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Preface to ”Environmental and Energy Efficiency

Evaluation Based on Data Envelopment

Analysis (DEA)”

Most countries have increased their energy generation and use based on fossil fuels, whose

low prices have facilitated economic development and the well-being of society. However, fossil

fuels, largely responsible for climate change, must give way to cleaner energies and thus avoid the

technological gap between developed and developing countries.

The measurement of energy efficiency is a key issue to orient the development of these new

energy sources that have to propitiate the change in the production and consumption models. Energy

efficiency also has to enhance the preservation and repair of the current environment, so that the

negative effects that the consumption of fossil fuels have on people’s health are also eliminated.

To measure energy efficiency, data envelopment analysis models are relevant tools where inputs,

desirable outputs and undesirable outputs are jointly considered, providing a holistic approach.

In this context, the articles published in this Special Issue are a first step to develop new investigations

that allow us to better understand the impact of climate change on the environment.

Ramon Sala-Garrido, Marı́a Molinos-Senante

Editors
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Abstract: The purpose of this research is to evaluate transit-oriented development (TOD) efficiency
in Seoul using the network slacks-based measure data envelopment analysis (NSBM DEA) model.
The smartcard data and socio-economic data are used to evaluate the transit efficiency of 352 subway
station areas in Seoul. To measure the TOD efficiency, the two-stage network is designed with the
transit design stage and the transit efficiency stage. The overall efficiency score of each station area is
estimated through each score of the stage. The results of the efficiency evaluation by station area
indicate that the overall efficiency score average is 0.349, with the transit design score and efficiency
score estimated to be 0.453 and 0.245, respectively. The results indicate that the balance of each stage
is crucial to achieve an efficient station in the concept of transit efficiency. With the efficiency scores of
the 352 subway station areas, the TOD efficiency is also evaluated by the administrative units in Seoul.
The results of district analysis reveal that the top 10 efficient administrative units are characterized by
both residential and commercial land use. The results indicate that efficiency is found to be good in
areas having both residential and commercial characteristics.

Keywords: transit-oriented development (TOD); transit efficiency; smartcard data; network
slacks-based measure data envelopment analysis (NSBM DEA)

1. Introduction

Transit-oriented development (TOD) is a strategy of urban development that maximizes the transit
accessibility to urban areas within walking distance [1]. The main purpose of TOD is to increase transit
user comfort and alleviate automobile use by creating an accessible public transportation environment
within the city [2]. Moving towards a transit-oriented approach, personal mobility can be prevented
and looking in the long-term, more sustainable cities can be built [3].

TOD is practiced in densely populated areas with high demand for transit system facilities
such as subway and bus stations. When planning a new public transportation system, organizers
must first contemplate the socio-economic characteristics of the area and plan transportation facilities
accordingly to the population density, land use, commercial facilities, and residences in the area [4].
The travel demand for transit systems increases when stations are newly introduced into an urban
area. Early TODs focused on increasing the connectivity between urban planning and public transit
to address problems such as urban sprawl, traffic congestion, and environmental degradation [5].
The development of the TOD concept was aimed at urban planning with a focus on public transit
within the city [6]. Historically, TOD has been recognized as an efficient development strategy in
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terms of the transit environment and socio-economic characteristics [7]. Calthorpe [1] stated that
research on public transit use via high-density, multi-purpose land-use patterns could help shape
a culture toward becoming a transit-friendly environment. This concept considered the regional
factors, such as population density, complex land use, trip purpose, trip frequency, trip demand, and
mode [2]. Also, various studies established the TOD evaluation criteria to achieve a more efficient and
sustainable transit environment and solve complex urban problems. Most previous research stated
that efficient and sustainable transit must balance the social and economic aspects of the transportation
environment [8–10]. It means that land use, population density, and residential environment should be
closely examined in urban planning [9]. To maximize efficiency at the economic level, transit capacity
must be met and maintained to minimize the consumption of resources [11]. The efficiency of TOD
also has been explored in previous studies [12–18]. They established one or more indicator variables
to quantify the efficiency of TOD strategies. Renne and Wells [16] identified various useful TOD
indicators from monitoring successive TODs. Galelo et al. [17] found that travel volume was one of
the most representative indicators for evaluating TOD efficiency. However, Yu et al. [18] suggested
that a single indicator had a limitation to effectively measure the performance of TOD efficiency and
multi-indicators were required.

The massive data created by the Internet of Things (IoT) in cities now enables data scientists
to analyze the objective functions of TOD. With its data-driven approaches, data envelopment
analysis (DEA) has been widely used to measure the effectiveness of the operation or management
of transportation systems [19]. DEA has a significant advantage compared to parametric models as
it does not require weight parameters to measure efficiency [20]. The merit of DEA is its simplicity
in estimating efficiency with multiple inputs and outputs [19]. DEA also has merit compared to the
parametric model. The parametric model assumes a specific production function for the relationship
between input and output [18]. However, DEA does not make assumptions about the production
function and the given data are utilized to estimate the production relationship between input and
output [21]. Therefore, it is possible to avoid the error of setting the type of distribution according
to the arbitrary judgment of the analyst. It is possible for the network DEA model to be designed
in the order of stages which is required for the evaluation process [22,23]. It is also used with the
slacks-based measure (SBM) model for direct comparisons between the observations [24]. The early
DEA models have the disadvantage that the inefficiency cannot be directly compared between different
observations [25], but the SBM model allows direct comparison between different observations by
measuring efficiency based on the slack ratio [26].

The evaluation of the efficiency of the transit system has been performed in previous studies using
DEA model [27–31]. With the introduction of automatic fare collection (AFC) system, the data-driven
approach for the transit-related analysis has become possible [32]. Various kinds of data, i.e., smartcard
data, socio-economic data, and geographical data, were combined to evaluate the efficiency of TOD [33].
Transit efficiency was defined through the relationship between multiple inputs and outputs [34].
Transit efficiency refers to how well the transit system was introduced and managed with respect to the
socio-economics, transit infrastructures, and transit trips of each station area [8]. Regarding the TOD
concept, both transit design and efficiency must be considered to determine transit efficiency [16,17].

The purpose of this research is to evaluate transit efficiency in Seoul using the network slacks-based
measure (NSBM) DEA model. The smartcard data and socio-economic data were used to evaluate
the transit efficiency of 352 subway station areas in Seoul. The evaluation process is developed as a
two-stage network with transit design and efficiency stage. In the evaluation process, the two-stage
NSBM DEA model was used to measure efficiency. The two-stage network constructed with transit
design stage and transit efficiency stage. With the results gathered from each stage, the overall efficiency
was measured to evaluate the transit efficiencies of the subway station areas. Each station evaluated
were grouped by each Seoul administrative unit and ranked based on its TOD efficiency.
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2. Methodology for Evaluating Transit Efficiency

2.1. Concept of Data Envelopment Analysis (DEA)

DEA is a nonparametric method for estimating production frontiers. The DEA model identifies
relative efficiencies using a number of input and output variables [20,21]. The purpose of measuring
efficiency using the DEA model is to determine the strategy of an enterprise, organization, or industry.
The first DEA model was developed to evaluate the efficiency and increase production for farm yield
in the UK [25]. With respect to productivity, DEA has been applied to linear programming and has
been used in various fields [35]. The relative efficiencies of decision-making units (DMUs) were
determined and their performances compared. The original model was known as the Charnes, Cooper
& Rhodes (CCR) model, which was employed to achieve constant returns to scale (CRS). Since the
CRS condition assumes that the unit of production is kept constant at the optimal scale, the input and
output are scaled proportionally. The CCR model is the most important model as it shows the most
abbreviated methodological features. The CCR model estimates a ratio that can reduce the input as
much as possible while keeping the output constant, and vice-versa. For example, there are some
considerations to estimate the efficiency score with the input-oriented CCR model. The efficiency score
is estimated by summing the weights of the output variables. The summed weights of output variables
are between 0.0 and 1.0 score. With the observed J stations ( j = 1, . . . , J), each station produces the M
outputs using N inputs. The ratio of the input value versus output value is the efficiency score θ and
the objective function is to minimize the θi which is the reduced ratio of the input variables of target
station i. The input-oriented CCR model, therefore, measures the weights of input and output variables
to minimize the θi, and the efficiency score is estimated by weights of variables. The maximum value
of the efficiency score is equal to or less than 1.0 value with the constraints, i.e., y, x > 0 and λ ≥ 0.
The efficient stations consist of the production frontier, and the inefficient stations improve efficiency
in the near direction of the production frontier. In other words, the efficient stations are the reference
group that the inefficient station benchmarks to improve its efficiency. The mathematical expression of
the input-oriented CCR model is as follows:

θi∗ = Min {θi − ε
⎛⎜⎜⎜⎜⎜⎝

M∑
m

s−m +
N∑
n

s+n

⎞⎟⎟⎟⎟⎟⎠} (1)

subject to:

θixi
m =

J∑
j=1

xj
mλ

j + s−m

yi
r =

J∑
j=1

yj
rλ

j − s+r

λ j ≥ 0, s−m ≥ 0, s+r ≥ 0

where θi∗ is the efficiency score of the target station area i, j ( j = 1, . . . , J) is the number of observed
station areas, yj

n is the output number of each variable r (r = 1, . . . , R) of a station area j, xj
m is the input

variable m (m = 1, . . . , M) of a station area j, yj
r is the output variable r of a station area j, λ j is the

intensity vector of station area j, s−m is the slack vector of the input variable xm, sk+
o is the slack vector of

the output variable yr.

2.2. Network Slacks-Based Measure DEA

The NSBM DEA is used to measure the efficiency of the network that consists of two or more
stages. In general, measuring the efficiency with DEA model involves two stages, an input stage,
and an output stage. However, network DEA has more than two stages that include intermediate
processes [22,23]. These intermediate processes are linking activities that occur in stages of production
or that occur internally in DMUs. In other words, the output results of the first stage can be applied to
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the second stage as inputs for the final result [22]. If the network becomes complex, early DEA models
had a limitation with only contain one stage while the network DEA solves this problem by having
multiple stages [24]. Since the transit system also has a complex network, the network DEA is suitable
for measuring transit efficiency.

The transit infrastructure relative to the socio-economic is important in terms of the transit
design [36]. Transit efficiency is defined as the number of transit trips relative to the infrastructures [37].
In this research, the transit design and transit efficiency stages were designed to measure transit
efficiency. The process of TOD proceeds with three factors, i.e., socio-economic, transit infrastructure,
and transit trip [11]. First, the socio-economic factors are examined to find the area where the transit
is needed. Second, the transit infrastructures are built to the area selected from the socio-economic
factors. Finally, the transit trips are derived through the socio-economic and transit infrastructures.
These three factors are grouped by two stages which are transit design stage and transit efficiency stage.
Figure 1 shows the framework of the process used to evaluate transit efficiency. The first stage, the
transit design stage was measured by comparing the transit infrastructures with socio-economic factors.
For the second stage, the transit efficiency was estimated by comparing the transit trips with transit
infrastructures. The overall efficiency score is obtained by the average sum or weighted multiplication
of each stage output from the design and efficiency stage. The weight of each stage can be determined
by the purpose of the research or the characteristics of the subject [38]. Regarding the TOD evaluation,
a bunch of previous studies considered the transit-related factors at the same level [11–13]. Since
the concept of TOD considers design and efficiency at the same level, the importance of both stages
is considered equal. In this research, identical weights are given at both stages in this research, i.e.,
w1 : 0.5 and w2 : 0.5. In other words, the assumption is made that both the transit design and efficiency
stages are equal contributors to the overall efficiency score. With this assumption, the comprehensive
efficiency of the station area could be obtained with consideration of the transit design and efficiency.

Figure 1. Network framework for measuring transit efficiency.

The production possibility set of network DEA is denoted as Pnetwork and its mathematical
expression is shown in Equations (2)–(7). The term z(k,h) is an intermediate measure for evaluating
transit efficiency, and Equation (5) show their mathematical expressions. The z(k,h) is applied to z(1,2)

in this study, since the network framework for measuring the TOD efficiency requires a connection
link from the transit design stage to the transit efficiency stage. Equation (5) describes an intermediate
measure such as the weights of outputs from the design stage and inputs for the efficiency stage.
Equation (6) is used to determine the variable returns to scale (VRS) condition. In the absence of
Equation (6), CRS is assumed:

Pnetwork = (xk, yk, z(k,h)) (2)

4
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xk ≥
J∑

j=1

xk
jλ

k
j ,∀k (3)

yk ≤
J∑

j=1

yk
nλ

k
n,∀n, k (4)

z(k,h) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑J

j=1 z(k,h)
j λk

j , ∀k, h (as outputs from k)∑J
j=1 z(k,h)

j λh
j , ∀k, h (as inputs to h)

(5)

J∑
j=1

λk
j = 1, ∀k (6)

λk
j ≥ 0, ∀ j, k (7)

where Pnetwork is the production possibility set, k (k = 1, 2) is the number of stages that k = 1 is the
transit design stage and k = 2 is the transit efficiency stage, j ( j = 1, . . . , J) is the number of observed
station areas, xk

mj ∈ Rmk
+ is the input variable of station area j of stage k, yk

rj ∈ Rrk
+ is the output variable

of station area j of stage k, (k, h) ∈ L is the connection link from transit design stage to transit efficiency
stage, z(k,h) ∈ R(k,h)

+ is an intermediate measure from the transit design stage to transit efficiency stage,

λk is the intensity vector corresponding to stage k, z(k,h)
j λk

j is the outputs from the transit design stage,

and z(k,h)
j λh

j is the inputs to the transit efficiency stage.
The SBM DEA is a widely used model for evaluating efficiency [23]. Network DEA with a

slacks-based approach was first developed by Tone and Tsutsui [22], and this model is called NSBM
DEA model. The NSBM DEA model evaluates efficiency using the input and output slack. The slack
is the difference value amount from the desired value amount from the actual input and output
variables [24]. The two slack values are estimated irrespective of the variable unit and are calculated as
an efficiency measure using the average of the reduced inputs and the average of the increased outputs.
Since input and output variables have different units, slack values are converted to ratio values by
dividing the original observation values. NSBM DEA is performed by calculating the slack between
observations and production changes. NSBM DEA is referred to as a SBM because it is calculated
based on the slack between the observations and production changes. The most important feature
of NSBM DEA is that the measure of efficiency does not change even when the units of the input
or output variables change. This is because the input or output slack is calculated as a ratio and is
thus independent of the unit. Compared to the early DEA models, SBM model has the advantage
of allowing direct comparison between different DMUs [23]. Since the efficiency score of early DEA
model is estimated by adding the slacks of variables with different units, the inefficiency cannot be
directly compared between different DMUs [28]. The efficiency of SBM model is measured by adding
the slack ratio. Since SBM model uses the slack ratio of each variable, the efficiency can be measured
regardless of the units of the variables [24].

NSBM DEA has three variations, i.e., the non-, input-, and output-oriented models. These
three models can be employed depending on the objective or the features of the variables. In this
research, we used the output-oriented SBM, for which the output direction is improving efficiency.
The output-oriented SBM measures efficiency by fixed inputs and maximizing outputs. Since the outputs
of each stage of transit analysis are required by the given conditions, the use of the output-oriented
SBM is reasonable for determining the transit design and efficiency scores. It is difficult to change
land use or eliminate existing facilities. Therefore, it is necessary to derive efficiency rankings by
maximizing the output variables of each stage. NSBM DEA is widely used for evaluating relative
efficiencies because it measures the efficiencies of DMUs. Given the transit system features mentioned

5



Energies 2019, 12, 3609

above, the NSBM DEA model is suitable for evaluating transit efficiency. The mathematical expression
for measuring transit efficiency is shown in Equation (8).

θ∗i = min

∑K
k=1 wk[1− 1

mk

(∑mk
m=1 sk−

mi/xk
mi

)
]∑K

k=1 wk[1 + 1
rk

(∑rk
r=1 sk−

ri /yk
ri

)
]

(8)

subject to:
K∑

k=1
wk = 1, ∀k

wk ≥ 0, ∀k

xk
mi =

J∑
j=1

xk
mjλ

k
j + sk−

m , ∀m, k

yk
ri =

J∑
j=1

yk
rjλ

k
j − sk+

r , ∀r, k

J∑
j=1
λk

j = 1,∀k

λk
j ≥ 0, ∀ j, k

sk−
m ≥ 0, ∀m, k
sk+

r ≥ 0,∀r, k

where θ∗i is the overall efficiency score of station area i, k (k = 1, 2) is the number of the stages that k = 1
is the transit design stage and k = 2 is the efficiency stage, wk is the relative weight of stage k, xk

mi is the
input variable m of station area i of stage k, yk

ri is the output variable r of the station area i of stage k, λk

is the intensity vector corresponding to the stage k, sk−
m is the slack vector of the input variable xm of the

stage k, and sk+
r is the slack vector of the output variable yr of the stage k.

3. Data Description

3.1. Description of Smartcard Data

The government of Seoul has been operating the AFC system such as the smartcard system since
2004. The transit fare from the origin to destination is charged based on the total distance traveled
by buses, subways, or both. Within the AFC system, travelers can use any combination of transit
modes [31]. Since the transit system in Seoul has been operating as a 100% smartcard system, it is
possible to extract 99% of the transit trip information. The smartcard data in Seoul records about
20 million individual transit trips per day. Each individual item of information is classified with respect
to 36 categories, including card ID, boarding station, alighting station, boarding time, alighting time,
etc. With the smartcard data, it is possible to obtain the numbers of subway, bus, bus–bus transfer,
and subway–bus transfer trips. Since the smartcard data in Seoul include all transit users’ trips, it can
be used to analyze transit efficiency by station area [27]. Among the 36 categories of smartcard data,
11 were used in this research. These 11 categories include the card ID, boarding station ID, alighting
station ID, number of transfers, alighting time, alighting date, boarding time, boarding date, line ID,
vehicle ID, and zone code. Table 1 shows the 36 categories of smartcard data in Seoul of which 11 were
used in this research.

6
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Table 1. Description of the smart card data.

No. Categories No. Categories

1 Card ID * 19 Alighting time *
2 Name of the transit line 20 Transaction ID
3 Vehicle number 21 Company name
4 Boarding station ID * 22 Ending run time
5 Alighting station ID * 23 Alighting date *
6 The number of users 24 User division
7 Alighting violation penalty 25 Alighting fare
8 General user code 26 Total travel time
9 Time code 27 Boarding time *
10 Year 28 Boarding date *
11 Mode code 29 Line ID *
12 Company code 30 Vehicle ID *
13 Starting run time 31 Child user code
14 Name of boarding station 32 Name of alighting station
15 Number of transfer * 33 User group
16 Boarding fare 34 Boarding violation penalty
17 Total travel distance 35 Zone code *
18 Student user code 36 Other user code

* indicates the categories used in this research.

3.2. Description of Socio-Economic Data

The government of Seoul has been operating an open big-data portal since October 2013. This open
big-data portal is an integrated data platform and provides the public with data about Seoul. Open
big-data portal is available to anyone who has the desire to use it. The portal refers to all the data and
information produced by public institutions such as public information. It facilitates communication
and cooperation between all those interested. These open data are wide-ranging in scope, with
information ranging from weather, geography, transportation, and food to historical documents
and records. Open data related to socio-economic and environmental indicators are provided at the
administrative and statistical aggregation district level. Seoul consists of 424 neighborhood areas, called
dong, and each neighborhood is composed of one or more census areas. In this research, the census
area unit is used to aggregate the population density, land value, number of households, and number
of companies. There are 103,455 census area units in Seoul with an average area of 0.58 km2.

3.3. Data Preprocessing

The station areas of the 352 subway stations in Seoul were designated as DMUs in order to
measure transit efficiency. The Enforcement Rules of the Urban Planning Ordinance of Seoul defines
the station area as “an area within a 500 m radius from the center of stations such as subway, national
railway, and light rail”. [39]. This standard was employed in several previous research related to the
transit in Seoul [40,41]. Data preprocessing involved compiling these data by the station area. Transit
and socio-economic data were obtained from both the smartcard and open data, respectively.

Socio-economic data from the open data portal were also compiled by the station area. Among
the various open data, the population density, land value, number of households, and the number of
companies were obtained for this research. Since all the obtained data were provided within census
area units, it was necessary to aggregate the data values by the station area. The population density
and land use values were compiled by averaging. The number of households and companies were
aggregated by summing. From the result of preprocessing, the socio-economic data, population density,
land value, the number of households, and the number of companies were determined to average:
34,249 (person/km2), 5903 (1000 won/m2), 5249 households, and 134 companies, respectively. Table 2
lists the descriptive statistics of the socio-economic data from the open-data portal.

7
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Table 2. Descriptive statistics of the socio-economic data.

Socio-Economic Data (Input Variables) Mean Max. Min. Standard Deviation (S.D.)

Population density (person/km2) 34,249 67,074 342 12,186
Land value (1000 won/m2) 5903 29,275 79 4133

Number of households 5249 14,914 74 2648
Number of companies 134 198 24 23

The transit data consist of transit infrastructures and trips per transit stations. The infrastructure
variables include the numbers of subway lines, bus lines, and bus stations, and the average distance
between a bus stop and subway station. The transit trips data include the numbers of subway trips,
bus trips, and transfer trips between subway and bus, and the energy consumption by transit trips.

Since there is an overlapping area between some station areas, the average distance between the
bus and the subway stations and the number of transfer trips are included as a variable. The definition
of energy consumption is the consumed energy by transit mode per trip [42]. The station area the transit
energy consumption of the individual station area can be calculated. Since the transit modes consist of
subway and bus, the energy consumption is obtained by the sum of each mode’s trips multiplied by
the conversion factor. For the transfer trips, conversion factors of each mode are multiplied by each
trip. The energy consumption by each station area was calculated using conversion factors, i.e., 0.7 for
a subway trip (Mcal/trip), and 3.2 for a bus trip (Mcal/trip). These factors are provided by the Ministry
of Trade, Industry and Energy of the Republic of Korea [42]. Figure 2 shows the heat-map of transfer
trips on station area.

Figure 2. Heat-map of transfer trips on station area.

The data preprocessing results by station area for the numbers of subway lines, bus lines, and bus
stations, and the distance between bus stops and subway stations yielded averages of 1.6 lines, 34 lines,
70 stations and 254 m, respectively. To identify the relationship between transit modes, the numbers of
bus lines and stations were counted by types of buses, i.e., main bus, branch bus, or circulation bus.
The numbers of subway trips, bus trips, and transfer trips, and energy consumption were 36,640 trips,
96,239 trips, 6164 trips, and 377,910 Mcal/trip, respectively. Table 3 lists the descriptive statistics of the
transit data obtained from smartcard data.
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Table 3. Descriptive statistics of the transit efficiency data.

Details Mean Max. Min. S.D.

Transit
infrastructures
(intermediate

variables)

Number of subway lines 1.6 5 1 0.8
Number of bus lines 34 145 4 22.1

Number of bus stations 70 321 13 44
Distance of bus and subway stations (m) 254 433 132 59

Transit trips
(output variables)

Number of subway trips 36,640 225,130 1860 30,805
Number of bus trips 96,239 473,770 2090 85,324

Number of transfer trips 6164 62,183 26 8171
Energy consumption (Mcal/trip) 377,910 1,603,120 24,697 268,318

4. Application

4.1. Results of Transit Efficiency

With the results of the NSBM DEA of this research, the overall efficiency score was obtained by
the average sum or weighted multiplication of each stage output from the design and efficiency stages.
Table 4 and Figure 3 show the efficiency evaluation results for the station areas in Seoul. Based on the
efficiency evaluation results in Table 4, the average overall efficiency score is 0.349. The transit design
and efficiency evaluation results average 0.453 and 0.245, respectively. Since the overall efficiency
score is calculated using the transit design and transit efficiency scores, multiplying by a weight
of 0.5 implies that the overall efficiency score is affected more by the design score rather than the
efficiency score. Regarding the 0.349 score and 0.207 standard deviation (S.D.), there is clearly a large
gap between the efficient and inefficient station areas in Seoul. The 10 station areas were determined to
be efficient, i.e., Euljiro 1ga, Shindorim, Gupabal, Dongjak, Yeongdeungpo, Digital media city, Gasan
digital, Magok, Bokjung, and Gaehwa station. The top 10 efficient stations are the DMUs with the
highest scores of 1.000 in both the transit design and efficiency stages is served as benchmarks for
the other 342 inefficient stations. As the means of the input variables for the top 10 efficient station
areas, the population density, land value, number of households, and number of companies are 21,581
(person/ km2), 4478 (1000 won/m2), 2450 households, and 110 companies, respectively. The means
of the intermediate variables for the top 10 efficient station areas are 1.8 subway lines, 55 bus lines,
91 stations, and 212 m distance between stations, respectively. The means of the output variables
for the efficient station areas, i.e., the number of subway trips, bus trips, transfer trips, and energy
consumption, are 182,420, 97,491, 11,747 trips and 439,666 Mcal/trip, respectively.

Table 4. Efficiency evaluation results for station areas in Seoul.

Details

Total Stations
(352 Stations)

Efficient Stations
(Top 10 Stations)

Inefficient Stations
(Bottom 10 Stations)

Mean S.D. Mean S.D. Mean S.D.

Measured
score

Overall efficiency score 0.349 0.207 1.000 0.000 0.090 0.011
Design (stage 1, β1 : 0.5) 0.453 0.209 1.000 0.000 0.157 0.016

Efficiency (stage 2, β2 : 0.5) 0.245 0.251 1.000 0.000 0.023 0.016

Input variable

Population density (person/km2) 34,249 12,186 21,581 15,853 38,853 11,657
Land coat (1000 won/m2) 5903 4133 4478 6097 7,300 4140
Number of households 5249 2648 2450 2133 5,329 1844
Number of companies 134 23 110 40 140 13

Intermediate
variable

(output from
stage 1)

Number of subway lines 2.7 0.7 1.8 0.8 3.5 1.1
Number of bus lines 52 21 55 33 93 36

Number of bus stations 167 81 91 52 242 38
Distance of bus and
subway stations (m) 231 46 212 64 202 36

Output
variable

Number of subway trips 36,640 30,805 182,420 205,228 37,676 58,562
Number of bus trips 96,239 85,324 97,491 80,063 57,391 29,638

Number of transfer trips 6164 8171 11,747 11,575 511 620
Energy consumption (Mcal/trip) 377,910 268,318 439,666 262,293 210,026 107,734
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Figure 3. Visualization of the efficiency evaluation results for Seoul: (a) efficiency result of the
352 stations; (b) top 10 efficient stations; and (c) bottom 10 inefficient stations.

A comparison of the efficient station area scores for the 352 station areas shows that all the input
variable scores of the efficient station areas are lower than the mean score of all the station areas.
In particular, the population density and number of households in the efficient station areas are about
37% and 16% lower than the average value of all the station areas, respectively. From the statistics for
the intermediate variables, the number of subway lines and bus stations are about 66% and 54% of
the means for all the station areas, and the number of bus lines is almost the same as the mean for
all the station areas. These efficient station areas have relatively low population densities and small
household. Although the population densities and number of households are smaller than the average
values for all the station areas, the transit infrastructures are also well constructed. This is the main
reason that transit design is estimated to be high. From the statistics of the output variables, the number
of subway trips, bus trips, and transfer trips, and the energy consumption are about 4.98, 1.01, 1.91,
and 1.16 times higher, respectively, than the mean values for all the station areas. The transit efficiency
score was estimated to be 1.000, since it has a small population density, number of households, and
the number of transit infrastructures compared to the output variables. This is because the inputs
are lower and outputs are higher than the means for all the station areas, respectively. Since both the
design and efficiency scores were 1.000, the overall efficiency score was also estimated to be 1.000.

The balance of each stage is crucial to achieve an efficient station in the concept of transit efficiency.
For instance, if the transit infrastructure is well established with low transit trips, the design stage
scores will be high but the efficiency stage scores will be relatively low. On the contrary, if the transit
infrastructure is not well established with high transit trips, the design stage scores will be low and
the efficiency stage scores will be relatively high. Hence, the overall efficient stations have balance in
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both design and efficiency stage scores. From the results of the evaluation, overall efficient stations
are usually located in areas that have a relatively low population density but have well-built transit
infrastructures with high transit trips.

The bottom 10 inefficient station areas include Donrimcheon, Hakyoeul, Eungbong, Guryong,
Gaepodong, Dongdaemoon, Olympic Park, Geoyeo, Macheon, and Dokbawi stations. These bottom
10 inefficient station areas are relatively estimated to be the lowest overall efficiency scores among the
352 station areas. These 10 relatively inefficient station areas are DMUs in which the TOD should take
top priority in improvement. The overall average score of the bottom 10 inefficient station areas was
0.090, which indicates that an improvement of 99.1% is required. The averages of design and efficiency
scores were 0.157 and 0.023, respectively, which means that about 84.3% of these areas are poorly
designed and 98.8% are inefficient. When targeting the efficient station, transit infrastructure-related
variables should be improved by 84.3% compared to the socio-economic related variables. The transit
trip-related variables should also be increased by 98.8% compared to the infrastructure-related variables.
For the input variables of the bottom 10 inefficient station areas, the population density, land price,
number of households, and number of companies totaled 38,853 (persons/km2), 7300 (1000 won/m2),
5329 households, and 140 companies, respectively. The intermediate variables, which are the outputs
of the design stage, i.e., numbers of subways, bus lines, and bus stations and the distance between bus
stops and subway stations averaged 1.2 subway lines, 11 bus lines, 20 stations, and 258 m, respectively.
For the outputs, the numbers of subway trips, bus trips, and transfer trips, and the energy consumption
totaled 37,676, 57,391, and 511 trips, and 210,026 Mcal/trip, respectively.

A comparison of the statistics for the bottom 10 inefficient station areas with all the station areas
was conducted. It shows that all the input values of the bottom 10 inefficient station areas are higher
than the mean values of all the stations. With respect to the statistics for the intermediate variables, the
numbers of subway lines, bus lines, and bus stations are about 1.3, 1.8, and 1.5 times more, respectively.
The distance between bus stops and subway stations is about 13% less than the mean distance for
all the station areas. However, the output variable values were lower than the mean values of the
352 station areas. Although the number of subway trips was similar to the mean value for all the
station areas, the numbers of bus trips and transfer trips and the energy consumption were about 40%,
92%, 44% less, respectively, than the mean values for all the station areas. Since the population and
number of households are higher than the mean values for all the station areas, transit infrastructures
must be better equipped than the mean required for all 352 station areas. The transit efficiency scores
are also very low since the output values do not meet the required number of transit infrastructures.

4.2. Discussion

Figure 4 shows the overall efficiency scores that consider both the design and efficiency stages.
As mentioned above, station areas with a score between 0.000 and 0.200 have top priority for TOD
improvement due to low design and efficiency scores. Based on the mean score for each stage, i.e.,
transit design and efficiency analysis, the DMUs were also divided into four groups to indicate the
type of improvement needed at these station areas. In Figure 4b, we can see that both the design and
efficiency scores of group 1 are lower than the mean value, which mean that station areas in group 1
need to improve both their design and efficiency. The station areas in group 2 need improvements in
design more than efficiency. Station areas in group 3 can improve their overall efficiency by improving
their efficiency, and stations areas in group 4 qualify as relatively efficient stations. The types of
improvement required to achieve overall efficiency can be determined by the scores of each stage or by
group analysis.

The analysis of an administrative unit is needed to practically evaluate the TOD priorities. Using
the efficiency evaluation results of the station areas, it is also possible to analyze transit efficiency by
the administrative units in Seoul. The dong unit is the smallest unit among the administrative units.
The overall efficiency scores of the dong unit were obtained by averaging the scores of the relevant
station areas.
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(a) (b) 

Figure 4. Efficiency evaluation results with respect to design and efficiency: (a) efficiency results
prioritized regarding TOD; and (b) group-wise efficiency results.

The dongs were classified with respect to four dimensions, i.e., non-scoring, low-scoring,
mid-scoring, and efficient, and land-use features of each dimension were identified by the socioeconomic
variables of each dong. The overall efficiency scores of the dong unit are shown in Table 5 and Figure 5.

Table 5. Results of overall efficiency by Dong unit in Seoul.

Details
Total

(424 Dongs)
Non-Scoring
(41 Dongs)

Inefficient
Efficient

(8 Dongs)Low-Scoring
(79 Dongs)

Mid-Scoring
(296 Dongs)

Overall
efficiency

score

Overall efficiency score 0.351 - 0.153 0.387 1.000
Design (stage 1,
β1 : 0.5) 0.443 - 0.249 0.480 1.000

Efficiency (stage 2,
β2 : 0.5) 0.259 - 0.058 0.293 1.000

Socio-economics

Population Density
(person/km2) 24,397 22,463 21,960 25,592 14,138

Land cost
(1000 won/m2) 4454 2410 6208 4290 3682

Number of households 10,133 9478 9815 10,280 11,232
Number of companies 1934 1227 2083 2004 1488

 
Figure 5. Visualization of the efficiency evaluation results by dong unit in Seoul.
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Figure 5 shows the results of the overall transit efficiency of Seoul by the 424 dong administrative
units. Since the station areas were set within a 500-m radius, a station area could cover several dongs.
Even though the no subway stations reside in the dong, the dong can be affected by the station area
radius that spans multiple dongs. The efficiency score of each dong is estimated by calculating the
average efficiency values of the station areas that reside or radius spans into the dong.

Eight dongs were estimated to be efficient, having earned a 1.000 overall efficiency score,
i.e., Wirye-Dong, Gonghang-Dong, Sangam-Dong, Susek-Dong, Jinkwan-Dong, Daerim (3)-Dong,
Dorim-Dong, and Yeongdeungpobon-Dong. These eight dongs can serve as reference DMUs for
achieving efficient TOD. Regarding regional characteristics, efficient dongs have both residential
and commercial land-use features. The top priority areas for TOD are the red dongs in Figure 5.
These 41 dongs were estimated to be non-scoring areas since they contain no station areas. These
non-scoring dongs do not have any station areas that reside or spans within the dong despite range
being 500 m radius for the station area. Residents of the non-scoring dongs must first take a bus
to make transit trips due to the lack of subway stations. Since only bus infrastructures have been
established, these areas are at a disadvantage for improving their overall efficiency. With respect to
land use characteristics, these top-priority dongs for TOD are mostly residential with a large number
of households, i.e., 9478 households. The second-priority areas are the 79 low-scoring dongs, which
earned overall efficiency scores in the 0.0 to 0.2 range. Although these 79 dongs were designed for
TOD, their transit infrastructures, trips, and energy consumption must be improved to achieve efficient
TOD. Regarding land use, these second-priority dongs also have commercial features and host a large
number of companies, i.e., 2083 companies.

5. Conclusions

The government of Seoul has been operating the AFC system and open data platform since 2004
and 2013, respectively. These systems provide the opportunity to analyze the efficiency of station areas
in terms of TOD. This research was conducted to evaluate the transit efficiency of subway station areas.
A total of 352 subway stations within a 500-m radius in Seoul were analyzed. Socioeconomic data
were obtained from the open data platform, i.e., population density, land value, number of households,
and number of companies. Transit-related data were obtained from Seoul’s smartcard data, i.e., the
number of subway lines, the number of bus lines, and the number of bus stations. Given the TOD
concept, the transit efficiency evaluation was designed as a two-stage network slacks-based measure
data envelopment analysis (NSBM DEA). The first stage was designed as a transit-design evaluation
and the second stage was evaluated with respect to transit efficiency.

The results of the evaluation were as follows: the overall efficiency score and S.D. were estimated
to be 0.349 and 0.207, respectively, which points to a large gap between the efficient and inefficient
station areas in Seoul. The analysis results indicated that the eight efficient dongs were characterized
by both residential and commercial land use. In addition, overall efficiency was found to be high in
areas that have both residential and commercial characteristics. The non-scoring dongs were identified
as having top priority for TOD, and the land-use features of these dongs are residential. Dongs
with overall efficiency scores in the 0.0 to 0.2 range were designated as second-priority areas, and
these dongs also have commercial features. Based on the results of the transit design and efficiency
evaluation, it was possible to determine the TOD-related priorities for stations and dongs.

Considering the regional characteristics, development efforts are also required to improve overall
efficiency. This research measured transit overall efficiency based on transit design and efficiency.
From the results, recommendations regarding the TOD priorities and development directions were
made by station areas. Although various factors were used to evaluate TOD efficiency, a variety of
additional socioeconomic and transit factors must also be considered. In this study, we defined the
station area as the area within a 500-m radius adjacent to a subway station based on previous literature.
The overlapping areas may affect the results of the analysis. The score of a station area that contains
multiple stations would be different from the score of a station area that only contains one station. Based
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on the sensitivity analysis, the effect of the station area should be investigated. The weight of each stage
of NSBM DEA model can be also changed according to regional conditions, environment, and culture.

Author Contributions: For The authors confirm the contribution to the paper as follows: Study conception
and design: E.H.L., H.S., S.-H.C., S.-Y.K., D.-K.K.; Data collection: E.H.L., H.S., S.-H.C., D.-K.K.; Analysis and
interpretation of results: E.H.L., H.S., S.-Y.K., D.-K.K.; Draft manuscript preparation: E.H.L., H.S., S.-H.C., D.-K.K.
All authors reviewed the results and approved the final version of the manuscript.

Funding: This research was supported by a grant from R & D Program of the Korea Railroad Research
Institute, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Calthorpe, P. The Next American Metropolis: Ecology, Community, and the American Dream; Princeton
Architectural Press: New York, NY, USA, 1993.

2. Nasri, A.; Zhang, L. The analysis of transit-oriented development (TOD) in Washington, DC and Baltimore
metropolitan areas. Transp. Policy 2014, 32, 172–179. [CrossRef]

3. Ewing, R.; Cervero, R. Travel and the built environment: A synthesis. Transp. Res. Rec. 2001, 1780, 87–114.
[CrossRef]

4. Papa, E.; Bertolini, L. Accessibility and Transit-Oriented Development in European metropolitan areas.
J. Transp. Geogr. 2015, 47, 70–83. [CrossRef]

5. Knowles, R.D. Transit Oriented Development in Copenhagen, Denmark: From the Finger Plan to Ørestad.
J. Transp. Geogr. 2012, 22, 251–261. [CrossRef]

6. Vale, D.S. Transit-oriented development, integration of land use and transport, and pedestrian accessibility:
Combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbon.
J. Transp. Geogr. 2015, 45, 70–80. [CrossRef]

7. Sahu, A. A methodology to modify land uses in a transit oriented development scenario. J. Environ. Manag.
2018, 213, 467–477. [CrossRef] [PubMed]

8. Li, Z.; Han, Z.; Xin, J.; Luo, X.; Su, S.; Weng, M. Transit oriented development among metro station areas in
Shanghai, China: Variations, typology, optimization and implications for land use planning. Land Use Policy
2019, 82, 269–282. [CrossRef]

9. Zhao, P. Sustainable urban expansion and transportation in a growing megacity: Consequences of urban
sprawl for mobility on the urban fringe of Beijing. Habitat Int. 2010, 34, 236–243. [CrossRef]

10. Wey, W.M.; Zhang, H.; Chang, Y.J. Alternative transit-oriented development evaluation in sustainable built
environment planning. Habitat Int. 2016, 55, 109–123. [CrossRef]

11. Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D
Transp. Environ. 1997, 2, 199–219. [CrossRef]

12. Cervero, R.; Sarmiento, O.L.; Jacoby, E.; Gomez, L.F.; Neiman, A. Influences of built environments on walking
and cycling: Lessons from Bogotá. Int. J. Sustain. Transp. 2009, 3, 203–226. [CrossRef]

13. Singh, Y.J.; Fard, P.; Zuidgeest, M.; Brussel, M.; Van Maarseveen, M. Measuring transit oriented development:
A spatial multi criteria assessment approach for the City Region Arnhem and Nijmegen. J. Transp. Geogr.
2014, 35, 130–143. [CrossRef]

14. Winstead, D.L. Smart growth, smart transportation: A new program to manage growth in Maryland.
Urb. Law 1998, 30, 537–545.

15. Higgins, C.D.; Kanaroglou, P.S. A latent class method for classifying and evaluating the performance of
station area transit-oriented development in the Toronto region. J. Transp. Geogr. 2016, 52, 61–72. [CrossRef]

16. Renne, J.L.; Wells, J. Transit-Oriented Development: Developing a Strategy to Measure Success; Transportation
Research Board: Washington, DC, USA, 2005.

17. Galelo, A.; Ribeiro, A.; Martinez, L.M. Measuring and Evaluating the Impacts of TOD Measures–Searching
for Evidence of TOD Characteristics in Azambuja Train Line. Procedia Soc. Behav. Sci. 2014, 111, 899–908.
[CrossRef]

18. Yu, X.; Lang, M.; Gao, Y.; Wang, K.; Su, C.H.; Tsai, S.B.; Huo, M.; Yu, X.; Li, S. An Empirical Study on the
Design of China High-Speed Rail Express Train Operation Plan—From a Sustainable Transport Perspective.
Sustainability 2018, 10, 2478. [CrossRef]

14



Energies 2019, 12, 3609

19. Barnum, D.T.; McNeil, S.; Hart, J. Comparing the efficiency of public transportation subunits using data
envelopment analysis. J. Public Transp. 2007, 10, 1–16. [CrossRef]

20. Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in
data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [CrossRef]

21. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res.
1978, 2, 429–444. [CrossRef]

22. Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252.
[CrossRef]

23. Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130,
498–509. [CrossRef]

24. Tone, K.; Tsutsui, M. Dynamic DEA: A slacks-based measure approach. Omega 2010, 38, 145–156. [CrossRef]
25. Farrell, M.J.; Fieldhouse, M. Estimating efficient production functions under increasing returns to scale.

J. R. Stat. Soc. Ser. A 1962, 125, 252–267. [CrossRef]
26. Li, T.; Yang, W.; Zhang, H.; Cao, X. Evaluating the impact of transport investment on the efficiency of regional

integrated transport systems in China. Transp. Policy 2016, 45, 66–76. [CrossRef]
27. Lee, E.H.; Lee, H.; Kho, S.Y.; Kim, D.K. Evaluation of Transfer Efficiency between Bus and Subway based on

Data Envelopment Analysis using Smart Card Data. KSCE J. Civ. Eng. 2019, 23, 788–799. [CrossRef]
28. Hahn, J.S.; Kho, S.Y.; Choi, K.; Kim, D.K. Sustainability evaluation of rapid routes for buses with a network

DEA model. Int. J. Sustain. Transp. 2017, 11, 659–669. [CrossRef]
29. Hahn, J.S.; Kim, D.K.; Kim, H.C.; Lee, C. Efficiency analysis on bus companies in Seoul city using a network

DEA model. KSCE J. Civ. Eng. 2013, 17, 1480–1488. [CrossRef]
30. Hahn, J.S.; Sung, H.M.; Park, M.C.; Kho, S.Y.; Kim, D.K. Empirical evaluation on the efficiency of the trucking

industry in Korea. KSCE J. Civ. Eng. 2015, 19, 1088–1096. [CrossRef]
31. Lee, E.H.; Lee, I.; Cho, S.H.; Kho, S.Y.; Kim, D.K. A Travel Behavior-Based Skip-Stop Strategy Considering

Train Choice Behaviors Based on Smartcard Data. Sustainability 2019, 11, 2791. [CrossRef]
32. Li, X.; Yu, J.; Shaw, J.; Wang, Y. Route-Level Transit Operational-Efficiency Assessment with a Bootstrap

Super-Data-Envelopment Analysis Model. J. Urban Plan. Dev. 2017, 143, 04017007. [CrossRef]
33. Cavaignac, L.; Petiot, R. A quarter century of Data Envelopment Analysis applied to the transport sector:

A bibliometric analysis. Socio Econ. Plan. Sci. 2017, 57, 84–96. [CrossRef]
34. He, Q.; Han, J.; Guan, D.; Mi, Z.; Zhao, H.; Zhang, Q. The comprehensive environmental efficiency of

socioeconomic sectors in China: An analysis based on a non-separable bad output SBM. J. Clean. Prod. 2018,
176, 1091–1110. [CrossRef]

35. Mandl, U.; Dierx, A.; Ilzkovitz, F. The Effectiveness and Efficiency of Public Spending; (No. 301); Directorate
General Economic and Financial Affairs; European Commission: Brussels, Belgium, 2008.

36. Litman, T.; Burwell, D. Issues in sustainable transportation. Int. J. Glob. Environ. Issues 2006, 6, 331–347.
[CrossRef]

37. Lin, J.J.; Shin, T.Y. Does transit-oriented development affect metro ridership? Evidence from Taipei, Taiwan.
Transp. Res. Rec. 2008, 2063, 149–158. [CrossRef]

38. Cook, W.D.; Liang, L.; Zhu, J. Measuring performance of two-stage network structures by DEA: A review
and future perspective. Omega 2010, 38, 423–430. [CrossRef]

39. Seoul Metropolitan Council. The Enforcement Rules of the Urban Planning Ordinance of Seoul; Seoul Rules No.
4224; Legal Administration Service: Seoul, Korea, 2018.

40. Sung, H.; Oh, J.T. Transit-oriented development in a high-density city: Identifying its association with transit
ridership in Seoul, Korea. Cities 2011, 28, 70–82. [CrossRef]

41. Sohn, K.; Shim, H. Factors generating boardings at metro stations in the Seoul metropolitan area. Cities 2010,
27, 358–368. [CrossRef]

42. Korea Energy Economics Institute and Korea Energy Agency. Energy Consumption Survey; Ministry of Trade,
Industry and Energy: Sejong, Korea, 2017.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

15





energies

Article

Evaluation of Energy-Environment Efficiency of
European Transport Sectors: Non-Radial DEA and
TOPSIS Approach
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Abstract: Transport is recognized as a major energy consumer and environment pollutant. Recently
scholars have paid considerable attention to the evaluation of transport energy and environmental
efficiency (EEE). In this paper, the non-radial Data Envelopment Analysis (DEA) model was employed
to evaluate EEE on a macro level—i.e., of European road, rail and air sectors. The evaluation was
conducted under the joint production framework, which considers energy and non-energy inputs,
and desirable and undesirable outputs for the last ten years period. To rank decision-making units
and check the aptness of this non-radial DEA model in transport EEE evaluation, the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) method has been proposed. An empirical
study has been conducted for as many European countries as possible, depending on availability of
data. Based on the non-radial DEA model, it could be said that the level of EEE is improving for the
road sector, while many evaluated countries have low EEE for the rail transport sector. Additionally,
results have indicated that the TOPSIS method is more suitable than the non-radial DEA model in
transport EEE evaluation and for identification of best practices.

Keywords: evaluation; energy; environment; efficiency; transport; DEA; TOPSIS

1. Introduction

1.1. Background

During recent decades, there have been increased debates concerning the gradual increase of
global warming and the resulting climate change. The primary sources of global warming are increased
concentrations of greenhouse gas (GHG) emissions, primarily carbon dioxide (CO2), which is a product
of human activities. The transport sector is one of the inevitable and essential parts of human activities,
backbone of the economy, representing advantages for society in terms of transportation of goods and
people, market integration, and provision of growth and jobs. It has been estimated that transport
sector within the European Union (EU) contributes for 7% of European gross value added and 7.06%
of employment [1].

Yet despite benefits, transport activities include disadvantages related to responsibilities
for enormous energy consumption and resulting GHG emissions. According to the European
Environmental Agency [2], with 348.5 Mtoe (Million tonnes oil equivalent), the transport sector was the
biggest energy consumer in 2013, followed by households (295.9 Mtoe), industry (276.6 Mtoe), services
(152.5 Mtoe) and fishing, agriculture, forestry and non-specified (30.2 Mtoe). Among transport modes
in 2012, road transport had the largest share in the amount of consumed energy (307.5 Mtoe), followed
by air (international and domestic) transport (51.5 Mtoe), international marine bunkers (46.4 Mtoe),
rail transport (7.2 Mtoe), and domestic navigation (5.7 Mtoe) [1].
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To ameliorate these disadvantages, the European Commission periodically published White
Papers and emphasizing where the targets of EU policies were highlighted. The strategy set by the
European Commission [3] was based on targets such as:

• Low emissions through reduction of 60% of GHG emissions by 2050 with respect to their 1990 level;
• Improvement of energy efficiency by decreasing final oil consumption and dependency ratio.

The reduction was estimated at 12 to 13% by 2030 and to about 70% by 2050;
• Limited growth of congestion due to better multimodal solutions and new technologies.

Presently, the need for meeting the demands of transportation services and enhancing mobility
is increasing, as well as the need for improving the EEE [1]. Awareness and concern about the
energy consumption and environmental problems are becoming increasingly important worldwide.
Numerous techniques have been employed to address the issues related to energy and the environment.
The technique, which has received great attention, is the Data Envelopment Analysis (DEA) method
as a non-parametric approach to efficiency evaluation [4]. Recognizing the share that transport has
in energy and environmental problems, and having in mind the potential of the DEA method in
energy-environment efficiency evaluation, DEA has been included in the analysis of transport EEE.
The DEA method has been used in EEE analysis for different sectoral levels, countries and regional
levels, as well as timely levels [5]. However, EEE evaluation and comparison of transport sectors on a
macro level for EU countries is missing. Since the countries of the EU could have different strategies
and measures in energy consumption and environment protection, it is of the utmost importance to
identify the best practice.

1.2. The Aim and the Scope of the Paper

The aim of this paper is twofold. The first is to evaluate and analyze the changes of EEE of European
road, air, and rail transport sectors, where the methodology for evaluating EEE is based on a non-radial
DEA model proposed by Wu et al. [6] for 2006–2008, 2010, 2012, and 2014–2016, using the available data
for the European countries which represent DMUs. The second aim of the paper is the introduction of
the TOPSIS method in the evaluation of EEE, where the TOPSIS method is used for the ranking of
DMUs. The evaluation of transport EEE has been done under the joint production framework, using
non-energy inputs (labor and transport assets) and energy input (energy consumption) to produce
desirable outputs (volume of passenger and freight transport) and undesirable output (GHG emissions).
Aside from other widely used non-radial DEA models such as Slack-based models, Russell measure
models, and Directional distance function, in this paper, the non-radial DEA model has been chosen
due to its ability to use different non-proportional adjustments, with decision maker specified weights
assigned to each efficiency score, and because of its ability to proportionally decrease the amounts of
energy inputs and undesirable outputs simultaneously as much as possible [5,6].

The main contributions of this study are: (i) a newly systematic literature review in the field
of transport EEE evaluation, (ii) a new definition of transport EEE, (iii) the evaluation of EEE with
an extended set of used inputs, (iv) the evaluation of EEE of road, air, and rail transport sectors of
European countries and their changing tendencies in terms of the EEE, (v) use of non-radial DEA and
introduction of the TOPSIS method through DMUs ranking in the evaluation of transport EEE, as well
as the comparison of their results and the identification of the most suitable one for the evaluation of
the transport EEE. Based on the evaluation with the non-radial DEA model all stakeholders can create
a sense of tendencies in terms of EEE of EU transport sectors. Through the introduction of the TOPSIS
method for the same purpose, the science community can consider it as a potential tool for monitoring
changes regarding EEE.

The following section presents the review of previous papers which have used DEA or TOPSIS
methods in terms of transport EEE evaluation. Section 3 describes the methodology and considers
which DEA model is appropriate for our purpose as well as the adoption of the TOPSIS method.
The data used, DMUs selection, energy input, non-energy inputs, desirable outputs and undesirable
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output for EU countries are described in the second part of this section. Section 4 offers an overview of
inputs and outputs for transport sectors and compares the results produced by non-radial DEA and
the TOPSIS method, as well a discussion related to the obtained results. Finally, the summary of this
study and some future directions in transport EEE evaluation are presented in Section 5.

2. Literature Review

The aim of the literature review was to perform an overview of papers related to the evaluation
of energy efficiency and environment efficiency or both in the field of transport using different DEA
models. In addition, a literature review was conducted as a basis for the process of identification
of inputs and outputs for the non-radial DEA model. Moreover, a literature review was made in
order to confirm the novelty of the introduction of the TOPSIS method in the evaluation and ranking
of DMUs in EEE. Consequently, the literature review was focused on identifying the papers related
to the evaluation and analysis of transport EEE with the DEA and TOPSIS methods, as well as in
their combination.

The search strategy consisted of a literature review of relevant studies published in peer-reviewed
journals within scientific sources such as Ebsco, ScienceDirect, Scopus, Springer, and Taylor and Francis,
without limitation on the time period of publishing. The search, performed on titles, abstracts, and
keywords for English written full-text free-available scientific journal papers, was finished in April 2019.
Conference papers, projects, periodicals, and working papers related to this topic were not included
in our review because they went through a less rigorous peer-review process. The application of
keywords such as “energy efficiency AND Data Envelopment Analysis”, and “environment efficiency
AND Data Envelopment Analysis”, “energy efficiency AND Technique for Order of Preference by
Similarity to Ideal Solution”, and “environment efficiency AND Technique for Order of Preference
by Similarity to Ideal Solution”, as well as the combinations where acronyms of methods were used,
resulted in finding a large number of papers from various fields. To reduce this number, the reading of
abstracts was performed and only the papers that analyzed energy or environment efficiency, and those
that studied the application of the DEA method and the TOPSIS technique for the evaluation of one of
the efficiencies, related to transport were extracted. In the second step, the reading of full texts of these
papers was performed and finally, 35 relevant papers were extracted after removing duplicates.

In terms of the literature, for the evaluation of energy efficiency or environment efficiency, as well as
the EEE evaluation different methods were used; such as-frequently used DEA methods, the Stochastic
Frontier Model (SFA), and the TOPSIS method [7]. Judging by the number of papers reviewed in [4,5],
it could be said that numerous studies used DEA for evaluation of energy efficiency or environment
efficiency, as well as for EEE evaluation.

Initially, numerous papers dealing with the evaluation of energy efficiency considered energy
consumption as input within a production framework without considering undesirable outputs.
Four perspectives treating undesirable outputs could be found in the literature, such as: undesirable
variables treated as inputs, undesirable measures treated by distinguishing between weak and strong
disposability, integration of undesirable outputs into DEA models through the classification of
invariance property where classifications of efficiencies and inefficiencies are invariant to the data
transformation, and those where operational and environmental performance can be divided into two
aspects using a measure of efficiency referred to as the range-adjusted measure [8]. Consequently,
Zhou and Ang [9] proposed several DEA models within a joint production framework for energy
efficiency evaluation, including undesirable outputs that were not considered in earlier proposed DEA
models for energy efficiency evaluation.

Additionally, a considerable amount of studies employed DEA in transport EEE evaluation.
Some papers applied DEA in transport energy efficiency or environment efficiency evaluation,
while certain studies conducted the evaluation of transport EEE.

In this section, reviewed papers are categorized in terms of the used DEA models and the TOPSIS
method, studied field (energy or environment efficiency, or EEE), inputs and outputs used in the
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evaluation (see Table 1), as well as in terms of definitions of energy efficiency, environment efficiency
or EEE. Papers in which inputs and outputs were not classified as desirable and undesirable were
classified separately in one special group.

2.1. Review of Methods and Techniques for Transport Energy Efficiency, Environment Efficiency,
and EEE Evaluation

A large number of studies have presented extensions to basic DEA models such as incorporation of
undesirable outputs, using efficiency measures (radial, non-radial, slack-based, hyperbolic, directional
distance function), investigating changes in efficiency over time [4,5]. A radial DEA model has been
used by Ramanathan [10] to compare the energy efficiency of rail and road transport in India, while in
terms of the radial DEA model, Ramanathan [11] has presented an extended DEA model to estimate
the energy consumption of the same modes of transport, resulting in a pre-specified DEA efficiency.
Additionally, non-radial DEA models have been presented and have been used by Zhou and Ang [9]
for measuring the energy efficiency performance of 21 OECD countries.

Different DEA models have already been proposed for energy and environment, as well as
energy-environment efficiency evaluation. Regarding transport EEE evaluation, some authors have
used traditional DEA models as a support tool for evaluating eco-efficiency for the different types
of bioethanol transportation [12] and to evaluate the relative energy efficiency of rail, road, aviation
and water transport [13]. Some models with particular modifications have been used for transport
EEE analysis, such as radial and non-radial DEA models [8] taken from Zhou and Ang [9], a virtual
frontier benevolent DEA cross efficiency model [14], a three-stage virtual frontier DEA model [15],
a slack-based measure (SBM) DEA model [16,17], a non-radial SBM-DEA model [18–20], a parallel
DEA approach [6], and parallel SBM-DEA model [21]. Furthermore, several papers have presented
EEE evaluation in combination with other methods, such as an improved non-radial SBM-DEA model
with window analysis [21] and Tobit regression, a super-efficiency SBM model with a window DEA
model [22], bootstrapped data DEA-VRS models, DEA and directional distance functions to compute
Leunberger productivity [23], economic input output life cycle assessment (EIO-LCA) and DEA by
Egilmez and Park [24].

2.2. Review of Transport Energy Efficiency Evaluation

One of the first papers in road and rail transport energy efficiency evaluation and analysis of
changes over time in India using DEA was presented by Ramanathan [10]. The presented approach
was further extended by Ramanathan [11] in order to project energy consumption and estimate
environmental efficiency for the periods 2005–2006 and 2020–2021. The transportation energy efficiency
was evaluated by Cui and Li [15] for provincial administrative regions of China. Additionally,
Zhou et al. [8] examined maximum energy-saving potential of the transport sector in 30 administrative
regions of China. Moreover, the energy efficiency of 11 airlines was studied by Cui and Li [25].
Energy consumption by road, rail, aviation, and water transport modes using a DEA model and
future transport energy consumption using an extended DEA model in China for the period from
1971 to 2011 were estimated by Lin et al. [13]. The transportation energy efficiency of Yangtze
River Delta’s 15 cities in the period from 2009 to 2013 has been studied by Chen et al. [26]. Then,
Feng and Wang [27] have analyzed energy efficiency and the savings potential in China’s transportation
sector. Using DEA-cooperative game approach, Omrani et al. [28] have evaluated energy efficiency of
transportation sector of 20 provinces in Iran.

2.3. Review of Transport Environment Efficiency Evaluation

The environmental efficiency of the transportation sector for 30 Chinese provinces was analyzed
by Chang et al. [18]. The evaluation of the environmental performance for the transport industry was
also elaborated upon by Beltrán-Esteve and Picazo-Tadeo [23]. Their study focused on changes in
the environmental performance from eco-innovation and catching up with the best environmental
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technologies. An empirical study was conducted for 38 countries, including European, for the periods
1995–96 and 2008–09. Similarly, in terms of Europe, energy efficiency trends of five energy industries,
including transport for 23 EU countries over the period 2000–2009 were evaluated by Makridou et al. [29]
using DEA combined with the Malmquist productivity index. However, Hu and Honma [30] employed
SFA in the evaluation of energy efficiency of OECD countries for 10 industries, including transport.
Song et al. [31] presented a measurement of the environmental efficiency of highway transportation
systems in 30 regions of China. The assessment of the environmental efficiency was conducted by
Park et al. [19] through estimation of carbon efficiency and potential carbon reduction for 50 U.S.
states. Additionally, Chang [20] analyzed the environmental efficiency of ports in Korea and estimated
potential CO2 emission reduction by ports in the country. Furthermore, Leal Jr et al. [12] evaluated
eco-efficiency for chosen bioethanol transportation modes (roadway, railway, waterway, and pipeline)
in Brazil. Some papers evaluated transport sectors in terms of several different viewpoints. Overall
and individual environmental efficiency and resource use of 30 Chinese regional railway transport
and highway transport subsectors were evaluated by Liu et al. [21]. Using SBM-DEA Chang and
Zhang [32] have evaluated carbon efficiency of transportation sectors in China and Korea. In addition,
with SBM-DEA model, Chu et al. [33] have analyzed environmental efficiency of transport systems.
Chang et al. [17] studied environmental and economic efficiency of 27 global airlines. Analyzing
impacts of the European Union Emission Trading Scheme (EU ETS) on airline performance was
presented in [34]. Dynamic Environmental DEA was used for analyzing the impacts of 18 large global
airlines from 2008 to 2014. Li et al. [35] conducted an analysis of impacts of included aviation into
EU ETS on airline efficiency for 22 international airlines from 2008 to 2012 through three stages—i.e.,
operations, services and sales—using a Network Slacks-Based Measure with weak disposability and
Network Slacks-Based Measure with strong disposability. Technical and environmental performance
evaluation for major airlines from China, north Asia, and Europe over the period 2007–2010 was
studied by Arjomandi and Seufert [36]. Egilmez and Park [24] quantified transportation related carbon,
energy and water footprints of U.S. manufacturing sectors and evaluated environmental vs. economic
performance based on eco-efficiency scores.

2.4. Review of Transport Energy-Environment Efficiency Evaluation

Regarding energy-environment efficiency, Wu et al. [6] measured energy and environment performance
of passenger and freight transportation subsystems of 30 provincial-level regions in mainland China.
The energy-environmental efficiency of road and railway sectors of 30 provinces in China was presented
by Liu et al. [21]. Total factor energy and environmental efficiency of 30 of China’s regional transportation
sectors in terms of energy saving and CO2 emission reduction were elaborated by Liu and Wu (2015).

Different non-energy and energy inputs, as well as desirable and undesirable outputs, were used
in the process of energy or environmental and energy-environment efficiency evaluation with presented
DEA models (Table 1).

Table 1. Inputs and outputs in transport EEE evaluation.

Author(s) Sectors Energy Inputs
Non-Energy

Inputs
Desirable Outputs

Undesirable
Outputs

Wu et al. [6]

passenger
subsystem

energy consumption
volume

passenger seats;
capital; highway

mileage

passenger turnover
volume CO2 emissions

freight
subsystem

energy consumption
volume

cargo tonnage;
capital; highway

mileage

freight turnover
volume CO2 emissions

Zhou et al. [8] /
million ton coal

equivalence labor passenger kilometers;
tons-kilometers CO2 emissions

Ramanathan [2,3] rail, road energy consumption /
passenger kilometers;

ton- kilometers /
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Table 1. Cont.

Author(s) Sectors Energy Inputs
Non-Energy

Inputs
Desirable Outputs

Undesirable
Outputs

Leal Jr. et al. [4]
road, rail,

water, and
pipeline

total energy consumption;
atmospheric pollution;

GHG emission; quantity of
used lubricating oil
discarded during

maintenance

/
freight revenue

received, the total cost
of accidents

/

Lin et al. [5]
road, rail,

aviation, and
water

energy consumption /
passenger kilometers;
freight ton-kilometers /

Cui and Li [6] /
energy consumption

volume labor; capital
freight turnover

volume; passenger
turnover volume

/

Liu and Wu [7] /
the volume of energy

consumed labor; capital
a value-added amount
in the transportation

sector
CO2 emissions

Chang et al. [8] /
the volume of energy

consumed labor; capital GDP by transportation
sector CO2 emissions

Park et al. [9] / energy consumption capital expense;
labor value added (GDP) CO2 emissions

Chang [10] ports energy consumed labor; capital cargo tonnage; vessel
tonnage CO2 emissions

Liu et al. [11]

railway /
railway length;

locomotives
passenge turnover;

freight turnover CO2 emissions

highway /
highway length
and automobiles

passenger turnover;
freight turnover CO2 emissions

Cui and Li [12] airline tons of aviation kerosene labor; capital

revenue ton kilometers;
revenue passenger

kilometers; total
business income

CO2 emissions

Chen et al. [13] / energy consumption labor; capital passenger volume and
freight volume carbon dioxide

Omrani et al. [14] /
consumption volume of

gasoline, oil gas and
nature gas

labor; capital
GDP; passenger

kilometers (PKM) and
tone kilometers (TKM)

emission of
greenhouse gases

Song et al. [15] highway gasoline consumption;
diesel consumption

highway mileage;
employed
population

passenger capacity;
passenger turnover;

freight volume; freight
turnover

nitrogen oxide;
particulate matter

emissions; the
equivalent sound
level of road noise

Chu et al. [16] / energy labor; capital value-added CO2 emissions

Arjomandi and
Seufert [17] airline / labor; capital ton kilometres

available (TKA)

CO2 emissions
(only for

environmental
efficiency model)

Cui et al. [18] airline aviation kerosene number of
employees total revenue greenhouse gas

emission (GHG)

2.5. Review of Unclassified Inputs and Outputs

Moreover, some unreasonably classified and unsorted variables, such as available seat kilometers
(ASK) with fuel consumption added as inputs, revenue per ton kilometers (RTK) as output and carbon
emissions as undesirable output to estimate the environmental efficiency of airlines were employed in
Chang et al. [17]. Cui and Li [37] evaluated the transportation carbon efficiency through inputs such as
carbon dioxide emissions, number of employees in the transportation sector, and transportation service import
volume for each selected country, while freight and passenger turnover volume were used as outputs.
The evaluation was conducted with a virtual frontier DEA, while for the investigation of factors of
the impact of carbon efficiency was made with Tobit regression. Cui et al. [38] evaluated factors that
influence airline energy efficiency. The evaluation was performed using the Virtual Frontier Dynamic
Slacks Based Measure, where the number of employees and aviation kerosene are used as the inputs,
while revenue ton kilometers, revenue passenger kilometers and total business income are the outputs. The
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evaluation of impacts of including aviation into EU EST on airline efficiency, for each stage Li et al. [35]
defined inputs and outputs. Within the operations stage, the number of employees and aviation kerosene
were used as inputs, while available seat kilometers and available ton kilometers were used as outputs.
For service stage, inputs were the available seat kilometers, available ton kilometers and fleet size, while
outputs were the revenue passenger kilometers and revenue ton kilometers and undesirable output is
greenhouse gas emission (the unique undesirable output). The revenue passenger kilometers, and the revenue
ton kilometers and sales costs were inputs within the sales stage, while the total business income was output
for this stage. In addition, through stages—i.e., operations and carbon abatement stages, Cui and Li [34]
have evaluated the airline energy efficiency using Network SBM with weak disposability. Salaries,
wages and benefits, fuel expenses and total assets were used as inputs within the operation stage, while
revenue passenger kilometers, revenue ton kilometers and estimated carbon dioxide represented outputs.
In carbon abatement, stage inputs were estimated carbon dioxide and abatement expense, while carbon
dioxide represented the output. In measuring the energy efficiency of airlines Li et al. [35,39] Virtual
Frontier Dynamic range adjusted measure was used, where the number of employees and tons of aviation
kerosene represented inputs, while outputs were revenue ton kilometers, revenue passenger kilometers, and
total business income.

In Beltrán-Esteve and Picazo-Tadeo [23] three environmental pressures—i.e., global warming
potential, tropospheric ozone formation potential and acidification potential were used as inputs, while the
economic outcome of the transport industry was used as an output which was measured using real gross
output in purchasing parity power in evaluation environmental performance. The three environmental
impact categories, i.e., carbon footprint, water footprint and energy footprint represented inputs, while a
single output was $/ton-km carriage, used by Egilmez and Park [24] for evaluation of environmental vs.
economic performance of manufacturing sectors.

2.6. Review of Application of TOPSIS Method for Transport EEE Evaluation

In the field of transport EEE evaluation, the real picture regarding the TOPSIS method is rather
different compared to DEA. One could find a few studies where the TOPSIS method was employed
in the field of the estimation of environmental efficiency of thermo power plants [40], decision
making among various alternatives in eco-efficient chemical processes design [41], benchmarking
building energy performance [42], selection of optimal solutions for energy consumption and thermal
comfort [43], finding optimal solutions for district heating systems through various aspects such as
fuel, temperature regime, level of building energy efficiency [44]. Moreover, Wang et al. [7] have used
the TOPSIS method to analyze the overall hydropower efficiency in Canada from different points of
view, which imply environment, technology, economy, benefits and social responsibility. However,
the application of the TOPSIS method in the evaluation of transport EEE is not present in the literature.

2.7. Review of Definitions of EEE

Several papers have presented definitions of energy efficiency or environment/environmental
efficiency. For example, eco-efficiency in Egilmez and Park [24] was defined as “the ratio of total
economic activity in million dollars to the overall environmental impact”. Transport energy in Cui and
Li [15] was defined as “an efficiency, which is calculated by comparing the relationship between the
outputs and the inputs”. Additionally, Cui and Li [25] have considered energy efficiency for airlines
as “the relationship between the outputs and the inputs”. Environmental performance has been
defined by Beltrán-Esteve and Picazo-Tadeo [23] as “the quotient between economic performance and
ecological performance”. Since the definitions of EEE of transport are missing in the reviewed papers,
in this paper energy-environment efficiency of transport sectors is defined as the ratio of the total amount
of energy consumption to production of GHG emissions as a result of the transportation process.
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3. Methodology

DEA, as a type of multi-criteria decision analysis (MCDA) method, has mainly been applied
for evaluation of relative efficiency. Additionally, it has been used as a benchmarking tool rather
than choosing alternatives as the best solutions or directions in traditional decision making [4].
For measuring energy and environment efficiency, in the literature, radial and non-radial models are
the two most widely used in DEA [21]. Radial DEA models proportionally decrease the amount of
inputs and outputs, which may have weak discriminating power [6], lead to partial ranking in which
most of the DMUs have the same score of efficiency [45], as well as occurrence of difficulties in ranking
the environmental performance of efficient DMUs [20]. When including the environmental variable
in the model, efficiency measuring is a challenging task because the environmental pollutant need
not increase or decrease proportionally with outputs or inputs [19], and, consequently, non-radial
DEA has a higher discriminating power than radial in the environmental performance thanks to
non-proportional adjustments of different inputs/outputs in comparing DMUs [4]. Radial models
also need to especially treat a negative or zero value in a data set; they do not have the property
of “translation invariance” so cannot directly handle zero [46]. In addition, they do not provide
information regarding the efficiency of the specific inputs and outputs included in the process [18,20,47].
To overcome such weaknesses, non-radial models have been developed are widely used in empirical
research [21,48]. According to Lui et al. [21], the non-radial DEA model also causes less bias.

In this paper, a two-step methodology for the evaluation of transport EEE of EU countries has
been employed. In the first step, the non-radial DEA model proposed by Wu et al. [6] has been used for
the evaluation of transport EEE. The proposed non-radial model provides the use of decision makers’
specified weights, different non-proportional adjustments, and proportionally decreases several energy
inputs and undesirable outputs simultaneously to the degree possible. However, based on the fact that
the DEA method, in the case of the same efficiency of two DMUs, cannot rank DMUs and provide
evaluation of DMUs with simultaneously minimization and maximizations of inputs and outputs,
we have proposed a Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) as an
MCDA method for benchmarking the alternatives—i.e., decision making units (DMUs), detecting the
best practices based on alternative rank and evaluation of transport EEE.

Hence, the TOPSIS method has been proposed to rank DMUs, and simultaneously compare
efficiency scores vs. DEA results. Based on the content of TOPSIS—i.e., consideration of DMUs from
different viewpoints (for example, through inputs and outputs that are presented as cost criterion and
a beneficial criterion) this method was introduced for evaluation and ranking of DMUs for monitoring
changes of EEE. Consequently, for this purpose the following research hypothesis was defined: Any
similarity between the results of the evaluation and analyzing of EEE through the application of
non-radial DEA model and TOPSIS method does not exist.

In these terms, questions that this paper endeavors to answer involve changes to EEE for EU
transport sectors and the suitability and applicability of the TOPSIS method in the evaluation of EEE.
Therefore, the objective of this paper is not to study factors of EEE, but rather to evaluate the EEE for
EU transport sectors using the non-radial DEA model and consider the utility of the TOPSIS method
regarding evaluation of EEE.

3.1. A Brief Description of DEA Method

The DEA method was proposed by Charnes et al. [49] and presents a non-parametric frontier
approach for evaluating the relative efficiency of a set of entities, DMUs, with multiple inputs and
outputs [9,10,50]. A major stated advantage of DEA is that it does not require prior assumptions
regarding underlying functional relationships between inputs and outputs [4] and weights for input
and output is calculated based on the input oriented Charnes, Cooper and Rhodes (CCR) DEA model [4]
that can be written as: minθ; s.t Xλ ≤ θxi, Yλ ≥ yi, λ ≥ 0, where X and Y represent a set of vectors of
inputs and outputs, respectively. θ represents a goal function of technical efficiency where θ ∈ [0, 1].
Based on the result, θ indicates how much an evaluated entity could potentially reduce its input
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vector while holding the output constant. The presented CCR model exhibits the constant returns
to scale (CSR), but with additional constraint

∑
λ = 1, the CCR model becomes the classical Banker,

Chames and Cooper (BCC) model that allows the variant to return to scale (VRS) [4,51].

3.1.1. DEA Method for EEE Evaluation

DEA is strongly related to production theory, where raw materials and resources are treated as
inputs, while products are treated as outputs in the production process [5,9]. Then, in the production
process, in terms of evaluation of energy and environmental efficiency, desirable and undesirable outputs,
are jointly produced by consuming both energy and non-energy inputs, where x, e, y and u are vectors
of non-energy inputs, energy inputs, desirable outputs, and undesirable outputs, respectively. The joint
production process can be represented as T =

{
(x, e, y, u); (x, e) can produce (y, u)

}
.

Based on that let’s assume that there are K DMUs, and each DMU uses n non-energy inputs and l
energy inputs in order to produce m desirable outputs and j undesirable outputs denoted respectively
as x = (x1K, . . . , xnK), e = (e1l, . . . , xLK), y = (ymK, . . . , ymK), u =

(
u1K, . . . , uJK

)
. Then, environment

DEA production technology T exhibiting constant returns to scale (CRS) and incorporating undesirable
outputs can be written as:

T =
{
(x, e, y, u) :

∑K

k=1
λkxnk ≤ xn, n = 1, . . . , N (1)

∑K

k=1
λkelk ≤ el, l = 1, . . . , L, (2)

∑K

k=1
λkymk ≥ ym, m = 1, . . . , M, (3)

∑K

k=1
λkujk = uj, j = 1, . . . , J, (4)

where λk ≥ 0, k = 1, . . . , K.
Based on this, T reference technology, radial model, modified-radial, and non-radial models

such as the Russell measure model, tone’s slack-based model, range adjusted model and directional
distance function model are used in energy efficiency and carbon emission efficiency in the literature.
Additionally, there are four types of returns to scale (RTS) such as constant RTS (CRS) which is the most
commonly used RTS category, non-increasing RTS (NIRS), non-decreasing RTS (NDRS) and variant
RTS (VRS), where each of them reflects reference technology [5].

There are several DEA-type models, radial and non-radial, for pure energy efficiency evaluation
with consideration of undesirable outputs, some of which can be used for estimating potential energy
saving [9]. The radial model aims at reducing energy inputs as much as possible for the given level
of non-energy inputs, plus desirable and undesirable outputs. Since the radial model has weak
discriminating power in energy efficiency comparisons and does not consider energy mix effects,
non-radial models for energy efficiency evaluation is also proposed in [8,9]. Therefore, the application
of non-radial DEA models for energy efficiency evaluation considering undesirable outputs and
maximized energy-saving potential, all under CRS, NIRS and VRS were presented in [8]. For example,
if in the model (M) instead of limitation (5) we write

∑K
k=1 λk ≤ 1,

∑K
k=1 λk ≥ 1 or

∑K
k=1 λk = 1,

we receive non-radial model under NIRS, NDRS, and VRS, respectively. However, their non-radial
models also attempt to reduce energy inputs as much as possible for the given level of non-energy
input, desirable and undesirable outputs. In other words, their non-radial models do not consider
reduction of undesirable outputs.

3.1.2. Non-Radial DEA Model for EEE Evaluation

Radial and non-radial DEA models for evaluating DMUs’ total-factor energy and environment
efficiency have been presented in Wu et al. [6]. To overcome all disadvantages of the presented radial
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model, following [52,53], in [6] the radial DEA model has been extended to the following non-radial
model (M) for energy-environment efficiency evaluation as:

EEEI = min
1
2
(

1
L

∑L

l=1
θl +

1
J

∑J

j=1
θ j) (5)

s.t. ∑K

k=1
λkxnk ≤ xn0, n = 1, . . . . . .N (6)

∑K

k=1
λkelk ≤ θlel0, l = 1, . . . . . . L (7)

∑K

k=1
λkymk ≥ ym0, m = 1, . . .M (8)

∑K

k=1
λkujk = θ juj0, j = 1, . . . . . . J (9)

λk ≥ 0, k = 1, . . . , K.
The model (M) will be used in this paper for EEE evaluation of EU transport sectors. The main

advantage of the non-radial model (M) is that it proportionally decreases several energy inputs and
undesirable outputs as much as possible for the given level of non-energy inputs and desirable outputs.
The optimal values of energy-environment efficiency index (EEEI) are in the interval between 0 and 1.
An entity with a higher value of EEEI has better EEE in terms of other entities. However, if the entity
has EEEI equal to 1 it means that entity is the best, located on the frontier, and could not reduce energy
input and undesirable output. Another benefit of the model is that (M) can consider energy input mix
effects and undesirable outputs mix effects in the evaluation of EEE [6]. Such non-radial model (M) is
suitable for EEE evaluation because it has a relatively strong discriminating power and capability to
expand desirable outputs, simultaneously reducing undesirable outputs. Additionally, benefit lies
in the fact that unified efficiency can be calculated through DM specified weights assigned to each
of these two efficiency scores and depends on the preferences between energy use and environment
protection performance. However, we have retained the weights as in the paper Wu et al. [6] and both
are set to 1/2. These weights point to the similarity of the model (M) with TOPSIS method. Based on
the all above pointed out simultaneous benefits in comparison to other non-radial DEA models and
the fact that EEE evaluation in this paper couldn’t be considered to be a dynamic change over time,
we have chosen non-radial DEA model (M) by Wu et al. [6] for evaluating energy-environment efficiency.

3.2. Background of the TOPSIS Method

In this paper, the TOPSIS method proposed by Hwang and Yoon [54] has been employed as a
decision-making tool to aid DMs in trade-off the whole DMUs. In the literature, this method has
received much interest from researchers and practitioners that confirmed a wide range of real-world
applications across different fields and specific sub-areas [55]. This method is based on the assumption
that the selected alternative is to be at the least possible distance from the ideal positive solution
and ideal negative solution. As one of the best and most frequently used methods, MCDM implies
overall assessment, comparison, and ranking of alternatives. DEA divides DMUs into efficient and
inefficient [49]. However, the question is, which of these efficient DMUs can be located in the higher
position [56]. Based on that, it can be concluded that total discrimination of the DEA method can be
low in some cases, especially in terms of differentiating efficient DMUs.

Therefore, our paper has included the TOPSIS method for finding the best alternative—i.e.,
for ranking and solving the drawbacks of the DEA method. Moreover, besides the fact regarding the
great variety of existing DEA ranking methods, ranking DMUs such as cross-efficiency, super-efficiency,
benchmarking, statistical techniques and so on, all consider DMUs only from one point of view—i.e.,
input-oriented or output-oriented views [56].

Consequently, an additional reason for selection of TOPSIS for EEE evaluation and ranking of
DMUs is based on the content of TOPSIS—i.e., DM intention to rank DMU with the best ranking score
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closer to the positive ideal and to have the greatest distance from the negative ideal solution, and the
ability of consideration of DMUs from both pessimistic and optimistic viewpoints—i.e., inputs and
outputs, such as a cost and benefit criterion [56,57].

After application of DEA, the TOPSIS method was used to evaluate and rank DMUs to present
the behavior of DMUs. For our purpose, the TOPSIS method has been employed for road, rail and air
transport sectors following the steps in [7,43]:

1. Forming the decision matrix X =
[
xij

]
n×m

; i = 1, 2, . . . , n; j = 1, 2, . . .m. Within the decision
matrix, alternatives represent DMUs—i.e., European countries (Table 2), while for the criteria
inputs and outputs for non-radial DEA model (Table 3) were chosen.

2. Normalization of decision matrix X in order to obtain normalized decision matrix R =
[
rij
]
n×m

by

the vector normalization method that is presented as rij = xij/
√∑n

i=1 x2
i j.

3. Calculation of the weight normalized decision matrix as V =
[
vij

]
n×m

=
[
wjrij

]
n×m

, where wj is a
weight given to criteria from DM and sum of weights

∑m
j=1 wj = 1. This method is appropriate

for decision making which is based on criteria of different importance.

Table 2. EU countries and abbreviations.

DMUs-Countries

Belgium (BE), Bulgaria (BG), Czech Republic (CZ), Denmark (DK), Germany (DE), Estonia (EE), Ireland (IE),
Greece (EL), Spain (ES), France (FR), Italy (IT), Cyprus (CY), Latvia (LV), Lithuania (LT), Luxembourg (LU),
Hungary (HU), Malta (MT), Netherlands (NL), Austria (AT), Poland (PL), Portugal (PT), Romania (RO),
Slovenia (SI), Slovakia (SK), Finland (FI), Sweden (SE), United Kingdom (UK), Croatia (HR)

Table 3. Variables for road, rail and air transport sectors.

Inputs/Outputs Road Rail Unit Air Unit Category

Labor
√ √

person in thousands
√

person in thousands NEI1
1

Number of assets
√ √ number in

thousands
√

total NEI 2

Volume of energy consumption
√ √

Mtoe
√

Mtoe EI 1

Volume of freight transport
√ √

thousands mio pkm
√

thousands ton DO1
3

Volume of passenger transport
√ √

thousands mio pkm million passengers DO2

GHG emissions
√ √

MtCO2e 4 √
MtCO2e UDO 5

1 Non-energy input; 2 Energy input; 3 Desirable output; 4 Million ton of CO2 equivalent; 5 Undesirable output.

In our paper, different weights have been delegated to each criterion for each transport sector.
We have assigned the same weights to criteria for each year for the road transport sector, i.e., the
number of employees (wi = 0.14), passenger cars (wi = 0.15), freight vehicles (wi = 0.15), energy consumed
(wi = 0.18), volume of passengers (wi = 0.1), freight transport (wi = 0.1), and GHG emissions (wi = 0.18).

The weights for criteria in the rail transport sector were the number of employees (wi = 0.16), total
number of locomotives and railcars (wi = 0.18), y (wi = 0.2), y (wi = 0.13), realized ton kilometers (wi = 0.13),
and GHG emissions (wi = 0.2). Finally, in the air transport sector we assigned the next weights to
criteria: number of employees (wi = 0.18), the total number of aircraft by age (wi = 0.16), energy consumed
(wi = 0.2), amount of transported goods (wi = 0.13), number of transported passengers (wi = 0.13), and GHG
emissions (wi = 0.2).

4. Determination of positive ideal and negative ideal solutions is denoted as A+ and A−, respectively.
In our case, A+ and A− represent the most efficient DMU and the most inefficient DMU, respectively,

demonstrated as: A+ =

{(
max

i
Vij

∣∣∣∣∣∣ j ∈ J+

)
,
(

min
i

Vij

∣∣∣∣∣∣ j ∈ J−
)∣∣∣∣∣∣i = 1, 2, . . . n

}
=

{
V+

1 , . . . , V+
m

}

and A− =

{(
min

i
Vij

∣∣∣∣∣∣ j ∈ J+

)
,
(

max
i

Vij

∣∣∣∣∣∣ j ∈ J−
)∣∣∣∣∣∣i = 1, 2, . . . n

}
=

{
V−1 , . . . , V−m

}
, where J+ =
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( j = 1, 2, . . .m) and J− = ( j = 1, 2, . . .m) are associated with benefit and cost criteria, respectively.
In our research benefit criteria represent desirable outputs, while cost criteria include energy
input, non-energy inputs and undesirable output (Table 3).

5. Calculation of the separation measure between each alternative by Euclidean distance.
The separation of each alternative from the positive ideal is given as S+

i =√∑m
j=1

(
Vij −V+

j

)2
, i = 1, 2, . . . n, while the separation from the negative ideal is given as

S−i =

√∑m
j=1

(
Vij −V−j

)2
, i = 1, 2, . . . n.

6. Calculation of the relative closeness Ai to the positive ideal solution A+ defined as

Ci = S+
i /

(
S+

i + S−i
)
, 0 < Ci < 1, i = 1, 2, . . . n. If Ci = 1, it is clear that DMU is the most

efficient, and if Ci = 0 then DMU is the most inefficient. DMU is closer to the most efficient as Ci
approaches 1.

7. Ranking the alternatives—i.e., DMUs according to Ci, where a higher value of Ci denotes a better
solution in terms transport EEE.

3.3. Selection of Data Set and DMUs

Energy-environment efficiency (EEE) of European road, rail and air transport sectors was examined.
EEE of these transport sectors was analyzed for countries presented in Table 2.

Each country was defined as a DMU for conducting the non-radial DEA model. There were
different rules of thumb for DMUs’ number. According to Golany and Roll (1989) in order to make sure
that the model was more discriminatory, the number of DMUs should be at least twice the number of
inputs and outputs considered. Each of the DMUs was analyzed according to the road, rail and air
transport sectors. DMUs were examined based on inputs and outputs represented in Table 3.

An empirical study was performed based on the available data set collected and compiled from
“EU energy and transport in figures-statistical pocketbook” for 2006–2008, 2010, 2012–2018 [58–67].
However, only data for a number of assets, the volume of passengers and freight transport for air sector were
combined with data from “Eurostat”. This combination was made because the data for the number
of assets, volume of passengers and freight transport for the air sector did not exist in the same form as
the data for the road and rail sectors. For the air sector in the EU statistical pocketbooks, there is only
the volume of traffic such as revenue ton kilometers and revenue passenger kilometers between member
states, and similar data only for major airlines-but they are not represented for each country separately.
The period of analyzing allowed us to track the changing trends in terms of EEE after the White
Papers had been published. In case of absence of some data for energy input or undesirable output for
particular DMU, the DMU was immediately eliminated from analysis. Consequently, in order to get
reliable results, all numbers in the DEA had to be strictly positive (no zero values). This was mostly
the case with the rail and air sectors.

During the application of DEA method, variables for outputs were chosen based on the research
objective, while inputs were primarily resources used to generate outputs. However, it was essential to
avoid exogenous variables which were not under the complete and direct control of DMUs [68].

Since the selection of inputs and outputs was a difficult task, we mainly chose them according to
the literature review shown in Table 1. However, we added several new inputs, which were important
in transport EEE analysis. Please note that presented inputs and outputs were used as a set of criteria in
the application of the TOPSIS method. The inputs and outputs were selected for the road, rail, and air
transport sectors in conducting non-radial DEA model and the TOPSIS method (Table 3). Their changes
through selected time periods for each transport sector are described in Section 4 and can be seen in
Figure 1a,b, Figure 2a,b and Figure 3. Based on the figures, comparison of transport sectors for each
variable could be derived and it could be also determined, which one consumes minimum inputs and
causes undesirable output for the realization of maximum desirable outputs.
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(a) (b) 

Figure 1. Trends of non-energy inputs for labor (a) and (b) number of assets.

 

(a) (b) 

Figure 2. Trends of energy input (a), desirable outputs (b).

Figure 3. Undesirable output.

Non-energy inputs (NEI) for all sectors were the number of assets (see Table 4), and the number
of employees (labor). The number of assets represented the basic input to form the transport, the main
energy consumers, and had a direct correlation with energy consumption. Therefore, we introduced
them as non-energy inputs. Figure 1 represents the changes of labor (Figure 1a) and the number of
assets (Figure 1b) represented as a sum for selected countries per each sector.

Table 4. Number of assets for road, rail and air transport.

Road transport Passenger Vehicles: Stock of Registered Vehicles Including Buses, Coaches, and Passenger Cars

Freight vehicles: good vehicles and powered two-wheelers

Rail transport Total number of locomotives and railcars

Air transport Total number of aircraft by age

Energy input (EI) represents the amount of energy consumed by each country per road, rail and
air transport sectors expressed in million ton oil equivalent. Figure 2a shows the trend of energy
consumption by each sector in terms of the selected period.

Desirable outputs (DO) involved a volume of passengers and freight transport (Figure 2b). For road
transport sector volume of passenger transport represented a sum of realized kilometers by passenger
cars, buses, and coaches, while the volume of freight transport consisted of realized national and
international haulage. Regarding the rail transport sector, realized passenger and ton kilometers
represented a volume of passenger and freight transport. In terms of air transport sector, the volume
of passenger and freight transport represented the amount of transported goods and number of
passengers, respectively.
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Undesirable output (UDO) was the total amount of greenhouse gas emissions by chosen sector.
Figure 3 shows the trends of undesirable output as a sum for all selected countries for all sectors.

4. Results and Discussion

4.1. Analysis of Inputs and Outputs

Figure 1, where labor and number of assets for the road, rail and air transport sectors in European
countries were shown, indicated that the road sector had a dominant number of employees, followed
by the air and rail transport sectors. Within the road sector, the number of employees increased year by
year with an insignificant decrease in 2010 and the largest number in 2008. In rail transport the number
of employees continuously decreased until 2012, after that it started do slightly increase, while in air
transport there was an increase from 2006 to 2008, an decrease from 2010 to 2014, when the number of
employees was the lowest, after that it started again slightly to increase. These trends of road and
air transport could be the result of the economic crisis. However, almost constant reduction of the
number of employees in the rail and air transport sectors could be the consequence of the intensive
improvement of economic efficiency, which does not include any measurement regarding employment
(or unemployment). Regarding the number of assets, the leading sector was again the road sector,
primarily in terms of passenger vehicles. The road sector showed steady growth of several assets,
while the rail sector highlights continuously decrease. Several assets gradually increased after 2006 in
the air sector and it were slightly reduced in 2012.

Trends of energy input, desirable outputs and undesirable output are shown in Figure 2a,b and
Figure 3, respectively. The volume of energy consumption in the rail sector was the lowest as compared
to the road and air sectors. Energy volume was reduced in road, rail and air after 2008 and started
again to increase after 2012. Reasons for decreasing energy consumption could be found in the increase
of oil prices and the strategy of de-carbonization. These reasons were especially notable in air transport
which had more dominant freight transport as compared to passenger transport, even though both
showed constant growth. Please note that the volume of both types of transport in air sector was
expressed in thousand ton and millions of passengers. The volume of rail passenger and freight
transport was increasing up to 2008, after which it continued to dominate and showed growth in
2012. However, passenger transport was reduced. The volume of freight and passenger transport
in road transport was reduced in 2008, after which the volume of freight transport decreased, while
the volume of passenger transport was constantly dominant, with a slight reduction in 2012. As for
GHG emissions, gradual reduction in road, rail, and air until 2014 could be noted, probably due to
technological advances in vehicles and sources of energy, as well as more stringent standards [23].
After 2014 in road and air transport the volume of GHG emissions started to increase, while in rail it
remained unchanged.

4.2. Results of DEA Method

In this part of the paper, based on the objective of the study, the results of the application of the
non-radial DEA model are presented. At this point, the potential factors of EEE are only mentioned,
without any statistical or other analysis.

All DEA results were calculated by Excel Solver. The calculation was conducted for each transport
sector separately and for each year. The availability of data was the best in terms of road transport
sector, followed by air and rail.

The results for the road transport sector (Tables 5 and 6) indicated that the best EEEI for countries
was in the green cells each year, meaning that these countries were relatively energy-environment
efficient. The countries in red cells with the least EEEI were: Cyprus (CY) in 2006, 2008, 2010, 2012,
2014–2016, and Austria (AT) in 2007. Please note that EEEI was improved for both countries in 2012
and 2014 as compared to previous years, but after 2014 it slightly deteriorated. Regarding Cyprus (CY)
it can be seen (see supplementary material) that in these years, all values of data for desirable variables
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were lower, while those for undesirable were higher in comparison with other DMUs. However,
Austria (AT) was inefficient, probably due to a higher number of undesirable variables in comparison
to other DMUs (see raw data in supplementary material). The improvement of EEE in the road
sector could be a result of stricter policy measures through prioritization in de-carbonization with
primary introduction of CO2 emission standards for new passenger cars and heavy vehicles [1,50],
highlighted the use of bioenergy and renewable energy [62], new technologies for vehicles and traffic
management [1], as well as improved conditions of cabotage. The best value of EEEI for each year of
the evaluation was for Lithuania (LT) and Luxemburg (LU), almost each year for Slovakia (SK) and
Slovenia (SI) and thus they could be considered the countries with the best practices. The main reason
lies in the fact that these countries had the lowest values for undesirable variables in comparison
with other DMUs, while desirable variables were higher and comparable with other DMUs (see
supplementary material). It could be also seen that most of the countries improved their EEEI in the
period of 2014–2016, while Ireland (IE) worsened drastically the values of EEEI after 2012.

Table 5. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the road sector
(2006–2012).

Road Sector

DMUs

2006 2007 2008 2010 2012

DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 0.808649 17 0.929032 17 0.319853 19 0.769692 16 1 19

BG 0.546216 11 0.844309 8 0.357289 10 0.958431 9 1 7

CZ 0.637093 15 0.591504 16 0.631525 15 0.658219 18 0.612003 15

DK 1 13 1 14 0.343223 14 0.705374 13 0.91319 12

DE 1 26 1 25 0.444898 25 0.81077 25 1 28

EE 0.617846 5 0.622808 1 0.686869 6 0.708056 5 0.807294 5

IE 1 12 1 13 0.312296 13 1 12 1 14

EL 0.625318 20 0.717725 20 0.288885 20 0.81967 20 1 21

ES 0.564873 24 0.570622 24 0.607714 24 0.538116 23 0.742671 24

FR 0.86936 25 0.821412 26 0.325536 26 1 26 1 26

IT 1 27 1 27 0.289674 27 0.918007 27 0.997767 27

CY 0.419031 10 0.421868 10 0.17257 8 0.353261 8 0.493888 10

LV 0.780133 3 0.776361 5 0.741368 4 1 4 1 4

LT 1 1 1 3 1 2 1 2 1 1

LU 1 9 1 9 1 9 1 7 1 11

HU 0.550362 14 0.612014 12 0.623609 12 0.810149 10 0.941513 9

MT 0.747098 7 0.685189 7 0.091075 5 0.651429 6 0.669092 6

NL 0.605102 21 0.614736 21 0.511777 21 0.535244 21 0.681301 22

AT 0.43343 19 0.409689 19 0.398355 18 0.440404 19 0.490857 20

PL 0.769045 22 0.869976 22 0.697239 22 0.954807 22 0.993453 23

PT 0.560112 18 0.70439 15 0.446918 17 0.61483 17 0.792474 16

RO 1 6 1 4 0.808434 11 0.765552 14 0.78381 17

SI 1 4 1 6 0.753484 3 1 3 1 3

SK 1 2 1 2 1 1 1 1 1 2

FI 1 8 1 11 0.525652 7 0.887975 11 0.917381 13

SE 0.536462 16 0.605111 18 0.415428 16 0.875713 15 0.967949 18

UK 1 23 1 23 0.268397 23 0.878957 24 1 25

HR / / / / / / / / 0.744544 8

Green color: the best EEEI. Red color: the least EEEI.
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Table 6. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the road sector
(2014–2016).

Road Sector

DMUs

2014 2015 2016

DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 1 22 1 24 1 23

BG 1 9 1 10 1 9

CZ 0.735 17 0.762 16 0.705 14

DK 0.705 11 0.705 13 0.709 11

DE 1 25 1 27 1 26

EE 0.841 15 0.918 17 0.867 16

IE 0.769 8 0.716 8 0.695 7

EL 1 7 1 4 1 3

ES 0.732 24 1 25 1 24

FR 1 27 0.932 28 0.948 28

IT 1 26 1 26 1 25

CY 0.549 14 0.523 12 0.475 13

LV 0.898 16 0.944 18 0.895 15

LT 1 2 1 2 1 1

LU 1 10 1 9 1 8

HU 0.924 12 0.879 14 0.854 12

MT 0.675 6 0.622 6 0.691 6

NL 1 23 1 22 1 20

AT 0.571 18 0.554 23 0.554 22

PL 1 20 1 15 1 17

PT 0.853 5 0.808 11 0.837 10

RO 0.813 21 0.901 20 0.906 19

SI 1 1 1 3 1 2

SK 1 4 1 7 1 4

FI 0.902 13 1 19 0.710 18

SE 0.995 19 0.929 21 0.990 21

UK 0.868 28 1 1 1 27

HR 0.768 3 0.721 5 0.698 5

Green color: the best EEEI. Red color: the least EEEI.

As far as the rail transport sector was concerned, the number of DMUs was smaller due to data
unavailability (Tables 7 and 8). It could be noticed that the number of units with the highest value
of EEEI was in 2006. The most efficient countries were represented in green cells per year. The least
value of EEE Index in 2006, 2007, 2008, and period 2014–2016 was in a red cell for Greece (EL), due to
lack of data, the second one for 2010 and 2012 were the United Kingdom (UK) and Romania (RO).
However, similar to the case with road transport, inefficiency of these countries can be related to
higher values of undesirable variables while desirable variables were lower in comparison with other
DMUs (see supplementary material). It would be interesting to note that Latvia (LV), Italy (IT) and
Sweden (SE) (data available only for 2006–2008, 2010, and 2012) had a constant best value of EEEI and
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represented the best practices. Based on the supplementary material, i.e., raw data, it can be seen that
these countries had lower values for energy and GHG emissions while values for volume of passenger and
freight transport were high in comparison with other DMUs. In terms of countries considered per each
year, it could be concluded that scores of efficiency were not homogeneous. In 2012 half of DMUs
were improved, while the other half of DMUs deteriorated. In the period 2014–2016 it could be noted
drastically improvement of EEEI for Germany (DE), Austria (AT), and Poland (PL). In terms of the rail
sector, the value of efficiency scores declined and a decline in efficiency for some countries could be
attributed to insufficient market opening and modernization of rail sectors, incomplete implementation
of modern traffic management systems such as ERTMS for European railway, insufficient European
high speed rail network and interoperability, lack of modal shift in each country—i.e., involvement in
the transport market [1,3]-as well as incomplete electrification of railway networks.

Table 7. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the rail sector
(2006–2012).

Rail Sector

DMUs

2006 2007 2008 2010 2012

DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 0.771182 10 0.593661 9 0.716647 9 1 8 1 5

BG 0.490449 11 0.45795 8 0.309252 10 / / / /

CZ 0.474833 16 0.467384 14 0.336824 13 0.391971 15 0.271762 10

DK 0.971713 8 0.899017 10 0.637045 11 0.413052 11 0.625863 8

DE 0.836313 19 0.857799 20 0.651819 19 0.653537 1 0.913981 15

EE 1 4 / / / / 0.371963 13 / /

IE / / / / / / / / / /

EL 0.170862 9 0.177281 11 0.158075 12 / / / /

ES 0.666978 15 0.618655 16 0.454679 16 0.347673 17 0.528261 12

FR 1 18 1 19 1 18 0.948728 3 1 14

IT 1 17 1 17 1 14 1 4 / /

CY / / / / / / / / / /

LV 1 6 1 4 1 3 1 6 1 4

LT 0.901956 5 0.984458 5 0.833261 5 0.712766 9 0.115761 7

LU / / / / / / / / / /

HU 1 12 0.57653 13 0.465083 7 0.323137 14 1 1

MT / / / / / / / / / /

NL 1 13 1 6 1 6 0.651163 10 0.963769 9

AT 0.951996 2 0.689355 2 0.563669 2 0.661709 7 0.879885 3

PL 1 16 0.933333 18 0.85144 17 0.777128 12 0.395634 11

PT 0.519374 7 0.670578 7 0.433445 8 / / / /

RO 0.754073 14 0.394416 15 0.288133 15 0.329787 16 0.10985 13

SI / / / / / / / / / /

SK / / 0.830108 12 / / / / / /

FI 0.980779 3 0.897204 3 0.705479 4 1 5 0.348291 6

SE 1 1 1 1 1 1 1 2 1 2

UK 0.593252 20 0.518208 21 0.382882 20 0.289564 18 0.607946 16

HR / / / / / / / / / /

Green color: the best EEEI. Red color: the least EEEI.
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Table 8. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the rail sector
(2014–2016).

Rail Sector

DMUs

2014 2015 2016

DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 1 5 0.468 10 0.442 9

BG / / 0.221 16 / /

CZ 0.335 11 0.418 9 0.439 8

DK 0.295 16 0.329 17 0.317 18

DE 1 19 1 20 1 20

EE 0.5 8 0.5 14 0.5 13

IE 0.5 17 0.5 18 0.5 16

EL 0.049 15 0.075 15 0.090 14

ES 1 6 0.620 4 1 6

FR 0.559 20 1 12 1 17

IT 1 2 1 6 1 4

CY / / / / / /

LV 1 9 1 7 1 7

LT 0.591 12 0.609 11 0.689 10

LU / / / / / /

HU 0.410 7 0.605 5 0.763 5

MT / / / / / /

NL 0.357 10 0.587 3 0.603 3

AT 1 1 1 1 1 1

PL 1 3 1 8 1 2

PT / / / / / /

RO 0.201 13 0.273 15 0.299 12

SI / / / / / /

SK 0.5 4 0.5 2 0.5 15

FI 0.623 18 0.633 19 0.762 19

SE / / / / / /

UK 0.291 21 0.351 21 0.358 21

HR 0.181 14 0.132 13 0.131 11

Green color: the best EEEI. Red color: the least EEEI.

For the air transport sector, the availability of data was better than in the rail sector (Tables 9
and 10), and the EEEI was also better compared to rail. The highest values of EEEI were for countries
Cyprus (CY) and Luxembourg (LU). They had the best scores of efficiency throughout the entire
evaluation period. Belgium (BE) and the Netherlands (NL) had the best value until 2012, after that
their EEE indices drastically decreased. The lowest value of EEEI was in red cells for the United
Kingdom (UK) in 2006, followed by Finland (FI) in 2007, the United Kingdom (UK) in 2008 and 2010,
Portugal (PT) in 2012, Ireland (IE) in 2014 and 2015, and France (FR) in 2016. Similar to previous
modes of transport, DMUs with higher values of desirable variables and lower values of undesirable
variables (see supplementary material) in comparison with other DMUs have better values of EEEI.
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Surprisingly, the United Kingdom (UK) with three red values until 2012, had the best values for all
three last years of evaluation period. The inefficiency of DMUs could be attributed to old aircraft,
waiting for improvement of their aircraft’s fuel efficiency, or switching to green fuels [36].

Table 9. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the air sector
(2006–2012).

Air Sector

DMUs

2006 2007 2008 2010 2012

DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 1 1 1 1 1 2 1 2 1 1

BG / / 0.706722 12 0.65753 10 0.821158 7 0.82482 11

CZ 0.980766 10 0.83411 9 0.827037 19 1 6 0.890042 6

DK 0.859713 14 0.69759 15 0.937466 3 0.897875 10 0.612392 14

DE 0.768173 19 0.642743 22 0.696089 23 1 19 0.751725 23

EE / / 0.71923 4 / / / / / /

IE 1 12 1 14 0.829558 16 1 14 0.844267 19

EL / / 1 11 1 14 1 11 1 3

ES 1 18 0.946155 20 1 22 1 20 0.865467 21

FR 0.672936 20 0.625645 21 0.64646 24 0.580559 21 0.641927 24

IT 1 17 0.87757 19 0.924698 21 0.842596 18 0.878126 20

CY 1 3 1 5 1 4 1 3 1 7

LV 1 7 0.764706 7 0.888889 9 0.977778 5 0.923833 9

LT 0.729208 5 0.661475 6 1 7 / / 0.842346 10

LU 1 2 1 2 1 1 1 1 1 2

HU 1 4 1 3 0.812856 8 1 4 1 4

MT 0.938662 6 / / 1 5 / / 0.703901 13

NL 1 16 1 18 1 20 1 17 1 15

AT 0.945716 13 0.833572 17 0.829785 17 0.916049 13 0.795946 16

PL 1 9 1 10 1 11 1 8 0.902043 8

PT 0.742749 15 0.629629 16 0.609771 18 0.647523 15 0.567826 17

RO 1 8 0.988549 8 0.844111 12 0.670554 9 / /

SI / / / / / / / / / /

SK / / / / 1 6 / / / /

FI 0.733084 11 0.566175 13 0.60486 15 0.609107 12 0.70449 5

SE / / / / 0.939663 13 0.869726 16 1 18

UK 0.648914 21 0.571663 23 0.574808 25 0.500327 22 1 22

HR / / / / / / / / 0.766475 12

Green color: the best EEEI. Red color: the least EEEI.

Observing the highest values of EEEI for all transport sectors, Luxembourg (LU) was most
frequently present in road and air transport sector, while data for the Luxembourg rail transport sector
were missing. United Kingdom (UK) showed the lowest values of EEEI for rail and air transport sector.

4.3. Results of the TOPSIS Method

As with any other method, DEA also has its drawbacks. Regardless of its orientation, the DEA
method has a tendency to assign maximum or minimum values to input and output, regardless of their
initial values, by assigning the best value for EEEI. To eliminate this problem, weights of TOPSIS were
used for considering the initial values of input and output variables. Furthermore, non-radial DEA
shows discriminating power but does not indicate the difference between DMUs with efficiency results
of 1. Consequently, a defect in the DEA analysis is the existence of multiple efficient units. In the
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literature, different DEA ranking methods exist for ranking DMUs that attempt to consider DMUs
from input or output oriented aspects.

Table 10. Results of efficiency of non-radial DEA model and rank of TOPSIS method for the air sector
(2014–2016).

Air Sector

DMUs

2014 2015 2016

DEA TOPSIS DEA TOPSIS DEA TOPSIS

Non-Radial Rank Non-Radial Rank Non-Radial Rank

BE 0.459 22 0.404 22 0.064 22

BG 0.759 13 0.621 11 1 3

CZ 0.843 6 0.757 7 0.225 6

DK 0.697 2 0.554 9 1 1

DE 1 26 1 26 1 26

EE 0.5 11 0.5 12 0.5 10

IE 0.299 23 0.267 23 0.196 23

EL 1 9 1 10 0.144 17

ES 0.821 25 0.761 25 0.147 25

FR 0.417 27 0.439 27 0.063 28

IT 0.932 20 0.928 18 0.229 18

CY 1 7 1 6 1 8

LV 0.680 8 0.541 14 0.217 15

LT 0.656 14 0.594 13 0.210 16

LU 1 1 1 1 1 2

HU 1 3 1 4 0.384 5

MT 0.436 17 0.531 19 0.200 19

NL 0.355 24 0.382 24 0.055 24

AT 0.443 18 0.307 20 0.254 20

PL 0.952 5 0.969 5 0.214 7

PT 0.506 21 0.499 21 0.148 21

RO 1 12 0.734 15 0.197 12

SI 0.324 15 0.332 17 0.346 14

SK 0.5 10 0.5 8 0.243 9

FI 0.633 19 0.605 2 0.219 4

SE 0.836 4 0.822 3 0.179 11

UK 1 28 1 28 1 27

HR 0.858 16 1 16 0.217 13

Green color: the best EEEI. Red color: the least EEEI.

Therefore, the TOPSIS method with both viewpoints—i.e., pessimistic and optimistic-was used in
order to evaluate and rank DMUs. Moreover, TOPSIS was employed with the aim of checking the
results of the non-radial DEA model. Based on all these considerations, in order to verify differences
between these two methods a research hypothesis was formed. The results of the TOPSIS method
were calculated using Excel environment.
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In terms of the road sector one country ranked first in three years, Lithuania (LT) in 2006, 2012
and 2016, while Slovakia (SK) ranked first in two years, 2008 and 2010. In 2007 the best ranked was
Estonia (EE), in 2014 Slovenia (SI), and in 2015 United Kingdom (UK). In all cases, the EEEI was 1 (see
Tables 5 and 6).

In the rail sector, Sweden (SE) received a rank of 1 in 2006, 2007 and 2008, and Austria (AT) in
2014, 2015, and 2016. Germany (DE) and Hungary (HU) were ranked first in 2010 and 2012 (see Tables 7
and 8). In all cases, except in the case of Germany (DE), the IEEE was 1.

As for air transport, Belgium (BE) was ranked 1 in 2006, 2007, and 2012, Luxembourg (LU) in
2008, 2010, 2014, and 2015, while Denmark (DK) received rank of 1 in 2016. In all cases the EEEI was 1.
(see Tables 9 and 10).

All the countries with a rank of 1 for the rail and air transport sectors (except the DE in 2010 for
the rail sector) at the same time had the best value of EEEI. However, the results of TOPSIS method
were different. For instance, for the road sector Lithuania (LT) was ranked 1 by TOPSIS in 2006, 2012
and 2016 and also had the best EEEI for those years, as well as Slovakia (SK) in 2008 and 2010, while in
2007 Estonia (EE) whose EEEI was 0.622 had a rank of 1.

In addition, the results of the TOPSIS method were different from the results of the non-radial
DEA model. Estonia (EE), for example, had a rank of 1 in 2007 even though the result of the EEEI of
the DEA model was lower: 0.622. Furthermore, considering other DMUs, we note similar situations.
For the road sector in 2012, DMUs with ranks from 1 to 4 obtained from TOPSIS had efficiency scores
of 1 obtained by the non-radial DEA model, while DMU with rank 5 had an efficiency score of 0.807.
Moreover, for the same year Belgium (BE) with a rank of 19 by TOPSIS had an efficiency score 1 by the
non-radial DEA method. The situation is similar for other years; for example, Luxembourg (LU) had
an efficiency score of 1 for 2008 and Ireland for 2010, while with TOPSIS Luxembourg (LU) had 9 and
Ireland (IE) 12. From 2014 to 2016 Belgium (BE) has EEEI equal 1, but it was ranked as 22, 24, and 23
respectively. The similar is for Bulgaria (BG), Germany (DE), Italy (IT), Luxemburg (LU), Netherlands
(NL), and Poland (PL).

It is significant to note that the results of the TOPSIS method for the rail and air transport sectors
were different for a large number of DMUs in comparison to the non-radial DEA model. For example,
for rail Sweden (SE) was ranked first in 2006, 2007 and 2008, while in 2012 the best ranked was Hungary
(HU); on the other side, both DMUs had the highest efficiency scores. However, in 2010 Germany (DE)
was ranked first, although by the non-radial DEA model the obtained efficiency score was 0.653537.
Germany (DE), Italy (IT), Latvia (LV), and Poland (PL) had the efficiency scores for 2014, 2015, and
2016 equal 1, while they were not ranked as first by TOPSIS.

Similar to the results of the TOPSIS for road, for rail France (FR) received an efficiency score of
1 in 2006 and 2008, yet was ranked 18; and for 2007 and 2012 it ranked 19 and 14 while having the
highest efficiency score.

Regarding the air sector, the picture in terms of results given by DEA and TOPSIS is the same as
with the road and rail sectors. Belgium (BE), with an efficiency score of 1 in 2006, 2007 and 2012 had a
rank of 1, while in 2008 and 2010 Luxembourg (LU), with the highest efficiency score, ranked first.
However, for example, Spain (ES), with an efficiency score of 1 by DEA model in 2006, 2008 and 2010
had ranks of 18, 22, and 20, while in 2007 the Netherlands (NL) ranked 18 with a 1 efficiency score,
and in 2012 the United Kingdom (UK) ranked 22 yet had the highest efficiency score. Furthermore,
Germany (DE) with the highest efficiency scores in 2014, 2015, and 2016 ranked 26.

Therefore, it could be said that the DEA is not the most suitable benchmarking tool in the field of
the evaluation of the transport EEE.

Consequently, based on the significant differences between the results of the non-radial DEA
model and the TOPSIS method, our research hypothesis could be confirmed. The reason for differences
in results should be found in the fact that DEA considered inputs for a given level of outputs, while the
TOPSIS method, in order to find the best DMUs, closest to the ideal positive solution and furthest from
the negative weights its criteria. Another reason for differences in results of the TOPSIS method and
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the DEA method is the involvement of weights for each criterion, not only for variables in the goal
function in the non-radial DEA model.

4.4. Discussion

Within Tables 5 and 6, the results of non-radial DEA model and TOPSIS method for road sector

were presented. Based on the results of non-radial DEA model efficient and non-efficient DMU can be
seen. Considering the results of evaluation through the selected period, it can be seen that the lowest
number of countries with the efficiency score of 1 was in 2008. Numerous DMUs are efficient, while one
of them has the lowest score of efficiency. However, due to discrimination power of non-radial DEA
model there is a little difference between non-efficient DMUs. In addition, it can be noticed that many
countries obtained the efficiency score of 1 by DEA model, while only one was ranked as first with
TOPSIS. In 2007, the country ranked as first by TOPSIS received relatively low efficiency score—i.e.,
only 7 countries were less efficient. However, considering the raw data (see supplementary material)
the main reason for that is related to the TOPSIS method and values of raw data. For EE (Estonia) in
2007 the values of data are lower than that used as minimum criteria in TOPSIS and other data as
maximum criteria for that country were sufficient in comparison with other alternatives. In general,
the efficiency scores of more than three quarters of evaluated countries constantly increased after the
2012. Only one country was inefficient throughout the entire evaluation period by DEA, while it was
ranked among first half of all countries by TOPSIS. The primarily reason for the difference between
results of DEA and TOPSIS lies in the fact that TOPSIS evaluates countries with different criteria from
two points of view. However, with the DEA method it is possible to change the efficiency of some
DMUs if the raw data for them is changed. Based on that, some inefficient DMUs can become efficient
and vice versa.

Considering the rail sector (Tables 7 and 8) in comparison with road sector it can be seen that a
significantly smaller number of countries have the highest efficiency. Within the rail sector, the most
efficient countries were in 2006 and 2016. Regarding the application of TOPSIS method similar picture
appears as in road sector. Beside the best efficiency score obtained with non-radial DEA model,
some countries were near to the worst ranked by TOPSIS. Only one country had the efficiency score
constantly very low throughout the entire evaluation period, and at the same time it was mostly ranked
at the bottom of the list by TOPSIS.

Regarding the air sector (Tables 9 and 10) it can be seen that the number of countries that obtained
the highest efficiency score by DEA method was greater in comparison with rail and road sectors.
However, such results were obtained due to the highest volume of transport realized by air sector with
the lowest number of used assets. Furthermore, the level of consumed energy and produced emissions
were lower in comparison with road sector.

5. Conclusions

Over the last decade, the main and intensive topics of research among scholars were energy
consumption and environmental impacts caused by transport systems. One of the major contributors
to energy consumption and endangerment of the environment in Europe has been the overall transport
sector. Among all modes of transport, the road sector was recognized as the main energy consumer
and environmental pollutant. Notwithstanding the importance of this fact, there was not any research
on energy-environment efficiency of European transport sectors.

In this paper, therefore energy-environment efficiency (EEE) of European road, rail and air transport
sectors were evaluated using a modified non-radial DEA model under the joint production framework
proposed by Wu et al. [6]. The evaluation was conducted for European countries in terms of road,
rail and air transport sectors for the period 2006 to 2008, 2010, 2012, 2014, 2015, and 2016. The first
reason for the adoption of non-radial DEA model was simultaneous minimization of energy inputs and
undesirable outputs for the given level of inputs and outputs, and this was a primary motivation for our
paper. This non-radial DEA model has benefits in terms of the ability to use different non-proportional
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adjustments and weighting for energy inputs and undesirable outputs. In the paper, non-energy inputs,
named several assets (see Table 3), were defined and used in the evaluation of transport EEE for the
first time.

Furthermore, the concept of transport EEE was introduced in this study through the reflection of
the relationship among transport energy, non-energy inputs, and transport desirable and undesirable
outputs. Following the aims of the paper, all used variables were described and their changes
were presented only through figures-without any statistical analysis, while factors of EEE were
only mentioned.

An additional contribution provided in the paper was the introduction of the TOPSIS method as a
tool in the evaluation of transport EEE through the ranking of DMUs. With this evaluation of EEE for
European road, rail, and air transport sectors, the stakeholders from each member state may find the
best practices toward the most efficient means of improving overall efficiency.

Based on the results of the DEA approach, we found that the lowest number of DMUs with the
best value of EEEI for the road sector was in 2008. In terms of rail transport, the highest DMUs had
the best EEEI in 2006, and after a decrease in 2007, has since remained fairly unchanged. As far as air
transport was concerned, the best value of EEEI was attributed to the least number of DMUs in 2007
and 2012.

Rail and air transport had much more room for EEE improvement than the road transport sector,
which was relatively efficient in many European countries. Accordingly, it could be concluded that
periodical documents of EU policies for sustainable transport contributed to the improvement of EEE
in road transport sector. However, a modal shift as one of the policies and advanced technologies
was not fully completed for rail transport. Therefore, the potential of the rail transport sector was
not totally realized, which resulted in inefficiency within the rail transport sector. Ramanathan’s [11]
findings confirmed this, stating that rail transport could capture around 50% of the expected traffic,
which would result in saving of about 37% in energy consumption and associated CO2 emissions that
would result if the existing patterns of modal split did not change. Additionally, Song et al. [22] stated
that a higher rate of railway concentration was associated with higher environment efficiency. In terms
of air transport, the measures for EEE improvement implied newer and more fuel-efficient aircraft
through new technology and larger planes [36].

The main conclusions could be drawn through the application of the TOPSIS method. All DMU
with EEEI result 1 had the first rank. However, in some cases DMUs with an EEEI score 1 and
lower had a rather wildly varying ranks. This is because the non-radial DEA model minimizes
desirable and undesirable inputs for a given level of the desirable outputs. Then, the non-radial model
benchmarks one DMU in comparison with others DMUs. However, based on the changes of raw data
(see supplementary material) with the non-radial DEA model some inefficient DMUs can become
efficient and vice versa. Then, the consequence could be a result of the TOPSIS method considering
all inputs and outputs with the possibility of minimization and maximization during the process of
analysis–they strove for clear values. Furthermore, the weights used in the TOPSIS method were
assigned to each input and output.

The authors proposed using the TOPSIS method for finding the best practice in accordance with
the challenges of European transport. The main European challenge is the demand for transport,
which has significantly increased since 2000 and is expected to continue growing. On the other hand,
the European transport sector is heavily dependent on oil. It releases GHGs and air pollutants into the
atmosphere and contributes to climate change, but also makes the European economy more vulnerable
regarding fluctuations in global energy supplies and prices [69]. The overall improvement of transport
EEE in Europe could be achieved through progress in terms of EEE for each member state for each
transport sector.

Bearing that in mind, finding the best practice which realizes the highest volume of freight and
passenger transport with minimal energy consumption and environmental impact could be found
through the TOPSIS method rather than any DEA approach.
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Consequently, the authors highlight the importance of including of the TOPSIS method in future
evaluation of transport EEE. Some proposals for the development of the European transport sector in
terms of energy-environment efficiency are:

I. Intensifying efforts in the implementation policy of modal shift from road and air transport
sectors to eco-friendly sectors, such as rail transport, primarily in developed countries, in order
to increase total EEE.

II. Strengthening transport infrastructure and infrastructure components in terms of rail transport
at bottlenecks, as well as total modernization of rail transport sectors.

III. Reinforcing the adoption of technological innovations and standards in each transport sector.
IV. Employment of alternative sources of energy and modes of transport that have a potential to

reduce energy consumption and environment impacts.

As for future work, the focus should be on research in terms of changes in results of non-radial
DEA models with weights assigned to all inputs and outputs, as compared to the TOPSIS method.
Additionally, TOPSIS could be used with other DEA models for checking results during the evaluation
of transport EEE. Moreover, attention should be drawn to research into the impacts of technological
innovation for improving transport EEE, primarily in the rail transport sector.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/15/2907/s1,
Table S1: Real data.
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Abstract: Composite indicators are becoming more relevant for evaluating the performance of
water companies from a holistic perspective. Some of them are related with economic aspects, and
others focus on social and environmental features. Consequently, a multidimensional evaluation
is necessary for handling the great amount of information provided by multiple single indicators
of a different nature. This paper presents a two-phase approach to evaluate the sustainability of
water companies. First, a partial composite indicator for each dimension (social, environmental,
economic) is obtained using multi-criteria decision making (MCDM). Then, a global indicator is
obtained, in terms of the values reached in the previous stage for every partial indicator, by means an
optimization problem rooted in data envelopment analysis (DEA). Our proposal offers the possibility
of analyzing the performance of each water company under each dimension that characterizes the
concept of sustainability, as well as a joint assessment including all the dimensions, facilitating
the decision-making process. We apply it to evaluate the sustainability of 163 Portuguese water
companies. The results show the strengths and weaknesses of each unit and serve as a guideline to
decision-makers on the aspects for improving the performance of water utilities.

Keywords: composite indicator; sustainability; water utilities management; data envelopment analysis;
multi-criteria decision making (MCDM)

1. Introduction

The evolution of water management is a key issue for the human development. An effective
performance of such service is a challenge for the community. Designing a good management system
requires considering different factors. In countries such as England and Wales, Portugal, Chile, or the
Netherlands, the water industry exists as a monopoly, so that companies and administrations invest their
efforts on comparing the different processes within the industry. In general, benchmarking is widely
considered a good strategy to control and supervise the performance of this service. Ref. [1] provide
a rigorous evaluation of the growing number of benchmarking studies dealing with performance
scores based on production or cost estimates. At the same time, the literature reveals frequent use
of performance indicators (PIs) when dealing with benchmarking, because of the multiple benefits
it brings to the administrations, for instance, to contrast the regulatory conditions, compare, and/or
evaluate the quality of the service and establish fair tariff policies. So, in order to control these
values, water utilities-following industry regulations- provide systematic reports on different PIs to
the government or administrators. The information delivered within this data includes management,
environmental, financial and, more recently, social aspects related to water operations. However,
different reasons make this set of indicators difficult to interpret because they do not offer a holistic
view, as they do not reflect a measure of general performance.

To overcome this difficulty, a common approach is to aggregate the PIs into a unique indicator,
named a composite indicator (CI). Although the literature offers a wide range of techniques to create a
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CI, most of them use methodologies from multi-criteria decision analysis (MCDA). They have been
used to develop CIs applied to diverse sectors of services, activities, or processes [2–4]. In particular,
methodologies based on goal programming (GP) are of great interest for the construction of CIs and
they have been successfully applied to diverse fields as tourism [5,6], manufacturing [7], human
sustainable development [8–10], or environmental sustainability [11,12]. The main advantages of
using GP to develop CIs are: it is not necessary to normalize the initial set of PIs; the CI uses the
complete information included in the initial set of PIs; and it does not require a large number of units
in comparison with the number of initial indicators.

Usually, another technique used to create CIs is data envelopment analysis (DEA) [13]. DEA is a
linear programming tool for evaluating the performance of a set of peer entities that use one or more
inputs to produce one or more outputs. As pointed out by [14], the main advantages of using DEA to
construct CIs are: it provides a measure of performance based on real data; DEA models do not require
the normalization of the initial data; and DEA respects the individual characteristics of the units and
their own particular value systems. Techniques based on DEA have been developed to create CIs
in [6,15–17].

Since the 1990s, governments of many countries and organizations have emphasized the
importance of the concept of sustainability [18]. There is no consensus on the definition of this
concept, although it is widely agreed that it must incorporate social, environmental, and economic
factors which are interconnected ([19,20]). The water industry has not ignored this trend and, currently,
it has extensively recognized its important role in establishing and operating sustainable water supplies
and wastewater treatment systems [2,21]. There is clearly a need for a paradigm shift in the water
companies, considering social and environmental aspects in the decision making process, not just
economic issues [22,23]. In the framework of evaluating the sustainability of water companies, most
of the literature focuses on evaluating the sustainability of physical and engineering aspects [24–26],
from an environmental perspective [27] or economic sustainability [28,29]. However, there is a lack
interest on assessing the sustainability of water companies themselves. In particular, only a few
papers apply different techniques from MCDA to assess the sustainability of water companies from
a multidimensional perspective. For instance, Ref. [30] construct an index by aggregating the PIs as
a linear combination of their normalized values. Also, the MACBETH (Measuring Attractiveness
by a Categorical Based Evaluation Technique [31]) method is used to evaluate the sustainability of
water supply systems [24]. Another example, Ref. [19], applies the ELECTRE TRI-Nc (Elimination and
Choice Expressing Reality [32]) method as a tool to integrate the dimensions of a quality of service
index. Additionally, Ref. [12] combines the PIs using an index based on distance-principal components
and another based on GP.

In view of the above, in this work, a method to assess the sustainability of the water companies is
conducted, using the traditional approach of sustainability, which considers three dimensions into this
concept: social, environmental, and economic. Then, a two-phase method combining GP and DEA is
proposed, in order to take advantage of both methodologies. A similar two-phase method is proposed
in [6] to evaluate the sustainability of Cuban nature-based tourism destinations. Nevertheless, in that
work, the distance-principal component (DPC) composite indicator developed by [33] is used to sum
up the initial PIs into the dimensions established (social, economic and patrimonial (Although it is
usual to use “environmental dimension”, in [6] it is replaced by “patrimonial dimension”.) instead of
GP. Choosing a technique based on GP comes from their good properties, as previously mentioned.

Then, in the first phase, a technique based on GP [5] is used to obtain the dimensional or partial CIs.
In the field of water treatments, there is a lack of consensus on the appropriate criteria to select, in order
to determine which PIs are involved in evaluating the status of water sustainability. Then, to overcome
this difficulty, as suggested by [34], our proposal groups the initial indicators into the dimensions that
characterize the concept of sustainability: social, economic, and environmental dimensions. In this
way, when the first phase is applied, three-dimensional composite indicators (social, environmental,
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and economic) are obtained for each water company. This allows for independently analyzing the
performance of each water company among these three dimensions.

Later, in the second phase, the dimensional indicators have to be aggregated in order to design
a global composite indicator for evaluating the water companies’ sustainability. At this point, a
controversial question is the assignment of weights to each dimensional indicator. On the one hand,
under some circumstances, it is not easy to obtain information from specialists to determine these
weights. On the other hand, the assignation of the same weighting values for all the water companies
could be complicated, as each of them might have their own particularities in terms of preferences.
To overcome these issues, we have chosen, in the second phase, a DEA-based model known as
“Benefit-of-the-Doubts” [32]. To do this, the values obtained in the previous stage are used as outputs
of this “Benefit-of-the-Doubt” approach.

This two-phase approach offers the possibility of considering the strengths and weaknesses of
each water company, as well as providing the decision-makers with useful information.

The hypothesis behind this study is that the water companies should manage their activity in a
way as balanced as possible, from social, environmental, and economic point of view. In this sense, the
approach proposed in this work allows evaluating and comparing the performance of water companies
for each sustainability dimension and, later, identifying if such dimensions have or not a similar
influence on the global score. This aspect is an advantage of the proposed approach in comparison to
other procedures. In the first phase, an indicator is obtained for each sustainability dimension, and in
the second phase the different sustainability dimension indicators are aggregated to build a global
indicator. In this aggregation, the weights of the different dimensional indicators are endogenously
determined using a DEA-based model, allowing each water company to be assessed in the most
favorable way for it. This is another advantage of our proposal, since it does not demand excessive
information for obtaining the global indicator.

This study, therefore, presents a pioneering and novel approach to assess the sustainability of
water companies. To the best of our knowledge, there is neither any theoretical development nor
empirical application that uses composite indicators to assess and/or compare the sustainability of
water companies, for each dimension of sustainability and for all the dimensions, simultaneously. Thus,
the dimensional composite indicators, in the first phase, allow evaluating the strengths and weaknesses
of each water company in a particular dimension. The global indicator, in the second phase, provides
a holistic performance perspective, and allows ranking the water companies. However, it provides
information about the contribution of the different dimensions to the sustainability overall score.

In the next section, the methodology proposed is detailed. Section 3 introduces the case study,
embracing 163 Portuguese water companies as well as the results obtained. Finally, the main conclusions
derived from the research are presented in the last section.

2. A Two-Phase Evaluation Method

In this section, the methodology developed to construct the sustainability composite indicator is
described, in order to evaluate the performance of water companies.

As previously mentioned, a two-phase procedure is proposed. In the first phase, following
the proposal by [5], the composite indicator (sub-indicator) for each dimension of sustainability is
calculated: PSUId (Partial Sustainability Indicator of dimension d). In the second phase, these partial
indicators form the basis from which the overall composite indicator is obtained, applying a variant
of DEA named the “Benefit-of-the-Doubt” approach. Figure 1 shows the general scheme of the
proposed approach.
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Figure 1. General scheme of the proposed approach.

Then, to calculate PSUId, d = 1, 2, . . . , D, it is necessary to distinguish between positive PIs
(a larger value involves an improvement in the sustainability) and negative PIs (a larger value involves
a decline in the sustainability). Let us suppose that the initial set of PIs is divided into D dimensions
and there are M units to evaluate. For each d ∈ D, let us denote by Jd and Kd the number of positive
and negative PIs, respectively, assigned to dimension d, and I+

i, jd
and I−

i,kd the value of the i-th unit with

respect to the jd-th positive and kd -th negative PI which belong to the dimension d (i = 1,2, . . . M; jd =
1,2, . . . Jd; kd = 1,2, . . . Kd; d = 1,2, . . . D).

Additionally, the performance of a unit is evaluated, regarding PIs, using the concept of “aspiration
level”, that is, the achievement level desired for the corresponding PI. Thus, it is possible to obtain a
set of goals in line with the basic ideas underlying in GP approach [35]. Accordingly, let us assume
that, for each positive PI, it is possible to give an aspiration level (denoted by u+

jd
). It corresponds to the

minimum value from which it is considered that a unit shows a suitable performance, regarding the
aspect of sustainability evaluated by the PI. Thus, for the i-th unit, the goal corresponding to the jd-th
positive PI can be defined as follows:

I+
i jd

+ n+
i jd
− p+

i jd
= u+

jd
with n+

i jd
, p+

i jd
≥ 0, n+

i jd
·p+

i jd
= 0 (1)

where n+
i jd

, p+
i jd

represent the negative and positive deviation variables, respectively. Thus, if the goal is

satisfied (I+
i jd
> u+

jd
), the negative deviation variable would be zero, and the positive deviation variable

would measure the over-achievement of the goal (strength). Otherwise, if the goal is not satisfied
(I+

i jd
< u+

jd
), the positive deviation variable would be zero and the negative deviation variable would

quantify the under-achievement of the goal (weakness). It should be noted that, at least, one of the two
deviation variables has to be zero. Consequently, for positive PIs, the negative deviation variables will
be considered unwanted variables because a better-positioned company will achieve the aspiration
level or a higher value.

In a similar way, for each negative PI, we have the following goal:

I−
ikd + n−

ikd − p−
ikd = u−

kd with n−
ikd , p−

ikd ≥ 0, n−
ikd ·p−ikd = 0 (2)

Again, n−
ikd , p−

ikd represent the negative and positive deviation variables, respectively. However,
now, if the goal is satisfied (I−

ikd < u−
kd ), the positive deviation variable would be zero and the negative

deviation variable would quantify the under-achievement of the goal (strength). Otherwise, if the goal
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is not satisfied (I−
ikd > u−

kd), the negative deviation variable would be zero, and the positive deviation
variable would quantify the over-achievement of the goal (weakness). Consequently, for negative PIs,
the positive deviation variables will be considered unwanted variables because a better-positioned
company will achieve the aspiration level or a lower value.

From all the above, at each dimension d, the strengths of each unit can be calculated by aggregating
positive deviation variables, in case of positive PIs, and negative deviation variables, for the negative
PIs. These variables are normalized by their corresponding aspiration levels to avoid the inadequate
effects due to the use of different measurement scales of the initial set of PIs. Similarly, the weaknesses
of each water company can be obtained as the sum of the normalized unwanted deviation variables
(negative deviation for positive PIs and positive deviation for negative PIs divided by its corresponding
aspiration level). Finally, the partial indicator for the i-th (i = 1,2, . . . M) unit, in the dimension d (d ∈ D)
is determined by the difference between the strengths and weaknesses of this unit as follows:

˜PSUIi
d
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Jd∑

jd=1

p+
i jd

u+
jd
+

Kd∑
kd=1

n−
ikd

u−
kd

⎞⎟⎟⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎜⎜⎝

Jd∑
jd=1

n+
i jd

u+
jd

+
Kd∑

kd=1

p−
ikd

u−
kd

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3)

Additionally, two fictitious units are introduced in the sample, representing the best and worst
situation within the data base. For each positive indicator in dimension d, jd, and negative PI, kd, the
value of the “best” unit (b) will be:

I+
bjd

= Maxi∈M

{
I∗
i jd

}
, I−

bkd = Mini∈M
{
I−
ikd

}
(4)

and the value of the worst unit (w):

I+
wjd

= Mini∈M

{
I∗
i jd

}
, I−

wkd = Maxi∈M
{
I−
ikd

}
(5)

For these fictitious units, their corresponding partial sustainability indicators are calculated.

Finally, we can obtain the difference between ˜PSUI
d
i with respect to the value reached by the worst

unit and normalize this value by the difference between the partial sustainability indicator for the best
and the worst unit, that is:

PSUId
i =

˜PSUI
d
i −˜PSUI

d
w

˜PSUI
d
b −˜PSUI

d
w

, i = 1, 2, . . . , M; d ∈ D (6)

The advantage of using PSUId
i instead ˜PSUIi

d
is that it offers a relative value between 0 and 1.

In fact, it represents how far a unit is from the worst situation regarding the distance between the best
and the worst situation. Additionally, this normalization does not distort the previously obtained
results, but allows a more homogeneous and simple analysis of the dimensional results obtained.

Once the partial sustainability indicators for each dimension are obtained, the second phase
consists of calculating the global sustainability indicator (GSUI). To do so, the “Benefit-of the-Doubt”
approach [36], which is rooted DEA, is applied.

Now, for each unit a, GSUIa (a =1,2, . . . M) represents the weighted average of the partial indicators
PSUId

a (d ∈ D), which is obtained by solving the following optimization problem:

GSUIa = Max
∑
d∈D

wd
aPSUId

a
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Subject to: ∑
d∈D

wd
i PSUId

i ≤ 1 ; i = 1, 2, . . . , a . . . , . . .M

Ld ≤ wd
i PSUId

i∑
d∈D wd

i PSUId
i
≤ Ud ; i = 1, 2, . . . , a . . . , . . .M; d ∈ D

wd
i ≥ 0 i = 1, 2, . . . , a . . . , . . .M; d ∈ D

(7)

where Ud and Ld are the upper and lower bounds allowed for the relative contribution of PSUId to the
global indicator. The aim of Equation (7) is to obtain the weights (assigned to the partial indicators) that
maximize the global score (GSUIa) for every unit a. Therefore, this model provides a relative objective
performance value for each unit without requiring prior knowledge of the weights for the partial
indicators [37]. These weights are endogenously determined solving Equation (7) and, by construction,
GSUIa takes value between 0 (the worst situation) and 1 (the best situation).

In essence, Equation (7) is an output multiplier DEA model with multiple outputs (partial
indicators) and a single “dummy input” with value equal to 1 for all the units [38]. In the DEA context,
the contribution of each partial indicator to the value of the global indicator (wd

i PSUId
i ) is labelled as

the “virtual output” of the corresponding dimension.
To avoid extreme situations, some constraints on the weights have been added to Equation (7). All

partial indicators should have a relative contribution on the global indicator, that is, all the dimensions
should be taken into account in the global score. For this reason, lower and upper bounds (Ud and Ld)
have been established on the relative contribution of each partial indicator (PSUId).

Thus, the proposed approach offers a composite indicator which provides information about the
contribution of each sustainability dimension to the global score. It allows to take into account the
special characteristics of the units considered since the same importance does not need to be given to
each dimension for the different units.

3. A Real Application

3.1. Data Description

Our aim is to use the concept of sustainability proposed by [20] to evaluate the performance of
Portuguese water companies. In Portugal, we find two kinds of water companies: on the one hand,
there are companies that provide services in all activities involved in the urban water cycle and, on
the other hand, there are companies that focus on the distribution of drinking water and collection of
wastewater. In any case, a national authority (ERSAR: Entidade Reguladora dos Serviços the Águas e
Resíduos (www.ersar.pt)) regulates all companies. ERSAR states different regulatory functions over
all the operators related to waste and water management. The statutes of ERSAR impose significant
regulatory functions among the operators in charge of waste and water management in Portugal.
Their concern is to respect customer rights and safeguard sustainability, as well as to provide economic
visibility of the systems. In particular, this national authority applies the sunshine regulation model [39],
which consists of sharing the information derived from a set of specific performance indicators that is
provided by the operators. There are several factors that differentiate the Portuguese water companies,
such as the management model or the regional location, among others. Portugal offers different
management models for their water companies [19]: direct management (municipalities, municipalized
services, and associations of municipalities); delegation (municipal-owned company or company
established in partnership with the State (municipal or State-owned company), parishes, or user
associations), and concession (municipal concessionaire or public–private partnership—municipality
or municipalities and other private operators). In general, most of the municipalities receive the service
directly from the municipal departments or municipal services with autonomy. This regulatory model
has some strengths (the quality of service, the technical regulation and the access to information) but it
also has some weaknesses (poor governance and failure to address identified problems). The evolution
of the Portuguese water industry has been widely studied. However, some internal problems remain
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(water losses, poor staff productivity, . . . ), in addition to the fact that the sector is excessively politicized.
A more detailed description about this model of regulation and its characteristics can be found in [19].

To show the potential of the methodology proposed in the previous section, we consider an
initial set of indicators applied to a set of Portuguese water companies. In the selection of these
sustainability metrics, we take into account the availability of statistical data [37], as well as their
relevance. The selection of these indicators is analogous to [12], whose data were obtained from the
ERSAR list of Portuguese water companies in 2012. Nevertheless, on this occasion, data is updated
to 2015 and, besides, the present work really makes use of the classification into three dimensions
established in [12], in order to carry out the first phase of our approach. Then, 14 initial indicators
are set, divided into three dimensions: social (5), environmental (5), and economic (4). In general, IS
denote social indicators, whereas IEN are those related with environmental issues and IEC for the
economic indicators.

Table 1 summarizes the main features of each initial PI, as well as the direction of improvement
(negative or positive PIs), unit, average and standard deviation (for more details see Appendix A:
Table A1). In particular, IS4, IS5, IEN4, and IEN5 are binary indicators, so they get a value of 1 if the
water company has the certification, or 0 otherwise.

Table 1. Direction of improvement and statistical information from the initial set of PIs.

Acronym Direction Unit Average Standard Deviation

IS1 Positive % 86.62 8.93
IS2 Positive % 99.15 1.01
IS3 Positive Days 1.46 0.9
IS4 Positive - 0.15 0.36
IS5 Positive - 0.09 0.29

IEN1 Negative m3/km/day 127.63 104.62
IEN2 Positive % 0.56 2.69
IEN3 Negative kWh (m3/100 m) 0.88 0.65
IEN4 Positive - 0.15 0.36
IEN5 Positive - 0.31 0.47
IEC1 Negative % 37.11 14.94
IEC2 Negative Number/103 connections 2.15 1.05
IEC3 Positive % 92.99 33.34
IEC4 Positive - 49.16 26.31

Regarding water companies, Table 2 provides information related to the localization of them.
In this sense, following the classification from Eurostat, the NUTS classification (Nomenclature of
Territorial Units for Statistics) is a hierarchical system for dividing up the economic territory of the
European Union. In particular, NUTS II are basic regions for the application of regional policies. Then,
Portugal (continental) is divided into five regions or NUTS II (North, Centre, Metropolitan Area of
Lisbon (MA Lisbon), Alentejo, and Algarve). Most of the water companies are located in the North (48)
and Centre (58) regions, a large group is equally located in the Alentejo (30) region, and just a few of
them are located in Algarve (12) and MA Lisbon (15) regions.

Table 2. Localization of the water companies and characteristics of the regions.

Region
(NUTS II)

Water
Companies

Area (Km2)
Population

(2011)
Pop/km2 Share in National

GDP % (2017)
GDP per Capita

(€) (2017)

North 48 21,285 3,689,682 173.35 29.40% 16,000
Centre 58 28,217 2,327,755 82.49 18.90% 16,400

MA Lisbon 15 2802 2,821,876 1007.09 36.00% 24,700
Alentejo 30 27,292 757,302 27.75 6.50% 17,800
Algarve 12 4960 451,006 90.93 4.60% 20,500
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Additionally, general information (obtained from Eurostat) about these NUTS II are shown in
Table 2, in order to clarify the main characteristics of the regions in which the water companies are
located. Thus, Centre and Alentejo regions are the largest areas, while MA Lisbon region is the smallest.
Nevertheless, the last one presents the highest population per km2 (1007.09 population). Finally, MA
Lisbon region gets the highest GDP per capita (24,700 €), representing 36.00% of the total Portugal
GDP; while the Centre region gets the lowest GDP per capita (16,000 €), representing the 29.40% of the
total Portugal GDP.

3.2. Results and Discussion

Taking into account the case study described above, Figure 2 displays a visual scheme of our
methodological approach to evaluate the case of the Portuguese water companies. Let us assume that
every initial indicator is already assigned to a dimension. Observe that Phase 1 entails designing partial
sustainable indicators (PSUId), in order to analyze the situation of water companies for each particular
dimension, based on the information provided by the corresponding initial indicators. Afterwards,
Phase 2 summarizes the information provided by these PSUId into a global indicator (GSUI).

3.2.1. Phase 1: PSUId
i Calculation

The first phase addresses the calculation of PSUId
i . To do this, the aspiration levels for each

indicator have to be established. Our proposal follows previous works [5,12,40,41], so that, for positive
initial indicators, the aspiration levels were set to the 80% value of the mean for each initial indicator;
whereas in the case of negative initial indicators, the reciprocal percentage of the mean was used.

Results obtained are shown in Figure 3 (Water companies are listed following the ranking obtained
for the global indicator in the second phase. The numbers associated with the water companies are
provided in Table 5). For each water company, a set of three values is represented in different colors
which denote each dimension. Note that, following the formulation of the dimensional indicators,
the maximum value that a water company can get for each dimension is 1. Therefore, for the social
dimension, it can be seen that five water companies obtain remarkable results in comparison to others:
Águas de Cascais, EPAL, SMAS de Sintra, Vimágua and SMSB de Viana do Castelo. According to its
location, Águas de Cascais, EPAL, and SMAS de Sintra are located in MA Lisbon region, and Vimágua
and SMSB de Viana do Castelo in North region. It can be seen that most of the water companies obtain
poor results for this dimension and that just a few of them obtain values greater than 0.5.

Likewise, an analysis within the environmental dimension reveals the good performance of Águas
de Gondomar, Indaqua Matosinhos, Infraquinta, and Tavira Verde. Similarly, based on its location,
Águas de Gondomar and Indaqua Matosinhos are located in the North region; and Infraquinta and
Tavira Verde in the Algarve region. Aguas de Gondomar reaches the best position, since it provides the
largest production of energy (IEN2). Note that each of these four better-positioned water companies
produces between 14% and 20% of the energy that it uses. In general, most of the water companies
obtain poor results in this dimension, too.

Additionally, in both of these dimensions, the values which indicate the certifications obtained
for each water company plays an important role in the construction of the dimensional indicators, as
determined in [12].

Finally, the results obtained for the economic dimension are ranged between 0.18 and 0.8 for all
companies, highlighting Águas de Valongo and Indaqua Santo Tirso/Trofa, which are located in the
North region. In particular, these water companies reach values greater than the average for all the
initial indicators. In the data obtained, approximately the 56% of the water companies present an
operating cost coverage ratio (IEC3) larger than the average.

In general, note that the best dimensional performance of the water companies is located in
MA Lisbon, Algarve and North regions, despite the fact that more than a half of the companies
(approximately 54%) are located in the other two regions (Alentejo and Centre regions).
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In the same way, Table 3 shows the top 20 water companies for each dimension considered.
It should be noted that there are four companies that appear among the top 20 in the three dimensions:
Águas de Cascais, Águas de Valongo, Águas de Paredes, and Indaqua Matosinhos. Furthermore,
13 other companies stand out for two dimensions.

Figure 2. The two-phase approach applied to the case study.
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Figure 3. Dimensional results obtained for each of the 163 water companies.

Table 3. Top 20 water companies for each dimension.

PSUIS
i PSUIEN

i PSUIEC
i

4 VIMÁGUA 0.937 5 Águas de Gondomar 0.870 1 Águas de Valongo 0.779

3 Águas de Cascais 0.931 2 Indaqua Matosinhos 0.824 8 Indaqua Santo Tirso/Trofa 0.772

6 SMAS de Sintra 0.928 19 INFRAQUINTA 0.792 13 SM de Castelo Branco 0.754

7 EPAL 0.923 18 Tavira Verde 0.695 5 Águas de Gondomar 0.742

9 SMSB de Viana do Castelo 0.876 14 Águas de Barcelos 0.539 10 Águas de Paredes 0.740

12 Águas do Porto 0.615 11 Indaqua Feira 0.424 20 SMAS de Tomar 0.727

79 SMAS de Almada 0.610 15 Águas de Alenquer 0.422 11 Indaqua Feira 0.725

38 SMAS de Oeiras e Amadora 0.604 3 Águas de Cascais 0.356 16 INOVA 0.724

34 SMAS de Leiria 0.603 27 FAGAR - Faro 0.355 17 Indaqua Vila do Conde 0.724

163 CM de Miranda do Corvo 0.600 6 SMAS de Sintra 0.346 14 Águas de Barcelos 0.722

95 SM de Loures 0.586 9 SMSB de Viana do Castelo 0.327 21 Águas da Figueira 0.721

43 EMAS de Beja 0.570 46 Cartágua 0.326 15 Águas de Alenquer 0.707

23 Águas da Região de Aveiro 0.568 25 Águas de Mafra 0.326 12 Águas do Porto 0.705

22 Águas de Coimbra 0.564 4 VIMÁGUA 0.325 3 Águas de Cascais 0.700

53 CM de Santiago do Cacém 0.549 65 Aquamaior 0.325 24 Águas do Planalto 0.697

37 Aquaelvas 0.472 26 AGERE 0.324 2 Indaqua Matosinhos 0.695

1 Águas de Valongo 0.466 1 Águas de Valongo 0.323 18 Tavira Verde 0.689

25 Águas de Mafra 0.454 10 Águas de Paredes 0.323 22 Águas de Coimbra 0.679

10 Águas de Paredes 0.435 36 Águas de Ourém 0.323 23 Águas da Região de Aveiro 0.677

2 Indaqua Matosinhos 0.428 8 Indaqua Santo Tirso/Trofa 0.322 7 EPAL 0.676

Similarly, Table 4 shows the bottom 20 water companies for each dimension. In this case study,
most of the companies (33) get bad results in just one of the three dimensions and only three water
companies obtain poor results in the three dimensions: CM de Castelo de Paiva, CM de Arronches,
and CM de Aljustrel.
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Table 4. Bottom 20 water companies for each dimension.

PSUIS
i PSUIEN

i PSUIEC
i

137 CM de Avis 0.033 141 CM de Alijó 0.121 144 CM de Ferreira do Alentejo 0.361
124 CM de Mértola 0.032 93 CM de Armamar 0.121 145 CM de Marvão 0.359

157 CM de Castelo de Paiva 0.032 149 CM de Arronches 0.120 146 CM de Lousã 0.353
105 CM de Almodôvar 0.032 58 CM de Redondo 0.120 149 CM de Arronches 0.345

20 SMAS de Tomar 0.032 80 CM de Castro Verde 0.119 150 CM de Cabeceiras de Basto 0.344
41 INFRALOBO 0.028 144 CM de Ferreira do Alentejo 0.118 148 CM de Alfândega da Fé 0.343

143 CM de Pinhel 0.028 157 CM de Castelo de Paiva 0.116 152 CM de Murça 0.326
86 CM de Odemira 0.028 150 CM de Cabeceiras de Basto 0.116 151 CM de Sátão 0.321

149 CM de Arronches 0.025 99 CM de São Brás de Alportel 0.115 153 CM de Penalva do Castelo 0.320
117 CM de Caminha 0.025 31 CM de Póvoa de Varzim 0.113 154 CM de Aljustrel 0.317

102 CM de Évora 0.025 74 CM de Oliveira do Hospital 0.112 147 CM de Santa Marta de Penaguião 0.317
101 CM de Figueiró dos Vinhos 0.025 122 CM de Estremoz 0.112 155 CM de São João da Pesqueira 0.303

80 CM de Castro Verde 0.024 143 CM de Pinhel 0.110 156 CM de Castanheira de Pera 0.281
81 SMAS de Guarda 0.024 137 CM de Avis 0.110 157 CM de Castelo de Paiva 0.279
160 CM de Ourique 0.023 154 CM de Aljustrel 0.110 158 CM de Moimenta da Beira 0.277

31 CM de Póvoa de Varzim 0.022 94 CM de Vila Nova de Famalicão 0.105 159 CM de Sabrosa 0.274
14 Águas de Barcelos 0.020 155 CM de São João da Pesqueira 0.092 160 CM de Ourique 0.271
154 CM de Aljustrel 0.020 158 CM de Moimenta da Beira 0.091 161 CM de Tabuaço 0.247

13 SM de Castelo Branco 0.018 131 CM de Proença-a-Nova 0.088 162 CM de Penedono 0.209
115 CM de Grândola 0.016 142 INFRATROIA 0.057 163 CM de Miranda do Douro 0.187

In managerial terms, within the top-20 rankings, those companies that follow the municipal
concessionaire management model obtain good results in the environmental (13) and economic
dimensions (11). Additionally, in the social dimension, the ranking is leaded by a mixture of water
companies following different management models: municipal or State-owned companies (VIMÁGUA
and EPAL), municipal concessionaire (Águas de Cascais), or direct management (SMAS de Sintra and
SMSB de Viana do Castelo).

The results obtained in this section are of great interest for water regulators. They enable the
operators to learn from the best positioned water companies in each dimension and establish operative
strategies in the correct direction with the aim of reducing the weaknesses in the mid-term. In general,
social and environmental issues are still insufficiently integrated into management processes and there
is room to improve these dimensions. Regulators should promote certification programs to encourage
water companies to make necessary improvements in order to obtain these certifications.

3.2.2. Phase 2: GSUIa Calculation

Once the dimensional indicators (PSUId
i ) are obtained for each water company, the optimization

problem (Equation (7)) is applied in order to obtain the Global Sustainability Indicator proposed
(GSUIa). These solutions will provide the weights for social (S), environmental (EN), and economic
(EC) dimension, maximizing the global score for each water company. In this way, this problem
provides the weights for social, environmental, and economic dimension, maximizing the global score
for each water company. The lower and upper bounds of the constraints are set to 0.001 and +∞,
respectively. This ensures that each dimension represents, at least, the 0.1% of the global score.

Figure 4 shows the values obtained for GSUIa. It can be observed that there are five water
companies (Águas de Cascais, Águas de Gondomar, Águas de Valongo, Indaqua Matosinhos, and
Vimágua) that reach a value equal to 1 for the global indicator. EPAL, Indaqua Santo Tirso/Trofa and
SMAS de Sintra are, also, very close to achieving a score of 1. It should be noted that 42.95% of the set
of water companies obtain a global value greater than 0.70; in particular, 25.15% of water companies
obtain a global value greater than 0.80. Then, a large group of water companies obtains good results,
as they reach a value close to 1. Additionally, there are no companies obtaining a global value lower
than 0.20.
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Figure 4. Global results obtained for each of the 163 water companies.

Table 5 lists all the water companies (163) according to the values obtained for the global indicator,
GSUIa. On the one hand, regarding the best results, four companies that belong to the top-20 for every
dimension also appear within the best global indicator values. Moreover, between the companies
ranked better, based on GSUI, there are 11 water companies whose PSUI value leads them to the
top-20 in two different dimensions. On the other hand, there are three companies that were part
of the bottom ranking for all the dimensions and, also, for the global indicator value. In particular,
between the 20 worst positioned water companies, based on the global indicator GSUI, there are four
water companies that also appeared among the worst results for two dimensions. The other 13 water
companies included in this bottom 20 ranking obtained poor results in the economic dimension.

An analysis about the correlation between all the rankings is shown in Table 6 using a Kendall tau
test. Correlations are significant at 1% level and values obtained show a high correlation between the
economic dimension ranking and the global ranking (0.925). The rest of the correlations are similar
and positives, and they are ranged between 0.26 and 0.40.

The proportional contribution differences can be explained by the particular profile characterizing
each company. A global analysis reveals some influence of the location of the water companies in these
lists. On the one hand, note that 12 of the top-20 water companies are located in the North region, three
water companies are located in MA Lisbon, three water companies are located in the Centre region,
and two water companies are located in the Algarve region. No one of the top-20 water companies
is located in Alentejo region. Additionally, the geographical distribution of these water companies
with the best performance on GPSUI might be grouped into two main locations along the Portuguese
coast: those companies that are placed close to Oporto (for example: Águas de Valongo, Indaqua
Matosinhos, Águas de Gondomar, Indaqua Santo Tirso/Trofa, Águas de Paredes, Indaqua Feira, Águas
do Porto), and the ones close to the capital (Águas de Cascais, SMAS de Sintra, EPAL). On the other
hand, within the bottom-20 water companies, none of them is located in the MA Lisbon or in Algarve
region. Nevertheless, most of them are located in the North region (11), five water companies are
located in the Alentejo region, and four water companies are located in the Centre region.
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Table 5. Results for 163 water companies for global indicator.

Water Company GSUIa Water Company GSUIa

1 Águas de Valongo 1.000 83 CM de Nisa 0.657
2 Indaqua Matosinhos 1.000 84 CM de Arganil 0.657
3 Águas de Cascais 1.000 85 CM de Porto de Mós 0.652
4 VIMÁGUA 1.000 86 CM de Odemira 0.648
5 Águas de Gondomar 1.000 87 Águas de Carrazeda 0.647
6 SMAS de Sintra 0.995 88 CM de Vale de Cambra 0.643
7 EPAL 0.989 89 CM de Arraiolos 0.640
8 Indaqua Santo Tirso/Trofa 0.983 90 CM de Espinho 0.638
9 SMSB de Viana do Castelo 0.953 91 SMAS de Vila Franca de Xira 0.636
10 Águas de Paredes 0.951 92 CM de Vila Viçosa 0.636
11 Indaqua Feira 0.949 93 CM de Armamar 0.636
12 Águas do Porto 0.940 94 CM de Vila Nova de Famalicão 0.629
13 SM de Castelo Branco 0.939 95 SM de Loures 0.627
14 Águas de Barcelos 0.931 96 CM de Ponte de Sor 0.627
15 Águas de Alenquer 0.930 97 CM de Ponte da Barca 0.626
16 INOVA 0.928 98 CM de Seia 0.620
17 Indaqua Vila do Conde 0.926 99 CM de São Brás de Alportel 0.617
18 Tavira Verde 0.915 100 CM de Se1bra 0.617
19 INFRAQUINTA 0.908 101 CM de Figueiró dos Vinhos 0.616
20 SMAS de Tomar 0.905 102 CM de Évora 0.615
21 Águas da Figueira 0.904 103 CM de Alandroal 0.615
22 Águas de Coimbra 0.901 104 CM de Aljezur 0.612
23 Águas da Região de Aveiro 0.899 105 CM de Almodôvar 0.610
24 Águas do Planalto 0.871 106 CM de Monção 0.605
25 Águas de Mafra 0.861 107 CM de Óbidos 0.604
26 AGERE 0.858 108 CM de Vila Nova de Foz Coa 0.601
27 FAGAR—Faro 0.836 109 CM de Arcos de Valdevez 0.599
28 CM de Albufeira 0.834 110 AMBIOLHÃO 0.596
29 CM de Moita 0.824 111 INFRAMOURA 0.592
30 Águas de S. João 0.823 112 CM de Montemor-o-Velho 0.588
31 CM de Póvoa de Varzim 0.816 113 CM de Cadaval 0.588
32 Luságua Alcanena—Gestão de Águas 0.815 114 CM de Terras de Bouro 0.586
33 EMAR de Portimão 0.813 115 CM de Grândola 0.585
34 SMAS de Leiria 0.811 116 CM de Alvaiázere 0.583
35 SMAS de Viseu 0.809 117 CM de Caminha 0.580
36 Águas de Ourém 0.807 118 CM de Bombarral 0.575
37 Aquaelvas 0.807 119 CM de Mora 0.573
38 SMAS de Oeiras e Amadora 0.806 120 CM de Alcoutim 0.572
39 Águas do Sado 0.801 121 CM de Nelas 0.565
40 Águas do Ribatejo 0.801 122 CM de Estremoz 0.564
41 INFRALOBO 0.801 123 CM de Mira 0.564
42 Águas da Azambuja 0.790 124 CM de Mértola 0.561
43 EMAS de Beja 0.789 125 SMAS de Peniche 0.560
44 SM de Alcobaça 0.788 126 CM de Lamego 0.556
45 CM de Marinha Grande 0.779 127 CM de Castro Daire 0.553
46 Cartágua 0.778 128 CM de Mourão 0.551
47 CM de Sines 0.777 129 CM de Penela 0.549
48 Águas do Lena 0.773 130 CM de Ponte de Lima 0.542
49 CM de Vila Verde 0.773 131 CM de Proença-a-Nova 0.535
50 CM de Seixal 0.772 132 CM de Soure 0.533
51 Penafiel Verde 0.770 133 CM de Chaves 0.529
52 Águas de Santarém 0.768 134 CM de Pedrógão Grande 0.520
53 CM de Santiago do Cacém 0.765 135 CM de Ferreira do Zêzere 0.519
54 SM de Nazaré 0.764 136 SMAS de Caldas da Rainha 0.503
55 Águas do Marco 0.759 137 CM de Avis 0.498
56 EMAR de Vila Real 0.748 138 CM de Vimioso 0.482
57 CM de Miranda do Corvo 0.742 139 CM de Vila de Rei 0.476
58 CM de Redondo 0.734 140 CM de Vila Nova de Poiares 0.475
59 Aquafundalia 0.731 141 CM de Alijó 0.466
60 CM de Reguengos de Monsaraz 0.730 142 INFRATROIA 0.461
61 CM de Sousel 0.726 143 CM de Pinhel 0.455
62 CM de Mogadouro 0.722 144 CM de Ferreira do Alentejo 0.451
63 CM de Mealhada 0.718 145 CM de Marvão 0.450
64 CM de Almeida 0.718 146 CM de Lousã 0.447
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Table 5. Cont.

Water Company GSUIa Water Company GSUIa

65 Aquamaior 0.715 147 CM de Santa Marta de Penaguião 0.446
66 CM de Mangualde 0.713 148 CM de Alfândega da Fé 0.435
67 SMAS de Montijo 0.703 149 CM de Arronches 0.432
68 CM de Barreiro 0.703 150 CM de Cabeceiras de Basto 0.431
69 CM de Pombal 0.703 151 CM de Sátão 0.415
70 SMAS de Torres Vedras 0.701 152 CM de Murça 0.410
71 CM de Penacova 0.699 153 CM de Penalva do Castelo 0.406
72 CM de Lagos 0.692 154 CM de Aljustrel 0.396
73 CM de Góis 0.689 155 CM de São João da Pesqueira 0.381
74 CM de Oliveira do Hospital 0.689 156 CM de Castanheira de Pera 0.355
75 CM de Montemor-o-Novo 0.684 157 CM de Castelo de Paiva 0.350
76 CM de Palmela 0.682 158 CM de Moimenta da Beira 0.347
77 CM de Ansião 0.675 159 CM de Sabrosa 0.347
78 SM de Abrantes 0.674 160 CM de Ourique 0.341
79 SMAS de Almada 0.671 161CM de Tabuaço 0.314
80 CM de Castro Verde 0.666 162 CM de Penedono 0.275
81 SMAS de Guarda 0.665 163 CM de Miranda do Douro 0.253
82 CM de Melgaço 0.662

Table 6. Kendall tau test.

Rank Correlation
Coefficient

Global Ranking Social Ranking
Environmental

Ranking
Economic
Ranking

Global Ranking 1.000
Social Ranking 0.324 ** 1.000

Environmental Ranking 0.395 ** 0.369 ** 1.000
Economic Ranking 0.925 ** 0.261 ** 0.361 ** 1.000

**: significance level at 1%.

In relation to the weights obtained by solving Equation (7), Table 7 summarizes the maximum and
minimum values for the virtual outputs obtained, as well as their mean and standard deviation for
each dimension. The economic dimension, in general, is the one with the largest virtual outputs in the
global aggregation. As the reader may observe in Figure 3, almost all water companies obtain similar
(good) values in this dimension. On the contrary, the social and the environmental dimensions lose
importance in the global weighting. The results show how some companies obtained very good results
in these dimensions but, at the same time, a larger proportion of the companies obtained relatively
poor results.

Table 7. Statistical information for weights calculated.

Descriptive Statistics Social Environmental Economic

Minimum 0.001 0.001 0.003
Maximum 0.991 0.990 0.966

Mean 0.045 0.029 0.598
Standard Deviation 0.156 0.127 0.197

Figure 5 shows the percentage contribution of each partial indicator to the value of the global
composite indicator, for the top-20 water companies. Differences in percentage contribution can be
explained by the particular profile characterizing each company. Despite the good performance of
those 11 companies within the top-20 at each dimension, in the global score there is no company that
displays a balanced contribution among the three dimensions. Then, if a balance between dimensions
is searched, the best water companies of the global indicator are not a good reference for the others,
in this context. In general, water companies should seek to improve their results in the dimension
in which they obtained the worst results in the first phase, without neglecting the maintenance of
good performance in those dimensions in which they obtained good results. Moreover, focusing on
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the companies that have a value equal to 1 in the global indicator, Águas de Cascais and VIMÁGUA
exhibit a greater contribution of the social dimension, while Indaqua Matosinhos and Águas de
Gondomar prioritize environmental dimension. However, Águas de Valongo stands out for the
percentage contribution of the economic dimension, while a minor importance of the others. In the rest
of companies, among those with a value of the global indicator close to 1, it is worth mentioning that
Indaqua Feira and Águas de Alenquer present a similar performance with an analogous contribution
of each dimension, around 8% for the social dimension, 9% for the environmental dimension, and 83%
for the economic one. In general, a trade-off between the economic dimension and the others can be
observed jointly.

Figure 5. Contribution of each dimension partial indicator to the value of global composite indicator.

In managerial terms, within the top-20 ranking, ten companies that follows municipal concessionaire
management model obtain good results the global indicator. The other ten companies present a fair
distribution between the other two management models. Additionally, note that all water companies
belonging to the bottom-20, use the municipal direct management model.

Then, the proposed approach allows evaluating the strengths and weaknesses of each water company
in a particular dimension and, at the same time, provides information about the contribution of the
dimensions to the sustainability overall score. These are the main advantages in comparison to the
previous methodology. In fact, if the initial indicators are directly aggregated using the methodology
based on goal programming, the results obtained regarding the best and the worst global performance of
the water companies are similar to those obtained with the proposed two-phase approach. In particular,
the top-13 using the previous methodology is formed by water companies that appear in our global
top-20. Nevertheless, using the previous methodology, the advantages named above disappear because
dimensional results are not obtained and, therefore, the contribution of them to the global indicator
is missing.

Consequently, in light of the results obtained, it is necessary to perform some transformations
towards sustainability with a balanced percentage contribution of each dimension. Implementing
appropriate programs that highlight social and environmental aspects is required to address global
sustainability in an adequate manner. Nevertheless, the proposed approach allows a better observation
of the differences among the water companies, dimensional and globally. It eases identifying strengths
and weaknesses of the companies, helping the decision-maker to set strategies to improve the medium-
and long-term sustainability of such companies.
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4. Conclusions

Despite the multiple benefits brought by following an efficient performance, in water management
only a few works provide alternatives. In this context, benchmarking plays an important role. Normally,
to study the efficiency requires information collected by indicators. However, some difficulties arise
when dealing with several indicators and their interpretation. In order to overcome these problems,
CIs are introduced in this field, providing different strategies to aggregate the indicators into a unique
score that summarizes the information.

In particular, this work provides an alternative methodology to evaluate the performance of a set
of Portuguese water companies following two steps. First, in order to analyse the economic, social
and environmental dimensions, we divide the initial set of indicators into these three dimensions and
construct a partial sustainable index for each of them, inspired by GP. In general, water companies
present the largest value for the economic partial sustainability indicator (PSUIEC), whereas the partial
sustainable index for the social and environmental dimensions present poor scores, the former being
slightly lower. In particular, ranking these results, we find that just a few water companies stand out
among the top 20 best scores in the three dimensions, simultaneously. This fact could be translated
into policies to improve social and environmental aspects of the water companies. The second step
uses a variant of DEA to provide a global performance index that uses the information provided by the
partial indicators for each company. As a result, a large percentage of water companies obtain a global
score over 0.7, whereas no companies show a value below 0.2. However, an individual analysis of the
contribution of each dimension to the global score shows no equilibrium.

Furthermore, in this analysis one may observe two profiles: on the one hand, many water
companies present a good global score due to the value they achieve in the economic partial sustainability
indicator, whereas, on the other hand, the good global results of the other companies are due to their
performance in the social and environmental dimensions, jointly. The results obtained show that the
water companies, in the Portuguese context, do not manage their activity in a balanced way from the
social, environmental, and economic point of view. Consequently, there are no water companies, in
this context, that can be considered a “good benchmark” for the rest, so that they achieved good results
in the three dimensions in a balanced way. In this case, each water company should seek to improve
their results in the dimension(s) with lower contribution in the sustainability, taking into account the
scores in the first phase, without neglecting the maintenance of good performance in those dimensions
in which good results are obtained. In this context, as a future line of research, it would be interesting
to define an ideal company that reaches a good percentage contribution of each dimension on the
sustainability, and then compare the sample of water companies with this one ideal.

Nevertheless, this work introduces an alternative to assess the sustainability of water companies
in two phases. It permits assessing and/or comparing the dimensional sustainability in the first phase,
and to provide a holistic performance perspective in the second phase, generating a ranking of the
water companies. The proposed approach could be very useful for water regulators: (a) to verify the
effectiveness of existing policies; (b) to support decision making in concrete dimensions; and (c) to
monitor global trends. In other words, measuring sustainability, holistically and for dimension, will
allow water regulators to make critical decisions and, if needed, implement corrective measures to
improve it and do it in the correct direction.
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Appendix A

Table A1. Initial set of PIs.

Dimension Acronym Performance Indicator

Social

IS1 Service coverage (% of the households for which the water company
provides effective connected service)

IS2 Drinking water quality safety (% of water supplied that meets the legal
quality requirements)

IS3 Reserve capacity for treated water (capacity to supply water of the
water company if new water resources are not available)

IS4 Certification of management systems for occupational risk and health
issues at work

IS5 Other certifications (corporate social responsibility, consumer protection
mechanisms, . . . )

Environmental

IEN1 Water losses in the network (volume of drinking water lost/km/day)

IEN2 Internal power generation (% of energy used own-generated by the
water company)

IEN3 Energy efficiency in pumping water (average consumption of energy
for water pumping)

IEN4 Certification of management systems (environmental responsibility,
environmental impact assessment mechanisms . . . )

IEN5 Certification of management systems for water quality issues

Economic

IEC1 Non-revenue water (% of water that is supplied but not invoiced)

IEC2 Adequacy of staffing (number of full time equivalent employed / 1000
water supply connections)

IEC3 Operating cost coverage ratio (total annual operational revenues / total
annual operational costs)

IEC4 Index of knowledge about infrastructure and asset management
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Abstract: To achieve energy and climate goals, the energy performance of current and future drinking
water treatment plants (DWTPs) must be improved. A few studies have evaluated the energy
efficiency of these facilities using data envelopment analysis (DEA), however, they have ignored
the deterministic nature of the DEA method. To overcome this limitation, a double-bootstrap DEA
approach was used in this study to estimate the energy efficiency of DWTPs. For a sample of Chilean
DWTPs, bias-corrected energy efficiency scores were computed with consideration of data variability,
and the determinants of DWTP energy efficiency were explored. Most DWTPs in the sample had
much room for the improvement of energy efficiency. In the second stage of analysis, facility age,
the volume of water treated, and the technology used for treatment were found to influence DWTP
energy efficiency. These findings demonstrate the importance of using a reliable and robust method
to evaluate the energy efficiency of DWTPs, which is essential to support decision making and to
benchmark these facilities’ energy performance.

Keywords: data envelopment analysis; energy efficiency; performance; bootstrap; water treatment

1. Introduction

In the context of climate change, energy demand for urban water supplies has emerged as a
relevant issue [1]. In the future, more energy is expected to be required to treat and supply drinking
water to citizens due to the adaption of water systems to the effects of climate change and to new
regulatory requirements. Goal 6 of the Sustainable Development Goals adopted by the United Nations
(UN) in 2015 involves the achievement of universal and equitable access to safe and affordable drinking
water for all by 2030. The achievement of this goal will require the construction of many more drinking
water treatment plants (DWTPs), which will increase the amount of energy required for drinking water
supplies worldwide.

Urban water utilities use energy to extract, convey, treat, and distribute drinking water. Previous
studies have focused on the evaluation of energy requirements for one or several activities in the urban
water cycle. Several studies have focused on the quantification and evaluation of the economic and
environmental effects of energy use to supply drinking water to major cities and on the comparison of
energy use among cities and countries [2,3]. Other studies have involved a more detailed analysis of
individual drinking-water supply stages and quantification of the energy required to treat raw water,
i.e., the energy used by DWTPs [4]. The aim of these studies was to quantify and compare the energy
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intensity of DWTPs, that is, the energy consumed (kWh) per unit volume (m3) of drinking water
produced (kWh/m3) [5]. However, as Santana et al. [6] and Molinos-Senante and Sala-Garrido [7]
determined, the energy required to treat raw water depends on several factors, including the quality of
the raw water and of drinking water standards, as well as the water treatment technology used. Sowby
and Burian [8] also emphasized this issue; after analyzing the energy requirements for drinking water
supplies in 109 cities in the United States, they concluded that energy intensity is an overly simplistic
metric that is not adequate for the comparison of DWTP performance.

To overcome the comparability limitation and to facilitate benchmarking between DWTPs, a few
studies have focused on evaluating DWTP energy efficiency. Molinos-Senante and Sala-Garrido [9]
defined energy efficiency as a “synthetic index that incorporates both the quality of the raw water
being processed and the energy required to treat it.” Although several methods can be used to estimate
the energy efficiency of DWTPs, data envelopment analysis (DEA) has been used in the few studies
conducted to date. DEA is a non-parametric method based on mathematical programming techniques
that integrates multiple inputs (energy use) and outputs (concentrations of several pollutants removed
from raw water and the volume of treated water) into a synthetic index; namely, the energy efficiency
score. Molinos-Senante and Guzman [10] computed the energy efficiency of a sample of DWTPs using
the DEA approach, investigating the presence of economies of scale in these facilities. Applying the
more advanced metafrontier DEA model, Molinos-Senante and Sala-Garrido [9] compared energy
efficiency among DWTPs using different treatment technologies. Recently, Ananda [11,12] computed
the environmental efficiency and productivity change of a sample of 49 Australian urban water
utilities using DEA, with a focus on economic issues, but integration of greenhouse gas emissions as
undesirable outputs.

These studies [9–12] contributed to the literature by providing estimated energy efficiency scores
for DWTPs derived from the application of a holistic and integrated approach. However, they have
ignored the deterministic nature of the DEA methodology; as statistical inferences cannot be drawn
from conventional DEA (energy) efficiency scores [11] and regression analysis cannot be conducted to
explore the determinants of previously estimated scores [12]. Moreover, conventional DEA models do
not integrate data variability into the (energy) efficiency assessment, which negatively impacts the
robustness and reliability of the results.

In the framework of efficiency assessment, two main alternative methodological approaches have
been proposed to explore the causality between factors and efficiency scores. Cazals et al. [13] proposed
the order − m method, in which a fraction of the sample is used to estimate efficiency scores. However,
selection of the m value is challenging, and it affects efficiency scores [14]. Alternatively, Simar and
Wilson [15] proposed a double-bootstrap DEA procedure for the estimation of efficiency scores that
overcomes the two main limitations of conventional DEA models; i.e., it allows exploration of the
determinants or factors affecting efficiency scores [16], and it permits bias correction and the calculation
of confidence intervals for the scores. Despite the relevance of this type of analysis, the bootstrap
approach has not been used to evaluate the energy efficiency of DWTPs.

Against this background, the objectives of this study were twofold. The first objective was to
assess the energy efficiency of a sample of DWTPs with consideration of data variability, i.e., to estimate
bias-corrected energy efficiency scores and their confidence intervals. The second objective was to
explore the determinants DWTP energy efficiency. To do so, we employed the double-bootstrap DEA
approach proposed by Simar and Wilson [17]. Empirical application was performed with a large
sample (n = 146) of Chilean DWTPs. Although many scholars have examined the energy intensity of
urban water cycle activities in recent times, few studies have assessed the energy efficiency of water
treatment plants and none has involved the application of a robust methodological approach such as
double-bootstrap DEA. This paper contributes to the current body of literature in the water–energy
nexus field by presenting for the first time bias-corrected energy efficiency scores and discussing
factors affecting the energy efficiency of a sample of DWTPs.
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2. Methods

2.1. Energy Efficiency Estimation

Conventional DEA models, such as those proposed by Charnes et al. [18] and Banker et al. [19]
(the CCR (Charnes, Cooper and Rhodes) and BCC (Banker, Charnes and Cooper), respectively) and
subsequent developments, have been employed widely to evaluate the efficiency of water treatment
facilities, such as WWTPs and DWTPs. DEA models can be used with a constant returns to scale (CRS)
or variable returns to scale (VRS) technique. With the CRS approach, outputs increase in proportion to
inputs, and producers (DWTPs in this case) are assumed to be able to linearly scale inputs and outputs
without changing efficiency. By contrast, with the VRS approach, an increase or decrease in input or
output does not result in a proportional change in outputs or inputs, respectively. Previous studies [1,5]
have shown that the energy consumed by DWTPs to produce drinking water does not depend linearly
on the pollutants removed from raw water. Hence, in this study, and as in Molinos-Senante and
Sala-Garrido’s studies [9], a VRS DEA model was employed to evaluate DWTP energy efficiency.

Moreover, DEA models can have an input or output orientation, depending on whether the aim
of the units analyzed (DWTPs) is to minimize the use of inputs or to maximize the production of
outputs. In this case study, an input orientation was adopted because the main objective of DWTPs
is to produce drinking water that complies with the legal quality standards using minimum energy.
The quantity of pollutants to be removed depends on the quality of the raw water and the thresholds
defined by drinking water standards, which are external to the water utilities.

Let us assume that we have a set of DWTPs, j = 1, 2 . . . , N, each using a vector of M inputs,
xj =

(
x1j, x2j, . . . , xMj

)
, to produce a vector of S outputs, yj =

(
y1j, y2j, . . . , ySj

)
. Assuming VRS

technology, the input-oriented DEA model is denoted as follows:

Min θj
s.t.

N
∑

k=1
λkxik ≤ θjxij 1 ≤ i ≤ M

N
∑

k=1
λkyrk ≥ yrj 1 ≤ r ≤ S

∑N
k=1 λk = 1
λk ≥ 0 1 ≤ k ≤ N,

(1)

where θj is the energy efficiency score of the DWTP evaluated, M is the number of inputs considered,
S is the number of outputs produced, N is the number of DWTPs evaluated, and λk is a set of
intensity variables representing the weighting of each DWTP evaluated, k, in the composition of the
efficient frontier.

The energy efficiency score (θj) ranges from 0 to 1. A DWTP is energy efficient when θj = 1 and
inefficient when θj < 1. For an energy-inefficient DWTP, the value of 1 − θj informs us about the
potential for energy savings, as it is the proportional input (energy consumption in this study) that can
be achieved by DWTP j, given the level of outputs produced.

2.2. Double-Bootstrap DEA Model

The double-bootstrap DEA model proposed by Simar and Wilson [15] is based on the simulation
of sample distribution by mimicking of the data-generation process (DGP). Assuming that the original
data sample was generated by the DGP, energy efficiency scores are re-computed with the simulated
data [19]. In other words, the bootstrapping procedure generates new data that is used to re-estimate
energy efficiency scores using Equation (1). Then, the distinction between the true and estimated
frontiers allows for statistical inference in DEA, i.e., for the identification of determinants of energy
efficiency [20].
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The double-bootstrap procedure employed in this study is Algorithm 2 of Simar and Wilson’s
model [20], summarized as follows:

1. Estimate the energy efficiency scores, θj, for all DWTPs in the sample using Equation (1).

2. Carry out a truncated maximum likelihood estimation to regress energy efficiency scores against
a set of explanatory variables bj, θj = bjβ + ε j, and provide an estimate β̂ of the coefficient vector
β and estimate σ̂ε of σε, the standard deviation of the residual errors ε j.

3. For each DWTP, j (j = 1, . . . , N), repeat the following four steps (3.1–3.4) Z1 times to obtain a set
of Z1 bootstrap estimates ˆθjz for z = 1, . . . , Z1.

3.1 Generate the residual error, ε j, from the normal distribution N(0, σ̂2
ε ).

3.2 Compute θ∗j = bj β̂ + ε j.

3.3 Generate a pseudo data set (x∗j , y∗j ) where y∗j = yj(
θj
θ∗j
).

3.4 Using the pseudo data set (x∗j , y∗j ) and Equation (1), calculate the pseudo energy efficiency

estimates, θ̂∗j .

4. Calculate the bias-corrected estimator, θ̂j, for each DWTP, j (j = 1, . . . , N), using the bootstrap

estimator or the bias ẑj where θ̂j = θj − ẑj and ẑj =
(

1
Z1

∑Z1
z=1

ˆθ∗jz
)
− θj.

5. Use the truncated maximum likelihood estimation to regress θ̂j on the explanatory variables, bj,
and provide an estimate β̂∗ for β and an estimate σ̂∗ for σε.

6. Repeat the following three steps (6.1–6.3) Z2 times to obtain a set of Z2 pairs of bootstrap estimates
( ˆβ∗∗

j , ˆσ∗∗
j ) for z = 1, . . . , Z2.

6.1 Generate the residual error ε j from the normal distribution N(0, ˆσ∗2).

6.2 Calculate ˆθ∗∗j = bj β̂∗ + ε j.

6.3 Use the truncated maximum likelihood estimation to regress ˆθ∗∗j on the explanatory
variables, bj, and provide an estimate ˆβ∗∗ for β and an estimate ˆσ∗∗ for σε.

7. Construct the estimated (1 − α)% confidence interval of the n-th element, βn, of the vector β,

that is, [Lowerαn, upperαn] = [β̂∗
n + ˆaα,β̂∗

n + b̂α] with Prob
(
−b̂α ≤ ˆβ∗∗

n − β̂∗
n ≤ −âα

)
≈ 1 − α.

3. Sample and Variables

Chile is a long country whose extension is 4300 km. Hence, from a hydrometeorological point
of view, Chile is a diverse country with significant precipitation variability throughout the country,
increasing more than 500% from the North to the Austral region. Water runoff is also heterogeneous
and varies from 510 m3/person/year to 2,300,000 m3/person/year. This diversity is expected to
be accentuated by climate change, which will affect Chile in a complex fashion, with increased
temperatures throughout the country and decreased precipitation in the Central and Southern areas of
the country [21].

For empirical application, a sample of 146 Chilean DWTPs was used. All of the facilities were
operated by private water companies, as the Chilean water industry was privatized between 1998
and 2004. The drinking water produced by all DWTPs must meet the quality standards of national
norm NCh 409, which is based on the guidelines for drinking water quality published periodically
by the World Health Organization (WHO) [22]. The quality of the drinking water supplied to
citizens is monitored by water companies and the water regulation agency (Superintendencia de
Servicios Sanitarios).

The energy consumed to treat raw water, expressed in kWh/year, was selected as the input;
i.e., as the variable that DWTPs should minimize to improve energy performance. Following
Molinos-Senante and Guzmán [10], the assessment of energy efficiency focused on DWTPs, without
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consideration of the energy used for groundwater pumping and raw water transport from the natural
and artificial reservoirs to the DWTP.

In the assessment of water utility efficiency, the outputs selected should summarize the utilities’
main function [23]. In this case study, the main function of DWTPs was considered to be the production
of drinking water that met the NCh 409 quality standards. Moreover, the energy consumed by DWPTs
(in kWh/year) depends not only on the volume of drinking water produced, but also on the pollutants
removed, i.e., on the quality of the raw water and drinking water produced [12]. Hence, following the
approach applied in previous studies [24,25] four quality-adjusted outputs (QAOs) were considered to
assess DWTP energy efficiency, defined as follows:

QAOp = V· (Cpin − Cpe f )

Cpin
, (2)

where V is the volume of drinking water produced (in m3/year), Cpin is the concentration of pollutant
Cp in the influent of the DWTP, and Cpe f is the concentration of pollutant Cp in the effluent of the
DWTP. Molinos-Senante and Sala-Garrido [7] defined energy intensity as the “energy consumed
(kWh) per unit volume (m3) of drinking water produced”. These authors developed energy intensity
functions for DWTPs using parametric regression analysis to identify the main drivers of energy use
in DWTPs. They concluded that energy intensity of DWTPs depended on the capacity of the facility
and the removal efficiency of i) turbidity, ii) arsenic, iii) total dissolved solids, and iv) sulfates. Hence,
these four pollutants were considered in this study as QAOs.

According to Sanders and Webber [26], the energy efficiency of a given water treatment technology
correlates with the size, concentrations, and nature of the pollutants to be removed. Other factors,
such as the water company operating the facility or the age of the DWTP, might also impact energy
efficiency [9]. Based on previous studies [4,27], four variables were included as potential determinants
of DWTP energy efficiency scores: i) DWTP age, ii) raw water source, iii) ownership of the company
operating the DWTP, and iv) type of treatment.

Table 1 shows the main statistics for the variables (input, outputs, and factors underlying
efficiency) used in this empirical application.

Table 1. Sample description. (Source: Water and Sewerage Management Reports by SISS).

Data Variables Average SD Minimum Maximum

Input Energy consumed (kWh/year) 258,878 441,353 1,152 2,331,739
Energy consumed (kWh/m3) 0.175 0.259 0.022 1.194

Outputs

Water treated (m3/year) 17,306,317 61,159,647 6,642 386,483,247
Efficiency in turbidity removal (%) 56.2 21.2 5.6 95.5
Efficiency in arsenic removal (%) 58.2 24.4 4.8 86.7

Efficiency in TDS removal (%) 39.2 24.3 4.8 80.0
Efficiency in sulfates removal (%) 47.3 28.3 4.4 90.9

Continous explanatory
variable Age (years) 27.4 15.5 11.0 52.0

Categorial explanatory
variable

Number % total

Source of water
Surface 45 30.8

Groundwater 43 29.5
Mixed 58 39.7

Water company Private operator 76 52.0
Concession 70 48.0

Type of treatment PF 70 48.0
RGF 76 52.0

SD: Standard Deviation; PF: Pressure filtration; RGF: Rapid gravity filtration.

4. Results and Discussion

4.1. Estimated Energy Efficiency

The energy efficiency of each DWTP was estimated following the methodological approach
described in Section 2.1., i.e., by employing Equation (1). According to the energy efficiency scores
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calculated with the original data, 6 of 146 (4.1%) DWTPs were energy efficient (Figure 1). These DWTPs
formed the best practice frontier, as they used the minimum quantity of energy given their efficiency
of pollutant removal compared with the other DWTPs evaluated. The mean energy efficiency of the
DWTPs assessed was 0.38, meaning that on average they could reduce the energy consumed by 62%
while retaining output production if they were operated as energy-efficient facilities. The average
energy efficiency seems to be low, but this result is consistent with those of previous studies.
Molinos-Senante and Guzmán [10] and Hernández-Sancho et al. [28] reported average energy
efficiencies of 0.45 and 0.31 for samples of Chilean DWTPs and Spanish WWTPs, respectively.
The results of this study confirmed in general that the water treatment facilities had notable room
for energy saving. Moreover, the sample of DWTPs evaluated was very heterogeneous in terms of
energy efficiency (Figure 1); almost one-third (42 of 146) of the facilities had energy efficiency scores
<0.2, indicating dramatically poor energy performance and thus much improvement potential.

Figure 1. Original energy efficiency scores of drinking water treatment plants.

As reported in Section 2.2, to compute bias-corrected energy efficiency scores and bootstrap 95%
confidence intervals, 2000 bootstrap samples were generated. The original and bias-corrected bootstrap
energy efficiency estimates are compared in Figure 2. To facilitate comparison, only results for the 30
DWTPs with the highest original energy efficiency scores are presented. Detailed information for all
DWTPs evaluated is provided in the Supplementary Materials. As expected from a theoretical point of
view [12,16,29], the bias signs were negative (bias-corrected energy efficiency scores were lower than
original scores) for the 146 DWTPs assessed. The average bias-corrected energy efficiency score was
0.28, meaning that DWTPs could conserve 71% of the energy currently used while maintaining output
generation if they were operated as energy-efficient facilities. The difference between the bias-corrected
and original energy efficiency scores reflects the limitations of the traditional DEA model, which does
not integrate data variability in efficiency assessment. Although the difference in average scores was
not large, it altered the ranking of DWTPs (Figure 2). For example, DWTP 144 was ranked first based
on the original energy efficiency score (1), but 15th of the 30 DWTPs listed in Figure 2 based on the
bias-corrected score. Under both methodological approaches, DWTP 141 was ranked first, showing
that it was the most energy efficient facility in the sample. It is one of the largest facilities evaluated
and it employs rapid gravity filters to treat raw water. To verify that the DWTP ranking differed
statistically according to the DEA model used, the non-parametric Mann–Whitney test was performed.
The p value was <0.01, reflecting a strongly significant difference in ranking.
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Figure 2. Ranking of drinking water treatment plants based on original and bias-corrected energy
efficiency scores.

The lower and upper bounds are the maximum and minimum energy efficiency scores computed,
considering the 2000 bootstrap samples generated. In other words, the difference between the lower and
upper bounds represented the variability in energy efficiency for each DWTP evaluated. For DWTPs
with the lowest energy efficiency scores, the gaps between the upper and lower bounds were small
(minimum, 0.008), reflecting almost no variability (Figure 3). By contrast, the gaps between maximum
and minimum energy efficiency scores was large (maximum, 0.75) for DWTPs with the highest
original energy efficiency scores. This finding showed the importance of considering data variability
in efficiency assessment employing the DEA approach, to provide more reliable and robust energy
efficiency estimations to support decision-making. Such integration of variability is essential when the
purpose of the analysis is to rank facilities based on performance (Figure 3). In the context of regulated
water industries, this issue is very relevant, as benchmarking is used to set water tariffs in several
water regulation models.

Figure 3. Lower and upper bounds of energy efficiency for each drinking water treatment plant.
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4.2. Determinants of Energy Efficiency

To improve the energy efficiency of DWTPs, not only inefficient facilities, but also the factors that
influence energy efficiency, must be identified. This is the main advantage of the double-bootstrap
technique. In the second stage of analysis, regression was conducted with four variables to identify
factors influencing DWTP energy efficiency. Table 2 shows the bias-corrected coefficients of the
regressed variables, with standard errors and p values. From a statistical point of view, a variable
influences the energy efficiency of DWTPs at the 95% significance level if its p value is ≤0.05.

Table 2. Results of bootstrap regression.

Variables Bias-Corrected Coefficient Standard Error p-Value

Age −25.25 4.51 0.030 **
Volume 10.44 2.14 <0.001 *

Surface water Reference variable
Groundwater 58.54 10.25 0.751
Mixed water 45.32 7.55 0.354

Privatized company Reference variable
Concessionary company 10.25 3.24 0.548

Pressure filtration Reference variable
Rapid gravity filtration −5.25 1.21 0.006 *

* Significant at 1% level; ** Significant at 5% level.

The DWTP age positively influenced energy efficiency (Table 2). Hence, older water treatment
facilities exhibited a better energy performance than did younger facilities. The oldest facility analyzed
had been operating for 52 years, and the sample contained a non-minor number of DWTPs that
were more than 25 years old, in which old equipment had been replaced with newer, more efficient
systems. This finding reflects the importance of proper equipment maintenance and the continuous
incorporation of processes to improve the energy efficiency of DWTPs [10].

As in the case of WWTPs [15], the water treatment facilities presented economies of scale regarding
energy use (Table 2). Larger DWTPs had significantly higher energy efficiency scores than did smaller
facilities. This information is essential for the planning of new DWTPs, given the current tendency
to decentralize urban water treatment facilities to increase redundancy in the case of an unplanned
event (e.g., earthquake, volcanic eruption, or hurricane). However, from economic and environmental
perspectives, larger DWTPs, i.e., centralized systems, are more favorable because per-unit energy use
decreases with increasing capacity.

The quality of raw water, and thus the treatment intensity required to produce drinking water,
sometimes depends on the water source. The DWTPs evaluated treated surface water, groundwater,
and mixed water (Table 1). Following [12], the raw water source variable was integrated into the
regression analysis as three dummy variables. The results showed that the source of raw water did
not affect DWTP energy efficiency. This finding was consistent with the definition of the outputs
considered in energy efficiency estimation, which included the concentrations of pollutants in DWTP
influents and effluents. Usually, the use of groundwater requires more energy for water pumping,
as well as the depth, which depends on water availability. However, in this case study, to guarantee
homogeneity to the greatest extent possible, energy use for groundwater pumping was not considered
in the analysis.

Several studies [24,30,31] have focused on the comparison of the performance of public and private
water companies. In Chile, 98% of urban customers are supplied by private water companies [22],
which operate under two regimes: i) Fully private water companies following the English and Welsh
model, and ii) concessionary water companies following the French model [32] (The difference between
water company types is the concession term (perpetuity for fully private companies and 30 years
for concessionary water companies). Thus, DWTP ownership was integrated in the analysis as two
artificial dummy variables. DWTP ownership did not impact energy efficiency (Table 2). This finding

72



Energies 2019, 12, 765

was consistent with Sowby’s [33] finding that energy efficiency did not differ significantly between
public and private water companies.

For WWTPs, which have been studied more widely than DWTPs, results regarding the influence
of treatment technologies on energy efficiency were inconclusive [34]. Thus, we investigated whether
the technology used (i.e., pressure filtration or rapid gravity filtration) was a determinant factor for
DWTP energy efficiency. The average energy efficiency score for water treatment facilities using
pressure filtration was 0.351, and that for those employing rapid gravity filtration was 0.408; thus,
the latter facilities exhibited significantly better energy performance (Table 2).

From the perspective of cleaner production, the findings of this study demonstrate the
importance of adequate maintenance and equipment replacement to ensure DWTP energy efficiency.
Moreover, the role of the technology in this efficiency has been revealed. This issue is fundamental
for decision-making, especially in the context of the UN’s Sustainable Development Goals.
The achievement of Goal 6 (“by 2030, achieve universal and equitable access to safe and affordable
drinking water for all”) will involve the construction and operation of new DWTPs. The technological
factor must be taken into account to reduce the energy requirements of these new facilities.

5. Conclusions

The assessment of energy requirements for urban water supplies has emerged as a relevant
topic. The few previous studies that have evaluated the energy efficiency of DWTPs have employed
conventional DEA models, ignoring the deterministic nature of this method. To overcome this
limitation, a double-bootstrap DEA model was used in this study to evaluate the energy efficiency of a
sample of DWTPs.

Empirical application with a sample of Chilean DWTPs provided three primary conclusions.
First, the energy efficiency of the sample of DWTPs evaluated was very low; less than 5% of facilities
were energy efficient, and the DWTPs could reduce the energy consumed by >50% while maintaining
the same level of pollutant removal. Many water companies have focused on the optimization of
energy use in WWTPs in recent years; the findings of this study show that improving the energy
efficiency of DWTPs is also challenging. Second, the integration of data variability in the energy
efficiency assessment notably affected the results. The ranking of DWTPs based on original and
bias-corrected energy efficiency scores differed significantly. Water regulators that use benchmarking
to regulate water companies or to set water tariffs should integrate data variability in their performance
assessments, as in this study, to avoid the generation of biased results and conclusions. Third, among
the variables studied, the determinants of energy efficiency were the volume of raw water treated (i.e.,
facility capacity), DWTP age, and the main technology used to treat raw water (i.e., pressure filters or
rapid gravity filters). Plant size and the technology used to treat raw water are structural variables that
cannot be modified by DWTP managers; thus, the improvement of energy efficiency in existing facilities
is difficult in the short term. However, in consideration of long-term energy efficiency, these features
must be taken into account when planning the construction of new DWTPs. In addition, facility age
positively influenced energy efficiency, revealing the important role of equipment maintenance and
replacement in the energy efficiency of water treatment facilities.

The improvement of DWTP energy efficiency is essential to achieve global climate goals and
provide affordable drinking water for all people. Several regulations, such as the Revised Energy
Efficiency Directive (which defines the European Union energy efficiency targets), and international
agreements are focused on the reduction of consumers´ energy requirements. The European Water
Framework Directive, which establishes full cost recovery for water services, was implemented in 2000.
It mandates that all costs of urban water services, including DWTPs, must be transferred to citizens
via water tariffs. The improvement of DWTP energy efficiency contributes to the achievement of the
UN’s Sustainable Development Goal 6 and to the fulfillment of climate change agreements. In this
context, to support decision-making, it is essential not only to assess the energy efficiency of DWTPs,
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but also to identify the determinants of energy efficiency using a reliable and robust methodological
approach, as was done in this study.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/1996-
1073/12/4/765/s1.
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Abstract: Augmentation of electrical equipment is pushing for an increase in energy supply sources all
over the world, as electricity consumption (EC) typically rises with growing populations. The value of
EC reveals economic development and degree of emissions. Therefore, this research uses the undesirable
outputs model in data envelopment analysis (DEA) for estimating relative efficiency of electricity
consumption in 42 countries from 2008 to 2017. According to the principle of an undesirable outputs
model and studied objectives, variables are selected that included population and EC as inputs, gross
domestic product (GDP) as desirable output, and carbon dioxide (CO2), methane (CH4), and nitrous
oxide (N2O) as undesirable outputs. The empirical results indicate that 420 terms of 42 countries during
the period of 2008–2017 have 102 efficient and 310 inefficient terms. Moreover, the interplay level between
input and output factors every year is presented via scores. The study suggests the effect of EC to human
life and propounds the emission status to look for directions to overcome inefficient terms.

Keywords: electricity consumption (EC); undesirable outputs model; data envelopment analysis
(DEA); efficient; inefficient

1. Introduction

In modern life, electrical energy is essential to meet the demands of extending technology
and electronic equipment [1], as electricity provides energy for lighting, heating, cooling, factories,
machines, transportation systems, i.e., [2]. The increasing population leads to increasing electricity
consumption (EC); thus, population growth and EC have a significant positive relationship [3].
When electricity is utilized, it contributes to enhancing the economic development index. Lu indicated
that a 1% increase in EC from 17 Taiwanese industries boosted the real GDP by 1.72% [4]; Enu and
Patrick explained the effect of EC on economic growth in Ghana [5]; Altisnay and Karagol showed the
casual relationship between EC and real GDP in Turkey [6]. On the other hand, EC causes pollutant
emissions to the environment, including CO2, CH4, and N2O. For instance, a study by the Federal
University of Agriculture Abeokuta assessing carbon footprints over the 2011–2012 period showed
that 5935 tons of CO2 represented 63% transportation, 35% campus energy consumption, and 2%
farm machineries per student [7]. In Hong Kong, between 2002 and 2015, the annual EC went from
27 to 34.1 million tons; further, CO2-eq/kWh was increased from 702 to 792 g [8]. Therefore, EC has a
positive and significant relationship with both emissions [9,10] and economic growth [11].

Electricity is generated from two sources, i.e., nonrenewable and renewable energy. Renewable energy
comprises hydropower, biomass, wind, solar, and geothermal. Nonrenewable energy consists of oil,
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natural gas, coal, and nuclear. Both sources are applied to generating electricity to provide energy for
inhabitants and their applications [12]. The population increase augments the EC as well. When a
consumer uses electrical energy, economic growth is extended, and CO2, CH4, and N2O rise as well.
Increased emissions lead to polluted environments and climate change. Thus, the purpose of study is to
determine the relationship among inputs (population, and EC), desirable output (GDP), and undesirable
outputs (emissions), the relation is evaluated via the scores computed by an undesirable outputs model
in DEA.

In DEA, the super-SBM, EBM, and Malmquist models can formulate the maximum score and
separate values for each decision-making unit (DMU) in every term; however, they cannot deal
with desirable and undesirable outputs, whereas an undesirable outputs model only approaches
to the highest value of 1, but it can solve with good (desirable) and bad (undesirable) outputs
independently [13]. This model reaches bad factors in the operation process; the inefficient DMUs
will be suggested, i.e., raising good outputs while simultaneously reducing bad outputs to improve
their scores [14,15]. With these characteristics, the study applies an undesirable outputs model into
computing the efficiency of EC with its relative elements in 42 countries over the world from 2008 to
2017. The analysis result works out the influence of EC on the economic development, and emissions
in which the increased levels of undesirable emissions are the root causes of climate change. A feasible
solution is recommended to refine the performance of inefficient terms. Moreover, the study draws a
picture of the productivity efficiency between EC and its relative factors in 42 countries over the years.

The study is arranged as follows: Section 1 shows the general points of electricity’s application,
producing an electricity process, and its effects; Section 2 overviews EC and its background research,
the theoretical concept of undesirable outputs model in undesirable model and its application; Section 3
builds upon the proposal research and methodology, and quotes source materials; Section 4 displays the
empirical analysis results; Section 5 comments on the general results, gives limitations, and discusses
future research.

2. Literature Review

The life of people without electricity was inconvenient, they worked by manual labour, and lived
without light. Since electrical energy was invented in the18th century, the life of inhabitants has been
changed with access to light, electronic equipment, and high-tech. The effectiveness of production
operations is enhanced and upgraded sharply by the use of electrical machines. The process whereby
people use electrical energy for lighting, heating, transportation, and so on is called “electricity
consumption”. The population is the major source that supports electricity development when utilizing
electronic equipment. The electricity is consumed at a high or low level, the EC reflects an economic growth
level. Chen denoted that the economic growth and population have a vital role on the electrical energy
consumption when depending on the non-parametric model [16]. To explore the electricity demand in
the future, Gajowniczek [17] displayed an approach to predict electricity load at the individual household
level using CART, SVM and a MLP neutral network model; Gajowniczek continued studying electricity
demand [18]; Singh [19] proposed Bayesian network prediction for energy usage forecasting.

On the other hand, the electricity causes greenhouse gas [20] that leads to climate change because
of the emission of CO2, CH4, N2O [21] from electricity production processes [22]. Emissions from
hydropower are estimated by using statistical global emission models through the reservoir water
surface [23,24], that from natural gas and coal power plants is calculated by a simple model [25],
and that from combustion power plants is counted by the values and data of emission factors exhausted
from the circulating fluidized bed boiler [26], or that from wind power plants is formulated by a simple
analysis method for the undesirable elements of electricity production processes [27]. In China
emissions from EC are determined by a data analysis and measurement method [28], while in the
United States a transparent method is used [29]. Hence, the previous researchers applied various
methods to an examination of the emission of undesirable factors from EC.
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Whereas DEA normally concerns calculating performance with the inputs and good outputs in various
models such as dynamic-SBM, super-SBM, EBM, i.e., however, they cannot solve for undesirable outputs
in social activities, air pollution, and the industrial manufacturing sector. For this reason, Tone proposed an
undesirable outputs model in DEA to evaluate bad outputs [30], displaying a new scheme. A DMU acquires
efficiency as the score approaches 1, and it is inefficient when the score is less than 1. Furthermore, the model
can compute the performance by combining both undesirable and desirable outputs [31]. The efficiency
valuations indicate not only the interplay between desirable and undesirable outputs, but also the ranking
of each DMU in every year [32]. Many researchers have applied the undesirable model into their studies.
For example, an analysis by the Organization for Economic Co-operation and Development (OECD) of
countries with population and energy consumption as input factors, GDP as desirable output, and CO2 as
undesirable output reveals the environmental efficiency [33]; the overall efficiency of the United States’s
electricity production is evaluated by escalating the desirable output and undesirable outputs [34]; counting
the efficiency shows the relationship between labor force, energy consumption, government expenditure as
input, GDP as desirable output, and CO2 emissions as undesirable output [35]. Moreover, the undesirable
model is used for examining performance in other aspects such as estimating the impact of production
pollutants in the textile industry of China with inputs like labor, and energy, yam and fabric as desirable
outputa, and wastewater as undesirable [36]. In addition, the researchers also utilized an undesirable
model to analyze and evaluate efficiency in the energy sector. Measuring between inputs including gross
fixed capital formation, labor and energy consumption and outputs including CO2 (undesirable output),
and GDP (desirable output) indicated the energy performance in Brazil, Russia, India, China, and South
Africa [37].

With the principle of the undesirable outputs model and its previous applications, the paper
proposed undesirable outputs model of DEA to analyze the interplay between inputs such as
population and EC and outputs such as GDP, CO2, CH4, N2O in the electricity production aspect of
42 countries during the 2008–2017 term.

3. Methodology

3.1. Proposal Research

Our study of the electricity performance process in 42 countries is organized into four steps as
shown in Figure 1:

• Step 1: Present the purpose of the selected topic, input, and output variables. The theme and
data must be reselected if they are inappropriate. The suitable materials of electricity, as listed on
Enerdata [38], Worldbank [39], and Epa [40], are collected. Then, the EC from all over the world is
introduced and factors relating the production process with EC are described.

• Step 2: Show the benefits of electricity. The study overviews EC and its influences on the
environment; and the undesirable model theory is used to demonstrate in feasibility of the method.
Especially, previous studies that relate to EC and the undesirable model to indicate a probability
theme are discussed.

• Step 3: The first stage of the analysis process must check the Pearson coefficient to ensure the
data is isotonic; any value does not range from −1 to +1 it must be removed and reselected.
Next, the suitable values are applied into an undesirable outputs model to compute scores.
The scores are used for determining the efficiency/inefficiency of 42 countries over the years.
The scores propound their ranking over each term as well. The empirical results present a stable
or upward and downward interplay of countries during the period of 2008–2017 in particular.
Moreover, the analysis results suggest the current status of the effect level in each year when
utilizing electrical energy.

• Step 4: Manifest main points of the empirical results of efficient/inefficient countries, and ranking,
in addition to recommendations on the analysis of a variable pathway of each country in every
year. The suggestion points out improvements for inefficient countries.
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Figure 1. Proposal research.

3.2. Data Source

Electricity is a source fuel that provides lighting, heating, cooling, and runs electronics, machinery,
and transportation systems. Hence, in modern life with the increasing use of diverse high-tech and
electrical equipment, electricity is an essential element. While on the subject, the research discovers
electricity consumption levels and their relative factors. Based on the input and output data posted on
websites, including electricity consumption on Enerdata [38], population and GDP on Worldbank [39],
emissions, including CO2, CH4, and N2O, are computed when their equations are based on the Epa version
3.2 of June 2014 [40]. The 42 countries selected from Enerdata [38] to estimate the performance as listed in
Table 1.

Table 1. Name of countries.

No Country No Country No Country

1 Belgium 15 Kazakhstan 29 Japan
2 Czech Republic 16 Russia 30 Malaysia
3 France 17 Ukraine 31 South Korea
4 Germany 18 Uzbekistan 32 Thailand
5 Italy 19 Canada 33 Australia
6 Netherlands 20 United States 34 New Zealand
7 Poland 21 Argentina 35 Algeria
8 Portugal 22 Brazil 36 Egypt
9 Romania 23 Chile 37 Nigeria
10 Spain 24 Colombia 38 South Africa
11 Sweden 25 Mexico 39 Iran
12 United Kingdom 26 China 40 Kuwait
13 Norway 27 India 41 Saudi Arabia
14 Turkey 28 Indonesia 42 United Arab Emirates

Source: Enerdata [38].
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Characteristics of each variable are described as follows:

• Population (Input): When the population of a nation increases, the electricity usage increases
because the amount of electronic equipment will be augmented as well.

• Electricity consumption (Input): The electricity is consumed by providing electrical energy for
light, heating, cooling, machines, and so on.

• GDP (desirable output): The economic performance of every country is measured by market
value. In the electricity sector, the volumes of EC are used by consumers for any application, i.e.,
they contribute to extending GDP indicators.

• CO2, CH4, N2O (undesirable outputs): Coal, oil, natural gas, and biomass are burned in
combustion power plants. Nuclear power plants create heat, in addition to the heat of the Sun in
solar power, turbines in hydropower plants via the energy power of water from natural waterfalls,
tides, and flowing rivers create electricity, or turbines in wind power plants by the wind’s energy.
These processes all generate electricity, then the generation electricity is transmitted to customers
via wires. When the electrical energy is consumed, the EC process produces emissions, including
CO2, CH4, and N2O.

3.3. Undesirable Outputs Model

The undesirable outputs model is utilized to calculate the performance of DMUs when its outputs
obtain undesirable outputs. In this study, the undesirable outputs model is applied to deal with good
(desirable) and (bad) (undesirable) outputs. We utilize an undesirable outputs model to compute the
efficiency of the electrical energy consumption in 42 countries. The DMUs are the 42 countries, these
countries are set up n DMU (a0, b0) (n = 1, 2, . . . , s). Let the input factor be A, desirable factor (Bd),
and undesirable factor (Bu). Then, the production possibility is given by:

P =
{(

a, bd, bu
)

, a ≥ Xλ; bd ≤ Bdλ; bu ≥ Buλ; L ≤ eλ ≤ U, λ ≥ 0
}

(1)

The intensity vector is λ, it means that the above definition corresponds to the constant return to
scale technology [41], and the lower and upper bounds of the intensity vector are L and U, respectively
(e = (1, . . . 1) ∈ R+, L ≤ 1, U ≥ 1). There is at least one strict inequality when formulating the efficiency
of one DMU (a0,bd

0, bu
0 ) without vector (a0,bd

0, bu
0 ) ∈ P and a0 ≥ a, bd

0 ≤ bd, bu
0 ≥ bu. According to the

SBM of Tone [42], the objective function of the undesirable model is formulated as follows:

ρ∗ = min
1 − 1

k ∑k
i=1

s−i
ai0

1 + 1
s

(
∑s1

r=1
sd

r
bd

ro
+ ∑s1

r=2
su

r
bu

ro

) (2)

Subject to:
a0 = Aλ + s−

bd
0 = Bλ − sd

bu
0 = Bλ + su

s−, sd, su, λ ≥ 0.

The excess in inputs, bad outputs and shortages in good outputs are s−, su, sd, respectively.
The number of factors in su and sd are s1 and s2, respectively, and s = s1 + s2. Using an optimal solution
as ρ∗, s−*, sd* and su* for determining the efficiency of country by undesirable outputs when ρ∗ = 1,
s−* = 0, sd* = 0, and su* = 0. When the DMU is inefficient, ρ∗ can be improved in order to become
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efficient by moving the excesses in inputs and bad outputs, simultaneously increasing the shortfalls in
good outputs [42] as follows:

a0 − s−∗ ⇒ a0

bd
0 + sd∗ ⇒ bd

0

bu
0 − su∗ ⇒ bu

0

(3)

The above program was transformed into an equivalent linear program by Charnes and
Cooper [43]. Let the dual variable vectors be x, yd, yu. Based on the dual side of the linear program,
the dual program in the variable x, yd, yu for constant return to scale [30] is defined as below:

maxydbd
0 − xa0 − yubu

0 . (4)

Subject to:
ydBd − xA − yuBu ≤ 0

x ≥ 1
k

[
1
a0

]

yd ≥ 1+ydbd
0−xa0−yubu

0
s

[
1
bd

0

]

yu ≥ 1+ydbd
0−xa0−yubu

0
s

[
1
bu

0

]

The virtual prices of inputs, desirable and undesirable outputs are replaced by the dual variables
x, yd, yu respectively. The profit ydbd − xa − yubu [30] does not exceed zero for every DMU, and the
profit ydbd

0 − xa0 − yubu
0 for the DMU concerned when the dual program aims at obtaining the optimal

virtual costs and prices for each DMU.
In addition, we set w1 ∈ R+, w2 ∈ R+ as the weights of desirable and undesirable outputs,

respectively. The weights of bad and good outputs are converted to relative weights with their
mathematical expression [30] as follows:

ρ∗ = min
1 − 1

k ∑k
i=1

s−io
aio

1 + 1
k

(
W1∑s1

r=1
sd

r
bd

ro
+ W2∑s2

r=1
su

r
bu

ro

) . (5)

Subject to:

W1 =
sw1

w1 + w2
.

W2 =
sw2

w2 + w1
.

(w1 ≥ 0, w2 ≥ 0).

Consequently, if ρ∗ < 1, the country is inefficient so the excesses in inputs and undesirable
outputs must be removed, and the shortfalls in desirable outputs must be increased. A country reaches
efficiency when ρ∗ = 1.

4. Results

Based on the data in Section 3.2, the study utilizes an undesirable outputs model in DEA to
analyze inputs and desirable and undesirable variables that relate to EC.

4.1. Data Analysis

Tables A1 and A2 indicate the summarized statistics of input/output factors of 42 countries.
In 2017, the values of population, EC, CO2, CH4, N2O, and GDP attained a maximum of 1,386,395,000,
5683.42, 3779.929, 0.2102, 0.0394, and 19,390,604, respectively. The minimum values of population, EC,
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CO2, and GDP are 2,652,340, 18.051, 12.0054, and 29,549.44, in 2008, 2009, 2009, and 2008, respectively.
CH4 and N2O have minimum values of 0.0007, 0.0001, respectively, within 2008–2010.

DEA is sensitive to outliers so that the data are tested for measurement errors. The tested results
indicate the presence and significance of variables. The outlier detection in the data is checked by
using the SPSS software. Table A3 denotes that all cases are valid. Electricity consumption, GDP,
CO2, CH4, and N2O have a small difference excluding population as shown in Figure A1; however,
the populations are important for the electricity consumption, so this factor is still kept to take part in
the analysis process.

Moreover, before the data are applied to analysis by models in DEA, they must be checked via
Pearson correlation between input variables and output variables to ensure “isotonicity”. The values of the
correlation coefficient range from −1 to +1. We have a perfect linear relationship between two variables
if the correlation coefficient is equal to 1. On the contrary, the variable must be removed and reselected
when the correlation coefficient is not positive and significant. As shown in Tables A4 and A5, the Pearson
correlations of 42 countries in the research range from 0.303741 to 1; thus, the input and output factors
have a standard qualification.

4.2. Efficienct and Inefficient Terms

As per the math in Section 3.3, the countries acquire efficiency when their scores are equal to
1; they are inefficient if their scores are under 1. Table 2 denotes the scores of every country in each
term; the scores account for efficient and inefficient terms as well. Belgium, Czech Republic, France,
Italy, Poland, Romania, Spain, Sweden, Turkey, Kazakhstan, Russia, Ukraine, Uzbekistan, Canada,
Argentina, Brazil, Chile, China, India, Indonesia, Malaysia, South Korea, Thailand, Egypt, South Africa,
Iran, Saudi Arabia, and United Arab Emirates are inefficient countries in whole terms because their
scores are always lower than 1. Germany achieved efficiency during the period of 2008–2011 and
2013–2014 with its score at 1; however, it proved inefficient in 2012, 2015, 2016, and 2017, as its scores
are 0.9062, 0.776, 0.9115, and 0.9861, respectively. The Netherlands attained performance except it
remained inefficient in 2015 with a score of 0.9601. Portugal remained efficient from 2008 to 2016,
but the growth of modern society led to increased consumption of electricity, which further led to
increased CO2, CH4, and N2O emissions in 2017; as a consequence, it remained inefficient in 2017 with
a score of 0.9999. Colombia approached efficiency from 2011 to 2013 and excluding inefficient terms
from 2014 to 2017, had scores of 0.7522, 0.7069, 0.9692, 0.7257, 0.5765, 0.517, and 0.5291, respectively.
Mexico remained inefficient for nine years, as its scores were from 0.2847 to 0.3641, although its score
reached 1 in 2015. Japan was efficient during 2009–2011 and inefficient in 2008 and 2012–2017, when its
scores were 0.8572, 0.8379, 0.7002, 0.6128, 0.7925, and 0.6942, respectively. Australia achieved efficient
performance status during 2010–2015 and in 2017; its scores in 2008, 2009, and 2016 were 0.6228, 0.5712,
and 0.8924, respectively. New Zealand remained efficient from 2009 to 2017, excluding 2008, as its score
is 0.7689. Algeria achieved efficiency from 2008 to 2010, but remained inefficient during 2011–2017,
as its scores are under 1. Besides, five countries, including the United Kingdom, Norway, United
States, Nigeria, and Kuwait, were assigned as efficient in the whole term, as their results compute to
be 1. Further, these results reveal the ratio among inputs and desirable and undesirable outputs at the
balance level.

83



Energies 2018, 11, 3037

Table 2. Scores of 42 countries over the period of 2008–2017.

Country 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Belgium 0.8017 0.8902 0.8611 0.8847 0.8534 0.856 0.8389 0.8116 0.8396 0.8344
Czech Republic 0.5408 0.6169 0.6054 0.6107 0.5418 0.5202 0.4939 0.5161 0.5019 0.5129

France 0.7824 0.8875 0.8604 0.8677 0.7476 0.7681 0.6953 0.5982 0.6601 0.7055
Germany 1 1 1 1 0.9062 1 1 0.776 0.9115 0.9861

Italy 0.8414 1 0.9036 0.8661 0.7512 0.7741 0.6914 0.5955 0.6733 0.6911
Netherlands 1 1 1 1 1 1 1 0.9601 1 1

Poland 0.3474 0.338 0.3516 0.3518 0.3402 0.3395 0.3338 0.321 0.3163 0.3242
Portugal 1 1 1 1 1 1 1 1 1 0.9999
Romania 0.6265 0.6841 0.569 0.558 0.4867 0.5193 0.4855 0.514 0.4696 0.5932

Spain 0.6551 0.7297 0.6761 0.6463 0.546 0.5723 0.5387 0.4956 0.5447 0.5649
Sweden 0.6287 0.6061 0.6952 0.7498 0.7034 0.7421 0.7481 0.7491 0.8222 0.7904

United Kingdom 1 1 1 1 1 1 1 1 1 1
Norway 1 1 1 1 1 1 1 1 1 1
Turkey 0.3291 0.3074 0.3542 0.3248 0.3417 0.3569 0.3143 0.301 0.3051 0.2696

Kazakhstan 0.3377 0.3816 0.3819 0.3657 0.3616 0.3893 0.3342 0.3383 0.2797 0.2683
Russia 0.1705 0.1386 0.1823 0.235 0.2442 0.2494 0.2008 0.1417 0.14 0.1706

Ukraine 0.1298 0.1378 0.1293 0.1278 0.1296 0.13 0.1211 0.1162 0.1142 0.1204
Uzbekistan 0.1632 0.2047 0.2181 0.2153 0.2231 0.2217 0.2197 0.2585 0.242 0.1755

Canada 0.4752 0.475 0.6068 0.588 0.5354 0.5375 0.5343 0.4995 0.5223 0.5243
United States 1 1 1 1 1 1 1 1 1 1

Argentina 0.2914 0.3075 0.3575 0.3892 0.3976 0.3818 0.3284 0.4023 0.3427 0.4249
Brazil 0.2634 0.3039 0.4215 0.4334 0.3803 0.3565 0.2991 0.2273 0.2448 0.2791
Chile 0.4335 0.5036 0.5549 0.5356 0.5146 0.4716 0.4202 0.4461 0.429 0.4385

Colombia 0.7522 0.7069 0.9692 1 1 1 0.7257 0.5765 0.517 0.5291
Mexico 0.3388 0.2847 0.3641 0.3472 0.3424 0.3637 0.3281 1 0.2868 0.3019
China 0.1257 0.1438 0.1609 0.1758 0.1946 0.2228 0.2274 0.2298 0.2181 0.2168
India 0.0903 0.1057 0.1317 0.1167 0.1113 0.1032 0.0932 0.0944 0.1046 0.1132

Indonesia 0.2483 0.2593 0.3491 0.3387 0.328 0.2885 0.246 0.2482 0.2663 0.2718
Japan 0.8572 1 1 1 1 0.8379 0.7002 0.6128 0.7925 0.6942

Malaysia 0.2642 0.2551 0.2819 0.2769 0.2691 0.25 0.2404 0.2407 0.2218 0.217
South Korea 0.2453 0.2345 0.308 0.2986 0.277 0.2896 0.3287 0.3489 0.3744 0.3975

Thailand 0.1782 0.1946 0.2041 0.2005 0.1966 0.1956 0.1785 0.1881 0.188 0.1927
Australia 0.6228 0.5712 1 1 1 1 1 1 0.8924 1

New Zealand 0.7689 1 1 1 1 1 1 1 1 1
Algeria 1 1 1 0.7032 0.5665 0.4903 0.381 0.3433 0.3091 0.289
Egypt 0.1503 0.1708 0.1745 0.1497 0.1612 0.1602 0.1519 0.1705 0.1639 0.1156

Nigeria 1 1 1 1 1 1 1 1 1 1
South Africa 0.1249 0.1489 0.171 0.1704 0.1684 0.1515 0.1412 0.145 0.1369 0.1475

Iran 0.1824 0.1943 0.2128 0.2248 0.2245 0.169 0.143 0.1465 0.1519 0.1421
Kuwait 1 1 1 1 1 1 1 1 1 1

Saudi Arabia 0.2933 0.261 0.3057 0.3363 0.3482 0.3261 0.3033 0.2857 0.2778 0.2721
United Arab Emirates 0.6857 0.6151 0.6582 0.6598 0.6818 0.6636 0.6117 0.6075 0.5588 0.5568

The above analysis results point out the efficient and inefficient terms in every year, where
there are 12 efficient countries and 30 inefficient countries during the period from 2009 to 2011; from
2012 to 2013, there are 11 efficient countries and 31 inefficient countries; 2014 has 10 efficient countries,
and 32 inefficient countries; 2008 and 2015 have nine efficient countries and 33 inefficient countries;
the period of 2016–2017 has eight efficient countries and 34 inefficient countries. Thus, the quantity
of inefficient countries is more than that of efficient countries. The empirical results indicate that
United Kingdom, Norway, United States, Nigeria, and Kuwait always approach the efficiency
without fluctuation.

4.3. Ranking Countries

Based on the scores shown in Table 2, this study gives in Table 3 the position of each of country in
every year.
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Table 3. Raking countries during the period from 2008 to 2017.

Country 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Belgium 12 13 15 13 13 12 11 11 11 11
Czech Republic 21 18 21 20 20 20 20 19 20 21

France 13 14 16 14 15 15 15 16 15 13
Germany 1 1 1 1 12 1 1 12 9 10

Italy 11 1 14 15 14 14 16 17 14 15
Netherlands 1 1 1 1 1 1 1 10 1 1

Poland 24 25 29 27 30 29 25 28 25 25
Portugal 1 1 1 1 1 1 1 1 1 9
Romania 19 17 22 22 23 21 21 20 21 16

Spain 17 15 18 19 19 18 18 22 17 17
Sweden 18 20 17 16 16 16 12 13 12 12

United Kingdom 1 1 1 1 1 1 1 1 1 1
Norway 1 1 1 1 1 1 1 1 1 1
Turkey 27 27 28 31 29 27 29 29 27 31

Kazakhstan 26 24 25 26 26 24 24 27 29 32
Russia 36 40 37 34 34 34 36 40 39 37

Ukraine 39 41 42 41 41 41 41 41 41 40
Uzbekistan 37 34 34 36 36 36 35 31 33 36

Canada 22 23 20 21 21 19 19 21 18 20
United States 1 1 1 1 1 1 1 1 1 1

Argentina 29 26 27 25 24 25 27 24 24 23
Brazil 31 28 24 24 25 28 31 35 32 28
Chile 23 22 23 23 22 23 22 23 22 22

Colombia 15 16 13 1 1 1 13 18 19 19
Mexico 25 29 26 28 28 26 28 1 28 26
China 40 39 40 38 38 35 34 34 35 34
India 42 42 41 42 42 42 42 42 42 42

Indonesia 32 31 30 29 31 32 32 32 31 30
Japan 10 1 1 1 1 13 14 14 13 14

Malaysia 30 32 33 33 33 33 33 33 34 33
South Korea 33 33 31 32 32 31 26 25 23 24

Thailand 35 35 36 37 37 37 37 36 36 35
Australia 20 21 1 1 1 1 1 1 10 1

New Zealand 14 1 1 1 1 1 1 1 1 1
Algeria 1 1 1 17 18 22 23 26 26 27
Egypt 38 37 38 40 40 39 38 37 37 41

Nigeria 1 1 1 1 1 1 1 1 1 1
South Africa 41 38 39 39 39 40 40 39 40 38

Iran 34 36 35 35 35 38 39 38 38 39
Kuwait 1 1 1 1 1 1 1 1 1 1

Saudi Arabia 28 30 32 30 27 30 30 30 30 29
United Arab Emirates 16 19 19 18 17 17 17 15 16 18

As shown in Table 3, five countries including United Kingdom, Norway, United States, Nigeria,
and Kuwait are always at the first position for the whole term. Germany with the first ranking is in
2008, 2009, 2010, 2011, 2013, and 2014. Italy only obtains the first ranking in 2009. The Netherlands is
mostly in the first position except for 2015. Portugal obtains first ranking from 2008 to 2016 and it is
down to the ninth. Colombia gets the first ranking for three years as 2011, 2012, 2013. Japan attained
first position during the period from 2009–2014. Australia is in the first ranking from 2010 to 2015,
and in 2017. New Zealand reaches the first position except for 2008. Algeria approaches the first
ranking in three years from 2008 to 2011. The remaining terms of Germany, Italy, Netherlands, Portugal,
Colombia, Japan, Australia, New Zealand, Algeria, are ranked from 9 to 27. Belgium, Czech Republic,
France, Poland, Romania, Spain, Sweden, Turkey, Kazakhstan, Russia, Ukraine, Uzbekistan, Canada,
Argentina, Brazil, Chile, Mexico, China, India, Indonesia, Malaysia, South Korea, Thailand, Egypt,
South Africa, Iran, Saudi Arabia, and United Arab Emirates stay at the low position without reaching
the first position during whole term. Especially, India rank at the bottom position consecutively
during the period of 2008–2017 except for 2010 where it raised one level with a ranking as forty-first.
Ukraine has the last ranking in 2010.
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The above description specifies the ranking of an effect level in electrical energy sources.
Increased population, simultaneously industrialization, and modernization all represent an important
force that has an impact on accreting emissions. Therefore, the number of efficient countries with
first contemporaneous ranking are reduced, from 2009 to 2017 down from 12 to eight countries.
Furthermore, many countries such as the Czech Republic, Turkey, Kazakhstan, i.e., have yet to reach
first position and thus face a downward trend. On the contrary, the United Kingdom, Norway, United
States, Nigeria, and Kuwait maintain a sustainable economy and always stand at the highest ranking.

4.4. Discussion

The empirical results given in Section 4.2 point out the relationship between input and output
factors of 42 countries during 2008–2017 when using electricity and reveal their positions in every year
as well. The interplay pathway among selected inputs into selected desirable and undesirable outputs
in the context of human growth activities in every country is explored based on Table 2. Most countries
exhibit a fluctuation, according to each term; however, the United Kingdom, Norway, United States,
Nigeria, and Kuwait always approach high scores as 1 and keep a stable position. They obtain an
excellent interplay under all the circumstances.

On the other hand, other countries demonstrate a variation in each period. Portugal, The
Netherlands, and New Zealand achieve good relations with scores of 1 over nine years, while Portugal
kept in balance from 2008 to 2016 and displayed a downward trend in 2017 at 0.9999. The Netherlands
dropped in 2015, as its score is only at 0.9601, and the primary score in 2008 is only 0.7689, but its efforts
to improve the interplay with upward mobility helped it reach to the high point in the next terms.
Italy and Japan achieved a forward movement to obtain a maximum score in 2009; however, both they
could not maintain a good relationship, which is down by the end. Algeria and Germany started with
a brilliant mark with a maximum value in primal years; Algeria kept it in three years, consecutively,
and dropped in the remaining years from 2011 to 2017; Germany has more flourish with a maximum
score in six years and an upward trend in the final term from 0.776 to 0.9861. Australia, Colombia,
and Mexico fell in 2007, though they pushed up their scores in the next terms; particularly, Australia
increased from 2009 to 2010 and held a stable score with a high position over six years consecutively;
Colombia augmented in the first terms and decreased in the final terms; as its maximum score of 1 is
for only three years from 2011 to 2013, Mexico has a sharp variation from 0.3281 to 1 within one year
and then dropped deeply to 0.2868 in the next year. Consequently, these countries fluctuated over
time; however, they still display a good interplay during some terms.

Besides, the 27 remaining countries have seen variations every year, thus failing reach to an
excellent relationship. Their scores are usually lower than the standard value. Eight countries, i.e.,
Canada, Czech Republic, Romania, Sweden, Spain, United Arab Emirates, France, and Belgium, are at
an average level with most of their values being under 0.5. Nineteen countries, i.e., India, South Africa,
China, Ukraine, Egypt, Uzbekistan, Russia, Thailand, Iran, South Korea, Indonesia, Brazil, Malaysia,
Argentina, Saudi Arabia, Turkey, Kazakhstan, Poland, and Chile, are seriously affected by emissions,
as their valuations are all under 0.5.

As a consequence, the economic development is accreting into producing emissions which are
harmful for the environment. According to Chung’s directional distance function [15], the performance
in this case is refined by increasing the good output while simultaneously reducing the bad outputs.
In the study, CO2, CH4, and N2O must decline, but at the same time the GDP still must increase.
In addition, the electricity consumption can be reduced when the electricity usage should the saved
and replace high-capacity equipment with low-capacity equipment in order to diminish energy
consumption. That way, emissions can dwindle to avoid a contaminated environment and climate
change, the effect of electricity consumption on climate change was tested by Philli-Sihvola [44]; further,
with the inefficient terms, the performance among inputs and desirable and undesirable outputs can
be improved.
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5. Conclusions

Electricity provides humans with light and operation of machines. Then, if a population is at a
high level, the consumption of electricity will increase. As a result, economic growth will be enhanced
by displayed in the GDP index; however, electricity production and use brings disadvantages of
emitting undesirable factors (CO2, CH4, N2O). Therefore, the study proposes an undesirable outputs
model to measure the performance of the elements that relate to the EC process.

For the characteristics of dealing with fixed bad and good outputs, an undesirable outputs model
is used help the study formulate scores. The empirical values demonstrate interplay among variables,
ranking, and variable pathways of every country in every year. Forty-two countries are defined as
efficiency or inefficient after applying an undesirable outputs model to analyzing their performance.
The analysis results denote that the United Kingdom, Norway, United States, Nigeria, and Kuwait
show stable efficiency and retain a good relationship for the whole term; other countries have changed
consecutively every time.

For the 42 countries we not only know about the interplay among inputs, desirable and
undesirable outputs but can also understand the quantitative analysis that affect level of emissions.
Based on the principle of undesirable outputs model, desirable outputs i.e., GDP should be increased;
undesirable outputs including CO2, CH4, and N2O, and inputs, i.e., electricity consumption at the
inefficient terms will be reduced, by the way the efficiency will be improved. In addition, they find t a
direction to restore balance to their ecosystems.

In general, the study summarizes the basic data of EC and specifies a relationship between EC and
related factors; however, limitations remain. First, the inputs and outputs of all countries are not listed,
so that the future research should expand to add more countries. Second, the interplay will become
deeper when calculations include enough factors. Further study should investigate this in order to
obtain more inputs, i.e., capital, assets, and output variables, i.e., revenue. Third, the study only needs
the efficiency in the past term through the undesirable outputs model, so further studies could utilize
more models to predict the future terms. Fourth, the future direction will use the Spearman correlation
coefficient to have a statistical measure of a relationships between paired data.

Author Contributions: C.-N.W. guided the analysis method, and the research direction, found the solutions,
and edited the content; Q.C.L. designed research framework, analyzed the empirical result and wrote; T.K.L.N.
collected and analyzed the data. All authors contributed in issuing the final result.

Funding: This research was partly supported by MOST107-2622-E-992-012-CC3 from the Ministry of Sciences and
Technology in Taiwan.

Acknowledgments: The authors appreciate the support from National Kaohsiung University of Science and
Technology, Ministry of Sciences and Technology in Taiwan.

Conflicts of Interest: The authors declare no conflict of interest

87



Energies 2018, 11, 3037

Appendix A

Table A1. Statistics of the 42 countries over the period of 2008–2011.

Years Population EC (TWh) CO2 (Mtons) CH4 (Mtons) N2O (Mtons) GDP (Million in USD)

2008

1,324,655,000 3907.229 2598.6199 0.1445 0.0271 14,718,582
2,652,340 18.517 12.3153 0.0007 0.0001 29,549.44

118,126,627.26 373.5982 248.4727 0.0138 0.0026 1,336,946.326
263,672,064.05 728.7291 484.6632 0.027 0.0051 2,411,815.529

2009

1,331,260,000 3724.658 2477.1955 0.1378 0.0258 14,418,739
2,818,939 18.051 12.0054 0.0007 0.0001 33,689.22

119,287,116.55 371.3682 246.9896 0.0137 0.0026 1,268,097.807
266,092,473.27 728.332 484.3991 0.0269 0.0051 2,386,203.268

2010

1,337,705,000 3894.367 2598.6199 0.1445 0.0271 14,964,372
2,998,083 20.876 12.3153 0.0007 0.0001 39,332.77

120,434,614.83 397.1979 248.4727 0.0138 0.0026 1,393,321.39
268,462,393.21 786.178 484.6632 0.027 0.0051 2,506,496.099

2011

1,344,130,000 4051.605 2694.6415 0.1499 0.0281 15,517,926
3,191,051 23.679 15.7484 0.0009 0.0002 45,915.19

121,536,746.24 409.9938 272.6786 0.0152 0.0029 1,549,594.858
270,791,913.9 827.6549 550.4567 0.0306 0.0057 2,671,950.305

Table A2. Statistics of the 42 countries over the period of 2012–2017.

Years Population EC (TWh) CO2 (Mtons) CH4 (Mtons) N2O (Mtons) GDP (Million in USD)

2012

1,350,695,000 4326.079 2877.188 0.16 0.03 16,155,255
3,395,556 25.399 16.8924 0.0009 0.0002 51,821.57

122,670,658.43 419.9453 279.1316 0.0155 0.0029 1,583,732.445
273,099,786.91 851.7249 566.4128 0.0315 0.0059 2,799,627.018

2013

1,357,380,000 4717.568 3137.5601 0.1745 0.0327 16,691,517
3,598,385 23.689 15.7551 0.0009 0.0002 57,690.45

123,810,535.81 432.4245 287.745 0.016 0.003 1,622,822.758
275,389,972.61 899.751 598.4121 0.0333 0.0062 2,899,088.887

2014

1,364,270,000 4938.623 3284.5794 0.183 0.0343 17,427,609
3,782,450 24.625 16.3776 0.001 0.0002 63,067.08

124,952,217.6 441.3991 292.8808 0.0163 0.0031 1,662,353.067
277,690,414.5 927.2612 616.5223 0.0343 0.0064 3,046,071.083

2015

1,371,220,000 5103.889 3301.0023 0.1836 0.0344 18,120,714
3,935,794 25.268 17.848 0.001 0.0002 66,903.8

126,084,336.38 448.5672 292.5948 0.0163 0.0031 1,572,917.053
279,993,795.16 946.811 619.273 0.0344 0.0065 3,157,505.409

2016

1,378,665,000 5366.78 3471.2873 0.1931 0.0362 1,862,4475
4,052,584 24.5605 16.2416 0.0009 0.0002 67,067.57

127,216,593.57 459.7215 307.2145 0.0171 0.0031 1,596,048.935
282,345,525.38 977.6329 635.8452 0.0354 0.0066 3,243,650.311

2017

1,386,395,000 5683.42 3779.929 0.2102 0.0394 19,390,604
4,136,528 24.4774 16.2794 0.0009 0.0002 48,717.69

128,333,654.5 471.4782 313.5707 0.0174 0.0033 1,692,506.563
284,721,026.7 1010.7354 672.2199 0.0374 0.007 3,412,183.899

Table A3. Case Processing Summary.

Factors

Cases

Valid Missing Total

N Percent N Percent N Percent

(I) Population 417 100.00% 0 0.00% 42 100.00%
(I) Electricity consumption (TWh) 417 100.00% 0 0.00% 42 100.00%

(O) GDP (million USD) 417 100.00% 0 0.00% 42 100.00%
(Obad) CO2 (Mtons) 417 100.00% 0 0.00% 42 100.00%
(Obad) CH4 (Mtons) 417 100.00% 0 0.00% 42 100.00%
(Obad) N2O (Mtons) 417 100.00% 0 0.00% 42 100.00%
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Table A4. Person’s correlation over the period of 2008–2012.

Indicators Year Population EC (TWh) CO2 (Mtons) CH4 (Mtons) N2O (Mtons) GDP (Million USD)

Population

2008

1 0.580126 0.580126 0.580341 0.579862 0.303741
EC (TWh) 0.580126 1 1 0.999999 0.999986 0.901139

CO2 (Mtons) 0.580126 1 1 0.999999 0.999986 0.901139
CH4 (Mtons) 0.580341 0.999999 0.999999 1 0.999985 0.901071
N2O (Mtons) 0.579862 0.999986 0.999986 0.999985 1 0.901355

GDP (million USD) 0.303741 0.901139 0.901139 0.901071 0.901355 1

Population

2009

1 0.616812 0.616812 0.616607 0.616654 0.33962
EC (TWh) 0.616812 1 1 0.999999 0.999985 0.894023

CO2 (Mtons) 0.616812 1 1 0.999999 0.999985 0.894023
CH4 (Mtons) 0.616607 0.999999 0.999999 1 0.999984 0.894111
N2O (Mtons) 0.616654 0.999985 0.999985 0.999984 1 0.893678

GDP (million USD) 0.33962 0.894023 0.894023 0.894111 0.893678 1

Population

2010

1 0.633979 0.576015 0.576229 0.575756 0.380058
EC (TWh) 0.633979 1 0.994505 0.994535 0.994407 0.900126

CO2 (Mtons) 0.576015 0.994505 1 0.999999 0.999986 0.934326
CH4 (Mtons) 0.576229 0.994535 0.999999 1 0.999985 0.93427
N2O (Mtons) 0.575756 0.994407 0.999986 0.999985 1 0.934449

GDP (million USD) 0.380058 0.900126 0.934326 0.93427 0.934449 1

Population

2011

1 0.664182 0.664182 0.664216 0.664145 0.419236
EC (TWh) 0.664182 1 1 1 0.999989 0.898789

CO2 (Mtons) 0.664182 1 1 1 0.999989 0.898789
CH4 (Mtons) 0.664216 1 1 1 0.999989 0.898727
N2O (Mtons) 0.664145 0.999989 0.999989 0.999989 1 0.899497

GDP (million USD) 0.419236 0.898789 0.898789 0.898727 0.899497 1

Population

2012

1 0.680572 0.680718 0.680613 0.680276 0.440727
EC (TWh) 0.680572 1 0.999997 0.999997 0.999983 0.902231

CO2 (Mtons) 0.680718 0.999997 1 1 0.999989 0.902234
CH4 (Mtons) 0.680613 0.999997 1 1 0.999988 0.902301
N2O (Mtons) 0.680276 0.999983 0.999989 0.999988 1 0.90262

GDP (million USD) 0.440727 0.902231 0.902234 0.902301 0.90262 1

Table A5. Person’s correlation over the period of 2013–2017.

Indicators Year Population EC (TWh) CO2 (Mtons) CH4 (Mtons) N2O (Mtons) GDP (Million USD)

Population

2013

1 0.695153 0.696013 0.695992 0.695301 0.464744
EC (TWh) 0.695153 1 0.999998 0.999998 0.999988 0.907294

CO2 (Mtons) 0.696013 0.999998 1 1 0.999988 0.907197
CH4 (Mtons) 0.695992 0.999998 1 1 0.999987 0.907255
N2O (Mtons) 0.695301 0.999988 0.999988 0.999987 1 0.90767

GDP (million USD) 0.464744 0.907294 0.907197 0.907255 0.90767 1

Population

2014

1 0.706217 0.705663 0.705031 0.705695 0.480833
EC (TWh) 0.706217 1 0.999991 0.999952 0.99998 0.907172

CO2 (Mtons) 0.705663 0.999991 1 0.999961 0.999989 0.907172
CH4 (Mtons) 0.705031 0.999952 0.999961 1 0.999947 0.907122
N2O (Mtons) 0.705695 0.99998 0.999989 0.999947 1 0.906706

GDP (million USD) 0.480833 0.907172 0.907172 0.907122 0.906706 1

Population

2015

1 0.714941 0.708444 0.708326 0.70894 0.491955
EC (TWh) 0.714941 1 0.999494 0.999493 0.999839 0.908562

CO2 (Mtons) 0.708444 0.999494 1 1 0.999616 0.913374
CH4 (Mtons) 0.708326 0.999493 1 1 0.999616 0.91337
N2O (Mtons) 0.70894 0.999839 0.999616 0.999616 1 0.914613

GDP (million USD) 0.491955 0.908562 0.913374 0.91337 0.914613 1

Population

2016

1 0.724975 0.718889 0.71891 0.720908 0.490153
EC (TWh) 0.724975 1 0.998089 0.9981 0.999912 0.8947

CO2 (Mtons) 0.718889 0.998089 1 1 0.998155 0.897223
CH4 (Mtons) 0.71891 0.9981 1 1 0.998165 0.897175
N2O (Mtons) 0.720908 0.999912 0.998155 0.998165 1 0.898646

GDP (million USD) 0.490153 0.8947 0.897223 0.897175 0.898646 1

Population

2017

1 0.73631 0.73631 0.736469 0.73605 0.508286
EC (TWh) 0.73631 1 1 1 0.999992 0.891115

CO2 (Mtons) 0.73631 1 1 1 0.999992 0.891115
CH4 (Mtons) 0.736469 1 1 1 0.999992 0.89107
N2O (Mtons) 0.73605 0.999992 0.999992 0.999992 1 0.891228

GDP (million USD) 0.508286 0.891115 0.891115 0.89107 0.891228 1
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Appendix B

Figure A1. Boxplot of inputs and outputs.
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