20%. The economies of scale of its
main material, silicon, make crystalline silicon cells more affordable and highly efficient compared to
other materials [5]. Other technologies derived from crystalline silicon technologies have been gaining
importance in the research and commercial fields, such as half-cell, double glass and bifacial [4]. On the
other hand, thin film technologies, e.g., amorphous silicon, CdS/CdTe and CIS, represent close to
5%–10% of the market [4]. Emerging technologies, e.g., organic and perovskite ones, offer interesting
perspectives in terms of efficiency [6], but some barriers still need to be overcome, especially durability
and price [5]. The approach proposed in this paper refers to PV generators based on crystalline silicon
cells, which represent the largest part of the market. Different models have been studied in the scientific
publications to represent PV modules based on crystalline silicon cells. The single diode model (SDM)
offers a reasonable trade-off between accuracy and degree of non linearity, such that it is widely used in
literature. It involves five parameters, which are related to the photo-induced current, the P-N junction
and the losses. These parameters are in turn dependent on other ones related to the cell material and
the environmental conditions—the irradiance and the temperature; see [7,8]. The double diode model
(DDM) allows one to model the dark current losses and the effect of pair generation—recombination
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in the space charge region [9], but at the cost of an increase in the number of parameters, increasing
from five for the SDM, to seven. A more complicated model can be used in a case where the PV cells’
behavior at negative voltage values has to be accounted for. A further generator is included in this
model [10], so that the parameters required become eight.

In this paper, the SDM is preferred to the DDM because of the features mentioned above and
also because the PV array working conditions considered are uniform; thus, the model proposed
in [10] becomes superfluous. A key operation for an accurate SDM-based simulation of the PV array is
the identification of the five model parameters. This is very often done by employing data that are
provided by the PV module manufacturer through the data sheet. These experimental measurements
refer to a specific operating conditions of the cells, called standard test conditions (STC).

In the literature, parametric identification is done by using analytical methods or fitting
techniques [11]. In Table 1 a comparison among such approaches is given by referring to the
implementation complexity, the convergence speed, the robustness when noisy data are considered,
the impact of the initial conditions and the requirements of algorithmic setting. Analytical approaches
are based on a set of simplified equations leading to explicit formulas allowing one to calculate the
five parameters of the SDM without using any iterative method [12]. Some approaches consider the
SDM lossless model, or scale down the order of the SDM by considering an infinite value of the shunt
resistance or by neglecting the series resistance [13]. The most common simplification consists of
supposing that the short-circuit current (Isc) value is equal to the photo-induced current (Iph) [14].
A set of equations is derived at the main points of the current vs. voltage (I-V) curve: at the maximum
power point (MPP), at the short circuit operating point through Isc and in open circuit conditions
through Voc. Noisy I-V data may have a significant effect on parameters values. This is the case,
for instance, for a series and for the shunt resistances whose values are related to the slopes of the
I-V curve in an open circuit and in short circuit conditions, respectively. Additionally, the so called
translation equations have been considered in some papers to relate the I-V curve in non-standard
conditions to the five SDM parameters that are scaled according to the irradiance and temperature
conditions the I-V curve refers to [14–18]. Simplified and direct equations make the implementation of
the method suitable, even for an embedded processor, at the cost of a reduced accuracy.

Many other approaches to the SDM parametric identification are based on optimization
methods, which are usually aimed at the root mean square error (RMSE) between the simulated
I-V curve and the experimental curve minimization. The convergence of the algorithm depends
on factors such as the guess condition, the objective function and the algorithm itself. Three main
approaches are proposed: the one using non-linear minimization algorithms [19,20], the one using
heuristics approaches [21–24] and the adoption of hybrid methods [25]. The non-linear algorithms
are computationally expensive [19,20], but that allows for solving numerically, the set of non-linear
equations of SDM. In [20], Matlab embedded Levenberg–Marquardt and Gauss-Newton nonlinear
equation solvers were used to manage the SDM equations. The parameters in STC were obtained
from modules’ data sheets, and translation equations [15,16] were used to obtain the SDM model
in other operating conditions. Noisy data affect the confidence intervals of the solutions achieved
by these algorithms. The termination conditions and the related parameters have to be chosen in
order to have a trade-off between computation time and accuracy. Low values of the convergence
thresholds and high values assigned to the maximum number of iterations are compatible with off-line
identification purposes. Moreover, the iterative methods, such as Newton methods, are less complex,
but they might be trapped in local optima and show a high dependency from the guess solution used.
For instance, in [26] Rs is neglected, so that four equations to determine four SDM parameters are
proposed, the series resistance value being fitted by calculating the power error between the SDM and
the experimental measurements in a iterative way. Nonlinear minimization algorithms are often used
to fit I-V experimental curves, the objective function to minimize being the error between the model
and experimental data. Trust-region and Levenberg-Marquardt methods are widely used, but they
require a good guess solution. Simulation platforms, e.g., Matlab and Mathematica, provide curve
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fitting tools to perform offline parametric identification. Recently, soft computing methods, such as
artificial neural networks [21,22], genetic algorithms [23] and particle swarm optimization (PSO) [23],
among others, have been employed more and more frequently. Such approaches are not suitable for
online operation because of the computational complexity of the stochastic algorithms. The approaches
introduced in [21,22] operate on suitable sets of I-V curves, related to a specific module’s operation,
to train neural networks. To determine the amount of training data and the numbers of layers and
neurons is a challenging task. In genetic algorithms [23], fixing selection, reproduction and mutation
operators and values of the related parameters is challenging as well. Settings such as population size,
iteration number and mutation rate, among others, have to be well adjusted to prevent the algorithm
from stalling. Therefore, in terms of setting of the heuristic algorithms, several initial guess values
have to be designed by an expert and/or through a trial and error procedure. By combining different
techniques, some weaknesses are reduced. For example, in [25] the global exploration capabilities of
the soft computing algorithm artificial bee colony (ABC) allowed it to reduce the space for exploring
solutions, and local searching was done by the trust-region reflective algorithm, thereby improving
accuracy, convergence and reliability. Unfortunately, there is not a consensus about the improvement
of the computation time achieved by hybrid approaches.

The difficulty of the parametric identification comes from the high non linearity of the SDM and
from the fact that the values of the parameters have very different orders of magnitude. With respect
to the identification performed on the basis of the STC experimental data that are usually available
in PV modules data sheets, the parametric identification using data acquired while the PV module is
working in outdoor conditions show different features. Indeed, the whole I-V curve is usually available
and irradiance (G) and temperature (T) values at which the PV module is working might be also given.

Interval arithmetic (IA) is a mathematical approach that is used in many contexts for evaluating
the propagation of the uncertainty affecting input data on the output of a given system. Moreover,
it has been used for tolerance analysis and design in the context of electrical and electronic engineering;
e.g., in [27–29]. By IA, parameters assume values that are not real numbers, but intervals limited
by a lower and an upper bound: in an interval the parameter may assume any value with the same
probability. In [28] an evolutionary approach to worst case tolerance design of magnetic devices is
presented. The algorithm improves on the classical nominal design, accounting for parameter variations
and tolerances, so that the system performance does not exceed upper and lower specifications imposed
in advance by the designer. In [27], IA is used to perform tolerance analysis and design and to evaluate
the production yield. In [29], an IA based estimation state in power distribution networks with
high penetration of photovoltaic generators is proposed. In this case, IA is adopted to deal with
measurement uncertainty. The proposed method allows one to determine the upper and lower bounds
of state variables, which is helpful for providing operators the confidence that the actual value variable
is not exceeding the voltage security constraint, thereby improving the network operation for the case
of uncertain inputs.

IA-based parametric identification has never been used in the outdoor PV context, but it can
be helpful for designing an algorithm profiting from IA features, thereby giving a reliable result
with little computational effort. The IA based approach presented in this paper starts from a large
volume in the parameter search space and contracts it by means of a divide-and-conquer (D&C)
strategy up to converge to a tight hyper-rectangle including the experimental measurements in the I-V
plane. The proposed IA based D&C algorithm requires the user to fix the initial intervals for the five
SDM parameters and two thresholds for the feasibility and the termination conditions respectively.
The initial intervals, which define the search parameters’ space, are contracted towards the identified
set, if they are included in the search space. Otherwise, the IA based D&C algorithm informs the
user about the guaranteed infeasibility of the whole search space. To fix the search space is obviously
easier for a not-so-skilled user than to provide a guess solution that is quite close to the final one,
as is required by gradient-based minimization approaches. This feature is very helpful, especially for
some parameters, e.g., saturation current and thermal voltage, that greatly depend on cells material
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and on operating conditions. As for the feasibility condition, the desired amount of experimental
data contained in the IA computed I-V boundaries depends on the application, and it can be fixed as
greater than 85%. In the same way, the threshold to fix in the termination condition is chosen as the
desired resolution of the interval solution. D&C strategy allows one to evaluate solutions separately,
so parallel computing is suitable to decrease the computation time without sacrificing the size of search
space. This is a distinctive feature compared to the other approaches, which in general have to make
a compromise between accuracy and computation time.

Table 1. Comparison among different approaches to parametric identification of SDM.

Methods/
Features

Core of the
Procedure

Implemen-
Tation
Complexity

Speed
Conver-
Gence

Robustness
with
Noisy
Data

Initial
Condition
Impact

Require-
Ment of
Algorithm
Setting

Analytical Set of equations
solved explicitly Low High Medium High Medium

Iterative
non-linear
minimization

Equations must be
solved by numerical
methods

High Low Medium High Low

Heuristics

Fitting I-V curve
model to measured
data by a soft
computing algorithm

High Medium Medium High High

Hybrids

Combining
non-linear
minimization and
heuristics

High Medium/
Low Medium High High

Proposed
IA Based
D&C

Parameters are
intervals divided and
tested using
feasibility conditions

Low Medium/
High High Low Low

The paper is organized as follows: In the first section an introduction of SDM is done.
Then, IA theory is briefly recalled and it is applied to the SDM. Later on, D&C algorithm is presented.
In Section 4, the proposed method using IA and D&C algorithm is detailed. In Section 5, the results
obtained to estimate Rs, Rh, Isat, B and Iph parameters of the SDM model are analyzed. The sixth
section proposes a discussion about the results presented in the paper and closes with the conclusions.

2. Photovoltaic Generator Single Diode Model

Figure 1 shows the SDM circuit: it includes the photoinduced current generator Iph, which models
the photovoltaic effect; a diode D modeling the P-N junction; and the resistances Rs and Rh representing
the ohmic losses and the recombination losses respectively. Thus, the following five parameters appear
in the model:

Isat,d: saturation current in the P-N junction;
Iph: photo-induced current;
Rs: series resistance;
Rh: parallel resistance;
B: it includes the ideality factor n, which is the fifth parameter to be identified. It is: B = Ns · n ·

k · T/q, where Ns is the number of series connected cells, T is the cells operating temperature, k is the
Boltzmann constant and q is the electron charge.

It is worth noting that the five parameters mentioned above show some dependencies from
physical parameters that are typical of the semiconducting material used for the cells’ fabrication and
also from irradiance G and temperature T. As in the majority of the literature concerning I-V curve
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based parametric identification, in this paper also, the identification focuses on the five parameters
mentioned above, thereby neglecting their dependencies on other physical parameters. This further
correlation, and the dependency on G and T especially, can be exploited after having identified
the set {Isat,d, Iph, Rs, Rh, B} to the aim of having, in turn, the values of the physical parameters,
including G and T.

The output current I of the PV array is obtained by combining the Kirchhoff voltage and current
laws and the characteristic equations of the components appearing in the SDM.

ph

d

d

h

h

s

I

I

V D

I

R

R

I

V

Figure 1. Circuit model of a PV module based on single-diode.

I = Iph − Id − Ih (1)

Id = Isat,d(eVd/B − 1) (2)

Vd = V + Rs · I (3)

Ih =
Vd
Rh

=
V + Rs · I

Rh
(4)

In [30] it is shown that the resulting function expressing the relationship between the current I
and the voltage V at the PV generator terminals is implicit, but the Lambert W-function is useful for
achieving an explicit non-linear relation between I and V, which is given in (5).

I =
Rh(Iph + Isat,d)− V

Rh + Rs
− B

Rs
LambertW(θ) (5)

wherein: θ = {(Rs//Rh)Isat,de[(RhRs(Iph+Isat,d)+RhV)/B(Rh+Rs)]}/B
Later on, without loss of generality, the discussion is referred to one PV module. The set of

unknown five parameters is P = {Isat,d, Iph, Rs, Rh, B}.
In Figure 2 a PV module I-V curve is shown by blue marks: it has been obtained by placing the

values listed in Table 2 into Equation (5). The parameters in Table 2 refer to a 140 W PV Yingli solar
panel working in STC, which have been obtained by the method proposed in [31] in STC. This PV
module consists of 36 polycrystalline solar cells connected in series. In the same figure, the I-V curves
corresponding to 30% variations of the parameters Rs, Rh, Isat and B are also shown in magenta, cyan,
red and black respectively. The I-V curve exhibits a significant sensibility with respect to variations of B
and Isat in proximity to the MPP and a dependency on Rs in the high voltage range. The parameter Iph
depends on, almost directly, irradiance, and its value is usually assumed to be equal to the short-circuit
current [2].

In the literature, SDM parametric identification of the parameters has been often addressed by
minimization algorithms, which are aimed at fitting the experimental I-V curve with the one generated
by the SDM. The result is a set of five real values, one for each of the five parameters in the SDM
(Table 2). IA, instead, should be used to identify the parameters by starting from the I-V curve, and by
exploiting the IA properties, guaranteeing that the I-V ranges correspond to the set of parameters
bound to the experimental measurements. Later on, the main IA features and properties are recalled in
order to appreciate how they are suitably exploited in the PV parametric identification context.
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Table 2. STC Parameters for a 140 W PV Yingli solar panel.

Parameter Meaning Value

Isat,d[A] Saturation current in cell 5.359647 × 10−10

Iph[A] Photoinduced current 8.3
Rs[Ω] Series resistance 0.1793
Rh[Ω] Shunt resistance 150.70
B Ns · n · k · T/q 1.0532
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Figure 2. I-V curves of a PV module simulated using the parameters of Table 2 with 30% variations.

3. Interval Arithmetic for I-V Curve Representation

The basic mathematical entity used in IA is the interval. Thus, the parameters appearing in
the model can be treated as intervals [X] instead of real numbers X. The approach consists of
treating parameters or variables as having ranges of values, instead of discrete values. The bounds
of the interval [X], using the nomenclature proposed in the IEEE Std 1788.1 [32], are called x and x.
Thus, [X] = [x, x]; it is defined by x = {x ∈ �/x ≤ x ≤ x}. Basic arithmetic operations among
interval variables are well defined in the IA foundations [33]. The operation among two intervals
results in an interval too, having the property that it contains all the possible results obtained by the
combination of all the values included in the intervals corresponding to the operands. The values
in the intervals are assumed to have the same probability of occurring, so that the probabilities
of the values are uniform. This means that all the values in [X] are equi-probable. IA theory also
shows that the simple representation of the operands, which consists of the lower and of the upper
bound of the intervals thereof, does not allow one to take into account any correlation among the
variables. As a consequence of this, the IA result is an over-estimation of the true range of the result.
This means that the IA result is guaranteed to contain all the possible results of the operation, but the
over-estimation might be too much wider than the real interval. In order to reduce this IA drawback,
the number of occurrences of the same parameter in the IA-based operations must be minimized.
For instance, in the Equation (5), which allows one to calculate the PV generator current, θ includes
the computation of an equivalent resistance resulting from the parallel between Rs and Rh; thus,
Rs ·Rh

Rs+Rh
. This expression involves two occurrences of each one of the resistances. By using the ranges

Rs = [0.01, 1]Ω and Rh = [500.5, 700.5]Ω, the IA gives the result [0.00713471, 1.39957]Ω. By using the
real arithmetic, obviously the equivalent expression 1

1
Rs +

1
Rh

gives the same results, but this is not true

if IA is used. Indeed, a reduced number of variables’ occurrences results in [0.0099998, 0.998574]Ω.
Therefore, the lower the number of occurrences of the interval valued parameters in (5), the more
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accurate the IA-based evaluation of the result. As widely shown in [33], this is not the only cause
of overestimation of the interval of variation of the result of an operation by using IA, because the
non linearity of the function operating over interval valued parameters and variables contributes to
widening the resulting range.

In the PV-oriented problem treated in this paper, the PV current given by the SDM (5) is the
explicit function I = f ([P], V) where [P] is the interval valued vector of the parameters to identify
and V is the real value of the voltage at which the current is evaluated. In case the set of interval
values parameters is limited to two only, with the others being real values, the domain and co-domain
of [I] = f ([P], V) is qualitatively depicted as in Figure 3. In the bi-dimensional plane representing
the domain, [P]0 is a initial square region in gray resulting from the two interval parameters [P1]0
and [P2]0. This corresponds to the co-domain [I] = f ([P]0, V). A contraction of the domain, which is
represented by a smaller rectangle resulting from the sets [P1]1 and [P2]1, corresponds to the co-domain
[I] = f ([P]1, V). If performed through the classical real valued analysis, e.g., by a Monte Carlo
approach, the computations of the gray and the red envelopes in the I-V plane should require the
selection of a high number of samples in the gray and the red rectangles in the parameters domain,
and thus, a high number of Monte Carlo trials. The higher the number of [P1, P2] couples, the more
accurate the evaluation of the corresponding envelope in the I-V plane, which is obtained by merging
all the curves obtained, and the voltage value by voltage value, by taking the maximum and the
minimum I values. Such a computation should be able to reveal whether the experimental I-V curve
is included or not in the envelope, and thus whether the corresponding sets [P]0 or [P]1 are feasible.
A reliable evaluation of the envelopes, if performed by using the classical real numbers, thus, through
a Monte Carlo method, should be more time consuming the more significant the non-linearity and
non-monotonicity of the function I are with respect to the parameters. Instead, IA is a tool that allows
one to evaluate the envelopes corresponding to each set [P]0 and [P]1 by a single computation. Thanks
to the IA properties, the result will be guaranteed to bound the true I range.

In the next section, on the basis of such conclusions, the proposed IA parametric identification
method is shown: it starts from a large rectangle in the parameters domain exemplified by the gray
rectangle in the qualitative example of Figure 3, and contracts it in order to bound as much as possible
the experimental points, which are marked in blue in Figure 3, in the I-V domain.
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Figure 3. Domain and co-domain of interval function.

4. Parametric Identification by the IA-Based Divide-and-Conquer (D&C) Algorithm

In this paper, the identification of all the five parameters in (5) is considered. As a consequence,
the rectangles shown in Figure 3 have to be considered hyper-rectangles in a 5-dimensional space.
Iteration by iteration, the initial intervals [P] are contracted in order to contract the [I] around
the experimental data. The iterations end when a termination condition fixed by the user is
fulfilled. The divide-and-conquer (D&C) algorithm is an algorithm design paradigm for discrete
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and combinatorial optimization problems. The algorithm starts evaluating the largest candidate set
of parameters assigned by the user, which is named [P]0 in Figure 4. If the [I] bounds include the
experimental I-V samples (Iexp, Vexp), then all the five parameters intervals of [P]0 are halved, so that
25 sub-intervals are generated.

For each of the 25 sub-intervals the I-V boundary is calculated by using IA. If the experimental
points (Iexp, Vexp) are not included in the boundaries, the corresponding subset is marked as infeasible
and it is not partitioned into smaller subsets anymore. On the contrary, the subset is partitioned
by halving again the intervals it is made of and these ones are analyzed at the next iteration level.
Thus, the algorithm continues with the next dividing level until a termination condition fixed by the
user is fulfilled.

In summary, the proposed D&C algorithm consists of the following main elements appearing
in Figure 4.
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Figure 4. IA-based D&C approach.

Dividing Level (i): it is identified by the sub-index i. At each level, the parameters’ intervals sets
that fulfill the feasibility condition are halved, so that 25 new sub-intervals are generated. Thus, in case
all the intervals are feasible, at the dividing level i a number 25xi is generated and its feasibility
has to be tested. Each interval in the subset takes a new sub-index j, so that a particular set of
parameters is called [P]i,j. For instance, at the branching level i = 1, each element in the interval
[P]0 = [[Rs]; [Rh]; [Isat]; [B]; [Iph]] is halved, and all the 25x1 = 32 combinations of these sub-intervals,
which are called: [P]1,1...[P]1,32, have to be tested through the feasibility condition.

Feasibility condition: at the i-th branching level, the subset of intervals [P]i,j is substituted in (5)
for each voltage value Vexp of the experimental data set. A current interval [I] results at each voltage
value and it is verified that the all the Np experimental points fall within the calculated intervals:

Iexp,np ∈ [I([P], Vnp)], f or all np = 1, . . . , Np (6)

Parameters’ sub-intervals [P]i,j that do not fulfill the feasibility condition are not divided anymore
and are not transferred to the next algorithm iteration.

It is worth noting that the infeasibility of these sub-intervals is guaranteed by the use of IA.
Indeed, IA properties recalled in Section 3 ensure that the co-domain [I] = f ([P], V) evaluated over
a set of parameters [P] is an overestimation of the true range spanned by the current I for that domain
[P]. As a consequence of the overestimation, if the range [I] does not fulfill the feasibility condition,
namely, does not include all the experimental I-V samples, then it is guaranteed to be infeasible.
The same guarantee would be achieved by classical methods, e.g., Monte Carlo, only at a very high
cost, even tending towards an infinite computational cost, thanks to the trials in the Monte Carlo
approach. This represents a relevant advantage of the proposed IA based approach.
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Termination condition: Feasible intervals [P]i,j falling below a minimum width, which is wid[P]i,j,
fixed by the user, are not divided further. Thus:

wid[P]i,j ≤ ΔD · mid[P]i,j (7)

where mid[P]i,j represents the midpoint of [P]i,j. When the termination condition imposes that no
more feasible intervals have to be partitioned further, then the union of the feasible intervals achieved
by the algorithm represents the final result. The proposed IA-based D&C algorithm is presented
in Algorithm 1.

Algorithm 1: IA-based D&C algorithm.
Data: [P]0 = {[Rs]0, [Rh]0, [Isat]0, [B]0, [Iph]0}: Initial Interval set of parameters
Result: [P]i = {[Rs]i, [Rh]i, [Isat]i, [B]i, [Iph]i}: Union of feasible intervals j of each parameter

in the set, at a dividing level i that fulfill the termination condition
Initialization: i = 0, j = 1,ΔD = 0.015;
The five parameters intervals [P]i are halved, thus i = 1 and j = 1, ..., 32, obtaining the set:
[P]i,j = {[P]1,1...[P]1,32} ;

Calculate the width and midpoint of the intervals: wid[P]i,j; mid[P]i,j f or all i, j ;
while (wid[P]i,j ≥ ΔD · mid[P]i,j f or all i, j) do

if Iexp,np ∈ [I([P]i,j, Vnp)], f or all i, j and all np = 1, . . . , Np then

Each [P]i,j is halved, i++;
The maximum value of j, Jmax, depends on the number of feasible intervals;

else

Infeasible intervals [P]i,j are discarded;
end

end

Union ∪ of feasible intervals [P]i,j, at the maximum dividing level i, for all j = 1..., Jmax:
[Rs]i = [Rs]i,1 ∪ [Rs]i,2 ∪ ...[Rs]i,Jmax ; [Rh]i = [Rh]i,1 ∪ [Rh]i,2 ∪ ...[Rh]i,Jmax ;
[Isat]i = [Isat]i,1 ∪ [Isat]i,2 ∪ ...[Isat]i,Jmax ; [B]i = [B]i,1 ∪ [B]i,2 ∪ ...[B]i,Jmax ;
[Iph]i = [Iph]i,1 ∪ [Iph]i,2 ∪ ...[Iph]i,Jmax ;

5. Identification of the Parameters Rs, Rh and Isat through the IA-based D&C Method

The identification of the SDM parameters almost consists of identifying Rs, Rh and Isat. Indeed,
the Iph parameter is assumed as equal to the short-circuit current [2], whose value is experimentally
measured. On the other hand, once having measured the cells’ temperature and by assuming that the
number of series connected cells in the module is known, the value of the parameter B is fixed if, as it
is quite common in literature, (see [8,34,35]), n assumes a value between 1 and 2. Typical values are
below 1.5, but the search range has been extended up to 2 in order to account for more extreme cases
documented in literature [36]. It has to be kept in mind that the range is subjected to the contraction
due to the IA based approach proposed in this paper. Thus, a smaller upper limit would not affect
the final result of the identification process, but its rate of convergence. With those assumptions,
the identification process limited to the three parameters Rs, Rh and Isat is of practical interest and
allows one to demonstrate the performance of the proposed D&C algorithm on a reduced scale case.
The algorithm in this case is tested by using I-V samples that are obtained by using the parameters in
Table 2 in the SDM (5). Samples are calculated at a fixed voltage step 0.1V, so that the Np = 222 I-V
samples shown in Figure 5 are considered.

The D&C algorithm has run on the following search space: [Rs] = [0.1, 1]Ω; [Rh] =

[1, 1000]Ω; [Isat] = [1e−8, 1e−12]A. The nominal values for B and Iph given in Table 2 have been
also used. ΔD = 1.5% has been used for settling the termination condition.
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Figure 5. Performance of D&C by using noiseless I-V simulated data.

The algorithm has created the number of dividing levels shown in Table 3. The third column of
Table 3 reveals the effectiveness of the proposed IA approach. Indeed, as pointed out before, the main
advantage of applying IA to the feasibility condition is the immediate and guaranteed classification of
the infeasible sets of the search space. It is evident that, for this example, just at the first dividing level,
50% of the search space is immediately classified as infeasible. The same result would require a number
of Monte Carlo trials instead of four IA based computations. The fourth column of Table 3 gives
a measure of the volume of each subset at the corresponding dividing level. The solution is reached
at the tenth dividing level, at which two sets of interval solutions have been identified. The union of
those two intervals is shown in Table 4. It reveals that the interval set solution contains the values of
parameters Rs, Rh and Isat used to generate the I-V samples. This is the expected result, so that the
convergence property of the D&C algorithm is confirmed. A personal computer (PC) equipped with a
Corei7-3632QM processor @ 2.20 GHz, four cores and 8 GB of RAM memory is used. The executable
file, produced by starting from the C++ source, was run on a PC. With this software and hardware,
the algorithm reaches the solution in 1.02 s after 360 iterations. Figure 5 puts into evidence that all the
I-V samples fall inside of interval current [I] determined by the IA based method.

This first test has been done by identifying the parameters by using I-V samples obtained through
the same model, the SDM, adopted for the identification thereof. In this way, the process has not been
affected by inaccuracies of the SDM in fitting experimental data and by inaccuracies and noise over
I-V measurements. These effects will be more evident in the next sections wherein experimental I-V
data are used.
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Table 3. Number of feasible intervals, percentage of infeasible intervals and volume of the subsets at
each dividing level for the example using noiseless data.

Dividing Level Number of Feasible Intervals % of Infeasible Intervals Subsets Volume

1 4 50.00% 1.2361 × 10−6

2 9 71.88% 1.5452 × 10−7

3 3 95.83% 1.9315 × 10−8

4 4 83.00% 2.4143 × 10−9

5 5 84.38% 3.0179 × 10−10

6 4 90.00% 3.7724 × 10−11

7 6 81.25% 4.7155 × 10−12

8 4 91.60% 5.8944 × 10−13

9 5 84.38% 7.3680 × 10−14

10 2 95.00% 9.2100 × 10−15

Table 4. Interval solution by D&C algorithm in the example using noiseless data.

Parameters Initial Intervals Union of Intervals in the Space of Solutions

[Rs] [0.1,1] Ω [0.179189,0.180156] Ω
[Rh] [1,1000] Ω [150.265,151.24] Ω
[Isat] [1 × 10−12,1 × 10−8] A [5.28291 × 10−10,5.4782 × 10−10] A

6. D&C IA-Based Approach Applied to Experimental Data

Experimental I-V data are commonly affected by noise due to, e.g., sensor quality and the data
acquisition system’s resolution. The low voltage region usually is the most critical because it requires a
high resolution of the current sensor. Similarly, although not so seriously as in the previous case, at low
current the voltage sensor has to show a significant resolution. In the presence of noise, such critical
aspects become more and more significant. Therefore, the proposed D&C method has been made
more robust in order to cope with noisy experimental data. Firstly, the decision on whether the
experimental value is within or outside the IA determined [I] interval is taken by account for a suitably
small noise band around the experimental value. Additionally, the feasibility condition is relaxed by
considering that an interval set of parameters is feasible if a number, but not all, of the experimental
data fulfill the condition (6). The effects of these two additional conditions are analyzed in detail in the
following subsections.

6.1. Relaxation of the Inclusion Property: First Approach

In Figure 6, the blue circles, which are the experimental data, are surrounded by blue bars
representing a noise band, named [Iexp]. The red bars bound the interval of the current [I], which is
computed by IA on a given interval parameters set. Thus, the inclusion property is reformulated by
considering that the experimental value (blue dots) is included in the interval range (red interval) if
the intersection between the red range and the blue range of that experimental point is not empty.
The larger the noise or the uncertainty, e.g., related to the sensors used, affecting the experimental data,
the wider the band [Iexp] and the higher the probability that the intersection between [Iexp] and [I] is
not empty, and thus that the corresponding set of parameters is feasible.
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Figure 6. Inclusion property of experimental data.

6.2. Relaxation of the Inclusion Property: Second Approach

In (8), the feasible condition that relaxes the (6) by marking as feasible a parameter set for which
N−

p < Np experimental points fall within the I-V boundaries is formalized. This approach allows one
to restrict the application of the feasibility condition to some regions of the I-V curve wherein the major
information content is concentrated. For instance, the experimental I-V samples that are more affected
by measurement noise can be excluded, or the feasibility condition can be limited to a region including
the MPP, to the short circuit and to the open circuit conditions.

[Iexp,np ] ∈ [I([P], V)], f or np = 1, . . . , N−
p (8)

6.3. D&C Parametric Identification by Using Noisy Experimental Data

Figure 7 shows an experimental set of I-V data referring to a 140W PV Yingli solar module
that have been acquired at an irradiance equal to 849 W/m2 and at a temperature equal to 336.15 K:
they have been measured by using a low cost system described in detail in [37], which has the drawback
of providing a high number of data in the low current range and a low density of measurements at
low voltages. The I-V curve is obtained by the capacitor charging method, which takes an acquisition
time of 0.05 s. The experimental setup is described in detail in [37]: the PV module output is made
available in the laboratory through a 10 m long cable. Thus, the acquired I-V curve also takes into
account the parasitic resistance of the cables, which is 60 mΩ. Figure 7 shows that the module under
test has suffered degradation, due to 3.5 years of long operation.
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Figure 7. Experimental I-V curve.
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6.3.1. Identifying [Rs], [Rh],[Isat], [B] and [Iph]

The parameter N−
p in (8) has been settled to 216, so that 90% of experimental points have been

taken into account for the feasibility condition. Thus, 10% of points are excluded, regardless of their
position in the I-V curve, but the short-circuit current Isc and the open circuit voltage Voc have been
always included in the 90%, so that the feasibility condition for this example has been formalized as
in (9):

[Iexp,np ] ∈ [I([P], Vnp)], f or np = 1, . . . , N−
p

[Iexp,1] ∈ [I([P], V1)]

[Iexp,Np ] ∈ [I([P], VNp)]
(9)

The current samples at low voltage show noise close to 1% of their values; thus, the parameter
appearing in the termination condition ΔD is fixed at 10%. Table 5 collects the number of feasible
intervals at each division level. Additionally, in this example, from the third column of Table 5, it comes
out that the IA approach guarantees the infeasibility of 56.25% of the initial search space at the first
dividing level. Indeed, of the initial 25 = 32 subsets, 18 are guaranteed to be infeasible by a direct
computation of [I] through IA. These results reveal that the IA-based D&C proposed algorithm finds
the solution at the dividing level 5, in which there are 5817 interval sets that have been classified
feasible. The algorithm spent 11.68 min to run 242,496 iterations. It is worth noting that these numbers
are significantly higher than those ones achieved in the example presented in Section 5. This is due
to the presence of noise, affecting the experimental samples and not the simulated samples of the
previous case, and it is also a consequence of the chosen value of the termination threshold, which is
now fixed at ΔD = 10%, and thus greater than ΔD = 1.5% used in the previous example. The union
of the feasible intervals sets achieved at the last dividing level is given in the third column of Table 6.
The contraction of the intervals with respect to the initial search space has been also shown.

Table 5. Number of feasible intervals, percentage of infeasible intervals and volume of the subsets at
each dividing level for the example using experimental I-V data.

Dividing Level Number of Feasible Intervals % of Infeasible Intervals Subsets Volume

1 14 56.25% 8.3219 × 10−4

2 148 66.96% 2.6006 × 10−5

3 1089 77.00% 8.1269 × 10−7

4 6326 81.85% 2.5396 × 10−8

5 5817 97.13% 7.9364 × 10−10

Table 6. Interval solution by the D&C algorithm at the final dividing level in the example using
experimental I-V data.

Parameters Initial Intervals Union of Feasible Intervals

[Rs] [0.1, 1]Ω [0.26875, 0.60625]Ω
[Rh] [300, 800]Ω [300, 800]Ω
[Isat] [1 × 10−8,1 × 10−4]A [3.12569 × 10−5,7.81272 × 10−5]A
[B] [0.7,1.5] [1.375,1.5]
[Iph] [7.0271,7.7669]A [7.397,7.42012]A

In Figure 8, red bars give the current intervals calculated by substituting the interval solution
of Table 6 in (5) and using IA. At least 90% of experimental data, those in blue marks, fall inside
the interval current [I]. Nevertheless, although a significant contraction of the search space has been
achieved by the D&C method (see Table 6), the interval solution (red bars) still gives a large range
around the experimental points. As it will be shown in the next subsection, an improved identification
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accuracy is achieved by analyzing the feasible sub-intervals achieved by the D&C method at a given
dividing level.

The identified intervals achieved and shown in Table 6 can be used to identify, in turn, some
additional SDM parameters. For instance, the interval B = [1.375, 1.5] can be used to identify the
corresponding interval of the diode ideality factor n, again by using IA. Indeed, it results that:

n =
B · q

Ns · k · T
=

[1.375, 1.5] · 1.60217662 · 10−19

36 · 1.38064852 · 10−23 · 336.15
= [1.31854, 1.43841] (10)

Additionally, the uncertainty of the devices used in the temperature measurement system can
account for: a LM35 installed on rear side of the PV module, a non-inverting amplifier and a
10 bit ADC. In this case, the uncertainty affecting the temperature measurement is equal to 0.8%.
Thus, it results that:

n =
[1.375, 1.5] · 1.60217662 · 10−19

36 · 1.38064852 · 10−23 · [333.461, 338.839]
= [1.30808, 1.45001] (11)

Both the intervals achieved for n are in a suitable range for this parameter. The same procedure
might be applied by identifying further physical parameters underlying the set of five shown in Table 6.
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Figure 8. Experimental I–V curve vs. SDM using the interval solution set of Table 6.

6.3.2. Analysis of the Feasible Sub-Intervals

In the previous example, the final solution obtained through the IA based algorithm was
determined as the union of all the feasible sets of intervals achieved at the final dividing level.
Each sub-interval can be examined in more detail by calculating the current obtained, at each voltage
value of the experimental samples, through SDM (5) using the midpoints mid[P] of the interval of each
parameter. This calculated current is called I(mid[P], V). Then, the root-mean-square error (RMSE) of
the identified current with respect to the experimental Iexp is calculated. In (12), the RSME formula is
shown, which takes into account the number of samples Np. The sub-interval giving the I-V curve
having the minimum value of the RMSE is considered as the best. This analysis has been applied to the
feasible sub-intervals in Table 5, so that 5817 set of intervals have been evaluated. The second column
of Table 7 shows the mid[P]5,best found in the 5817 sets in the space solutions, which correspond to
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the interval set [P]5,4350. The fit of the I-V curve generated using mid[P]5,best is presented in Figure 9.
The minimum RMSE value achieved is 0.0659.

RMSE =

√√√√∑
Np
i=1(Iexp − I(mid[P], V))2

Np
(12)

Table 7. mid[P]best and the corresponding interval solution with the smallest RMSE value.

Parameters mid[P]5,best Best Interval Solution

Rs 0.4797 Ω [0.4656, 0.4938] Ω
Rh 792.1875 Ω [784.3750, 800] Ω
Isat 4.5318 × 10−5 A [4.3756 × 10−5, 4.6880 × 10−5] A
B 1.4625 [1.4500, 1.4750]
Iph 7.4086 A [7.3970, 7.4201] A
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Figure 9. I-V curve: experimental data vs. SDM using mid[P]5,best.

In Figure 10, the I-V curve generated by SDM using the best sub-interval, which is shown in
the third column of Table 7, is depicted: the contraction of the initial interval set with respect to the
Figure 8 is evident.
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6.3.3. Identifying [Rs], [Rh],[Isat], [B] and [Iph] by the D&C Algorithm with Emphasis Around the MPP

The experimental points of the I-V curve across its MPP are of primary importance for the
parametric identification of the SDM, and they might be excluded by the procedure described above.
In this example, the experimental data around the MPP and limited to the range [80%, 100%] of the
power at the MPP, which is PMPP, are considered. The left and right extremes are shown in Figures 9–11
in black and gray, and are named 0.8P−

MPP and 0.8P+
MPP. Those power values correspond to the samples

called N0.8P−
MPP

p and N0.8P+
MPP

p , respectively. All the experimental points in this range have been included
in the feasibility condition (13). The tolerance around experimental data Iexp and the termination
condition ΔD have been fixed at 1% and 10% respectively.

Relaxed feasibility condition with constraints of Isc and Voc and less data.

[Iexp,np ] ∈ [I([P], Vnp)], f or np = N0.8P−
MPP

p , . . . , N0.8P+
MPP

p

[Iexp,1] ∈ [I([P], V1)]

[Iexp,Np ] ∈ [I([P], VNp)]
(13)
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Figure 11. Maximum power point (MPP) and points ensuring the 80% of PMPP in the experimental
I-V curve.

The results of D&C algorithm are shown in Table 8. Again, in this example, at the first dividing
level, IA classifies as infeasible 18 subsets over 32, just by a direct IA based computation of the current
interval [I]. The solution is reached at the dividing level 5, in which the space of solutions contains
2890 sub-intervals. In this case the algorithms needs 213,952 iterations; thus, the computation time and
memory are reduced with respect to the previous examples. The number of feasible sub-intervals in the
final dividing level is reduced by 51.4% and the number of iterations is reduced by 11.7%. The union
of the final sub-intervals is given in Table 9, and it reveals the contraction with respect to the initial
search space. The set of intervals is similar to the one obtained by using all the experimental values; Rs

is the only one showing an improved contraction.
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Table 8. Number of feasible intervals, percentage of infeasible intervals and volume of the subsets at
each dividing level for the example using a reduced set of experimental data.

Dividing Level Number of Feasible Intervals % of Infeasible Intervals Subsets Volume

1 14 56.25% 8.3219 × 10−4

2 144 67.86% 2.6006 × 10−5

3 1032 77.60% 8.1269 × 10−7

4 5495 83.36% 2.5396 × 10−8

5 2890 98.36% 7.9364 × 10−10

Table 9. Interval solution by the D&C algorithm in the example using a reduced set of
experimental data.

Parameters Initial Intervals Union of Feasible Intervals

[Rs] [0.1,1]Ω [0.325,0.55]Ω
[Rh] [300,800]Ω [300,800]Ω
[Isat] [1 × 10−8,1 × 10−4]A [3.12569 × 10−5,7.81272 × 10−5]A
[B] [0.7,1.5] [1.375,1.5]
[Iph] [7.0271,7.7669]A [7.397,7.42012]A

In Figure 12, the red bars correspond to SDM evaluated by IA for the solution presented in
Table 9. As in the previous case, large ranges result from the union of the feasible sub-intervals at the
final dividing level where the algorithm terminated. The analysis of the RMSEs for all the feasible
sub-intervals at the division level 5 gives a narrower range. The best sub-interval is the same as that
achieved in the previous example, and is shown in Table 7 and Figure 10. The best sub-interval set is
[P]5,2272, and the minimum RMSE value is 0.0776.
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Figure 12. I-V curve: experimental vs. SDM using D&C algorithm with a reduced set of
experimental data

7. Discussion of the Results

Some aspects concerning the results presented in the previous examples deserve further comments.
The first one concerns the way in which the initial interval set of parameters, and thus the search space,
is chosen. The proposed IA-based D&C algorithm was run on an initial interval set [P]0 that was
generally very large, just in order to test the convergence and contraction capabilities of the approach.
In the first example, which referred to the identification of the values of three parameters only and
used I-V data generated by the same model used for the identification thereof, a large initial interval
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set was used. The initial intervals for the two resistances were set to include typical values; thus,
they were in the order of magnitude of hundreds of mΩ and hundreds of Ω for series and parallel
resistances respectively. Such initial intervals might also include values corresponding to a degraded
PV module. The initial interval of Iph has been chosen across the short-circuit current value Isc.

By using the I-V experimental measurements around the MPP, the Iph is settled at values that
are close to the MPP current Impp; thus, an initial interval across Impp is used. The initial ranges of
B and Isat have been determined by keeping account of some physical relationships. The parameter
B depends on temperature T and n: it has been assumed that T has been measured with a known
accuracy and that the ideality factor, as can be deduced from the literature referring to silicon cells,
assumes values ranging from n = 1 up to n = 2. The larger the uncertainty affecting the measure
of the temperature, the wider the initial interval [B]0. As for Isat, it has been assumed that, for new
PV modules, it assumes values of the order of nA while μA is used for aged modules. The [Isat]0
width affects the convergence features of the approach significantly. The proposed examples show the
convergence capability of the D&C algorithm even using a [Isat]0 that is four orders of magnitude and
has n ranging up to 2, instead of stopping at 1.3, as can be deduced by reading some papers; e.g., [35].
However, a better trade-off between accuracy and computation time should be reached by having a
more accurate estimation of the initial range of the parameters.

The second aspect deserving further comments concerns the selection of the value ΔD involved
in the termination condition (7), because it affects the accuracy of the result and the computation time
required by the algorithm. In the case a low noise level affecting the I-V samples, a tiny termination
condition does not affect the computation time significantly, as in the first example. Indeed, any
relaxation of the inclusion property is required and a small number of feasible intervals at each
dividing level is obtained. In the case of I-V experimental data exhibiting a significant noise level,
a trade-off between accuracy and computation time needs to be achieved. Some relaxation of the
inclusion property and a higher value of ΔD help to achieve the convergence. It is worth noting that
the number of feasible subsets obtained at the end of each algorithm run depends on both the ability
of the SDM to fit the experimental curve and on the chosen ΔD value. The additional step using the
RMSE calculation discussed in some examples presented in Sections 5 and 6 helps to improve the
accuracy of the IA solution.

The third remark concerns the size of interval current [I], as it is shown in Figures 8, 10 and 12.
In the SDM solution shown in Figure 8 and Table 6, the relative width of the interval parameters’
solution (widm[P]), is calculated by wid[x,x]

mid[x,x] . The results are widm[Rs] = 0.7714, widm[Rh] = 0.9091,
widm[Isat] = 0.8570, widm[B] = 0.0870 and widm[Iph] = 0.0031. Figure 12 shows the I-V curve
boundaries corresponding to the same interval solution, by neglecting the range of [Rs]. In this case,
the relative width is 0.5143; thus, the important effect of the [Rs] interval on [I] becomes evident.
By using the RMSE calculation in Table 7, the relative interval sizes are reduced to the following
values: widm[Rs] = 0.0588, widm[Rh] = 0.0197, widm[Isat] = 0.0689, widm[B] = 0.0171 and
widm[Iph] = 0.0031. The significant effect of this contraction on the range [I] is evident by looking at
Figure 10. The contraction is close to one order of magnitude for all the parameters, but not for [Iph].
Figure 2 shows that [Isat] and [B] have significant effects on the [I] width. Figure 13 shows that the true
range of [I] is overestimated because of the use of IA, especially at high voltage. The overestimation is
evident by comparing the IA results with those ones obtained by means of a Monte Carlo run over 2000
random trials. The corresponding I-V curves are shown in black color, which have been generated by
randomly choosing sets of parameters in the ranges shown in Table 7. It is worth noting that the Monte
Carlo method giving a narrower range with respect to the IA method does not mean that the former
result is more accurate than the latter one. Indeed, only if both of them are taken into account, exact
information about the true range spanned by I at the different voltages is obtained. Indeed, the Monte
Carlo range would approach the true one by running an infinite number of trials; otherwise it gives an
underestimation of the true range of I. The IA overestimation is reduced by reducing the width of the
interval parameters [33]. The true range is placed in the middle, bounded by the Monte Carlo range,
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which is an underestimation of the true range, and the IA range, which is an overestimation of the
true range.

Figure 13. Monte Carlo analysis of interval solution.

An additional advantage of the proposed IA-based D&C algorithm can be put into evidence by
referring to the results shown in Table 10. The Matlab Fit APP tool has been used to identify the five
parameters of SDM. It minimizes the root mean square error between the experimental I-V data and
I-V curve obtained through the SDM with the identified values of the parameters. The trust-region
method has been selected, the function tolerance value has been settled at 1e-5 and the maximum
number of iterations has been fixed at 400. In the second column the results achieved by this tool
are given. The initial interval of the parameters has been set equal to the initial interval used in the
proposed IA-based D&C algorithm; thus, the one given in the second column of Table 6. The third
column of Table 10 shows the result when the initial search space used in Matlab Fit APP is the union of
the feasible intervals obtained by the the proposed IA-based D&C algorithm; thus, the one in the third
column of Table 6. It is evident that the proposed IA based approach has contracted the initial search
space towards the solution in an effective way, so that the Matlab Fit APP converges to the identified set
by a number of iterations and function evaluations that is 80% lower than the one required if the search
is started from the wider search space used by the IA D&C method. Moreover, the step size is reduced
by four orders of magnitude, so that a higher accuracy in the parameter identification is achieved.
This result reveals that the feasible intervals obtained by the proposed IA-based D&C algorithm are
reliable guess solutions for gradient based minimization methods. The cascade of the methods thus
allows one to improve the convergence and the accuracy of the result. The RMSE value obtained by
Matlab Fit APP is equal to 0.0587, which is close to the one obtained by the proposed analysis procedure
of the feasible sub-intervals (mid[P]5,best shown in Table 7), which is 0.0659. The D&C IA-based method
uses a simple partitioning of the intervals and feasibility test, and thus, any gradient or minimization
method, also guaranteeing the infeasibility of the discarded intervals.

Table 10. Performance comparison of Matlab Fit APP tool using the intervals of Table 6.

Feature
Using the Initial
Intervals

Using the Union of
Feasible Intervals

Improvement

Number of iterations 67 13 80%
Number of function evaluations 408 84 79%
Step Size 0.0707 5.2217 × 10−6 Four orders of magnitude
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As a further comment concerning the implementation of the IA-based D&C algorithm, it has to
be evidenced that it might profit significantly from a parallel implementation of the IA operations.
Indeed, in any IA operation, the computations of the lower bound and of the upper bound of the result
can be done in parallel, because these two computations are independent. Moreover, the computation
tree derived from the proposed D&C method is also prone to a parallel computation. Consequently,
the proposed algorithm, which has been already developed in C++ by means of a suitable library
including all the IA operations, can be implemented in embedded devices including multi-core
processors or field programmable gate arrays (FPGAs).

8. Conclusions

In this paper an interval-arithmetic-based approach has been applied for identifying
the five parameters of the single-diode model of crystalline silicon photovoltaic modules.
The divide-and-conquer computational paradigm has been used to contract an initial interval set
of parameters, that is, the search space, towards an interval parameters set of a suitably small
width. The proposed method generates feasible and infeasible intervals by successive divisions
of the initial search space. Each interval is evaluated by a feasible condition through interval
arithmetic: this key operation allows one to discard infeasible portions of the search space with a
single operation, without involving any iterative procedure or any minimization algorithm. Moreover,
interval arithmetic guarantees the infeasibility of the discarded sets, meaning that no combinations of
parameters in those sets give a current vs. voltage curve that is more close to the experimental samples
than the curves obtained by the feasible sets. After discarding the infeasible intervals, the proposed
method reduces the widths of the feasible ones until they fall below a threshold fixed by the user
through the termination condition. The performance of the proposed algorithm has been tested on
three examples, including simulated data and experimental data, the latter affected by measurement
noise. The analysis of the case using experimental measurements has evidenced the need for a further
computation step that profits from the interval contraction capabilities of interval arithmetic, allowing
one to refine the final interval solution. In addition to the main feature of parametric identification,
the proposed algorithm gives some information that should be useful in the detection of aging,
malfunctioning and faults of the photovoltaic generator. Indeed, the final result of the application of
the method gives an indication about the sensitivity of the model with respect to the five parameters
appearing in it. Moreover, the ranges provided by the method and including the experimental current
vs. voltage samples give a mask for linking the variation of the module performance to the variation
of its parameters. Thanks to the interval arithmetic inclusion properties, current values acquired
in the same operating conditions and falling outside the interval ranges would reveal variations of
the parameters that are outside the corresponding ranges. For instance, by applying this on-site
evaluation to the series resistance, the aging of the module exceeding a fixed threshold can be detected.
The offline computation of the interval boundaries in the current vs. voltage plane and their uploading
on a low cost processor would allow a straightforward and on-site verification of the violation of these
boundaries with negligible computation effort.

Funding: This work has been supported by Universidad del Valle, Cali, (Colombia), under the project CI 1036.
Moreover, the author gratefully acknowledge the financial support provided by the Colombia Scientific Program
within the framework of the call Ecosistema Científico (contract number FP44842- 218-2018).

Acknowledgments: This work has been supported by Universidad del Valle, Cali, (Colombia), and the Colombia
Scientific Program within the framework of the call Ecosistema Científico.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Suthar, M.; Singh, G.; Saini, R. Comparison of mathematical models of photo-voltaic (PV) module and effect
of various parameters on its performance. In Proceedings of the 2013 International Conference on Energy
Efficient Technologies for Sustainability, Nagercoil, India, 10–12 April 2013.

38



Energies 2020, 13, 932

2. Petrone, G.; Ramos-Paja, C.; Spagnuolo, G. Photovoltaic Sources Modeling; Wiley-IEEE Press: Hoboken, NJ,
USA, 2017.

3. Hare, J.; Shi, X.; Gupta, S.; Bazzi, A. Fault diagnostics in smart micro-grids: A survey. Renew. Sustain.
Energy Rev. 2016, 60, 1114–1124. [CrossRef]

4. Mesquita, D.; Silva, J.; Moreira, H.; Kitayama, M.; Villalba, M. A review and analysis of technologies applied
in PV modules. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference—Latin
America (ISGT Latin America), Gramado, Brazil, 15–18 September 2019.

5. IRENA. Future of Solar Photovoltaic-Deployment, Investment, Technology, Grid Integration and Socio-Economic
Aspects (A Global Energy Transformation: Paper); International Renewable Energy Agency: Abu Dhabi,
UAE, 2019.

6. NREL. Best Research-Cell Efficiency Chart; National Renewable Energy Laboratory: Golden, CO, USA, 2019.
7. Tossa, A.K.; Soro, Y.; Azoumah, Y.; Yamegueu, D. A new approach to estimate the performance and energy

productivity of photovoltaic modules in real operating conditions. Sol. Energy 2014, 110, 543–560. [CrossRef]
8. Bai, J.; Liu, S.; Hao, Y.; Zhang, Z.; Jiang, M.; Zhang, Y. Development of a new compound method to extract

the five parameters of PV modules. Energy Convers. Manag. 2014, 79, 294–303. [CrossRef]
9. Mares, O.; Paulescu, M.; Badescu, V. A simple but accurate procedure for solving the five-parameter model.

Energy Convers. Manag. 2015, 105, 139–148. [CrossRef]
10. Bishop, J.W. Computer Simulation of the Effects of Electrical Mismaches in Photovoltaic Cell Interconnection

Circuits. Sol. Cells 1998, 25, 73–89. [CrossRef]
11. Chin, V.J.; Salam, Z.; Ishaque, K. Cell modelling and model parameters estimation techniques for photovoltaic

simulator application: A review. Appl. Energy 2015, 154, 500–519. [CrossRef]
12. Batzelis, E. Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic

Modules: A Review and Comparative Assessment. Energies 2019, 12, 358. [CrossRef]
13. Cannizzaro, S.; Di Piazza, M.C.; Luna, M.; Vitale, G. PVID: An interactive Matlab application for parameter

identification of complete and simplified single-diode PV models. In Proceedings of the 2014 IEEE 15th
Workshop on Control and Modeling for Power Electronics (COMPEL), Santander, Spain, 22–25 June 2014;
pp. 1–7. [CrossRef]

14. Villalva, M.G.; Gazoli, J.R.; Filho, E.R. Comprehensive Approach to Modeling and Simulation of Photovoltaic
Arrays. IEEE Trans. Ind. Electron. 2009, 24, 1198–1208. [CrossRef]

15. Soto, W.D.; Klein, S.; Beckman, W. Improvement and validation of a model for photovoltaic array
performance. Sol. Energy 2006, 80, 78–88. [CrossRef]

16. Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkis, P. A cell-to-module-to-array detailed model for
photovoltaic panels. Sol. Energy 2012, 86, 2695–2706. [CrossRef]

17. Ding, K.; Zhang, J.; Bian, X.; Xu, J. A simplified model for photovoltaic modules based on improved
translation equations. Sol. Energy 2014, 101, 40–52. [CrossRef]

18. DiPiazza, M.C.; Luna, M.; Petrone, G.; Spagnuolo, G. Translation of the Single-Diode PV Model Parameters
Identified by Using Explicit Formulas. IEEE J. Photovoltaics 2017, 7, 1009–1016.

19. Easwarakhanthan, T.; Bottin, J.; Bouhouch, I.; Boutrit, C. Nonlinear Minimization Algorithm for Determining
the Solar Cell Parameters with Microcomputers. Int. J. Sol. Energy 1986, 4, 1–12. [CrossRef]

20. Ma, T.; Yang, H.; Lu, L. Development of a model to simulate the performance characteristics of crystalline
silicon photovoltaic modules/strings/arrays. Sol. Energy 2014, 100, 31–41. [CrossRef]

21. Balzani, M.; Reatti, A. Neural network based model of a PV array for the optimum performance of PV
system. In Proceedings of the Research in Microelectronics and Electronics, Lausanne, Switzerland, 28–28
July 2005.

22. Almonacid, F.; Rus, C.; Hontoria, L.; Munoz, F. Characterisation of PV CIS module by artificial neural
networks. A comparative study with other methods. Renew. Energy 2010, 35, 973–980. [CrossRef]

23. Zagrouba, M.; Sellami, A.; Bouaïcha, M.; Ksouri, M. Identification of PV solar cells and modules parameters
using the genetic algorithms: Application to maximum power extraction. Sol. Energy 2010, 84, 860–866.
[CrossRef]

24. Jun, S.J.; Kay-Soon, L. Photovoltaic model identification using particle swarm optimization with inverse
barrier constraint. IEEE Trans. Power Electron. 2012, 27, 3975–3983.

39



Energies 2020, 13, 932

25. Wu, L.; Chen, Z.; Long, C.; Cheng, S.; Lin, P.; Chen, Y.; Chen, H. Parameter extraction of photovoltaic models
from measured I-V characteristics curves using a hybrid trust-region reflective algorithm. Appl. Energy 2018,
232, 36–53. [CrossRef]

26. Nassar-Eddine, I.; Obbadi, A.; Errami, Y.; Fajri, A.E.; Agunaou, M. Parameter estimation of photovoltaic
modules using iterative method and the Lambert W function: A comparative study. Energy Convers. Manag.
2016, 119, 37–48. [CrossRef]

27. Spagnuolo, G. An Interval Arithmetic-based Yield Evaluation in Circuit Tolerance Design. In Proceedings
of the IEEE International Symposium on Circuits and Systems. Proceedings, Phoenix-Scottsdale, AZ, USA,
26–29 May 2002.

28. Spagnuolo, G. Worst Case Tolerance Design of Magnetic Devices by Evolutionary Algorithms.
IEEE Trans. Magn. 2003, 39, 2170–2178. [CrossRef]

29. Xu, J.; Wu, Z.; Yu, X.; Hu, Q.; Dou, X. An Interval Arithmetic-Based State Estimation Framework for Power
Distribution Networks. IEEE Trans. Ind. Electron. 2019, 66, 8509–8520. [CrossRef]

30. Petrone, G.; Spagnuolo, G.; Vitelli, M. Analytical model of mismatched photovoltaic fields by means of
Lambert W-function. Sol. Energy Mater. Sol. Cells 2007, 91, 1652–1657. [CrossRef]

31. Accarino, J.; Petrone, G.; Ramos-Paja, C.; Spagnuolo, G. Symbolic Algebra for the Calculation of the Series
and Parallel Resistances in PV module model. In Proceedings of the 2013 International Conference on Clean
Electrical Power (ICCEP), Alghero, Italy, 11–13 June 2013.

32. IEEE Computer Society; M.S.C. IEEE Standard for Interval Arithmetic; IEEE: New York, USA, 2018.
33. Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966.
34. Wolf, P.; Benda, V. Identification of PV solar cells and modules parameters by combining statistical and

analytical methods. Sol. Energy 2013, 93, 151–157. [CrossRef]
35. Yordanov, G.H.; Midtgård, O. Physically-consistent parameterization in the modeling of solar photovoltaic

devices. In Proceedings of the 2011 IEEE Trondheim PowerTech, Trondheim, Norway, 19–23 June 2011;
pp. 1–4. [CrossRef]

36. Jain, A.; Kapoor, A. A new method to determine the diode ideality factor of real solar cell using Lambert
W-function. Sol. Energy Mater. Sol. Cells 2005, 85, 391–396. [CrossRef]

37. Parra, J.S.; Ospina, B.; Mejia, E.F.; Orozco-Gutierrez, M.; Bastidas-Rodríguez, J. Microcontroller Based
Low Cost and Modular Architecture for Photovoltaic Array Monitoring. In Proceedings of the 2018
IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and
Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

40



energies

Article

Condition Monitoring in Photovoltaic Systems by
Semi-Supervised Machine Learning

Lars Maaløe 1,2, Ole Winther 2, Sergiu Spataru 3 and Dezso Sera 4,*

1 Corti, Copenhagen, 1255 København, Denmark; lm@corti.ai
2 Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark;

olwi@dtu.dk
3 Department of Energy Technology, Aalborg University, 9100 Aalborg, Denmark; ssp@et.aau.dk
4 School of Electrical Engineering and Robotics, Queensland University of Technology,

Brisbane City, QLD 4000, Australia
* Correspondence: dezso.sera@qut.edu.au

Received: 12 December 2019; Accepted: 20 January 2020; Published: 27 January 2020

Abstract: With the rapid increase in photovoltaic energy production, there is a need for smart condition
monitoring systems ensuring maximum throughput. Complex methods such as drone inspections are
costly and labor intensive; hence, condition monitoring by utilizing sensor data is attractive. In order
to recognize meaningful patterns from the sensor data, there is a need for expressive machine learning
models. However, supervised machine learning, e.g., regression models, suffer from the cumbersome
process of annotating data. By utilizing a recent state-of-the-art semi-supervised machine learning based
on probabilistic modeling, we were able to perform condition monitoring in a photovoltaic system
with high accuracy and only a small fraction of annotated data. The modeling approach utilizes all the
unsupervised data by jointly learning a low-dimensional feature representation and a classification model
in an end-to-end fashion. By analysis of the feature representation, new internal condition monitoring
states can be detected, proving a practical way of updating the model for better monitoring. We present
(i) an analysis that compares the proposed model to corresponding purely supervised approaches, (ii) a
study on the semi-supervised capabilities of the model, and (iii) an experiment in which we simulated a
real-life condition monitoring system.

Keywords: photovoltaic systems; condition monitoring; fault detection; machine learning;
semi-supervised learning

1. Introduction

With an ever increasing growth in photovoltaic (PV) energy production, the sheer size of individual
power plants is growing at a rapid pace [1]. Building and operating such PV plants has become a viable
business in many countries. High PV energy production and maximized yield are fundamental for a profit
margin. The challenge is not solely detecting an anomaly in the PV power plant, but also optimizing the
operation and maintenance costs once detected [2]. Condition monitoring plays a crucial role, since it
is key to identifying the specific system state to ascertain its impact on energy production and ensure
minimal maintenance costs; e.g., panel cleaning and replacements, and circuit or diode checks [3]. Another
challenge is the size of the PV plants. Minimally, the performance of the strings or arrays needs to be
monitored. In a MW range there will be hundreds of PV performance computational streams to monitor
in real time or periodically [2].
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Many PV plant conditions can result in decreased yield. Amongst the conditions are (i) weather
patterns, (ii) PV panel aging, (iii) evolving faults, e.g., diode failure or glass breakage, and (iv) faulty
installation of the PV panels [4]. It is quite simple to detect anomalies in energy production; however, it is
more complex to find the sources of the anomalies accurately. Furthermore, the cause may be a result of a
chain of events for which the causality is very much non-trivial.

Several alternatives for better condition monitoring exist, many of which include quite costly add-ons;
e.g., increased amount/accuracy of sensors and infrared inspection [5]. Another complementary approach is
traditional statistical analysis of the data [6], but this is resource intensive. A less expensive alternative is a
data-driven approach in which supervised machine learning models parameterized by, for example, neural
networks, learn from the vast amount of incoming sensor data. These machine learning models have
proven efficient in terms of noise resiliency and for finding non-linear correlations within condition
monitoring for wind energy [7,8] and PV plants [9–11]. However, there is an inherent problem in
assumptions made when applying highly expressive neural networks to the problem of condition
monitoring, since they are mostly formulated in a supervised setting. This means that we generally
expect a large dataset containing condition-data with adhering labels. Therefore, in order to get started,
one must (i) predefine all potential non-overlapping conditions that may happen in a PV plant, (ii) have
a vast distribution of annotated data-points for each condition, and (iii) expect no anomalies from the
already defined problem. It is quite clear that executing (i) will introduce a constraint on how specific we
can be in defining a condition, since many have a tendency to overlap. Task (ii) is also limiting since the
data of a PV plant is not directly interpretable by a human. Therefore, one needs to engage in a costly
annotation of data-points in order to train the relatively data-hungry neural networks. Finally, (iii) is
posing a limit of supervised neural networks, since they are normally not modeled with an uncertainty,
resulting in a risk of an overly confident estimate of a severe anomaly [12].

Before proposing a solution to the above, it is important to specify how PV plant condition-data can
be defined. In this research the conditions are expressed by the output of sensors, monitoring the PV
array current, voltage, in-plane irradiance, external temperature, PV module temperature, and wind speed.
The sensor inputs are recorded with a specific temporal resolution. The hypothesis is that, in cohesion,
all of these sensor inputs will have unique patterns representing a PV plant condition. We propose a
state-of-the-art semi-supervised probabilistic machine learning framework that can capture the unique
patterns and cluster them according to their respective similarities. Furthermore, as part of the framework,
a supervised classifier, taught with a pre-defined annotation process, categorizes each of these clusters.
The probabilistic framework thus models the joint distribution of the condition data and the PV plant state.
This should be contrasted to traditional supervised approaches that model the state given the condition
data. The big advantage of the model is that it can capture condition data anomalies while also classifying
known conditions. In addition to this, the number of annotated data-points needed is very low.

The machine learning framework works by learning a distribution over the PV power plant conditions,
and thereby correlates new data points with the learned distribution. In recent years there have been
several notable contributions within probabilistic semi-supervised learning methods. Amongst them
are [13,14], which utilize the variational auto-encoder framework (VAE) [15,16] for a Bayesian approach
to modeling the joint probability between the data and labels. In this paper we utilize the skip deep
generative model (SDGM) from [14].

The paper is structured such that we give a background to PV condition monitoring, supervised
machine learning for fault detection, and the SDGM. Next we introduce the experimental setup followed
by results. We show that SDGM can indeed be used as a machine learning model for condition monitoring,
and performs significantly better than its supervised counterparts, even in a fully supervised setting.
Finally, we simulate a real-life condition monitoring setup where PV plant conditions are introduced
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sequentially. In these experiments we show how SDGM is able to detect anomalies, and that retraining the
system improves condition monitoring performance.

2. Detection and Identification of PV Power Loss and Failures trough Classification Methods

2.1. PV Failures and Factors Causing Power Loss

There exists a number of external factors that can cause power loss in a PV system, in addition to
PV specific degradation modes [4]. These can be roughly categorized into three groups. The first group
covers optical losses and degradation, such as soiling, snow, or shading affecting the module surface [17],
and discoloration of the encapsulant [4]. These optical power loss factors can be relatively easily detected
through visual inspection; however, this is not always feasible for large or hard to reach PV installations.
Moreover, detecting them from production measurements can be difficult, since their associated failure
patterns in the power measurements are irregular, depending on the size and relative position of the
soiling, shading, etc. Detecting such failures is important, since some of them can be remedied relatively
easy, through cleaning of the PV panels.

A second category of factors causing power loss in a PV system, is the degradation of the electrical
circuit of the PV module. In the most severe cases, these are represented by open-circuit and short-circuit
faults within the PV array and associated cabling [4]. But there can also be partial degradation, due to
moisture ingress and corrosion of the electrical pathways [18], causing an increased series resistance of
the PV array [19]. Such faults are generally difficult to detect through visual inspection, and require
thermal IR imaging or electroluminescence to detect. However, they cause more predictable patterns in
the production measurements, such as voltage drops proportional to the increase in series resistance. Such
failures can cause localized heating and hot-spots, posing a risk of arcing and fire.

The third category corresponds to degradation of the solar cells, which in turn can occur due to a
number of stress factors, such as: (i) thermo-mechanical stress, causing solar cell cracks, associated
with increased series resistance, shunting, and localized heating [4,19]; (ii) voltage stress, causing
potential-induced degradation, primarily associated with a decrease in the cells’ shunt resistance,
but also corrosion and delamination in the case of some thin film technologies [20]; (iii) diurnal and
seasonal variations affecting solar cells with metastable performance behavior, such as certain thin film
technologies [21]. Degradation modes in this category are more difficult to detect, and the associated
failure patterns in production measurements are more complex. Nonetheless, identifying such failures
in their incipient phase is of utmost importance, since they are symptoms of more serious, system-wide
problems, such as bad system design, installation practice, or module quality, which should be resolved
while the modules and PV system are still in warranty.

The types of power loss factors and degradation modes that can affect PV systems are varied and
difficult to formalize. And, only a few of them may affect a PV system within its lifetime, depending
mainly on the solar cell technology, panel design and quality, environmental and operational conditions,
and installation and maintenance practices.

2.2. Failure Detection through Supervised Classification

Two of the main prerequisites for implementing supervised classification in a condition monitoring
system, are: (i) the a priori knowledge of the fault types/classes that will occur/need to be detected in
the PV system; and (ii) representative measurement datasets for each of the fault classes, necessary for
training the classification model. Once these perquisites are met, and appropriately monitored, production
variables are chosen as input, and classifiers are trained for each fault class. Once trained, each classifier
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will operate continuously, monitoring the production variables, and will be able to discern if the system is
in normal operation, or if a specific fault class has occurred.

Many types of supervised classification algorithms exist; e.g., support vector machines (SVM) [22],
random forest (RF) [23], and multilabel logistic regression (MLR). These are all very expressive models;
however, with the rise of deep learning [24], we have seen a multitude of improvements from models that
can capture highly non-linear correlations in the data. The improvements mainly concern areas such as
image classification [25] and automatic speech recognition [26]. However, the more expressive models
also gain traction within renewable energy; e.g., for condition monitoring in wind turbines [8] and as
forecasting models for solar irradiance [27]. Defining the deep neural network is not a simple task, due to
the vast number of choices that need to be taken in regard to type of architecture, depth, regularization,
and much more.

The main challenge in implementing a supervised classification algorithm for detecting faults in a PV
system is obtaining the necessary PV production measurement datasets characterizing the different fault
classes. Since there are no standardized fault classes and representative datasets, faults of different types
and severity can occur throughout the 25+ year expected lifetime of the PV system.

2.3. Proposed Failure Detection through Semi-Supervised Classification

A possible solution is to combine a supervised classification method with a data clustering method that
is able to detect anomalous patterns in the monitored PV production data. Next, on-site inspection of the
event/fault by maintenance personnel, can help identify the type or class of this event/fault. The associated
production measurements can then be used to retrain a supervised classifier for the detected event/fault
class, such that future instances of the event/fault will be automatically detected and identified by the
condition monitoring system, which continuously learns new fault classes as it operates (Figure 1).

Figure 1. A visualization of the condition monitoring system. The sensor data is propagated through
the machine learning framework, and the model detects whether the data point is an outlier. If it is an
outlier, the sensor data must be manually inspected, and the machine learning framework retrained. If the
incoming sensor data is not an outlier, the framework will predict the state of the condition. If the fault
state is detected, as a fault, maintenance will be scheduled accordingly.

We propose to solve the problem for semi-supervised condition monitoring by teaching a feature
representation z of the PV condition data x as a continuous conditional probability density function, p(z|x),
and the classification task of the PV state y as a discrete conditional probability density function, p(y|x).
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In order to teach both models jointly from both labeled and unlabeled data, the two models must be
defined such that they share parameters. By applying Bayes theorem we can formulate the problem by:

p(z, y|x) = p(x|z, y)p(z)p(y)∫
z,y p(x|z, y)p(y)p(z)dz

, (1)

where we assume the latent variable feature representation z and state labels y are to be a priori statistically
independent, p(z, y) = p(z)p(y). In a scenario with complex input distributions, e.g., sensor input from a
PV power plant, the posterior p(z, y|x), becomes intractable. Therefore, we formulate the problem such
that we learn an approximation, q(z, y|x), to the posterior through variational inference [28]. SDGM is
an example of this probabilistic framework which enables the use of stochastic gradient ascent methods
for optimizing the parameters of the generative model, pθ(x, y, z), and the variational approximation,
qφ(z, y|x). θ and φ denote the parameters of the generative model and the variational approximation (also
denoted inference model) respectively. Both are constructed from deep neural networks (cf. Figure 2). We
learn the model parameters by jointly maximizing the objective L(xl , yl) for labeled data xl , yl and U (xu)

for unlabeled data xu:

J = ∑
xl ,yl

L(xl , yl) + ∑
xu

U (xu) . (2)

x

y

z1

z2 θ

x

y

z1

z2
φ

(a) Generative model pθ (b) Inference model qφ

Figure 2. The graphical model of the SDGM for semi-supervised learning [14]. The model is defined by two
continuous latent variables, z1 and z2, a partially observed discrete latent variable y, and a fully observed
input x. (a) The generative model and (b) the inference model, also known as the variational approximation.
Each union of incoming edges to a node defines a densely connected deep neural network.

SDGM defines two continuous latent variables, z = z1, z2, and the discrete partially observed latent
variable y [14]. The continuous distributions for the latent variables z are defined as Gaussian distributions
and the discrete distribution y is a Categorical distribution. For the labeled data we optimize the parameters,
θ, φ with respect to a lower bound on the evidence p(x) (ELBO):

log pθ(x, y) = log
∫

z1

∫
z2

pθ(x, y, z1, z2)dz2dz1 ≥ Eqφ(z1,z2|x,y)

[
log

pθ(x, y, z1, z2)

qφ(z1, z2|x, y)

]
≡ F (x, y) , (3)
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with

qφ(z1, z2|x, y) = qφ(z1|x)qφ(z2|z1, y, x), (4)

pθ(x, y, z1, z2) = pθ(x|z1, z2, y)pθ(z1|y, z2)pθ(y)pθ(z2) . (5)

Since the labeled ELBO does not include the classification error, we add the categorical
cross-entropy loss

L(x, y) = F (x, y) + α ·Eqφ(z1,z2|x,y) [log qθ(y|z1, x)] , (6)

where α is a constant scaling term defined as a hyper-parameter. Similarly to the labeled loss, we define
the unlabeled loss as the unlabeled ELBO:

log pθ(x) = log
∫

z1
∑
y

∫
z2

p(x, y, z1, z2)dz2dz1 ≥ Eqφ(z1,y,z2|x)
[

log
pθ(x, y, z1, z2)

qφ(z1, y, z2|x)
]
≡ U (x) , (7)

where

qφ(z1, z2, y|x) = qφ(z1|x)qφ(y|z1, x)qφ(z2|z1, y, x). (8)

In this paper we restrict the experiments to only use densely connected neural networks, but simple
extensions to the model include recurrent neural networks and convolutional neural networks that
have proven efficient in modeling temporal and spatial information within condition monitoring [8,27].
Besides being among the state-of-the-art within semi-supervised image classification, SDGM posses
another intriguing property for condition monitoring, differentiating it from other semi-supervised
approaches. Since we are optimizing the ELBO, we can use this as an anomaly measure. Thus, if the
value of the ELBO for a specific data-point is far below the value of the unlabeled ELBO, U (x) that was
evaluated during optimization, we can define the data-point as an anomaly.

3. Experimental Application and Tests

In order to validate whether the proposed SDGM can be utilized for condition monitoring, we have
recorded a dataset of the sensor data from a small-scale PV plant. During the timespan of the recording,
we witnessed 10 different categories that we used as labels. In order to benchmark the machine learning
framework, we have defined two comparable supervised machine learning models.

3.1. Field Test Setup and Dataset

To evaluate the progressive learning and fault detection capabilities of the proposed condition
monitoring system, we performed measurements and tests on a 0.9 kWp roof-mounted PV string (eight
multicrystalline silicon modules). The PV string was connected to a 6 kWp Danfoss TLX Pro string inverter
that was continuously monitoring the string current (I), voltage (V), plane-of-array irradiance (G), external
temperature (TExt), module temperature (TMod), and windspeed (W), with a one minute sampling time.
Since the test PV system is normally not affected by any faults, we created seven power loss events/fault
classes by applying different types of shading on the panels, and by connecting different power resistors
on series with the PV string, to emulate series resistance type faults. In addition, we also recorded PV
production for when the PV system was covered by snow, for a clear sky, and for a cloudy sky day. The ten
conditions/fault classes are outlined in Table 1, and will be used as class labels for testing the classifiers
in the next sections. Another important step in designing a classification model is choosing appropriate
input variables. Minimally, PV array current and voltage are monitored in a PV system, and we denote
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this case as the simple monitoring case. Additional monitoring input variables can be the solar irradiance,
module temperature, external temperature, and wind speed. These are less commonly monitored in small
PV installations, due to the additional costs of the sensors; however, in larger PV plants, these are usually
monitored by accurate weather stations. We will denote the case including the ambient conditions as input
variables, the complex monitoring case.

Table 1. An overview of the PV system dataset used for this research. The dataset comprises 10 categories
from approximately 15,000 data samples of a varied representation.

Condition Description Samples

PS7 Uniform shading on all lower cells of the modules 10.68%
RS4 50% increase in string series resistance 10.18%
PS50 Partial shading on 50% of a submodule 10.83%
RS8 100% increase in string series resistance 5.11%
PSRS Combined 50% shading on a submodule with 50% increase in string Rs 10.93%
PS75 Shading on 50% of a submodule + 25% of another submodule 10.60%
C Cloudy sky day 4.60%
S Snow on the modules 27.64%
N Clear sky day 4.67%
IV Shading on 3/4 of cell area of 6 submodules 4.78%

The categories are skewed in accordance to the weather pattern during the two months; e.g., there is
a majority of data points for which there was snow (cf. Table 1). For each learned model, we ran a 5-fold
Monte Carlo cross-validation with a random split of 80% for training and 20% for testing. The labeled
samples are either sampled uniformly or progressively for each PV system state category.

3.2. Machine Learning Setup

In order to evaluate the proposed machine learning framework, we first define a solid baseline for
comparison. Since the SDGM is parameterized by neural networks, we construct a supervised neural
network for classification with similar parameterization to qφ(y|z1, x). Furthermore, we also define a
simple linear classification model, in order to conclude whether the added complexity from the neural
networks is needed for modeling this dataset. The supervised deep neural network for classification is
denoted multi-layer perceptron (MLP), and the linear model is referred to as multi-label regression (MLR).

(i) In the first experiment we benchmark SDGM against MLP and MLR in a fully supervised setting;
thus, all labels for the entire dataset are given during training. The aim of this experiment is to see whether
MLP performs significantly better than MLR and whether SDGM performs approximately equivalently
to MLP. We perform this experiment on both the simple and complex monitoring case. (ii) Next, we
investigate the semi-supervised performance of the SDGM. In order to do this, we simulate a scenario
where only a fraction of data in the PV sensor dataset is given. Since MLP and MLR are supervised models,
they are only able to learn from this fraction of labeled data, whereas SDGM can utilize the unlabeled
fraction also. The fraction of labeled data is randomly sampled uniformly across categories, such that there
is an even representation of each category in the labeled dataset. (iii) Finally, we simulate a real-life PV
plant condition monitoring system, in which we assume that each condition is introduced to the power
plant sequentially (cf. Figure 1). First, we initialize the dataset with only one labeled data-point from each
category, in order to introduce the minimal amount of categorical knowledge in the classifier. Next we
introduce 500 labeled samples from the first category in Table 1 and optimize MLP and SDGM. Then we
could estimate the ELBO in Equation (7) for the data-points of the categories that are included during
training and the ones that are not. We also estimate the accuracy of each classifier in SDGM and the MLP.
We expected that the estimate of the ELBO would be significantly lower for the categories that are not
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included in the dataset as opposed to the ELBO for the categories that are included. This indicates an
anomaly. Then, we progressively include another category from Table 1 and perform the same analysis
until we have evaluated 6 categories.

The SDGM (For details on experimental implementation and code refer to [14] and the corresponding
Github repository.) consists of 2 densely connected deep neural neural networks with parameters θ in
the generative model and 3 densely connected deep neural networks with parameters φ in the inference
model. The neural networks in both the SDGM and MLP contains 2 hidden layers with 50 units in each.
We use the ReLU [29] activation function as a non-linearity and ADAM [13] for optimizing the parameters.
For the MLP we use a dropout [30] rate of 0.5 and for the MLR we use L2 regularization. Model training is
stopped upon saturation of the validation error. The α constant is defined as in [14]. During optimization
of the SDGM we utilize the warm-up introduced in [31,32].

4. Results

We performed three experiments, introduced above. In the first experiment we benchmarked the
SDGM against the MLP and MLR in a fully-supervised setting. Next we evaluated the semi-supervised
power of the SDGM. Finally, we simulated a real-life condition monitoring system.

4.1. Supervised Condition Monitoring Accuracy

Table 2 presents the baseline results of MLR, MLP, and SDGM in a fully supervised learning setup.
By utilizing more sensor attributes (complex versus simple), the performance increases well over 10%
across all models. This proves that the additional sensor inputs (G, TExt, TMod, and W) are very useful
for condition monitoring. When comparing the non-linear MLP to the linear MLR we also achieve a
significant improvement in performance, indicating that the input data is not linearly separable, and that
the added complexity of the neural networks is worthwhile.

Table 2. Fully supervised baselines of MLR, MLP, and SDGM with the simple sensor input, {I, V}, and the
complex input, {I, V, G, TExt, TMod, and W}.

Accuracy Accuracy
I, V I, V, G, TExt

TMod, W

MLR 51.62% 77.33%
MLP 77.81% 89.11%
SDGM 79.06% 92.47%

The most surprising finding was that the SDGM performs significantly better than MLP. We believe
that this is due to the fact that SDGM also learns a latent clustering of the data that is correlated with the
PV state.

Thereby, the model can discriminate between the labels and the cluster representations, meaning that
it can put less emphasis on labeled information that does not seem to correlate with the distribution. Hence,
if a small fraction of faulty labels exist in the training dataset, SDGM is able to ignore this information and
thereby achieve better generalization towards the validation dataset.

Figure 3 shows how the wrongly classified examples from the MLR and MLP are quite similar.
The highest misclassification rate lies between cloudy and snowy weather, {C, S}. Other misclassification
rates mainly lie between {RS8, PS50}, {N, RS4}, {RS8, IV}, and {N, RS4}. When we compare the results
of MLR and MLP to the SDGM (cf. Figure 4a) we can read from the confusion matrix that the SDGM
manages to learn the difference between cloudy and snowy, {C, S}. Furthermore the remainder of the most
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prominent misclassification rates are significantly decreased. In order to analyze what is learned in the
latent variables of SDGM, we plot the first two principal components from a principal component analysis
(PCA) (cf. Figure 4b). The visualization of the latent space shows clear discrimination between categories.
Furthermore, we can also see that the data lies on manifolds resembling the movement of the sun.

(a) (b)

Figure 3. Normalized confusion matrices for (a) MLR and (b) MLP trained on the fully labeled complex
dataset. The x-axis denotes the predicted labels and the y-axis the true labels.

(a) (b)

Figure 4. (a) Normalized confusion matrices for SDGM trained on the fully labeled complex dataset. (b) PCA
(principal components 1 and 2) on the latent space.

4.2. Semi-Supervised Condition Monitoring Accuracy

In order to evaluate the semi-supervised performance of SDGM, we define eight datasets with different
fractions of labeled data that are randomly subsampled across the categories in Table 1 for each of the
trained models, {100, 300, ..., 1500}. Figure 5 shows SDGM’s significant increase in performance by utilizing
the information in the unlabeled data. For the simple dataset, with {I, V} as input, we see that the supervised
models, MLR and MLP, achieve an accuracy of 35%–45% by learning from 100 labeled data-points, whereas
the SDGM achieves 55%–60%. As expected, the relative improvement from using SDGM stays significant
when introducing more labels. Similarly to the supervised analysis above, all models achieve a significant
improvement when adding more sensor inputs, {I, V, G, TExt, TMod, W}. When comparing the results of
the semi-supervised SDGM with the supervised SDGM, we see that the models trained on 1500 labeled
data points actually exceed the performance of the fully-supervised model, 93.12% compared to 92.47%.
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Again, the reason for this may be that with fewer labeled examples, SDGM put a larger emphasis on the
unlabeled data, and thereby it was not as prone to faulty annotations. In Figure 6 we visualize the latent
representations by PCA for the SDGM trained with 100 labeled data-points on the simple and complex
input. It is clear that the model trained on the complex is better at discriminating between the categories
than the model trained on the simple input. Furthermore, when comparing Figure 4b with Figure 6b we
see clear indications that the increase in labels results in better discrimination between condition states.

(a) (b)

Figure 5. Comparison between the supervised MLP, MLR, and the semi-supervised SDGM trained on an
increasing amount of randomly sampled and evenly distributed labeled data points. For each number
of labeled data points, we trained 10 different models, since a large variance between the quality of the
subsampled labeled data points may have existed. (a) The accuracy with one standard deviation for models
trained on the simple input distribution {I, V}, and (b) the accuracy for models trained on the complex input
distribution, {I, V, G, TExt, TMod, W}.

(a) (b)

Figure 6. PCA (principal component 1 and 2) visualization of the latent space for SDGMs trained a dataset
with only 100 labeled samples. (a) The latent space for a model trained on the simple dataset, {I, V} and
(b) for {I, V, G, TExt, TMod, W} as input.

4.3. Adding PV Conditions Progressively

In a PV system it is highly unlikely that a dataset will consist of an evenly distributed labeled dataset
from all categories. To test whether the SDGM is able to perform anomaly detection on the data, we set
up an experiment where we began by learning a model on 500 randomly sampled labeled data points
and only one labeled data point for each of the remaining categories. Then, we progressively taught new
models with a dataset to which we added 500 labels for the next category. We continued this procedure
until the 6th category.

Figure 7a presents the results of a SDGM and MLP taught up to six categories. As expected,
the accuracy for all categories increases when more categories are added to the dataset. Again, it is
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clear that the SDGM is able to utilize the information from the unlabeled examples and the very sparse
information from the other categories to significantly outperform the MLP. In Figure 7b, we visualize the
level of certainty and ELBO (cf. Equation (7)), and can easily discriminate the categories included during
training from the categories that are not included. So for a model trained on only {PS7} data, it is easy
to detect {RS4, PS50, RS8, PSRS, PS75, C, S, N, IV} conditions as anomalous, and for a model trained on
{PS7,RS4} it is easy to detect {PS50, RS8, PSRS, PS75, C, S, N, IV} as anomalous. In order to state whether
a PV plant condition is an anomaly, the operator needs to define a threshold value. In this experiment a
suitable threshold could be that PV plant conditions with an ELBO below −60 nats is considered an anomaly.
Upon realization of an anomaly, the PV plant operator will initiate a brief annotation process and retrain the
SDGM framework, so that the new states are within the known operational condition.

Figure 8 presents the classification errors for the MLP and SDGM when only taught on 100 labeled
data points. Since the SDGM is able to utilize the information of the unlabeled data points it is also able to
classify much better across PV plant categories.

(a) (b)

Figure 7. SDGMs and MLPs were trained with datasets from which we randomly subsampled a single
data-point from each category and then progressively added 500 randomly labeled data points for each
category, and we trained a new MLP and SDGM for each progression. (a) The accuracy of the classifiers for
the SDGM and MLP. (b) The ELBO for the data categories included during training (ELBO Lab.) The data
categories that are not included during training (ELBO Unl.). The categories that were progressively added
followed the order of Table 1; i.e., first {PS7}, and next {PS7, RS4}, until reaching {PS7, RS4, PS50, RS8,
PSRS, PS75}.

(a) (b)

Figure 8. Normalized confusion matrices for (a) MLP and (b) SDGM trained on 100 randomly sampled and
evenly distributed labeled data points. The x-axis shows the predicted labels, and the y-axis the true labels.
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5. Conclusions

In this research we have proposed a novel machine learning framework to perform PV condition
monitoring that simultaneously learns classification and anomaly detection models. We have shown
that the proposed semi-supervised framework is able to improve over a fully supervised framework
when given a full set of labeled data points (fully supervised learning) and when only given a fraction of
labeled data points (semi-supervised learning). We have also shown that the framework is able to identify
previously unknown fault types by performing anomaly detection, and how it can be easily retrained
in order to capture these PV states. This approach can significantly improve the throughput of energy
production and lower the maintenance cost of PV power plants. We have shown that the approach is easy
to train on a rather simple dataset and that it is easily interpretable by evaluating the classification results,
the latent representations, and the lower bound of the marginal log-likelihood.

The main limitation of this research lies in the dataset used. Due to the representation and the
amount of samples, it does not resemble the vast amount of data one could acquire from a large-scale
PV power plant. However, deep neural networks have a tendency to improve when introduced to more
data, meaning that we can hypothesize that the results would only improve. In this regard, an interesting
direction for future research would be to investigate the possibility for transfer learning between PV
power plant configurations, so that one could seamlessly deploy the framework taught on one PV plant
to another.
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Abstract: This study presents a design and an implementation of a robust Maximum Power Point
Tracking (MPPT) for a stand-alone photovoltaic (PV) system with battery storage. A new control
scheme is applied for the boost converter based on the combination of the adaptive perturb and
observe fuzzy logic controller (P&O-FLC) MPPT technique and the backstepping sliding mode control
(BS-SMC) approach. The MPPT controller design was used to accurately track the PV operating point
to its maximum power point (MPP) under changing climatic conditions. The presented MPPT based
on the P&O-FLC technique generates the reference PV voltage and then a cascade control loop type,
based on the BS-SMC approach is used. The aims of this approach are applied to regulate the inductor
current and then the PV voltage to its reference values. In order to reduce system costs and complexity,
a high gain observer (HGO) was designed, based on the model of the PV system, to estimate online
the real value of the boost converter’s inductor current. The performance and the robustness of the
BS-SMC approach are evaluated using a comparative simulation with a conventional proportional
integral (PI) controller implemented in the MATLAB/Simulink environment. The obtained results
demonstrate that the proposed approach not only provides a near-perfect tracking performance
(dynamic response, overshoot, steady-state error), but also offers greater robustness and stability than
the conventional PI controller. Experimental results fitted with dSPACE software reveal that the PV
module could reach the MPP and achieve the performance and robustness of the designed BS-SMC
MPPT controller.

Keywords: photovoltaic system; maximum power point tracking; backstepping sliding mode control;
high gain observer; stability analysis

1. Introduction

Most of our electricity needs are met by non-renewable resources which are depleting at a rapid
rate. The increasing population and growing needs of energy sources present a motive to look
for potential alternatives. In this regard, the production of photovoltaic (PV) energy has drawn a
tremendous amount of interest. However, PV energy is still considered expensive and reducing the cost
of PV systems has become a main topic of extensive research. To solve the problems above, maximising
PV output power can be approached via power electronics [1,2]. The use of MPPT controller for a PV
application is crucial to increasing the efficiency and the performance of a PV system [3]. The most
used batteries are the lead–acid type, due to their significant autonomy and their reliable and low-cost
technology. These rechargeable electrochemical devices are widely employed in many applications
such as PV storage systems [1,4,5]. Several MPPT methods have been attempted to track the MPP in PV
systems such as perturb and observe (P&O) [6,7], the incremental conductance (INC) method [8–10],
the neural network controller (NNC) [11] and the fuzzy logic controller (FLC) [12–14]. The control
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parameter of the P&O technique is perturbed due to a small variation of the step size. The direction of
step size caused by this algorithm is varied due to the measurement of the output power of the PV array.
The disturbance of the system depends on the increase or the decrease of power [9]. The increment
conductance (IC) technique is based on determining the operating point of the PV module. This
method tries to raise the operating point of the PV generator until reaching the MPP. It enables a search
of the MPP according to the equality of the conductance and its increment [9,10].

The most commonly employed methods in the literature are the P&O [6] and IC [9], due to the
ease of both their understanding and implementation. However, these methods are not efficient
during the rapid changing of climatic conditions. Furthermore, even in stable climatic conditions,
they produce oscillations around the MPP and they are totally dependent on solar irradiation. In fact,
the performance of these methods decreases with the decrease of solar irradiation [9].

The FLC provides the best performance compared to conventional P&O and IC techniques.
However, the limitation of this technique comes from its non-achievement of sufficient accuracy of
the operating point of the PV generator for the MPP. The step duty cycle changes direction according
to the direction change of the adjusted power [15]. Their inputs and outputs depend entirely on the
information about the system model to be studied by the designer [16].

Other techniques have been designed such as the MPPT, which is based on the dedicated sliding
mode controller for PV storage systems [17,18]. This approach is of great importance given its several
advantages such as stability, robustness against the parameter variation, fast dynamic response and
the simplicity of implementation [19,20]. However, the SMC-MPPT approach, when applied to the
dc–dc converter, has certain drawbacks, including the variability of the operating frequency in the
output of the control (chattering phenomenon) [17,21–24]. This study [25] presents an experimental
validation of a new SMC for a two-level voltage source inverter for a grid connected PV system. A
combination of a traditional MPPT P&O technique and an SMC has been developed in [26]. Similarly,
in [27], the authors suggest a backstepping sliding mode control (BS-SMC) scheme to improve the PV
system. The MPP seeking method is employed to estimate the reference PV voltage. Then a cascade
control loop with a BS-SMC controller aims to regulate the PV voltage to its reference values in order
to monitor exactly the PV operating point under variations of the atmospheric conditions.

Moreover, the Hall Effect current sensor is used to measure the inductor current via the Hall Effect,
to generate a voltage which is exactly proportional to the current to be measured or visualized. Due to
the high sensitivity of this type of sensor to external or parasitic magnetic fields, the measurement
of the inductor current can be erroneous. Thus, the performance of the MPPT controller could be
reduced [21,28]. Conventional MPPT techniques use Hall Effect sensors and include additional circuitry
such as signal conditioning buffers, filters, and amplifier circuits. This increases the cost and complexity
and affects the performance system. Unfortunately, once the sensor is damaged, the operation of a
photovoltaic generator will be interrupted.

Herein, based on the motivation above, we propose an MPPT based on BS-SMC to enhance
the performance and the robustness of the PV storage system. The BS-SMC MPPT method is the
combination between the backstepping method and sliding mode. The aim of this approach is to force
the system state to achieve the MPP with a high tracking performance and stability. The convergence
of the dynamics of the system around the sliding surface depends on two criteria which have been
already proposed by Utkin [29] and proved by the Lyapunov function. This method is considered as a
potential approach in various applications due to its robustness, its easy implementation and its ability
to reject disturbances. This method is presented in reference [30], to control the attitude and position of
a quadrotor unmanned aerial vehicle (UAV). The obtained results suggest its relevant performance and
robustness, urging its use for the control of the dc–dc boost converter in PV storage system. However,
in [27], the authors combined an extremum seeking control method to reach the PV reference voltage
with the BS-SMC approach. This method shows these limits underlined by the curve of the sliding
surface during variations in climatic conditions. It can be seen in this curve large-amplitude chattering
phenomena. In another study [31], an MPPT controller was proposed, based on the combination of the

56



Energies 2019, 12, 3539

regression plane method and a backstepping controller with integral action (IBS) to control a dc–dc
buck boost converter. This technique does not take into account the faults or malfunctioning of the PV
module. In addition, IBS provides a minimum of error in the stable state, without satisfying the feature
of robustness.

The main goal of this study is to design a new switching function based on Lyapunov stability, to
overcome the drawbacks associated with control time and reduce the cost of the PV system. In this
context, there are many approaches to mitigating the disadvantages of chattering in SMC, such as
using a regular approximation of the switching element or using a higher order sliding mode control
(HOSMC) strategy [32].

However, using a continuous approximation affects system performance and requires finite time
convergence sliding mode control. In HOSMC, it is generally difficult to estimate the high-order state
derivatives and it still presents chattering in the presence of parasitic dynamics. In this study, using a
sliding surface including a time function, large-amplitude chattering phenomena are attenuated and
thus, robustness is ensured.

The designed MPPT controller is developed to a PV system, including a PV module, a dc–dc boost
converter and a battery load. The principle of the studied control scheme contains two cascade control
loops. The outer control loop based on the P&O-FLC is used to estimate the real-time of the reference
voltage, which corresponds to the maximum power. The inner control loop regulates the PV voltage
to reach the value of the reference voltage estimated by the outer control loop. In the absence of the
inductor current sensor, the BS-SMC approach is used to track the MPP under solar irradiation and
temperature variation, while the estimation of the inductor current of the dc–dc boost converter is
carried out by an HGO, as shown in Figure 1. On the other hand, the estimated current is used in the
input of the BS-SMC.

DC-DC boost 
converter 

Backstepping  sliding 
mode controller

Adaptive 
P&O-FLC

pv _ refV

α

LÎ
HGO

pvV

pvI

sV Battery load

PWM

E

T

PV array

Figure 1. Control scheme of the PV storage system.

After a general introduction, this article first details the modelling of the PV storage system,
the design of the BS-SMC controller and the HGO, then the stability analysis. Secondly, we are
interested in comparing the simulation results of the proposed BS-SMC controller with the conventional
PI controller. The experimental results are illustrated, explained and discussed in detail in the third
section. Finally, this paper is completed by a conclusion and perspectives.

2. Modelling of the PV System

Figure 2 shows the proposed configuration of the photovoltaic (PV) storage system which consists
of a PV module, a dc–dc boost converter and a battery load.
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Figure 2. Diagram of the PV storage system.

2.1. Modelling of PV Module

Figure 3 illustrates the equivalent electrical circuit model of the PV panel [1,10,18,33].

sR

pR
sI
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pvI

pvV

 
Figure 3. Equivalent circuit model of the PV cell.

The expression of the solar PV cell terminal current as a function of the photo-current, the diode
current and the shunt current, can be expressed by:

IPV = IPH − IS − ISH (1)

where IPH is the photocurrent of the cell, (A). IS is the saturation current of the P–N junction and ISH is
the current through the parallel resistor RSH.

The output current of PV array can be given by:

IPV = NPIPV −NPIS

(
exp
(

VPV + RSIPV

nskTNS

)
− 1
)
−NPq

(
VPV + RSIPV

NSRSH

)
(2)

where Is is cell reverse saturation current; q is the electron charge
(
q = 1.602× 10−19C

)
; k is the Boltzman

constant
(
k = 1.38× 10−23 J/K

)
; n is ideality factor solar cell; VPV is the output voltage; NP is the number

of PV cells connected in parallel; NS is the number of PV cells connected in series; RS and RSH are the
series and shunt resistors of the PV array, respectively.

The cell reverse saturation current can be determined by:

IS = IS0

( T
TR

)3
exp
(

qEG

ka

( 1
TR
− 1

T

))
(3)

where EG = 1.1(eV) is the band gap energy of the semi conductor used in the cell and TR(K) is the cell
reference temperature.
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The reverse saturation current IS0 at T can be calculated by:

IS0 =
ISC0

exp
( qVOC

NSaKT

)
− 1

(4)

where ISC0(A) is the cell short-circuit at reference temperature and solar irradiance and the open circuit
voltage is VOC(V).

The photocurrent IPH(A) is related to the solar irradiation and temperature; its expression is
obtained by the following equation:

IPH =
E

1000
(ISC + ki(T − TC)) (5)

where ki(A/K) is the short circuit current temperature coefficient and E
(
W/m2

)
is the solar irradiance.

The monocrystalline Solo Line LX-100M model has been chosen in this paper. The specification
parameters of the PV module are presented in Table 1.

Table 1. Parameters of the Solo Line LX-100M PV panel under standard test conditions (STC).

Parameter Name Value

PMAX Maximum Power 100 Wp
Vmp Voltage at maximum power 18.7 V
Imp Current at maximum power 5.39 A

VOC Open circuit voltage 21.6 V
ISC Short circuit current 5.87 A
ki Temperature coefficient of ISC 1.73 mA/◦C
ns Number of cells per module 60

The characteristic I_V and P_V curves of the PV module for different values of solar irradiation E
and temperatures T are illustrated in Figure 4a,b, respectively.

(a) (b) 

Figure 4. Characteristic curves of PV array obtained under weather conditions: (a) I_V characteristic
curves; (b) P_V characteristic curves.

Figure 4a,b depict the general appearance of the electrical characteristics of a PV generator
for different values of temperature and solar irradiation. It can be noted that with the increasing
temperature, the generated current increases slightly. Inversely, the open circuit voltage decreases
considerably. It can be observed that the variation of the solar irradiation greatly affects the short
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circuit, with low impact on the open circuit voltage. Consequently, the variation of MPP depends on
the solar irradiation.

2.2. Modelling of the DC–DC Boost Converter

The block diagram of the dc–dc boost converter is illustrated in Figure 5. It is used to adjust the
PV voltage VPV to its reference value corresponding to the MPP.

BatR
PVV

PVI
LI

L

T

D

α SV
SC

PC

SI

BatE

 
Figure 5. Circuit diagram of dc-dc boost converter.

The system dynamics are described by the following equations [1,9,17,22,33–35]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dVPV
dt = 1

CP
(IPV − IL)

dIL
dt = 1

L (−(1− α)VS + VPV)
dVS
dt = 1

CS
((1− α)IL − IBAT)

VS = EBAT + RBATIBAT

(6)

where VPV , VS and IL represent the average output voltage, the input voltage and the average inductor
current during the switching period, respectively; L is the filter inductor; CP is the input capacitor; CS
is the output capacitor and (EBAT, RBAT) is the load battery.

3. Controller Design and Stability Analysis

The block diagram of the proposed BS-SMC is shown in Figure 2. For each value of solar irradiation
E and of cell temperature T, the block adaptive P&O-FLC enables the provision of an on-line calculation
of the reference photovoltaic voltage VPV_REF. The control signal α corresponds to the MPP and is
generated from block BS-SMC controller.

3.1. Adaptive P&O–FLC

The differential power and the differential voltage are used as inputs of the adaptive P&O-FLC
algorithm. ΔVPV_REF is determined through an FL approach whose block diagram is presented in
Figure 6 [33].
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z
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Figure 6. Block diagram of the adaptive perturb and observe fuzzy logic controller algorithm.

The functional diagram of the P&O-FLC is presented in Figure 7.

PV PVV t I t
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PV PV PVP t V t I t

PV PV PV

PV PV PV

P t P t P t

V t V t V t

Mesure

PV PVP t V t

PV REFV

PV REF PV PV REFV V V

Figure 7. Flow chart of the adaptive P&O-FLC.

The five proposed variables are very small, small, medium, large and very large. The input
membership function of the PV power ΔPPV is the difference between the current power and the
previous power. In addition, the difference between the current voltage and the previous voltage is
the input membership function of the PV voltage ΔVPV. Then, the difference between the current
maximum PV output voltage and the previous maximum PV output voltage is the output membership
function of the reference voltage ΔVPV_REF. The two memberships functions ΔPPV and ΔVPV are
converted to linguistic variables after their calculation. Then the output ΔVPV_REF is generated by
searching in a rule base table, consisting of 25 rules. A Mamdani’s method is performed to determine
the output of this algorithm [15,34,36,37].
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3.2. Observer Design

The average model of the dc–dc boost converter can be deduced as follows:

{ .
x1 = 1

L (−(1− α)VS + x2)
.
x2 = 1

CP
(IPV − x1)

(7)

where x1 represents the average inductor current and x2 denotes the average PV voltage.
The state observer is designed based on the PV system module in order to estimate the state of

the inductor current, which enables the application of the proposed BS-SMC MPPT. The estimated
state vector x̂ = [IL, VPV ]

T is obtained by the state observer, in which the dynamics of the averaged
state-space model should behave similarly to those of the real model.

The observer error between the real and the estimated states is defined as x̃ = x − x̂ [21,22,28].
The proposed HGO can be written as:

⎧⎪⎨⎪⎩
.
x̂ = Ax̂ + Bx̂u + M(y− ŷ)
ŷ = Dx̂

(8)

where
.
x̂ =
[ .
ÎL,

.
V̂PV

]T
, ŷ = VPV and M = [m1, m2]

T denote an observer gain matrix chosen through

analysing the stability of the proposed closed-loop system [38,39].
It can be noted that the HGO dynamics associated with the PV system are as follows:⎧⎪⎪⎨⎪⎪⎩

.
x̂1 = −VS

L + x̂2
L +

VS
L α+ m1(y− ŷ)

.
x̂2 = IPV

CP
− x̂1

CP
+ m2(y− ŷ)

(9)

The voltage and current control errors between the reference and the estimated values are
represented by defining the dynamic errors as x̃ = x− x̂:⎧⎪⎪⎨⎪⎪⎩

.
x̃1 = x̃2

L −m1(y− ŷ)
.
x̃2 = − x̃1

L −m2(y− ŷ)
(10)

It can be observed from Equation (10) that the estimation error can be given in the following form:

.
x̃ = (A−MD)x̃ (11)

If (A−MD) is a Hurwitz matrix, we can guarantee the convergence of asymptotic errors;
consequently, Lim

t→∞x̃(t) = 0.

The gains of the HGO can be selected as below:⎧⎪⎪⎨⎪⎪⎩ m1 = k1
ε

m2 = k2
ε

(12)

where k1 � k2 � 1 the constants k1, k2 and ε are definite positive.

3.3. Backstepping Sliding Mode Controller Design

The suggested MPPT controller is designed for the target that the voltage of the VPV panel follows
its reference value corresponding to the voltage at MPP of the PV panel [40]. This purpose is achieved
by acting on the duty cycle α of the boost type dc–dc convertor.

Firstly, the voltage tracking error between VPV and VPV_REF is defined by:

e1 = VPV −VPV_REF (13)
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The derivative with regard to the time of e1 is given by:

.
e1 =

.
VPV −

.
VPV_REF =

1
CP

(IP − IL) −
.

VPV_REF (14)

Considering the first Lyapunov candidate function as follows:

V1 =
1
2

e2
1 (15)

Time derivative of V1 is given by:

.
V1 = e1

.
e1 = e1

( 1
CP

(IP − IL) −
.

VPV_REF

)
(16)

In the case that
.

V1 is negative, we have:

1
CP

(IP − IL) −
.

VPV_REF = −Ke1 (17)

IL_REF = CP

(
Ke1 +

IP

CP
− .

VPV_REF

)
(18)

where K is a constant positive definite.
The second Lyapunov function is selected as follows:

V2 =
1
2

e2
1 +

1
2

s2 (19)

where S is the sliding surface given by:

s = λ1e2 + λ2

∫
e2 (20)

e2 = IL − IL_REF (21)

Consider the candidate Lyapunov function positive definite. The derivative with respect to time
of the Lyapunov function is obtained through the following equation:

.
V2 =

.
e1e1 + s

.
s

= −Ke2
1 + s

(
λ1

.
e2 + λ2e2

) (22)

where
.
s is given as follows:

.
s = λ1

.
e2 + λ2e2 =

λ1

L
(−(1− α)VS + VPV) − λ1

.
IL_REF + λ2e2 (23)

We consider the dynamics of the sliding surface as follows [27]:

.
s = q0s− q1sign(s) (24)

where q0 and q1 are positive constants.
The expression for the control input deduced from Equations (23) and (24) by considering s =

.
s = 0,

can be determined as:

α =

L
λ1

(
−q0 − q1sign(s) + λ1CP

(
K

.
e1 +

.
IP
CP
− ..

VPV_REF

)
− λ2e2

)
−VPV

VS
+ 1 (25)
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3.4. Stability Analysis

To prove the stability of e1 and e2, we have resorted to the Barbalat’s Lemma.

Barbalat’s Lemma: If the differentiable function V(t) has a finite limit as t→∞ and if
.

V(t) is uniformly
continuous (or

..
V(t) is bounded), then we have

.
V(t)→ 0 as t→∞ .

By exploiting Equations (19), (22) and (24), the following equation can be obtained:

.
V2 =

.
V1 + s

.
s = e1

.
e1 + s

.
s

= −Ke2
1 − s(q0s + q1sign(s))

≤ −Ke2
1 − q0 − q1|s|

(26)

In order to make
.

V2 < 0, the constants K, q0 and q1 should be positive.

4. Simulation Results

This section is dedicated to the simulation results of the BS-SMC scheme applied to the boost
dc–dc converter for the PV storage system as exhibited in Figure 2. To demonstrate the superiority
of the proposed BS-SMC, a comparison simulation with a conventional PI controller has been
established under a MATLAB/Simulink package with the SimPower Toolbox. In order to point out the
strengths and shortcomings of every controller, the two procedures are performed under similar tests
conditions. The simulations were done with the sampling time of 100 μs for the global PV model. A
monocrystalline Solo Line LX-100M model PV generator is used in this work with a peak of power of
100 W under standard test conditions (STC), such as a fixed value of solar radiation (E = 1 kW/m2) and
a fixed temperature (T = 25 ◦C). Table 1 shows the electrical parameters of the single PV, whereas the
specifications of the controller parameters and the dc–dc boost converter are summarized in Table 2.

Table 2. Simulation parameters.

Parameter Name Value

CP Input capacitor 2200 μF
L Inductor 5 mH

CS Output capacitor 4700 μF
fs MOSFET switching frequency 25 kHz
q0 sliding surface 10
q1 sliding surface 1
m1 Gain of observer 60
m2 Gain of observer 20

The storage device is a lead–acid battery of the PowerSafe TS range. It can reach 5200 cycles to
a depth of discharge of 25%. The main characteristics of fully charged elements at a temperature of
25 ◦C are shown in Table 3.

Table 3. Lead acid battery parameters.

Parameter Name Value

C Nominal capacity 390 Ah
RBat Internal resistor 0.64*12(7.68 mΩ)
EBat Nominal voltage 12*2 V(24 V)

The simulation results are evaluated according to three cases. The first case study is to evaluate
the system performance of the proposed control during the system operation in STC. The second
case consists of disrupting the climatic condition profile by comparing its performance with the PI
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controller technique. The third one is devoted to examining the function of the system in varying
climatic conditions by introducing the observer studied.

Case 1: Standard operating conditions.
The first simulation section focused on the tracking performance under constant climatic conditions

(E = 1 kW/m2 and T = 25 ◦C). The results of the voltage evolution and active power curves’ response
for the PV system are obtained by the proposed BS-SMC, as shown in Figure 8a, b. It can be seen from
Figure 8b that the voltage follows its reference imposed by the adaptive P&O-FL MPPT technique with
a fast setting time (around 27 ms), less dynamic error and any overshoot. It can be noted from Figure 8a
that the MPPT based on BS-SMC applied in the boost dc–dc converter operates the power of the PV
generator to MPP (100W). Furthermore, Figure 9a illustrates the performances of the inductor current
with the presented control technique. Obviously, the proposed control using BS-SMC for the boost
dc–dc converter stabilizes the PV output current to the optimal value with faster dynamic response,
less overshoot and high precision and stability. Figure 10a,b show the convergence of the dynamic
error and the sliding surface signal to zero. It can be concluded from this figure that the designed
BS-SMC presents a good transition response, limits the chattering phenomenon and provides a good
tracking performance.

(a) (b) 

Figure 8. PV array output power and voltage under standard condition: (a) the PV power curve; (b)
tracking of VPV with respect to VPV_REF.

(a) (b) 

Figure 9. Maximum Power Point Tracking in standard operating conditions: (a) PV array output
current; (b) duty cycle α(t).
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(a) (b) 

Figure 10. MPPT performance: (a) evolution of error e1; (b) sliding surface s.

Case 2: Variation of solar irradiation and temperature.
The second simulation section is devoted to the control of the boost dc–dc converter using the

proposed MPPT approach in case of changes in weather conditions, as shown in Figure 11a,b.

(a) (b) 

Figure 11. Varying level of weather conditions: (a) solar irradiance profile; (b) temperature profile.

The results of the evolution of voltage, current and power curves’ responses are obtained by
using a PI controller which has been compared with the proposed BS-SMC in Figures 12–14. It
can be observed that the classical PI controller is dictated by the variation of solar irradiance and
external disturbances, while the system controlled by the BS-SMC is more robust to variation in
weather conditions. The proposed control ensures a better dynamic response and robustness under
the solar irradiance changes during this test. The power, voltage and current results of the PV panel
are presented in Figure 12a,b and Figure 13a, respectively.

According to Figure 12b, the P&O-FLC successfully generates the tracking of the MPP which is
successfully tracked through the BS-SMC controller. Furthermore, in Figure 12a we can see that in
specific situations when the irradiation rose from 0 to 600 W/m2, the designed algorithm worked well
with low solar irradiation and resulted in negligent power losses. It can also be observed that BS-SMC
has a fast dynamic response with very low oscillation and stability.
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(a) (b) 

Figure 12. Comparison of tracking MPP of BS-SMC and PI controller under varying solar irradiance
and temperature. (a) PV array output power; (b) tracking of VPV with respect to VPV_REF.

(a) (b) 

Figure 13. MPPT tracking under varying weather conditions: (a) PV array output current; (b) duty
cycle α(t).

(a) (b) 

Figure 14. MPPT performance under a step change of the climatic conditions: (a) dynamic evolution of
error e1; (b) dynamic evolution of sliding surface s.
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Figure 12a shows that the power increases under a different level of the solar irradiance and
temperature, due to increases in the current and voltage of the panel. On the other hand, in order to
confirm the performance of the BS-SMC approach, Figures 12–14 present a comparative study between
the proposed controller and the conventional PI controller [9,17,40]. This comparison is according to
weather condition as presented in Table 4.

Table 4. Performance comparison of the BS-SMC and PI controller.

Controller Power Overshoot (%) Power Ripple (W) Response Time (ms) Power Extraction Efficiency (%)

PI 1.68 6.1575 47.775 98
BS-SMC 1.6 2.8825 10.95 99.4

During this experiment, it is noteworthy that the system follows the reference under 10.95 ms faster
with a steady state error to zero using the BS-SMC where there are strong oscillations in the PI controller.
In addition, the point at maximum power is reached with almost negligible ripple in less than 2.8825 W.
Moreover, the boost dc–dc converter successfully extracts maximum power with more than 99.4% efficiency.
Also, when the solar irradiance and temperature are kept at 1 kW/m2 and 25 ◦C, successively, the average
output power is equal to 100.1 W. Compared with the PI controller, the power increases by about 2% of the
value obtained by the proposed controller. Moreover, these comparisons confirm the relevance and benefit
of the presented control strategies in terms of the voltage monitoring of the PV model at the MPP.

A zoomed view of the oscillations around the MPP using the PI controller is presented in Figure 12b.
It is clear from this figure that the ripples output voltage of the proposed controller is much lower than
that of the PI controller.

According to climatic condition variation, the proposed BS-SMC controller proves its robustness,
which reduces the chatter phenomenon, as shown in Figure 14b. In fact, the strategy proposed by
BS-SMC offers better dynamic performance than that used by the conventional PI control method.

Case 3: Application of HGO under solar irradiation and temperature variation.
In this case, the performance of the presented BS-SMC at tracking the MPP without the use of

inductor current sensors is evaluated as a function of solar irradiance and temperature variations.
The profiles of the climatic conditions in this simulations study are presented in Figure 11a,b.
Figures 15–17 show the dynamic performance of the tracker at varying irradiance and temperature.

It is clearly shown from Figure 15a that the designed sensor-less MPPT does not exhibit much oscillation
around the MPP.

(a) (b) 

Figure 15. PV array output power and voltage under varying solar irradiance and temperature without
sensor inductor current: (a) PV array output power; (b) tracking of VPV with respect to VPV_REF.
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Figure 16. Inductor current without sensors.

(a) (b) 

Figure 17. MPPT tracking under conditions climatic variations without sensor inductor current: (a) PV
array output current; (b) duty cycle α(t).

For more details, the key figures obtained for the BS-SMC controller without inductor current
sensors are shown in Table 5.

Table 5. Performance of the BS-SMC without sensor inductor current.

Algorithm Power Overshoot (%) Power Ripple (W) Response Time (ms) Power Extraction Efficiency (%)

BS-SMC 3.44 2.745 9.75 99.79

Figure 16 shows the error between the inductor current and it is estimated to be almost equal zero.
Figure 15b shows that when the estimation state starts in the observer reel state, there is

an instantaneous estimation error of the voltage which is rapidly reduced to zero during the
estimation process.

In Figure 16, it can be noted that the HGO has better performance by comparing the measurements
of the inductor current with the estimation. The choice of gains m1 and m2 confirm the correct operation
of the observers as the estimated current correctly tracks the real state in less than 0.036 s, under an
initial solar irradiance and temperature of 600 W/m2 and 25 ◦C, respectively.

In Figure 15b, we can see that the transient response time is very short when a sudden change in
solar irradiance and temperature occur at t = 9.75 ms, revealing the best dynamic performance of the
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BS-SMC approach. It can be noticed that, at the moment of the step change of the weather conditions,
the voltage of the PV generator can be stabilized to its reference value. In addition, the BS-SMC
strategy provides a stable power proportional to the irradiation and temperature levels, at a response
time of the order of 1 ms when the solar irradiation E rises from 800 W/m2 to 1000 W/m2 with the
temperature maintained at 25 ◦C. Figure 15a presents the power of the PV module. From this figure,
some fluctuations are recorded which are ascribed to the dynamics of the observer.

As seen in Figure 15a,b, the MPP is successfully tracked and the PV voltage is stabilized at the
reference value. Hence, it is obvious, by examining Figures 15b and 16, that both the PV voltage and
the inductor current have smaller overshoots. For example, when the solar irradiance and temperature
are kept at 1 kW/m2 and 25 ◦C, respectively, in this case, m1 = 60 and m2 = 20 the estimated inductor
current and the PV voltage have an overshoot of approximately 0.03 A and 0.9 V, respectively. It can
be seen that the proposed state observer-based control algorithm is able to force the PV generator to
operate at MPP using only three sensors to measure voltage and current.

In the sliding surface mode, a phenomenon known as chattering can take place. It is manifested
by high-frequency switching around the sliding surface. These commutations can excite unwanted
dynamics that may destabilize damage or even destroy the studied system.

This chattering phenomenon is limited by the introduced BS-SMC controller, as shown in Figure 18
which demonstrates the efficiency of this approach.

(a) (b) 

Figure 18. MPPT performance under a step change in the solar irradiance and temperature without
sensor inductor current: (a) dynamic evolution of error e1; (b) dynamic evolution of sliding surface s.

5. Experimental Results and Discussion

An experimental model has been presented and analyzed on a more sophisticated test bench
for a standalone PV system in the CRTEn research laboratory located in the technology park of Borj
Cedrya Tunisia at latitude 36.717◦ and longitude 10.427◦. The prototype built consists of a BP Solar
LX-100M photovoltaic panel, a dc–dc boost converter and a lead acid type battery load, as illustrated
in Figure 19. The PV storage system is controlled by a Control Engineering DS 1104 board through a
Matlab/Simulink environment.

The block diagram of the proposed BS-SMC approach has been implemented to generate the
pulse with modulation (PWM) signal for acting on the MOSFET gate of the dc–dc boost converter, as
seen in Figure 20. The parameters of the PV storage system are presented in Table 2 and the switching
frequency of the boost converter is chosen to be 25 kHz. The sampling time of the system is chosen
with the performance of controller board at TS = 10−4 s. The BP Solar LX-100M PV panel with an angle
of 37◦ has the parameters presented in Table 1.
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Figure 19. Experimental test bench.

 
Figure 20. Block diagram implementation of the proposed BS-SMC MPPT.

The data acquisition of the input voltage and the input current for the test bench comes from LEM
sensors LV25-P and LA25-P, respectively. These serve as inputs to the interface of the dSPACE 1104
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while the PWM output signal generated from the DS 1104 varies between 0 and 5 V. To amplify the
output voltage to a voltage sufficient to the MOSFET (10V), an amplifier circuit is constructed. When
the pulses are amplified, they go through an isolated circuit to separate the supply circuit and the
control circuit. Control Desk software is used to monitor the displacement of the MPP on the P–V
characteristics under changing climatic conditions. To reduce unwanted high-frequency noise from
current and voltage measurements during acquisition, low-pass filters have been designed. Given
the absence of a PV emulator, the results are presented based on real-time temperature and solar
irradiation measurement data, as shown in Figures 21 and 22.

(a) (b) 

Figure 21. Experimental results of climatic conditions variation: (a) experimental solar irradiance
profile; (b) experimental temperature profile.

(a) (b) 

Figure 22. Experimental PV array output power and voltage under varying solar irradiance and
temperature without sensor inductor current: (a) PV array output power; (b) tracking of VPV with
respect to VPV_REF.

The block diagram implantation of the proposed approach given in Figure 2 is used to confirm
the real time simulation. It can be seen that the proposed MPPT has been implemented using the
DS1104 platform.
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To evaluate and verify the efficiency of the proposed MPPT method based on the BS-SMC controller,
experimental results were obtained in the Dspace 1104 card. Figures 22–24 show the experimental
results of the voltage, current and power of the PV module and inductor current by using the proposed
MPPT approach.

Figure 23. Experimental results of the output PV current.

Figure 24. Experimental results of the inductor current estimation.

During the interval time t = [15, 17] s, the maximum irradiance and temperature level are
E = 934.1W/m2 and T = 30.18 ◦C, respectively. In this condition, the optimal current and voltage of
the PV module are about 3.92 A and 18.24 V, respectively. Then, the maximum PV power is around
77.51 W. Table 6 shows clearly that the presented scheme is characterized by negligible overshoot and
permanent low voltage ripples comparing with the results obtained in [36].

Table 6. Experiment performance of the BS-SMC.

Power Overshoot Power Ripple

PV power 1.5% 2.2 W
PV voltage 0.7% 0.32 V
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It can be noted from these results that the MPP is always achieved. The validation of the robustness
of the proposed BS-SMC in the presence of temperature and solar irradiation variation is guaranteed.
From the experimental measurements presented in Figures 22 and 23, we can see small oscillations
around the average value of the PV output voltage, power and current, respectively. The characteristics
P_V and I_V curves of the PV module under weather conditions’ variation are shown in Figure 25.
This confirms that the MPP voltage is only affected by fast-varying solar irradiance.

(a) (b) 

Figure 25. PV array output characteristic curves: (a) PPV −VPV characteristic curves of the PV module;
(b) IPV −VPV characteristic curves of the PV module.

According to the experimental results, it is concluded that, under varying irradiation and
temperature conditions, the system using the proposed approach is able to operate MPP accurately,
and offers better stability and insignificant steady state error. Interestingly, the observed inductor
current has some minimal error between the experimental results and the estimated state by the HGO,
as illustrated in Figure 24.

6. Conclusions

In this paper, we have presented and analyzed a robust BS-SMC controller to track the MPP of
a stand-alone PV system. The proposed approach is performed to regulate the PV module output
voltage to its reference trajectory obtained by the adaptive P&O-FLC technique. The maximum PV
output power is achieved under changing climatic conditions. The Lyapunov stability analysis is used
to verify the global asymptotic stability of the PV system. The simulation and experimental results
under changing climatic conditions show the performance and the robustness of the MPPT controller.
In addition, the presented technique performs better when compared with the classical PI controller.
In fact, the simulation and experimental results confirm the efficiency of the HGO. The BS-SMC
controller is simple to design and easy to implement in a real-time application. The major contributions
of our study are as follows: reducing the required sensor by using HGO, reducing the chattering
phenomenon by using the BS-SMC approach, the successful implementation of the BS-SMC controller
in a dSPACE1104 card and the successful application of the dSPACE-based controller to control the
PV storage application with a robust control performance. Future work can focus on the application
of the proposed BS-SMC to other dc–dc converters with battery loads such as buck converters; and
discretization of the proposed MPPT controller can also be investigated. Work is currently in progress
and the results will be reported in due course.
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Abstract: The basic and adaptive maximum power point tracking algorithms have been studied for
distributed photovoltaic systems to maximize the energy production of a photovoltaic (PV) module.
However, the basic maximum power point tracking algorithms using a fixed step size, such as
perturb and observe and incremental conductance, suffer from a trade-off between tracking accuracy
and tracking speed. Although the adaptive maximum power point tracking algorithms using a
variable step size improve the maximum power point tracking efficiency and dynamic response of the
basic algorithms, these algorithms still have the oscillations at the maximum power point, because
the variable step size is sensitive to external factors. Therefore, this paper proposes an enhanced
maximum power point tracking algorithm that can have fast dynamic response, low oscillations,
and high maximum power point tracking efficiency. To achieve these advantages, the proposed
maximum power point tracking algorithm uses two methods that can apply the optimal step size
to each operating range. In the operating range near the maximum power point, a small fixed step
size is used to minimize the oscillations at the maximum power point. In contrast, in the operating
range far from the maximum power point, a variable step size proportional to the slope of the
power-voltage curve of PV module is used to achieve fast tracking speed under dynamic weather
conditions. As a result, the proposed algorithm can achieve higher maximum power point tracking
efficiency, faster dynamic response, and lower oscillations than the basic and adaptive algorithms.
The theoretical analysis and performance of the proposed algorithm were verified by experimental
results. In addition, the comparative experimental results of the proposed algorithm with the other
maximum power point tracking algorithms show the superiority of the proposed algorithm.

Keywords: PV system; P&O; INC; adaptive; DC–DC converter; DMPPT

1. Introduction

The renewable energy resources including wind power, biomass, solar heating, solar photovoltaic
(PV), hydroelectric energy, and fuel cells have been widely used to reduce global warming effects
caused by greenhouse gas emission [1–4]. Among these energy resources, solar PV has attracted
attention as a promising renewable energy source due to the following reasons:

1. Diverse applications: PV system can be easily applied to microgrid, households, and buildings [5–7].
2. Low maintenance costs: Only PV module, inverter, and cable are required for maintenance and

the maintenance period is long [8–10].
3. Technology development: Various methods were constantly introduced to improve the technology

in the solar power industry [8–10].

PV systems consist of PV modules for converting sunlight into direct current (DC) electricity,
as well as PV inverters for converting DC into alternating current (AC). Based on the connection

Energies 2019, 12, 3576; doi:10.3390/en12183576 www.mdpi.com/journal/energies77
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method between the PV module and the PV inverter, the PV inverter can be categorized as a central
inverter or as a module-level power electronic (MLPE). In the past, central inverters (Figure 1a)
connected with series-connected PV modules were widely used because they have the advantages of
simple structure and low cost [11]. However, central inverters suffered from significant performance
degradation under partial shading due to multiple maximum power points and mismatches in PV
modules. To solve the partial shading problem, MLPEs (Figure 1b), which include a DC-optimizer
and a micro-inverter, were introduced [12–16]. MLPEs are connected to one PV module and harvest
optimum power by performing module-level maximum power point tracking (MPPT); this is also
known as distributed MPPT (DMPPT) [17–19]. Thereby, MLPEs solve the partial shading problem and
improve the performance of an entire PV system.

 
Figure 1. Block diagrams of (a) the central inverter and (b) the module-level power electronics.

Among many MPPT algorithms, hill-climbing, perturb and observe (P&O), and incremental
conductance (INC) have been widely used due to their simplicity and ease of implementation [20–24].

Hill-climbing and P&O algorithms operate on the same fundamental principle that the variation
(ΔVPV) of PV voltage (VPV) and the variation (ΔPPV) of PV power (PPV) become zero at the maximum
power point (MPP). The difference between the P&O and hill-climbing algorithms is that P&O uses a
PI controller. Operations in both hill-climbing and P&O algorithms can be classified into five modes
and are described in Figure 2 and Table 1 [20–23]. The INC algorithm tracks the MPP based on the
principle that the variation (ΔIPV) of PV current (IPV) becomes zero and the slope of −ΔIPV/ΔVPV is the
same as IPV/VPV at the MPP. The INC algorithm also has five operating modes, and its principle of
operation is described in Figure 3 and Table 2 [24]. However, these basic MPPT algorithms have a
trade-off problem between tracking accuracy and speed because fixed step size is used for perturbation.
If small fixed step size is used, tracking accuracy increases, but speed is slower. In this case, the basic
MPPT algorithms can fail to track the MPP under dynamic weather conditions. At large fixed step size,
tracking speed is faster, but tracking accuracy decreases, which causes a low MPPT efficiency.

78



Energies 2019, 12, 3576

Figure 2. Principle of operation for the hill-climbing and perturb and observe (P&O) algorithms.

Table 1. Methodology of the hill-climbing and P&O algorithms.

Conditions Actions

(i) ΔPPV < 0 and ΔVPV < 0 Duty decrease
(ii) ΔPPV > 0 and ΔVPV > 0 Duty decrease
(iii) ΔPPV > 0 and ΔVPV < 0 Duty increase
(iv) ΔPPV < 0 and ΔVPV > 0 Duty increase
(v) ΔPPV = 0 and ΔVPV = 0 No action

 
Figure 3. Principle of operation for the incremental conductance (INC) algorithm.

Table 2. Methodology of the INC algorithm.

Conditions Actions

(i) –ΔIPV/ΔVPV < IPV/VPV and ΔIPV > 0 Duty decrease
(ii) –ΔIPV/ΔVPV < IPV/VPV and ΔIPV < 0 Duty decrease
(iii) –ΔIPV/ΔVPV > IPV/VPV and ΔIPV > 0 Duty increase
(iv) –ΔIPV/ΔVPV > IPV/VPV and ΔIPV < 0 Duty increase
(v) –ΔIPV/ΔVPV = IPV/VPV and ΔIPV = 0 No action

To solve these problems, adaptive hill-climbing, adaptive P&O, and adaptive INC algorithms
using variable step sizes were introduced [25–28]. In each adaptive MPPT algorithm, a variable step
size is automatically adjusted according to the slope formula consisting of the variations (ΔPPV and
ΔVPV) and variable step coefficients (a, N, and M); a·ΔPPV/ΔVPV in [25,26], N·ΔPPV/ΔVPV in [27], and
M·ΔPPV/ΔVPV in [28]. The variable step size becomes high far from the MPP and low near the MPP.
Therefore, the adaptive MPPT algorithms can achieve fast tracking speed in the operating range far
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from the MPP and small oscillations in the operating range near the MPP. However, these algorithms
still have oscillations at the MPP because the variables (ΔPPV and ΔVPV) in the slope formula are easily
affected by sensing and calculation errors, sensing noise, and ripples of VPV and IPV.

In [29–32], the MPPT algorithms with intelligent prediction were introduced. Some of the
algorithms used fuzzy logic to vary the step size [29–31]; the fuzzy logic method consists of fuzzification,
a fuzzy rule-based lookup table (Table 3), and defuzzification. First, the input variables (ΔIPV and
ΔPPV) are converted into fuzzy subsets such as negative big (NB), negative small (NS), zero (ZO),
positive small (PS), and positive big (PB) depending on ΔIPV and ΔPPV. Then, one fuzzy subset is
determined based on the rule-based lookup table and it provides a numeric step size. The MPPT
algorithm using fuzzy logic is effective in dealing with the nonlinear characteristics of the PV module
because the fuzzy logic divides the nonlinear system in the fuzzy subsets defined by the variables
(ΔIPV and ΔPPV) and controls the nonlinearity of system using the rule base for each area (See Table 3).
Therefore, it can track the MPP well under dynamic weather conditions. However, compared to other
MPPT algorithms such as adaptive P&O and INC algorithms, it requires a digital signal processor
(DSP) with higher specification and also makes the user’s design more difficult because of its higher
complexity of algorithm and execution process [27,31]. This is a disadvantage for commercialization.
The other MPPT algorithm of [32] changed the step size by using a PID controller tuned by genetic
algorithm. First, the genetic algorithm evaluates a number of solutions known as chromosomes using a
fitness function, and later, genetic operators (selection, crossover, and mutation) are applied until a stop
criterion is satisfied (Figure 4). Based on this principle of the genetic algorithm, the PID coefficients
(Kp, Ki, and Kd) are determined to vary the step size. This MPPT algorithm also has good performance
under dynamic weather conditions, but it requires high computational capability and sophisticated
controllers due to its complexity.

Table 3. Rule-based lookup table based on the fuzzy logic.

ΔIPV

ΔPPV

NB NS ZO PS PB

NB NB NS NS ZO ZO
NS NS ZO ZO ZO PS
ZO ZO ZO ZO PS PS
PS ZO PS PS PS PB
PB PS PS PB PB PB

 
Figure 4. Flow chart of the genetic algorithm.
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In this paper, an advanced MPPT algorithm for DMPPT in the MLPEs is proposed, which improves
the tracking speed and accuracy under both steady and dynamic weather conditions. Similar to the
adaptive MPPT algorithms, the proposed MPPT algorithm automatically changes the variable step
size according to the slope of ΔPPV/ΔVPV in the operating range far from the MPP. However, in the
operating range near the MPP, it accurately tracks the MPP using a small fixed step size. As a result,
the proposed MPPT algorithm achieves small oscillations at the MPP and a fast dynamic response.
In addition, compared with the MPPT algorithms with intelligent control such as fuzzy logic and PID,
the proposed MPPT algorithm can reduce the computational load of DSP because it is based on simple
P&O method. Therefore, it allows manufacturers to use cheap DSPs for the PV system.

The distributed PV system and proposed MPPT algorithm are described in Section 2, the
experimental results and discussion are presented in Section 3, and a conclusion is given in Section 4.

2. Distributed PV System and Proposed MPPT Algorithm

2.1. Distributed PV System

A distributed PV system with the MPPT algorithm is shown in Figure 5; the system consists of
one PV module and one MLPE. Due to the fact that the PV module converts sunlight into low DC
voltage, the MLPE requires a high voltage gain to convert low DC voltage into high AC voltage with
grid frequency. The MPPT algorithm controls the duty ratio (D) of the MLPE to operate at the MPP of
the PV module. To perform the MPPT algorithm, the voltage (VPV) and current (IPV) of the PV module
are used as input signals.

 
Figure 5. Diagram of the distributed photovoltaic (PV) system with maximum power point tracking
(MPPT) algorithm.

2.1.1. PV Module

Based on the references [33,34], the equivalent circuit of the PV module can be derived as shown
in Figure 6. The PV module consists of several PV cells and two parasitic resistances (RS, RP), where
each PV cell has a combined structure of an ideal current source (IP) and a diode (DP). The current
(IPV) of the PV module can be derived as

IPV = IP − ID − IRp (1)

where IP = IP1 + IP2 · · · + IPn and ID = ID1 + ID2 · · · + IDn. Assuming all PV cells are the same, IP = nIP1

and ID = nID1 are obtained. Using the Shockley diode equation, ID is given by

ID = nI0
[
e(VPV+RSIPV)/(anSVt) − 1

]
(2)

where n is the number of PV cells connected in parallel, ns is the number of PV cells connected in series,
I0 is the saturation current of the diode, a is the diode ideality constant, and Vt = kT/q is the thermal
voltage of the diode with q = 1.602 × 10-19 C, k = 1.381 × 10−23 J/K, and T is an ambient temperature.
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Figure 6. Equivalent circuit of the PV module.

As the voltage across RP is given by VPV + RSIPV, the current of RP is obtained as

IRp =
VPV + RSIPV

RP
. (3)

Then, inserting (2) and (3) into (1) results in

IPV = IP − nI0
[
e(VPV+RSIPV)/(aVt) − 1

]
− VPV + RSIPV

RP
. (4)

Using (4), the characteristic curves of the PV module are drawn as shown in Figure 7. Figure 7a
shows the current–voltage characteristic curve of the PV module and Figure 7b shows the power–voltage
characteristic curve. These curves have notable variables: short-circuit current (ISC), open-circuit
voltage (VOC), maximum power point (MPP), voltage at MPP (VMPP), current at MPP (IMPP), and
power at MPP (PMPP).

 
Figure 7. (a) Current–voltage characteristic curve and (b) power–voltage characteristic curve of the
PV module.

The current of the PV cell depends on the solar irradiance and the temperature as follows;

IP = n[IP,STC + KI(T − Tn)]
G
Gn

(5)

where IP,STC is a light-generated current at the standard test condition (STC, 25◦C and 1000 W/m2),
KI is a temperature coefficient, Tn is a nominal temperature (25◦C), G is an irradiation level of the PV
module, and Gn is a nominal irradiance level (1000 W/m2). Using (5), Equation (4) can be represented as

IPV = n[IP,STC + KI(T − Tn)]
G
Gn
− nI0

[
e(VPV+RSIPV)/(aVt) − 1

]
− VPV + RSIPV

RP
. (6)

Equation (6) shows that the characteristic curve of the PV module can be changed according to
the solar irradiance level and the temperature.

2.1.2. Module-Level Power Electronics (MLPE)

As shown in Figure 8, the MLPE is classified into a micro-inverter and a DC-optimizer.
The micro-inverter consists of a DC–DC converter with high voltage gain and a DC–AC inverter, and
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the DC-optimizer has only one DC–DC converter with high voltage gain. Therefore, the DC-optimizer
can cost less than the micro-inverter, but it needs a DC–AC inverter with high power capability. In the
micro-inverter and the DC-optimizer, one MPPT algorithm is applied to each DC–DC converter to
optimize each PV module. Therefore, the MPPT algorithms used in the MLPEs are called a module-level
MPPT, or DMPPT.

 
Figure 8. Diagrams of (a) the micro-inverter and (b) the direct current (DC)-optimizer.

2.2. Prospoed MPPT Algorithm

2.2.1. Principle of the Algorithm

The proposed MPPT algorithm uses two methods that can apply the optimal step size to each
operating range. In the operating range far from the MPP (non-MPP region), a variable step size
(=k1·S·Vstep) is automatically adjusted according to the slope of ΔPPV/ΔVPV for fast dynamic response.
Here, k1 is a constant coefficient for variable step size, S is a slope coefficient calculated as |ΔPPV/ΔVPV|,
and Vstep is a fixed step size. In the operating range near the MPP (MPP region), a small fixed step size
(=k2·Vstep) is used to minimize the oscillations at the MPP, where k2 is a constant coefficient for small
fixed step size.

As shown in Figure 9, the proposed MPPT algorithm has two operating regions including the
MPP (PPV > β·PMPP) and non-MPP (PPV < β·PMPP) regions, where β is an MPP region coefficient.
The operating point starts at VPV = VOC and move with fast tracking speed toward the MPP
(VMPP, PMPP). The direction of the operating point is determined using ΔPPV and ΔVPV, where Δ
means the difference between the present and previous values. In addition, the present PPV is compared
with PMPP to search the MPP.

Figure 9. Principle of operation for the proposed MPPT algorithm.
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2.2.2. Flow Chart

The flow chart of the proposed MPPT algorithm is shown in Figure 10, and it is described
as follows:

1. The present VPV and IPV of the PV module are used as the input signals for the proposed MPPT
algorithm. The variable “Flag_start” is preset to 1 for fast tracking speed at the starting point
of VPV = VOC, and the variable “Flag_reset” is preset to 1 for setting the PMPP and VMPP to the
present PPV and VPV, where PPV = VPV·IPV.

2. If Flag_start is 1, it is determined that the operating point is located at the starting point of
VPV = VOC. Therefore, the reference variable (Vref) is initially set to 1/VPV (=1/VOC) and the
operating point moves rapidly toward the MPP. After that, Flag_start is set to 0.

3. In this process, PPV is calculated as VPV·IPV, ΔPPV and ΔVPV are calculated using present
(PPV and VPV) and previous (PPV_b and VPV_b) values, and the slope coefficient (S) is calculated
as |ΔPPV/ΔVPV|.

4. If Flag_reset is 1, PMPP and VMPP are set to the present PPV and VPV, and then Flag_reset is set
to 0.

5. If the present PPV is higher than PMPP, it is determined that the MPP has not been found yet.
Therefore, the operating point is forced to keep moving toward the MPP, and PMPP and VMPP are
reset to the present PPV and VPV. To quickly find the MPP, the variable step size (=k1·S·Vstep) is
used in this process.

6. If the operating point is located in the MPP region, the small fixed step size (=k2·Vstep) is used to
track the MPP accurately.

7. If PPV is lower than the boundary value (β·PMPP) between the MPP and non-MPP regions, it is
determined that the operating point is located in non-MPP region. This process is usually
performed under dynamic weather conditions because the MPP changes under these conditions.
Therefore, Flag_reset is set to 1 to find a new MPP, and the variable step size (=k1·S·Vstep) is
automatically adjusted according to the slope of ΔPPV/ΔVPV for a fast dynamic response.

8. Vref is limited by the maximum and minimum values (Vref,max and Vref,min) of Vref to prevent
malfunction of the DC–DC converter in the MLPEs.

9. Through the above processes, a new Vref is obtained. Vref is compared with the carrier signal
(Vcarrier) in the digital signal processor (DSP), and a new duty ratio (D) is generated to control the
DC–DC converter in the MLPE (Figure 11). In addition, the previous values (PPV_b and VPV_b)
are obtained at this time.

The above processes from (1) to (9) are repeated to operate the DC–DC converter at the MPP of
the PV module.
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Figure 10. Flow chart of the proposed MPPT algorithm.

Vcarrier

Vref

Vref

Vcarrier
VcarrierVref

VPV > VMPPVPV < VMPP

D D

Figure 11. The process for generating a duty ratio (D) in the digital signal processor (DSP).

2.2.3. Design Considerations

(1) aximum (Vref,max) and minimum (Vref,min) of Vref

The DC–DC converter in the MLPEs has an input voltage range of VPV,min ≤ VPV ≤ VPV,max due to
its limited voltage gain. Since Vref is calculated as 1/VPV, Vref,max and Vref,min can be defined as 1/VPV,min
and 1/VPV,max, respectively.

(2) Coefficient (k1) for variable step size and coefficient (k2) for small fixed step size
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The proposed MPPT algorithm uses a variable step size (=k1·S·Vstep) for fast dynamic response
in operating range far from the MPP and a small fixed step size (=k2·Vstep) for small oscillations in
operating range near the MPP, where k1, k2, and Vstep have constant values. Due to the fact that the
slope coefficient (S) is calculated as |ΔPPV/ΔVPV|, the variation of the reference variable (Vref) is given by

∣∣∣ΔVre f
∣∣∣ = k1

∣∣∣∣∣ΔPPV

ΔVPV

∣∣∣∣∣Vstep (7)

where Δ means a difference between the present and previous values. The operating point of the
proposed MPPT algorithm reaches the MPP (VPV = VMPP, PPV = PMPP) after starting at the point
(VPV = VOC, PPV = 0), where VOC is an open-circuit voltage of the PV module. Considering only the
starting point and the MPP at the STC (25 ◦C and 1000 W/m2), the above equation can be represented
using Vref = 1/VPV as

1
VMPP,STC

− 1
VOC

= k1
PMPP,STC

VOC −VMPP,STC
Vstep (8)

where VMPP,STC and PMPP,STC are the voltage and power at the MPP under the STC (25 ◦C and
1000 W/m2).

Therefore, k1 can be obtained as

k1 =
(VOC −VMPP,STC)

2

VOCVMPP,STCVstepPMPP,STC
. (9)

The small step coefficient (k2) can be determined by considering the resolution of VPV in the
operating range near the MPP. If accuracy of the third decimal point of VPV is required in operating
range near the MPP, |ΔVref| = k2·Vstep can be represented using Vref = 1/VPV as

1
VMPP,STC

− 1
VMPP,STC + 0.001

= k2Vstep. (10)

Therefore, k2 is calculated as

k2 =
0.001

VMPP,STC(VMPP,STC + 0.001)Vstep
. (11)

(3) MPP region coefficient (β)

β·PMPP is a boundary value between the MPP and non-MPP regions. For fast dynamic response,
β should be close to one; however, if it is too close to one, oscillations can occur at the boundary of
PPV = β·PMPP. Therefore, β = 0.9~0.95 is recommended.

(4) Fixed step size (Vstep)

To optimize the proposed MPPT algorithm in a given DC–DC converter topology and operating
conditions, Vstep is determined after several experiments. Therefore, Vstep has a user-defined value,
and Vstep = 10 was used for the experiments in this paper.

3. Experimental Results and Discussion

3.1. Experimental Results

Figure 12 shows the equipment settings to evaluate the performances of the MPPT algorithms.
The output cable of the PV simulator (ETS60 from AMETEK Inc.) is connected to the input of the
DC–DC converter (boost half-bridge topology), and the LAN cable of the PV simulator is connected to
the notebook computer to set the characteristic curve (Figure 13) of the commercial 300-W PV module
(Q.PEAK-G4.1 300 from Hanwha Inc.). Here, according to the irradiance level (E) and the module
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temperature (T), the electrical characteristics of the PV module “Q.PEAK-G4.1 300” are listed in Table 4.
The output of the DC–DC converter is connected to the electronic load (DL1000H from NF Corp.) to
consume the energy, and the notebook computer is connected to the DSP (TMS320F28335 from Texas
Instruments Inc.) in the DC–DC converter by USB cable. The power meter (PW3336, from HIOKI Inc.)
is used to measure the voltage (VPV), current (IPV), and power (PPV) of the PV simulator. Based on the
sensed VPV and IPV, the DSP runs the MPPT algorithm and generates the gate signals (vgs1, vgs2) for
operating the DC–DC converter. To compare the dynamic and energy utilization performances of the
MPPT algorithms, four experiments were performed as follows.

Figure 12. (a) Photograph and (b) block diagram of the equipment settings for experiments to evaluate
the MPPT performance.

 
Figure 13. Electrical characteristic curve of a 300 W PV module “Q.PEAK-G4.1 300” under the standard
test conditions (STC) of irradiance level of 1000 W/m2 and module temperature of 25 ◦C.

Table 4. Electrical characteristics of the PV module “Q.PEAK-G4.1 300” at different irradiance levels (E)
and module temperatures (T).

Conditions
Open-Circuit
Voltage (VOC)

Short-Circuit
Current (ISC)

Voltage at
MPP (VMPP)

Current at
MPP (IMPP)

Power at
MPP (PMPP)

E = 1000 W/m2 and T = 25 ◦C 39.76 V 9.77 A 33.11 V 9.082 A 300.71 W

E = 100 W/m2 and T = 25 ◦C 35.78 V 1.086 A 29.8 V 1.009 A 30.07 W

E = 700 W/m2 and T = 15 ◦C 40.24 V 7.021 A 33.51 V 6.527 A 218.72 W

E = 700 W/m2 and T = 75 ◦C 33.66 V 6.502 A 28.04 V 6.044 A 169.47 W

First, the proposed MPPT algorithm and the conventional MPPT algorithms including a basic P&O
of [21], an adaptive P&O of [26], and an adaptive INC of [27] were tested at the STC of E = 1000 W/m2

and T = 25 ◦C. Figure 14 shows the measured VPV, IPV, and PPV waveforms of the PV module when
each MPPT algorithm is applied to a DC–DC converter. The basic P&O algorithm with a small fixed
step size tracked the maximum power point (MPP) slowly, but it had small oscillations after reaching
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the MPP (Figure 14a). When the fixed step size increased, the tracking speed of the basic P&O algorithm
increased as well, but the oscillations also increased (Figure 14b). To solve the problem of the fixed
step size, the adaptive P&O and adaptive INC algorithms used a variable step size proportional to
k1·ΔPPV/ΔVPV. However, these algorithms still had the oscillations at the MPP because the ΔPPV/ΔVPV
is easily affected by sensing and calculation errors, sensing noise, and the ripples of VPV and IPV
(Figure 14c–f). If the coefficient k1 is smaller, the oscillations at the MPP decreases, but the tracking
speed is slower. To improve the problems of the previous MPPT algorithms mentioned above, the
proposed MPPT algorithm uses two methods that can apply the optimal step size to each operating
range. In the operating range near the MPP, a small fixed step size is used to minimize the oscillations at
the MPP, but in the operating range far from the MPP, a variable step size proportional to k1·ΔPPV/ΔVPV
is used to achieve fast tracking speed. The proposed MPPT algorithm can adjust the tracking speed
using k1 so that it can track the MPP quickly. As a result, the proposed MPPT algorithm tracked the
MPP with faster tracking speed and had smaller oscillations at the MPP when compared with the
conventional algorithms (Figure 14g,h).

VPV

IPV

PPV

VPV

IPV

PPV

VPV

IPV

PPV

VPV

IPV

PPV

VPV

IPV

PPV

VPV

IPV

PPV

VPV

IPV

PPV

VPV

IPV

PPV

 
Figure 14. Voltage (VPV), current (IPV), and power (PPV) waveforms of the PV module measured using
the basic P&O algorithm with (a) small fixed step size or (b) large fixed step size, using the adaptive
P&O algorithm with (c) low k1(=0.00002) or (d) high k1(=0.0001), using the adaptive INC algorithm
with (e) low k1(=0.00002) or (f) high k1(=0.0001), and using the proposed MPPT algorithm with (g) low
k1(=0.00002) and small fixed step size or (h) high k1(=0.0001) and small fixed step size.
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The MPPT efficiencies of the proposed and conventional MPPT algorithms were measured for two
minutes after reaching the MPP under the same conditions as in Figure 14 (Figure 15). When a large
fixed step size was applied, the basic P&O algorithm had the lowest average MPPT efficiency of 97.8%
due to the largest oscillations at the MPP (Figure 15a). The adaptive P&O and adaptive INC algorithms
with high k1(=0.0001) had higher average MPPT efficiencies of 98.5% and 98.7% than that of the basic
P&O algorithm because they used variable step sizes (Figure 15b,c). In addition, the adaptive P&O
and adaptive INC algorithms had higher average MPPT efficiencies of 99.1% and 98.9% than 98.7% of
the basic P&O algorithm when small fixed step size and low k1(=0.00002) were applied. The proposed
MPPT algorithm had the highest average MPPT efficiencies of 99.4% and 99.7% at low k1(=0.00002)
and high k1(=0.0001) because it had the smallest oscillations at the MPP (Figure 15d).

Figure 15. Measured MPPT efficiencies of (a) the basic P&O with small or large fixe step sizes, (b) the
adaptive P&O with low k1(=0.00002) or high k1(=0.0001), (c) the adaptive INC with low k1(=0.00002) or
high k1(=0.0001), and (d) the proposed MPPT algorithms with low k1(=0.00002) or high k1(=0.0001).

The PPV waveforms were measured to compare the performances of the proposed and conventional
MPPT algorithms when irradiance level changed abruptly from 1000 W/m2 to 100 W/m2 or from
100 W/m2 to 1000 W/m2 at a constant temperature of 25 ◦C (Figure 16). In each MPPT algorithm,
the fixed step size and k1 were optimized by considering the trade-off between the tracking speed
and the oscillations under the given conditions. When irradiance level changed from 100 W/m2 to
1000 W/m2, the basic P&O algorithm tracked the MPP within 20 s but had large oscillations (Figure 16a).
The adaptive P&O and adaptive INC algorithms also tracked the MPP within 20 s, but they still had
oscillations (Figure 16b,c). As shown in Figure 14c–f, these algorithms could reduce the oscillations
using a small fixed step size or k1, but the tracking was slower. The proposed MPPT algorithm
had no trade-off between the tracking speed and the oscillations because it uses a variable step size
proportional to k1·ΔPPV/ΔVPV in the operating range far from the MPP and a small fixed step size in
the operating range near the MPP. Therefore, when the irradiance level changed from 100 W/m2 to
1000 W/m2, the proposed MPPT algorithm showed smaller oscillations and faster tracking speed than
other algorithms (Figure 16d).
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Figure 16. Power (PPV) waveforms of the PV module measured using (a) the basic P&O algorithm,
(b) the adaptive P&O algorithm, (c) the adaptive INC algorithm, and (d) the proposed MPPT algorithm
under abruptly changing irradiance conditions.

Figure 17 shows the PPV waveforms measured to compare the performances of the proposed and
conventional MPPT algorithms when the temperature changed abruptly from 15 ◦C to 75 ◦C or from
75 ◦C to 15 ◦C at a constant irradiance of 700 W/m2. In each MPPT algorithm, the fixed step size and k1

were optimized by considering the trade-off between the tracking speed and the oscillations under
the given conditions. The basic P&O algorithm slowly tracked the MPP due to the fixed step size
when the temperature changed from 75 ◦C to 15 ◦C (Figure 17a). The adaptive P&O and adaptive INC
algorithms tracked the MPP faster than the basic P&O, but they still had oscillations after reaching the
MPP (Figure 17b,c). The proposed MPPT algorithm not only had the fastest tracking speed but also had
the smallest oscillations after reaching the MPP because it had no trade-off between the tracking speed
and the oscillations (Figure 17d). The above results of the comparison experiments are summarized in
Table 5.

3.2. Discussion

Among many MPPT algorithms, the P&O method was widely used due to its simple principle and
ease of implementation. However, the basic P&O algorithm of [21] had a trade-off between tracking
speed and oscillations due to a fixed step size (Figure 14a,b). To solve this problem, the adaptive
P&O and adaptive INC algorithms using a variable step size were introduced [26,27]. These adaptive
MPPT algorithms can reduce the oscillations at the MPP because the variable step size is automatically
adjusted according to the slope (ΔPPV/ΔVPV) of the P–V curve (Figure 14c–f). However, the adaptive
MPPT algorithms still had oscillations after reaching the MPP because the calculated ΔPPV/ΔVPV
is easily affected by sensing and calculation errors, sensing noise, and the ripples of VPV and IPV.
To improve the performances of the conventional MPPT algorithms mentioned above, the proposed
MPPT algorithm used a small fixed step size in operating range near the MPP and a variable step size
proportional to k1·ΔPPV/ΔVPV in operating range far from the MPP. As a result, the proposed MPPT
algorithm had higher MPPT efficiency than the conventional MPPT algorithms (Figure 15) and showed
faster tracking speed and smaller oscillations under dynamic weather conditions (Figures 16 and 17).
These advantages of the proposed MPPT algorithm enable the distributed PV system to operate at its
maximum performance, regardless of weather conditions.
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Figure 17. Power (PPV) waveforms of the PV module measured using (a) the basic P&O algorithm,
(b) the adaptive P&O algorithm, (c) the adaptive INC algorithm, and (d) the proposed MPPT algorithm
under abruptly changing temperature conditions.

Table 5. Comparisons between the proposed and conventional MPPT algorithms.

Performance
Parameters

Basic P&O
Algorithm of [21]

Adaptive P&O
Algorithm of [26]

Adaptive INC
Algorithm of [27]

Proposed
Algorithm

Implementation
complexity simple medium medium medium

MPPT method
fixed step size

(k2Vstep) in whole
operating range

variable step size
(k1VstepΔPPV/ΔVPV)

in whole
operating range

variable step size
(k1VstepΔPPV/ΔVPV)

in whole
operating range

small fixed step
size (k2Vstep) near

the MPP,
variable step size

(k1VstepΔPPV/ΔVPV)
far from the MPP

MPPT efficiency 97.8% 98.5% 98.7% 99.7%

Performance at
rapid change
of irradiance

poor medium medium good

Performance at
rapid change

of temperature
poor medium medium good

Speed fast fast fast fast

Accuracy low medium medium high

4. Conclusions

In this paper, an advanced MPPT algorithm for distributed PV systems was proposed.
The proposed MPPT algorithm improved the MPPT accuracy and dynamic response of the conventional
MPPT algorithms by using two methods that can apply the optimal step size to each operating range.
In the operating range near the MPP, a small fixed step size is used to minimize the oscillations at the
MPP, but in the operating range far from the MPP, a variable step size proportional to k1·ΔPPV/ΔVPV is
used to achieve fast tracking speed. These advantages of the proposed MPPT algorithm were verified
by comparison with the conventional MPPT algorithms: a basic P&O algorithm with fixed step size,
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an adaptive P&O algorithm with variable step size, and an adaptive INC algorithm with a variable
step size. In the experimental results, the proposed MPPT algorithm had the highest MPPT efficiency
of 99.7% compared with the conventional MPPT algorithms. In addition, it showed the fastest tracking
speed and smallest oscillations under abruptly changing irradiance levels and temperature conditions.
Due to these advantages of the proposed MPPT algorithm, the PV systems using the proposed MPPT
algorithm can produce more electrical energy than that using the conventional MPPT algorithms.
Moreover, the proposed MPPT algorithm requires low computational load of DSP because the formulas
used for step size are simple, which is a good advantage in terms of user convenience and cost that
are important for commercialization. As a result, the proposed MPPT algorithm is well-suited for
distributed PV systems requiring high MPPT efficiency and fast dynamic response.
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